o

s

1
-
"
a.
<L
3)
S
O
®
<
(04]

+
<
>
-4
<
=
N
e
i
7]
>

-A-D

-LIBCA

DEC-11

e AT L L TR L R ¢ L L Ly

{hit, N

(e y

BASIC/CAPS-11

USER'S MANUAL .

DEC-11-LIBCA-A-D

SWINBURNE COLLECE OF TECHNOLOGY
ELECTRICAL ENGINEERING DEPT.

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts .

PP IFSLT. TRRP P U

L W ke e

R A

Printed July, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
{with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may othexrwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1974, by Digital Equipment Corporation

The HOW TO OBTAIN SCFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in

preparing future documentation.
»

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlOD QUICKPCOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-B/e RSTS

DDT FLIP CHIP LAB~K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIEBCL IDACS PHA TYPESET 8

UNIBUS

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX

SWINEBURNE COLLEGE OF TECHNOLOGY

I N T =l =)

A.l
A.l.1
A.l.1.1
A.l.2
A.l.2.1

ELECTRICAL ENGINEERING DEPT.
CONTENTS

INTRODUCTION

LOADING AND STARTING INSTRUCTIONS
Running BASIC/CAPS from the CAPS-11
Monitor

Rootatrapping BASIC/CAPS into Memory
Deacription of Bootstrap Procedure

INITIAL DIALOGUE
SYSTEM-DEPENDENT FEATURES

SUMMARY OF SYSTEM-DEPENDENT ILANGUAGE
FEATURES

CONTROL/C KEY COMMANDS (CTRL/C)
OVERLAYING IN THE BK VERSION
FILES IN BASIC/CAPS

BASIC/CAPS FILES

File Descriptor

Examples of File Statements
Examples of Fille Commands

USING ASSEMBLY LANGUAGF ROUTINES WITH
BASIC

SYSTEM FUNCTION TABLE

WRITING ASSEMBLY LANCUAGE ROUTINES
Sample User Functions

BACKGROUND ASSEMBLY LANGUAGE ROUTINES
GENERAL INTERFACE SUBROUTINES

ERROR MESSAGES

BASIC/CAPS SYSTEM INFORMATION

LINXING BASIC/CAPS FROM THE OBJECT
MOLULES

Linking BASIC/CAPS for Syatems With More
Than BK of Memory

Linking with a User Function and/or a
Background Assembly Language Routine
Linking BASIC/CAPS for Systems with BK
of Memory

Linking With a User Function and/or a
Background Assembly Language Routine

iii

Page

<

I
NN -

b &) = = = ol pad |
]] 1
- [l w [y N)

5-1
aA-1
A~1l
A-2
A-2
A-3

A-4

APPENDIX

INDEX

TABLES

. a & ®
LI]
SN

- L) -
N

-
Wl W W W W W MNNN

DWHw WwE © pepupop NP

5-1

A-1

Page

ASSEMBLING BASIC A-4
Agsembling the Standard Object Modules A-6
Agssembling Non~-standard Object Modules A-7
TECANICAL DESCRIPTION OF BASIC/CAPS A-8
System Routines in BASIC A-8
Representation of Numbers in BASIC A-13
Representation of Strings in BASIC A-14
Format of Translated BASIC Program A-14
Symbol Table Format A-14
Tranaslated Code A-16
BASIC Memory Map A-1%
PERIPHERAL DEVICE SUPPORT B-1
LABORATORY PERIPHERAL SYSTEM (LPS) SUPPORT B-1
Linking BASIC/CAPS with LPS Support B~5
Assembling LPS Support from the Sources B-8
GT GRAPHICS SUPPORT B-13
Linking BASIC/CAPS with GT Support B-14
Asgsembling GT Support from the Sources B~17
Technical Description of Display Buffer B-19
Management

Index-1
BASBIC Error Messages 5=-2
Symbol Table Entries A-15

iv

PREFACE

This document should be used in conjunction with the BASIC-1l Language
Reference Manual (DEC-11-LIBBA=-A=D). The BASIC/CAPS hootstrapping,
loading, running, 1linking and assembling instructions, the file
structure, the arror messages, and the system-dependent features are
described 4in this manual,. A summary of the BASIC/CAPS system-
dependent features may be found in section 2.1 of this manual,

A description of the BASIC-1ll Documentation system and conventions may
be found 4in section 1.1 of the BASIC-1]l Language Raference Manual,
This should be read first by all users, The CAPS-1ll User's Guide
(DEC=11-0TUGA=-A-D) should also be available for reference as the
CAPS5-11 Monitor System will be used to =zero cassettes, copy files,
write assembly language routines for BASIC, and to do related file
maintenance tasks.

v

CHAPTER 1

INTRODUCTION

BASIC/CAPS is a single-user BASIC running under the CAPS-l1ll Cassette
Monitor System, BASIC/CAPS provides powerful sequential file
capabllities and allows the user to save and retrieve files from
caassettes. BASBIC/CAPS allows user-defined functions, user-written
assembly language routines, and chaining between BASIC programs with
data passed in cassette files and/or in memory.

The BASIC/CAPS gsystem is provided on three cassattes. Two running
versions are provided on one cassette (DEC~1l1-0TBAA-A-TCl). Thaese may
be loaded by either the bootstrap loader {see section 1l.l.2) or the
CAPS=-11 Monitor (see Section l.l.l). One version is for PDP-1ll systems
with more than 8K of meamory (referred to in this document as the
"greater than 8K version") and the other will run in any PDP-11 with
at least 8K (referred to as the "8K version®) of memory. The 8K
varsion employs overlaying of the BASIC system from cassette and does
not support string variablas or the PRINT USING statemant, The
greatar than 8K version is a non-overlaying BASIC and supports string
variables and the powerful PRINT USING statement.

BASIC/CAPS runs on any PDP-ll system with 8K or more of memory, a dual
drive cassette and a console terminal. BASIC/CAPS also supports the
following optional hardware: a line printer (LP1l or LS1ll), a
high-speed paper tape reader/punch {PCll), a low-speed paper tape
reader/punch (LT33), speclal arithmetic hardware (EAE, FPU, PDP-11/40
Extended Processor, and PDP-11/45 Processor), and up to 28K of memory.

For systems with more than 8K of memory, support is also provided for
the Laboratory Peripheral System (LPS) and the GT40 display processor
{VT1ll). Support is provided in the form of subroutines that may be
linked with BASIC, The procedure to build a load module of BASIC
containing LPS or GT support may be found in Appendix B of this
document. The wuse of the subroutines in BASIC programs 1s described
in Appendices D (LPS) and C (Gr40) of the BASIC-1l Lanquage Reference
Manual,

1.1 LOADING AND STARTING INSTRUCTIONS

1.1.1 Running BASIC/CAPS from the CAPS-11 Monitor

BASIC/CAPS may be loaded and atarted by +the bootstrap loader (sae
section 1l.l1.2) or by the CAPS-ll HMonitor. As the BASIC program
overlays the Monitor there is no reason to load the Monitor for the
sole purpose of loading BASIC. However, the Monitor will often be in
memory as it will be used to zero cassettes and copy files. When the
Monitor is already in memory, the greater than 8K wversion of BASIC may
be loaded by typing (<CR> represents carriage return):

R BASICKCR> (if the BASIC system cassette is on drive Q)
or
R 1:BASIC{CR> (if the BASIC system cassette is on drive 1)

The BK varsion of BASIC may be loaded by typing:

R BAS8K{CR> {for cassette drive 0)
or
R 1:BASBK<{CR> (for cassette drive 1)

At this point the initial dialogue, which is described in Section 1.2,
will occur.

1.1.2 Bootstrapping BASIC/CAPS into Memory

BASIC/CAPS, in addition to being run from the CAPS=-11 monitor, can
also be bootstrapped directly into memory, in a manner similar to the
way the CAPS-=-l1]l Monitor is bootstrapped (see pgection 3.1 in the
CAPS~-11 User's Guide).

The two running versions of BASIC are supplied on cassette
DEC-11-0TBAA-A-TCl. The following files are on the cassette:

CTLOAD.SYS Cassette Bootstrap File
BASED,OVL 8K Version Edit Overlay
BASEX.OVL 8K Version Execute Overlay
BAS8K.S1LO 8K Version
BASIC.SLO Greater than 8K Version
FTBLA,OBJ {(Used for BASIC/CAPS demonstration)
PROG2.0BJ (Used for BASIC/CAPS demonstration)
PROGZ.BAS (Used for BASIC/CAPS demonstration)
FPMPEA.OBY Math package for EAE hardware
FPMPEI.OBJ Math package for EIS hardware
FPMPFP.0OBJ Math package for FPU hardware

NOTE

The BASIC/CAPS demonstration is
described in GETTING STARTED WITH
BASIC/CAPS (DEC-1l-DTBIA-A-D).

To bootstrap either version of BASIC into memory from the cassette
provided, follow this procedure:

l. Press and Raise the HALT switch.

2, Mount BASIC casgette on unit 0, If the PDP=1l]l system includes
a hardware cassette bootstrap go to step 4,

3. Toggle in one of the software bootstraps listed in Table 3=}
of the CAPS-1l User's Guide,

4, Set the Switch Register to the start address of the bootstrap
{hardware or software) and press LOAD ADDRESS.

5. Set the Switch Register to 000007 (octal) to bootstrap
BASBR.SLO or to 000011 (octal) to bootstrap BASIC.SLO and
then press START. The cassette on unit 0 will spin forward
and then will halt,

6. Set bit 0 of the Switch Register to 0. Bits 1 to 15 of the
Switch Register must not all be 0y at least one bit must be
11

7. Press CONTINUE and BASIC.SILO (or BASBK.SLO) will be rxead in
and then the initial dialogue will begin (see section 1.2 for
a description of the initial dialoque).

1l.1.2,1 Description of Bootstrap Procedure = The hardware or software
bootstrap causes the file CTLOAD.SYS {which must be the first file on
the cassette) to be read into memory and started. The Switch Register
settings in step 5 are interpreted by CTLOAD as described in Table E-2
in Appendix E of the CAPS-1]l User's Guide. Setting bhit 0 to 1
signifies a special locad and bits 1-14 specify the position of the
file to be loaded. 1f the file to be loaded is the nth file after
CTLOAD (or the 1l+nth file on the cassette) bits 1l-14 ghould be aet
equal to n. Altermatively, the user may create a cassette on which the
first f£file 1s CTLOAD and the second is BASIC.SLO or BASS8K.SLO. This
cassette may be bootstrapped exactly as the CAPS-1l Monitor System ia
bhootstrapped (see section 3.1 of the CAPS-ll User's Guide.)

1.2 INITIAL DIALOGUE

When BASIC is first loaded by either the R command or the Bootstrap
Loader, the following once only dialogue occurss

BASIC prints:

BASIC/CAPS V(1-01 {or current version)
QPT FNS?

and awalts specification on inclusion of the optional functions.
Refer to BASIC-1ll Language Referance Manual, Chapter 3 for information
on these functions. Depending on the response {(Carriage Return, A, N,
or I) to this messaga, all functions (Carriage Return or A) are
included, none of the functions (N) are included, or the functions are
listed and may be individually selected for inclusion (I).

1-3

Selectively excluding functions provides space for additional user
program lines. Reply with one of the following codes ({CR> represents
the Carriage Return key):

CODE EXPLANATION

ACCR> Loads all of the optional functions

ccr>

N{CR> Loads none of the optional functions

ISCR> Allows the functions to be specified
individually.

If any character other than a Carriage Return, A, N, or I is typed,
the message is repeated, If the reply is I, BASIC prints:

Y = YES N - NO
REND:

to allow specification of each function to be loaded as part of
BASIC/CAPS.

Raply with a Y{CR>» or N{CR> for the RND function and each additional
function as the names are printed. The optional functions ares

String BASIC No String
(Greatar than 8K) (8K)

RND RND
ABS ABS
SGN S5GN
BIN BIN
ocT OCT

POS
SEG$
VAL

TRMS$
STRS

Each. exclusion of a function other than POS or SEG$ provides room for
between +two and five additional program lines. Excluding the P0OS and
SEG$ functions provides approximately ten additional lines each,

If any user assembly language routines had been linked into BASIC, to
be referenced by a CALL statemsnt (See Chapter 4), BASIC prints:

USER FNS 1LOADED
Next BASIC requests the terminal type by printing:
TERM?

Reply with one of the following responses:

0{CR> or {CR> if the terminal is not a fast serial

terminal,
1<{CR> if the terminal is a 300-baud LAJD,
2{CR> 1f the terminal is a VI05 with a data

rate of 600 baud or greater,

BASIC then prints
DATE1
requesting the current date in the form

DATE 1 dd=-rmm~yy

where dd is the day of the month (may be one or two digits), mmm is
the first three letters of the month and yy is the last two digits of
thes year.

If the date is not in this format, BASIC prints

BAD DATE
DATE:

requesting the date again. After the user has typed in a dats in
correct format, BASIC prints the measage

READY

which indicates that the system has been successfully initialized and

that a command or program line may be typed {(see BASIC-1ll Language
Reference Manual, Chapter 1l).

If the computer is turned off while BASIC is operating, the ?7PWP
{Power Fall) error massage is output when powar is turned on again.
The user program is not destroyed and BASIC returns to the READY
message with all files closed,

BASIC can be restarted by setting the awitch register to all 0's and

by pressing and releasing the HALT, LOAD ADDR, and START KEYS, The
user program is not presarved.

CHAPTER 2
SYSTEM-DEPENDENT FEATURES

2.1 SUMMARY OF SYSTEM-DEPENDENT LANGUAGE FEATURES

The following table summarizes the system-dependent language features

and messages

CTRL/C

REBCOT?

B?

ASSIGN
BYE
DEASSIGN
KILL
NAME AS

UNSAVE

A CTRL/C key command stops execution of the BASIC
program, prints a STOP or STOP AT LINE message and
then returns BASIC/CAPS to the READY message, A
second CTRL/C immediately after the firat causes
BASIC/CAPS to print the REBOOT? message.

Prompts the user to place the CAPS~-11l Systenm
Cassette on cassette unit 0 and confirm the reboot
request,

In 8K version only. Indicates that the cassatte
on unit 0 has been searched and that the needed
system overlay file has not been found. Prompts
user to place a cassette which contains the 8K
BASIC/CAPS system overlay files on unit 0.

Not in BASIC/CAPS

Not in BASIC/CAPS

Not in BASIC/CAPS

Not in BASIC/CAPS

Not in BASIC/CAPS

Not in BASIC/CAPS

2-1

2.2 CONTROL/C REY COMMANDS {CTRL/C)

Typing a CTRL/C terminates program execution, closes all open files,
and produces one of the two following messages:

Message Meaning
STOP AT LINE XXXX BASIC was executing a program ‘when the
CTRL/C was pressed and has executed line
XXX {unless line HHAX is a

multi-statement program line).

STOP BASIC was in Edit mode (able to accept
commands or program lines typed in) at
time of CTRL/C.

In either case the program in memory is retained and BASIC then prints
the READY message and waits for a command or program line to be typed
in.

A CTRL/C typed during the initial dialogue has no effect on
BASIC/CAPS.

Response to CTRL/C in BASIC/CAPS is not immediate if cassette input or
output is in progress. This includes the BASIC system overlaying that
occurs only in the 8K version.

A second CTRL/C immediately after the first causes BASIC to print:
REBQOT?

This feature allows the CAPS-1l Monitor or another version of BASIC to
be loaded without having to go through the system bootstrap procedure.

To load the CAPS-1l1l Monitor, first place the CAPS-ll system cassette
on cassatte unit 0j; set bit zero of the switch register to zero, and
then type any response beginning with ¥ and ending with a <CR>. This
reboots the CAPS-1ll Systaem.

To reboot BASIC, first mount the supplied BASIC cassette, set the
switch register as described in step 5 of the instructions to
bootstrap BASIC in Section 1.1.2, and then type any response beginning
with Y and ending with a {CR>. when the cassette halts set bit zero
aqual to zero and press the CONTinue switch.

Any respcnse not beginning with a Y cancels the reboot request and

returms BASIC to the READY message leaving the stored program
unchanged.

2=~2

N

2.3 OVERLAYING IN THE 8K VERSION

To provide maximum space £for user programs, the BK version of
BASIC/CAPS (BASBK.SLO) employs overlaying. Overlaying is the method
by which sections of the BASIC system program that are never required
simultaneously can occupy memory alternatively. This feature regquires
that a cassette containing the BASIC/CAPS overlay flles ({BASEX,OVL and
BASED.OVL) be mounted on cassette unit 0 when overlaying is necessary.

Whenever BASIC must overlay to continue operation, the cassette
currently mounted on unit 0 18 searched for the necessary overlay
file, If the needed file is found it is read into memory and then
BASIC continues. If the cassette mounted on unit 0 does not contain
the overlay file or if no cassette is mounted on unit 0 BASIC prints
the prompt:

B?

At this point a cassette contalning the BASIC overlay files should be
mounted on unit 0. Than any character on the keyboard should be typed.
BASIC searches the cassette for the needed overlay file and either
reads the flle into memory and continues or, if the file is not found,
prints another B? prompt.

when the cassette mounted on unit 0 contains the two overlay files the
BASIC overlay mechanism is invisible except for the additional time
required for transitions from Edit to Execute mode and the fact that
an open file on cassette unit 0 18 closed when overlaying is needed.

When BASIC programs and commands are doing cassette file Input/Output,
it is convenient to have speveral scratch cassettes with the BASIC/CAPS
overlay files on them. These cassettes may be created by using the
CAPS-1l PIF program to copy the BASIC/CAPS overlay files onto zeroed
cassettes. These cassettes can then be used for data and program file
storage, and it will not ke necessary to remount the BASIC system
casgsette when overlaying is required,

The following commands and statements reguire overlaying in the 8K
version:

RUN

RUNNH

RUN fille descriptor to go from Edit to Execute mode,
RUNNH flle descriptor

Any immediate mode statement

STOP

END

OVERLAY to go from Execute to Edit mode,
CHAIN

CTRL/C

After fatal error message

After execution of any immadiate mode statament

Execution of any of these commands or statements will close any open
file on cassette unit 0. A file on unit 0 may be opened in a multiple
statement immediate mode line but the file 18 closed after the line
is executed.

L "

CHAPTER 3
FILES IN BASIC/CAPS

3.1 BASIC/CAPS FILES

BASIC/CAPS has the abllity to utilize cassettes for data file storage
and for saving BASIC programs, Data files are contrclled by the OPEN,
CLOSE, PRINT#, PRINT# USING, INPUT#, IF END#, and RESTORE$# statements
described in section 2,11 of the BASIC-1ll Lanquage Reference Manual.
BASIC program storage and retrieval is accomplished by use of the
OVERLAY and CHAIN statements, described in section 2.12 of the
BASIC-ll Language Reference Manual, and the OLD, SAVE, REPLACE,
APPEND, RUN, and RUNNH commands described in Chapter 4 of the BASIC-1l
Langquage Reference Manual, The format of the file descriptor used in
these statements and coomands and the system-dependent features of
casgsette flles are described in this chapter. In =addition to
cassettes, BASIC/CAPS supports a line printer, high-speed paper tape
reader, and a high-speed paper tape punch via the same c¢ommands and
statements used to manipulate cassette files. All 1/0 devices except
the console terminal are treated as sequential files; however, the
RESTORE 4§ statemant 1s meaningful only 1f the input file is on a
cassette,

The OPEN statement opens files for input or output by the BASIC/CAPS
program.

The format 1is:

OPEN string[gg ggg'fué] AS FILE #expr [DOUBLE BUF)

where string may be a string constant or scalar string
variable and is a file descriptor.
axpr is the logical unit number in the range 1l-7,

See gection 2.11.1 for a more complete description of the BASIC-11l
OPEN statemant.

3-1

Only one file may be open on one device at any time. (Each cassette
unit is considered a separate device.) If an attempt is made to open a ™
file on a device that has a file open on it, a ?DCE (Device Channel
Error) message is printed, all files are closed, and BASIC returns to
the READY statement.

All open files are closed by execution of any of the following:
CTRL/C, SCR, NEW, OLD, RUN[NH] [file descriptor] and CLEAR commands,
STOP, CHAIN, and END statements, and any program termination,
including error messages, which causes BASIC to print the READY
message., Any statement that causes the 8K version of BASIC/CAPS to
overlay (see section 2.3) closes any open file on cassette unit Q.

Inclusion of DOUBLE BUF in the OPEN statement is meaningful only 1if

the device is a cassette. If specified, a second 64=-word Input/Output =
buffer is allotted to the file, Using DOUBLE BUF improves the

execution speed o©of a program with cassette I/0 but requires more

mamory.

" The Line Printer and High-Speed Paper Tape Punch can only be opened

for output, If one of them is opened for input an ?ILR (Illegal Rsad) ‘
error message is printed. The High-Speed Paper Tape Reader can only

be opened for input, If it is opened for output a ?WLO (Write Lock)

error message is printed.

If an attempt is made to open a file for output on a write- locked
cassette the WRT LCK? error message is printed., Saving or replacing

& program onto a write—locked cassette also produces the WRT LCK?
error message.

3,1.1 File Descriptor

The file descriptor 1s used in the OPEN, OVERLAY, and CHAIN statements
and the RUN, APPEND, OLD, SAVE, and REPLACE commands,

The general form of the file descriptor in BASIC/CAPS is:
dev:filnanm.ext
where
dev: represents the device that the statement or

command 1is operating on, The devices that are
supported by BASIC/CAPS are:

dev: device h
CT0: or 0: Cassette unit 0

CTl: or 1l: Cassette unit 1

LP: Line Printer

PR: High-Speed Paper Tape Reader

PP: High=-Speed Paper Tape Punch

RN

filnam

oaxt

is an alphanumeric string with a maximum of six
characters; characters after the sixth are
ignored., When the device 1is a cassette unit
filnam is the name of the file accessed. Whan
filnam is in an OLD, RUN or RUNNH command or CHAIN
statement, filnam becomes the program name.

is an alphanumeric atring with a maximum of three
characters in addition to the pariod. Characters
after the third are ignored. When the device is a

cassetts unit .ext 1is the extension of the file
accessed,

The following are the default conventions:

davs
filnam

.ext

whenever the dev: is cmitted CT0: is assumed.

when the filnam is omitted in OPEN statements and SAVE

and REPLACE commands, the current program name is
assumed.

when the extension is omitted in the OPEN statament
.DAT 18 assumed.

when the extension is omitted in the OVERLAY or CHAIN
statement or OLD, SAVE, REPLACE, APPEND, RON, or RUNNH
command, ,BAS is assumaed.

NOTE

In order for BASIC programs to be upward
compatible to a disk-based systen,
BASIC/RT1l, it |is recommended that
cassettes not be referred to as "1:" and
"0:" in BASIC programs but rather as
"CT1l:"™ and "CTO0:".

In BASIC statements requiring a file descriptor (OPEN, OVERLAY and
CHAIN) the file descriptor may be a scalar string variable or a string

constant,

3.1.2 Examples of Flle Statements

OPEN "CTO :ABC"

FOR OUTPUT AS FILE #1

Creates ABC.DAT on cassette 0 as file #1,

LET A$ = "CTl:XYz"

LET B = 1+1

OPEN A$ AS FILE B DOUBLE BUF

OPEN "CTO0:1" AS

Opens file XYZ.DAT on cassette 1 as file 2
for i1input and allocates +two 64-word I/O
buffera,

FILE #5
If current program is named FIND, this

statement opens file FIND.DAT on cassette 0
as file #5 for input.

OPEN "1tALTO.MAC" FOR INPUT AS FILE #4

OPEN "LP:" FOR

Opens ALTO,MAC on cassette 1 for input as
file #4.

OUTPUT AS FILE #7

opens the specified device, line printer, for
output as file #7, If FOR OUTPUT is not
apecified, input is assumed and an 7?ILR
{(Illegal Read) error message results since
the line printer is a write-only device.

OVERLAY "CT1:0VL1*

CHRAIN "PR:™

Merges the program in memory with the program
in OVL1.BAS on cassette unit 1,

SCRatches the program in memory and then
loads and runs the program in the high-speed
paper tape reader.

3-4

3.1.3 Examples of File Commands
SAVE LP: '
Lists the program in memory on the line printer.
SAVE SNOOPY

Saves the program in memory as file SNOOPY.BAS on
cassette unit 0,

OLD PR:iTEST1l

Scratches the program in memory and loads the program
in the high-speed reader. The program name is changed
to TEST..

SAVE PP:
Punches the program in memory on the high speed punch,

OLD CT1:FOOBAR
APPEND CTO$SUBR1

The OLD command SCRatches the program in memory, loads
the program in file FOOBAR.BAS on cassette unit 1, and
changes the program name to FOOBAR, The APPEND command
merges this program with the program in file SUBR1.BAS
on cassette unit 0 and does not change the program
name,

REPLACE PROGRM

Deletes the file PROGRM.BAS from cassette unit 0 and
then saves the program in memory as file PROGRM.BAS on
cassette unit 0,

RUN DEMO

SCRatches the program in memory and then loads and runs
the program in the file DEMO,BAS on cassette unit 0.
The program name is changed to DEMO but no header is
printed.

3-5

TN

CHAPTER 4

USING ASSEMBLY LANGUAGE
ROUTINES WITH BASIC

BASIC/CAPS has a facility which allows experienced PDP-ll assembly
language programmers to interface their own assembly language routines
to BASIC, This facility permits the user to add functions to BASIC
which can operate directly on sgspecial purpose peripheral devices.
This chapter describes in some detail the internal characteristics of
BASIC during the execution of a BASIC program, and is intended to
serve as a programming guide for the creation of such user-coded
assembly language functions. This material assumes the user is
familiar with PDP-11 assembly lanquage. For additional information on
this subject, refer to the CAPS-1l System Users Manual.

The CALL statement is used to execute these assembly language routines
from the BASIC program, See Section 2,10.8 of the BASIC-ll Language
Reference Manual for a description of the CALL statement.

4.1 SYSTEM FUNCTION TABLE

For a routine to be accessible from the CALL statement, it must be
defined in the special System Function Table. This table allows BASIC
to assoclate the name of an assembly language routine with the actual
location of the routine in memory. The function table consists of a
list containing the name and address of every routine that may be
called from BASIC,

The software provided with the BASIC kit includes a function table,
FTBL.PAL, User-written assembly language routines must be defined in
this module., The routines provided with the BASIC peripheral support
for graphics (GT) and for the Laboratory Peripheral System (LPS) are
conditionally defined in FTBL.PAL, See Appendix B for instructions to
define the peripheral support routines in the function table,

The table consists of a series of 3=-word entries, The first two words
of the entry contain the ASCII characters of the routine name to be
used in the CALL Statement. Those names with less than four
characters are followed by 0 bytes to f£fill the remainder of the two
words, A 4-character call name should have no 0 bytes, a 3-character
call name should be followed by one 0 byte, a 2-character call name
should be followed by two 0 bytes (or one 0 word), and a l-character
call name should be followad by three 0 bytes,

The third word of the entry contains the address of the function which
must also be declared a global,

The following instructions to the EDIT program of CAPS=-11 will produce
a new FTBL which contains the names of three assembly language
routines (AND, OR, and REV) and their addresses (ANDPFN, ORFN, and
REVFN, respectively). The sample routines in section 4.2 are the three
assembly language routines that would be called by AND, OR, and REV.

{Mount scratch cassette on unit 1)
(Mount CAPS~1l system cassette on unit 0)

.Z 1t
R EDIT
*EW1:;FTBL.PAL & ®
{Mount cassette with FTBL.PAL on unit 0)

*ERO:PTBL.PAL ® RQO®
*FFTBL: ®
*I

.GLOBL ANDFN ,ORFN , REVFN

+ASCII 'AND"
.BYTE 0
+WORD ANDPN
LASCII 'OR*
.BYTE 0,0
.WORD ORFN
JASCII "REV
.BYTE 0
.WORD REVFN

@EXE®
(® represents the ALTMODE key.

The FTBL.PAL on cassette unit 0 should be assembled and linked with
the other BASIC cbject modules and the user functions as described in
sections A.2.1 and A.2.2.

4.2 WRITING ASSEMBLY LANGUAGE RCUTINES

The user's assembly language routine must interface with the BASIC
system to pass its arguments to and from the calling BASIC program,

If the user's routine does not accept a variable number of arguments,
then the general subroutines GETARG, STORE, and SSTORE, which are
listed in section 4.4., should be used to interface the user routines
with BASIC, The routine GETARG checks the syntax of the CALL
statement and the argument types. It accesses the routine arguments
as specified in the CALL statement and stores references to them in a
table addressed by RO.

4-2

Argument Type Stored in table at (RO)

1l - Input numeric expression two words, the expression
value

2 « Output numeric target variable three words, used by STORE
subroutine

3 = Input string expression zero words are stored in
table, string pointer is
raturned on the stack

4 -~ OQutput string target variable three words, used by SSTORE

subroutine

To store target variables {arqument types 2 and 4}, the user routine
addresses the corresponding 3-word entry in the table set up by GETARG
and calls the subroutine STORE for numeric target variables, and
SSTORE for string target variables, The examples in section 4.2.1
show how these routines are used.

Once the user routine has called GETARG to access its arguments, it
may use any registers except R5 for calculations, The routine must
return via an "RTS PC" instruction, with the stack unchanged.

The GETARG, STORE, and SSTORE subroutines assume that all argquments to
the user routines are in the CALL statement, 1In the case of a user
routine which handles optional arguments, the user routine may use the
system subroutines described in section A,.3.1 to pass the argquments to
and from BASIC., Each of the routines named is a .GLOBL symbol.

When the CALL statement is executed, the user's assembly language
routine is called by the instruction:

JSR PC, routine address

When the user routine is entered, these registers contain information
about the calling sequence:

Rl is a pointer to the translated code of the CALL
statement. {See section A.,3.3 for the format of
the translated code,)

If the routine has an argument list, Rl points to
the 1l-byte token (refer to section A.3.1 for an
explanation of tokens) which represents the left
parenthesis in the calling sequence. This token
has the value .LPAR,

Rl
v
CALL "AND" (A,B,C)
The l-byte values of code bytes (tokens) .LPAR,
.COMMA and .RPAR (right parenthesis) are global

symbols. These are not the game as the ASCII
representation of these characters,

R4 Contains the low limit of the stack. If the stack
is used heavily, the function must check that it

never goes below this limit. (If it does,
tranafer control to ERRPDL, a global location in
BASIC.)

R5 Contains the address of the "“user area®", which
must be preserved for all calls to BASIC
subroutines,

Once the argqument references are no longer required by the function,
RO through R5 may be used in any way. RO, R2, and R3 need not be
preserved in any case,

The function may use the stack, but must return via an
RTS PC

instruction with the stack unchanged,

The user routine can not use the TRAP instruction, as it is reserved
for use by the BASIC system program,

A user routine which does not use the GETARG subroutine should verify
the sgayntax of the invoking CALL statement by checking that the left
parenthesis, comma and right parenthesis tokens are contained in the
code where expected, (.LPAR, ,COMMA and .RPAR are the global values
of these l=byte tokens, respectively.)

In general, arguments which are expression values are passed to the
user by the subroutine EVAL, as described in section A.3.1.The program
can then obtain the value of the expression from the floating
accumulator or FAC (FACl(R5} and FAC2(R5)).

Arguments are passed from the user routine back to BASIC by first
calling GETVAR to address the target variable and then calling STOVAR
for numeric results and STOSVAR for string results to store the new
value in the BASIC variable., These routines are also described in
section A.3.1. .

4.2.1 Sample User Functions

The following source program shows how the routines AND, OR and REV in
the function table created by the editing instructions in section 4.1
would interface with the BASIC system to pass their arguments to the
calling progran, These programs use the general subroutines GETARG,
STORE, and SSTORE listed in section 4.4,

; FUN2 - SAMPLE

RO=%0D
Rl=g]l
R2m%2
Ri=g3
Ré=%4
R5=%5
SP=%6
PCm%7
FACl=4Q
FPAC2m42
H

H

7 "AND"
ANDFN:

;: "OR"
ORFN:¢

; IREvl
REVFN3:

«TITLE
«GLOBL
«GLOBL

(A,B,C)
MoV
JSR
« BYTE
« EVEN

BIC

JSR

RTS
(A$,BS)
MOV
JSR
.BYTE
.EVEN
CcMP

USER FUNCTIONS

FUN2

ANDFN, ORPN, REVFN
GETARG, STORE, SSTORE

#TABLE, RO
PC,GETARG
1,1,2,90

#FACL,R3
RS,R3
Al,R2

R2

Bl, (R3)
R2, (R3) +
A2,R2

R2

B2, (R3)
R2, (R3)
#C,R0
PC,STORE

PC

$TABLE , RO
PC,GETARG
1,1,2,0

#FAC1,R3
Al, (R3)
Bl,(R3)+
A2, (R3)
B2,(R3)
#C,RO
PC,STORE
PC

#TABLE RO
PC,GETARG
3,4,0

{5P) ,8-1

sADDRESS VARIABLE STORAGE AREA

sCHECK SYNTAX AND SET ARGS
1 (ARG TYPES)

1ADDRESS FAC1(R5) IN R3

iFACL(R5) IS Al (AND) Bl

sFAC2 (R5) IS A2 (AND) B2
tADDRESS C
iSTORE FACl,FAC2 IN C

$ADDRESS ARGUMENT TABLE
$CHECK SYNTAX AND GET ARGS
3 (ARG TYPES)

{ADDRESS FAC1(R5) IN R3

iFAC1(R5) IS Al (OR) Bl

jFAC2(R5) IS A2 (OR) B2
1 ADDRESS C
;STORE PAC1,FAC2 IN C

JADDRESS ARG AREA
;CHECK SYNTAX AND GET ARGS
1 (ARG TYPES)

$CHECK NULL STRING

BEQ REVX

CLR R2
KOV {sP) ,R3
BISB (R3) +,R2 3R2 IS STRING LENGTH
CMPB {R3)+, (R3)+ 3R3 ADDRESSES CHARS
REV1: DEC R2 ;ADDRESS NEXT PAIR OF BYTES
MOV R3,R0O 1TO SWITCH
ADD R2,RO
CMP RO,R3 jCHECK DONE--REACHED MIDDLE
BLOS REVX
MOVEB {RO) ,R1 sEXCHANGE ANOTHER PAIR
MOVB ({R3) ,{RO) ;OF BYTES
MOVB Rl,(R3)+
DEC R2
BR REV1
REVX: MOV #B$,RO ;ADDRESS B$
JSR PC,55TORE ;STORE STRING ON STACK
RTS PC
)
; ARGUMENT AREA
TABLE :
Al: «WORD 0 ~VALUE OF A (2 WORDS)
A2: +WORD 0
Bl: +WORD 0 :VALUE OF B {2 WORDS)
B2: «WORD 0
Cs «WORD 0,0,0 s ADDRESS OF C (3 WORDS)
i
.=TABLE
sPOINTER TO A$ IS ON STACK
BS: «WORD 6,0,0 3 ADDRESS OF B$ (3 WORDS)
i
«END

4.3 BACKGROUND ASSEMBLY LANGUAGE ROUTINES

BASIC provides for the execution of a "background®™ assembly language
subroutine during its idle-time, that 1is, when it is walting for
terminal input. An example of such a background routine is one that
displays data from an array on a CRT, The background routine must be
defined in the file BASINT.PAL., To define a background routine named
BKG in the BASINT Module this procedure is followed:

(® represents the ALTMODE key

(Mount scratch cassette on unit 1)

(Mount CAPS-1]1 system cassette on unit 0)
«Z 1:
+R EDIT
*EW1:BASINT,PALSS

(Mount cassette with BASINT,PAL on unit 0)
*ERO :BASINT.PAL ® R ®E
*FBKGI: (® I

.GLOBL BEG

.WORD BKG

P00

—

The background source file should be in the following format.
RO=%0
Rl=%1
R2=m#2
R3=%3
Ri=$4
R5=%5
5P=%6
PCmi7
.GLOBL BKG

BRG: $START OF BACKGROUND ROUTINE

+END

4,4 GENERAL INTERFACE SUBROUTINES

r GETARG, BTARF, SSTORPE * SUARROUTINES FOR
¢t LIMKARF NF ASSEMRI_FR SURRONTINES TO RASIC
?
STITLE GETARG 29=4llG=73
.GLORL GETARG, STORF
+GLOPL EVAl, GETVAR, FRRARG, FRRSYN
LGLORL _LPAR, ,COMMA, _RPAR, EOQOL
-GLORL STAVAR, .SRUOT, .PQUOT
~TFHNE SNOSTR
.GLORL SSTORE., STNSVAR
SFNRC pSNNSTR
LCSECT
t
t§NOSTR = 1 sNDFILFTF *:” TO ASSEMBLE FOR
' tRASIC WITH NQ STRIKNGS
RA=Y?
Pi=¥%1
R2=i2
R3I=x13
RU=Yxd
P5=%5
SP=Y¥A
PC=x7?
Myal=zu
LTFRF sNASTR
MVALET
) LFMPE 1 SMNSTR
LTEXT2377
FAC1=4R
FAC2=42
VARSAV=?22

!--..---------------'---------.-ﬁ---------------------------
t SURROUTIME "GETARG” CALLED RY MOV #TABLE,RC

' JSR PC,GETARG

H «BYTE NIaNE.....ﬂ

H «FVYEN

t WHFRF TABLE IS THF ADNRFSS NF &

t TABLFE TO HOLD THE ARG REFFRENCES,

t N1,N2,FTC, TNDICATE THFE ARG TYPES:

' 1 INPUT NUMERIC EXPRESSION, 2

1 (THE EXPRESSION VALUE) ARE

H STORFD 1IN TARLE,

H 2 NUTPUT NUMERIC VARTARLE, 3 WORDS
’ ARF STORED IN TARLE.

' STRTNG VERSION DNLY:

T 3 THPT STRING EXPRESSION, NO WARDS
t ARE STORED IN TABLE, THFE STRING

H PATNTER IS ON THE STACK,

' a OUTPUT STRING VARTARLE, 3 WORDS

1 ARE STORFD TH TARLE.

t NO STRTNG VERSTIOM:

H 3 IMPUT STRING LITFERAL, 2 WORDS

1 ARE STORED IN TARLF, WORD 1 CON=
' TAINS THE START DF THFf ASCIT STRING,
t WORD 2 CONTAINS THE LENGTH OF THE
H STRIMG IN BYTFS,

1 CHECKS THE SYNTAX OF THF CALLING

' STATFHFNT AND FINDS THE RFQUESTEDR

H ARGHMENT REFERENCES, STODRINI THFEM
CONSECUTTIVELY TN TABLF,

GETARG: MDY (SPY+,R3 TADDR OF CALL IM R3
MAVR (R3Y+,R2 1GET 18T RYTE IM B2
RLE GETx tNO ARGS, EXIT
CMPR {R1Y+,2, 1. PAP tCHECK STARTING “(”*
ANF GETFRS tM0, SYNTAYX ERRDR
RR GET? tEMTFR LOOP
GET1: CMPR (R1Y 4,8, COMUA tCHECK *,” BETWFFHY ARRS
ANF GETFRS $NO, SYNTAY E3IROR
RETZ2®* cCYpP RA,#NVAL tCHECK VALIN RYTE
RHT GETFRA
ASL R2
My RA,RAS t+SAVYE RECS
MOy R3,QTS
MOV RRTAR=Z(R2).,PC $RPANCK T7 ROUTINMF

P NUMERIC FYPRESSIOM

NUMEXP?: ISR PC.EVAL
RCE® GETFRA
Moy RAS,.RA
MOV FACL(PS),(RM)+
MMy FACZ2(RS).[RI)+
AR NYXTARG
t STRPINGS FYXPRESSINN
STREXP:
. IFNDF SNOS TR
JSR eC,FVAL
RCC GETERA
My RAOS, PO
RR NYTARG
LEMRL tENNSTR
LIFAF SNNSTR
YOVR (R1Y+,=(5P)
LHPR (SPY 2. 5MOY
RFN 5TR1
CHMPR (SPY, &, NQUNT
RANF RETERS
STR1: PR (R1Y+,8,TEXT
RNF GETFRS
MOy RAS,FD
MOy R1,IRPY+
CLR (]
STRZ2: TSTH (R1Y+
REN STR3
TNE R2
Ry S§TR?
STR3: My 2, (R4
LHPR (SPYe, (RIY+
ANE FTFRS
|R NYXTARG
JFNRC tENRSTR
¢ NJMFRTC TARGET VACPTARLF
MMy AR: (1P - (5P)
_IFARF &NNSTR
Re VAR |
+ STRTIMR TARNGFY VARTANLF
STOVAR: M0y R2,={8F)
LFEnC 19KNSTR
VLR MMV (F1Y+,R?
RMT RFTFES
SWAR R2
RISR (R1Y}+,K2
anp (RSY, P2
ISR PC,LFTVAR
My p!‘ls.p(‘l
My GR,R2
apn AVARSAV,R?
vy (22),R3
My (RAV+, (R
My (E2Y+,(R7)+
MOV (R2Y,FY+
TST [SPY+
anF VARP
rvp (R3), #e
BFN GETFPRA
RR NxTARG
VLR2 ¢ MDD (R3),4=1
ArE NETFE &

sEVALUATE!L
:STRING TS RAD
$RFSTORE TABLF POIMNTER

1SAVE VALUE

tEVALUATEL
sNUMERTIC IS Rab
tPFSTORF TARLE POINTER

tLNOK FOR STRING LITERAL
sCHECK MUGTE CHAR,

tCHECK ,TFXT TOWKEN NEXT

*JESTORE TARLF PNIKNTEPR

tSAVE STRING APRNPFSS 1IN TARLFE
tNOW FIND LENATH

+ENN OF STRING IS AYTE M@
tCOUNT

tSAVE LENGTH TN TAR(LF
tCHECK MATCHING CLOSE 3JOTE

tQFMEMREP TT’S MIMFRIC
tREMEMRER T1T"S STRIMG

$GET SYMTAR REF IN R2

s ANNRESS VARTIARIE
tRFSTORF TARLE PNINTER
$ANNRESS VARSAVY

$SAVE A COPY
+MOVE 3 WNPRS [MTO TARLF
TSTRING OR NUM

sNIMERTIC, CHECK TYPF AGREFS

: GN TO NEXT ARGUMENT

NXTARG: ™AV RIS,RZ3
MOV A (R3)+,F2 tGEY NFXT RYYE IN R?
anTt GFTY sLONP TILL RAYTE IS 2
CMER (RiY+,# RPAR tCHECK CLOSING “Y*
ANF GETFRS

GETX: rMPR (R1Y+,#, FOL +AND ENP=LINE TOKFN
ANF GFTERS

. TNC =N] rMAKE SURF R3 IS CVWFRM

ASR]l
45| R%
Tup (R

RUS 2 _wnen @

R3S LWORD @

GETERA: .IMP FRRARG

GETFRS: .IMP FRRSYM

RRTAR: . WORP NUMF Y P
LWARD NUMVAR
WORN STRFEX®
-IFNDF §MOSTR
_WNRN STRPVAR
<ENDC 15NOSTR

SJRPOUTIME *STORE” CALLED RY JSR PC,STORE
RA POTNTS T 3=w0PN ARG RFFFRFNCF

L SET LIP RY GETVYAR
H SAVFS THF VALUF 0OF THE Far
. T THF SPECTFIFD NUIMFRIC vARTARLFE
STNIF: Moy PS,R2 PANNRESS VARSAV
ARD HYARSAV,R2
MmNy (RAY+, (R2Y tMNYE FROM TARLF TN [ISFD ARFA
MOy (RPYS,(R2)+
MOV (RQ). (R2)
J&R PC,STNVAR sSTORFE 17T
RTS PC

LTFNRE eNOSTR
SURIONTINF *SSTNRF” CALLFN Ry JSR PC,SSTOREC
PO POTNTS TN 3-W0RN ARG PFFFIFNCF
SFT 1P RY GFTVAR
STRING POTNTER IS8 AT THF TNP NF STK
SAVES THF STRIMG AT TNP OF &TK
TH THFE SPFrTFIFN STRIMG VAPTARLE

LU JANT R)

SSTORF: ™AV RG,R2
ADD HYARSAV,RP tANNDRESS VARSAV
MY (RAV+,(R2)+ +¥OVE FINY TRl T0 [[SERP ARFEA
Ny (RPY+,(R2Y+
vy (°3), {R)
MOy (5P),R3 tSWITCH PETURM % STRING RTR
MOV 2(5P),(SP)
My 83,2(8P)
JSR RC,STRSVAR :STNRE STRING
RTS rC ¢ IETURN
~FNDC SNOSTR
Ll

4-10

SWINBURNE COLLEGE OF TECHNOLOGY
ELECTRICAL ENGINEERING DEPT.

CHAPTER 5

ERROR MESSAGES

When BASIC encounters an arror, exacution of the command or statement
in error halts and an error message is printed. A fatal error message
indicates that after printing the error measage BASIC ends all
execution and then returns to the READY message, At this point the
condition causing the error message may be fixed and the program may
be started from the beginning or a GOTC cormand may be usad to
continue execution (although files may have been re-opened in
immediate mode before the GOTO command), Non-fatal error messages
indicate that BASIC will allow the error condition to be fixed and
then will continue execution.

All error massages are printed in one of the following formats

message
or
message AT LINE Xxxxx

where xxxxx is the line number of the statement containing the error,
Error messages produced in immediate mode gtatements or commands will
not include AT LINE xxxxx. Non-fatal error messages do not include AT
LINE xxxxx and do not return to READY,

Table 5-1 lists all BASIC-ll error messages, The message produced
will be the abbreviation unless BASIC-~1l1l has been assembled from the
sources with longer error messages specified. All error messages are
fatal unless the explanation specifies non-fatal.

Table 5-1
BASIC Error Messages

Abbrevia-
tion Longer Message Explanation
TARG ARGUMENT ERROR Argquments in a function call do not

match, in number or in type, the

7ADC Ez’,';’”::‘zf—‘ﬁff:ﬁ'x::‘l arquments defined for the function.

vaelerony ¥

?ATL ARRAYS TOC LARGE Not enough memory is available for the
arrays specified in the DIM statements.
If the arrays can not be redimensioned
to a smaller dimension, then reduce the
size of the program by eliminating
remarks or by using subroutines,
user~-defined functions, chaining or
overlaying,

B? Non~fatal, BASIC/CAPS system overlay
file not found on cassette unit 0. Mount
a new cassette and type a character to
continue., Occurs conly in BXK version.

BAD DATE Non-fatal, an illegal date was typed
during initial dialogue, Retype to
continue,

?BDR BAD DATA READ Item input from DATA statement list by
READ statement is bad.

7?BCV BAD OVERLAY FILE Non-fatal, BASIC/CAPS system overlay
file was found but contained an error.
Also prints B? message, Retry or mount
new cassette with overlay files.
BASIC/CAPS may also be rebooted. Occurs
only in BK version,

?BRT BAD DATA-RETYPE FROM ERROR
Non-fatal, item entered to input
statement was bad. Retype and program
will continue,

?BS0 BUFFER STORAGE OVERFLOW
Boler name e 1 LP5 commard NOt enough room available for file

rteEvF bai met beern pocvievs! Hehiv ool 11 buffers.
n a y”E afn-}eme,,‘_

?DCE DEVICE CHANNEL ERROR
The device channel number, also called
the logical wunit number, specified in
OPEN statement has been previously
opened or is out of range (1-7)},

X ppee T-|6 BASic - RTIL" HAnDE0OK.

5-2

Table 5-1 (Cont.)
BASIC Error Messages

Abbrevia-
tion Longer Message

Explanation

?DNR DEVICE NOT READY

2DVO0 DIVISION BY 0

A hardware I/0 device referred to by an
OLD, SAVE, or PRINT command 1is not
on=-line or the file does not contain any
legal BASIC program lines.

Program attempted to divide some
quantity by 0.

?ETC EXPRESSION TOO COMPLEX

?FIO FILE I/0 ERROR

?FNF FILE NOT FOUND

?FNO FILFE NOT OPEN

?FRM FORMAT F.RROR

The expression being evaluated caused
the stack to overflow usually because
the parentheses are nested too deeply.

The degree of complexity that produces
this error varles according to the
amount of space available in the stack
at the time. Breaking the statement up
into several simpler ones eliminates the
error.

A hardware I/0 error occurred. All
files are automatically closed,

The file requested was not found on the
specified device. May be caused hy an
OPEN FOR INPUT, OVERLAY, or CHAIN
statement or an OLD, APPEND, RUN[NI]
file descriptor, or REPLACE command,

The logical unit number specified is not
associated with an open file., May be
caused by PRINT §, INPUT #, or CLOSE
statements.

Format string error occurred in PRINT
USING statement or an attempt was made
to print string in numeric field or vice
versa,

?FSE FILE SPECIFICATION ERROR

?FWN FOR WITHOUT NEXT

The file descriptor contained an illegal
device or character. IlLegal characters
are A through 7 and 0 through 9.

The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

2?GND GOSUBS NESTED TOO DEEPLY

?1DF ILLEGAL DEF

2IDM ILLEGAL DIM

Program GOSUB nested to more than 20
levels,

The DEFine function statement contains
an error,

In either a DIMENSION or a COMMON
statement, subscript is not an integer
number or array has been dimensioned
previously.

HNDL O LY

-

SV 1 {BURNE COLLEGE OF TE(

ELECTRICAL ENGINEERING DEPT.

Table 5~1 (Cont.)

Abkrevia-
tien Longer Message

BASIC Error Messaqes

Explanation

?ILN ILLEGAL NOW

?ILR ILLEGAL READ

?LTL LINE TOO LONG

?NBF NEXT BEFORE FOR

?NER NOT ENOUGH ROOM
?NOQ anber Dcf'f O‘p t"dn.sq*‘

?NPR NO PROGRAM

Execution of INPUT statement was
attempted in immediate mode.

A write-only device was opened for input
or an attempt was made to input from a
file opened for output.

The line being typed is longer than 120
characters; the line buffer overflows.

The NEXT statement corresponding to a
FOR statement precedes the FOR
statement,

Cassette is full and there is not enough
room to open file. May be caused by an
OPEN FOR OUTPUT statement or a SAVE or
REPLACE command.

The RUN command has been specified, but
no program has been typed in,

?NSM NUMBERS AND STRINGS MIXED

0
OFFLINE{I}?
0
20FFLIN
1

20F0 OUTPUT FILE OVERFLOW
200D OUT OF DATA
20VF OVERFLOW

?PTB PROGRAM TOO BIG

2PWF POWER FAIL

?RBG RETURN BEFORE GOSUB

String and numeric variables may not
appear in the same expression, nor may
they be set equal to each other; for
exanple, A$=2,

Non~fatal, c¢assette unit indicated was
offline, Cassette should be mounted and
operation will continue,

Fatal cassette error, occurs when cas-
gette becomes offline after TI/0 has
gtarted,

Reached end of cassette while outputting
to file,

The data list was exhausted and a READ
requested additional data,

The result of a computation is too large
for the computer to handle.

The line just entered caused the program
to exceed the user code area, Reduce
progranm size by eliminating remarks and
through use of subroutines, user=-defined
functions, overlaying, and chalning,

A power fail interrupt occurred while
the specified program line was
executing, All files are closed.

A RETURHN was encountered before
execution of a GOSUB statement.

* opor T-16 ‘BHSTC- RTH" HANDBooK

5-4

Table 5-1 {Cont.)
BASIC Error Messages

Abbrevia-
tion Longer Meassage

Explanation

?RPL USE REPLACE

File saved already existed on device.
Caused by SAVE cormmand.

?S0B SUBSCRIPT OUT OF BOUNDS

The subscript computed is greater than
32,767 or is outside the bounds defined
in the DIM statement,

2880 STRING STORAGE OVERFLOW

?5TL STRING TOO LONG

?SYN SYNTAX ERROR

0
?TIMIN
1

Not enough memory is avallable to store
all the ptrings used in the program.

The maximum length of a string in a
BASIC statement is 255 characters.

The program has encountered an
unrecognizable statement. Common
examples of syntax errors are misspelled
commands , unmatched parentheses, and
other typographical errors.

Cassette hardware timing error.

?TLT LINE TOO LONG TO TRANSLATE

?UFN UNDEFINED FUNCTION

?ULN UNDEFINED LINE NUMBER

?WLO WRITE LOCKOUT

WRT LOCR{#}?
1

Lines are translated as entered and the
line just entered exceeds the area
available for translation.

The function called was not defined by
the program or was not loaded with BASIC
or there was a syntax error in the first
keyword on a line and BASIC translated
the line as an implied CALL statement.

The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

Tried to write on a file opened for
input or tried to open for output a
read-only device.

Non-fatal, cassette on unit indicated
was write-locked, Write enable cassette
and caontinue {(removing cassette to write
enable it will cause the non-fatal
OFFLINE message).

5-5

Table 5-1 (Cont.)
BASIC Error Messages

Abbrevia=- Explanation
tion Longer Message

0
?WRT LOCK{ } Cassette on unit indicated was write-
1 locked while I/0 was in progress,

?tER t ERROR The program tried to compute the value
AtB, where A is less than 0 and B is not
an integer, This produces a complex
number which is not represented in
BASIC.

When the message 7DNR AT LINE xxxxx Is printed because the device
referred to is not on-line, turn the device on and issue a GO TO XxXxxXx
statement. Execution of the program resumes at the 1line [(xxxxx)
specified, This message may also indicate that a program file does
not contain any legal BASIC program lines.

When the message ?00D AT LINE xxxxx is printed because the file
referred by an INPUT# statement is not ready, prepare the file and
issue a GO TO statement to resume execution,

Function Errors

The following errors can occur when a function is called improperly.

?ARG The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression,

?SYN The wrong number of arguments was used in a
function, or the wrong character was used to
separate them, For example, PRINT SIN(X,Y)
produces a syntax error,

In addition, the functions give the errors listed below,

FNa{.s.} UFN The function a has not been defined (function
cannot be defined by an immediate mode
statement).

?SYN A syntax error has been found in the
expression in the DEF statement which defined
the function. This error message is produced
by statements evaluating user - defined
functions, not by the statement defining the
function.

RND or RND{expr)

SIN(expr)
COS (expr)
PI ?5¥YN
SQR(expr) 2ARG
ATN (expr)
EXP (expr) 2tER
LOG (expr) ?ARG
LOG10 {expr) ARG
ABS (expr)
INT (expr)
SGHN {expr)
TAB (EXPR) 2ARG

LEN (string expr)

A5C(string expr)
?ARG

CHRS (expr) ARG

No errors

NO errors

No errors

An arqument was included

Expressicn is negative

No errors

Expression is greater than 87

Expression is negative or 0

Expression is negative or 0

No errors
No errors
No errors
Expression is not in

NOo errors

String expr is not a

Expression is not in

POS (string exprl,string expr2,expr)

No errors

SEGS (string expr,exprl,expr2)

VAL{string expr)
?ARG

STRS (expr)
TRMS (string expr)

BIN(string expr)
?ARG

OCT (string expr)
2ARG

No errors

String expr is not a
No errors

No errors

Character other than

Character other than
string

the range 0{x{256

string of length 1
the range 0<{x{256

valid number

blank, 0 or 1 in string

blank or 0 through 7 in

APPENDIX A

BASIC/CAPS SYSTEM INFORMATION

A.l LINKING BASIC/CAPS FROM THE OBJECT MODULES

This section contains instructions to link BASIC/CAPS from the
The object cassettes contain the following files:

modules.

BASICR,OBJ
FPMP ,0BJ
BASICE.OBJ
BASICX.0BJ
BASICS,OBJ
BASINT.OBJ
FTBL .OBJ
BASICH,OBJ

FPMPEI.OBJ

FPMPEA.OBJ
FPMPFP.OBJ

FTBLG .OBJ
PERVEG,.OBJ
GTNLPS.OBJ
GTB .OBJ
GTC «OBJ~

BASING.OBJ--\L

BASRO .0BJ)
FPMP ,OBJ
BASEl ,OBJ
BASE2 ,0BJ
BNOX .0OBJ >
BASSO ,0BJ
BASINT.OBJ
FTBL .0OBJ
BASHO ,0BJ
BASPT .OBJ_/

BASIC OBJECT MODULES FOR THE
GRBATER THAN 8K VERSION

SPECIAL MATH PACKAGES FOR OPTIONAL
HARDWARE (ONLY USED WITH
GREATER THAN 8K VERSION)

OBJECT MODULES FOR GT40
DISPLAY SUPPORT.

BASIC OBJECT MODULES FOR
THE BK VERSION

cbject

BASINL,.OBJ ™

FTBLL .OBJ OBJECT MODULES FOR LPS SUPPORT
PERVEC.O0BJ

LPSO ,OBJ

LPSL .0BJ)

LPS2 .OBJ

LPS2C .OBJ

LPS3 .0BJ

LPS4 .OBJ

In addition, the following source files are provided:

PERPAR.PAL
PERVEC.PAL FOR CUSTOMIZING LPS AND GT SUPPORT
BASINT.PAL
FTBL .PAL

A.l.l1 Linking BASIC/CAPS for Systems With More Than 8K of Memory

First, zergo a scratch cassette; this cassette is wused to hold the
lpad module of BASIC/CAPS. Mount the BASIC object module cassette
containing BASICR.OBJ on unit 1 and run the CAPS-=1ll Linker, using the
following command string:

«R LINK
*BASIC.SLO/P,TT:=1:BASICR,FPMP/F,BASICE/F ,BASICX/F ,BASICS/F/B:400/C

s BASINT/F ,FTBL/F ,BASICH/F

When the Linker prompts with *'0?' on PASS2, dismount the CAPS-11
system cassette from unit 0, mount the zeroed scratch cassette and
type a character on the keyboard. When the Linker is finished, it
prints an '*' to indicate it is ready for a new command string,

A.l.l.1 Linking with a User Function and/or a Background Assembly
Language Routine = To link an assembly langquage user function and/or a
background routine with BASIC, follow the instructions given in
Chapter 4 for editing the BASINT and FTBL modules and creating the
modules for the user function and/or background routine. The
procedure given in Chapter 4 will produce a cassette with the
following modules:

BASINT.0OBJd (From BASINT.PAL, edited if necessary to
show the presence of a Background
routine)

FTBL.OBJ {(From FTBL,.PAL, edited if necessary to

show the presence of a user function)

The cassetta also contains some or all of the following modules:

GETARG,.OBJ (For use with user function if one is
present)

FUN.OBJ {User function module)

BKG.OBRJ {(Background assembly language routine)

At this point follow the general procedure for 1linking BASIC for

systems greater than 8K, but the second line of the linker command

string should be;

For User Punction and No Background Routine
+BASINT/P,FTBL/F,GETARG/P,FUN/F ,BASICH/P

For User Punction and Background Routine

,BASINT /P ,FTBL/F,GETARG/F ,FUN/F ,BKG/F,BASICH/P

For Background Routine Only
,BASINT/P,FTBL/F ,BXG/F ,BASICH/P

All of these commands cause additional prompt messages as follows:

1?2 {Mount cassette containing OBJ modules
of BASINT,FTBL,GETARG, etc. on unit 1)

1z {Mount BASIC cbject cassette containing
BASICR.OBJ on unit 1)

PASS 2 (No action required)

0z (Mount zeroed scratch cassette on unit
Q)

1? (Mount cassette containing OBJ modules
of BASINT,FTBL,GETARG, etc, on unit 1)

12 {Mount cassette containing BASICR.OBJ on
unit 1)

b (Linker is done)

A.l.2 Linking BASIC/CAPS for Systems with BK of Memory

First, zero a scratch cassette; this cassette is used to hold the
load module of BASIC/CAPS. Mount the BASIC cbject module cassette
containing BASRO.O0BJ on unit 1 and run the CAPS~-]1 Linker, using the
following command string:

.R LINK
*BASBK.SLO/P,TT:=1:BASRO, FPMP/F,BASE1l/F ,BASE2/F,BNOX/F ,BASSO/F/B1400/C

+BASINT/F ,FTBL/F,BASHC/F ,BASPT/F

When the Linker prompts with *0?2' on PASS2, dismount the CAPS~11
system cassette from unit 0, mount the zerced scratch cassette and
type a character on the keyboard, When the Linker is finished, it
prints an '*' to indicate it is ready for a new command string.

A.l.2.1 Linking With a User Function and/or a Background Assembly
Language Routine - This procedure is identical to that given for
systems with more than 8K of core, except follow the general procedure
for 1linking 8K systems and the sacond line of the command string
should be:

For User Function and No Background Routine
,BASINT/P,FTBL/F ,GETARG/F ,FUN/F ,BASHO/P ,BASPT/F

For User Function and Background Routine
,BASINT/F,FIBL/F ,GETARG/F,FUN/F ,BKG/F ,BASHO/P ,BASPT/F

For Background Routine Only
+BASINT/P,FTBL/F ,BKG/F ,BASHO/P ,BASPT/F

The prompt messages are identical to those for systems greater than

BK, but the BASIC object cassette used is the one containing
BASROD,.0BJ, not the one with BASICR.OBJ,

A,2 ASSEMBLING BASIC

BASIC/CAPS is also avallable separately in socurce form and may bhbe
customized and then assembled into object modules. This section
contains all assembling instructiona for BASIC/CAPS, A 16K system is
required to assemble BASIC. After assembling BASIC/CAPS, the object
modules should be linked as described in section A.l.

NOTE

The 8K version of BASIC cannot be
assembled from the sources.

BASIC/CAPS may be purchased separately in source form. The thirteen
source files are:

BASICR,.PAL Kernel module

BASICE.PAL BEdit module

BASX1.PAL Execute module 1

BASX2.PAL Execute module 2

BASICS.PAL System dependent module

BASHIL .PAL Ifigh module 1

BASH2 .PAL High system dependent module 2
BASH3,PAL High module 3

FPMPA . PAL Floating Point math package Module 1
FPMPB.PAL Floating Point math package Module 2
BASP1,.PAL Parameter module 1

BASP2 .PAL Parameter module 2

FTBL.PAL Function Table module

BASINT.PAL Interface module

The following modules are also supplied. These are gources for the
BASIC/CAPS special device support:

LPS0,.PAL Laboratory Peripheral System module 0
LPS1.PAL LPS module 1

LPS2.PAL LPS mcdule 2

LPS3.PAL LPS module 3

LPS4 .PAL LPS module 4

GTNLPS.PAL GT40 display module

GTBl.PAL GT40 display module

GTB2.PAL GT40 display module

GTC.PAL GT40 display module

PERVEC.PAL Vector address mcdule (in binary kit)
PERPAR, PAL Parameter module (in binary kit)

The BASIC sources may be assembled and linked to create a standard
BASIC, i.e., including strings, PRINT USING statement, a line printer,
high-speed paper tape reader/punch, and a power fail restart.
Alternatively, a file BASPAR.PAL may be created with EDIT to include
any of the following parameters; these parameters govern the assembly
of BASIC/CAPS and allow the user to produce a customized version of
BASIC/CAPS.

Parameter Default Value Description

$NOSTR undefined Define to eliminate code for string
variables, e.g., $NOSTR = 1,

$NOPRU undefined befine to eliminate code for PRINT
USING statement.

SNOPOW undefined Define +to assemble without the
power fail/restart routine.

SLONGER undefined Define to get 1long, explanatory
error messages,

$NOPTP undefined Define to eliminate code for
high-apeed paper tape reader/punch.

SNOLPT undefined Define to eliminate code for the
line printer,

$STKSZ 300 (octal) Change value to adjust size of the
program stack, in bytes, e.q.,
$STKSZ = 400 (must be greater than
or equal to 300),

$PPBSZ 30 (octal) Change value to adjust paper tape
punch buffer size (bytes),

SPRBSZ 30 Change value to adjust paper tape
reader buffer size (bytes).

S$LPBS2Z 40 Change value to adjust line printer
buffer size (bytes).

$TPBSZ 20 Change value to adjust terminal
teleprinter buffer size (bytes).

$KBBSZ 20 Change value to adjust keyboard
buffer siza (bytes).

A-5

A.2.1 Assembling the Standard Object Modules

The following procedure will produce BASIC/CAPS object modules that
are equivalent to the object modules provided in the BASIC kit., These
object modules can be linked to c¢reate the greater than 8K version of
BASIC/CAPS, The 1linking instructions are provided in section aA.l.1l.
The 8K version can not be assembled from the sources,

Mount the CAPS-1l System Cassette write-locked on unit 0 and bootstrap
the CAPS=1l Monitor.

When the Monitor is loaded and responds with a dot, enter the date,
then mount a scratch cassette on unit 1, write-enabled, and zero it by

typing:
«2 1:4{CR>

Now run the assembler {(must be a 16K assemblerl) by typing:
«R PAL{CR>

When the command string Interpreter types an asterisk, enter the
following command string:

*] :BASICR=0:BASPl/P,BASP2/F ,BASICR/P{CR>
This command causes several prompt messages to be printed on the

console terminal. The following list of prompt messages tells what
action to take for each prompt:

PROMPT USER SHOULD
07 Dismount system cassette from unit 0, Mount

BASIC source cassette c¢ontaining BASPl.PAL
and BASPZ.PAL on unit 0. Type <CRJ).

07? Dismount cassette containing BASPl1.PAL from
unit 0. Mount BASIC source cassette
containing BASICR.PAL on unit 0. Type <CR>.

PASS 2 {No action required)

07 Dismount cassette containing BASICR.PAL from
unit 0. Mount cassette containing BASPl.PAL
and BASP2.PAL on unit 0. Type <{CR>.

0? Dismount cassette containing BASP1.PAL from
unit 0, Mount cassette containing BASICR,PAL
on unit 0. Type <CR>.

000000 ERRORS (Assembly is done)

* (Ready for next command string)
Following is a 1list of the remaining Assembler command strings
required to assemble the sources of BASIC/CAPS, They should be

entered in the order listed; the prompt messages and required actions
follow the pattern of the first command string.

*1 : FPMP=0 :BASP1/P,BASP2/F,FPMPA/P ,FPMPB/P{CR)

*1 yBASICE=BASP1/P,BASP2/F ,BASICE/P{CR)
*11BASICX=BASPL/P,BASP2/F ,BASX1/P ,BASX2/P<CR>

*1 1 BASICS=BASP1/P,BASP2/F ,BASICS/P{CR)

*1 1 BASINT=BASINT/P{CR> |

*1 ;FTBL=FTBL/P{CR>

*1 ; BASICH=BASP1/P,BASP2/F ,BASH1 /P ,BASH2/F ,BASH3/F{CR>

A.2.2 Assembling Non-standard Object Modules

The following example builds a load module of BASIC for a PDP-11
cassette system with no 1line printer, no high-speed paper tape
readar/punch and no power-fail restart option.

Mount the system cassette on unit 0 and load the monitor, if it is not
already resident in memory. Mount a scratch cassette on unit 1, zero
the scratch cassette, run EDIT, and create the parameter f£file by
typing:

(® Represents ALTMODE Key

o2 1:

«R EDIT
*EW1:BASPAR.PAL ®
*ISNOPOWs1

$NOPTP=1

$NOLPT=1

@G
Dismount the cassette on unit 1. Mount a second scratch cassette on
unit 1, zero it, and run the assemblar by typing the following:

«Z 11

+R PAL

*] ;:BASICR=BASPAR/P ,BASP1/P,BASP2/F ,BASICR/P
This PAL command produces the following prompt messages:

Prompt User Should

0? Mount cassette containing BASPAR.PAL on unit 0,
type any character.

0? Mount cassette containing BASP1.PAL and BASP2.PAL
on unit 0, type any character.

0? Mount cassette containing BASICR.PAL on unit 0,
type any character,

Prompt User Should

PASS 2

0? Mount cassetta containing BASPAR.PAL on unit 0,
type any character,

0? Mount cassette containing BASPl.PAL and BASP2.PAL
on unit 0, type any character,

07 Mount cagsette containing BASICR.PAL on unit 0,

type any character,

000000 ERRORS

(Assembly is done)

* (Ready for next command string)

Type the following commands.
prints a
casgette for each prompt.

For each “/P" switch the PAL
"0?" on each pass and the user should mount the appropriate

assemblar

*1 :FPMP=BASPAR/P,BASP1/P,BASP2 /P ,FFPMPA/P ,FPMPB/P{CR>
*1 ;: BASICE=BASPAR/P,BASP1/P,BASP2/F ,BASICE /P{CR?

*] :BASICX=BASPAR/P,BASPl/P,BASP2/F,BASX1/P,BASX2/P<CR>

*1 :BASICS=BASPAR/P,BASPl /P ,BASP2/F ,BASICS /P{(CR>

*] :BASINT=BASPAR/P, BASPl/P,BASP2/F,BASINT /FP{CR)

*1 :PTBL=BASPAR/P,BASP1/P,BASP2/F ,FTBL/F{CR)

*] : BASICH=BASPAR/P, BASP1/P,BASP2/F,BASH1/P,BASH2 /P ,BASH3/F{CR>

When the PAL assembler prints the last “*" all the object modules

are

on the cassette on drive 1. These object modules must be linked into a

load module (See section 4.l1l.1).

A.3 TECHNICAL DESCRIPTICN OF BASIC/CAPS

A.3.1 System Routines in BASIC

The routines described below are all global symbols and are available

to the user functions:

Routine Name Call
(Global)
BOMB TRAP 0
LASCII ‘MESSAGE'
«EVEN

Description

This routine stops execution of
the BASIC program and types the
messages

?MESSAGE AT LINEWWw&#

If the $LONGER option is
when BASIC is assambled from the
sources, the '?' character is
omitted. BASIC +then types the
READY messagea.

specified

A-8

Routine Name
{Global)

BEKGI

ERRPDL

ERRSYN

ERRARG

Call

MOV @4BKGI, RO
JSR PC,@R0

JMP ERRPDL

JMP ERRSYN

JMP ERRARG

JSR PC,EVAL

MOV @#FTABI,RO

Descrigtion

Address of agsembly language back-
ground routine,

Called when the stack pointer (5P)
goes Dbelow the value in R4, Causes
execution to halt and types out
SETC AT LINE xxxxx. There are 20
axtra "buffer®" words on the atack.
If the user routine will definitely
not use more than this many words
on the stack, the routine need not
check for a stack overflow,

Syntax error, Stops execution and
printas out ?8YN AT LINE XXXXX.

Argument error, Stops execution
and prints out PARG AT LINE xXxxxXx,

Evaluate expressicn. Rl points to
the start of the expression in the
code, EVAL sets the carry bit as
followsn:

carry = 03 The expression is nu-
meric.

The value of the expression is
contained in the floating
accumulator (FAC1l and FAC2),

carry = 1l: A string expressaion.

If the string is non-null, the top
of the stack is an indirect pointer
to the string, (See saction 8.6
for the format of string
variables.)

If the string is null, the top of
the stack is the value 177777.

In both cases, Rl is moved to point
to the byte following the
expression in the code, If it
detects an error in the expression,
EVAL branches to the appropriate
error routine.

Contains address of the aystem
function table described in Bection
5.1, Punction table may be examined
by assembly language routine to
find addresses of other assembly
language routines.

Routine Name
(Global)

GETVAR

STOVAR

STOSVAR

Call

JSR PC,GETVAR

JSR Rl ,MSG
.ASCII 'MESSAGE'
«BYTE 0

«EVEN

JSR PC,NUMSGN
«WORD ROUTINE

JSR PC,STOVAR

JSR PC,STOSVAR

Description

Address variable or array element.
R2 contains the address of the
symbol table entry for the
variahle. GETVAR 1looks up and
saves the address of the variable
reference, 8o that a subsequent
STOVAR or STOSVAR will store a
value in the addressed variable,
GETVAR destroys the FAC when
addressing an array element; Rl is
left unchanged. To address the
symbol table entry, precede the
GETVAR call with the code:

MOVE {R1)+,R2 FIRST BYTE OF

1 OFFSET

BMI ESYN 1 IF NEGATIVE, ERROR

SWAB R2

BISB (R1)+,R2 ;GET 2ND HALF OF
;OFFSET

ADD {R5) ,R2 ;ADD BASE OF SYMBOL
: TABLE

Print message on console. Prints
the ASCII characters specified
after the JSR instruction up to the
0-byte. MSG prints only those
characters specified in the calling
séquence plus padding characters
specific to the terminal in use,
The calling program must insert a
carriage return where required,
MSG clears the CTRL/O condition.

This subroutine converts the number
contained in the FAC to ASCII, and
saves it via the specified ROUTINE.
The ROUTINE is called by a "JSR pPC"
instruction and preserves all
raegister contents.

Store numeric variable. Stores the
FAC in the variable or array
element last referenced by GETVAR,
If it was a string variable, STOVAR
stops execution of the program and
produces the ?NSM error message,

Store string variable, Stores the
top of the stack in the variable or
array element last referenced by
GETVAR, and pops one word from the
stack, If 1t was a numeric
variable, STOSVAR stops execution
of the program and produces the
$NSM error message:

A-10

Routine Name Call
{Glocbal)

INT JSR PC,INT
MAXEST JSR PC,MAKEST

Description

Integerize the FAC. Sets the value
of the FAC to the greatest integer
contained in the previcus contents
of the FAC. The number is
expressed in the BASIC integer
format if possible,

Make non-null string variable., The
top of the stack contains the
length of the string to be created.
R2 must point to a word which
contains 3 less than the address of
the first of the characters to fill
the string. MAKEST returns an
indirect pointer to the string on
the top of the stack. (Called
MARESTR in sources,) To create a
string “ABCD® the following code
could be used:

MOV #4,-(SP) $ LENGTH
1TO TOP OF
3$STACK

MOV #STRING-3,R2 ;ADDRESS
JSR PC,MAKEST $OF FIRST

jCHAR =3

MOV (SP)+,R2 1R2 NOW
. § CONTAINS

. $ADDRESS
. 31 OF BASIC

$ STRING

STRING: .ASCII /ABCD/

In addition, the user program may call the following FPMP=1ll routines,
which are documented in the FPMP-ll Uger's Manual ({DEC-1ll-=-NFPMA=A-D),

$POLSH
$IR
$MLR
$DVR
$ADR
$SBR

. 8IN

SQRT

Enter "Polish Mode®

Integer-to~Real Conversion

Multiply

Real

Divide Real

Add Real
Subtract

Real

Sine Function

Cosine Function

Square Root Punction

Logarithm Function (Base e)

Arctangent Function

Exponentiation Function

A-11

The following list contains all the .GLOBL symbols availlable to
uger's assembly lanquage routines in this release of BASIC.

GLOBL Symbol

BEGI
BOMB
ERRARG
ERRPDL
ERRSYN
EVAL
FTABRI
GETVAR
INT
MAKEST
MSG
NUMSGN
STOSVAR
STOVAR
« COMMA
« DQUOT
«EOL

« LPAR

« SQUCT

Description
Address of the background routine
Error routine, called by TRAP 0
Argument error
Stack overflow error
Syntax error
Evaluate expression
Address of the system function table
Address variable
Integerize floating accumulator
Create a string
Print a message on the terminal
Convert from numeric to ASCII
Store string variable

Store numeric variable

Comma token .
Double quote token "
End-line token \
Left-parenthesis token (
Right-parenthesis token)
Single quote token '

A-12

SWINBURNE CCOLLEGEOCF T

ELECTRICAL ENGINEERIN

GD
The offset of system variables in the "user areguirihich starts at the
address contalned in R5, will not change from release to release; 1f
new ones are added, they will be inserted at the end of the user's
area, Therefore, these values may be set by MACRO agquate atatements
in the user's source program (e.g., FACl = 40), The most commonly-used
user area offsets are described below.

ECHNOLOGY

User area cffset Description
SYMBOLS = 0 Address of symbol table
CODE = 16 Addreas of stored program
LINE = 20 Address of input line buffer
VARSAVE = 22 Saved symbcl table entry address
BS1SAVE = 24 Saved first array subscript
S52SAVE = 26 Saved second array subacript
LINENO - 30 Line number being executed
FACl = 40 Floating accumulator, upper word
FAC2 = 42 Floating accumilator, lower word
PROGNM = 112 Program name, 6 ASCII bytes

A.3.2 Representation of Numbers in BASIC

The value stored in the floating accumulator (FACl{R5) and FAC2(R5))
by EVAL is always two words long: FACl(RS5) contains the high-order,
and FAC2(R5), the low-order portion. If FAC1(RS) 1is non-zero, then
the number is stored as a 2-word floating-point number, in this
format:

Word Bit(s) Description
FAC1 (RS) 15 Sign bit, set if the number is
negative,
14=7 Exponent, with a bias of 200 octal.
6=0 The sacond through eighth

slgnificant bits of mantissa. The
first significant bit is always an
assumed 1.

FAC2 {R5) 15-0 The 9th through 24th significant
bits of mantissa,

If FAC1{RS5) is zero them FAC2(R5) contains the inteqer value of the
number in 2's complement form. WNote that the integers from =-32,768 to
+32,767 do not have a unique representation: they may be stored in
the floating-point or integer form, For examplae, the number
represented by:

A-13

FACl: 40640 ;Floating-point "5¢
FAC2: 0

has the same value as:

FACl: 0
PAC2: 5 ;1 Integer "5"

The subroutine INT, described in section 3.2.6 of the PDP=~ll BASIC
Language Reference Manual converts a number from the floating point
representation to an integer.

A.3.2,1 Representation of Strings in BASIC - Non-null strings are
rapresented as follows:

Byte(s) Contents

0 The length of the string, N

1l and 2 An internal “back-pointer® used by BASIC. Do
not change this value,

Ix0 {2+N) The ASCII characters of the string

3+N The length of the string, N

A null string is not stored in BASIC; rather, the indirect pointer to
the string has the value 177777.

A.3.3 Pormat of Translated BASIC Program

when the user inputs a BASIC program, the BASIC system does not &store
the program exactly as it is typed or read from the input file.
Instead, it translates the program to an intermediate form which can
be used in two different ways, The intermediate code can be
"un~translated® by the LIST or SAVE commands to produce an ASCII
program which looks very similar to the input program, or the
translated code can be very quickly interpreted by the RUN command to
provide swift execution of a program under BASIC/RT-11,

A.3.3.1 Symbol Table Format - As the BASIC program is input, the
system builds a symbol table in memory at the indirect address 0(R5).
There are four different types of symbol table entries, as shown in

A-14

Table A-l
Symbol Table Entries

Symbol Table Description
Definition
Line Number This antry is two words long, with this formats

| Numaric Scalar

Numeric Array

Word 1l: Line number as an unsigned l6=bit
integer,

The highest number allowed is 77777
octal or 32,767 decimal,

Word 2 The address of the ampecified line in the
stored translated program.

This is five words long, with this format:

wWord 1t Constant 177775

Word 2: High—-order Scalar Value

Word 3@ Low—-order Scalar Value

Word 4: Constant 0

Word 5: ASCII scalar name, the second byte is 0
if the name is only one character.

This entry is five words long, with this format:

Word 1l:i Constant 177776

Word 2 Address of array

word 31 Maximum value of first subscript (SS1MAX
below)

Word 43 Maximum value of second subscript or -1
if the array is singly-dimensioned

Word 51 ASCII array name

The scalar with the same name as an array is
stored internally as the first element of the
array. The address of the array is actually the
address of this element. The arrays are stored
with the first subscript varying the fastest;
each element of the array takes up two words,

The address of the (M,N) element in the array is
the array address plus the quantity:

4% (N*SS1MAX+M+1)

A-15

Table A-1 (Cont.)
Synbol Table Entries

Syrmbol Table Description
Definition
String This entry is five words long, with this format:

word 1 Constant 177777

Word 2: Array Address, or string pointar, If
Word 3m=1

Word 33 Maximum value of first subscript (SSI1IMAX
below), or =1 if not a string array

Word 4: Maximum value of second subscript, or -1
if the array is singly-dimensioned or
gcalar

Word 53 ASCII string name, with the ree
character omitted

Strings and string arrays are stored as l-word
pointers to the strings, or the flag 177777 for a
null string. If a string is dimensioned or used
as a string array, the scalar string with the same
name is stored as the first entry in an array.
Otherwise, the pointer to the acalar string is
stored directly in the symbol table entry, as
indicated above. The address of the pointer to
the (M,N) element in the array is then the array
address plus the quantity:

2* (N*SS1MAX+M+1)

A.3.3.2 Translated Cocde = After the 1line is input, the TRAN
subroutine is called to translate 1t to the internal format. TRAN
scans the input 1line from left to right, and translates it as
described below.

All references to line numbers or varlable names are stored as the
two-byte offset 1into the symbol table of the entry for that variable
name, The symbol table entries for all numeric variables are
initially acalars, and are changed to dimensioned arrays when the RUN
statement is executed. This two=byte offset is, of course, not
negativej therefore, i1t may be distinguished from the "keyword
tokens® described below. It is not necessarily aligned to a word
boundary.

A-16

T

All sequences of characters used as & single unit by the BASIC
language are defined as "Keywords"™. The following are examples of
keyworda:

LET

INPUT
STEP

+

(

)

BIN(

GO TO
RANDOMIZE

TRAN scans the characters in the program line for the occurrence of
any of the keywords, disregarding blanks. When one is found, the
corresponding l-byte system "token" is stored in the saved program.
Thus, only one byte in the stored program is required to store such
keywords as GOSUB and RANDOMIZE, All of +the tokens have the

" high-order bit set.

At the end of every line in the code, there is a special ".EQOL" token,
At the end of the program there is an ",.EOF" tcoken.

The values of the tokens may be found in a listing of BASIC, Since
thay are only used internally, some of the values may be different for
different versions of BASIC.

When an integer literal is encountered in the program following a
GOSUB, GO TO, THEN, LIST, or LISTNH keyword, or as the first element
on a line, it is stored as a symbol table reference to a line number
entry.

When TRAN finds any other literal numeric value in the input program
line, 1t stores it in the translated program in one of the following
forms:

1-Byte Literal An integer constant in the range 0-255 18 stored
as two bytes in the translated programs

Byte 1l: constant 375
Byte 2: l-byte value

l-word Literal An integer constant with an absolute value less
than 32,768 which 18 not in the range 0-255 is
stored as three bytes in the translated programs

Byte l1l: Conatant 376
Bytes 2-3: 2-byte value

2=-word literal Any other numeric constant is stored as five bytes
in the translated programs

Byte 1l: constant 374

Bytes 2=5: 4-byte floating point value of
the literal, as described in
section A.3.2.

A-17

Certain Keywords when they are translated into tokens have apecial
"axtra bytes” inserted after the token as described below.

Keyword Translated code

tor * When the first quote character is encountered, TRAN outputs
the corresponding token, followed by a .TEXT token, with the
value 377. Next follow all of the ASCII characters in the
program line up to the cloeing quote character. Finally,
TRAN outputs a 0 byte and a matching close=quote token to
the translated program.

FN A speclal byte is placed in the translated code after the FN
token, It contains a function number +o represent the
function name, as followst:

Function Number

{octal) Function Name
0 FNA
2 FNB
4 FNC
[FND
62 FNZ
NEXT Ten extra bytes are output to the translated code following

the NEXT statement; these are required at execution time
for the proper nesting of FOR-NEXT loops.

REM The REM tcken in the code is followed by a .TEXT token, and
then the remaining characters on the line,

Any sequence of characters which cannot be translated into a token and
is not a symbol table reference or literal, is translated aa the ,TEXT
token, followed by the remaining characters on the 1line, The BASIC
language does not allow a program to have two adjacent variable names
without an intervening character. If this occurs, the remainder of
the 1line 1is translated as described above. When any such translated
program line is executed, it produces a syntax error, If the first
sequence of characters in a program statement is translated as a .TEXT
token, BASIC assumes an implicit CALL statement (gee Section 2,10.8 of
the BASIC=~1ll Language Reference Manual). The characters are compared
with the assembly language call statements defined in the syatam
function table., If the characters match a call name the call name is
executed and if a match is not found the ?UFN (Undefined Function)
error message will be printed.

A.3.4 BASIC Memory Map

BASIC stores a user program in memory in the following format:

Arrays

Strings

Symbol Table

User Code

The symbol table and user code area are created when the program 1is
entered, When the RUN command is given the user program is scanned
and arrays are set up. The string buffer is created during program
execution.

The SCRatch command (refer to paragraph 4.4 of the BASIC-1ll1 Language
Reference Manual) clears all the user code, symbol table, strings and
arrays from memory. The CLEAR command c¢lears the arrays and strings
but does not affect the user code or symbol table,

Every cassette file open has a 64-word buffer associated with 1it, If
DOUBLE BUF was spacified when the file was OPENed, the buffer is 128
words.

A symbol table entry is created for each distinct 1line number (four
bytes) or variable name (ten bytes) referanced in the program. Thase
entries are not deleted, howaver, even when all references in the
program to a particular line number or variable are removed, Thus, if
the program in memory is heavily modlfled, it may be desirable to save
with the SAVE command and then restore the program with tha OLD
command to obtain the largest possible user area.

All user-entered blanks that are not 3in REM statements or string
constants, and all blanks produced by BASIC when listing or saving a
program do not contribute to the size of the program in memory. The
total amount of memory storage required to store a BASIC program (user
codg)and symbol table) depends on the following parameters (2 bytesml
word) s

A-19

Paramater Contribution (bytes) Definition

L T*L Total number of lines in the BASIC
program
T T Total number of tokens in the

programs; one BASTC token 1is
generated for each occurrence of
the following:

BASIC keywords such as PRINT, IF
and THEN, function referances such
as PI, SIN and SEG$ (the left
parenthesis following a function
name is considered to be part of
the function), and special
characters such as +, -, (,), ',
", etc, (The + or - preceding a
numeric constant 1s considered to
he a separate entity)

v 10*vy Total number of distinct wvariable
names used in the program (in the
context, a scalar and array
varlable with the same name are
congidered the same variable name)

R 2*R Total number of occurrences of
variable names and references to
line numbers in the program {not
including the line number at the
beginning of each line)

Il 2*I1 Total number of integer constants
in the range 0{x¢255

I2 3*12 Total number of integer constants
in the range 255(x<¢32767

F S5*F Total number of non-integer numeric
constants and integer constants not
in the above ranges

N 10*N Total number of NEXT statements in
the program

F 2%F Total number of references to the
name of a user-defined function,
e.d., FNA (including the definition

its=elf)

] 2%s Total number of REM statements,
implied CALL statements, and string
congtants

C Total number of characters in the
above statements {number of

characters following REM, number of
characters in an assembly langquage
routine name, number of characters
between (and not including) the
quotes in a string constant)

A-20

P

For example, each use of the multiple statement line saves aix bytes.
The programi

10 A=3
20 B=4

takes 6 bytes more of memory than the equivalent program:

10 A=3\B={
When the BASIC program is running, the following additional array and
string storage is required. For each numeric array, the number of
bytes allocated is

4* (SS1MAX+2)
for a singly-dimensioned array.
or

4% [(SS1MAX+1) * (SS2MAX+1) +1]

for a doubly-dimensioned array, where SSIMAX and SS2MAX are the
maximum values of the first and second array subscripts, respectively.
For each string array, the number of bytes allocated is

2% {SSIMAX+2)
for a singly-dimensioned array or

2%[(SS1IMAX+]) * (5S2MAX+1) +1]

for a doubly~dimensicned array, where SSIMAX and SS2MAX are the
maximum values of the first and second array subscripts, respectively.

For each non-null string scalar or array element of length N currently

defined in the BASIC program, N+4 bytes of string storage are
required,

A-21

SWINBURNE COLLEGE OF TECHNOLOGY
ELECTRICAL ENGINEERING DEPT.

APPENDIX B

PERIPHERAL DEVICE SUPPORT

B.1l LABORATORY PERIPHERAL SYSTEM (LPS) SUPPORT

The Laboratory Peripheral System {LPS) support for BASIC 1is supplied
in six binary relocatable files.

LPS0.0BJ LPS kernel mcdule Required
LPS1.0BJ Analog to digital conversion Optional
LP52,0BJ Real-time clock(60hz line frequency) Either is
LPS2C.0BJ Real-time clock(50hz line frequency) optional
LP53.0BJ Digital input/output Optional
LPS4,0BJ Display Optional

The standard BASIC/CAPS binary kit contains all the object modulas
required to link a version of BASIC/CAPS that contains LPS support
{with all four optional LPS modules). In addition to the LPS object
modules already mentioned, the following files are supplied:

BASINL,.OBJ Interface module for LPS support.
FTBLL.OBJ Function table for LPS support.
PERVEC.OBJ Vector definition module for LPS support with LP§

vectors gset at location 340 (octal).

There are also the following files which are provided in source form
in all kits:

FTBL.PAL Punction Table Module
PERVEC,.PAL Vector Definition Module
BASINT.PAL Interface Module
PERPAR,PAL Parameter file

NOTE

BASIC with LPS support requires a PDP-1l
with 16K or more of memory. The
procedures in this section assume the
user has at least 16K of memory and has
reconfigured his CAPS-=11 system, along
with PAL and LINK, for l&K.

To create a version of BASIC/CAPS with complete LPS support, no GT
support, and a standard hardware configquration, it is only necessary
to link the supplied cbject modules as directed in the axample load
building for a complete confiquration in section B.1l.l.

To create a version of BASIC/CAPS including support for both the LPS
and GT, see the load building example in section B.2.1.

To create a customized version of BASIC/CAPS with LPS support, the
parameter file PERPAR.PAL 1s edited and assembled with FTBL.PAL,
PERVEC.PAL and BASINT. The three object modules produced are then
linked with the LPS and BASIC object modules to produce a load module,
The specific instructions that are given to the system programs (EDIT,
PIP, PAL, and LINK) are given in section B.l.1,

NOTE

All of the procedures in this section
assume that an unaltered PERPAR,PAL is
being edited, It is recommended that a
copy of the orxriginal PERPAR.PAL be made
and saved for future use,

The BASINT.PAL interface module should be used with all versions of
BASIC/CAPS, If the display module is not included in the LPS support
to be linked, another background routine may be linked with BASIC but
it must be defined in this module. See Section 4,3 for instructions
to define the background routine.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table as described in
Section 4.1, FTBL.PAL is a function table in source form. If any user-
written assembly language routines are alsoc linked with BASIC the
routines mugt be definad in this function tamble, See Section 4.1 for
instructions to add the assembly lanquage routine definitions to the
Function Table.

b

PERVEC.PAL is the vector definition module. It defines the hardware
addresses of the statua registers and the interrupt vectors. The
standard hardware address for the LPS intarrupt vector is 340 (octal).
In PDP=-11E10 machines with LPS support, however, the intsrrupt vector
i8 location 300 (octal). To assemble PERVEC with the interrupt vector
at 300 (octal) it is necessary to delete the semicolon before the $V=0
definition in PERPAR.PAL. If the interrupt locations are at another
location in memory then correct the interrupt addresses by using the
system editor to define $V in PERPAR equal to the interrupt address
minus 300 (octal). For example. i1f the LPS interrupt vectors start at
320 (octal) define §V=20 (octal). A listing of PERVEC.PAL is printed
at the end of section B.l.2.

PERPAR.PAL is a parameter file; - a listing follows:

«TITLE PERPAR we PERIPHERAL SUPPORT PACKAGE PARAMETER MODULE,
DECmiiwLBPAAsAel A BABIC KERNEL vE2=p%
COPYRIGHT (C) 1974

DIGITAL EWUIPMENT CORPORATION
MAYNARD, MaASSACHUBETTS 217394

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO
CHANGE wITHOUT NOTICE AND SWOULD NOT BE CONSTRUED
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATIDN,
DEC ASSUMES NO REBPONSIBILITY FOR ANY ERRORS THAYT
MAY APPEAR IN THIS DOCUMENT,

THIS SOFTWARE I8 FURNISHED TD PURCHASER UNDER A
LICENSE FOR USE ON A SINGLE COMPUTER SYBTEM AND
CAN BE COPIEO (WITHW INCLUSION OF DEC®S COPYRIGHY
NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCERT AR MAY
OTHERwISE BE PROVIDED IN WRITING 8Y QEC,

DEC ASSUMES NQ REBPONSBIBILITY FOR THE UBE
OR RELIASILITY OF ITS SOFTWARE ON EQUIPMENT
WHICH IS NOT SUPPLIED 8Y DEC,

T M WE ME Gn Sm S D RS WS Gn Sp Mg N Sy Sm WE WE Wm Gp Wp Wp e

§ THE CONDITIONALS CONTAINED IN THIS MODULE AFFECT THE ASSEMBLY
! OF THE FUNCTYION TABLE MODULE "FTBL MACY,
} TO OBTAIN THE DESIRED CONDITIONAL OEFINITIONCN),
1 REMOVE (USING AN EDITOR) THE
} SEMI«COLON APPEARING BEFORE THE CONDITIDNAL,
18DI3K=D JOEFINE FOR RTel]
«IFNDF SDISK
BSTRNGeD POO NOT DEFINE FOR PTS BASIC WITHMOUT
13TRINGS,» DEFINED FDR PTS V21 WITH STRINGS
«ENDC J
JILP3eg JOEFINE FOR LPB
«IFDF SLPB
18ysg JOEFINE FOR LPS WITH VECTORS STARTING
!] AT 322, DEFAULY SETTING IS VECTORS aAY
! H 342, SET 3V = ANY OTHER DIBPLACENMENT IF
H ! VECTORS BTART AT DISPLACEMENTS
! ’ OTHER TWAN @ DR 42 FROM
! ! VECTOR 3p@

$ADCep JINCLUDE A/0 ROUTINES,

SCLK#Q JINCLUDE CLOCK ROUTINES,
50]0=9 PINCLUDE DIGITAL 10 ROUTINES
SDIS5#0 FINCLUDE DISPLAY ROUTINES,

+ENDC JSLPS
'
!
PSVTLLEQ IFOR GT4® (GT&d)
’
]

«1FDF 3VT11
SCLOCKngE JFDR SYSTEM CLOCK (KWiil)
+ENDC
+EDT
To link the LPS module with BASIC it is necessary to delete the
semicolon () before the $LPS=0 statement in PERPAR.PAL. If any of
the four optional modules are not to be included, a semicolon (j;) must
be inserted before the appropriate conditional.
Parameter Insert ; before parameter if
SADC=0 module LPS1 is not to be included.
$CLK=0 module LPS2 (LPS52C) is not to be included.
$DIO=0 module LPS3 is not to be included.
$DIS=0 module LPS4 is not to be included.

Using the system assembler, the sources are assembled in the following
combinations to produce the needed LPS object modules:

Object File Source Files
FTBL PERPAR,FTBL
PERVEC PERPAR, PERVEC
BASINT PERPAR, BASINT

After these modules have been reassembled, the LPS support may be
linked with the BASIC object modules with only the desired optional
LPS modules included in the LINK command strings.

For extremely long programs that do not use string variables, the LPS
support may be linked with the BK overlay version object modules.
This no-string verslon of BASIC with LPS support has more free memory
for program and array storage, but will require overlaying of the
BASIC/CAPS system,

After BASLPS has been linked it may be loaded by the following monitor
comnmand 3

«R BASLPS

At this point the standard BASIC initial dialogue occurs. See Section
1.2 for a description of the initial dialogue,

B-4

As part of the initial dialogue, BASIC prints:
USER FN5 LOADED
This message occurs whenever BASIC has been linked with LPS support.

When editing PERPAR.PAL, $LPS=0 should be enabled for BASIC with any
LPS support, and $ADCw0, $CLK=0, $D10=0, and $DIS=0 should be disabled
whenever the appropriate optional LPS module is not to be included.
In addition, §$V=0 should be enabled for any PDP~ll with LPS hardware
interrupt located at 300 (octal) instead of 340 (octal)., Most
PDP=11E10 with LPS require the defining of the §V=0 assembly
parameter. For hardware addresses other than 300 or 340, define $V as
described in paragraph about PERVEC.PAL.

B.l.1l Linking BASIC/CAPS with LPS Support
~The procedures for building the following load modules:

BASIC/CAPS with complete LPS support.

BASIC/CAPS with complete LPS support and LPS interrupt
vaectors at location 300 (octal).

BASIC/CAPS with only the ADC and DIS optional display
modules,

are described in this section. Instructions for linking both 1LPS and
GT support with BASIC are given in Section B.2.l. Since all editing
instructions assume an original PERPAR.PAL, a copy of the original
file should be preserved to allow any future load modules to be built
from an unedited PERPAR,PAL,

In all the following examples the user can substitute the module LPS2C
for the module LPS2 if the line frequency is 50Hz instead of 60Hz.

($) represents the ALTMODE Key.
Complete Configuration

To build a load module BASLPS,SLO under CAPS=1l including LPS support
and all four optional modules, enter the following command strings:

(Mount CAPS-1l system cassette on unit 0)
{Mount scratch cassette on unit 1)

<2 1l:
{Mount BASIC object module cassette containing
BASICR.OBJ on unit 1)

«R LINK
(vwhen unit 0 has rewound, mount zeroed scratch
cassette on unit 0)

*BASLPS.SLO,TT:=1:BASICR,FPMP,BASICE,BASICX/F,BASICS/F/B:400/C
,BASINL/P,FTBLL/F ,PERVEC/F,LPS0/F,LPS1/F,LPS2/F,LPS3/F,LPS4/F ,BASICH/P

1?2 {(Mount cassette with BASINL.OBJ on unit 1)
1? {(Mount cassette with BASICR,.0BJ on unit 1)

(ILOAD MAP PRINTED)

PASS 2

1?2 {(Mount cassette with BASINL.OBJ on unit 1)
1? (Mount cassette with BASICR,0BJ on unit 1)
* (Done. Cassette on unit 0 contains a new

BASLPS.510O which is BASIC/CAPS plus all LPS
support-interrupt vectors at 340 (octal)).

~

Complete Configuration-
Interrupt vectors at location 300 (octal)

These instructions are the same as the preceding instructions except -
that a §V=0 parameter definition in PERPAR.PAL is enabled.

To change the interrupt vector location, the file PERPAR.PAL must be
edited to enable the §$V=0 parameter definition. The new PERPAR is
then used to reassemble PERVEC.PAL to redefine the vector locations,

(® represents the ALTMODE key
(Mount CAPS-11 system cassette on unit 0)
{(Mount scratch cassette on unit 1)
«Z 1:
(Mount a second scratch cassette on unit 1)

.Z 1l:

+R EDIT

*EW1 :PERPAR.PAL ®
{Mount BASIC object cassette containing PERPAR.PAL
on unit 0)

*ERQ : PERPAR.PAL R@@

*F; $LPS=0 OAD

AF 3 $V=0 @ fap &

*EXSS
(Mount CAPS-11 system cassette on unit 0)
R PAL
*PERVEC/P=1:PERPAR/P , PERVEC/P
1? Type any keyboard character
1? {Mount cassette with PERVEC.PAL on unit 1)
PASS 2
0?2 {Mount second scratch cassette on unit 0)
1? {Mount cassette with new PERPAR.PAL on unit 1)
1? {Mount cassette with PERVEC.PAL on unit 1)
000000 ERRORS
*tC
{Mount CAPS-1l system cassette on unit 0)
{Mount cassette containing BASICR.0BJ on unit 1)
+R LINK

(vhen unit 0 has rewound, mount cassette with new
PERPAR.PAL on unit 0)

*BASLPS,SLO,TTt=13BASICR,FPMP,BASICE,BASICX/F ,BASICS /F/B:400/C
,PERVEC/P ,BASINL/P,FTBLL/F,LPS0/F,LPS1/F,LPS2/F ,LPS3/F ,LPS4/F ,BASICH/P

1?2 {(Mount cassette with new PERVEC.OBJ on unit 1)

1? (Mount cassette with BASINL,OBJ on unit 1)

1? (Mount cassette with BASICR,O0BJ on unit 1)

{LOAD MAP PRINTED)

PASS 2

1? (Mount cassette with new PERVEC.OBJ cn unit 1)
17 y (Mount cassette with BASINL.OBJ on unit 1)

1?7 {(Mount cassette with BASICR.,0BJ on unit 1)

*tC {bone. New version of BASLPS,SLO with LPS

interrupt vectors at 300 is on cassette 0)

Partial Configuration

To build a lcad module BASLPS.SLO of BASIC/CAPS which includes only
the ADC and display routines, enter the following command stringa:

(® represents the ALTMODE key
{Mount CAPS-11 system cassette on unit 0)
{Mount scratch casasette on unit 1)
.2 1:
{(Mount second scratch cassette on unit 1}

«Z 1:

+R EDIT

*EW1; PERPAR.PAL ® R ®
*F; SLPS=0 (3 OAD

*FSCLK=0 (§) OAI;

*FSDIO=0 (3) 0AI;

*eX®®
(Mount CAPS-11 system cassette on unit 0}
+«R PAL
*PTBLL/P=1:PERPAR/P,FPTBL/P
17 (Type any keyboard character)
12 (Mount cassette with FTBL,PAL on unit 1)

PASS 2

0?

1?

1z

000000 ERRORS
*tC

«R LINK

(Mount second acratch cassette on unit 0)

(Mount cassette with new PERPAR.PAL on unit 1)

{Mount cassette with FTBL.PAL on unit 1)

{Cassette on unit 0 now containa a new FTBLL,.OBJ)

{Mount CAPS=-l1ll system cassette on unit 0)
(Mount cassette containing BASICR.OBJ on unit 1)

(vhen

unit O has rewound, mount cassette
containing new PERPAR,.PAL on unit 0)

"BASLPS,SLO,TT:w1:BASICR,FPMP/F ,BASICE/F,BASICX/F ,BASICS/F/B:400/C
,FTBLL/P ,BASINL/P,PERVEC/F ,LPS80/F,LPS1/F ,LPS4/F ,BASICH/P

1?
1?
1?2

(LOAD MAP PR
PASS 2

12
12
1?

*tC

{Mount
{Mount
{Mount

INTED)

{Mount
(Mount
(Mount

{Done,

cassette with new FTBLL,OBJ
cassette with BASINL,OBJ on

casgette with BASICR,0BJ on

cassette with new FTBLL,OBJ
cassette with BASINL,OBJ on
cassette with BASICR.0BJ on

New version of BASLPS,SBLO

an unit 1)
unit 1)
unit 1)

on unit 1)
unit 1)
unit 1)

with only ADC

and display routines, interrupt vectors at 340, is
on cassette 0)

B.l.2 Assembling LPS Support from the Sources

The Laboratory Peripheral System support may also be purchased in
source form, The following nine source filea are
source files for FTBL, BASINT, PERPAR, and PERVEC are provided with

the binary kit.)

LPS0.PAL
LPSl1.PAL
LP52,PAL
LPS3.PAL
LPS54,PAL
FIBL.PAL
PERVEC, PAL

BASINT.PAL
PERPAR.PAL

provided. (The

The following chart lists the assembly parametars for each module,

Source File Conditionals Define for Systems with:
LPSO,PAL None
LPS1,PAL None
LP52,.PAL CYC50 50 Hz line frequency (60 Hz is
default)
LPS3,PAL None
LPS4.PAL None
FTBL,PAL SADC LPS1
SCLK LPS2
$DIO LP83
$DIS LPS4
SLPS LPSO0 (all systems with LPS
support)
$VT1l GT40 or GT44 support
$DISK (only for RT-1l gystems)
PERVEC,.PAL $LPS LPSO
sV LPS interrupts not at location
340 (octal)
5VT11 GT40 or GT44 support
BASINT.PAL SLPS LPS0O
S$DIS LPS4
NOTE

To change the number of buffers which
may be defined, edit the source of LPS0
and change the value of NARRAY before
assambling.

To assemble the LPS object modules from the sources, use the following

command strings:

«% 1l

«R PAL
*LPS0/P=1:LPS0

PASS 2
0z

000000 ERRORS

{Mount CAPS-1l system cassette on unit 0)
{Mount scratch cassette on unit 1)

(Mount cassette with LPS0.PAL on unit 1)

{Mount scratch cassette on unit 0)

B-9

*LPS1l=m]1:LPS1

PASS 2

000000 ERRORS
*LPS2=]1tLPS2

PASS 2

000000 ERRORS
*LPS3=1:LPS3

PASS 2

000000 ERRORS
*LPS4=1:LPS4

PASS 2

000000 ERRORS
*tC

(Mount cagsette with LPS4.PAL on unit 1)

If the line frequency is 50Hz, use the following commanda to create
the object module LPS2C:

*1c

«Z 1

+R EDIT

(® represents the ALTMODE key
(Mcunt CAPS-11 system cassette on unit 0)
(Mount scratch cassette on unit 1)

*EW1 s PARAM,PAL D ®

*ICYC50=0

oo

«R PAL

*LPS2C/Pw=] :PARAM/P,LPS2/P

B=-10

1? (Type any keyboard character)

1? {(Mount cassette with LPS2.PAL on unit 1)

PASS 2

0? (Mount cassette with newly-created object modules
of LPS0 and LPS1 on unit 0)

1? (Mount cassette with PARAM,PAL on unit 1)

1? (Mount cassette with LPS2,PAL on unit 1)

000000 ERRORS

(Mount cassette with LPS3.,PAL on unit 1)
*"LPS3=1:LPS3 (Continue as in above example)

»

Either of these procedures produces five object modules: LPS0.0BJ,
instructions to assemble the other LPS files and the instructions to
link the LPS object modules with the BASIC object modules are given in
the preceding section. Following is a 1listing of PERVEC,PAL which
containa the interrupt wvector location for the LPS and GT40(44)
hardware:

TITLE PERVEC VECTOR DEFINITION MQDULE FOR BASIC SUPPODRT PACKAGES,
DEC=]llaLBFVAmAmlLA BASIC KERNEL ve2eRl
COPYRIGHT (C) 1974

DIGITAL EQUIPMENT CORPORATIODN
MAYNARD, MASSACHUSETTS 217%«

THE INFQRMATION IN THIS DOCUMENT IS SUBJECT TO
CHANGE wWITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION,
DEC ASSLUMES NO RESPONSIBILITY FOR ANY ERPORS THAT
MAY APPEAR IN THIS DOCUMENT,

THIS SOFTWARE IS5 FURNISMED TO PURCHASER UNDER A
LICENSE FOR USE ON A SINGLE COMPUTER SYSTEM AND
CAN BE COPIED (wITW INCLLSION OF DEC'S COPYRIGHT
NOTICE) ONLY FDR USE IM SUCH SYSTEM, EXCEPT A5 MAY
OTHERwISE BE PROYIODED IN WRITING BY DEC,

DEC ASSUMES NU RESPONSIBILITY FOR THE USE
GR RELIABILITY OF ITS5 SOFTWARE ON EGWLIFPMENT
WHICH 13 NOT SUPPLIED BY DEC,

s MA N WS HR HR UR Wp Ra WD WL WS W Ty T ep wp W G RS WS Wa W W

THES MOOULE DEFINES THE MARDWARE ADRESSES USED 8Y
SUCH HAROwWARE AS THWE "LPSB", THE "VTI1"(GTeR) AND THE "Lvi)",
IF THE VECTORS FOR THESE DEVICES SHOULD CrANGE

THIS MDDULE MUST BE EDITED TO PEFLECT THE CHANGE,

B~11l

«IFDF 3_LP3

« LFNOF

Sved@
<ENDC

v

«GLOBL LPSAD,LPSADS, PIDR,_P3DMA
«GLOBL LPSCKS,LPSPDB,LPSDRS,LPADID
«GLOBL LPSOOR
«GLOBL LPOISY,LPRISX,LPD]ISY

oGLOBL CKLIVA,CKLIP,DRIIVA,DRSIP,LPSIVA,LPRIP

7 DEVICE EQUATES!

LPSAD

LP3ADS
LPSCKS
LPSFB

LP30A

LP3DARY
LPS0I8
LFPSDOR
LPEISS
LPOISX
LPDISY
LPSOMA

179408
172402
170404
178406
172410
LPSDR

170412
170014
1713416
17gu2@
170422
172436

ILPS AZD 8TATUS REG,

JLPS A/D BUFFER LED REG.

JLPS CLOCK STATUS REG,

ILPS CLOCK BUFFER PRESET REG,
JLPS DIGITAL I/0C STATUS REG,

JLPS DIGITAL INPUT REG,
JLPFS OIGITAL OQUTPUT REG,
JLPS DISPLAY 8TATUS REG,
JLPS DISPLAY REG, X

ILPS DISPLAY REG, Y

ILFS OMA RERG,

] INTERRUPY VECTON PAIRSI

CKLIVA »
CKLIP .
DRSIvaA =
DRSIP =
LPSIVA »
LPSIFP .
LENDC
«IFCF
JoLUBL
OPC .
D3R .
DIsx L]
pIsY]
GYVECTY =
JGTYECTH
IGTVECTeds
IGTVECT+182
+ENDC
«END

3Q4ely
326e8Y

JLoesy
Jigesv

JeQesY
Jdeedy

FSLPS
avTiy

JADR, OF CLOCK INTERRUPT VECTOR
FADR, OF CLOCK]NT, PRIORITY

JADR, OF DR8 INT, VECTOR
1A0R, OF QRS INT, PRIORITY,

JAOR, OF THE A/0 INT, VECTOR,
JADR, OF THME INT,PRIORITY,

levun

DPL,DSR,D18X,0I8Y,GTVECT

172000
DPCep
DSRe2
DI%xe2
3ep

15VTIY

JVTY1 DI18PLAY PC

JVT11 OISPLAY 8TATUS REG

JYTY1 X STATUS REG

JVT11 Y STATUS REG

JADR, OF VTy1 [GTapd (GTa4)] INTERRUPT
IVECTOR LIST, REDEFINING GTYVECT
JREDEFINES THE ENTIRE SET

I0F DISPLAY PRUCESADR INT, VECTURS,
JOISPLAY ST0P VYECTOR

JLIGHT PEN HWIT VECTOR

JGISPLAY TIME OuY VECTOR

B~12

B.2 GT GRAPHICS SUPPORT

The GT Support is supplied in the BASIC/CAPS binary kit in the
following files:

GTB.OBJ Main GT object module

GTC.OBJ Secondary GT object module

PERVEC, PAL Vector definition source file

FTBL.PAL Function table source module

BASINT,.PAL Interface Module (source)

PERPAR, PAL Parameter file (source)

GTNLPS .OBJ Module linked with GT when LPS support is not also
linked

BASING,OBJ Interface module (object) for BASIC with GT
support.

FTBLG,OBJ Function table (object) for BASIC with GT support.

PERVEG, OBJ Vector definition module (object) for BASIC with
GT support.

NOTE

BASIC with GT support has three graphic
array calls (YGRA, XGRA, and FIGR)} that
allow the display of an entire array
through one graphics call, Graphics
created by these calls may be changed
while they are being displayed by calls
to APUT, AGET, and FPUT. Because the
graphics created may be dynamically
changed, extreme care must be taken in
their use, Once a graphic array call
(YGRA, XGRA, or FIGR) has been made a
call to INIT must be made before the
user array 1s zeroed by the BASIC
systenm, The following BASIC statements
and commands Zzero the user arrays: RUN,
RUNNH, SCRATCH, CLEAR, NEW, OLD, and
CHAIN, If the user®s arrays are Zzeroed
while a graphics array is being
displayed, the display processor is not
accessible by any program., Any attempt
to execute any graphics call causes the
processor to anter a closed loop. If
this situation occurs, it 4is necessary
to reload BASIC/CAPS with GT support
from cassette.,

This causes a hardware reset of the
display processor and complete
initialization of the BASIC system. The
stored program will be lost,

To create BASIC/CAPS with GT support, without LPS support, and with a
standard hardware configuration, it is only necesaary to follow the
linking instructions in section B,2,1

To create a version of BASIC/CAPS with GT and LPS support or with a
non-standard GT vector location, the parameter file PERPAR,PAL must be
edited and assembled with FTBL.PAL, PERVEC,PAL, and BASINT,PAL, The
three object modules produced are then linked with the BASIC, GT, and,
if desired, LPS cbhject modules to produce a load module. The apecific
instructions that are given to the system programs (EDIT, PIP, PAL,
and LINK) are given in section B.2.1

NOTE

All the procedures for editing
PERPAR.,PAL in this section assume that
an unaltered PERPAR,PAL is being used,
It 1is recommended that a copy of the
original PERPAR.PAL be made and saved
for future use,

A listing of PERPAR.PAL is given in section B.1l.

The semicolon before the §$VTll=0 statement must be deleted when
building a customized version of BASIC/CAPS with GT support., If the
LPS modules are alsc to be linked, it 1is necessary to delete the
senicolon before the $LPS=(statement.

If the GT vector addresses are not standard (at location 320 (octal))
then PERVEC.PAL, listed in section B.l.2, must be altered to have the
correct vector addresses.

The BASINT.PAL interface module should be used with all versions of
BASIC/CAPS, If a background routine is also linked with BASIC, it
must be defined in the interface module, See section 4.3 for
instructions to link a background routine with BASIC,

For the GT routines to be accessible by a BASIC "CALL"™ statement the
routines must be defined in a System Function Table as described in
Section 4.1. FTBL.PAL is a function table in source form. If any user-
written assembly language routines (or LPS support) are also linked
with BASIC the routines must be defined in this function table. See
section 4.1 for instructions to add assembly lanquage routine
definitions to this function table.

PERPAR,.PAL should then be assembled with PTBL.PAL, PERVEC.PAL, and
BASINT,.PAL. The three cbject modules produced should be linked with
the BASIC, GT, and, if desired, LPS object modules.
B.2.1 Linking BASIC/CAPS with GT Support
This section contains two load-building examples:

BASGT.SLO BASIC/CAPS with GT support only

BGTLPS.SLO BASIC/CAPS with GT and LPS support

B-14

AT

BASIC with GT support and no LPS support

The instructions for linking BASIC with GT and no LPS support in the
CAPS-11 environment follow:

(@ represents the ALTMODE key

{Mount CAPS-1l system cassette on unit 0)
(Mount scratch cassette on unit 1)

«Z2 13
(Mount cassette with BASICR.OBJ on unit 1)

«R LINK

*BASGT.SLO/P,TT:=1:BASICR,FPMP/F ,BASICE/F ,BASICX/F ,BASICS /F/B1400/C
+BASING/F,FTBLG/F , PERVEG/F ,GTNLPS /F,GTB/F ,GTC/F ,BASICH

(LOAD MAP PRINTED)

PASS 2
0? {Mount scratch cassette on unit 0)
*+C (Done, Unit 0 contains new BASGT.SLO)

BASIC with GT and LPS Support

To build a load module including both GT and LPS support (with all the
optional LPS modules} the following inatructions should be given to
the CAPS-1l editor, assembler, and linker.

® represents the ALTMODE key

{Mount scratch cassette on unit 1)

(Mount CAPS-~l1l system cassette on unit 0)
e 1t

{Mount second scratch cassette on unit 1)
e2 1:

.R EDIT
*EW1:PERPAR.PAL

{Mount cassette with PERPAR,.PAL on unit 0)
*ERO:PERPAR.FPAL) R @
*F; SLPS=0 ($ 0AD
*P; $VT11l=0 (§) OAD

EX O

’ (Mount CAPS-1l system cassette on unit 0)
;;rg?jpﬂ :PERPAR/P,PTBL/P
1? {Type any keyboard character)
172 {Mount cassette with FTBL.PAL on unit 1)
PASS 2
0? (Mount second scratch cassette on unit 0)

17? {Mount cassette with new PERPAR.PAIL on unit 1)
1? {Mount cassette with FTBL,.PAL on unit 1)

000000 ERRORS (Cassette on unit 0 now contains a new FTBL,OBJ)
*PERVEC=1:PERPAR/P ,PERVEC/P

1l? (Mount cassette with new PERPAR,PAL on unit 1)
1? (Mount cassette with PERVEC.PAL on unit 1)
PASS 2,
1z (Mount cassette with new PERPAR,PAL on unit 1)
12 (Mount cassette with PERVEC.PAL on unit 1)
000000 ERRORS
*tC

{Mount CAPS-1l system cassette on unit 1)
+R 1:PIP

*BASINT,.OBJ=1:BASINL, OBJ/P
1z (Mount cassette with BASINL.OBJ on unit 1)
*PS.0BJ=1:LPS0.0BJ/F,LPS1.0BJ/F,LPS2.0BJ/F,LPS3,.0BJ/F,LPS4.0BJ/F
*GT,0BJ=1:GTB.0OBJ/P,GTC.0BJ/F
1?2 (Mount cassette with GTB.OBJ on unit 1)
*tC
{Mount CAPS-1l system cassette on unit 0)
« R LINK
{Mount cassette with BASICR.OBJ on unit 1)

*BGTLPS.SLO/P,TT:=1:BASICR,FPMP /F ,BASICE/F ,BASICX/F ,BASICS/F/B:400/C
,FTBL/P, PERVEC/F ,BASINT/F,LPS/F/M,GT/F ,BASICH/P

1? {Mount cassette with new FTBL.OBJ on unit 1)
17 {Mount cassette with BASICR.OBJ on unit 1)
(LOAD MAP PRINTED)
PASS 2
0?7 (Mount cassette with new PERPAR.PAL on unit 0)
1z? (Mount cassette with new FTBL.OBJ on unit 1)
17 (Mount cassette with BASICR.OBJ on unit 1)
*1C (Done. Cassette on unit 0 contains edited

PERPAR.PAL and new version of BASIC/CAPS with GT
and LPS support - BGTLPS,SLO)

B.2.2 Assembling GT Support from the Sources

BASIC GT support may also be purchased in source form. The following
files are provided in source formi

GTBl.PAL
GTB2.PAL
GTC.PAL
PERVEC.PAL
FTBL.PAL
BASINT.PAL
PERPAR,PAL
GTNLPS.PAL

FTBL.PAL is the function table for the GT support functions. It is
always provided in source form in the binary kit and may be extended
by the careful addition of the user's own functions aa described in
section 4.l. .

GTBl1.PAL and GTB2.PAL make up the main module containing the majority
of code for the GT support functions. They are provided in the source
kit.

GTC.PAL contains the rest of the GT support functions. It is provided
in the source kit.

PERVEC.PAL 1is the vector definition module, If the hardware
configuration is non-standard the address of the graphic vector should
be changed in the source. PERVEC.PAL is listed at the end of section
B.2.1 It is provided in the binary kit.

BASINT.PAL is the interface module that should be used with all
versions of BASIC/CAPS., It is provided in the binary kit.

PERPAR.PAL is a parameter file that must be edited for assembling with
all the remaining files. It is used to conditionally assemble the
remaining files according to the user's gpecial requirements. Some of
the parameters that may be defined are:

$§VT11 Always define.

$DISK Do not define for BASIC/CAPS.

SLONGER Define to give longer GT error messages.

$CRASH Define to cause a halt with an ?ADR error message
rather than change data that is too large for the
display instructions to use. Otherwise data is
transformed into the nearest legitimate value,

$CLOCK Always define even when hardware does not include
a real-time clock.

SLPS Always define when assembling GTB and GTC.

$DEPTH Define to change the default depth of nesting of
subpictures, If not defined here, the default is
10 {decimal}.

PREPAR.PAL 18 provided in the binary kit and is 1listed in the
preceding section; it is edited by the EDIT program. To assemble the
GTBl.PAL, GTB2.PAL, GTC.PAL, and GTNLPS.PAL sources to duplicate the
object modules provided, type the following CAPS-11 Monitor
instructions:

® represents the ALTMODE key

(Mount scratch cassette on unit 1)

.Z 1

(Mount second scratch cassette on unit 1)
.Z 1:

(Mount CAPS-11 system cassette on unit 0)
.R EDIT

*EWL : PERPAR.PAL (®
(Mount cassette with PERPAR.PAL on unit 0)

*ERQ : PERPAR. PAL
*F; $LPS=0 (9 0AD
*F;VT11=0 (3) 0AD

*EX ©]6)]

{(Mount CAPS-11 system cassette on unit 0)
.R PAIL
*GTB/P=1:PERPAR/P,GTB1 /P ,GTEZ/P
1? (Type any keyboard character)
1? {Mount cassette with GTBl.PAL on unit 1)
1? {Mount cassette with GTB2.PAL on unit 1)
PASS 2
0? {Mount second scratch cassette on unit 0)
1? {Mount cassette with edited PERPAR.PAL on unit 1)
1? {Mount cassette with GTBl1.PAL on unit 1)
1? {Mount cassette with GTB2.PAL on unit 2)

000000 ERRORS (Done)

*GTC=1:PERPAR/P ,GTC/P

17 (Mount cassette with edited PERPAR,.PAL on unit 1)
17 (Mount cassette with GTC.PAL on unit 1)

PASS 2

17 (Mount cassette with edited PERPAR.PAL on unit 1)
1? {Mount cassette with GTC.PAL on unit 1)

000000 ERRORS (Done)

(Mount cassette with GTNLPS.PAL on unit 1)
*GTNLPS=] :GTNLPS

B-18

PASS 2

000000 ERRORS
*4C (Done)

The cassette on unit 0 will contain new object moduvles of GTB, GTC,
and GTNLPS which can be used to build lcad modules of BASIC/CAPS with
GT support as described in gection B.2,1,

GTB.PAL and GTC.PAL may be conditionally assembled with the optional
SLONGER, S$CRASH, and SDEPTH parameters defined in PERPAR,.PAL, For
example, to create a BASIC with GT support for CAPS-1ll with longer GT
error messages, halting after error messages, and a depth of nesting
of 17 (octal) {decimal=l5) allowed, the following instructions should
be given to the CAPS-11 Mcnitor.

(® represents the ALTMODE key
.R EDIT
*EW1:PERPAR.PAL @
(Mount cassette with PERPAR.PAL on unit 0)
*ERO :PERPAR,PAL ® R D@
*I $LONGER=0
$CRASH=0
SDEPTH=17

*F; SLPS=0 (3 0AD D
.gisé'rél-o ® oap @

The remaining instructions are the same as those above for assembling
GTB, GTC, and GTNLPS.

These GTB and GTC object modules may be 1linked with FTBL, PERVEC,

BASINT, and the BASIC and LPS object modules as described in section
B.2.1.

B.2.3 Technical Descripticn of bDisplay Buffer Management
The following technical information should be read before any
user-written assembly language routines alter the graphic files or
before the sources of GT are altered.
l. Overall Structura
a. Root portion
i) Tracking object subpicture (with tag -1)

ii) Default conditions; i.e., beam at {0.0) etc.
iii) A display jump to the user space

B-19

3.

b.

User space

i} User data starts at address in global ACTST
ii} Data continues through address in glabal ACTEND

iii) A display jump and address of root code is stored in

the two words ending at ACTEND

iv) The top of the display buffer is the address in
global DCRASH

Subpictures

a.

Ce

d.

£.

Call consists of 5 words:

i) A display stop (code:173400)
ii) Address of the rest of the file

iii) Address ¢of the subpicture

iv) The tag of the subpicture
v) The pointer to the next tag or zero if the 1last
subpicture,

Header of the subpicture consists of one spare word used
in the SAVE routine. The address in 2a-ii points to the
next word.,

The end of a subpicture is given by 2 words:

i} & display stop
ii) A zero word

Subpictures are turned off and on by interchanging the
display stop of 2a-i by a display jump respectively.

When subpictures are erased:

i) The display stop of 2a-i is replaced by a display
Jump.

ii) The tag of the subpicture and the tags of any

sub-pictures contained in it are deleted from the
linked list,

The first subpicture tag pointer is located at address
global TAGl+2,.

Display Stop Handler

Assume DPU interrupts with the address X in the display PC.

a.

Call to subpicture if the contents of X is greater than
X+2., In this case X+2 is stored in a runtime stack (the
subpicture tag is at X+4). The address of X (see 2a-iii
above) is moved to the DPC to start the display.

Addition to display file if the contents of X i3 less
than X+2, This condition arises when the display jump at
ACTEND-2 is replaced by a display stop. The words are
inserted and the display is started at its beginning in
the root code.

End of a subpicture if contents of X is zero. The top

entry in the runtime stack is popped off into RO and the
display is started at the address contained in R0O-2.

B-20

4.

5.

Light Pen Handler

a.

b-

Co

Checks the runtime stack to see if the hit occurred in a
subpicture.

If a hit occurred in the tracking object, move the object
canter to new coordinates weighted by 3 times the old x
{y) plus the new X (respectively Y) divided by 4. If the
tracking object is on the edge, move it to the center,
Continue with 4d.

If a hit occurred in a subpicture, store itas tag;
otherwise store zero unless a previous hit has not been
queried, in which case, go to 4e,

Unscale to user coordinates and if the hit was in the
tracking object, update the variables passed in the call
to the TRAK routine.

Resume the display and exit.

Display Time=-out

ae.

Raset the runtime stack and restart the display.

Calls to XGRA, YGRA, FIGR

a.

b.

Ce

The followlng code is generated for XGRA or YGRA:

1) Set graphic mode to XGRA or YGRA

ii) Load Status Register B with the graphplot increment.
iii) A display jump
iv) Address of the first word of A(0) where the

screen—-scaled array data starts.
v} The actual first subscript of the array. Stored as
negative if an LPS array.

The display jump at the “end" of the array points to the
word following 6a-v,

For FIGR, 6a-1 and 6a-ii are replaced by a single word to
set the graphic mode to long vector.

B-21

N

INDEX

Arqument types for assembly
language routines, 4-3

Array storage, A-21

Agsembling,
BASIC, A-4
GT support from sources, B-8
LPS support from sources, B-17
nonstandard object modules, A-7
standard object modules, A-6

Assembly language routines, 4-1
for background execution, 4-6
writing, 4-2

Asgembly parameters, A-5

Background assembly lanquage,
linking with BK memory, A-4
linking with more than BEK

memory, A-2
Background assembly language rou-

tines, 4-6
BASINT.PAL interface mocdule, B=-2,
B-14

Blanka, A-19
Bootstrap loader, 1-2, 1-3

CALL statement, 4-2, 4-3

CLEAR command, A-19

Code storage, A-16

Control/C (CTRL/C)} key commands,
2=-2

<CR>, 1-2, 1-4

Date format, 1-5

Default conventions of file com-
mands and statements, 3=3

Devices supported by BASIC/CAPS,
3-2

Display buffer management, technical
description, B-19

EDIT program instruction for
assembly language routines, 4-2

8K version, l-1
linking instructionsa, A-3
overlaying, 2-3

End of line token, A-17

Error messagesg, 5-1

EVAL subroutine, 4-4

Extension of file, 3-3

Fatal error messages, 5-=1
File commands examples, 3-5
File descriptor, 3-2

Filename, 3-3

Files, 3-1

File statement examples, 3-4

Format of translated BASIC program,
A-14

¥PMP-11 routines, A-11l

PTRL,PAL, function table, 4-1, B-2,
B-14

Punction errors, 5-6

Punctions, optional, 1-4

General interface subroutines, 4-7

GETARG subroutine, 4-2, 4-7, 4-8

.GLOBL symbols, A-12

Greater than BK version, 1-~1
linking instruction, A-2

6T Graphics Support, B-13

Hardware, 1-1
High-gpeed paper tape punch, 3-2

Initial dialogue at load time, 1-3
Input expressions, 4-3

Interface mcdule, B-2, B-1l4
Interface subroutines, 4-7
Interrupt vector, GT, B-14
Interrupt vecteor, LPS, B-3

Reyword tokens, A-16, A-114

Laboratory Peripheral System (LPS),
B-1
Language features, system-dependent,
2-1
Line numbers, A-16
Line printer, 3-2
Linking,
LPS module, B-4
from object modules, A-1
for systems with 8K memory, A-3
for systems with more than 8K

memory, A-3
Linking BASIC/CAPS with GT support,
B-14

with LPS support, B-15

without LPS support, B-15
Linking BASIC/CAPS with LPS support,

B=-5

Loading,

CAPS-11 Monitor, 2-2

directly into memory, 1-2

from CAPS-11 Monitor, 1-2
Load-time dialogue, 1-3

INDEX-1

Memory map, A-19%
Modules, LPS, B-1l
Multiple statement lines, A-21

Name of file, 3-3

Nonfatal error messages, 5-1

Nonstandard object module assembly,
A=-7

No-string version of BASIC, B-4

Rumbers representation in BASIC,
A-13

Object modules, A-1
nonstandard, A-7
standard, A-6
OPEN statement, 3-1
Optional functions, 1-4
Output variables, 4-3
Overlaying in 8K version, 2-3

Paper-tape punch, 3-2

Parameter file, B-3

Peripheral device support, B-1

PERPAR.PAL parameter file, B-3

PERVEC.PAL vector definition medule,
B-3

Program format, A-14

Program storage, A-19

Rebooting BASIC, 2-2

Restarting BASIC, 1-5

Returning to CAPS-11 Monitor, 2-2
Routines, BASIC system, A-B

SCRatch command, A-19
Software provided, 1l-1
BASIC/CAPS, 1-2
GT graphics, B-13
LPS, B-1, B-8
Spaces, A-19
Standard object modules assembly,
A-6
Storage, A-16, A-19%, A-21
STORE subroutine, 4-3, 4-7, 4-10
Strings in BASIC, A-14
String storage, A-21
SSTORE subroutine, 4-3, 4-7, 4-10
Subroutines, general interface, 4-7
Symbol table format, A-14
Syastem Function Table, 4-1, B-2,
B-14
System information, A-1l
System routines in BASIC, A-8

Target variables, 4-3
Technical description of
BASIC/CAPS, A-8
display buffer management, B-19
Terminal types, 1-4, 1-5
.TEXT token, A-18
Tokens, 4-4, A-16¢, A-18
Translated BASIC program format,
A-14

User functions,
example of, 4-4
linking with 8K memory, A-4
linking with more than 8K memory,
4-2
User routines, 4-2

Variable names, A-16
Vector definition module, B-3

INDEX-2

""\

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Ferformance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. Q. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Qffice in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy
Paris, Prance Solna, Sweden
The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited helow.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Eguipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Cutside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation. A catalog of existing programs is available. The society

publishes a periodical, DECUSCOFE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment, S.A.
146 Main Street 81 Route de l'aire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

(X2

BASIC/CAPS~1l User's Manmal
DEC~11-LIBRCA-A-D

READER'S COMMENTS
NOTE: This form is for document comments cnly. Problems
with software should be reported on a Scoftware

Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it ke placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer {experienced)
User with little programming experience
Student programmer

0o0oooo

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL [,
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES EEEE—
N
Postage will be paid by:
]
I
I
|
I
Software Communications A
P. 0. Box F]
Maynard, Massachusetts 01754]
.]

s .

— o r— — —

e e

e M T ean ae

l - A R

)

dlilgliltall

DIGITAL EQUIPMENT CORPOCRATION
MAYNARD, MASSACHUSETTS 01754

f
5 _..,"* 8

I e =

	Front Cover

	Contents

	Preface

	Chapter 1 - Introduction

	Chapter 2 - System-Dependent Features

	Chapter 3 - Files in BASIC/CAPS
	Chapter 4 - Using Assembly Language Routines with BASIC

	Chapter 5 - Error Messages

	Appendix A1 - Linking BASIC/CAPS from the Object Modules

	Appendix A2 - Assembling BASIC

	Appendix A3 - Technical Description of BASIC/CAPS

	Appendix B1 - Laboratory Peripheral System (LPS) Support

	Appendix B2 - GT Graphics Support

	Index

