
Am29030™ and Am29035™ Microprocessors
User's Manual and Data Sheet

Advanced
Micro

· Devices

Am29030™ and Am29035™
Microprocessors

User's Manual
and Data Sheet

ADVANCED MICRO DEVICES

© 1991 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products

without notice in order to improve design or performance characteristics.

This publication netther states nor implies any warranty of any kind, including but not limited to implied warranties of merchantability or
fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry embodied in an
AMO product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without
notice. AMO assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from
the use of the information included herein. Addttionally, AMO assumes no responsibility for the functioning of undescribed features or
parameters.

AMD is a registered trademark of Advanced Micro Devices, Incorporated.
Am29000, Am29005, Am29030, Am29035, Am29050, 29K, Laser29K, HighC29K, Scalable Clocking, and Branch Target Cache are trademarks of
Advanced Micro Devices, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.
XRA Y29K is a registered trademark of Microtec Research, Inc.
Fusion29K is a registered servicemark of Advanced Micro Devices, Incorporated.

Product names used in this puplication are for identification purposes only and may be trademarks of their respective companies.

This is printt:d on
recrdc:d paper.

TABLE OF CONTENTS

Preface

Chapter 1

Chapter 2

Introduction and Overview . • • . . . • • . . . • . . • • P-1

The Am2903QTM and Am29035™ RISC Microprocessors P-1

Design Philosophy . P-1

Optimum Performance . P-2

Performance Leverage . P-2

Conclusion . P-3

Purpose of this Manual . P-3

Intended Audience ... P-3

Am29030r'"' and Am29035™ Microprocessors User's Manual Overview P-3

291(TM Family Documentation . P-5

Related Publications . P-6

Features and Performance•..............•.•........... 1·1

1.1 Distinctive Characteristics 1-1
1.1.1 Am29030 Microprocessor . 1-1
1.1.2 Am29035 Microprocessor . 1-2
1.1.3 Feature Summary . 1-2

1 .2 Key Features and Benefits . 1-2
1.2.1 Large, On-Chip Instruction Cache . 1-3
1.2.2 Scalable Clocking Technology 1-3
1.2.3 Narrow Read Interface . 1-4
1.2.4 Programmable Bus Sizing . 1-4
1.2.5 Streamlined System Interface . 1-4
1.2.6 Pin-, Bus-, and Software-Compatibility . 1-5
1.2.7 Wide Range of Price/Performance Points 1-5
1.2.8 Complete Development and Support Environment 1-6

1.3 Performance Overview . 1-6
1.3.1 Instruction Timing . 1-6
1.3.2 Pipelining . 1-6
1.3.3 Instruction Cache . 1-7
1.3.4 Instruction Set Overview 1-7
1.3.5 Data Formats 1-7
1.3.6 Protection . 1-7
1.3.7 Memory Management 1-8
1.3.8 Interrupts and Traps . 1-8

1.4 Debugging and Testing . 1-8

Programming•••....••...•.•••.•.•..........••...•... 2-1

2.1 Instruction Set . 2-1
2.1.1 Integer Arithmetic . 2-1

TABLE OF CONTENTS

Chapter3

ii TABLE OF CONTENTS

2.1.2 Compare ... 2-1
2.1.3 Logical . 2-4
2.1.4 Shift .. 2-4
2.1.5 Data Movement . 2-4
2.1.6 Constant . 2-5
2.1.7 Floating Point 2-5
2.1.8 Branch .. 2-7
2.1.9 Miscellaneous 2-8
2.1.1 O Reserved Instructions . 2-8

2.2 Register Model . 2-8
2.2.1 General-Purpose Registers . 2-9

2.2.1.1 Register Addressing . 2-9
2.2.1.2 Global Registers . 2-9
2.2.1.3 Local Registers . 2-11
2.2.1.4 Local-Register Stack Pointer . 2-11

2.2.2 Special-Purpose Registers . 2-11

2.3 Addressing Registers Indirectly . 2-13
2.3.1 Indirect Pointer C (IPC, Register 128) 2-13
2.3.2 Indirect Pointer A (IPA, Register 129) 2-14
2.3.3 Indirect Pointer B (IPB, Register 130) 2-14

2.4 Instruction Environment 2-14
2.4.1 Floating-Point Environment (FPE, Register 160) 2-15
2.4.2 Integer Environment (INTE, Register 161) 2-16

2.5 Status Results of Instructions 2-16
2.5.1 ALU Status (ALU, Register 132) 2-16
2.5.2 Arithmetic Operation Status Results 2-17
2.5.3 Logical Operation Status Results 2-18
2.5.4 Floating-Point Status (FPS, Register 162) 2-18
2.5.5 Floating-Point Status Results . 2-18

2.6 Integer Multiplication and Division . 2-20
2.6.1 Q (Q, Register 131) 2-20
2.6.2 Multiplication . 2-20
2.6.3 Division . 2-22

2.7 I Need an Instruction to... 2-24
2.7.1 Run-Time Checking . 2-24
2.7.2 Operating-System Calls 2-25
2.7.3 Multiprecision Integer Operations 2-25
2.7.4 Complementing a Boolean . 2-25
2.7.5 Large Jump and Call Ranges 2-26
2.7.6 NO-OPs . 2-26

2.8 Virtual Arithmetic Processor . 2-26
2.8.1 Trapping Arithmetic Instructions . 2-27
2.8.2 Virtual Registers . 2-27

2.9 Multiprocessing . 2-27

Data Formats and Handling 3-1

3.1 Integer Data Types ... 3-1
3.1.1 Character Data . 3-1
3.1.2 Hatt-Word Operations . 3-2
3.1.3 Byte Pointer(BP, Register133) 3-2
3.1.4 Bit Strings . 3-3

3.1.4.1 Funnel Shift Count (FC, Register 134) 3-3

Chapter 4

Chapters

3.1.5 Character-String Operations . 3-4
3.1.5.1 AlignmentofByteswithinWords 3-4
3.1.5.2 Detection of Characters within Words 3-4

3.1.6 Boolean Data 3-5
3.1.7 Instruction Constants . 3-5

3.2 Floating-Point Data Types . 3-5
3.2.1 Single-Precision Floating-Point Values . 3-5
3.2.2 Double-Precision Floating-Point Values 3-6
3.2.3 Special Floating-Point Values 3-6

3.2.3.1 Not-A-Number . 3-6
3.2.3.2 Infinity 3-7
3.2.3.3 Denormalized Numbers . 3-7
3.2.3.4 Zero . 3-7

3.3 External Data Accesses 3-7
3 .3.1 Address Spaces . 3-7
3.3.2 Load/Store Instruction Format 3-8
3.3.3 Load Operations . 3-9
3.3.4 Store Operations 3-10
3.3.5 Multiple Accesses 3-10

3.3.5.1 Load/Store Count Remaining (CR, Register 135) 3-11
3.3.5.2 Movement of Large Data Blocks 3-12

3.3.6 Option Bits .. 3-12
3.3.7 Addressing and Alignment 3-13

3.3.7.1 Byte and Half-Word Addressing 3-13
3.3.7.2 Byte and Half-Word Accesses 3-14
3.3.7.3 Alignment of Words and Half-Words 3-15
3.3.7.4 Alignment of Instructions 3-15

Procedure Linkage _ ..•...........................•.....•... 4-1

4.1 Run-Time Stack Organization and Use 4-1
4.1.1 Management of the Run-time Stack . 4-1
4.1.2 The Register Stack . 4-3
4.1.3 Local Registers as a Stack Cache . 4-4
4.1.4 The Memory Stack . 4-5

4.2 Procedure Linkage Conventions 4-7
4.2.1 Argument Passing . 4-8
4.2.2 Procedure Prologue . 4-8
4.2.3 Spill Handler 4-10
4.2.4 Return Values 4-10
4.2.5 Procedure Epilogue 4-10
4.2.6 Fill Handlers 4-11
4.2. 7 The Register Stack Leaf Frame . 4-11
4.2.8 Local Variables and Memory-Stack Frames 4-12
4.2.9 Static Link Pointer 4-13
4.2.10 Transparent Procedures . 4-13

4.3 Register Usage Convention 4-13

4.4 Example of a Complex Procedure Call 4-14

4.5 Trace-Back Tags .. 4-15

Pipelining and Instruction Scheduling•.• 5-1

5.1 Four-Stage Pipeline ... 5-1

5.2 Pipeline Hold Mode . 5-3

5.3 Serialization . 5-3

TABLE OF CONTENTS Iii

Chapter&

Chapter7

Chapters

iv TABLE OF CONTENTS

5.4 Deli,:iyed Branch . 5-4

5.5 Overlapped Loads and Stores . 5-5

5.6 Delayed Effects of Registers . 5-6

System Protection ••••.••••••••••••.•••..••••.•••••••.•..•• 6-1

6.1 User and Supervisor Modes . 6-1
6.1.1 Supervisor Mode 6-1
6.1.2 User Mode . 6-1

6.2 Register Protection . 6-2
6.2.1 Register Bank Protect (RBP, Register 7) 6-3

6.3 Memory Protection . 6-3

6.4 External Access Protection . 6-4

Memory Management •••.••••••••.•••••••••.•..••.••.••••..• 7-1

7.1 Translation Look-Aside Buffer 7-1

7.2 TLB Registers ... 7-1
7.2.1 TLB Entry Word 0 7-2
7.2.2 TLB Entry Word 1 . 7-4

7.3 Address Translation Controls 7-5
7.3.1 Enabling and Disabling Address Translation 7-5
7.3.2 MMU Configuration Register (MMU, Register 13) 7-5

7.4 Address Translation Description 7-6
7 .4.1 Virtual Address Structure . 7-6
7.4.2 Address-Translation Process 7-6
7.4.3 Successful and Unsuccessful Translations 7-9
7.4.4 Instruction Cache Considerations 7-9
7.4.5 Selecting the Virtual Page Size 7-10

7.5 Handling TLB Misses . 7-11
7.5.1 TLB Reload . 7-11
7.5.2 LAU Recommendation (LAU, Register 14) 7-12
7.5.3 Page Reference and Change Information 7-12
7.5.4 Warm Start .. 7-13
7.5.5 Minimum Number of Resident Pages 7-13

7.6 Invalidating TLB Entries 7-13

Interrupts and Traps .•••••.••.••.•..•••••................••. 8-1

8.1 Overview ... 8-1
8.1.1 Current Processor Status (CPS, Register 2) 8-1
8.1.2 Interrupts . • 8-3
8.1.3 Traps ... 8-4
8.1.4 Extemallnterrupts and Traps . 8-4
8.1.5 Wait Mode . 8-4

8.2 Vector Area ... 8-5
8.2.1 Vector Area Base Address (VAB, Register 0) 8-5
8.2.2 Vector Numbers . 8-6

8.3 Interrupt and Trap Handling . 8-6
8.3.1 Old Processor Status (OPS, Register 1) 8-6
8.3.2 The Program Counter Stack . 8-6

8.3.2.1 Program Counter 0 (PCO, Register 10) 8-9
8.3.2.2 Program Counter 1 (PC1, Register 11) 8-9
8.3.2.3 Program Counter2 (PC2, Register 12) 8-10

Chapter9

8.3.3 Taking an Interrupt or Trap 8-10
8.3.4 Returning from an Interrupt or Trap . 8-11
8.3.5 Lightweight Interrupt Processing 8-13
8.3.6 Simulation of Interrupts and Traps 8-13

8.4 WARN Trap .. 8-14
8.4.1 WARN Input . 8-14

8.5 Sequencing of Interrupts and Traps 8-15

8.6 Exception Reporting and Restarting 8-17
8.6.1 Instruction Exceptions 8-17
8.6.2 Restarting Faulting External Accesses 8-17

8.6.2.1 Channel Address (CHA, Register 4) 8-18
8.6.2.2 Channel Data (CHO, Register 5) 8-19
8.6.2.3 Channel Control (CHC, Register 6) 8-19

8.6.3 Integer Exceptions . 8-20
8.6.4 Floating-Point Exceptions . 8-21
8.6.5 Correcting Out-of-Range Results . 8-21
8.6.6 Exceptions During Interrupt and Trap Handling 8-21

8.7 Timer Facility . 8-22
8.7.1 Timer Facility Operation . 8-22
8.7.2 Timer Facility Initialization 8-22
8.7.3 Handling Timer Interrupts . 8-22
8.7.4 Timer Facility Uses . 8-23
8.7.5 Timer Counter (TMC, Register 8) . 8-23
8.7.6 Timer Reload (TMR, Register 9) . 8-24

Instruction cache Operation •••••••••..••••.•..•••••.•••••..•• 9-1

9.1 Instruction Cache Overview 9-1

9.2 Accessing Cache Fields . 9-2
9.2.1 Instruction Words 9-3
9.2.2 Address Tag and Status Information 9-3
9.2.3 Cache Interface Register (CIR, Register 29) 9-4
9.2.4 Cache Data Register (CDR, Register 30) 9-4

9.3 Cache Hits and Misses 9-5

9.4 External Fetching and Cache Reload 9-5
9.4.1 Cache Replacement . 9-6
9.4.2 Overview of External Instruction Fetching 9-6
9.4.3 The Instruction Fetch Pointer 9-7
9.4.4 Cache Misses During Sequential Instruction Fetching 9-7

9.5 Instruction Prefetching 9-7
9.5.1 Operation During Prefetching . 9-7
9.5.2 The Role of the Prefetch Buffer . 9-8
9.5.3 Terminating Instruction Prefetching Because of a Cache Hit ... 9-8
9.5.4 Terminating Instruction Prefetching Because of a Branch 9-8
9.5.5 Collisions Between Instruction Fetching and Loads or Stores . . 9-9

9.6 Cache Invalidation .. 9-9

Chapter 10 System Interface ••••••••••••••••••••••••••.••••••.•••••••• 10-1

10.1 Signal Description ... 10-1

10.2 Processor Reset and Initialization 10-5
10.2.1 Configuration (CFG, Register 3) . 10-5
10.2.2 Reset Mode 10-7
10.2.3 Am29035 Processor Initialization Considerations 10-8

10.3 Clocks .. 10-8

TABLE OF CONTENTS v

Chapter11

vi TABLE OF CONTENTS

10.3.1 Electrical Specifications . 10-9

10.4 Bus Description ... 10-9
10.4.1 Bus Overview . 10-9
10.4.2 User-Defined Signals . 10-9
10.4.3 Instruction Accesses . 10-1 o
10.4.4 Data Accesses 10-10
10.4.5 Read-Only Memories . 10-11

10.4.6
10.4.7
10.4.8

10.4.5.1 Narrow Read Interface 10-11
10.4.5.2 8-Bit Narrow Accesses 10-12
10.4.5.3 16-Bit Narrow Accesses 10-12
10.4.5.4 ROM Address Mapping 10-13
Programmable Bus Sizing (Am29035 Processor Only) 10-13
Reporting Errors 10-14
Access Protocols•........................ 10-15
10.4.8.1 Page-Mode Accesses 10-15

10.4.9 Simple Accesses 10-15
10.4.10 Burst-Mode Accesses . 10-15

10.4.10.1 Burst-Mode Overview 10-15
10.4.10.2 Processor Pre-emption, Termination, or

Cancellation of a Burst-Mode Access 10-16
10.4.10.3 Slave Cancellation of a Burst-Mode Access ... 10-17
10.4.10.4 Using ERL YA for Interleaved Memory Systems . 10-17

10.4.11 Arbitration . 10-18
10.4.11.1 Using The Processor as an Arbiter 10-19

10.5 Bus Sharing-Electrical Considerations . 10-19

10.6 Multiprocessing and the LOCK Output . 10-20

10.7 Master/Slave Checking
10. 7.1 Master/Slave Operation
10.7.2 Preventing Spurious Errors
10.7.3 Switching Master and Slave Processors

10-20
10-21
10-21
10-22

Debugging and Testing ••••••••••••••••••••••••••••••••••••• 11-1

11.1 Trace Facility ... 11-1

11.2 Instruction Breakpoints . 11-2

11.3 Processor Status Outputs . 11-2

11.4 CPU Control Inputs .. 11-4

11.5 Implementing a Hardware-Development System 11-5
11.5.1 HaltMode .. 11-5
11.5.2 Step Mode . 11-5
11.5.3 Load Test Instruction Mode . 11-6
11.5.4 Summary of Development System Operation 11-9

11.6 In-Circuit Testing . 11-9

11.7 Test Access Port . 11-9
11.7.1 Boundary Scan Cells 11-10
11.7.2 Instruction Register and Implemented Instructions 11-11

11.7.2.1 EXTEST 11-12
11.7.2.2 INTEST 11-12
11.7.2.3 SAMPLE 11-13
11.7.2.4 ICTEST1 11-13
11.7.2.5 ICTEST2 . 11-13
11.7.2.6 BYPASS . 11-13

11.7.3 Order of Scan Cells in Boundary Scan Path 11-14
11.7.3.1 Instruction Path 11-14
11.7.3.2 Bypass Path 11-14

Chapter 12

11.7.3.3
11.7.3.4
11.7.3.5

Main Data Path . 11-14
ICTEST1 Path 11-16
ICTEST2 Path 11-16

Instruction Set ...••.••.....••.....••..•..•...••••......•• 12·1

12.1 Instruction-Description Nomenclature . 12-1
12.1.1 Operand Notation and Symbols 12-1
12.1. 2 Operator Symbols . 12-2
12.1.3 Control-Flow Terminology 12-3
12.1.4 Assembler Syntax . 12-4

12.2 Instruction Formats . 12-4

12.3 Instruction Description . 12-7

12.4 Instruction Index by Operation Code . 12-127

Appendix A Bus Summary and Timing Diagrams • • . • • • • A-1

Appendix B Register Summary • . • • . • • • • B-1

Appendix C Data Sheet . . • . . . • • . . • • • • • . • . • . . • • • . . • C-1

Am29030 Microprocessor Distinctive Characteristics C-1

Am29035 Microprocessor Distinctive Characteristics C-1

General Description . C-2

29K Family Development Support Products . C-2

Related AMO Products .. C-2

Third Party Development Support Products . C-2

Connection Diagram . C-3

PGA Pin Designation . C-4
Sorted by Pin No. C-4
Sorted by Pin Name . C-5

Connection Diagram . C-6

QFP Pin Designation .. C-7
Sorted by Pin No ... C-7
Sorted by Pin Name . C-8

Ordering Information ... C-10

Absolute Maximum Ratings . C-11

Operating Ranges ... C-11

DC Characteristics Over Commercial Operating Ranges C-11

Capacitance ... C-11

Switching Characteristics Over Commercial Operating Range (PGA) C-12

Switching Characteristics Over Commercial Operating Range (QFP) C-13

Switching Waveforms .. C-14

Capacitive Output Delays C-15

Switching Test Circuit .. C-15

Am29030 Microprocessor Thermal Characteristics C-16

TABLE OF CONTENTS vii

LIST OF FIGURES
Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 5-1
Figure 6-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7

Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12

viii TABLE OF CONTENTS

Simplified System Diagram . 1-3
General-Purpose Register Organization . 2-10
Special-Purpose Registers . 2-12
Indirect Pointer C Register 2-13
Indirect Pointer A Register 2-14
Indirect Pointer B Register 2-14
Floating-Point Environment Register 2-15
Integer Environment Register. 2-16
ALU Status Register ... 2-16
Floating-Point Status .. 2-19
Q Register . 2-20
Character Format . 3-1
Half-Word Format . 3-2
Byte Pointer Register . 3-3
Funnel Shift Count Register . 3-3
Single-Precision Floating-Point Format . 3-6
Double-Precision Floating-Point Format . 3-6
Load/Store Instruction Format . 3-8
Load/Store Count Remaining Register 3-12
Byte and Hatt-Word Addressing with BO=O (Big Endian) 3-13
Byte and Hatt-Word Addressing with BO= 1 (Little Endian) 3-14
Run-time Stack Example . 4-2
An Activation Record in the Register Stack . 4-3
Relationship of Stack Cache and Register Stack . 4-4
Stack Overflow . 4-6
Stack Underflow . 4-6
Definition of size and rsize Values . 4-9
Trace-Back Tags . 4-15
Am29030 and Arn29035 Microprocessors Data Flow 5-2
Register Bank Protect Register . 6-3
Translation Look-Aside Buffer Organization . 7-2
Translation Look-Aside Buffer Registers 7-3
TLB Entry Word O Register 7-3
TLB Entry Word 1 Register 7-4
MMU Configuration Register 7-5
Virtual Address for 1, 2, 4, and 8-Kbyte Pages . 7-7
TLB Address-Translation Process . 7-8
LAU Recommendation Register 7-12
Current Processor Status Register 8-1
Vector Table Entry ... 8-5
Vector Area Base Address Register 8-5
Program Counter Unit . 8-8
Program Counter 0 Register 8-9
Program Counter 1 Register . 8-9
Program Counter 2 Register 8-10
Current Processor Status After an Interrupt or Trap 8-11
Current Processor Status Before Interrupt Return 8-12
Channel Address Register 8-19
Channel Data Register 8-19
Channel Control Register . 8-19

Figure 8-13
Figure 8-14
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 10-1
Figure 10-2
Figure 10-3
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 12-1
Figure 12-2
Figure 12-3
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12
Figure A-13
Figure A-14
Figure A-15
Figure A-16
Figure A-17
Figure A-18
Figure A-19

Figure A-20

Figure A-21
Figure A-22
Figure A-23
Figure A-24
Figure A-25
Figure A-26
Figure A-27
Figure A-28
Figure A-29
Figure A-30
Figure A-31

Timer Counter Register . 8-23
Timer Reload Register . 8-24
Instruction Cache Block Organization 9-1
Instruction Cache Organization . 9-2
Instruction Words in the Cache Data Register . 9-3
Address Tag and Status Information in the Cache Data Register 9-3
Cache Interface Register . 9-4
Cache Data Register . 9-5
Configuration Register . 10-6
Current Processor Status Register In Reset Mode 10-7
Configuration Register in Reset Mode . 10-7
STAT Output Reporting with High-Frequency Interface 11-3
Valid Transitions on CNTL(1-0) Inputs . 11-4
Processor Status While in Load Test Instruction Mode 11-7
Input Boundary-Scan Cell . 11-10
Output Boundary-Scan Cell . 11-11
Instruction Format . 12-4
Frequently Occurring Instruction Field Uses . 12-6
Instruction-Description Format . 12-7
Relationship of INCLK, Internal Processor Clock, and MEMCLK A-3
Processor Reset . A-4
Processor Reset-8-Bit Narrow Read Interface . A-4
Processor Reset-16-Bit Narrow Read Interface . A-4
Simple Data Read Access . A-5
Simple Data Read Access (Multi-Cycle) . A-6
Simple Data Write Access . A-7
Simple Data Write Access (Multi-Cycle) . A-8
Page-Mode Read Access . A-9
Page-Mode Write Access A-10
Read Access Followed by a Read Access (Page-Mode) A-11
Read Access Followed by a Write Access (Page-Mode) A-12
Write Access Followed by a Read Access (Page-Mode) A-13
Write Access Followed by a Write Access (Page-Mode) A-14
Burst-Mode Read Access A-15
Burst-Mode Read Access (Multi-Cycle Initial Access) A-16
Burst-Mode Write Access A-17
Burst-Mode Write Access (Multi-Cycle Initial Access) A-18
Processor Preemption, Termination or Cancellation of a
Burst-Mode Read Access A-19
Processor Preemption, Termination or Cancellation of a
Burst-Mode Write Access . A-20
Slave Cancellation of a Burst-Mode Read Access A-21
ERL YA Burst-Mode Read Access A-22
ERL YA Burst-Mode Read Access (Multi-Cycle) A-23
Simple 8-Bit Narrow Read Word Access . A-24
Simple 8-Bit Narrow Read Access with Fast Subsequent Accesses A-25
Burst-Mode 8-Bit Narrow Read Access . A-26
Simple 16-Bit Narrow Read Word Access . A-27
Simple 16-Bit Narrow Read Word Access with Fast Second Access A-28
Burst-Mode 16-Bit Narrow Read Access . A-29
Simple 16-Bit Narrow Write Word Access . A-30
Simple 16-Bit Narrow Write Word Access with Fast Subsequent Access A-31

TABLE OF CONTENTS Ix

Figure A-32
Figure A-33
Figure A-34
Figure A-35
Figure A-36
Figure A-37
Figure A-38
Figure A-39
Figure A-40
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5

x TABLE OF CONTENTS

Burst-Mode 16-Bit Narrow Write Access . A-32
Load and Set Instruction (Page Mode) A-33
TLB Miss or Protection Violation on Read or Write A-34
Bus Arbitration-Normal Transfer to Processor . A-35
Bus Arbitration-Fast Transfer to Processor . A-36
Bus Arbitration-False Processor Request A-37
Bus Arbitration-Granting of Unrequested Bus . A-38
Bus Arbitration-Normal Transfer from Processor A-39
Bus Arbitration-Preempting Bus from Processor A-40
General-Purpose Register Organization B-1
Register Bank Organization . B-2
Special Purpose Registers . B-3
Special Purpose Registers B-7
Translation Look-Aside Buffer Entries B-7

LIST OF TABLES

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 6-1
Table 6-2
Table 8-1
Table 8-2
Table A-1
Table B-1

Integer Arithmetic Instructions . 2-2
Compare Instructions . 2-3
Logical Instructions . 2-4
Shift Instructions . 2-4
Data Movement Instructions . 2-5
Constant Instructions . 2-6
Floating-Point Instructions . 2-6
Branch Instructions . 2-7
Miscellaneous Instructions . 2-8
Register Bank Organization . 6-2
Access Protection . 6-4
Vector Number Assignments 8-7
Interrupt and Trap Priority Table 8-16
Signal Summary ... A-1
Register Field Summary . B-8

TABLE OF CONTENTS xi

INTRODUCTION AND OVERVIEW

THE Am29030™ AND Am29035™ MICROPROCESSORS

The Am29030 and Am29035 microprocessors are the first in a new series of 32-bit,
streamlined instruction processors that employ submicron circuits to provide high per
formance even with low-cost system components. High circuit densities and a high
degree of on-chip integration enable the Am29030 and Am29035 microprocessors to
operate at high frequencies while providing a streamlined interface that simplifies sys
tem design.

The Am29030 and Am29035 microprocessors were designed expressly to meet the
requirements of embedded applications such as laser beam printers, graphics proc
essing, application program interface (API) accelerators, X terminals and servers, and
scanners. Such applications make the following four demands on system design:

• High performance at low cost: A high-frequency processor must interface with
low-cost memory without degrading processor performance. The system must
provide excellent real-time response at low cost.

• Design flexibility: One basic design must establish an entire product line.

• Reduced time-to-market: A complete suite of development, debug, and
benchmarking tools is critical for reducing the product development cycle.

• A rational, easy upgrade path: The processor family must provide bus-, pin-, and
software-compatibility so that processor upgrades are transparent to both hardware
and software. In addition, the processor's system interface must accommodate
easy memory upgrades in convenient (0.5-MB) increments.

The Am29030 and Am29035 processors are, in fact, highly optimized for any embed
ded application that requires high performance at low cost. In addition to graphics and
imaging applications, the processors are ideal for use in network applications such as
bridges and node processors for fiber optic (FDDI) networks.

DESIGN PHILOSOPHY

The Am29030 and Am29035 processors are the result of a design philosophy that
recognizes that processor performance must be considered in light of the processor's
hardware and software environment. The key to maximizing performance lies in the
realization that the processor is part of an integrated system, and is itself a collection
of components that must be properly integrated.

Processor features must be considered not only on their own merits, but also in rela
tion to other components of the system. A particular feature that-considered alone
increases one aspect of processor performance may actually decrease the perform
ance of the total system, because of the burden that it places elsewhere in the sys
tem. As an illustration, consider the factors involved in the execution time of any proc
essor task:

TASK TIME= (INSTRUCTIONS /TASK) *(CYCLES I INSTRUCTION)* (TIME I CYCLE)

INTRODUCTION AND OVERVIEW P-1

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all of the terms that contribute to the product; in fact, this is
generally not possible due to the interaction of the terms.

As an example of the interaction of the above terms, consider the number of instruc
tions required for a task. An attempt to minimize this number, a more or less tradi
tional approach to processor architecture design, increases the average number of
cycles required for the execution of an instruction, because of the increased number
of operations performed by each instruction. In addition, cycle time is increased be
cause of instruction-decode time.

A second example of the interaction in the above equation appears in an attempt to
reduce the cycle time through the pipelining of operations. In theory, the cycle time
can be made arbitrarily small by the definition of an arbitrarily large number of pipeline
stages. In practice-at least in the case of general-purpose processors-pipelining
rarely yields much of its potential benefit. This is due to situations where the pipeline
cannot be kept fully occupied, such as when memory references and branches occur.
In these situations, additional pipeline stages increase the number of cycles required
for an operation, and thus affect the CYCLES I INSTRUCTION term.

OPTIMUM PERFORMANCE
Each of the terms in the above equation has some minimum bound for a given imple
mentation technology and task. In general, this minimum bound cannot be ap
proached without an offsetting increase in the other terms, making the overall product
less-than-optimum. The question then arises, what combination of terms will yield an
optimum product? There are several things to note when answering this question.

The first observation is that the number of operations underlying a given task is more
or less fixed. Any single processor ultimately limits the time required for a task be
cause it has a single execution unit and a single instruction stream. The operations
that must be performed are reflected in the INSTRUCTIONS/TASK and CYCLES/IN
STRUCTION terms. These operations may be performed by relatively few instruc
tions, where each instruction takes multiple cycles to execute, or by a larger number
of instructions, where each takes a single cycle to execute. In the first case, the in
structions are complex; in the second, they are simple.

The point is that the trade-off between simple and complex instructions is not one-to
one. For example, reducing the number of cycles per instruction by a factor of three
does not increase the number of instructions per task by the same factor. There are
two reasons for this. The first is that, even when an instruction set supports complex
operations, a large proportion of the instructions that are executed perform operations
that could be performed as well by simple instructions. The second is that simple
instructions expose more of the internal processor operation to an optimizing com
piler. This allows the compiler to tailor the organization and sequence of operations to
the task at hand, thereby reducing the total number of instructions executed.

PERFORMANCE LEVERAGE
Another important observation is that there is a tremendous amount of leverage in the
TIME I CYCLE and CYCLES I INSTRUCTION terms. As they are made smaller, they
have a proportionately greater effect on performance.

For example, a reduction of 1 O ns in the cycle time of a processor operating with a
200-ns cycle time yields an increase of 5% in the processor's performance. The same
improvement in a processor operating with a 50-ns cycle time yields a 20% increase
in performance.

P·2 INTRODUCTION AND OVERVIEW

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a proc
essor that averages 5 cycles per instruction yields a 4% increase in performance.
However, the same reduction yields a 12.5% performance increase in a processor
that averages 1.6 cycles per instruction.

CONCLUSION

The conclusion is that it is possible-and desirable-to yield somewhat in the number
of instructions executed for a given task, and more than make up for the performance
impact of this increase by reductions in the cycle time and in the number of cycles per
instruction. For example, if both the cycle time and the number of cycles per instruc
tion are reduced by a factor of three, while the number of instructions for a given task
is allowed to grow by 50%, the resulting task time is reduced by a factor of six.

The Am29030 and Am29035 microprocessor architectures were designed with the
above effects in mind. Maximum performance is obtained by the optimization of the
product of the number of instructions per task, the number of cycles per instruction,
and the cycle time, not by minimizing one factor at the expense of the others. This is
accomplished by careful definition of all processor components. In particular:

1. The INSTRUCTION/TASK term is optimized by the definition of simple
instructions. The processor provides an efficient instruction set and a large
number of general-purpose registers to an optimizing, high-level language
compiler. Most reductions in this term are accomplished by the compiler. The
number of instructions for a given task may be greater than the number of
instructions for processors with complex instruction sets. However, this increase is
more than offset by other improvements in processor performance.

2. The CYCLES I INSTRUCTION term is optimized by the data-flow structure and
performance-enhancing features of the processor. A large amount of processor
hardware is dedicated to achieving an average instruction-execution rate that is
close to single-cycle execution.

3. The TIME/CYCLE term is optimized by the implementation technology, the
processor system interface, and judicious use of pipelining. The simplicity of the
instruction set and processor features helps minimize the cycle time.

PURPOSE OF THIS MANUAL

This manual describes the technical features, programming interface, and complete
instruction set of the Am29030 and Am29035 microprocessors.

INTENDED AUDIENCE

This manual is intended for computer hardware and software architects and system
engineers who are designing or are considering designing systems based on the
Am29030 and Am29035 microprocessors.

Am29030 and Am29035 MICROPROCESSORS USER'S MANUAL
OVERVIEW

This manual contains information on the Am29030 and Am29035 microprocessors
that is essential for system hardware and software architects and design engineers.
Additional information is available in the form of data sheets, application notes, and
other documentation that is provided with software products and hardware-develop
ment tools.

INTRODUCTION AND OVERVIEW P-3

The information in this manual is organized into twelve chapters:

Chapter 1 introduces the features and performance aspects of the Am29030 and
Am29035 microprocessors.

Chapter 2 describes the programmer's model of the Am29030 and Am29035 micro
processors, including the instruction set and register model.

Chapter 3 expands on the programmer's model, discussing different data formats and
handling. Instructions that manipulate external data are also discussed.

Chapter 4 details the management of the run-time stack and defines the conventions
that apply to procedure linkage and register usage.

Chapter 5 describes the internal pipelining and the effects of the pipeline on program
behavior.

Chapter 6 describes the system protection features provided by the Am29030 and
Am29035 microprocessors.

Chapter 7 describes the memory management features of the Am29030 and
Am29035 microprocessors.

Chapter 8 provides a description of the interrupt and trap mechanism and details the
handling of interrupts and traps.

Chapter 9 describes the operation of the instruction cache.

Chapter 10 details the system interface of the Am29030 and Am29035 processors.

Chapter 11 describes the software and hardware facilities for debugging and testing.

Chapter 12 provides a detailed description of the instruction set.

For those readers desiring only a brief overview of the Am29030 and Am29035 micro
processors, Chapter 1 identifies the outstanding features of the processors. This
chapter addresses the basic software and hardware concerns. Chapters 2, 3, and 5
are recommended reading for all developers, both hardware and software.

For software architects and system programmers interested mainly in software-related
issues, Chapters 4, 6, 7, 8 and Section 10.2 provide the necessary information. Chap
ter 9 describes software issues related to the instruction cache. Chapters 11 and 12
provide related information.

For hardware architects and systems hardware designers interested mainly in hard
ware-related issues, Chapters 10, 11 and Appendix A provide most of the required
information; Chapters 5, 9, and 12 also provide related information.

P-4 INTRODUCTION AND OVERVIEW

29K FAMILY DOCUMENTATION

ORDER NO. TITLE

10620

11011

11426

12990

14779

15176

12175

10626

10957

13089

14721

15039

11539

29K User's Manual
Describes the Am29000™ microprocessor's technical features,
programming interface, and complete instruction set.

29K Graphics Primitives Handbook
Describes a set of graphics functions written in C-callable assembly
language. This is an excellent introduction/tutorial for graphics
programming on the Am29000 microprocessor.

Fuslon29K5M Catalog
Provides information on more than 100 tools that speed a 29K Family
embedded product to market. Includes products from over 50 expert
suppliers of embedded development solutions. Design solution
chapters include: laser printer and OCR solutions, graphics solutions,
and networking solutions.

Fuslon29K Newletter
Contains quarterly updates on developments in the 29K Family.

Am29050™ User's Manual
Describes the Am29050 microprocessor's technical features,
programming interface, and complete instruction set.

29K Laser Printer Solutions Brochure
Reviews how the 29K Family of microprocessors fits into the laser
printer marketplace. Includes a description of AMD's PCL and
Postscript® Laser291(TM Low-Cost Raster Image Processor
demonstration boards.

29K Family Data Book
A comprehensive collection of data sheets for the Am29000
microprocessor, Am29027™ arithmetic accelerator, High C 29K™
Cross Development Toolkit, and XRAY29K™ Source-Level Debugger.
It also includes application notes to help shorten designers learning
curves and hardware and software development time.

XRA Y29K Data Sheet

High c 29K Data Sheet

Am29005™ Data Sheet

EB29K Data Sheet

Am29050 Data Sheet

Host Interface (HIF) v2.0 Specification

To order literature, contact your local AMD sales office or call: 800-2929-AMD
Ext.3 (in the U.S.), or 800-531-5202 Ext. 55651 (in Canada), or direct dial from
any location: 512-462-5651.

INTRODUCTION AND OVERVIEW p.5

RELATED PUBLICATIONS

The 1.EEE Std. 1149.1-1990 (JTAG) may be ordered from:

P-6 INTRODUCTION AND OVERVIEW

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264
USA

IEEE Catalogue No. SH13144
1-800-CS-BOOKS
714-821-4010(FAX)

191P;1:Mii4 ;I I

1.1

1.1.1

FEATURES AND PERFORMANCE

This chapter provides an evaluation of the Am29030 and Am29035 microprocessors
as an aid in considering a particular application. A detailed technical description of
these microprocessors is contained in subsequent chapters. This chapter informally
describes the features of the processors, concentrating on features which distinguish
the Am29030 and Am29035 microprocessors from other available processors and
how these features enhance system performance and cost-effectiveness. This
chapter consists of the following sections:

• Distinctive Characteristics

• Key Features and Benefits

• Performance Overview

• Debugging and Testing

DISTINCTIVE CHARACTERISTICS

Am29030 Microprocessor

• Designed for printer, imaging, graphics, and other embedded applications

• Full 32-bit architecture

• CMOS technology/TTL-compatible

• 8 Kbyte, two-way-set-associative Instruction Cache

• Scalable Clocking™ Technology

• Operational frequencies Jf 25 and 33 MHz

• 26 million instructions per second sustained at a 33 MHz operating frequency

• 1.26 clock cycles per instruction average

• 4-GB virtual address space

• 192 general-purpose registers

• Three-address instruction architecture

• Streamlined system interface for simplified high-frequency operation

• Burst-mode and page-mode access support

• 8, 16, or 32-bit ROM interface

• 64-entry Memory Management Unit on-chip

• Demand paging

• Fully pipelined

• On-chip Timer Facility

• Enhanced debugging support

FEATURES ANO PERFORMANCE 1·1

1.1.2

1.1.3

1.2

• Master/slave chip output checking

• IEEE Std.1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary-Scan Architecture implementation

Am29035 Microprocessor

The Am29035 microprocessor is very similar to the Am29030 microprocessor, with
the following exceptions:

• Operational frequency of 16 MHz

• 12 million instructions per second sustained at a 16 MHz operating frequency

• Programmable 16 or 32-bit data bus width

• 4 Kbyte, direct-mapped Instruction Cache

Feature Summary

The following table compares the features of the Am29030 and Am29035
microprocessors:

Feature

Input Clock (MHz)
Cache Size

Scalable Clocking
Narrow Read
Programmable Bus Sizing
Package

Am29035

16
4K-bytes

(Direct Mapped)
Yes
Yes
Yes

144-pin QFP

KEY FEATURES AND BENEFITS

Am29030

25,33
BK-bytes

(2-Way Set Associative)
Yes
Yes
No

145-pin PGA

The Am29030 and Am29035 RISC microprocessors are high-performance, general
purpose, 32-bit microprocessors implemented in complementary metal-oxide
semiconductor (CMOS) technology. They are targeted primarily at printer, imaging
and graphics applications, using a flexible architecture, a high-bandwidth memory
interface, and rapid execution of simple instructions which are common in embedded
applications.

The Am29030 and Am29035 microprocessors also position the 29K architecture to
enter the realm of submicron technology which is characterized by very high circuit
densities and operating frequencies.

The Am29030 and Am29035 microprocessors are fully software-compatible with the
Am29000, Am29005 and Am29050 microprocessors. They can be used in most
existing Am29000 microprocessor applications without software modifications.

A representative system diagram for the Am29030 and Am29035 microprocessors is
shown in Figure 1-1 .

1·2 FEATURES AND PERFORMANCE

Figure 1·1 Simplified System Diagram

1.2.1

1.2.2

~ ,.,...,

Address
Am29030 and Am29035 lnstru«:!onlData

A. RISC microprocessors A_ __...
with 8 Kbyte/4 Kbyte z ,/ "' I-Cache

"'I /

32 or 16

y "' ~ 32
"'

32or16

~
Instruction/

32, 16.L°ra
-".

~ Data z
Address ROM

,. ..
Instruction/Data

-". Instruction/ 32026
-1\ -0 Data L ,/

Address
RAM " ln;tructlon/Data

._v ._v

Large, On-Chip Instruction Cache

The use of submicron circuitry allows the integration of a large on-chip instruction
cache. The Am29030 microprocessor has an BK-byte two-way-set-associative
instruction cache, and the Am29035 microprocessor has a 4K-byte direct-mapped
instruction cache. A large instruction cache provides very high cache hit rates, which
reduces the average number of cycles per instruction by minimizing the effect of
memory latency. This is a key feature, since it allows designers to use low-cost
memory that requires a simpler (and therefore less costly) memory design.

The large, on-chip instruction cache also plays a major role in providing a streamlined
system interface, as described in Section 1.2.5

Scalable Clocking Technology

A feature unique to the Am29030 and Am29035 microprocessors is Scalable Clocking
technology. Scalable Clocking technology is comprised of several features which aid
in the design of low-cost high frequency designs.

A primary feature of Scalable Clocking technology is the ability of the processor to
drive the memory system at the same speed as the processor or at half processor
speed. This capability provides substantial benefits. First, the half-speed mode allows
the use of slower, lower-cost memory without significant degradation of processor

FEATURES AND PERFORMANCE 1·3

1.2.3

1.2.4

1.2.S

performance. For example, a 33-MHz processor could be combined with a 20-MHz
memory system with only a slight loss in performance. Another advantage is that
system performance can be upgraded by simply replacing the processor with a
higher-speed processor. For example, a processor may be replaced with a faster
processor while utilizing the existing memory system, running at half-speed if
necessary.

Another feature of Scalable Clocking technology is the processor runs at the
frequency of the oscillator input. The Am29030 and Am29035 processors do not
require a double-frequency oscillator to generate internal clocks. Relaxed duty cycle
restrictions allow the processor to directly use oscillators with duty cycles of 30no to
70/30.

High frequency operation is further simplified through the use of a hardwired wait
state which is enforced during the initial cycle of all simple data accesses and the
initial cycle of a burst-mode access. The main benefit of this approach is that the
address and data pins are not required to change state during the same cycle. This
reduces electrical noise and therefore aids in high-frequency designs.

Finally, Scalable Clocking technology encompasses relaxed timing specifications.
This reduces the cost and complexity of external system design.

Narrow Read Interface

Both the Am29030 and Am29035 microprocessors can be connected to 8-, 16-, and
32-bit memories. If the data sized accessed is larger than that supported by memory,
the processor automatically generates the necessary sequencing to perform multiple
reads.

This ability to perform narrow reads is particularly useful for a ROM interface. Using
narrow reads, the processor can execute a bootstrap program from a small boot
ROM. Such a bootstrap program would most likely download the application program
into RAM. This not only allows the use of low-cost ROMs, it also conserves board
space and allows easy revision of application code.

Programmable Bus Sizing

The Am29035 processor's Instruction/Data bus can be dynamically programmed to
be either 16 or 32 bits wide for data transfers. This enables the Am29035
microprocessor to write either 16-bit or 32-bit devices. The processor automatically
performs multiple 16-bit writes when writing more than 16 bits.

This unique feature, called Programmable Bus Sizing, provides a flexible interface to
low-cost memory, as well a convenient, flexible upgrade path. For example, a system
can start with a 16-bit memory design and can subsequently improve performance by
migrating to a 32-bit memory design. Of particular advantage is the ability to add
memory in half-megabyte increments. This provides significant cost savings for appli
cations that do not require larger memory upgrades.

Streamlined System Interface

The high level of integration achieved in the Am29030 and Am29035 microprocessors
allows a large on-chip instruction cache to be implemented, which in turn enables the
system interface to be streamlined. The addition of the instruction cache reduces the
external instruction bandwidth requirements, and therefore relaxes the requirements
of the system interface.

1 ·4 FEATURES AND PERFORMANCE

1.2.6

1.2.7

The initial processors of the 29K family have a Branch Target Cache™ memory of 512
or 1 Kbyte. This structure was used due to the limited level of integration permitted by
process technology at that time. Since the Branch Target Cache (BTC) memory
caches the initial instruction sequence of non-sequential instruction fetches, only the
initial access latency of the memory system is reduced and therefore the processor
must provide sufficient instruction bandwidth. In the initial 29K processors, this meant
having a separate instruction and data bus to allow concurrent instruction and data
accesses.

Research1 has demonstrated that, at cache sizes below approximately 4 Kbytes, a
BTC is more cost effective than a conventional instruction cache. At larger cache
sizes, a conventional cache provides performance superior to the BTC's and is able
to maintain sufficient instruction bandwidth without a dedicated instruction bus.

The large on-chip instruction cache of the Am29030 and Am29035 microprocessors
satisfy the instruction bandwidth requirements and therefore remove the need for
separate instruction and data buses. The Am29030 and Am29035 microprocessors
employ a streamlined, 2-bus external interface, which comprises an address bus and
an instruction/data bus. This allows the use of lower-performance and lower-cost
memory, provides a reduction in the memory-system parts count, and reduces the
board area required for the memory system. In addition, the simplified design require
ments reduce development costs.

Pin-, Bus-, and Software-Compatibility

Compatibility within a processor family is critical for achieving a rational, easy upgrade
path. The Am29030 and Am29035 microprocessors provide compatibility on several
levels. The processors are software-compatible with the existing members of the 29K
family (the Am29000, Am29005, and Am29050 microprocessors). In addition, the
processors are pin-, bus-, and software-compatible with future members of the
Am29030 and Am29035 processors.

Pin- and bus-compatibility within the Am29030 and Am29035 processors is a unique
feature that ensures a convenient upgrade path, without hardware or software rede
sign, for embedded applications.

Wide Range of Price/Performance Points

To reduce design costs and time-to-market, one basic system design may be used as
the foundation for an entire product line. From this design, numerous implementations
of the product at various levels of price and performance may be derived with mini
mum time, effort, and cost.

The Am29030 and Am29035 processors provide this capability through Scalable
Clocking technology, the narrow read interface, programmable bus sizing, and
hardware and software compatibility. Processors can be upgraded without hardware
and software redesign and combined with high-performance or mid-performance
memory. The narrow read interface accommodates numerous ROM configurations. In
addition, programmable bus sizing allows Am29035 microprocessor-based systems
to support memory upgrades in half-megabyte increments.

These new AMO processors provide a wide range of price/performance points for any
system design.

FEATURES AND PERFORMANCE 1·5

1.2.8

1.3

1.3.1

1.3.2

Complete Development and Support Environment

A complete development and support environment is vital for reducing a product's
time-to-market. Advanced Micro Devices has created a standard development
environment for the 29K Family of processors. In addition, the Fusion29K•m third-party
support organization provides the most comprehensive customer/partner program in
the embedded processor market.

Advanced Micro Devices offers a complete set of hardware and software tools for
design, integration, debugging, and benchmarking. These tools, which are available
now for the RISC family include the following:

• HighC29K optimizing C compiler with assembler, linker, ANSI library functions, and
29K architectural simulator

• XRA Y29K source-level debugger

• Debug monitor

• EB29030 execution board

In addition, Advanced Micro Devices has developed a standard host interface (HIF)
for OS services, and extensions for the UNIX® common object file format (COFF).

This support is augmented by an engineering hotline, an on-line bulletin board, and
field application engineers.

PERFORMANCE OVERVIEW

The Am29030 and Am29035 microprocessors provide a significant margin of perform
ance over other processors in their class, since the majority of processor features
were defined for the maximum achievable performance at a reasonable cost. This
section describes the features of the Am29030 and Am29035 microprocessors from
the point of view of system performance.

Instruction Timing

The Am29030 and Am29035 microprocessors use an Arithmetic/Logic Unit, a Field
Shift Unit, and a Prioritizer to execute most instructions. Each of these is organized to
operate on 32-bit operands and provide a 32-bit result. All operations are performed
in a single cycle.

The performance degradation of load and store operations is minimized in the
Am29030 and Am29035 microprocessors by overlapping them with instruction execu
tion, by taking advantage of pipelining, and by organizing the flow of external data into
the processor so that the impact of external accesses is minimized.

Pipelining

Instruction operations are overlapped with instruction fetch, instruction decode,
operand fetch, and result write-back to the Register File. Pipeline forwarding logic
detects pipeline dependencies and routes data as required, avoiding delays that
might arise from these dependencies.

Pipeline interlocks are implemented by processor hardware. Except for a few special
cases, it is not necessary to rearrange programs to avoid pipeline dependencies,
although this is sometimes desirable for performance.

1-6 FEATURES AND PERFORMANCE

1.3.3

1.3.4

1.3.5

1.3.6

Instruction Cache

The Am29030 microprocessor utilizes an SK-byte, two-way-set-associative instruction
cache to meet the instruction bandwidth requirements for high performance.

The Am29035 microprocessor utilizes a 4K-byte, direct-mapped instruction cache to
meet the instruction bandwidth requirements for mid-range performance.

In both processors, the instruction cache stores the most recently fetched instructions.
The instruction cache block size is four words (16 bytes). Either processor allows all
or part of the instruction cache to be locked, allowing the processor to retain special
instruction sequences. The Am29030 microprocessor allows either one or both col
umns of the cache to be locked, and the Am29035 microprocessor allows the entire
cache to be locked.

Instruction Set Overview

The Am29030 and Am29035 microprocessors employ a three-address instruction set
architecture. The compiler or assembly-language programmer is given complete
freedom to allocate register usage. There are 192 general-purpose registers, allowing
the retention of intermediate calculations and avoiding needless data destruction.
Instruction operands may be contained in any of the general-purpose registers, and
the results may be stored into any of the general-purpose registers.

The Am29030 and Am29035 instruction set contains 117 instructions which are
divided into nine classes. These classes are integer arithmetic, compare, logical, shift,
data movement, constant, floating-point, branch, and miscellaneous. The
floating-point instructions are not executed directly, but are emulated by trap handlers.

All directly implemented instructions are capable of executing in one processor cycle,
with the exception of interrupt returns, loads, and stores.

Data Formats

The Am29030 and Am29035 microprocessors define a word as 32 bits of data, a
half-word as 16 bits, and a byte as 8 bits. The hardware provides direct support for
word-integer (signed and unsigned), word-logical, word-boolean, half-word integer
(signed and unsigned) and character data (signed and unsigned).

Word-boolean data is based on the value contained in the most significant bit of the
word. The values TRUE and FALSE are represented by the MSB values 1 and 0
respectively.

Other data formats, such as character strings, are supported by instruction
sequences. Floating-point formats (single and double precision) are defined for the
processors; however, there is no direct hardware support for these formats in the
Am29030 and Am29035 microprocessors.

Protection

The Am29030 and Am29035 microprocessors provide a variety of system protection
features. The processors offer two mutually exclusive modes of execution, the User
and Supervisor modes, which restrict or permit accesses to certain processor
registers and external storage locations.

The Memory Management Unit (MMU) provides for memory protection through the
use of six access permission bits. These bits restrict memory accesses to instruction

FEATURES AND PERFORMANCE 1-7

1.3.7

1.3.8

1.4

execution (user and/or supervisor execution) and type of data access (read, write or
no access). The MMU may be used also to provide protection for the system via
user-defined outputs.

The Register File may be configured to restrict accesses to Supervisor-mode pro
grams on a bank-by-bank basis.

Memory Management

A 64-entry Translation Look-Aside Buffer (TLB) performs virtual-to-physical address
translation, avoiding the cycle which would be required to transfer the virtual address
to an external TLB. A number of enhancements improve the performance of address
translation:

1. Pipelining-The operation of the TLB is pipelined with other processor operations.

2. Task Identifiers-Task Identifiers allow TLB entries to be matched to different
processes, so that TLB invalidation is not required during task switches.

3. Least-Recently Used Hardware-This hardware allows immediate selection of a
TLB entry to be replaced.

4. Software Reload-Software reload allows the operating system to use a
page-mapping scheme which is best matched to its environment. One of
Paged-segmented, one-level-page mapping, two-level-page mapping, or any
other user-defined page-mapping scheme can be supported. Because Am29030
and Am29035 instructions execute at an average rate of nearly one instruction per
cycle, software reload has performance approaching that of hardware TLB reload.

Interrupts and Traps

When an Am29030 or Am29035 microprocessor takes an interrupt or trap, it does not
automatically save its current state information in memory. This lightweight interrupt
and trap facility greatly improves the performance of temporary interruptions such as
TLB reload or other simple operating-system calls which require no saving of state
information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to
handle interrupts-and the amount of state saved-may be tailored to the needs of a
particular system.

Interrupts and traps are dispatched through a 256-entry Vector Table which directs
the processor to a routine that handles a given interrupt or trap. The Vector Table
may be relocated in memory by the modification of a processor register. There may
be multiple Vector Tables in the system, though only one is active at any given time.

The Vector Table is a table of pointers to the interrupt and trap handlers, requiring
only 1 Kbyte of memory. This structure requires that the processors perform a vector
fetch every time an interrupt or trap is taken. The vector fetch requires at least three
cycles, in addition to the number of cycles required for the basic memory access.

DEBUGGING AND TESTING

The Am29030 and Am29035 microprocessors provide debugging and testing features
at both the software and hardware levels.

Software debugging is facilitated by the instruction trace facility and instruction
breakpoints. Instruction tracing is accomplished by forcing the processor to trap after

1·8 FEATURES AND PERFORMANCE

each instruction has been executed. Instruction breakpoints are implemented by the
HALT instruction or by a software trap.

Software can access all tag/status, and instruction words in the instruction cache for
testing.

The processors provide two additional features to assist system debugging and test
ing. The first feature, the Test/Development Interface, is composed of a group of pins
that indicate the state of the processor and control the operation of the processor. The
second feature is an IEEE Std. 1149.1-1990 (JTAG) compliant Standard Test Access
Port and Boundary-Scan Architecture. The Test Access Port provides a scan interface
for testing system hardware in a production environment, and contains extensions
that allow a hardware-development system to control and observe the processor
without interposing hardware between the processor and system.

REFERENCES
1 Hiii, M.D. Aspects of Cache Memory and Instruction Buffer Performance, PhD

Dissertation, University of California at Berkeley, CA, USA (1987)

FEATURES AND PERFORMANCE 1·1

IHIP;tUlij;£4

2.1

2.1.1

2.1.2

PROGRAMMING

This chapter focuses on programming the Am29030 and Am29035 microprocessors.
First, this chapter presents an instruction set overview. It then describes the register
model, emphasizing the general- and special-purpose registers. This chapter also
describes certain special-purpose registers that deal directly with instruction execu
tion. Finally, this chapter describes general considerations related to applications
programming.

INSTRUCTION SET

The Am29030 and Am29035 microprocessors recognize 117 instructions. All instruc
tions execute in a single cycle, except for IRET, IRETINV, LOADM, STOREM, and
certain arithmetic instructions such as floating-point instructions.

Most instructions deal with general-purpose registers for operands and results; how
ever, in most instructions, an 8-bit constant can be used in place of a register-based
operand. Some instructions deal with special-purpose registers, TLB registers, and
external devices and memories.

This section describes the nine instruction classes in the Am29030 and Am29035
microprocessors. and provides a brief summary of instruction operations. A de
tailed instruction specification is contained in Chapter 12. Section 12.1 describes the
nomenclature used here.

If the processor attempts to execute an instruction which is not implemented, an
Illegal Opcode trap occurs, unless the instruction is reserved for emulation (see Sec
tion 2.1.10). Reserved instructions are assigned individual traps.

Integer Arithmetic

The Integer Arithmetic instructions perform add, subtract, multiply, and divide opera
tions on word-length integers. Certain instructions in this class cause traps if signed or
unsigned overflow occurs during the execution of the instruction. There is support for
multi-precision arithmetic on operands whose lengths are multiples of words. All
instructions in this class set the ALU Status Register. The integer arithmetic instruc
tions are shown in Table 2-1.

Compare

The Compare instructions test for various relationships between two values. For all
Compare instructions except the CPBYTE instruction, the comparisons are performed
on word-length signed or unsigned integers. There are two types of Compare instruc
tions. The first type places a Boolean value reflecting the outcome of the compare into
a general-purpose register. For the second type, assert instructions, instruction exe
cution continues only if the comparison is true; otherwise a trap occurs. The assert
instructions specify a vector for the trap (see Section 8.2).

PROGRAMMING 2-1

Table 2·1 Integer Arithmetic Instructions

Mnemonic

ADD

ADDS

ADDU

ADDC

ADDCS

ADDCU

SUB

SUBS

SUBU

SUBC

SUBCS

SUBCU

SUBR

SUBRS

SUBRU

SUBRC

SUBRCS

SUBRCU

MULTIPLU

MULTIPLY

MUL

MULL

MULTM

MULTMU

MULU

DIVIDE

DIVIDU

DIVO

DIV

DIVL

DIVREM

2·2 PROGRAMMING

Operation Description

DEST f- SRCA + SRCB

DEST f- SRCA + SRCB
IF signed overflow THEN Trap (Out of Range)

DEST f- SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

DEST f- SRCA + SRCB + C

DEST f- SRCA + SRCB + C
IF signed overflow THEN Trap (Out of Range)

DEST f- SRCA + SRCB + C
IF unsigned overflow THEN Trap (Out of Range)

DEST f- SRCA-SRCB

DEST f- SRCA- SRCB
IF signed overflow THEN Trap (Out of Range)

DEST f- SRCA-SRCB
IF unsigned underflow THEN Trap (Out of Range)

DESTf-SRCA-SRCB-1 +C

DEST f- SRCA-SRCB-1 + C
IF signed overflow THEN Trap (Out of Range)

DEST f- SRCA-SRCB-1 + C
IF unsigned underflow THEN Trap (Out of Range)

DEST f- SRCB-SRCA

DEST f- SRCB-SRCA
IF signed overflow THEN Trap (Out of Range)

DEST f- SRCB-SRCA
IF unsigned underflow THEN Trap (Out of Range)

DEST f- SRCB-SRCA-1 + C

DEST f- SRCB-SRCA-1 + C
IF signed overflow THEN Trap (Out of Range)

DEST f- SRCB-SRCA-1 +C
IF unsigned underflow THEN Trap (Out of Range)

DEST f- SRCA · SRCB (unsigned)

DEST f- SRCA · SRCB (signed)

Perform one-bit step of a multiply operation (signed)

Complete a sequence of multiply steps

DEST f- SRCA · SRCB (signed), most-significant bits

DEST f- SRCA · SRCB (unsigned), most-significant bits

Perform one-bit step of a multiply operation (unsigned)

DEST f- (Q//SRCA)/SRCB (signed)
Of- Remainder

DEST f-(0//SRCA)/SRCB (unsigned)
Q f- Remainder

Initialize for a sequence of divide steps (unsigned)

Perform one-bit step of a divide operation (unsigned)

Complete a sequence of divide steps (unsigned)

Generate remainder for divide operation (unsigned)

Table 2·2 Compare Instructions

Mnemonic

CPEQ

CPNEQ

CPLT

CPL TU

CPLE

CPLEU

CPGT

CPGTU

CPGE

CPGEU

CPBYTE

ASEQ

ASNEQ

ASLT

ASL TU

ASLE

ASLEU

ASGT

ASGTU

ASGE

ASGEU

Operation Description

IF SRCA = SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA<>SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA < SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA < SRCB (unsigned) THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA::;SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA::;SRCB (unsigned) THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA>SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA > SRCB (unsigned) THEN DEST~ TRUE
ELSE DEST~ FALSE

If SRCA ~ SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

IF SRCA~SRCB (unsigned) THEN DEST~ TRUE
ELSE DEST~ FALSE

IF (SRCA.BYTEO=SRCB.BYTEO) OR
(SRCA.BYTE1 =SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3=SRCB.BYTE3) THEN DEST~ TRUE

ELSE DEST~ FALSE

IF SRCA = SRCB THEN Continue
ELSE Trap (VN)

IF SRCA<>SRCB THEN Continue
ELSE Trap (VN)

IF SRCA<SRCB THEN Continue
ELSE Trap (VN)

IF SRCA<SRCB (unsigned) THEN Continue
ELSE Trap (VN)

IF SRCA ::; SRCB THEN Continue
ELSE Trap (VN)

IF SRCA::; SRCB (unsigned) THEN Continue
ELSE Trap (VN)

IF SRCA>SRCB THEN Continue
ELSE Trap (VN)

IF SRCA>SRCB (unsigned) THEN Continue
ELSE Trap (VN)

IF SRCA~SRCB THEN Continue
ELSE Trap (VN)

IF SRCA~SRCB (unsigned) THEN Continue
ELSE Trap (VN)

PROGRAMMING 2-3

2.1.3

2.1.4

2.1.5

Table 2·3

Table 2·4

The assert instructions support run-time operand checking and operating-system
calls. If the trap occurs in the User mode, and a trap number between O and 63 is
specified by the instruction, a Protection Violation trap occurs. The Compare instruc
tions are shown in Table 2-2.

Logical

The Logical instructions perform a set of bit-by-bit Boolean functions on word-length
bit strings. All instructions in this class set the ALU Status Register. These instructions
are shown in Table 2-3.

Shift

The Shift instructions (Table 2-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length result.
The EXTRACT instruction operates on double-word data and produces a word-length
result. If both parts of the double-word for the EXTRACT instruction are from the
same source, the EXTRACT operation is equivalent to a rotate operation. For each
operation, the shift count is a 5-bit integer, specifying a shift amount in the range of o
to 31 bits.

Data Movement

The Data Movement instructions (Table 2-5) move bytes, half-words, and words
between processor registers. In addition, they move data between general-purpose
registers and external devices, and memories.

Logical Instructions

Mnemonic Operation Description

AND DEST+-- SRCA & SRCB

ANON DEST+-- SRCA &- SRCB

NANO DEST+--- (SRCA & SRCB)

OR DEST+-- SRCA I SRCB

NOR DEST+-- - (SRCA I SRCB)

XOR DEST+-- SRCA A SRCB

XNOR DEST+-- - (SRCA" SRCB)

Shift Instructions

Mnemonic

SLL

SRL

SRA

EXTRACT

Operation Description

DEST+-- SRCA « SRCB (zero fill)

DEST+-- SRCA » SRCB (zero fill)

DEST+-- SRCA » SRCB (sign fill)

DEST+-- high-order word of (SRCA//SRCB « FC)

2-4 PROGRAMMING

Table 2·5

2.1.6

2.1.7

Data Movement Instructions

Mnemonic

LOAD

LOADL

LOADS ET

LO ADM

STORE

STOREL

STOREM

EX BYTE

EXHW

EXHWS

IN BYTE

INHW

MFSR

MFTLB

MTSR

MTS RIM

MTTLB

Constant

Operation Description

DEST~ EXTERNAL WORD [SRCB]

DEST~ EXTERNAL WORD [SRCB]
assert LOCK output during access

DEST~ EXTERNAL WORD [SRCB)
EXTERNAL WORD [SRCB] ~ h'FFFFFFFF'
assert LOCK output during access

DEST .. DEST+ COUNT~
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB +COUNT· 4]

EXTERNAL WORD [SRCB] ~ SRCA

EXTERNAL WORD [SRCB] ~ SRCA
assert LOCK output during access

EXTERNAL WORD [SRCB) ..
EXTERNAL WORD [SRCB +COUNT· 4) ~
SRCA .. SRCA +COUNT

DEST~ SRCB, with low-order byte replaced by byte in SRCA
selected by BP

DEST~ SRCB, with low-order half-word replaced by half-word in SRCA
selected by BP

DEST~ half-word in SRCA selected by BP, sign-extended to 32 bits

DEST~ SRCA, with byte selected by BP replaced by low-order byte
of SRCB

DEST~ SRCA, with half-word selected by BP replaced by low-order
half-word of SRCB

DEST~ SPECIAL

DEST~ TLB [SRCA]

SPDEST ~ SRCB

SPDEST ~ 0116

TLB [SRCA] ~ SRCB

The Constant instructions (Table 2-6) provide the ability to place half-word and word
constants into registers. Most instructions in the instruction set allow an 8-bit constant
as an operand. The Constant instructions allow the construction of larger constants.

Floating-Point

The Floating-Point instructions (Table 2-7) provide operations on single-precision
(32-bit) or double-precision (64-bit) floating-point data. They also provide conversions
between single-precision, double-precision, and integer number representations. In
the Am29030 and Am29035 processor implementations, these instructions cause
traps to routines which perform the floating-point operations.

PROGRAMMING 2-5

Table 2·6

Table 2·7

Constant Instructions

Mnemonic

CONST

CONSTH

CONSTN

Operation Description

DEST~Ol16

Replace high-order half-word of SRCA by 116

DEST~ 1116

Floating-Point Instructions

Mnemonic

FADD

DADD

FSUB

DSUB

FMUL

FDMUL

DMUL

FDIV

DDIV

FEQ

DEQ

FGE

DGE

FGT

Operation Description

DEST (single-precision) ~ SRCA (single-precision)
+ SRCB (single-precision)

DEST (double-precision) ~SRCA (double-precision)
+SRCB (double-precision)

DEST (single-precision) ~ SRCA (double-precision)
-SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
-SRCB (double-precision)

DEST (single-precision) ~ SRCA (single-precision)
· SRCB (single-precision)

DEST (double-precision) ~ SRCA (single-precision)
· SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
· SRCB (double-precision)

DEST (single-precision) ~ SRCA (single-precision
/SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
/SRCB (double-precision)

IF SRCA (single-precision)= SRCB (single-precision)
THEN DEST~ TRUE

ELSE DEST~ FALSE

IF SRCA (double-precision)= SRCB (double-precision)
THEN DEST~ TRUE

ELSE DEST~ FALSE

IF SRCA (single-precision)>= SRCB (single-precision
THEN DEST~ TRUE

ELSE DEST~ FALSE

IF SRCA (double-precision)>= SRCB (double-precision
THEN DEST~ TRUE

ELSE DEST~ FALSE

IF SRCA (single-precision)> SRCB (single-precision)
THEN DEST~ TRUE

ELSE DEST~ FALSE

2-6 PROGRAMMING

2.1.8

Table 2·8

Floating-Point Instructions (continued)

Mnemonic

DGT

SQRT

CONVERT

Operation Description

IF SRCA (double-precision)> SRCB (double-precision)
THEN DEST+-- TRUE

ELSE DEST+-- FALSE

DEST (single-precision, double-precision)
+-- SQRT [SRCA (single-precision, double-precision)]

DEST (integer, single-precision, double-precision)
+-- SRCA (integer, single-precision, double-precision)

CLASS DEST..- CLASS [SRCA (single-precision, double-precision)]

Branch

The Branch instructions (Table 2-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the Program Counter (with the offset
given by a signed instruction constant), or contained in a general-purpose register.
For conditional jumps, the outcome of the jump is based on a Boolean value in a
general-purpose register. Procedure calls are unconditional, and save the return
address in a general-purpose register. All branches have a delayed effect; the instruc
tion sequence following the branch is executed regardless of the outcome of the
branch.

Branch Instructions

Mnemonic

CALL

CALLI

JMP

JMPI

JMPT

JMPTI

JMPF

JMPFI

JMPFDEC

Operation Description

DEST+-- PC//00 + 8
PC+- TARGET
Execute delay instruction

DEST+-PC//00+8
PC+-SRCB
Execute delay instruction

PC+-TARGET
Execute delay instruction

PC+-SRCB
Execute delay instruction

IF SRCA= TRUE THEN PC+- TARGET
Execute delay instruction

IF SRCA= TRUE THEN PC+-SRCB
Execute delay instruction

IF SRCA= FALSE THEN PC+-TARGET
Execute delay instruction

IF SRCA =FALSE THEN PC+-- SRCB
Execute delay instruction

IF SRCA= FALSE THEN
SRCA+-SRCA-1
PC+-TARGET

ELSE
SRCA+-SRCA-1

Execute delay instruction

PROGRAMMING 2-7

2.1.9

2.1.10

2.2

Table 2·9

2·8 PROGRAMMING

Miscellaneous

The Miscellaneous instructions (Table 2-9) perform various operations that cannot be
grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs.

Reserved Instructions

Sixteen Am29030 and Am29035 microprocessor operation codes are reserved for
instruction emulation. Each of these instructions causes a trap and sets the indirect
pointers IPC, IPA, and IPB. The relevant operation codes, and the corresponding trap
vectors, are as follows:

Operation Codes (Hexadecimal) Trap Vector Numbers (Decimal)

08-DD
E7-E9
F8
FA-FF

24-29
39-41
56
58-63

The reserved instructions are intended for future processor enhancements, and
users desiring compatibility with future processor versions should not use them for
any purpose.

REGISTER MODEL

The Am29030 and Am29035 microprocessors have three classes of registers that are
accessible by instructions. These are the general-purpose registers, special-purpose
registers and Translation Look-Aside Buffer (TLB) registers. Any operation available
to the Am29030 and Am29035 microprocessors can be performed on the general
purpose registers, while special-purpose registers are accessed only by the instruc
tions MTSR, MTSRIM, and MFSR, and the TLB registers are accessed only by the
instructions MTTLB and MFTLB. This section describes the general-purpose and
special-purpose registers. The TLB registers are discussed in Section 7 .2.

Miscellaneous Instructions

Mnemonic

CLZ

SETIP

EMULATE

INV

IRET

IRETINV

HALT

Operation Description

Determine number of leading zeros in a word

Set IPA, IPB, and IPC with operand register numbers

Load IPA and IPB with operand register numbers, and Trap (VN)

Reset all Valid bits in Branch Target Cache memory to zeros

Perform an interrupt return sequence

Perform an interrupt return sequence and reset all Valid bits in
the Instruction Cache to zeros

Enter Halt mode

2.2.1

2.2.1.1

2.2.1.2

General-Purpose Registers

The Am29030 and Am29035 microprocessors incorporate 192 general-purpose
registers. The organization of the general-purpose registers is diagrammed in
Figure 2-1.

General-purpose registers hold the following types of operands for program use:

1. 32-bit addresses

2. 32-bit signed or unsigned integers

3. 32-bit branch-target addresses

4. 32-bit logical bit strings

5. 8-bit signed or unsigned characters

6. 16-bit signed or unsigned integers

7. Word-length Booleans

8. Single-precision floating-point numbers

9. Double-precision floating-point numbers (in two register locations)

Because a large number of general-purpose registers are provided, a large amount of
frequently used data can be kept on-chip, where access time is fastest.

Am29030 and Am29035 microprocessor instructions can specify two general-purpose
registers for source operands, and one general-purpose register for storing the in
struction result. These registers are specified by three 8-bit instruction fields contain
ing register numbers. A register may be specified directly by the instruction, or indi
rectly by one of three special-purpose registers.

REGISTER ADDRESSING

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most-significant bit of the register number. The
distinction between global and local registers is the result of register-addressing
considerations.

The following terminology is used to describe the addressing of general-purpose
registers:

1. Register number-this is a software-level number for a general-purpose register.
For example, this is the number contained in an instruction field. Register
numbers range from O to 255.

2. Global-register number-this is a software-level number for a global register.
Global-register numbers range from 0 to 127.

3. Local-register number-this is a software-level number for a local register.
Local-register numbers range from Oto 127.

4. Absolute-register number-this is a hardware-level number used to select a
general-purpose register in the Register File. Absolute-register numbers range
from Oto 255.

GLOBAL REGISTERS

When the most-significant bit of a register number is 0, a global register is selected.
The seven least-significant bits of the register number give the global-register num
ber. For global registers, the absolute-register number is equivalent to the register
number.

PROGRAMMING 2-9

Figure 2·1

Global
Registers

Local
Registers

!z-10 PROGRAMMING

General-Purpose Register Organization

Absolute General-Purpose REG#

0 Indirect Pointer Access

1 Stack Pointer

2-63 Not Implemented

64 Global Register 64

65 Global Register 65

66 Global Register 66

• •
• •
• •

126 Global Register 126

127 Global Register 127

128 Local Register 125

129 Local Register 126

130 Local Register 127

131 Local Register 0

132 Local Register 1

• •
• •
• •

254 Local Register 123

255 Local Register 124

h
s tack

er= 131
ample)

Point
(ex

2.2.1.3

2.2.1.4

2.2.2

Global registers 2 through 63 are not implemented. An attempt to access these regis
ters yields unpredictable results; however, they may be protected from User-mode
access by the Register Bank Protect Register (see Section 6.2.1).

The register numbers associated with Global Registers O and 1 have special mean
ing. The number for Global Register O specifies that an indirect pointer is to be used
as the source of the register number (see Section 2.3); there is an indirect pointer for
each of the instruction operand/result registers. Global Register 1 contains the Stack
Pointer, which is used in the addressing of local registers.

LOCAL REGISTERS

When the most-significant bit of a register number is 1, a local register is selected.
The seven least-significant bits of the register number give the local-register number.
For local registers, the absolute-register number is obtained by adding the local-regis
ter number to bits 8-2 of the Stack Pointer and truncating the result to seven bits; the
most-significant bit of the original register number is unchanged (i.e., it remains a 1).

The Stack Pointer addition applied to local-register numbers provides a limited form
of base-plus-offset addressing within the local registers. The Stack Pointer contains
the 32-bit base address. This assists run-time storage management of variables for
dynamically nested procedures (see Chapter 4).

LOCAL-REGISTER STACK POINTER

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow copy of Global Register 1 is
maintained by processor hardware for use in local-register addressing. This shadow
copy is set only with the results of Arithmetic and Logical instructions. If the Stack
Pointer is set with the result of any other instruction class, local registers cannot be
accessed predictably until the Stack Pointer is set once again with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addressing of local
registers, as discussed in Section 5.6.

Special-Purpose Registers

The Am29030 and Am29035 microprocessors contain 28 special-purpose registers.
The organization of the special-purpose registers is shown in Figure 2-2.

Special-purpose registers provide controls and data for certain processor operations.
Some special-purpose registers are updated dynamically by the processor, independ
ent of software controls. Because of this, a read of a special-purpose register follow
ing a write does not necessarily get the data that was written.

Some special-purpose registers have fields that are reserved for future processor
implementations. When a special-purpose register is read, a bit in a reserved field is
read as a 0. An attempt to write a reserved bit with a 1 has no effect; however, this
should be avoided because of upward-compatibility considerations.

The special-purpose registers are accessed by explicit data movement only. Instruc
tions that move data to or from a special-purpose register specify the special-purpose
register by an 8-bit field containing a special-purpose register number. Register num
bers are specified directly by instructions.

The special-purpose registers are partitioned into protected and unprotected regis
ters.Special-purpose registers numbered 0-127 and 160-255 are protected (note
that not all of these are implemented). Special-purpose registers numbered 128-159
are unprotected (again, not all are implemented).

PROGRAMMING 2-11

Figure 2·2

2-12 PROGRAMMING

Special-Purpose Registers

Register Number

0

1

2

3

4

5

6

7
8

9

10
11

12

13
14

29

30

128

129

130
131
132

133
134

135

160
161
162

Protected Registers

Vector Area Base Address

Old Processor Status

Current Processor Status

Confjg_uration

Channel Address

Channel Data

Channel Control

R~ster Bank Protect

Timer Counter

Timer Reload

Pr_ogram Counter O

Pr<>gram Counter 1

P~am Counter 2

MMU Confjg_uration

LRU Recommendation

Unprotected Registers

Indirect Pointer C

Indirect Pointer A

Indirect Pointer B

Q

ALU Status

Byte Pointer

Funnel Shift Count

Load/Store Count Remainir:!9_

Floating-Point Environment

Integer Environment

Floati~Point Status

Mnemonic

VAB

OPS

CPS

CFG

CHA

CHD

CHC

RBP

TMC

TMR

PCO

PC1

PC2

MMU

LRU

CIR

CDR

IPC

IPA

IPB

Q

ALU
BP

FC

CR

FPE

INTE

FPS

Protected special-purpose registers numbered 0-127 are accessible only by pro
grams executing in the Supervisor mode. An attempted read or write of a special-pur
pose register by a User-mode program causes a protection violation trap to occur.
Special-purpose registers numbered 160-255, though architecturally unprotected, are
not accessible by programs in the User mode or the Supervisor mode. These register
numbers are reserved for virtual registers in the arithmetic architecture, and any
attempted access causes a Protection Violation trap.

The Floating-Point Environment Register, Integer Environment Register, and Floating
Point Status Register are not implemented in processor hardware. These registers
are implemented via the virtual arithmetic interface provided on the Am29030 and
Am29035 microprocessor.

2.3

2.3.1

Figure 2·3

An attempted read of an unimplemented special-purpose register yields an unpredict
able value. An attempted write of an unimplemented, protected special-purpose regis
ter has an unpredictable effect on processor operation, unless the write causes a
Protection Violation. An attempted write of an unimplemented, unprotected special
purpose register has no effect; however, this should be avoided because of upward
compatibility considerations.

ADDRESSING REGISTERS INDIRECTLY

Specifying Global Register O as an instruction operand register or result register
causes an indirect access to the general-purpose registers. In this case, the absolute
register number is provided by an indirect pointer contained in a special-purpose
register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pointer. Indirect register numbers can be selected independently for each of
the three operands. Since the indirect pointers contain absolute-register numbers, the
number in an indirect pointer is not added to the Stack Pointer when local registers
are selected.

The indirect pointers are set by the Move To Special Register, SETIP, and EMULATE
instructions and by floating-point, MULTIPLY, MUL TM, MUL TIPLU, MULTMU,
DIVIDE, and DIVIDU instructions.

For a Move-To-Special-Register instruction, an indirect pointer is set with bits 9-2 of
the 32-bit source operand. This provides consistency between the addressing of
words in general-purpose registers and the addressing of words in external devices or
memories. A modification of an indirect pointer using a Move To Special Register has
a delayed effect on the addressing of general-purpose registers, as discussed in
Section 5.6.

For the remaining instructions, all three indirect pointers are set simultaneously with
the absolute-register numbers derived from the register numbers specified by the
instruction. For any local registers selected by the instruction, the Stack-Pointer addi
tion is applied to the register numbers before the indirect pointers are set.

Except when an indirect pointer is set by a Move-To-Special-Register instruction,
register numbers stored into the indirect pointers are checked for bank-protection
violations at the time that the indirect pointers are set.

Indirect Pointer C (IPC, Register 128)

This unprotected special-purpose register (Figure 2-3) provides the RC-operand
register number (see Section 12.3) when an instruction RC field has the value zero
(i.e., when Global Register O is specified).

Indirect Pointer C Register

31 23 15 7 0

IPC

·1II11111111111IIII111 I
. Reserved

I I I I I I I

PROGRAMMING 2-13

2.3.2

Figure 2·4

2.3.3

Figure 2·5

2.4

Bits 31-10: Reserved.

Bits 9-2: Indirect Pointer C (IPC}-The 8-bit IPC field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack
Pointer addition is not performed in the case of local registers).

Bits 1-0: Zeros-The IPC field is aligned for compatibility with word addresses.

Indirect Pointer A (IPA, Register 129)

This unprotected special-purpose register (Figure 2-4) provides the RA-operand
register number (see Section 12.3) when an instruction RA field has the value zero
(i.e., when Global Register O is specified).

Indirect Pointer A Register
31 23 15 7 0

1
1 I 11 II I II I 111

. Reserved . IPA _ o_ O -

Bits 31-10: Reserved.

Bits 9-2: Indirect Pointer A (IPA)-The 8-bit IPA field contains an absolute
register number for either a general-purpose register or a local register. This number
directly selects a register (Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0: Zeros-The IPA field is aligned for compatibility with word addresses.

Indirect Pointer B (IPB, Register 130)

This unprotected special-purpose register (Figure 2-5) provides the RB-operand
register number (see Section 12.3) when an instruction RB field has the value zero
(i.e., when Global Register O is specified).

Indirect Pointer B Register

31 23 15 7 0

111111111111111111111111111111111
Reserved IPB O O

Bits 31-10: Reserved.

Bits 9-2: Indirect Pointer B (IPB)-The 8-bit IPB field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack
Pointer addition is not performed in the case of local registers).

Bits 1-0: Zeros-The IPB field is aligned for compatibility with word addresses.

INSTRUCTION ENVIRONMENT

This section describes the special-purpose registers that affect the execution of float
ing-point and integer arithmetic instructions.

2-14 PROGRAMMING

2.4.1

Figure 2·6

Floating-Point Environment (FPE, Register 160)

This unprotected special-purpose register (Figure 2-6) contains control bits that affect
the execution of floating-point operations.

Floating-Point Environment Register
~ ~ 15

I I I I • I I

1
1 I

. Reserved

I I I I I : t

I I : I : 1 :

FF OM • UM • RM , . . .
XM VM NM

Bits 31-9: Reserved.

Bit 8: Fast Float Select {FF}-The FF bit being 1 enables fast floating-point opera
tions, in which certain requirements of the IEEE floating-point specification are not
met. This improves the performance of certain operations by sacrificing conformance
to the IEEE specification.

Bits 7-6: Floating-Point Round Mode {FRM)-This field specifies the default mode
used to round the results of floating-point operations, as follows:

FRM1-0 Round Mode

00 Round to nearest
01 Round to -oo
10 Roundto+oo
11 Round to zero

Bit 5: Floating-Point Divide-By-Zero Mask {DM)-lf the DM bit is O, a Floating-Point
Exception trap occurs when the divisor of a floating-point division operation is zero
and the dividend is a non-zero, finite number. If the DM bit is 1, a Floating-Point
Exception trap does not occur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask {XM)-lf the XM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is not equal to the
infinitely precise result. If the XM bit is 1, a Floating-Point Exception trap does not
occur for an inexact result.

Bit 3: Floating-Point Underflow Mask {UM}-lf the UM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a Floating-Point Exception trap
does not occur for underflow.

Bit 2: Floating-Point Overflow Mask {VM)-lf the VM bit is O, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too large to be
expressed in the destination format. If the VM bit is 1, a Floating-Point Exception trap
does not occur for overflow.

Bit 1: Floating-Point Reserved Operand Mask {RM)-lf the RM bit is 0, a Floating
Point Exception trap occurs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a floating-point operation is a
reserved value. If the RM bit is 1, a Floating-Point Exception trap does not occur for
reserved operands.

PROGRAMMING 2-15

2.4.2

Figure 2·7

2.5

Bit 0: Floating-Point Invalid Operation Mask (NM)-lf the NM bit is 0, a Floating
Point Exception trap occurs when the input operands to a floating-point operation
produce an indeterminate result (e.g., oo times 0). If the NM bit is 1, a Floating-Point
Exception trap does not occur for invalid operations.

Integer Environment (INTE, Register 161 J
This unprotected special-purpose register (Figure 2-7) contains control bits which
affect the execution of integer multiplication and division operations.

Integer Environment Register
31 23 15 7

1
1 I I I I I 11 I

. Reserved

Bits 31-2: Reserved.

111
I I
I I

ob:
MO

Bit 1: Integer Division Overflow Mask (DO}-lf the DO bit is 0, an Out of Range trap
occurs when overflow of a signed or unsigned 32-bit result occurs during a DIVIDE or
DIVIDU instruction, respectively. If the DO bit is 1, an Out of Range trap does not
occur for overflow during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an Out of Range Trap upon divi
sion by zero, regardless of the value of the DO bit.

Bit 0: Integer Multlpllcatlon Overflow Exception Mask (MO}-lf the MO bit is 0, an
Out of Range trap occurs when overflow of a signed or unsigned 32-bit result occurs
during a MULTIPLY or MULTIPLU instruction, respectively. If the MO bit is 1, an Out
of Range trap does not occur for overflow during integer multiply operations.

STATUS RESULTS OF INSTRUCTIONS

This section discusses the status information generated by arithmetic, logical and
floating-point operations, and the special registers which contain this status
information.

2.5.1 ALU Status (ALU, Register 132)

Figure 2·8

2-18 PROGRAMMING

This unprotected special-purpose register (Figure 2-8) holds information about the
outcome of Arithmetic/Logic Unit (ALU} operations as well as control for certain
operations performed by the Execution Unit.

ALU Status Register
31 23 15 7 0

1
1 I I I I I I I I I I I I I I I I I I

. Reserved
I ~111

OF

2.5.2

Bits 31-12: Reserved.

Bit 11: Divide Flag (OF)-The DF bit is used by the instructions that implement
division. This bit is set at the end of the division instructions either to 1 or to the com
plement of the 33rd bit of the ALU. When a Divide Step instruction is executed, the DF
bit determines whether an addition or subtraction operation is performed by the ALU.

Bit 1 O: Overflow (V)-The V bit indicates that the result of a signed, two's-comple
ment ALU operation required more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive-ORing the ALU carry-out with the carry-in
to the most-significant bit for signed, two's-complement operations. This bit is not
used for any special purpose in the processor and is provided for information only.

Bit 9: Negative (N)-The N bit is set with the value of the most-significant bit of the
result of an arithmetic or logical operation. If two's-complement overflow occurs, the N
bit does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8: Zero (Z)-The Z bit indicates that the result of an arithmetic or logical operation
is zero. This bit is not used for any special purpose in the processor, and is provided
for information only.

Bit 7: Carry (C)-The C bit stores the carry-out of the ALU for arithmetic operations.
It is used by the add-with-carry and subtract-with-carry instructions to generate the
carry into the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer (BP)-The BP field holds a 2-bit pointer to a byte within a
word. It is used by Insert Byte and Extract Byte instructions. The mapping of the
pointer value to the byte position depends on the value of the Byte Order (BO) bit in
the Configuration Register.

The most-significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions. The mapping of the most-significant bit to the half-word
position depends on the value of the BO bit in the Configuration Register.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field with the complement of the Byte Order bit of the Configuration
Register, for compatability with other 29K family processors.

Bits 4-0: Funnel Shift Count (FC)-The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci
fies the number of bit positions from the most-significant bit of the 64-bit operand to
the most-significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

Arithmetic Operation Status Results

The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set accord
ing to the result of the operation performed by the instruction.

All instructions in the Arithmetic class-except for MULTIPLY, MUL TM, DIVIDE,
MUL TIPLU MUL TMU, and DIVIDU-perform an add. In the case of subtraction, the
subtract is performed by adding the two's-complement or one's-complement of an
operand to the other operand. The multiply step and divide step operations also

PROGRAMMING 2-17

2.5.3

2.5.4

2.5.5

perform adds, again possibly complementing one of the operands before the opera
tion is performed. In general, the status bits are based on the results of the add.

If two's-complement overflow occurs during the add, the V bit of the ALU Status Reg
ister is set; otherwise it is reset. Two's-complement overflow occurs when the carry-in
to the most-significant bit of the intermediate result differs from the carry-out. When
this occurs, the result cannot be represented by a signed word integer. Note that the
V bit always is set in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most-significant bit of
the result of the add. Note that the divide step and multiply step operations may shift
the result after the operation is performed. In the cases where shifting occurs, the N
bit may not agree with the result that is written into a general-purpose register, since
the N bit is based only on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register,
the Z bit of the ALU Status Register is set; otherwise, it is reset. The Z bit always
reflects the result written into a general-purpose register; if shifting is performed by a
multiply or divide step, the Z bit reflects the shifted value.

If there is a carry out of the add operation, the C bit is set; otherwise it is reset.

Logical Operation Status Results

The Logical instructions modify the N and Z bits. These bits are set according the
result of the instruction. The V and C bits are meaningless in regard to the logical
instructions, so they are not modified.

The N bit of the ALU Status Register is set to the value of the most-significant bit of
the result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register
is set; otherwise, it is reset.

Floating-Point Status Results

The floating-point instructions check for a number of exceptional conditions, and
report these exceptions by setting bits of the Floating-Point Status Register. The
exceptional conditions also may cause traps, depending on the state of mask bits in
the Floating-Point Environment Register. There are two groups of status bits in the
Floating-Point Status Register: trap status bits and sticky status bits. When an excep
tion is detected, the Am29030 and Am29035 microprocessors set the trap status bit
and/or the sticky status bit associated with the exception, depending on the corre
sponding exception mask bit and on whether or not a trap occurs. The sticky status bit
is set whenever the corresponding exception is masked, regardless of whether or not
a trap occurs. A trap status bit is set whenever a trap occurs, regardless of the state
of the corresponding mask bit.

A trap status bit is reset when a trap occurs and the indicated status does not apply to
the trapping operation. A sticky status bit is reset only by software.

Floating-Point Status (FPS, Register 162)

This unprotected special-purpose register (Figure 2-9) contains status bits indicating
the outcome of floating-point operations.

The floating-point status bits are divided into two groups. The first group consists of
the sticky status bits (DS, XS, US, VS, RS, and NS), which, once set, remain set until

2-18 PROGRAMMING

Figure 2·9

explicitly cleared by a Move-to-Special-Register (MTSR) or Move-to-Special-Register
Immediate (MTSRIM) instruction. Only those sticky status bits corresponding to
masked exceptions are updated. The update occurs at the end of instruction execu
tion.

The second group consists of the trap status bits (DT, XT, UT, VT, RT, and NT),
which report the status of an operation for which a Floating-Point Exception trap is
taken. These bits are updated only by an operation which takes a trap as a result of
an unmasked Floating-Point Exception; all other operations leave these bits un
changed. A trap status bit is updated regardless of the state of the corresponding
exception mask in the Floating-Point Environment Register.

Floating-Point Status
~ ~ 15

1111111 '~1111111
I I I I I I I I I I I I

1
1 I I I I I I I I I I I I I I I I

_ Reserved

I I I I : I I I I I : I
I I I I 1 I I I I I t I

OT : UT : RT : OS : US : RS :
XT VT NT XS VS NS

Bits 31-14: Reserved.

Bit 13: Floating-Point Divide By Zero Trap (DT)-The DT bit is set when a Floating
Point Exception trap occurs, and the associated floating-point operation is a divide
with a zero divisor and a non-zero, finite dividend. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT)-The XT bit is set when a Floating
Point Exception trap occurs, and the result of the associated floating-point operation
is not equal to the infinitely-precise result. Otherwise, this bit is reset when a Floating
Point Exception trap occurs.

Bit 11 : Floating-Point Underflow Trap (UT)-The UT bit is set when a Floating
Point Exception trap occurs, and the result of the associated floating-point operation
is too small to be expressed in the destination format. Otherwise, this bit is reset when
a Floating-Point Exception trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)-The VT bit is set when a Floating-Point
Exception trap occurs, and the result of the associated floating-point operation is too
large to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT)-The RT bit is set when a Float
ing-Point Exception trap occurs, and the result of the associated floating-point opera
tion is a reserved value. Otherwise, this bit is reset when a Floating-Point Exception
trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)-The NT bit is set when a Float
ing-Point Exception trap occurs and the input operands to the associated floating
point operation produce an indeterminate result. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bits 7-6: Reserved.

Bit 5: Floating-Point Divide By Zero Sticky (DS)-The DS bit is set when the DM
bit of the Floating-Point Environment Register is 1, the divisor of a floating-point divi
sion operation is a zero, and the dividend is a non-zero, finite number.

PROGRAMMING 2-19

2.6

Bit 4: Floating-Point Inexact Result Sticky (XS)-The XS bit is set when the XM bit
of the Floating-Point Environment Register is 1, and the result of a floating-point
operation is not equal to the infinitely precise result.

Bit 3: Floating-Point Underflow Sticky (US)-The US bit is set when the UM bit of
the Floating-Point Environment Register is 1, and the result of a floating-point opera
tion is too small to be expressed in the destination format.

Bit 2: Floating-Point Overflow Sticky (VS)-The VS bit is set when the VM bit of the
Floating-Point Environment Register is 1, and the result of a floating-point operation is
too large to be expressed in the destination format.

Bit 1: Floating-Point Reserved Operand Sticky (RS)-The RS bit is set when the
RM bit of the Floating-Point Environment Register is 1, and either one or more input
operands to a floating-point operation is a reserved value or the result of a floating
point operation is a reserved value.

Bit O: Floating-Point Invalid Operation Sticky (NS)-The NS bit is set when the
NM bit of the Floating-Point Environment Register is 1, and the input operands to a
floating-point operation produce an indeterminate result.

INTEGER MULTIPLICATION AND DIVISION

The Am29030 and Am29035 microprocessors do not directly support the instructions
MULTIPLU, MULTMU, MULTIPLY, MULTM, DIVIDE, and DIVIDU. The processors
are capable of performing these instructions as a sequence of multiply- cir divide
steps, which are directly supported by hardware. A special register, Q, is used in
conjunction with the SRCA and SRCB operands to execute the multiply- or divide
step. This section describes the Q register and discusses the general method for
multiplication and division.

2.6.1 Q (Q, Register 131)

Figure 2·10

2.6.2

The Q Register is an unprotected special-purpose register (Figure 2-10).

Q Register

31 23 15 7 0

11 I I I I I I I I I I I I I I IQI I I I I I I I I I I I I I I I

Bits 31-0: Quotlent/Multlpller (Q)-During a sequence of divide steps, this field
holds the low-order bits of the dividend; it contains the quotient at the end of the ·
divide. During a sequence of multiply steps, this field holds the multiplier; it contains
the low-order bits of the result at the end of the multiply.

For an integer divide instruction, the Q field contains the high-order bits of the divi
dend at the beginning of the instruction, and contains the remainder upon completion
of the instruction.

Multiplication

The processor performs integer multiplication by a series of multiply step instructions.
Note that when the product of a constant and a variable is to be computed, a more
efficient sequence of shift and add instructions usually can be found.

:Z.20 . PROGRAMMING

If a program requires the multiplication of two integers, the required sequence of
multiply steps may be executed in-line or executed in a multiply routine called as a
procedure. It may be beneficial to precede a full multiply procedure with a routine to
discover whether or not the number of multiply steps may be reduced. This reduction
is possible when the operands do not use all of the available 32 bits of precision.

The following routine multiplies two 32-bit signed integers, giving a 64-bit result. Un
signed multiplication can be performed by substituting the MULU instruction for the
MUL and MULL instructions:

; 32 bit * 32 bit ->64 bit signed multiply
; Input: multiplicand in lr2, multiplier in lr3
; Output: result most-significant word in gr96, result least-significant word in gr97

SMul64:
mtsr
mul
.rep

mul
.endr

0, lr3
gr96, lr2, 0
30

gr96, lr2, gr96

; put multiplier in the a register
; perform initial multiply step
; expand out 30 copies of the next instruction
; in-line
; total of 30 more multiply steps

mull gr96, lr2,gr96 ; perform last sign correcting step
mfsr gr97, a ; get the least-significant result word

The following routine multiplies two 32-bit integers, returning a 32-bit result. It at
tempts to minimize the number of multiply-step instructions by checking the input
operands. It is coded as a subroutine, with pointers to its operands passed in the
indirect pointers IPC, IPA, and IPB. This allows the routine to operate on any combi
nation of registers, rather than forcing the operands to be in fixed registers:

; 32 bit * 32 bit-> 32 bit signed or unsigned multiply called by:

call tpc, MUL32 ; call the multiply routine
setip dst_reg, src1_reg, src2_reg ; passing pointers to the operand registers

; in the delay slot

; Input: operands in the registers pointed to by indirect-pointer registers IPA and IPB
; Output: result least-significant word in the register pointed to by IPC
; Used: return address in tpc, special registers a and FC
; Destroyed: previous contents of registers tpc, Tempo- Temp2
; Symbolic register names:

.reg Temp0,gr116

.reg Temp1, gr119

.reg Temp2, gr120

.reg tpc, gr122

.word Ox00200000 ; Debugger tag word

Mul32:
; need an instruction to separate SETIP (probably last instruction) from access of indirect
; pointers

mtsrim FC,8
or Tempo, grO, O

; useful when if one operand is 8-bit
; copy value of IPA register

; next we'll check to see that the operand with the most leading zeros becomes the multiplier
cpgtu Temp1 ,grO,grO
jmpf Temp1 ,do8
or Temp1 ,Temp1 ,grO

; the operands are already ordered correctly
; if we jump, Temp1 holds 0, so this copies
; the value of the IPB register

PROGRAMMING 2-21

2.6.3

const
or
or

do8:
cpleu
jmpf
mtsr
mulu

.rep

mulu
.endr

TempO,O
TempO,TempO,grO
Temp1 ,gr0,0

Temp2,Temp1 ,Ox7f
Temp2,do16
Q,TempO
Temp0,Temp1 ,0

7

Temp0,Temp1 ,TempO

; we must swap the operands

; less than 8 bits?
; no, check for 16 bits

; expand out 7 copies of the next instruction
; in-line
; total of 7 more multiply steps

; the top 24 bits of the result are in the lower 24 bits of Tempo, and the bottom 8 bits are in the
; topofQ

mfsr Temp1,Q
jmpi tpc ; return to the calling routine
extract grO,TempO,Temp1 ; extract the result in the delay-slot of the

; jump

do16:
const Temp2,0x7fff ; less than 16 bits?
cplequ Temp2,TempO,TemP2
jmpf Temp2,do32 ; no, perform all 32 steps
mulu Temp0,Temp1 ,o ; perform initial multiply-step

.rep 15 ; expand out 15 copies of next instruction
; in-line

mulu Temp0,Temp1 ,Tempo ; total of 15 more multiply-steps
.endr

; the top 16 bits of the result will be in the lower16 bits of TempO,the bottom 16 bits in the top
;of Q

mtsrim FC,16 ; extract on bit-16 boundary
mfsr Temp1,Q
jmpi tpc ; return to the calling routine
extract grO,TempO,Temp1 ; extracting the result in the delay-slot of the

; jump

do32:
mulu temp0,Temp1 ,0 ; perform initial step

.rep 31 ; expand out 32 copies of the next instruction
; in-line

mulu Temp0,Temp1 ,TempO ; total of 31 more multiply steps
.endr

jmpi tpc ; return to calling routine
mfsr grO,Q ; copy the result to the return register in the

; delay slot

Division
The processors perform integer division by a series of divide step instructions. When
the divisor is a power of 2, and the dividend is unsigned, the divide should be accom
plished by a right shift.

If a program requires the division of two integers, the required sequence of divide
steps may be executed in-line or executed in a divide routine called as a procedure. It
may be beneficial to precede a full divide procedure with a routine to discover whether
or not the number of divide steps may be reduced. This reduction is possible when
the operands do not use all of the available 32 bits of precision.

2-22 PROGRAMMING

The following routine divides a 64-bit, unsigned dividend by a 32-bit unsigned divisor:

; 64 bit/ 32 bit~ 32 bit unsigned divide
; Input: most-significant dividend word in lr2, least-significant dividend word in lr3,

divisor in lr4
; Output: quotient in gr96, remainder in gr97

UDiv64:
mtsr

divO

.rep

div
.endr

Q, lr3

gr97, lr2

31

gr97, gr97, lr4

; put least-significant word of the dividend in
; the Q register
; perform initial divide step

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

divl gr97, gr97, lr4 ; perform last step
divrem gr97, gr97, lr4 ; compute remainder
mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit unsigned dividend by a 32-bit unsigned divisor:

; 32 bit I 32 bit ~ 32 bit unsigned divide
; Input: dividend word in lr2, divisor in lr3
; Output: quotient in gr96, remainder in gr97

UDiv32:
mtsr
divO

.rep

div
.endr

Q, lr2
gr97, 0

31

gr97, gr97, lr4

; put the dividend in the Q register
; perform initial divide step, zeroing out
; the upper bits of the dividend

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

divl gr97, gr97, lr4 ; perform last step
divrem gr97, gr97, lr4 ; compute remainder
mfsr gr96, a ; get the quotient

The following routine divides a 32-bit signed dividend by a 32-bit signed divisor. It also
traps division by zero. Because the divide-step instructions only operate on unsigned
operands, extra code is required to perform sign checking and conversion:

; 32 bit I 32 bit signed divide, called by:

call
setip

tpc, SDiv32 ; call the divide routine
dst_reg, src1_reg, src2_reg

; passing pointers to the operand
; registers in the delay slot

; Input: dividend and divisor in the registers pointed to by the indirect-pointer
registers IPA and IPB

; Output: result quotient in the register pointed to by IPC, remainder left in Tempo
; Used: return address in tpc, special register Q
; Destroyed: previous contents of registers tpc, Tempo-Temp2
; Symbolic register names:

.reg Temp0,gr116

.reg Temp1, gr119

.reg Temp2, gr120

.reg tpc, gr122

.word Ox00200000 ; Debugger tag word

PROGRAMMING 2-23

2.7

2.7.1

SDiv32:
Temp1, 0 const

asneq V_DIVBYZERO, Temp1. grO

pdividend:

pdivisor:

add
jmpf
add
const
subr

jmpf
mtsr

xor
subr

divO

.rep

div
.endr

div I
div rem
mfsr
Sii
jmpf
sll
subr

premainder:
jmpfi
add

jmpi
subr

TempO, grO, 0
Tempo, pdividend
Temp2, Temp1, grO
Temp1,3
Tempo, TempO, o

Temp2, pdivisor
a, Tempo

Temp1, Temp1, 1
Temp2, Temp2, O

TempO,O

31

Tempo, Tempo, Temp2

Tempo, Tempo, Temp2
TempO, Tempo, Temp2
Temp2,Q
Temp1, Temp1, 30
Temp1, premainder
Temp1, Temp1, 1
TempO, Tempo, o

Temp1, tpc
grO, Temp2, O

tpc
grO, Temp2, 0

I NEED AN INSTRUCTION TO •••

; check for divide by zero with an assert
; get dividend from indirect pointer
; is it negative (jmpf is also "jmppos")
; get divisor from indirect pointer
; set negative result and remainder flags
; make dividend positive

; is divisor negative?
; copy dividend to a register in delay slot
; of the jump
; turn off negative result flag
; make divisor positive

; initialize

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

; perform last divide step
; get positive remainder
; get positive quotient
; copy negative remainder flag to test bit
; if it is not set, remainder is ok
; copy negative result flag to test bit
; negate remainder

; return to caller if result is positive
; copying quotient to the result register
; in the delay slot
; else return to caller,
; negating the quotient in the delay slot

This section discusses topics of general concern in the implementation of applications
programs.

Run-Time Checking

The assert instructions provide programs with an efficient means of comparing two
values and causing a trap when a specified relation between the two values is not
satisfied. The instructions assert that some specified relation is true and trap if the
relation is not true. This allows run-time checking-such as checking that a computed
array index is within the boundaries of the storage for an array-to be performed with
a minimum performance penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than, less-than or equal
to, greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However, only vector
numbers 64 through 255 (inclusive) may be specified by User-mode programs. If a

2-24 PROGRAMMING

2.7.2

2.7.3

2.7.4

User-mode assert instruction causes a trap, and the vector number is between O and
63 inclusive, a Protection Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number, several
traps may be defined in the system for different situations detected by the assert
instructions.

Operating-System Calls

An applications program can request a service from the operating system by using
the following instruction:

asneq System_Routine, gr1, gr1

This instruction always creates a trap, since it attempts to assert that the content of a
register is not equal to itself {the register number used here is irrelevant, as long as
the register is otherwise accessible).

The System_Routine vector number specified by the instruction invokes the execution
of the operating system routine that provides the requested service. This vector num
ber may have any value between 64 and 255, inclusive {vector numbers 0 through 63
are pre-defined or reserved). Thus, as many as 192 different operating-system rou
tines may be invoked from the applications program.

In cases where the indirect pointers may be used, the EMULATE instruction allows
two operand/result registers to be specified to the operating-system routine. The
instruction is as follows:

emulate System_Routine, lr3, lr6

In this case, the System_Routine vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers
and/or result registers {these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, which
allows flexible communication.

Multiprecision Integer Operations

The processor allows the Carry {C) bit of the ALU Status Register to be used as an
operand for add and subtract instructions. This provides for the addition and subtrac
tion of operands which are greater than 32 bits in length. For example, the following
code implements a 96-bit addition with signed overflow detection.

add Ir?, gr96, lr2
addc lr8, gr97, lr3
addcs lr9, gr98, lr4

Global registers GR96-GR98 contain the first operand, local registers LR2-LR4 con
tain the second operand, and local registers LR7-LR9 contain the result. The first two
add instructions set the C bit, which is used by the second two instructions. If the
addition causes a signed overflow, then an Out of Range trap occurs; overflow is
detected by the final instruction.

Complementing a Boolean

To complement a Boolean in the processor's format, only the most-significant bit of
the Boolean word should be considered, since the least-significant 31 bits may or may
not be zeros. This is accomplished by the following instruction:

cpge gr96, gr96, O

PROGRAMMING 2-25

2.7.5

2.7.6

2.8

The Boolean is in GR96 in this example. This instruction is based on the observation
that a Boolean TRUE is a negative integer, since the Boolean bit coincides with the
integer sign bit. If the operand of this instruction is a negative integer (i.e., TRUE), the
result is the Boolean FALSE. If the operand is non-negative (i.e., the Boolean
FALSE), the result is TRUE.

Large Jump and Call Ranges

The 16-bit relative branch displacement provided by processor instructions is suffi
cient in the majority of cases. However, addresses with a greater range occasionally
are needed. In these cases, the CONST and CONSTH instructions generate the large
branch-target address in a register. An indirect jump or call then uses this address to
branch to the appropriate location.

When program modules are compiled separately, the compiler cannot determine
whether or not the 16-bit displacement of a CALL instruction is sufficient to reach
an external procedure, even though it is sufficient in most cases. Instead of generat
ing instructions for the worst case (i.e., the CONST, CONSTH, and CALLI described
above), it is more efficient to generate a CALL as if it were appropriate, with the
worst-case sequence (in this case, CONST, CONSTH, and JMPI) also appearing in
the generated code somewhere (e.g., at the end of a compiled procedure).

When the above scheme is used, the linker is able to determine whether or not the
CALL is sufficient. If it is not, the CALL can be retargeted to the worst-case sequence
in the code. In other words, when the CALL is not sufficient, the linker causes the
execution sequence to be:

[
caii

cons!
consth
jmpi

In this manner, the longer execution time for the call occurs only when necessary.

NO-OPs

When a NO-OP is required for proper operation (e.g., as described in Section 5.6), it
is important that the selected instruction not perform any operation, regardless of
program operating conditions. For example, the NO-OP cannot access general
purpose registers, because a register may be protected from access in some situ
ations. The suggested NO-OP is:

aseq Ox40, gr1, gr1

This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the asser
tion is always true, there is no trap. Note also that the Stack Pointer cannot be pro
tected, and that the assert instruction cannot affect any processor state.

VIRTUAL ARITHMETIC PROCESSOR

In order to be object-code compatible with present and future implementations of the
29K family of microprocessors, the Am29030 and Am29035 microprocessors provide
a virtual arithmetic interface. A virtual interface is the means by which a processor
appears to perform functions that it does not actually perform. In the case of the

2·26 PROGRAMMING

2.8.1

2.8.2

2.9

Am29030 and Am29035 virtual arithmetic interface, the processor defines arithmetic
instructions, control, and status which are not directly supported by hardware, but
which are implemented by system software.

Trapping Arithmetic Instructions

The processor does not incorporate hardware to directly support floating-point opera
tions, nor does it directly support full multiply and divide instructions. However, in
structions to perform these operations are included in the instruction set. These in
structions are included for compatibility with processor implementations, such as the
Am29050 microprocessor, that include hardware to perform these operations.

In application programs that must be fully object-code compatible across several
processor versions-while taking advantage of the performance of the versions hav
ing arithmetic hardware-the defined instructions should be used to perform floating
point, multiplication and division operations.

In the Am29030 and Am29035 microprocessors, the Floating-Point, CLASS, CON
VERT, MULTIPLY, MULTM, MULTIPLU, MULTMU, DIVIDE, DIVIDU, and SQRT
instructions cause traps. The indirect pointers are set at the time the trap occurs, so
that a trap handler can gain access to the operands of the instruction and can deter
mine where the result is to be stored. A trap handler can directly emulate the execu
tion of the instruction.

Virtual Registers

The processor does not incorporate hardware to directly support the Floating-Point
Environment Register (FPE), Integer Environment Register (INTE), or Floating-Point
Status Register (FPS). When one of these registers is referenced by a MTSR/MFSR
instruction (or a variant), a Protection Violation trap occurs. The Protection Violation
trap handler must establish that the faulting instruction is a MTSR/MFSR and that the
register specified by the instruction is one of the registers supported by the virtual
interface. This is accomplished by obtaining the faulting instruction from memory and
examining the OPCODE and SAC/DEST fields. The trap handler then simulates the
operation of the register.

MULTIPROCESSING

The Am29030 and Am29035 microprocessors provide several facilities for the imple
mentation of multi-programming and multi-processing systems. These facilities help
provide mutual exclusion, synchronization, and communication between multiple
processes, whether these processes execute on a single processor or multiple proc
essors.

Binary semaphores are supported by the Load and Set (LOADSET) instruction. This
instruction loads the contents of an external location into a register and automatically
sets the contents of the location to the integer-1. This instruction requires no special
hardware support in the system, since all sequencing is performed by the processor.
Also, the LOADSET is available to User-mode programs. This eliminates the over
head of an operating-system call in the use of binary semaphores.

The instructions Load and Lock (LOADL) and Store and Lock (STOREL) support the
locking of external devices and memories, or the locking of particular locations within
an external device or memory. This prevents access by any process or processor
other than the one that performed the lock, and provides the flexibility of locking in a

PROGRAMMING 2-27

manner appropriate to the system and application. The LOADL and STOREL instruc
tions are available to User-mode programs.

To indicate that a LOADL or STOREL is being executed, the processor asserts the
LOCK output during the external access (see Section 10.1 and 10.6 for a description
of the LOCK output). Since the processor cannot directly control the behavior of exter
nal devices and memories, system hardware must support locking, if required.

Note that the protocol for locking and unlocking devices and memories must be de
fined by the system. For example, the protocol may be defined such that a LOADL
locks the device or memory, and a STOREL unlocks the device or memory. Between
the execution of the LOADL and the STOREL, the device can be accessed with any
combination of normal loads and stores.

For the implementation of a general-purpose exclusion, synchronization, and/or com
munication scheme, the processor allows Supervisor-mode programs to set the Lock
(LK) bit in the Current Processor Status Register (see Section 8.1.1). This bit acti
vates the LOCK pin and prevents the processor from relinquishing the bus to another
bus master. If another master already has control of the channel when the LK bit is
set, the LK bit does not take affect until control of the bus is returned to the processor.

The LK bit allows a Supervisor-mode program to execute with mutual exclusion for
any sequence of instructions. However, because interrupts must also be disabled for
true exclusion, this may have a negative impact on system performance if used im
properly.

2-28 PROGRAMMING

3.1

3.1.1

Figure 3·1

DATA FORMATS AND HANDLING

This section describes the various data types supported by the Am29030 and
Am29035 microprocessors and the mechanisms for accessing data in external de
vices and memories. The Am29030 and Am29035 microprocessors include provi
sions for the external access of words, bytes, half-words, unaligned words, and
unaligned half-words, as described in this section.

INTEGER DATA TYPES

Most instructions deal directly with word-length integer data; integers may be either
signed or unsigned, depending on the instruction. Some instructions (e.g., AND) treat
word-length operands as strings of bits. In addition, there is support for character,
half-word, and Boolean data types.

Character Data

The processor supports character data through load, store, extraction, and insertion
operations, and by a compare operation on byte-length fields within words. The for
mat of unsigned and signed characters is shown in Figure 3-1; for signed characters,
the sign bit is the most-significant bit of the character. For sequences of packed char
acters within words, bytes are ordered either left-to-right or right-to-left, depending on
the BO bit of the Configuration Register (see Section 3.3.7.1).

Character Format

Unsigned:
31 23 15 7 0

111111111111111111111111111111111
o D•a

Signed:

31 23 15 7 0

111111111111111111111111111111111
_s s_s_ D•a _

On a byte load, an external packed byte is converted to one of the character formats
shown in Figure 3-1. On a byte store, the low-order byte of a word is packed into
a selected byte of an external word. Section 10.4.4 describes how external byte
accesses are performed by hardware.

The Extract Byte (EXBYTE) instruction replaces the low-order character of a destina
tion word with an arbitrary byte-aligned character from a source word. For the
EXBYTE instruction, the destination word can be a zero word, which effectively zero
extends the character from the source operand.

DATA FORMATS AND HANDLING 3·1

3.1.2

Figure 3·2

3.1.3

The Insert Byte (INBYTE) instruction replaces an arbitrary byte-aligned character in a
destination word with the low-order character of a source word. For the IN BYTE in
struction, the source operand can be a character constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares two word-length operands and
gives a result of TRUE if any corresponding bytes within the operands have equiva
lent values. This allows programs to detect characters within words without first hav
ing to extract individual characters, one at a time, from the word of interest.

HALF-WORD OPERATIONS

The processors support half-word data through load, store, insertion and extraction
operations. The format of unsigned and signed half-words is shown in Figure 3-2; for
signed half-words, the sign bit is the most-significant bit of the half-word. For se
quences of packed half-words within words, half-words are ordered either left-to-right
or right-to-left, depending on the Byte Order (BO) bit of the Configuration Register
(see Section 3.3.7.1).

Half-Word Format

Unsigned:
~ ~ 15 7 0

1
1 I I I I I I I I I I I I I I 11 I

o o o o o o o o o o o o o o o o
I I I I I I I I I I I I I

Data .

Signed:
31

I I I I

23 15

I I I I I I I I I I

s s s s s s s s s s s s s s s s s

7

I I I I I I I I I I I I I I

Data

0

On a half-word load, an external packed half-word is converted to one of the formats
shown in Figure 3-2. On a half-word store, the low-order half-word of a word is packed
into a selected half-word of an external word. Section 10.4.4 describes how external
half-word accesses are performed by hardware.

The Extract Half-Word (EXHW) instruction replaces the low-order half-word of a desti
nation word with either the low-order or high-order half-word of a source word. For the
EXHW instruction, the destination word can be a zero word, which effectively zero
extends the half-word from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) instruction is similar to the EXHW
instruction, except that it sign-extends the half-word in the destination word (i.e., it
replaces the most-significant 16 bits of the destination word with the most-significant
bit of the source half-word).

The Insert Half-Word (INHW) instruction replaces either the low-order or high-order
half-word in a destination word with the low-order half-word of a source word.

Byte Pointer (BP, Register 133)

This unprotected special-purpose register (Figure 3-3) provides an alternate access to
the BP field in the ALU Status Register (see Section 2.5.1). For the Extract Byte
(EXBYTE) and Insert Byte (INBYTE) instructions, the character is selected via the
Byte Pointer field. For the Extract Half-Word (EXHW), Extract Half-Word Signed
(EXHWS), and Insert Half-Word (INHW) instructions, the half-word is selected by the
most significant bit of the Byte Pointer field.

3·2 DATA FORMATS AND HANDLING

Figure 3·3

3.1.4

3.1.4.1

Figure 3·4

Byte Pointer Register

31 23 15 7 0

l 0 l•l 0 l 0 l 0 l 0I !PI
Bits 1-0: Byte Pointer (BP)-The BP field holds a 2-bit pointer to a byte within a
word. It is used by Insert Byte and Extract Byte instructions. The mapping of the
pointer value to the byte position depends on the value of the Byte Order (BO) bit in
the Configuration Register.

The most-significant bit of the BP field is used to determine the position of a half-word
within a word for the following three instructions; Insert Half-Word, Extract Half-Word,
and Extract Half-Word, Sign-Extended instructions. The mapping of the most-signifi
cant bit to the half-word position depends on the value of the BO bit in the Configura
tion Register.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field with the complement of the Byte Order bit of the Configuration
Register.

This field allows a program to change the BP field without affecting other fields in the
ALU Status Register.

Bit Strings

Graphics and imaging applications often require that a data region be collectively
shifted by a specific number of bits. The Am29030 and Am29035 microprocessors
provide support for such an operation through the Extract (EXTRACT) instruction. The
Extract instruction concatenates two 32-bit values, producing a 64-bit source operand,
and then shifts this value left by an arbitrary number to produce a 32-bit result. The
shift amount is determined by the value in the Funnel Shift Count Register. The Fun
nel Shift Count Register is set before executing the Extract instruction.

FUNNEL SHIFT COUNT (FC, Register 134)

This unprotected special-purpose register (Figure 3-4) provides an alternate access to
the FC field in the ALU Status Register.

Funnel Shift Count Register

31 23 15 7 0

Bits 31-5: Zeros.

Bits 4-0: Funnel Shift Count (FC)-The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source-operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci
fies the number of bit positions from the most-significant bit of the 64-bit operand to

DATA FORMATS AND HANDLING 3-3

3.1.5

3.1.5.1

3.1.5.2

the most-significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

This field allows a program to change the FC field without affecting other fields in the
ALU Status Register.

Character-String Operations

The need to perform operations on character strings arises frequently in many sys
tems. The processor provides operations for manipulating character data, but these
are frequently inefficient for dealing with character strings, since the processor is
optimized for 32-bit data quantities.

It is much more efficient, in general, to perform character-string operations by operat
ing on units of four bytes each. These four-byte units are more suited to the proces
sor's data flow organization. However, there are several things to be considered when
dealing with four-byte units, as outlined in this section.

ALIGNMENT OF BYTES WITHIN WORDS

Character strings normally are not aligned with respect to 32-bit words. Thus, when
word operations are used to perform character-string operations, alignment of the
character strings must be taken into account.

For example, consider a character string aligned on the third byte of a word that is
moved to a destination string aligned on the first byte of a word. If the movement is
performed word-at-a-time, rather than byte-at-a-time, the move must involve shift and
merge operations, since words in the destination character string are split across
word boundaries in the source character string.

The processor's Funnel Shifter can be used to perform the alignment operations
required when character operations are performed in four-byte units. Though the
Funnel Shifter supports general bit-aligned shift and merge operations, it easily is
adapted to byte-aligned operations.

For byte-aligned shift and merge operations, it is only necessary to insure that the two
most-significant bits of the Funnel Shift Count (FC) field of the ALU Status Register
point to a byte within a word, and that the three least-significant bits of the FC field
are 000.

DETECTION OF CHARACTERS WITHIN WORDS

Most character-string operations require the detection of a particular character within
the string. For example, the end of a character string is identified by a special charac
ter in some character-string representations. In addition, character strings often are
searched for a specific pattern. During such searches, the most frequently executed
operation is the search within the character string for the first character of the pattern.

The processor provides a Compare Bytes (CPBYTE) instruction, which directly sup
ports the search for a character within a word. This instruction can provide a factor-of
four performance increase in character-search operations, since it allows a character
string to be searched In four-byte units.

During the search, the words containing the character string are compared, a word at
a time, to a search key. The search key has the character of interest in every byte
position. The CPBYTE instruction then gives a result of TRUE if any character within
the character-string word matches the corresponding byte in the search key.

3-4 DATA FORMATS AND HANDLING

3.1.6

3.1.7

3.2

3.2.1

Boolean Data

Some instructions in the Compare class generate word-length Boolean results. Also,
conditional branches are conditional upon Boolean operands. The Boolean format
used by the processor is such that the Boolean values TRUE and FALSE are repre
sented by a 1 or 0, respectively, in the most-significant bit of a word. The remaining
bits are unimportant: for the compare instructions, they are reset. Note that two's
complement negative integers are indicated by the Boolean value TRUE in this
encoding scheme.

Instruction Constants

Eight-bit constants are directly available to most instructions. Larger constants must
be generated explicitly by instructions and placed into registers before they can be
used as operands. The processor has three instructions for the generation of large
data constants: Constant (CONST); Constant, High (CONSTH); and Constant,
Negative (CONSTN).

The CONST instruction sets the least-significant 16 bits of a register with a field in the
instruction; the most-significant 16 bits are set to zero. This instruction allows a 32-bit
positive constant to be generated with one instruction, when the constant lies in the
range of O to 65535.

Any 32-bit constant can be generated with a combination of the CONST and
CONSTH instructions. The CONSTH instruction sets the most-significant 16 bits of a
register with a field in the instruction; the least-significant bits are not modified. Thus,
to create a 32-bit constant in a register, the CONST instruction sets the least-signifi
cant 16 bits, and the CONSTH instruction sets the most-significant 16 bits.

The CONSTN instruction sets the least-significant 16 bits of a register with a field in
the instruction; the most-significant 16 bits are set to one. This instruction allows a
32-bit, negative constant to be generated with one instruction, when the constant lies
in the range of -65536 to -1.

FLOATING-POINT DATA TYPES

The Am29030 and Am29035 microprocessors define single- and double-precision
floating-point formats that comply with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985). These data types are not directly supported in
processor hardware, but can be implemented using the virtual arithmetic interface
provided on the Am29030 and Am29035 microprocessors.

In this section, the following nomenclature is used to denote fields in a floating-point
value:

• s: sign bit

• bexp: biased exponent

• frac: fraction

• sig: significand

Single-precision Floating-Point Values
The format for a single-precision floating-point value is shown in Figure 3-5.

DATA FORMATS AND HANDLING 3.5

Figure 3·5

3.2.2

Figure 3-6

3.2.3

3.2.3.1

Single-Precision Floating-Point Format

31 23 15 7 0

111111111111111111111111111111111
s bexp frac

Typically, the value of a single-precision operand is expressed by:

(-1)**s • 1.frac • 2**(bexp-127).

The encoding of special floating-point values is given in Section 3.2.3.

Double-precision Floating-Point Values
The format for a double-precision floating-point value is shown in Figure 3-6.

Double-Precision Floating-Point Format
~ 23 15

s bexp

... frac

7

frac ...

Typically, the value of a double-precision operand is expressed by:

(-1)**s • 1.lrac • 2**(bexp-1023).

The encoding of special floating-point values is given in Section 3.2.3.

0

0

In order to be properly referenced by a floating-point instruction, a double-precision
floating-point value must be double-word aligned. The absolute-register number of the
register containing the first word (labeled 0 in Figure 3-6) must be even. The absolute
register number of the register containing the second word (labeled 1 in Figure 3-6)
must be odd. If these conditions are not met, the results of the instruction are unpre
dictable. Note that the appropriate registers for a double-precision value in the local
registers depends on the value of the Stack Pointer.

Special Floating-Point Values

The Am29030 and Am29035 microprocessors define floating-point values which are
encoded for special interpretation. The values are described in this section.

NOT·A·NUMBER
A Not-a-Number (NaN) is a symbolic value used to report certain floating-point excep
tions. It also can be used to implement user-defined extensions to floating-point op
erations. A NaN comprises a floating-point number with maximum biased exponent
and non-zero fraction. The sign bit can be either 0 or 1, and has no significance.
There are two types of NaN: signaling NaNs (SNaNs) and quiet NaNs (QNaNs). A
SNaN causes an Invalid Operation exception if used as an input operand to a floating
point operation; a QNaN does not cause an exception. The Am29030 and Am29035
microprocessors distinguish signaling and QNaNs by the most-significant bit of the
fraction: a 1 indicates a QNaN and a 0 indicates a SNaN.

3·6 DATA FORMATS AND HANDLING

3.2.3.2

3.2.3.3

3.2.3.4

3.3

3.3.1

An operation never generates a SNaN as a result. A QNaN result can be generated in
one of two ways:

• As the result of an invalid operation that cannot generate a reasonable result, or

• As the result of an operation for which one or more input operands are either
SNaNs or QNaNs.

In either case, the Am29030 and Am29035 microprocessors produce a QNaN having
a fraction of 11000 ... O; that is, the two most-significant bits of the fraction are 11, and
the remaining bits are 0. If desired, the Reserved Operand exception can be enabled
to cause a Floating-Point Exception trap. The trap handler in this case can implement
a scheme whereby user-defined NaN values appear to pass through operations as
results, providing overall status for a series of operations.

INFINITY

Infinity is an encoded value used to represent a value that is too large to be repre
sented as a finite number in a given floating-point format. Infinity comprises a floating
point number with maximum biased exponent and zero fraction. The sign bit of an
infinity distinguishes +00 from -oo.

DENORMALIZED NUMBERS

The IEEE Standard specifies that, wherever possible, a result that is too small to be
represented as a normalized number be represented as a denormalized number. A
denormalized number may be used as an input operand to any operation. For single
and double-precision formats, a denormalized number is a floating-point number with
a biased exponent of zero and a non-zero fraction field; the sign bit can be either 1 or
0. The value of a denormalized number is expressed by:

(-1)**s • O.frac • 2**(-bias+1),

where bias is the exponent bias for the format in question (127 for single precision,
1023 for double precision).

ZERO

A zero is a floating-point number with a biased exponent of zero and a zero fraction
field. The sign bit of a zero can be either 0 or 1; however, positive and negative zero
are both exactly zero, and are considered equal by comparison operations.

EXTERNAL DATA ACCESSES

This section discusses external data accesses supported by load and store opera
tions on the Am29030 and Am29035 microprocessors.

Address Spaces
External instructions and/or data are contained in one of two 32-bit address-spaces:

1. Instruction/Data Memory

2. Input/Output

An address in the instruction/data memory address space may be treated as virtual or
physical, as determined by the Current Processor Status Register (see Section 8.1.1).
Address translation for data accesses is enabled separately from address translation
for instruction accesses. A program in the Supervisor mode may temporarily disable
address translation for individual loads and stores; this permits load-real and store
real operations.

DATA FORMATS AND HANDLING 3-7

3.3.2

Figure 3·7

For untranslated data accesses, bits contained in load and store instructions distin
guish between the instruction/data memory and inpuVoutput address spaces. For
translated data accesses, the lnpuVOutput bit of the associated TLB entry distin
guishes between the instruction/data memory and inpuVoutput address spaces.

Load/Store Instruction Format

All processor external accesses occur between general-purpose registers and exter
nal devices and memories. Accesses occur as the result of the execution of load and
store instructions. The load and store instructions specify which general-purpose
register receives the data (for a load) or supplies the data (for a store). The format of
the load and store instructions is shown in Figure 3-8.

Load/Store Instruction Format
31 23

I I I I I

: I : : :

res: PA: UA
I I

AS SB

15 7 0

I I I I I I I
RB or I

Addresses for accesses are given either by the content of a general-purpose register
or by a constant value specified by the load or store instruction. The load and store
instructions do not perform address computation directly. Any required address com
putations are performed explicitly by other instructions.

In load and store instructions, the "RB or I" field specifies the address for the access.
The address is either the content of a general-purpose register with register number
RB, or an immediate constant with a value I (zero-extended to 32 bits). The M bit
determines whether the register or the constant is used.

The data for the access is written into the general-purpose register RA for a load and
is supplied by register RA for a store.

The definitions for other fields in the load or store instruction are given below:

Bit 23: reserved.

Bit 22: Address Space {AS)-lf the AS bit is 0 for an untranslated load or store, the
access is directed to instruction/data memory. If the AS bit is 1 for an untranslated
load or store, the access is directed to inpuVoutput. The AS bit must be O for a trans
lated load or store; if the AS bit is 1 for a translated load or store, a Protection Viola
tion trap occurs. The address space for a translated load or store is determined by the
lnpuVOutput (10) bit of the associated TLB entry.

Bit 21: Physical Address (PA)-The PA bit may be used by a Supervisor-mode
program to disable address translation for an access. If the PA bit is 1, address trans
lation is not performed for the access, regardless of the value of the Physical Ad
dressing/Data (PD) bit in the Current Processor Status Register. If the PA bit is 0,
address translation depends on the PD bit.

The PA bit may be 1 only for Supervisor-mode instructions. If it is 1 for a User-mode
instruction, a Protection Violation trap occurs.

3·8 DATA FORMATS AND HANDLING

Bit 20: Set Byte Pointer/Sign Bit (SB)-lf the SB bit is 1 for a load, the loaded byte
or half-word is sign-extended in the destination register; if the SB bit is 0, the byte or
half-word is zero-extended. When the SB bit is 1 for either a load or store, each bit of
the Byte Pointer Register is written with the complement of the Byte Order bit of the
Configuration Register. The Byte Pointer Register is set in this case to provide soft
ware compatibility across different types of memory systems and 29K family proces
sors. If the SB bit is 0, the Byte Pointer Register is not affected.

Bit 19: User Access (UA)-The UA bit allows programs executing in the Supervisor
mode to emulate User-mode accesses. This allows checking of the authorization of
an access requested by a User-mode program. It also causes address translation (if
applicable) to be performed using the PID field of the MMU Configuration Register,
rather than the fixed Supervisor-mode process identifier zero.

If the UA bit is 1 for a Supervisor-mode load or store, the access associated with the
instruction is performed in the User mode. In this case, the User mode affects only
MMU protection-checking, the SUP/US output, and the use of the PID field in transla
tion; it has no effect on the registers that can be accessed by the instruction. If the UA
bit is 0, the program mode for the access is controlled by the SM bit.

If the UA bit is 1 for a User-mode load or store, a Protection Violation trap occurs.

Bits 18-16: Option (OPT)-This field is placed on the OPT(2-0) outputs during the
address cycle of the access. There is a one-to-one correspondence between the OPT
field and the OPT(2-0) outputs; that is, the most-significant OPT bit is placed on
OPT2, and so on.

The OPT field controls system functions as described in Section 3.3.6.

Bits 15-8: (RA)-The data for the access is written into the general-purpose register
RA for a load, and is supplied by register RA for a store.

Bits 7--0: (RB or 1)-ln load and store instructions, the RB or I field specifies the
address for the access. The address is either the content of a general-purpose regis
ter with register number RB, or a constant value I (zero-extended to 32 bits). The
M bit of the operation code (bit 24) determines whether the register or the constant
is used.

Load and store operations are overlapped with the execution of instructions that
follow the load or store instruction. Only one load or store may be in progress on any
given cycle. If a load or store instruction is encountered while another load or store
operation is in progress, the processor enters the Pipeline Hold mode until the first
operation completes (see Section 5.2).

3.3.3 Load Operations

The processors provide the following instructions for performing load operations: Load
(LOAD), Load and Lock (LOADL), Load and Set (LOADSET), and Load Multiple
(LOADM). All of these instructions transfer data from an external device or memory
into one or more general-purpose registers.

The LOADL instruction supports the implementation of device and memory interlocks
in a multi-processor configuration. It activates the LOCK output during the address
cycle of the access.

The LOADSET instruction implements a binary semaphore. It loads a general
purpose register and atomically writes the accessed location with a word which has 1
in every bit position (that is, the write is indivisible from the read). The LOCK output is
asserted during both the read and write access. Note that, if address translation is
enabled for the LOADSET instruction, the MMU memory-protection bits must allow

DATA FORMATS AND HANDLING 3.9

3.3.4

3.3.5

both the read and write access. If either the read or write access is not allowed,
neither access is performed.

The LOADM instruction loads a specified number of registers from sequential
addresses, as explained below in Section 3.3.5.

Load operations are overlapped with the execution of instructions that follow the load
instruction. The processor detects any dependencies on the loaded data that subse
quent instructions may have and, if such a dependency is detected, enters the Pipe
line Hold mode until the data is returned by the external device or memory. If a regis
ter that is the target of an incomplete load is written with the result of a subsequent
instruction, the processor does not write the returning data into the register when the
load completes; the Not Needed (NN) bit in the Channel Control Register is set in
this case.

Store Operations
The processors provide the following instructions for performing store operations:
Store (STORE), Store and Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more general-purpose registers to an
external device or memory.

The STOREL instruction supports the implementation of device and memory inter
locks in a multi-processor configuration. It activates the LOCK output during the ad
dress cycle of the access.

The STOREM instruction stores a specified number of registers to sequential ad
dresses, as explained below.

Store operations are overlapped with the execution of instructions that follow the store
instruction. However, no data dependencies can exist, since the store prevents any
subsequent load or store accesses until it completes.

Multiple Accesses
The Load Multiple (LOADM) and Store Multiple (STOREM) instructions move con
tiguous words of data between general-purpose registers and external devices and
memories. The number of transfers is determined by the Load/Store Count
Remaining Register.

The Load/Store Count Remaining (CR) field in the Load/Store Count Remaining
Register specifies the number of transfers to be performed by the next LOADM or
STOREM executed in the instruction sequence. The CR field is in the range of 0 to
255, and is zero-based: a count value of 0 represents one transfer, and a count value
of 255 represents 256 transfers. The CR field also appears in the Channel Control
Register.

Before a LOADM or STOREM is executed, the CR field is set by a Move To Special
Register. A LOADM or STOREM uses the most-recently written value of the CR field.
If an attempt is made to alter the CR field, and the Channel Control Register contains
information for an external access that has not yet completed, the processor enters
the Pipeline Hold mode until the access completes. Note that since the CR is set
independently of the LOADM and STOREM, the CR field may represent valid state of
an interrupted program even if the Contents Valid (CV) bit of the Channel Control
Register is 0 (see also Section 8.6.2).

Because of the pipelined implementation of LOADM and STOREM, at least one in
struction (e.g., the instruction that sets the CR field) must separate two successive
LOADM and/or STOREM instructions.

3·10 DATA FORMATS AND HANDLING

3.3.5.1

After the CR field is set, the execution of a LOADM or STOREM begins the data
transfer. As with any other load or store operation, the LOADM or STOREM waits until
any pending load or store operation is complete before starting. The LOADM instruc
tion specifies the starting address and starting destination general-purpose register.
The STOREM instruction specifies the starting address and the starting source
general-purpose register.

During the execution of the LOADM or STOREM instruction, the processor updates
the address and register number after every access, incrementing the address by 4
and the register number by 1. This continues until either all accesses are completed
or an interrupt or trap is taken.

For a load-multiple or store-multiple address sequence, addresses wrap from the
largest possible value (hexadecimal FFFFFFFC) to the smallest possible value (hexa
decimal 00000000).

The processors increment absolute register numbers during the load-multiple or
store-multiple sequence. Absolute-register numbers wrap from 127 to 128 and from
255 to 128. Thus, a sequence that begins in the global registers may move to the
local registers, but a sequence that begins in the local registers remains in the local
registers. Also, note that the local registers are addressed circularly.

The normal restrictions on register accesses apply for the load-multiple and store
multiple sequences. For example, if a protected general-purpose register is encoun
tered in the sequence for a User-mode program, a Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Address Register, and register
numbers are stored in the Target Register (TR) field of the Channel Control Register.
For the STOREM instruction, the data for every access is stored in the Channel Data
Register (this register also is set during the execution of the LOADM instruction, but
has no interpretation in this case). The CR field is updated on the completion of every
access, so that it indicates the number of accesses remaining in the sequence.

Load-multiple and store-multiple operations are indicated by the Multiple Operation
(ML) bit in the Channel Control Register. The ML bit is used to restart a multiple op
eration on an interrupt return; if it is set independently by a Move To Special Register
before a load or store instruction is executed, the results are unpredictable.

While a multiple load or store is executing, the processor is in the Pipeline Hold mode,
suspending any subsequent instruction execution until the multiple access completes.
If an interrupt or trap is taken, the Channel Address, Channel Data, and Channel
Control registers contain the state of the multiple access at the point of interruption.
The multiple access may be resumed at this point, at a later time, by an interrupt
return.

The processors attempt to complete multiple accesses using the burst-mode capabil
ity of the bus (see Section 10.4.10). For this reason, multiple accesses of individual
bytes and half-words is not supported. If the external device or memory cannot sup
port burst-mode accesses, a sequence of simple single accesses are performed. If
the address sequence causes a virtual page-boundary crossing, the processor
preempts the burst-mode access, translates the address for the new page, and
re-establishes the burst-mode access using the new physical address.

LOAD/STORE COUNT REMAINING (CR, Register 135)

This unprotected special-purpose register (Figure 3-8) provides alternate access to
the CR field in the Channel Control Register.

DATA FORMATS AND HANDLING 3-11

Figure 3·8

3.3.5.2

3.3.6

Load/Store Count Remaining Register

31 23 15 7 0

Bits 31-8: zeros.

Bits 7-0: Load/Store Count Remaining (CR)-The CR field indicates the remaining
number of transfers for a load-multiple or store-multiple operation that encountered an
exception or was interrupted before completion. This number is zero-based; for exam
ple, a value of 28 in this field indicates that 29 transfers remain to be completed.

This register allows a User-mode program to change the CR field in the Channel
Control Register without affecting other fields in the Channel Control Register, and
is used to initialize the value before a Load Multiple or Store Multiple instruction is
executed.

MOVEMENT OF LARGE DATA BLOCKS

The movement of large blocks of data-for example, to perform a memory-to-memory
move-can be performed by an alternating series of loads and stores. However, it is
typically more efficient to move large blocks of data by using an alternating series of
Load Multiple and Store Multiple instructions. These instructions take better advan
tage of the data-movement capabilities of the processor, though they require the use
of a larger number of registers.

During data movement, it is possible to perform alignment operations by a series of
EXTRACT instructions between the Load Multiple and Store Multiple. Also, since the
Load Multiple and Store Multiple are interruptible, these instructions may be used to
move large amounts of data without affecting interrupt latency.

Option Bits

The Option field in the load and store instructions supports system functions, such as
byte and half-word accesses. The definition of this field for a load or store, depending
on the AS bit of the instruction, is as follows:

AS OPT2 OPT1 OPTO Meaning

x 0 0 0 Word-length access
x 0 0 1 Byte access
x 0 1 0 Half-word access
0 1 1 0 Hardware-development system accesses

-All Others- Reserved

Note that some of these encodings do not affect processor operation and could have
other interpretations in a particular system. Non-standard uses of the OPT field have
an implication on the portability of software between different systems.

3·12 DATAFORMATSANDHANDUNG

3.3.7

3.3.7.1

Figure 3.9

Addressing and Alignment

BYTE AND HALF-WORD ADDRESSING

The Am29030 and Am29035 microprocessors generate word-oriented byte ad
dresses for accesses to external devices and memories. Addresses are word-oriented
because loads, stores, and instruction fetches access words. However, addresses are
byte addresses because they permit byte selection within accessed words. For load
and store operations, the processor provides for using the least-significant address
bits to access bytes and half-words within external words.

For all external byte and half-word accesses, the selection of a byte within an external
word is determined by the two least-significant bits of an address and the Byte Order
(BO) bit of the Configuration Register. The selection of a half-word within an external
word is determined by the next-to-least significant bit of an address and the BO bit.
Figure 3-9 illustrates the addressing of bytes and half-words when the BO bit is 0 (big
endian), and Figure 3-10 illustrates the addressing of bytes and half-words when the
BO bit is 1 (little endian). In Figure 3-9 and Figure 3-10, addresses are represented in
hexadecimal notation.

Byte and Half-Word Addressing with BO = 0 (Big Endian)
31 23 15 7 0

Word 00000000
Half-Word 00000000 Half-Word 00000002

Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003

Word 000000004
Half-Word 00000004 Half-Word 00000006

Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007

Word FFFFFFFS
Half-Word FFFFFFFS Half-Word FFFFFFFA

Byte FFFFFFFS Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB

Word FFFFFFFC
Half-Word FFFFFFFC Half-Word FFFFFFFE

Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

For all byte and half-word operations in the processor, the byte or half-word within a
register is selected either by the two bits of the BP field or the two least-significant bits
of an external address. The BO bit affects only the interpretation of the BP field and
the two least-significant address bits.

If the BO bit is 0, bytes are ordered within words such that a 00 in the BP field or in
the two least-significant address bits selects the high-order byte of a word, and a 11
selects the low-order byte. If the BO bit is 1, a 00 in the BP field or in the two least
significant address bits selects the low-order byte of a word, and a 11 selects the
high-order byte.

DATAFORMATSANDHANDLING 3-13

Figure 3·10

3.3.7.2

Byte and Half-Word Addressing with BO = 1 (Little Endian)

23 15 7 0

Word 00000000
Half-Word 00000002 Half-Word 00000000

Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000

Word 000000004
Half-Word 00000006 Half-Word 00000004

Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004

Word FFFFFFFS
Half-Word FFFFFFFA Half-Word FFFFFFFS

Byte FFFFFFFB Byte FFFFFFFA Byte FFFFFFF9 Byte FFFFFFFS

Word FFFFFFFC
Half-Word FFFFFFFE Half-Word FFFFFFFC

Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

If the BO bit is 0, half-words are ordered within words such that a O in the most
significant bit of the BP field or the next-to-least-significant address bit selects the
high-order half-word, and a 1 selects the low-order half-word. If the BO bit is 1, a 0 in
the most-significant bit of the BP field or the next-to-least-significant address bit se
lects the low-order half-word of a word, and a 1 selects the high-order half-word. Note
that since the least-significant bit of the BP field or an address does not participate in
the selection of half-words, the alignment of half-words is forced to half-word bounda
ries in this case.

BYTE AND HALF-WORD ACCESSES

During a load, the processor selects a byte or half-word from the loaded word de
pending on: the Option (OPT) bits of the load instruction, the Byte Order (BO) bit of
the Configuration Register, and the two least-significant bits of the address (for bytes)
or the next-to-least-significant bit of the address (for half-words). The selected byte or
half-word is right-justified within the destination register. If the SB bit of the load in
struction is 0, the remainder of the destination register is zero-extended. If the SB bit
is 1, the remainder of the destination register is sign-extended with the sign bit of the
selected byte or half-word.

During a store, the processor replicates the low-order byte or half-word in the source
register into every byte and half-word position of the stored word. The processor
generates the appropriate byte and/or half-word write enables, based on the
OPT(2--0) signals and the two least-significant bits of the address, to write the byte or
half-word in the selected device or memory. The SB bit does not affect the operation
of a store, except for setting the BP field as described below.

If the SB bit is 1 for either a load or store, both bits of the BP field are set to the com
plement of the BO bit when the load or store is executed. This does not directly affect
the load or store access, but supports compatibility for software developed for word
write-only systems and other 29K family processors.

3-14 DATA FORMATS AND HANDLING

3.3.7.3

3.3.7.4

ALIGNMENT OF WORDS AND HALF-WORDS

Since only byte addressing is supported, it is possible that the address for an access
of a word or half-word is not aligned to the desired word or half-word. The Am29030
and Am29035 microprocessors either ignore or force alignment in most cases. How
ever, some systems may require that unaligned accesses be supported, for compati
bility reasons. Because of this, the Am29030 and Am29035 microprocessors provide
an option to trap when a non-aligned access is attempted. This trap allows software
emulation of the non-aligned accesses, in a manner which is appropriate for the
particular system.

The detection of unaligned accesses is activated by a 1 in the Trap Unaligned Access
(TU) bit of the Current Processor Status Register. Unaligned-access detection is
based on the data length as indicated by the OPT field of a load or store instruction
and on the two least-significant bits of the specified address. Only addresses for
instruction/data memory accesses are checked; alignment is ignored for input/output
accesses.

An Unaligned Access trap occurs only if the TU bit is 1 and any of the following com
binations of OPT field and address bits is detected for a load or store to instruction/
data memory:

OPT2 OPT1 OPTO A1 AO Meaning

0 0 0 1 0 Unaligned Word access
0 0 0 0 1 Unaligned Word access
0 0 0 1 1 Unaligned Word access
0 1 0 0 1 Unaligned Half-word access
0 1 0 1 1 Unaligned Half-word access

The trap handler for the Unaligned Access trap is responsible for generating the
correct sequence of aligned accesses and performing any necessary shifting, mask
ing and/or merging. Note that a virtual page-boundary crossing may also have to be
considered.

ALIGNMENT OF INSTRUCTIONS

In the Am29030 and Am29035 microprocessors, all instructions are 32 bits in length
and are aligned on word-address boundaries. The processor's Program Counter is 30
bits in length, and the least-significant two bits of processor-generated instruction
addresses are always 00. An unaligned address can be generated by indirect jumps
and calls. However, alignment is ignored by the processor in this case, and the proc
essor expects the system to force alignment (i.e., by interpreting the two least-signifi
cant address bits as 00, regardless of their values).

DATA FORMATS AND HANDLING 3-15

4.1

4.1.1

PROCEDURE LINKAGE

This chapter describes the run-time storage organization recommended for the
Am29030 and Am29035 microprocessors and describes the use of the local registers
to improve the performance of procedure calls. The presentation in this chapter is
intended to be used as a guide in the implementation of software systems for the
processor, not necessarily as a strict definition of how these systems should be
implemented.

Programming languages that use recursive procedures, such as C and Pascal, gener
ally use a stack to store data objects that are dynamically allocated at run-time. The
organization of the run-time storage, including the run-time stack, determines how
data objects are stored and how procedures are called at the machine level. The
Am29030 and Am29035 microprocessors are designed to minimize the overhead of
calling a procedure, passing parameters to a procedure, and returning results from a
procedure. This chapter describes the run-time storage organization and procedure
calling conventions.

RUN-TIME STACK ORGANIZATION AND USE

A run-time stack consists of consecutive overlapping structures called activation
records. An activation record contains dynamically allocated information specific to a
particular activation (or call) of a procedure (such as local data objects). Because of
recursion, multiple copies of a procedure may be active at any given time. Each active
procedure has its own unique activation record, allocated somewhere on the run-time
stack. The local variables required by a particular procedure activation are contained
in the activation record associated with that activation. Thus, the local variables for
different activations do not interfere with one another. A compiler generates the in
structions to create and manage the run-time stack, and compiler-generated instruc
tions are based on its existence.

As an example, Figure 4-1 shows three activation records on a run-time stack. This
stack configuration was generated by procedure A calling procedure B, which in turn
called procedure C. The fact that procedure C is the currently active procedure is
reflected by its activation record being on the top of the run-time stack. The Stack
Pointer points to the top of procedure C's activation record.

In Figure 4-1, the storage areas labeled Out args and In args are the outgoing argu
ments area (for the caller) or the incoming arguments area (for the callee). These are
shared between the caller procedure and the callee for the communication of parame
ters and results. The areas labeled locals contain storage for local variables, tempo
rary variables (for example, for expression evaluation) and any other items required
for the proper execution of the procedure.

Management Of The Run-time Stack

A run-time stack starts at a high address in memory and grows toward lower memory
addresses as procedures are called. The bottom of the stack is the location, with a

PROCEDURE LINKAGE 4-1

Figure 4-1 Run-time Stack Example

Activation
Record for A

Activation
Record for C

Out args X
In args A

locals A

Out args A
In args B

Locals B

Out args B
In args C

LocalsC

Out args C

Higher Memory
Addresses

Activation
Record for B

Lower Memory
Addresses

Stack Pointer
(Top of Stack)

high address, at which the stack starts; the top of the stack is the location, with a
lower address, at which the most recent activation record has been allocated.

When a procedure is called, a new activation record might need to be allocated on the
run-time stack. An activation record is allocated by subtracting from the stack pointer
the number of locations needed by the new activation record. The stack pointer is
decremented so that variables referenced during procedure execution are referenced
in terms of positive offsets from the stack pointer.

When storage for an activation record is allocated, the number of storage locations
allocated is the sum of the number of locations needed for:

1. Local variables;

2. Restarting the caller, such as locations for return addresses; and

3. Arguments of procedures that may be called in turn by the called procedure (the
outgoing arguments area).

Note that, in some cases, no storage is required for one or more of the above items.
Also, the incoming arguments area, though it is part of the activation record of the
callee, is not allocated storage at this time, because this storage was allocated as the
outgoing arguments area of the calling procedure.

An activation record is de-allocated, just prior to returning to the caller, by adding to
the stack pointer the value that was subtracted during allocation.

In Am29030 and Am29035 microprocessors, run-time storage is actually implemented
as two stacks: the Register Stack and the Memory Stack. Storage is allocated and
de-allocated on these stacks at the same time. The Register Stack stores activation
records associated with all active procedures (except leaf routines, as described
later). The Memory Stack stores activation-record information that does not fit into the
Register Stack or that must be kept in memory for other reasons (e.g., because of
pointer dereferences). Both the Register Stack and the Memory Stack are stored in
the external data memory. However, a portion of the Register Stack is kept in the

4-2 PROCEDURE LINKAGE

4.1.2

Figure 4·2

processor's local registers for performance. The term stack cache in this section
refers to the use of the local registers to contain a portion of the Register Stack.

The Register Stack

The Register Stack contains activation records for active procedures (Figure 4-2). An
activation record in the Register Stack stores the following information:

• Input arguments to the called procedure. This portion of the activation record is
shared between a caller and the callee. It is allocated by the caller as part of the
caller's activation record.

• The caller's frame pointer. This is the address of the lowest-addressed byte above
the highest-address word of the caller's activation record, and is used to manage
the Register Stack. This portion of the activation record is shared between a caller
and the callee. It is allocated by the caller as part of the caller's activation record.

• The caller's return address. This is used to resume the execution of the caller after
the called procedure terminates. This is also part of the caller's activation record.

• The memory frame pointer. This is the address of the top of the caller's Memory
Stack (see below). This address is stored by the callee (if required), and used to
restore the memory stack upon return.

• The local variables of the called procedure, if any.

• Outgoing parameters of the called procedure, if any.

• The frame pointer of the called procedure, if the procedure calls another procedure.

• The return address for the called procedure, if the procedure calls another
procedure. This location is allocated in the Register Stack, and is used when the
called procedure calls another procedure.

An Activation Record in the Register Stack

---+
Incoming Arguments

Frame Pointer

Return Address

Memory Frame Pointer

t- -

LR1 (caller)} Before and

LRO (caller) After Call ..___
Caller's Stack Pointer

llee's Ca
Act

Re

t-
ivation

Local Variables
cord t- of Callee

t-

t-

Outgoing Arguments

Frame Pointer

Return Address

-
-
-
-

LR1 (Callee)}

LRO (Callee) ..___
During

Call

Callee's Stack Pointer

PROCEDURE LINKAGE 4.3

4.1.3

Figure 4·3

Local Registers As A Stack Cache

The Am29030 and Am29035 microprocessors are designed for efficient implementa
tion of the Register Stack. Specifically, the Am29030 and Am29035 microprocessors
can use the large number of relatively addressed local registers to cache portions of
the Register Stack, yielding a significant gain in performance. Allocation and de-allo
cation of activation records occurs largely within the confines of the high-speed local
registers, and most procedure calls occur without external references. Furthermore,
during procedure execution, most data accesses occur without external references,
because activation-record data are referenced most frequenUy. The principle of local
ity of reference-which allows any cache to be effective-also applies to the stack
cache. The entries in the stack cache are likely to remain there for re-use, because
the size of the Register Stack does not change very much over long intervals of pro
gram execution. Activation records are typically small, so the 128 locations in the local
register file can hold many activation records.

Allocating Register-Stack activation records in the local registers is facilitated by the
Stack Pointer in Global Register 1. During the execution of a procedure, the Stack
Pointer points simultaneously to the top of the Register Stack in memory and to the
local register at the top of the stack cache. In other words, Global Register 1, a word
length register, contains the 32-bit address of the top of the Register Stack, while
bits 8-2 of Global Register 1 (with a 1 appended to the most-significant bit) indicate
the absolute register number of Local Register 0. Allocation and de-allocation of the
Register Stack is accomplished by subtracting from or adding to, respectively, the
value of the Stack Pointer.

Using this register-addressing scheme, locations from the Register Stack are auto
matically mapped into the local register file. Figure 4-3 shows the relationship

Relationship of Stack Cache and Register Stack

Local
Register

File
Register Free Bound (gr127)

Register
Stack

Spilled
Activation
Records

!1-------11---. ~r~~~ ~~i~:r·(::) •• - •••

lr6
lr5
lr4
lr3
lr2
lr1
lrO

lr127

"'"""'"'""'-"'-"-"'-'-"""*"'

I
I

.._ Re gister Stack Pointer (gr1) :
~ ~

Current
Activation

Record
(in local
registers)

4-4 PROCEDURE LINKAGE

between the Register Stack and the stack cache in the local registers. As shown,
pointers are required to define the boundaries between the Register Stack and the
stack cache.

• The register free bound pointer {rfb, gr127) defines the boundary between the
portion of the Register Stack that is cached in the local registers and the portion that
is stored in the external data memory. The rfb pointer contains the address of the
first word in the Register Stack that is not contained in the local registers, but which
is in memory.

• The frame pointer {fj:>, lr1) contains the memory address of the lowest-addressed
word not in the current activation record. The current activation record is not
necessarily in the data memory: the fp is used to determine whether or not an
activation record is contained in the local registers when a procedure returns from a
call, as described later.

• The register stack pointer (rsp, gr1) points to the top of the Register Stack either in
the local registers or the data memory; the rsp is contained in the local-register
Stack Pointer {Global Register 1). The top of the Register Stack may or may not be
contained in the data memory-the rsp simply defines the location of the top of the
Register Stack.

• The register allocate bound pointer (rab, gr126) defines the lowest-addressed stack
location that can be cached within the local registers. This defines the limit to which
local registers can be allocated in the Register Stack.

Several activation records may exist in the Register Stack at any given time, but only
one stack location may be mapped to a local register at a given time. When the Reg
ister Stack grows beyond the 128-word capacity of the local registers, some move
ment of data between the stack cache and the Register Stack in data memory must
occur.

Stack overflow occurs when a procedure is called, but the activation record of the
callee requires more registers than can be allocated in the stack cache {this is de
tected by comparing rsp with rab); Figure 4-4 illustrates stack overflow. In this case,
the contents of a number of registers must be moved to data memory. The number of
registers involved must be sufficient to allow the entire activation record of the callee
to reside in the local registers. A block of the registers is copied, or spilled into an
area of external data memory, freeing space in the local register file for the most
recent procedure call.

Stack underflow occurs when a procedure returns to the caller, but the entire activa
tion record of the caller is not resident in the stack cache {this is detected by compar
ing fp with rfb); Figure 4-5 illustrates stack underflow. In this case, the non-resident
portion of the caller's stack must be moved from data memory to the local registers.
Underflow occurs because overflow occurred at some previous point during program
execution, causing part of the Register Stack to be moved to data memory.

The processors perform no hardware management of the stack cache and cannot
detect a reference to a quantity that is not in the stack cache. Consequently, software
must keep the size of an activation record less than or equal to the size of the local
register file {128 words). Any additional storage requirements are satisfied by the
Memory Stack.

PROCEDURE LINKAGE 4.5

Figure 4.4 Stack Overflow

Local
Register

File
Register Free Bound (gr127)

--+ !1--------ll----~:a~~ ~~i~~~ (~r~: . --..

! ::: t~~:~-~~'."_'_~,~~!~j
: - - - - • lr4- - - - - !
! lrL •••• !
: ••••• lr2 ••••• !
! ___ . _ Jrl _ • ___ ! Register Stack Pointer (gr1) •

Register
Stack

Spilled
Activation
Records

Current
Activation

Record
(in local
registers)

: - •• - • JrQ ••••• ~ --+! - - .. - - . - . - - -

Figure 4·5

I I

Stack Underflow

Local
Register

File

Frame Pointer(lr1)
--+

Register Free Bound (gr127)
--+

J..___~r··--··---·----···----

lr1 R
lrO I+-

egister Stack Pointer (gr1)
--+

lr127
lr126
lr125
lr124
lr123
lr122

4-6 . PROCEDURE LINKAGE

Register
Stack

Spilled
Activation
Records

Current
Activation

Record

4.1.4

4.2

The Memory Stack

In general, the Memory Stack is used to augment the Register Stack, holding addi
tional information associated with activation records. For example, the Memory Stack
holds large data structures than cannot fit into the Register Stack. Similar to the Reg
ister Stack, the Memory Stack contains a series of (possibly overlapping) activation
records, each corresponding to a procedure activation. However, a Memory Stack
activation record need not exist for a procedure that does not need a Memory Stack
Area. The Memory Stack contains the following information:

• Overflow incoming arguments. These are incoming arguments that do not fit in the
allowed incoming arguments area of the Register Stack activation record.

• Spilled incoming arguments. These are incoming arguments that cannot be kept in
the Register Stack. For example, if the address of an argument is used in a called
procedure, the associated value must be in the Memory Stack.

• Any procedure-local variable not allocated to a register.

• Local block space. This storage is allocated dynamically on the Memory Stack. It is
used to implement functions such as the alloca() function in the C programming
language.

• Overflow outgoing arguments. These are outgoing arguments that do not fit in the
allowed outgoing arguments area of the Register Stack activation record.

In contrast to the Register Stack, the Memory Stack is not cached and has no fixed
size limit. The top of the Memory Stack is defined by the memory stack pointer (msp),
which is stored in Global Register 125 by convention.

PROCEDURE LINKAGE CONVENTIONS

The procedure linkage conventions define the standard sequences of instructions
used to call and return from procedures. These instruction sequences perform the
following operations (other, more general operations may also be required, as de
scribed later):

• Put procedure arguments into the outgoing arguments area of the activation record.
This may or may not involve copying the arguments; copying is not necessary if the
arguments are placed into the appropriate registers as the result of computation.

• Branch to the procedure using a call instruction, which also places the return
address in a register.

• Allocate a frame on the Register Stack. A frame is the storage that contains the
procedure's activation record.

• If overflow occurs during frame allocation, spill the least-recently used locations of
the Register Stack. The number of spilled locations must be sufficient to allow the
new frame to reside entirely within the local registers.

• Determine the frame-pointer value of the called procedure, if this procedure may
call another procedure.

• Execute the procedure.

• Place return values into the appropriate registers.

• De-allocate the activation-record frame.

• Fill locations of the local registers from the Register Stack in external memory, if
underflow occurs.

• Branch to the procedure's return address.

PROCEDURE LINKAGE 4-7

4.2.1

4.2.2

This section describes the routines that implement the procedure linkage conventions.
The operations described here are not required on every procedure call. In some
cases, operations can be omitted or simpler routines used; these cases and the ac
companying simplifications are also described here.

Argument Passing

The linkage convention allows up to 16 words of arguments to be passed from the
caller to the callee in local registers. These arguments are passed in Local Register 2
through Local Register 17 of the caller (note that the local-register numbers are differ
ent for the caller and the callee, because of Stack-Pointer addressing).

When more than 16 words are required to pass arguments, the additional words are
passed on the Memory Stack. In this case, the memory stack pointer (in Global Regis
ter 125) points to the 17th word of the arguments, and the remaining argument words
have higher memory addresses. Multi-word arguments may be split across the Regis
ter Stack and the Memory Stack. For example, if a multi-word argument starts on the
16th word of the outgoing arguments, the first word of the argument is passed in the
Register Stack, and the remainder of the argument is passed in the Memory Stack.

All arguments occupy at least one word; arguments which are a byte or half-word in
length (for example, a character) are padded to 32 bits and passed as a full word.
However, an array or structure composed of multiple byte or half-word components
can be passed as a single, packed array or structure of bytes or half-words rather
than an array or structure of padded bytes or half-words.

No argument is aligned to other than a word address boundary, including multi-word
arguments. Some multi-word arguments are referenced as a single object (for exam
ple, double-precision Floating-Point values). Note that it may be necessary to copy
such arguments to an aligned memory or register area before use.

Procedure Prologue

When a procedure is called, and the procedure may call another procedure, the callee
must allocate a frame for itself on the Register Stack (this is not required for leaf
procedures that do not call other procedures, as described later). A frame is allocated
by decrementing the register stack pointer to accommodate the size of the required
activation record. The procedure prologue is the instruction sequence that allocates
the callee's Register Stack frame.

To allocate the stack frame, the prologue routine decrements the register stack
pointer by the amount rsize (see Figure 4-6). The value of rsize must be an even
number given by the following formula:

rsize?. (size of local variable area)+ (size of outgoing arguments area)+ 2

The value 2 in this formula accounts for the space required by the return address (in
Local Register 0) and the frame pointer (in Local Register 1). The size of the local
variable area includes the space for the memory frame pointer, if required. If the
formula total is an odd value, the total must be adjusted (by adding 1) so that the
resulting rsize value is even. This aligns the top of the Register Stack on a double
word boundary. The reason for this alignment is that double-precision Floating-Point
values must be aligned to registers with even absolute-register numbers. Alignment of
double-precision values is accomplished by placing these values into even-numbered
local registers and making rsize even (it is also assumed that the register stack
pointer is initialized on an even-word boundary).

4-8 PROCEDURE LINKAGE

Figure 4·6 Definition of size and rsize Values

Callee's
Activation

Record

size rsize
I

Incoming Arguments*

Frame Pointer

Return Address

Memory Frame Pointer*

Local Variables
of Callee*

Outgoing Arguments'

Frame Pointer*

Return Address*

*May not be required

LR1 (caller)

LRO (caller)

Caller's Stack Pointer

LR1 (callee)

LRO (callee)

Callee's Stack Pointer

Note that rsize is not the size of the entire activation record of the callee, because the
callee's activation record includes storage that was allocated as part of the caller's
activation record frame (e.g., the caller's outgoing arguments area, which is the
callee's incoming arguments area). The size of the callee's entire activation record is
denoted size, and is given by the following formula:

size= rsize+ (size of the incoming arguments area) +2

In the prologue routine, the following instruction is used to allocate the stack frame
(rsp=gr1):

prologue:
sub rsp,rsp,rsize*4 ; *4 converts words to bytes

However, this instruction does not account for the fact that there may not be enough
room in the local registers to contain the activation record. There must be additional
instructions to detect stack overflow and to cause spilling if overflow occurs. This is
accomplished by comparing the new value of the register stack pointer with the value
of the register allocate bound and invoking a trap handler (with vector number
V _SPILL) if overflow is detected.

Furthermore, if the procedure calls another procedure, the prologue must compute a
frame pointer. The frame pointer will be used by procedures called in turn by the
callee to insure that the callee's activation record is in the local registers upon return
(i.e., that it has not been spilled onto the Register Stack in data memory). The frame
pointer is computed in the prologue because it need only be computed once, regard
less of how many procedures are called by a given procedure.

PROCEDURE LINKAGE 4.9

4.2.3

4.2.4

The complete procedure prologue is then (fp = lr1):

prologue:
sub
asgeu
add

Spill Handler

rsp, rsp, rsize*4
V_SPILL, rsp, rab
fp, rsp, size*4

; allocate frame
; call spill handler if needed
; compute frame pointer

If overflow occurs, the assert instruction in the prologue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to spill Register
Stack locations from the local registers to external memory. Having most of the spill
handling in a User-mode routine minimizes the amount of time that interrupts are
disabled and insures that spilling is performed using the correct virtual-memory
configuration.

The spill handler uses two registers. The first register, Global Register 121, normally
contains a trap-handler argument (tav), but is used by the spill handler as a temporary
register. The second register, .Global Register 122, stores a trap handler return ad
dress (tpc). This register is used by the User-mode spill handler to return to the trap
ping procedure. It is assumed that the address of the User-mode spill handler is
contained in a global register, denoted user_spill_reg in the following instruction
sequence.

The complete spill handler is:

Spill:

user_spill:

mfsr
mtsr
add
mtsr
iret

sub
srl
sub
mtsr
sub
sub
add
storem
jmpi
add

tpc, PC1
PC1, user_spill_reg
tav, user_spill_reg, 4
PCO, tav

tav, rab, rsp
tav, tav, 2
tav, tav, 1
CR, tav
tav, rab, rsp
tav, rfb, tav
rab, rsp, 0
0, 0, lrO, tav
tpc
rfb, tav, 0

Return Values

; operating-system routine
; save return address
; branch to User spill via interrupt return

; User-mode spill handler
; compute spill: allocate bound- rsp
; shift to get number of words
; count is one less
; set Count Remaining Register

; compute new free bound
; adjust allocate bound
; spill
; return to trapping procedure
; adjust free bound

If the called procedure returns one or more results, the first 16 words of the result{s)
are returned in Global Register 96 through Global Register 111, starting with Global
Register 96.

If more than 16 words are required for the results, the additional words are returned in
memory locations allocated by the caller. In this case, a large return pointer (lrp)
provided by the caller in Global Register 123 at the time of the call points to the 17th
word of the results, and subsequent words are stored at higher memory addresses.

4-10 PROCEDURE LINKAGE

4.2.5

4.2.6

4.2.7

Procedure Epilogue

The procedure epilogue de-allocates the stack frame that was allocated by the proce
dure prologue and returns to the calling procedure. Stack de-allocation is accom
plished by adding the rsize value back to the register stack pointer, after which the
de-allocated registers are no longer used and are considered invalid. The epilogue
also detects stack underflow and causes register filling if underflow occurs. This is
accomplished by comparing the value of the caller's frame pointer with the register
free bound and invoking a trap handler (with vector number V_FILL) if underflow is
detected. Finally, the epilogue returns to the caller using the caller's return address.

The complete procedure epilogue is:

epilogue:
add rsp, rsp, rsize*4
nop
asleu V _FILL, fp, rfb
jmpi lrO
nop

Fill Handlers

; add back rsize count
; cannot reference a local register here
; call fill handler if needed
; jump to return address
; delay slot

If underflow occurs, the assert instruction in the epilogue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to fill Register Stack
locations from the external memory to local registers. The fill handler is similar in
organization to the spill handler discussed above.

The complete fill handler is:

Fill:
mfsr tpc, PC1
mtsr PC1, user_fill_reg
add tav, user_fill_reg, 4
mtsr PCO, tav
ire!

user_fill:
sub tav, rlb,rab
or tav, tav, rib

mtsr IPA,tav
sub tav, Ip, rib
add rab, rab. tav
srl tav, tav, 2
sub tav, tav, 1
mtsr CR, tav
loadm 0, 0, grO, tav
jmpi tpc
add rib, Ip, 0

The Register Stack Leaf Frame

; operating-system routine
; save return address
; branch to User fill via interrupt return

: User-mode fill handler
: local register has high bit set
: put starting register number into Indirect
: Pointer A

; compute number of bytes to fill
: adjust the allocate bound
; change byte count to word count
; make count zero-based
; set Count Remaining register
; fill
; return to trapping procedure
; adjust the free bound

A leaf procedure is one that does not call any other procedure. The incoming argu
ments of a leaf procedure are already allocated in the calling procedure's activation
record frame, and the leaf routine is not required to allocate locations for any outgoing
arguments, frame pointer or return address (since it performs no call). Hence, a leaf
procedure need not allocate a stack frame in the local registers, and can avoid the
overhead of the procedure prologue and epilogue routines. Instead, a leaf routine can
use a set of global registers for local variables; Global Register 96 through Global

PROCEDURE LINKAGE 4-11

4.2.8

Register 124 are reserved for this purpose (among other purposes). If there is an
insufficient number of global registers, the leaf procedure may allocate a frame on the
Register Stack.

Local Variables And Memory-Stack Frames

A called procedure can store its local variables and temporaries in space allocated in
the Register Stack frame by the procedure prologue. The values are referenced as an
offset from the rsp base address, using the Stack-Pointer addressing of the local
registers. No object in a register is aligned on anything smaller than a register bound
ary, and all objects take at least one register.

Because there are 128 local registers, the total Register Stack activation-record size
can not be greater than 128 words. If the callee needs more space for local variables
and temporaries, it must allocate a frame on the Memory Stack to hold these objects.
To allocate a Memory-Stack frame, the procedure prologue decrements the memory
stack pointer (msp, in gr125). The procedure epilogue de-allocates the Memory-Stack
frame by incrementing the msp.

A procedure that extends the Memory Stack dynamically (e.g., using alloca()) must
make a copy of the msp at procedure entry, before allocating the Memory-Stack
frame. The msp is stored in the memory frame pointer (mfp) entry of the activation
record in the Register Stack. The procedure then can change the msp during execu
tion, according to the needs of dynamic allocation. On procedure return, the Memory
Stack frame is de-allocated using the mfp to restore the msp. A procedure that does
not extend the Memory Stack dynamically need not have an mfp entry in its activation
record.

The following prologue and epilogue routines are used if there is no dynamic alloca
tion of the Memory Stack during procedure execution, but a Memory Stack frame is
otherwise required {Figure 4-6 contains a diagram of register usage):

prologue:

epilogue:

sub
asgeu
add
sub

rsp, rsp, <rsize> • 4
V_SPILL, rsp, rab
fp, rsp, <Size>*4
msp, msp, <msize>

; allocate register frame
; call spill handler if needed
; compute register frame pointer
; allocate memory frame
; msize =size of memory frame in words

add rsp, rsp, <rsize> • 4 ; de-allocate register frame
add msp, msp, <msize> ; de-allocate memory frame
jmpi lrO ; return
asleu V _FILL, fp, rib ; call fill handler if needed

The following prologue and epilogue routines are used if there is dynamic allocation of
the Memory Stack during procedure execution:

prologue:
sub
asgeu
add
add

sub

rsp, rsp, <rsize> • 4
V_SPILL, rsp, rab
fp, rsp, <Size>*4
lr{<rsize>-1}, msp, 0

msp, msp, <msize>

; allocate register frame
; call spill handler if needed
; compute register frame pointer
; save memory frame pointer
; Ir{ rsize-1} is last reg in new frame
; allocate memory frame,
; msize = size of memory frame in words

4-12 PROCEDURE LINKAGE

4.2.9

4.2.10

4.3

epilogue:
add

add
nop
jmpi
asleu

msp, lr{<rsize> -1} ,0

rsp, rsp, <rsize>*4

lrO
V_FILL, fp, rfb

Static Link Pointer

; restore memory stack pointer
; de-allocate memory frame
; de-allocate register frame
; cannot reference a local register here
; return
; call fill handler if needed

Some programming languages (notably Pascal) permit nested procedure declara
tions, introducing the possibility that a procedure may reference variables and
arguments which are defined and managed by another procedure. This other
procedure is a static parent of the callee. A static parent is determined by the declara
tions of procedures in the program source, and is not necessarily the calling proce
dure; the calling procedure is the dynamic parent. Since procedures can be nested at
a number of levels, a given procedure may have a number of hierarchically organized
static parents.

A called procedure can locate its dynamic parent and the variables of the dynamic
parent because of the return address and frame pointer in the Register Stack. How
ever, these are not adequate to locate variables of the static parent which may be
referenced in the procedure. If such references appear in a procedure, the procedure
must be provided with a static link pointer (sip). In the run-time organization, the sip is
stored in Global Register 124. Since there can be a hierarchy of static parents, the sip
points to the sip of the immediate parent, which in tum points to the sip of its immedi
ate parent, and so on. Note that the contents of Global Register 124 may be de
stroyed by a procedure call, so a procedure needing to reference the variables of
a static parent may need to preserve the sip until these references are no longer
necessary.

Transparent Procedures

A transparent procedure is one that requires very little overhead for managing run
time storage. Transparent procedures are used primarily to implement compiler-spe
cific support functions, such as integer divide.

A transparent routine does not allocate any activation-record frames. Parameters are
passed to a transparent procedure using tav and the Indirect Pointer A, B, and C
registers. The return address is stored in tpc. This convention allows a leaf procedure
to call a transparent procedure without changing its status as a leaf procedure. There
is a tight relationship between a compiler and the transparent procedures it calls.
Some transparent procedures may need more temporary registers and the compiler
must account for this.

REGISTER USAGE CONVENTION

The run-time organization standardizes the uses of the local and global registers. This
section summarizes register use and the nomenclature for register values:

• GR1: Register stack pointer (rsp).

• GR2-GR63: Unimplemented.

• GR64-GR95: Reserved for operating-system use.

PROCEDURE LINKAGE 4-13

4.4

• GR96-GR111: Procedure return values. Lower-numbered registers are used
before higher-numbered registers. If more than 16 words are needed, the additional
words are stored in the Memory Stack (see GR123, large return pointer). These
registers are also used for temporary values that are destroyed upon a procedure
call.

• GR112-GR115: Reserved for programmer. These registers are not used by the
compiler, except as directed by the programmer.

• GR116-GR120: Compiler temporaries.

• GR121: Trap handler argument/temporary (tav)-This register is used to
communicate arguments to a software-invoked trap routine. It can be destroyed by
the trap, but not by other traps and interrupts not explicitly generated by the
program (for example, a Timer trap).

• GR122: Trap handler return address/temporary (tpc). This register also is used by
software-invoked traps. It can be destroyed by the trap, but not by other traps and
interrupts not explicitly generated by the program (for example, a Timer trap).

• GR123: Large return pointer/temporary (/rp).

• GR124: Static link pointer/temporary (sip).

• GR125: Memory stack pointer (msp).

• GR126: Register allocate bound (rab).

• GR127: Register free bound (rib).

• LAO: Return address.

• LR 1 : Frame pointer.

In this convention, registers must be handled by software according to system re
quirements. The following practices are recommended:

• GR64-GR95 should be protected from User-mode access by the Register Bank
Protect Register.

• The contents of GR96-GR124 should be assumed destroyed by a procedure call,
unless the procedure is a transparent procedure.

• The contents of GR121 and GR122 should be assumed destroyed by any
procedure call or any program-generated trap.

• The contents of GR125 are always preserved by a procedure call.

• The contents of GR126 and GR127 are managed by the spill and fill handlers and
should not be modified except by these handlers.

EXAMPLE OF A COMPLEX PROCEDURE CALL

The following code sequence demonstrates a complex procedure call, illustrating how
registers are used in the run-time organization:

caller:

(other code)
add
add
call
const

(other code)

lrp, msp, 32
sip, msp, 120
lrO, callee
lr2, 1

; pass lrp
; pass a static link

; 1 as first argument

4-14 PROCEDURE LINKAGE

4.5

Figure 4-7

callee:

tav, (126-2)*4
rsp, rsp, tav
V _SPILL, rsp, rab

; giant register allocation
; allocate register frame

tav, (126-2)*4 + {3*4) ; incoming arguments and overhead
fp, rsp, tav ; create frame pointer

con st
sub
asgeu
con st
add
add
com;t
cons th
sub
add
add

lr123, msp, O ; for dynamic Memory-Stack allocation

{other code)
add
con st
add
con st
jmpi
asleu

tav, memory_frame_size ; big msize
tav, memory_frame_size ; high half of msize
msp, msp, tav ; allocate memory frame
lr18, lrp, O ; save lrp for later
lr19, sip, O ; save sip for later

msp, lr123, 0
tav, (126-2)*4
rsp, rsp, tav
gr96, 1
lrO
V _FILL, fp, rfb

; de-allocate memory frame
; giant allocation size
; de-allocate register frame
; return value
; return to caller
; insure caller's registers in frame

TRACE-BACK TAGS

A trace-back tag is either one or two words of information included at the beginning of
every procedure. This information permits a debug routine to determine the sequence
of procedure calls and the values of program variables at a given point in execution.
The trace-back tag describes the memory frame size and the number of local regis
ters used by the associated procedure. A one-word tag is used if the memory frame
size is less than 2K words; otherwise, the two-word tag is used. Regardless of tag
length, the tag directly precedes the first instruction of the procedure. Figure 4-7
shows the format of the trace-back tags.

The first word of a trace-back tag starts with the invalid operation code 00 (hexadeci
mal). This unique, invalid instruction operation code allows the debugger to locate the
beginning of the procedure in the absence of other information related to the begin
ning of the procedure, such as from a symbol table. This is particularly useful after a

Trace-Back Tags

One-word tag:

31 23

0 0 O O O O 0 O O M T argcount

Two-word tag:

31 23

msize

0 O O O 0 O O 0 1 M T argcount

15

15

7 0

Reserved msize res

7 0

Reserved Reserved

PROCEDURE LINKAGE 4-15

program crash, in which case the debug routine may have only an arbitrary instruction
address within a procedure. The call sequence up to the current point in execution
can be determined from the rsize and msize values in the trace-back tag. However,
for procedures that perform dynamic stack allocation (e.g., using alloca()), the mem
ory frame pointer must be used.

The tag word immediately preceding a procedure contains the following fields. Re
served fields must be zero.

Bits

31-24
23
22
21
20-16
15-11
10-3

2-0

Item

opcode
tag type
m
t
argcount
Reserved
msize

Reserved

Description

Hexadecimal 00 (an invalid opcode)
O/one-word tag; 1/two-word tag
O/no mfp; 1 / mfp used
O/normal; 1/transparent procedure
Number of arguments in registers (includes lrO and lr1)
Reserved, must be zero
Memory frame size in doublewords (if bit 23 is 0)
or reserved (if bit 23 is 1)
Reserved, must be zero

If the procedure uses a Memory-Stack frame size 2K words or more, the msize field is
contained in the second tag word immediately preceding the first tag word.

4-16 PROCEDURE LINKAGE

1a:r,til14;1;:1

5.1

PIPELINING AND
INSTRUCTION SCHEDULING

This chapter describes the operation of the Am29030 and Am29035 microprocessor
pipelines. A description of the Am29030 and Am29035 microprocessor pipelines is
presented only to offer the reader a general overview of the internal operation of this
pipeline, with the intent to aid understanding of the effects that the pipeline has on
program execution and of the behavior of the microprocessors under certain condi
tions, especially the behavior of the system interfaces described in Chapter 1 o.
The operation of the functional units is coordinated by Pipeline Hold mode, which
insures that operations are performed in the proper order. This chapter also describes
the Pipeline Hold mode. In certain cases, the pipeline is exposed during instruction
execution, in that the execution of certain instructions is dependent on the execution
of previous instructions. This chapter discusses the cases where the pipeline is ex
posed to software and describes the resulting effect on instruction execution.

FOUR-STAGE PIPELINE

The Am29030 and Am29035 microprocessors implement a four-stage pipeline for
instruction execution, as shown in detail in Figure 5-1. The four stages are fetch,
decode, execute, and write-back. For operations, the pipeline is organized so that the
effective instruction-execution rate may be as high as one instruction per cycle.

During the fetch stage, the Instruction Fetch Unit determines the location of the next
processor instruction and issues the instruction to the decode stage. The instruction is
fetched either from the Instruction Prefetch Buffer, the Instruction Cache, or an exter
nal instruction memory.

During the decode stage, the instruction issued from the fetch stage is decoded, and
the required operands are fetched and/or assembled. Addresses for branches, loads,
and stores are also evaluated.

During the execute stage, the Execution Unit performs the operation specified by the
instruction. In the case of branches, loads, and stores, the Memory Management Unit
(see Chapter 7) performs address translation if required.

During the write-back stage, the result~ of the operation performed during the execute
stage are stored. In the case of branches, loads, and stores, the physical address
resulting from translation during the execute stage is transmitted to an external device
or memory.

Most pipeline dependencies that are internal to the processor are handled by forward
ing logic in the processor. For those dependencies that result from the external sys
tem, the Pipeline Hold mode insures proper operation.

In a few special cases, the processor pipeline is exposed to software executing on the
Am29030 and Am29035 microprocessors (see Sections 5.4, 5.5, and 5.6).

PIPELINING AND INSTRUCTION SCHEDULING 5·1

Figure 5·1

FETCH

Instruction
Cache

1x256x4 or
2x256x4

Instruction
Pref etch
Buffer

Am29030 and Am29035 Microprocessors Data Flow

PC-Bus

DECODE

30

EXECUTE

--------1 Address------
Unit

Program
Counter

Unit

I-Bus

Register
Address

Generator

111

Arithmetic
Logic Unit

Field Shift
Unit

Prioritizer

@~
Read/ Special-
Write 1------1-+-""""'!HI~ Purpose

Control 11111 Registers

AA

Ae Register
File

Ac 192x32

De

M-Bus
i.-~H~ Interface

Translation
Look-Aside

Buffer
2x32x64

D-Bus
~---!e---1 Interface

B-Bus A-Bus

Instruction/Data Address
Bus Bus

5·2 PIPELINING AND INSTRUCTION SCHEDULING

@WRITE
MBACK

R-Bus

5.2

5.3

PIPELINE HOLD MODE

The Pipeline Hold mode is activated whenever sequential processor operation cannot
be guaranteed. When this mode is active, the pipeline stages do not advance, and
most internal processor state is not modified. The processor places itself in the Pipe
line Hold mode in the following situations:

1. The processor requires an instruction that has either not been fetched or not been
returned by the external instruction memory.

2. The processor requires data from an in-progress load and the operation has not
completed.

3. The processor attempts to execute a load or store instruction while another load
or store is in progress.

4. The processor is reading or writing the Cache Interface Register. During this
operation, the bus that couples the Instruction Prefetch Buffer and the Instruction
Cache is used to move data to or from the Instruction Cache. The processor exits
the Pipeline Hold mode in the next processor cycle, unless one of the other
conditions listed causes a further pipeline hold to occur.

5. The processor must perform a serialization operation as described in Section 5.3.

6. The processor is performing a sequence of load-multiple or store-multiple
accesses. The Pipeline Hold mode in this case prevents further instruction
execution until the completion of the load-multiple or store-multiple sequence.

7. The processor has taken an interrupt or trap, and the first instruction of the
interrupt or trap handler has not entered the execute stage. The Pipeline Hold
mode in this case prevents the processor pipeline from advancing until the
interrupt or trap handler can begin execution.

8. The processor has executed an interrupt return, and the target instruction of the
interrupt return has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt return
sequence is complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or
when the WARN or RESET input is asserted.

SERIALIZATION

The Am29030 and Am29035 microprocessors overlap external data references with
other operations. When an external data reference might have to be restarted, how
ever, the processor context must be the same as when the operation was first at
tempted. To insure this, certain operations are serialized.

The processor serializes by entering the Pipeline Hold mode in any of the following
circumstances:

1. An external access is not yet completed, and one of the following instructions is
encountered:
Move to Special Register
Move to Special Register Immediate
MovetoTLB
Interrupt Return
Interrupt Return and Invalidate
Halt

PIPELINING AND INSTRUCTION SCHEDULING 5-3

5.4

2. An external access is not yet completed, and an interrupt or trap, other than a
WARN trap, is taken.

If the processor is in the Pipeline Hold mode due to serialization, it enters the Execut
ing mode once the external access is completed. Note that the processor may imme
diately take a Data Access Exception trap.

DELAYED BRANCH

The effect of jump and call instructions is delayed by one cycle to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful,
the instruction immediately following the jump or call is executed before the target
instruction of the jump or call is executed. Jump and call instructions collectively are
referred to as delayed branches, and the instruction immediately following is called
the delay instruction (sometimes referred to as a delay slot).

For example, in the following code fragment:

cpeq
jmpf
sub
con st

label: call
add
cpneq

gr96, lr6, lr7
gr96, label
lr6, lr6, 1
lr6, 0

lrO, sort
lr2, lr5, O
lr3, gr96, 0

(1)
(2)
(3)
(4)

(5)
(6)
(7)

The sub instruction (3) is executed regardless of the outcome of the jmpf instruction
(2). Of course, if the jmpf is not successful, the const instruction (4) is also executed.
If the jmpf is successful, then the instruction sequence is: (3), (5), (6), and then the
first instruction of the sort procedure. Note that the call instruction (5) is also a delayed
branch, so the instruction immediately following it, (6), is always executed. After the
sort procedure executes the return sequence, the cpneq instruction (7) is the next
instruction executed.

The benefit of delayed branches is improved performance and a simplified processor
implementation. Performance is improved because the processor pipeline executes
useful instructions in a larger number of cycles, compared to an implementation with
out delayed branches.

For example, ignoring all other effects on performance, and assuming that 15% of all
instructions are taken branches, then a processor without delayed branches would
take at least two cycles for 15% of its instructions, leading to 0.85(1) + 0.15(2) = 1.15
cycles per instruction, on average. This represents a 15% performance degradation
compared to a processor with delayed branches (assuming, for this simple example,
that the delay instruction is always useful). ·

The cost of having delayed branches is either the extra effort required when the com
piler takes advantage of delayed branches (by re-organizing code), or the extra
NO-OP instruction which the compiler inserts after every branch to guarantee correct
program operation. Since the compiler expends only a small amount of effort to avoid
wasting time and space with NO-OPs, and since the performance improvement result
ing from this effort is significant, delayed branches are beneficial overall.

5.4 PIPELINING AND INSTRUCTION SCHEDULING

5.5

When two immediately adjacent branches are taken, the target of the first branch
pre-empts execution of the delay cycle of the second branch, and the target of the
second branch then follows the target of the first branch. For example, in the following
code fragment:

jmp 11 (1)
jmpl2 (2)
add lr4, lr4, lr5 (3)

L1: sub gr96, gr96, 1 (4)
subc gr97, gr97, 0 (5)

L2: con st gr100, OxffOf (6)
subr gr101, gr101, 1 (7)
or gr100, gr100, gr101 (8)

An unconditional jmp instruction (1) is followed immediately by another unconditional
jmp instruction (2). (In this example, unconditional jmps are used; however, any two
immediately adjacent taken branches exhibit the same behavior.) The sequence of
executed instructions in this case is: jmp instruction (1), jmp instruction (2), sub in
struction (4), const instruction (6), subr instruction (7), or instruction (8), and so on.
Note that the add instruction (3) is not executed. Also, the target of the first jmp in
struction (1) was merely visited; control did not continue sequentially from L 1 but
rather continued from L2.

OVERLAPPED LOADS AND STORES

The Am29030 and Am29035 microprocessors overlap external data references with
other operations. Certain programming practices are necessary to exploit this parallel
ism to improve program performance.

In order to make full use of overlapped storage accesses, some instruction reorgani
zation may be necessary. For example, in the following sequence:

loop:

sll
add
load
add
sub
add
cplt
jmpt
nop

gr121,gr119,2 (1)
gr121, gr120, gr121 (2)
0, 0, gr121, gr121 (3)
gr96, gr96, gr121 (4)
gr96, gr96, 3 (5)
gr119, gr119, 1 (6)
gr122, gr119, lr2 (7)
gr122, loop (8)

(9)

the add instruction (4) uses the result of the load instruction (3). However, the follow
ing four instructions do not depend on the result of the load. Therefore, the add in
struction (4) can be moved past the jmpt (8)-since it always will be executed even if

PIPELINING AND INSTRUCTION SCHEDULING 5-5

5.6

the jmpt is taken-and can replace the NO-OP instruction (9). The resulting sequence
is:

loop:

sll gr121,gr119,2 (1)
add gr121, gr120, gr121 (2)
load 0, 0, gr121, gr121 (3)
sub gr96, gr96, 3 (4)
add gr119, gr119, 1 (5)
cplt gr122, gr119, lr2 (6)
jmpt gr122, loop (7)
add gr96, gr96, gr121 (8)

The instructions (4) through (7) are likely to be executed while external memory satis
fies the load request, resulting in improved throughput. The processor thus allows
parallelism to be exploited by instruction reordering.

The overlapped load feature may be used to improve processor performance, but
imposes no constraints on instruction sequences, as delayed branches do. The proc
essor implements the proper pipeline interlocks to make this parallelism transparent
to a running program.

DELAYED EFFECTS OF REGISTERS

The modification of some registers has a delayed effect on processor behavior, be
cause of the processor pipeline. The affected registers are the Stack Pointer (Global
Register 1), Indirect Pointers A, B, and C, the MMU Configuration Register, and the
Current Processor Status Register.

An instruction that writes to the Stack Pointer can be followed immediately by an
instruction that reads the Stack Pointer. However, any instruction that references a
local register also uses the value of the Stack Pointer to calculate an absolute-register
number. At least one cycle of delay must separate an instruction that updates the
Stack Pointer and an instruction that references a local register. In most systems, this
affects procedure call and return only (see Section 4.2). In general, though, an in
struction that immediately follows a change to the Stack Pointer should not reference
a local register (however, note that this restriction does not apply to a reference of a
local register via an indirect pointer).

The indirect pointers have an implementation similar to the Stack Pointer, and exhibit
similar behavior. At least one cycle of delay must separate an instruction that modifies
an indirect pointer and an instruction that uses that indirect pointer to access a
register.

Note that it normally is not possible to guarantee that the delayed effect of the Stack
Pointer and indirect pointers is visible to a program. If an interrupt or trap is taken
immediately after one of these registers is set, then the interrupted routine sees the
effect of the setting in the following instruction, because many cycles elapse between
the two instructions. For this reason, a program should not be written in a manner that
relies on the delayed effect; the results of this practice may be unpredictable.

At least one cycle of delay must separate a Move To Special Register that modifies
the Page Size (PS) field of the MMU Configuration Register and an instruction that
performs address translation. The latter instruction includes successful branches,
loads, and stores.

5-6 PIPELINING AND INSTRUCTION SCHEDULING

If the Freeze (FZ) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers
affected by the FZ bit. This implies that interrupts and traps cannot be enabled until
two cycles after the FZ bit is reset, for proper sequencing of program state.

An access to the Cache Data Register (CDR) cannot immediately follow a write to the
Cache Interface Register (CIR). At least one instruction must separate the access of
the CDR from the write to the CIR.

PIPELINING AND INSTRUCTION SCHEDULING 5.7

IFJ; r,1Uii4 ;lfl

6.1

6.1.1

6.1.2

SYSTEM PROTECTION

The Am29030 and Am29035 microprocessors provide protection for system re
sources, including general-purpose registers, special-purpose registers, Translation
Look-Aside Buffer registers, and external locations. Certain processor operations are
also protected. This chapter describes the processor's protection mechanisms.

USER AND SUPERVISOR MODES

At any given time, the Am29030 and Am29035 microprocessors operate in one of
two mutually exclusive program modes: the Supervisor mode or the User mode. All
system-protection features of the Am29030 and Am29035 microprocessors are based
on the difference between these two modes.

Supervisor Mode

The processor operates in the Supervisor mode whenever the Supervisor Mode (SM)
bit of the Current Processor Status Register is 1 (see Section 8.1.1). In the Supervisor
mode, executing programs have access to all processor resources. Virtual pages
mapped by the Memory Management Unit (MMU), however, are protected from Su
pervisor access (read, write, or execute) when the appropriate bit (SR, SW, or SE,
respectively) in the corresponding Translation Look-Aside Buffer (TLB) Entry is 0 (see
Chapter 7).

Any attempt to access a special-purpose register in the range of 160 to 255 causes
a Protection Violation to occur, in either Supervisor or User mode. This permits
virtualization of these registers. Supervisor-mode accesses are permitted for any
general-purpose register, regardless of protection.

The attempted execution of a translated load or store for which the AS bit is 1 causes
a Protection Violation trap, in either Supervisor or User mode.

Durin.9...!_he address cycle of a bus request, the Supervisor mode is indicated by the
SUP/US output being High.

User Mode

The processor operates in the User mode whenever the SM bit in the Current Proces
sor Status Register is 0. In the User mode, any of the following actions by an execut
ing program causes a Protection Violation trap to occur:

1. An attempted access of any TLB register.

2. An attempted access of any general-purpose register for which a bit in the
Register Bank Protect Register is 1 (see Section 6.2).

3. An attempted execution of a load or store instruction for which the PA bit is 1, for
which the AS bit is 1, or for which the UA bit is 1 (see Section 3.3).

4. An attempted execution of one of the following instructions: Interrupt Return,
Interrupt Return and Invalidate, Invalidate, or Halt. However, a hardware-

SYSTEM PROTECTION 8-1

6.2

Figure 6·1

development system can disable protection checking for the Halt instruction, so
that this instruction may be used to implement instruction breakpoints in
User-mode programs (see Sections 11.2 and 11.4).

5. An attempted access of special-purpose register in the range of 0 to 127 or 160
to 255.

6. An attempted execution of an assert or Emulate instruction which specifies a
vector number between 0 and 63, inclusive (see Chapter 8).

7. An attempted access (read, write, or execute) in a virtual page mapped by the
Memory Management Unit, when the appropriate permission bit (UR, UW, or UE,
respectively) in the corresponding TLB Entry is 0.

Devices and memories on the bus can also implement protection and generate traps
based on the value of the SM bit. During the address cycle of a bus request, the User
mode is indicated by the SUP/US output being Low.

REGISTER PROTECTION

General-purpose registers are divided into register banks and are protected by the
Register Bank Protection Register. The Register Bank Protection Register allows
parameters for the operating system to be kept in general-purpose registers and
protected from corruption by User-mode programs. Register banks consist of 16
registers (except for Bank 0, which contains Registers 2 through 15) and are parti
tioned according to absolute-register numbers, as shown in Figure 6-1.

Register Bank Organization

Register Bank Absolute-Register General-Purpose
Protect Register Bit Numbers Registers

0 2 through 15 Bank O (not implemented)

1 16 through 31 Bank 1 (not implemented)

2 32 through 47 Bank 2 (not implemented)

3 48 through 63 Bank 3 (not implemented)

4 64 through 79 Bank4

5 80 through 95 Banks

6 96 through 111 Bank6

7 112 through 127 Bank 7

8 128 through 143 Banks

9 144 through 159 Bank9

10 160 through 175 Bank 10

11 176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

6-2 SYSTEM PROTECTION

6.2.1

Figure 6·2

6.3

The Register Bank Protect Register contains 16 protection bits, where each bit con
trols User-mode accesses (read or write) to a bank of registers. Bits 0-15 of the Reg
ister Bank Protect Register, protect Register Banks 0 through 15, respectively.

When a bit in the Register Bank Protect Register is 1, and a register in the corre
sponding bank is specified as an operand register or result register by a User-mode
instruction, a Protection Violation trap occurs. Note that protection is based on
absolute-register numbers; in the case of local registers, Stack-Pointer addition is
performed before protection checking.

When the processor is in the Supervisor mode, the Register Bank Protect Register
has no effect on general-purpose register accesses.

Register Bank Protect (RBP, Register 7)

This protected special-purpose register (Figure 6-2) protects banks of general
purpose registers from User-mode program accesses.

Register Bank Protect Register
31 23 15 7 0

11 I I I I I~,.~~ I I I I I I I.!. I I I I I I I I I I I I I ~o I
The general-purpose registers are partitioned into 16 banks of 16 registers each
(except that Bank O contains 14 registers). The banks are organized as shown in
Figure 6-1.

Bits 31-16: Reserved.

Bits 15-0: Bank 15 through Banko Protection Bits (B15-BO)-ln the Register
Bank Protect Register, each bit is associated with a particular bank of registers, and
the bit number gives the associated bank number (e.g., B11 determines the protection
for Bank 11).

MEMORY PROTECTION

Memory and input/output access protection is provided by the MMU. Each TLB entry
in the MMU contains protection bits which determine whether or not an access is
permitted to the page associated with the entry.

There is a set of protection bits for Supervisor-mode programs and a separate set
for User-mode programs. Thus, for the same virtual page, the access authority of
programs executing in the Supervisor mode can be different than the authority of
programs executing in the User mode.

If address translation is performed successfully as described in Section 7.4.2, the
relevant TLB entry is used to perform protection checking for the access. Six bits are
provided for this purpose: Supervisor Read (SR), Supervisor Write (SW), Supervisor
Execute (SE), User Read (UR), User Write (UW), and User Execute (UE). These bits
restrict accesses, depending on the program mode of the access, as shown in
Table 6-1 (the value xis a don't care).

Note that for the Load and Set (LOADSET) instruction, the protection bits must be set
to allow both the load and store access. If this condition does not hold, neither access
is performed.

SYSTEM PROTECTION 6·3

Table 6·1

6.4

Access Protection

SR SW SE UR uw UE Type of Access Allowed

x x x 0 0 0 No User access
x x x 0 0 1 User instruction
x x x 0 1 0 User store
x x x 0 1 1 User store or instruction
x x x 1 0 0 User load
x x x 1 0 1 User load or instruction
x x x 1 1 0 User load or store
x x x Any User access
0 0 0 x x x No Supervisor access
0 0 1 x x x Supervisor instruction
0 1 0 x x x Supervisor store
0 1 1 x x x Supervisor store or instruction
1 0 0 x x x Supervisor load
1 0 1 x x x Supervisor load or instruction
1 1 0 x x x Supervisor load or store
1 x x x Any Supervisor access

If protection checking indicates that a given access is not allowed, a Data MMU Pro
tection Violation or Instruction MMU Protection Violation trap occurs. The cause of the
trap can be determined by inspecting the Program Counter 1 Register for an Instruc
tion MMU Protection Violation, or by inspecting the contents of the Channel Address
and Channel Control registers for a Data MMU Protection Violation.

EXTERNAL ACCESS PROTECTION

Other than the protection offered by the Memory Management Unit, the processor
provides no specific protection for external devices and memories. However, the
SUP/US output reflects the value of the SM bit during the address cycle of an external
access. This can signal external devices and memories to provide protection. Any
protection violations can be reported via the ERR input.

6-4 SYSTEM PROTECTION

MfJ: t:1:; i 4 ;U

7.1

7.2

MEMORY MANAGEMENT

The Am29030 and Am29035 microprocessors incorporate a Memory Management
Unit (MMU) for performing virtual-to-physical address translation and memory access
protection. This chapter describes the logical operation of the MMU. Address transla
tion is performed by the Translation Look-Aside Buffer (TLB), which is the fundamen
tal component of the MMU. This chapter describes the structure of the TLB and the
issues related to software management of the TLB.

TRANSLATION LOOK-ASIDE BUFFER

The MMU stores the most-recently performed address translations in a special cache,
the Translation Look-Aside Buffer (TLB). The TLB reflects information in the system
page tables, except that it specifies the translation for many fewer pages; this restric
tion allows the TLB to be incorporated on the processor chip where the performance
of address translation is maximized.

A diagram of the TLB is shown in Figure 7-1. The TLB is a table of 64 entries, divided
into two equal columns, called Column 0 and Column 1. Within each column, entries
are numbered Oto 31. Entries in different columns which have equivalent entry
numbers are grouped into a unit called a set; there are thus 32 sets in the TLB, num
bered 0 to 31.

Each TLB entry is 64 bits long, and contains mapping and protection information for a
single virtual page. TLB entries may be inspected and modified by processor instruc
tions executed in the Supervisor mode. The layout of TLB entries is described in
Section 7.2.

The TLB stores information about the ownership of the TLB entries in an 8-bit Task
Identifier (TIO) field in each entry. This makes it possible for the TLB to be shared by
several independent processes without the need for invalidation of the entire TLB as
processes are activated. It also increases system performance by permitting proc
esses to warm-start (i.e., to start execution on the processor with a certain number of
TLB entries remaining in the TLB from a previous execution).

Each TLB entry contains a Usage bit to assist management of the TLB entries. The
Usage bit indicates which block of the entry within a given set was least recently used
to perform an address translation. Usage bits for two entries in the same set are
equivalent.

The TLB contains other fields which are described in the following sections.

TLB REGISTERS

The Am29030 and Am29035 microprocessors contain 128 Translation Look-Aside
Buffer (TLB) registers. The organization of the TLB registers is shown in Figure 7-2.

The TLB registers comprise the TLB entries and are provided so that programs may
inspect and alter TLB entries. This allows the loading, invalidation, saving, and restor
ing of TLB entries.

MEMORY MANAGEMENT 7·1

Figure 7·1

7.2.1

Translation Look-Aside Buffer Organization

Entry

TLBCOLUMNO Entry TLB COLUMN 1

Seto 0 0

-------------- --------t-··--------
Set 1

----------------------t-----------
Set2 2 2

-------------- 1-------------+··--------
Set3 3 3

-------------- 1---------t-------···-
Set4 4 4

1---------------+·---------

• • • •
• • •

• • •

---------------1---------------+----------
Set 31 31 31 _______________ ._ ____________ ~----------

-64btts- -64btts-

TLB registers contain fields that are reserved for future processor implementations.
When a TLB register is read, a bit in a reserved field is read as a 0. An attempt to
write a reserved bit with a 1 has no effect; however, this should be avoided because
of upward-compatibility considerations.

The Translation Look-aside Buffer (TLB) registers are accessed only by explicit data
movement by Supervisor-mode programs. Instructions that move data to or from a
TLB register specify a general-purpose register containing a TLB register number.
The TLB register number is given by the contents of bits 6-0 of the general-purpose
register. TLB register numbers may be specified only indirectly by general-purpose
registers.

TLB entries are accessed as registers numbered 0-127. Since two words are re
quired to completely specify a TLB entry, two registers are required for each TLB
entry. The words corresponding to an entry are paired as two sequentially numbered
registers starting on an even-numbered register. The word with the even register
number is called Word 0, and the word with the odd register number is called Word 1.
The entries for TLB Column O are in registers numbered 0-63, and the entries for TLB
Column 1 are in registers numbered 64-127.

TLB Entry Word 0

The TLB Entry Word 0 register is shown in Figure 7-3.

7-2 MEMORY MANAGEMENT

Figure 7·2

Figure 7·3

Translation Look-Aside Buffer Registers

TLB Reg#

0

2

3

•

•

•
62

63

64

65

•
•
•

126

127

TLB Column o

TLB Entry Set 0 Word 0

TLB Entry Set O Word 1

TLB Entry Set 1 Word 0

TLB Entry Set 1 Word 1 .
•
•

TLB Entry Set 31 Word 0

TLB Entry Set 31 Word 1

TLB Column1

TLB Entry Set 0 Word 0

TLB Entry Set 0 Word 1 .
• .

TLB Entry Set 31 Word O

TLB Entry Set 31Word1

TLB Entry Word 0 Register

31 23 15 7 0

11 I I I I I I J~ I I I I I I I 111111111 I I !.01 I I I
I I I I I I
I I I
I I I I I I I

1 I I I I I I

I SR I SE I uw I
I I I I

I I I I

VE SW UR UE

Bits 31-15: Virtual Tag (VTAG)-When the TLB is searched for an address transla
tion, the VTAG field of the TLB entry must match the most-significant 17, 16, 15, or 14
bits of the address being translated-for page sizes of 1, 2, 4, and BK bytes, respec
tively-for the search to be successful.

When software loads a TLB entry with an address translation, the most-significant 14
bits of the Virtual Tag are set with the most-significant 14 bits of the virtual address
whose translation is being loaded into the TLB. The remaining three bits of the Virtual

MEMORY MANAGEMENT 7-3

7.2.2

Figure 7·4

Tag must be set either to the corresponding bits of the address or to zeros depending
on the page size, as follows (A refers to corresponding address bits):

Page Size

1K bytes
2K bytes
4K bytes
SK bytes

VTAG 2-0 (TLB Word 0 bits 17-15)

AAA
AAO
AOO
000

Bit 14: Valld Entry (VE)-lf this bit is 1, the associated TLB entry is valid; if it is O, the
entry is invalid.

Bit 13: Supervisor Read (SR)-lf the SR bit is 1, Supervisor-mode load operations
from the virtual page are allowed; if it is 0, Supervisor-mode loads are not allowed.

Bit 12: Supervisor Write (SW)-lf the SW bit is 1, Supervisor-mode store operations
to the virtual page are allowed; if it is 0, Supervisor-mode stores are not allowed.

Bit 11: Supervisor Execute (SE)-lf the SE bit is 1, Supervisor-mode instruction
accesses to the virtual page are allowed; if it is 0, Supervisor-mode instruction ac
cesses are not allowed.

Bit 1 O: User Read (UR)-lf the UR bit is 1, User-mode load operations from the
virtual page are allowed; if it is 0, User-mode loads are not allowed.

Bit 9: User Write (UW)-lf the UW bit is 1, User-mode store operations to the virtual
page are allowed; if it is 0, User-mode stores are not allowed.

Bit 8: User Execute (UE)-lf the UE bit is 1, User-mode instruction accesses to the
virtual page are allowed; if it is 0, User-mode instruction accesses are not allowed.

Bits 7-0: Task Identifier (TID)-When the TLB is searched for an address transla
tion, the TID must match the Process Identifier (PID) in the MMU Configuration Regis
ter for the translation to be successful. This field allows the TLB entry to be associated
with a particular process.

TLB Entry Word 1

The TLB Entry Word 1 Register is shown in Figure 7-4.

TLB Entry Word 1 Register

~ ~ 15 7 0

I I I
1

1 I
. RPN Res

10

Bits 31-1 O: Real Page Number (RPN)-The RPN field gives the most-significant 22,
21, 20, or 19 bits of the physical address of the page for page sizes of 1, 2, 4, and BK
bytes, respectively. It is concatenated to bits 9-0, 10-0, 11-0, or 12-0 of the address
being translated-for 1, 2, 4, and BK byte page sizes, respectively-to form the physi
cal address for the access.

When software loads a TLB entry with an address translation, the most-significant 19
bits of the Real Page Number are set with the most-significant 19 bits of the physical
address associated with the translation. The remaining three bits of the Real Page
Number must be set either to the corresponding bits of the physical address, or to

7-4 MEMORY MANAGEMENT

7.3

7.3.1

7.3.2

Figure 7·5

zeros, depending on the page size, as follows (A refers to corresponding address
bits):

Page Size

1K bytes
2K bytes
4K bytes
BK bytes

RPN 2-0 (TLB Word 1bits12-10)

AAA
AAO
AOO
000

Bits 7-6: User Programmable (PGM)-These bits are placed on the MPGM(1-0)
outputs when the address is transmitted for an access. They have no predefined
effect on the access; any effect is defined by logic external to the processor.

Bit 1: Usage (U}-This bit indicates which entry in a given TLB set was least recently
used to perform an address translation. If this bit is a 0, the entry in Column 0 in the
set is least recently used; if it is 1, the entry in Column 1 is least recently used. This bit
has an equal value for both entries in a set. Whenever a TLB entry is used to trans
late an address, the Usage bit of each entry in the set used for translation is set
according to the TLB set containing the translation. This bit is set whenever the trans
lation is valid, regardless of the outcome of memory-protection checking.

Bit O: Input/Output (10)-The 10 bit determines whether the access is directed to the
instruction/data memory (10 = 0) or the input/output (10 = 1) address space.

ADDRESS TRANSLATION CONTROLS

Address translation is controlled by the MMU Configuration Register and the Current
Processor Status (CPS) register. This section discusses the control of the MMU
through the use of these registers.

Enabling and Disabling Address Translation

The processor attempts to perform address translation for the following external
accesses.

1. Instruction accesses, if the Physical Addressing/Instructions (Pl) bit of the Current
Processor Status (CPS) register is 0.

2. User-mode accesses to instruction/data memory if the Physical Addressing/Data
(PD) bit of the CPS is 0.

3. Supervisor-mode accesses to instruction/data memory if the Physical Address
(PA) bit of the load or store instruction performing the access is 0, and the PD bit
of the CPS is 0.

MMU Configuration Register (MMU, Register 13)

This protected special-purpose register (Figure 7-5) specifies parameters associated
with the MMU.

MMU Configuration Register

31 23 15 7

I 11111111
PS PIO Reserved

MEMORY MANAGEMENT 7-5

7.4

Bits 31-10: Reserved.

Bits 9-8: Page Size (PS)-The PS field specifies the page size for address transla
tion. The page size affects translation as discussed in Sections 7.2.1, 7.2.2, and 7.4.
The PS field has a delayed effect on address translation (see Section 5.6). At least
one cycle of delay must separate an instruction which sets the PS field and an in
struction that performs address translation. The PS field is encoded as follows:

PS Page Size

00 1K bytes
01 2K bytes
1 O 4K bytes
11 SK bytes

Bits 7-0: Process Identifier (PID)-For translated User-mode loads and stores, this
8-bit field is compared to Task Identifier (TIO) fields in Translation Look-Aside Buffer
entries when address translation is performed. For the address translation to be valid,
the PIO field must match the TIO field in an entry. This allows a separate 32-bit virtual
address space to be allocated to each active User-mode process (within the limit of
255 such processes). Translated Supervisor-mode loads and stores use a fixed proc
ess identifier of zero, and require that the TIO field be zero for successful translation.

ADDRESS TRANSLATION DESCRIPTION

For the purpose of address translation, the virtual instruction/data address-space of a
process is typically partitioned into regions of fixed size, called pages. Pages are
mapped into equivalent-sized regions of physical memory, called page frames. All
accesses to instructions or data contained within a given page use the same virtual
to-physical address translation.

7 .4.1 Virtual Address Structure

7.4.2

Virtual addresses are partitioned into three fields for TLB address translation, as
shown in Figure 7-6. The partitioning of the virtual address is based on the page size.
Pages may be of size 1, 2, 4, or BK bytes, as specified by the MMU Configuration
Register.

Address-Translation Process

The TLB address-translation process is diagrammed in Figure 7-7. Address transla
tion is performed by the following fields in the TLB entry: the Virtual Tag (VT AG), the
Task Identifier (TIO), the Valid Entry (VE) bit, the Real Page Number (RPN) field, and
the Input/Output (10) bit. To perform an address translation, the processor accesses
the TLB set whose number is given by certain bits in the virtual address. The bits
used depend on the page size as follows.

7-8 MEMORY MANAGEt.ENT

Figure 7·6 Virtual Address for 1, 2, 4, and BK Byte Pages

1 K Byte Page Size:
31 23 15 7 0

TLB Set
Virtual Tag Comparison Select Page Offset

2K Byte Page Size:
31 23 15 7 0

TLB Set
Virtual Tag Comparison Select Page Offset

4K Byte Page Size:
31 23 15 7 0

TLB Set
Virtual Tag Comparison Select Page Offset

SK Byte Page Size:
31 23 15 7 0

I I I I I I I I I I I I I
Virtual Tag Comparison

I I
TLB Set

Select

I I I I I I I I I I I I
Page Offset

Page Size Virtual Address Bits (for Set Access)

1K bytes
2K bytes
4K bytes
BK bytes

14-10
15-11
16-12
17-13

The accessed set contains two TLB entries, which in turn contain two VTAG fields.
The VT AG fields are both compared to bits in the virtual address. This comparison
depends on the page size as follows (note that VTAG bit numbers are relative to the
VT AG field, not the TLB entry).

Page Size

1K bytes
2K bytes
4K bytes
BK bytes

Virtual Address Bits

31-15
31-16
31-17
31-1B

VTAG Bits

16-0
16-1
16-2
16-3

Certain bits of the VTAG field do not participate in the comparison for page sizes
larger than 1 K byte. These bits of the VTAG field are required to be zero.

For an address translation to be valid, the following conditions must be met:

1. The virtual address bits match corresponding bits of the VTAG field as specified
above.

2. For a User-mode access, the TIO field in the TLB entry matches the PIO field in
the MMU Configuration Register. For a Supervisor-mode access, the TIO field is
zero.

MEMORY MANAGEMENT 7.7

Figure 7·7 TLB Address-Translation Process

Virtual Address

I i:; I
""-v-' ""-y.J-~....-~...-....... ~~~------

TLBCOLUMNO TLBCOLUMN 1

Virtual: V, 'Task: Real Page : PGM Virtual: V, :Task: Real Page : PGM,
Tag , PRO"T! ID 1 Number 1 U, 10 Tag •PROT• ID 1 Number 1 U, 10

MMU
Configuration

select

Page Offset

Merge

Real Page Number

Physical Address

3. The VE bit in the TLB entry is 1.

MPGM0-1

4. Only one entry in the set meets conditions 1, 2, and 3 above. If this condition is
not met, the results of the translation may be treated as valid by the processor, but
the results are unpredictable.

If the address translation is valid for one TLB entry in the selected set, the RPN field
in this entry is used to form the physical address of the access. The RPN field gives
the portion of the physical address that depends on the translation; the remaining
portion of the virtual address-called the Page Offset-is invariant with address
translation.

The Page Offset comprises the low-order bits of the virtual address and gives the
location of a byte within the virtual page (because of byte addressing). This byte is
located at the same position in the physical page frame, so the Page Offset also
comprises the low-order bits of the physical address.

The 32-bit physical address is the concatenation of certain bits of the RPN field and
Page Offset, where the bits from each depend on the page size as follows (note that
RPN bit numbers are relative to the RPN field, not the TLB entry).

7·8 MEMORY MANAGEMENT

7.4.3

7.4.4

Page Size

1K bytes
2K bytes
4K bytes
BK bytes

RPN Bits

21--0
21-1
21-2
21-3

Virtual Address Bits for Page Offset

9--0
10--0
11--0
12--0

Note: Certain bits of the RPN field are not used in forming the physical address for
page sizes greater than 1 K byte. These bits of the RPN are required to be
zero.

The address space of the physical address is determined by the Input/Output (10) bit
of the TLB entry. If the 10 bit is 0, the address is in the instruction/data memory ad
dress space. If the 10 bit is 1, the address is in the input/output address space.

Successful and Unsuccessful Translations

If an address translation is successful, the TLB entry is further used to perform protec
tion checking for the access. Bits in the TLB make it possible to restrict accesses-in
dependently for Supervisor-mode and User-mode accesses-to any combination of
load, store, and instruction accesses, or to no access. Section 6.3 describes MMU
protection in more detail.

If the address translation is valid, and no protection violation is detected, the physical
address from the translation is placed on the processor's Address Bus, and the ac
cess is initiated. If the translation is not valid, or a protection violation is detected, a
trap occurs.

Also, if the address translation is successful, and there is no protection violation, the
PGM bits from the TLB entry used for translation are placed on the MPGM(1--0) out
puts during the address cycle for the access. If address translation is not performed,
these pins are both Low for the address cycle.

If the TLB cannot translate an address, a TLB miss occurs. The MMU causes a trap if
either a TLB miss occurs, or the translation is successful and a protection violation is
detected. The processor distinguishes between traps caused by instruction and data
accesses, and between traps caused by User- and Supervisor-mode accesses, as
follows:

Trap Vector Number

8
9

10
11
12
13

Type of Trap

User-Mode Instruction TLB Miss
User-Mode Data TLB Miss
Supervisor-Mode Instruction TLB Miss
Supervisor-Mode Data TLB Miss
Instruction MMU Protection Violation
Data MMU Protection Violation

The distinction between the above traps is made to assist trap handling, particularly
the routines that load TLB entries.

Instruction Cache Considerations

The Instruction Cache is accessed with virtual as well as physical addresses, depend
ing on whether address translation is enabled for instruction accesses. Because of

MEMORY MANAGEMENT 7.9

7.4.5

this, the Instruction Cache may contain entries that might be considered valid, even
though they are not.

For example, address translation may be changed by modifying the Process Identifier
of the MMU Configuration Register. This change is not reflected in the Instruction
Cache tags, so the tags do not necessarily perform valid comparisons.

If a TLB miss occurs during the address translation for either a branch target instruc
tion or an instruction on a new virtual page, the processor considers the contents of
the Instruction Cache to be invalid. This is required to properly sequence the LRU
Recommendation Register, and does not solve the problem just described. If the TLB
is changed at some point, so that the TLB miss does not occur, the Instruction Cache
still may perfonn an invalid comparison.

To avoid the above problem, the contents of the Instruction Cache must be invali
dated explicitly whenever address translation is changed. This can be accomplished
by executing an Invalidate (INV) instruction whenever an address translation is
changed. The INV instruction causes all entries of the Instruction Cache to become
invalid (after the next successful branch or cache block boundary). However, since
the change in address translation rarely affects the program performing the change,
the INV may unnecessarily affect the performance of this program.

The IRETINV instruction has the same effect on the Instruction Cache as the INV
instruction, but can reduce the performance impact. The IRETINV delays invalidation
until an interrupt return is executed, eliminating the need to disrupt an operating
system routine when the routine changes address translation. At the point of interrupt
return, the contents of the Instruction Cache are most likely not of much use anyway.

Note that the Instruction Cache is not invalidated when the Instruction Cache Disable
(ID) bit of the Configuration Register is set. When the ID bit is 1, the Instruction Cache
retains its previous contents, but the processor considers its contents to be invalid.
Thus, the ID bit cannot be used to invalidate the cache, and, furthermore, the Instruc
tion Cache may have to be invalidated whenever the ID bit is to be reset {i.e., when
the cache is to be enabled).

The Instruction Cache distinguishes between virtual and physical addresses and
between User-mode and Supervisor-mode addresses. Thus, the Instruction Cache
does not have to be invalidated on transitions between these address spaces. This
improves the perfonnance of applications that make heavy use of operating-system
routines in either physical or virtual address space.

Selecting the Virtual Page Size

The selection of page size is based on several considerations:

1. For a given page size, any allocation of pages to a process will, on average,
waste half of one page. With smaller page sizes, the waste is smaller. In systems
with a large number of processes, each with a small amount of memory, small
page sizes can reduce waste significantly.

2. Smaller page sizes allow finer memory-protection granularity.

3. The maximum amount of memory that can be referenced by Translation
Look-Aside Buffer {TLB) entries is set by the number of TLB entries and the page
size. Larger page sizes allow the fixed number of TLB entries to address more
memory, and generally reduce the number of TLB misses. For example, with
1-Kbyte pages, a process requiring SK bytes of contiguous memory would create
eight TLB misses; with 8-Kbyte pages, the process would create only one TLB
miss.

7-10 MEMORYMANAGEMENT

7.5

7.5.1

4. The page is usually the unit of memory moved between memory and backing
storage. The design of the backing storage sub-system also may influence the
choice of page size, because of transfer-efficiency considerations. For example, if
the backing storage is a disk, the disk seek time is large compared to transfer
time. Thus, it is more efficient to transfer large amounts of data with a single seek.
Efficiency may also depend on disk organization (i.e., the number of seeks
possibly required to transfer a page).

HANDLING TLB MISSES

The address translation performed by the MMU is ultimately determined by routines
that place entries into the Translation Look-Aside Buffer (TLB). TLB entries normally
are based on system page tables, which give the translation for a large number of
pages. The TLB simply caches the currently needed translations, so that system page
tables do not have to be accessed for every translation.

If a required address translation cannot be performed by any entry in the TLB, a TLB
miss trap occurs. The trap handling routine-called the TLB reload routine-accesses
the system page tables to determine the required translation and sets the appropriate
TLB entry. Note that the access requiring this translation can be restarted by the
interrupt return at the end of the TLB reload routine (see Section 8.6.2).

A large number of different page-table organizations are possible. Since the TLB
reload routine is a sequence of processor instructions, the page tables may have a
structure and access method that satisfies trade-offs of page table size, translation
lookup time, and memory-allocation strategies.

Another possibility supported by the TLB reload mechanism is that of a second-level
TLB. The TLB reload routine is not required to access the system page tables imme
diately upon a TLB miss, but may access an external TLB, which can be much larger
than the processor's TLB. The amount of time required to access the external TLB
normally is much smaller than the amount of time required to access the page tables,
leading to an overall improvement in performance. Of course, if a translation is not in
the external TLB, a page table lookup still must be performed.

Because the TLB reload routine may depend on the type of access causing the TLB
miss, the processor differentiates between misses on instruction and data accesses
and between misses by Supervisor-mode and User-mode programs. This eliminates
any time which might be spent by the TLB reload routine in making the same determi
nation. Performance is also enhanced by the LRU Recommendation Register, which
gives the TLB register number for Word 0 of the TLB entry to be replaced by the TLB
reload routine (the least recently used entry).

TLB Reload

So that the MMU may support a large variety of memory-management architectures, it
does not directly load TLB entries that are required for address translation. It simply
causes a TLB miss trap when address translation is unsuccessful. The trap causes a
program-called the TLB reload routine-to execute. The TLB reload routine is de
fined according to the structure and access method of the page table contained in an
external device or memory.

When a TLB miss trap occurs, the LRU Recommendation Register contains the TLB
register number for Word 0 of the TLB entry to be used by the TLB reload routine. For
instruction accesses, the Program Counter 1 Register contains the instruction ad
dress that was not successfully translated. For data accesses, the Channel Address
Register contains the data address that was not successfully translated.

MEMORY MANAGEMENT 7·11

7.5.2

Figure 7·8

7.5.3

The TLB reload routine determines the translation for the address given by the Pro
gram Counter 1 Register or Channel Address Register, as appropriate. The TLB
reload routine uses an external page table to determine the required translation, and
loads the TLB entry indicated by the LRU Recommendation Register so that the entry
may perform this translation. In a demand-paged environment, the TLB reload routine
may additionally invoke a page-fault handler when the translation cannot be
performed.

TLB entries are written by the Move To TLB (MTTLB) instruction, which copies the
contents of a general-purpose register into a TLB register. The TLB register number is
specified by bits 6--0 of a general-purpose register. TLB entries are read by the Move
From TLB (MFTLB) instruction, which copies the contents of a TLB register into a
general-purpose register. Again, the TLB register number is specified by a
general-purpose register.

LRU Recommendation (LRU, REGISTER 14)

This protected special-purpose register (Figure 7-8) assists Translation Look-Aside
Buffer (TLB) reloading by indicating the least recently used TLB entry in the required
replacement set.

LRU Reconunendation Register

31 23 15 7 0

I ' I ' I I I I 11
Reserved LAU O

Bits 31-7: Reserved.

Bits 6-1: Least-Recently Used Entry (LRU)-The LRU field is updated whenever a
TLB miss occurs during an address translation. It gives the TLB register number of
the TLB entry selected for replacement. The LRU field also is updated whenever a
memory-protection violation occurs; however, it has no interpretation in this case.

Bit 0: Zero-The appended 0 serves to identify Word 0 of the TLB entry.

Page Reference And Change Information

In a demand-paged environment, it is important to be able to collect information on
the use and modification of pages. The processor does not collect this information
directly, but the information may be collected by the operating system, without requir
ing hardware support.

Each TLB entry contains six bits which specify the type of accesses that are permitted
for the corresponding page. When a TLB entry is loaded, the TLB reload routine can
set the protection bits so that an access to the corresponding page is not allowed. If
an access is attempted, an MMU Protection Violation traps occurs. This trap may be
used to signal that the page is being referenced. After noting this fact, the trap handler
may set the protection bits to allow the access and return to the trapping routine.

A technique similar to the one just described can be used to collect information on the
modification of a page. However, in this case, the TLB protection bits initially are set
so that a store is not allowed.

7·12 MEMORYMANAGEMENT

7.5.4

7.5.5

7.6

It is also possible to create reference information by noting references during TLB
reload. For example, reference bits normally are reset periodically, so that they reflect
current references. When reference bits are reset, the entire TLB may be invalidated.
Reference bits are set as TLB entries are loaded. Note that this scheme relies on the
fact that a TLB miss implies a reference to the corresponding page. Also, this scheme
does not account for page change information.

The disadvantage of both of the above schemes is one of possible performance loss.
This is the result of the additional traps required to monitor page references and
changes. If the performance impact is unacceptable, references and changes can be
monitored easily by hardware that detects reads and writes to page frames in instruc
tion or data memory.

Warm Start

When a process switch occurs, there is a high probability that most of the TLB entries
of the old process will not be used by the new process. Thus, the new process most
likely creates many TLB miss traps early in its execution. This is unavoidable on the
first initiation of a process, but may be prevented on subsequent initiations.

When a given process is suspended, the operating system can save a copy of the
process' TLB contents. When the process is restarted, the copy can be loaded back
into the TLB. This warm start prevents many of the process' initial TLB misses, at the
expense of the time required to save and restore the copy of the TLB entries. How
ever, this time may be much shorter than the time required to individually perform all
TLB reloads.

Note that if this warm-start strategy is adopted, any change in address translation
must be reflected in all copies of TLB entries for all affected processes. If address
translation is often changed so that it affects more than one process, warm start may
not be advantageous.

Minimum Number Of Resident Pages

In any processor that supports demand paging, there are a minimum number of
pages that must be resident for any active process. This minimum is determined by
the maximum number of pages that might be referenced by an atomic operation in the
processor's architecture (e.g., an instruction, normally). If this maximum number is not
guaranteed to be resident in memory, some operations might never complete, since
they may never have all of the required pages resident in memory at one time.

For the Am29030 and Am29035 microprocessors, two pages are required for a proc
ess to make progress through the system. The reason for this requirement is that the
Am29030 and Am29035 microprocessors, on interrupt return, restart an interrupted
Load Multiple or Store Multiple only after fetching two instructions (see Section 8.3.4).
The first of these instructions must be resident in memory-and mapped by the TLB
and the page required to complete the Load Multiple or Store Multiple must also be
resident-and mapped by the TLB-for the interrupt return to complete successfully.

INVALIDATING TLB ENTRIES

There are two methods for invalidating TLB entries that are no longer required at a
given point in program execution. The first involves resetting the Valid Entry bit of a
single entry (this is done by a Move To TLB instruction). The second involves chang
ing the value of the Process Identifier (PID) field of the MMU Configuration Register;

MEMORY MANAGEMENT 7-13

this invalidates all entries whose Task Identifier (TIO) fields do not match the new
value.

If an entry is invalidated by changing the PIO field, the TLB entry still remains valid in
some sense. If the PIO field is changed again to match the TIO field, the entry may
once again participate in address translation. This ability can be used to reduce the
number of TLB misses in a system during process switching. However, it is important
to manage TLB entries so that an invalid match cannot occur between the PIO field
and the TIO field of an old TLB entry.

7·14 MEMORVMANAGEMENT

MB lt.t iii I ij ;l:I

8.1

8.1.1

Figure 8·1

INTERRUPTS AND TRAPS

OVERVIEW

Interrupts and traps cause the Am29030 and Am29035 microprocessors to suspend
the execution of an instruction sequence and to begin the execution of a new se
quence. The processor may or may not later resume the execution of the original
instruction sequence.

The distinction between interrupts and traps is largely one of causation and enabling.
Interrupts allow external devices and the Timer Facility to control processor execution
and are always asynchronous to program execution. Traps are intended to be used
for certain exceptional events that occur during instruction execution and are gener
ally synchronous to program execution.

A distinction is made between the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to occur when all conditions that
define the interrupt or trap are met. However, an interrupt or trap that occurs is not
necessarily recognized by the processor, either because of various enables or be
cause of the processor's operational mode (e.g., Halt mode). An interrupt or trap is
taken when the processor recognizes the interrupt or trap and alters its behavior
accordingly.

Cunent Processor Status (CPS, Register 2)

This protected special-purpose register (see Figure 8-1) controls the behavior of the
processor and its ability to recognize exceptional events.

Current Processor Status Register

31 23

Reserved 11 "~:11111111 'I I I I ,~ 111
I I I I I I I I I I I I I I

I I I I I I I I I I I I I

I I I I I I t I I I I I I I
I I I I I I I I I I I I I I

TD I TE I TU I LK I WM' Pl I DI I

IP TP FZ Res PD SM DA

Bits 31-18: Reserved.

Bits 17: Timer Disable (TD)-When the TD bit is 1, the Timer interrupt is disabled.
When this bit is 0, the Timer interrupt is dependant on the value of the IE bit of the
Timer Reload Register. Note that Timer interrupts may be disabled by the DA bit
regardless of the value of either TD or IE. The intent of this bit is to provide a means
of disabling Timer interrupts without having to perform a non-atomic read-modify-write
operation on the Timer Reload Register.

Bit 16-15: Reserved.

INTERRUPTS AND TRAPS S.1

Bit 14: Interrupt Pending (IP)-This bit allows software to detect the presence of
external interrupts while the interrupts are disabled. The IP bit is set if one or more of
the external signals INTR(3-0) is active, but the processor is disabled from taking the
resulting interrupt due to the value of the DA, DI, or IM bits. If all external interrupt
signals are subsequently de-asserted while still disabled, the IP bit is reset.

Bits 13-12: Trace Enable, Trace Pending (TE, TP)-The TE and TP bits implement
a software-controlled, instruction single-step facility. Single stepping is not imple
mented directly, but rather emulated by trap sequences controlled by these bits. The
value of the TE bit is copied to the TP bit whenever an instruction completes execu
tion. When the TP bit is 1, a Trace trap occurs. Section 11.1 describes the use of
these bits in more detail.

Bit 11: Trap Unaligned Access (TU)-The TU bit enables checking of address
alignment for external data-memory accesses. When this bit is 1, an Unaligned Ac
cess trap occurs if the processor either generates an address for an external word
that is not aligned on a word address-boundary (i.e., either of the least-significant two
bits is 1) or generates an address for an external half-word that is not aligned on a
half-word address boundary (i.e., the least-significant address bit is 1). When the TU
bit is 0, data-memory address alignment is ignored.

Alignment is ignored for input/output accesses. The alignment of instruction ad
dresses is also ignored (unaligned instruction addresses can be generated only by
indirect jumps). Interrupt/trap vector addresses always are aligned properly by the
processor.

Bit 10: Freeze (FZ}-The FZ bit prevents certain registers from being updated during
interrupt and trap processing, except by explicit data movement. The affected regis
ters are: Channel Address, Channel Data, Channel Control, Program Counter 0,
Program Counter 1, Program Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values. An affected register can be
changed only by a Move-To-Special-Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by processor instruction execu
tion as described in this manual.

The FZ bit is set whenever an interrupt or trap is taken, holding critical state in the
processor so that it is not modified unintentionally by the interrupt or trap handler.

Bit 9: Lock (LK)-The LK bit controls the value of the LOCK external signal. If the LK
bit is 1, the LOCK signal is active. If the LK bit is 0, the LOCK signal is controlled by
the execution of the instructions Load and Set, Load and Lock, and Store and Lock.
This bit is provided for the implementation of multi-processor synchronization
protocols.

Bit 8: Reserved.

Bit 7: WAIT Mode (WM}-The WM bit places the processor in the Wait mode. When
this bit is 1, the processor performs no operations. The Wait mode is reset by an
interrupt or trap for which the processor is enabled, or by the assertion of the RESET
pin.

Bit 6: Physical Addressing/Data (PD}-The PD bit determines whether address
translation is performed for load or store operations. Address translation is performed
for an access only when this bit is O and the Physical Address (PA) bit in the load or
store instruction causing the access is also 0.

Bit 5: Physical Addressing/Instructions {Pl)-The Pl bit determines whether ad
dress translation is performed for external instruction accesses. Address translation is
performed only when this bit is 0.

8-2 INTERRUPTS AND TRAPS

8.1.2

Bit 4: Supervisor Mode (SM)-The SM bit protects certain processor context, such
as protected special-purpose registers. When this bit is 1, the processor is in the
Supervisor mode, and access to all processor context is allowed. When this bit is O,
the processor is in the User mode, and access to protected processor context is not
allowed; an attempt to access (either read or write) protected processor context
causes a Protection Violation trap.

Section 6.1 describes the processor state protected from User-mode access.

For an external access, the User Access (UA) bit in the load or store instruction also
controls access to protected processor context. When the UA bit is 1, the Memory
Management Unit and bus perform the access as if the program causing the access
were in User mode.

Bits 3-2: Interrupt Mask (IM)-The IM field is an encoding of the processor priority
with respect to external interrupts. The interpretation of the interrupt mask is specified
in Section 8.1.2.

Bit 1: Disable Interrupts (Dl)-The DI bit prevents the processor from being inter
rupted by external interrupt requests INTR(3--0). When this bit is 1, the processor
ignores all external interrupts. However, note that traps (both internal and external),
Timer interrupts, and Trace traps may be taken. When this bit is 0, the processor
takes any interrupt enabled by the IM field, unless the DA bit is 1.

Bit 0: Disable All Interrupts and Traps (DA)-The DA bit prevents the processor
from taking any interrupts and most traps. When this bit is 1, the processor ignores
interrupts and traps, except for the WARN, Instruction Access Exception, and Data
Access Exception traps. When the DA bit is 0, all traps are taken, and interrupts are
taken if otherwise enabled.

Interrupts

Interrupts are caused by signals applied to any of the external inputs INTR(3--0) or by
the Timer Facility (see Section 8.7). The processor may be disabled from taking
certain interrupts by the masking capability provided by the Disable All Interrupts and
Traps (DA) bit, Disable Interrupts (DI) bit, and Interrupt Mask (IM) field in the Current
Processor Status Register.

The DA bit disables all interrupts. The DI bit disables external interrupts without affect
ing the recognition of traps and Timer interrupts. The 2-bit IM field selectively enables
external interrupts as follows:

IMValue

00
01
10
11

Result

INTRO enabled
INTR(1-0) enabled
INTR(2-0) enabled
INTR(3-0) enabled

Note that the INTRO interrupt cannot be disabled by the IM field. Also, note that no
external interrupt is taken if either the DA or DI bit is 1. The Interrupt Pending bit in the
Current Processor Status indicates that one or more of the signals INTR(3--0) is ac
tive, but that the corresponding interrupt is disabled due to the value of either DA, DI,
or IM.

INTERRUPTS AND TRAPS 8·3

8.1.3

8.1.4

8.1.5

Traps

Traps are caused by signals applied to one of the inputs TRAP(1-0), or by exceptional
conditions such as protection violations. Except for the Instruction Access Exception
and Data Access Exception traps, traps are disabled by the DA bit in the Current
Processor Status; a 1 in the DA bit disables traps, and a 0 enables traps. It is not
possible to selectively disable individual traps.

External Interrupts And Traps

An external device causes an interrupt by asserting one of the INTR(3-0) inputs, and
causes a trap by asserting one of the TRAP(1-0) inputs. Transitions on each of these
inputs may be asynchronous to the processor clock; they are protected against
metastable states. For this reason, an assertion of one of these inputs that meets the
proper set-up-time criteria does not cause the corresponding interrupt or trap until the
second following cycle.

The INTR(3-0) inputs are prioritized with respect to each other and with respect to the
processor. To resolve conflicts between these inputs, the inputs are prioritized in
order, so that the interrupt caused by INTRO has the highest priority, and the interrupt
caused by INTR3 has the lowest priority.

The TRAP(1-0) inputs are prioritized with respect to each other, so that the trap
caused by TRAPO has priority over the trap caused by TRAP1 when a conflict occurs.
Both TRAPO and TRAP1 have priority over the INTR(3-0) inputs. The TRAP(1-0)
inputs cannot be disabled selectively. Both traps, however, can be disabled by the DA
bit in the Current Processor Status Register.

The INTR(3--0) and TRAP(1-0) inputs are level-sensitive. Once asserted, they must
be held active until the corresponding interrupt or trap is acknowledged by the inter
rupt or trap handler (this acknowledgment is system-dependent, since there is no
interrupt-acknowledge mechanism defined for the processor).

If any of these inputs is asserted, then de-asserted before it is acknowledged, it is
not possible to predict (unless the interrupt or trap is masked) whether or not the
processor has taken the corresponding interrupt or trap. During interrupt and trap
processing, the vector number is determined in part by which of the INTR(3--0) and
TRAP(1-0) inputs is active. If the input causing an interrupt or trap is de-asserted
before the vector number is determined, the vector number is unpredictable, with the
result that processor operation is also unpredictable. Typically, this situation results in
the processor taking an Illegal Opcode trap.

There is a three-cycle latency from the de-assertion of an INTR(3-0) or TRAP(1-0)
input to the time that the corresponding interrupt or trap is actually not recognized by
the processor. The de-assertion must be timed so that, when the corresponding mask
is reset, the processor does not recognize the interrupt or trap. Otherwise, a spurious
interrupt or trap may occur.

Wait Mode

A wait-for-interrupt capability is provided by the Wait mode. The processor is in the
Wait mode whenever the Wait Mode (WM) bit of the Current Processor Status is 1.
While in Wait mode, the processor neither fetches nor executes instructions and
performs no external accesses. The Wait mode is exited when an interrupt or trap is
taken.

11-4 INTERRUPTS AND TRAPS

8.2

Figure 8·2

8.2.1

Figure 8·3

Note that the processor can take only those interrupts or traps for which it is enabled,
even in the Wait mode. For example, if the processor is in the Wait mode with a DA
bit of 1, it can leave the Wait mode only via a processor reset (see Section 10.2) or a
WARN trap (see Section 8.4).

VECTOR AREA

Interrupt and trap processing relies on the existence of a user-managed Vector Area
in external instruction/data memory. The Vector Area begins at an address specified
by the Vector Area Base Address Register and provides for as many as 256 different
interrupt and trap handling routines. The processor reserves 64 routines for system
operation and instruction emulation. The number and definition of the remaining 192
possible routines are system dependent.

The structure of the Vector Area is a table of vectors in instruction/data memory. The
layout of a single vector is shown in Figure 8-2. Each vector gives the beginning
word-address of the associated interrupt or trap handling routine.

Vector Table Entry

31 23 15 7 0

I
Handler Starting Address

Vector Area Base Address (VAB, Register 0)

This protected special-purpose register (see Figure 8-3) specifies the beginning ad
dress of the interrupt/trap Vector Area. The Vector Area is a table of 256 vectors
which point to interrupt and trap handling routines.

When an interrupt or trap is taken, the vector number for the interrupt or trap (see
Section 8.2.2) replaces bits 9-2 of the value in the Vector Area Base Address
Register to generate the physical address for a vector contained in instruction/data
memory.

Vector Area Base Address Register

31 23 15 7 0

I : : : : : : : : : H : : : : : : : : : : l+l+l+l+l+I
Bits 31-10: Vector Area Base (VAB)-The VAB field gives the beginning physical
address of the Vector Area. This address is constrained to begin on a 1 K-Byte ad
dress-boundary in instruction/data memory.

Bits 9-0: Zeros-These bits force the alignment of the Vector Area to a 1 K-Byte
boundary.

INTERRUPTS AND TRAPS 8-5

8.2.2

8.3

8.3.1

8.3.2

Vector Numbers

When an interrupt or trap is taken, the processor determines an 8-bit vector number
associated with the interrupt or trap. The vector number gives the number of a vector
table entry. The physical address of the vector table entry is generated by replacing
bits 9-2 of the value in the Vector Area Base Address Register with the vector
number.

Vector numbers are either predefined or specified by an instruction causing the trap.
The assignment of vector numbers is shown in Table 8-1 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use by trapping instructions; the
definition of the routines associated with these numbers is system dependent.

INTERRUPT AND TRAP HANDLING

Interrupt and trap handling consists of two distinct operations: taking the interrupt or
trap and returning from the interrupt or trap handler. If the interrupt or trap handler
returns directly to the interrupted routine, the interrupt or trap handler need not save
and restore processor state.

Old Processor Status (OPS, Register 1)

This protected special-purpose register has the same format as the Current Proces
sor Status Register. The Old Processor Status Register stores a copy of the Current
Processor Status Register when an interrupt or trap is taken. This is required since
the Current Processor Status Register is modified to reflect the status of the interrupt/
trap handler.

During an interrupt return, the Old Processor Status Register is copied into the Cur
rent Processor Status Register. This allows the Current Processor Status Register to
be set as required for the routine that is the target of the interrupt return.

The Program Counter Stack

The Program Counter Unit, shown in Figure 8-4, forms and sequences instruction
addresses for the Instruction Fetch Unit. It contains the Program Counter (PC), the
Program-Counter Multiplexer (PC MUX), the Return Address latch, and the Program
Counter Buffer (PC Buffer).

The PC forms addresses for sequential instructions executed by the processor. The
master of the PC Register, PC L 1, contains the address of the instruction being
fetched in the Instruction Fetch Unit. The slave of the PC Register, PC L2, contains
the next sequential address, which may be fetched by the Instruction Fetch Unit in the
next cycle.

The Return Address Latch passes the address of the instruction following the delayed
instruction of a call to the register file. This address is the return address of the call.

The PC Buffer stores the addresses of instructions in various stages of execution
when an interrupt or trap is taken. The registers in this buffer-Program Counters 0,
1, and 2 (PCO, PC1, and PC2)-are normally updated from the PC as instructions
flow through the processor pipeline.

When an interrupt or trap is taken, the Freeze (FZ) bit in the Current Processor Status
is set, holding the quantities in the PC Buffer. When the FZ bit is set, PCO, PC1, and
PC2 contain the addresses of the instructions in the decode, execute, and write-back
stages of the pipeline, respectively.

8-6 INTERRUPTS AND TRAPS

Table 8·1 Vector Number Assignments

Number Type of Trap or Interrupt

0 Illegal Opcode
1 Unaligned Access
2 Out of Range

3-4 Reserved
5 Protection Violation
6 Instruction Access Exception
7 Data Access Exception
8 User-Mode Instruction TLB Miss
9 User-Mode Data TLB Miss

10 Supervisor-Mode Instruction TLB Miss
11 Supervisor-Mode Data TLB Miss
12 Instruction MMU Protection Violation
13 Data MMU Protection Violation
14 Timer
15 Trace
16 INTRO
17 INTR1
18 INTR2
19 INTR3
20 TRAPO
21 TRAP1
22 Floating-Point Exception
23 Reserved

24-29 Reserved for instruction emulation
(opcodes 08-DD)

30 MULTM

31 MULTMU

32 MULTIPLY

33 DIVIDE

34 MULTIPLU

35 DIVIDU

36 CONVERT

37 SQRT

38 CLASS

39-41 Reserved for instruction emulation
(opcode E7-E9)

42 FEQ

43 DEQ

44 FGT

45 DGT

46 FGE

47 OGE

48 FADD

49 DADD

50 FSUB

51 DSUB

52 FMUL

53 DMUL

cause
Executing undefined instruction1

Access on unnatural boundary, TU= 1
Overflow or underflow

Invalid User-mode operation2

ERR response while instruction fetching
ERR response, doing load or store
No TLB entry for translation
No TLB entry for translation
No TLB entry for translation
No TLB entry for translation
TLB UE!SE=O
TLB UR/SR= 0, UW/SW = 0 on write
Timer Facility
Trace Facility
INTRO input
INTR1 input
INTR2 input
INTR3 input
TRAPO input
TRAP1 input
Unmasked floating-point exception3

MUL TM instruction

MUL TMU instruction

MULTIPLY instruction
DIVIDE instruction

MUL TIPLU instruction

DIVIDU instruction
CONVERT instruction

SORT instruction
CLASS instruction

FEQ instruction
DEO instruction

FGT instruction

DGT instruction
FGE instruction

OGE instruction

FADD instruction

DADD instruction
FSUB instruction

DSUB instruction
FMUL instruction

DMUL instruction

1. This vector number also results if an external device removes IN1R3-INTRO or TRAP1-TRAPO before the corresponding
interrupt or trap is taken by the processor.

2. Some Supervisor-mode operations cause Protection Violations, to facilitate virtualization of certain operations.
3. The Floating-Point Exception trap is not generated by the processor hardware. It must be generated by software support.

INTERRUPTS AND TRAPS 8·7

Figure 8-4

Instruction
Cache

Vector Number Assignments (continued)

Number Type of Trap or Interrupt

54 FDIV
55 DDIV

56 Reserved for instruction emulation
(opcode FS)

57 FDMUL

58-63

64-255

Reserved for instruction emulation
(opcode FA-FF)
ASSERT and EMULATE instruction traps
{vector number specified by instruction)

cause
FDIV instruction

DDIV instruction

FDMUL instruction

Note: Some of Vector Numbers 64-255 are reserved for software compatability (see Sections 4.2.3 and
4.2.6). These are documented in Chapter 4 and in the Host Interface (HIF) Specification, available
from AMO.

Program Counter Unit

PCL1

30-bit
lncrementer

PCL2

30

R-Bus

PC-Bus

PCO

Address
Unit

Branch PCMUX

Return
Address

Latch
PC Buffer w

B-Bus

8-8 INTERRUPTS AND TRAPS

8.3.2.1

Figure 8·5

8.3.2.2

Figure 8·6

Upon the execution of an interrupt return, the target instruction stream is restarted
using the instruction addresses in PCO and PC1. Two registers are required here
because the processor implements delayed branches. An interrupt or trap may be
taken when the processor is executing the delay instruction of a branch and decoding
the target of the branch. This discontinuous instruction sequence must be restarted
properly upon an interrupt return. Restarting the instruction pipeline using two sepa
rate registers correctly handles this special case; in this case PC1 points to the delay
instruction of the branch, and PCO points to its target. PC2 does not participate in the
interrupt return, but is included to report the addresses of instructions causing certain
exceptions.

The PC is not defined as a special-purpose register. It cannot be modified or in
spected by instructions. Instead, the interrupting and restarting of the pipeline is done
by the PC Buffer registers PCO and PC1.

PROGRAM COUNTER 0 (PCO, Register 10)

This protected special-purpose register (Figure 8-5) is used, on an interrupt return, to
restart the instruction which was in the decode stage when the original interrupt or
trap was taken.

Program Counter 0 Register
31 23 15 7 0

11 I I I I I I I I I I I I !~ I I I I I I I I I I I I I I I 0 I 0 I

Bits 31-2: Program Counter O (PCO)-This field captures the word-address of an
instruction as it enters the decode stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PCO holds its
value.

When an interrupt or trap is taken, the PCO field contains the word-address of the
instruction in the decode stage; the interrupt or trap has prevented this instruction
from executing. The processor uses the PCO field to restart this instruction on an
interrupt return.

Bits 1-0: Zeros-These bits are zero, since instruction addresses are always word
aligned.

PROGRAM COUNTER 1 (PC1, Register 11)

This protected special-purpose register (Figure 8-6) is used, on an interrupt return, to
restart the instruction that was in the execute stage when the original interrupt or trap
was taken.

Program Counter 1 Register

31 23 15 7 0

11 I I I I I I I I I I I I I .~,I I I I I I I I I I I I I I I 010 I

Bits 31-2: Program Counter 1 (PC1)-This field captures the word-address of an
instruction as it enters the execute stage of the processor pipeline, unless the Freeze

INTERRUPTS AND TRAPS 8°9

8.3.2.3

Figure 8·7

8.3.3

(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC1 holds its
value.

When an interrupt or trap is taken, the PC1 field contains the word-address of the
instruction in the execute stage; the interrupt or trap has prevented this instruction
from completing execution. The processor uses the PC1 field to restart this instruction
on an interrupt return.

Bits 1-0: zeros-These bits are zero, since instruction addresses are always word
aligned.

PROGRAM COUNTER 2 (PC2, Register 12)

This protected special-purpose register (Figure 8-7) reports the address of certain
instructions causing traps.

Program Counter 2 Register
31 23 15 7 0 I , I I I I I I I I I I I I I I .~} I I I I I I I I I I I I I

0
1
0

I

Bits 31-2: Program Counter 2 (PC2)-This field captures the word address of an
instruction as it enters the write-back stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC2
holds its value.

When an interrupt or trap is taken, the PC2 field contains the word address of the
instruction in the write-back stage. In certain cases PC2 contains the address of the
instruction causing a trap. The PC2 field is used to report the address of this instruc
tion and has no other use in the processor.

Bits 1-0: zeros-These bits are zero, since instruction addresses are always word
aligned.

Taking An Interrupt Or Trap

The following operations are performed in sequence by the processor when an inter
rupt or trap is taken:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any in-progress load or store operation is completed. Any additional operations
are canceled in the case of load multiple and store multiple.

4. The contents of the Current Processor Status Register are copied into the Old
Processor Status Register.

5. The Current Processor Status register is modified as shown in Figure 8-8 (the
value u means unaffected). Note that setting the Freeze (FZ) bit freezes the
Channel Address, Channel Data, Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status Registers.

6. The address of the first instruction of the interrupt or trap handler is determined.
The address is obtained by accessing a vector from instruction/data memory,
using the physical address obtained from the Vector Area Base Address Register
and the vector number. This access appears on the bus as a data access, and the
OPT(2--0) signals indicate a word-length access.

11-10 INTERRUPTSANOTRAPS

Figure 8·8

8.3.4

7. An instruction fetch is initiated using the instruction address determined in step 6.
At this point, normal instruction execution resumes.

Note that the processor does not explicitly save the contents of any registers when an
interrupt is taken. If register saving is required, it is the responsibility of the interrupt
or trap-handling routine. For proper operation, registers must be saved before any
further interrupts or traps may be taken. The FZ bit must be reset at least two instruc
tions before interrupts or traps are re-enabled, to allow program state to be reflected
properly in processor registers if an interrupt or trap is taken.

Current Processor Status After an Interrupt or Trap

31 23 15

111 II
0 0 0 0

I I I I I
0 0 0 0 0

------~,,.-----· t I I I I I
I I I I I I I
I I I I I I I Reserved
:Res: IP:rP:
I I I I

TD Res TE TU

Returning From An Interrupt Or Trap

7 0

I I I I I I I
I I I I I I I
I I I I I I I

FZ : Res : PD : SM IM
I 1 I

LK WM Pl

I '
I 0
I I

: DA
I

DI

Two instructions are used to resume the execution of an interrupted program: Inter
rupt Return (IRET), and Interrupt Return and Invalidate (IRETINV). These instructions
are identical except in one respect: the IRETINV instruction resets all Valid bits in the
Instruction Cache, whereas the IRET instruction does not affect the Valid bits.

In some situations, the processor state must be set properly by software before the
interrupt return is executed. The following is a list of operations normally performed in
such cases:

1. The Current Processor Status is configured as shown in Figure 8-9 (the value xis
a don't care). Note that setting the FZ bit freezes the registers listed below so that
they may be set for the interrupt return.

2. The Old Processor Status is set to the value of the Current Processor Status for
the target routine.

3. The Channel Address, Channel Data, and Channel Control registers are set to
restart or resume uncompleted external accesses of the target routine.

4. The Program Counter 1 and Program Counter 0 registers are set to the addresses
of the first and second instructions, respectively, to be executed in the target
routine.

5. Other registers are set as required. These may include registers such as the ALU
Status, Q, and so forth, depending on the particular situation. Some of these
registers are unaffected by the FZ bit, so they must be set in such a manner that
they are not modified unintentionally before the interrupt return.

Once the processor registers are configured properly, as described above, an inter
rupt return instruction (IRET or IRETINV) performs the remaining steps necessary to
return to the target routine. The following operations are performed by the interrupt
return instruction:

INTERRUPTS AND TRAPS B-1 f

Figure S..9 Current Processor Status Before Interrupt Retum

31

111 II 0 0 0 0

I I 0 I I I ' I I I I I I I I
-------,.-----· I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I

Reserved :•:•••: 1 • 11 11: • .:

, Res, IP : TP , FZ : Res : PD • SM IM • DA
I I I I I I I I

TD Res TE TU LK WM i:l1 DI

1. Any in-progress load or store operation is completed. If a load-multiple or
store-multiple sequence is in progress, the interrupt return is not executed until the
sequence completes.

2. Interrupts and traps are disabled, regardless of the settings of the DA, DI, and IM
fields of the Current Processor Status, for steps 3 through 10.

3. If the interrupt return instruction is an IRETINV, all Valid bits in the Instruction
Cache memory are reset, except for those portions of the Instruction Cache which
are locked (see Section 9.1).

4. The contents of the Old Processor Status Register are copied into the Current
Processor Status Register. This normally resets the FZ bit, allowing the Program
Counter 0, 1, 2, Channel Address, Data, Control, and ALU Status registers to
update normally. Since certain bits of the Current Processor Status Register
always are updated by the processor, this copy operation may be irrelevant for
certain bits (e.g., the Interrupt Pending bit).

5. If the Contents Valid (CV) bit of the Channel Control Register is 1, and the Not
Needed (NN) and Multiple Operation (ML) bits are both 0, an external access is
started. This operation is based on the contents of the Channel Address, Channel
Data, and Channel Control registers. The Current Processor Status Register
conditions the access-as is normally the case. Note that load-multiple and
store-multiple operations are not restarted at this point.

6. The address in Program Counter 1 is used to fetch an instruction. The Current
Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Instruction Cache for the target of the
fetch.

7. The instruction fetched in step 6 enters the decode stage of the pipeline.

8. The address in Program Counter 0 is used to fetch an instruction. The Current
Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Instruction Cache for the target of the
fetch.

9. The instruction fetched in step 6 enters the execute stage of the pipeline, and the
instruction fetched in step 8 enters the decode stage.

10. If the CV bit in the Channel Control Register is a 1, the NN bit is 0, and the ML bit
is 1, a load-multiple or store-multiple sequence is started, based on the contents
of the Channel Address, Channel Data, and Channel Control registers.

11. Interrupts and traps are enabled per the appropriate bits in the Current Processor
Status Register.

12. The processor resumes normal operation.

B-12 INTERRUPTS AND TRAPS

8.3.5

8.3.6

Lightweight Interrupt Processing

The registers affected by the FZ bit of the Current Processor Status Register are
those which are modified by almost any usual sequence of instructions. Since the FZ
bit is set by an interrupt or trap, the interrupt or trap handler is able to execute while
not disturbing the state of the interrupted routine, though its execution is somewhat
restricted. Thus, it is not necessary in many cases for the interrupt or trap handler to
save the registers that are affected by the FZ bit. This permits the implementation of
lightweight interrupt handlers that do not have all of the overhead normally associated
with interrupt handlers.

The processor provides an additional benefit to lightweight interrupts if the Program
Counter 0 and Program Counter 1 Registers are not modified by the interrupt or trap
handler. If Program Counters 0 and 1 contain the addresses of sequential instructions
when an interrupt or trap is taken, and if they are not modified before an interrupt
return is executed, step 8 of the interrupt return sequence above occurs as a sequen
tial fetch-instead of a branch-for the interrupt return. The performance impact of a
sequential fetch is normally less than that of a non-sequential fetch.

Because the registers affected by the FZ bit are sometimes required for instruction
execution, it is not possible for the lightweight interrupt or trap handler to execute all
instructions, unless the required registers are first saved elsewhere (e.g., in one or
more global registers). Most of the restrictions due to register dependencies are
obvious (e.g., the Byte Pointer for byte extracts) and will not be discussed here. Other
less obvious restrictions are listed below:

1. Load Multiple and Store Multiple. The Channel Address, Channel Data, and
Channel Control registers are used to sequence load-multiple and store-multiple
operations, so these instructions cannot be executed while the registers are
frozen. However, note that other external accesses may occur; the Channel
Address, Channel Data, and Channel Control registers are required only to restart
an access after an exception, and the interrupt or trap handler is not expected to
encounter any exceptions.

2. Loads and stores which set the Byte Pointer. If the Set Byte Pointer (SB) of a load
or store instruction is 1, and the FZ bit is also 1, there is no effect on the Byte
Pointer. Thus, the execution of external byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU Status Register is not updated while
the FZ bit is 1 .

4. Divide step instructions. The Divide Flag of the ALU Status Register is not
updated when the FZ bit is 1 .

If the Interrupt or trap handler does not save the state of the interrupted routine, it
cannot allow additional interrupts and traps. Also, the operation of the interrupt or trap
handler cannot depend on any trapping instructions (e.g., Floating-Point instructions,
illegal operation codes, arithmetic overflow, etc.), since these are disabled. There are
certain cases, however, where traps are unavoidable; these are discussed in Section
8.6.3 and 8.6.4. Special considerations for these cases are discussed in Section
8.6.6.

Simulation Of Interrupts And Traps

Assert instructions may be used by a Supervisor-mode program to simulate the oc
currence of various interrupts and traps defined for the processor. Only an assert
instruction executed in Supervisor mode can specify a vector number between O and

INTERRUPTS AND TRAPS 8-13

8.4

8.4.1

63. If this instruction causes a trap, the effectis to create an interrupt or trap which is
similar t9 that associated with the specified vector number.

Thus, the interrupt and trap routines defined for basic processor operation can be
invoked without creating any particular hardware condition. For example, an INTR1
interrupt may be simulated by an assert instruction that specifies a vector number
of 17, without the activation of the INTR1 signal.

WARN TRAP

The processor recognizes a special trap, caused by the activation of the WARN input,
which cannot be masked. The WARN trap is intended to be used for severe system
error or deadlock conditions. It allows the processor to be placed in a known, oper
able state, while preserving much of its original state for error reporting and possible
recovery. Therefore, it shares some features in.common with the Reset mode as well
as features common to other traps described in this section.

The major differences between the WARN trap and other traps are:

1. The processor does not wait for an in-progress external access to complete
before taking the trap, since this access might not complete. However, the
information related to any outstanding access is retained by the Channel Address,
Channel Data, and Channel Control registers when the trap is taken.

2. The vector-fetch operation is not performed when the WARN trap is taken. Instead
instruction fetching begins immediately at address 16 in the instruction memory.
The trap handler executes directly from the instruction memory.

Note that the WARN trap may disrupt the state of the routine that is executing when it
is taken, prohibiting this routine from being restarted.

WARN Input

An inactive-to-active transition on the WARN input causes a WARN trap to be taken
by the processor. The WARN trap cannot be disabled; the processor responds to the
WARN input regardless of its internal condition, unless the RESET input is also as
serted. The WARN input is provided so that the system can gain control of the proces
sor in extreme situations, such as when system power is about to be removed or
when a severe non-recoverable error occurs.

The WARN input is edge-sensitive, so that an active level on the WARN input for
long intervals does not cause the processor to take multiple WARN traps. However,
WARN must be held active for at least 4 cycles in order to be properly recognized by
the processor. The processor still takes the WARN trap if WARN is de-asserted after
four cycles. Another WARN trap occurs if WARN makes another inactive-to-active
transition.

The processor enters the Executing mode when the WARN input is asserted, regard
less of its previous operational mode. Either seven or eight cycles after WARN is
asserted (depending on internal synchronization time), the processor performs a
trap-handler instruction access on the bus. This access is directed to address 16 in
the instruction/data memory.

If the CNTL(1--0) inputs are 10 or 01 when the trap-handler instruction fetch com
pletes, the processor enters the Halt or Step mode, respectively. Before the comple
tion of this instruction fetch, the CNTL(1--0) inputs are irrelevant, except that the Load
Test Instruction mode cannot be entered directly after a WARN trap is taken. If the

11-14 INTERRUPTS AND TRAPS

8.5

CNTL(1--0) inputs are 00 immediately after WARN is de-asserted (indicating entry into
the Load Test Instruction mode), the effect on processor operation is unpredictable. If
the CNTL(1--0) inputs are 11, the processor remains in the Executing mode.

SEQUENCING OF INTERRUPTS AND TRAPS

On every cycle, the processor decides either to execute instructions or to take an
interrupt or trap. Since there are multiple sources of interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken according to the priority shown in
Table 8-2. In this table, interrupts and traps are listed in order of decreasing priority.
This section discusses the first three columns of Table 8-2. The last two columns are
discussed in Section 8.6.

In Table 8-2, interrupts and traps fall into one of two categories depending on the
timing of their occurrence relative to instruction execution. These categories are
indicated in the third column of Table 8-2 by the labels Inst and Async. These labels
have the following meaning:

1. Inst-Generated by the execution or attempted execution of an instruction.

2. Async-Generated asynchronous to and independent of the instruction being
executed, although it may be a result of an instruction executed previously.

The principle for interrupt and trap sequencing is that the highest priority interrupt or
trap is taken first. Other interrupts and traps remain active until they can be taken or
are regenerated when they can be taken. This is accomplished, depending on the
type of interrupt or trap, as follows:

1. All traps in Table 8-2 with priority 13 through 15 are regenerated by the
re-execution of the causing instruction.

2. Most of the interrupts and traps of priority 4 through 12 must be held by external
hardware until they are taken. The exceptions to this are listed in item 3) below.

3. The exceptions to 2 above are the Data Access Exception trap, the Timer
interrupt, and the Trace trap. These are caused by bits in various registers in the
processor and are held by these registers until taken or cleared. The relevant bits
are: the Transaction Faulted (TF) bit of the Channel Control Register for Data
Access Exception trap, the Interrupt (IN) bit of the Timer Reload Register for Timer
interrupts, and the Trace Pending (TP) bit of the Current Processor Status
Register for Trace traps.

4. All traps of priority 2 and 3 in Table 8-2, except for the Unaligned Access trap, are
not regenerated. These traps are mutually exclusive, and are given high priority
because they cannot be regenerated; they must be taken if they occur. If one of
these traps occurs at the same time as a reset or WARN trap, it is not taken, and
its occurrence is lost.

5. The Unaligned Access trap is regenerated internally when an external access is
restarted by the Channel Address, Channel Data, and Channel Control registers.
Note that this trap is not necessarily exclusive to the traps discussed in item 4)
above.

The Channel Address, Channel Data, and Channel Control registers are set for a
WARN trap only if an external access is in progress when the trap is taken.

INTERRUPTS AND TRAPS 11-15

Table 8·2 Interrupt and Trap Priority Table

Priority Type of Interrupt or Trap lnst/Async PC1 Channel Regs

1 WARN Async Next See Note 1
(Highest)

User-Mode Data TLB Miss Inst Next All
2 Supervisor-Mode Data TLB Miss Inst Next All

Data MMU Protection Violation Inst Next All

Unaligned Access Inst Next All
Out of Range Inst Next NIA
Assert Instructions Inst Next N/A

3 Floating-Point Instructions Inst Next NIA
Integer Multiply/Divide Instructions Inst Next NIA
EMULATE Inst Next N/A

4 Data Access Exception Async Next All

5 TRAPO Async Next Multiple

6 TRAP1 Async Next Multiple

7 INTRO Async Next Multiple

8 INTR1 Async Next Multiple

9 INTR2 Async Next Multiple

10 INTR3 Async Next Multiple

11 Timer Async Next Multiple

12 Trace Async Next Multiple

User-Mode Instruction TLB Miss Inst Curr NIA
Supervisor-Mode Instr. TLB Miss Inst Curr NIA

13 Instruction MMU Protection Violation Inst Curr NIA
Instruction Access Exception Inst Curr NIA

14 Illegal Opcode Inst Curr N/A
(Lowest) Protection Violation Inst Curr N/A

Note 1: The Channel Address, Channel Data, and Channel Control registers are set for a WAm
trap only if an external access is in progress when the trap is taken.

11-16 INTERRUPTS AND TRAPS

8.6

8.6.1

8.6.2

EXCEPTION REPORTING AND RESTARTING

When an instruction encounters an exceptional condition, the Program Counter O,
Program Counter 1, and Program Counter 2 registers report the relevant instruction
address(es) and allow the instruction sequence to be restarted once the exceptional
condition has been remedied (if possible). Similarly, when an external access encoun
ters an exceptional condition, the Channel Address, Channel Data, and Channel
Control registers report information on the access or transfer and allow it to be re
started. This section describes the interpretation and use of these registers.

The PC1 column in Table 8-2 describes the value held in the Program Counter 1
Register (PC1) when the interrupt or trap is taken. For traps in the Inst category, PC1
contains either the address of the instruction causing the trap, indicated by Curr, or
the address of the instruction following the instruction causing the trap, indicated
by Next.

For interrupts and traps in the Async category, PC1 contains the address of the first
instruction which was not executed due to the taking of the interrupt or trap. This is
the next instruction to be executed upon interrupt return, as indicated by Next in the
PC1 column.

Instruction Exceptions

For traps caused by the execution of an instruction (e.g., the Out of Range trap), the
Program Counter 2 Register contains the address of the instruction causing the trap.
In all of these cases, PC1 is in the Next category.

The traps associated with instruction fetches (i.e., those of priority 13) occur only if the
processor attempts the execution of the associated instruction. An exception may be
detected during an instruction prefetch, but the associated trap does not occur if the
processor branches before it attempts to execute the invalid instruction. This prevents
spurious instruction exceptions.

Restarting Faulting External Accesses

In a demand-paged system environment, virtual pages and their associated virtual-to
physical mappings are made available to programs on demand. In other words, the
memory-management routines generally execute only when a given page or mapping
is needed by a program. This need is signaled by a page fault trap caused by a pro
gram access (normally, the page fault occurs during a TLB reload).

Since the page fault trap is part of normal system operation, and does not represent
an error, the access that causes the trap must be restarted-once the trapping condi
tion is remedied-in a manner that cannot be detected by the program causing the
trap.

Additionally, in the Am29030 and Am29035 microprocessors, the TLB reload mecha
nism relies on the ability to restart an access that causes a TLB miss trap. This restart
also must be accomplished in a manner that cannot be detected by the trapping
program.

The Am29030 and Am29035 microprocessors overlap external accesses with the
execution of instructions. Thus, traps caused by accesses are imprecise: the address
of the instruction that initiated the access cannot be determined by the trap handler.
Since the address of the initiating instruction is unknown, the access cannot be re
started by re-executing this instruction. Even if the address could be determined, the
instruction might not be restartable, since an instruction executed before the trap

INTERRUPTSANDTRAPS 8-17

8.6.2.1

occurred, but after the access began, may have altered the conditions of the access,
such as by altering the address source register.

In order to provide for the restarting of loads and stores that cause exceptions, the
processor saves all information required to restart these accesses in the Channel
Address, Channel Data, and Channel Control registers. The Contents Valid (CV) and
Not Needed (NN) bits in the Channel Control Register indicate that the information
contained in these registers represents an access that must be restarted. The CV bit
indicates that the access did not complete, and the NN bit indicates whether or not the
data from the access is required by the processor.

Note that since instruction execution is overlapped with external accesses, an instruc
tion that executes after a load may alter the destination register for the load. If a trap
occurs in this situation, the access information in the Channel Address, Data, and
Control registers is correct, but the load cannot be restarted, because it will destroy
the new value in the destination register. The NN bit provides correct operation in this
case.

When an interrupt or trap is taken, the handling routine has access to the Channel
Address, Data, and Control registers; the contents of these registers may contain
information relevant to an incomplete access and can be preserved for restarting this
access. Since these registers are frozen (due to the FZ bit of the Current Processor
Status), they are not available to monitor any external accesses in the interrupt or trap
handler until their contents are saved and the FZ bit is reset.

Note that the exception handler for the Data Access Exception trap must clear the
Transaction Faulted (TF) bit in the Channel Control Register. Failure to clear the TF
bit results in the processor taking the trap again, once the exception handler returns,
causing an infinite series of traps.

The processor restarts an access, using the Channel Address, Channel Data, and
Channel Control registers, upon an interrupt return (IRET or IRETINV). The access is
initiated if the CV bit of the Channel Control Register is 1 and the NN bit is 0. The
restart cannot be detected in the logical operation of the restarted routine, although
the timing of execution is altered.

The mechanism used to restart faulting accesses has the additional benefit of allow
ing a fast interrupt-response time when the processor is performing a load-multiple or
store-multiple operation. An interrupted load-multiple or store-multiple is restarted as if
it had faulted. In this case, the operation resumes from the point of interruption, not
from the beginning of the sequence.

CHANNEL ADDRESS (CHA, Register 4)

This protected special-purpose register (Figure 8-10) is used to report exceptions
during external accesses. It also is used to restart interrupted load-multiple and store
multiple operations and to restart other external accesses when possible (e.g., after
TLB misses are serviced).

The Channel Address Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Bits 31-0: Channel Address (CHA}-This field contains the address of the current
bus access (if the FZ bit of the Current Processor Status Register is 0). For external
data accesses, the address is virtual if address translation was enabled for the ac
cess, or physical if translation was disabled.

8-18 INTERRUPTSANDTRAPS

Figure 8·10 Channel Address Register
31 23 15 7 0

11 I I I I I I I I I I I I I I ;H; I I I I I I I I I I I I I I I

8.6.2.2 CHANNEL DATA (CHD, Register 5)

Figure 8·11

8.6.2.3

Figure 8·12

This protected special-purpose register (Figure 8-11) is used to report exceptions
during external accesses. It also is used to restart the first store of an interrupted
store-multiple operation and to restart other external accesses when possible (e.g.,
after TLB misses are serviced).

The Channel Data Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1. When
the Channel Data Register is updated for a load operation, the resulting value is
unpredictable.

Channel Data Register

31 23 15 7 0

1111111111111111~~111111111111111

Bits 31--0: Channel Data (CHD)-This field contains the data (if any) associated with
the current bus access (if the FZ bit of the Current Processor Status Register is 0). If
the current bus access is not a store, the value of this field is irrelevant.

CHANNEL CONTROL (CHC, Register 6)

This protected special-purpose register (Figure 8-12) is used to report exceptions
during external accesses. It also is used to restart interrupted load-multiple and store
multiple operations and to restart other external accesses when possible (e.g., after
TLB misses are serviced).

The Channel Control Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Bits 31-24:-These bits are a direct copy of bits 23-16 from the load or store instruc
tion that started the current bus access (see Section 3.3).

Channel Control Register
31 23 15 7 0

I I
I I I I I I

I
I I I I I I I

I I I I I I I
I I I I I I I

I I I CNTL CR TR
I I I I . I I I I

I I I I I I I ' I I I
. I I I

I

LS : sr: res : I

Res NN •
I ' .

I

ML LA TF CV

INTERRUPTSANDTRAPS 8-19

8.6.3

Bits 23-16: Load/Store Count Remaining (CR)-The CR field indicates the re
maining number of transfers for a load-multiple or store-multiple operation that
encountered an exception or was interrupted before completion. This number is zero
based; for example, a value of 28 in this field indicates that 29 transfers remain to be
completed.

Bit 15: Load/Store (LS)-The LS bit is 0 if the bus access is a store operation and is
1 if the bus access is a load operation.

Bit 14: Multiple Operation (ML)-The ML bit is 1 if the current bus access is a
partially-complete load-multiple or store-multiple operation; otherwise it is 0.

Bit 13: Set (ST)-The ST bit is 1 if the current bus access is for a Load and Set
Instruction; otherwise it. is 0.

Bit 12: Lock Active (LA)-The LA bit is 1 if the current bus access is for a Load and
Lock or Store and Lock instruction; otherwise it is O. Note that this bit is not set as the
result of the Lock (LK) bit in the Current Processor Status Register.

Bit 11: Reserved.

Bit 1 O: Transaction Faulted (TF)-The TF bit indicates that the current bus access
did not complete due to some exceptional circumstance. This bit is set only for excep
tions reported via the ERR input, and it causes a Data Access Exception trap to occur
when it is 1.

The TF bit allows the proper sequencing of externally reported errors that get pre
empted by higher-priority traps (see Section 8.6). It is reset by software that handles
the resulting trap. ·

Bits 9-2: Target Register (TR)-The TR field Indicates the absolute register number
of the data operand for the current access (either a load target or store data source).
Since the register number in this field is absolute, it reflects the Stack-Pointer addition
when the indicated register is a local register.

Bit 1: Not Needed (NN)-The NN bit indicates that, even though the Channel Ad
dress, Channel Data, and Channel Control registers contain a valid representation of
an incomplete load operation, the data requested is not needed. This situation arises
when a load instruction is overlapped with an instruction that writes the load target
register.

Bit 0: Contents Valld (CV)-The CV bit indicates that the contents of the Channel
Address, Channel Data, and Channel Control registers are valid.

Integer Exceptions

Some integer add and subtract instructions-ADDS, ADDU, ADDCS, ADDCU, SUBS,
SUBU, SUBCS, SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU-cause an Out
of Range trap upon overflow or underflow of a 32-bit signed or unsigned result, de
pending on the instruction.

Two integer multiply instructions-MULTIPLY and MUL TIPLU-cause an Out of
Range trap upon overflow of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register is 0. If the MO bit is 1, these multiply
instructions cannot cause an Out of Range trap. Since the processor does not contain
hardware to directly support these instructions, the Out of Range trap must be gener
ated by software support.

Two integer divide instructions-DIVIDE and DIVIDU-take the Out of Range trap
upon overflow of a 32-bit signed or unsigned result, respectively, if the DO bit of the
Integer Environment Register is 0. If the DO bit is 1, the divide instructions cannot

S.20 INTERRUPTS AND TRAPS

8.6.4

8.6.5

8.6.6

cause an Out of Range trap unless the divisor is zero. If the divisor is zero, an Out of
Range trap always occurs, regardless of the DO bit.

For the MULTIPLY, MUL TIPLU, DIVIDE, and DIVIDU instructions, the destination
register or registers are unchanged if an Out of Range trap is taken.

Floating-Point Exceptions

A Floating-Point Exception trap occurs when an exception is detected during a
floating-point operation and the exception is not masked by the corresponding bit of
the Floating-Point Mask Register. In this context, a floating-point operation is defined

as any operation that accepts a floating-point number as a source operand, that
produces a floating-point result, or both. Thus, for example, the CONVERT instruc
tion may create an exception while attempting to convert a floating-point value to an
integer value or vice versa.

In addition to the operations described in Section 8.3.3, the following operations are
performed when a Floating-Point Exception trap is taken:

1. The status of the trapping operation is written into the trap status bits of the
FloatingcPoint Status Register. The written status bits do not depend on the
values of the corresponding mask bits in the Floating-Point Environment Register.

2. The destination register or registers are left unchanged.

Correcting Out-of-Range Results

Some Arithmetic instructions cause an Out of Range trap if the arithmetic operation
causes an overflow or underflow. When an Out of Range trap occurs, the result of the
operation-though incorrect-is written into the destination register. Furthermore, the
Program Counter 2 Register contains the address of the trapping instruction, and the
ALU Status Register contains an indication of the cause of the trap. It is possible, if
required, for the trap handler to use this information to form the correct result.

The ALU Status indicates the cause of the Out of Range trap, based on the operation
performed, as follows:

1. Signed overflow. If the Out of Range trap is caused by signed, two's-complement
overflow (this can occur for both signed adds and subtracts}, the V bit is 1.

2. Unsigned overflow. If the Out of Range trap is caused by unsigned overflow (this
can occur only for unsigned adds), the C bit is 1.

3. Unsigned underflow. If the Out of Range trap is caused by unsigned underflow
(this can occur only for unsigned subtracts), the C bit is 0.

The multiply instructions MULTIPLY and MUL TIPLU can cause an Out of Range trap
if the MO bit of the Integer Environment Register is 0 and the operation overflows.
However, these instructions do not set the ALU Status Register. This exception is
detected by reading the trapping instruction, whose address is in the PC2 Register.

Exceptions During Interrupt and Trap Handling

In most cases, interrupt and trap handling routines are executed with the DA bit in the
Current Processor Status having a value of 1. It is normally assumed that these rou
tines do not create many of the exceptions possible in most other processor routines.

If these assumptions are not valid for a particular interrupt or trap handler, it is im
portant that the handler save the state of the processor and reset the FZ bit of the

INTERRUPTS AND TRAPS 11-21

8.7

8.7.1

8.7.2

8.7.3

Current Processor Status, so that the handler itself may be restarted properly. This
must be accomplished before any interrupts or traps can be taken. In this case, the
state (or the state of some other process) must be restored before an interrupt return
is executed.

TIMER FACILITY

The processor has a built-in Timer Facility that can be configured to cause periodic
interrupts. The Timer Facility consists of two special-purpose registers-the Timer
Counter and the Timer Reload registers-that are accessible only to Supervisor-mode
programs. Also, the Current Processor Status Register contains a control bit as part of
the timer facility. These registers implement timing functions independent of program
execution.

Timer Facility Operation
The Timer Counter Register has a 24-bit Timer Count Value (TCV) field that decre
ments by one on every processor cycle. If the TCV field decrements to zero, it is
written with the Timer Reload Value (TRV) field of the Timer Reload Register on the
next cycle; the Interrupt (IN) bit of the Timer Reload register is set at the same time.
Reloading the TCV field by the TRV field maintains the accuracy of the Timer Facility.

The Timer Reload Register contains the 24-bit TRV field and the control bits Overflow
(OV), Interrupt (IN), and Interrupt Enable (IE). The TCV field and IN bit were just
described. If the IN bit is 1 and the IE bit also 1, a Timer interrupt occurs. If the IN bit
is 1 when the TCV field decrements to zero, the OV bit is also set. The OV bit
indicates that a Timer interrupt may have occurred before a previous interrupt was
serviced.

The Current Processor Status Register contains the Timer Disable (TD) control bit. If
the TD bit is 1, Timer interrupts are disabled. The TD bit and the IE bit have equiva
lent functions; the TD bit is provided so that the timer may be diabled without having
to perform a non-atomic read-modify-write operation on the Timer Reload Register.
There is a possiblilty that the TCV might decrement to zero and set the IN bit as the
modified value is written back to the Timer Reload Register, causing a Timer interrupt
to be missed.

Timer Facility Initialization

To initialize the Timer Facility, the following steps should be taken in the specified
order (it is assumed that Timer interrupts are disabled by the DA bit of the Current
Processor Status Register or the TD bit of the Current Processor Status Register
during the following steps):

1. Set the TCV field with the desired interval count for the first timing interval. Note
that this interval must be sufficiently large to allow the execution of the next step
before the TCV field decrements to zero (this normally is the case).

2. Set the TRV field with the desired interval count for the second timing interval. The
OV and IN bits are reset and the IE bit is set as desired. Note that the second
timing interval may be equivalent to the first timing interval.

Handling Timer Interrupts

The following is a sug~ested list of actions to be taken to handle a Timer interrupt:

S.22 INTERRUPTSANDTRAPS

8.7.4

8.7.5

1. Read the Timer Reload register into a general-purpose register.

2. Reset the IN bit in the general-purpose register.

3. Set the TRV field in the general-purpose register to the desired value for the next
timing interval. Note that, at this time, the Timer Counter is timing the current
interval. Also, this step may be omitted, if all intervals are equivalent.

4. Write the contents of the general-purpose register back into the Timer Reload
register.

5. Test the general-purpose-register copy of the OV bit and, if it is set, report the
error as appropriate.

6. Perform any system operations required for the Timer interrupt.

7. Execute an interrupt return.

Timer Facility Uses

Since the Timer Facility has a resolution of a single processor cycle, it may be used to
perform precise timing of system events. For example, it may be used to determine an
exact measurement of the number of cycles between two events in the system or to
perform precise time-critical control functions. Note that the Timer interrupt is enabled
and disabled separately from other processor interrupts, so that its priority can be
specified.

The Timer Facility can be used to generate time intervals for collecting virtual page
usage information (see Section 7.5.3). For example, if memory management relies on
a working-set page-replacement algorithm, the Timer Facility can establish the
working-set window.

The Timer Facility can be shared among multiple processes. This sharing is accom
plished by the implementation of a queue for timer events, which are sorted in order
of increasing event time. On each occurrence of a Timer interrupt, the TRV field is set
for the interval between the next two events in the queue, while the Timer Counter
Register is counting the current interval (because of a previous setting of the TRV
field). The event at the beginning of the queue identifies other system actions to be
taken for the Timer interrupt. This event is removed from the queue after the appropri
ate actions are taken.

Timer Counter (TMC, Register 8)

This protected special-purpose register (Figure 8-13) contains the counter for the
Timer Facility.

Figure 8·13 Timer Counter Register

31 23 15 7 0

1
1 I I I I I I 11 I

. Reserved _ TCV _

Bits 31-24: Reserved.

Bits 23--0: Timer Count Value (TCV)-The 24-bit TCV field decrements by one on
each processor clock. When the TCV field decrements to zero, it is reloaded with the

INTERRUPTSANDTRAPS 8-23

8.7.6

Figure 8-14

content of the Timer Reload Value field in the Timer Reload Register. At this time, the
Interrupt bit in the Timer Reload Register is set.

The TCV field is zero-based with respect to the Timer interrupt interval; for example, a
value of 28 in the TCV field causes the IN bit to be set in the 29th subsequent proces
sor cycle. The reason for this is that the TCV field is zero for a complete cycle before
the IN bit is set.

Timer Reload (TMR, Register 9)

This protected special-purpose register (Figure 8-14) maintains synchronization of the
Timer Counter Register, enables Timer interrupts, and maintains Timer Facility status
information.

Timer Reload Register

31 23 15 7 0

I~~~~ 1111111111I111;"~ 11111111111
I I D

: I I

o I

ov: IE

IN

Bits 31-27: Reserved.

Bit 26: Overflow (OV)-The OV bit indicates that a Timer interrupt occurred before a
previous Timer interrupt was serviced. It is set if the Interrupt (IN) bit is1 when the
Timer Count Value (TCV) field of the Timer Counter Register decrements to zero. In
this case, a Timer interrupt caused by the IN bit has not been serviced when another
interrupt is created.

Bit 25: Interrupt (IN)-The IN bit is set whenever the TCV field decrements to zero. If
this bit is 1 and the IE bit is also 1, a Timer interrupt occurs. Note that the IN bit is set
when the TCV field decrements to zero, regardless of the value of the IE bit. The IN
bit is reset by software that handles the Timer interrupt.

Bit 24: Interrupt Enable (IE)-When the IE bit is 1, the Timer interrupt is enabled,
and the Timer interrupt occurs whenever the IN bit is 1. When this bit is O, the Timer
interrupt is disabled. Note that the Timer interrupt may be disabled by the DA bit of the
Current Processor Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)-The value of this field is written into the
Timer Count Value (TCV) field of the Timer Counter Register when the TCV field
decrements to zero.

11-24 INTERRUPTSANDTRAPS

lfl; ,,, :ti. 4 ;1:1

9.1

Figure 9·1

INSTRUCTION CACHE OPERATION

This chapter details the operation of the instruction cache. It presents the cache
organization and the formats of the entries. It also describes the special-purpose
registers used to read and write the contents of the cache. Finally, this chapter de
scribes the operation of the cache and the operation of the instruction prefetch buffer
that supplies instructions to the cache and the processor from external memory.

INSTRUCTION CACHE OVERVIEW

The instruction cache stores the instructions most recently referenced by the proces
sor. The Am29030 and Am29035 instruction caches are oriented around a unit of
cache storage called a block. For the Am29030 and Am29035 microprocessors, each
block contains four instructions and an address tag/status word, as shown in
Figure 9-1. The Am29030 microprocessor has an SK byte, two-way-set-associative
instruction cache containing 512 blocks. The Am29035 microprocessor has a 4K byte,
direct-mapped instruction cache containing 256 blocks. The organization of the in
struction cache contained in the Am29030 processor is shown in Figure 9-2.

The instruction cache always stores complete cache blocks, so a cache block is never
partially valid. The first instruction in a cache block is always aligned on a quad-word
boundary in external memory.

The instruction cache can be addressed either by physical addresses if address
translation is disabled or by virtual addresses if address translation is enabled. The
instruction cache differentiates between virtual and physical addresses; however,
it does not store information related to the Process Identifier. For this reason, the
instruction cache may not correctly differentiate two identical virtual addresses in
different process spaces. The instruction cache differentiates only between identical
physical and virtual addresses.

The instruction cache is controlled by two fields of the Configuration Register. The
instruction cache is enabled and disabled by the Instruction Cache Disable (ID) bit. If
the ID bit is 0, enabling the instruction cache, instructions may be issued from the
instruction cache to satisfy an instruction request from the processor (if the instruction
is contained in the cache). If the ID bit is 1, disabling the cache, instruction requests
are not satisfied by the instruction cache.

Instruction Cache Block Organization

Instruction Words Address Tag and Status

10 Address Tag,V,P,US J
11

12

13

INSTRUCTION CACHE OPERATION 9·1

Figure 9·2 Instruction Cache Organization

Fetch Pointer

l

Y20

Current
Processor
Status bits
Pl and SM

9.2

1 1 ~
L 2L ,

_Ca1umn_Q_ C",nlumnj)_
Set I I I I

Select I I I I
I
I

~ Pus vl
I
I
I
I

:A

Ya

..... . .. -

~

I
I
I
I

L.-.-1 P,US, VJ
I
I
I
I

I I I
I I I

IATAG ioj 11 1 12 l 13
I I I
I I I
I I I
I I I
I I I

~~~ 
~ t , , 

Control ~ Select ---·-··""L --

~~~~ 
t ~ ~ ~

~
I I I
I I I
I I I
I I I
I I I

IATAG 101 11 1 12 1 13
I I I
I I I
I I I
I I I

Column 1 Column 1

Note: Not included in the Am29035 processor implementation

To
lnstru ction

der Deco

The instruction cache Is locked by the Instruction Cache Lock (IL) field of the Configu
ration Register. The value contained in the IL field determines which portion of the
cache is locked. Locking a block prevents replacement of the block if it is valid; how
ever, an invalid block may be replaced. In the Am29030 microprocessor, the IL field
has the effect of locking the entire cache, locking only the blocks contained in column
0, or not locking the cache and allowing normal replacement. In the Am29035 micro
processor, the IL field value has the effect of either locking the entire cache or allow
ing normal replacement. Cache invalidation is affected by the ID and IL fields as
discussed in Section 10.2.

ACCESSING CACHE FIELDS

The processor allows software to read and write the instruction cache for testing and
for programming purposes such as preloading. Reading and writing are performed via
two special-purpose registers: the Cache Interface Register and the Cache Data
Register. The Cache Interface Register provides cache addressing and control, and

9-2 INSTRUCTION CACHE OPERATION

9.2.1

Figure 9·3

9.2.2

Figure 9·4

the Cache Data Register provides the data for transfers. This section describes the
cache fields accessed via the Cache Interface Register and the Cache Data Register
and then describes these registers.

Instruction Words

Each block in the instruction cache contains four instruction words. Figure 9-3 shows
the format of an instruction word as it appears in the Cache Data Register before a
write or after a read.

Instruction Words in the Cache Data Register

31 23 15 7 0

11 I I I I I I I I I I I I I I 1, I I I I I I I I I I I I I I I I

Bits 31-0: Instruction (1)-This is the 32-bit instruction that is read from or written
into the instruction cache.

Address Tag and Status Information

Each cache block contains one address tag and status word. Figure 9-4 shows the
format of a tag/status word as it appears in the Cache Data Register before a write or
after a read.

Address Tag and Status Information in the Cache Data Register

31 23 15 7

1
1 I I I I I I I I I I I I I I I I I I

. IATAG

I I I I I I I I
Reserved

0

1111
' ' ' ' ' ' v : us
p

Bits 31-12: Instruction Address Tag (IATAG)-The IAT AG field specifies which
address in instruction/data memory is mapped by the cache block.

Bit 11-3: Reserved.

Bit 2: Valid (V)-lf the V bit is 1, the cache block contains valid information and a
valid mapping to external memory. If the V bit is 0, the cache block does not contain a
valid mapping. The V bits in all cache blocks can be cleared in a single processor
cycle by a processor reset or by the execution of the instructions INV or IRETINV.

Bit 1 : Physical Address (P)-The P bit reflects the state of the Pl bit in the Current
Processor Status Register at the time the cache block was fetched and validated. If
the P bit is 0, the cache block contains instructions from a virtual address space. If the
P bit is 1, the cache block contains instructions from a physical address space.

Bit 0: User or Supervisor Block (US)-The US bit reflects the state of the SM bit in
the Current Processor Status Register at the time the cache block was fetched and
validated. If the US bit is 1, the cache block contains instructions from a Supervisor-

INSTRUCTION CACHE OPERATION 9.3

9.2.3

Figure 9·5

9.2.4

mode program. If the US bit is 0, the cache block contains instructions from a User
mode program.

Cache Interface Register (CIR, Register 29)

This protected special-purpose register (Figure 9-5) allows software to address the
cache and provides control information for cache access. The cache is accessed as
the result of a write to the Cache Interface Register.

Cache Interface Register

31

I I
1

1 I I
. FSEL Res

23 15

11
1 I I I I I II I I

. . Reserved

RW Reserved in
the Am29035

7 0

l~I

Bits 31-28: Cache Field Select (FSEL)-The FSEL field selects the cache field that
is read or written when the Cache Interface Register is written, as follows:

FSEL Value

0000
0001
0010-1111

Cache Field Selected/Bits of Cache Data Register

instruction word/31-0
instruction address tag/31-12, status/2-0
reserved

Bits 27-25: Reserved.

Bit 24: Read/Write (RW)-lf the AW bit is O, the cache field selected by the FSEL
field is read into the Cache Data Register when the Cache Interface Register is writ
ten. If the AW bit is 1, the contents of the Cache Data Register are written into the
cache field selected by the FSEL field when the Cache Interface Register is written.

Bits 23-13: Reserved.

Bits 12-2: Cache Pointer (CPTR)-The CPTR field selects the instruction word or
address tag/status word within the cache to be read or written. The CPTR field selects
the particular block containing the instruction or address/tag status word. If the FSEL
field selects an address tag/status word, CPTR bits 12-4 address the appropriate
address tag/status word in the cache. If the FSEL field selects an instruction word,
CPTR bits 12-2 address the appropriate instruction word in the cache. In the
Am29035 microprocessor, CPTR bit 12 is reserved and should be 0.

Bits 1-0: Reserved.

Cache Data Register (CDR, Register 30)

This protected special-purpose register (Figure 9-6) transfers data to or from the
instruction cache. When the Cache Interface Register is written and the AW bit of the
Cache Interface Register is 1, the contents of the Cache Data Register are written into
the appropriate cache word. If the AW bit is a 0, the contents of the selected cache
word are transferred to the Cache Data Register. The contents of the Cache Data

9.4 INSTRUCTION CACHE OPERATION

Figure 9·6

9.3

9.4

Register do not survive across a cache write. The Cache Data Register must be
written with data each time a write is to be performed.

Cache Data Register

31 23 15 7 0

I
CDATA .

Bits 31-0: Cache Data (CDATA)-When the RW bit is 1, the CDATA field is written
into the specified cache word. When the RW bit is 0, the specified cache word is
written into the CDATA field.

CACHE HITS AND MISSES

A cache hit occurs when the instruction cache contains a valid instruction that corre
sponds to an instruction fetch, and the cache is able to satisfy the fetch. A cache miss
occurs when the instruction cache does not contain a valid mapping and the external
memory must satisfy the fetch.

The address for the current instruction fetch is contained in the processor's program
counter (PC). The PC is used to access the cache and tag arrays each cycle. In the
Am29030 processor, bits 11-4 of the PC are used to address both cache columns. In
the Am29035 processor, bits 11-4 of the PC are used to address the single cache
column. Bits 31-12 of the PC are used to compare against the IATAG field of the
appropriate set.

If the conditions for a cache hit are met for one of the columns (or the single column in
the Am29035 processor), the instruction fetch is satisfied by the instruction cache. If
the conditions are not met by either column (or the single column in the Am29035
processor), a cache miss occurs and the instruction fetch is satisfied by an external
memory access. The conditions for a cache hit are:

1. Bits 31-12 of the PC match the address tag for one of the tags in the set.

2. The valid status bit is set for the block containing the matching tag.

3. The status bits P and US match the Current Processor Status Register bits Pl and
SM, respectively, for the block containing the matching tag.

4. The ID bit of the Configuration Register is 0.

In the Am29030 microprocessor, if the above conditions are met by both entries of the
set (as can happen as a result of software setting the cache entries), the effect on the
processor is unpredictable.

EXTERNAL FETCHING AND CACHE RELOAD

When a cache miss occurs, the processor attempts to place the missing block of
instructions into the cache by initiating an instruction fetch from the external instruc
tion/data memory. This is called cache reloading. It the cache is disabled, the missing
instructions are not placed into the cache, since the processor does not update a
disabled cache. Similarly, the processor does not replace a valid block in a locked
column.

INSTRUCTION CACHE OPERATION 9.5

9.4.1

9.4.2

The processor takes advantage of fetch-ahead logic to perform cache reloads at the
earliest possible opportunity after a cache miss occurs, while minimizing the number
of unnecessary instruction fetch requests.

Cache Replacement

When a miss is detected, a candidate block normally is selected for replacement, and
the reloaded instructions are placed into this block. Replacement operates as follows:

1. If one of the blocks accessed during the cache search is invalid, this invalid block
is selected for replacement. If both of the columns contain invalid blocks, the block
in column 0 is selected.

2. If both blocks are valid and neither is locked, the replaced block is chosen at
random.

3. On the Am29030 processor, if the block in column O is locked and valid, the block
in column 1 is selected.

4. If the entire cache is locked, and the blocks in all columns are valid, the cache
does not replace either block, and the instruction fetch is satisfied from the
external instruction/data memory without updating the cache.

Overview of External Instruction Fetching

All external instruction fetches performed by the processor are oriented around a
cache block. The processor always fetches a complete block of instructions-the
external fetch always begins on a cache-block boundary and ends on a cache-block
boundary. The first instruction in a cache block always corresponds to an address that
is quad-word aligned in the external memory. This fetching behavior applies even for
instruction fetches that occur because the cache is disabled or locked. However, the
processor does not wait until the entire cache block is reloaded before it issues an
instruction to the decoder. As soon as an instruction required by the processor is
received from external instruction/data memory, it and other subsequent instructions
are issued to the decoder while they are written into the cache.

If the processor pipeline stalls during instruction fetching, the rest of the instructions
that are received are placed into the instruction prefetch buffer. These instructions
remain in the prefetch buffer until the processor pipeline resumes execution, and then
the instructions are issued to the decoder. Since the processor always fetches in
structions in complete cache blocks, the prefetch buffer typically contains the required
number of instructions to complete the cache reload.

The processor must successfully fetch an entire cache block, with no errors, before it
sets the block valid bit. If an error occurs for an instruction that the processor requires,
an error indication is sent to the decoder with the instruction, causing an Instruction
Access Exception trap. If an error occurs for an instruction that the processor does not
require because it is filling the remainder of the cache block after a taken branch, the
valid bit for the block is not set. This causes the processor to refetch the block later if
the instruction is required. If an error occurs for an instruction that the processor does
not require because it is filling the cache ahead of a branch target, the processor
treats the error as if the instruction were required, and an error indication is sent to the
decoder. The instruction fetch is cancelled in this case, so the processor will not
receive the instruction of interest, and thus the error must be reported to the
processor.

9-6 INSTRUCTION CACHE OPERATION

9.4.3

9.4.4

9.5

9.5.1

If a taken branch, a load, or a store is executed during reload, the reload is com
pleted and the cache block validated before the branch is taken or the load or store
is executed.

The Instruction Fetch Pointer

The processor maintains an instruction fetch pointer in the bus interface logic. The
instruction fetch pointer always contains the physical address of the next sequential
instruction block in the processor's current instruction stream. Ttiis pointer is used in
conjunction with a fetch-ahead adder to reduce the latency for cache misses that
occur while executing sequentially through programs. The goal of this hardware is to
allow the processor to drive the address bus as soon as one cycle after a cache miss
is detected.

During the execution of a branch instruction, the fetch pointer is set to the first instruc
tion of the instruction block that sequentially follows the target instruction block. If this
operation does not cross a 1 K byte address boundary, the instruction fetch pointer is
valid and contains the physical address of the first instruction of the next block beyond
the target block.

Between branches, the instruction fetch pointer is updated every time the PC enters a
new instruction block, so that the fetch pointer always points to the next sequential
block. The fetch pointer remains valid unless a 1 K byte page boundary is crossed.

If a cache miss occurs during sequential instruction fetching, and the instruction fetch
pointer is valid, the reload penalty may be reduced to two cycles as explained in the
next section.

Cache Misses During Sequential Instruction Fetching

If the processor detects a cache miss while fetching sequential instructions, the proc
essor performs a demand fetch to obtain the missing instructions from external mem
ory. If the instruction fetch pointer is valid, the demand fetch is a fast demand fetch. If
the instruction fetch pointer is not valid, the demand fetch is a full demand fetch.

In the case of a fast demand fetch, the processor drives the instruction fetch pointer
on the address bus to initiate the instruction fetch, reducing the amount of time taken
to perform the fetch.

In the case of a full demand fetch, the PC must be transferred to the bus before the
instruction fetch can begin. Since this transfer uses resources in the processor that
are normally used for instruction execution, the transfer does not take place until all of
the instructions in the current block have been completed. For this reason, a full
demand fetch takes more time than a fast demand fetch.

INSTRUCTION PREFETCHING

This section discusses issues relating to instruction prefetching.

Operation During Prefetching

While servicing a cache miss, the processor checks for the presence of the next
sequential block in the instruction cache. If the next block is not in the cache, the
processor continues the instruction fetch for the next block as soon as all of the
instruction requests for the current block have been performed, unless a branch is
taken which causes the processor to no longer need the next block. Checking for
the next block while sequentially fetching reduces any unnecessary penalties by

INSTRUCTION CACHE OPERATION 1·7

9.5.2

9.5.3

9.5.4

permitting burst-mode memory accesses to continue while traversing sequential
cache blocks.

If the next sequential block is not in the cache, the processor may initiate the fetch for
this block, but the processor does not allocate the block until it is certain that the next
block is required. This avoids needless invalidation of cache blocks that might other
wise be required. If an instruction fetch is started for an instruction block that is not
needed, the instructions returned from this instruction fetch are discarded. The proc
essor caches only instruction blocks in which at least one of the instructions is
executed.

The Role of the Prefetch Buffer

Since instructions are requested externally in advance of execution, based on a pre
dicted need, it is possible that a prefetched instruction is not required immediately for
execution when the prefetch completes. To accommodate this possibility, the proces
sor contains a five-word Instruction Prefetch Buffer (IPB). The IPB is a circularly ad
dressed buffer which acts as a First-In/First-Out (FIFO) queue for instructions.

Instructions are stored in the IPB as they are returned from the external instruction
memory. An instruction is held in the IPB until it is required for execution. When re
quired, the instruction is issued to the decoder and written into the instruction cache
(writing into the cache only occurs if a cache block has been allocated; that is if the
cache is not locked or disabled). The IPB location is then freed to receive a subse
quent instruction.

The primary purpose of the prefetch buffer is to decouple instruction fetch,ng from
instruction decoding. Decoupling allows the processor to safely hold the pipeline while
permitting instruction fetching to continue to the end of a cache block. For example, a
load or store must wait until the reload of an instruction block is complete. If the in
struction following the load has a dependency on the result of the load, the processor
enters Pipeline Hold Mode (see Section 5.2). The remaining instructions returned to
the processor are queued in the prefetch buffer. When the reload of the instruction
block completes, the bus performs the load. When the load is complete, the processor
exits the Pipeline Hold Mode. The processor issues the remainder of the reloaded
block to the instruction decoder from the prefetch buffer.

Terminating Instruction Prefetching Because of a Cache Hit

If the processor detects a cache hit in the next sequentially-addressed block during
prefetching, the hit is detected early enough to stop all external fetches for the next
block. The processor completes any reload in progress before resuming instruction
fetching from the cache. After the external fetching is terminated, the instruction fetch
pointer remains valid and can be used if the processor needs to perform a fast de
mand fetch.

Terminating Instruction Prefetching Because of a Branch

When a branch is taken during prefetching, there are cases where there is not
enough time to stop external fetching before the processor begins prefetching the
next sequential block. Thus, some bus capacity is taken for unnecessary fetches
beyond the branch, and these extra instructions are discarded.

If the external fetch of the current block is not complete by the end of the execute
stage of the branch, the processor enters the Pipeline Hold Mode until the reload is

9.S INSTRUCTION CACHE OPERATION

9.5.5

9.6

complete. During this time, the instructions returned to the processor are written into
the cache until the block is complete.

If an external fetch is required for the target of a branch, this fetch is initiated immedi
ately after the last instruction is received for the current block.

Collisions Between Instruction Fetching and Loads or Stores

Since the processor is capable of decoding instructions while they are reloaded, it is
possible for a load or a store to be executed while instruction fetching is in progress.
In this case, the processor completes the fetch of the current block before performing
the load or store. The rationale for this is that the instruction fetch is probably being
performed with a burst-mode bus access, and it is probably more efficient to continue
the burst-mode access until the current block is reloaded.

A load or store instruction is allowed to complete execution while it is waiting on a
reload, and therefore the external load/store access begins immediately after the
instruction block has been fetched.

Once the load or store is complete, the processor can resume external instruction
fetching. This is triggered by the normal mechanisms used to detect cache misses
and to start external fetches.

If a load or store is the delay instruction of a branch whose target misses in the cache,
the fetch for the target block is completed before the load or store is performed.

CACHE INVALIDATION

Since the instruction cache can be accessed with virtual addresses, and since the
cache does not use PIDs to differentiate between different virtual address spaces, the
cache must be flushed of all contents in certain circumstances. Flushing is accom
plished by resetting the Valid bit for each cache block, and is accomplished in a single
cycle. Valid bits are reset by a processor reset or by the execution of the instructions
Invalidate (INV) or Interrupt Return and Invalidate (IRETINV). The INV and IRETINV
instructions must be executed in the Supervisor mode.

When an INV instruction is executed, the processor does not reset the valid bits until
the next branch or the next cache-block boundary, whichever occurs first. If the INV
instruction occurs as the last instruction of a block, the block boundary at which invali
dation occurs is the end of the next block. This allows the processor pipeline to com
plete the execution of the instruction in decode when the INV instruction is executed,
without forcing the instruction to be invalidated in the pipeline and refetched
externally.

The processor does not invalidate locked cache blocks, unless the cache is also
disabled.

INSTRUCTION CACHE OPERATION 9.9

10.1

SYSTEM INTERFACE

This chapter describes the attachment of the Am29030 and Am29035 microproces
sors to their hardware environments. It describes the external bus that allows the
processor to communicate with external devices and memories. Processor reset,
clock generation, and master/slave checking are also described in this c.hapter.

SIGNAL DESCRIPTION

In this section, certain outputs are described as being three-state or bi-directional.
However, all outputs (except MSERR) may be placed in a high-impedance state by
the Test mode. The three-state and bidirectional terminology in this section is for
those outputs (except MEMCLK) that are disabled when an external device is granted
the bus.

A(31-0) Address Bus {Three-State Outputs, Synchronous)
The Address Bus transfers the byte address for all accesses,
including burst-mode accesses.

BREQ Bus Request {Output, Synchronous)
This output indicates that the processor needs to perform an external
access.

BGRT Bus Grant (Input, Synchronous)
This input signals the processor that it has control of the external bus.
This signal may be asserted even when BREQ is not active, in which
case the processor still has control of the bus. The processor drives
REQ High when granted an unrequested bus.

R/W Read/Write {Three-state Output, Synchronous)
This signal indicates whether data is being transferred from the
processor to the external system (Low), or from the external system
to the processor (High}.

SUP/US Supervisor/User Mode (Three-State Output, Synchronous)
This output indicates the program mode for an access. If the access
is performed under Supervisor mode, SUP/US is High. If the access is
performed under User mode, SUP/US is Low.

LOCK Lock (Three-State Output, Synchronous}
This output allows the implementation of various bus and device
interlocks. It may be active only for the duration of an access or for an
extended period of time under control of the Lock bit in the Current
Processor Status Register.

The processor does not relinquish the bus (in response to BGRT)
when LOCK is active.

MPGM(1-0) MMU Programmable {Three-State Outputs, Synchronous)
These outputs reflect the value of the two PGM bits in the Translation
Look-Aside Buffer entry associated with the access. If no address
translation is performed, these signals are both Low.

SYSTEM INTERFACE 10·1

10(31-0)

1/0

10/MEM

BWE(3-0)

PGMODE.

10-2 SYSTEM INTERFACE

Instruction/Data Bus (Bidirectional, Synchronous)
The Instruction/Data Bus transfers instructions to, and data to and
from, the processor.

Request (Three-State Output, Synchronous)
This signal requests an access. When REQ is Low, the address for
the access appears on the Address Bus. This signal is precharged
and then maintained by a weak internal pullup when the bus is
granted to another master, to prevent spurious requests.

Ready (Input, Synchronous)
For a read, this input indicates that a valid instruction or data word is
on the Instruction/Data Bus. For a write, it indicates that the write is
complete and that the data need no longer be driven on the
Instruction/Data Bus. The processor ignores this signal for the first
cycle of a simple access and for the first cycle of a burst-mode access
(all other burst-mode cycles are not subject to this restriction).

Instruction or Data Access (Three-State Output, Synchronous)
This signal is High during an access to indicate that the access is for
an instruction and Low to indicate that the access is for data.
Input/Output or Memory Access (Three-State Output,
Synchronous)
For a data access, this signal indicates whether the access is to the
inpuVoutput (1/0) address space (High) or the instruction/data
memory address space (Low).

Byte Write Enables (Three-State Outputs, Synchronous)
These signals are asserted during an external write to indicate which
bytes should be written. An assertion of BWE3 indicates that the most
significant byte (corresponding to 10(31-24)) should be written, and
so on. The correspondence between the BWE(3-0) and the 10(31--0)
signals does not depend on the Byte Order (BO) bit of the
Configuration Register. However, the correspondence between the
BWE(3--0) signals and A(1-0) does depend on the BO bit. These
signals are asserted only for writes, and the set of signals asserted
depends on the data width of the access.

Error (Input, Synchronous)
This input indicates that an error occurred during the current access.
For a read, the processor ignores the Instruction/Data Bus. For a
store, the access is terminated. In either case, a Data Access
Exception or Instruction Access Exception trap can occur. The
processor ignores this signal if there is no pending access. This
signal cannot end an access; it is sampled only when the ROY input is
active.

Burst Request (Three-State Output, Synchronous)
This signal indicates a burst-mode access. The addresses for
burst-mode accesses appear on the Address Bus. The BURST signal
is provided to aid the implementation of high-bandwidth transfers by
informing the external system that the processor can complete an
access as often as every cycle after the first cycle.

Page-Mode Access (Three-State Output, Synchronous)
This indicates that the address for an access is in the same
page-mode block as the address for the previous access.

OPT(2--0)

INTR(3--0)

TRAP(1-0)

Early Address (Input, Synchronous)
This input is used to request the early transmission of burst-mode
addresses for interleaved memories (see Section 10.4.10.4).

Read Narrow (Input, Synchronous)
This input indicates that the accessed memory is an 8- or 16-bit
device attached to ID(31-24) or to ID(31-16), respectively. This
signal can be asserted for any read access-though it is probably
most useful for ROM accesses-and causes the processor to perform
additional read accesses to obtain the remainder of a word or
half-word, if required. This signal is ignored on a write access.

The RDN signal is sampled when RESET is asserted. The level of
RDN during the four cycles before the de-assertion of RESET
determines whether a narrow access is 8 or 16 bits wide. If RDN is
Low in each of these cycles, a narrow access is 16 bits wide. If RDN
is High, a narrow access is 8 bits wide. The width of the narrow
access is undefined if RDN changes in the four cycles before RESET
is de-asserted.

Option Control (Three-State Outputs, Synchronous)
These outputs reflect the value of bits 18-16 of the load or store
instruction which begins an access. Bit 18 of the instruction is
reflected on OPT2, bit 17 on OPT1, and bit 16 on OPTO.

The standard definitions of these signals are as follows:

OPT2 OPT1 OPTO

0 0 0
0 0 1
0 1 0

Meaning

Word-length access
Byte access
Half-word access

1 1 0
-All Others-

Hardware-development system accesses
Reserved

During an interrupt/trap vector fetch, the OPT(2-0) signals indicate a
word-length access (000). Also, the external system should return an
entire, aligned word for a read, regardless of the indicated data
length: the processor performs the necessary alignment.

Warn (Input, Asynchronous, Edge-Sensitive)
A High-to-Low transition on this input causes a non-maskable WARN
trap to occur. This trap bypasses the normal trap vector fetch
sequence and is useful in situations where the vector fetch may not
work (e.g., when data memory is faulty-see Section 8.4).

Interrupt Requests (Inputs, Asynchronous)
These inputs generate prioritized interrupt requests. The interrupt
caused by INTRO has the highest priority, and the interrupt caused by
INTR3 has the lowest priority. The interrupt requests are masked in
prioritized order by the Interrupt Mask field in the Current Processor
Status Register.

Trap Requests (Inputs, Asynchronous)
These inputs generate prioritized trap requests. The trap caused by
TRAPO has the highest priority. These trap requests are disabled by
the DA bit of the Current Processor Status Register.

SYSTEM INTERFACE 10·3

STAT(2-0)

CNTL(1--0)

MS ERR

INCLK

MEMCLK

10·4 SYSTEM INTERFACE

CPU Status (Outputs, Synchronous)
These outputs indicate the state of the processor's execution stage
on the previous cycle (see Section 11.3). They are encoded as
follows:

STAT2 STAT1 STATO condition

0 0 0 Halt or Step Modes
0 0 1 Pipeline Hold Mode
0 1 0 Load Test Instruction Mode, Halt/Freeze
0 1 1 Wait Mode
1 0 0 Interrupt Return
1 0 1 Taking Interrupt or Trap
1 1 0 Non-sequential Instruction Fetch
1 1 1 Executing Mode

CPU Control (Inputs, Asynchronous)
These inputs control the processor mode (see Section 11.4) and are
encoded as follows:

CNTL1

0
0
1
1

CNTLO

0
1
0
1

Reset (Input, Asynchronous)

Mode

Load Test Instruction
Step
Halt
Normal

This input places the processor in the Reset mode (see Section
10.2.2).

Test Mode (Input, Asynchronous)
When this input is active, the processor is in Test mode. All outputs
and bi-directional lines, except MSERR, are forced to the
high-impedance state.

Master/Slave Error (Output, Synchronous)
This output shows the result of the comparison between processor
outputs and the signals provided internally to the off-chip drivers. If
there is a difference for any enabled driver, this line is asserted.

Input Clock (Input)
This is an oscillator input to the processor, at the processor's
operating frequency. It is driven with TTL levels.

Memory Clock (Bidirectional)
This is either a clock output or an input from an external clock
generator, as determined by PWRCLK. It can be either at the
processor's operating frequency or at one-half of this frequency, as
controlled by the DIV2 signal. It is driven with CMOS levels.

Divide Clock By 2 (Input)
If this signal is Low, the MEMCLK signal operates at one-half of the
processor's operating frequency. If this signal is High, the MEMCLK
signal operates at the processor's operating frequency.

The following pins are included as part of the IEEE 1149.1-1990 compliant Standard
Test Access Port (see Section 11.7).

TCK Test Clock Input (Input, Asynchronous)
This input clocks the Test Access Port.

TMS

TOI

TOO

Test Mode Select (Input, Synchronous to TCK)
This input controls the operation of the Test Access Port.

Test Data Input (Input, Synchronous to TCK)
This signal supplies data to the test logic from an external source. It is
sampled on the rising edge of TCK.

Test Data Output (Three-state Output, Synchronous to TCK)
This output supplies data from the test logic to an external
destination. It changes on the falling edge of TCK.

Test Reset Input (Input, Asynchronous)
This input asynchronously resets the Test Access Port. The reset
places the test logic in a state such that it does not cause an output
driver to be enabled. The TRST input must be asserted in conjunction
with the RESET input for correct processor initialization.

The following pin is not a signal pin, but is named in the Am29030 and Am29035
processors' documentation because of its special role in the processor and external
system.

PWRCLK Power Supply for MEMCLK Driver
This pin is a power supply for the MEMCLK output driver. It isolates
the MEMCLK driver and is used to determine whether or not the
processor generates the clock for the external system. If power (+5
volts) is applied to this pin, the processor generates a clock on the
MEMCLK output. If this pin is grounded, the processor accepts a
clock generated by the external system on the MEMCLK input. Since
PWRCLK supplies power to the MEMCLK output, PWRCLK should
be connected directly to power (+5 volts) or ground.

The following pin is defined for use with hardware development systems (emulators).
This pin does not exist on any package, and this definition is provided solely for the
purposes of standardizing its location.

EMACC Emulator Access (output, synchronous)
This output indicates the current access is generated by an emulator.
If EMACC is Low, the access is emulator specific and the external
system must not respond to the access. If EMACC is High, the access
is directed to the external system. To ensure proper operation,
EMACC should be connected to Vee through a pullup resistor. Details
regarding the operation of EMACC are available through
hardwarHevelopment system vendors. To ensure emulation
compatiblity with your design, contact your emulator vendor prior to
layout. An overview of emulation support can be found in the
Fusion29K Catalog.

The following pins are defined for future processors and should be tied High, through
individual pullup resistors: HIT, DI, and WBC.

SYSTEM INTERFACE 10·5

10.2 PROCESSOR RESET AND INITIALIZATION

10.2.1

Figure 10-1

When power is first applied to the processor, it is in an indeterminate state and must
be placed in a known state. Also, under certain circumstances, it may be necessary to
place the processor in a defined state. This is accomplished by the Reset mode,
which places the processor into a predefined state.

Configuration (CFG, Register 3)

This protected special-purpose register (Figure 10-1) controls certain processor and
system options. Most fields normally are modified only during system initialization.
The Configuration Register is defined as follows:

Configuration Register

31 23

1
1 I I I I I I

. PRL
1

1 I I I I
. Reserved

15 7

1.~.1 I~.~ I ~ 11 1
.. ~~

I

I

I

016
(Am29035 only)

I

I

ID

0

11 LI
I
I

I

BO

Bits 31-24: Processor Release Level (PRL)-The PRL field is an 8-bit, read-only
identification number which specifies the processor version.

Bits 23-18: Reserved.

Bit 17-16: Page-Mode Block {PMB)-The PMB field determines the size of a page
mode block. A page-mode block is a region of the external instruction/data memory
that has a common row address. The correspondence between the field value and
the page-mode block size is as follows:

PMB Value

00
01
10
11

Page-Mode Block Size

2K byte
4K byte
SK byte

16K byte

Bit 15: Data Width 16 Bits (D16-Am29035 only)-The 016 bit determines the data
width of all external instruction/data bus transfers. If the D 16 bit is 1, all external ac
cesses are 16 bits wide. If a 32-bit word is accessed externally, the processor per
forms two accesses to read or write the entire word in units of 16 bits. If the D 16 bit is
0, external data accesses are 32 bits wide. This bit is implemented only in the
Am29035 microprocessor.

Bit 14-11: Reserved.

Bit 10-9: Instruction Cache Lock (IL)-The IL field controls the locking of all or a
portion of the instruction cache. When a cache block is locked, it is not invalidated
(unless the cache is disabled), and it is not replaced if it is valid. It can be allocated for
replacement if it is invalid. When a block is not locked, replacement and invalidation
occur normally as described in Chapter 9. The IL field values are defined as follows:

10-6 SYSTEM INTERFACE

10.2.2

Figure 10·2

IL Value

00
01
10
11

Effect on Cache Lock

Unlock cache for Am29030 processor
Entire cache locked
Blocks in column 0 locked (Am29030 processor)
Unlock cache for Am29035 processor

Bit 8: Instruction cache Disable (ID)-lf the ID bit is 1, the instruction cache is
disabled, and the instruction cache does not satisfy any processor instruction fetch.
Also, fetched instructions are not stored into a disabled cache. However, a disabled
cache may be invalidated by an INV or IRETINV instruction. If the ID bit is 0, the
instruction cache is enabled, and the instruction cache satisfies all instruction fetches
for which it contains the appropriate instruction. If the ID bit is changed, the effect of
this change is delayed until the next subsequent cache block boundary.

Bit 7-3: Reserved.

Bit 2: Byte Order (BO)-The BO bit determines the ordering of bytes and half-words
within words. Section 3.3.7.1 describes the interpretation of the BO bit and its effect
on byte and half-word addressing.

Bit 1-0: Reserved.

Reset Mode

The Reset mode is invoked by asserting the RESET input. The Reset mode is entered
within four processor cycles after RESET is asserted. The RESET input must be as
serted for at least four processor cycles to accomplish a processor reset.

The Reset mode can be entered from any other processor mode (see Section 11.5). If
the RESET input is asserted at the time power is first applied to the processor, the
processor enters the Reset mode only after four cycles have occurred on the
MEMCLKpin.

The Reset mode configures the processor state as follows:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any interrupt or trap conditions are ignored.

4. The Current Processor Status Register is set as shown in Figure 10-2.

Current Processor Status Register In Reset Mode

31 23 15 7 0

H+1+1+1+1+1+1+1+1+ H+ 1+ H JJ H+.l, I
: : : : : I : ; : I : I : : : I :

Reserved , • , ' , , , , , • , • , • 1 • ,

: Res : IP : TP: FZ : Res : PD : SM : DI :
I I I I I I I I

TD Res TE TU LK WM Pl IM DA

5. The Configuration Register is set as shown in Figure 10-3.

6. The Contents Valid (CV) bit of the Channel Control Register is reset.

SYSTEM INTERFACE 10-7

Figure 10-3

10.2.3

Configuration Register in Reset Mode

31 23 15 7

1
1 I I I I I I

. PAL
1

1 I I I I
. Reserved

I
I I I I

PMB 016 IL ID
(Am29035 only)

I
I
I

BO

0

Except as previously noted, the contents of all general-purpose registers, special-pur
pose registers, and TLB registers are undefined. The contents of the Instruction
Cache are also undefined.

The Reset mode is exited when the RESET input is de-asserted. Either three or four
cycles after RESET is de-asserted (depending on internal synchronization time), the
processor performs an initial instruction access on the external interface. The initial
instruction access is directed to address O in instruction/data memory.

If the CNTL(1-0) inputs are 11 after reset, the processor enters the Executing
mode. If the CNTL(1-0) inputs are 10 or 01 when RESET is de-asserted, the proces
sor enters the Halt or Step mode, respectively upon completion of the initial instruc
tion access. If the processor enters the Halt mode after reset, the protection checking
that normally applies to the Halt instruction is disabled, so that the Halt instruction can
be used as an instruction breakpoint in a User-mode program (see Section 11.5).

The Load Test Instruction mode cannot be directly entered from the Reset mode. If
the CNTL(1-0) inputs are 00 immediately after RESET is de-asserted (Load Test
Instruction mode), the effect on processor operation is unpredictable.

Am29035 Processor Initialization Considerations

Only a subset of the Instruction Cache Lock (IL) fields of the Configuration Register
apply to the Am29035 microprocessor. To enable the cache, the IL field must contain
the value 11. To lock the contents of the Am29035 processor's instruction cache, the
IL field must contain the value 01. For either the enabled or the locked state, the
Instruction Cache Disable (ID) bit of the Configuration Register must be 0 . To
disable the Am29035 processor's instruction cache, the ID bit must be set (see Sec
tion 10.2.1).

10.3 CLOCKS

The processor's clocks are derived from the INCLK signal, which runs at the proces
sor's operating frequency. An INCLK signal must always be provided.

The MEMCLK signal is the timing reference for all external accesses. The external
interface operates at either the processor's frequency or at one-half of this frequency.
The frequency of the external interface, with respect to the processor's operating
frequency, is controlled by the DIV2 signal. If DIV2 is High, the MEMCLK signal and
the external interface operate at the processor's operating frequency. If DIV2 is Low,
the MEMCLK signal and the external interface logic operate at one-half of the proces
sor's operating frequency. This external bus timing is designed to allow operating at
high frequencies. The half-frequency option is provided to simplify the interface de
sign while allowing the processor to operate at high frequencies.

10-B SYSTEMINTERFACE

10.3.1

10.4

10.4.1

The MEMCLK rising edge can be synchronized to INCLK via the synchronous deas
sertion of RESET.

MEMCLK can be either an output or an input, as controlled by the PWRCLK power
supply pin. If power (i.e., +5 volts) is applied to the PWRCLK pin, the processor is
configured to generate MEMCLK for the system. If PWRCLK is grounded, the proces
sor is configured to receive an externally generated MEMCLK.

If MEMCLK is an input, the processor has better input setup times when MEMCLK
and INCLK are tied together than when they are driven separately, because tying
MEMCLK and INCLK together reduces their skew to a minimum. However, tying
these signals together is possible only if the interface operates at the processor's
frequency. In any case, the MEMCLK signal must not precede the INCLK signal and
must follow the INCLK signal by a specified minimum time.

Electrical Specifications

INCLK is driven with TTL levels and MEMCLK is driven with CMOS levels. If
MEMCLK is driven as an input, it must be driven with CMOS levels.

Note that the MEMCLK pin is placed in the high-impedance state by the Test mode.

BUS DESCRIPTION

The external interface provides the bandwidth required for performance while
permitting the connection of many different types of devices. This section describes
the external interface and the methods of connecting devices and memories to the
processor. Timing diagrams for the operations described in this chapter appear in
Appendix A.

Bus Overview

The external interface consists of two 32-bit synchronous buses with associated
control and status signals: the Address Bus and Instruction/Data Bus. The Address
Bus transfers addresses and control to devices and memories. The Instruction/Data
Bus transfers data to and from devices and memories, and transfers instructions to
the processor from instruction memories. In addition, a set of signals allows control of
the bus to be requested by and granted to the processor.

There are four logical groups of signals performing four distinct functions, as follows:

1. Address transfer and access requests: A(31-0), REQ, R/W, 1/0, 10/MEM,
BWE(3-0), BURST, PGMODE, SUP/US, LOCK, OPT(2-0), MPGM(1-0).

2. Instruction and Data transfer: ID(31-0), RDY, ERR.

3. Address and access sequencing: ERL VA, RDN.

4. Arbitration: BREQ and, BGRT.

The signals in the first group are used throughout an access to indicate the address
and status of the access-or sequence of accesses in the case of a burst-mode
access. The signals in the second group are used to transfer data to and from the
processor and to indicate the validity of an access. The signals in the third group are
responses from the slave device or memory that cause the processor to take certain
actions during an access. Finally, the signals in the fourth group are used by the
processor to request use of the bus and by the external system to grant the bus to the
processor.

SYSTEM INTERFACE 10-9

10.4.2

10.4.3

All signals change at the rising edge of MEMCLK. There are no signals that change
at the half-cycle points. Also, the external system has at least one cycle to generate
all responses to the processor. There are no cases where the external system must
generate a response to a signal by the end of the cycle in which the signal is
changed.

User-Defined Signals
Two types of user-defined outputs on the processor control devices and memories in
a system-dependent manner. Each of these outputs is valid simultaneously with-and
for the same duration as-the address for an access.

The first set of user-defined signals, MPGM(1--0), is determined by the PGM bits in
the Translation Look-Aside Buffer entry used in address translation. If address trans
lation is not performed, these outputs are both Low.

The second set of signals, OPT(2--0), are determined by bits 18-16 of the load or
store instruction that initiates an access. These signals are valid only for data ac
cesses. They are driven Low for instruction accesses.

Standard interpretations of OPT(2--0) are given in Section 10.1. Since the OPT(2--0)
signals are determined by instructions, they have an impact on application-software
compatibility, and system hardware should use the given definitions of OPT(2--0). The
OPT(2--0) signals are used to encode byte and half-word accesses. However, for a
load, the system should return an entire, aligned word, regardless of the indicated
data width. In this case, the processor performs the required alignment.

Note that the standard interpretations of OPT(2--0) apply only to data accesses to
instruction/data memory and input/output.

For interrupt and trap vector fetches, the MPGM(1--0) and OPT(2--0) outputs are
all Low.

Instruction Accesses

An instruction access is indicated by a High level on the l/D output during an access.
Instruction accesses are always performed in groups of four instructions and always
begin and end on a cache-block boundary, regardless of whether or not the cache is
enabled.

If a taken branch is executed while the processor is fetching the last instruction of a
block boundary, the processor will attempt to terminate the burst so as not to fetch an
entire block of unrequired instructions. This will result in the burst terminating after the
first instruction of the next block is returned from memory. This instruction will be
discarded.

Some of the protocol signals are not required, but are driven to default levels during
an instruction access. These signals and the default levels are:

• R/W: High

• 10/MEM: Low, unless the instruction address is translated and the 10 bit in the
corresponding TLB entry is 1

• BWE(3--0): all High

• OPT(2--0): all Low

Even though instruction accesses are indicated by the l/D signal, this signal is not
intended as a means of implementing separate instruction and data address spaces.
The l/D signal is primarily informative: it is defined in the interface in anticipation of

10-10 SYSTEMINTERFACE

10.4.4

10.4.5

cache-consistency protocols to indicate whether or not a consistency operation might
be required for the access.

Data Accesses

A data access is indicated by a Low level on the l/D output during an access. Data
accesses are performed as single accesses except when initiated by a Load Multiple
or Store Multiple instruction.

Data reads and writes are differentiated by High and Low levels on the R/W line,
respectively. For a read, the processor expects data to be driven as soon as the
second cycle after the access begins. For a simple write access, the processor pro
vides data in the second cycle after the access begins. Write data access is delayed
by one cycle so that the A(31-0) and 10(31-0) outputs do not all switch in any given
cycle and to avoid read/write bus collision. This reduces power-distribution problems
at high frequencies. Burst-mode write accesses are described in Section 10.4.10. In
the cycle after ROY is asserted for the write, the processor places the Instruction/Data
bus in the high-impedance state, unless the write is one in a sequence of burst-mode
writes and is not the final write in the sequence.

A data access can be either for a byte, a half-word, or a word. In the case of a read,
the external system always returns a word and is not concerned with the data width,
because the processor performs alignment and sign extension, if required. In the
case of a write, the processor asserts the appropriate write enables on the BWE(3-0)
outputs, and the external system need not examine OPT(2-0), R/W, or A(1-0) to form
the correct enables. For a byte or half-word write, the selected byte or half-word is
replicated in all byte or half-word positions on the ID(31-0) lines. The BWE(3-0)
signals are asserted only when R/W is Low and the access is valid (for example, there
are no MMU protection violations). The BWE(3-0) signals depend on OPT(2-0),
A(1-0), and the Byte Order (BO) bit of the Configuration Register as follows (the value
"O" is Low, "1" is High, and "x" is a don't care):

BO OPT(2-0) A(1-0) BWE(3-0) (on write)

0 001 00 0111 (LSB, Big Endian)
0 001 01 1011
0 001 10 1101
0 001 11 1110 (MSB, Big Endian)
0 010 Ox 0011 (LSHW, Big Endian)
0 010 1x 1100 ~MSHW, Big Endian)
1 001 00 1110 LSB, Little Endian)
1 001 01 1101
1 001 10 1011
1 001 11 0111 (MSB, Little Endian)
1 010 Ox 1100 (LSHW, Little Endian)
1 010 1x 0011 ~MSHW, Little Endian)
x 000 xx 0000 word access)
x 110 xx 1111 (hardware development)

-all other writes- 0000

Read-Only Memories

The processor includes two provisions for simplifying the interface to read-only
memories (ROMs). First, it is possible to connect to the bus a ROM which is only 8-
or 16-bits wide. The processor performs all sequencing to access full words. Also,

SYSTEM INTERFACE 10.11

10.4.5.1

10.4.5.2

the processor provides for an external ROM that contains both instructions and data
and which is in the instruction/data memory address space. The full range of ac
cesses provided for the instruction/data memory, such as byte and half-word ac
cesses, are also available for the ROM.

NARROW READ INTERFACE
When an 8-bit-wide ROM is attached to the bus, it must be connected to 10(31-24).
A 16-bit-wide ROM must be connected to 10(31-16). The ROM can respond to any
read access-either an instruction or data access-and indicates that it is less than
32-bits wide by asserting the RON signal along with the ROY signal at the end of an
access. The RON response is valid only for a read and is ignored on a write. Be
cause the RON signal is sampled for every read, accesses to narrow ROMs may be
freely mixed with other 32-bit accesses.

The narrow ROM option is supported only for systems in which the BO bit is 0 (big
endian). In addition, the RON signal is ignored during reads from the hardware
development system (OPT(2-0) = 110).

The level driven on RON during a processor reset determines whether a narrow ROM
is 8- or 16-bits wide. If RON is High in the four cycles before RESET is de-asserted, a
narrow access is 8 bits wide. If RON is Low in the four cycles before RESET is de
asserted, a narrow access is 16-bits wide. If RON changes in the four cycles before
RESET is de-asserted, the width of a narrow access is unpredictable. Narrow acces
ses in a particular system are all either 8- or 16-bits wide, and the width cannot be
changed after a processor reset.

8-BIT NARROW ACCESSES

If the processor expects a half-word or a word on a read (that is, if the access is not a
byte read), and a narrow ROM is 8-bits wide, the RON response causes the processor
to generate one (for a half-word) or three (for a word) more requests immediately
following the first access. The address for each subsequent access is the same as
the address for the first access, except that A(1-0) are incremented by one for each
access. The processor can accept a ROY response in the first cycle that the second
access appears on the bus (the access is similar to a burst-mode access in this re
spect). The slave must drive ROY High if it cannot respond to the second access
immediately. The slave also must continue to assert RON throughout all remaining
accesses in conjunction with ROY. The ERR signal may be asserted for any access in
the sequence, but an error is reported only if ERR is asserted for the final access.
The ERL YA signal is ignored throughout the access.

The processor assembles the final word or half-word by placing the first received byte
in the high-order byte position of the word or half-word, the second received byte in
the next-lower-order byte position, and so on until the entire word or half-word is
assembled.

If the read access is a byte access, the processor performs only one access. Note
that, for a word or half-word read, the processor is sensitive to ROY in the cycle fol
lowing the first access whereas, for a byte read, the processor is not sensitive to ROY
in the cycle after the first (and final) access. Because of this, the OPT(2-0) signals
indicate whether or not an 8-bit ROM should drive ROY following the first access,
because OPT(2-0) indicate the access data width.

If the processor generates an unaligned half-word or word read, the RON response
does not permit the implementation of the unaligned read. The address sequence

10-12 SYSTEMINTERFACE

10.4.5.3

10.4.5.4

10.4.6

generated by the processor to assemble the half-word or word wraps within the half
word or word.

16-BIT NARROW ACCESSES

If the processor expects a word on a read, and a narrow ROM is 16-bits wide, the
RDN response causes the processor to generate one more request immediately
following the first access. The address for the second access is the same as the
address for the first access, except that A(1-0) are incremented by two for the second
access. The processor can accept a RDY response in the first cycle that the second
access appears on the bus. The slave must drive RDY High if it cannot respond in
this cycle. The slave also must continue to assert RDN during the second access.
The ERR signal may be asserted for either access, but an error is reported only if
ERR is asserted for the second access. The ERL YA signal is ignored throughout the
access.

The processor assembles the final word by placing the first received half-word in
the high-order, half-word position of the word and the second received half-word in
the low-order, half-word position.

If the read access is a byte or half-word access, the processor performs only one
access. Note that, for a word read, the processor is sensitive to RDY in the cycle
following the first access whereas, for a byte or half-word read, the processor is not
sensitive to RDY in the cycle after the first (and final) access. Because of this, the
OPT(2-0) signals indicate whether or not a 16-bit ROM should drive ROY following
the first access, because OPT(2-0) indicate the access data width.

If the processor generates an unaligned word read, the RDN response does not
permit the implementation of the unaligned read. The address sequence generated
by the processor to assemble the word wraps within the word.

ROM ADDRESS MAPPING

The processor performs the instruction fetches for RESET and the WARN trap from
locations 00000000 and 00000010 (hexadecimal) of the instruction/data memory,
respectively. If a ROM is present, it must map to the instruction/data address space
starting at location 00000000. Any defined read access can be performed on the
ROM. Also, address translation is possible for ROM accesses. If a ROM is mapped
at location 00000000, the interrupVtrap Vector Area must be located in an area
beyond this location in memory.

Programmable Bus Sizing (Am29035 Processor Only)

For a data access, the Instruction/Data Bus can be programmed to be either 16- or
32-bits wide by the 016 bit of the Configuration Register. If the 016 bit is 0, the ID
bus is 32-bits wide. If the 016 bit is 1, the ID bus is 16-bits wide, and only 10(31-16)
are used to transfer data to and from the processor. If the ID Bus is 16-bits wide for
data accesses, the processor performs two accesses to read or write a full word. The
16-bit bus option is supported only for systems in which the BO bit is 0 (big-endian).
A hardware-development system access (identified by OPT(2-0) = 110) always uses
a 32-bit bus.

To read a 32-bit word, the processor first reads the high-order 16 bits of the word,
then generates a second access to read the low-order 16 bits of the word. The ad
dress is incremented by two for the second access. The processor is sensitive to
RDY in the cycle immediately following the first access, so the slave must control RDY
in this cycle-ROY can be driven Low if the slave can respond in this cycle, but must

SYSTEM INTERFACE t0.13

10.4.7

be High if the slave cannot respond. The slave can assert ERR for any access in the
sequence, but an error is reported only if ERR is asserted for the second access. The
ERL YA signal is ignored during the entire access.

To read an 8-bit byte or 16-bit half-word on a 16-bit bus, the processor performs only
a single access. Alignment and sign extension are performed as usual, except that
the required byte or half-word Is received on 10(31-16).

To write a 32-bit word, the processor first writes the high-order 16 bits of the word,
then generates a second access to write the low-order 16 bits of the word. The ad
dress is incremented by two for the second access, and the low-order bits of the word
appear on 10(31-15). The processor is sensitive to ROY in the cycle immediately
following the first access, so the slave must control ROY in this cycle-ROY can be
driven Low if the slave can respond in this cycle, but must be High if the slave cannot
respond. The slave can assert ERR for any access in the sequence, but an error is
reported only if ERR is asserted for the second access. The ERL YA signal Is ignored
during the entire access.

To write an 8-bit byte or 16-bit half-word on a 16-bit bus, the processor performs only
a single access. For a byte write, the appropriate byte is replicated on both 10(31-24)
and 10(23-16). For a half-word write, the appropriate half-word appears on
10(31-16). The BWE(3-0) signals are asserted as follows (the value "O" is Low, "1" is
High, and ''x" is a don't care):

OPT(2-0) A(1-0)

001 00
001 01
001 10
001 11
010 Ox
010 1x
110 xx
-all other writes (two cycles)-

BWE(3-0) (on write)

0111
1011
0111
1011
0011
0011
1111 (hardware development)
0011

Note that, for a word access, the processor is sensitive to ROY in the cycle following
the first access whereas, for a byte or half-word access, the processor is not sensitive
to ROY in the cycle after the first (and final) access. Because of this, the OPT(2-0)
signals indicate whether or not a 16-bit slave should drive ROY following the first
access, because OPT(2-0) indicate the access data width.

If RON is asserted by a 8-bit ROM in response to a data read on a 16-bit bus (016 =
1), the RON response takes precedence. The processor treats the access as an 8-bit
narrow access.

In order to set the 016 bit and activate the reduced bus size, the processor must be
able to fetch instructions. If the memory devices in the system are all either 8- or
16-bits wide, they must use narrow reads to supply the instructions that set the
Configuration Register.

Reporting Errors

The ERR signal is used to report external errors. However, the ERR signal cannot be
used to end an access. The ROY signal alone ends an access, and ERR is sampled
only when ROY is active. The ERR signal has a shorter setup time than ROY to
simplify the implementation of error checking. For example, parity checking can be

10-14 SYSTEM INTERFACE

10.4.8

10.4.8.1

10.4.9

performed with combinatorial logic that directly drives ERR. This logic has more time
to setup the ERR signal than it would have to setup the RDY signal. Also, the system
design need not be concerned with spurious assertions of ERR that might be caused
by the combinatorial logic, because ERR cannot end an access.

If the processor receives an ERR response in conjunction with a ROY during an in
struction or data access, it ignores the content of the Instruction/Data Bus. An ERR
response to an instruction fetch causes an Instruction Access Exception trap, unless it
is one of the residual instructions in a block that are not executed due to a prior non
sequential instruction fetch (see Section 9.4.2). An ERR response to a data access
causes a Data Access Exception trap.

The processor supports the restarting of unsuccessful accesses upon an interrupt
return. In the case of an unsuccessful instruction access, the restart is performed by
the Program Counter O and Program Counter 1 registers. In the case of an unsuc
cessful data access, the restart is performed by the Channel Address, Channel Data,
and Channel Control registers. In any event, the control program must determine
whether or not an access can and/or should be restarted.

The Instruction Access Exception and Data Access Exception traps cannot be
masked. If one of these traps occurs within an interrupt or trap handler, the processor
state may not be recoverable.

Access Protocols
The processor implements two access protocols: simple and burst-mode. Both ac
cess protocols share some common features. First, the RDY signal is ignored during
the first cycle of a simple access and the first cycle of the initial burst-mode access.
Second, both accesses may be further specified as being a page-mode access.

To simplify the implementation of interleaved memories, the processor has provision
for supplying addresses early during burst-mode accesses.

PAGE-MODE ACCESSES

A page-mode access, indicated by the PGMODE signal being Low, can be performed
either for a simple access or for an access in a sequence of burst-mode accesses. A
page-mode access is one that is within the same page-mode block as the previous
processor access. The Page-Mode Block field of the Configuration Register defines
the size of a page-mode block. A page-mode access is possible only in the instruc
tion/data address space and cannot be the first access after the processor is granted
the bus.

Simple Accesses

The processor performs simple accesses only for single data reads and writes. The
address, REQ, and associated controls are driven throughout the access until RDY is
asserted; these signals do not have to be latched by the external system. The RDY
signal is ignored during the first cycle of any access, to relax timing constraints on the
external system response.

The processor can begin a new access in the cycle after RDY is asserted. The ROY
signal is ignored in the first cycle of the second access even if the access is to the
same device or memory as the first access, unless the second access is in a se
quence of burst-mode accesses (Section 10.4.10.1), in a sequence of accesses to
assemble a word or half-word from a narrow ROM (Section 10.4.5), or the second of a

SYSTEMINTERFACE 10.15

10.4.10

10.4.10.1

10.4.10.2

pair of accesses to perform a word access with a 16-bit bus width (see Section
10.4.6)

Burst-Mode Accesses

Burst-mode accesses are used for all instruction fetches and for load multiple and
store multiple accesses. The intent of the burst-mode access is to simplify the imple
mentation of high-bandwidth, sequential accesses.

BURST ·MODE OVERVIEW

The processor indicates a burst-mode access by asserting the BURST signal during
the first cycle of the access. The BURST signal indicates that, once the current ac
cess is complete, the processor will require another access at the next sequential
address.

The address bus of the processor transmits every address in the burst-mode se
quence (unless the external system requests early addresses for interleaved memo
ries, as explained below). For example, if BURST is asserted for an access, the
processor generates a new request and transmits a new sequential address in the
cycle after ROY is received for the first access. The second access differs from a
simple access only because the processor does not ignore ROY in the first cycle of
the second access, so the external system can generate responses at a rate of one
per cycle.

Even if a slave device does not support burst-mode accesses, it still must sample the
BURST pin. Unlike the initial access in the burst-mode sequence, the processor does
not ignore ROY for the first cycle of each subsequent access in the burst-mode se
quence, so the slave must drive ROY High in the first cycle if it is not ready to respond
to the subsequent access. Other than this, the slave can ignore the burst-mode
access.

The processor does not suspend a burst-mode access. The only internal conditions
that might cause the suspension of a burst-mode access is a pipeline hold during
instruction prefetching. However, the pipeline hold can occur only because of a load
or store. The load or store pre-empts instruction prefetching, so it is pointless to
suspend the burst-mode instruction access.

The sequential addresses transmitted during the burst-mode accesses depend on the
RON input and the width of the ID bus. If RON is not asserted and the 016 bit is 0, the
address is incremented by 4 for each access. If RON is asserted or the ID bus is
16-bits wide, the address is incremented by 1 or 2 for each access. If RON is as
serted or the bus is 16-bits wide, the processor also takes the other actions that apply
to a narrow access. The RON signal must remain asserted throughout the burst
mode access.

PROCESSOR PRE-EMPTION, TERMINATION, OR CANCELLATION
OF A BURST·MODE ACCESS

The processor pre-empts a burst-mode access when an external bus master regains
control of the bus, or when a burst-mode access crosses a potential virtual-page
boundary. Since the minimum page size is 1 K byte, burst-mode instruction and data
accesses are preempted whenever the address sequence crosses a 1 K-byte address
boundary. The burst-mode access is re-established as soon as a new address trans
lation is performed (if required). A new physical address is transmitted when the
burst-mode access is re-established.

10·16 SYSTEM INTERFACE

10.4.10.3

10.4.10.4

The processor terminates a burst-mode access whenever all instructions or data have
been accessed. Burst-mode instruction accesses are terminated after a taken branch
is executed or when the bus is required for a data access. In either case, the proces
sor will terminate the instruction fetch at the next quad-word address boundary.

The processor cancels a burst-mode access when an interrupt or trap is taken. Note
that a trap may be caused by the burst-mode access, for example if the destination
register of a LOADM instruction is protected by the Register Bank Protection Register.
If the processor cancels a burst-mode access when an access in the sequence re
mains to be complete, this access must be completed in spite of the cancellation.

Canceled burst-mode data accesses may be restarted at some (possibly much later)
point in execution via the Channel Address, Channel Data, and Channel Control
registers. In this case, the burst-mode is restarted at the point at which it was
canceled rather than at the beginning of the original address sequence (see
Section 8.6.2).

In the Am29030 and Am29035 microprocessors, pre-emption, termination, and can
cellation of a burst-mode access appears the same to the external memory system.
The REQ output remains asserted throughout a burst-mode access, because the
processor is always requesting an access. The processor terminates a burst-mode
access by de-asserting BURST during the final access, providing a positive indication
that the burst-mode access is ending. The REQ signal is de-asserted in the cycle
after the ROY response to the final access, unless the processor requests a new
access.

When BURST is de-asserted, the processor is expecting one more access.

SLAVE CANCELLATION OF A BURST-MODE ACCESS

The slave can cancel a burst-mode access by asserting ERR and RDY when the
processor is expecting an access in the sequence. The processor de-asserts REQ
and BURST in the cycle following the ERR response and does not expect any more
accesses. The processor can generate a new request in the second cycle following
the ERR response. Note that the ERR response may cause an Instruction Access
Exception Trap for an instruction access and does cause a Data Access Exception
trap for a data access.

USING ERLYA FOR INTERLEAVED MEMORY SYSTEMS

There are a number of ways to use burst-mode accesses to improve the performance
of the memory system. Some devices, such as video DRAMs and burst-mode ROMs,
use the indication of a burst-mode access to implement fast, sequential accesses.
For other devices, such as page-mode DRAMs, it may be necessary to interleave
banks of memories to achieve high bandwidth and take advantage of burst-mode
accesses. Because the Address Bus is available throughout a burst-mode access,
the processor can use the Address Bus to simplify the implementation of interleaved
memories. This feature can also be used to simplify the implementation of 64-bit and
128-bit-wide memories to provide bandwidth.

So that bank accesses can be started sufficiently ahead of time, an interleaved mem
ory requires addresses to be available earlier than does a burst-mode me~
These addresses are requested early through use of the ERL YA signal. If ERL YA is
asserted in the second cycle of the access, the processor transmits, on the next cycle,
an incremented address according to the following table (the value "x" is a don't care):

SYSTEM INTERFACE 10.17

10.4.11

A3

0
1
x

A2

0
x
1

A1

x
x
x

Next Address

current address + 8
current address + 4
current address + 4

The intent of this addressing pattern is to skip the addresses for odd-addressed banks
and provide early the addresses for even-addressed banks. This allows the external
system to begin accesses ahead of time, using the early addresses, while completing
accesses from other memory banks. The external system can easily generate the
addresses for odd-addressed banks using the addresses for even-addressed banks,
without using an incrementer.

Also, because of timing constraints, the processor must be able to generate the first
early address without incrementing, but rather by toggling address bit A3. This re
quires that word accesses be quad-word aligned. If the alignment restriction is not
met, the address is incremented by 4 until the address becomes aligned, and then is
incremented by 8 as described below.

Following the first early address, the processor ignores ERL YA for one cycle and then
increments the address by 8 on the following assertion of ERL YA. Since incrementing
is controlled by ERL YA, the external system can control the frequency with which
addresses are incremented.

Once the external system has started requesting addresses early, it must continue to
request addresses with the proper timing. The processor does not increment ad
dresses during the burst-mode access without an active level on ERL YA, if ERL YA
has been asserted at any point in the access. Also, the processor does not indicate
which addresses are beyond those required for the access, such as those that are
beyond the termination point of the burst-mode access or those that are beyond a
1-Kbyte address boundary. The memory may begin these unneeded accesses early,
but responses to the processor are still controlled by BURST and REQ. At a 1-Kbyte
address boundary, the address wraps to the beginning of the 1-Kbyte block to prevent
spurious accesses beyond the boundary. Whether or not addresses are requested
early, the processor always tracks the address of the current access for the purpose
of exception reporting and recovery.

The ERL YA signal is ignored for simple accesses and is ignored if RDN is asserted or
if the ID bus is 16-bits wide.

Arbitration

The processor requests the bus by asserting BREQ whenever it might want to use the
bus, and it does not drive the bus until the cycle after BGRT is asserted. The BREQ
signal is asserted at the beginning of the execute stage of loads and stores and upon
detection of a cache miss that might cause a demand fetch. This approach causes
the processor to request the bus at the earliest possible time, but also may cause the
processor to request the bus when the bus is not really required. For example, the
bus can be requested for a demand fetch that does not occur because of a branch. In
such cases, the processor de-asserts BREQ as soon as it discovers it does not need
the bus. If the bus is granted, the processor keeps REQ High so that it does not
generate a spurious request.

To improve processor performance, it is possible for the external system to grant the
bus to the processor before the bus is requested. This is accomplished simply by
asserting BGRT. If BGRT is active at the end of any cycle, the processor may use the

10·18 SYSTEM INTERFACE

10.4.11.1

bus in the next cycle, even though BGRT is not directly in response to BREQ. The
processor may or may not assert BREQ before driving the request, but at least will
assert BREQ in the same cycle as the request is driven.

After performing all required accesses, the processor de-asserts BREQ in the cycle
following the ROY response to the final access. The REQ signal is driven High in the
first half of the the same cycle; in the second half of this cycle, the High level on the
REQ signal is maintained by a weak (easily over-driven) internal pullup device. This
allows another device to drive REQ in the cycle following release of the bus without
the possibility of a bus collision. The external system can de-assert BGRT following
the de-assertion of BREQ, but this is not required. If BGRT remains active, the proc
essor keeps REQ inactive as long as it does not require the bus.

Bus arbitration in the Am29030 and Am29035 microprocessors is pre-emptive, in that
the external system can force the processor off of the bus by de-asserting BGRT.
When BGRT is de-asserted, the processor progresses up to an appropriate stopping
point (for example, the end of the cache block boundary in the case of a cache
reload) and then de-asserts BREQ in the cycle following the ADY response to the final
access. The ROY signal is driven High in the first half of this cycle, then maintained
by a weak pullup in the second half of the cycle. Note that the processor does not
relinquish the bus in response to BGRT when the LOCK signal is active. Also, the
processor may not complete all accesses for a load multiple or store multiple before it
relinquishes the bus, but will resume the load multiple or store multiple at the appro
priate point when it regains the bus.

Whenever the external system takes control of the bus, the processor disables the
page-mode comparator. When the bus is granted to the processor, the first access
cannot be a page-mode access. This prevents the processor from generating a
page-mode access that the external system may be unprepared for.

USING THE PROCESSOR AS AN ARBITER

The processor can be used as a bus arbiter, even though this is not immediately
apparent from the preceding description of bus arbitration. This is possible because
arbitration is pre-emptive and the processor can act as a default master, by simply not
driving the bus if the bus is granted but not requested.

To use the processor as an arbiter, the BGRT signal acts as a request, and the BREQ
acts as a grant to the external system. The external system requests the bus by
de-asserting BGRT, then waits until BREQ is High before using the bus. The BREQ
signal may already be High when BGRT is de-asserted. When the external system is
finished with the bus, it asserts BGRT. The processor resumes control of the bus in
the cycle following the assertion of BGRT and either drives an active request or drives
REQ High. The external system is responsible for maintaining a proper level on REQ
while the bus is transferred to the processor. The processor is always maintaining a
weak pullup on the REQ signal, so the external system can drive REQ High actively
before transferring the bus, then place the REQ driver into a high-impedance state
while the bus is transferred to t~ocessor. The weak pullup on the processor
maintains the inactive level on ROY, as long as the inactive level has been estab
lished before the external system driver is placed into the high-impedance state.

10.5 BUS SHARING-ELECTRICAL CONSIDERATIONS

When buses are shared among multiple masters and slaves, it is important to avoid
situations where these devices are driving a bus at the same time. This may occur

SYSTEM INTERFACE 10-19

10.6

when more than one master or slave is allowed to drive a bus in the same cycle,
because bus arbitration is incompletely or incorrectly performed. However, it also
occurs when a master or slave releases a bus in the same cycle that another master
or slave gains control, and the first master or slave is slow in disabling its bus drivers
compared to the point at which the second master or slave begins to drive the bus.
The latter situation is called a bus collision in the following discussion.

In addition to the logical errors that can occur when multiple devices drive a bus
simultaneously, such situations may cause bus drivers to carry large amounts of
electrical current. This can have a significant impact on driver reliability and power
dissipation. Since bus collisions usually occur for a small amount of time, they are
of less concern but may contribute to high-frequency electromagnetic emissions.

The Am29030 and Am29035 external interface is defined to prevent all situations
where multiple drivers are driving a bus simultaneously. Bus collisions are also easily
avoided.

In the case of the Am29030 and Am29035 external interface, arbitration prevents the
processor from driving the Address and Data buses at the same time as another bus
master. If there is more than one active device, the external system design must
include some means for insuring that only one device gains control of the bus and
that no other device gains control of the external interface at the same time as the
processor.

When the processor relinquishes control of the interface to another device, bus colli
sions may be prevented by not allowing the device to drive any bus during the cycle in
which BREQ de-asserts. This insures that all processor outputs are disabled by the
time the external master takes control of the bus. However, there is nothing in the bus
protocol to prevent the external master from taking control as soon as BREQ is
de-asserted.

Bus collisions may be further prevented by restricting all devices to avoid driving the
Instruction/Data Bus in the first cycle of a new simple or burst-mode access. Since
the processor cannot sample data during this cycle, the cycle can be used to disable
drivers of one slave before the drivers of another slave are enabled.

When the processor performs a store immediately following a load, it drives the In
struction/Data Bus for the store in the second cycle following the cycle in which the
data for the load appears on the Instruction/Data Bus. This provides a complete cycle
for the slave involved in the load to disable its data drivers. The processor continues
to drive the Instruction/Data Bus until it receives a RDY in response to the store; it
disables its output drivers in the cycle following the response.

MULTIPROCESSING AND THE LOCK OUTPUT

The LOCK output provides synchronization and exclusion of accesses in a multi
processor environment. LOCK has no predefined effect on a system, other than the
fact that the processor does not relinquish the external interface to another device
while LOCK is active.

The LOCK output is asserted for the address cycle of the Load and Lock and Store
and Lock instructions and is asserted for both the read and write accesses of a Load
and Set instruction. LOCK also may be active for an extended period of time under
control of the Lock bit in the Current Processor Status Register (this capability is
available only to Supervisor-mode programs).

10-20 SYSTEMINTERFACE

10.7

10.7.1

10.7.2

LOCK may be defined to provide any level of resource locking for a particular system.
For example, it may lock the interface, an individual device or memory, or a location
within a device or memory.

When a resource is locked, it is available for access only by the processor with the
appropriate access privilege. The mechanisms for restricting accesses and the meth
ods for reporting attempted violations of the restrictions are system-dependent.

MASTER/SLAVE CHECKING

Each Am29030 and Am29035 microprocessor output has associated logic which
compares the signal on the output with the signal that the processor is providing
internally to the output driver. The comparison between the two signals is made any
time a given driver is enabled and any time the driver is disabled only because of the
Test mode. If, when the comparison is made, the output of a driver does not agree
with its input, the processor asserts the MSERR output on the second following cycle.

When the processor asserts MSERR, it takes no other actions with respect to the
detected miscomparison. In particular, no traps occur. However, MSERR may be
used externally to perform any system function, including the generation of a trap.

Master/Slave Operation

If there is a single processor in the system, the MSERR output indicates that a proc
essor driver is faulty or that there is a short-circuit in a processor output. However, a
much higher level of fault detection is possible if a second processor (called a slave)
is connected in parallel with the first (called a master), where the slave processor has
its outputs disabled by the Test mode.

The slave processor, by comparing its outputs to the outputs of the master processor,
performs a comprehensive check of the operation of the master processor. In addi
tion, if the slave processor is connected at the proper position on the external inter
face, it may detect open circuits and other faults in the electrical path between the
master processor and its local devices and memories. Note that the master processor
still performs the comparison on its outputs in this configuration.

Preventing Spurious Errors

When two processors are connected in a master/slave configuration, it is necessary
to prevent spurious assertions of MSERR. These result from situations where the
outputs of the slave processor do not agree with the outputs of the master processor,
but both processors are operating correctly.

There are several potential sources of spurious errors in a master/slave configuration
that are avoided by the Am29030 and Am29035 microprocessor designs:

1. Unimplemented bits in processor registers that are reflected on processor outputs.
This is avoided in the Am29030 and Am29035 microprocessors by having all
unimplemented bits be read as 0.

2. Unpredictable values for bus signals. If ERR is asserted in response to an access,
the Instruction/Data Bus may be at an indeterminate level (e.g., high-impedance),
causing the master and slave processors to detect different values. If these values
are later reflected on processor outputs, a spurious MSERR assertion may occur.
The Am29030 and Am29035 microprocessors avoid this problem by ignoring the
instruction or data word returned with ERR.

SYSTEM INTERFACE 10-21

10.7.3

3. Unpredictable power-up state that is reflected on processor outputs. The
Am29030 and Am29035 microprocessors avoid this problem upon reset by forcing
to a known value any state that might be reflected on outputs before the
completion of initialization.

Another source of spurious errors is a lack of synchronization between the master
and slave processors. To maintain synchronization between the master and slave
processors, it is first necessary that they operate with identical clocks. This is accom
plished by having the master processor drive MEMCLK, with the slave processor
receiving MEMCLK as an input, or by driving both processors' MEMCLK inputs with
the same externally generated clock.

However, the fact that both processors operate with the same MEMCLK clock is not
sufficient to guarantee synchronization. Asynchronous processor inputs, if they are
truly asynchronous to the operation of the master and slave processors, may affect
the master processor a cycle sooner or later than they affect the slave processor. For
this reason, the relevant asynchronous inputs (i.e., WARN, INTR(~). TRAP(1--0),
CNTL(1--0), and RESET) must be externally synchronized to both the master and
slave processors. Note that, in the case of RESET, only the active-to-inactive transi
tion must be synchronized.

Switching Master and Slave Processors

In some master/slave configurations, it might be desirable to give the slave processor
control over the system when an error is isolated to the master processor. It is possi
ble to grant control of the system to the slave processor by taking it out of the Test
mode and placing the master processor into the Test Mode. Note that synchronization
must be maintained when this is accomplished (e.g., using the Halt mode).

If the original master processor is configured to generate MEMCLK in this case, the
slave processor must also generate MEMCLK when it becomes a master. Because of
this, both processors must be configured to generate MEMCLK.

In this master/slave configuration, the slave processor still receives MEMCLK from the
master processor as described previously. The slave processor does not drive
MEMCLK because of the Test mode. However, when the slave processor is taken out
of the Test mode, it is able to drive MEMCLK as required.

Note that this processor-switching scheme may be generalized to more than two
processors.

10-22 SYSTEMINTERFACE

11.1

DEBUGGING AND TESTING

This chapter details the features of the Am29030 and Am29035 microprocessors that
support debugging and testing. The chapter first describes the Trace Facility and
instruction breakpoints which aid in software debugging. Next, the Test/Development
interface is described. This interface includes the processor inputs CNTL(1-0) and
TEST and the outputs STAT(2-0). Finally, the Test Access Port and the Boundary
Scan Architecture is discussed.

TRACE FACILITY

Software debug is supported by the Trace Facility. The Trace Facility guarantees
exactly one trap after the execution of any instruction in a program being tested. This
allows a debug routine to follow the execution of instructions and to determine the
state of the processor and system at the end of each instruction.

Tracing is controlled by the Trace Enable (TE) and Trace Pending (TP) bits of the
Current Processor Status Register. The value of the TE bit is always copied into the
TP bit when an instruction enters the write-back stage of the processor pipeline. A
Trace trap occurs whenever the TP bit is 1. As with most traps, the Trace trap can be
disabled only by the DA bit of the Current Processor Status Register.

In order to trace the execution of a program, the debug routine performs an interrupt
return to cause the program to begin or resume execution. However, before the inter
rupt return is executed, the TE and TP bits of the Old Processor Status are set with
the values 1 and O, respectively. The interrupt return causes these bits to be copied
into the TE and TP bits of the Current Processor Status.

When the target instruction of the interrupt return (whose address is contained in the
Program Counter 1 Register when the interrupt return is executed) enters the write
back stage, the processor copies the value of the TE bit into the TP bit. Since the TP
bit is a 1, a Trace trap occurs. This trap prevents any further instruction execution in
the target routine until the interrupt is taken and the routine is resumed with an inter
rupt return. When the Trace trap is taken, the TE and TP bits are both reset automati
cally, preventing any further Trace traps.

Since the Trace Facility is managed by the Old and Current Processor Status regis
ters, it operates properly in the event that the processor takes an interrupt or trap
unrelated to the Trace Facility-before the above trace sequence completes. When
the unrelated interrupt or trap is taken, the state of the Trace Facility (i.e., the values
of the TE and TP bits) is copied into the Old Processor Status from the Current Proc
essor Status. The Trace Facility then resumes operation when the interrupted routine
is restarted by an interrupt return.

Note that it is possible to cause a Trace trap by directly setting the TP and/or TE bits
in the Current Processor Status Register. This may be accomplished only by a Super
visor-mode program.

DEBUGGINGANDTESTING 11·1

11.2

11.3

INSTRUCTION BREAKPOINTS

The HALT instruction can be used as an instruction breakpoint by the hardware
development system. However, the HALT instruction normally is a privileged instruc
tion, causing a Protection Violation trap upon attempted execution by a User-mode
program. The hardware-development system can disable this Protection Violation by
holding the CNTl(1--0) inputs at 10 during reset; this disables protection checking for
HALT instructions until the next processor reset.

The Assert class of instructions and the Illegal Opcode trap can be used by software
to implement instruction breakpoints. An instruction breakpoint is set by replacing an
instruction with the Assert instruction or an illegal opcode in the program under test.
When the breakpoint instruction is encountered, the instruction breakpoint causes a
trap. The illegal opcode is preferred since the Program Counter 1 (PC1) points to the
illegal opcode when the trap is taken, whereas PC1 points to the instruction following
the breakpoint if an Assert is used.

PROCESSOR STATUS OUTPUTS

The STAT(2-0) outputs indicate certain information about processor modes along
with other information about processor operation. STAT(2--0) may be used to provide
feedback of processor behavior during normal processor operation and when the
processor is under the control of a hardware-development system. The behavior of
the STAT(2--0) outputs depends on the relative frequencies of the processor and the
system.

The encoding of STAT(2--0) is as follows:

STAT2 STAT1 STATO Mode or Condition

0 0 0 Halt or Step Modes
0 0 1 Pipeline Hold Mode
0 1 0 Load Test Instruction Mode, Halt/Freeze
0 1 1 Wait Mode
1 0 0 Interrupt Return
1 0 1 Taking Interrupt or Trap
1 1 0 Non-Sequential Instruction Fetch
1 1 1 Executing Mode

When the external interface is running at the processor's internal frequency, the
STAT(2--0) signals in any given cycle reflect the condition of the processor's execute
stage on the previous cycle. Where the conditions listed above are not mutually exclu
sive, the condition listed first is the one reflected on STAT(2--0).

When the external interface is running at half the processor's internal frequency, two
of the conditions reported by STAT(2--0) may apply during a single external cycle.
Since the STAT(2--0) outputs can only reflect one of these conditions, the processor
determines which conditions to report as shown in Figure 11-1. Where the conditions
are not mutually exclusive, the condition listed first in the above table is the one
reported.

If the processor's condition during the first cycle of the external cycle (when MEMCLK
is High) is one of Interrupt Return, Taking an Interrupt or Trap, Non-Sequential In
struction Fetch, or Executing, and the condition on the second cycle is anything other
than these, the condition in the first cycle is reported on STAT(2--0) in the next exter
nal cycle. If the condition during both the first and second cycle is one of Halt, Pipeline
Hold, Load Test Instruction, or Wait, the condition in the second cycle is reported in

11 ·2 DEBUGGING AND TESTING

Figure 11·1

MEMCLK

2

3

STAT Output Reporting with High-Frequency Interface

First Half-Cycle Second Half-Cycle STAT through cycle _.

Mode/Condijjon Mode/Condition .SW

IA ET, Interrupt, Halt,Pipehold,Load IRET, Interrupt,
Branch.Executing Test Inst., Wait Branch.Executing

Halt,Pipehold,Load Halt,Pipehold,Load Halt,Pipehold,Load
Test lnst.,Wait Test Inst., Wait Test Inst., Wait

Halt,Pipehold,Load IRET, Interrupt, Branch IRET, Interrupt, Branch
Test lnst.,Wait,
Executing

the next external cycle. If the condition during the second cycle is one of Interrupt
Return, Taking an Interrupt or Trap, or Non-Sequential Instruction Fetch, this condi
tion is reported in the next external cycle.

The rationale for reporting the conditions in this manner is that the conditions Interrupt
Return, Taking Interrupt or Trap, and Non-Sequential Instruction Fetch are probably
most important to the hardware-development system and should be reported on
either cycle. Moreover, the conditions Halt, Pipeline Hold, Load Test Instruction and
Wait probably last for several cycles and, for this reason, will be reported in cases
where the hardware-development system needs to be aware of them.

The first cycle of a multi-cycle instruction (Load Multiple, Store Multiple, Interrupt
Return, or Interrupt Return and Invalidate) is indicated as an "Executing Mode" cycle.
When an interrupt or trap is taken, the first cycle is indicated as a "Taking Interrupt or
Trap" cycle. Additional cycles of these multi-cycle operations are indicated as "Pipe
line Hold" cycles.

A Low level on ST AT2 indicates that the processor is idle and may be used as an
indication of processor performance when the external interface operates at the proc
essor's frequency. Since most processor instructions execute in a single cycle, and
since extra cycles spent executing multiple-cycle operations are counted as Pipeline
Hold cycles, a count of the number of cycles within a given time interval that the proc
essor is not idle (i.e., a count of the number of cycles for which STAT2 is High) is a
close approximation to the number of instructions executed within that interval and
thus approximates the instruction-execution rate. The only source of error in this
approximation are the cycles in which the processor takes an interrupt or trap. If
desired, this source of error can be eliminated by fully decoding the STAT(2-0)
outputs.

The STAT2 output also may be used to implement processor timeouts for reliability.
For example, a Low level on STAT2 may be used to start a hardware timeout counter,
with a High level resetting and stopping the counter. If the counter exceeds a maxi
mum expected count of idle cycles for a system, it is likely that an error has occurred.
This error can be reported by the WARN trap (see Section 8.4.1).

DEBUGGING AND TESTING 11 ·3

11.4 CPU CONTROL INPUTS

Figure 11·2

Certain processor operational modes are under control of the CNTL(1-0) inputs.
These inputs affect the processor mode as follows:

CNTL1

0
0
1
1

CNTLO

0
1
0
1

Mode

Load Test Instruction
Step
Halt
Normal

These inputs are asynchronous to the processor clock. In addition, changes on the
CNTL(1-0) inputs are restricted so that only CNTL1 or CNTLO, but not both, may
change in any given processor cycle. The allowed transitions are shown in
Figure 11-2. The restriction on transitions of CNTL(1-0) allows these inputs to be
driven directly by an external hardware-development system or tester without any
intervening logic. Proper operation is insured by making only single-input changes on
CNTL(1-0) and by restricting the interval between all changes to be greater than a
processor cycle. If these restrictions are violated, processor operation is unpredict
able, and a processor reset is required to resume predictable operation.

Valid Transitions on CNTL(1-0) Inputs

Note that, because of the restriction described above, it is not possible to transition
directly between all possible modes that are controlled by these inputs. For example,
the processor cannot go from the Load Test Instruction mode to Normal operation
without first entering the Halt or Step modes.

11-4 DEBUGGINGANDTESTING

11.5

11.5.1

11.5.2

IMPLEMENTING A HARDWARE-DEVELOPMENT SYSTEM

The Halt, Step, and Load Test Instruction modes of operation are defined to support
the debug of the processor system by a hardware-development system (both hard
ware and software debug). This section describes the use of these modes during
debug and describes the corresponding activity on the CNTL(1--0) and STAT(2--0)
lines.

Halt Mode

The Halt mode allows the hardware-development system to stop processor operation
while preserving its internal state. The Halt mode is defined so that normal operation
may resume from the point at which the processor enters the Halt mode. All external
accesses are completed before the Halt mode is entered, so a minimum amount of
system logic is required to support the Halt mode.

The Halt mode can be invoked by applying a value of 10 to the CNTL(1--0) inputs.
The processor enters the Halt mode within two or three cycles after the CNTL(1--0)
inputs are changed (depending on synchronization time), except that it first completes
any external data access in progress.

The Halt mode can also be entered as the result of executing a HALT instruction.
When a HALT instruction is executed, the processor enters the Halt mode on the next
cycle, except that it completes any external data accesses in progress. In this case,
the processor remains in the Halt mode even though the CNTL(1--0) inputs are 11.
However, the processor cannot exit the Halt mode except as the result of the
CNTL(1-0) or RESET inputs. If the instruction following a Halt instruction has an ex
ception (e.g., instruction TLB Miss), the trap associated with the exception is taken
before the processor enters the Halt mode.

The Halt instruction is designed to be used as an instruction breakpoint by the hard
ware-development system. However, the Halt instruction normally is a privileged
instruction, causing a Protection Violation trap upon attempted execution by a User
mode program. The hardware-development system can disable this Protection Viola
tion by holding the CNTL(1-0) inputs at 10 during a reset; this signals the presence of
an external debugger and disables protection checking for Halt instructions until the
next processor reset.

In most cases, the STAT(2-0) outputs have a value of 000 whenever the processor is
in the Halt mode; these outputs can be used as a verification that the processor is in
Halt mode. However, the STAT(2-0) outputs have a value of 010 if the Freeze (FZ) bit
of the Current Processor Status Register is 1 when the Halt mode is entered. This
indicates that visible registers do not reflect the current program state.

While in the Halt mode, the processor does not execute instructions and performs no
external accesses. The Timer Facility does not operate (i.e., the Timer Counter Regis
ter does not change).

The Halt mode is exited whenever the Reset mode is entered or the CNTL(1-0) lines
place the processor into another mode. The only valid transitions on the CNTL(1-0)
lines from the value of 10 are to the value 00, which places the processor into the
Load Test Instruction mode, or to the value 11, which causes the processor to resume
normal execution.

Step Mode

The Step mode causes the Am29030 and Am29035 microprocessors to execute at
a rate determined by the hardware-development system, allowing the hardware-

DEBUGGINGANDTESTING 11-5

11.5.3

development system to easily control and monitor processor operation. The Step
mode is defined so that normal operation may resume after stepping is complete.
Since all external accesses are completed during any step, a minimum amount of
system logic is required to support the slower rate of execution.

The Step mode is invoked by the application of a value of 01 to the CNTL(1--0) inputs.
The processor enters the Step mode within two or three cycles after the CNTL(1,--0)
inputs are changed (depending on synchronization time), except that it first completes
any external data access in progress.

In most cases, the STAT(2--0) outputs have a value of 000 whenever the processor is
in the Step mode; these outputs can be used as a verification that the processor is in
Step mode. However, the STAT(2--0) outputs have a value of 010 if the Freeze (FZ)
bit of the Current Processor Status Register is 1 when the Step mode is entered. This
indicates that visible registers do not reflect the current program state.

While in the Step mode, the processor does not execute instructions and performs no
external accesses. The Timer Facility does not operate (i.e., the Timer Counter Regis
ter does not change) while the processor is in the Step mode.

The Step mode is identical to the Halt mode in every respect except one. This differ
ence is apparent on the transition of the CNTL(1--0) lines from the value 01 (Step
mode) to the value 11 (Normal). On this transition, the processor steps. That is, the
processor state advances by one pipeline stage, and it completes any external ac
cess which is initiated by this state change.

If the processor immediately enters the Pipeline Hold mode on a step, the step may
require multiple cycles to execute, since the processor pipeline cannot advance while
the processor is in the Pipeline Hold mode. The STAT(2--0) lines reflect the state of
the processor for every cycle of the step; STAT2 is High for one cycle, and only one
cycle, before the step completes.

The Timer Counter decrements by one for every cycle of the step; if the Timer
Counter decrements to zero, the usual Timer-Facility actions are performed, and a
Timer interrupt may occur.

After the step is performed, the processor re-enters the Step mode and remains in the
Step mode even though the CNTL(1--0) inputs have the value 11 (this prevents the
need for a time-critical transition on the CNTL(1--0) inputs). The processor remains in
this condition until the CNTL(1--0) inputs transition to 10 or 01 (or RESET is asserted).
The transition to 10 causes the processor to enter the Halt mode and is used to clear
the Step mode. The transition to 01 causes the processor to remain in the Step mode,
so that it may perform additional steps.

If the processor is placed in the Halt or Step mode while either a LOADM or STOREM
instruction is being executed, the STAT(2--0) outputs indicate the Halt or Step mode
for one cycle (ST AT(2--0) = 000). They then indicate the Pipeline Hold mode
(STAT(2--0) =001) until the final access of the LOADM or STOREM is complete, at
which time they return to indicating the Halt or Step mode. A hardware-development
system must therefore ignore any single-cycle Halt/Step mode indication on the
STAT(2--0) outputs as an indication that the processor is halted.

Load Test Instruction Mode

The processor incorporates an Instruction Register (IA) that holds instructions while
they are decoded. !n the Lead Test !n~tructicn mods, the ~R ;s enabled &u ieceive the
content of the Instruction Bus regardless of the state of the processor's instruction
fetcher. This allows the hardware-development system to provide instructions for

11-6 DEBUGGINGANDTESTING

Figure 11·3

execution directly, thereby providing means for the hardware-development system to
examine and modify the internal state of the processor without altering the proces
sor's instruction stream.

The hardware-development system can place an instruction in the IR by first placing
00 on CNTL(1-0). The processor enters the Load Test Instruction mode within two or
three cycles after the CNTL(1-0) inputs are changed (depending on synchronization
time), but it first completes and terminates any established burst-mode instruction
access. The Load Test Instruction mode can be entered only from the Halt or Step
modes.

When the processor enters the Load Test Instruction Mode, the processor behaves
as though the Current Processor Status Register were forced to the value shown
in Figure 11-3, even though the register is not changed (the value "u" means
unaffected).

Processor Status While in Load Test Instruction Mode

31 23 15 7 0

I ,1 0 I } 0 I 0 I 0 I ,I } 0 I 0 I 0 I 0 I 0 I 0 I "I 0 I 0 I "I " I "I "J , I "I 0 I " I " I "I 1 I "I "I " [, I
I i I I ; I i I I I I I I I I &

Reserved I I ~ I I I I I I I I I I I

I I I I I I I I D I I ~ I 8 IM : :
• Res• IP • TP • FZ • Res• PD • SM I DA

TD Res TE TU LK WM Pl DI

The visible processor state remains unchanged while the processor is in the Load
Test Instruction Mode. The processor status shown in Figure 11-3 remains in effect
until the next transition to the Normal Mode via the Halt Mode.

While the processor is in the Load Test Instruction mode, it ignores all interrupts and
traps, except for the Data Access Exception and the RESET and WARN inputs.

The STAT(2-0) lines have a value of 010 while the processor is in the Load Test
Instruction mode; this may be used as a verification that the processor is loading
the IR.

While the processor is in the Load Test Instruction mode, the IR is continually storing
the value on the Instruction/Data Bus; any change in the value on this bus is reflected
in the JR on the next cycle. The hardware-development system can place a desired
instruction into the IR by driving this instruction on the Instruction/Data Bus. The value
of RDY and ERR are irrelevant.

The processor exits the Load Test Instruction mode in the second cycle following a
change on the CNTL(1-0) inputs. The only valid change here is either to the Halt
mode (CNTL(1-0) = 10) or the Step mode (CNTL(1-0) = 01).

When the Load Test Instruction mode is exited, the most recent value stored into the
IR is held. If the processor is placed in the Step mode, the IR is marked as having
valid content, enabling the processor to decode and execute the instruction. If the
processor is placed in the Halt mode, it ignores any instruction placed in the IR by the
Load Test Instruction mode and reverts to its normal instruction-fetch mechanism.

Once the IR has been set by the Load Test Instruction mode, the instruction in the IR
may be executed via the Step mode as discussed in the previous section. A single
step is sufficient to cause the execution of this instruction. However, because of
pipelining, multiple steps may be required before the instruction completes execution.
If more than one step is performed, the processor executes the instruction in the IR on

DEBUGGINGANDTESTING 11-7

every step. If it is desired to step an instruction to completion without repeated execu
tion, a NO-OP may be set into the IA (using the Load Test Instruction mode) after the
first step.

The Load Test Instruction mode may be used to cause the execution of most proces
sor instructions (restrictions are discussed below). This allows inspection and modifi
cation of the processor state.

The hardware-development system uses load and store instructions, executed via the
Load Test Instruction mode, to alter and inspect the contents of general-purpose
registers. The OPT field for these loads and stores have the value 110: this causes
the system to ignore the resulting access. Furthermore, it causes the Am29030 and
Am29035 microprocessors to ignore the ADY and ERR responses for the access; the
Am29030 and Am29035 microprocessors complete the access at the end of the next
stepped instruction, rather than upon the assertion of ADY. This eliminates the need
for the hardware-development system to generate a synchronous ADY in response to
the load or store.

Because of sequencing constraints, the Load Test Instruction mode cannot be used
to cause the execution of the following instructions: conditional jumps, Load Multiple,
Store Multiple, Interrupt Return, and Interrupt Return and Invalidate. Unconditional
jumps and calls are permitted, but affect only the Program Counter (instruction se
quencing is not affected).

It is not possible to execute a load directly following a store-nor a store directly
following a load-using the Load Test Instruction mode. At least one NO-OP (or other
operation) must be executed between adjacent loads and stores, because of control
conflicts that arise when these instructions are stepped in a system that performs the
resulting accesses at normal speed. However, a sequence of only loads or only
stores is permitted without restriction.

The contents of the Program Counter 0, Program Counter 1, Program Counter 2,
Channel Address, Channel Data, Channel Control, and ALU Status registers are not
updated while instructions are executed via the Load Test Instruction mode, except
explicitly by Move To Special Register instructions. Instructions executed using the
Load Test Instruction mode may access the protected processor state even though
the processor is in the User mode.

Instructions executed via the Load Test Instruction mode may be used to access an
external device or memory. Recall that the processor completes any normal data
access before completing a step. This allows the processor to access devices and
memories on behalf of the hardware-development system and simplifies the timing
constraints on the hardware-development system.

During processor execution via the Load Test Instruction mode, the processor retains
the information required to resume normal operation. If any processor state is modi
fied by the hardware-development system, this state must be restored properly for
normal operation to resume properly.

Once all instructions have been executed via the Load Test Instruction mode, the Halt
mode (CNTL(1-0)=10) prepares the processor to resume normal operation. When the
CNTL(1-0) inputs transition to 11, the processor resumes normal operation. The
sequence for the CNTL(1-0) inputs to clear the Load Test Instruction mode and re
sume normal operation is thus 00/10/11.

11-8 DEBUGGINGANDTESTING

11.5.4 Summary Of Development System Operation

When the capabilities provided by the Halt, Step, and Load Test Instruction Register
modes are combined, an extremely flexible test and development interface results.
The following is an example sequence performed by the hardware-development
system during debug:

1. Halt the processor either by a HALT instruction or by a 10 on the CNTL(1-0)
inputs. The HALT instruction may be used as a primitive operation in the
implementation of a general instruction-breakpoint capability.

2. Load the IR with an instruction to inspect or alter the processor state. The
hardware-development system should wait for the value 010 on ST AT(2-0) (Load
Test Instruction mode) before driving the Instruction Bus. After the IR is loaded,
the hardware-development system sets CNTL(1-0) to 01 (Step mode).

3. Step the processor by a transition of CNTL(1-0) from 01 to 11 and back to 01.
Data may be supplied on the Data Bus during one of the steps to satisfy a load
operation; the data must be held valid until the stepped instruction completes.

4. Repeat steps 2 and 3 as desired.

5. After the final step, enter the Halt mode by placing 10, instead of 01, on
CNTL(1-0).

6. Resume normal execution by placing 11 on CNTL(1-0).

11.6 IN-CIRCUIT TESTING

The Test mode in the Am29030 and Am29035 microprocessors allows processor
outputs to be driven directly for testing or diagnostic purposes. The Test mode places
all processor outputs (except MSERR) into the high-impedance state, so that they do
not interfere electrically with externally supplied signals. In all other respects, proces
sor operation is unchanged.

The Test mode is invoked by an active level on the TEST input, regardless of the
processor's operational mode (for example, the Test mode is not affected by the Halt
mode). The disabling of processor outputs is performed combinatorially and is asyn
chronous to MEMCLK.

For some outputs, the transition to the high-impedance state that results from the Test
mode may occur at a much slower rate than that which applies during normal system
operation (for example, when the processor relinquishes the bus to another master).
For this reason, the Test mode may not be appropriate for special user-defined
purposes.

Note that MEMCLK is also placed in the high-impedance state by the Test mode. This
allows the testing of external clock-distribution circuits, but care must be taken to
insure that a high-impedance MEMCLK output does not have an adverse effect on
the system.

11. 7 TEST ACCESS PORT

The Am29030 and Am29035 microprocessors implement the Standard Test Access
Port (TAP) and Boundary-Scan Architecture as specified by the IEEE Specification
1149.1-1990 {JTAG), with the exception that the INCLK pin is not part of the
boundary-scan register. The 1149.1-1990 Specification includes many details
that are omitted from the discussion in this section and are included by reference.
The following description discusses Am29030 and Am29035 microprocessor-specific
considerations.

DEBUGGING AND TESTING 11·9

11.7.1

Figure 11·4

Input Pin

SCAN

Boundary Scan Cells
The Test Access Port can access, affect, and sample the processor inputs and out
puts because a Boundary Scan Register (BSR) and Parallel Data Register (PDR) are
incorporated into the design of the input and output cells. The Boundary Scan Regis
ter allows data to be serially loaded into or read out of the processor input/output
boundary. The Parallel Data Register holds data stable at inputs and outputs during
scanning, so that system signals are not adversely affected during scanning.

An input or output cell incorporating a BSR and PDR register bit is referred to as a
boundary scan cell. There are many possible configurations of boundary scan cells.
The configuration of the Am29030 and Am29035 processors is designed to allow
certain operations to be performed. This section describes the implementation of the
Am29030 and Am29035 boundary scan cells.

Figure 11-4 shows the design of an input boundary scan cell, and Figure 11-5 shows
the design of an output boundary scan cell. Bi-directional signals use both of these
designs in the same cell. Multiplexor selects, when active, select the lower multiplexor
input.

The Shift and Update clocks, when used to sample or drive processor and system
signals, are synchronized to the processor internal clocks so that all signals (except
the TAP signals) are sampled or driven synchronously to system clocks. However, the
Shift and Update clocks still satisfy the JT AG constraints that inputs are sampled after
the rising edge of TCK and that outputs change after the falling edge of TCK and that
TCK is the only control needed to affect sampling and driving.

The 1149.1-1990 Specification requires that it be possible to force the processor
3-state outputs to be enabled. This is accomplished by cells that have no associated
input pin. The outputs of these cells force groups of output drivers to be enabled. The
requirement to disable all outputs is satisfied by the boundary scan cell for the TEST
input. The MSERR output has an additional bit in the BSR and PDR to control the
3-state enable on the MSERR output.

Input Boundary-Scan Cell

Scan Output

B
s
R

1 EXTEST,
IN TEST ·-

p
D
R

Input Signal i----• to Logic

Scan Input
Shift
Clock

Update
Clock

Note1: For the CNTL(1-0) inputs, the
boundary-scan value is also selected
by the ICTESTt instruction.

11-10 DEBUGGINGANDTESTING

Figure 11·5

Output Signal
from Logic

SCAN

11.7.2

Output Boundary-Scan Cell

Scan Input

M
u
x

Shift
Clock

B
s
R

Scan Output

1 EXTEST,
INTEST

Update
Clock

p
D
R

M
u
x

Output
Enable

Output Pin

The boundary scan cells for the CNTL(1--0) inputs and STAT(2--0) outputs are part of
the BSA and are accessible by scanning the BSA. However, they also can be
scanned individually using the ICTEST1 instruction (see Section 11.7.2). If the /C
TEST1 instruction is active, no other boundary scan cell is scanned. However, the
contents of the other scan cells are undefined after this operation.

The INCLK input is not a boundary scan cell. The clocks to the processor must con
tinue to operate even if the Test Access Port is active. However, a fault on this input is
readily visible in the operation of the Test Access Port.

The MEMCLK pin has both an input and an output boundary scan cell-the input or
output cell is selected based on whether MEMCLK is used as an input or an output.
Because of electrical constraints, when MEMCLK is used as an input, the boundary
scan cell can sample the level driven on the MEMCLK pin but cannot drive the inter
nal MEMCLK signal. The internal MEMCLK is driven by the MEMCLK pin alone. If
MEMCLK is used as an output, the EXTEST and INTEST instructions hold the
MEMCLK signal at a single logic level for the duration of the instruction, resulting in
unpredictable processor behavior.

Instruction Register and Implemented Instructions

The Instruction Register (IREG) of the Test Access Port is a 3-bit register. The least
significant bit (IREGO) is the bit nearest the TOO output. Instructions are encoded as
follows:

DEBUGGING AND TESTING 11·11

11.7.2.1

11.7.2.2

IREG2 IREG1 IREGO Instruction

0 0 0 EXT EST
0 0 1 preloaded value (acts like BYASS)
0 1 0 ICTEST2
0 1 1 reserved (acts like BYPASS)
1 0 0 INTEST
1 0 1 SAMPLE
1 1 0 ICTEST1
1 1 1 BYPASS

The EXTEST, BYPASS, INTEST, and SAMPLE instructions are specified by the
1149.1-1990 Specification. Reserved instructions behave as BYPASS instructions to
conform to the specification. ICTEST1 and ICTEST2 are AMO public instructions.

Most of these instructions are described in detail in 1149.1-1990. Below is a brief
description of the special considerations in the Am29030 and Am29035 microproces
sor implementations.

EXTEST

The EXTEST instruction is provided for external continuity and logic tests. It allows
the Test Access Port to drive outputs and sample inputs.

EXTESTselects the BSA for scanning. During execution:

1. Processor outputs are driven from the PDR.

2. Processor internal output signals are sampled into the BSA. This is default
behavior.

3. Processor inputs are sampled into the BSA.

4. Processor internal input signals are driven from the PDR. This prevents internal
logic from seeing invalid combinations of input signals that may be received from
other chips during the test.

INTEST

The /NTESTinstruction is provided to test the processor's internal logic. Its primary
value is to allow a hardware-development system to drive the processor's Test Inter
face without a direct electrical connection to all pins of the package. Due to the restric
tions on the MEMCLK signal, INTEST may be performed only on a system in which
the MEMCLK signal is an input.

/NTESTselects the BSA for scanning. During execution:

1. Processor outputs are driven from the PDR. This prevents external logic from
seeing invalid combinations of output signals.

2. Processor internal output signals are sampled into the BSA.

3. Processor inputs are sampled into the BSA. This is default behavior.

4. Processor internal input signals are driven from the PDR.

Note that the INTEST instruction allows the hardware-development system to alter
and inspect internal registers, using processor load and store instructions, without
having the external system see any bus activity. This eliminates the need for the
special OPT code point (OPT(2-0)= 110), though this code point is still reserved for
other types of hardware-development systems.

11-12 DEBUGGINGANDTESTING

11.7.2.3

11.7.2.4

11.7.2.5

11.7.2.6

SAMPLE

The SAMPLE instruction is provided to inspect the processor's external signals with
out interfering with system operations.

SAMPLE selects the BSR for scanning. During execution:

1. Processor outputs are driven by the processor.

2. Processor internal output signals are sampled into the BSR.

3. Processor inputs are sampled into the BSR.

4. Processor internal input signals are driven from the processor inputs.

ICTEST1

The ICTEST1 instruction is defined for AMO processors using the extension mecha
nisms permitted by 1149.1-1990. It is provided to drive the CNTL(1-0) inputs and
sample the STAT(2-0) outputs while leaving other inputs and outputs in their normal
system connection. This allows a hardware-development system to control the proc
essor and system using the Test Access Port.

ICTEST1 selects a subset of the BSR for scanning. During execution:

1. Processor outputs are driven by the processor.

2. Processor internal output signals are sampled into the BSR. This is default
behavior.

3. Processor input signals are sampled into the BSR. This is default behavior for
most signals, but allows the sampling of STAT(2-0).

4. Processor internal inputs for CNTL(1-0) are driven by the PDR. Processor internal
inputs for inputs other than CNTL(1-0) are driven from the processor inputs.

ICTEST2

The ICTEST2 instruction is defined for AMO processors using the extension mecha
nisms permitted by 1149.1-1990. ICTEST2 is similar to EXTESTwith the exception
that the scan path for ICTEST2 does not include the MEMCLK scan cell. It is provided
for external continuity and logic tests without requiring that the tester be concerned
with MEMCLK. It also allows a hardware-development system to access and modify
processor internal state without disrupting the system.

1. Processor outputs are driven from the PDR. This allows the
hardware-development system to keep the external system in a valid quiescient
state.

2. Processor internal output signals are sampled into the BSR. This is default
behavior.

3. Processor inputs are sampled into the BSR. This is the default behavior.

4. Processor internal input signals are driven from the PDR. This allows a
hardware-development system to control the processor independent of the system
controls.

BYPASS

The BYPASS instruction is provided to bypass the BSR and shorten access times to
other devices at the board level.

DEBUGGING AND TESTING 11-13

11.7.3

11.7.3.1

11.7.3.2

11.7.3.3

BYPASS selects the Bypass Register for scanning. The processor is not otherwise
affected.

Order of Scan Cells in Boundary Scan Path

This section documents the scan paths and the order of scan cells in the paths. The
cells are listed in order from TDI to TDO. In the Am29030 and Am29035 microproces
sor, there are five scan paths from TDI to TDO: 1) the instruction path, 2) the bypass
path, 3) the main data path, 4) the ICTEST1 path, and 5) the ICTEST2 path.

INSTRUCTION PATH

This is a 3-bit path which is used to scan into the Instruction Register. When the
instruction path is selected, the captured data always is IREG(2-0) = 001 and the
instruction is set by scanning. The preloaded pattern 001 is used to test for faults in
the boundary scan connections at the board level. The instructions are specified in
Section 11 .7 .2.

Bit

1
2
3

Cell Name

IREG2
IREG1
IREGO

BYPASS PATH

This is a one-bit path which is used to bypass the processor and shorten access to
other devices at the board level. When the bypass path is selected, the captured data
is always O and the scan in data has no effect on the processor.

MAIN DATA PATH

This is a 141-bit path used to access the processor pins. This path is divided into five
sets of cells. Each set has a cell which enables the outputs of the set to be driven on
the processor's pins. These cells are not connected to a processor pin. For conven
ience, the drive enable cells are shown in italics. The sets of cells are divided logically
as follows: 1) instruction/data bus, 2) address bus, 3) control signals, 4) MEMCLK,
and 5) MSERR and BREQ outputs. Note that sets 3 and 5 differ in that when the
processor is not granted the bus, set 3 signals are disabled and set 5 signals are
enabled.

Bit Cell Name Comments

1 ENDDRV Enables the driving of the 10(31-0) outputs
2 100 input
3 100 output
4 101 input
5 101 output

63 1031 input
64 1031 output
65 A31
66 A30

95 A2

11·14 DEBUGGINGANDTESTING

Bit Cell Name Comments

96 ENADRV Enables the driving of the A(31--0) outputs
97 ENCDRV Enables the driving of the control outputs
98 A1
99 AO
100 RDN
101 ERL YA
102 ERR
103 ADY
104 BGRT
105 PG MODE
106 BURST
107 REO
108 BREO
109 PWRCLK If the PWRCLK pin is connected to Vee, value of the

PWRCLK scan cell is used to enable or disable
MEMCLK. If the PWRCLK scan cell is 1, MEMCLK is
an output. If the PWRCLK scan cell is 0, MEMCLK is
disabled. If the PWRCLK pin is connected to ground,
the MEMCLK driver is disabled.

110 MEMCLK Input or Output: When the PWRCLK scan cell is 1 and
MEMCLK is enabled, the MEMCLK scan cell functions
as an output scan cell: it captures processor internal
MEMCLK and substitutes the scanned value for the
output. When the PWRCLK scan cell is 0, the
MEMCLK scan cell functions as a partial input: it
samples the MEMCLK input pin, but is unable to
substitute the scanned value for the internal clock.

111 DIV2
112 CNTLO
113 CNTL1
114 RESET
115 TRAPO
116 TRAP1
117 INTR3
118 INTR2
119 INTR1
120 INTRO
121 ENAMS Enables the driving of MSERR and BREO (BREQ is

MSERR
not enabled if the processor is in TEST mode).

122
123 STAT2
124 STAT1
125 STATO
126 MPGM1
127 MPG MO
128 OPT2
129 OPT1
130 QeIQ.
131 LOCK
132 SUP/US
133 BWE3
134 BWE2
135 BWE1
136 BWEO
137 WARN
138 10/MEM
139 110
140 R/W
141 TEST

DEBUGGINGANDTESTING 11-15

11.7.3.4

11.7.3.5

ICTEST1 PATH

This is a 5-bit path which is used to provide quick access to the CNTL(1--0) input
signals and STAT(2--0) output signals and to allow the other inputs and outputs to
remain in their normal system connection.

Bit

1
2
3
4
5

Cell Name

CNTLO
CNTL1
STAT2
STAT1
STATO

Comments

input

output: These signals are scanned out and are
shown on the TOO pin. The scan in values do not
replace the processor output values. In ICTEST1,
the processor outputs STAT(2-0) continue to reflect
the internal processor signals.

If the ICTEST1 path is scanned, the contents of the shift register bits in the other scan
cells become undefined. This occurs because all scan paths share the same shift
clocks

ICTEST2 PATH

The ICTEST2 path is the same as the main data path with the exception that
MEMCLK is not included. This allows a hardware-development system to control the
processor while the system is unaffected.

11-16 DEBUGGINGANDTESTING

IH: t;i iii i 4 ;I EA

12.1

12.1.1

INSTRUCTION SET

This chapter provides a specification of the Am29030 and Am29035 instruction set.
Sections 12.1 through 12.2 describe the terminology and the instruction formats.
Section 12.3 describes each instruction in detail; instructions are presented alphabeti
cally by assembler mnemonic. Finally, Section 12.4 gives an index of instructions by
operation code.

INSTRUCTION-DESCRIPTION NOMENCLATURE

To simplify the specification of the instruction set, special terminology is used through
out this chapter. This section defines the terminology and symbols used to describe
instruction operands, operations, and the assembly-language syntax.

This section does not describe all terminology used. It excludes certain descriptive
terms that have an obvious meaning.

Operand Notation and Symbols

Throughout this chapter, instruction operands are signed, two's-complement, word
integers, unless otherwise noted. The term register is used consistently to denote a
general-purpose register; other types of registers are described explicitly.

The following notation is used in the description of instruction operands:

0116 16-bit immediate data, zero-extended to 32 bits.

1116 16-bit immediate data, one-extended to 32 bits.

BP The Byte Pointer (BP) field of the ALU Status Register. The BP
field selects a byte or half-word within a word, and is interpreted
according to the Byte Order bit of the configuration Register.

C The Carry (C) bit of the ALU Status Register. The C bit is logi
cally zero-extended to 32 bits when it is involved in a word
operation.

COUNT The value of the Count Remaining field of the Channel Control
Register. Note that COUNT does not refer to this field directly,
but rather to the value of the field at the beginning of a LOADM
or STOREM instruction.

DEST

EXTERNAL
WORD[n]

FALSE

FC

h'n'

116

The general-purpose register that is the destination of an instruc
tion (i.e., the register used to store the result).

The word in an external device or memory with address n.

The Boolean constant FALSE.

The Funnel Shift Count (FC) field of the ALU Status Register.

The hexadecimal constant n.

16-bit immediate data.

INSTRUCTION SET 12-1

12.1.2

IPA

IPB

IPC

PC

Q

Register RA
Register RB
Register RC

SPDEST

SPECIAL

Special-purpose
Register SA

SRCA
SRCB

SRCA.BYTEn
SRCB.BYTEn

TARGET

TLB[n]

TRUE

TWIN

Indirect Pointer A Register.

Indirect Pointer B Register.

Indirect Pointer C Register.

The Program Counter Register. This register is not explicitly ac
cessible by instruction, but does appear as an operand for cer
tain instructions. The Program Counter always contains the word
address of the instruction being executed, and is 30 bits in
length.

The Q Register.

These designate the general-purpose registers specified by the
instruction fields RA, RB, and RC (see Section 12.2).

The special-purpose register that is the destination of an
instruction.

The contents of a special-purpose register, used as an instruc
tion operand.

Designates the special-purpose register specified by the instruc
tion field SA (see Section 12.2).

The contents of general-purpose registers, used as instruction
operands.

Designate the byte numbered n within the SRCA or SRCB
operand.

The target-instruction address specified by a jump or call instruc
tion. This address is either absolute or Program-Counter relative.

The Translation Look-Aside Buffer Register with register num
ber n.
The Boolean constant TRUE.

General-purpose registers are paired by absolute-register num
ber, such that even-numbered registers are paired with odd-num
bered registers having the next-highest register number. The twin
of a given register is the other register in the pair to which the
given register belongs. For example, Local Register 5 is the twin
of Local Register 4, and vice versa.

Operator Symbols

The following symbols are used to describe instruction operations:

A« B Left shift of the A operand by the shift amount given by the B
operand.

A» B Right shift of the A operand by the shift amount given by the B
operand.

A// B

A&B

AIB

Concatenation. The B operand is appended to the A operand. In
the resulting quantity, the A operand makes up the high-order
part, and the B operand makes up the low-order part.

Bitwise AND.

Bitwise OR.

12·2 INSTRUCTION SET

12.1.3

A"B

-A
A+-exp

A=B

A<>B

A>B

A~B

A<B

A.s_B

A+B

A-B

A*B

A/B

A .. B

AORB

Bitwise exclusive-OR.

One's-complement.

Assignment of the A location by the result of the expression on
the right side.

Equal to.

Not equal to.

Greater than.

Greater than or equal to.

Less than.

Less than or equal to.

Addition.

Subtraction.

Multiplication.

Division.

A subrange which includes the A operand and the B operand.
This symbol is used for subranges of bits as well as subranges of
words.

Logical OR of two Boolean conditions.

Control-Flow Terminology

The following terminology is used to describe the control functions performed during
the execution of various instructions:

Continue

IF condition
THEN operations
ELSE operations

Signed overflow

Trap(n)

Unsigned
overflow

Unsigned
underflow

VN

Continue execution of the current instruction sequence.

The condition following the IF is tested. If the condition holds, the
operations following the THEN are performed. If the condition
does not hold, the operations following the ELSE are performed.
If the ELSE is not present and the condition does not hold, no
operation is performed.

This condition is present when the result of an add or subtract of
two's-complement operands cannot be represented by a signed
word integer.

Specifies a trap with vector number n. The vector number n may
be specified indirectly (e.g., Trap (VN)) or explicitly by symbolic
name (e.g., Trap (Out of Range)}.

This condition is present when the result of an add of unsigned
operands cannot be represented by an unsigned word integer.

This condition is present when the result of a subtract of un
signed operands cannot be represented by an unsigned integer
(i.e., when the result is less than zero).

Designates the trap vector number specified by the instruction
field VN (see Section 8.2.2).

INSTRUCTION SET 12·3

12.1.4 Assembler Syntax

This chapter does not contain a full description of the instruction assembler, but pro
vides a rudimentary description of the assembler syntax. The following notation is
used to describe assembler tokens:

cntl Determines the 7-bit control field in a load or store instruction.

const8 Specifies a constant that can be expressed by 8 bits.

const16

ra
rb
re

spid

target

vn

Specifies a constant that can be expressed by 16 bits.

These tokens name general-purpose registers. In a formal
sense, these represent the same token, since the name of a
register does not depend on its instruction use. However, three
distinct tokens are used to clarify the relationship between the
assembler syntax, instruction operands, and instruction fields.

A symbolic identifier for a special-purpose register.

A symbolic label for the target of a jump or call instruction.

Specifies a trap vector number.

12.2 INSTRUCTION FORMATS

Figure 12-1

All instructions for the Am29030 and Am29035 microprocessors are 32 bits in length
and are divided into four fields, as shown in Figure 12-1. These fields have several
alternative definitions, as discussed below. In certain instructions, one or more fields
are not used, and are reserved for future use. Even though they have no effect on
processor operation, bits in reserved fields should be 0 to insure compatibility with
future processor versions.

Instruction Format

31

I I I I I I
OP

23 15 7 0

I 11 I I I I I I 11 I I I I I I 11 I I I I I I I
r~~~
A
M

RC
117 ... 110
115 ... 18

VN
CNTL

RA
SA

RB
RB or I
19 ••• 12
17 ••• 10

Ul//RND//FD//FS
Reserved II FS

The instruction fields are defined as follows:

Bits 31-24

OP

A

This field contains an operation code, defining the operation to
be performed. In some instructions, the least-significant bit of the
operation code selects between two possible operands. For this
reason, the least-significant bit is sometimes labeled A or M with
the following interpretations:

(Absolute): The A bit is used to differentiate between Program
Counter relative (A= 0) and absolute (A= 1) instruction ad
dresses, when these addresses appear within instructions.

12-4 INSTRUCTION SET

M

Bits 23-16

RC

117 ... 110

115 ... 18

VN

CNTL

Bits 15-8

RA

SA

Bits 7-0

RB

RB or I

19 ... 12

17 ... 10

(Immediate): The M bit selects between a register operand
(M = 0) and an immediate operand (M = 1), when the alternative
is allowed by an instruction.

The RC field contains a global or local register number.

This field contains the most-significant eight bits of a 16-bit in
struction address. This is a word address, and may be program
counter relative or absolute, depending on the A bit of the
operation code.

This field contains the most-significant eight bits of a 16-bit in
struction constant.

This field contains an 8-bit trap vector number.

This field controls a load or store access, as described in Section
3.3.2.

The RA field contains a global or local register number.

The SA field contains a special-purpose register number.

The RB field contains a global or local register number.

This field contains either a global or local register number, or an
8-bit instruction constant, depending on the value of the M bit of
the operation code.

This field contains the least-significant eight bits of a 16-bit in
struction address. This is a word address, and may be program
counter relative or absolute, depending on the A bit of the
operation code.

This field contains the least-significant eight bits of a 16-bit in
struction constant.

UI II RND II FD II FS This field controls the operation of the CONVERT instruction.

reserved II FS This field is the FS portion of the above field and specifies the
operand format for the CLASS and SQRT instructions.

The fields described above may appear in many combinations. However, certain
combinations that appear frequently are shown in Figure 12-2.

INSTRUCTION SET 12-5

Figure 12·2 Frequently Occurring Instruction Field Uses

Three operands, with possible 8-bit constant:

31 23 15 7 0 I ' I I I I I I I I I I I I I I

I
I I I

I
I I I I I I

I XXXXXXXM RC RA RB or I

Three operands, without constant:

31 23 15 7 0 I ' I I I I I I I I I I I I

I
I I I

I
I I I I

I xxxxxxxo RC RA RB

One register operand, with 16-bit constant:

31 23 15 7 0 I ' I I I I I I I I I I I I I I

I
I I I

I
I I I I I

I XXXXXXX1 115 .. 18 RA 17 .. 10

Jumps and calls with 16-bit Instruction address:

31 23 15 7 0 I ' I I I I I I I I I I I I I

I
I I I

I
I I I I I

I xxxxxxx~ 117 ... 110 RA 19 .. 12

Two operands with trap vector number:

31 23 15 7 0 I ' I I I I I I I I I I I I

I
I I I

I
I I I I I I

I XXXXXXXM VN RA RB or I

Loads and stores:

31 23 15 7 0 I ' I I I I I I I I
I I I

I
I I I

I
I I I I I I

I XXXXXXXM CNTL RA RB or I

Res

12-6 INSTRUCTION SET

12.3

Figure 12·3

INSTRUCTION DESCRIPTION

This section describes each Am29030 and Am29035 microprocessor instruction in
detail. Figure 12-3 illustrates the layout of the information given for each description.

Instruction-Description Format

Instruction
Mnemonic

:nstruction
Name

Brief Operation
Description

Assembler
Syntax

Arithmetic/Logic

{
... Status Result _____ __,.,.

Operand Specffication
Describes the
instruction fields'
relations to operands,
and implicit operands
in some cases

I

ADD ADD

...... Add

Operation: DEST~ SRCA + SRCB

Assembler
Syntax: ADD re, ra, rb

or
ADD re, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

Instruction Format- \ 31 23

~~t~i~~e~:~~d ~ ... , o ... 1 o-.1-o1.-1 ... 1 o.,1-1.-~ ... ,M.,,-.-, ... , .. ,-R ... 1 ... ~....,,,............,,......,,....,,.....,
Operation Code- OP= 14•15

15 7 0

I I ' I I I I I I I I I I I I I I

I RA RB or I

HEX format

Detailed Description
of instruction
operation

ADD

Description: The SRCA operand is added to the SRCB
operand, and the result is placed into the
DEST location.

INSTRUCTION SET 12·7

ADD
Add

Operation: DEST~ SRCA + SRCB

Assembler
Syntax: ADD re, ra, rb

or
ADD re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
0001010M

I I
RC

15 I I
0P=14, 15 ADD

I I
RA

7
I I I

RB or I

ADD

0

Description: The SRCA operand is added to the SRCB operand, and the result is
placed into the DEST location.

12-8 INSTRUCTION SET

ADDC

Add with Carry

Operation: DEST+-SRCA+SRCB+C

Assembler
Syntax: ADDC re, ra, rb

or
ADDC re, ra, constB

Status: V, N, Z, C

Operands: SRCA

SRCB

Content of register RA

M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

OP-1C, 1D

I I

RC

15

I '
ADDC

I I

RA

7
I I I
RB or I

ADDC

0

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location.

INSTRUCTION SET 12·9

ADDCS
Add with Carry, Signed

Operation: DEST+-- SRCA + SRCB + C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDCS re, ra, rb

or
ADDCS re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

1
1 I I I I I I I
?001100M

OP-18, 19

I
RC

15
I I

I
I

ADD CS

7
I I
RA

I I I
RB or I

ADDCS

0

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes a two's-complement signed
overflow, an Out of Range trap occurs.

12°10 INSTRUCTION SET

Note that the DEST location is altered whether or not an overflow
occurs.

ADDCU

Operation:

Add with Carry, Unsigned

DEST+- SRCA+ SRCB + C
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax:

Status:

Operands:

ADDCU re, ra, rb
or

ADDCU re, ra, const8

V,N,Z,C

SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23 I ' I I I I I I 11
0001101M

OP-1A.1B

Register RC

15
I I I I I RC

ADDCU

7
I I I I RA

ADDCU

0
I I I I I RB or I

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes an unsigned overflow, an Out of
Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 12-11

ADDS

Add, Signed

Operation: DEST+- SRCA + SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDS re, ra, rb

or
ADDS re, ra, consi8

Status: V, N, z. c
Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I

I
I I I

RC RA
11 I I I I I I 11
0001000M 11

OP-10, 11 ADDS

ADDS

0
I I I I
RB or I I I

Description: The SRCA operand is added to the SRCB operand, and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out of Range trap occurs.

12·12 INSTRUCTION SET

Note that the DEST location is altered whether or not an overflow
occurs.

ADDU

Add, Unsigned

Operation: DEST+- SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax:

Status:

Operands:

ADDU re, ra, rb
or

ADDU re, ra, const8

V,N,Z,C

SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

1
1 I I I I I I I
0001001M

OP-12, 13

Register RC

15

I I

I
I

RC

ADDU

7
I I

I
I

RA

ADDU

0

I I I I

I RB or I

Description: The SRCA operand is added to the SRCB operand, and the result is
placed into the DEST location. If the add operation causes an
unsigned overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 12-13

AND

AND Logical

Operation: DEST+- SRCA & SRCB

Assembler
Syntax: AND re, ra, rb

or
AND re, ra, const8

Status: N,Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

AND

31 23 15 7 0 I ' I I I I I I I '
1001000M

OP-90, 91

I
RC

I I

I
I I

RA

AND

I

I
I I I I I I

RB or I

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

12-14 INSTRUCTION SET

ANON

AND-NOT Logical

Operation: DEST+-- SRCA & -SRCB

Assembler
Syntax: ANON re, ra, rb

or
ANON re, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST register RC

31 23

1
1 I I I I I I I
1001110M

I I
RC

15

I 11

OP• 9C, 90 ANON

I I
RA

7
I I I I

RB or I

ANON

0

Description: The SRCA operand is logically ANDed, bit-by-bit, with the
one's-complement of the SRCB operand, and the result is placed into
the DEST location.

INSTRUCTION SET 1l!-15

ASEQ

Assert Equal To

Operation: IF SRCA=SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASEQ vn, ra, rb

or
ASEO vn, ra, const8

Status: Not affected

Operands: SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7
I I I

I
I I

I
I

VN RA
I ' I I I I I I I '
0111000M

OP-70, 71 ASEQ

I I I I
RB or I

Description: If the SRCA operand is equal to the SRCB operand, instruction
execution continues; otherwise, a trap with the specified vector
number occurs.

ASEQ

0
I

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

12°18 INSTRUCTIONSET

ASGE

Assert Greater Than or Equal To

Operation: IF SRCA ~ SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGE vn, ra, rb

or
ASGE vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN

31 23

I I I I I I I I I
0101110M

OP-SC, 50

Trap vector number

I I

VN

15

I I ' I

ASGE

7

RA
I I I I

RB or I

ASGE

0

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, instruction execution continues; otherwise, a
trap with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

INSTRUCTION SET 12-17

ASGEU

Assert Greater Than or Equal To, Unsigned

Operation: IF SRCA ~ SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGEU vn, ra, rb

or

Status:

Operands:

ASGEU vn, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 1S 7 I ' I I I I I I I I I I

I
I I I

I
I

: o 1 o 1 1 1 1 M: VN RA

OP-SE, SF ASGEU

ASGEU

0
I I I I I

I RB or I

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, instruction execution continues; otherwise, a
trap with the specified vector number occurs. For the comparison,
both operands are treated as unsigned integers.

12·18 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between O
and 63 is specified.

ASGT ASGT

Assert Greater Than

Operation: IF SRCA > SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGT vn, ra, rb

or

Status:

Operands:

ASGT vn, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M =1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7

I I
11

I I
11 VN RA

11 I I I I I I 11
0101100M

OP-58,59 ASGT

0

I I I I I
RB or I

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

I

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between O and
63 is specified.

INSTRUCTIONSET 12·19

ASGTU

Assert Greater Than, Unsigned

Operation: IF SRCA>SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGTU vn, ra, rb

or

Status:

Operands:

ASGTU vn, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

VN Trap vector number

31 23 I ' I I I I I I I '
0101101M

0P=5A,5B

I I
VN

15

I '
ASGTU

7

RA I '

ASGTU

I I I I
RB or I

0

I I

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers.

12-20 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

ASLE

Assert Less Than or Equal To

Operation: IF SRCAsSRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLE vn, ra, rb

or
ASLE vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN

31 23

1
1 I I I I I I I
0101010M

OP-54, 55

Trap vector number

I I
VN

15

11

ASLE

I I
RA

7

11
I I I I

RB or I

ASLE

0

I I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between O and
63 is specified.

INSTRUCTION SET 12-21

ASL EU
Assert Less Than or Equal To, Unsigned

Operation: IF SRCA.s.SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLEU vn, ra, rb

or
ASLEU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN

31 23

11 I I I I I I I '
0101011M

OP-56, 57

I

Trap vector number

15 7
I I I

I
I I

VN RA 11

AS LEU

ASL EU

0
I I I I

RB or I I I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers.

12·22 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between O and
63 is specified.

ASLT

Assert Less Than

Operation: IF SRCA<SRCB THEN Continue
ELSE Trap(VN)

Assembler
Syntax: ASL T vn, ra, rb

or
ASL T vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7
I I

I
I

I VN RA 1
1 I I I I I I I
0101000M

0P=50, 51 ASLT

ASLT

0
I I I I I I

RB or I

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between O and
63 is specified.

INSTRUCTIONSET 12-23

ASL TU
Assert Less Than, Unsigned

Operation: IF SRCA<SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASL TU vn, ra, rb

or

Status:

Operands:

ASL TU vn, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7

I I I I I

I
I I I I I

I VN RA

OP·52, 53 ASL TU

ASL TU

0

I I I I I I I
RB or I

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs. For the comparison, both operands
are treated as unsigned integers.

12·24 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

ASNEQ
Assert Not Equal To

Operation: IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASNEQ vn, ra, rb

or
ASNEQ vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7
I I I

11
I

VN RA 1
1 I I I I I I I
0111001M 11

OP-72, 73 ASNEQ

ASNEQ

I I I I I 01
RB or I .

Description: If the SRCA operand is not equal to the SRCB operand, instruction
execution continues; otherwise, a trap with the specified vector
number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

INSTRUCTIONSET tZ.25

CALL CALL

Call Subroutine

Operation: DEST f- PC II 00 + 8
PCf-TARGET
Execute delay instruction

Assembler
Syntax: CALL ra, target

Status:

Operands:

Not affected

TARGET A= O: 117 ... 110II19 ... 12 (sign-extended to 30 bits)+ PC
A= 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

DEST Register RA

31 23 I ' I I I I I .I I '
1010100A

OP ·AS, A9

I I I
117 •.• 11

0

15
I I I I

CALL

7
I I I I I I I I
RA 19 ... 12

0

Description: The address of the second following instruction is placed into the
DEST location, and a non-sequential instruction fetch occurs to the
instruction address given by the TARGET operand. The instruction
following the CALL is executed before the non-sequential fetch
occurs.

12·28 INSTRUCTION SET

I

CALLI

Call Subroutine, Indirect

Operation: DEST+- PC//00 +8
PC+-SRCB
Execute delay instruction

Assembler
Syntax: CALLI ra, rb

Status:

Operands:

Not affected

SRCB

DEST

Content of register RB

Register RA

31 23 15 I ' I I I I I I I I I I I I I
11001000 Reserved RA

OP-CS CALLI

I
7

I I
RB

CALLI

0

Description: The address of the second following instruction is placed into the
DEST location, and a non-sequential instruction fetch occurs to the
instruction address given by the SRCB operand. The instruction
following the CALLI is executed before the non-sequential fetch
occurs.

INSTRUCTION SET 12-27

CLASS CLASS
Classify Floating-Point Operand

Operation: DEST+- CLASS(SRCA)

Assembler
Syntax: CLASS re, ra, FS

Status: None

Operands: SRCA Content of register RA (single-precision f.p.)

Control:

31

DEST

FS
00
01
10
11

or
Content of register RA and the twin of register RA
(Double-precision f.p.)

Register RC

Format of source operand SRCA
Reserved for future use
Single-precision floating-point
Double-precision floating-point
Reserved for future use

23 15 7 0

111 1
I I I I I I I I I I I I I I

I
I I I I

I
I I I I I

I ~s I 100110: RC RA Reserved

0P=E6 CLASS

Description: A 32-bit classification code for operand SRCA is placed into the
DEST location. Operand SRCA is a single- or double-precision
operand, as specified by FS. The classification code has the following
format:

31

I
I

12·28 INSTRUCTION SET

7 0
I I I I I I I I

1~1
I I I

0 EFC

Bits 31-0: reserved (forced to 0).

Bit 5: Operand Sign (OS). The OS bit is 1 for a negative operand
(including negative zero) and 0 for a non-negative operand.

I

Bits 4-0: Exponent-Fraction Class (EFC). This field classifies the
biased exponent and fraction fields of the source operand as follows:

EFC Biased Exp (bexp) Fraction (frac) Comments

00000 0 0 zero
00001 unused
00010 0 O <frac < .111 ... 1 denormalized
00011 0 .111 ... 1 denormalized

00100 0
00101 unused
00110 0 <frac < .111 ... 1
00111 .111 ... 1

01000 1 <bexp<Max 0
01001 unused
01010 1 <bexp<Max O <frac < .111 ... 1
01011 1 <bexp< Max .111 ... 1

01100 Max 0
01101 unused
01110 Max O <frac < .111 ... 1
01111 Max .111 ... 1

10000 Max+1 0 infinity
10001 unused
10010 Max+1, frac MSB=O <>0 SNaN
10011 Max+ 1, frac MSB= 1 <>0 QNaN

Note: Max is the largest biased exponent that can be used to represent a finite number in a
given format. Max is 254 for single-precision and 2,046 for double-precision.

This instruction is not supported directly in processor hardware. In the current implementation,
this instruction causes a CLASS trap. When the trap occurs, the IPA and IPC registers are set
to reference SRCA and DEST, and the IPB Register is set with the value of the FS field.

INSTRUCTION SET 12-29

CLZ

Count Leading Zeros

Operation: Determine number of leading zeros in a word

Assembler
Syntax: CLZ re, rb

or
CLZ re, const8

Status: Not affected

Operands: SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I

I
I I I I I

I RC Reserved 1
1 I I I I I I I '

. 0 0 0 0 1 0 0 M.

0P=08,09 CLZ

CLZ

0
I I I I I I

I RB or I

Description: A count of the number of zero-bits to the first one-bit in the SRCB
operand is placed into the DEST location. If the most-significant bit of
the SRCB operand is 1, the resulting count is zero. If the SRCB
operand is zero, the resulting count is 32.

12·30 INSTRUCTION SET

CONST

Operation: DEST+- 0116

Assembler
Syntax: CONST ra, const16

Status: Not affected

Constant

Operands: 0116 115 ... 81117 ... 10 (Zero-extended to 32 bits)

DEST Register RA

31 23 15 7 I ' I I I I I I I I I I I I

I
I I I

I
I I I I

:00000011: 115 ... 18 RA 17 ... 10

OP-03 CONST

Description: The 0116 operand is placed into the DEST location.

CONST

0
I

I

INSTRUCTION SET 1 :z.31

CONSTH

Constant, High

Operation: Replace high-order half-word of SRCA by 116

Assembler
Syntax: CONSTH ra, const16

Status: Not affected

Operands: SRCA

116

Content of register RA

115 ... 18//17 ... 10

DEST Register RA

31 23 15

I I I I

I
I I

115 .•. 18 RA
1111111111
00000010

0Ps02 CONS TH

I

CONSTH

7 0

11 I I I I
17 ••• 10 I I

Description: The low-order half-word of the SRCA operand is appended to the 116
operand, and the result is placed into the DEST operand. Note that
the destination register for this instruction is the same as the source
register.

12-32 INSTRUCTION SET

CONSTN

Operation: DEST~ 1116

Assembler

Constant, Negative

Syntax: CONSTN ra, const16

Status: Not affected

CONSTN

Operands: 1116 115 ... 18//17 ... 10 (ones-extended to 32 bits)

DEST Register RA

31 23 15 7 0

I ~ ~ I I I I I I I I I I I I

I
I I I

I
I I I I I I

I 0 0 0 0 0 1: 115 ... 18 RA 17 ... 10

OP-01 CONSTN

Description: The 1116 operand is placed into the DEST location.

INSTRUCTION SET 12·33

CONVERT

Operation:

Assembler
Syntax:

Status:

Convert Data Format

DEST+- SRCA, with format modified per UI, RND, FD, FS

CONVERT re, ra, UI, RND, FD, FS

fpX, fpU, fpV, fpR, fpN

CONVERT

Operands: SRCA Content of register RA (single-precision f.p.)
or

Content of register RA and the twin of register RA
(Double-precision f.p.)

DEST Content of register RC (single-precision f.p.)

Control: UI

RND
000
001
010
011
100
101-111
FS,FD

00
01
10
11

or
Content of register RC and the twin of register RA
(Double-precision f.p.)

0 =signed integer
1 = unsigned integer

Round mode
Round to nearest
Round to minus infinity
Round to plus infinity
Round to zero
Round using f.p. round mode (FRM)
Reserved

Format of source operand, format of destination
operand
Integer
Single-precision floating-point
Double-precision floating-point
Reserved

31 23 15 7 0

11 I I I I I I I '
11100100

I I
RC 11

OP-E4 CONVERT

I I
RA

Description: The SRCA operand with format FS is converted to format FD and
rounded according to RND, then placed into the DEST location. If the
source or destination operand is an integer, it is a signed or unsigned
value according to the value of UI.

12-34 INSTRUCTION SET

Note: Converting from format to like format is not supported, and will
produce unpredictable results.

This instruction is not supported directly in processor hardware. In the
current implementation, this instruction causes a CONVERT trap.
When the trap occurs, the IPA and IPC registers are set to reference
SRCA and DEST, and the IPB Register is set with the value of the
Ul//RND//FD//FS field. If the UI bit is 1, the contents of the IPB
Register reflect the value of this field after Stack-Pointer addition. The
Stack Pointer must be subtracted from the contents of the IPB
Register to recover the original value of this field.

INSTRUCTION SET 12·35

CPBYTE
Compare Bytes

Operation: IF (SRCA.BYTEO=SRCB.BYTEO) OR
(SRCA.BYTE1 =SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3) THEN
DEST+-- TRUE ELSE DEST+-- FALSE

Assembler
Syntax: CPBYTE re, ra, rb

or
CPBYTE re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

I ~
I I I I

I ,11 I I I I

I
I I I

I
0 1 0 1 1 RC RA

OPs 2E,2F CPBYTE

CPBYTE

0
I I I I I

I RB or I

Description: Each byte of the SRCA operand is compared to the corresponding
byte of the SRCB operand. If any corresponding bytes are equal, a
Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location.

12·36 INSTRUCTION SET

CPEQ

Compare Equal To

Operation: IF SRCA = SRCB THEN DEST+-- TRUE
ELSE DEST+-- FALSE

Assembler
Syntax: CPEQ re, ra, rb

or
CPEQ re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

1
1 I I I I I I I
0110000M

I I

I
I I I

RC RA 11

0P=60, 61 CPEQ

CPEQ

0

I I I I
RB or I

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE
is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location.

INSTRUCTION SET 12-37

CPGE

Compare Greater Than or Equal To

Operation: IF SRCA ~ SRCB THEN DEST+-- TRUE
ELSE DEST+-- FALSE

Assembler
Syntax: CPGE re, ra, rb

or
CPGE re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

1
1 I I I I I I I

0100110M

0Ps4C, 40

Register RC

I I
RC

15

I 11

CPGE

I I
RA

7
I I I I

RB or I

CPGE

0

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

12-38 INSTRUCTION SET

CPGEU

Compare Greater Than or Equal To, Unsigned

Operation: IF SRCA ~ SRCB (unsigned) THEN DEST~ TRUE
ELSE DEST~ FALSE

Assembler
Syntax: CPGEU re, ra, rb

or
CPGEU re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

1
1 I I I I I I I
~100111M

0P=4E, 4F

Register RC

I I
RC

15

I 11

CPGEU

I I
RA

7

CPGEU

I I I I
RB or I

0

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as unsigned
integers.

INSTRUCTION SET 12·39

CPGT

Compare Greater Than

Operation: IF SRCA > SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

Assembler
Syntax: CPGT re, ra, rb

or

Status:

Operands:

CPGT re, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0100100M

OP-48, 49

I I
RC

15
I

I
I

CPGT

7
I I
RA I ' I I I I

RB or I

CPGT

0

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

12-40 INSTRUCTION SET

CPGTU

Compare Greater Than, Unsigned

Operation: IF SRCA > SRCB (unsigned) THEN DEST+-TRUE
ELSE DEST+- FALSE

Assembler
Syntax: CPGTU re, ra, rb

or
CPGTU re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA
SRCB M=O: Content of register RB

M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I

I
I I I

RC RA
1111111111
0100101M 11

OP-4A, 48 CPGTU

CPGTU

0
I I I I

RB or I

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

INSTRUCTION SET 12-41

CPLE

Compare Less Than or Equal To

Operation: IF SRCA,s.SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

Assembler
Syntax: CPLE re, ra, rb

or

Status:

Operands:

CPLE re, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I I I I I I

I ' RC RA I ' I I II II I ' 0100010M

0P=44, 45 CPLE

CPLE

0

I I I I

I RB or I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

12-42 INSTRUCTION SET

CPL EU

Compare Less Than or Equal To, Unsigned

Operation: IF SRCA.s.SRCB (unsigned) THEN DEST +-TRUE
ELSE DEST+-- FALSE

Assembler
Syntax: CPLEU re, ra, rb

or
CPLEU re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I I

I
I I I

RC RA I .II II II I I ' 0100011M 11

OP-46, 47 CPLEU

CPLEU

0
I I I I
RB or I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as unsigned
integers.

INSTRUCTION SET 12-43

CPLT

Compare Less Than

Operation: IF SRCA < SRCB THEN DEST~ TRUE
ELSE DEST~ FALSE

Assembler
Syntax: CPLT re, ra, rb

or
CPL T re, ra, const8

Status: Not affected

Operands: SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST

31 23 I ' I I I I I I 11
0100000M

OP-40, 41

Register RC

15
I I I I I RC

CPLT

7
I I I RA

CPLT

0
I I I I I

I RB or I

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

12-44 INSTRUCTION SET

CPL TU

Compare Less Than, Unsigned

Operation: IF SRCA<SRCB (unsigned) THEN DEST~ TRUE
ELSE DEST~ FALSE

Assembler
Syntax: CPL TU re, ra, rb

or
CPL TU re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

11 I I I I I I I
0100001M

Register RC

I I
RC

15

I 11

OP-42, 43 CPL TU

I I
RA

7

11

CPL TU

I I I I
RB or I

0

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

INSTRUCTION SET 12-45

CPNEQ

Compare Not Equal To

Operation: IF SRCA <> SRCB THEN DEST+-TRUE
ELSE DEST+- FALSE

Assembler
Syntax: CPNEQ re, ra, rb

or
CPNEQ re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23 I ' I I I I I I I '
0110001M

OP-62, 63

Register RC

15
I I I I I RC

CPNEQ

7
I I I RA

CPNEQ

0
I I I I I RB or I

Description: If the SRCA operand is not equal to the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location.

12·46 INSTRUCTION SET

DADD

Operation:

Assembler
Syntax:

Status:

Floating-Point Add, Double-Precision

DEST (double-precision)~ SRCA (double-precision)+
SRCB (double-precision)

DADD re, ra, rb

fpX, fpU, fpV, fpR, fpN

DADD

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

Register RC and the twin of register RC

SRCB

DEST

31 23 15 7 0
I I I I

I
I I I I I I I

I
I I I I

RC RA RB
I ' I I I I I I I ' 11110001

OP-F1 DADD

Description: The SRCA operand is added to the SRCB operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the addition are double-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes a DADD trap.
When the trap occurs, the IPA, IPB and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 12-47

DDIV DDIV

Floating-Point Divide, Double-Precision

Operation: DEST (double-precision)+-SRCA (double-precision) I
SRCB (double-precision)

Assembler
Syntax: DDIV re, ra, rb

Status: fpD, fpX, fpU, fpV, fpR, fpN

Operands: SRCA

SRCB

Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

DEST Register RC and the twin of register RC

31 23 I ' I I I I I I I '
11110111

OP·F7

I I
RC

15
I I

I
I

DDIV

7
I I I I I I

I
I I

RA

I I
RB

0
I

I

Description: The SRCA operand is divided by the SRCB operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the division are double-precision floating-point numbers.

12-48 INSTRUCTION SET

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes a DDIV trap.
When the trap occurs, the IPA, IPB and IPC registers are set to
reference SRCA, SRCB and DEST.

DEQ

Operation:

Assembler
Syntax:

Status:

Floating-Point Equal To, Double-Precision

IF SRCA (double-precision) =SRCB (double-precision)
THEN DEST+- TRUE
ELSE DEST+- FALSE

DEQ re, ra, rb

fpl

DEQ

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

Register RC

SRCB

DEST

31 23 I ' I I I I I I I
11101011

I I
RC

15

I '
OP-EB DEQ

I I
RA

7

I '
I I I

RB

0

I I

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE
is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location. SRCA and SRCB are double-precision
floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes a DEQ trap.
When the trap occurs, the IPA, IPB and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 1 Ml

DGE DGE

Floating-Point Greater Than Or Equal To, Double-Precision

Operation:

Assembler
Syntax:

Status:

IF SRCA (double-preclsion)~SRCB (double-precision)
THEN DEST+- TRUE
ELSE DEST+- FALSE

OGE re, ra, rb

fpl

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB SRCB

DEST Register RC

31 23 15 7 0 I ' I I I I I I I I I I I 1110111~ RC I
I I

RA

I

I '
I I I

RB

OP·EF DGE

Description: If the SRCA operand is greater than or equal to the SRCB operand, a
Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location. SRCA and SRCB
are double-precision floating-point numbers.

12·50 INSTRUCTION SET

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes a DGE trap.
When the trap occurs, the IPA, IPB and IPC registers are set to
reference SRCA, SRCB and DEST.

DGT

Operation:

Assembler
Syntax:

Status:

Floating-Point Greater Than, Double-Precision

IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST~ TRUE
ELSE DEST~ FALSE

DGT re, ra, rb

fpl

DGT

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

Register RC

31

SRCB

DEST

23 15 7 0 I ' I I I I I I I I I I I I
11101101 RC I

I I
RA

I

I '
I I I

RB

OP-ED DGT

Description: If the SRCA operand is greater than the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location. SRCA and SRCB are
double-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes a DGT trap.
When the trap occurs, the IPA, IPB and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTIONSET 1Nt

DIV DIV

Divide Step

Operation: Perform one-bit step of a divide operation (unsigned)

Assembler
Syntax: DIV re, ra, rb

or
DIV re, ra, const 8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0
I I I I

I
I I I

RC RA
I ' I I I I I I I '
0110101M I '

I I I I
RB or I I I

0P=6A, 6B DIV

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB
operand is subtracted from the SRCA operand. If the DF bit is 0, the
SRCB operand is added to the SRCA operand.

12·52 INSTRUCTION SET

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the
ALU Status Register; the resulting value is complemented and placed
into the DF bit. The sign of the result of the add or subtract is placed
into the N bit.

The content of the Q Register is appended to the result of the add or
subtract, and the resulting 64-bit value is shifted left by one bit
position; the value computed for the DF bit above fills the vacated bit
position. The high-order 32 bits of the 64-bit shifted value are placed
into the DEST location. The low-order 32 bits of the shifted value are
placed into the Q Register.

Examples of integer divide operations appear in Section 2.6.3.

DIVO

Divide Initialize

Operation: Initialize for a sequence of divide steps (unsigned)

Assembler
Syntax: DIVO re, rb

or
DIVO re, const8

Status: V, N, z, C

Operands: SRCB M = O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0110100M

OP-68, 69

I I
RC

15
I I

I
I

DIVO

7
I I I I

I I Reserved

DIVO

0
I I I I

RB or I

Description: The Divide Flag (DF) bit of the ALU Status Register is set. The sign of
the SRCB operand is placed into the Negative bit of the ALU Status
Register.

The content of the Q register is appended to the SRCB operand, and
the resulting 64-bit value is shifted left by one bit position; a 0 fills the
vacated bit position. The high-order 32 bits of the 64-bit shifted value
are placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the a Register.

Examples of integer divide operations appear in Section 2.6.3.

INSTRUCTION SET 12-53

DIVIDE DIVIDE

Operation: DEST +
a +-

Integer Divide, Signed

(Q II SRCA) I SRCB (signed)
Remainder

Assembler
Syntax: DIVIDE re, ra, rb

Status: Not affected

Operands: Q Content of the Q Register

SRCA

SRCB

DEST

Content of register RA

Content of register RB

Register RC

31 23 15

1 1
1 I I I I I I I
~110000~

I
RC

I I I

I
I I

RA

I I I
RB

OP.E1 DIVIDE

Description: The SRCA operand is appended to the content of the a register. The
resulting 64-bit value is divided by the SRCB operand, and the result
is placed into the DEST location. This operation treats the operands
as signed two's-complement integers and produces a signed
two's-complement result.

12-54 INSTRUCTION SET

The remainder is placed into the Q register. A non-zero remainder
always has the same sign as the dividend.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DIVIDE trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

DIVIDU DIVIDU

Integer Divide, Unsigned

Operation: DEST f- (Q II SRCA) I SRCB (unsigned)
Q f- Remainder

Assembler
Syntax: DIVIDU re, ra, rb

Status: Not affected

Operands: Q Content of the Q Register

SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15 7 0

111 1

I I I I I I I I I I I

I
I I I

I
I I I

I 1 0 0 RC RA RB 0 1 1

0P=E3 DIVIDU

Description: The SRCA operand is appended to the content of the Q Register. The
resulting 64-bit value is divided by the SRCB operand, and the result
is placed into the DEST location. This operation treats the operands
as unsigned integers, and produces an unsigned result.

The remainder is placed into the Q Register. The remainder is also
unsigned.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DIVIDU trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTION SET 12·55

DIVL DIVL

Divide Last Step

Operation: Complete a sequence of divide steps (unsigned)

Assembler
Syntax: DIVL re, ra, rb

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0 I ' I I I I I I I
0110110M

I
RC

I I I I I I
RA

I I I I I
RB or I

OP•6C, 60 DIVL

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB
operand is subtracted from the SRCA operand. If the DF bit is 0, the
SRCB operand is added to the SRCA operand. The result is placed
into the DEST location.

12-68 INSTRUCTION SET

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the
ALU Status Register; the resulting value is complemented and placed
into the DF bit. The sign of the result of the add or subtract is placed
into the N bit.

The content of the a register is shifted left by one bit position; the
value computed for the OF bit above fills the vacated bit position. The
shifted value is placed into the Q Register.

Examples of integer divide operations appear in Section 2.6.3.

DIVREM

Divide Remainder

Operation: Generate remainder for divide operation (unsigned)

Assembler
Syntax: DIVREM re, ra, rb

or
DIVREM re, ra, const8

Status: V, N, z, c
Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0110111M

OP-SE, SF

I I
RC

15

I I '
DIVREM

I I
RA

7

I '

DIVREM

I I I
RB or I

0

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCA
operand is placed into the DEST location.

If the DF bit is 0, the SRCB operand is added to the SRCA operand,
and the result is placed into the DEST location.

Examples of integer divide operations appear in Section 2.6.3.

INSTRUCTIONSET 12·57

DMUL

Operation:

Assembler
Syntax:

Status:

Floating-Point Multiply, Double-Precision

DEST (double-precision)~ SRCA (double-precision)*
SRCB (double-precision)

DMUL re, ra, rb

fpX, fpU, fpV, fpR, fpN

DMUL

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

Register RC

31

SRCB

DEST

23 15 7 0 I ' I I I I I I I I I I

I '.111010'. RC

I I
RA

I I ' I I I
RB

0P=F5 DMUL

Description: The SRCB operand is multiplied by the SRCA operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the multiplication are double-precision floating-point numbers.

12-58 INSTRUCTION SET

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

DSUB

Operation:

Assembler
Syntax:

Status:

Floating-Point Subtract, Double-Precision

DEST (double-precision)+--- SRCA (double-precision) -
SRCB (double-precision)

DSUB re, ra, rb

fpX, fpU, fpV, fpR, fpN

DSUB

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

Register RC

31

SRCB

DEST

23 15 7 0

I ' I I I I I I I I I I I I
11110011 RC I

I I
RA

I

I '
I I I

RB

OP-F3 DSUB

Description: The SRCB operand is subtracted from the SRCA operand; the result
is rounded according to FAM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the subtraction are double-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DSUB trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTION SET 12-59

EMULATE EMULATE

Trap to Software Emulation Routine

Operation: Load IPA and IPB registers with operand register-numbers
and Trap (VN)

Assembler
Syntax: EMULATE vn, ra, rb

Status: Not affected

Operands: Absolute-register numbers for registers RA and RB

VN Trap vector number

31 23 15 7 0

1
1 I I I I I I I '

11010111

I I
VN I I ' I I

RA I ' I I
RB I I

0P=D7 EMULATE

Description: The IPA and IPB registers are set to the register numbers of registers
RA and RB, respectively. A trap with the specified vector number
occurs.

12-60 INSTRUCTION SET

Note that the IPC register also is affected by this instruction, but that
its value has no interpretation.

For programs in the User mode, a Protection Violation trap occurs
instead of the EMULATE trap-if a vector number between O and 63
is specified.

EX BYTE
Extract Byte

Operation: DEST+-- SRCB, with low-order byte replaced by byte in
SRCA selected by BP

Assembler
Syntax: EXBYTE re, ra, rb

or
EXBYTE re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I I

I
I I I

RC RA
I ' I I I I I I I '
0000101M I '

OP=OA, OB EX BYTE

EX BYTE

I I I
RB or I

Description: A byte in the SRCA operand is selected by the Byte Pointer (BP) field
of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected byte replaces the low-order byte
of the SRCB operand and the resulting word is placed into the DEST
location.

Note: The selection of bytes within words is specified in Section
3.3.7.1.

INSTRUCTION SET 12-61

EXHW

Operation:

Assembler
Syntax:

Status:

Operands:

31

EXHW

Extract Half-Word

DEST+-- SRCB, with low-order half-word replaced by half-word in
SRCA selected by BP

EXHW re, ra, rb
or

EXHW re, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

23 15 7 0

I ' I I I
I I I I I I I I

I
I I I

I
I I I I

I :01111 1 0 M: RC RA RB or I

OP-7C, 70

Descrl ptlon:

12-62 INSTRUCTION SET

EXHW

A half-word in the SRCA operand is selected by the Byte Pointer (BP)
field of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected half-word replaces the
low-order half-word of the SRCB operand, and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3.7.1.

EXHWS

Extract Half-Word, Sign-Extended

Operation: DEST~ half-word in SRCA selected by BP,
sign-extended to 32 bits

Assembler
Syntax:

Status:

EXHWS re, ra

Not affected

Operands: SRCA Content of register RA

DEST Register RC

31 23 15 I ' I I I I I I I I I I I

I
I I

: 0 1 1 1 1 1 1 0: RC RA

0Ps7E EXHWS

I

I

EXHWS

7 0
I I I I I

I Reserved

Description: A half-word in the SRCA operand is selected by the Byte Pointer (BP}
field of the ALU Status Register and the Byte Order (BO} bit of the
Configuration Register. The selected half-word is sign-extended to 32
bits, and the resulting word is placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3. 7 .1.

INSTRUCTION SET 12·63

EXTRACT EXTRACT
Extract Word, Bit-Aligned

Operation: DEST+-- high-order word of (SRCA II SRCB « FC)

Assembler
Syntax: EXTRACT re, ra ,rb

or
EXTRACT re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23 I ' I I I I I I I '
0111101M

OP= 7A, 78

Register RC

15
I I I

I
I

RC

EXTRACT

7
I I
RA I '

0
I I I I

RB or I

Description: The SRCB operand is appended to the SRCA operand, and the
resulting 64-bit value is shifted left by the number of bit-positions
specified by the Funnel Shift Count (FC) field of the ALU Status
register. The high-order 32 bits of the 64-bit shifted value are placed
in the DEST location.

12·64 INSTRUCTION SET

If the SRCB operand is the same as the SRCA operand, the
EXTRACT instruction performs a rotate operation.

FADD

Operation:

Assembler
Syntax:

Status:

Floating-Point Add, Single-Precision

DEST (single-precision)+-- SRCA (single-precision)+
SRCB (single-precision)

FADD re, ra, rb

fpX, fpU, fpV, fpR, fpN

FADD

Operands: SRCA Content of register RA

Content of register RB

Register RC

SRCB

DEST

31 23 15 7 0 I ' I I I I I I I '
11110000

I
RC

I I

I
I I

RA

I

I '
I I I

RB

OP-FO FADD

Description: The SRCA operand is added to the SRCB operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the addition are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FADD trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTIONSET 12-65

FDIV

Operation:

Assembler
Syntax:

Status:

Floating-Point Divide, Single-Precision

DEST (single-precision)+-- SRCA (single-precision) I
SRCB (single-precision)

FDIV re, ra, rb

fpD, fpX, fpU, fpV, fpR, fpN

FDIV

Operands: SRCA Content of register RA

Content of register RB

Register RC

SRCB

DEST

31 23 15 7 0

1
1 I I I I I I I
11110110

I
RC

I

I
I I I

RA I '
I I I

RB

0P=F6 FDIV

Description: The SRCA operand is divided by the SRCB operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the division are single-precision floating-point numbers.

12-66 INSTRUCTION SET

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FDIV trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

FDMUL

Operation:

Assembler
Syntax:

Status:

Floating-Point Multiply, Single-to-Double Precision

DEST (double-precision)+- SRCA (single-precision)*
SRCB (single-precision)

FDMUL re, ra, rb

fpR, fpN

FDMUL

Operands: SRCA Content of register RA

Content of register RB

Register RC

SRCB

DEST

31 23

1
1 I I I I I I I
11111001

I
RC

15
I

I
I

FDMUL

I I
RA

7
I I I

RB

0

Description: The SRCB operand is multiplied by the SRCA operand; the result is
placed into the DEST location. SRCA and SRCB are single-precision
floating-point numbers; the result is produced in double-precision
format. Because the product of two single-precision operands can
always be represented exactly as a double-precision number, the
FDMUL result does not depend on the FRM field of the Floating-Point
Environment Register.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FDMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 12-67

FEQ

Operation:

Assembler
Syntax:

Status:

Floating-Point Equal To, Single-Precision

IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST+- TRUE
ELSE DEST+- FALSE

FEQ re, ra, rb

fpN

FEQ

Operands: SRCA Content of register RA

Content of register RB

Register RC

31

SRCB

DEST

23 15 7 0 I ' I I I I I I I I I I

I
I I I

I
I I I I I

I :11101010: RC RA RB

OP=EA FEQ

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE
is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location. SRCA and SRCB are single-precision
floating-point numbers.

12·68 INSTRUCTION SET

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FEQ trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

FGE FGE

Floating-Point Greater Than Or Equal To, Single-Precision

Operation:

Assembler
Syntax:

Status:

IF SRCA (single-precision);:: SRCB (single-precision)
THEN DEST f-- TRUE
ELSE DEST f-- FALSE

FGE re, ra, rb

fpN

Operands: SRCA Content of register RA

Content of register RB

Register RC

SRCB

DEST

31 23 15 7 0

1
1 I I I I I I I
~1101110

I
RC

I

I
I I I

RA I '
I I I

RB

OP=EE FGE

Description: If the SRCA operand is greater than or equal to the SRCB operand, a
Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location. SRCA and SRCB
are single-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating- Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FGE trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 12-69

FGT

Operation:

Assembler
Syntax:

Status:

Floating-Point Greater Than, Single-Precision

IF SRCA (single-precision)> SRCB (single-precision)
THEN DEST+-- TRUE
ELSE DEST+-- FALSE

FGT re, ra, rb

fpN

FGT

Operands: SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15 7 0 I ' I I I I I I I I I I

I
I I I

I
I I I I

I >1101100: RC RA RB

OP=EC FGT

Description: If the SRCA operand is greater than the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location. SRCA and SRCB are
single-precision floating-point numbers.

12-70 INSTRUCTION SET

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FGT trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

FMUL

Operation:

Assembler
Syntax:

Status:

Floating-Point Multiply, Single-Precision

DEST (single-precision)~ SRCA (single-precision)*
SRCB (single-precision)

FMUL re, ra, rb

fpX, fpU, fpV, fpR, fpN

FMUL

Operands: SRCA Content of register RA

Content of register RB

Register RC

SRCB

DEST

31 23 15 7 0 I ' I I I I I I I '
11110100

I
RC

I

I
I I I

RA I '
I I I

RB

0P=F4 FMUL

Description: The SRCA operand is multiplied by the SRCB operand; the result is
rounded according to the FAM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the multiplication are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 1 Z.71

FSUB

Floating-Point Subtract, Single-Precision

Operation: DEST (single-precision)+- SRCA (single-precision) -
SRCB (single-precision)

Assembler
Syntax: FSUB re, ra, rb

Status: fpX, fpU, fpV, fpR, fpN

Operands: SRCA

SRCB

DEST

31 23 I ' I I I I I I I ' 11110010

Content of register RA

Content of register RB

Register RC

I I
RC

I I
RA

OP-F2 FSUB

I I I
RB

FSUB

Description: The SRCB operand is subtracted from the SRCA operand; the result
is rounded according to the FAM field of the Floating-Point
Environment Register and placed into the DEST location. The
operands and result of the subtraction are single-precision
floating-point numbers.

12·72 INSTRUCTION SET

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FSUB trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

HALT

Enter Halt Mode

Operation: Enter Halt mode on next cycle

Assembler
Syntax: HALT

Status: Not affected

Operands: Not applicable

31 23 15

I r 1 1 1 1 1 1 I ' 1 1 r 1 1
~0001001 Reserved I '

OP-89 HALT

I I I I
Reserved

HALT

7 0

I ' I I I I
Reserved I I

Description: The processor is placed into the Halt mode on the next cycle, except
that any external data accesses are completed.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur unless the Protection Violation trap
was disabled during reset (see Sections 11.2 and 10.2.2).

If the instruction following a Halt instruction has an exception (e.g.,
TLB Miss), the trap associated with this exception is taken before the
processor enters the Halt mode.

INSTRUCTION SET 1 :Z.73

IN BYTE IN BYTE

Insert Byte

Operation: DEST ~SRCA, with byte selected by BP
replaced by low-order byte of SRCB

Assembler
Syntax: INBYTE re, ra, rb

or
INBYTE re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I
0000110M

OP-OC, OD

I I
RC

15
I I

I
I

IN BYTE

7
I I

I RA

0
I I I I I

I RB or I

Description: A byte in the SRCA operand is selected by the Byte Pointer (BP) field
of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected byte is replaced by the
low-order byte of the SRCB operand, and the resulting word is placed
into the DEST location.

12-74 INSTRUCTION SET

Note: The selection of bytes within words is specified in Section
3.3.7.1.

INHW

Insert Half-Word

Operation: DEST +-SRCA, with half-word selected by BP replaced by
low-order half-word of SRCB

Assembler
Syntax: INHW re, ra, rb

or
INHW re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I

I
I I I

RC RA
I ' I I I I I I I ' 0111100M I '

OP-78, 79 INHW

I I I
RB or I

INHW

0

Description: A half-word in the SRCA operand is selected by the Byte Pointer (BP)
field of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected half-word is replaced by the
low-order half-word of the SRCB operand, and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3. 7 .1.

INSTRUCTION SET 12-75

INV

Invalidate

Operation: Reset all Valid bits in the Instruction Cache

Assembler
Syntax: INV

Status: Not affected

Operands; Not applicable

31 23 15 I ' I I I I I I I I I I I I I

I
I I I I I I

10011111 Reserved Reserved

OP-9F INV

INV

7 0

I ' I I I I
Reserved I I

Description: This instruction causes all Instruction Cache Valid bits to be reset on
the execution of the next successful branch, unless the blocks are
locked and the cache is enabled (see Sections 9.1 and 10.2). This
causes all Instruction Cache blocks to become invalid.

12·78 INSTRUCTION SET

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

IRET

Interrupt Return

Operation: Perform an interrupt return sequence

Assembler
Syntax: IRET

Status: Not affected

Operands: Not applicable

31 23 15
I I I I I I I I I I ' I I I I I I I

; 0 0 0 1 0 0 0 Reserved I Reserved

OP·88 IRET

IRET

7 0
I I ' I I I I

Reserved I I

Description: This instruction performs the interrupt return sequence described in
Section 8.3.4.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

INSTRUCTION SET 1Z.77

IRETINV IRETINV

Interrupt Return and Invalidate

Operation: Perform an interrupt return sequence, and reset all valid bits in the
Instruction Cache

Assembler
Syntax: IRETINV

Status: Not affected

Operands: Not applicable

31 23

1
1 I I I I I I I ' I I I I I

10001100 Reserved

OP-SC IRETINV

7
I I I I I

Reserved I ' I I I I
Reserved

Description: This instruction performs the interrupt return sequence described in
Section 8.3.4. When the sequence begins, all Instruction Cache Valid
bits are reset to zeros. This causes all Instruction Cache blocks to
become invalid, unless the blocks are locked and the cache is
enabled (see Sections 9.1 and 10.2).

12-78 INSTRUCTION SET

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

JMP JMP
Jump

Operation: PC+-TARGET
Execute delay instruction

Assembler
Syntax: JMP target

Status:

Operands:

Not affected

TARGET A=O: 117 ... 110//19 ... 12 (sign-extended to 30 bits)+PC
A= 1 : 117 ... 11 01119 ... 12 (zero-extended to 30 bits)

31 23 15 7 0 I ' I I I I I I I I I I I I

I
I I I I I

I
I I I I I I I

:1010000< 117 ... 110 Reserved 19 ... 12

OP-AO, A1 JMP

Description: A non-sequential instruction fetch occurs to the instruction address
given by the TARGET operand. The instruction following the JMP is
executed before the non-sequential fetch occurs.

I

INSTRUCTIONSET 12-79

JMPF JMPF

Jump False

Operation: IF SRCA =FALSE THEN PC~ TARGET
Execute delay instruction

Assembler
Syntax: JMPF ra, target

Status: Not affected

Operands: SRCA Content of register RA

TARGET A=O: 117 ... 110//19 ... 12 (sign-extended to 30 bits}+ PC
A= 1: 117 ... 110// 19 ... 12 (zero-extended to 30 bits)

31 23 15 7 I ' I I I I I I I I I I I I

I
I I I I I I I

I
I I I I I I

:1010010< 117 ... 110 RA 19 ... 12

OP-A4, A5 JMPF

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

12·80 INSTRUCTION SET

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPF is executed regardless of the
value of SRCA.

0
I

I

JMPFDEC JM PF DEC

Jump False and Decrement

Operation: IF SRCA= FALSE THEN

Assembler
Syntax:

Status:

Operands:

SRCA f- SRCA-1
PCf-TARGET

ELSE
SRCAf-SRCA-1

Execute delay instruction

JMPFDEC

Not affected

SRCA

TARGET

ra, target

Content of register RA

A= 0: 117 ... 110//19 ... 12 (sign-extended to 30 bits)+ PC
A= 1: 117 ... 110II19 ... 12 (zero-extended to 30 bits)

31 23 15 7 0

1
1 I I I I I I I
1011010~

I I I
117 ... 110

I I

I
I I I I

RA
I I I

I
I I I I I I

I 19 ... 12

OP-84, 85 JMPFDEC

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE, this instruction has no effect on the
instruction-execution sequence.

The SRCA operand is decremented by one, regardless of whether or
not the non-sequential instruction fetch occurs. Note that a negative
number for the SRCA operand is a Boolean TRUE.

The instruction following the JMPFDEC is executed regardless of the
value of SRCA.

INSTRUCTIONSET 12-81

JMPFI JMPFI

Jump False Indirect

Operation: IF SRCA=FALSE THEN PC+-SRCB
Execute delay instruction

Assembler
Syntax: JMPFI ra, rb

Status: Not affected

Operands: SRCA Content of register RA

SRCB Content of register RB

31 23 15 I ' I I I I I I I I I I I I I 11000100 Reserved RA

OP·C4 JMPFI

I I
RB l

Description: If the SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

12-112 INSTRUCTION SET

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPFI is executed regardless of the
value of SRCA.

JMPI JMPI

Jump Indirect

Operation: PC+...SRCB
Execute delay instruction

Assembler
Syntax: JMPI rb

Status: Not affected

Operands: SRCB Content of register RB

31 23 15 I ' I I I I I I I I I I I I

I
I I I I ~1000000 Reserved Reserved

OPxCO JMPI

7
I

I '
I I
RB

Description: A non-sequential instruction fetch occurs to the instruction address
given by the SRCB operand. The instruction following the JMPI is
executed before the non-sequential fetch occurs.

0

INSTRUCTION SET 12-83

JMPT JMPT
Jump True

Operation: IF SRCA =TRUE THEN PC+-TARGET
Execute delay instruction

Assembler
Syntax: JMPT ra, target

Status: Not affected

Operands: SRCA Content of register RA

TARGET A= O: 117 •.• 110//19 •.. 12 (sign-extended to 30 bits)+ PC
A= 1: 117 •.• 110//19 •.. 12 (zero-extended to 30 bits)

31 23 15 7 0 I ' I >010110A: 117 ... 110 RA 19 ... 12

OP·AC,AD JMPT

Description: If SRCA is a Boolean TRUE, a non-sequential instruction fetch occurs
to the instruction address given by the TARGET operand.

f :z.84 INSTRUCTION SET

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPT is executed regardless of the
value of SRCA.

JMPTI JMPTI

Jump True Indirect

Operation: IF SRCA=TRUE THEN PC+-SRCB
Execute delay instruction

Assembler
Syntax: JMPTI ra, rb

Status: Not affected

Operands: SRCA Content of register RA

SRCB Content of register RB

31 23 I ' I I I I I I I '
11001100

15

I I I I I I ' I
Reserved _

OP-CC JMPTI

I I
RA

I I
RB

Description: If the SRCA is a Boolean TRUE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPTI is executed regardless of the
value of SRCA.

0

INSTRUCTIONSET 1lMIS

LOAD

Load

Operation: DEST+- EXTERNAL WORD [SRCB]

Assembler
Syntax: LOAD 0, cntl, ra, rb

or

Status:

Operands:

LOAD 0, cntl, ra, const8

Not affected

SRCB M = O: Content of register RB

LOAD

M= 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23 15

I ' I I I I I I 11
0001011MO ~~I I I I

OP-16, 17 LOAD
Res

I I
RA

7 0

1 1 I I I I I
. RB or I .

Description: The external word addressed by the SRCB operand is placed into the
DEST location.

12. INSTRUCTION SET

The CNTL field of the LOAD instruction affects the bus access as
described in Section 3.3.2.

LOADL LOADL

Operation:

Assembler
Syntax:

Status:

Operands:

Load and Lock

DEST+- EXTERNAL WORD [SRCB],
assert LOCK output during access

LOADL 0, cntl, ra, rb
or

LOADL 0, cntl, ra, const8

Not affected

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RA

31 23 15 7
I I I I

I
I I I

CNTL RA I I I I I I I I 11
?000011MO

OP-06, 07 LOADL
Res

I I I I
RB or I

0

Description: The external word addressed by the SRCB operand is placed into the
DEST location.

The CNTL field of the LOADL instruction affects the bus access as
described in Section 3.3.2.

The LOCK output is asserted during the bus access.

INSTRUCTION SET 1 z.117

LOADM LO ADM
Load Multiple

Operation: DEST •.. DEST +COUNT~ EXTERNAL WORD [SRCB] ...
EXTERNAL WORD [SRCB+(COUNT*4}]

Assembler
Syntax: LOADM 0, cntl, ra, rb

or

Status:

Operands:

LOADM 0, cntl, ra, const8

Not affected

SRCB M = 0: Content of register RB
M = 1: I (zero-extended to 32 bits}

DEST register RA

31 23 15 7 0
I I I I I I I I I I I I I I I CNTL RA RB or I 1 1 I I I I I I 11

0011011MO

OP-36, 37 LO ADM
Res

Description: External words at consecutive word addresses, beginning with the
word addressed by the SRCB operand, are placed into consecutive
registers, beginning with the DEST location.

12..ae INSTRUCTION SET

The total number of words accessed in the sequence is specified by
the Count Remaining (CR} field of the Channel Control Register
(which also appears in the Load/Store Count Remaining Register} at
the beginning of the bus access. The total number of words is the
value of the CR field plus one. The CNTL field of the LOADM
instruction affects the bus access as described in Section 3.3.2.

Note: The address and register-number sequences for the LOADM
instruction are specified in Section 3.3.5.

LOADSET

Load and Set

Operation: DEST+- EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] +- h'FFFFFFFF',
assert LOCK output during access

Assembler
Syntax: LOADSET 0, cntl, ra, rb

or

Status:

Operands:

LOADSET 0, cntl, ra, const8

Not affected

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23

11 I I I I I I 11
0010011MO

OP ·26, 27
Res

15

I I I I 11
CNTL

LOADSET

I I
RA

7

11

LOADSET

I I I
RB or I

0

Description: The external word addressed by the SRCB operand is placed into the
DEST location. After the DEST location is altered, the external word
addressed by the SRCB operand is written, atomically, with a word
consisting of a 1 in every bit position.

The CNTL field of the LOADSET instruction affects the bus access as
described in Section 3.3.2.

The LOCK output is asserted throughout the LOADSET operation.

INSTRUCTION SET 12-89

MFSR

Move from Special Register

Operation: DEST +-SPECIAL

Assembler
Syntax: MFSR re, spid

Status: Not affected

Operands: SPECIAL

DEST

Content of special-purpose register SA

Register RC

31 23 15 7 I ' I I I I I I I I I I I

I
I I I

11000110 RC SA I '
OP·C6 MFSR

I I I I
Reserved

Description: The SPECIAL operand is placed into the DEST location.

MFSR

0

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
DEST location is not altered.

12-llO INSTRUCTION SET

MFTLB MFTLB

Move from Translation Look-Aside Buffer Register

Operation: DEST+-- TLB [SRCA]

Assembler
Syntax: MFTLB re, ra

Status:

Operands:

31

Not affected

SRCA

DEST

23 I ' I I I I I I I
>0110110:

I

OP-BS

Content of register RA, bits 6 ... 0

Register RC

15
I I

I
I I I

I RC RA

MFTLB

7
I I I I

Reserved

I

Description: The Translation Look-Aside Buffer (TLB) register whose register
number is specified by the SRCA operand is placed into the DEST
location.

0

I

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur. If a trap occurs, the DEST location
is not altered.

INSTRUCTION SET 12-91

MTSR

Move to Special Register

Operation: SPDEST +- SRCB

Assembler
Syntax: MTSR spid, rb

Status: Not affected, unless the destination is the ALU Status Register

Operands: SRCB Content of register RB

SPDEST Special-purpose register SA

31 23 15 7 I ' I 1 1 0 0 1 1 1 0 Reserved SA

OP-CE MTSR

Description: The SRCB operand is placed into the SPECIAL location.

I I
RB

MTSR

1

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

12·92 INSTRUCTION SET

MTS RIM

Move to Special Register Immediate

Operation: SPDEST +- 0116

Assembler
Syntax: MTSRIM spid, const16

MTSRIM

Status: Not affected, unless the destination is the ALU Status Register

Operands: 0116 115 ... 18//17 ... 10 (zero-extended to 32 bits)

SPDEST

31 23 I ' I I I I I I I '
0 0 0 0 0 1 0 0

Special-purpose register SA

I I I I
115 ... 18

15

I ' I I
SA

OP· 04 MTSRIM

7

I '
0

I I I I
17 ... 10

Description: The 0116 operand is placed into the SPECIAL location.

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

INSTRUCTIONSET t:Z.13

MTTLB

Move to Translation Look-Aside Buffer Register

Operation: TLB [SRCA]+-SRCB

Assembler
Syntax: MTILB ra, rb

Status: Not affected

Operands: SRCA Content of register RA, bits 6 ... 0

SRCB Content of register RB

31 23 15 7

1
1 I I I I I I I ' I I I I I

. 1 O 1 1 1 1 1 O _ Reserved I ' RA I '
OP-BE MTTLB

I I
RB

MTTLB

0

Description: The SRCB operand is placed into the Translation Look-Aside Buffer
(TLB) register whose register-number is specified by the SRCA
operand.

12-94 INSTRUCTION SET

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur. If a trap occurs, the TLB register is
not altered.

MUL MUL

Multiply Step

Operation: Perform one-bit step of a multiply operation

Assembler
Syntax: MUL re, ra, rb

or
MUL re, ra, const 8

Status: V, N, z. C

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0110010M

I I
RC

15

I '
OP-64, 65 MUL

I I
RA

I I I I
RB or I 1

Description: If the least-significant bit of the Q Register is 1, the SRCA operand is
added to the SRCB operand. If the least-significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

The content of the Q Register is appended to the result of the add,
and the resulting 64-bit value is shifted right by one bit position; the
true sign of the result of the add fills the vacated bit position (i.e., the
sign of the result is complemented if an overflow occurred during the
add operation). The high-order 32 bits of the 64-bit shifted value are
placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the Q Register.

Examples of integer multiply operations appear in Section 2.6.2.

INSTRUCTION SET 12-95

MULL MULL

Multiply Last Step

Operation: Complete a sequence of multiply steps (for signed multiply)

Assembler
Syntax: MULL re, ra, rb

or
MULL re, ra, const 8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0 I ' I I I I I I I '
0110011M

I I
RC

I I

I
I I I

RA I ' I I I I
RB or I

0P=66, 67 MULL

Description: If the least-significant bit of the Q Register is 1, the SRCA operand is
subtracted from the SRCB operand. If the least-significant bit of the Q
register is 0, a zero word is subtracted from the SRCB operand.

12·9& INSTRUCTION SET

The content of the Q Register is appended to the result of the
subtract, and the resulting 64-bit value is shifted right by one bit
position; the true sign of the result of the subtract fills the vacated bit
position (i.e., the sign of the result is complemented if an overflow
occurred during the subtract operation). The high-order 32 bits of the
64-bit shifted value are placed into the DEST location. The low-order
32 bits of the shifted value are placed into the Q Register.

Examples of integer multiply operations appear in Section 2.6.2.

MULTIPLU MULTIPLU

Integer Multiply, Unsigned

Operation: DEST~ SRCA * SRCB

Assembler
Syntax: MUL TIPLU re, ra, rb

Status: None

Operands: SRCA

SRCB

DEST

31 23

I ' I I I I I I I '
11100010

Content of register RA

Content of register RB

Register RC

I I
RC

15

I '
I I
RA

OP= E2 MUL TIPLU

7

I '
I I I

RB

Description: The SRCA operand is multiplied by the SRCB operand. The
low-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
unsigned integers and produces an unsigned result.

The contents of the Q register are undefined after a MULTIPLU
operation.

0

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an MUL TIPLU
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 12-97

MULTIPLY MULTIPLY

Integer Multiply, Signed

Operation: DEST+-- SRCA * SRCB

Assembler
Syntax: MULTIPLY re, ra, rb

Status: None

Operands: SRCA

SRCB

DEST

Content of register RA

Content of register RB

Register RC

31 23 15 0
I I I I

RC 11111 I I I I I 11
. 100000

I

I
I I

RA

I I I I
RB

OP-EO MULTIPLY

Description: The SRCA operand is multiplied by the SRCB operand. The
low-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
two's-complement integers and produces a two's-complement result.

12.99 INSTRUCTION SET

The contents of the a register are undefined after a MULTIPLY
operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an MULTIPLY
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

MULTM

Integer Multiply Most-Significant Bits, Signed

Operation: DEST+-- SRCA * SRCB

Assembler
Syntax: MUL TM re, ra, rb

Status: None

Operands: SRCA

SRCB

DEST

31 23 I ' I I I I I I I '
11011110

OPsDE

Content of register RA

Content of register RB

Register RC

15
I I I

I
I I

RC RA

MULTM

7
I I ' I I I

RB

MULTM

0

Description: The SRCA operand is multiplied by the SRCB operand. The
high-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
two's-complement integers and produces a two's-complement result.

The contents of the Q register are undefined after a MUL TM
operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an MUL TM trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

INSTRUCTION SET 12-99

MULTMU MULTMU

Integer Multiply Most-Significant Bits, Unsigned

Operation: DEST+- SRCA * SRCB

Assembler
Syntax: MUL TMU re, ra, rb

Status: None

Operands: SRCA

SRCB

DEST

31 23 I ' I I I I I I I '
11011111

Content of register RA

Content of register RB

Register RC

I I
RC

15

I '
I I
RA

OP- OF MUL TMU

7

I '
I I I

RB

Description: The SRCA operand is multiplied by the SRCB operand. The
high-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
unsigned integers and produces an unsigned result.

The contents of the Q register are undefined after a MUL TMU
operation.

0

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an MUL TMU
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB and DEST.

12-100 INSTRUCTION SET

MULU

Multiply Step, Unsigned

Operation: Perform one-bit step of a multiply operation (unsigned)

Assembler
Syntax: MULU re, ra, rb

or
MULU re, ra, const 8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

1
1 I I I I I I I
0111010M

I I
RC I ' I I

RA I ' I I I I
RB or I

OP-74, 75 MULU

MULU

0

Description: If the least-significant bit of the Q Register is 1, the SRCA operand is
added to the SRCB operand. If the least-significant bit of the a
register is 0, a zero word is added to the SRCB operand.

The content of the Q register is appended to the result of the add, and
the resulting 64-bit value is shifted right by one bit position; the
carry-out of the add fills the vacated bit position. The high-order 32
bits of the 64-bit shifted value are placed into the DEST location. The
low-order 32 bits of the shifted value are placed into the a Register.

INSTRUCTION SET 12-101

NANO
NANO Logical

Operation: DEST+- N(SRCA & SRCB)

Assembler
Syntax: NANO re, ra, rb

or
NANO re, ra, const8

Status: N,Z

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I ' 1001101M

OP-9A, 98

I I
RC

15
I

I
I

NANO

7
I I
RA I '

NANO

I I I I
RB or I

0

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand. The one's-complement of the result is placed into the DEST
location.

12-102 INSTRUCTION SET

NOR

NOR Logical

Operation: DEST+- -(SRCA I SRCB)

Assembler
Syntax: NOR re, ra, rb

or
NOR re, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB

DEST

31 23 I ' I I I I I I I '
1001100M

OP-98, 99

M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

Register RC

I I
RC

I f '1

NOR

I I
RA

I I I I
RB orl

NOR

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB
operand. The one's-complement of the result is placed into the DEST
location.

INSTRUCTION SET 12·103

OR

Operation:

A..ssembler
Syntax:

Status:

OR Logical

DEST+- SRCA I SRCB

OR re, ra, rb
or

OR re, ra, const8

N,Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M= 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
1001001M

OP-92, 93

I
RC

15
I I

I
OR

7
I I I

RA I ' I I I I
RB or I

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

12-104 INSTRUCTION SET

OR

0

SETIP SETIP

Set Indirect Pointers

Operation: Load IPA, IPB, and IPC registers with operand-register numbers

Assembler
Syntax: SETIP re, ra, rb

Status: Not affected

Operands: Absolute-register numbers for registers RA, RB, and RC

31 23 15 7 I ' I
: 1 0 0 1 1 1 1 0: RC RA RB

OP-9E SETIP

I

Description: The IPA, IPB, and IPC registers are set to the register numbers of
registers RA, RB, and RC, respectively.

0

For programs in the User mode, a Protection Violation trap occurs if
RA, RB, or RC specifies a register that is protected by the Register
Bank Protect Register.

Note: This instruction has a delayed effect on the indirect pointer
registers as discussed in Section 5.6.

I

INSTRUCTION SET t:Z.t05

SLL

Operation:

Assembler
Syntax:

Status:

Operands:

31

Shift Left Logical

DEST+- SRCA « SRCB (zero fill)

SLL re, ra, rb
or

SLL re, ra, const8

Not affected

SRCA

SRCB

DEST

23

Content of register RA

M = O: Content of register RB, bits 4 ... 0
M= 1: I, bits 4 ... 0

Register RC

15 7

SLL

0 I ' I I I I I I I I I I I

I
I I I

I
I I I I I

I :1 0 o 0 0 0 0 M: RC RA RB or I

OP-80, 81

Description:

12-106 INSTRUCTION SET

SLL

The SRCA operand is shifted left by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

SQRT

Operation:

Assembler
Syntax:

Status:

Operands:

Floating-Point Square Root

DEST+-- SQRT(SRCA)

SQRT re, ra, FS

fpX, fpR, fpN

SRCA Content of register RA (single-precision f.p.)
or

Content of register RA and the twin of register RA
(double-precision f.p.)

DEST Register RC (single-precision f.p.)
or

SQRT

Register RC and twin of Register RC (double-precision f.p.)

Control: FS Format of source operand SRCA
Reserved for future use
Single-precision floating-point
Double-precision floating-point
Reserved for future use

00
01
10
11

31 23 I ' I I I I I I I
'.1100101

I I
RC

OP.ES SQRT

I I
RA

I I I I
Reserved

Description: This operation computes the square root of floating-point operand
SRCA; the result is rounded according to FRM field of the
Floating-Point Environment Register and placed into the DEST
location. The operand and result are single- or double-precision
floating-point numbers, as specified by FS.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an SQRT trap.
When the trap occurs, the IPA and IPC registers are set to reference
SRCA and DEST, and the IPB Register is set with the value of the FS
field.

INSTRUCTION SET 12·107

SRA SRA

Shift Right Arithmetic

Operation: DEST+- SRCA » SRCB (sign fill)

Assembler
Syntax: SRA re, ra, rb

or
SRA re, ra, const8

Status:

Operands: Content of register RA

Not affected

SRCA

SRCB M = O: Content of register RB, bits 4 ... o
M = 1: I, bits 4 ... 0

DEST Register RC

31 23 15 7 I ' I I I I I I I I I I

I
I I I

1000011M RC RA I '
OP-86, 87 SRA

I I I
RB or I

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; the sign of the SRCA operand fills
vacated bit positions. The result is placed into the DEST location.

12-108 INSTRUCTION SET

0

SRL

Shift Right Logical

Operation: DEST +-SRCA»SRCB (zero fill)

Assembler
Syntax: SAL re, ra, rb

or
SAL re, ra, const8

Status: Not affected

Operands: SRCA

SRCB

Content of register RA

M = 0: Content of register RB, bits 4 ... O
M = 1 : I, bits 4 ... 0

DEST Register RC

31 23 I ' I I I I I I I '
1000001M

OP-82, 83

I I
RC

15

I '
SRL

I I
RA

SRL

0
I I I I

RB or I I I

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

INSTRUCTION SET 12-109

STORE STORE

Store

Operation: EXTERNAL WORD [SRCB] +-- SRCA

Assembler
Syntax: STORE 0, cntl, ra, rb

or

Status:

Operands:

STORE 0, cntl, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M= 1: I (Zero-extended to 32 bits)

31 23 15 7

11 I I I I I I 11 I I I I I I I I I I I I

I : 0 0 0 1 1 1 1 M: 0: CNTL RA

' I
OP-1E, 1F I STORE

Res

0
I I I I I I

I RB or I

Description: The SRCA operand is placed into the external word addressed by the
SRCB operand.

12·110 INSTRUCTION SET

The CNTL field of the STORE instruction affects the bus access as
described in Section 3.3.2.

STOREL

Store and Lock

Operation: EXTERNAL WORD [SRCB] +-- SRCA,
assert LOCK output during access

Assembler
Syntax: STOREL 0, cnU, ra, rb

or
STOREL 0, cntl, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

31 23 15 7

I ' I I I I I I 11
0000111MO

'

I I I I I ' I I I I I I 1 •
CNTL . RA .

OP-OE, OF ST OREL
Res

STOREL

I I I
RB or I

Description: The SRCA operand is placed into the external word addressed by the
SRCB operand.

The CNTL field of the STOREL instruction affects the bus access as
described in Section 3.3.2.

The LOCK output is asserted during the bus access.

INSTRUCTION SET 12-111

ST OREM STOREM
Store Multiple

Operation: EXTERNAL WORD [SRCB] ... EXTERNAL WORD
[SRCB +(COUNT* 4)]
+- SRCA ... SRCA+COUNT

Assembler
Syntax: STOREM 0, cntl, ra, rb

or
STOREM 0, cntl, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

31 23 15 7 0

I I I I I I I I I I
0011111MO

I I I I
RB or I

I
I

OP-3E, 3F I

Res
STOREM

Description: The contents of consecutive registers, beginning with the SRCA
operand, are placed into external words at consecutive word
addresses, beginning with the word addressed by the SRCB
operand.

12·112 INSTRUCTION SET

The total number of words accessed in the sequence is specified by
the Count Remaining (CR) field of the Channel Control Register
(which also appears in the Load/Store Count Remaining Register) at
the beginning of the bus access. The total number of words is the
value of the CR field plus one. The CNTL field of the STOREM
instruction affects the access as described in Section 3.3.2.

Note: The address and register-number sequences for the STOREM
instruction are specified in Section 3.3.5.

SUB

Subtract

Operation: DEST+- SRCA- SRCB

Assembler
Syntax: SUB re, ra, rb

or
SUB re, ra, const8

Status: V, N, Z, c
Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 I ' I I I I I I I I I I I I

I
I I I

I : o o 1 o o 1 o M: RC RA

OP-24, 25 SUB

SUB

0
I I I I I

I RB or I

Description: The SRCA operand is added to the two's-complement of the SRCB
operand, and the result is placed into the DEST location.

INSTRUCTION SET t2-tt3

SUBC

Subtract with Carry

Operation: DEST~ SRCA-SRCB-1 + C

Assembler
Syntax: SUBC re, ra, rb

or
SUBC re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0010110M

OP-2C,2D

I I
RC I f'r

SUBC

I I
RA

I I I I
RB or I

SUBC

0

Description: The SRCA operand is added to the one's-complement of the SRCB
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location.

12-114 INSTRUCTION SET

SUB CS

Subtract with Carry, Signed

Operation: DEST+-SRCA-SRCB-1 +C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBCS re, ra, rb

or
SUBCS re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0010100M

I I
RC

OP-28, 29 SUBCS

I I
RA

SUB CS

I I I I
RB or I 1

Description: The SRCA operand is added to the one's-complement of the SRCB
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 12-115

SUB CU

Subtract with Carry, Unsigned

Operation: DEST+-SRCA-SRCB-1 +C
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBCU re, ra, rb

or
SUBCU re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST

31 23

1
1 I I I I I I I

0010101M

OP-2A, 28

Register RC

I I
RC

15

I '
SUBCU

I I
RA

7

I '

SUBCU

I I I I
RB or I

0

I I

Description: The SRCA operand is added to the one's-complement of the SRCB
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes an
unsigned underflow, an Out of Range trap occurs.

12-116 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

SUBR

Subtract Reverse

Operation: DEST +-SRCB-SRCA

Assembler
Syntax: SUBR re, ra, rb

or
SUBR re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M= 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0011010M

OP-34,35

I I
RC

15
I

I
I

SUBR

7
I I
RA I '

SUBR

0
I I I I

RB or I

Description: The SRCB operand is added to the two's-complement of the SRCA
operand and the result is placed into the DEST location.

INSTRUCTION SET 12·117

SUB RC
Subtract Reverse with Carry

Operation: DEST+-- SRCB-SRCA-1 + C

Assembler
Syntax: SUBRC re, ra, rb

or
SUBRC re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0011110M

OP-3C, 30

I I
RC

15
I I

I
I

SUBRC

7
I I

I RA

SUB RC

0
I I I I I I I RB or I

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location.

12·118 INSTRUCTION SET

SUB RCS SUB RCS

Subtract Reverse with Carry, Signed

Operation: DEST+-- SRCB-SRCA-1 + C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRCS re, ra, rb

or
SUBRCS re, ra, constB

Status: V, N, z. C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0
I I I I I

I
I I I

I
I I I I I

RC RA RB or I
I ' I I I I I I I ' 0011100M

OP- 38, 39 SUBRCS

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

I

INSTRUCTION SET 12°119

SUBRCU
Subtract Reverse with Carry, Unsigned

Operation: DEST+-SRCB-SRCA-1 +C
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRCU re, ra, rb

or
SUBRCU re, ra, const8

Status: V, N, Z, C

Operands: SRCA

SRCB

DEST

31 23
11 I I I I I I 11
0011101M

QP.3A,38

Content of register RA

M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

Register RC

I I
RC

SUBRCU

I I
RA

SUBRCU

I I I I
RB or I

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes an
unsigned underflow, an Out of Range trap occurs.

12.120 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

SUB RS SUB RS

Subtract Reverse, Signed

Operation: DEST +-SRCB-SRCA
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRS re, ra, rb

or
SUBRS re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

I r 1 1 1 1 1 1 I
0011000M

OP-30, 31

Register RC

15
I I

I
I

RC

SUB RS

7
I I
RA

I I I I
RB or I

Description: The SRCB operand is added to the two's-complement of the SRCA
operand, and the result is placed into the DEST location. If the add
operation causes a two's-complement signed overflow, an Out of
Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

0

INSTRUCTION SET 12·121

SUB RU SUB RU

Subtract Reverse, Unsigned

Operation: DEST +-SRCB-SRCA
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRU re, ra, rb

or
SUBRU re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
0011001M

0P=32,33

I I
RC

15

I '
SUBRU

I I
RA

7

I ' I I I
RB or I

0

Description: The SRCB operand is added to the two's-complement of the SRCA
operand, and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out of Range trap
occurs.

12-122 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

SUBS SUBS

Subtract, Signed

Operation: DEST +-SRCA-SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBS re, ra, rb

or
SUBS re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

11 I I I I I I I I I

I
I I I

I : 0 0 1 0 0 0 0 M: RC RA

OP-20, 21 SUBS

0
I I I I I

RB or I

Description: The SRCA operand is added to the two's-complement of the SRCB
operand, and the result is placed into the DEST location. If the add
operation causes a two's-complement signed overflow, an Out of
Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

I

INSTRUCTION SET 12-123

SUBU

Subtract, Unsigned

Operation: DEST +-SRCA-SRCB
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBU re, ra, rb

or
SUBU re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I ' 0 0 1 0 0 0 1 M

OP-22, 23

I
RC

15
I I

I
I

SUBU

I I
RA

SUBU

I I I I I 0
1

RB or I .

Description: The SRCA operand is added to the two's-complement of the SRCB
operand, and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out of Range trap
occurs.

12-124 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

XNOR

Exclusive-NOR Logical

Operation: DEST+- - (SRCA" SRCB)

Assembler
Syntax: XNOR re, ra, rb

or
XNOR re, ra, const8

Status: N,Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 I ' I I I I I I I '
1001011M

I I
RC

15

I '
OP-96, 97 XNOR

I I
RA

7

I '

XNOR

0
I I I I

RB or I I I

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCB operand. The one's-complement of the result is placed into the
DEST location.

INSTRUCTION SET 12·125

XOR XOR

Exclusive-OR Logical

Operation: DEST+- SRCA /\ SRCB

Assembler
Syntax: XOR re, ra, rb

or
XOR re, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

1
1 I I I I I I I
1001010M

OP =94, 95

I I
RC

XOR

I I
RA

I I I I
RB or I

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCB operand, and the result is placed into the DEST location.

12·126 INSTRUCTION SET

1

12.4 INSTRUCTION INDEX BY OPERATION CODE

01 CONSTN Constant, Negative
02 CONSTH Constant, High
03 CONST Constant
04 MTS RIM Move to Special Register Immediate
06,07 LOADL Load and Lock
08,09 CLZ Count Leading Zeros
OA,OB EXBYTE Extract Byte
OC,OD IN BYTE Insert Byte
OE,OF STOREL Store and Lock
10, 11 ADDS Add, Signed
12,13 ADDU Add, Unsigned
14,15 ADD Add
16, 17 LOAD Load
18,19 ADDCS Add with Carry, Signed
1A,1B ADDCU Add with Carry, Unsigned
1C,1D ADDC Add with Carry
1E,1F STORE Store
20,21 SUBS Subtract, Signed
22,23 SUBU Subtract, Unsigned
24,25 SUB Subtract
26,27 LOADS ET Load and Set
28,29 SUBCS Subtract with Carry, Signed
2A,28 SUBCU Subtract with Carry, Unsigned
2C,2D SUBC Subtract with Carry
2E,2F CPBYTE Compare Bytes
30,31 SUB RS Subtract Reverse, Signed
32,33 SUBRU Subtract Reverse, Unsigned
34,35 SUBR Subtract Reverse
36,37 LOADM Load Multiple
38,39 SUB RCS Subtract Reverse with Carry, Signed
3A,38 SUBRCU Subtract Reverse with Carry, Unsigned
3C,3D SUBRC Subtract Reverse with Carry
3E,3F STOREM Store Multiple
40,41 CPLT Compare Less Than
42,43 CPL TU Compare Less Than, Unsigned
44,45 CPLE Compare Less Than or Equal To
46,47 CPLEU Compare Less Than or Equal To, Unsigned
48,49 CPGT Compare Greater Than
4A,48 CPGTU Compare Greater Than, Unsigned
4C,4D CPGE Compare Greater Than or Equal To
4E,4F CPGEU Compare Greater Than or Equal To, Unsigned
50,51 ASLT Assert Less Than
52,53 ASL TU Assert Less Than, Unsigned
54,55 ASLE Assert Less Than or Equal To
56,57 ASL EU Assert Less Than or Equal To, Unsigned
58,59 ASGT Assert Greater Than

INSTRUCTION SET 12·127

5A,5B ASGTU Assert Greater Than, Unsigned
5C,5D ASGE Assert Greater Than or Equal To
5E,5F ASGEU Assert Greater Than or Equal To, Unsigned
60,61 CPEQ Compare Equal To
62,63 CPNEQ Compare Not Equal To
64,65 MUL Multiply Step
66,67 MULL Multiply Last Step
68,69 DIVO Divide Initialize
6A,68 DIV Divide Step
6C,6D DIVL Divide Last Step
6E,6F DIVREM Divide Remainder
70,71 ASEQ Assert Equal To
72,73 ASNEQ Assert Not Equal To
74,75 MULU Multiply Step, Unsigned
78,79 INHW Insert Half-Word
7A,7B EXTRACT Extract Word, Bit-Aligned
7C,7D EXHW Extract Half-Word
7E EXHWS Extract Half-Word, Sign-Extended
80,81 SLL Shift Left Logical
82,83 SRL Shift Right Logical
86,87 SRA Shift Right Arithmetic
88 IRET Interrupt Return
89 HALT Enter HALT Mode
ac IRETINV Interrupt Return and Invalidate
90,91 AND AND Logical
92,93 OR OR Logical
94,95 XOR Exclusive-OR Logical
96,97 XNOR Exclusive-NOR Logical
98,99 NOR NOR Logical
9A,9B NANO NANO Logical
9C,9D ANON AND-NOT Logical
9E SETIP Set Indirect Pointers
9F INV Invalidate
AO,A1 JMP Jump
A4,A5 JMPF Jump False
A8,A9 CALL Call Subroutine
AC.AD JMPT Jump True
B4,B5 JMPFDEC Jump False and Decrement
B6 MFTLB Move from Translation Look-Aside Buffer Register
BE MTTLB Move to Translation Look-Aside Buffer Register
co JMPI Jump Indirect
C4 JMPFI Jump False Indirect
C6 MFSR Move from Special Register
ca CALLI Call Subroutine, Indirect
cc JMPTI Jump True Indirect
CE MTSR Move to Special Register
07 EMULATE Trap to Software Emulation Routine

12-128 INSTRUCTION SET

DS-DD Reserved for emulation (trap vector numbers 24-29)
DE MULTM Integer Multiply Most-Significant Bits, Signed
DF MULTMU Integer Multiply Most-Significant Bits, Unsigned
EO MULTIPLY Integer Multiply, Signed
E1 DIVIDE Integer Divide, Signed
E2 MULTIPLU Integer Multiply, Unsigned
E3 DIVIDU Integer Divide, Unsigned
E4 CONVERT Convert Data Format
E5 SQRT Square Root
E6 CLASS Classify Floating-Point Operand
E7-E9 Reserved for emulation (trap vector number 39-41)
EA FEQ Floating-Point Equal To, Single-Precision
EB DEQ Floating-Point Equal To, Double-Precision
EC FGT Floating-Point Greater Than, Single-Precision
ED DGT Floating-Point Greater Than, Double-Precision
EE FGE Floating-Point Greater Than or Equal To,

Single-Precision
EF DGE Floating-Point Greater Than or Equal To,

Double-Precision
FO FADD Floating-Point Add, Single-Precision
F1 DADD Floating-Point Add, Double-Precision
F2 FSUB Floating-Point Subtract, Single-Precision
F3 DSUB Floating-Point Subtract, Double-Precision
F4 FMUL Floating-Point Multiply, Single-Precision
F5 DMUL Floating-Point Multiply, Double-Precision
F6 FDIV Floating-Point Divide, Single-Precision
F7 DDIV Floating-Point Divide, Double-Precision
FS Reserved for emulation (trap vector number 56)
F9 FDMUL Floating-Point Multiply, Single-to-Double-Precision
FA-FF Reserved for emulation (trap vector numbers 58-63)

INSTRUCTION SET 12-129

BUS SUMMARY AND TIMING DIAGRAMS

Table A·1 Signal Summary

Synch
Signal Name Signal Function Type (1) Async

A(31-0) Address Bus Three-State Output Synch

BGRT Bus Grant Input Synch

BREO Bus Request Output Synch

BURST Burst Request Three-State Output Synch

BWE(3-0) Byte Write Enable Three-State Output Synch

CNTL(1-0) CPU Control Input Async

DI Reserved Tied High

DIV2 Divide Clock By 2 Input N/A

ERL YA Early Address Input Synch

ERR Data Error Input Synch

HIT Reserved Tied High

110 Instruction or Data Access Three-State Output Synch

ID(31-0) Instruction/Data Bus Bi-directional Synch

INCLK Input Clock Input N/A

INTR(3-0) Interrupt Request Input Async

10/MEM Input/Output or Memory Access Three-State Output Synch

LOCK Lock Three-State Output Synch

MEMCLK Memory Clock Bidirectional N/A

MPGM(1-0) MMU Programmable Three-State Output Synch

MSERR Master/Slave Error Output Synch

OPT(2-0) Option Control Three-State Output Synch

PG MODE Page-Mode Access Three-State Output Synch

(1) The signals labeled "Three-state output" and "bi-directional" (except MEMCLK) are disabled when
the bus is granted to an external master. All outputs (except MSERR) may be disabled by
asserting the TEST input, or through the IEEE1149.1-1990 (JTAG) Test Access Port.

BUS SUMMARY AND TIMING DIAGRAMS A-1

Table A·1 Signal Summary (continued)

Synch
Signal Name Signal Function Type (1) Async

PWRCLK Power for MEMCLK Driver MEMCLK Power N/A

RNi Read/Write Three-State Output Synch

RDN Read Narrow Input Synch

ROY Data Ready Input Synch

RESET Reset Input Async

REO Data Request Three-State Output Synch

STAT(2-0) CPU Status Output Synch

SUP/US Supervisor/User Mode Three-State Output Synch

TCK Test Clock Input Input Async

TOI Test Data Input Input Synch*

TOO Test Data Output Three-State Output Synch*

TEST Test Mode Input Async

TMS Test Mode Select Input Synch*

'fRS'f Test Reset Input Async

TRAP(1-0) Trap Request Input Async

WARN Warn Edge-Sensitive Input Async

WBC Reserved Tied High

(1) The signals labeled "Three-state output• and "bidirectional" (except MEMCLK) are disabled when
the channel ismtted to an external master. All outputs (except MSERR) may be disabled by
asserting the input, or through the IEEE1149.1-1990 (JTAG) Test Access Port.

(*) The signals TOI, TOO and TMS are all Synchronous to the Test Clock Input (TCK).

A-2 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·1 Relationship of INCLK, Internal Processor Clock, and MEMCLK

INCLK __} \ I \ I \ I
Internal __} \ I \ I \ I Processor

Clock

MEMCLK: __} \ I \ I \ I DIV2 High

MEMCLK: __} \ I \ DIV2 Low

Note: The level applied to PWRCLK does not affect the relationship of the signals depicted above.

BUS SUMMARY AND TIMING DIAGRAMS A·3

Figure A·2 Processor Reset

MEMCLK

, _________ {
' r

Figure A·3 Processor Reset-8-Bit Narrow Read Interface

MEMCLK

, _________ {

' r
Figure A·4 Processor Reset-16-Bit Narrow Read Interface

MEMCLK

RESET \ r
'fRST \ r
RDN

A-4 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·S

MEMCLK

A(31--0)

R/W

110

10(31-0)

Simple Data Read Access

: Address N

/& !••••••••••••••~•••••••••••••••••••••••••••••••••••!•• •••••··••••• !•••••••••••••••••·••••••••••··•

•})}ft •••••• ···\ili'Y II ;If

DataN • .• ·.•· .. • .• • .. • .• • .•• _.• .• •_.· .• • .• ·.• .• • .• • •• ·.;.•· .• • •• ·.•• •• • .• • •• • .• • •• • .• ·.: .• • •• • .• ·.•_.· .• • •• • .• • .•. ·.•• •• • .• • •• • .•. •.•.·•.• .• •.•• •. • •• • •• •.• .• • •• • •• • .• ·.··.·.i •. • •• ~ •. • •• • •• • •• ·.•• •• • •• • .• ·.•• • .' •• • ·•• fit •II iI · ••.!.··.•.-.• .• • • •.• .. • . .-.•

; ••••·•••·•·•·•·•·•••·••••••••••••>.••••••·••••••Wff ·

* * The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

BUS SUMMARY AND TIMING DIAGRAMS A·S

Figure A·&

1 MEMCLK

A(31--0)

R/W

PG MODE

VD

10(31--0)

Simple Data Read Access (Multl·Cycle)

' Address N

• • The ADY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

A-6 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·7 Simple Data Write Access

MEMCLK

A(3Hl) 'Address N

A:•·········;i•••••···••t••··••••1i·•····························

RtW

;···············1··~················~·························· !••··············

110 ····················~················~ 1£ !•••~•••••••••••••••••••••••••1•••••••••••!1 ;

10(31-0)
--"1-----.................... ,....,,....-..... ___ ~\-:-:·:·:·:·:·:·:·::::~::>:·:····· J
•:t:·••:•t~t· ••••••••••••{•••it•I••••••::••:•:·••::•••:;••• it:<·•:!)/) /jb t?:bi\f .·.·.·•·.·.·•·.·.·.·•·.·.·.·•·•·•·•·•·•·•·•·•·•·•·•·•·•·•·•·•·••·•·········
.. I .. I .. t .. ••·•• .. t .. I ... •• .. • .. 1 .. J,..l,.I,..1,.I .. t .. m .. t .. •••·· .. l .. t .. •• ... ••••• .. ·•••· .. ··••• .. //\ .. ·, __ 0_a .. 1_a_N __ ., ___ ._ __ "'~I f III 1 ff I • i. tt

::::::;::::::::::\if::::····.·.···:·:·:-·:-:.:-:.:-:.·-:-:.:·:·:-:.:·:<::.::::r:·:.:·:·.·:·:·:·:·:·:·:·=JY

I~I •••••••••· I·.•.•;••·•••••·•••••••••7

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

BUS SUMMARY AND TIMING DIAGRAMS A-7

Figure A·S

MEMCLK

A(3Hl)

R/W

PG MODE

110

10(31-0)

Simple Data Write Access (Multi-Cycle)

' Address N

:t~?Vl.ww W) /ffi
.t .. t.,t .. r.:r .. t.,t .. ••• .. ·•·.• .. ••'' ... l .. '·•·· .. ·•·•· .. •·• .. ···•· .. ·•·••• .. •••.• .. ••·••• .. ! .. •• .. ••••• ... •.••.•·••• ... ···~ .. '•· __ _..._ ____ o_a_ta ... N ______ ...,_...1,. ___ _,, __ -<,
:·:···:·•::·:··4:··::·:·:· ?•ff I•Ii~4 , .. , •. , fy
•I i.I• .•::••:::::fr:•::·•:::::: ttt~•I' ····••••••••·r,

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

A-8 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·9 Page-Mode Read Access

MEMCLK

A(31--0) : Address N ~······························••!••••·························•;!••·············;i•·····················
A•••••••••·•••••••••••••••••••••i••••••••••·•••·•••·•••••••••••••••••••••••·••••••••••••••·••••••!••••·•••••••••••··•••••••••••••••••••••••••••••••••••••••i••••••••·••••••••••·•··••••

R/W

1J•···········••i••···1··1··········

1:···················••••!••··~···••i••···················
10(31--0) DataN

••••••·••••••••:•••::;: .·• .. ·.· ···•·•·•·•·•·•·•·••·•••·•''•'•·•'•'X.•••••••••:j·:• ·•·•··••·•·••·•·'j(y

I ~ •I.• .. •·••I.•.••·•·•····••·•.•; ••••.•••••••.•••.•••.• ,
\:)/··· ·············<v·····•·•· ·.·.···•· ···································••'•('••···•:•••:•;:x:•:•·•················

~··•·•• ·•····••·• .;·•····• rn·••····•·•••·••··•·•·•·····•···•••·•···;• •···•·•·•······••rm•·•··L %••·······r•·.•; I••••···•···•·········

.......... ; .. j. ..j.

ERL vA t••···i •••··•·••••IIiII IImi ···••••••··••···••.••·••••·I•.••II·•••••··•;.••• •••·I·••·•••·•·• .. •·····I·•··••••·••·•.••··•I•;I· •·•·••·········••·I I··••••.••·I; ·••r Irn•·•··•III IIit••••••.r·.·••tr

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

BUS SUMMARY AND TIMING DIAGRAMS A-9

Figure A·10

MEMCLK

A(3Hl)

R!W

Page-Mode Write Access

'Address N

" !~···~······························· ••!•·· ,:

" :··••!•••···•••!·. '

• • The ROY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

A-1 O BUS SUMMARY AND TIMING DIAGRAMS

Figure A·11

MEMCLK

A(31-0)

R/W

Read Access Followed by a Read Access (Page·Mode)

: Address N x
A••••••·••••••••••••••••••••[•••••••••••••••••••••••···••••

, ..••...••..•••..•••. !•····························

A•••••••••••••••••••••••••••••••i•••••••••••••••••••••••••••·•

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

BUS SUMMARY AND TIMING DIAGRAMS A-11

Figure A·12

MEMCLK

A(31-0)

R/W

PG MODE

110

10(31-0)

Read Access Followed by a Write Access (Page-Mode)

'Address N ' Address M

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

A-12 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·13

MEMCLK

A(31--0)

R/W

PGMODE

llD

10(31--0)

Write Access Followed by a Read Access (Page-Mode)

'Address N • Address M

DataM

The ADY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

BUS SUMMARY AND TIMING DIAGRAMS A-13

Figure A·14

MEMCLK

A(31-0)

R/W

PG MODE

110

10(31-0)

Write Access Followed by a Write Access (Page·Mode)

'Address N

DataM
I

Address M

. ".·.·.·.·.:.·.•.•.•.•.•.·.·.• ... •.• : Iii~i .·.•.•.•.•.•.•.•.•.·.•.•.·.·.•.•.• •.~.~ ..•. ·_.•.·.·,•,·.· .. !E:. ··········••Jttt ~

DataN
I

The ROY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all inttial burst-mode accesses.

A-14 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·15

MEMCLK

A(31-0)

RJW

PGMODE

1/0

10(31-0)

Burst-Mode Read Access

Address
N

The ADY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

BUS SUMMARY AND TIMING DIAGRAMS A-15

Figure A-16

MEMCLK

A(31-0)

PG MODE

10(31-0)

Burst-Mode Read Access (Multi-Cycle Initial Access)

Address
N

\

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

A-16 BUS SUMMARY AND TIMING DIAGRAMS

Figure A-17 Burst-Mode Write Access

MEMCLK

A(31--0)
Address

N

R/W

············••••l:•••·••l

PGMODE -··········-·········· ·~·····•·_R __ --r------.-'---......----......---..---

10(31-0)
Data

N

&

Data
N+4

&

Data
N+B

&

Data
N+12

ERL YA ·····················~·. j i ••. ,
The ROY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

~··

,

BUS SUMMARY AND TIMING DIAGRAMS A-17

Figure A·18

MEMCLK

A(3Hl)

R!W

ID(31-0)

Burst-Mode Write Access (Multi-Cycle Initial Access)

Address
N

••••••••••••••••l•••••••••·~•••i K
Data

N

·····················•······· ···(····· ••••••·.·r@ t•xm·•• ·w;;·•• r; ·•·•7\7
••.•I·······.rn•···II• IIIII••.• I·•·•Irn •·>•••I·•·>••••}(•f••·•rrr•··· .,

,,
Data
N+4

,,
Data
N+S

ERLYA ···········•ii••·····································i·····r

The RDY signal is always ignored in the first cycle of all simple accesses and the first
cycle of all initial burst-mode accesses.

A-18 BUS SUMMARY AND TIMING DIAGRAMS

Figure A-19

MEMCLK

Processor Preemption, Termination or
Cancellation of a Burst-Mode Read Access

A(31--0) Address N Address M '

R/W

PG MODE

110

10(31-0)

----~/
'.\

Data
N

& A

\ ____ _
I

x

4•••••·•••••·•<•··••u•;•••.•·.•••••••••·•••••••••·•··~

\•·······•·····•·•·•·············•·•·•·•··~·····························r

BUS SUMMARY AND TIMING DIAGRAMS A-19

Figure A-20

MEMCLK

A(31-<

REQ

R/W

BURST

PG MODE

110

ID(31-0)

Processor Preemption, Termination or
Cancellation of a Burst-Mode Write Access

:

Data
N

\
I

,,
Data

N+12

A·20 BUS SUMMARY AND TIMING DIAGRAMS

Address M '

\

I

x ~ ·:~

,
\ ___

Figure A·21

MEMCLK

A(31-0)

R/W

PG MODE

110

ID(31-0)

Slave Cancellation of a Burst-Mode Read Access

Addrl!ss

------------.--JI _____ _____,/

Data
N

Data
N+4

Data
N+B

Address M

_

~·················L ..

Note: This may cause an Instruction Access Exception trap or a Data Access Exception trap.

BUS SUMMARY AND TIMING DIAGRAMS A-21

FigureA-22

MEMCLK

A(31-0)

RtW

PG MODE

110

10(31-0)

ERLYA Burst·Mode Read Access

' Address N ' Address N+8 ' Address N+ 16

Note: Two-way interleaved example (page-mode assumed) In this example, the memory is
capable of responding in each cycle after the initial access.

A-22 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·23

MEMCLK

A(31-0)

R/W

PG MODE

10(31-0)

ERLYA Burst-Mode Read Access (Multi-Cycle)

' Address N ' Address N+S Address N+ 16

,
Note: Four-way interleaved example. This example assumes that the initial burst-mode access

is a page-mode access with a latency of four cycles.

BUS SUMMARY AND TIMING DIAGRAMS A-23

Figure A·24

MEMCLK

A(31-0)

R/W

PG MODE

llD

10(31-0)

ERR
(See Note 2)

Simple 8-Bit Narrow Read Word Access

Address N ' Address N+ 1

Note 1 : A total of four accesses occur-the final two accesses are not shown

Note 2: The ERR response is relevant only for the final access

A·24 BUS SUMMARY AND TIMING DIAGRAMS

Address N+2

Figure A-25

MEMCLK

A(31--0)

R/W

10(31-24)

Simple 8-Bit Narrow Read Access with Fast Subsequent Accesses

' Address N

\

Note: The narrow memory can perform a burst-mode access, even ii the processor does not
request one, by responding in every cycle after the first. However, if the processor is not
requesting a burst-mode access, the memory must be aware of the termination point (the
final access), because termination is not indicated by the processor.

BUS SUMMARY AND TIMING DIAGRAMS A-25

FigureA-26 Burst-Mode 8-Bll Narrow Read Access

MEMCLK

A(31-0) ' Address N

R/W

PG MODE

10(31-24)

A·26 BUS SUMMARY AND TIMiNG DIAGRAMS

Figure A·27

MEMCLK

R/W

110

ID(31-16)

Simple 16·Bit Narrow Read Word Access

Address N

Data
N

x

\

' Address N+2 '

Data
N+2

~··································~································

;····························•••!••················

4•••··········••!••····························

vi•···································r··························· fi. .·trI ::;Ir·••••·•

L····································•··············
1A·•.·••.··········•·•1tmr

~••••••••••••••••••••••••••••••••••••••I••·••••••••····•···•·····

\il/···

~····· I·•·•••·•M;•·•••••

BUS SUMMARY AND TIMING DIAGRAMS A-27

Figure A·28

MEMCLK

A(3Hl)

R/W

PG MODE

llD

10(31-16)

Simple 16·Bit Narrow Read Word Access with Fast Second Access

' Address N

Note: The narrow memory can perform a burst-mode access, even if the processor does not
request one, by responding in every cycle after the first. However, if the processor is
not requesting a burst-mode access, the memory must be aware of the termination
point (the final access), because termination is not indicated by the processor.

A·2B BUS SUMMARY AND TIMING DIAGRAMS

Figure A·29

MEMCLK

A(31--0)

10(31-16)

Burst-Mode 16-Bit Narrow Read Access

' Address N

Data
N

\

Data
N+2

Data
N+4

A

Data
N+6 ~I

: :W j:: ; ; : : n ; t } ; ; n:
t%l%1~~ti~ .•.•.•.·.•.•.•.·.·:·:·.·.·:·.;-:.;-·.:-:-:-:-:-:-:·:·:·:·:·f:;.·.;.·.·.··... .

BUS SUMMARY AND TIMING DIAGRAMS A·29

Figure A·30 Simple 16-Bit Narrow Write Word Access (Am29035 Microprocessor only)

MEMCLK

A(31--0) Address N ' Address N+2 '

R/W

PG MODE

1/0

10(31-16) Data
N+2

A·30 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·31

MEMCLK

Simple 16-Bit Narrow Write Word Access with Fast Subsequent Access
(Am29035 Microprocessor only)

A(31--0) . -~· K Address N

X Addres~ N+2 ~······· ··················•••i•••••• ···••i•••························•••

······················~················~
R/W '1> ········· ·······:q•/• ····················•·/·:·:·····:·:·············:n:/···········

..•....• ·.· .. • .. :···:.·.·.: .. •:• •,• .. •··.:.• .. •.•,:.•.•·····························.· .. ··· .. ·.···.· .. · .. ·.•·.-·.-•·•· ·.·.·.·.·•· . - n;rJtLtf:i:tt\t~tt~\\J:tJtf ?ftrr

, ••••••... 1!••··1·······••1••···········

\
,,...... !••·············~······························ !•••···························

110

••• . .. L •_.:.•.•.·.: ··············.·.•.•.•.• ...•.•.••..•. •.•• .. •.•.•.•.•.•-.•.•.•• .. •.•.•.•.f.•• .. •.•.•.·················· /:•··•:••:• +:?•:•••••••••••••·•:•·•;•:••••••:\·•::•··:·:•::·:··· ~~@ ~ ~t:fI/fttttt\}t/t:::::::::::::·

BUS SUMMARY AND TIMING DIAGRAMS A-31

Figure A·32 Burst-Mode 1 &·Bit Narrow Write Access (Am29035 Microprocessor only)

MEMCLK

A(3Hl) ' Address N

RtW

PG MODE

llD

10(31-16)

A-32 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·33 Load and Set Instruction (Page Mode)

MEMCLK

A(31-0)

RtW

.t:••··.•.•.I.··.·····.·.• .. •.P t!ttft@ ~ 'Address N '1.··········.··.•.•.• .. ··········•••••··••••••·•••Y•H••··•<···•·········· /j t~?:\}\{f)(?:::::.:::::::

/.:::::::::::\ \:\:t:r:::::::::::::::-::·······

4•••••••••·•···•·•••····•.i•·•••··••r··················

\ ____ _.......A""'""'"'··············I""'""'"'··••••••••·;•····~·······r•·•••••••••
'----.----....----.--....-!

;••••••••••••••••••••••••••••••••·••;•••••·••••····>·•••r•

J;•••·······························i·······························

1(31-0)

RDY ~;·•··••!•••···············' 11:·································~································
ERR ·····················~··••i•·······················•·r ~····························•••i•·····························

BUS SUMMARY AND TIMING DIAGRAMS A-33

Figure A·34

MEMCLK

A(3Hl)

R/W
BORST

PG MODE

1(31-0)

TLB Miss or Protection Violation on Read or Write

'Address N

A-34 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·35 Bus Arbitration-Normal Transfer to Processor

MEMCLK

BREQ \
BGRi \

A(31-0) < Address N

REQ \

BUS SUMMARY AND TIMING DIAGRAMS A-35

Figure A·36 Bus Arbitration-Fast Transfer to Processor

MEMCLK

BREO \ : \
BGRT

A(31-0) (Address N

REQ

A-36 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·37 Bus Arbitration-False Processor Request

MEMCLK

BREQ \ I
BGRT \ I

A(31-0)

REQ

BUS SUMMARY AND TIMING DIAGRAMS A-37

Figure A-38 Bus Arbitration-Granting of Unrequested Bus

MEMCLK

'-------
'--------------~-------

A(31-0) .. ~<~---A-dd_r•e-ss __ N __

'---

A-38 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·39 Bus Arbitration-Normal Transfer from Processor

MEMCLK

___ ___,/

A(31-0) ~-;_X ______ ;_~_dr_e~ __ N _____)~--__. ______ ______ _._~

_______________ _,r,. weak Punup ,

BUS SUMMARY AND TIMING DIAGRAMS A·39

Figure A·40 Bus Arbitration-Preempting Bus from Processor

MEMCLK

---~/
____._____!

A(31-0) ___ ; ~X-----~~-dr-es-sN ______),__--------~------~

_________________ n weak Pu11up ,

A-40 BUS SUMMARY AND TIMING DIAGRAMS

Figure A·41 Bus Arbitration-Preempting Bus from Processor (worst case)

BGRT ______ _,/ I

A(31-0) Address
N+28

BURST __ ""'!"' _.._ ~,.,:~------------

Weak

REQ-------------------------------f":'!!llup

Note: This example shows the arb~er removing BGRT at the end of a block boundary.
The processor will fetch one more block before releasing the bus.

BUS SUMMARY AND TIMING DIAGRAMS A-41

1:1UU4~111 t!I :I

REGISTER SUMMARY

Figure B-1 General-Purpose Register Organization

Absolute
REG# General-Purpose Register

Global
Registers

Local
Registers

/I

\I

/I

\

0

1

2 THRU 63

64

65

66

. . .
126

127

128

129

130

131

132

.
• .
254

255

Indirect Pointer Access

Stack Pointer

not implemented

GLOBAL REGISTER 64

GLOBAL REGISTER 65

GLOBAL REGISTER 66

. .

.
GLOBAL REGISTER 126

GLOBAL REGISTER 127

LOCAL REGISTER 125

LOCAL REGISTER 126

LOCAL REGISTER 127

LOCAL REGISTER 0

LOCAL REGISTER 1

. . .
LOCAL REGISTER 123

LOCAL REGISTER 124

r---i
St ack

er=131
mple)

Point
(exa

REGISTER SUMMARY B-1

Figure B·2 Register Bank Organization

Register Absolute·
Bank Protect Register General-Purpose
Register Bit Numbers Registers

2through 15
Banko

0 (unimplemented)

16 through 31
Bank 1

1 (unimplemented)

32 through 47
Bank2

2 (unimplemented)

48 through 63
Bank3

3 (unimplemented)

4 64 through 79 Bank4

5 80 through 95 Bank5

6 96 through 111 Banks

7 112 through 127 Bank 7

8 128 through 143 Banks

9 144 through 159 Bank9

10 160 through 175 Bank 10

11 176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

B·2 REGISTER SUMMARY

Figure B·3 Special Purpose Registers

REG#

0

2

3

4

5

6

31

I '
23

I I
VAB

Vector Area Base Address (VAB)
Page 8-5

Old Processor Status (OPS)
Page 8-6

31 23

I '
I I I I
Reserved

Current Processor Status (CPS)
Page 8-1

31 23

I
I I I I 111 II

PAL : Reserved

Configuration (CFG)
Page 10-5

31 23

I
I I I

Channel Address (CHA)
Page 8-18

31 23

I
I I I

Channel Data (CHO)
Page 8-19

31 23

11
I I I

I
I I I

CNTL CR
I

Res
Channel Control (CHC)
Page 8-19 or 8-20

I

15 7 0
I I

I I : I : I : I : I : I
I I I t I I I

I I
I I

TD Res• TE• TU, LK1WM1 Pl, IM I DA
I I I I I I I

IP TP FZ Res PD SM DI

15 7 0

l.l '.1.1.1.11.1.1.11.11.1 '.I.I.I
I I : I : I : I : I : I I I
I I I I I I I I 1

TD Res •TE• TU' LK 1WM1 Pl• IM • DA
I I I I I I I

IP TP FZ Res PD SM DI

15 7 0

I '. I , I !e~e~e~ I : I : I ~e~e~e~ I 1 I '. I
I I
' ' I

016 (Am29035
I

I I ID , Res
I only) I I

PMB IL BO

15 7 0
I I I I I I I I I I I

I I CHA

15 7 0
I I I I I

I I CHO

15 7 0

I I I I I I I
I I I I

I I I TR
I I I I I I I I

I I I I I I I I
I I I I

LS• ST•Res• NN•
I I I I

ML LA TF CV

REGISTER SUMMARY B-3

Figure B·3 Special Purpose Registers (continued)

REG#

31 23 15 7 0

I I I I I I I ' I I I I I I I I I I I I I I I 7
Reserved : 815 •••••••••••••• BO

Register Bank Protect (RBP)
Page 6-3

31 23 15 7 0

I I I I I I I I

I
I I I I I I I I

I 8
Reserved TCV

Timer Counter (TMC) Page 8-23

31 23 15 7 0

I II II I I I I I I I I I I I I I I I I I I 9 Reserved : TRV
I I I

Timer I
I 1 I

Reload ov I IE Page 8-24
(TMR) I

IN

31 23 15 7 0

I
I I I I I I I I I I I I

I 01° I 10
PCO

Program Counter o (PCO)
Page 8-9

31 23 15 7 0

I I I I I I I I I

l0H 11 PC1

Program Counter 1 (PC1)
Page 8-9

31 23 15 7 0

I
I I I I I I I

I 0l0I 12 PC2

Program Counter 2 (PC2)
Page 8-10

31 23 15 7 0

I
I I I I I I I I I

I ~s I
I I I I

I 13
Reserved PIO

MMU Configuration (MMU)
Page 7-5

31 23 15 7 0

I
I I I I I I I I I I I I I I I I I I

I
I I I

I 01 14 Reserved LRU

LRU Recommendation (LRU)
Page 7-12

B-4 REGISTER SUMMARY

Figure B·3 Special Purpose Registers (continued)

REG#

30

31 23 15
I II I I I I
Reserved

Cache Interface Register (CIR)
Page 9-4

31 23 111111111111
Cache Data Register (CDR)
Page 9-4

15
I I I I
CDATA

7
I I I
CPTR

I

Reserved in
the Am29035
processor

7
I I I I I I I

0

0

I I

31 23 15 7 0

128 l.._'~~~~~-'-'_Re_1 s_~rv_ed_1 _'~~-'-'~~~---~-'-'~~P-~~l~~lo~l~o-'
Indirect Pointer C (IPC)
Page 2-13
31 23

1
111111111111 I

129 . Reserved

Indirect Pointer A (IPA)
Page 2-14

31 23

1
1 I I I I I I I I I I I I

130 . Reserved

Indirect Pointer B (IPB)
Page 2-14

31 23
131 11 I I I I I I I I I

Q(Q)
Page 2-20

31

1 1 I I I
132 .

ALU Status (ALU)
Page 2-16

Byte Pointer (BP)
Page 3-2

23
I I I I I I

Reserved

15
I I

15
I I

15
I I
a

15
I I

7
I I I I I

IPA

7
I I I I I

IPB

7
I I

7

111111 I
I I I I I

I 1 I 1 I
I I

OF• N I c
V Z BP

0

0

0

I I

0

REGISTER SUMMARY B-5

Figure B-3 Special Purpose Registers (continued)

REG#

31 23 15 7

Funnel Shift Count (FC)
Page 3-3

31 23 15 7

Load/Store Count Remaining (CR)
Page 3-11

I I I
CR

0

31 23 15 7 0

160 1 ... _
1
----· -· -~-e~-e~_e~_1_1_1 _ __.l.._Ab_.Fl..,..l FR_1

M 1.....,1 1. 1 1. 1 I

Floatlng-Polnt Environment (FPE)
Page 2-15

• •
FF

I I I I I I

DM:uM:RM:
XM VM NM

31 23 15 7 0

161 _l_' ___________ • __ • _______ ~_e_~_e~_ed_'_' _________ ' __ ' ________ l __ I I
•• Integer Environment (INTE) o'o •,

Page 2-16
MO

31 23 15 7 0

162 .__I
1 ____ R __

1es __ ~~e--~ ___ 1 __ 1 __.1
1......,.1.,.......1. 1.1....,..., I r'-i I R __ ~s......,l.l...,...J,.1. 1. I. I

Floating-Point Status (FPS)
Page 2-18

I I I I I I I I I I I I

or: Jr: Fir: OS: us: RS:
Xr Vr NT . . .

XS VS NS

B-8 REGISTER SUMMARY

Figure B·4

Figure B·S

Special Purpose Registers

REG# TLBColumno

0 TLB En_!ly_ Set 0 Word 0

1 TLB Entry Set 0 Word 1

2 TLB Entry Set 1 Word 0

3 TLB En!l'Y_ Set 1 Word 1
~ -

60 TLB En.!!Y_ Set 30 Word O

61 TLB Entry Set 30 Word 1

62 TLB Entry Set 31 Word o
63 TLB En_!ly_ Set 31 Word 1

TLBColumn 1

64 TLB Entry Set 0 Word 0

65 TLB Entry Set 0 Word 1

66 TLB Entry Set 1 Word 0

67 TLB Entry Set 1 Word 1 - --
124 TLB Enfil'._ Set 30 Word 0

125 TLB Entry Set 30 Word 1

126 TLB Entry Set 31 Word 0

127 TLB En!'Y_ Set 31 Word 1

Translation Look-Aside Buffer Entries

31 I I I I

WordO
Page 7-2

31 I I I I

Word 1
Page 7-4

23
I I
VTAG

23
I I I I

RPN

15

15
I

7 0

I I I I I I I I I I I TIO
I I I I I I I
I I I I I I I

VE: sw: UR: UE
SR SE uw

7 0
I I I I I I R~s I : I I I I I I Res

I I
I I I

PGM u I

10

REGISTER SUMMARY B-7

Table B·1 Register Field Summary

Label Field Name Register Bit

ACF Accumulator Format Floating-Point Environment 10-9

BO Bank O Protection Brr Register Bank Protect 0

B1 Bank 1 Protection Bit Register Bank Protect

B2 Bank 2 Protection Bit Register Bank Protect 2

B3 Bank 3 Protection Brr Register Bank Protect 3

B4 Bank 4 Protection Bit Register Bank Protect 4

B5 Bank 5 Protection Bit Register Bank Protect 5

B6 Bank 6 Protection Bit Register Bank Protect 6

B7 Bank 7 Protection Brr Register Bank Protect 7

BS Bank 8 Protection Bit Register Bank Protect 8

B9 Bank 9 Protection Bit Register Bank Protect 9

B10 Bank 10 Protection Bit Register Bank Protect 10

B11 Bank 11 Protection Bit Register Bank Protect 11

B12 Bank 12 Protection Bit Register Bank Protect 12

B13 Bank 13 Protection Bit Register Bank Protect 13

B14 Bank 14 Protection Bit Register Bank Protect 14

B15 Bank 15 Protection Bit Register Bank Protect 15

BO Byte Order Configuration 2

BP Byte Pointer ALU Status 6-5
Byte Pointer 1-0

c Carry ALU Status 7

CDATA Cache Data Cache Data Register 31-0

CHA Channel Address Channel Address 31-0

CHD Channel Data Channel Data 31-0

CNTL Control Channel Control 30-24

CPTR Cache Pointer Cache Interface Register 12-2

CR Load/Store Count Remaining Channel Control 23-16
Load/Store Count Remaining 7-0

CV Contents Valid Channel Control 0

D16 Data Width 16 Bits Configuration 15

DA Disable All Interrupts and Traps Current Processor Status 0
Old Processor Status 0

DF Divide Flag ALU Status 11

B-B REGISTER SUMMARY

Table B-1 Register Field Sunvnary {continued)

Label Field Name Register Bit

DI Disable Interrupts Current Processor Status
Old Processor Status

DM Floating-Point Divide By Zero Mask Floating-Point Environment 5

DO Integer Division Overflow Mask Integer Environment

OS Floating-Point Divide By Zero Sticky Floating-Point Status 5

DT Floating-Point Divide By Zero Trap ALU Status 13

FF Fast Floating-Point Select Floating-Point Environment 8

FC Funnel Shift Count ALU Status 4--0
Funnel Shnt Count 4--0

FRM Floating-Point Round Mode Floating-Point Environment 7-6

FSEL Cache Field Select Cache Interface Register 31-28

FZ Freeze Current Processor Status 10
Old Processor Status 10

ID Instruction Cache Disable Configuration 8

IE Interrupt Enable Timer Reload 24
IL Instruction Cache Lock Configuration 10-9
IM Interrupt Mask Old Processor Status 3-2

Current Processor Status 3-2

IN Interrupt Timer Reload 25

10 Input/Output TLB Entry Word 1 0

IP Interrupt Pending Current Processor Status 14
Old Processor Status 14

IPA Indirect Pointer A Indirect Pointer A 9-2

IPB Indirect Pointer B Indirect Pointer B 9-2

IPC Indirect Pointer C Indirect Pointer C 9-2

LA Lock Active Channel Control 12

LK Lock Current Processor Status 9
Old Processor Status 9

LRU Least-Recently Used Entry LRU Recommendation 6-1

LS Load/Store Channel Control 15

ML Multiple Operation Channel Control 14

MO Integer Multiplication Overflow Mask Integer Environment 0

N Negative ALU Status 9

NM Floating-Point Invalid Operation Mask Floating-Point Environment 0

NN Not Needed Channel Control

NS Floating-Point Invalid Operation Sticky Floating-Point Status 0

NT Floating-Point Invalid Operation Trap Floating-Point Status 8

ov Overflow Timer Reload 26

REGISTER SUMMARY B-9

Table B·1 Register Field Summary (continued)

Label Fleld Name Register Bit

PCO Program Counter O Program Counter O 31-2

PC1 Program Counter 1 Program Counter 1 31-2

PC2 Program Counter 2 Program Counter 2 31-2

PD Physical Addressing Data Current Processor Status 6
Old Processor Status 6

PGM User Programmable TLB Entry Word 1 7-6

Pl Physical Addressing Instructions Current Processor Status 5
Old Processor Status 5

PIO Process Identifier MMU Configuration 7--0

PMB Page-Mode Block Configuration 17-16

PAL Processor Release Level Configuration 31-24

PS Page Size MMU Configuration 9-8

a QuotienVMultiplier Q Register 31--0

RM Floating-Point Reserved Operand Mask Floating-Point Environment

RPN Real Page Number TLB Entry Word 1 31-10

RS Floating-Point Reserved Operand Sticky Floating-Point Status

RT Floating-Point Reserved Operand Trap Floating-Point Status 9

AW Read/Write Cache Interface Register 24

SE Supervisor Execute TLB Entry Word 0 11

SM Supervisor Mode Current Processor Status 4
Old Processor Status 4

SR Supervisor Read TLB Entry Word 0 13

ST Set Channel Control 13

SW Supervisor Write TLB Entry Word 0 12

TCV Timer Count Value Timer Counter 23--0

TD Timer Disable Current Processor Status 17
Old Processor Status 17

TE Trace Enable Current Processor Status 13
Old Processor Status 13

TF Transaction Faulted Channel Control 10

TIO Task Identifier TLB Entry Word 0 7--0

TP Trace Pending Current Processor Status 12
Old Processor Status 12

TR Target Register Channel Control 9-2

TRV Timer Reload Value Timer Reload 23--0

B·10 . REG.ISTER SUMMARY

Table B-1 Register Field Summary (continued)

Label Fleld Name Register Bit

TU Trap Unaligned Access Current Processor Status 11
Old Processor Status 11

u Usage TLB Entry Word 1 1

UE User Execute TLB Entry Word 0 8

UM Floating-Point Underflow Mask Floating-Point Environment 3

UR User Read TLB Entry Word 0 10

us Floating-Point Underflow Sticky Floating-Point Status 3

UT Floating-Point Underflow Trap Floating-Point Status 11

uw User Write TLB Entry Word 0 9

v Overflow ALU Status 10
VAB Vector Area Base Vector Area Base Address 31-10

VE Valid Entry TLB Entry Word 0 14

VM Floating-Point Overflow Mask Floating-Point Environment 2
vs Floating-Point Overflow Sticky Floating-Point Status 2

VT Floating-Point Overflow Trap Floating-Point Status 10

VTAG Virtual Tag TLB Entry Word 0 31-15

WM Wait Mode Current Processor Status 7
Old Processor Status 7

XM Floating-Point Inexact Result Mask Floating-Point Environment 4

XS Floating-Point Inexact Result Sticky Floating-Point Status 4

XT Floating-Point Inexact Result Trap Floating-Point Status 12

z Zero ALU Status 8

REGISTER SUMMARY B-1 t

Nb:!.IHM(.!foi.HM
~

Am29030™ and Am29035™
RISC Microprocessors with 8-Kb/4-Kb Instruction Cache

Advanced
Micro

Devices

Am29030 MICROPROCESSOR DISTINCTIVE CHARACTERISTICS
• Full 32-blt architecture

• 26 million Instructions per second (MIPS)
sustained at 33 MHz

• 8-Kb, two-way set-associative Instruction
Cache

• 33- and 25-MHz operating frequency

• Scalable Clocking™ Technology

• CMOS technologyfTTL-compatlble

• 4-Gb virtual address space with demand
paging

• Streamlined system Interface for slmpllfled
high frequency operation

• Burst-mode and page-mode access support

• 8-, 16·, or 32-blt ROM Interface

• 64-entry Memory Management Unit on-chip

• Fully plpellned

• On-chip Timer Faclllty

• 192 general-purpose registers

• Three-address Instruction architecture

• Master/slave chip/output checking

• Software compatible with Am29005™ and
Am29000™ microprocessors

• Advanced debugging support

• IEEE Std. 1149.1-1990 (JTAG) compliant
Standard Test Access Port and Boundary
Scan Architecture Implementation

Am29035 MICROPROCESSOR DISTINCTIVE CHARACTERISTICS
The Am29035 microprocessor is similar to the Am29030 microprocessor with the following differences:

• 4-Kb, direct-mapped Instruction Cache • 12 mllllon Instructions per second (MIPS)
• 16-MHz operating frequency sustained at 16 MHz

• Programmable 16- or 32-blt data bus width

SIMPLIFIED BLOCK DIAGRAM

~

Am29030 and Am29035
A Address

v
RISC Microprocessors

with
8-Kb/4-Kb I Cache

y v
32

-" Instruction/
Data

Address
-.,.

ROM

Instruction/
~
-~

Data

Address
RAM

~
This doalmant cantalna I-Ion on a product under davelcpmant at Advanced Micro
Dovlcao, Inc. The Information lo lntandad 10 ha_, you to avaluata this product. AMO reserves the
right to change or - - on this pmposod produo1 without notice.

K v

~

lnstru~on/Data
A_) z
" '32or16

.,.

v 32or16
~

8,16, or 32
.L -'\ L -i/ --,

Instruction/Data

32or16
L.

~ L
#" .,.

Instruction/Data

~

C-1

~AMO ADVANCE INFORMATION

GENERAL DESCRIPTION
The Am29030 and Am29035 RISC microprocessors
are high-performance, general-purpose, 32-bit micro
processors implemented in CMOS technology. Through
high circuit densities and a high degree of on-chip inte
gration, the Am29030 and Am29035 microprocessors
are capable of operating at high internal frequencies
while providing the designer with a simple streamlined
external interface.

The Am29030 and Am29035 microprocessors were de
signed to meet the common requirements of embedded
applications such as laser beam printers, graphics proc
essors, X terminals and servers, application program in
terface (API) accelerators, and scanners.The Am29030
and Am29035 microprocessors are well suited for these

29K™ Family Development Support Products

applications since they provide high performance at low
cost, and offer the designer complete design flexibility.
Coupled with hardware and software development tools
from AMO® and AMO's Fusion29K8M partners, no de
sign is ever far from the marketplace.

The Am29030 microprocessor is available in a 145-lead
pin-grid-array (PGA) package. The PGA has 111 signal
pins, 26 power and ground pins, seven reserved pins
and one alignment/ground pin.

The Am29035 microprocessor is available in a 144-pin
quad flat-pack (QFP) package. The QFP has 111 signal
pins, 30 power and ground pins, and three reserved
pins.

Contact your local AMO representative for information on the complete set of development support tools.

Software development products on several hosts:
• Optimizing compilers for common high-level languages

• Assembler and utility packages

11 Source- and assembly-level software debuggers

• Target-resident development monitors

• Simulators

RELATED AMO PRODUCTS
Am29000 Family Devices

Part No. Description

Am29000™ Streamlined Instruction Microprocessor

Am29005™ Low-Cost Streamlined Instruction Microprocessor

Am29050™ Streamlined Instruction Microprocessor with On-chip Floating-Point

Third Party Development Support Products
The Fusion29K Program of Partnerships for Application Solutions provide the user with a vast array of products de
signed to meet critical time-to-market needs.

Products/solutions available through AMO's Fusion29K partners include:

• Silicon products • Multiuser, kernel, and real-time operating systems

• Software generation and debug tools • Graphics solutions

• Hardware development tools • Networking and communications solutions

• Board level products • Manufacturing support

• Laser printer solutions • Custom support

C-2 Am29030 and Am29035 Microprocessors

CONNECTION DIAGRAM
145-Lead PGA

ADVANCE INFORMATION

Bottom View

A B C D E F G H J K L M N P Q
I'

1 111®®®®®®®®®®®®®9
2 ®®®®®®®®®®®®®®®
3 ®®®®®®®®®®®®®®®
4 ®®®®® ®®®
5 ®®® ®®®
6 ®®® ®®®
7 ®®® ®®®
8 ®®® ®®®
9 ®®® ®®®

10 ®®® ®®®
11 ®®® ®®®
12 ®®® ®®®
13 ®®®®®®®®®®®®®®®
14 ®®®®®®®®®®®®®®®
15 •@@®®®®®®®®®®®•

® Pin Number E-4 is defined for emulator access and is not a physical pin on the
package (see the Am29030 and Am29035 Microprocessors User's Manual,
section 10.1)

Note: Pinout observed from pin side of package.

Am29030 and Am29035 Microprocessors

AMO~

C-3

~AMO ADVANCE INFORMATION

PGA PIN DESIGNATION
(S rted b p· N) 0 ~m o.
Pin No. Pin Name Pin No.

A-1 104 C-8
A-2 100 C-9
A-3 TRST C-10

A-4 TOI C-11

A-5 TCK C-12

A-6 TEST C-13

A-7 l/D C-14

A-8 10/MEM C-15_

A-9 BWEO D-1

A-10 BWE2 D-2

A-11 SUP/US D-3

A-12 OPTO D-4

A-13 OPT2 D-13

A-14 MPGM1 D-14

A-15 STAT2 D-15

B-1 107 E-1

B-2 106 E-2

B-3 103 E-3

B-4 101 E-13

B-5 TOO E-14

B-6 TMS E-15

B-7 R/W F-1

B-8 WARN F-2

B-9 BWE1 F-3

B-10 BWE3 F-13

B-11 LOCK F-14

B-12 OPT1 F-15

B-13 MPGMO G-1

B-14 STATO G-2

B-15 MSERR G-3
C-1 1010 G-13

C-2 108 G-14

C-3 n/e G-15_

C-4 IDS H-1

C-5 102 H-2

C-6 Vee H-3
C-7 GND H-13

Pin Name Pin No. Pin Name

GND H-14 MEMCLK

Vee H-15 DIV2

GND J-1 1021

Vee J-2 ID22

STAT1 J-3 GND

WBC J-13 INCLK

m J-14 PWRCLK

INTRO J-15 BREQ

1012 K-1 1023

1011 K-2 1024

109 K-3 VJLe
GND K-13 GND

DI K-14 REQ

iiii'fR1 K-15 BURST

INTR2 L-1 1025

1014 L-2 1026

1013 L-3 Vee

GND L-13 Vee

GND L-14 BGRT

INTR3 L-15 _NMODE

TRAP1 M-1 1027

1016 M-2 1028

1015 M-3 n/e

nte M-13 GND

Vee M-14 RON

RESET M-15 ROY

TRAPO N-1 1029

1018 N-2 1030

1017 N-3 n/c

Vee N-4 A28

Vee N-5 A26

CNTLO N-6 GND

_C_NTL1 N-7 \[J;S;_

1020 N-8 GND

1019 N-9 GND

GND N-10 GND

GND N-11 Vee

Notes: 1. Pin Number D-4 is the alignment/ground pin and must be electrically connected to ground.

Pin No. Pin Name

N-12 Vee

N-13 A1

N-14 ERL YA

N-15 ERR

P-1 ID31

P-2 A30

P-3 A27

P-4 A24

P-5 A22

P-6 A20

P-7 A18

P-8 A15

P-9 A13

P-10 A10

P-11 AB

P-12 A6

P-13 A4

P-14 · A2

P-15 AO

Q-1 A31

Q-2 A29

Q-3 A25

Q-4 A23

Q-5 A21

Q-6 A19

Q-7 A17
Q-8 A16

Q-9 A14

Q-10 A12

Q-11 A11

Q-12 A9

Q-13 A7

Q-14 AS

Q-15 A3

2. Pin Number E-4 is defined for emulator acx:ess and is not a physical pin on the package (see Am29030 and Am29035 Micro
processors Users Manual, section 10.1).

C·4 Am29030 and Am29035 Microprocessors

ADVANCE IN FORMAT ION AMol1
PGA PIN DESIGNATION
(Sorted by Pin Name)
Pin No. Pin Name Pin No.

P-15 AO 8-10

N-13 A1 G-14

P-14 A2 G-15

Q--15 A3 H-15

P-13 A4 N-14

Q--14 AS N-15

P-12 A6 C-7

0-13 A7 C-8

P-11 AS C-10

0-12 A9 0-4

P-10 A10 E-3

0-11 A11 E-13

Q--10 A12 H-3

p~ AU H-U.

Q--9 A14 ...J..-:.3.
P-8 A15 K-13

Q--8 A16 M-13

Q--7 A17 N-6

P-7 A18 N-8

Q--6 A19 N-9

P-6 A20 N-10

Q--5 A21 A-7

P-5 A22 A-2

Q--4 A23 8-4

P-4 A24 C-5

Q--3 A25 8-3

N-:5_ A22_ A-::1
P-3 A27 C-4

N-4 A28 8-2

Q--2 A29 8-1

P-2 A30 C-2

Q--1 A31 0-3

L-14 BGRT C-1

J-15 BREQ 0-2

K-15 BURST 0-1

A-9 BWEO E-2

8-9 BWE1 E-1

A10 BWE2 F-2

Pin Name Pin No. Pin Name

BWE3 F-1 1016

CNTLO G-2 1017
CNTL1 G-1 1018

DIV2 H-2 1019

ERL YA H-1 1020

ERR J-1 ID21

GND J-2 1022

GND K-1 1023

GND K-2 ID24

GND L-1 1025

GND L-2 ID26

GND M-1 1027

GND M-2 ID28

_QND N-1 ID~

.QND N-2 ID...3Q.

GND P-1 1031

GND J-13 INCLK

GND C-15 INTRO

GND 0-14 INTR1

GND 0-15 INTR2

GND E-14 INTR3

110 A-8 10/MEM

100 8-11 LOCK

101 H-14 MEMCLK

ID2 8-13 MPG MO

ID3 A-14 MPGM1

104 8-15_ M-5._ERR

105 A-12 OPTO

106 8-12 OPT1

ID7 A-13 OPT2

108 L-15 PGMODE

ID9 J-14 PWRCLK

1010 M-14 RON

1011 M-15 ROY

1012 F-14 RESET

1013 K-14 REQ

1014 8-7 R/W

ID15 8-14 STATO

Notes 1. The following signals are reserved for future processor implementations: Pin No.
D-13
C-14
C-13

Pin No.

C-12

A-15
A-11

A-5

A-4

8-5

A-6

8-6

F-15

E-15

A-3

C-6

C-9

Q-11

F-U.

G-3

G-13

K-3

L-3

L-13

N-7

N-11

N-12

8-8

Pin Name
DI
HIT

WBC

Pin Name

STAT1

STAT2

SUP/US

TCK

TOI

TOO

TEST

TMS

TR APO

TRAP1

TRST

Vee

Vee

Vee

Vee

Vee

Vee

Vee

Vee

Vee

Vee

Vee

Vee

WARN

To maintain compatibility with future processor implementations, these pins should be connected to Vee by
individual pullup resistors.

2. Pin Number D-4 is the alignment/ground pin and must be electrically connected to ground.
3. Pin Number E-4 is defined for emulator access and is not a physical pin on the package (see Am29030 and

Am29035 Microprocessors User's Manual, section 10.1)

Am29030 and Am29035 Microprocessors C-5

~AMD
CONNECTION DIAGRAM
144-Lead QFP

PIN 1

PIN 36

I.

ADVANCE INFORMATION

Top View

PIN 144 PIN 109

~~~ PIN 72 
28mm 

46mm 

Note: All values typical and preliminary 

C-6 Am29030 and Am29035 Microprocessors 

PIN 108 

PIN73 

.I 



QFP PIN DESIGNATION 
(Sorted by Pin No.) 

ADVANCE INFORMATION 

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name 

1 Vee 37 Vee 73 Vee 

2 GND 38 GND 74 GNO 

3 MSERR 39 105 75 A29 

4 STAT2 40 106 76 A28 

5 STAT1 41 107 n A27 

6 STATO 42 108 78 A26 

7 MPGM1 43 109 79 A25 

8 MPG MO 44 1010 80 A24 

9 OPT2 45 1011 81 A23 

10 OPT1 46 1012 82 A22 

11 OPTO 47 1013 83 A21 

12 LOCK 48 1014 84 A20 

13 SUP/US 49 1015 85 A19 

14 BWE3 50 Vee 86 A18 

15 BWE2 51 GND 87 A17 

16 BWE1 52 1016 88 A16 

17 BWEO 53 1017 89 Vee 

18 Vee 54 1018 90 GNO 

19 GND 55 1019 91 Vee 

20 WARN 56 1020 92 GND 

21 10/MEM 57 1021 93 A15 

22 110 58 1022 94 A14 

23 GND 59 1023 95 A13 

24 Vee 60 GND 96 A12 

25 R/W 61 Vee 97 A11 

26 TEST 62 GND 98 A10 

27 TCK 63 1024 99 A9 

28 TMS 64 1025 100 AB 

29 TOI 65 1026 101 A7 

30 TOO 66 1027 102 A6 

31 TRST 67 1028 103 AS 

32 IDO 68 1029 104 A4 

33 101 69 1030 105 A3 

34 102 70 1031 106 A2 

35 103 71 A31 107 GND 

36 ID4 72 A30 108 Vee 

Am29030 and Am29035 Microprocessors 

AMDl1 

Pin No. Pin Name 

109 A1 

110 AO 
111 ERL YA 

112 ERR 

113 RON 

114 RDY 

115 BGRT 

116 GND 

117 Vee 
118 PGMODE 

119 BURST 

120 REQ 

121 BREQ 

122 GND 

123 INCLK 

124 Vee 

125 PWRCLK 

126 MEMCLK 

127 GND 

128 Vee 

129 GNO 

130 DIV2 

131 CNTLO 

132 CNTL1 

133 Vee 

134 GND 

135 RESET 

136 TRAPO 

137 TRAP1 

138 INTR3 

139 INTR2 

140 INTR1 

141 INTRO 

142 DI 

143 HIT 

144 WBC 

C·7 



~AMO ADVANCE INFORMATION 

QFP PIN DESIGNATION 
(Sorted by Pin Name) 
Pin No. Pin Name Pin No. 
110 AO 16 
109 A1 15 
106 A2 14 
105 A3 131 
104 A4 132 
103 A5 130 
102 A6 111 
101 A7 112 
100 AS 2 
99 A9 19 
98 A10 23. 
97 A11 38 
96 A12 _§_1 
95 A13 60 
9.4 A14 ..22. 
93 A15 74 
88 A16 90 
87 A17 92 
86 A18 107 
85 A19 116 
84 A20 122 
83 A21 127 
82 A22 129 
81 A23 134 
80 A24 22 
79 A25 32 
78 A26 33 
77 A27 34 
76 A28 35 
75 A29 36 
72 A30 39 
71 A31 40 
115 BGRT 41 
121 BREQ 42 
119 BURST 43 
17 BWEO 44 

Pin Name Pin No. Pin Name 
BWE1 45 1011 
BWE2 46 1012 
BWE3 47 1013 

CNTLO 48 1014 
CNTL1 49 1015 
DIV2 52 1016 
ERL YA 53 1017 
ERR 54 1018 
GND 55 1019 
GND 56 1020 
GND 57 1021 
GND 58 1022 
GND !29.. ID~ 

GND 63 ID24 
Jlli_D JM ID25-
GND 65 1026 
GND 66 1027 
GND 67 1028 
GND 68 1029 
GND 69 1030 
GND 70 1031 
GND 123 INCLK 
GND 141 INTRO 
GND 140 INTR1 
110 139 INTR2 
IDO 138 INTR3 
101 21 10/MEM 
102 12 LOCK 
103 126 MEMCLK 
104 8 MPG MO 
ID5 7 MPGM1 
106 3 MSERR 
ID7 11 OPTO 
IDB 10 OPT1 
109 9 OPT2 
1010 118 PGMODE 

Note: The following signals are reserved for future processor implementations: Pin No. 
142 
143 
144 

Pin No. 
125 
113 
114 
135 
120 
25 
6 
5 
4 
13 
27 
~ 
30 
26 
28 
136 
137 
31 
1 
18 
24 
37 
50 
61 
'Z3_ 

89 
91 
108 
117 
124 
128 
133 
20 

Pin Name 
Di 
HIT 

wee 

Pin Name 
PWRCLK 
RON 
ROY 
RESET 
REQ 
R/W 
STATO 
STAT1 
STAT2 
SUP/US 
l:C_K 
TOI 
TOO 
TEST 

.IMS .. 
TR APO 
TRAP1 
TRST 
Vee 
Vee 
Vee 
Vee 
Vee 
Vee 
v~ 

Vee 
Vee 
Vee 
Vee 
Vee 
Vee 
Vee 
WARN 

To maintain compatibility with future processor implementations, these pins should be connected to Vee by individual 
pullup resistors. 

C-8 Am29030 and Am29035 Microprocessors 



ADVANCE INFORMATION AMDl1 

LOGIC SYMBOL 

BGRT BREQ 

RfiJ 
RON SUP/US 

rnLYA LOCK 
2 

ROY MPGM(1-0) 

ERR REQ 

BURST 

WARN BWE(3-o) 

i'Ni'R(3-o) MSERR 

CNTL(1-0) llD 

RESET OPT(2-0) 

TEST STAT(2-0) 

INCLK PGMODE 

TRAP(1-0) 10/MEM 

DiV2 

TCK 
A(31-0) 32 

TOI TOO 

TMS 

TRST 

Am29030 and Am29035 Microprocessors C-9 



~ AMO A D V A N C E I N F 0 R M A T I 0 N 

ORDERING INFORMATION 
Standard Products 
AMO standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of the elements below: 

C-10 

AM29030 -25 G 

DEVICE NUMBER/DESCRIPTION 
Am29030 

TEMPERATURE RANGE 
C = Commercial (Tc= 0°C to +85°C) 

PACKAGE TYPE 
G = 145-Lead Pin Grid Array without 

Heat Sink (CGX145) 

SPEED OPTION 
-33 = 33 MHz 
-25= 25 MHz 

RISC Microprocessor with 8-Kb of I Cache 

Valid Combinations 

AM29030-33 l 
AM29030-25 GC 

Valid Combinations 
Valid Combinations list configurations planned to 
be supported in volume for this device. Consult 
the local AMO sales office to confirm availability of 
specific valid combinations, to check on newly 
released combinations, and to obtain additional 
data on AMD's standard military grade products. 

Am29030 and Am29035 Microprocessors 



ADVANCE INFORMATION AMD~ 
ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ........... -65°C to +150°C Commercial (C) Devices 
Voltage on any Pin 
with Respect to GND .......... -0.5 to Vee +0.5 V 

Case Temperature (Tc) ............ 0°c to +85°C 
Supply Voltage (Vee) ............ +4.75 to +5.25 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

Operating ranges define those limits between which the func
tionality of the device is guaranteed. 

DC CHARACTERISTICS over COMMERCIAL operating ranges 

Parameter Parameter Advance Information 
Symbol Description Test Conditions Min Max Unit 

V1L l!!e_ut Low Volt~e -0.5 0.8 v 
V1H Input High Voltage 2.0 Vee+0.5 v 
V1uNCLK INCLK l!J2!Jt Low Volt~e -0.5 0.8 v 
V1HINCU< INCLK IQ2!Jt Hjg_h Volt~e 2.0 Vee+0.5 v 
V1LMEMCLK MEMCLK l!J2!Jt Low Volt~e -0.5 0.8 v 
V1HMEMCLK MEMCLK Input High Voltage Vee-0.8 Vee +0.5 v 
VOL Output Low Voltage for 

All Outputs except MEMCLK loL=3.2 mA 0.45 v 
VOH Output High Voltage for 

All Outputs except MEMCLK loH z --400 µA 2.4 v 
lu Input Leakage Current 0.45V :!>VIN:!> Vee-0.45V ±10 µA 

ILO Output Leakage Current 0.45V :!> Volff:!> Vee -0.45V ±10 µA 

lccoP Operating Power-Supply Vee•5.25V, Outputs 22 mAIMHz 
Current Floating; Holding RESET 

active with externally 
supplied MEMCLK 

VoLc MEMCLK Output Low Voltage loLC•20 mA 0.6 v 
VoHc MEMCLK Output High Voltage loHc•20 mA Vcc-0.6 v 
losaNo MEMCLK GND Short 

Circuit Current Vcc•S.O V 100 mA 

losvcc MEMCLK Vee Short 
Circuit Current Vee•5.0 V 100 mA 

CAPACITANCE 

Parameter Parameter Advance Information 
Symbol Description Test Conditions Min Max Unit 

c,. lrlQUt C~itance 15 _pF 

C1NCLK INCLK Input Capacitance 20 pf 

CMEMCLK MEMCLK C<!Q_acitance IC=10 MHz 20 _2f 

Colff Output Capacitance 20 pf 

c"" 1/0 Pin Capacitance 20 pf 

Am29030 and Am29035 Microprocessors C-11 



~ AMO A D V A N C E I N F 0 R M A T I 0 N 

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (PGA) 

Advance Information 
Parameter Test 33 MHz 25MHz 

No. Descr_!e!lon Conditions Min Max Min 

1 INCLK Period _ffi_ 30 100 40 

2 INCLK High Time 10 90 12 

3 INCLK low Time 10 90 12 

4 INCLK Rise Time 0 5 0 

5 INCLK Fall Time 0 5 0 

6 MEMCLK Del~ From INCLK Note 1, 2 0 6 0 

7 Synchronous Output MEMCLK Output 1 6 1 
Valid Delay MEMCLK Input 2 12 2 

7a Synchronous Output MEMCLK Output 1 10 1 
Valid Delay if ID(31-0) MEMCLK Input 2 16 2 

8 Synchronous Output MEMCLK Output 1 6 1 
Invalid Delay MEMCLK Input 2 12 2 

Sa Synchronous Output MEMCLK Output 1 10 1 
Invalid Delay if ID(31-0) MEMCLK Input 2 16 2 

Synchronous Input MEMCLK Output 15 17 
9 Setup Time MEMCLK Input 21 23 

(Note 2) MEMCLK-INCLK 9 12 

Synchronous Input MEMCLK Output 6 8 
9a Setup Time for ID(31-0) MEMCLK Input 12 14 

(Note 2) MEMCLK=INCLK 6 8 

Synchronous In~ MEMCLK Output 10 12 
9b Setup Time for ERR MEMCLK Input 16 18 

(Note 2) MEMCLK=INCLK 6 8 

10 Synchronous Input Hold Time 0 0 

11 ~Time for Synchronous 2 
Deassertion 

12 Hold Time for Synchronous 5 
RESET Deassertion 

13 WARN Pulse Width 4T 4T 

14 Asynchronous Input T+10 T+10 
Pulse Width 

15 MEMCLK High Time MEMCLK Period= T 10 90 12 
MEMCLK Period=2T T-3 T+3 T-3 

16 MEMCLK Low Time MEMCLK Period= T 10 90 12 
MEMCLK Period=2T T-3 T+3 T-3 

17 MEMCLK Rise Time 0 5 0 

18 MEMCLK Fall Time 0 5 0 

Notes: 1. MEMCLK as an input is always CMOS level. 

C-12 

2. MEMCLK can drive an external load of 150 pf. 

3. The input setup times with MEMCLK used as an input are improved if MEMCLK and 
INCLK are tied to the same clock input. This is possible only if the processor and bus 
operate at the same frequency. 

4. Except where noted, measurement conditions are the same as the Am29000 
microprocessor. 

5. All output valid delays are measured with VoL = 1.0 V and Vo" = 2.0 V. 

Am29030 and Am29035 Microprocessors 

Max Unit 

100 ns 

88 ns 

88 ns 

6 ns 

6 ns 

6 ns 

8 ns 
14 

12 ns 
18 

8 ns 
14 

12 ns 
18 

ns 

ns 

ns 

ns 

2 ns 

5 ns 

ns 

ns 

88 ns 
T+3 

88 ns 
T+3 

5 ns 

5 ns 



ADVANCE INFORMATION 

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (QFP) 

Advance Information 

Parameter Test 16 MHz 

No. Description Conditions Min Max Unit 

1 INCLK Period J!l 60 100 ns 

2 INCLK High Time 15 85 ns 

3 INCLK Low Time 15 85 ns 

4 INCLK Rise Time 0 6 ns 

5 INCLK Fall Time 0 6 ns 

6 MEMCLK Delay From INCLK Note1,2 0 6 ns 

7 Synchronous Output MEMCLK Output 1 12 ns 
Valid Delay MEMCLK Input 2 20 

7a Synchronous Output MEMCLK Output 1 16 ns 
Valid Delay if ID(31-0) MEMCLK Input 2 22 

8 Synchronous Output MEMCLK Output 1 12 ns 
Invalid Delay MEMCLK Input 2 20 

Ba Synchronous Output MEMCLK Output 1 16 ns 
Invalid Delay if ID(31-0) MEMCLK Input 2 22 

Synchronous Input MEMCLK Output 30 
9 Setup Time MEMCLK Input 26 ns 

(Note 2) MEMCLK=INCLK 15 

Synchronous Input MEMCLK Output 11 
9a Setup Time for ID(31-0) MEMCLK Input 17 ns 

(Note2) MEMCLK=INCLK 11 

Synchronous In~ MEMCLK Output 15 
9b Setup Time for ERR MEMCLK Input 21 ns 

(Note2) MEMCLK=INCLK 11 

10 Synchronous Input Hold Time 0 ns 

11 Setup Time for Synchronous 4 ns 
RESET Deassertion 

12 Hold Time for Synchronous 7 ns 
RESET Deassertion 

13 WARN Pulse Width 4T ns 

14 Asynchronous Input T+10 ns 
Pulse Width 

15 MEMCLK High Time MEMCLK Period= T 15 85 ns 
MEMCLK Period-2T T-3 T+3 

16 MEMCLK Low Time MEMCLK Period= T 15 85 ns 
MEMCLK Period=2T T-3 T+3 

17 MEMCLK Rise Time 0 6 ns 

18 MEMCLK Fall Time 0 6 ns 

Notes: 1) MEMCLK as an input is always CMOS level. 

2) MEMCLK can drive an external load of 150 pf. 

3) The input setup times with MEMCLK used as an input are improved if MEMCLK and 
INCLK are tied to the same clock input. This is possible only if the processor and bus 
operate at the same frequency. 

4) Except where noted, measurement conditions are the same as the Am29000 
microprocessor. 

5) All output valid delays are measured with Voi. = 1.0 V and VoH = 2.0 V. 

Am29030 and Am29035 Microprocessors 

AMDl1 

C-13 



~ AMO A D V A N C E I N F 0 R M A T I 0 N 

SWITCHING WAVEFORMS 

C-14 

INCLK 

MEMCLK 

Synchronous 
Outputs 

Synchronous 
Inputs 

REStf 

WARN 

Asynchronous 
Inputs 

Vcc-1.0V 
1.5V 
O.BV 

0 
@ 

-< 

Ji 
@) 

@ 

Am29030 and Am29035 Microprocessors 

~ 
~ 



Capacitive Output Delays 

For loads greater than 80 pF 

ADVANCE INFORMATION AMDl1 

The table below describes the additional output delays for capacitive loads greater than 80 pF. Values in the Maxi
mum Additional Delay column should be added to the value listed in the Switching Characteristics table. For loads 
less than or equal to 80 pF, refer to the delays listed in the Switching Characteristics table. This table applies to the 
PGA package only. 

Advance Information 

Total 
External 

No. Parameter Description Capacitance 

7 Synchronous MEMCLK Output Valid Delay 100 pF 
150 pF 
200 pF 
250 pF 
300..Ef 

7a Synchronous MEMCLK Output Valid Delay 100 pF 
for ID(31-0) 150 pF 

200 pF 
250 pF 
300..Ef 

SWITCHING TEST CIRCUIT 

loL = 3.2 mA 

Am29030 or 
Am29035 

Pin Under Test 

CL is guaranteed to 80 pF. For capacitive loading greater 
than 80 pF, refer to the Capacitive Output Delay table. 

Am29030 and Am29035 Microprocessors 

Maximum 
Additional 

Delay 
--~ 

+1 ns 
+2 ns 
+4 ns 
+6 ns 
+8 ns 

+1 ns 
+6 ns 
+10 ns 
+15 ns 
+19 ns 

··-~ 

C-15 



~AMO ADVANCE INFORMATION 

Am29030 Microprocessor Thermal Characteristics 

Pin-Grid-Array Package 

Thermal Resistance - °C/Watt 

Advance Information 

Parameter 

9JC Junction-to-Case 

9CA Case-to-Ambient (no Heatsink) 

9CA Case-to-Ambient \with omnidirectional 4-Fin 
Heatsink, Therma lay 0417261) 

9CA Case-to-Ambient (with unidirectional Pin Fin 
Heatsink, Wakefield 840-20) 

°C/Watt 

TBD 

TBD 

TBD 

TBD 

AMO is a registered trademark, Fusion29K is a registered servicemark, and Am29000, Am29005, Am29030, Am29035, Am29050, Am29027, 
29K, and Scalable Clocking are trademarks of Advanced Micro Devices, Inc. 
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. 

C-16 Am29030 and Am29035 Microprocessors 



INDEX 

INDEX 

32-bit word, reading and writing, 10-13 

A(31-0) signal (Address Bus) data 
accesses, 10-11 
definition of, 10-1 

access protocols, 10-15. See also 
burst-mode accesses; page-mode access; 
simple accesses 

activation records 
allocation in local registers, 4-4 
allocation of, 4-2 
definition of, 4-1 
illustration of, 4-3 
information stored in, 4-3 

addition instructions 
ADD, 12-8 
ADDC (Add with Carry), 12-9 
ADDCS (Add with Carry, Signed) 12-10 
ADDCU (Add with Carry, Unsigned) 

12-11 
ADDS (Add, Signed) instruction, 12-12 
ADDU (Add, Unsigned) instruction, 

12-13 
DADD (Floating-Point Add, 

Double-Precision), 12-47 
FADD (Floating-Point Add, 

Single-Precision) instruction, 12-65 
Address Space (AS) bit, 3-8 

address spaces 
input/output, 3-7 
instruction/data memory, 3-7 

address translation. See TLB 
addressing and alignment 

alignment of instructions, 3-15 
alignment of words and half-words, 

3-15 
byte and half-word accesses, 3-14 
byte and half-word addressing, 

3-13-3-14 
BO=O (big endian), 3-13 
B0=1 (little endian), 3-14 

addressing registers. See registers 
alignment. See addressing and 

alignment 

ALU Status (ALU, Register 132) 
BP bit (Byte Pointer), 2-17 
C bit (Carry), 2-17 
description of, 2-16-2-17 

OF bit (Divide Flag), 2-17 
FC bit (Funnel Shift Count), 2-17 
N bit (Negative), 2-17 
V bit (Overflow), 2-17 
z bit (Zero), 2-17 

Am29030 and Am29035 microprocessors 
29K Family development support 

products, C-2 
absolute maximum ratings, C-11 
capacitance, C-11 
capacitative output delays, C-15 
comparison of features, 1-2 
connection diagram, C-3, C-6 
DC characteristics, C-11 
debugging and testing, 1-8-1-9 
design philosophy, P-1-P-2 
development and support environment, 

1-6 
distinctive characteristics, C-1 
features, 1-1-1-2 
general description, C-2 
large, on-chip instruction cache, 1-3 
logic symbol, C-9 
narrow read interface, 1-4 
operating ranges, C-11 
optimum performance, P-2 
ordering information, C-10 
overview, P-1 
performance leverage, P-2-P-3 
performance overview, 1-6-1-8 

data formats, 1-7 
instruction cache, 1-7 
instruction set overview, 1-7 
instruction timing, 1-6 
interrupts and traps, 1-8 
memory management, 1-8 
pipelining, 1-6 
protection, 1-7 

PGA pin designation, C-4-C-5, 
C-7-C-8 

pin-, bus-, and sottware-
compatibility, 1-5 

price/performance points, 1-5 
programmable bus sizing, 1-4 
scalable clocking technology, 1-3-1-4 
simplified block diagram, C-1 
simplified system diagram, 1-3 
streamlined system interface, 1-4-1-5 
switching characteristics, C-12-C-13 
switching test circuit, C-15 
switching waveforms, C-14 

INDEX 1·1 



1·2 INDEX 

thermal characteristics, C-16 
third-party development support 

products, C-2 

AND (AND Logical) instruction, 12-14 

ANON (AND-NOT Logical) instruction, 
12-15 

arbitration 
description of, 10-18-10-19 
timing diagrams 

false processor request, A-37 
fast transfer to processor, A-36 
granting of unrequested bus, A-38 
normal transfer from processor, 

A-39 
normal transfer to processor, A-35 
preempting bus from processor, 

A-40 

argument passing, 4-8 

arithmetic instructions. See specific groups 
of instructions such as division 
instructions 

arithmetic operations status results, 
2-17-2-18 

AS bit (Address Space), 3-8 

ASEQ (Assert Equal To) instruction, 12-16 

ASGE (Assert Greater Than or Equal To) 
instruction, 12-17 

ASGEU (Assert Greater Than or Equal To, 
Unsigned) instruction, 12-18 

ASGT (Assert Greater Than) instruction, 
12-19 

ASGTU (Assert Greater Than, Unsigned) 
instruction, 12-20 

ASLE (Assert Less Than or Equal To) 
instruction, 12-21 

ASLEU (Assert Less Than or Equal To, 
Unsigned) instruction, 12-22 

ASL T (Assert Less Than) instruction, 12-23 

ASL TU (Assert Less Than, Unsigned) 
instruction, 12-24 

ASNEQ (Assert Not Equal To) instruction, 
12-25 

assembler syntax, 12-4 

assert instructions. See also specific assert 
instructions 
run-time checking, 2-24-2-25 
simulation of interrupts and traps, 
8-1~-14 

BGRT signal (Bus Grant) 
bus arbitration, 10-18-10-19 
definition of, 10-1 

binary semaphore support, 2-27 

bit strings 

bits 

Funnel Shift Count (FC, Register 134), 
3-3-3-4 

overview, 3-3 

AS (Address Space), 3-8 
BO (Byte Order), 3-13-3-14, 

10-7, 10-11 
BP (Byte Pointer), 2-17, 3-3, 3-13 
C (Carry), 2-17, 2-18, 2-25, 8-13 
CDATA field (Cache Data), 9-5 
CHA field (Channel Address), 8-18 
CHD field (Channel Data), 8-19 
CPTR field (Cache Pointer), 9-4 
CR field (Load/Store Count Remaining), 

3-10, 3-11, 3-12, 8-20 
CV (Contents Valid), 3-10, 8-12, 8-18, 

8-20 
016 (Data Width), 10-6 
DA (Disable All Interrupts and Traps), 

8-3 
DF (Divide Flag), 2-17 
DI (Disable Interrupts), 8-3 
DM (Floating-Point Divide-By-Zero 

Mask), 2-15 
DO (Integer Division Overflow Mask), 

2-16 
DS (Floating-Point Divide By Zero 

Sticky), 2-19 
DT (Floating-Point Divide By Zero 

Trap), 2-19 
EFC field (Exponent-Fraction Class), 

12-28-12-29 
FC (Funnel Shift Count), 2-17, 3-4 
FF (Fast Float Select), 2-15 
FRM (Floating-Point Round Mode), 

2-15 
FSEL field (Cache Field Select), 9-4 
FZ (Freeze), 5-7, 8-2, 8-6, 8-10-S-13, 

8-18, 11-6 
IATAG field (Instruction Address Tag), 

9-3 
ID (Instruction Cache Disable), 7-10, 

10-7 
IE (Interrupt Enable), 8-22, 8-24 
IL field (Instruction Cache Lock), 9-2, 

10-6, 10-8 
IM (Interrupt Mask), 8-3 
Indirect Pointer A (IPA), 2-14 
Indirect Pointer B (IPB), 2-14 
Indirect Pointer C (IPC), 2-14 
IN (Interrupt), 8-22, 8-24 
10 (Input/Output), 7-5, 7-9 
IP (Interrupt Pending), 8-2 
LA (Lock Active), 8-20 
LK (Lock), 2-28, 8-2 
LS (Load/Store), 8-20 
ML (Multiple Operation), 3-11, 8-12, 

8-20 



MO (Integer Multiplication Overflow 
Exception Mask), 2-16 

N (Negative), 2-17, 2-18 
NM (Floating-Point Invalid Operation 

Mask), 2-16 
NN (Not Needed), 3-10, 8-12, 8-18, 

8-20 
NSC (Floating-Point Invalid Operation 

Sticky), 2-20 
NT (Floating-Point Invalid Operation 

Trap), 2-19 
OPT (option), 3-9, 3-12 
OS (Operand Sign), 12-28 
OV (Overflow), 8-22, 8-24 
P (Physical Address), 9-3 
PA (Physical Address), 3-8 
PCO (Program Counter), 8-9 
PC1 (Program Counter 1), 8-9-8-10 
PC2 (Program Counter 2), 8-11 
PD (Physical Addressing/Data), 8-2 
PGM (User Programmable), 7-5 
Pl (Physical Addressing/Instructions), 

8-2 
PIO field (Process Identifier), 7-6, 7-10, 

7-13-7-14 
PMB field (Page-Mode Block), 

10-5, 10-6 
PRL field (Processor Release Level), 

10-5 
PS field (Page Size), 5-6, 7-6 
Q (OuotienVMultiplier), 2-20 
RA, 3-9 
RB or I, 3-9 
register field summary, B-8-8-11 
RM (Floating-Point Reserved Operand 

Mask), 2-15 
RPN (Real Page Number), 7-4-7-5, 

7-7-7-9 
RS (Floating-Point Reserved Operand 

Sticky), 2-20 
RT (Floating-Point Reserved Operand 

Trap), 2-19 
RW (Read/Write), 9-4 
SB (Set Byte Pointer/Sign), 3-9, 8-13 
SE (Supervisor Execute), 7-4 
SM (Supervisor Mode), 6-1, 8-3 
SR (Supervisor Read), 7-4 
ST (Set), 8-20 
SW (Supervisor Write), 7-4 
TCV field (Timer Count Value), 

8-23-8-24 
TD (Timer Disable), 8-1, 8-22 
TE (Trace Enable), 8-2, 11-1 
TF (Transaction Faulted), 8-18, 8-20 
TIO (Task Identifier), 7-4, 7-7, 7-14 
TP (Trace Pending), 8-2, 11-1 
TR field (Target Register), 3-11, 8-20 
TRV field (Timer Reload Value), 8-22, 

8-24 
TU (Trap Unaligned Access), 3-15, 8-2 
U (Usage), 7-5 

UA (User Access), 3-9 
UE (User Execute), 7-4 
UM (Floating-Point Underflow Mask), 

2-15 
UR (User Read), 7-4 
US (Floating-Point Underflow Sticky), 

2-20 
US (User or Supervisor Block), 9-3 
UT (Floating-Point Underflow Trap), 

2-19 
UW bit (User Write), 7-4 
V (Overflow), 2-17, 2-18 
V (Valid), 9-3, 9-9 
VAB (Vector Area Base), 8-5 
VE (Valid Entry), 7-4, 7-8, 7-13 
VM (Floating-Point Overflow Mask), 

2-15 
VS (Floating-Point Overflow Sticky), 

2-20 
VT (Floating-Point Overflow Trap), 2-19 
VTAG (Virtual Tag), 7-3-7-4, 7-7 
XM (Floating-Point Inexact Result 

Mask), 2-15 
XS (Floating-Point Inexact Result 

Sticky), 2-20 
XT (Floating-Point Inexact Result Trap), 

2-19 
Z (Zero), 2-17 
Zero bits, 7-12, 8-5, 8-9, 8-10 

BO bit (Byte Order) 
BO=O (big endian), 3-13 
B0=1 (little endian), 3-14 
byte and haH-word addressing, 

3-13, 3-14 
data accesses, 10-11 
description of, 10-7 

Boolean data, 3-5 

Booleans, complementing, 2-25-2-26 

boundary scan cells 
description of, 11-10, 11-11 
input cell (illustration), 11-10 
order of, in boundary scan path, 11-14 
output cell (illustration), 11-11 

Boundary Scan Register (BSR), 11-10 

BP bit (Byte Pointer) 
byte and haH-word addressing, 3-13 
description of, 2-17, 3-3 

branch instructions 
CALL (Call Subroutine), 12-26 
CALLI (Call Subroutine, Indirect), 12-27 
JMP (Jump), 12-79 
JMPF (Jump False), 12-80 
JMPFDEC (Jump False and 

Decrement), 12-81 
JMPFI (Jump False Indirect), 12-82 
JMPI (Jump Indirect), 12-83 
JMPT (Jump True), 12-84 
JMPTI (Jump True Indirect), 12-85 

INDEX 1-3 



1-4 INDEX 

overview, 2-7 
table of, 2-7 

breakpoints, 11-2 

BREQ signal (Bus Request) 
bus arbitration, 10-18-10-19 
bus sharing, 10-20 
definition of, 10-1 

BURST signal (Burst Request) 
burst-mode accesses, 10-15 
definition of, 10-2 

burst-mode accesses 
8-bit narrow read access 

(diagram), A-26 
16-bit narrow read access 

(diagram), A-29 
16-bit narrow write access 

(diagram), A-32 
ERL YA for interleaved memory 

systems, 10-17-10-19 
ERL YA read access (diagram), A-22 
ERL YA read access (multi-cycle) 

(diagram), A-23 
overview, 10-16 
pre-emption, termination, or 

cancellation, 10-16-10-17 
preemption, termination or cancellation 

(diagram), A-19-A-20 
read access (diagram), A-15 
read access (multi-cycle initial access) 

(diagram), A-16 
slave cancellation, 10-17 
slave cancellation of read access 

(diagram), A-21 
write access (diagram), A-17 
write access (multi-cycle initial access) 

(diagram), A-18 

bus description, 10-9-10-19 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
access protocols, 10-15 
arbitration, 10-18-10-19 
arbitration timing diagrams 

false processor request, A-37 
fast transfer to processor, A-36 
granting of unrequested bus, A-38 
normal transfer from processor, A-39 
normal transfer to processor, A-35 
preempting bus from processor, A-40 
preempting bus from processor 

(worst case), A-41 
burst-mode accesses, 10-16-10-18 

ERL YA for interleaved memory 
systems, 10-17-10-19 

overview, 10-16 
pre-emption, termination, or 

cancellation, 10-16-10-17 
slave cancellation, 10-17 

bus overview, 10-9 
bus summary and timing diagrams, 

A-3-A-40 
data accesses, 10-11 
electrical considerations of bus sharing, 

10-19-10-20 
instruction accesses, 10-1 O 
logical groups of signals, 10-9 
narrow read interface, 10-12 
page-mode access, 10-15 
programmable bus sizing (Am29035 

processor), 10-13-10-14 
read-only memories, 10-11 
reporting errors, 10-14-10-15 
ROM address mapping, 10-13 
simple accesses, 10-15 
user-defined signals, 10-1 O 

bus summary and timing diagrams, 
A-3-A-40 

BWE(3-0) signal (Byte Write Enables) 
data accesses, 10-11, 10-21 
definition of, 10-2 
instructionaccesses, 10-10, 10-20 
programmable bus sizing, 10-14 

BYPASS instruction, 11-13 

BYPASS path, 11-14 

byte and haH-word accesses, 3-14 

byte and half-word addressing 
alignment of instructions, 3-15 
alignment of words and half-words, 

3-15 
BO=O (big endian), 3-13 
B0=1 (little endian), 3-14 
description of, 3-13-3-14 

Byte Order bit. See BO bit (Byte Order) 

Byte Pointer bit. See BP bit (Byte Pointer) 

Byte Pointer (BP, Register 133) 
BP bit (Byte Pointer), 3-3 
description of, 3-2-3-3 

C bit (Carry) 
arithmetic operation status results, 2-18 
description of, 2-17 
lightweight interrupt processing, 8-13 
multiprecision integer operations, 2-25 
cache. See instruction cache 

Cache Data Register (CDR, Register 30) 
address tag and status information, 9-3 
CDATA field (Cache Data), 9-5 
delayed effects of registers, 5-7 
description of, 9-4-9-5 
IATAG field (Instruction Address Tag), 

9-3 
illustration of, 9-5 
instruction words, 9-3 
P bit (Physical Address), 9-3 
reserved bits, 9-3 



US bit (User or Supervisor Block), 9-3 
V bit (Valid), 9-3 

Cache Interface Register (CIR, Register 29) 
CPTR field (Cache Pointer), 9-4 
delayed effects of registers, 5-7 
FSEL field (Cache Field Select), 9-4 
illustration of, 9-4 
reserved, 9-4 
AW bit (Read/Write), 9-4 

CALL (Call Subroutine) instruction 
description of, 12-26 
large jump and call ranges, 2-26 

CALLI (Call Subroutine, Indirect) instruction, 
12-27 

calls. See also procedure linkage 
delayed branches, 5-4-5-5 
large jump and call ranges, 2-26 
operating-system calls, 2-25 

capacitance, to 11 
capacitative output delays, C-15 

Carry bit. See C bit (Carry) 
CDATA field (Cache Data), 9-5 
CHA field (Channel Address), 8-18 

Channel Address (CHA, Register 4) 
Data MMU Protection Violation, 6-4 
description of, 8-18 
illustration of, 8-19 
storage of intermediate addresses, 3-11 
TLB reload routine, 7-12 

Channel Control (CHC, Register 6) 
bits 31-24, 8-19 
CR bits (Load/Store Count Remaining), 

8-20 
CV bit (Contents Valid), 3-10, 8-20 
Data MMU Protection Violation, 6-4 
description of, 8-19 
illustration of, 8-19 
LA bit (Lock Active), 8-20 
LS bit (Load/Store), 8-20 
ML bit (Multiple Operation), 3-11, 8-20 
NN bit (Not Needed), 3-10, 8-20 
reserved bits, 8-20 
ST bit (Set), 8-20 
TF bit (Transaction Faulted), 8-18, 8-20 
TR field (Target Register), 3-11, 8-20 

Channel Data (CHD, Register 5) 
description of, 8-19 
illustration of, 8-19 
multiple data accesses, 3-11 

character data 
CPBYTE instruction, 3-2 
description of, 3-1-3-2 
EXBYTE instruction, 3-1 
format of, 3-1 
INBYTE instruction, 3-2 

character-strings 
alignment of bytes within words, 3-4 
detection of characters within words, 

3-4 
overview, 3-4 

CHD field (Channel Data), 8-19 

CLASS (Classify Floating-Point Operand) 
instruction, 12-28-12-29 

clocks 
DIV2 signal, 10-8 
electrical specifications, 10-9 
INCLK signal, 10-8-10-9 
MEMCLK signal, 10-8-10-9 
PWRCLK pin, 10-9 
relationship of INCLK, internal 

processor clock, and MEMCLK, A-3 
scalable clocking technology, 1-3-1-4 

CLZ (Count Leading Zeros) instruction, 
12-30 

CNTL(1-0) signal (CPU Control) 
boundary scan cells, 11-11 
debugging and testing, 11-4 
definition of, 10-4 
Halt Mode, 11-5 
Load Test Instruction mode, 11-7 
Step Mode, 11-6 
valid transitions (illustration), 11-4 

Common Imaging Engines, P-1 
Compare Bytes instruction. See CPBYTE 

(Compare Bytes) instruction 

compare instructions 
ASEQ (Assert Equal To), 12-16 
ASGE (Assert Greater Than or Equal 

To), 12-17 
ASGEU (Assert Greater Than or Equal 

To, Unsigned), 12-18 
ASGT (Assert Greater Than), 12-19 
ASGTU (Assert Greater Than, 

Unsigned), 12-20 
ASLE (Assert Less Than or Equal To), 

12-21 
ASLEU (Assert Less Than or Equal To, 

Unsigned), 12-22 
ASL T (Assert Less Than), 12-23 
ASL TU (Assert Less Than, Unsigned). 

12-24 
ASNEQ (Assert Not Equal To), 12-25 
CPBYTE (Compare Bytes), 2-1, 3-2, 

3-4, 12-36 
CPEQ (Compare Equal To), 12-37 
CPGE (Compare Greater Than or 

Equal To), 12-38 
CPGEU (Compare Greater Than or 

Equal To, Unsigned), 12-39 
CPGT (Compare Greater Than), 12-40 
CPGTU (Compare Greater Than, 

INDEX Ml 



1·6 INDEX 

Unsigned), 12-41 
CPLE (Compare Less Than or Equal 

To), 12-42 
CPLEU (Compare Less Than or Equal 

To, Unsigned), 12-43 
CPLT (Compare Less Than), 12-44 
CPL TU (Compare Less Than, 

Unsigned), 12-45 
CPNEO (Compare Not Equal To), 

12-46 
overview, 2-1 
table of, 2-3 

compatibility of 29K Family of Processors, 
1-5 

complementing a Boolean, 2-25-2-26 

Configuration (CFG, Register 3) 
BO bit (Byte Order), 3-13, 10-7 
016 bit (Data Width), 10-6 
ID bit (Instruction Cache Disable), 7-10, 

10-7 
IL field (Instruction Cache Lock), 9-2, 

10-6 
illustration of, 10-6 
PMB field (Page-Mode Block), 

10-6 
PAL field (Processor Release Level), 

10-5 
reserved bits, 10-5, 10-6 
Reset mode, 10-8 

connection diagram, C-3, C-6 

CONST (Constant) instruction 
description of, 12-31 
generation of large constants, 3-5 
large jump and call ranges, 2-26 

constant instructions 
overview, 2-5 
table of, 2-6 

constants available for instructions, 3-5 

CONSTH (Constant, High) instruction 
description of, 12-32 
generation of large constants, 3-5 
large jump and call ranges, 2-26 

CONSTN (Constant, Negative) instruction 
description of, 12-33 
generation of large constants, 3-5 

Contents Valid bit. See CV bit (Contents 
Valid) 

control-flow terminology, 12-3 

CONVERT (Convert Data Format) 
instruction, 12-34-12-35 

Count Leading Zeros (CLZ) instruction, 
12-30 

Count Remaining bit. See CR field 
(Load/Store Count Remaining) 

CPBYTE (Compare Bytes) instruction 
character data, 3-2 
comparison operations, 2-1 
description of, 12-36 
detection of characters within 

words, 3-4 

CPEQ (Compare Equal To) instruction, 
12-37 

CPGE (Compare Greater Than or Equal To) 
instruction, 12-38 

CPGEU (Compare Greater Than or Equal 
To, Unsigned) instruction, 12-39 

CPGT (Compare Greater Than) instruction, 
12-40 

CPGTU (Compare Greater Than, Unsigned) 
instruction, 12-41 

CPLE (Compare Less Than or Equal To) 
instruction, 12-42 

CPLEU (Compare Less Than or Equal To, 
Unsigned) instruction, 12-43 

CPL T (Compare Less Than) instruction, 
12-44 

CPL TU (Compare Less Than, Unsigned) 
instruction, 12-45 

CPNEO (Compare Not Equal To) 
instruction, 12-46 

CPTR field (Cache Pointer), 9-4 

CR field (Load/Store Count Remaining) 
description of, 3-12, 8-20 
multiple data accesses, 3-10, 3-11 

Current Processor Status (CPS, 
Register 2), 8-1-8-3 

after interrupts or traps, 8-11 
before interrupt return, 8-11 
control of tracing, 11-1 
DA bit (Disable All Interrupts and 

Traps), 8-3 
delayed effects of registers, 5-6 
DI bit (Disable Interrupts), 8-3 
FZ bit (Freeze), 5-7, 8-2 
illustration of, 8-1 
IM bit (Interrupt Mask), 8-3 
IP bit (Interrupt Pending), 8-2 
LK bit (Lock), 8-2 
PD bit (Physical Addressing/Data), 8-2 
Pl bit (Physical 

Addressing/Instructions), 8-2 
reserved bits, 8-1, 8-2 
Reset mode, 10-7 
SM bit (Supervisor Mode), 6-1, 8-3 
TD bit (Timer Disable), 8-1 
TE bit (Trace Enable), 8-2 
TP bit (Trace Pending), 8-2 



TU bit (Trap Unaligned Access), 3-15, 
8-2 

CV bit (Contents Valid), 3-10 
description of, 8-20 
restarting faulting external accesses, 

8-18 
returning from interrupts or traps, 8-12 

D16 bit (Data Width), 10-6 

DA bit (Disable All Interrupts and Traps) 
description of, 8-3 
disabling of interrupts, 8-3 

DADD (Floating-Point Add, 
Double-Precision) instruction, 12-47 

data accesses, external. See external data 
accesses 

data formats, 1-7 

Data MMU Protection Violation trap, 6-4 

data movement instructions 
EXBYTE (Extract Byte), 12-61 
EXHW (Extract HaH-Word), 12-62 
EXHWS (Extract HaH-Word, 

sign-Extended), 12-63 
INBYTE (Insert Byte), 12-74 
INHW (Insert Half-Word), 12-75 
LOAD (Load), 12-86 
LOADL (Load and Lock), 12-87 
LOADM (Load Multiple), 12-88 
LOADSET (Load and Set), 12-89 
MFSR (Move from Special Register), 

12-90 
MFTLB (Move from Translation 

Look-Aside Buffer Register), 12-91 
MTSR (Move to Special Register), 

12-92 
MTSRIM (Move to Special Register 

Immediate), 12-93 
MTTLB (Move to Translation 

Look-Aside Buffer Register), 12-94 
overview, 2-4 
STORE (Store), 12-110 
STOREL (Store and Lock), 12-111 
STOREM (Store Multiple), 12-112 
table of, 2-5 

data types 
floating-point data types 

denormalized numbers, 3-7 
double-precision floating-point 

values, 3-6 
infinity, 3-7 
Not-a-Number (NaN), 3-6-3-7 
overview, 3-5 
single-precision floating-point values, 

3-5--3-6 
special floating-point values, 3-6-3-7 
zero, 3-7 

integer data types 

bit strings, 3-3 
Boolean data, 3-5 
Byte Pointer (BP, Register 133), 

3-2-3-3 
character data, 3-1-3-2 
character-string operations, 3-4 
haH-word operations, 3-2 
instruction constants, 3-5 

DC characteristics, C-11 

DDIV (Floating-Point Divide, 
Double-Precision) instruction, 12-48 

debugging and testing 
CPU control inputs, 11-4 
hardware-development system, 

11-5-11-9 
Halt mode, 11-5 
Load Test Instruction mode, 

11-6-11-8 
Stepmode, 11-5-11-6 
summary of development system 

operation, 11-9 
in-circuit testing, 11-9 
instruction breakpoints, 11-2 
overview, 1-8-1-9 
processor status outputs, 11-2-11-3 
SAMPLE instruction, 11-13 
Test Access Port, 11-9-11-16 

boundary scan cells, 11-10-11-11 
BYPASS instruction, 11-13 
bypass path, 11-14 
EXTEST instruction, 11-12 
ICTEST1 instruction, 11-13 
ICTEST1path,11-16 
ICTEST2 instruction, 11-13 
ICTEST2path, 11-16 
instruction path, 11-14 
Instruction Register and implemented 

instructions, 11-11-11-12 
INTEST instruction, 11-12 
main data path, 11-14-11-15 
order of scan cells in boundary scan 

path, 11-14-11-16 
Trace Facility, 11-1 

delay instruction (slot), 5-4 

delayed branches, 5-4-5-5 

demand paging 
minimum number of resident pages, 

7-13 
page reference and change information, 

7-12-7-13 
restarting faulting external accesses, 

8-17-8-18 

denormalized numbers, 3-7 

DEQ (Floating-Point Equal To, 
Double-Precision) instruction, 12-49 

INDEX 1-7 



1-B INDEX 

DF bit (Divide Flag) 
description of, 2-17 
lightweight interrupt processing, 8-13 

DGE (Floating-Point Greater Than or Equal 
To, Double-Precision) instruction, 12-50 

DGT (Floating-Point Greater Than, 
Double-Precision) instruction, 12-51 

DI bit (Disable Interrupts) 
description of, 8-3 
disabling of external interrupts, 8-3 

Disable All Interrupts and Traps. See DA bit 
(Disable All Interrupts and Traps) 

Disable Interrupts bit. See DI bit (Disable 
Interrupts) 

DIV2 signal (Divide Clock By 2), 10-4, 
10-8-10-9 

Divide Flag bit. See DF bit (Divide Flag) 

division, process of, 2-22-2-24 

division instructions 
DDIV (Floating-Point Divide, 
Double-Precision), 12-48 
DIV (Divide Step) instruction, 12-52 
DIVO (Divide Initialize) instruction, 

12-53 
DIVIDE (Integer Divide, Signed) 

instruction, 12-54 
DIVIDU (Integer Divide, Unsigned), 

12-55 
DIVL (Divide Last Step), 12-56 
DIVREM (Divide Remainder), 12-57 
FDIV (Floating-Point Divide, 

Single-Precision), 12-66 

DM bit (Floating-Point Divide-By-Zero 
Mask), 2-15 

DMUL (Floating-Point Multiply, 
Double-Precision) instruction, 12-58 

DO bit (Integer Division Overflow Mask), 
2-16 

documentation 
29K family documentation, P-5 
overview, P-3-P-4 
related publications, P-6 

double-precision floating-point values 
description of, 3-6 
format of, 3-6 

DS bit (Floating-Point Divide By Zero 
Sticky), 2-19 

DSUB (Floating-Point Subtract, 
Double-Precision) instruction, 12-59 

DT bit (Floating-Point Divide By Zero Trap), 
2-19 

dynamic parent, 4-13 

EFC field (Exponent-Fraction Class), 
12-28-12-29 

EMACC pin (Emulator Access), 10-5 

EMULATE (Trap to Software Emulation 
Routine) instruction, 12-60 

epilogue. See p;ocedure epilogue 

ERL YA signal (Early Address) 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-12 
burst-mode read access (diagram), 

A-22 
burst-mode read access (multi-cycle) 
(diagram), A-23 
definition of, 10-3 
interleaved memory systems, 

10-17-10-18 
programmable bus sizing, 10-13 

ERR signal (Error) 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
definition of, 10-2 
preventing spurious master/slave 

errors, 10-21 
programmable bus sizing, 10-13 
reporting errors, 10-14-10-15 
slave cancellation of burst-mode 

access, 10-17 

EXBYTE (Extract Byte) instruction 
Byte Pointer (BP, Register 133), 3-2 
character data, 3-1 
description of, 12-61 

exception reporting and restarting 
Channel Address (CHA, Register 4), 

8-18-8-19 
Channel Control (CHC, Register 6), 

8-19-8-20 
Channel Data (CHO, Registers), 8-19 
correcting out-of-range results, 8-21 
exceptions during interrupt and trap 

handling, 8-21-8-22 
floating-point exceptions, 8-21 
instruction exceptions, 8-17 
integer exceptions, 8-20-8-21 
overview, 8-17 
restarting faulting external accesses, 

8-17-8-18 

EXHW (Extract Half-Word) instruction 
Byte Pointer (BP, Register 133), 3-2 
description of, 12-62 
half-word operations, 3-2 

EXHWS (Extract Hatt-Word, sign-Extended) 
instruction 
Byte Pointer (BP, Register 133), 3-2 
description of, 12-63 
half-word operations, 3-2 



external data accesses 
address spaces, 3-7 
addressing and alignment, 3-13-3-15 
alignment of instructions, 3-15 
alignment of words and half-words, 

3-15 
bus data accesses, 10-11 
byte and half-word accesses, 3-14 
byte and half-word addressing, 

3-13-3-14 
load operations, 3-9-3-1 o 
Load/Store Count Remaining (CR, 

Register 135), 3-11-3-12 
load/store instruction format, 3-8-3-9 
movement of large data blocks, 3-12 
multiple accesses, 3-10-3-12 
option bits, 3-12 
protection of, 6-4 
restarting faulting external accesses, 

8-17--8-18 
store operations, 3-10 

external instruction fetching, 9-5-9-7 
cache misses during fetching, 9-7 
cache replacement, 9-6 
instruction fetch pointer, 9-7 
overview of instruction fetching, 9-6 

external interrupts and traps, 8-4 

EXTEST instruction, 11-12 

Extract Byte instruction. See EXBYTE 
(Extract Byte) instruction 

EXTRACT (Extract Word, Bit-Aligned) 
instruction 
bit strings, 3-3-3-4 
description of, 12-64 
Funnel Shift Count (FC, Register 134), 

3-3-3-4 
movement of large data blocks, 3-12 
word-length data operations, 2-4 

Extract Half-Word, Sign-Extended 
instruction, Sign-Extended instruction. 
See EXHWS (Extract Half-Word) 

Extract Half-Word instruction. See EXHW 
(Extract Half-Word) instruction 

FADD (Floating-Point Add, 
Single-Precision) instruction, 12-65 

FC bit (Funnel Shift Count) 
alignment of bytes within words, 3-4 
description of, 2-17 

FDIV (Floating-Point Divide, 
Single-Precision) instruction, 12-66 

FDMUL (Floating-Point Multiply, 
Double-Precision) instruction, 12-67 

FEQ (Floating-Point Equal To, 
Single-Precision) instruction, 12-68 

fetching. See external instruction fetching; 
instruction prefetching 

FF bit (Fast Float Select), 2-15 

FGE (Floating-Point Greater Than or Equal 
To, Single-Precision) instruction, 12-69 

FGT (Floating-Point Greater Than, 
Single-Precision) instruction, 12-70 

fields. See bits 

fill handlers, 4-11 

floating-point data types 
denormalized numbers, 3-7 
double-precision floating-point values, 

3-6 
infinity, 3-7 
Not-a-Number (NaN), 3-6-3-7 
overview, 3-5 
single-precision floating-point values, 

3-5-3-6 
special floating-point values, 3-6--3-7 
zero, 3-7 

Floating-Point Environment (FPE, Register 
160), 2-15-2-16 

description of, 2-15-2-16 
DM bit (Floating-Point Divide-By-Zero 

Mask), 2-15 
FF bit (Fast Float Select), 2-15 
FRM bit (Floating-Point Round Mode), 

2-15 
NM bit (Floating-Point Invalid Operation 

Mask), 2-16 
reserved bits, 2-15 
RM bit (Floating-Point Reserved 
Operand Mask), 2-15 
UM bit (Floating-Point Underflow Mask), 

2-15 
VM bit (Floating-Point Overflow Mask), 

2-15 
XM bit (Floating-Point Inexact Result 

Mask), 2-15 

floating-point exceptions, 8-21 

floating-point instructions 
CLASS (Classify Floating-Point 

Operand), 12-287 12-29 
CONVERT (Convert Data Format), 

12-34-12-35 
DADD (Floating-Point Add, 

Double-Precision), 12-47 
DDIV (Floating-Point Divide, 

Double-Precision), 12-48 
DEQ (Floating-Point Equal To, 

Double-Precision), 12-49 
OGE (Floating-Point Greater Than or 

Equal To, Double-Precision) 
instruction, 12-50 

DGT (Floating-Point Greater Than, 
Double-Precision) instruction, 12-51 

INDEX 1·9 



1-10 INDEX 

DMUL (Floating-Point Multiply, 
Double-Precision), 12-58 

DSUB (Floating-Point Subtract, 
Double-Precision), 12-59 

FADD (Floating-Point Add,Single
Precision) instruction, 12-65 

FDIV (Floating-Point Divide, 
Single-Precision) instruction, 12-66 

FDMUL (Floating-Point Multiply, 
Double-Precision) instruction, 12-67 

FEQ (Floating-Point Equal To, 
Single-Precision) instruction, 12-68 

FGE (Floating-Point Greater Than or 
Equal To, Single-Precision) 

instruction, 12-69 
FGT (Floating-Point Greater Than, 

Single-Precision) instruction, 12-70 
FMUL (Floating-Point Multiply, 

Single-Precision) instruction, 12-71 
FSUB (Floating-Point Subtract, 

Single-Precision), 12-72 
overview, 2-5 
SQRT (Floating-Point Square Root), 

12-107 
table of, 2-6-2-7 

Floating-Point Status (FPS, Register 162) 
description of, 2-18--2-19 
OS bit (Floating-Point Divide By Zero 

Sticky), 2-19 
OT bit (Floating-Point Divide By Zero 

Trap), 2-19 
NS bit (Floating-Point Invalid Operation 

Sticky) , 2-20 
NT bit (Floating-Point Invalid Operation 

Trap), 2-19 
Reserved bits, 2-19 
RS bit (Floating-Point Reserved 

Operand Sticky), 2-20 
RT bit (Floating-Point Reserved 

Operand Trap), 2-19 
US bit (Floating-Point Underflow 

Sticky), 2-20 
UT bit (Floating-Point Underflow Trap), 

2-19 
VS bit (Floating-Point Overflow Sticky), 

2-20 
VT bit (Floating-Point Overflow Trap), 

2-19 
XS bit (Floating-Point Inexact Result 

Sticky), 2-20 
XT bit (Floating-Point Inexact Result 

Trap), 2-19 

FMUL (Floating-Point Multiply, 
Single-Precision) instruction, 12-71 

frame pointer (fp), 4-5 

FAM bit (Floating-Point Round Mode), 2-15 

FSEL field (Cache Field Select), 9-4 
FSUB (Floating-Point Subtract, 

Single-Precision) instruction, 12-72 

Funnel Shift Count bit. See FC bit (Funnel 
Shift Count) 

Funnel Shift Count (FC, Register 134) 
alignment of bytes within words, 3-4 
description of, 3-3-3-4 

FZ bit (Freeze) 
Current Processor Status (CPS, 

Register 2), 8-2 
delayed effects of registers, 5-7 
Halt mode, 11-5 
lightweight interrupt processing, 8-13 
restarting faulting external accesses, 

8-18 
returning from interrupts or traps, 

8-11-8-12 
Step mode, 11-6 
taking interrupts or traps, 8-6, 

8-10-8-11 

general-purpose registers 
global registers, 2-9, 2-10 
local registers, 2-11 
operands for program use, 2-9 
organization of, 2-10, 6-2, B-1 
register addressing, 2-9 

global registers 
delayed effects of registers, 5-6 
description of, 2-9, 2-10 
return values, 4-10 
spill handling, 4-10 
Stack Pointer in Global Register 1, 4-4 
static link pointer, 4-13 

half-word accesses. See byte and half-word 
accesses 

half-word addressing. See byte and 
haH-word addressing 

half-word data 
EXHW (Extract HaH-Word) instruction, 

3-2, 12-62 
EXHWS (Extract HaH-Word, 

Sign-Extended) instruction, 3-2, 
12-63 

format of, 3-2 
INHW (Insert Half-Word) instruction, 

3-2, 12-75 
instructions for processing, 3-2 

HALT (Enter Halt Mode) instruction 
description of, 12-73 
used for breakpointing, 11-2 

Halt mode, for debugging and testing, 11-5 

I bit, 3-9 

IATAG field (Instruction Address Tag), 9-3 

ICTEST1 instruction, 11-13 



ICTEST1 path, 11-16 

ICTEST2 instruction, 11-13 

ICTEST2 path, 11-16 

ID bit (Instruction Cache Disable) 
description of, 10-7 
instruction cache considerations, 7-10 

l/D signal (Instruction or Data Access) 
definition of, 10-2 
instruction accesses, 10-1 O 

ID signal (Instruction/Data Bus) 
definition of, 10-2 
narrow read interface, 10-12 
programmable bus sizing, 10-13 

IE bit (Interrupt Enable) 
description of, 8-24 
overview, 8-22 

IL field (Instruction Cache Lock) 
description of, 10-6 
locking of instruction cache, 9-2 
subset applied to Am29035 processor, 

10-8 

Illegal Opcode trap, 11-2 

IM bit (Interrupt Mask), 8-3 

IN bit (Interrupt) 
description of, 8-24 
overview, 8-22 

INBYTE (Insert Byte) instruction 
character data, 3-2 
description of, 3-2, 12-74 

in-circuit testing, 11-9 

INCLK signal (Input Clock) 
boundary scan cell and, 11-11 
definition of, 10-4 
description of, 10-8-10-9 
relationship of INCLK, internal 

processor clock, and MEMCLK, A-3 

indirect addressing of registers. See 
registers 

Indirect Pointer A (IPA, Register 129) 
delayed effects of registers, 5-6 
description of, 2-14 

Indirect Pointer B (IPB, Register 130) 
delayed effects of registers, 5-6 
description of, 2-14 

Indirect Pointer C (IPC, Register 128) 
delayed effects of registers, 5-6 
description of, 2-13-2-14 

infinity, 3-7 

INHW (Insert Half-Word) instruction 
description of, 3-2, 12-75 
half-word operations, 3-2 

initializing the processor. See processor 
reset and initialization 

input/output address space, 3-7 

Insert Byte instruction. See INBYTE (Insert 
Byte) instruction 

Insert Half-Word instruction. See INHW 
(Insert Half-Word) instruction 

Instruction Access Exception trap, 9-6 

instruction accesses, 10-10 

instruction breakpoints, 11-2 

instruction cache 
accessing cache fields, 9-2-9-5 

address tag and status information. 
9-3 

Cache Data Register (CDR, 
Register 30), 9-4-9-5 

Cache Interface Register (CIR, 
Register 29), 9-4 

instruction words, 9-3 
Cache Data Register (CDR, Register 

30), 9-4-9-5 
address tag and status information, 
9-3 

IATAG field (Instruction Address 
Tag), 9-3 

instruction words, 9-3 
Cache Interface Register (CIR, Register 

29), 9-4 
cache invalidation, 9-9 
external fetching and cache reload, 

9-5-9-7 
cache misses during fetching, 9-7 
cache replacement, 9-6 
instruction fetch pointer, 9-7 
overview of instruction fetching, 9-6 

hits and misses, 9-5, 9-7 
instruction prefetching, 9-7-9-9 

collisions between fetching and 
loads or stores, 9-9 

operations during, 9-7-9-8 
prefetch buffer, 9-8 
termination due to branching, 

9-8-9-9 
termination due to cache hit, 9-8 

invalidating entries in, 7-9-7-10 
locked by IL field, 9-2 
organization of (illustration), 9-1-9-2 
overview, 1-5, 1-7, 9-1-9-2 

instruction constants, 3-5 

instruction fetch pointer, 9-7 

Instruction MMU Protection Violation trap, 
6-4 

instruction path, 11-14 

Instruction Prefetch Buffer, 9-8 

instruction prefetching, 9-7-9-9 
collisions between fetching and loads or 

stores, 9-9 

INDEX 1-11 



l-12'1NDEX 

operations during, 9-7-9-8 
prefetch buffer, 9-8 
termination due to branching, 9-8-9-9 
termination due to cache hit, 9-8 

Instruction Register (IREG) of Test Access 
Port, 11-11-11-12 

instruction scheduling. See pipelining 

instruction set 
ADD, 12-8 
ADDC (Add with Carry), 12-9 
ADDCS (Add with Carry, Signed), 

12-10 
ADDCU (Add with Carry, Unsigned), 

12-11 
ADDS (Add, Signed), 12-12 
ADDU (Add, Unsigned), 12-13 
aligment of instructions, 3-15 
AND (AND Logical), 12-14 
ANON (AND-NOT Logical), 12-15 
ASEO (Assert Equal To), 12-16 
ASGE (Assert Greater Than or Equal 

To), 12-17 

ASGEU (Assert Greater Than or Equal 
To, Unsigned), 12-18 

ASGT (Assert Greater Than), 12-19 
ASGTU (Assert Greater Than, 

Unsigned), 12-20 
ASLE (Assert Less Than or Equal To), 

12-21 
ASLEU (Assert Less Than or Equal To, 

Unsigned), 12-22 
ASLT (Assert Less Than), 12-23 
ASL TU (Assert Less Than, Unsigned), 

12-24 
ASNEQ (Assert Not Equal To), 12-25 
assembler syntax, 12-4 
assert instructions, 2-24-2-25 
branch instructions, 2-7 
CALL (Call Subroutine), 2-26, 12-26 
CALLI (Call Subroutine, Indirect), 12-27 
CLASS (Classify Floating-Point 

Operand), 12-28-12-29 
CLZ (Count Leading Zeros), 12-30 
compare instructions, 2-1, 2-3 
CONST (Constant), 2-26, 3-5, 12-31 
constant instructions, 2-5, 2-6 
CONSTH (Constant, High), 2-26, 3-5, 

12-32 
CONSTN (Constant, Negative), 3-5, 

12-33 
control-flow terminology, 12-3 
CONVERT (Convert Data Format), 

12-34-12-35 
CPBYTE (Compare Bytes), 2-1, 3-2, 

3-4, 12-36 
CPEO (Compare Equal To), 12-37 
CPGE (Compare Greater Than or 

Equal To), 12-38 
CPGEU (Compare Greater Than or 

Equal To, Unsigned), 12-39 
CPGT (Compare Greater Than), 12-40 
CPGTU (Compare Greater Than, 

Unsigned), 12-41 
CPLE (Compare Less Than or Equal 

To), 12-42 
CPLEU (Compare Less Than or Equal 

To, Unsigned), 12-43 
CPLT (Compare Less Than), 12-44 
CPL TU (Compare Less Than, 

Unsigned), 12-45 
CPNEQ (Compare Not Equal To), 

12-46 
DADD (Floating-Point Add, 

Double-Precision), 12-47 
data movement instructions, 2-4, 2-5 
DDIV (Floating-Point Divide, 

Double-Precision), 12-48 
DEQ (Floating-Point Equal To, 

Double-Precision), 12-49 
OGE (Floating-Point Greater Than or 

Equal To, Double-Precision), 12-50 
DGT (Floating-Point Greater Than, 
Double-Precision), 12-51 
DIV (Divide Step), 12-52 
DIVO (Divide Initialize), 12-53 
DIVIDE (Integer Divide, Signed), 12-54 
DIVIDU (Integer Divide, Unsigned), 

12-55 
DIVL (Divide Last Step), 12-56 
DIVREM (Divide Remainder), 12-57 
DMUL (Floating-Point Multiply, Double-

Precision), 12-58 
DSUB (Floating-Point Subtract, Double

Precision), 12-59 
EMULATE (Trap to Software Emulation 

Routine), 12-60 
EXBYTE (Extract Byte), 3-1, 3-2, 12-61 
exceptions, 8-17 
EXHW (Extract Half-Word), 3-2, 12-62 
EXHWS (Extract Half-Word, sign-

Extended), 3-2, 12-63 
EXTRACT (Extract Word, Bit-Aligned), 

2-4, 3-3-3-4, 3-12, 12-64 
FADD (Floating-Point Add, Single

Precision), 12-65 
FDIV (Floating-Point Divide, Single

Precision), 12-66 
FDMUL (Floating-Point Multiply, 

Double-Precision), 12-67 
FEQ (Floating-Point Equal To, Single

Precision), 12-68 
FGE (Floating-Point Greater Than or 

Equal To, Single-Precision), 12-69 
FGT (Floating-Point Greater Than, 

Single-Precision), 12-70 
floating-point instructions, 2-5, 2-6-2-7 
FMUL (Floating-Point Multiply, Single

Precision), 12-71 
frequently occurring field uses, 12-6 
FSUB (Floating-Point Subtract, Single-



Precision), 12-72 
HALT (Enter Halt Mode), 11-2, 12-73 
INBYTE (Insert Byte), 3-2, 12-74 
index by operation code, 

12-127-12-129 
INHW (Insert Half-Word), 3-2, 12-75 
instruction formats, 12-4-12-6 
integer arithmetic instructions, 2-1-2-2 
INV (Invalidate), 7-10, 9-9, 12-76 
IRET (Interrupt Return), 8-11, 8-18, 

12-77 
IRETINV (Interrupt Return and 
Invalidate), 7-10, 8-11~-12, 8-18, 9-9, 

12-78 
JMP (Jump), 12-79 
JMPF (Jump False), 12-80 
JMPFDEC (Jump False and 

Decrement), 12-81 
JMPFI (Jump False Indirect), 12-82 
JMPI (Jump Indirect), 12-83 
JMPT (Jump True), 12-84 
JMPTI (Jump True Indirect), 12-85 
LOAD (Load), 12-86 
LOADL (Load and Lock), 2-27-2-28, 

3-9, 12-87 
LOADM (Load Multiple), 3-10-3-11, 

11-6, 12-88 
LOADSET (Load and Set), 2-27, 3-9, 

6-3, 12-89 
logical instructions, 2-4 
MFSR (Move from Special Register), 

12-90 
MFTLB (Move from Translation 

Look-Aside Buffer Register), 12-91 
miscellaneous instructions, 2-8 
MTSR (Move to Special Register), 2-13, 

12-92 
MTSRIM (Move to Special Register 

Immediate), 12-93 
MTILB (Move to Tranlation Look-Aside 

Buffer Register), 7-12, 7-13, 12-94 
MUL (Multiply Step), 12-95 
MULL (Multiply Last Step), 12-96 
MULTIPLU (Integer Multiply, Unsigned), 

12-97 
MULTIPLY (Integer Multiply, Signed), 

12-98 
MULTM (Integer Multiply 

Most-significant Bits, Signed), 12-99 
MUL TMU (Integer Multiply Most

Significant Bits, Unsigned), 12-100 
MULU (Multiply Step, Unsigned), 

12-101 
NANO (NANO Logical), 12-102 
NOR (NOR Logical), 12-103 
operand notation and symbols, 

12-1-12-2 
operator symbols, 12-2-12-3 
OR (OR Logical), 12-104 
overview, 1-7, 2-1 
reserved instructions, 2-8 

SETIP (Set Indirect Pointers), 12-105 
shift instructions, 2-4 
SLL (Shift Left Logical), 12-106 
SQRT (Floating-Point Square Root), 

12-107 
SRA (Shift Right Arithmetic), 12-108 
SRL (Shift Right Logical), 12-109 
STORE (Store), 3-10, 12-110 
STOREL (Store and Lock), 2-27-2-28, 

3-10, 12-111 
STOREM (Store Multiple), 3-10-3-11, 

11-6, 12-112 
SUB (Subtract), 12-113 
SUBC (Subtract with Carry), 12-114 
SUBCS (Subtract with Carry, Signed), 

12-115 
SUBCU (Subtract with Carry, 

Unsigned), 12-116 
SUBR (Subtract Reverse), 12-117 
SUBRC (Subtract Reverse with Carry), 

12-118 
SUBRCS (Subtract Reverse with Carry, 

Signed), 12-119 
SUBRCU (Subtract Reverse with Carry, 

Unsigned), 12-120 
SUBRS (Subtract Reverse, Signed), 

12-121 
SUBRU (Subtract Reverse, Unsigned), 

12-122 
SUBS (Subtract, Signed), 12-123 
SUBU (Subtract, Unsigned), 12-124 
terminology for, 12-1-12-4 
traps associated with, 8-17 
XNOR (Exclusive-NOR Logical), 12-125 
XOR (Exclusive-OR Logical), 12-126 

instruction status results 
ALU Status (ALU, Register 132), 

2-16-2-17 
arithmetic operations status results, 

2-17-2-18 
floating point status results, 2-18 
logical operation status results, 2-18 

instruction/data memory address space, 3-7 

integer arithmetic instructions. See also 
specific groups of instructions such as 
division instructions 
overview, 2-1 
table of, 2-2 

integer data types 
bit strings, 3-3 
Boolean data, 3-5 
Byte Pointer (BP, Register 133), 

3-2-3-3 
character data, 3-1-3-2 
character-string operations 

alignment of bytes within words, 3-4 
detection of characters within words, 

3-4 
overview, 3-4 

INDEX 1-13 



1-14 INDEX 

half-word operations, 3-2 
instruction constants, 3-5 

integer division, 2-22-2-24. See also 
division instructions 

Integer Environment (INTE Register 161) 
description of, 2-16 
DO bit (Integer Division Overflow 

Mask), 2-16 
MO bit (Integer Multiplication Overflow 
Exception Mask), 2-16 

integer exceptions, 8-20 

integer multiplication. See also 
multiplication instructions, 2-20-2-22 

integer operations, multiprecision, 2-25 

interleaved memory systems, 10-17-10-18 

Interrupt bit. See IN bit (Interrupt) 

Interrupt Enable bit. See IE bit (Interrupt 
Enable) 

Interrupt Return and Invalidate instruction. 
See IRETINV (Interrupt Return and 
Invalidate) instruction 

Interrupt Return instruction. See IRET 
(Interrupt Return) instruction 

interrupts and traps. See also traps 
current processor status 

after interrupt or trap, 8-11 
before interrupt return, 8-12 
Current Processor Status (CPS, Register 

2), 8-1-8-3 
DA bit (Disable All Interrupts and 
Traps), 8-3 

DI bit (Disable Interrupts), 8-3 
FZ bit (Freeze), 8-2 
illustration of, 8-1 
IM bit (Interrupt Mask), 8-3 
IP bit (Interrupt Pending), 8-2 
LK bit (Lock), 8-2 
PD bit (Physical Addressing/Data), 
8-2 

Pl bit (Physical Addressing/ 
Instructions), 8-2 

reserved bits, 8-1, 8-2 
SM bit (Supervisor Mode), 8-3 
TD bit (Timer Disable), 8-1 
TE bit (Trace Enable), 8-2 
TP bit (Trace Pending), 8-2 
TU bit (Trap Unaligned Access), 8-2 

exception reporting and restarting 
Channel Address (CHA, Register 4), 

8-18-8-19 
Channel Control (CHC, Register 6), 

8-19-8-20 
Channel Data (CHD, Register 5), 8-19 
correcting out-of-range results, 8-21 
exceptions during interrupt and trap 

handling, 8-21-8-22 
floating-point exceptions, 8-21 

instruction exceptions, 8-17 
integer exceptions, 8-20-8-21 
overview, 8-17 
restarting faulting external accesses, 

8-17-8-18 
external interrupts and traps, 8-4 
interrupts, 8-3 
interrupts compared with traps, 8-1 
lightweight interrupt processing, 8-13 
Old Processor Status (OPS, Register 1 ), 

8-6 
overview, 1-8, 8-1 
priority table, 8-16 
Program Counter stack, 8-6, 8-8-8-11 
Program Counter Unit, 8-6, 8-8 
returning from interrupts or traps, 

8-11-8-12 
sequencing of interrupts and traps, 

8-15-8-16 
simulation of interrupts and traps, 

8-13-8-14 
taking interrupts or traps, 8-10-8-12 
Timer Facility 

handling timer interrupts, 8-22-8-23 
initializing, 8-22 
overview, 8-22 
Timer Counter (TMC, Register 8), 

8-23-8-24 
Timer Reload (TMR, Register9), 8-24 
uses for, 8-23 

traps, 8-4 
Vector Area, 8-5-8-6 
Vector Area Base Address (VAB, 

Register 0), 8-5 
vector numbers, 8-6-8-8 
Wait mode, 8-4-8-5 
WARN input, 8-14 
WARN trap, 8-14 

INTEST instruction, 11-12 

INTR(3-0) signal (Interrupt Requests) 
causing of interrupts, 8-3 
definition of, 10-3 
external interrupts and traps, 8-4 
preventing spurious master/slave 

errors, 10-22 

INV (Invalidate) instruction 
description of, 12-76 
flushing the instruction cache, 9-9 
invalidating instruction cache entries, 

7-10 

10 bit (lnpuUOutput) 
address translation process, 7-9 
TLB Entry Word 1 register, 7-5 

10/MEM signal (lnpuUOutput or Memory 
Access), 10-2, 10-10 

IP bit (Interrupt Pending), 8-2 

IPB. See Instruction Prefetch Buffer 



IREG (Instruction Register) of Test Access 
Port, 11-11-11-12 

IRET (Interrupt Return) instruction 
description of, 12-77 
restarting faulting external accesses, 

8-18 
returning from interrupts and traps, 8-11 

IRETINV (Interrupt Return and Invalidate) 
instruction 
description of, 12-78 
flushing the instruction cache, 9-9 
invalidating instruction cache entries, 

7-10 
restarting faulting external accesses, 

8-18 
returning from interrupts and traps, 

8-11-8-12 

jump instructions 
JMP (Jump), 12-79 
JMPF (Jump False), 12-80 
JMPFDEC (Jump False and 

Decrement), 12-81 
JMPFI (Jump False Indirect), 12-82 
JMPI (Jump Indirect), 12-83 
JMPT (Jump True), 12-84 
JMPTI (Jump True Indirect), 12-85 

jumps 
delayed branches, 5-4-5-5 
large jump and call ranges, 2-26 

LA bit (Lock Active), 8-20 

large jump and call ranges, 2-26 

large return pointer (lrp), 4-10, 4-14 

leaf procedures 
calling other procedures, 4-8 
Register Stack leaf frame, 4-11 

least recently used entry, Register 14. See 
LRU Recommendation Register (LRU) 

lightweight interrupt processing, 8-13 

LK bit (Lock) 
activation of LOCK pin, 2-28 
description of, 8-2 

LOAD (Load) instruction, 12-86 

Load Multiple instruction. See LOADM 
(Load Multiple) instruction 

Load Test Instruction mode, 11-6-11-8 

LOADL (Load and Lock) instruction 
description of, 12-87 
locking of external devices and 

memories, 2-27-2-28 
overview, 3-9 

LOADM (Load Multiple) instruction 
description of, 12-88 

multiple data accesses, 3-1 ~-11 
overview, 3-10 
Step mode, 11-6 

LOADSET (Load and Set) instruction 
binary semaphore support, 2-27 
description of, 12-89 
memory protection, 6-3 
overview, 3-9 
page mode timing diagram, A-33 

Load/Store Count Remaining bit. See CR 
field (Load/Store Count Remaining) 

Load/Store Count Remaining Register (CR, 
Register 135) 

CR bit (Load/Store Count Remaining), 
3-10, 3-12 

description of, 3-11-3-12 

load/store instructions 
AS bit (Address Space), 3-8 
description of, 3-8-3-9 
format of, 3-8 
lightweight interrupt processing, 8-13 
OPT bit (option), 3-9 
overlapped loads and stores, 5-5-5-6 
PA bit (Physical Address), 3-8 
RA bit, 3-9 
RB or I bit, 3-9 
SB bit (Set Byte Pointer/Sign), 3-9 
UA bit (User Access), 3-9 

load/store operations 
collisions between fetching and loads or 

stores, 9-9 
load operations, 3-9-3-10 
multiple accesses, 3-10-3-11 
store operations, 3-10 

local registers 
description of, 2-11 
stack caches for Register Stack, 

4-4-4-5 
Stack Pointer, 2-11 

local variables and memory-stack frames, 
4-12 

LOCK signal 
bus arbitration, 10-19 
definition of, 10-1 
execution of LOADL or STOREL, 2-28 
load operations, 3-9 
multiprocessing, 10-20-10-21 

locking of external devices and memories, 
2-27-2-28 

logic symbol (diagram), C-9 

logical instructions 
AND (AND Logical), 12-14 
ANON (AND-NOT Logical), 12-15 
NANO (NANO Logical), 12-102 
NOR (NOR Logical), 12-103 
OR (OR Logical), 12-104 

INDEX 1-15 



1-18 INDEX 

overview, 2-4 
SLL (Shift Left Logical), 12-106 
SAL (Shift Right Logical), 12-109 
table of, 2-4 
XNOR (Exclusive-NOR Logical), 12-125 
XOR (Exclusive-OR Logical), 12-126 

logical operation status results, 2-18 

LAU Recommendation Register (LAU, 
Register 14) 
illustration of, 7-12 
instruction cache considerations, 7-1 O 
LAU bits (Least-Recently Used Entry), 

7-12 
reserved bits, 7-12 
TLB reload routine, 7-11 
Zero bit, 7-12 

LS bit (Loacl/Store), 8-20 

main data path, 11-14-11-15 

master/slave operation 
electrical considerations of bus sharing, 

10-19-10-20 
preventing spurious errors, 

10-21-10-22 
signal comparisons (checking), 10-21 
switching master and slave processors, 

10-22 

MEMCLK signal (Memory Clock) 
boundary scan cells, 11-11 
definition of, 10-4 
description of, 10-8-10-9 
in-circuit testing, 11-9 
preventing spurious master/slave 

errors, 10-22 
relationship of INCLK, internal 

processor clock, and MEMCLK, A-3 
switching master and slave processors, 

10-22 

memory frame pointer (rnfp), 4-12 

memory management. See MMU; TLB 

memory protection, 6-3-6-4 

Memory Stack 
description of, 4-7 
local variables and memory-stack 

frames, 4-12 
prologues and epilogues for allocation, 

4-12 
memory stack pointer (msp), 4-12, 4-14 

memory systems, interleaved, 
10-17-10-18 

MFSR (Move from Special Register) 
instruction, 12-90 

MFTLB (Move from Translation Look-Aside 
Buffer Register), 12-91 

miscellaneous instructions 
CLZ (Count Leading Zeros), 12-30 
EMULATE (Trap to Software Emulation 

Routine), 12-60 
HALT (Enter Halt Mode), 12-73 
INV (Invalidate), 12-76 
IRET (Interrupt Return), 12-77 
IRETINV (Interrupt Return and 

Invalidate), 12-78 
overview, 2-8 
SETIP (Set Indirect Pointers), 12-105 
table of, 2-8 

ML bit (Multiple Operation) 
description of, 8-20 
functions of, 3-11 
returning from interrupts or traps, 8-12 

MMU. See also TLB 
definition of, 7-1 
memory protection, 6-3-6-4 
protection from Supervisor access, 6-1 
successful and unsuccessful 

translations, 7-9 
MMU Configuration Register (MMU, 

Register 13) 
delayed effects of registers, 5-6 
illustration of, 7-5 
PIO field (Process Identifier), 7-6, 7-10 
PS field (Page Size), 5-6, 7-6 
reserved bits, 7-6 

MO bit (Integer Multiplication Overflow 
Exception Mask), 2-16 

movement instructions. See data movement 
instructions 

movement of large data blocks, 3-12 

MPGM signal (MMU Programmable), 10-1, 
10-10 

MSERR signal (Master/Slave Error) 
boundary scan cells, 11-10 
definition of, 10-4 
master/slave checking, 10-21 

MTSR (Move to Special Register) 
instruction description of, 12-92 
indirect addressing of registers, 2-13 

MTSRIM (Move to Special Register 
Immediate) instruction, 12-93 

MTTLB (Move to Tranlation Look-Aside 
Buffer Register) instruction 

description of, 12-94 
invalidating TLB entries, 7-13 
writing of TLB entries, 7-12 

multiple data accesses 
description of, 3-1 Q-3-11 
Load/Store Count Remaining (CR, 

Register 135), 3-11--3-12 
movement of large data blocks, 3-12 



Multiple Operation bit. See ML bit (Multiple 
Operation) 

multiplication, process of, 2-20-2-22 

multiplication instructions 
DMUL (Floating-Point Multiply, 

Double-Precision), 12-58 
FDMUL (Floating-Point Multiply, 

Double-Precision), 12-67 
FMUL (Floating-Point Multiply, 

Single-Precision), 12-71 
MUL (Multiply Step), 12-95 
MULL (Multiply Last Step), 12-96 
MULTIPLU (Integer Multiply, Unsigned), 

12-97 
MULTIPLY (Integer Multiply, Signed), 

12-98 
MUL TM (Integer Multiply, Most

Significant Bits, Signed), 12-99 
MUL TMU (Integer Multiply Most

Significant Bits, Unsigned), 12-100 
MULU (Multiply Step, Unsigned), 

12-101 

multiprecision integer operations, 2-25 

multiprocessing 
binary semaphore support, 2-27 
LOCK output and, 10-20-10-21 
locking of external devices and 

memories, 2-27-2-28 

N bit (Negative) 
arithmetic operation status results, 2-18 
description of, 2-17 
logical operation status results, 2-18 

NaN 
definition of, 3-6 
quiet NaNs (QNaNs), 3-6-3-7 
signaling NaNs (SNaNs), 3-6-3-7 

NANO (NANO Logical) instruction, 12-102 

narrow read interface 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
burst-mode 8-bit narrow read access 

(diagram), A-26 
burst-mode 16-bit narrow read access 

(diagram), A-29 
burst-mode 16-bit narrow write access 

(diagram), A-32 
description of, 10-12 
overview, 1-4 
simple 8-bit narrow read access 

(diagram), A-24 
simple 8-bit narrow read access with 

fast subsequent accesses (diagram), 
A-25 

simple 16-bit narrow read word access 
(diagram), A-27 

simple 16-bit narrow read word access 
with fast subsequent accesses 

(diagram), A-28 
simple 16-bit narrow write word access 

(diagram), A-30 
simple 16-bit narrow write word access 

with fast subsequent accesses 
(diagram), A-31 

NM bit (Floating-Point Invalid Operation 
Mask), 2-16 

NN bit (Not Needed) 
description of, 8-20 
load operations, 3-1 O 
restarting faulting external accesses, 

8-18 
returning from interrupts or traps, 8-12 

non-aligned accesses, 3-15 

NO-OPs, 2-26, 5-4 

NOR (NOR Logical) instruction, 12-103 

Not-a-Number. See NaN 

NS bit (Floating-Point Invalid Operation 
Sticky), 2-20 

NT bit (Floating-Point Invalid Operation 
Trap), 2-19 

Old Processor Status (OPS, Register 1) 
control of tracing, 11-1 
description of, 8-6 

operands 
available for general-purpose registers, 

2-9 
operand notation and symbols, 

12-1-12-2 

operating-system calls, 2-25 

operator symbols, 12-2-12-3 

OPT bit (Option) 
definition of, 3-9 
load/store operations, 3-12 

OPT(2-0) signal (Option Control) 
16-bit narrow accesses, 10-13 
data accesses, 10-10, 10-12 
definition of, 10-3 
programmable bus sizing, 

10-13-10-14 
user-defined signals, 10-10 

OR (OR Logical) instruction, 12-104 

OS bit (Operand Sign), 12-28 

Out of Range trap, 8-20, 8-21 

out-of-range results, correcting, 8-21 

OV bit (Overflow) 
description of, 8-24 
overview, 8-22 

overflow, stack. See stack overflow 

overflow bits 
DO (Integer Division Overflow Mask), 

INDEX 1-17 



1-18 INDEX 

2-16 
MO (Integer Multiplication Overflow 

Exception Mask), 2-16 
OV (Overflow), 8-22, 8-24 
V (Overflow), 2-17 
VM (Floating-Point Overflow Mask), 

2-15 
VS (Floating-Point Overflow Sticky), 

2-20 
VT (Floating-Point Overflow Trap), 2-19 

overflow handling. See spill handler 

overlapped loads and stores, 5-5-5-6 

P bit (Physical Address), 9-3 

PA bit (Physical Address), 3-8 

page fault traps, 8-17 

Page Offset, 7-8 

page-mode access 
description of, 10-15 
page-mode read access (diagram), A-9 
page-mode write access (diagram), 

A-10 
read access followed by a read access 

(diagram), A-11 
read access followed by a write access 

(diagram), A-12 
write access followed by a read access 

(diagram), A-13 
write access followed by a write access 

(diagram), A-14 

paging, demand. See demand paging 

Parallel Data Register (PDR), 11-10 

PC. See Program Counter 

PC Buffer, 8-6 

PC MUX, 8-6 

PCO bits (Program Counter), 8-9 

PC1 bits (Program Counter 1), 8-9-8-10 

PC2 bits (Program Counter 2), 8-10 

PD bit (Physical Addressing/Data), 8-2 

PGM bits (User Programmable), 7-5 

PGMODE signal (Page-Mode Access) 
definition of, 10-2 
page-mode access, 10-15 

Pl bit (Physical Addressing/Instructions), 
8-2 

PIO field (Process Identifier) 
instruction cache considerations, 7-1 O 
invalidating TLB entries, 7-13-7-14 
MMU Configuration Register (MMU, 

Register 13), 7-6 

pin description. See signal description 

pipelining 
data flow (illustration), 5-2 

delayed branch, 5-4-5-5 
delayed effects of registers, 5-6-5-7 
four stages of, 5-1-5-2 
overlapped loads and stores, 5-5-5-6 
overview, 1-6 
Pipeline Hold mode, 5-3 
serialization, 5-3 

PMB field (Page-Mode Block), 10-6 

prefetching. See instruction prefetching 

priority table for interrupts and traps, 8-16 

PRL field (Processor Release Level), 10-5 

procedure epilogue 
allocation of Memory Stack frames, 

4-12 
description of, 4-11 

procedure linkage 
argument passing, 4-8 
conventions, 4-7 
example of complex procedure call, 

4-14-4-15 
fill handlers, 4-11 
local variables and memory-stack 

frames, 4-12 
procedure epilogue, 4-11 
procedure prologue, 4-8-4-9 

rsize value, 4-8-4-9 
size value, 4-9 

Register Stack leaf frame, 4-11 
register usage convention, 4-13-4-14 
return values, 4-10 
run-time stack, 4-1-4-7 

activation record in Register Stack, 
4-3 

allocation of storage locations, 4-2 
example of, 4-2 
local registers as stack caches, 

4-4-4-5 
management of, 4-1-4-3 
Memory Stack, 4-7 
Register Stack, 4-3 
stack cache, 4-4-4-5 

spill handler, 4-10 
static link pointer, 4-13 
trace-back tags, 4-15-4-16 
transparent procedures, 4-13 

procedure prologue 
allocation of Memory Stack frames, 

4-12 
definition of, 4-8 
frame allocation in Register Stack, 4-8 
rsize value, 4-8-4-9 
size value, 4-9 

processor reset and initialization, 
10-6-10-8 

Am29035 initialization considerations, 
10-8 

bus summary and timing diagrams, A-4 
Configuration (CFG, Register 3), 



10-5-10-7 
Reset mode, 10-7-10-8 

processor status outputs. See STAT(2-0) 
signal (CPU Status) 

Program Counter, 8-6 

Program Counter 0 (PCO, Register 10) 
illustration of, 8-9 
PCO bits (Program Counter), 8-9 
Zero bits, 8-9 

Program Counter 1 (PC 1, Register 11) 
illustration of, 8-9 
Instruction MMU Protection Violation, 

6-4 
PC1 bits (Program Counter 1), 

8-9-8-10 
TLB reload routine, 7-11-7-12 
Zero bits, 8-10 

Program Counter 2 (PC2, Register 12) 
illustration of, 8-1 O 
PC2 bits (Program Counter 2), 8-10 
Zero bits, 8-10 

Program Counter Unit, 8-6, 8-8 

Program-Counter Buffer, 8-6 

Program-Counter Multiplexer, 8-6 

programmable bus sizing (Am29035) 
description of, 10-13-10-14 
overview, 1-4 

programming 
addressing registers indirectly, 

2-13-2-14 
ALU Status (ALU, Register 132), 

2-16-2-17 
arithmetic operations status results, 

2-17-2-18 
assert instructions, 2-24-2-25 
branch instructions, 2-7 
compare instructions, 2-1, 2-3 
complementing a Boolean, 2-25-2-26 
constant instructions, 2-5, 2-6 
data movement instructions, 2-4, 2-5 
floating point status results, 2-18 
Floating-Point Environment (FPE, 

Register 160), 2-15-2-16 
floating-point instructions, 2-5, 2-6-2-7 
Floating-Point Status (FPS, Register 

162), 2-18-2-20 
general-purpose registers, 2-9, 2-1 o 
global registers, 2-9, 2-10 
Indirect Pointer A (IPA, Register 129), 

2-14 
Indirect Pointer B (IPB, Register 130), 

2-14 
Indirect Pointer C (IPC, Register 128), 

2-13-2-14 
instruction set, 2-1 
integer arithmetic, 2-1-2-2 
integer division, 2-22-2-24 

Integer Environment (INTE Register 
161 ), 2-16 

integer multiplication, 2-20-2-22 
large jump and call ranges, 2-26 
local registers, 2-11 
logical instructions, 2-4 
logical operation status results, 2-18 
miscellaneous instructions, 2-8 
multiprecision integer operations, 2-25 
multiprocessing, 2-27-2-28 
NO-OPs, 2-26 
operating-system calls, 2-25 
Q (Q, Register 131), 2-20 
register addressing, 2-9 
register model, 2-8 
reserved instructions, 2-8 
run-time checking, 2-24-2-25 
shift instructions, 2-4 
special-purpose registers, 2-11-2-13 
status results of instructions, 

2-16-2-20 
trapping arithmetic instructions, 2-27 
virtual arithmetic processor, 2-26-2-27 
virtual registers, 2-27 

prologue. See procedure prologue 

PS field (Page Size) 
delayed effects of registers, 5-6 
description of, 7-6 

PWRCLK pin (Power Supply for MEMCLK 
Driver), 10-5, 10-9 

Q bit (Quotient/Multiplier). 2-20 

Q (Q, Register 131), 2-20 

QNaNs, 3-6-3-7 

RA bit, 3-9 

RB bit, 3-9 

RON signal (Read Narrow) 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
burst-mode accesses. 10-16 
definition of, 10-3 
narrow read interface, 10-12 
reading and writing, 10-14 

ROY signal (Ready) 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
access protocols, 1 0-15 
burst-mode accesses, 10-16 
bus arbitration, 10-19 
data accesses, 10-11 
definition of, 10-2 
narrow read interface, 10-12 
programmable bus sizing, 10-14 
simple accesses, 10-15 

INDEX 1-19 



1-20 INDEX 

slave cancellation of burst-mode 
access, 10-17 

read-only memories 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
interface for, 10-11 
narrow read interface, 10-12 
ROM address mapping, 10-13 

register allocate bound pointer (rab), 4-5, 
4-14 

Register Bank Protection Register (RBP, 
Register 7) 

description of, 6-3 
protection of general-purpose registers, 

6-2 

register free bound pointer (rib), 4-5, 4-14 

Register Stack 
description of, 4-3 
local registers for caching, 4-4-4-5 
local variables and memory-stack 

frames, 4-12 
procedure prologue for frame allocation, 

4-8 

Register Stack leaf frame, 4-11 

Register Stack pointer (rsp), 4-5, 4-13 

register summary, B-1-8-11 

registers 
addressing indirectly, 2-13-2-14 
ALU Status (ALU, Register 132), 

2-16-2-17 
arithmetic operation status results, . 

2-17-2-18 
Boundary Scan Register (BSR), 11-10 
Byte Pointer (BP, Register 133), 

3-2-3-3 
Cache Data Register (CDR, Register 

30), 5-7, 9-3 
Cache Interface Register (CIR, Register 

29), 5-7, 9-4 
Channel Address (CHA, Register 4), 

3-11, 6-4, 7-12, 8-18-8-19 
Channel Control (CHC, Register 6), 

3-10, 3-11, 6-4, 8-19-8-20 
Channel Data (CHO, Register 5), 3-11, 

8-19 
Configuration (CFG, Register 3), 7-10, 

9-2, 10-6-10-7 
Current Processor Status (CPS, 

Register2), 3-15, 8-1-8-3, 8-11, 
10-7 

delayed effects of registers, 5-6-5-7 
field summary, B-8-B-11 
floating point status resu Its, 2-18 
Floating-Point Environment (FPE, 

Register 160), 2-15-2-16 
Floating-Point Status (FPS, Register 

162), 2-18-2-20 
Funnel Shift Count (FC, Register 134), 

3-3-3-4 
general-purpose register organization, 

B-1 
general-purpose registers, 2-9, 2-10 
global registers, 2-9, 2-10 
Indirect Pointer A (IPA, Register 129), 

2-14, 5-6 
Indirect Pointer B (IPB, Register 130), 

2-14, 5-6 
Indirect Pointer C (IPC, Register 128), 

2-13-2-14, 5-6 
Instruction Register (IREG) of Test 

Access Port, 11-11-11-12 
Integer Environment (INTE Register 

161), 2-16 
Load/Store Count Remaining Register 

(CR, Register 135), 3-10, 3-11-3-12 
local registers, 2-11 
logical operation status results, 2-18 
LRU Recommendation Register (LRU, 

Register 14), 7-1 o, 7-11-7-12 
MMU Configuration Register (MMU, 

Register 13), 5-6, 7-5-7-6 
Old Processor Status (OPS, Register 

1), 8-6, 11-1 
organization of, 6-2 
Parallel Data Register (PDR), 11-10 
Program Counter 0 (PCO, Register 10), 

8-9 
Program Counter 1 (PC1, Register 11 ), 

6-4, 7-11-7-12, 8-9-8-10 
Program Counter 2 (PC2, Register 12), 

8-10 
protection of, 6-2--6-3 
Q (Q, Register 131), 2-20 
register addressing, 2-9 
register bank organization, B-2 
Register Bank Protection Register 

(RBP, Register 7), 6-3 
register model, 2-8 
register usage convention, 4-13-4-14 
special purpose registers, B-3-B-7 
special-purpose registers, 2-11-2-13 
stack overflow, 4-5, 4-6 
stack underflow, 4-5, 4-6 
status results of instructions, 

2-16-2-20 
Timer Counter (TMC, Register 8), 

8-23-8-24 
Timer Reload (TMR, Register 9), 8-24 
TLB Entry Word 0 register, 7-3-7-4 
TLB Entry Word 1 register, 7-4-7-5 
TLB registers, 7-1-7-2 
Vector Area Base Address (VAB, 

Register 0), 8-5 
virtual registers, 2-27 

reporting errors, 10-14-10-15 

REQ signal (Request) 
burst-mode accesses, 10-17 
bus arbitration, 10-19 



definition of, 10-2 
simple accesses, 10-15 

reserved instructions, 2-8 

Reset mode 
Configuration Register in Reset mode, 

10-8 
Current Processor Status Register in 

Reset mode, 10-7 
description of, 10-7 

RESET signal 
definition of, 10-4 
entering and exiting Reset mode, 

10-7-10-8 
narrow read interface, 10-12 
preventing spurious master/slave 

errors, 10-22 
ROM address mapping, 10-13 

resetting the processor. See processor 
reset and initialization 

restarting. See exception reporting and 
restarting 

Return Address Latch, 8-6 

return values, 4-10 

RM bit (Floating-Point Reserved Operand 
Mask), 2-15 

ROM 
8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 
interface for read-only memories, 10-11 
narrow read interface, 10-12 
ROM address mapping, 10-13 

RPN bits (Real Page Number) 
address translation process, 7-8-7-9 
TLB Entry Word 1 register, 7-4-7-5 

RS bit (Floating-Point Reserved Operand 
Sticky), 2-20 

rsize value 
definition of size and rsize values 

(illustration), 4-9 
formula for, 4-8 
formulas for, 4-9 

RT bit (Floating-Point Reserved Operand 
Trap), 2-19 

run-time checking, 2-24-2-25 

run-time stack, 4-1-4-7 
activation record in Register Stack 

(illustration), 4-3 
activation records 

allocation in local registers, 4-4 
allocation of, 4-2 
definition of, 4-1 
information stored in, 4-3 

allocation of storage locations, 4-2 
definition of, 4-1 
example of, 4-2 

frame pointer (Ip), 4-5 
local registers as stack cache, 4-4-4-5 
management of, 4-1-4-3 
Memory Stack, 4-7 
register allocate bound pointer (rab), 

4-5 
register free bound pointer (rfb), 4-5 
Register Stack, 4-3 
Register Stack pointer (rsp), 4-5 
stack cache, 4-4-4-5 
stack overflow, 4-5, 4-6 
Stack Pointer in Global Register 1, 4-4 
stack underflow, 4-5, 4-6 

RW bit (Read/Write), 9-4 

R/W signal (Read/Write), 10-1 
data accesses, 10-11 
instruction accesses, 10-1 O 

SAMPLE instruction, 11-13 

SB bit (Set Byte Pointer/Sign) 
description of, 3-9 
lightweight interrupt processing, 8-13 

scalable clocking technology, 1-3-1-4 

SE bit (Supervisor Execute), 7-4 

security. See system protection 

serialization of the processor, 5-3 

SETIP (Set Indirect Pointers) instruction, 
12-105 

Shift clock, 11-1 O 

shift instructions 
EXTRACT (Extract Word, Bit-Aligned), 

12-64 
overview, 2-4 
SLL (Shift Left Logical), 12-106 
SRA (Shift Right Arithmetic), 12-108 
SAL (Shilt Right Logical), 12-109 
table of, 2-4 

signal description. See also bus description 
A(31-0) (Address Bus), 10-1 
BGRT (Bus Grant), 10-1 
BREQ (Bus Request), 10-1 
BURST (Burst Request), 10-2 
BWE(3-0) (Byte Write Enables), 10-2 
CNTL(1-0) (CPU Control), 10-4 
connection diagram, C-3, C-6 
DI, 10-5 
DIV2 (Divide Clock By 2), 10-4 
EMACC (Emulator Access), 10-5 
ERL YA (Early Address), 10-3 
ERR (Error), 10-2 
HIT, 10-5 
l/D (Instruction or Data Access), 10-2 
ID (Instruction/Data Bus), 10-2 
INCLK (Input Clock), 10-4 
INTR(3-0) (Interrupt Requests), 10-3 

INDEX 1-21 



1·22 INDEX 

10/MEM (Input/Output or Memory 
Access), 10-2 

LOCK (Lock), 10-1 
MEMCLK (Memory Clock), 10-4 
MPGM (MMU Programmable), 10-1 
MSERR (Master/Slave Error), 10-4 
OPT(2-0) (Option Control), 10-3 
PGA pin designation, C-4-C-5, 

C-7-C-8 
PGMODE (Page-Mode Access), 10-2 
PWRCLK (Power Supply for MEMCLK 

Driver), 1 0-5 
RON (Read Narrow), 10-3 
ROY (Ready), 10-2 
relationship of INCLK, internal 

processor clock, and MEMCLK, A-3 
REO (Request), 10-2 
RESET (Reset), 10-4 
R/W (Read/Write), 10-1 
STAT(2-0) (CPU Status), 10-4 
summary chart, A-1-A-2 
SUP/US (Supervisor/User Mode), 10-1 
TCK (Test Clock Input), 10-5 
TOI (Test Data Input), 10-5 
TOO (Test Data Output), 10-5 
TEST (Test Mode). 10-4 
TMS (Test Mode Select), 10-5 
TRAP(1-0) (Trap Requests), 10-3 
TRST (Test Reset Input), 10-5 
WARN (Warn), 10-3 
WBC, 10-5 

signaling NaNs (SNaNs), 3-6-3-7 

simple accesses, 10-15 
simple data read access (diagram), A-5 
simple data read access (multi-cycle) 

(diagram), A-6 
simple data write access (diagram), A-7 
simple data write access (multi-cycle) 

(diagram), A-8 

single-precision floating-point values 
description of, 3-5-3-6 
format of, 3-5-3-6 

size value 
definition of size and rsize values 

(illustration), 4-9 
formula for, 4-9 

slave devices 
cancellation of burst-mode access, 

10-17 
cancellation of burst-mode access 

(diagram), A-21 
electrical considerations of bus sharing, 

10-19-10-20 

slave processor. See master/slave 
operation 

SLL (Shift Left Logical) instruction, 12-106 

SM bit (Supervisor Mode) 
Current Processor Status (CPS, 

Register 2), 8-3 
Supervisor mode operation, 6-1 

SNaNs, 3-6-3-7 

special floating-point values 
denormalized numbers, 3-7 
infinity, 3-7 
Not-a-Number (NaN), 3-6-3-7 
zero, 3-7 

special-purpose registers 
ALU Status (ALU, Register 132), 

2-16-2-17 
Byte Pointer (BP, Register 133), 

3-2-3-3 
Cache Data Register (CDR, Register 

30), 9-4-9-5 
Cache Interface Register (CIR, Register 

29), 9-3-9-4 
Channel Address (CHA, Register 4), 

8-18-8-19 
Channel Data (CHO, Register 5), 8-19 
Configuration (CFG, Register 3), 

10-6-10-7 
Current Processor Status (CPS, 

Register 2), 8-1-8-3 
description of, 2-11-2-13 
Floating-Point Environment (FPE, 

Register 160), 2-15-2-16 
Floating-Point Status (FPS, 

Register 162), 2-18-2-20 
Funnel Shift Count (FC, Register 134), 

3-3-3-4 
illustrations of, B-3-B-6 
Indirect Pointer A (IPA, Register 129), 

2-14 
Indirect Pointer B (IPB, Register 130), 

2-14 
Indirect Pointer C (IPC, Register 128), 

2-13-2-14 
Integer Environment (INTE 

Register 161), 2-16 
Load/Store Count Remaining Register 

(CR, Register 135), 3-11-3-12 
MMU Configuration Register (MMU, 

Register 13), 7-5-7-6 
Old Processor Status (OPS, 

Register 1 ), 8-6 
organization of, 2-11, B-7 
Program Counter O (PCO, Register 10), 

8-9 
Program Counter 1 (PC1, Register 11), 

8-9-8-10 
Timer Counter (TMC, Register 8), 

8-23-8-24 
Timer Reload (TMR, Register 9), 8-24 

specifications 
absolute maximum ratings, C-11 



capacitance, C-11 
capacitative output delays, C-15 
DC characteristics, C-11 
operating ranges, C-11 
switching characteristics, C-12-C-13 
switching waveforms, C-14 
thermal characteristics, C-16 

spill handler, 4-1 O 

SORT (Floating-Point Square Root) 
instruction, 12-107 

SR bit (Supervisor Read), 7-4 
SRA (Shift Right Arithmetic) instruction, 

12-108 
SAL (Shilt Right Logical) instruction, 12-109 

ST bit (Set), 8-20 

stack. See run-time stack 
stack overflow 

definition of, 4-5 
illustration of, 4-6 

Stack Pointer 
definition of, 2-11 
delayed effects of registers, 5-6 
local register Stack Pointer; 2-11 

Stack Pointer in Global Register 1, 4-4 

stack underflow 
definition of, 4-5 
illustration of, 4-6 

STAT(2-0) signal (CPU Status) 
boundaryscancells, 11-11 
debugging and testing, 11-2-11-3 
definition of, 10-4 
encoding of, 11-2 
Hatt mode, 11-5 
Load Test Instruction mode, 11-7 
output reporting with high-frequency 

interface (illustration), 11-3 
Step mode, 11-6 

static link pointer (sip) 
description of, 4-13 
register conventions, 4-14 

static parent, 4-13 

status outputs. See STAT(2-0) signal (CPU 
Status) 

status results of instructions 
ALU Status (ALU, Register 132), 

2-16-2-17 
arithmetic operations status resutts, 

2-17-2-18 
floating point status results, 2-18 
logical operation status results, 2-18 

Stepmode, 11-5--11-6 
sticky status bits, Register 162. See 

Floating-Point Status (FPS) 

Store and Lock instruction. See STOREL 
(Store and Lock) instruction 

STORE instruction 
description of, 12-11 O 
overview, 3-10 

Store Muttiple instruction. See STOREM 
(Store Muttiple) instruction 

store operations. See also load/store 
instructions 

collisions between fetching and loads or 
stores, 9-9 

instructions for, 3-1 O 

STOREL (Store and Lock) instruction 
description of, 12-111 
locking of external devices and 

memories, 2-27-2-28 
overview, 3-10 

STOREM (Store Multiple) instruction 
description of, 12-112 
multiple data accesses, 3-10-3-11 
overview, 3-10 
Step mode, 11-6 

strings. See bit strings. See 
character-strings 

subtraction instructions 
DSUB (Floating-Point Subtract, 

Double-Precision), 12-59 
FSUB (Floating-Point Subtract, 

Single-Precision), 12-72 
SUB (Subtract), 12-113 
SUBC (Subtract with Carry), 12-114 
SUBCS (Subtract with Carry, Signed), 

12-115 
SUBCU (Subtract with Carry, 

Unsigned), 12-116 
SUBR (Subtract Reverse), 12-117 
SUBRC (Subtract Reverse with Carry), 

12-118 
SUBRCS (Subtract Reverse with Carry, 

Signed), 12-119 
SUBRCU (Subtract Reverse with Carry, 

Unsigned), 12-120 
SUBRS (Subtract Reverse, Signed), 

12-121 
SUBRU (Subtract Reverse, Unsigned), 

12-122 
SUBS (Subtract, Signed), 12-123 
SUBU (Subtract, Unsigned), 12-124 

Supervisor mode, 6-1 

Supervisor mode bits 
SE, 7-4 
SR, 7-4 
SW, 7-4,8-3 

SUP/US signal (Supervisor/User Mode), 
10-1 

INDEX 1·23 



1-24 INDEX 

SW bit (Supervisor Write), 7-4 

switching characteristics, C-12-C-13 

switching test circuit (diagram), C-15 

switching waveforms (diagram), C-14 

system interface 
arbitration, 10-18-10-19 
bus description, 10-9-10-19 

8-bit narrow accesses, 10-12 
16-bit narrow accesses, 10-13 

access protocols, 10-15 
burst-mode accesses, 10-16-10-18 
bus overview, 10-9 
data accesses, 10-11 
instruction accesses, 10-1 O 
logical groups of signals, 10-9 
narrow read interface, 10-12 
page-mode access, 10-15 
programmable bus sizing (Am29035), 

10-13-10-14 
read-only memories, 10-11 
reporting errors, 10-14-10-15 
ROM address mapping, 10-13 
simple accesses, 10-15 
user-defined signals, 10-10 

bus sharing, electrical considerations, 
10-19-10-20 

clocks, 10-8-10-9 
master/slave checking, 10-21-10-22 

master/slave operation, 10-21 
preventing spurious errors, 

10-21-10-22 
switching master and slave 

processors, 10-22 
multiprocessing and LOCK output, 

10-20-10-21 
overview, 1-4-1-5 
processor reset and initialization, 

10-6-10-8 
Am29035 initialization 

considerations, 10-8 
Configuration (CFG, Register 3), 

10-6-10-7 
Reset mode, 10-7-10-8 

signal description, 10-1-10-5 

system protection 
external access protection, 6-4 
memory protection, 6-3-6-4 
overview, 1-7 
register protection, 6-2-6-3 
Supervisor mode, 6-1 
User mode, 6-1-6-2 

System_Routine vector number, 2-25 

taking interrupts or traps, 8-10-8-12 

TAP. SeeTestAccess Port 

TCK signal (Test Clock Input), 10-5 

TCV field (Timer Count Value) 
description of, 8-23-8-24 
initializing the Timer Facility, 8-22 
overview, 8-22 

TD bit (Timer Disable) 
Current Processor Status (CPS, 

Register 2), 8-1 
overview, 8-22 

TDI signal (Test Data Input), 10-5 

TDO signal (Test Data Output), 10-5 

TE bit (Trace Enable) 
control of tracing, 11-1 
Current Processor Status (CPS, 

Register 2), 8-2 

Test Access Port, 11-9-11-16 
boundary scan cells 

description of, 11-10-11-11 
input cell (illustration), 11-1 o 
output cell (illustration), 11-11 

BYPASS instruction, 11-13 
bypass path, 11-14 
EXTEST instruction, 11-12 
ICTEST1 instruction, 11-13 
ICTEST1 path, 11-16 
ICTEST2 instruction, 11-13 
ICTEST2 path, 11-16 
instruction path, 11-14 
Instruction Register and implemented 

instructions, 11-11-11-12 
INTEST instruction, 11-12 
main data path, 11-14-11-15 
order of scan cells in boundary scan 

path, 11-14-11-16 
SAMPLE instruction, 11-13 

Test mode, 11-9 

TEST signal (Test Mode) 
definition of, 10-4 
invoking Test mode, 11-9 

testing. See debugging and testing 

TF bit (Transaction Faulted) 
description of, 8-20 
restarting faulting external accesses, 

8-18 

thermal characteristics, C-16 

TID bit (Task Identifier) 
address translation process, 7-7 
invalidating TLB entries, 7-14 
TLB Entry Word O register, 7-4 

Timer Count Value field. See TCV field 
(Timer Count Value) 

Timer Counter (TMC, Register 8) 
illustration of, 8-23 
reserved bits, 8-23 



TCV field (Timer Count Value), 
8-23-8-24 

Timer Disable bit. See TD bit (Timer 
Disable) 

Timer Facility 
handling timer interrupts, 8-22-8-23 
initializing, 8-22 
overview, 1-6, 8-22 
Timer Counter (TMC, Register 8), 

8-23-8-24 
Timer Reload (TMR, Register 9), 8-24 

uses for, 8-23 

Timer Reload (TMR, Register 9) 
IN bit (Interrupt), 8-24 
IE bit (Interrupt Enable), 8-24 
illustration of, 8-24 
OV bit (Overflow), 8-24 
reserved bits, 8-24 
TRV field (Timer Reload Value), 8-24 

Timer Reload Value field. See TRV field 
(Timer Reload Value) 

timing diagrams, A-3-A-40 

TLB 
address translation controls, 7-5-7-6 
address translation process, 7-6-7-9 
enabling and disabling address 

translation, 7-5 
illustration of, B-7 
instruction cache considerations, 

7-9-7-10 
invalidating TLB entries, 7-13-7-14 
miss or protection violation on read or 

write (diagram), A-34 
MMU Configuration Register (MMU, 

Register 13), 7-5-7-6 
organization of TLB registers, 7-2 
overview, 1-8, 7-1 
protection of MMU from Supervisor 

access, 6-1 
reserved fields, 7-2 
selecting virtual page size, 7-10-7-11 
successful and unsuccessful 

translations, 7-9 
TLB Entry Word o register, 7-2-7-5 
TLB Entry Word 1 register, 7-4-7-5 
TLB registers, 7-1-7-2 
TLBreload, 7-11-7-12 
virtual address structure, 7-6-7-7 

TLB Entry Word O register 
illustration of, 7-3 
SE bit (Supervisor Execute), 7-4 
SR bit (Supervisor Read), 7-4 
SW bit (Supervisor Write), 7-4 
TID bit (Task Identifier), 7-4 
UE bit (User Execute), 7-4 
UR bit (User Read), 7-4 
UW bit (User Write), 7-4 

VE bit (Valid Entry), 7-4 
VTAG bits (Virtual Tag), 7-3-7-4 

TLB Entry Word 1 register 
illustration of, 7-4 
10 bit (Input/Output), 7-5 
PGM bits (User Programmable), 7-5 
RPN bits (Real Page Number), 

7-4-7-5 
U bit (Usage), 7-5 

TLB misses 
handling of, 7-11 
instruction cache considerations, 7-1 O 
LAU Recommendation Register (LAU, 

Register 14), 7-12 
minimum number of resident pages, 

7-13 
page reference and change information, 

7-12-7-13 
TLB reload, 7-11-7-12 
virtual page size and, 7-10 
warm start, 7-13 

TMS signal (Test Mode Select), 10-5 

TP bit (Trace Pending) 
control of tracing, 11-1 
Current Processor Status (CPS, 

Register 2), 8-2 

TR field (Target Register) 
description of, 8-20 
multiple accesses, 3-11 

Trace Facility, 11-1 

trace-back tags 
definition of, 4-15 
fields in, 4-16 
illustration of, 4-15 

Translation Look-Aside Buffer. See TLB 

transparent procedures, 4-13 

trap status bits, Register 162. See 
Floating-Point Status (FPS) 

Trap Unaligned Access bit. See TU bit 
(Trap Unaligned Access) 

TRAP(1-0) signal (Trap Requests) 
definition of, 10-3 
external interrupts and traps, 8-4 
preventing spurious master/slave 

errors, 10-22 

trap-handler argument (tav), 4-10, 4-14 

trap-handler return address (tpc), 4-10, 4-14 

trapping arithmetic instructions 
IPA, IPB, IPC instructions, 2-8 
overview, 2-27 

traps. See also interrupts and traps 
compared with interrupts, 8-1 
distinction between causes of traps, 7-9 

INDEX 1-25 



1-26 INDEX 

EMULATE (Trap to Software Emulation 
Routine) instruction, 12-60 

external traps, 8-4 
Floating-Point Exception trap, 8-21 
Illegal Opcode trap, 11-2 
Instruction Access Exception trap, 9-6 
Instruction MMU Protection Violation 

trap, 6-4 
Out of Range trap, 8-20, 8-21 
priority table, 8-16 
returning from interrupts or traps, 

8-11-8-12 
sequencing of interrupts and traps, 

8-15-8-16 
signals causing, 8-4 
simulation of interrupts and traps, 

8-13-8-14 
taking interrupts or traps, 8-10-8-12 
Unaligned Access trap, 3-15 
WARN trap, 8-14 

TRSTsignal (Test Reset Input), 10-5 

TRV field (Timer Reload Value) 
description of, 8-24 
initializing the Timer Facility, 8-22 
overview, 8-22 

TU bit (Trap Unaligned Access) 
Current Processor Status (CPS, 

Register 2), 8-2 
detection of unaligned accesses, 3-15 

two's-complement overflow, 2-18 

U bit (Usage), 7-5 

UA bit (User Access), 3-9 

UE bit (User Execute), 7-4 
UM bit (Floating-Point Underflow Mask), 

2-15 

Unaligned Access trap, 3-15 
underflow, stack. See stack underflow 

underflow bits 
UM (Floating-Point Underflow Mask), 

2-15 
US (Floating-Point Underflow Sticky), 

2-20 
UT (Floating-Point Underflow Trap), 

2-19 
underflow handling. See fill handlers 

Update clock, 11-1 O 
UR bit (User Read), 7-4 

US bit (Floating-Point Underflow Sticky), 
2-20 

US bit (User or Supervisor Block), 9-3 
User mode, 6-1-6-2 

User mode bits 
UE, 7-4 

UR, 7-4 
uw, 7-4 

user-defined signals, 10-10 

UT bit (Floating-Point Underflow Trap), 2-19 
UW bit (User Write), 7-4 

V bit (Overflow) 
arithmetic operation status results, 2-18 
description of, 2-17 
two's-complement overflow, 2-18 

Vbit (Valid) 
description of, 9-3 
flushing the instruction cache, 9-9 

VAB bits (Vector Area Base), 8-5 

VE bit (Valid Entry) 
address translation process, 7-8 
invalidating TLB entries, 7-13 
TLB Entry Word 0 register, 7-4 

Vector Area, 8-5-8-6 

Vector Area Base Address (VAB, Register O) 
illustration of, 8-5 
VAB bits (Vector Area Base), 8-5 
Zero bits, 8-5 

vector numbers 
assignments (table), 8-7-8-8 
description of, 8-6 

virtual address structure, 7-6-7-7 
virtual arithmetic interface, 2-26-2-27 

virtual page size, selecting, 7-10-7-11 
VM bit (Floating-Point Overflow Mask), 2-15 

VS bit (Floating-Point Overflow Sticky), 2-20 
VT bit (Floating-Point Overflow Trap), 2-19 
VTAG bits (Virtual Tag) 

address translation process, 7-7 
TLB Entry Word O register, 7-3-7-4 

Wait mode, 8-4-8-5 

warm start for preventing TLB misses, 7-13 

WARN signal 
definition of, 10-3 
description of, 8-14 
preventing spurious master/slave 

errors, 10-22 
ROM address mapping, 10-13 

WARN trap, 8-14. 

XM bit (Floating-Point Inexact Result Mask), 
2-15 

XNOR (Exclusive-NOR Logical) instruction, 
12-125 



XOR (Exclusive-OR Logical) instruction, 
12-126 

XS bit (Floating-Point Inexact Result 
Sticky), 2-20 

XT bit (Floating-Point Inexact Result Trap), 
2-19 

Z bit (Zero) 
arithmetic operation status results, 2-18 
description of, 2-17 
logical operation status results, 2-18 

zero, 3-7 

INDEX 1·27 







111¥'·!ii!i¥111 
North American _________ _ 
ALABAMA ·······························································!205l 882-9122 
ARIZONA ................................................................ 602 242-4400 
CALIFORNIA, 

Culver City ......................................................... !213! 645-1524 
Newport Beach ................................................. 714 752-6262 
Sacramento(Roseville) .................................... 916 786-6700 
San Diego .......................................................... (619) 560-7030 
San Jose ·····:······················································!408) 452-0500 
Woodland Hills .................................................. 818) 992-4155 

CANADA, Ontario, 
Kanata ................................................................ (613) 592-0060 
Willowdale ......................................................... (416) 224-5193 

COLORADO ........................................................... !303) 741-2900 
CONNECTICUT ..................................................... 203) 264-7800 
FLORIDA, 

Clearwater ......................................................... (813) 530-9971 
Ft. Lauderdale ................................................... (305l 776-2001 
Orlando (Longwood) ......................................... (407 862-9292 

GEORGIA ............................................................... (404) 449-7920 
IDAHO ..................................................................... (208) 377-0393 
ILLINOIS, 

Chicago (Itasca) ............................................... !708l 773-4422 
Naperville ........................................................... 708 505-9517 

~1~~t~t·i"i:i·::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::!~6~l ~~l=~~~g 
MASSACHUSETTS ............................................... (617) 273-3970 
MINNESOTA .......................................................... (612) 938-0001 
NEW JERSEY, 

Cherry Hill .......................................................... (609) 662-2900 
Parsippany ......................................................... (201) 299-0002 

NEW YORK, 

§i~e.;~~e°/. :: :::::::::::::::: :::: ::::::::: ::: : ::::::::: :::::::::::::: :: !~ 1 ~) )~~~=~~~g 
Rochester .......................................................... (716) 272-9020 

NORTH CAROLINA 
Harrisburg .......................................................... (704) 455-1010 
Raleigh ............................................................... (919) 878-8111 

OHIO, 
Columbus (Westerville) .................................... !614) 891-6455 
Dayton ................................................................ 513) 439-0268 

OREGON ................................................................ !503l 245-0080 
PENNSYLVANIA .................................................... 215 398-8006 
TEXAS, 

Austin ................................................................. (512) 346-7830 
Dallas ................................................................. (214) 934-9099 

UT ~H~.~'..~.~.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: !~6~l m:~g~g 
International __________ _ 
BELGIUM, Bruxelles ........ TEL .............................. !02l 771-91-42 

FAX .............................. 02 762-37-12 
TLX ...................................... 846-61028 

FRANCE, Paris ................ TEL ............................. !1) 49-75-10-10 
FAX ............................. 1) 49-75-10-13 
TLX ......................................... 263282F 

GERMANY, 
Bad Homburg .............. TEL ........................... (49l 6172-24061 

FAX ........................... (49 6172-24073 
MOnchen ....................... TEL .................................... (089) 4114-0 

FAX ................................. (089) 406490 
TLX ........................................... 523863 

HONG KONG, .................... TEL ................................ (852) 865-4525 
Wanchai FAX ............................. (852) 865-1147 

TLX ........................... 67955AMDAPHX 
ITALY, Milan ..................... TEL ................................. (02) 3390541 

................................. (02) 3533241 
FAX ................................. (02) 3498000 
TLX ................................... 843-315286 

JAPAN, 
Atsugi ........................... TEL .............................. (0462l 29-8460 

FAX ............................. (0462 29-8458 
Kanagawa .................... TEL .............................. !0462) 47-2911 

FAX ............................. 0462) 47-1729 
Tokyo ............................ TEL. ............................. 03) 3346-7550 

FAX ............................. (03) 3342-5196 
TLX ......................... J24064AMDTKOJ 

Osaka ........................... TEL ................................ (06) 243-3250 
FAX ............................... (06) 243-3253 

International (Continued) 
KOREA, Seoul .................. TEL ............................ (82) 2-784-7598 

LATIN AMERICA, 
FAX ............................ (82) 2-784-8014 

Ft. Lauderdale ............. TEL ............................. !305l 484-8600 
FAX ............................. 305 485-9736 
TLX .................. 5109554261 AMDFTL 

NORWAY, Hovik .............. TEL ................................... (03l 010156 
FAX ................................... (02 591959 
TLX ............................................. 79079 

SINGAPORE ..................... TEL ................................. (65l 3481188 
FAX ................................. (65 3480161 
TLX ........................... 55650 AMDMMI 

SWEDEN, 
Stockholm .................... TEL ............................... 108) 733 03 50 
(Sundbyberg) FAX .............................. 08) 733 22 85 

TLX ............................................. 11602 
TAIWAN ............................. TEL ........................... !886l 2-7213393 

FAX ........................... 886 2-7723422 
UNITED KINGDOM, 

Manchester area ......... TEL ............................... !0925} 828008 
(Warrington) FAX .............................. 0925 827693 

TLX ................................... 85 -628524 
London area ................ TEL ......................... ······ !0483~ 7 40440 
(Woking) FAX .............................. 0483 756196 

TLX ................................... 85 -859103 

North American Representatives--
CANADA 
Burnaby, B.C. - DAVETEK MARKETING ........... (604) 430-3680 
Kanata, Ontario - VITEL ELECTRONICS ........... (613) 592-0060 
Mississauga, Ontario - VITEL ELECTRONICS .. (416) 676-9720 
Lachine, Quebec - VITEL ELECTRONICS ......... (514) 636-5951 
INDIANA 

Huntington - ELECTRONIC MARKETING 
CONSULTANTS, INC ....................................... (317) 921-3450 
Indianapolis - ELECTRONIC MARKETING 
CONSULTANTS, INC ....................................... (317) 921-3450 

IOWA 
LORENZ SALES ............................................... (319) 377-4666 

KANSAS 
Merriam - LORENZ SALES ............................ (913) 469-1312 
Wichita - LORENZ SALES .............................. (316) 721-0500 

KENTUCKY 
ELECTRONIC MARKETING 
CONSULTANTS, INC ....................................... (317) 921-3452 

MICHIGAN 
Birmingham - MIKE RAICK ASSOCIATES .... (313) 644-5040 
Holland - COM-TEK SALES, INC .................. (616) 392-7100 
Novi - COM-TEK SALES, INC ........................ (313) 344-1409 

MINNESOTA 
Mel Foster Tech. Sales, Inc ............................ (612) 941-9790 

MISSOURI 
LORENZ SALES ............................................... (314) 997-4558 

NEBRASKA 
LORENZ SALES ............................................... (402) 475-4660 

NEW MEXICO 
THORSON DESERT STATES ........................ (505) 883-4343 

NEW YORK 
East Syracuse - NYCOM, INC ....................... (315) 437-8343 
Woodbury - COMPONENT 
CONSULTANTS, INC ....................................... (516) 364-8020 

OHIO 
Centerville - DOLFUSS ROOT & CO ............ (513) 433-6776 
Columbus - DOLFUSS ROOT & CO ............. (614) 885-4844 
Strongsville - DOLFUSS ROOT & CO .......... (216) 899-9370 

OREGON 
ELECTRA TECHNICAL SALES, INC ............. (503) 643-5074 

PENNSYLVANIA 
RUSSELL F. CLARK CO.,INC ........................ (412) 242-9500 

PUERTO RICO 
COMP REP ASSOC, INC ................................ (809) 746-6550 

WASHINGTON 
ELECTRA TECHNICAL SALES ...................... (206) 821-7442 

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance 
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, 
contact your local AMO sales representative. The company assumes no responsibility for the use of any circuits described herein. 

Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA 
Tel: (408) 732-2400 •TWX: 910-339-9280 •TELEX: 34-6306 •TOLL FREE: (800) 538-8450 
APPLICATIONS HOTLINE & LITERATURE ORDERING •TOLL FREE: (800) 222-9323 • (408) 749-5703 

© 1991 Advanced Micro Devices, Inc. 
617/91 

EP-17M-6/91-D Printed in USA 




