
codex.

I

~~~~~ Reference 
Manual 

t Number 72792 a Documen 



ACKNOWLEDGEMENT 

In compliance with the request of the Executive 
Committee of the Conference on Data Systems Languages 
(CODASYL), and specifically the CODASYL COBOL Committee, the 
following acknowledgement is extracted from that contained in 
the publication C020L, Edition 1974.* 

"Any organization interested in reproducing the COBOL 
report and specifications, in whole or in part, using ideas 
taken from this report as the basis for an instruction manual 
or for any other purpose is free to do so. However, all such 
organizations are requested to reproduce this section as part 
of the introduction to the document. Those using a short 
passage, as in a book review, are requested to mention COBOL 
in acknowledgement of the source, but need not quote this 
entire section. 

"COBOL is an industry language and is not the property 
of any company or group of companies, or of any organization 
or group of organizations. 

"No warranty, expressed or implied, is made by any 
contributor or by the COBOL Committee as to the accuracy and 
functioning of the programming system and language. 
Moreover, no responsibility is assumed by any contributor, or 
by the Committee, in connection therewith. 

"Procedures have been established for the maintenance of 
COBOL. Inquiries concerning the procedures for proposing 
changes should be directed to the Executive Committee of the 
Conference on Data Systems Languages (CODASYL). 

"The authors and copyright holders of the copyrighted 
material used herein have specifically authorized the use of 
this material, in whole or in part, in the COBOL 
specifications. Such authorization extends to the 
reproduction and use of COBOL specifications in programming 
manuals or similar publications." 

*COBOL, Edition 1974, produced by joint efforts of the 
CODASYL COBOL Committee and the European Computer 
Manufacturers Association (ECMA). 

FLOW-MATIC (Trademark of Sperry Rand Corporation), 
Programming for the Univac (R) I and II, Da.ta Automation 
Systems copyrighted 1958, 1959 by Sperry Rand Corporation; 
IBM Commercial Translator Form No. F 28-8013, copyrighted 
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by 
Minneapolis-Honeywell. 



Table of Contents Page 

CHAPTER 1 - INTRODUCTION . . . . . . . . . . . . . . • 1-01 

1.1 HARDWARE SUPPORT REQUIRED ••••• 
1.2 OPTIONAL HARDWARE SUPPORTED •••• 
1.3 SOFTWARE SUPPORT REQUIRED • 

• • • ••• 1-01 
• • • • • • 1-01 
• • • • • • 1-02 

1.4 SOFTWARE INSTALLATION •••••• • • • • • • • 1-02 

CHAPTER 2 - INTRODUCTION TO COBOL • • . . . . . • • • • 2-01 

2.1 THE COBOL SYSTEM • . . • . • . . . • . • . . . 2-01 
2.2 COBOL PROGRAM STRUCTURE • . . . . . . . . • . . 2-02 
2.3 COBOL REFERENCE FORMAT . . . . . . . . . . . . 2-03 

2.3.1 REFERENCE FORMAT REPRESENTATION . . . . . 2-04 
2.3.2 CONTINUATION OF NON-NUMERIC LITERALS . • 2-04 
2.3.3 DIVISION HEADER . . . . . . . • . • . 2-05 
2.3.4 SECTION HEADER • . . . • • . • • • • • • 2-05 
2.3.5 PARAGRAPH-NAME AND PARAGRAPH . . . • • . 2-05 

2.4 COBOL PROGRAM FORMAT • • • . . • . . • • . 2-06 
2.5 COBOL LANGUAGE ELEMENTS . • . . . . . . • . • . 2-06 

2.5.1 PROGRAMMER-SUPPLIED NAMES • . • • . • • . 2-07 
2.5.2 RESERVED WORDS • . • . . . . • . . . 2-09 
2.5.3 SYMBOLS . . • • • . . . • . • • . • . 2-10 
2.5.4 LITERALS • . . . . . . . . . . • . • • . 2-12 
2.5.5 SPECIAL REGISTERS • • • • • • • • . . . . 2-15 

2.6 COBOL FORMAT NOTATION . . • . . . . • . • • . . 2-16 

CHAPTER 3 - THE IDENTIFICATION & ENVIRONMENT DIVISIONS 3-01 

3.1 THE IDENTIFICATION DIVISION •••••••••• 3-01 
3.2 THE ENVIRONMENT DIVISION ••••••••••• 3-02 

3.2.1 THE CONFIGURATION SECTION •••••••• 3-02 
3. 2. 2 THE INPUT-OUTPUT SECTION • • 3-03 
3.2.3 THE I-0-CONTROL PARAGRAPH • • • • 3-05 

CHAPTER 4 - THE DATA DIVISION • • • . . . . . . • 4-01 

4.1 THE FILE SECTION • . . . . • . . . . . • . 4-01 
4.1.1 FD (FILE DESCRIPTION) ENTRY . • • • • • . 4-01 
4.1.2 RECORD DESCRlPTION ENTRIES . . . . . • • 4-03 

4.2 THE WORKING STORAGE SECTION . • • • • . . . • • 4-12 
4.2.1 INDEPENDENT AREAS IN WORKING-STORAGE . . 4-12 
4.2.2 GROUPED AREAS IN WORKING-STORAGE • • . • 4-13 
4.2.3 STORING TABLES IN WORKING-STORAGE • . . • 4-15 

4.3 THE LINKAGE SECTION . • • • • • • • • • • . • • 4-17 

CHAPTER 5 - THE PROCEDURE DIVISION . . . . . . . . . • 5-01 

5.1 INPUT/OUTPUT STATEMENTS • . • • . . • • • • • • 5-02 
5.1.1 THE OPEN STATEMENT . . . . • . . 5-02 
5.1.2 THE START STATEMENT • • . • • • . • • • . 5-04 
5.1.3 THE READ STATEMENT . . • • . . . • . • . 5-0S 
5.1.4 THE WRITE STATEMENT . • • • • • . . . . . 5-06 
5.1.5 THE REWRITE STATEMENT • . . . . . . . • . 5-07 
5.1.6 THE DELETE STATEMENT • • . • • • . • • • 5-08 

Page i 



Table of Contents Page 

5.1.7 THE DISPLAY STATEMENT • • •••••• 5-08 
5.1.8 THE ACCEPT STATEMENT •••••••••• 5-09 
5.1.9 THE CLOSE STATEMENT • • • • • • ••• 5-09 

5.2 DATA MANIPULATION STATEMENTS ••••••••• 5-10 
5.2.1 THE MOVE STATEMENT ••••••••••• 5-10 
5.2.2 ALPHANUMERIC MOVES ••••••••••• 5-11 
5.2.3 NUMERIC MOVE •••••••••••••• 5-11 
5.2.4 DE-EDIT MOVE • • • • • • • ••• 5-13 
5.2.5 EDITED MOVE • • • • • • • • • • ••• 5-13 
5.2.6 THE INSPECT STATEMENT •••••••••• 5-13 

5.3 ARITHMETIC STATEMENTS • • • • • • • • ••• 5-15 
5.3.l GIVING OPTION • • • • • • • ••• 5-16 
5.3.2 ROUNDED OPTION ••••••••••• 5-16 
5.3.3 SIZE ERROR OPTION • • • • • • •••• 5-17 
5.3.4 THE ADD STATEMENT • • • ••••• 5-17 
5.3.5 THE SUBTRACT STATEMENT ••••••••• 5-19 
5.3.6 THE MULTIPLY STATEMENT • • • • ••• 5-19 
5.3.7 THE DIVIDE STATEMENT • • • • • ••• 5-20 
5.3.8 THE COMPUTE STATEMENT • • • • • • • • 5-22 

5.4 CONDITIONAL STATEMENTS •••••••••••• 5-23 
5.4.l RELATIONAL TEST CONDITION •••••••• 5-23 
5.4.2 CLASS TEST CONDITION •••••••• 5-24 
5.4.3 SIGN TEST CONDITION ••••••••••• 5-24 
5.4.4 LOGICAL OPERATORS IN COMPOUND CONDITIONS 5-25 
5.4.5 EVALUATION OF THE CONDITION ••••••• 5-25 
5.4.6 NESTED CONDITIONAL STATEMENTS •••••• 5-26 
5.4.7 CONDITIONAL STATEMENTS W/EXCEPTION BRANCH 5-27 

5.5 SEQUENCE CONTROL STATEMENTS •••••••••• 5-27 
5.5.l THE GO TO STATEMENT ••••••••••• 5-28 
5.5.2 THE CALL STATEMENT ••••••••••• 5-29 

i:;._')Q 
e • • e _,,, WJ 

5.5.4 THE PERFORM STATEMENT •••••••••• 5-31 
5.5.5 THE EXIT STATEMENT • • • • ••• 5-34 
5.5.6 THE STOP STATEMENT ••••••••••• 5-34 

5.6 TABLE-HANDLING STATEMENTS ••••••••••• 5-36 
5.6.1 SUBSCRIPTING A TABLE •••••••••• 5-36 
5.6.2 INDEXING A TABLE • • • • • • 5-37 
5.6.3 THE SET STATEMENT •••••••••••• 5-37 
5.6.4 THE SEARCH STATEMENT • • • • • ••• 5-38 

5.7 COPY STATEMENTS •••••••••••••••• 5-41 

CHAPTER 6 - GUIDE TO WRITING COBOL CRT TRANSACTIONS • • 6-01 

6.1 WRITING A CRT FORMAT ••••••••• 
6.2 SENDING DATA TO THE SCREEN •••••• 
6.3 RECEIVING DATA FROM THE SCREEN •••• 
6.4 WRITING ERROR INDICATIONS ••••••• 
6.5 SCREEN MESSAGES •••••••••••• 
6. 6 EDITING DATA FIELDS • • • • 
6.7 WRITING TO THE PRINTER •••••••• 

• • • • 6-01 
• • • • 6-02 
• • • • 6-02 
• • • • 6-03 
• • • • 6-05 
• • • • 6-06 
• • • • 6-08 

CHAPTER 7 - FILE MANAGEMENT • • . . . . . . . . . . . • 7-01 

7.1 FILE ORGANIZATION •• . . . . . . . . . . • 7-01 

Page ii 



Table of Contents Page 

7.1.l SEQUENTIAL FILE ORGANIZATION •••••• 7-01 
7.1.2 INDEXED FILE ORGANIZATION •••••••• 7-01 
7.1.3 CODOS-SA FILE ORGANIZATION ••••••• 7-01 

7.2 FILE ACCESS • • • • • • • • •••••••• 7-02 
7.2.l SEQUENTIAL ACCESS • • • • • • • ••• 7-02 
7.2.2 RANDOM ACCESS •••••••••••••• 7-02 
7.2.3 DYNAMIC ACCESS ••••••••••••• 7-02 

7.3 FILE-HANDLING METHODS ••••••••••••• 7-02 
7.3.l WITH SEQUENTIAL ACCESS ••••••••• 7-02 
7.3.2 WITH RANDOM ACCESS ••••••••••• 7-03 

7.4 CFMS FILE STRUCTURE •••••••••••••• 7-03 
7.4.l SEQUENTIAL FILES •••••••••••• 7-03 
7.4.2 INDEXED SEQUENTIAL FILES • • • • 7-03 

7.5 DISKETTE INITIALIZATION •••••••••••• 7-04 
7.6 DATA FILE CREATION • • • • • • • • • • • • 7-04 
7.7 DATA FILE LISTS •••••••••••••••• 7-06 
7.8 THE END COMMAND • • • • . • •.•••••• 7-06 

7.8.l CODOS-SA TYPE FILES • • • • • 7-06 

CHAPTER 8 - USING A COBOL PROGRAM WITH THE CDX-68 • • • 8-01 

8.1 READYING THE CDX-68 SYSTEM •••••••••• 8-01 
8.2 ENTERING AND EDITING A NEW PROGRAM • • • • 8-02 

8.2.1 DATETIME COMMAND •••••••••••• 8-03 
8.3 COMPILING A SOURCE COBOL PROGRAM ••••••• 8-04 
8.4 EXECUTING THE COBOL PROGRAM •••••••••• 8-05 

8.4.l INTERACTIVE EXECUTION • • • • • • 8-05 
8.4.2 BATCH EXECUTION ••••••••••••• 8-07 
8.4.3 CHAIN FILE OPERATION EXAMPLE •••••• 8-09 

8.5 DEBUGGING ••••••••••••••••••• 8-09 

APPENDIX A - COBOL RESERVED WORDS • 

APPENDIX B - DISPLAY CONTROL CODES . . • • • • • • • • 

APPENDIX C - COMPILER ERROR MESSAGES . . . . . . 
APPENDIX D - EXECUTION ERROR MESSAGES . . . • • 

APPENDIX E - SAMPLE COBOL PROGRAM . . . . . . . . . 
APPENDIX F - PERFORMANCE DATA • • • • . . . • • 

A-01 

B-01 

C-01 

D-01 

E-01 

F-01 

COMPILER MEMORY MAP • • 
RUNTIME MEMORY MAP • • 
STORAGE SIZE • • • 

. • . . . . . . • . . . . • F-01 

. . . . . . . . . . . . . . F-02 

. . . . • . . . . . . . • . F-03 

Page iii 



List of Figures Page 

FIGURE 5-1. PERFORM STATEMENT (VARYING OPTION) •••• 5-35 
FIGURE 5-2. SEARCH STATEMENT OPERATION •••••••• 5-40 

List of Tables Page 

TABLE 5-1. 
TABLE 5-2. 
TABLE 5-3. 
TABLE 7-1. 

I/O COMMANDS • • • • • • • • • • • • • • • 5-03 
CONSTRUCTING ARITHMETIC-EXPRESSIONS • • • • 5-12 
ROUNDING OR TRUNCATION OF CALCULATIONS • • 5-16 
CFMS ERROR MESSAGES • • • • • • • • • • • • 7-05 

Page iv 



CHAPTER 1 - INTRODUCTION 

An acronym for common Business Oriented Language, COBOL 
is an industry standard high-level language widely used for 
(but not limited to) business processing applications. 
Preferred by many for its ease of use and high level of 
self-documentation, COBOL has gained further acceptance due 
to the ease with which programs can be transferred between 
different manufacturers' systems. 

Designed for use with Codex Intelligent Terminal 
Systems, CDX-CBL COBOL is a microcomputer implementation of a 
subset of the American National Standards Institute (ANSI) 
1974 COBOL Level One standard. In addition to the many ANSI 
high-level features supported, the following modules are also 
included: nucleus, table handling, sequential file access, 
and library operations. 

The File Management System included in COBOL permits 
sequential and ISAM disk file access, multiple files, and 
duplicate keys, as well as allowing records to be added, 
deleted, or updated. Also included is the UCALL statement, 
which allows programs written in other languages to be called 
and executed by Codex COBOL programs. 1 

1.1 HARDWARE SUPPORT REQUIRED 

The minimum hardware configuration required to support 
COBOL on the CODOS based system consists of: 

CDX-68 Basic Display Terminal with the 
appropriate firmware options 

32K bytes of user memory (RAM) 

.5 Mb or 1 Mb Diskette Storage (CDX-FS Series) or 
10 Mb Disk Storage (CDX-FS/DR) 

Microcomputer Module D (CDX-SBC/D) 

System Self-Test firmware package (CDX-SST/D) 

CObug firmware package (CDX-CBG/D) 

1.2 OPTIONAL HARDWARE SUPPORTED 

CODOS also supports a variety of printers, including 
matrix and character printers (the Codex SP Series) including 
the text quality (55 CPS) printer. These optional printers 
are linked to the Basic Display Terminal through either the 
Microcomputer Module D or the Printer Interface Module 

Page 1-01 



(COX-PI). 

1.3 SOFTWARE SUPPORT REQUIRED 

The CODOS Software package (71709) is required. 

1.4 SOFTWARE INSTALLATION 

Each software disk shipped contains a file called 
"INSTALL.SA." This file contains all necessary instructions 
to install any CODEX software system. 

Page 1-02 



CHAPTER 2 - INTRODUCTION TO COBOL 

As its name implies, COBOL (Common Business Oriented 
Language) is a high-level computer language that is suited 
for business applications since it is quite efficient in 
manipulating large data files. COBOL'S vocabulary, syntax, 
and punctuation comes from the English language. This 
feature makes COBOL easier to learn than machine-oriented 
languages since there is no need to know machine-language 
code and computer hardware architecture. The programmer can 
use English words and arithmetic symbols to direct computer 
operations. A few typical COBOL sentences appear below. 

ADD NEW-PURCHASES TO TOTAL-CHARGES. 
MULTIPLY QTY BY UNIT-PRICE GIVING VALUE. 
PERFORM FEDERAL-TAX-CALCULATION. 
IF ITEM-CODE IS NUMERIC, GO TO CHECK-ACCOUNT-NUMBER. 

2.1 THE COBOL SYSTEM 

COBOL sentences are easily understandable to the 
programmer, but must be translated into machine-language code 
before they can be performed by the computer. The COBOL 
compiler checks the source program statements for compliance 
with COBOL language rules, then translates them into 
computer-understandable object code, and assigns addresses to 
the program's instructions and data. The compiler does not, 
however, check the program's logic. · 

In order to compile a program, the COBOL compiler is 
first loaded into the computer from the diskette or disk. 
Next, the source program is entered into the machine, where 
the compiler reads and analyzes it before converting it into 
object code. The compiled program in object code form is 
used at runtime to execute the program with user-supplied 
data running under a COBOL interpreter. 

Compiler output may be sent to the printer or CRT screen 
for ea~e of checking erroneous items. Such errors must be 
corrected before the program can be completely compiled and 
subsequently executed. 

The logic of the program is checked by executing it with 
test data and comparing the results with the desired output. 
Until it works as expected, the source program is modified, 
recompiled, and run again. Once created, the object program 
may be used repeatedly to process data. 

Page 2-01 



2.2 COBOL PROGRAM STRUCTURE 

A COBOL program is divided into four major functional 
parts that are called divisions. The four division headers 
are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION. 

in that format and order. Each division header must appear 
on a line by itself. 

The Identification Division identifies the program by 
stating its name. It may also list the programmer, 
installation, and dates. Remarks may be included that 
explain the program's purpose. A sample Identification 
Division appears below. 

IDENTIFICATION 
PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 

DIVISION. 
SCREEN-TO-DISKETTE. 
COMPUTER-PERSON. 
CODEX-PHOENIX. 
APRIL 2, 1980. 
APRIL 2, 1980. 

The Environment Division specifies the computers that 
compile the source program and execute the object program. 
This division also links the input and output files with 
their respective computer peripherals. A sample Environment 
Division appears below. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. CDX-68. 
OBJECT-COMPUTER. CDX-68. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT DISK-FILE ASSIGN TO DISK DATADISK:DATAFILE. 
SELECT PRINT-FILE ASSIGN TO PRINTER. 

The Data Division has a maximum of three sections. The 
File Section describes the record structure of each file 
named in the Environment Division. The working-Storage 
Section describes data items stored in internal work areas. 
The Linkage Section contains internal areas that may be 
accessed by both COBOL programs and called assembly language 
programs and allows the programmer to pass data between 
programs. A sample Data Division appears in the program in 
Appendix E. 

Page 2-02 



The Procedure Division contains the commands that direct 
the computer to process data and generate output in a 
specific order. Alternate logic paths may be listed for 
performance under certain conditions. A sample Procedure 
Division appears in the program in Appendix E. 

2.3 COBOL REFERENCE FORMAT 

The reference format, which provides a method for 
describing COBOL source programs, is described in terms of 
character positions or columns on a CRT line. The line may 
be up to 80 characters in length. Rules for spacing given in 
the discussion of the reference format take precedence over 
all other rules for spacing. Division of a source program is 
ordered as follows: the IDENTIFICATION DIVISION, then the 
ENVIRONMENT DIVISION, then the DATA DIVISION, then the 
PROCEDURE DIVISION. Each division must be written according 
to the rules for the reference format. 

The standard COBOL line format is as follows: 

Columns 1-6 
Column 7 
Columns 8-11 
Columns 12-72 
Columns 73-80 

six-digit sequence number 
continuation area 
area A 
area B 
identification area 

Since the COBOL programs are maintained by the EDITOR, a 
slightly more compact format is used: 

Columns 1-4 
Column 6 
Columns 6-7 
Columns 8-80 

four-digit line number 
continuation area 
area A 
area B 

The sample program shown in Appendix E is an example of 
the compressed format. If line format compatability with the 
COBOL standard is desired, the following format should be 
used: 

Columns 1-4 
Column 6 
Columns 7-10 
Columns 11-71 

four-digit line number 
continuation area 
area A 
area B 

The line numbers may then be easily expanded to six 
digits with the EDITOR prior to writing the source program to 
external media. 

Page 2-03 



2.3.l REFERENCE FORMAT REPRESENTATION 

Margin L 

Margin C 

Margin A 

Margin B 

designates the line number area consisting 
of four digits followed by a space. 

represents the continuation column-column 6. 
An * (asterisk) in margin C causes the 
compiler to treat the entire line as a 
comment line. 
A I (slash) in Margin C will cause the 
compiler to start printing the source 
program on the top of a new page. The 
remainder of the line is treated as a 
comment. 
A - (hyphen) in margin C is used to 
continue a non-numeric literal from 
one line to the next. 

represents the first column in the 
coding area. Normally, this will be 
the same column as margin C (column 6). 
However, column 7 may be used if desired. 

represents. the second area in the coding 
portion of the line. Normally, column 8 is 
used. However, column 11 may be used if 
compatibility with the standard COBOL line 
format is desired. 

2.3.2 CONTINUATION OF NON-NU~£RIC LITERALS 

When a non-numeric literal is continued from one line to 
another, a hyphen is placed in Margin C of the continuation 
line and a quotation mark is placed in Area B following the 
hyphen. All spaces at the end of the continued line and any 
spaces following the quotation mark of the continuation line 
and preceding the final quotation mark of the literal are 
considered part of the literal. Note that each line in this 
system is terminated by a carriage return. If it is desired 
that additional spaces are to be included at the end of the 
continued line, they must actually be typed in. 

Page 2-04 



2.3.3 DIVISION HEADER 

The division header must be the first line of a division 
reference format. The division header starts in margin A 
with the division-name followed by a space, the word 
DIVISION, and a period. No other text may appear on the same 
line as the division header. 

2.3.4 SECTION HEADER 

The section header begins on any line except the first 
line of a division reference format. The section header 
starts in Area A with the section-name followed by a space, 
the word SECTION, and a period followed by a space. No other 
text may appear on the same line as the section header. 

A section consists of paragraphs in the ENVIRONMENT and 
PROCEDURE DIVISIONS and Data Description entries in the DATA 
DIVISION. Paragraph-names but not section-names are 
permitted in the IDENTIFICATION DIVISION. 

2.3.5 PARAGRAPH-NAME AND PARAGRAPH 

The name of a paragraph starts in Area A of any line 
following the first line of a division reference format (or 
section header if sections are used) and ends with a period 
followed by a space. 

A paragraph consists of one or more successive 
sentences. The first sentence in a paragraph begins in Area 
B of either the same line as the paragraph-name or the line 
immediately following. Successive sentences begin either in 
Area B of the same line as the preceding sentence or in Area 
B of the next line. 

A sentence consists of one or more statements followed 
by a period and a space. When the sentences of a paragraph 
require more than one line, they may be continued on 
successive lines. 

Page 2-05 



2.4 COBOL PROGRAM FORMAT 

Within each division, COBOL words are arranged into 
statements using the formats that are described in this 
manual. One or more statements form a sentence, which is 
terminated by a period. 

One or more sentences, in turn, constitute a paragraph, 
which should be given a name so that program control can 
branch to a paragraph simply by referencing its name. 
Paragraph names do not contain the word paragraph, but are 
terminated by a period. A paragraph name may be followed on 
the same line by one of its sentences. 

Similarly, several paragraphs make up a section that can 
also have a name that is followed by the word SECTION and a 
period, and must appear on a line by itself. 

The Identification Division contains no section names. 
The Environment and Data Divisions are composed of fixed-name 
sections, while section names are optional in the Procedure 
Division and are created by the programmer. 

2.5 COBOL LANGUAGE ELEMENTS 

COBOL words are formed from the set of alphabetic, 
numeric, and special characters that are listed below. 

Character Meaning 
======="="""" -------

0,1, ••• 9 Digits 
A,B, ••• z Letters 

Space 
+ Plus Sign 

Minus Sign 
* Asterisk 
I Slash 
= Equal sign 
$ Dollar sign, hexadecimal sign 
I Comma . Semicolon , 

Period, decimal point 
n or Quotation mark 

( Left parenthesis 
) Right parenthesis 
> Greater than symbol 
< Less than symbol 
DB Debit 
CR Credit 

Page 2-06 



NOTE: A space is a COBOL character and takes up a byte of 
program memory. Single or double quotation marks 
must be used with the Codex COBOL compiler. 

These characters form words that have specific meanings 
to the COBOL compiler. The basic elements of the COBOL 
language are: 

Programmer-supplied names 
Reserved words 
Symbols 
Literals 
Special registers 
Level numbers 
Pictures 

Reserved words are fixed and cannot be modified by the 
programmer. The other elements, however, are created by the 
programmer according to certain rules. All of these elements 
are discussed in this section with the exception of level 
numbers and pictures, which are discussed in Chapter 4, The 
Data Division. 

2.5.1 PROGRAMMER-SUPPLIED NAMES 

In COBOL, programmer-supplied names are 
data, subroutines, internal word areas, etc. 
These names are grouped into two categories: 
procedure-names. 

symbols for the 
of a program. 
data-names and 

Data-names are assigned in the Data Division to the data 
items (also called fields) of a record that are processed by 
the program. In the following example, two data items are 
added, and the sum placed in a third field. 

ADD FIRST-FIELD, SECOND-FIELD GIVING TOTAL-FIELD. 

t 1 data-n1mes 

Procedure-names are assigned to Procedure Division 
paragraphs for reference purposes. A procedure-name may be 
composed solely of numeric characters, but two references to 
a numeric procedure name must have the same value and the 
same number of digits to be considered equivalent by the 
compiler. For example, 0023 is not equivalent to 23 when 
both are procedure names. 

Page 2-07 



In the example shown below, the program branches to 
either the CREDIT-ACCT or BILL..,..ACCT paragraphs, depending on 
whether or not the value of data item ACCT-BALANCE is 
negative. 

IF ACCT-BALANCE IS NEGATIVE GO TO CREDIT-ACCT, 
ELSE GO TO BILL-ACCT. 

CREDIT-ACCT • 
• 

BILL-ACCT. 

The following rules must be observed when creating a 
programmer-supplied name: 

1. The name cannot be more than 30 characters long. 

2. Only characters A through z, O through 9, and hyphens 
are allowed. 

3. A hyphen cannot begin or end the name. 

4. Spaces are not allowed in a name. 

5. Reserved words must not form the whole name. 

6. Data-names must have at least one letter; procedure
names may be formed entirely of digits. 

Some valid programmer-supplied names are: 

NAME 
STREET-ADDRESS 
NET-INCOME 
UNIT-PRICE 

SEARCH-TABLE 
REFUND 
UPDATE-MASTER-FILE 
COMPUTER-TOTAL 

Some invalid programmer-supplied names are: 

LAST NAME 
DATE 
#1 
4 

(embedded space) 
(reserved word) 
(# is a special character) 
(A valid procedure-name, but an 
invalid data-name) 

Page 2-08 



2.5.2 RESERVED WORDS 

Reserved words are a fixed set of words that have 
special meanings for the COBOL compiler, and always appear in 
capital letters in a COBOL statement format. A reserved word 
cannot be used as a programmer-supplied name, but if two or 
more reserved words are connected by hyphens, they can be 
used as a data-name or a procedure-name as shown below. 

Reserved Words 

FILE 
OPEN 
PERFORM 
INITIAL 
VALUE 
COMPUTE 

Valid Data-Names 

OPEN-FILE 

PERFORM-VALUE 
INITIAL-VALUE 
COMPUTE-VALUE 

The three types of reserved words are key words, 
optional words, and connectives. Each COBOL statement must 
contain at least one key word to impart the basic functional 
meaning of the statement to the compiler. Examples of key 
words are: ADD, MULTIPLY, CLOSE, PERFORM, and PICTURE. 

All key words of a COBOL statement format are underlined 
in the following examples to indicate that they must be 
included. 

Key words are: verbs such as SUBTRACT and OPEN; 
required syntactical words such as TO and GIVING; or words 
with a specific functional meaning such as NUMERIC. 

Optional words are not underlined in the following 
examples of a statement format. These words have no effect 
on the generated object code; if used, however, they must be 
spelled correctly and cannot be replaced by another word. 
For example, the format: 

IF data~name-1 IS EQUAL TO data-name-2 

was used in writing the following statement. 

A IS EQUAL TO B 
A IS EQUAL B 
A EQUAL TO B 
A EQUAL B 

All of the above statements are valid and equivalent since IS 
and TO are optional words. 

Page 2-09 



Optional words in one statement format may be keywords 
in another. For example, in the MOVE statement format: 

MOVE data-name-1 TO data-name-2 

.TO is a key word. However, in the conditional statement 
format: 

IF data-name-1 IS EQUAL TO data-name-2, ••• 

TO is an optional word. 

Connectives make a statement easier to read and 
understand. The logical connectives AND, OR, AND NOT, and OR 
NOT are used in compound conditional statements. The 
qualifier connective OF and IN connect a programmer-supplied 
name with its qualifier. The comma can be used as a series 
connective for two or more consecutive data-names or 
literals. For example: 

ADD A, B TO C 

means that the values of A and B are added to c. 

2.5.3 SYMBOLS 

COBOL symbols impart specific meanings to the compiler 
and can be divided into three groups: punctuation, 
arithmetic, and conditional. The punctuation symbols are: 

Punctuation Symbol 

, . 
I 

" or 
( 
) 

Meaning 

Space 
Comma 
Semicolon 
Pex;iod 
Quotation mark 
Left parenthesis 
Right parenthesis 

The arithmetic symbols are: 

Arithmetic Symbol 

+ 

* 
I 

,Meaning 

Addition, plus sign 
Subtraction, minus sign 
Multiplication 
Division 

Page 2-10 



The conditional symbols are: 

Conditional Symbol 

= 
> 
< 

Meaning 

Equal to 
Greater than 
Less than 

There are no L (greater than or equal to), ~ (less than or 
equal to), or~ (not equal to) symbols in COBOL. Reserved 
words that describe these relational symbols are their 
equivalents. 

The following rules for symbols must be observed in 
writing a COBOL program. 

1. One space separates words, arithmetic and conditional 
symbols, parenthetical expressions, and literals. 
Consecutive spaces are treated as a single space, except 
when contained in a literal. 

2. A semicolon or comma may be followed, but not preceded, 
by a space. A decimal point, however, is not followed 
by a space. 

3. A period ends a sentence. 

4. A comma may separate successive statement operands as 
well as a series of clauses. 

5. A semicolon may separate a series of statements. 

6. A left parenthesis is followed by a space; a right 
parenthesis is preceded by a space. 

7. Plus and minus symbols that indicate positive and 
negative values do not have a space following them. 

Page 2-11 



2.5.4 LITERALS 

A literal is a fixed value that may be used in an 
instruction. There are three kinds of COBOL literals: 
figurative constants, numeric literals, and non-numeric 
literals. A fourth type, hexadecimal constants, are also 
used by the Codex COBOL compiler as screen control codes. 

The figurative constants and their values are: 

Figurative Constant 

ZERO 
ZEROS 
ZEROES 

SPACE 
SPACES 

HIGH-VALUE 
HIGH-VALUES 

LOW-VALUE 
LOW-VALUES 

QUOTE 
QUOTES 

ALL 

Value 

A string of one or more zeroes. 

A string of one or more spaces. 

A string of one or more characters 
that have the highest value in the 
ASCII collating sequence. 

A string of one or more characters 
that have the lowest value in the 
ASCII collating sequence. 

A string of one or more quotation 
marks that cannot bound a non-numeric , ~ .... ,,,. ..... , ......... ""'~ .............. . 

Generates a string of characters 
specified by the non-numeric literal 
following it. May not be used in 
DISPLAY or STOP statements. 

Singular and plural forms of a figurative constant are 
equivalent and may be used interchangeably. Only ZERO can be 
used for any data item. The rest must be used with either 
alphabetic or alphanumeric data-names. 

Page 2-12 



The length of the figurative constant string depends on 
the following rules: 

1. When it is moved to or compared with the contents of a 
data-item, the length of the string is equal to the data 
item's length. 

2. When it is not associated with a data item, such as in a 
DISPLAY or STOP statement, the string is one character 
long. 

The rules for writing numeric literals are: 

1. It may consist of digits 0 through 9 with an optional 
decimal point and/or positive or negative sign. 

2. Embedded spaces are not allowed. 

3. A positive or negative sign, if used, must be the left
most character. 

4. A decimal point must not be the right-most character of 
the numeric literal. 

5. Unsigned numeric literals are positive. 

6. More than one decimal point is not allowed. 

Some valid numeric literals are: 

+547 
.01 
74.1 

-1.23 
7431 
+8.46 

Some invalid numeric literals are: 

2,568 
+ 8.5 
$56 
I 38 I 

248K 
128-

(comma) 
(embedded space) 
(dollar sign) 
(quotation marks) 
(alphabetic character) 
(minus sign must be left-most) 

Page 2-13 



, Non-numeric literals are alphanumeric and are useful in 
creating report headers and screen displays. Rules for 
creating non-numeric literals are: 

1. Quotation marks always bound the non-numeric literal. 

2. With the exception of the quotation mark, any COBOL 
character or reserved word may form the non-numeric 
literal. 

3. Its maximum length is 255 characters. 

Some non-numeric literals are: 

'NON-NUMERIC LITERAL' 
'759' 
'LAST NAME FIRST NAME MIDDLE INITIAL' 

When a numeric literal is bounded by quotation marks, it 
is treated as a non-numeric literal and classified as 
alphanumeric. 

Hexadecimal constants are used by the Codex COBOL 
compiler as display control codes; these are listed in 
Appendix B. A hexadecimal constant is a string of digits 
preceded by a dollar sign, where each digit pair is the 
contents of one byte. All hexadecimal constants are 
considered to be non-numeric literals, and therefore 
alphanumeric. 

Some hexadecimal constants are: 

$FF 
$30313233 
$8386 

Page 2-14 



2.5.5 SPECIAL REGISTERS 

COBOL has the following special registers: DATE, 
BREAK-KEY, TIME, and LINAGE-COUNTER. These registers can be 
read but not altered, and can be used with IF and MOVE 
statements. 

DATE is a six-character date in the form MMDDYY that can 
be set at the CODOS ready prompt (=). For example: 

77 TODAY PIC 99/99/99. 
MOVE DATE TO TODAY. 

TIME is a four-character time in the form HHMM that can 
be set at the CODOS ready prompt (=). For example: 

77 CURRENT-TIME PIC 99.99. 
MOVE TIME TO CURRENT-TIME. 

BREAK-KEY is a one-character code that indicates whether 
or not the break key specified by the program has been 
pressed. Y is returned if a break has occurred; N means that 
a break has not occurred. 

LINAGE-COUNTER yields the current printer line number 
whose value does not include the top margin lines. Example: 

IF LINAGE-COUNTER EQUALS 60 THEN PERFORM TOP-PAGE. 

Page 2-15 



2.6 COBOL FORMAT NOTATION 

COBOL elements may not be arbitrarily strung together 
when writing a program, but must be used in fixed statement 
formats that are explained in this manual. Each format shows 
the correct syntax order, required and optional reserved 
words, and indicates where information is to be supplied by 
the programmer. 

The following format notation rules are used in this 
manual. 

1. Underlined words with all capital letters are keywords 
and are required in the statement unless they appear in 
square brackets. 

2. Words that have all capital letters but are not 
underlined are reserved words that may be included at 
the programmer's discretion. If included, these words 
must be spelled correctly. 

3. Elements within braces ({ }) indicate that the 
programmer must choose one of them to use in the 
statement. 

4. Elements in square brackets ([ ]) are optional. 

5. Lowercase words must be replaced as indicated with a 
data-name, procedure-name, or literal. 

t::. 
V• A horizontal ellipsis ( ••• ) means that the previous item 

may be repeated. 

7. A vertical ellipsis means that commands have been 
omitted in the program sample shown as an illustration. 

8. Punctuation and symbols are required when they appear in 
a format. Additional punctuation may be used if it 
conforms to the punctuation rules that were described 
earlier in this chapter. 

Page 2-16 



CHAPTER 3 - THE IDENTIFICATION & ENVIRONMENT DIVISIONS 

3.1 THE IDENTIFICATION DIVISION 

The Identification Division must contain the name of the 
program. Optional entries are the name of the author, the 
dates that the program was written and compiled, and security 
information. The format of the Identification Division is: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. program-name. 
[AUTHOR. comment-sentence •••• ] 
[INSTALLATION. comment-sentence •••• ] 
[DATE-WRITTEN. comment-sentence •••• ] 
[DATE-COMPILED. comment-sentence •••• ] 
[SECURITY. comment-sentence •••• ] 

The IDENTIFICATION DIVISION header and each paragraph 
name must appear in the order shown above and must start at 
Margin A. All comment-sentences are regarded as commentary 
by the compiler, which only checks to see that each one ends 
with a period. 

The PROGRAM-ID paragraph is the only required paragraph 
in the Identification Division. It states the name of the 
COBOL source program at hand. 

The AUTHOR, INSTALLATION, DATE WRITTEN, and 
DATE-COMPILED paragraphs are self-explanatory. 

The SECURITY paragraph specifies which personnel should 
be allowed to use the program. Provisions for entering and 
checking a password, however, are not made in this paragraph. 

The Comment Lines should always be included in a COBOL 
program to explain the basic purpose of the program. 

A sample IDENTIFICATION DIVISION is shown below. 

IDENTIFICATION 
PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 
SECURITY. 

DIVISION. 
INVENTORY-RPT. 
COMPUTER PERSON. 
CODEX-PHOENIX. 
APRIL 7, 1980. 
APRIL 7, 1980. 
THIS PROGRAM IS ONLY TO BE USED 
BY SHIPPING AND RECEIVING 
PERSONNEL. 

Page 3-01 



3.2 THE ENvIRONMENT DIVISION 

The Environment Division is hardware-oriented since it 
defines the physical characteristics of the computer system 
that compiles and/or executes the COBOL program. It also 
links the files to be processed with their respective 
computer peripherals, such as disk or printer. The format of 
the Environment Division is shown below. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. source-computer-entry. 
OBJECT-COMPUTER. object-computer-entry 

[MEMORY SIZE integer CHARACTERS]. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT clause 
[ASSIGN clause] 
[ORGANIZATION clause] 
[ACCESS clause] 
[RECORD KEY clause] 

[I-0-CONTROL. SAME AREA clause]. 

The division header and all paragraph names begin at 
Margin A. The clauses of a paragraph begin either on the 
same line as the paragraph name, or at Margin B. 

Each paragraph can contain a COPY statement that refers 
to a file containing the entire paragraph. See Chapter 5, 
for an explanation of the COPY statement. 

3.2.1 THE CONFIGURATION SECTION 

The CONFIGURATION SECTION states the names of the 
computers that are to compile the source program and execute 
the object program. 

The SOURCE-COMPUTER paragraph specifies the computer 
that is to compile the source program, while the 
OBJECT-COMPUTER paragraph describes the computer on which the 
compiled program is to process data. The contents of both 
paragraphs, however, are treated as commentary by the 
compiler, which just checks to see that a period ends each 
one. 

When compiling or executing a program on a CDX-68 
system, this section should be written as shown below: 

CONFIGURATION SECTION. 
SOURCE-COMPUTER. CDX-68. 
OBJECT-COMPUTER. CDX-68. 

Page 3-02 



3.2.2 THE INPUT-OUTPUT SECTION 

The INPUT-OUTPUT SECTION provides the information that 
is needed to control the transmission of data between 
external storage media and the object program. The 
FILE-CONTROL paragraph names the files involved in the 
program and links them with their respective computer 
peripherals. The optional I-0-CONTROL paragraph describes 
file overlap information. 

The SELECT clause is required as the first entry in the 
FILE-CONTROL paragraph and names an input or output data file 
that is used in the COBOL program. The format of this clause 
is: 

SELECT f ile-name-1 

File-name is a programmer-supplied name that is used to 
reference the file for the rest of the program. This name 
must not be used for any other item in the program. 

The ASSIGN clause links a file with the external device 
that either stores or receives the file. This clause must 
immediately follow the SELECT clause. The format of this 
clause is: 

ASSIGN TO implementor-! 

Acceptable implementor-names are: 

PRINTER 
DISK diskid:file-name[:suffix] 

where diskid = the a-character disk identification. 

file-name = 8 alphanumeric characters that form the name of 
the file as recorded in the directory on the 
disk or diskette. The first character must be 
alphabetic. All file-names have DF suffixes, 
with the exception of those whose organization 
is CODOS-SA. 

suffix = 2 character suffix (e.g. SA) for CODOS-SA type 
files. If omitted, the default suffix is "DF." 

Page 3-03 



The ORGANIZATION clause states whether the file has a 
sequential or indexed organization. The format of this 
clause is: 

ORGANIZATION IS {SEQUENTIAL} 
INDEXED 
CODOS-SA 

When INDEXED organization is specified, the RECORD KEY clause 
must also be included. When this clause is omitted, 
sequential organizatio~ is assumed. When CODOS-SA is 
specified, the file is designated as a CODOS source 
sequential type file. The number of CODOS-SA type files is 
limited to eight for a given program. 

The ACCESS clause tells how records are obtained from or 
placed into the file. The format of this clause is: 

ACCESS MODE IS ~SEQUENTIAL} 
RANDOM 
DYNAMIC 

With SEQUENTIAL access, records are obtained or placed in the 
file one after the other. RANDOM and DYNAMIC modes require a 
RECORD KEY clause and the assignment of the file to a 
direct-access device such as disk or diskette; the specified 
record is located or placed according to its record key. In 
DYNAMIC mode, the file may be accessed either sequentially or 
randomly, depending on the I/O statement. For example, a 
record can be found by its record key in a random read; the 
records following it can be read sequentially; then, anOther 
random read can switch back to random access. 

The RECORD KEY clause is required when INDEXED 
ORGANIZATION, ACCESS IS RANDOM, or ACCESS IS DYNAMIC clauses 
have been specified. The format of this clause is: 

RECORD KEY IS dataname [WITH DUPLICATES] 

Dataname is used by READ and WRITE statements to locate a 
record in the file. The data item that dataname represents 
must be part of the record and cannot be more than 60 
characters long. The WITH DUPLICATES option permits records 
that have duplicate record keys to exist in the file. 

Page 3-04 



3.2.3 THE I-0-CONTROL PARAGRAPH 

This optional paragraph defines file overlay 
information. The format of this paragraph is: 

I-0-CONTROL. 
SAME AREA FOR filename-I [, filename-2] ••• 

The SAME AREA clause causes data areas to overlap for all 
files mentioned in the clause; therefore, only one of the 
listed files may be open at a time. A COBOL program may have 
more than one SAME AREA clause, but a specific filename may 
appear in no more than one such clause. 

Page 3-05 





CHAPTER 4 - THE DATA DIVISION 

The Data Division describes the structure, organization, 
and characteristics of all data that is manipulated and 
processed by the program. A maximum of three sections may be 
contained in this division: the File, Working-Storage, and 
Linkage Sections. The FILE Section describes the records in 
each file mentioned in the Environment Division. The 
working-Storage Section describes internally-generated data 
and internal work areas that are used by the program. The 
Linkage Section describes memory areas used for 
program-to-program communication. 

The organization of the Data Division is: 

DATA DIVISION. 
FILE SECTION. 
FD entry for f ile-name-1 
Record description entries for file-name-1 • 

• 

WORKING-STORAGE SECTION. 
Internal independent data item descriptions 
Internal grouped item descriptions 

LINKAGE SECTION. 
Linkage item descriptions 

4.1 THE FILE SECTION 

The File Section contains two types of entries: FD 
(file description) entries and record description entries. 

4.1.1 FD (FILE DESCRIPTION) ENTRY 

The FD entry describes the physical characteristics of 
one file. For disk files, its format is: 

FD f ile-name-1 
[RECORD CONTAINS clause] 
[LABEL RECORDS clause] 
[DATA RECORD clause]. 

For printer files, the format of the FD entry is: 

FD f ile-name-2 
[! .. INAGE clause J 
[TOP clause] 
[BOTTOM clause]. 

Page 4-01 



FD must begin at Margin A, and any additional lines of 
this entry begin at Margin B. The file-name is identical to 
the file-name listed in the Environment Division following 
the word SELECT. 

The RECORD CONTAINS clause states the file's record 
length. The Codex COBOL compiler accepts records that have a 
maximum length of 502 characters. Since the compiler 
calculates the record's length from its record description 
entry, this clause is not required, but is useful as a 
documentation aid. The format of this clause is: 

RECORD CONTAINS integer-I CHARACTERS 

The LABEL RECORDS clause is not required by Codex's 
COBOL compiler, which treats it as a comment entry. The 
format of this clause is: 

LABEL .{RECORD IS ) (sTANDARDl 
RECORDS ARE ~OMITTED j 

All file labels are internal to the CDX-68 file management 
system. 

The DATA RECORD clause states the programmer~supplied 
name for each record in the file. The format of this clause 
is: 

DATA (RECORD IS } data-name-1 [data-name-2] ••• 
\RECORDS ~.RE) . 

Since a record-name is presented in each record description 
entry, this clause is not required, but is useful as a 
documentation aid. The records in a given file may have 
different lengths and formats, but their order in a DATA 
RECORD clause is not important. Only one record from a file 
may be processed at a time. 

For example, if one record is read from a file, and 
another record is read from the same file, the second record 
replaces the first in computer memory. 

DATA RECORD IS PRINT-RECORD 
DATA RECORDS ARE MASTER-RECORD, DETAIL-1, DETAIL-2 

The LINAGE clause states the maximum number of lines 
that are printed per page. The format of this clause is: 

LINAGE IS integer 

The maximum number is 60 lines. When this clause is omitted, 
the compiler assumes 'that each page contains 60 printed 
lines. 

Page 4-02 



The TOP clause specifies the size of the top margin in 
line units. The format of this clause is: 

TOP IS integer 

When this clause is omitted, the top margin is assumed to be 
6 lines. 

The BOTTOM clause reveals the size of the page's bottom 
margin in line units. The format of this clause is: 

BOTTOM IS integer 

This clause is unnecessary if the LINAGE clause has been 
included. When both LINAGE and BOTTOM clauses are omitted, 
the default bottom margin is O lines. For example: 

Top Margin 

Lines Per Page 

Bottom Margin 

4.1.2 RECORD DESCRIPTION ENTRIES 

The record description delineates the structure, 
organization, and characteristics of the file's records. 
Each record within a file must have its own record 
description, as shown in the following example. 

DATA DIVISION. 
FILE SECTION. 
FD DISK-FILE, RECORD CONTAINS 80 CHARACTERS, 

LABEL RECORDS ARE STANDARD, DATA RECORDS ARE 
MASTER-RECORD, DETAIL-1, DETAIL-2. 

(Record description entries for MASTER-RECORD) 
(Record description entries for DETAIL-1) 
(Record description entries for DETAIL-2) 

Before presenting the format for a record description 
entry, data organization within a record should be reviewed. 
Records are usually divided into data items or fields that 
contain categories of information to be processed. A COBOL 
field is either a group or elementary item. Group items are 
divided into smaller fields; elementary items are not 

Page 4-03 



subdivided. Consider the structure of the record shown 
below. 

RECORD-! 

ID-NUM NAME ADDRESS PHONE 

LAST l FIRST IM-I STREET l CITY l STATE l ZIP 

RECORD-1 is directly divided into four data items: two 
elementary and two group. NAME and ADDRESS are group items 
since they are further subdivided: NAME into LAST, FIRST, 
and M-I; ADDRESS into STREET, CITY, STATE, and ZIP. ID-NUM 
and PHONE are not subdivided, therefore they are elementary 
items. 

A COBOL record description specifies the name, order 
from left to right, and size of the record's data items, and 
tells how they are related to each other. For example, 
RECORD-l's data items could be listed in the following 
manner: 

RECORD-! 
ID-NUM 
NAME 

LAST 
FIRST 
M-I 

ADDRESS 
STREET 
CITY 
ZIP 

PHONE 

record's name 
elementary item 
,....,..,..,.,,1"'\ ;+.oTn 
':3' .L. v ""l:' ..... '-'-""" 

elementary items 

group item 

elementary items 

elementary item 

To make this list understandable to the computer, level 
numbers are used to show the data item hierarchy. Level 
numbers 01 through 15 may be used in a record description 
entry for the Codex COBOL compiler. Level 01 is always used 
for the record's name, and starts at Margin A. 

Page 4-04 



A description of RECORD-1 that shows the level numbers 
is: 

01 RECORD-1. 
02 ID-NUM 
02 NAME. 

03 FIRST 
03 LAST 
03 M-I 

02 ADDRESS. 
03 STREET 
03 CITY 
03 STATE 
03 ZIP 

02 PHONE 

The period 
means that they 
smaller fields. 
Margins A or B; 
to read. 

(elementary item description) • 

(elementary item description) • 
(elementary item description) • 
(elementary item description) • 

(elementary item description) • 
(elementary item description). 
(elementary item description). 
(elementary item description). 
(elementary item description) • 

after the words RECORD-1, NAME, and ADDRESS 
are group items and therefore divided into 
Level numbers 02 and 03 start at either 

indenting them might make the program easier 

Note that the direct immediate subdivisions of RECORD-1 
have level number 02, and that the subdivisions of each group 
item have level number 03. Other level numbers could have 
been used provided that the level number of a group item is 
smaller than that of its elementary items. 

The compiler regards 
item as belonging to that 
encounters a level number 
number of the group item. 

The format and order 

level-number (data-name\. 
~FILLER j 

all pata items that follow a group 
group item until the compiler 
equal to or greater than the level 

of a record description entry is: 

[REDEFINES clause] 
[COPY statement] 
[PICTURE clause] 
[USAGE clause] 
[BLANK WHEN ZERO clause] 
[JUSTIFIED RIGHT clause] 
[LINE clause] 
[COLUMN clause] 
[OCCURS clause] 

FILLER indicates that the data item either contains no 
information, or that the information is not referenced 
directly in the program. 

The REDEFINES clause is used with either group or 
elementary items in the file section that DO NOT HAVE a level 
number of 01. A level 01 REDEFINES clause is permitted in 

Page 4-05 



the Working Storage Section. This clause allocates the same 
computer memory space for different items at different times 
during program execution. It may also provide an alternate 
grouping or description of the same data~ A REDEFINES clause 
in the file section at level 01 can cause PROGRAM OVERFLOW 
errors or erroneous data or runtime errors. A record 
description entry's format with this clause is: 

level-number data-name-1 REDEFINES data-name-2 

The level numbers of data-name-1 and data-name-2 must be 
identical. These data-names may be a group or an elementary 
item. 

The following are some guidelines for the use of the 
REDEFINES clause. These guidelines reference the example: 

nn A REDEFINES B • • • 

1. B must not be a redefinition itself. 

2. "nn" must not be level 01 within the file section (level 
01 redefinition is permitted within the working storage 
section) • 

3. The size of A must equal the size of B. 

4. The level numbers of A and B must be equal. 

5. "Value" clauses are not allowed within group or 
_, ____ .... ___ .. .:terns !dh.:,.\...· ~·"' "!'Jo .... ""'.,=1,..,.,::l.•9"'111.; .... ·.;,.\,..., nf= !:3rino+-her 
C.LClllCUl..Cl..L,Y .L !I nU.LvU Cl..L<:: Cl. .L<::U<::.&. .......... .., .. v.a. wu .. 

group. 

6. The program may contain multiple 01 record definitions 
for a file following the "FD" entry in the file section. 
The use of multiple 01 levels implicitly defines several 
records which share the same memory area (a redefinition 
by another name). 

The description selected for an item that is redefined 
depends on the .reference made to it. For example, if B 
redefines A, the statement MOVE X TO A moves X to the area 
described as A: MOVE Y TO B moves Y to the same area in 

· computer memory, but which has been redefined as B. The 
description of this memory area depends on the order in which 
such statements are executed. For example: 

05 PRICE-NOT-NUMERIC REDEFINES PRICE-IN 
05 NON-ALPHABETIC-DATA REDEFINES DATA-IN 

The COPY statement is described in the 
Compiler-Directing Statements section of Chapter 5. 
Basically, this state.ment enables prewritten statements to be 
included in several programs. 

Page 4-06 



The PICTURE clause describes the length and character 
type of an elementary item. It may also specify an 
operational sign, an assumed decimal point, and editing 
characters. The format of this clause is: 

( PICTURE) [IS]- character-string 
PIC 

The character string must be no more than 30 characters long. 

COBOL classifies all data as being alphabetic, 
alphanumeric, or numeric. Alphabetic data contains only the 
letters of the English alphabet and spaces. Alphanumeric 
data is formed from any printable characters. Numeric data 
consists of digits 0 through 9 and a positive or negative 
sign. 

Numeric data may have an assumed decimal point and/or 
operational sign in its PICTURE clause. A numeric field may 
be edited by moving it to a field whose PICTURE clause causes 
the insertion of a decimal point, comma, or dollar sign, as 
well as suppressing the printing of leading zeroes. The 
resultant edited item is always classified as alphanumeric. 

The three categories of PICTURE characters that describe 
data are: 

A 
x 
9 

s 
v 

B 
0 
+ 

CR 
DB 
z 
* 
$ 
, 
• 

(alphabetic data) 
(alphanumeric data) 
(numeric data) 

(signed numeric field) 
(assumed decimal point) 

(space) 
(zero) 
(plus) 
(minus) 
(credit} 
(debit} 
(zero suppression) 
(check protection) 
(dollar sign} 
(comma) 
(period or decimal point) 

} 
) 

Data character 
symbols 

Operational 
symbols 

Editing symbols 

Page 4-07 



Data character symbols say that the item is either 
alphabetic, alphanumeric, or numeric. Alphanumeric fields 
cannot be used in arithmetic operations. The number of data 
characters in the PICTURE character string must equal the 
length of the data item as shown in the following examples: 

Field Length Data Type Character String 
------------ --------- ----------------
5 characters Alphabetic AAAAA or A(5) 
4 characters Alphanumeric xx xx or x (4) 
6 characters Numeric 999999 or 9 ( 6) 

As seen by these examples, parentheses are a shortcut to 
showing the number of times that the data character is 
repeated in the character string. 

Operational symbols show the sign and assumed decimal 
point position in a numeric item. Only one s and/or V may 
appear in a PICTURE clause. When used, s must be the 
leftmost character of the string and indicates the presence 
of positive or negative data. Unsigned numeric fields are 
assumed to be positive. V shows an assumed decimal point 
position in a numeric item, and cannot be the rightmost 
character. Both s and V do not actually take up space in the 
data item. For example, S99V99 is a four-character numeric 

· item. This sign will take up one-half byte in packed numeric 
and will c.ause an additional byte if the data size is an even 
number. 

Before data is printed, it is often desirable to edit it 
to make it more readable. Editing symbols specify the type 
of editing to be done before an elementary item is printed. 
The editing process inserts certain characters and/or 
suppresses the printing of others. An edit is performed by 
moving the data from a source field to a receiving field 
whose PICTURE clause contains the editing characters. 

Parentheses are not allowed in a PICTURE clause 
character string that contains editing characters. Commas, 
decimal points, slashes (/), spaces (B), or zeroes should be 
written in the string where they appear in the output item. 
An example of an edited move is shown below. 

Field 

Source 
Receiving 

PICTURE 

999V99 
999.99 

Data 

54321 
543.21 

The receiving field in the above example has 6 characters to 
include the printed dec~mai point; the source had only five. 

Page 4-08 



A decimal point can appear only once in a PICTURE 
character string and cannot be the right-most character. 

Z's replace leading zeroes with spaces when printing 
numeric items. A z is written in each numeric position 
where a leading zero is to be suppressed by a space. 
Examples of zero suppression are shown below: 

Source Source Receiving Received 
PICTURE Data PICTURE Data 
------- ------ --------- --------
9999V99 0123456 ZZ,ZZZ.99 1,234.56 

999V99 00123 ZZZ.99 1.23 
99V99 0000 ZZ.99 .oo 

Asterisks (*) replace leading zeroes with asterisks. 
This process is often used when printing the dollar amount on 
a check. Examples of these are shown below: 

Source Source Receiving Received 
PICTURE Data PICTURE Data 
------- ------ --------- --------
99999V99 0195430 ** *** .99 *1,954.30 , 

999V99 00575 *** .99 **5.75 
999V99 00850 *** .99 **8.50 

Z's and asterisks are often used with the fixed dollar 
sign ($) when printing dollar amounts. To place a fixed 
dollar sign in an item, write one dollar sign ($) as the 
string's left-most character. Examples of such items are 
shown below: 

Source Source Receiving Received 
PICTURE Data PICTURE Data 
------- ------ --------- --------
99999V99 0154025 $ZZ,ZZZ.99 $ 1,540.25 

999V99 00575 $***.99 $**5.75 
99V99 0005 $ZZ.99 $ .05 

The dollar sign ($) can also specify an item that has a 
floating dollar sign. The difference between a fixed and a 
floating dollar sign is shown below. 

Fixed Dollar Sign 
PICTURE $ZZ,ZZZ.99 

$78,359.25 
$ 482.89 
$ 1.50 
$ .02 

Page 

Floating Dollar Sign 
PICTURE $$$,$$$.99 

$78,359.25 
$482.89 

$1.50 
$.02 

4-09 



Note that there must be one more floating dollar sign than 
the number of character positions through which it is to 
float. 

A fixed-position plus (+) or minus (-) sign may be 
written as either the first or last character of a PICTURE 
string, but cannot be used with the dollar sign. A minus 
editing symbol causes a minus sign to be printed in that 
position for negative data, and a space in that position for 
positive data. A plus symbol prints a plus sign in that 
position for positive .data, and a minus sign for negative 
data. Unsigned data is always considered to be positive. A 
few examples are shown below. 

Source Source Receiving Received 
PICTURE Data PICTURE Data 
------- ------ --------- --------

S999 123 -999 -123 
S99V99 4995 -ZZ.99 49.95 

S99 76 Z9 76 
S99999 01852 +ZZ,ZZ9 - 1,852 

Plus and minus symbols can also be used as floating 
editing symbols. The rules for writing these symbols are the 
same as fqr writing floating dollar signs, except that plus 
and minus symbols are used, as shown in the following 
examples. 

Source Source Receiving OL!I.,.."; 't7orl 
J.'-\;;'.'"""~•V'-'~ 

PICTURE Data PICTURE Data 
------- ------ --------- --------
S9999V99 000542 -----.99 -5.42 

S99V999 06985 ---.999 -6.985 
S99V99 0005 +++.99 +.05 

S99 48 ++9 +48 

Credit (CR) and debit (DB) symbols occupy two positions 
each and may appear only as the rightmost characters of a 
PICTURE string. For negative data, the edited result 
contains CR or DB as indicated. For positive data, CR or DB 
is replaced by spaces. A few examples are shown below. 

Source Source Receiving Received 
PICTURE Data PICTURE Data 
------- ------ --------- --------

S99999 12345 ZZ,ZZ9CR 12,345CR 
S99V99 1580 ZZ.99CR 15.80CR 

S9V99 349 Z.99DB 3.49DB 
S99 23 Z9DB 23DB 

Page 4-10 



The USAGE clause specifies the form in which data is 
stored in the computer and can be written at any level. When 
this clause is used with a group item, it applies to all of 
the group's elementary' items. Additionally, the USAGE clause 
of an elementary item cannot contradict the USAGE clause of 
the group item to which it belongs. 

The format of the USAGE clause is: 

f DISPLAY ~ c gg:~UTATIONAL J 
INDEX 

USAGE IS 

DISPLAY means that the item is stored in ASCII format where 
one character is stored in each byte1 the leftmost byte of a 
numeric item can contain an operational sign in addition to a 
digit. COMPUTATIONAL defines a packed decimal data item 
whose length is specified by its PICTURE clause. It can only 
be used for unedited numeric items. COMPUTATIONAL should be 
used only to save memory or file space. 

INDEX defines an item that is called an index data item 
and will contain a value that corresponds to an occurrence 
number of a table element. Index data items must be 
elementary data items. Since USAGE IS INDEX totally defines 
the internal representation of the data, a PICTURE clause is 
not used with an index data item. 

The BLANK WHEN ZERO clause may be used only in 
conjunction with an edited numeric PICTURE clause. When the 
source item has a value of zero and the BLANK WHEN ZERO 
clause is used for the receiving numeric edit field, the 
edited item contains all spaces. The format of this clause 
is: 

BLANK WHEN ZERO 

The JUSTIFIED RIGHT clause is used only with alphabetic 
or alphanumeric elementary items. The format of this clause 
is: 

( JUSTIFIEDl 
JUST j 

RIGHT 

This clause is applicable only to alphabetic or 
alphanumeric items. Normally, when data is moved into an 
alphabetic or alphanumeric field, the source data is aligned 
at the leftmost character position of the receiving data item 
and moved with space fill or truncation on the right. 

When the receiving da~a item is described with the 
JUSTIFIED clause and the sending data item is larger than the 
receiving data item, the leftmost characters are truncated. 

Page 4-11 



When the receiving data item is described with the .JUSTIFIED 
clause and i~ larger than th~ sending data item, the data are 
aligned at the rightmost character position in the data item 
with other characters space-filled. 

The OCCURS clause eliminates the need for separate 
entries of repeated data items and supplies information 
necessary for the use of subscripts as described in Chapter 
5, Table-Handling Statement section. The format of this 
clause is: 

OCCURS integer [TIMES] 
[INDEXED BY index-name-I [, index-name-2] ••• ] 

Examples: 

OCCURS 10 
OCCURS 10 TIMES 
OCCURS 5 TIMES INDEXED BY RATE-INDEX 

4.2 THE WORKING STORAGE SECTION 

The Working-Storage Section describes data items that 
store either intermediate results developed during program 
execution or literals that are needed by the program. such 
items may represent either independent or grouped work areas. 
The basic organization of the Working-Storage Section is: 

WORKING-STORAGE SECTION. 
Independent item description entries. 
Grouped item description entries. 

4.2.1 INDEPENDENT AREAS IN WORKING-STORAGE 

An independent area is a single data item that stands 
alone and has the level number of 77. It is not subdivided, 
and it is also not a subdivision of another item. The format 
of an independent Working-Storage area is: 

77 data-name [USAGE clause] 
[PICTURE clause] 
[JUSTIFIED clause] 
[VALUE clause] • 

All of these clauses have been described previously in the 
File Section of the Data Division, excepting the VALUE 
clause. 

The VALUE clause defines the initial or constant value 
of the item and has the format: 

VALUE IS literal 

Page 4-12 



The literal must belong to the same data category as the 
character string in the item's PICTURE clause: a non-numeric 
literal for an alphabetic or alphanumeric PICTURE1 a numeric 
literal for a numeric PICTURE. A numeric literal's value 
must lie within the range specified by the PICTURE or USAGE 
clauses. For example: 

VALUE IS I NAME I 

VALUE IS +0.85 
VALUE ZERO 

4.2.2 GROUPED AREAS IN WORKING-STORAGE 

A grouped area is formed from several data items that 
are grouped together in the same way that a record's items 
are related to each other, and is often used for storing 
tables, report headers, and screen display formats. The 
rules for writing grouped area description entries are the 
same as for writing record description entries. 

The format of a grouped area in working-storage is: 

level-number data-name [REDEFINES clause] 
[PICTURE clause] 
[USAGE clause] 
[LINE clause] 
[COLUMN clause] 
[BLANK WHEN ZERO clause] 
[JUSTIFIED RIGHT clause] 
[VALUE clause] 
[OCCURS clause]. 

All of these clauses have been defined in this chapter with 
the exception of the LINE and COLUMN clauses which are used 
in describing a screen format. 

A 01 level group area becomes a CRT format description 
when a LINE or COLUMN clause appears before the first VALUE 
clause in the group area description. Subsequent entries do 
not have to include LINE or COLUMN clauses unless they are 
needed to position the data item. Refer to Chapter 6 for 
more detail on CRT control. 

Before each screen data description entry, the compiler 
generates the column FILLER entry that contains CRT control 
codes. Group area sizes are automatically increased by the 
compil~r to include these internally generated codes. 

Page 4-13 



The basic description format for a data item that is to 
be displayed on the screen is: 

level-number FILLER PICTURE clause 
[LINE clause] 
[COLUMN clause] 

VALUE clause. 

The LINE clause indicates the line number on whioh the 
associated data item is to be displayed. The format of this 
clause is: 

LINE IS (integer ) 
NEXT PAGE 

The integer specifies the line on which the data item will be 
displayed. NEXT PAGE clears the screen prior to writing the 
new data items at the top of the display; this option is used 
only with a 01 level data item. 

If the LINE clause is omitted, the data is displayed on 
the same line as the previous data item if the new column 
number is larger than the column number of the previous data 
item. Otherwise, the new data item is displayed on the 
following line. For example: 

LINE IS 5 
LINE NEXT PAGE 

The COLUMN clause states the number of the screen column 
in which the leftmost character of the data item will be 
displayed. The format of this clause is: 

COLUMN IS integer 

The integer must not be 1, since this column is used for CRT 
control codes. For example: 

COLUMN IS 38 
COLUMN 65 

When specifying a column position for a data item, leave 
at least a one-column separation between items for the 
storage of internally generated screen control codes. If the 
COLUMN clause is omitted, the data is displayed starting in 
column two of the line. If both the LINE and COLUMN clauses 
are omitted, the new data is separated by one column from the 
end of the previous item. 

Video attributes are automatically generated for screen 
data descriptions based on the type of the literal contained 

Page 4-14 



in the VALUE clause. When a numeric or non-numeric literal 
is specified, the data item is a protected field, meaning 
that its content cannot be altered. A figurative constant 
such as ZEROES or SPACES results in an underlined and 
unprotected data item. 

When a hexadecimal constant is specified 
clause, the data item is composed entirely of 
codes; these codes are listed in Appendix B. 
line and column positions are not changed. 

4.2.3 STORING TABLES IN WORKING-STORAGE 

in the VALUE 
screen control 
The default 

Tables that are used by COBOL programs may have one, 
two, or three levels. These tables may be stored in the 
Working-Storage area by using the REDEFINES, OCCURS, and 
sometimes VALUE clauses as described in this section. 

Table codes and values can be either stored in the data 
description through the VALUE clause, or can be loaded during 
program execution by Procedure Division statements. In this 
discussion, all table values will be contained in VALUE 
clauses. 

A single-level table has one variable or code that has a 
corresponding value as shown in the following example. 

Sale Code Bonus 

1 
2 
3 
4 

100 
250 
450 
700 

These values are stored in one of two ways as follows: 

Method 1: 

Method 2: 

01 BONUS-TABLE-VALUES. 
05 FILLER PIC 999 VALUE 100. 
05 FILLER PIC 999 VALUE 250. 
05 FILLER PIC 999 VALUE 450. 
05 FILLER PIC 999 VALUE 700. 

01 BONUS-TABLE-VALUES. 
05 FILLER X(l2) VALUE '100250450700'. 

Method 1 is easier to read and thus is a better 
documentation aid than Method 2. Also, Method 2 cannot be 
used if COMP usage is required. 

Page 4-15 



Since the VALUE clause may not be used in conjunction 
with the REDEFINES and OCCURS· clauses, the next and last step 
is to write the following. 

01 BONUS-TABLE REDEFINES BONUS-TABLE-VALUES. 
05 BONUS OCCURS 4 TIMES PIC 999. . 

The above table will. be searched by using subscripts in 
Procedure Division statements (see Chapter 5, Table-Handling 
Statements). 

This method works when the variable's code goes from 1 
to the last number with no gaps. In many tables however, the 
code does not do this, as shown below. 

Part Number 

15 
17 
31 
85 

Retail Price 

2.50 
0.45 
6.30 
1.00 

Notice that only the code needs to be in ascending 
order; the price does not. The following method stores such 
a table that is searched with subscripts. 

01 PART-TABLE-VALUES. 
05 FILLER PIC X(5) VALUE 1 15250 1 • 

05 FILLER PIC X(5) VALUE '17045 1 • 

05 FlLLER PIC X(5) VALUE 1 31630 1 • 

05 FILLER PIC X(5) VALUE '81100'. 
01 PART-TABLE REDEFINES PART-TABLE-VALUES. 

05 PART-TABLE-ENTRY OCCURS 4 TIMES. 
10 PART-NUMaER PIC 99. 
10 RETA~L-PRICE PIC 9V99. 

To convert this table to an indexed one, add an INDEXED 
BY clause to the PART-TABLE-ENTRY OCCURS 4 TIMES statement. 
In this example, INDEXED BY PART-INDEX could be used. Refer 
to the Table-Handling Statements section in Chapter 5 for a 
further explanation of an indexed table. 

Page 4-16 



In two- and three-level tables, the value chosen depends 
on two and three variables, respectively. Storing such 
tables requires OCCURS clauses within OCCURS clauses. For 
example, consider the following two-level table. 

Product Code 
------------

01-03 02 12 22 40 
Quantity 04-06 05 14 27 46 

Sold 07-09 08 16 33 52 
-------- 10-12 11 20 37 58 

13-15 14 24 42 64 

The following description stores this table. 

01 COMMISSION-TABLE-VALUES. 
05 FILLER PIC X(l2) VALUE '010302122240'. 
05 FILLER PIC X(l2) VALUE '040605142746'. 
05 FILLER PIC X(l2) VALUE '070908163352'. 
05 FILLER PIC X(l2) VALUE '101211203758'. 
05 FILLER PIC X(l2) VALUE '131514244264'. 

01 COMMISSION-TABLE REDEFINES COMMISSION-TABLE-VALUES. 
05 QUANTITY-SOLD OCCURS 4 TIMES 

INDEXED BY QUANTITY-INDEX. 
10 LO-QUANTITY PIC 99. 
10 HI-QUANTITY PIC 99. 
10 PRODUCT-CODE OCCURS 5 TIMES 

INDEXED BY PRODUCT-INDEX. 

To describe this table for subscripting, simply omit the 
INDEXED BY clauses. An indexed table may still be accessed 
by the use of subscripts. A three-level table is described 
in the same way as a two-level table, except that a third 
variable is added whose level number would be 15 (using the 
sequence in the above table) and which also has an OCCURS 
clause to show how many values it has in the table. 

4.3 THE LINKAGE SECTION 

The Linkage Section provides the user with a maximum of 
256 internal memory bytes for program-to-program 
communication. Information in this common area may be 
accessed by the COBOL program being executed or by a program 
or subroutine that has been loaded by a CALL or UCALL 
statement in the Procedure division. 

Information stored in the Linkage Section can be 
referenced based on physical location. The following example 
shows how the Linkage Section can be used to send parameters 
to an assembly routine. 

Page 4-17 



COBOL Program: 

IDENTIFICATION DIVISION • 
• 

LINKAGE SECTION. 
01 EXAMPLE. 

02 EXl PIC X. 
02 EX2 PIC XX. 

PROCEDURE DIVISION. 

MOVE A-PARAM TO EXl. 
MOVE X-PARAM TO EX2. 
UCALL USERPROG • 

. 
(end) 

Assembly Routine: Routine is entered with X register 
containing address of first parameter. 

TTL USEPROG 
OPT REL 

START LDAA O,X 
LOX l,X 

. 
(end) 

GET A-PARAM 
GET X-PARAM 

Page 4-18 



CHAPTER 5 - THE PROCEDURE DIVISION 

The Procedure Division of a COBOL source program 
specifies a sequence of actions that must be taken to solve a 
given problem. The following units may be used to form the 
Procedure Division: statements, sentences, paragraphs, and 
sections. 

A statement consists of a COBOL verb followed by 
reserved words and data-names or literals. The three basic 
types of statements are: imperative, conditional, and 
compiler-directing. 

An imperative statement specifies an action that the 
computer will unconditionally perform, such as ADD, GO TO, 
and OPEN. 

A conditional statement describes a condition that is 
tested to determine which of several logic paths should be 
taken, such as in the IF statement. 

A compiler-directing statement tells the compiler to 
take certain actions at compilation time, such as occurs when 
a COPY statement is included. 

A sentence is a series of one or more statements, and is 
terminated by a period. A semicolon may be used to separate 
the statements within a sentence. 

A paragraph consists of one or more sentences, and is 
identified by a procedure-name that begins in Margin A and 
ends with a period. 

A section is formed from one or more paragraphs, and has 
a section name which consists of a procedure-name that is 
followed by the word SECTION and a period. A section name 
begins at Margin A and appears on a line by itself. 

The Procedure Division is rather loosely structured 
since it consists of a series of paragraphs that may be also 
grouped into sections. Statements are executed in the order 
in which they appear, but the execution sequence can be 
altered by sequence control statements. 

Paragraph and section names are not required in a COBOL 
program, but are used when sequence control statements ref er 
to them in order to alter the sequence of program execution. 

The functional categories of Procedure Division 
statements are: input/output, data manipulation, arithmetic, 
conditional, sequence control, table handling, and compiler 
directing. · 

Page 5-01 



5.1 INPUT/OUTPUT STATEMENTS 

Input/output statements are directed to computer 
peripherals, such as disks that contain data files. An input 
data file is opened, a record is read and processed, and then 
the output is sent to an output file. Data sent to the 
printer is considered to be an output print file in COBOL. 
When all processing has been completed for a file, it is 
closed. 

The input/output statements are: OPEN, START, READ, 
WRITE, REWRITE, DELETE, DISPLAY, ACCEPT, and CLOSE. 

5.1.l THE OPEN STATEMENT 

An OPEN statement must be the first statement that is 
performed on any file. This statement however, does not 
actually obtain or dispatch data: READ and WRITE statements 
do that. The format of the OPEN statement is: 

OPEN [INPUT file-name-1 [, file-name-2] ••• ] 
[OUTPUT file-name-1 [, file-name-2] ••• ] 
[I-0 file-name-1 [, file-name-2] ••• ] 
[EXTEND file-name-1 [, file-name-2] ••• ] 

Specify one of the above options for each file in the 
program. The OUTPUT option is equivalent to the CLOSE 
filename WITH DELETE statement since neither one saves data. 
To save the output data, select the I-0 option for an indexed 
file. To add new records at the end of an existing 
sequential file, select the EXTEND option. 

A file must first be closed before a second OPEN 
statement can be executed on that file. For example: 

OPEN INPUT TRANSACTION-FILE OUTPUT PRINT-FILE 
OPEN EXTEND PARTS-FILE 
OPEN I-0 MASTER-FILE 

CLOSE PARTS-FILE TRANSACTION-FILE 
OPEN INPUT PARTS-FILE 

Page 5-02 



F 
I 
L 
E 

A 
c 
c 
E 
s 
s 

M 
0 
D 
E 

FILE ORGANIZATION 

~ SEQUENTIAL INDEXED 

-g 
E 
Q 
u 
E 
N 
T 
I 
A 
L 

R 
A 
N 
D 
0 
M 

D 
y 

N 
A 
M 
I 
c 

STATEMENT 

READ 
~ 
REWRITE 

""STlffi'l' 
DELETE 

READ 
WRITE 
REWRITE 
~ 
DELETE 

READ 
WRITE 
REWRITE 
START 

lJELETE 

I = INPURT 
0 = OUTPUT 

I 

x 

I-0 = INPUT-OUTPUT 
E = EXTEND 

0 I-0 E I 0 I-0 E 

x x x 
x x x x 

x x 

x 

x x 
x x 

x 

x 

x x 
x x 

x 
x x 

x 

Table 5-1. I/O COMMANDS 

Page 5-03 

CODOS-SA 

I 0 I-0 E 

x 
x x 



5.1.2 THE START STATEMENT 

The START statement provides the means for positioning 
the current record pointer within an indexed file for record 
retrieval. This statement requires that its associated file 
be open in INPUT or I-0 mode. The format of the START 
statement is: 

EQUAL TO 
= 

START file-name [KEY IS GREATER THAN data-name] 

~OT (LE~S THAN) 

[INVALID KEY imperative-statement] 

The file must have an indexed organization and dynamic access 
mode and must have been opened in INPUT or I-0 mode. 

The data-name is either the file's RECORD KEY or an 
alphanumeric data item that is subordinate to the RECORD KEY 
and starts in the same character position as does the RECORD 
KEY. 

The EQUAL option compares the data-name's current value 
with the corresponding field in the file's records. When a 
match is found, the current record pointer is positioned at 
that record. 

The other KEY options operate in a similar manner to the 
EQUAL TO option; the current record pointer is placed at the 
first record that satisfies the comparison. If no record 
does so, an INVALID KEY condition exists, and the position of 
the current record pointer is undefined. 

When the KEY clause is omitted, the compiler acts as if 
the statement: 

START file-name KEY IS EQUAL TO data-name 

had been written, where the data-name is equal to the file's 
RECORD KEY. For example: 

START CUSTOMER-FILE 
START PERSONNEL-FILE KEY = EMPLOYEE-NUMBER 

INVALID KEY PERFORM NOT-IN FILE 

Page 5-04 



5.1.3 THE READ STATEMENT 

The READ statement makes a record available for 
processing whose file has been opened in INPUT or I-0 mode. 
When a READ statement;is executed, the selected logical 
record is accessible in the logical record area in computer 
memory as defined by its record description entry. The 
record is available there until a subsequent READ or CLOSE 
statement is executed for that file. 

When multiple record descriptions follow a File 
Description (FD) entry, the programmer is responsible for 
recognizing which record is present in the logical record 
area at any time. The READ statement has two formats: 

Format 1: 
READ file-name [NEXT] [INTO identifier] 

[AT END imperative-statement] 

Format 2: 
READ file-name [INTO identifier] 

INVALID KEY imperative-statement 

Before a Format 1 statement can be executed, the current 
record pointer must be positioned by the prior, successful 
execution of an OPEN, START, or READ statement. Format 1 
provides for the sequential processing of a sequential or 
indexed file by making available one of the following: the 
next logical record from a sequential file: the next record 
with the next higher RECORD KEY value in the collating 
sequence for a sequentially-accessed indexed file. For 
example: 

READ DISK-FILE-1 
READ DISK-FILE-1 NEXT 

For indexed files whose access mode is dynamic, the NEXT 
option must be specified for the sequential retrieval of the 
next logical record in the file. A series of imperative 
statements in the AT ENP option are executed when an 
end-of-file status is detected. For example: 

READ DISK-FILE-1 NEXT INTO WORK-RECORD 
READ DISK-FILE-1 INTO WORK-RECORD 

A sequential file whose AT END condition has been 
recognized cannot be READ again until successful CLOSE and 
OPEN statements have been executed for it. An indexed file 
whose AT END condition is recognized also cannot be READ 
again until one of the following actions has been 
successfully executed for it: a CLOSE statement followed by 
an OPEN statement: a Format 2 READ statement for a file in 

Page 5-05 



dynamic access mode; or a START statement. For example: 

READ DISK-FILE-1 AT END GO TO END-JOB 

Format 2 is used for random processing of indexed files 
in random or dynamic access mode. This statement compares 
the file's RECORD KEY value to the content of the 
corresponding key field in the file's records. When a match 
is found, the current record pointer is positioned at this 
record which makes it available for processing. If no match 
is found, an INVALID KEY condition exists, and the specified 
imperative statement is executed. For example: 

READ MASTER-FILE INVALID KEY PERFORM 
NO-RECORDS 

READ CUSTOMER-FILE INTO WORK-RECORD 
INVALID KEY PERFORM NOT-IN-FILE 

The INTO option of both formats is equivalent to a READ 
followed by a MOVE since the record becomes available in both 
the file's record area and in the specified identifier area. 
When the file has records with varying lengths, the longest 
length is assumed for the moved record. 

5.1.4 THE WRITE STATEMENT 

The WRITE statement releases a logical record to an 
output file. The released logical record may or may not 
still exist in the logical record area for the file. An OPEN 
OUTPUT, OPEN EXTEND, or OPEN I-0 statement must have been 
performed for the file before a WRITE statement can be 
executed for it. The two formats of this statement are: 

Format 1: 
WRITE record-name [FROM identif ier-1] 

{ BEFORE) ADVANCING 
AFTER 

Format 2: 

{
identif ier-2 lines]. 
integer LINES 
PAGE . 

WRITE record-name [FROM identif ier-1] 

INVALID KEY imperative-statement 

A WRITE statement with the FROM option is equivalent to 
a MOVE identif ier-1 TO record-name statement that is followed 
by a WRITE record-name statement. 

Format 1 is used for files opened for sequential access. 
The ADVANCING option applies to files containing output to be 
printed, where the line is printed BEFORE or AFTER advancing 
a nonnegative number of lines or to the top of the next page. 

Page 5-06 



For example: 

WRITE PRINT-RE~ORD 
WRITE PRINT-RECORD FROM WORK-RECORD 
WRITE PRINT-RECORD AFTER ADVANCING 2 LINES 

Format 2 is used for all other files. The imperative 
statements in the INVALID KEY clause are executed when the 
file either has no space for the record or has been opened 
for OUTPUT or I-0 and a record corresponding to the contents 
of the RECORD KEY already exists in the file. For example: 

WRITE PROCESSED-RECORD INVALID KEY GO TO 
NO-RECORD 

WRITE PROCESSED-RECORD FROM WORK-RECORD INVALID 
KEY GO TO NOT-IN-FILE 

NOTE: When writing records to a CODOS-SA file, the record 
area must be one byte larger than the actual length 
of the data. The system uses this position to store 
a "CR" as the record termination character. 

5.1.5 THE REWRITE STATEMENT 

The REWRITE statement rewrites a previously-read record 
to the output file. A file must have been opened in I-0 mode 
before a REWRITE can be executed for it. The format of this 
statement is: 

REWRITE record-name [FROM identifier]; 

INVALID KEY imperative-statement 

The INVALID KEY clause is performed when the contents of 
the associated RECORD KEY data item are found invalid. 

For sequential files, the REWRITE statement rewrites the 
last record read. 

For indexed sequential files in sequential access mode 
or with duplicate records, the REWRITE statement rewrites the 
last record read when the record's key field value is equal 
to the RECORD KEY value. 

If the indexed sequential file has no duplicate records, 
the REWRITE statement rewrites the record whose key field 
value is the same as the RECORD KEY value. 

Once the REWRITE is performed, the logical record 
rewritten may or may not still exist in the logical record 
area for the file. For example: 

Page 5-07 



REWRITE MASTER-RECORD INVALID KEY PERFORM NOT-HERE 
REWRITE MAST.ER-RECORD FROM WORK-RECORD INVALID 

KEY PERFORM NOT-IN-FILE 

5.1.6 THE DELETE STATEMENT 

The DELETE statement deletes a record from the output 
file. A file must have been opened in I-0 mode before a 
DELETE can be performed on it. The format of this statement 
is: 

DELETE file-name; INVALID KEY imperative-statement 

The INVALID KEY clause is executed when the record 
corresponding to the RECORD KEY value is not found in the 
file. 

For sequential files, the DELETE statement deletes the 
last record read. 

For indexed sequential files in sequential access mode 
or with duplicate records, the DELETE statement deletes the 
last record read if its key field value is equal to the 
RECORD KEY value. 

If the indexed sequential file has no duplicate records, 
the DELETE statement deletes the record whose key field value 
is the same as the RECORD KEY value. For example: 

DELETE MASTER-FILE; INVALID KEY PERFORM NO-RECORD 
DELETE UPDATEOl; INVALID KEY PERFORM NOT-IN-FILE 

5.1.7 THE DISPLAY STATEMENT 

The DISPLAY statement writes 
format of this statement is: 

data to the screen. 

{
@(row,column)) 

DISPLAY identif i.er-1 . 
literal-! 

;(@ (row, column)} 
, identif ier-2 

literal-2 
. . . 

The 

The @Crow;column) clause positions the CRT cursor, where 
row and column are numeric literals or items. If this clause 
is omitted, a carriage return/line feed pair is sent to the 
display station. 

When a DISPLAY statement contains more than one operand, 
the SQecif ied items and/or literals are displayed 
consecutively with no spaces between them unless specified. 
The line's remaining positions at the end of the data 

Page 5-08 



transfer are left unchanged. 

A literal in a DISPLAY statement may be numeric, nonnumeric, 
or a hexadecimal constant as shown in the following example. 

DISPLAY @(3,25), $8085, DATA-1, $84F3. 

Refer to Chapter 6 for additional information on CRT control. 

5.1.8 THE ACCEPT STATEMENT 

The ACCEPT statement sends unprotected data from the 
screen into computer memory. The format of this statement 
is: 

ACCEPT identifier-! [, identifier-2] ••• 

The identifier must be an unedited or group item. Refer 
to Chapter 6 for additional information on CRT control. For 
example: 

ACCEPT SCREEN-1 
ACCEPT IDENTIFICATION-D, TRANSACTIONS-D, TOTAL-D 

5.1.9 THE CLOSE STATEMENT 

The CLOSE statement ends the processing of a file, and 
performs the standard closing procedures on it. The format 
of this statement is: 

CLOSE file-name [WITH DELETE] ••• 

A file must be opened before it can be closed. Once 
closed, a file may not be referenced again until another OPEN 
statement is performed for it. When the WITH DELETE option 
is specified, all records in the file are deleted. For 
example: 

CLOSE DISK-FILE 
CLOSE DISK-FILE WITH DELETE 
CLOSE DISK-FILE, PRINT-FILE 

Page 5-09 



5.2 DATA MANIPULATION STATEMENTS 

There are two data manipulation statements: MOVE and 
INSPECT. 

5.2.1 THE MOVE STATEMENT 

The MOVE statement transfers data from one area of 
computer storage to another. When the PICTURE clause of the 
receiving item contains editing characters, it also edits 
data by inserting, deleting, or replacing characters as 
specified. 

The word MOVE is rather misleading since this proce.ss 
actually copies the data of the sending field and places this 
copy in one or more receiving field. Thus, the data in the 
sending field is not altered or destroyed by the MOVE 
statement. The format of this statement is: 

MOVE (identifier-1) TO iden.tifier-2 [, identifier-3] ••• 
~ literal 

[ON SIZE ERROR imperative-statement] 

Both source and receiving items can be group or 
elementary. The literal may be numeric, non-numeric, or a 
figurative constant. 

When the ON SIZE ERROR clause is included, its 
imperative statement is executed whenever significant 
characters are truncated during a MOVE. This feature 
facilitates checking input data for a valid range as shown in 
the following example. 

Source Field 
PICTURE of 

Receiving Field 

999V99 

Received Data 

The manner in which the MOVE is performed depends on the 
PICTURE clauses of the source and receiving items. See Table 
5-1 for a listing of legal and illegal MOVE's. There are 
three basic permissible moves: alphanumeric, numeric, and 
edited. 

Note: A group item, even if it is composed of all numeric 
subfields, is treated as an alphanumeric item by the 
MOVE statement. This feature is quite useful for 
printing headers for numeric reports. 

Page 5-10 



5.2.2 ALPHANUMERIC MOVES 

In an alphanumeric move, the receiving field is an 
alphabetic, alphanumeric, or group item that stores the data 
left-justified unless otherwise specified. When the 
receiving field is longer than the sending field, the system 
fills the extra positions with spaces. When the receiving 
field is shorter than the sending field, the data characters 
are placed in the receiving field one at a time from left to 
right until the field is filled; the remaining characters are 
truncated. 

When the figurative constant is ALL any-literal, the 
literal following the word ALL must be enclosed in quotation 
marks and may be only one character in length. 

PICTURE of 
Source Field Receiving Field 
------------ ---------------

IAIBlclDI X(6) or A(6) 

IAIBICIDI x (3) or A (3) 

IAIBJCIDI x ( 4) or A(4) 

ALL Ix I x ( 5) 

5.2.3 NUMERIC MOVE 

Received Data 

IAIBlclDI 

lAIBlcl 

lAIBIClDl 

lxlxlxlxlxl 

A numeric move occurs when a numeric field is moved to 
another numeric field, or when an alphanumeric field that 
contains only integers is moved to a numeric field. The 
assumed decimal points of both fields are aligned, and any 
extra positions at either end of the receiving item are 
filled with zeroes. When an item has no decimal point, one 
is assumed to be on the right end. When the receiving field 
is shorter than the source field, the source numeric data is 
stored in the receiving field beginning at the assumed 
decimal point and proceeding outward; when the field is full, 
unstored data is truncated. 

Source Field 

11121 3 l 
111213141 

111213141 
11I213141 

PICTURE of 
Receiving Field 

99V99 

99V9 

9(4) 

9V99 

Page 5-11 

Received Data 

1112 l3lol 
1112131 
11 12 131 4 1 

12 13 14 I 



NOTE: In the last example shown, a size error has occurred 
since the most significant digit, l, was dropped 
during the move. · 

TABLE 5-1. Rules for Constructing Arithmetic-Expressions 

Second Symbol 

First ) or End of 
Symbol variable '*or/ - or + unary - ( Expression 

variable - p p - 2 p 
* or I p - 1 p p -
- or + p - 1 p p -
unary - p - - - p -
(or 
Begin-
ning ·Of 
Expres- p - p p p -
sion) - p p - - p 

1 This is permitted when "-" indicates the sign of a 
numeric literal. 

2 Parentheses immediately following a data-name 
indicate the presence of a subscript. The 
subscript is considered part of the variable. 

P A specified pair of symbols is permitted. 

A specified pair of symbols is not permitted. 

Page 5-12 



5.2.4 DE-EDIT MOVE 

Whenever a MOVE occurs from an alphanumeric field to a 
numeric field, the following actions (called a de-edit) are 
performed. Leading and trailing blanks are deleted from the 
source data. Any leading positive or negative sign is 
removed and placed at the right of the destination field. 
Both fields are aligned by their assumed decimal points, and 
the data is moved. 

5.2.5 EDITED MOVE 

When editing is specified by the PICTURE clause of the 
receiving item, the source data is edited during the move 
after decimal point alignment. Data is moved to a receiving 
edited field in accordance with the rules for alphanumeric 
moves. Edited numeric data cannot be moved into a regular 
numeric field. For an explanation of editing symbols in a 
field, see the description of the PICTURE clause in Chapter 
3. 

5.2.6 THE INSPECT STATEMENT 

The INSPECT statement replaces selected characters in a 
data item with other specified characters. The format of 
this statement is: 

INSPECT identif ier-1 REPLACING ~ALL 1 LEADING 
FIRST 

BY (identif ier-3l 
literal-2 j 

( identif er-2) 
literal-1 

Identif ier-1 must be a group or elementary item whose 
USAGE IS DISPLAY. Remember that if a data item's description 
has no USAGE clause, the compiler assumes that USAGE IS 
DISPLAY. Identifiers -2 and -3 reference one-byte 
alphabetic, alphanumeric, or numeric elementary items whose 
usage is also display. Literals are non-numeric or any 
figurative constant except ALL. 

Page 5-13 



The inspection of the item proceeds from left to right. 
The data item's contents are treated as follows: 

1. An alphanumeric item is treated as a character string. 

2. An unsigned numeric item is treated as if it had been 
been redefined as alphanumeric. 

3. A signed numeric item is treated as if it had been moved 
to an unsigned numeric data item of the same length, and 
is subject to rule 2 shown above. 

The rules for replacing data are as follows: 

1. When li teral-1 is a figurative constant, each characte.r 
in identifier-l's field that is equal to it is replaced 
by the single character referenced by literal-2 or 
identifier-3. 

2. When literal-2 is a figurative constant, each character 
in identifier-2's field that is equal to literal-I/ 
identifier-2 is replaced by the literal-2 character. 

The words ALL, LEADING, and FIRST qualify the 
replacement process as follows: 

1. ALL replaces every literal-1/identifier-2 in 
identifier-I. 

2. If LEADING is used, literal-1/identifier-2 must be equal 
to the field's lettm9st character. Inspection/ 
replacement then proceeds and stops only when a 
a character is encountered that is not.the same as 
literal-l/identifier-2. · 

3. FIRST replaces the leftmost character in identifier-1 
that is equal to literal-l/identifier-2. Inspection/ 
replacement then stops. 

An example of this process appears below. 

Working~storage: 
77 SS-NUMBER PIC 9(9) VALUE 123456789. 
77 EDITED-SS-NUMBER PIC 999/99/9999. 

Procedure-Division: 
MOVE SS-NUMBER TO EDITED-SS-NUMBER. 
INSPECT EDITED-SS-NUMBER REPLACING ALL '/' BY 

The new value of EDITED-SS-NUMBER is 123-45-6789. 

Page 5-14 

I_ I 
• 



5.3 ARITHMETIC STATEMENTS 

Arithmetic operations in COBOL are specified by the key 
words ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE. Only the 
COMPUTE statement uses arithmetic symbols (+, -, /, *, and 
=): the other statements use words to convey the arithmetic 
meanings. 

The following general rules apply to all arithmetic 
statements: 

1. All literals are numeric. 

2. All identifiers are numeric elementary items whose 
maximum length is 15 decimal digits. These items 
may have different lengths, since decimal points 
are automatically aligned during the arithmetic 
process. 

3. No item that is used in an arithmetic process may 
contain editing symbols. An item that simply 
stores arithmetic results, however, may contain 
editing symbols. 

4. When the GIVING option is selected, the arithmetic 
result is stored in the identifier following 
GIVING. 

5. The ROUNDED option is used when the arithmetic 
result has more digits to the right of its decimal 
point than does the receiving field. This overflow 
is called excess digits. When the ROUNDED option 
is omitted, excess digits are truncated. When this 
option is included and the most significant excess 
digit is greater than or equal to 5, then the least 
significant digit of the receiving field is 
increased by 1. 

6. A SIZE ERROR occurs when the number of integer 
places in an arithmetic result exceeds the number 
of integer places in the receiving field. When 
this option is included and a size error occurs, 
the value of the resultant item is unchanged, and 
the specified imperative statement is executed. 
An arithmetic statement with a SIZE ERROR option 
is considered to be a conditional statement and is 
prohibited in contexts that allow only imperative 
statements. When·the SIZE ERROR option is omitted 
and a size error occurs, program flow is not 
interrrupted, but the final result may or may not 
be correct. 

Page 5-15 



5.3.l GIVING OPTION 

If the GIVING option is written, the value the 
identifier that follows the word GIVING is made equal to the 
calculated result of the arithmetic operation. 

If the GIVING option is not written, each ope~and 
following the words TO, FROM, BY, and INTO in the ADD, 
SUBTRACT, MULTIPLY, AND DIVIDE statements, respectively, must 
be an identifier (not a literal). Each identifier is used in 
the computation, and also receives the result. 

5.3.2 ROUNDED OPTION 

If the ROUNDED option is not specified, truncation 
occurs when the number of places calculated (after 
decimal-point alignment) for the ~esult is greater than the 
number of places in the data item that is to be set equal to 
the calculated result. When the ROUNDED option is specified, 
the least significant digit of the resultant data-name 
increases in value by 1 whenever the most significant digit 
of the excess is greater than or equal to 5. 

Rounding of a computed negative result is performed by 
rounding the absolute value of the computed result and then 
making the final result negative. 

Table 5-2 illustrates the relationship between a 
calculated result and the value stored in an item that is to 
receive the calculated result. 

TABLE 5-3. Rounding or Truncation of Calculations 

Item to Receive Calculated Result 

Calculated Value After Value After 
Result PICTURE Rounding Truncating 

-12.36 S99V9 -12.4 -12.3 

8.432 9V9 8.4 8.4 

35.6 99V9 35.6 35.6 

65.6 99V 66 65 

0.0055 V999 0.006 0.005 

Page 5-16 



5.3.3 . SIZE ERROR OPTION 

An arithmetic statement, if written with a SIZE ERROR 
option, is not an imperative-statement. Rather, it is a 
conditional statement and is prohibited in contexts where 
only imperative statements are allowed. 

Whenever the number of integer places in the calculated 
result exceeds the number of integer places specified for the 
resultant item, a size error condition arises. If the SIZE 
ERROR option is specified and a size error condition arises, 
the value of the resultant item is not altered, and the 
series of imperative-statements specified for the condition 
is executed. 

If the SIZE ERROR option is not specified and a size 
error condition arises, no assumption should be made about 
the correctness of the final result even though the program 
flow is not interrupted. 

5.3.4 THE ADD STATEMENT 

The ADD statement adds the values of two or more numeric 
items and/or literals and stores the result. The ADD 
statement·must be written according to the general rules 
listed at.the beginning of this section and must also conform 
to the guidelines described in the following paragraphs. The 
formats of this statement are: 

Format 1: 

Format 2: 

ADD (identif ier-1) 
~literal-I 

identif er-n 

[ ' identif ier-2 
, literal-2 

[ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

ADD {identif ier-1) 
literal-I 

identif ier-m [ROUNDED] 

, lidentif ier-;I ••• TO 
, lliteral-2 j 
[, identifier-n [ROUNDED]] 

[; ON SIZE ERROR imperative-statement] 

Page 5-17 



Format 3: 
ADD .{identifier-1) , cidentif ier-2l 

literal-1 literal-2 J 
, identifier.:...3 ••• GIVING identifier-m [ROUNDED] 
, literal-3 

[; ON SIZE ERROR imperative-statement] 

Format 1 adds the values of all identifiers/literals and 
stores the result in identifier-n. A sample Format 1 
statement is: ADD A, B, c. The values of A, B, and c before 
and after execution are: 

Before 
After 

A 

5 
5 

B 

6 
6 

c 

8 
19 

Note that the values of A and B do not change as a result of 
the addition. 

Format 2 adds the values of the identifiers/literals 
that precede the word TO. This intermediate result is then 
added to each data item specified by identif ier-m, 
identifier-n, etc. to form a final result that is stored in 
identif ier-m, identif ier-n, etc. A sample Format 2 statement 
is: ADD W, X, Y, TO z. The w, x, Y, and z values before and 
after execution are: 

Before 
After 

w 

2 
2 

x 

7 
7 

y 

8 
8 

z 

12 
29 

Note that the values of all operands are added to form the 
sum stored in z. 

Format 3 adds the values of the operands preceding the 
word GIVING and places this immediate result in the 
identifiers that follow the word GIVING. A sample Format 3 
statement is: ADD A, B, C GIVING D. The values o~ A, B, C, 
and D before and after execution are: 

A B c D 

Before 1 2 3 5 
After 1 2 3 6 

Note that the intermediate result replaces the value of D and 
is no~ added to D. 

Page 5-18 



5.3.5 THE SUBTRACT STATEMENT 

The SUBTRACT statement subtracts the value of one or 
more numeric items/literals from another numeric item/literal 
and stores the result. The formats of this statement are: 

Format 1: 
SUBTRACT 

( identif ier-ll [', identif ier-2] 
literal-I j literal-2 

. . . 
FROM identif ier-m [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

Format 2: 
SUBTRACT . . . 

FROM 

( identifier-!) r~ identif ier-21 
literal-1 l~ literal-2 J 

{ identifier-ml GIVING identif ier-n 
literal-m j 

[ROUNDED] [; ON SIZE ERROR imperative-statement] 

Format 1 subtracts the operands preceding the word FROM 
from identifier-m and places the result in identif ier-m. 

Format 2 subtracts the operands preceding the word FROM 
identif ier-m/literal-m and places the result in the item 
following the word GIVING. The contents of identif ier-m are 
not changed by a Format 2 SUBTRACT statement. A sample 
Format 2 statement is: SUBTRACT A FROM B GIVING c. The 
values of the operands before and after execution are: 

Before 
After 

A 

10 
10 

B 

80 
80 

c 

90 
70 

5.3.6 THE MULTIPLY STATEMENT 

The MULTIPLY statement multiplies two numeric 
items/literals together and stores the resultant product. 
The formats of this statement are: 

Format 1: 
MULTIPLY 

{
identif ier-1) BY 

literal-1 

identif ier-2 [ROUNDED] 

{; QN SIZE ERROR imperative-statement] 

Page 5-19 



Format 2: 
MULTIPLY 

{ identif ier-1) BY {identifier-2l 
literal-! literal-2 j 
GIVING identif ier-3 [ROUNDED] 

[~ ON SIZE ERROR imperative-statement] 

Format 1 multiplies identifier-1/literal-l by 
identifier-2 and stores the product in identifier-2. A 
sample Format 1 MULTIPLY statement is: MULTIPLY A BY B. The 
values of the operands before and after execution are: 

Before 
After 

A B 

10 
10 

20 
200 

Note that the values of operand B change to reflect the 
multiplication. 

Format 2 multiplies identifier-1/literal-l by 
identif ier-2/literal-2 and stores the product in 
identifier~3. The contents of identifier-! and identifier-2 
are unaffected by the execution of a Format 2 MULTIPLY 
statement. A sample Format 2 statement is: MULTIPLY A BY B 
GIVING C. The values of the operands before and after 
execution are: , 

Before 
After 

A 

5 
5 

B 

10 
10 

c 

20 
50 

Note that the values of operands A and B remain the same, 
while the value of C changes. 

5.3.7 THE DIVIDE STATEMENT 

The DIVIDE statement divides the value of one numeric 
item/literal either into or by the value of another numeric 
item/literal and stores the result. The formats of this 
statement are: 

Format 1: 
DIVIDE r identif ier-1) 

\_literal-1 
INTO identif ier-2 [ROUNDED] 

(1 ON SIZE ERROR imperative-statement] 

Page 5-20 



Format 2: 
DIVIDE 

Format 3: 
DIVIDE 

( identif ier-1\ INTO{identif ier-2\ 
literal-1 j literal-2 J 
GIVING identif ier-3 [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

[identif ier-1) BY {identif ier-2l 
~literal-1 literal-2 j 

GIVING identif ier-3 [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

Format 1 divides identif ier-1/literal-l into 
identif ier-2 and stores the resultant quotient in 
identifier-2. A sample Format 1 DIVIDE statement is: DIVIDE 
A INTO B. The values of the operands before and after 
execution are: 

A B 

Before 5 10 
After 5 2 

Note that the value of B has changed as a result of the 
division since the quotient is stored in it. 

Format 2 divides identif ier-1/literal-l into 
identif ier-2 and stores the resultant quotient in 
identifier-3. The contents of identifier-I and identifier-2 
are unchanged by a Format 2 DIVIDE statement. A sample 
Format 2 statement is: DIVIDE A INTO B GIVING c. The values 
of the operands before and after execution are: 

Before 
After 

A 

5 
5 

B 

10 
10 

c 

15 
2 

Only the value of C changes as a result of a Format 2 DIVIDE. 

Format 3 divides identif ier-1/literal-l by identif ier-2 
and stores the result in identifier-3. The values of 
identifier-1 and identifier-2 are unchanged by Format 3. A 
sample Format 3 statement is: DIVIDE A BY B GIVING c. The 
values of the operands before and after execution are: 

A 

Before 10 

B 

5 

c 

30 

Page 5-21 



After. 10 5 2 

Only the value of C changes in a Format 3 DIVIDE. 

5.3.8 THE COMPUTE STATEMENT 

The COMPUTE statement combines the processing of ADD, 
SUBTRACT, MULTIPLY, and DIVIDE statements by using an 
arithmetic expression and storing the result in one numeric 
item. The format of this statement is: 

COMPUTE identifier-I [ROUNDED] =.{if~~~~i~~r-2 ) 
arithmetic-expression 

[1 ON SIZE ERROR imperative-statement] 

This statement is equivalent to a MOVE statement when 
the literal or identif ier-2 is used. 

An arithmetic expression is a series of numeric literals 
and/or data-names separated by arithmetic operators, and is 
reduced to a single numeric value and stored in a numeric 
item. The arithmetic operators are: 

+ Addition 
Subtraction 

* Multiplication 
I Division 

A space is left on either side of an arithmetic 
operator. The only exception to this rule occurs when a 
minus sign indicates a logical negation (called a unary 
operator): a space does not have to follow it. 

A few examples of arithmetic expressions are: 

RATE * 
GROSS 
OVERTIME 

TIME 
DEDUCTIONS 
* 1.5 + REGULAR-TIME 

When parentheses are not used to specify the order of 
computation, the COBOL compiler evaluates an arithmetic 
expression by the following rules: 

1. Logical negations (unary -) are performed first. 
2. Next, multiplication and division are performed. 
3. Finally, addition and subtraction are performed. 

In each step, computation proceeds from left to right. 
Thus, A * B I C is computed as (A * B) / c, and A I B * C is 
computed as (A I B) * C. 

Page 5-22 



When parentheses are used, computation begins with the 
innermost set and proceeds to the outermost. Items within 
parentheses are evaluated according to the rules above, and 
the results are then treated as if the parentheses were 
removed. For example: 

COMPUTE RESULT-1 ROUNDED = (A + B) / (C + D + E) 
COMPUTE TOTAL-RESULT= -((A - B) / 3 * (1.14 + C)) 

5.4 CONDITIONAL STATEMENTS 

A conditional statement describes one or more conditions 
that are tested to determine the selection of alternate 
action paths. The basic COBOL conditional statement is the 
IF statement. The format of this statement is: 

IF condition [THEN] c~~~~e~~~~;~CE} ELSE [c~~~~e~~::i;~CE}] 
When the IF condition is found to be true, the actions 

specified in statement-I are performed. The ELSE option 
specifies that statement-2 is performed when the condition is 
false. When the ELSE option is omitted, and the IF condition 
is false, program execution proceeds to the next sentence. 

The condition may be compound or simple. Compound 
conditions are formed from a series of simple conditions that 
are separated by the logical operators AND, OR, and NOT. The 
test specified in a simple condition belongs to one of three 
categories: relational, class, and sign. 

5.4.l RELATIONAL TEST CONDITION 

For numeric or non-numeric items, a relational condition 
compares two items and determines whether or not one is 
greater than, equal to, or less than another. The format of 
this condition is: 

identif ier-1 

literal-! 

arithmetic
expression-1 

IS [NOT] 

GREATER THAN 
> 
LESS THAN 
< 
EQUAL TO 
= 

identif ier-2 

literal-2 

arithmetic
expression-2 

Numeric items are compared algebraically after decimal 
point alignment. 

Page 5-23 



Non-numeric items are compared with respect to the 
binary collating sequence of ASCII characters. When such 
items have the same length, the comparison proceeds from 
high-order to the low-order until it encounters either a 
difference between the two items or the end. 

When the non-numeric items have different lengths, the 
comparison proceeds as described in the previous paragraph. 
If the end of the shorter item is encountered in the 
comparison, the shorter item is considered to be less than 
the longer item unless only spaces remain in the longer item. 
For example: 

AMOUNT-DUE IS GREATER THAN AMOUNT"'-OWED 
ENTRY-COUNTER IS EQUAL TO 10 
DIVISOR-1 NOT EQUAL TO ZERO 

5.4.2 CLASS TEST CONDITION 

In a class test, the data-name has a USAGE DISPLAY. If 
the USAGE clause had not been specified, the compiler assumes 
that USAGE IS DISPLAY. The format Of this test is: 

data-name IS [NOT] {NUMERIC ) 
~ALPHABETIC 

Examples: 
NP.~ME-IN IS NOT l1.LPHJ1.BETIC 
NUMBER-ORDERED IS NOT NUMERIC 
ID-NUMBER NOT NUMERIC 

5.4.3 SIGN TEST CONDITION 

The sign test determines whether or not the value of a 
numeric item is positive, negative, or zero. The format of 
this test is: 

{
data-name 1 
arithme~ic-
expression 

Examples: 

IS [NOT] r~~~!~i~~~ 
~~ERO ;j 

AMOUNT-DUE IS POSITIVE 
A - C / D IS NOT NEGATIVE 
NET-PAY ZERO 

This sign test is the functional equivalent of a 
relational test that determines whether an item is greater 
than, less than, or equal to zero. For example, statements 
GROSS IS NEGATIVE and GROSS IS LESS THAN 0 are equivalent; 

Page 5-24 



GROSS IS POSITIVE and GROSS IS GREATER THAN 0 are similarly 
equivalent. 

5.4.4 LOGICAL OPERATORS IN COMPOUND CONDITIONS 

The three logical operators are: AND, OR, and NOT. AND 
and OR are used to create a compound condition when two or 
more tests are specified in the same expression. NOT 
specifies the negation of a condition. 

In the following AND example: 

IF CODE IS ZERO OR AGE GREATER THAN 21 ADD A TO B. 

OR means that if either or both conditions are fulfilled, the 
ADD C TO D statement is executed. 

The logical operator NOT can be placed either within or 
immediately preceding a simple relational condition. 
Consider the following NOT examples: 

AGE NOT GREATER THAN 21 and NOT AGE GREATER THAN 21 

These two statements mean exactly the same thing to the COBOL 
compiler. However, if NOT precedes a simple relational 
condition that also contains a NOT, a double negative results 
and causes an error. For example, the statement: 

NOT AGE NOT GREATER THAN 21 

is an invalid condition since it contains a double negative. 

5.4.5 EVALUATION OF THE CONDITION 

The condition is evaluated before any action is taken. 
When the condition is true, statement-1 is executed; control 
is transferred to the following sentence; and the ELSE clause 
is ignored. 

When the condition is false, either statement-2 or NEXT 
SENTENCE is executed. NEXT SENTENCE transfers control to the 
succeeding sentence. 

Statement-1 or statement-2 may be a series of statements 
that is terminated by a period or an ELSE clause. 

Page 5-25 



5.4.6 NESTED CONDITIONAL STATEMENTS 

Statements-1 and -2 can be imperative statements that 
may also contain a conditional statement. When a conditional 
statement is contained in either statement-1, statement-2, or 
both, the conditional statement is said to be nested. 

Nested conditional statements may in turn contain 
conditional statements. These nested conditional statements 
are analogous to the use of parentheses of combining 
subordinate arithmetic expressions so that the expressions 
become part of a larger arithmetic unit. For example: 

IF A IS EQUAL TO ZERO IF B IS EQUAL TO ZERO 
PERFORM ZERO-VALUES ELSE NEXT SENTENCE 
ELSE PERFORM NON-ZERO-VALUES 

Nested IF statements (IF's within IF's) must be 
considered as paired IF and ELSE combinations, proceeding 
from left to right. Therefore, any encountered ELSE applies 
to the immediately preceding IF that has not already been 
paired with an ELSE. 

In essence, the number of occurrences of ELSE in any 
conditional statement must be equal to the number of 
occurrences of IF, regardless of the complexity caused by 
nesting. 

The only exception to this rule occurs when ELSE NEXT 
SENTENCE directly precedes the period of the sentence. In 
this case, the entire phrase may be omitted and the period 
specified at the end of the previous phrase. This rule is 
extended to resulting sentences, etc. The statement in each 
ELSE clause is executed 9nly when the conditional expression 
in the corresponding IF is false. If there are more IF's 
than ELSE's in a statement, it is assumed that the ELSE NEXT 
end of the sentence have been omitted. For example: 

IF TOTAL GREATER THAN LIMIT IF ACTION-CODE EQUAL 
TO EXCEPTION-CODE PERFORM EXCEPTION-ROUTINE 
ELSE PERFORM EXCEEDS LIMIT. 

In another example, the following sentence contains two 
independent nests of conditional statements. The first nest 
ends after the statement PERFORM procedure-name-2. The 
second nest consists of the remainder of the sentence and has 
an implied ELSE NEXT SENTENCE before the period. Each 
upper-case letter corresponds to a conditional expression. 

IF A IF B PERFORM procedure-name-1 ELSE NEXT SENTENCE 
ELSE IF c NEXT SENTENCE ELSE PERFORM procedure-name-2 
IF D PERFORM procedure-name-3 IF E PERFORM 
procedure-name~4 IF F PERFORM procedure-name-5 ELSE 
PERFORM procedure-name-6 ELSE STOP RUN. 

Page 5-26 



5.4.7 CONDITIONAL STATEMENTS WITH EXCEPTION BRANCHES 

The READ, WRITE, REWRITE, DELETE, ADD, SUBTRACT, 
MULTIPLY, and DIVIDE verbs specify a required or optional 
exception branch as part of the statement. When the 
exception branch is present, it makes a conditional statement 
out of an otherwise imperative one. The format of an 
exception branch is: 

f~iv~~D KEY ~ imperative-statements 
~ON SIZE ERROR; 

5.5 SEQUENCE CONTROL STATEMENTS 

The starting point for program execution is at the first 
statement of the Procedure Division. When a program contains 
no sequence control statements, control proceeds to 
successive statements until the end of the paragraph or 
section is reached. Control then passes to the first 
statement in the next paragraph or section and proceeds in 
this manner to the end of the program. 

A sequence control statement, however, alters the normal 
sequence of controi. These statements are: 

GO TO Permanently releases control to the first 
statement of the paragraph or section to which it 
refers. 

CALL Transfers control from one runtime COBOL program 
to another. 

UCALL Transfers control to a loadable program written 
in a language other than COBOL. Loadable program 
can return to the next statement by using a RTS 
assembly instruction. 

PERFORM - Executes the statements of specified paragraphs 
or sections, then returns control to the 
statement that follows the PERFORM statement. 

IF Causes control to branch into one of two paths, 
depending on the outcome of a conditional test. 
These paths rejoin at the beginning of the next 
sentence unless a GO TO branch is used in one or 
both paths. The IF statement is discussed in 
the Conditional Branch section. 

EXIT Declares the end of a paragraph. 

Page 5-27 



STOP RUN Terminates the program in an orderly manner. 

STOP "LIT" - Can be used to display a character string on 
the display screen. 

5.5.1 THE GO TO STATEMENT 

The GO TO statement conditionally or unconditionally 
transfers control permanently to another point in a program. 
The formats of this statement are: 

Format 1: 
GO TO procedure-name-1 

Format 2: 
GO TO procedure-name-1 [, procedure-name-2] ••• , 

procedure-name-n DEPENDING ON identif ier-1 

Format 1 is the unconditional GO TO statement that 
permanently transfers control to another paragraph or section 
that is specified by procedure-name-1. Examples of 
unconditional GO TO statements are shown below. 

GO TO TEST- ROUTINE 

IF A EQUALS B GO TO SINCE-ROUTINE ELSE ADD A TO B 
GO TO START-ROUTINE 

Format 2 is the conditional GO TO which is a multiple 
branch point that references a maximum of 16 paragraphs or 
sections. Since the execution of the branch depends on the 
value of the identifier, this item is tested when the 
statement is executed to determine which branch to take. An 
example of a conditional GO TO statement is: 

GO TO FEDERAL-TAX, STATE-TAX, LOCAL-TAX DEPENDING 
ON GROSS-SALARY-CODE. 

When the conditional GO TO statement.is executed, 
control is transferred to procedure-names -1, -2, or -n, 
depending on whether the identifier's value is 1, 2, ~r n. 
The identifier must be an elementary item of numeric integers 
that can be subscripted if necessary. If identifier's value 
is not within the specified range, no transfer occurs, and 
control passes to the next statement. 

Page 5-28 



5.5.2 THE CALL STATEMENT 

The CALL statement transfers control from one runtime 
COBOL program to another. The Linkage Section can be used 
with the CALL since this section is a common area for data 
that the called program can also access. The format of this 
statement is: 

CALL r~~~;~~ame} [USING DATA-NAME1 ••• DATA-NAME20] 
\.~KEYnn 

File-name represents a COBOL compiler-generated loadable 
file. FKEYnn and SKEYnn are loadable program files whose 
name assigns them to a function or shift-function key, 
respectively: nn is 01 to 16 for function keys, or 03 to 16 
for shift function keys. 

The program in which the CALL statement appears is the 
calling program; the program whose name is specified in the 
CALL statement is the called program. The execution of a 
CALL statement transfers control to the called program. 

·Control is only returned to the calling program by a 
subsequent call, and execution begins at the top of the 
recalled program. 

5.5.3 THE UCALL STATEMENT 

The UCALL statement allows the user to include at 
runtime subroutines written in a language other than COBOL. 
The format of this statement is: 

UCALL filename [(n) USING data-name-1, data-name-2, ••• 
data-name-20]. 

File-name represents a loadable program-file with a .LO 
suffix. Optionally, n represents the entry point parameter 
(0-9) to be passed in the A-register. Data-name-1 thru 
data-name-20 represents the data items to be referenced by 
the called program. A pointer to this list of addresses will 
be passed in the x-register. 

Page 5-29 



T~ create a loadable program file, first create a 
relocatable object program by assembling the user program, 
using the REL (relocatable program) option discussed in the 
Assembly Language Manual, as shown in the following example. 

START 

TTL USERPROG 
OPT REL 
LOX #$6600 

R.TS 
END START 

CMAP USERPROG;O=USERPROG.RO 

Next, compile the COBOL program containing the UCALL 
statement. At the end of the COBOL compilation, the compiler 
prints/displays all necessary load information as shown in 
the following example. 

PROCEDURE DIVISION 
• 

. 
UCALL USERPROG USING DATA1,DATA2. 

STOP RUN. 

SIZE: PROG 0100 DATA 0050 
LOAD UCALL OBJ. ABOVE HEX. LOC. 6850 
MAX. UCALL OBJ. IS HEX. 77BO 

Finally, an RLOAD activity can be used to put the user 
program in a loadable format. The user program can be loaded 
anywhere above location $6850 in the example. The following 
RLOAD activity shows how this can be accomplished. 

= RLOAD 
? IF=XX. IF 
? BASE=$6851 
? LOAD=USERPROG.RO 
? OBJA=USERPROG.LO 
? MO=#LP 
? MAPF 
? EXIT 

After the RLOAD activity has been successfully 
completed, the COBOL program can be run and the subsequent 
UCALL to the user program will be performed. 

Page 5-30 



During runtime, the execution of a UCALL statement 
transfers control to the called user program. An RTS 
instruction returns control to the statement following the 
UCALL statement. The called user program may not exceed 
available memory locations. 

5.5.4 THE PERFORM STATEMENT 

The PERFORM statement executes all statements in one or 
more specified paragraphs or sections for a specified number 
of times or until a condition is satisfied. When a PERFORM 
statement has finished execution, program control returns to 
the statement that follows the PERFORM statement. The 
formats of this statement are: 

Format 1: 
PERFORM procedure-name-! [THRU procedure-name-2] 

Format 2: 
PERFORM procedure-name-! [THRU procedure-name-2) 

Format 3: 

{~dentif ier\ 
integer j 

TIMES 

PERFORM procedure-name-! [THRU procedure-name-2] 

UNTIL condition 

Format 4: 
PERFORM procedure-name-! [THRU procedure-name-2] 

VARYING (ind. ex-name-l\ 
"-ident,if ier-lj 

BY (identif ier-3l UNTIL 
~literal-2 j 

[ AFTER {index-name-4) 
~literal-3 

FROM ~~~~~i~~:~=~ 
~iteral-1 ~; 

condition-! 

FROM ff ~~~~i~~:~=~ 
\i-iteral-4 J 

BY (identif ier-6l UNTIL condition-2 
(literal-5 j 

!AFTER (index-name-7) FROM {index-name-8~ L identif ier-7 identifier-8 
literal-6 

condi tion-3] J BY (ident. if ier-9't 
"-literal-7 j 

UNTIL 

Page 5-31 



Normal program sequence resumes after the last statement 
of the last specified paragraph or section has been executed. 
The last statement performed, however, must not be an 
unconditional GO TO statement. 

When procedure-name-2 is included in any PERFORM format, 
it must follow procedure-name-1 in the normal logical 
sequence of the program. GO TO statements and other PERFORM 
statements are permitted between procedure-name-! and the 
last statement of procedure-name-2 provided that the sequence 
ultimately returns to the f ina1 statement of 
procedure-name-2. For example: 

PERFORM BONUS-CALCULATION 
PERFORM BONUS-CALCULATION THRU PRINT-LINE 

If a conditional branch is required before the final 
sentence, procedure-name-2 must be the name of a paragraph 
consisting solely of the EXIT statement; all paths must 
eventually lead to this point. For example: 

PERFORM ERROR-IN-DATA THRU ERROR-IN-DATA-EXIT. 
PERFORM DATA-UPDATE THRU DATA-UPDATE-EXIT. 

When a sequence of statements executed by a PERFORM 
statement includes another PERFORM statement, the sequence of 
procedures associated with them including the PERFORM must be 
either totally included in, or totally excluded from, the 
logical sequence referred to by the first: PERFORM. Thus~ an 
active PERFORM statement 1whose execution point begins within 
the range of another PERFORM must not contain within its 
range the exit point of the other active PERFORM statement. 

The TIMES option in Format 2 executes the procedures a 
specified number of times. A counter is set up with a value 
equal to the value of the identif~er or integer. Before each 
execution of the specified procedure, this counter is tested 
for a negative or zero value. If the counter's value is 
positive, the procedure is executed, and the value of the 
counter is decreased by one. When the value is negative or 
zero, the procedure has been executed the correct number of 
times, and control transfers to the statement following the 
PERFORM statement. For example: 

PERFORM COUNTER-ROUTINE 100 TIMES 

The UNTIL option in Format 3 states that the number of 
times the procedures are exec~ted depends on the fulfillment 
of a simple or compound condition that is evaluated before 
the procedures are executed. When the condition is found to 
be false, the procedure is executed, and the expression is 
evaluated again. This process is repeated until the 
expression is found to be true; control then transfers to the 
statement following the PERFORM statement. If the 

Page 5-32 



conditional expression is found to be true when the PERFORM 
statement is first encountered, the specified procedure is 
not executed. For exa~ple: 

PERFORM COUNTER-ROUTINE UNTIL ITEM-COUNTER 
GREATER THAN 101 

The VARYING option in Format 4 executes the PERFORM 
repeatedly while increasing or descreasing the value of one 
to three identifiers or index-names once for each execution 
until a conditional is satisfied. For example: 

PERFORM TABLE-SEARCH VARYING SUB-1 FROM 1 BY 1 
UNTIL TRANS-CODE = ITEM-CODE (SUB-1) 

The flow charts in Figure 5-1 illustrate the logic of 
the PERFORM statement when one, two, or three identifiers are 
varied. 

For example, assume that a billing procedure uses a 
three-dimensional rate table. This table has rates for five 
regions, each of which includes ten states, each of which 
contains rates for twelve cities. The basic updating 
procedure for this table could be: 

RATE-UPDATING. 
MULTIPLY RATE (REGION, STATE, CITY) BY 
ADJUST-FACTOR GIVING RATE (REGION, STATE, CITY). 

To execute this procedure once for each city of each state in 
each region, the following PERFORM statement could be used: 

PERFORM RATE-UPDATING VARYING REGION FROM 1 BY 1 
UNTIL REGION IS GREATER THAN 5 AFTER STATE FROM 1 
BY 1 UNTIL STATE EQU~S 11 AFTER CITY FROM 1 BY 1 
UNTIL CITY IS GREATER THAN 12. 

' When this PERFORM is executed at object time, the 
RATE-UPDATING procedure is executed for the first city of the 
first state in the first region, then for the next city, etc. 
The PERFORM is complete when the procedure is executed for 
the twelfth city of the tenth state of the fifth region, by 
which time the procedure has been executed 600 times. 

Page 5-33 



5.5.5 THE EXIT STATEMENT 

The EXIT statement ends a procedure that is executed by 
a PERFO'.RM statement. The format of.this statement is: 

paragraph-name. EXIT 

EXIT must be the paragraph's only statement, and is 
equivalent to a paragraph with no sentences. Thi$ statement 
generates no code. For example: 

TABLE-LOOK-UP-EXIT. EXIT. 
NON-NUMERIC-DATA-EXIT. EXIT. 

5.5.6 THE STOP STATEMENT 

The format of the STOP statement is: 

STOP (literal\ 
RUN j 

STOP RUN terminates the program; STOP "literal" displays the 
literal and then continues with program execution. 

Page 5-34 



PERFORM 

EX-ect..ite-
p1 through p2 

Augment 
d1by d3 (or 13) 

PERFORM 

Initialize 
d 7 to d 8 (or 18) 

Augment 
d4 by d6 (or 16) 

EXIT 

EXIT 

Initialize 
d 4 to d5 (or 15) 

··Execute 

p1 through p2 

PERFORM 

Set 
d tod2 (or1 2l d! to d5 (or \l 

Initialize 
d 4 to d5 (or \l 

Augment 
d1 by d3 (or 13) 

Augment 
d1 by d3 (or 13) 

EXIT 

Execute 
p1 through p2 

Figure 5-1 PERFORM Statement (VARYING Option) 

Page 5-35 

Augment 
d4 by d6 (or 16) 



5.6 TABLE-HANDLING STATEMENTS 

A table is defined in the working-Storage Section of the 
Data Division through the use Of the OCCURS and REDEFINES 
clauses. The values of a table may be loaded through the 
VALUE clause, or they may be loaded through a program 
subroutine. 

The entries of a table may be accessed through either 
subscripting or indexing. Indexing is a technique similar to 
subscripting, but has the advantage that it contains a direct 
pointer to an individual element in a table rather than an 
occurrence number. There are two statements used in indexing 
a table: SET and SEARCH. 

5.6.1 SUBSCRIPTING A TABLE 

A subscript must be assigned a dataname that represents 
a numeric elementary item in the Working-Storage Section. 
When used in a statement to refer to an entry in the table, 
the format is: 

data-name (subscript)_ 

where data-name is the name of the redefined table, and the 
subscript has a numeric value that represents a specific 
table entry. A subscript represents an occurrence value. 

For example, a sample table is defined by the Data 
Division statements: 

01 PARTS-TABLE VALUES. 
05 FILLER PIC 9(5) VALUE 53925. 
05 FILLER PIC 9(5) VALUE 29383. 
05 FILLER PIC 9(5) VALUE 49582. 
05 FILLER PIC 9(5) VALUE 39049. 

01 PARTS-TABLE REDEFINES PARTS-TABLE-VALUES. 
05 PART-NUMBER PIC 9(5) OCCURS 4 TIMES. 

The subscript that will be used to locate table entries 
is defined as: 

77 SUB-1 PIC 9 VALUE ZERO. 

To find a particular table entry for a sample 
transaction code, the following statements could be used. 

MOVE TRANS-CODE TO SUB-1 ON SIZE ERROR PERFORM 
ERRONEOUS-CODE. 

MOVE PART-NUMBER (SUB-1) TO PART-NUMBER-OUT. 

Page 5-36 



For tables whose codes do not run consecutively from 1, 
2, 3, etc., the following statements would locate entries. 

PERFORM TABLE-SEARCH VARYING SUB-1 FROM 1 BY 1 
UNTIL TRANS-CODE IS EQUAL TO TABLE-ENTRY-CODE 
OR SUB-1 IS GREATER THAN TABLE-LENGTH • 

• 

TABLE-SEARCH. 
IF TRANS-CODE EQUAL TO TABLE-ENTRY-CODE MOVE 

TABLE-ENTRY-VALUE {SUB-1) TO VALUE-OUT. 

5.6.2 INDEXING A TABLE 

The difference between subscripting a table and indexing 
a table is that a subscript represents an occurrence number 
while an index stands for a displacement value from the start 
of the table. Generally, indexed produce a more efficient 
object code than do subscripts, since they don't have to be 
converted into displacement values to refer to table entries. 
The general format that is used to refer to an indexed table 
entry is: 

data-name {index-name) 

where the index-name must conform to the rules for it that 
are mentioned in the SET and SEARCH statements. 

5.6.3 THE SET STATEMENT 

The SET statement establishes table-handling reference 
points by setting index-names associated with table elements. 
An index-name must always be SET to an appropriate value 
before the first execution of a SEARCH statement. The 
formats of this statement are: 

Format 1: 

SET 

Format 2: 

[index-name-I\ 
\data-name-1 j 

SET index-name {up BY ) (data-namel 
(DOWN BY \literal J 

An index name is defined in a table's INDEXED BY clause. 
Format 1 data-names are either data items or numeric· 
elementary items that contain only integers. The data-name 
Format 2 must not be an index data item. Literals must be 
positive integers. 

Page 5-37 



In Format 1, the following actions occur: 

1. Wheri index-name-1 is chosen, it is set to a value that 
corresponds to the same occurrence number to which 
either index-name-2, data-name-2, or literal 
corresponds. If data-name-2 is an index data item, or 
if index-name-2 is related to the same table as index
name-1, no conversion takes place. 

2. When data-name-1 is chosen, and it is an index data 
item, it may be set equal to either the contents of 
index-name-2 or data-name-2 where the latter is also an 
index data item; literal cannot be used. 

3. If data-name-1 is chosen, and it is not an index data 
item, it may be set only to an occurrence number that 
corresponds to the value of index-name-2; neither data
name-2 nor literal can be used. 

In Format 2, the value of index-name is incremented (UP 
BY) or decremented (DOWN BY) by a value that corresponds to 
the num:ber of occurrences specified by the value of literal 
or identifier. For example: 

SET ITEM-INDEX TO 1 
SET RATE-INDEX UP BY 1 
SET TABLE-INDEX DOWN BY 1 

5.6.4 THE SEARCH STATEMENT 

The SEARCH. statement searches a table for a table 
element that satisfies the· specified condition and adjusts 
the associated index-name to indicate that table element. 
The format of this statement is: 

SEARCH identif ier-1 [VARYING (index-name-lt] 
· identifier-2} 

[; AT END imperative-statement-I] 

; WHEN condition-I 

[ci WHEN condition-2 

[imperative-statement-2l 
~NEXT SENTENCE j 

{impera.tive-statemen. t-3\ J 
\_NEXT SENTENCE j 

Data-name-1 may not be subscripted or indexed, and its 
data description must contain OCCURS and INDEXED BY clauses. 

Data-name-2, when specified, must have a USAGE IS INDEX 
clause in its data description, or must represent a numeric 

Page 5-38 



elementary item that contains only integers. It is 
incremented by the same amount and at the same time as the 
occurrence number represented by the index-name of 
data-name-1. 

When the SEARCH statement is executed, a serial search 
occurs that starts with the current index setting and follows 
one of the procedures described below. 

When the index-name contains a value that is less than 
the highest permissible occurrence number for· data-name-1, 
the specified conditions are evaluated sequentially as 
written, making use of any specified index settings to 
determine the occurrence of items to be tested. When no 
condition is satisfied, the index-name is incremented to 
reference the next occurrence. This process_is repeated. 

When the index-name contains a value that is greater 
than the highest permissible occurrence number for 
data-name-1, the SEARCH is immediately terminated. When the 
AT END clause is included, imperative-statement-I is 
executed; otherwise, control passes to the next sentence. 

When one of the conditions is satisfied, the search 
immediately terminates, and the specified imperative 
statement is executed. The index-name remains set at the 
occurrence that caused the condition to be satisfied. 

When a specified imperative statement is executed that 
does not include a GO TO statement, program control passes to 
the next sentence. 

In the VARYING option, the index-name is only used if it 
appears in the table's INDEXED BY clause; otherwise, the 
first index-name in the INDEXED BY clause is used. If the 
index-name appears in the INDEXED BY clause of another table, 
the occurrence number represented by the index-name is 
incremented by the same amount and at the same time as the 
occurrence number represented by the index-name associated 
with data-name-1. 

If data:...name-1 is in a hierarchy of groups, each group's 
description must have an OCCURS clause and an index-name. 
The settings of these index-names are used throughout the 
execution of the SEARCH statement to refer to data-name-1 or 
items therein. These index settings are not modified by the 
execution of the SEARCH statement (unless stated as the 
index-name); only the index-name or data-name-2 associated 
with data-name-1 is incremented by the SEARCH. A diagram of 
a SEARCH operation containing two WHEN phrases is shown in 
Figure 5-2. 

Page 5-39 



SEARCH 

yes 

yes 

Increment Index-name for 
Identifier-1 (Index-name-1 
if applicable.) 

Increment Index-name-2 * 
for a different table or 
Identifier-2 

AT END *. 
Imperative 
Statement-1 

Imperative 
Statement-2 

Imperative 
Statement-3 

*These operations are only included if called for in the 
statement. 

** Each of these operations transfers control to the next sentence 
unless the statement ends with a GO TO statement. 

Figure 5-2 
SEARCH Statement Operation 

Page 5-40 

** 



5.7 COPY STATEMENTS 

The COPY statement incorporates source text obtained 
from files external to the COBOL source program. 

The COPY may be written in any of the following places 
in a COBOL program. 

1. In the Environment Division 
SOURCE-COMPUTER. Copy-statement. 
OBJECT-COMPUTER. Copy-statement. 
FILE-CONTROL. Copy-statement. 
I-0 CONTROL. Copy-statement. 

2. In the Data Division 
FILE SECTION. 
FD file-name copy-statement. 
01 data-name copy-statement. 
WORKING-STORAGE SECTION. 
01 data-name copy-statement. 

3. In the Procedure Division 
{paragraph-name } copy statement. 
~section-name SECTION 

Source text, composed of either one paragraph or one 
section, is is stored as a file on some storage medium, such 
as disk or diskette. The specified file is copied during 
compilation, and the result is the same as if the routine 
were actually a part of the source program. The COPY 
statement will copy source text into any part of a program 
after the Environment Division1 the text can be anywhere from 
one line to an entire paragraph. The format of this COPY 
statement is: 

COPY file-name. 

When the source text is composed of one paragraph, it is 
copied into the source program in place of the COPY 
statement, with the procedure-name of the routine. · 

When the source text is composed of one section, it is 
copied into the source program in place of the COPY section, 
with the section-name ot the COPY section automatically 
replacing the section-name of the section being copied. 

Examples of the COPY statement are shown below. 

FD MASTER-FILE COPY FILEA. 

FILEA is the file-name of the file that contains a 
complete File Description entry to be copied into the 
source program as the description of the file named 
MASTER-FILE. 

Page 5-41 



01 SUM-DATA COPY SUMMARY-A. 

SUMMARY-A is the name of a file whose contents is a record 
description entry of the form: 

02 COUNT 
02 G-TOTAL 
02 0-TOTAL 
02 G-DEVIATION 
02 0-DEVIATION 

PIC 9(3). 
PIC 9(5)V99. 
PIC 9(6)V99. 
PIC 9(4)V99. 
PIC 9(4)V99. 

The data description copied into the source program in place 
of the line bearing the COPY clause is: 

01 SUM-DATA. 
02 COUNT PIC 9 ( 3} • 
02 G-TOTAL PIC 9(5)V99. 
02 0-TOTAL PIC 9(6)V99. 
02 G-DEVIATION PIC 9(4)V99. 
02 0-DEVIATION PIC 9(4}V99. 

Page. 5'""42 



CHAPTER 6 - GUIDE TO WRITING COBOL CRT TRANSACTIONS 

This chapter describes the COBOL CRT screen I/O support. 
The FORMS Design Facility (FORMS), however, provides a more 
simplified and more powerful logical screen access method. 

FORMS allows the programmer to interactively create and 
modify screen formats for data entry and validation 
applications. FORMS allows the operator to view on the 
screen both prompting menus and the format being created. 

Facilities are available to generate COBOL data 
definition structures from the format. These structures are 
suitable for copying into a COBOL applications program that 
wants to reference that format. 

The FORMS Access Facility (CFORMS) allows the COBOL user 
to handle screen input and output operations at field or 
entire format levels. CFORMS maintains storage areas for the 
actual formats, decreasing the COBOL program storage 
requirements for format storage and field edit coding. 

6.1 WRITING A CRT FORMAT 

A screen format is set up in the Working-Storage Section 
as described in Chapter 4. A sample screen description 
appears below. 

01 SCREEN-1 LINE IS NEXT PAGE. 
02 FILLER PIC X(S) LINE~ COLUMN .3 VALUE 'NAME'. 
02 FILLER PIC X(l5) COLUMN 9 VALUE SPACE. 
02 FILLER PIC X(7) LINE 5, COLUMN 3~ VALUE 'ADDRESS' 
02 FILLER PIC X(20) VALUE SPACE. 

LINE IS NEXT PAGE clears the screen and protects all 
positions. 

LINE 3 COLUMN 3 VALUE 'NAME' displays the word NAME on 
line 3 at column 3. No data should ever be placed in column 
1, which contains screen control codes. 

COLUMN 9 moves the cursor's position to column 9, but 
stays on line 3 since a new line had not been stated. At 
least one column should separate screen items for the storage 
of internally-generated screen control codes. When the VALUE 
clause contains a figurative constant, such as SPACE or ZERO, 
a field is created that is the size of the PICTURE. This 
field is unprotected, underscored, and accepts data when 
displayed on the screen. 

LINE 5 COLUMN 3 displays the word ADDRESS where 
specified. 

Page 6-01 



The X(20) VALUE SPACE entry creates an unprotected, 
underlined field that is 20 characters long. Since there is 
no column clause in this entry, the compiler generates one 
space automatically between the word ADDRESS and the 
beginning of this field. 

6.2 SENDING DATA TO THE SCREEN 

The Procedure Division statement, DISPLAY SCREEN-1, 
results in the following display. 

6.3 RECEIVING DATA FROM THE SCREEN 

A screen-response record is written in the 
Working-Storage Section to accommodate the data entered in 
unprotected f ie}ds on the screen. A response record for the 

'SCREEN-1 display would be: 

01 RESPONSE. 
02 RNAME PIC X(lS). 
02 RADDRESS PIC X(20). 

When the SEND PAGE key is pressed at transaction time, 
the Procedure Division statement ACCEPT RESPONSE moves data 
from the NAME and ADDRESS fields to RNAME and P~DDRESS. 

Page 6-02 



6.4 WRITING ERROR INDICATIONS 

The following technique causes a field to blink and 
reverse video when erroneous data has been detected during 
editing tests described later in this chapter. 

(Working-Storage) 
77 X PIC 9. 
01 ERR-ROW. 

02 FILLER PIC 99 VALUE 3. 
02 FILLER PIC 99 VALUE 5. 

01 ROW REDEFINES ERR-ROW PIC 99 OCCURS 2 TIMES. 
01 ERR-COL. 

02 FILLER PIC 99 VALUE 15. 
02 FILLER PIC 99 VALUE 10. 

01 COL REDEFINES ERR-COL PIC 99 OCCURS 2 TIMES. 

(Procedure Division) 
MOVE 2 TO X. 
PERFORM ERR-BLANK THRU ERR-BLINK-EDIT • 

• 

ERR-BLINK. 
DISPLAY @(ROW(X), COL(X)) $EOE2. 

ERR-BLINK-EDIT. EXIT. 

When the program is checking the data entered in 
RADDRESS and an error is discovered, the Procedure Division 
instructions shown above would be performed. The 
working-Storage tables would be used for determining the 
field location. 

The statement MOVE 2 TO X means that the error is in the 
second data field. The @(ROW(X),COL(X)) phrase establishes 
the line and column location on the screen, using subscripts 
and the tables. 

A single dollar sign ($) precedes any of the screen 
control codes. EO sets the blink condition, and E2 sets the 
reverse video condition. A complete list of screen control 
codes is provided in Appendix B. 

The following Procedure Division statements clear the 
blink and reverse video condition. 

MOVE 2 TO X. 
PERFORM E,RR-OFF THRU ERR-OFF-EXIT • 

• 
• 

ERR-OFF. 
DISPLAY @(ROW(X),COL(X)) $ElE3 • 

. ERR-OFF-EXIT. EXIT. 

Page 6-03 



El clears the blink condition, and E3 turns off the 
reverse videoo 

The following is an example of a situation in which some 
data are always the same, such as titles, and other data are 
variable upon input from another source. 

WORKING-STORAGE SECTION. 
01 DATA-RECORD. 

02 PART-NUMBER PIC x { 4) • 
02 DESC PIC X(l6). 
02 LOCATION PIC 999. 
02 QTY-ON-HAND PIC 9 { 4) • 
02 COST PIC 9999V99. 

01 SCREEN-2 LINE IS NEXT PAGE. 
02 FILLER PIC X {11) LINE 4 COLUMN 2; 

VALUE 'DESCRIPTION'. 
02 DESC PIC x {16) VALUE I I . 
02 FILLER PIC x { 8) LINE 6 COLUMN 2; 

VALUE 'LOCATION'. 
02 SLOC PIC ZZ9 COLUMN 26; VALUE I ' • 
02 FILLER PIC x ( 8) LINE 8, COLUMN 2; 

VALUE 'QUANTITY'. 
02 SQTY PIC ZZ9 VALUE ' I . 
02 FILLER PIC X(4) COLUMN 50; 

VALUE I COST I. 
02 SCOST PIC ZZZ.99 COLUMN 46 VALUE IX I • 

The VALUE ' ' for DESC, SLOC, SQTY, and SCOST makes them 
protected fields, so that their data cannot be changed on the 
screen. 

The following instructions can be used with DATA-RECORD 
and SCREEN-2 to read disk file data and move it to the 
screen. 

OPEN DATAFILE. 
READ DATAFILE INTO DATA-RECORD. 
MOVE DESC TO SDESC. 
MOVE LOCATION TO SLOC. 
MOVE QTY-ON-HAND TO SQTY. 
MOVE COST TO SCOST. 
DISPLAY SCREEN-2. 

When these statements are executed, data is read from 
DATAFILE into DATA-RECORD. Each data item in DATA-RECORD is 
moved separately to its corresponding data item in SCREEN-2, 
which is then displayed on the CRT. All fields in SCREEN-2 
are protected, which means that none of them can be changed 
through the keyboard. 

Page 6-04 



6.5 SCREEN MESSAGES 

The following statement sends a message to the screen. 

DISPLAY @(24,3) $EOEAC4 'INVALID ENTRY' $El. 

This message begins on line 24, column 3. Screen control 
code EO sets the blink code, while EA protects the field. 

NOTE: When a screen control code is used on an unprotected 
field, EA should follow the code to protect the 
field, unless it is meant to be unprotected. 

The C4 code moves the cursor to the next position. If 
this code had been omitted, the I of INVALID ENTRY would 
overlay the EO and EA codes. The final El code clears the 
blinking condition so that the rest of the line remains 
protected and does not blink. 

CAUTION: Never start a message on column 1 since this 
position contains the protected line code. 
Placing data in column 1 overlays this code, and 
the entire line would be unprotected and returned 
as data when an ACCEPT command was executedo 

Page 6-05 



6.6 EDITING DATA FIELDS 

Unprotected fields on the screen accept any input, 
therefore the program must edit the data that is read into 
memory to ensure that the correct type of data has been 
entered. Tests such as ON SIZE ERROR, IF NUMERIC, IF 
ALPHABETIC, IF NEGATIVE, etc., can be performed as explained 
in the Conditional Statement section in Chapter 5 and 
illustrated in the following program extract. 

WORKING-STORAGE SECTION. 
77 E-NAME PIC A(lO}. 
77 E-QTY PIC S9(4). 
77 E-PRICE PIC S999V99. 
77 ERROR-FLAG PIC 9 VALUE ZERO. 
01 SCREEN-3 LINE IS NEXT PAGE. 

02 FILLER PIC X(4) LINE 2, COLUMN 2 VALUE 'NAME'. 
02 S-NAME PIC X(lO) VALUE SPACE. 
02 FILLER PIC X(8) LINE 4 COLUMN 2. 

VALUE 'QUANTITY'. 
02 S-QTY PIC X(4) COLUMN 12 VALUE SPACES. 
02 FILLER PIC X(S) COLUMN 50 VALUE 'PRICE'. 
02 S-PRICE PIC X(S) VALUE SPACE. 

01 SCREEN-IN. 
02 I-NAME PIC X (10). 
02 I-QTY PIC X(4). 
02 I-PRICE PIC X(S). 

01 CLEAR-BLINK. 
02 FILLER PIC X LINE 2 COLUMN 6 VALUE $El. 
02 FILLER PIC X LINE 4 COLUMN 11 VALUE $El. 

PROCEDURE DIVISION. 
START. 

DISPLAY SCREEN-3. 
GET-SCREEN. 

ACCEPT SCREEN-IN. 
PERFORM BLINK-OFF. 
MOVE I-NAME TO E-NAME. 
IF I~NAME EQUAL SPACES PERFORM NAME-ERR 

GO TO EDIT-QTY. 
IF E-NAME NOT ALPHABETIC PERFORM NAME-ERR. 

EDIT-QTY. 
MOVE I-QTY TO E-QTY ON SIZE ERROR PERFORM QTY-ERR 

GO TO EDIT-PRICE. 
IF E-QTY IS NOT NUMERIC PERFORM QTY-ERR 

GO TO EDIT-PRICE. 
IF E-QTY IS NEGATIVE PERFORM QTY-ERR 

GO TO EDIT-PRICE. 
IF E-QTY IS GREATER THAN 10 PERFORM QTY-ERR. 

EDIT-PRICE. 
MOVE I-PRICE TO E-PRICE ON SIZE ERROR 

PERFORM PRICE-ERR GO TO CHECK-MORE. 
IF E-PRICE IS NOT NUMERIC PERFORM PRICE-ERR 

GO TO CHECK-MORE. 

Page 6-06 



IF E-PRICE IS NEGATIVE PERFORM PRICE-ERR. 
CHECK-MORE. 

IF ERROR-FLAG = 1 
DISPLAY @(2,24) $E2EAC4 'INVALID ENTRY' $EA 
GO TO GET-SCREEN. 

NAME-ERR. 
DISPLAY @(2,6) $EO. 
MOVE 1 TO ERROR-FLAG. 

NAME-ERR-EXIT. EXIT. 
QTY-ERR. 

DISPLAY @(4,10) $EO. 
MOVE 1 TO ERROR-FLAG. 

QTY-ERR-EXIT. EXIT. 
PRICE-ERR. 

DISPLAY @(4,55) $EO. 
MOVE 1 TO ERROR-FLAG. 

PRICE-ERR-EXIT. EXIT. 
BLINK-OFF. 

DISPLAY CLEAR-BLINK. 
MOVE ZERO TO ERROR-FLAG. 

BLINK-OFF-EXIT. EXIT. 

In this program, the NAME field must not be blank and 
must have only alphabetic characters. The QUANTITY field 
must have only positive numeric integers that are not greater 
than 10. 

The PRICE field must have only positive numeric 
characters that have no more than 3 positions to the left of 
the decimal point and no more than 2 decimal positions to the 
right of it. 

The ON SIZE ERROR is usually included with a move in 
which the receiving field is defined as decimal or decimal 
with an implied decimal point. 

NOTE: The blink clear code in CLEAR-BLINK was placed one 
column before the start of the field since screen 
control codes are always stored there. 

The following technique can be used to set up a date 
with slash separators. 

(Data Division) 
01 DATE-PRINT PIC ZZ/ZZ/ZZ. 

(Procedure Division) 
MOVE DATE TO DATE-PRINT. 

A display of DATE-PRINT after the MOVE would print the system 
date. If the system date contained zeroes, DATE-PRINT would 
contain only blanks. 

Page 6-07 



6.7 WRITING TO THE PRINTER 

The following program extract shows how data is printed. 

(Environment Division) 
FILE-CONTROL. 

SELECT PRTFILE ASSIGN TO PRINTER. 

(Data Division) 
FILE SECTION. 
FD PRTFILE. LINAGE IS 60 TOP IS 6 BOTTOM IS 0 

DATA RECORD IS PRINT-REC. 
01 PRINT-REC PIC X(l32). 
WORKING-STORAGE SECTION. 
01 HEAD-LINE PIC X(80). 
01 DETAIL-I PIC X(80). 
01 DETAIL-2 PIC X(80). 

(Procedure Division) 
OPEN OUTPUT PRTFILE. 

PRINT-LOOP. 
IF LINAGE-COUNTER EQUAL ZERO 

WRITE PRINT-REC FROM HEAD-LINE 
WRITE-PRINT-REC FROM DETAIL-I 

AFTER ADVANCING l LINE. 
WRITE PRINT-REC FROM DETAIL-2 

AFTER ADVANCING 2 LINES. · 
IF BREAK-KEY = 'Y' GO TO END-JOB. 
GO TO PRINT-LOOP. 

The automatic top of page function is performed in the 
example shown above when LINAGE-COUNTER reaches 60 since 
LINAGE was defined as 60. 

Another method of handling top-of-page is using the 
WRITE AFTER ADVANCING PAGE statement before the 
LINAGE-COUNTER reaches its maximum. The use Of AFTER 
ADVANCING and BEFORE ADVANCING in ,the same program is not 
recommended. 

The BREAK-KEY command determines whether or not the 
BREAK-KEY has.been activated. If it has, appropriate actions 
are taken such as doing a wrap-up and terminating the 
program. 

NOTE: If while trying to print data from the screen the 
printer deselects, check to see that you have 
entered the propet data. 

Page 6-08 



CHAPTER 7 - FILE MANAGEMENT 

The Codex File Management System (CFMS) supports 
sequential, indexed sequential files, and CODOS-SA sequential 
files. CFMS commands create and list these files; CODOS 
utility programs initialize and format data diskettes as well 
as provide backup and recovery capabilities. CODOS-SA files 
may be created directly by a COBOL program without using the 
CFMS utility program. 

A maximum of 160 files are allowed per CFMS data 
diskette. Each file is designated by an a-character name 
that is followed by a .DF (for data file) suffix or .SA (for 
CODOS-SA file). Space is allocated for a file on a data 
diskette one cluster (512 bytes) at a time as needed. CFMS 
files may also be stored on any system diskette, and a user 
may have files open on several diskettes simultaneously. 

7.1 FILE ORGANIZATION 

There are three types of file organization: sequential, 
indexed, and CODOS-SA. 

7.1.1 SEQUENTIAL FILE ORGANIZATION 

A sequential file is one whose records are organized in 
a consecutive manner. There is no identifying key associated 
with each record; therefore, records can be accessed only 
sequentially. Sequential files may be assigned to any type 
of input/output device. Sequential file organization is 
indicated in a COBOL program when the ORGANIZATION IS 
SEQUENTIAL clause is written in the Environment Division, or 
when the ORGANIZATION clause is omitted. 

7.1.2 INDEXED FILE ORGANIZATION 

Indexed files are those in which each record is 
associated with an identifying key. These indexed files may 
be accessed either directly or sequentially, but they must be 
assigned to input/output devices that are capable of direct 
access such as disk or diskette. Indexed file organization is 
indicated in the COBOL program by the ORGANIZATION IS INDEXED 
clause. 

7.1.3 CODOS-SA FILE ORGANIZATION 

A CODOS-SA file is a sequential file having the same 
format as source files produced by the EDITOR. CODOS-SA 
files are compatible with all utilities which are able to 
access files created with the EDITOR. 

Page 7-01 



7.2 FILE ACCESS 

The three methods of accessing files are sequential, 
random, and dynamic. 

7.2.1 SEQUENTIAL ACCESS 

Sequential access is the technique of referencing 
records serially within a file. The order in which records 
are read or written is determined implicitly by relative 
physical position within the file. This access method is 
specified by the ACCESS MODE IS SEQUENTIAL clause or is 
implied by the omission of that clause. 

7.2.2 RANDOM ACCESS 

Random access is the technique of reading and writing 
records of a file in an order that is specified by the 
programmer. It may only be used with files that have an 
ORGANIZATION IS INDEXED clause in their description. The 
record to be referenced is indicated by the value of a key at 
the time that the input/output command is issued. This 
access method is specified by the ACCESS MODE IS RANDOM 
clause. The RECORD KEY clause specifies the key. 

7.2.3 DYNAMIC ACCESS 

Dynamic access mode allows the file to be accessed 
either sequentially or randomly depending upon the I/O 
statement. It may only be used with files having an 
ORGANIZATION IS INDEXED clause. This access mode is 
specified by the ACCESS IS DYNAMIC clause. The RECORD KEY 
clause is also required. 

7.3 FILE-HANDLING METHODS 

A file-handling method is the effect of the combination 
of file organization, the manner in which the file is opened, 
and the access technique. 

7.3.1 WITH SEQUENTIAL ACCESS 

An OPEN OUTPUT statement for a file with sequential 
access creates a sequential file. New records replace any 
previous file contents. 

An OPEN EXTEND statement adds new records to the end of 
an existing sequential file. 

Page 7-02 



An OPEN INPUT statement for a file with sequential 
organization obtains records during a READ statement serially 
in the order in which they were originally written. For a 
file with indexed organization, the READ statement would 
obtain records serially in key value order, which is not 
necessarily in the order in which they were written. 

7.3.2 WITH RANDOM ACCESS 

An OPEN OUTPUT statement creates a new indexed file by 
deleting all records in an existing file. A RECORD KEY 
clause must be specified whose contents are consulted upon 
each WRITE statement. 

An OPEN INPUT statement can only be used with an indexed 
file when random access has been specified. A RECORD KEY 
must also be specified whose contents are consulted upon each 
READ statement to locate the desired record within the f i1e. 

An OPEN I-0 statement is only used with an indexed file 
whose RECORD KEY has been specified. This is the only 
statement that allows a file to be updated in one process 
instead of merely being referenced during a READ statement. 
Thus, the file can be both read and written to with the OPEN 
I-0 statement. 

7.4 CFMS FILE STRUCTURE 

All files with the exception of CODOS-SA files, must be 
created using the CFMS file utility prior to attempting to 
access them with COBOL programs. Files created with the CFMS 
utility may have a sequential or indexed organization. 

7.4.1 SEQUENTIAL FILES 

Each sequential file record consists of a 1-byte record 
control character that is followed by the data portion of the 
record. 

The maximum length of a sequential file record is 502 
bytes. 

7.4.2 INDEXED SEQUENTIAL FILES 

The records of an indexed sequential file consist of a 
l~byte record control byte, an n-byte record key, and the 
data portion of the record. 

The maximum size of the combined record key and data 
portions of an indexed sequential record is 502 bytes. 

Page 7-03 



7.5 DISKETTE INITIALIZATION 

Before any files can be created on a diskette, the 
diskette must be pr9perly formatted and a CODOS file catalog 
created. This is accomplished on a CODOS system using the 
appropriate u~ility program as explained in the COOOS User's 
Guide. 

7.6 DATA FILE CREATION 

Perform the following steps to create a data file with a 
.DF suffix. Refer to Table 7-1 for a listing of any error 
messages that may appear. 

1. After the CODOS equal sign (=) prompt, key CFMS, then 
press RETURN. The following messages appear: 

CDX-68 FILE MANAGEMENT SYSTEM -- REV. X.XX 
SPECIFY DISK DRIVE NUMBER OF YOUR NEW DATA DISK. 

2. Key a O, 1, 2, or 3 as appropriate. The CFMS question 
mark (?) prompt appears to indicate that CFMS commands 
may now be entered. 

3. Key: C or CREATE f ile-name,record-size,key-size,D 

where: file-name = 8 alphabetic and/or numeric characters; 
the first character must be alphabetic. 
Special characters, such as the space and 
hyphen, are not permitted. 

record-size = 

key-size = 

D = 

Examples: 

502 bytes maximum for only the data and 
record key portions of a record. 

60 bytes maximum for the record key 
length of an indexed sequential file. 
This option is omitted when specifying 
a sequential file record. 

an optional entry that indicates that 
records with duplicate record keys are 
allo~ed in this indexed sequential file. 

CREATE PRSNNLOl,~00,9 
CREATE NAMES,80,15,DUP 
CREATE XACTIONS,125 



4. Press RETURN. View the following messages that are 
displayed. The messages for a sequential file are: 

SHOULD SEQUENTIAL FILE :file-name. OF BE ADDED TO 
disk-name DISKETTE WITH record-size BYTE RECORDS 
? 

The messages for an indexed sequential file are: 

SHOULD INDEXED SEQUENTIAL FILE file-name.OF BE ADDED TO 
diskname DISKETTE WITH record-size BYTE RECORDS AND A 
key-size BYTE KEY FIELD AND WITH NO DUPLICATIONS ALLOWED 
? 

5. Press Y, then RETURN to add the new file to the 
diskette. The question mark (?) prompt character 
appears on a new line. 

6. To return to the CODOS equal sign (=) level, key 
END (or E) then press RETURN. The CODOS equal sign 
prompt appears. 

NOTE: The CREATE command does not place data in the file. 
A COBOL program must do that. 

Table 7-1. CFMS ERROR MESSAGES 

Number Message 
--~--- --~--~-

1 INVALID FILE NAME 
2 INCONSISTENT RECORD SIZE 
3 INCONSISTENT KEY SIZE 
4 ILLEGAL FILE TYPE 
5 ILLEGAL PROCESSING MODE 
6 FILE CURRENTLY BUSY 
8 END-OF-FILE ENCOUNTERED 
9 RECORD NOT FOUND 
10 DUPLICATE KEY VALUE DETECTED 
12 NEXT RECORD NOT DEFINED 
13 ILLEGAL COMPARE INDICATOR 
16 FILE CURRENTLY OPEN BY THIS USER 
18 INVALID COMMAND BYTE 
20 FILE NOT OPEN & COMMAND NOT OPEN 
21 OPERATING SYSTEM ERROR 
22 DISC SPECIFIED IN OPEN NOT MOUNTED 

NOTE: CODOS disk error messages 0 through 25 can also be 
returned during CFMS processing. See Appendix D for 
a listing of these messages. 

Page 7.;..05 



7.7 DATA FILE LISTS 

To list all CFMS data files on a diskette, p~rform the 
following steps. 

1. After the CFMS question mark (?) prompt, key LIST 
(or L) , then press RETURN. 

2. The ~ollowing information is displayed. for each file 
that has a .DF suffix and the CFMS file format. 

DISK ID: ___ ~.DATE: ____ USER: __________ _ 
NAME REC. SIZE TYPE KEY SIZE 
____ .DF 
____ .DF 
____ .OF 
____ .DF 

DUPL. 

3. Following the LIST process, key an END (or E) command 
as explained below. 

7.8 THE END COMMAND 

To end CFMS program execution, perform the following 
step. 

1. Key END (or E), then press RETURN. The CODOS equal sign 
(=) appears. 

7.8.1 CODOS-SA TYPE FILES 

The CODOS-SA organization specifies a CODOS source image 
file which can be used as input/output. The CODOS-SA type 
data file allows the user to build, retrieve, and update in a 
sequential method. The ONLY input/output statements 
supported by the CODOS-SA type files are: OPEN, READ, WRITE, 
and CLOSE. A COBOL program can define a maximum of eight 
CODOS-SA type files. 

Page 7-06 



CHAPTER 8 - USING A COBOL PROGRAM WITH THE CDX-68 

COBOL source programs are created and maintained by 
using the EDITOR program. A source program is then compiled 
by the COBOL compiler to produce a loadable program module. 
The COBOL compiler and the EDITOR program operate under the 
direction of the Codex disk operating system (COOOS). 

Before writing or compiling a COBOL program with COOOS, 
the programmer should have some general knowledge of the uses 
of the CODOS operating system and its utility programs that 
are available as an aid to software development. Information 
on this operating system may be found in the CODOS User's 
Manual. 

8.1 READYING THE CDX-68 SYSTEM 

The heart of the CDX-68 system is the CRT terminal in 
which the microcomputer, memory, interfaces, and other 
elements are stored. The three DIP switch groups on the back 
of the terminal must be set as follows for proper system 
operation. 

GROUP ONE GROUP TWO 
--------- ---------

ENABLE ON DUPLEX 
DISPLAY OFF PARITY 

TRANS MODE OFF 
VIDEO INV OFF XMIT WORDS 
A ON "STOP BIT 
B OFF CONNECTION 
c OFF MODEM TYPE 
SPEC CHAR OFF TURN AROUND 
LINE FREQ OFF CODE SEL 

GROUP THREE 
-----------

BAUD RATE~SELECT ONLY ONE. 
(9600 is the most desirable) 

Page 8-01 

FULL 
NO 
EVEN 

8-BIT 
1 
DIRECT 
103 
S-CHAN 
EOT 



8.2 ENTERING.AND EDITING A NEW PROGRAM 

Perform the following steps to enter a new COBOL 
program. 

1. Ensure that the CODOS equal sign (=) prompt appears on 
the screen, then press the ALL CAPS key. This key's 
indicator illuminates to show that keyed letters will 
appear in uppercase. 

2. Key: EDIT file-name.SA:drive-number:C 

where file-name = a maximum of 8 alphabetic and/or 
numeric characters; the first 
character must be alphabetic. Special 
characters, such as the space and 
hyphen, are not permitted. 

drive-number = the number of the diskette drive that 
is to store the source program, such 
as O, 1, 2, etc. 

Examples: 

C = COBOL tabs set at columns 6, 9, and 
12. The space bar is used as the tab 
key. Margin A is column 6; Margin B 
is column 9. Column X is Margin C, 
the continuation column. 

EDIT UPDATEOl.SA:l;C 
EDIT OROERSOS.SA:O;C 

NOTE: To have COBOL tabs that conform to the ANS standard, 
refer to the EDITOR User's Guide. 

3. Press RETURN. The screen clears, then displays: 

0010 

4. Key the COBOL source program, pressing RETURN at the 
end of each line. 

5. After the program has been keyed, press the Fl key. The 
cursor moves to the bottom of the screen. Key QUIT, 
then press RETURN. The CODOS equal sign (=) prompt 
appears. 

6. To edit the COBOL program, refer to the EDITOR User's 
Guide for editing instructions. These instructions are 
too numerous to d~sc~ss in this manual. 

Page 8-02 



8.2.1 DATETIME COMMAND 

The CODOS command, DATETIME, requests the current date 
and time from the operator. This information is then stored 
for use in COBOL programs. Perform the following steps to 
use this command. 

1. Ensure that the CODOS equal sign (=) prompt appears on 
the screen, then key: 

DATETIME 

and press RETURN. The following message appears: 

DATE (MMDDYY)-

2. Key the date, then press RETURN. The following message 
appears: 

TIME (HHMM)-

3. Key the time, then press RETURN. The system then 
returns to the CODOS (=) prompt. 

Page 8-03 



8.3 COMPILING A SOURCE COBOL PROGRAM 

To compile a source COBOL program, first ensure that the 
CODOS equal sign (=) prompt appears on the screen, then key: 

COBOL file-name1options 

and press RETURN. File-name is the file name of a COBOL 
source program that is stored on disk or diskette. The 
default file suffix is .SA. The default disk number is zero. 
For example: 

COBOL PRTALL 
COBOL PRTALL.SA 
COBOL PRTALL.SA:O 

The options are: 

none List only source program errors and object 
program size on the screen. 

P List only source program errors on the 
printer. 

S List the source program on the screen as it 
is compiled. 

L List the source program and the compiled 
object code to the screen. 

SP 

LP 

O=f ile-name 

D 

P.n 

List the source program to the line printer 
as it is compiled. 

List the source program and generated 
object code to the line printer as it is 
compiled. 

Saves the compiled code in the stated 
file-name for later execution. The default 
file suffix is .LO, and the default disk 
drive is O. 

Debug mode, which causes the compiled 
program to print each paragraph name on the 
printer during program execution. 

Sets the line count on a printed page 
during compilation to n. The default page 
line count during compilation is 58. 

NOTE: In general, the options may be written in any order. 
However, the O=file-name option must appear last. 

Page 8-04 



Examples: 

COBOL Command 

COBOL PAY 

COBOL PAY:SPO=PAY 

COBOL PAY:PDO=FKEYOS 

Result after Compilation 

Displays source program errors on 
the screen. 

Prints the source program and any 
of the source program's errors. 
The compiled code is saved in the 
file PAY.LO:O. 

Source program errors are printed. 
The compiled code is saved in the 
file FKEYOS.LO:O. Trace coding is 
generated which prints each 
paragraph name on the printer 
during execution. 

If desired, the COBOL compilation process may be halted 
by pressing the BREAK key. 

8.4 EXECUTING THE COBOL PROGRAM 

This section describes the two methods to execute 
compiled COBOL programs. 

8.4.1 INTERACTIVE EXECUTION 

Perform the following steps to execute a compiled COBOL 
program. 

1. Ensure that the CODOS equal sign (=) prompt 
appears on the screen, then key: 

RUN 

and press RETURN. The following messages are displayed: 

CDX68 COBOL 
RUN TIME VERSION X.XX . 
COPYRIGHT 1980 BY CODEX CORP. 
READY-

2. Key the name of a compiled COBOL. program. If this name 
is in the form FKEYnn or SKEYnn, press the function or 
shift key that corresponds with its name. 

NOTE: Files with names FKEYOl through FKEY16, or SKEY03 
through SKEY16 are automatically assigned to the 
respective function or shift function keys. 

Page 8-05 



For example, a program that had the name FKEY03 could be 
called after the READY prompt simply by pressing F3. 

3. Observe any message that may appear. System messages 
are of two types:· operator messages and programme~ 
error messages. 

Operator messages request some form of operator 
interaction such as readyirtg the printer. Some operator 
messages require a·keyboard response: Y for yes and N 
for no. These messages are listed in Appendix B. 

Programmer error mess~ges normally indicate a problem 
that is too seiious for the operator to handle, such as 
a bug in the COBOL program or system. These messages 
have the following format: 

** ERROR (xx) ** 
a brief descriptive message 
AT (pc) 

where xx is the programmer message number, and pc is the 
COBOL program counter when the error occurred. The 
program counter that was running when the error occurred 
is aborted. Programmer error messages are listed in 
Appendix D. 

4. The system can be returned to the CODOS n=n prompt level 
from the COBOL RUN mode simply by keying: 

STOP 

and pressing RETURN, or by keying: 

SHIFT Fl. 

When the program executes a STOP. RUN, the screen is not 
cleared, but the READY-prompt is written on screen line 
23. This process allows the program to leave 
information on the screen for the operator. 

Page 8-06 



8.4.2 BATCH EXECUTION 

Perform the following steps to execute compiled COBOL 
programs. 

1. Ensure that the CODOS equal sign (=) prompt appears on 
the screen, then key: 

RUN;B 

and press RETURN. The following messages are displayed: 

CDX68 COBOL 
RUN TIME VERSION X.XX 
COPYRIGHT 1980 BY CODEX CORP. 
READY-

2. Key the name of a compiled COBOL program. 

NOTE: Program files may not be assigned to function 
keys. 

Using the COBOL runtime in batch mode allows the 
user to execute COBOL programs from a CHAIN 
file. COBOL programs may also be executed 
interactively by using the ";B" option. In 
either case, the user may optionally specify 
disk and file substitution of data-files 
referenced by the COBOL program. This allows 
the user to assign disk and file names in the 
COBOL program, and then use this program to 
access disks and files that do not necessarily 
match those specified in the COBOL program. 

Please note that the "ACCEPT" verb will 
not obtain data from a CHAIN file as keyboard 
input cannot be entered when using a CHAIN file. 

Each program name should be prefaced with an equal sign 
(=);the disk drive number ":n• may (optionally) follow 
the program name. The default disk drive number is 
zero. The syntax •p=• object filename or "PROGRAM=• 
object filename may be used to make CHAIN files more 
readable. 

=EXAMPLE:! 

NOTE: To stop Runtime, key •=STOP," or if using a CHAIN 
file, have •=STOP" in the file. 

Up to four different VOLID:FILNAM subsitutions may be 
defined at Runtime (per program). Each substitution 
block defines the Runtime substitution of a previously 
specified VOLID:FILNAM with a (new) VOLID:FILNAM. 

Page 8-07 



Multiple substitution blocks are separated by a .comma. 
If multiple lines are used, each line must be terminated 
with a comma1 a substitution may not be split between 
lines. If used, VOLID and FILNAMs must not exceed 8 
characters. 

EXAMPLE: A program called UPDATE identifies an employee 
master file as "MASTER:EMPLY" that normally 
resides on volume MASTER. A volume backup is 
kept with the volume name, "BACKUP." At program 
execution time, volume substitution would allow 
the program to execute using the EMPLY file on 
volume BACKUP. 

=UPDATE7MASTER:EMPLY=BACKUP:EMPLY 

If a file copy is only maintained on the MASTER 
volume under the name, "EMPLYOLD," the file name 
substitution would allow it to access the backup 
file copy on the same volume. 

=UPDATE1MASTER:EMPLY=MASTER:EMPLYOLD 

3. The syntax errors that will appear if there is any 
deviation from the expected form are: 

0 
1 
2 
3 
4 
5 
6 

. . 

. • 

: 

Error in old VOLID specified for substitution 
Error in old FILNAM specified for substitution 
Error in new VOLID specified for substitution 
Error in new FILNAM specified for substitution 
= not found 
Name exceeds 8 characters 
Too many substitutions defined. 

4. Observe any message that may appear. System messages 
are of two types: operator messages and programmer 
error messages. 

Operator messages request some form of operator 
interaction such as readying the printer. Some operator 
messages require a keyboard response: Y for yes and N 
for no. These messages are listed i~ Appendix B. 

Programmer error messages normally indicate a problem 
that is too serious for the operator to handle, such as 
a bug in the COBOL program or system. These messages 
have the followig format: 

** ERROR (xx) ** 
a brief descriptive message 
AT (pc) 

where xx is the programmer message number, and pc is the 
COBOL program counter when the error occurred. The 

Page 8-08 



program counter that was running when the error occurred 
is aborted. 

8.4.3 CHAIN FILE OPERATION EXAMPLE 

A chain file mode of operation can be utilized to take 
full advantage of the Batch COBOL facilities to create a 
COBOL system job stream. This requires no operator 
interaction other than the initiation of the chain file. The 
following example illustrates this use. For further 
information on CHAIN files, see the CODOS user's Guide. 

RUN7B 
PGM=INPUT 
PGM=EDIT 
PGM=STOP 
SORTM INPUT.SA,OUTPUT.SA,K=PARAMS.SA 
RUN7B 
PGM=UPDATE 
PGM=PRINT7MASTER:EMPLY=MASTER:EMPLYNEW, 

MASTER:CHECK=MASTER:CHECKNEW 
PGM=STOP 

8.5 DEBUGGING 

*(Begin Runtime) 
*(Input payroll data) 
*(Edit input data) 
*(Terminate Runtime) 
*(SORT input file) 
*(Restart Runtime) 
*(Update program) 
*(Print payroll 

check file) 
*(End Job stream) 

The Codex COBOL system supports two debugging features: 
a paragraph name trace and the EXHIBIT statement. The 
paragraph name trace has already been listed as compilation 
option D (for debug mode). The execution of the EXHIBIT 
statement causes specified data or literals to be displayed 
on the printer. The format of the EXHIBIT statement is: 

EXHIBIT [NAMED] identif ier-1 
literal-I 

identif ier-2 
literal-2 

The items specified in the EXHIBIT statement are 
separated by blanks when printed. When the NAMED option is 
included, the data for an identifier is preceded by the name 
of the identifier. For example: 

EXHIBIT VALUE-A, VALUE-B. 
EXHIBIT NAMED VALUE-A, VALUE-B. 
EXHIBIT 'VALUES ARE' VALUE-A, VALUE-B. 
EXHIBIT NAMED 'VALUES ARE' VALUE-A, VALUE-B. 

Page 8-09 



. Assuming that VALUE-A contains 123 and VALUE-B contains 
'XYZ' then the data printed by the above statements will be: 

123 XYZ 
VALUE-A 123 VALUE-B XYZ 
VALUES ARE 123 XYZ 
VALUES ARE VALUE-A 123 VALUE-B XYZ 

Page 8-10, 



APPENDIX A - COBOL RESERVED WORDS 

ACCEPT CONTROL FILE-CONTROL 
ACCESS CONTROLS FILE-LIMIT 
ACTUAL COPY FILE-LIMITS 
ADD CORR FILLER 
ADDRESS CORRESPONDING FINAL 
ADVANCING COUNT FIRST 
AFTER CURRENCY FOOTING 
ALL FOR 
ALPHABETIC DATA FROM 
ALTER DATE 
ALTERNATE DATE-COMPILED GENERATE 
AND DATE-WRITTEN GIVING 
ARE DE GO 
AREA DEBUG-CONTENTS GREATER 
AREAS DEBUG-ITEM GROUP 
ASCENDING DEBUG-LINE 
ASSIGN DEBUG-NAME HEADING 
AT DEBUG-SUBl HIGH-VALUE 
AUTHOR DEBUG-SUB3 HIGH-VALUES 

DEBUGGING 
DECIMAL-POINT I-0 

BEFORE DECLARATIVES I-0 CONTROL 
BEGINNING DELIMITED IDENTIFICATION 
BLANK DELIMITER IF 
BLOCK DEPENDING IN 
BOTTOM DESCENDING INDEX 
BREAK-KEY DETAIL INDEXED 
BY DlSPLAY INDICATE 

DIVIDE INITIAL 
CALL DIVISION INITIATE 
CANCEL DQWN INPUT 
CF DUPLICATES INPUT-OUTPUT 
CH DYNAMIC INSPECT 
CHARACTERS INSTALLATION 
CLOCK-UNITS ELSE INTO 
CLOSE END INVALID 
COBOL ENDING IS 
CODE ENTER JUST 
COLUMN ENVIRONMENT JUSTIFIED 
COMMA EQUAL 
COMP EQUALS KEY 
COMP--1 ERROR KEYS 
COMP-2 EVERY 
COMP-3 EXHIBIT LABEL 
COMPUTATIONAL EXIT LAST 

· COMPUTATIONAL-1 EXTEND LEADING 
COMPUTATIONAL-2 EXIT LEFT 
COMPUTATIONAL-3 EXTEND LESS 
COMPUTE LIBRARY 
CONFIGURATION FD LIMIT 
CONTAINS FILE LIMITS 

Page A-01 



LINAGE PROCEED SOURCE-COMPUTER 
LINAGE-COUNTER PROCESSING SPACE 
LINE PROGRAM SPACES 
LINE-COUNTER PROGRAM-ID SPECIAL-NAMES 
LINES STANDARD 
LINKAGE QUOTE STATUS 
LOCK QUOTES STOP 
LOW-VALUE STRING 
LOW-VALUES RANDOM SUBTRACT 

RD SUM 
READ SYNC 

MEMORY RECORD SYNCHRONIZED 
MODE RECORDS 
MODULES REDEFINES TALLY 
MOVE REEL TALLYING 
MULTIPLE REFERENCES TAPE 
MULTIPLY RELEASE TERMINATE 

REMAINDER THAN 
NAMED REMARKS THEN 
NEGATIVE RENAMES THROUGH 
NEXT REPLACING THRO 
NO REPORT TIMES 
NOT REPORTING TO 
NUMBER REPORTS TOP 
NUMERIC RERUN TYPE 

RESERVE 
OBJECT-COMPUTER RESET UCALL 
OCCURS RETURN UNIT 
OF REVERSED UNSTRING I"\.,..,. n 'C'T,T T 'II.TT'\ UNTIL V.L".L" J.."l..UJt •1.:tU 

OH REWRITE UP 
OMITTED RF UPON 
ON RH USAGE 
OPEN RIGHT USE 
OPTIONAL ROUNDED USING 
OR RUN 
OUTPUT VALUE 
OV SAME VALUES 
OVERFLOW SD VARYING 

SEARCH 
PAGE SECTION WHEN 
PAGE-COUNTER SECURITY WITH 
PERFORM SEEK WORDS 
PF S~GM~NT-LIMIT WORKING-STORAGE 
PH SELECT WRITE 
PIC SELECTED 
PICTURE SENTENCE ZERO 
PLUS SEQUENTIAL ZEROES 
POINTER SET ZEROS 
POSITION SIGN 
POSITIVE SIZE 
PROCEDURE SORT 
PROCEDURES SOURCE 

Page A-02 



CODE 

co 
Cl 
C2 
C3 
C4 
cs 
C6 
C7 
ca 
C9 
CA 
CB 
cc 
CD 
CE 
CF 

DO 
Dl 
D2 
D3 
D4 
DS 
D6 
D7 
D8 
D9 
DA 
DB 
DC 
DD 
DE 
DF 

EO 
El 
E2 
E3 
E4 
ES 
E6 
E7 
E8 
E9 
EA 
EB 
EC 
ED 

APPENDIX B - DISPLAY CONTROL CODES 

COMMAND 

CURSOR TO HOME POSITION 
CURSOR UP ONE LINE 
CURSOR DOWN ONE LINE 
CURSOR LEFT ONE COLUMN 
CURSOR RIGHT ONE COLUMN 
LOAD CURSOR POSITION 
READ CURSOR POSITION 
SET PAGE MODE 
SET SCROLL MODE 
SET TOP DISPLAY LINE 
SET LAST DISPLAY LINE 
SET LEFT DISPLAY COLUMN 
SET RIGHT DISPLAY COLUMN 
SET PROTECT MODE 
WRITE ABSOLUTE 
READ ABSOLUTE 

CHARACTER INSERT 
CHARACTER DELETE 
ENABLE KEYBOARD 
DISABLE KEYBOARD 
PAGE ERASE 
LINE ERASE 
LINE INSERT 
LINE DELETE 
CLEAR/HOME 
SEND PAGE 
TAB 
BACK TAB 
SET TABS 
START DATA 
END DATA 
SEND LINE 

SET BLINK 
RESET BLINK 
SET (FIELD) VIDEO INVERT 
RESET (FIELD) VIDEO INVERT 
SET HALF BRIGHT 
RESET HALF BRIGHT 
SET UNDERLINE 
RESET UNDERLINE 
SET NON-DISPLAY 
RESET NON-DISPLAY 
SET FIELD PROTECT 
RESET FIELD PROTECT 
SET TRANSPARENT MODE 
RESET TRANSPARENT MODE 

Page B-01 



CODE 

EE 
EF 

Fl 
F2 
F3 
FA 
FB 
FC 
FD 

07 
08 
09 
OA 
OB 
oc 
OD 
18 
98 
9A 
9B 

) 

COMMAND 

SET VIDEO INVERT-FULL SCREEN 
RESET VIDEO INVERT-FULL SCREEN 

TERMINAL RESET 
ALLOW STATUS INDICATORS 
DISALLOW STATUS INDICATORS 
ENABLE LOAD FUNCTION 
DISABLE LOAD FUNCTION 
SET DISPLAY SPECIAL CHARACTERS 
RESET DISPLAY SPECIAL CHARACTERS 

BELL 
BACKSPACE 
HORIZONTAL TAB 
LINE FEED 
VERTICAL FEED 
FORM FEED 
CARRIAGE RETURN 
CANCEL 
STATUS--PARITY ERROR 
STATUS--RECEIVED OVERRUN 
STATUS--FRAMING ERROR 

Page B-02 



APPENDIX C - COMPILER ERROR MESSAGES 

NUMBER EXPLANATION 

O Illegal character has been used. 
1 Continuation expected here. 
3 Parse stack overflow (compiler error). 
4 Variable contains more than 30 characters or a 

number contains more than 15 digits. 
5 Syntax error. 
7 The compiler has generated an out-of-range branch 

address. 
8 COPY statements may not be nested. 
9 File-name used in a COPY statement cannot be 

found. The file-name must end in SA. 
10 This statement label has already been used. 
11 This name is already defined. 
12 Number of OCCURS is too large. 
13 OCCURS is not allowed with FILLER. 
14 This program is too big to execute. 
15 The generated code and symbol table are 

overlapping in memory. 
16 An invalid level number is being used. 
17 REDEFINES statement is illegal. 
18 PI'CTURE clause is too large. 
19 The item previous to this statement is not a 

group. Therefore, this statement is out of order. 
lA Level 01 is missing. 
lB VALUE is not allowed on REDEFINES. 
lC VALUE clause not allowed in LINKAGE SECTION. 
lD Subroutine name exceeds the maximum allowed. 
20 Too many statement labels are being used in a GOTO. 
21 External name already used. 
22 Dummy argument name already used. 
23 Too many clauses in a PERFORM statement. 
24 Already resolved. 
30 Too many operands in an expression. 
31 The number of subscripts are not equal to the 

number of dimensions. 
32 Subscript out of range. 
33 An undefined name has been used. 
34 Operand must be an integer. 
35 Name is not fully qualified. 
36 More than three (3) subscripts are invalid. 
37 A literal used with "ALL" must be only byte. 
38 A literal used with "ALL" must not be numeric. 
39 No OCCURS clause for the table. 
40 An unknown edit code has been used. 
41 There is a conflict between numeric and alphanumeric. 
42 A replacement code must be the leading character. 
43 Only one edit sign may be used. 

Page C-01 



NUMBER EXPLANATION 
------- -----------' I 

44 Only one V or period is allowed in a picture. 
45 Only one S is allowed in an edit picture. 
46 The characters CR and DB must be the last two 

characters of the edit field. 
47 There is a conflict between USAGE and PICTURE. 
48 There is a conflict between VALUE and PICTURE. 
49 Justified RIGHT/PICTURE conflict. 
4A BLANK when ZERO/PICTURE conflict. 
50 Too many nested IF statements. 
51 An incomplete logical expression has been found. 
60 The RECORD KEY clause is missing. 
61 The referenced file is not RANDOM. 
62 An invalid device type is being used, or a disk 

file name is invalid. 
63 A line or column number is too large. Line 

maximum is 24, column maximum is 80. 
64 A line or column overlaps last field. 
65 This field overflows the screen. 
66 A field cannot start in column one. 
67 CRT cursor controls must be the first of any 

elementary item. 
68 A level 77 cannot be used for cursor controls. 
69 FD missing. 
6A File description missing. 
70 Operand must be numeric. 
71 Arithmetic operation not recognized. 
72 Invalid logical expression. 
73 Operand cannot be a literal. Also can mean that 

the program has exceeded available memory. 
74 Compute statement requires too many intermediate 

results to be saved. 

Page C-02 



APPENDIX D - EXECUTION ERROR MESSAGES 

Operator Error Messages 

FILE ******** DOES NOT EXIST 
(An undefined COBOL program or function key 
was requested. 

PRINTER NOT READY--RETRY (Y/N)? 
(The printer is not ready. 
to retry; press N to abort 
program.) 

Ready it and press Y 
the request and the 

Programmer Error Messages 

The following messages are preceded by •ERROR (XX)" and 
followed by "AT (PC)" where XX is the error number, and PC is 
the COBOL program counter in hexadecimal code. This code 
corresponds with the codes printed on the programs's 
compilation listing. 

ERROR NUMBER 

01 
02 
03 
04 
05 
06 
12 
16 
18 
20 
21 
22 
23 
24 
30 
31 

ERROR MESSAGE 

INVALID FILE NAME 
INCONSISTENT RECORD SIZE 
INCONSISTENT KEY SIZE 
ILLEGAL FILE TYPE 
ILLEGAL PROCESSING MODE 
FILE CURRENTLY BUSY 
NEXT RECORD NOT DEFINED 
FILE CURRENTLY OPEN BY THIS USER 
INVALID COMMAND BYTE 
FILE NOT OPEN & CMD NE OPEN 
OS ERROR 
DISK SPECIFIED IN OPEN NOT MOUNTED 
LOAD ERROR 
ILLEGAL SUBSCRIPT 
ILLEGAL I-0 CALL 
VERSIONS DON'T MATCH 

Page D-01 





PAGE 001 ADD 

APPENDIX E - SAMPLE COBOL PROGRAM 

.SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

0010 IDENTIFICATION DIVISION. 
0020 * 
0030 PROGRAM-ID. ADD 
0040 AUTHOR. CODEX CORP. 
0050 DATE-WRITTEN. 03/18/80. 
0060 DATE-COMPILED. 03/20/80. 
0070 * 
0080 * 
0090 ENVIRONMENT DIVISION. 
0100 * 
0110 CONFIGURATION SECTION. 
0120 SOURCE-COMPUTER. CDX-68. 
0130 OBJECT-COMPUTER. CDX-68. 
0140 INPUT-OUTPUT SECTION. 
0150 FILE-CONTROL. 
0160 SELECT DATAFILE 
0170 ASSIGN TO DISK INV:INVFILE 
0180 ORGANIZATION IS INDEXED 
0190 ACCESS IS RANDOM 
0200 RECORD KEY IS PART-NUMBER. 
0210 * 
0220 DATA DIVISION. 
0230 * 
0240 FILE SECTION. 
0250 FD DATAFILE 
0260 LABEL RECORDS ARE OMITTED 
0270 DATA RECORD IS MASTER-REC. 
0280 COPY MASREC. 
0290 * 
0300 WORKING-STORAGE SECTION. 
0310 77 ERRCK PIC 9 VALUE ZERO. 
0320 77 E PIC 99 VALUE ZERO. 
0330 77 X PIC 99 VALUE ZERO. 
0340 77 Y PIC 99. 
0350 77 Xl PIC 99. 
0360 77 X2 PIC 99. 
0370 77 TAB PIC X VALUE $09. 
0380 77 WORK-5 PIC S9(5). 
039.0 01 FUNMSG LINE IS NEXT PAGE. 
0400 02 FILLER PIC X(3) COLUMN 37; VALUE 'ADD'. 
0410 * 
0420 * DISPLAY ITEM NUMBER REQUEST ON LINE 2 OF SCREEN 
0430 01 ITEM-NUM-LINE. 
0440 02 FILLER PIC X(ll) LINE 2; VALUE 'ITEM NUMBER'. 
0450 02 FILLER PIC X(8) COLUMN 15; VALUE SPACES. 
0460 01 ANS. 
0470 02 ANS-ITEM PIC X(8). 
0480 * ERRROW & ERRCOL ARE TABLE POS OF ROW & COL FOR 
0490 * CURSOR FOR ERRORS 

Page E-01 



PAGE 002 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

0500 
0510 
0520 
0530 
0540 
0550 
0560 
0570 
0580 
0590 
0600 
0610 
0620 
0630 
0640 
0650 
0660 
0670 
0680 
0690 
0700 
0710 
0720 
0730 
0740 
0750 
0760 

01 ERRROW. 
02 FILLER PIC 99 VALUE 06. 
02 FILLER PIC 99 VALUE 08. 
02 FILLER PIC 99 VALUE 08. 
02 FILLER PIC 99 VALUE 08. 
02 FILLER PIC 99 VALUE 10. 
02 FILLER PIC 99 VALUE 10. 
02 FILLER PIC 99 VALUE 10. 
02 FILLER PIC 99 VALUE 12. 
02 FILLER PIC 99 VALUE 12. 
02 FILLER PIC 99 VALUE 12. 
02 FILLER PIC 99 VALUE 14. 
02 FILLER PIC 99 VALUE 14. 

01 ROW REDEFINES ERRROW PIC 99 
01 ERRCOL. 

02 FILLER PIC 99 VALUE 73. 
02 FILLER PIC 99 VALUE 16. 
02 FILLER PIC 99 VALUE 41. 
02 FILLER PIC 99 VALUE 71. 
02 FILLER PIC 99 VALUE 18. 
02 FILLER PIC 99 VALUE 43. 
02 FILLER PIC 99 VALUE 72. 
02 FILLER PIC 99 VALUE 18. 
02 FILLER PIC 99 VALUE 43. 
02 FILLER PIC 99 VALUE 73. 
02 FILLER PIC 99 VALUE 20. 
02 FILLER PIC 99 VALUE 43. 

OCCURS 12 TIMES. 

0770 01 COL REDEFINES ERRCOL PIC 99 OCCURS 12 TIMES. 
0780 
0790 
0800 
0810 
0820 
0830 
0840 
0850 
0860 
0870 
0880 
0890 
0900 
0910 
0920 
0930 
0940 
0950 
0960 
0970 
0980 
0990 

01 ERR-TABLE. 
02 FILLER PIC X(20) 
02 FILLER PIC X(20) 
02 FILLER PIC X(20) 
02 FILLER PIC X(20) 

01 ERR-MSG REDEFINES 
01 MASTER-AT-SCREEN. 

02 FILLER PIC X 
02 FILLER PIC X(ll) 
02 FILLER PIC X(l6) 
02 FILLER PIC X(16) 
02 FILLER PIC X(5) 
02 FILLER PIC X(14) 
02 FILLER PIC X(7) 
02 FILLER PIC X(l6) 
02 FILLER PIC. X(7) 
02 FILLER PIC X(21) 
02 FILLER PIC X(7) 
02 FILLER PIC X(16) 
02 FILLER PIC X(5) 
02 FILLER PIC X(18) 
02 FILLER PIC X(5) 

VALUE 'INVALID ENTRY • 
VALUE 'ITEM ALREADY EXISTS'. 
VALUE I SUCCESSFUL I 

VALUE 1 DISK I/O ERROR'. 
ERR-TABLE PIC X(20) OCCURS 4 TIMES. 

LINE 2,COLUMN 14; 
LINE 6; 

LINE 8; 

COLUMN 18; 
COLUMN 57; 

LINE 10; 

Page E-02 

VALUE $EA. 
VALUE 'DESCRIPTION'. 
VALUE SPACES. 
VALUE 'LOCATION/BIN'. 
VALUE SPACES. 
VALUE I COST I • 

VALUE SPACES. 
VALUE' LIST PRICE'. 
VALUE SPACES. 
VALUE' TRADE PRICE'. 
VALUE SPACES. 
VALUE 'QTY ON HAND'. 
VALUE SPACES. 
VALUE 'QTY ON ORDER'. 
VALUE SPACES. 



PAGE 003 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

1000 02 FILLER PIC X(l4) 
1010 02 FILLER PIC X(8) 
1020 02 FILLER PIC X(6) 
1030 02 FILLER PIC X(l6) LINE 12: 
1040 02 FILLER PIC X(5) 
1050 02 FILLER PIC X(l8) 
1060 02 FILLER PIC X(5) 
1070 02 FILLER PIC X(l6) 
1080 02 FILLER PIC X(7) 
1090 02 FILLER PIC XXX 
1100 02 FILLER PIC X(l8) LINE 14: 
1110 02 FILLER PIC XXX 
1120 02 FILLER PIC X(l8) 
1130 02 FILLER PIC XXX 
1140 02 FILLER PIC X(23) 
1150 02 FILLER PIC X 

COLUMN 52: 

1160 02 FILLER PIC X(l3) LINE 17; 
1170 02 FILLER PIC X(8) 
1180 * DATA FROM SCREEN 
1190 01 DATAIN. 
120-0 02 SDESC PIC X(l6). 
1210 02 SLOC PIC X(5). 
1220 02 SCOST PIC X(7). 
1230 02 SLIST PIC X(7). 
1240 02 STRADE PIC X(7). 
1250 02 SQTY-HAND PIC X(5). 
1260 02 SQTY-ORDER PIC X(5). 
1270 02 SDATE. 
1280 03 SDATE-MO PIC XX. 
1290 03 SDATE~DAY PIC XX. 
1300 03 SDATE-YR PIC XX. 
1310 02 SREORDER PIC X(5). 
1320 02 SSTOCKING PIC X(5). 
1330 02 SQTY-PER-PK PIC XXX. 
1340 02 SVEND PIC XXX. 
1350 02 SLEAD PIC XXX. 
1360 02 SBACK-0-FLAG PIC X. 
1370 02. SCOMMENT PIC X (8). 
1380 01 BLINK-OFF. 
1390 * LOC 

VALUE ' DATE ORDERED'. 
VALUE I (MMDDYY) I • 

VALUE SPACES. 
VALUE 'REORDER POINT'. 
VALUE SPACES. 
VALUE 1 STOCKING QTY'. 
VALUE SPACES. 
VALUE I QTY/PKG FOR'. 
VALUE 'REORDER'. 
VALUE SPACES. 
VALUE 'VENDOR/TYPE CODE'. 
VALUE SPACES. 
VALUE 1 LEAD TIME'. 
VALUE SPACES. 
VALUE 'BACK ORDER FLAG'. 
VALUE SPACE. 
VALUE 'COMMENT'. 
VALUE SPACES. 

1400 02 FILLER PIC X 
1410 * COST 

LINE 6,COLUMN 73; VALUE $E3. 

1420 02 FILLER PIC X 
1430 * LIST PRICE 
1440 02 FILLER PIC X 
1450 * TRADE PRICE 
1460 02 FILLER PIC X 
1470 * QTY ON HAND 
1480 02 FILLER PIC X 
1490 * QTY ON ORDER 

LINE 8,COLUMN 16: VALUE $E3. 

COLUMN 41: VALUE $E3. 

COLUMN 71; VALUE $E3. 

LINE 10,COLUMN 18: VALUE $E3. 

Page E-03 



PAGE 004 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

1500 02 FILLER PIC X 
1510 * DATE 
1520 02 FILLER PIC X 
1530 * QTY FOR RE-ORDER 

COLUMN 43; VALUE $E3. 

COLUMN 72; VALUE $E3. 

1540 02 FILLER PIC X LINE 12,COLUMN 18; VALUE $E3. 
1550 * STOCKING QTY 
1560 02 FILLER PIC X 
1570 * QTY PER PACK 
1580 02 FILLER PIC X 
1590 02 FILLER PIC X 
1600 02 FILLER PIC X 
1610 * ERASE LINE 24 

COLUMN 43; VALUE $E3. 

COLUMN 73; VALUE $E3. 
LINE 14,COLUMN 20; VALUE $E3. 

COLUMN 43; VALUE $E3. 

1620 02 FILLER PIC X LINE 24,COLUMN 3; VALUE $D5. 
1630 ****************************************************** 
1640 PROCEDURE DIVISION. 
1650 AA-DRIVER-SECTION. 
1660 * 
1670 * 
1680 * 
1690 * 

THIS SECTION WILL DO INITIALIZATION/OPEN/CLOSE 
PERFO.RM PROCESSING ROUTINES & WRAP UP 

1700 OPEN I~o DATAFILE 
1710 * FUNCTION TYPE MSG 
1720 DISPLAY FUNMSG. 
1730 * GET PART NUM 
17 40 GET-ITEM. · 
1750 MOVE ZERO TO ERRCK Y. 
1760 DISPLAY ITEM-NUM-LINE • . ~ .. ,... 
J. I I U 

1780 * 
1790 
1800 
1810 * 
1820 
1830 
1840 * 
1850 
1860 * 

ACCEPT ANS. 

PERFORM BA-READ-RECORD THRU BA-READ-RECORD-EXIT. 
IF ERRCK EQUAL 1 GO TO GET-ITEM. 

DISPLAY BUILD REC SCREEN 
DISPLAY MASTER-AT-SCREEN. 
PERFORM BB-DATA-EDIT THRO BB-DATA-EDIT-EXIT. 

PERFORM BC-DATA-UPDATE THRU BC-PATA-UPDATE-EXIT. 

1870 CLOSE DATAFILE. 
1880 STOP RUN. 
1890 AA-DRIVER-EXIT. 
1900 * 

EXIT. 

1910 BA-READ-RECORD. 
1920 * 
1930 * 
1940 * 
1950 
1960 
1970 
1980 
1990 * 

THIS ROUTINE WILL VALIDATE THAT THE PART IS IN THE FILE 

DISPLAY @(24,2) $D5. 
MOVE ANS-ITEM TO PART-NUMBER. 
READ DATAFILE , 

INVALID KEY GO TO BA-READ-RECORD-EXIT. 
RECORD ALREADY PRESENT 

Page E-04 



PAGE 005 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

2000 MOVE 2 TO E. 
2010 MOVE 1 TO ERRCK. 
2020 PERFORM MSG-PRT THRU MSG-PRT-EXIT. 
2030 BA-READ-RECORD-EXIT. EXIT. 
2040 * 
2050 * 
2060 BB-DATA-EDIT. 
2070 * 
2080 * THIS ROUTINE WILL READ SCREEN & VALIDATE DATA FIELDS 
2090 * 
2100 ACCEPT DATAIN. 
2110 DISPLAY BLINK-OFF. 
2120 MOVE ZERO TO ERRCK Y. 
2130 * EDIT LOCATION 
2140 MOVE 1 TO X. 
2150 MOVE SLOC TO WORK-5 ON SIZE ERROR 
2160 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2170 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2180 * EDIT COST 
2190 CK-COST. 
2200 MOVE SCOST TO COST 
2210 ON SIZE ERROR GO TO COST-ERR. 
2220 IF COST IS NUMERIC GO TO CK-LIST. 
2230 COST-ERR. 
2240 MOVE 2 TO X. 
2250 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2260 CK-LIST. 
2270 * VALIDATE LIST PRICE 
2280 MOVE SLIST TO LIST-PRICE 
2290 ON SIZE ERROR GO TO LIST-ERR. 
2300 IF LIST-PRICE IS NUMERIC GO TO CK-TRADE. 
2310 LIST-ERR. 
2320 MOVE 3 TO X. 
2330 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2340 CK-TRADE. 
2350 * VALIDATE TRADE PRICE 
2360 MOVE STRADE TO TRADE-PRICE 
2370 ON SIZE ERROR GO TO TRADE-ERR. 
2380 IF TRADE-PRICE IS NUMERIC GO TO CK-QTY-HAND. 
2390 TRADE-ERR. 
2400 MOVE 4 TO X. 1 

2410 PERFORM ERR-BLINK THRO ERR-BLINK-EXIT. 
2420 CK-QTY-HAND. 
2430 * VALIDATE QTY ON HAND 
2440 MOVE 5 TO X. 
2450 MOVE SQTY-HAND TO WORK-5 ON SIZE ERROR 
2460 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2470 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2480 * VALIDATE QTY-ON-ORDER 
2490 CK-ORD. 

Page E-05 



PAGE 006 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

2500 MOVE 6 TO X. 
2510 MOVE SQTY-ORDER TO WORK-5 ON SIZE ERROR 
2520 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2530 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2540 * DATE EDIT 
2550 CK-DATE. 
2560 IF SDATE EQUAL SPACES 
2570 MOVE ZERO TO ORDER-MONTH ORDER-DAY ORDER-YEAR 
2580 GO TO CK-REORD. 
2590 IF SDATE IS NOT NUMERIC GO TO DATE-ERR. 
2600 MOVE SDATE TO ORDER-DATE. 
2610 IF ORDER-MONTH GREATER THAN 12 OR LESS THAN ZERO 
2620 GO TO DATE-ERR. 
2630 IF ORDER-DAY IS GREATER THAN 31 GO TO DATE-ERR. 
2640 IF ORDER-YEAR IS GREATER THAN 76 GO TO CK-REORD. 
2650 DATE-ERR. 
2660 MOVE 7 TO X. 
2670 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2680 CK-REORD. 
2690 * EDIT REORDER POINT 
2700 MOVE 8 TO X. 
2710 MOVE SREORDER TO WORK-5 ON SIZE ERROR 
2720 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2730 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2740 * EDIT STOCKING QTY 
2750 CK-STOCK. 
2760 MOVE 9 TO X. 
2770 MOVE SSTOCKING TO WORK-5 ON SIZE ERROR 
2780 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2790 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2800 * QTY PER PACKAGE 
2810 CK-PACK. 
2820 MOVE 10 TO X. 
2830 MOVE SQTY-PER-PK TO WORK-5 ON SIZE ERROR 
2840 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2850 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2860 * EDIT VENDOR CODE 
2870 CK-VEND. 
2880 MOVE 11 TO X. 
2890 MOVE SVEND TO WORD-5 ON SIZE ERROR 
2900 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2910 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2920 * EDIT LEAD TIME 
2930 CK-LEAD. 
2940 MOVE 12 TO X. 
2950 MOVE SLEAD TO WORK-5 ON SIZE ERROR. 
2960 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
2970 PERFORM EDIT-CK THRU EDIT-CK-EXIT. 
2980 * 
2990 CK-ANY-ERR. 

Page E-06 



PAGE 007 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

3000 IF ERRCK EQUAL 1 
3010 MOVE 1 TO E 
3020 PERFORM MSG-PRT THRU MSG-PRT-EXIT 
3030 PERFORM TAB-IT THRU TAB-IT-EXIT Y TIMES 
3040 ELSE 
3050 MOVE SLOC TO LOCATION-BIN 
3060 MOVE SQTY-HAND TO QTY-ON-HAND 
3070 MOVE SQTY-ORDER TO QTY-ON-ORDER 
3080 MOVE SREORDER TO REORDER-POINT 
3090 MOVE SSTOCKING TO STOCKING-QTY 
3100 MOVE SQTY-PER-PK TO QTY-PER-PACK 
3110 MOVE SVEND TO VENDOR-CODE 
3120 MOVE SLEAD TO LEAD-TIME 
3130 MOVE SDESC TO DESCRIPTION 
3140 MOVE SBACK-0-FLAG TO BACK-ORDER-IND 
3150 MOVE ZERO TO ISS-MONTH-1 ISS-MONTH-2 ISS-MONTH-3 
3160 MOVE ZERO TO ISS-QUARTER-1 ISS-QUARTER-2 ISS-QUARTER-3 
3170 MOVE SCOMMENT TO COMMENT. 
3180 BB-DATA-EDIT-EXIT. EXIT. 
3190 * 
3200 EDIT-CK. 
3210 IF WORK-5 
3220 IF WORK-5 
3230 IF WORK-5 
3240 EDIT-ERR. 

EQUAL ZERO GO TO EDIT-CK-EXIT. 
NOT NUMERIC GO TO EDIT-ERR. 
POSITIVE GO TO EDIT-CK-EXIT. 

3250 PERFORM ERR-BLINK THRU ERR-BLINK-EXIT. 
3260 EDIT-CK-EXIT. EXIT. 
3270 * 
3280 ERR-BLINK. 
3290 * ROUTINE TO BLINK FIELD IN ERROR 
3300 * 
3310 DISPLAY @(ROW(X),COL(X)) $E2. 
3320 IF Y EQUAL ZERO MOVE X TO Y. 
3330 MOVE 1 TO ERRCK. 
3340 ERR-BLINK-EXIT. EXIT. 
3350 * 
3360 * 
3370 BC-DATA-UPDATE. 
3380 * 
3390 * 
3400 * 
3410 
3420 
3430 

THIS ROUTINE WILL WRITE THE MASTER TO DISK 

WRITE MASTER-REC INVALID KEY 
MOVE 4 TO E 

SUCCESSFUL MSG 
MOVE 3 TO E. 

PERFORM MSG-PRT THRU MSG-PRT-EXIT 
GO TO BC-DATA-UPDATE-EXIT. 

PERFORM MSG-PRT THRU MSG-PRT-EXIT. 

3440 
3450 * 
3460 
3470 
3480 
3490 

BC-DATA-UPDATE-EXIT. EXIT. 
MSG-PRT. 

Page E-07 



PAGE 008 ADD .SA:O APPENDIX E - SAMPLE COBOL PROGRAM. 

3500 * 
3510 * ROUTINE TO PRINT MESSAGES ON SCREEN 
3520 * 
3530 DISPLAY @(24,4) $EAEOC4 ERR-MSG(E). 
3540 MSG-PRT-EXIT. EXIT. 
3550 * 
3560 TAB-IT. 
3570 DISPLAY TAB. 
3580 TAB-IT-EXIT. EXIT. 

Page E-08 



?AGE 001 MAS REC • SA:O APPENDIX E - SAMPLE COBOL PROGRAM • 

)010 01 MASTER-REC. 
)015 02 PART-NUMBER PIC x (8). 
)020 02 DESCRIPTION PIC X(16). 
)030 02 LOCATION-BIN PIC 9 ( 5) • 
l040 02 COST PIC 9(4)V99. 
)050 02 LIST-PRICE PIC 9(4)V99. 
)060 02 TRADE-PRICE PIC 9(4)V99. 
l070 02 QTY-ON-HAND PIC 9 ( 5) • 
)080 02 QTY-ON-ORDER PIC 9 ( 5) • 
)090 02 QTY-PER-PACK PIC 999. 
)100 02 REORDER-POINT PIC 9 ( 5) • 
)110 02 STOCKING-QTY PIC 9 (5) • 
)120 02 VENDOR-CODE PIC 999. 
)130 02 LEAD-TIME PIC 999. 
)140 02 ORDER-DATE. 
)150 03 ORDER-MONTH PIC 99. 
)160 03 ORDER-DAY PIC 99. 
)170 03 ORDER-YEAR PIC 99. 
)180 02 ISSUE-COUNT. 
)190 03 ISS-MONTH-1 PIC 9 ( 5) • 
)200 03 ISS-MONTH-2 PIC 9 ( 4) • 
)210 03 ISS-MONTH-3 PIC 9(4). 
)220 03 ISS-QUARTER-1 PIC 9(4). 
)230 03 ISS-QUARTER-2 PIC 9(4). 
>240 03 ISS-QUARTER-3 PIC 9(4). 
)250 02 BACK-ORDER-IND PIC X. 
1260 02 COMMENT PIC X(8). 

Page E-09 





0 

2000 

627A 

APPENDIX F - PERFORMANCE DATA 

COMPILER MEMORY MAP 

FS.l Compiler Memory Map 
(Floppy Disk) 

OPERATING 
SYSTEM 

(SK) 

COBOL 
COMPILER 

(16.6K) 

USER 
AVAILABLE 

MEMORY 
(MAX. 31.4K) 

0 

2000 

5F7A 

cooo 

DS.l 

END OF DFFF 
RAM 

:l?age F-01 

Compiler Memory Map 
(Rigid Disk) 

OPERATING 
SYSTEM 

(SK) 

COBOL 
COMPILER 

(15.9K) 

USER 
AVAILABLE 

MEMORY 
(MAX. 24. lK) 



0 

2000 

70B7 
71B7 
7200 

END OF 
RAM 

RUNTIME MEMORY MAP 

FS.l Runtime Memory Map 
(Floppy Disk) 

OPERATING 
SYSTEM 

COBOL 
RUNTIME 

LINKAGE SECTION 
RESl:RV""E"D 

USER 
AVAILABL~ 

MEMORY 

Page F-02 

0 

2000 

6657 

DS.1 Runtime Memory Map 
(Rigid Disk) 

OPERATING 
SYSTEM 

COBOL 
RUNTIME 

6757 LINKAGE SECTION 
6800 RVED 

cooo 

USER 
AVAILABLE 

MEMORY 



STORAGE SIZE 

RUNTIME INTERPRETER: 

Average Number of Bytes per/Op Code: 

OPEN/CLOSE 4 bytes 

MOVE 5 bytes 

ACCEPT 3 bytes 

DISPLAY 4 bytes 

READ 5 bytes 

WRITE 5 bytes 

PERFORM 5 bytes 

SUBTRACT,} 
ADD, 
MULTIPLY, 7 bytes 
DIVIDE 

IF _THEN GOTO - 11 bytes 

Page F-03 





READERS 
COMMENTS 

We welcome comments on the usefulness and readability of 
this manual. Your comments will help us improve the quality 
of future publications. 

The COBOL REFERENCE MANUAL 

o Does this publication meet your needs? 

o Did you find the material: 

Easy to read and understand? 

Complete? 

Written for your level? 

o Please indicate any comments in the space 
pibvided, if you have any. 

YES NO 

0 

a 
a 
a 

a 

D 
d 

D 

FOLD THE FORM ON THE DOTTED LINES, STAPLE, ADD POSTAGE STAMP, 
AND MAIL. 



fold fold 
-------------------------------------------------------------------------

CODEX CORP. 
INTELLIGENT TERMINAL SYSTEMS GROUP 
3013 S. 52nd ST. 
TEMPE, AZ 85252 
ATTN: TECHNICAL DOCUMENTATION DEPT. 

------------~------------------------------------------------------------
fold fold 



Member of 
IDCMA 

codex. 
A Subsidiary of ® MOTOROLA INC. 

CODEX CORPORATION 
20 Cabot Boulevard 
Mansfield , Massachusetts 02048 

CODEX PHOENIX 
INTELLIGENT TERMINAL SYSTEMS 
2002 West 10th Place 
Tempe, Arizona 85281 
(602) 994-6580 

Printed in U.S.A. 


