

Advanced Micro Devices

Linear and Interface Data Book

ALPHA NUMERIC INDEX

FUNCTIONAL INDEX

SELECTION GUIDES
INDUSTRY CROSS REFERENCE
DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS

Live Univensincueivens

MOS MEMORY AND MICROPROCESSOR INTERFACE

OPERATIONAL AMPLIFIERS

SPECIAL FUNCTIONS

7

VOLTAGE REGULATORS

5

OPERATIONAL AMPLIFIERS

PACKAGE OUTLINES
GLOSSARY
AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

Section I

Numeric Index 1-1
Functional Index 1-6
Selection Guides 1-10
Industry Cross-Reference 1-14
Dice Policy 1-22
Ordering Information 1-23
MIL-M-38510/MIL-STD-883 1-26

NUMERIC INDEX

Product Description PageAm0026Am0056AmDAC-08Am101Am101AAm102Am105Am106Am107Am108Am108AAm110
Am111
Am112
Am118Am119Am124Am124AAm139Am139AAm1408SSS1408A
Am1458
Am148
Am1488
Am1489
Am1489A
Am149
Am1500Am1501Am1508SSS1508A
LF155
LF155A
Am1558
LF156
LF156A
LF157
LF157A
Am1692
LF198Am201Am201AAm202Am205Am206Am207Am208Am208AAm210LH2101A
5 MHz Two-Phase MOS Clock Driver 5-1
5 MHz Two-Phase MOS Clock Driver 5-7
8-Bit High-Speed Multiplying D/A Converter 3-1
Operational Amplifier 6-1
Operational Amplifier 6-5
Voltage Follower 6-10
Voltage Regulator 8-1
Voltage Comparator/Buffer 2-1
Frequency Compensated Operational Amplifier 6-14
Operational Amplifier 6-18
Operational Amplifier 6-18
Voltage Follower 6-22
Precision Voltage Comparator 2-5
Compensated High-Performance Operational Amplifier 6-26
High-Speed Operational Amplifier 6-30
Dual Voltage Comparator 2-9
Quad Operational Amplifier 6-36
Quad Operational Amplifier 6-36
Low Offset Voltage Quad Comparator 2-13
Low Offset Voltage Quad Comparator 2-13
8-Bit Multiplying D/A Converter 3-14
8-Bit Multiplying D/A Converter 3-14
Dual Frequency Compensated Operational Amplifier 6-95
Quad 741 Operational Amplifier 6-41
Quad RS-232C Line Driver 4-1
Quad RS-232C Line Receiver 4-4
Quad RS-232C Line Receiver 4-4
Quad 741 Operational Amplifier 6-41
Dual Precision Voltage Comparator 2-31
Dual Operational Amplifier 6-90
8-Bit Multiplying D/A Converter 3-14
8-Bit Multiplying D/A Converter 3-14
JFET Input Operational Amplifier 6-43
JFET Input Operational Amplifier 6-43
Dual Frequency Compensated Operational Amplifier 6-95
JFET Input Operational Amplifier 6-43
Three-State Differential Line Drivers 4-8
Monolithic Sample and Hold Circuits 3-7
Operational Amplifier 6-1
Operational Amplifier 6-5
Voltage Follower 6-10
Voltage Regulator 8-1
Voltage Comparator/Buffer 2-1
Frequency Compensated Operational Amplifier 6-14
Operational Amplifier 6-18
Operational Amplifier 6-18
Voltage Follower 6-22
Dual Operational Amplifier 6-99

NUMERIC INDEX (Cont.)

Product Description Page

Am211
LH2111
Am212
Am216
Am216A
Am218
Am219
LH2201A
LH2211
Am224
Am224A
LH2301A
LH2311
Am239
Am239A
Am248
Am249
Am2502
Am25L02
Am2503
Am25L03
Am2504
Am25L04
Am25LS240
Am25LS241
Am25LS242
Am25LS243
Am25LS244
LF255
LF255A
LF256
LF256A
LF257
LF257A
Am26S10
Am26S11
Am26S12
Am26S12A
Am2614
Am2615
Am2616
Am2617
Am26LS29
Am26LS30

Am26LS31
Am26LS32
Am26LS33
Am2905
Am2906
Precision Voltage Comparator 2-5
Dual Precision Voltage Comparator 2-35
Compensated, High-Performance Operational Amplifier 6-26
Compensated, High-Performance Operational Amplifier 6-51
Compensated, High Performance Operational Amplifier 6-51
High-Speed Operational Amplifier 6-30
Dual Voltage Comparator 2-9
Dual Operational Amplifier 6-99
Dual Precision Voltage Comparator 2-35
Quad Operational Amplifier 6-36
Quad Operational Amplifier 6-36
Dual Operational Amplifier 6-99
Dual Precision Voltage Comparator 2-35
Low Offset Voltage Quad Comparator 2-13
Low Offset Voltage Quad Comparator 2-13
Quad 741 Operational Amplifier 6-41
Quad 741 Operational Amplifier 6-41
8-Bit/12-Bit Successive Approximation Registers 3-18
Low-Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
8-Bit/12-Bit Successive Approximation Registers 3-18
Low-Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
8-Bit/12-Bit Successive Approximation Registers 3-18
Low-Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
Octal Buffer; Inverting, Three-State 4-13
Octal Buffer; Non-Inverting, Three-State 4-17
Quad Three-State Transceiver 4-21
Quad Three-State Transceiver 4-21
Octal Buffer Non-Inverting, Three-State 4-17
JFET Input Operational Amplifier 6-43
Quad. Bus Transceiver 4-57
Quad Bus Transceiver 4-57
Quad Bus Transceiver 4-62
Quad Bus Transceiver 4-62
Quad Single-Ended Line Driver 4-67
Dual Line Receiver 4-72
Quad MIL-188C and RS-232C Line Driver 4-78
Quad RS-232C Line Receiver 4-82
Quad Three-State Single Ended RS-423 Line Driver 4-26
Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver 4-30
Quad RS-422 High Speed Differential Line Driver 4-36
Quad RS-422 and RS-423 Differential Line Receiver 4-40
Quad Differential Line Receiver 4-40
Quad Two-Input OC Bus Transceiver with Three-State Receiver 4-86
Quad Two-Input OC Bus Transceiver with Parity 4-92

NUMERIC INDEX (Cont.)

Product Description Page
Am2907 Quad Bus Transceiver with Interface Logic 4-98
Am2908Am2915A
Quad Bus Transceiver with Interface Logic 4-98
Quad Three-State Bus Transceiver with Interface Logic 4-107
Am2916A Quad Three-State Bus Transceiver with Interface Logic 4-113
Am2917A Quad Three-State Bus Transceiver with Interface Logic 4-119LF298Am301Am301AAm302Am305Am305AAm306
Monolithic Sample and Hold Circuits 3-7
Operational Amplifier 6-1
Operational Amplifier 6-5
Voltage Follower 6-10
Voltage Regulator 8-1
Voltage Regulator 8-1
Voltage Comparator/Buffer 2-1
Am307 Frequency Compensated Operational Amplifier 6-14
Am308Am308AAm310
Operational Amplifier 6-18
Operational Amplifier 6-18
Voltage Follower 6-22
Am311 Precision Voltage Comparator 2-5
Am312 Compensated, High-Performance Operational Amplifier 6-26
Am316 Compensated, High-Performance Operational Amplifier 6-51Am316A
Compensated, High-Performance Operational Amplifier 6-51
Am318Am319Am3212
High-Speed Operational Amplifier 6-30
Dual Voltage Comparator 2-9
8-Bit Input/Output Port 4-125
Am3216
4-Bit Parallel Bidirectional Bus Driver 4-132
Am3226 4-Bit Parallel Bidirectional Bus Driver 4-132Am324Am324AAm339Am339AAm3448A
Quad Operational Amplifier 6-36
Quad Operational Amplifier 6-36
Low Offset Voltage Quad Comparator 2-13
Low Offset Voltage Quad Comparator 2-13
IEEE-488 Quad Bidirectional Transceiver 4-137
Am348 Quad 741 Operational Amplifier 6-41Am349
Quad 741 Operational Amplifier 6-41
LF355 JFET Input Operational Amplifier 6-43
LF355A JFET Input Operational Amplifier 6-43
LF356LF356A
JFET Input Operational Amplifier 6-43
Three-State Differential Line Drivers 4-8
Monolithic Sample and Hold Circuits 3-7
Octal Buffer; Inverting, Three-State 4-13
Am54S240
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer; Non-Inverting, Three-State 4-17
Am54S241Am54LS242
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Quad Three-State Bus Transceiver 4-21
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Quad Three-State Bus Transceiver 4-21
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer, Non-Inverting, Three-State 4-17
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Dual Line Receiver 4-147
Product Description Page
Am55108B Dual Line Receiver 4-147
Am55109 Dual Line Receiver 4-153
Am55110 Dual Line Driver 4-153
Am592Am6070
Differential Video Amplifier 7-1
Companding D-to-A Converter for Control Systems 3-28
Am6071Companding D-to-A Converter for Control Systems3-40
Am6072 Companding D-to-A Converter for PCM Communication Systems 3-52
Am6073 Companding D-to-A Converter for PCM Communication Systems 3-64
Am6080
Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter 3-76
Am6081 Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter 3-84
Am685 Voltage Comparator 2-19
Am686 Voltage Comparator 2-27
Am687Am715Am715CAm71LS95Am71LS96Am71LS97Am71LS98Am723Am723CAm725SSS725Am725CAm7303B
Am7304BAm733Am733CAm741SSS741
Am741A
Am74LS240
Am74S240
Am74LS241
Am74S241
Am74LS242
Am74S242
Am74LS243
Am74S243
Am74LS244
Am74S244
Am747SSS747Am747AAm748Am748CAm75107BDual Voltage Comparator2-29
High-Speed Operational Amplifier 6-55
High-Speed Operational Amplifier 6-55
Three-State Octal Buffers 4-159
Voltage Regulator 8-5
Voltage Regulator 8-5
Instrumentation Operational Amplifier 6-59
High-Performance Operational Amplifier 6-64
Instrumentation Operational Amplifier 6-59
Octal Three-State Inverting Bidirectional Transceiver 4-163
Octal Three-State Bidirectional Transceiver 4-168
Differential Video Amplifier 7-4
Differential Video Amplifier 7-4
Frequency-Compensated Operational Amplifier 6-70
Frequency-Compensated Operational Amplifier 6-64
Frequency-Compensated Operational Amplifier 6-70
Octal Buffer; Inverting, Three-State 4-13
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer; Non-Inverting, Three-State 4-17
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Quad Three-State Bus Transceiver 4-21
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Quad Three-State Bus Transceiver 4-21
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer, Non-Inverting, Three-State 4-17
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Dual Frequency-Compensated Operational Amplifier 6-77
Dual Frequency-Compensated Operational Amplifier 6-64
Dual Frequency-Compensated Operational Amplifier 6-77
Operational Amplifier 6-84
Operational Amplifier 6-84
Dual Line Receiver 4-147
Dual Line Receiver 4-147
Am75109
Dual Line Receiver 4-153

NUMERIC INDEX (Cont.)

Product Description Page
Am75110 Dual Line Driver 4-153
Am7820Dual Differential Line Receiver4-173
Am7820ADual Differential Line Receiver4-173
Am7830Am7831Dual Differential Line Driver4-178Three-State Line Driver4-182
Am7832 Three-State Line Driver 4-182
Am7838Am81LS95Quad Unified Bus Transceiver4-188
Three-State Octal Buffers 4-159
Am81LS96 Three-State Octal Buffers 4-159
Am81LS97Three-State Octal Buffers4-159
Am81LS98 Three-State Octal Buffers 4-159
Am8212Am8216
8-Bit Input-Output Port 4-125Am82244-Bit Parallel Bidirectional Bus Driver4-132Am8226Clock Generator and Driver5-13Am8228
4-Bit Parallel Bidirectional Bus 4-132Am8238System Controller and Bus Driver5-20
System Controller and Bus DriverAm8T265-20Am8T26ASchottky Three-State Quad Bus Driver/Receiver4-190Am8T28Schottky Three-State Quad Bus Driver/Receiver4-195Schottky Three-State Quad Bus Driver/Receiver4-195Am8304BOctal Three-State Inverting Bidirectional Transceiver4-163Am8820Octal Three-State Bidirectional Transceiver4-168
Am8820A
Dual Differential Line Receiver 4-173Dual Differential Line Receiver4-173
Am8830 Dual Differential Line Driver 4-178Am8831Am8832
Am8838
Am9614
Am9615Three-State Line Driver4-182
Three-State Line Driver 4-182
Quad Unified Bus Transceiver 4-188
Differential Line Driver 4-200
Dual Differential Line Receiver 4-72Am9616
Triple EIA RS-232C/MIL-STD-188C Line Driver 4-205
Am9617 RS-232C Line Receiver 4-209

FUNCTIONAL INDEX

Section 1

Numeric Index 1-1
Functional Index 1-6
Selection Guides 1-10
Industry Cross-Reference 1-14
Dice Policy 1-22
Ordering Information 1-23
MIL-M-38510/MIL-STD-883 1-26
Comparators - Section II
Am106/206/306 Voltage Comparator/Buffer 2-1
Am111/211/311 Precision Voltage Comparator 2-5
Am119/219/319 Dual Voltage Comparator 2-9
Am139/239/339 Low Offset Voltage Quad Comparator 2-13
Am139A/239A/339A Low Offset Voltage Quad Comparator 2-13
Am685 Voltage Comparator 2-19
Am686 Voltage Comparator 2-27
Am687/687A Dual Voltage Comparator 2-29
Am1500 Dual Precision Voltage Comparator 2-31
LH2111/2211/2311 Dual Precision Voltage Comparator $2-35$
Application Notes
A New High-Speed Comparator - The Am685 2-39
Am685/Am686/Am687 - Designing with High-Speed Comparators 2-48
Data Conversion Products - Section III
AmDAC-08 8-Bit High-Speed Multiplying D/A Converter 3-1
LF198 Monolithic Sample and Hold Circuits 3-7
LF298 Monolithic Sample and Hold Circuits 3-7
LF398 Monolithic Sample and Hold Circuits 3-7
Am1508/1408 8-Bit Multiplying D/A Converter 3-14
SSS1508A/1408A 8-Bit Multiplying D/A Converter 3-14
Am2502 8-Bit/12-Bit Successive Approximation Registers 3-18
Am2503 8-Bit/12-Bit Successive Approximation Registers 3-18
Am2504 8-Bit/12-Bit Successive Approximation Registers 3-18
Am25L02 Low Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
Am25L03 Low Power, 8 -Bit/12-Bit Successive Approximation Registers 3-24
Am25L04 Low Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
Am6070 Companding D-to-A Converter for Control Systems 3-28
Am6071 Companding D-to-A Converter for Control Systems 3-40
Am6072 Companding D-to-A Converter for PCM Communication Systems 3-52
Am6073 Companding D-to-A Converter for PCM Communication Systems 3-64
Am6080 Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter 3-76
Am6081 Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter 3-84
Application Notes
Companding DAC 3-96
Line Drivers/Receivers - Section IV
Am1488 Quad RS-232C Line Driver 4-1
Am1489 Quad RS-232C Line Receiver 4-4
Am1489A Quad RS-232C Line Receiver 4-4
Am1692/3692 Three-State Differential Line Drivers 4-8

FUNCTIONAL INDEX (Cont.)

Line Drivers/Receivers - Section IV (Cont.)

Am25LS240 Octal Buffer; Inverting, Three-State 4-13
Am25LS241 Octal Buffer; Non-Inverting, Three-State 4-17
Am25LS242 Quad Three-State Bus Transceiver 4-21
Am25LS243 Quad Three-State Bus Transceiver 4-21
Am25LS244Octal Buffer, Non-Inverting, Three-State4-17
Am26LS29 Quad Three-State Single-Ended RS-423 Line Driver 4-26
Am26LS30
Dual Differential RS-422 Party Line/Quad Single-Ended
Dual Differential RS-422 Party Line/Quad Single-Ended RS-423 Line Driver 4-30
Quad RS-422 High-Speed Differential Line Driver 4-36
Am26LS31
Quad RS-422 and RS-423 Differential Line Receiver 4-40
Am26LS32
Quad Differential Line Receiver 4-40
Am26LS33
Quad Bus Transceiver 4-57
Am26S10
Am26S11
Am26S12
Am26S12A
Am2614
Am2615
Am2616
Quad Bus Transceiver 4-57
Quad Bus Transceiver 4-62
Quad Bus Transceiver 4-62
Quad Single-Ended Line Driver 4-67
Dual Differential Line Receiver 4-72
Quad MIL-188C and RS-232C Line Driver 4-78
Am2617 Quad RS-232C Line Receiver 4-82
Am2905 Quad Two-Input OC Bus Transceiver with Three-State Receiver 4-86
Am2906Am2907Am2908Am2915A
Quad Two-Input OC Bus Transceiver with Parity 4-92
Quad Bus Transceiver with Interface Logic 4-98
Quad Bus Transceiver with Interface Logic 4-98
Quad Three-State Bus Transceiver with Interface Logic 4-107
Am2916A
Quad Three-State Bus Transceiver with Interface Logic 4-113
Am2917A
Quad Three-State Bus Transceiver with Interface Logic 4-119
Am3212
8-Bit Input/Output Port 4-125
Am3216
4-Bit Parallel Bidirectional Bus Driver 4-132
Am3226
Am3448A
Am54LS/74LS240
Am54LS/74LS241
Am54LS/74LS242
Am54LS/74LS243
Am54LS/74LS244Am54S/74S240
Am54S/74S241
4-Bit Parallel Bidirectional Bus Driver 4-132
IEEE-488 Quad Bidirectional Transceiver 4-137
Octal Buffer; Inverting, Three-State 4-13
Octal Buffer; Non-Inverting, Three-State 4-17
Quad Three-State Bus Transceiver 4-21
Quad Three-State Bus Transceiver 4-21
Octal Buffer; Non-Inverting, Three-State 4-17
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Am54S/74S242
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Am54S/74S243
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Am54S/74S244
Am55/75107B
Am55/75108B
Am55/75109
Am55/75110
Am71LS/81LS95
Am71LS/81LS96
Am71LS/81LS97Am71LS/81LS98Am73/8303B
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Dual Line Receiver 4-147
Dual Line Receiver 4-147
Dual Line Driver 4-153
Dual Line Driver 4-153
Three-State Octal Buffers 4-159
Octal Three-State Inverting Bidirectional Transceiver 4-163

FUNCTIONAL INDEX (Cont.)

Line Drivers/Receivers - Section IV (Cont.)

Am73/8304B Octal Three-State Bidirectional Transceiver 4-168
Am78/8820 Dual Differential Line Receiver 4-173
Am78/8820A Dual Differential Line Receiver 4-173
Am78/8830 Dual Differential Line Driver 4-178
Am78/8831 Three-State Line Driver 4-182
Am78/8832 Three-State Line Driver 4-182
Am78/8838 Quad Unified Bus Transceiver 4-188
Am8T26 Schottky Three-State Quad Bus Driver/Receiver 4-190
Am8T26A Schottky Three-State Quad Bus Driver/Receiver 4-195
Am8T28 Schottky Three-State Quad Bus Driver/Receiver 4-195
Am8212 8-Bit Input/Output Port 4-125
Am8216 4-Bit Parallel Bidirectional Bus Driver 4-132
Am8226 4-Bit Parallel Bidirectional Bus Driver 4-132
Am9614 Differential Line Driver 4-200
Am9615 Dual Differential Line Receiver 4-72
Am9616 Triple EIA RS-232C/MIL-STD-188C Line Driver 4-205
Am9617 RS-232C Line Receiver 4-209
Application Notes
Use of the Am26LS29, 30, 31 and 32 Quad Driver/Receiver Family in EIA-422 and 423 Applications 4-45
MOS Memory and Microprocessor Interface - Section V
Am0026/0026C 5 MHz Two-Phase MOS Clock Driver 5-1
Am0056/0056C 5 MHz Two-Phase MOS Clock Driver 5-7
Am8224 Clock Generator and Driver 5-13
Am8228 System Controller and Bus Driver 5-20
Am8238 System Controller and Bus Driver 5-20
Operational Amplifiers - Section VI
Am101/201/301 Operational Amplifier 6-1
Am101A/201A/301A Operational Amplifier 6-5
Am102/202/302 Voltage Follower 6-10
Am107/207/307 Frequency Compensated Operational Amplifier 6-14
Am108/208/308 Operational Amplifier 6-18
Am108A/208A/308A Operational Amplifier 6-18
Am110/210/310 Voltage Follower 6-22
Am112/212/312 Compensated, High-Performance Operational Amplifier 6-26
Am118/218/318 High-Speed Operational Amplifier 6-30
Am124/224/324 Quad Operational Amplifier 6-36
Am124A/224A/324A Quad Operational Amplifier 6-36
Am148/248/348 Quad 741 Operational Amplifier 6-41
Am149/249/349 Quad 741 Operational Amplifier 6-41
LF155/255/355
LF155A/255A/355A
Monolithic JFET Input Operational Amplifier 6-43
Monolithic JFET Input Operational Amplifier 6-43
LF156/256/356 Monolithic JFET Input Operational Amplifier 6-43
LF156A/256A/356A Monolithic JFET Input Operational Amplifier 6-43
LF157/257/357 Monolithic JFET Input Operational Amplifier 6-43
LF157A/257A/357A Monolithic JFET Input Operational Amplifier 6-43
Am216/316 Compensated, High-Performance Operational Amplifier 6-51
Am216A/316A Compensated, High-Performance Operational Amplifier 6-51
Am715/715C High-Speed Operational Amplifier 6-55
Am725/725C Instrumentation Operational Amplifier 6-59
SSS725/725B/725E High-Performance Operational Amplifier 6-64

FUNCTIONAL INDEX (Cont.)

Operational Amplifiers - Section VI (Cont.)
Am741/741A/741C/741E Frequency-Compensated Operational Amplifier 6-70
SSS741/741C High-Performance Operational Amplifier 6-64
Am747/747A/747C/747E Dual Frequency-Compensated Operational Amplifier 6-77
SSS747/747C Dual 741 Operational Amplifier 6-64
Am748/748C Operational Amplifier 6-84
Am1501 Dual Operational Amplifier 6-90
Am1558/1458 Dual Frequency-Compensated Operational Amplifier 6-95
LH2101A/LH2201A/ LH2301A Dual Operational Amplifier 6-99
Special Functions - Section VII
Am592 Differential Video Amplifier 7-1
Am733/733C Differential Video Amplifier 7-4
Voltage Regulators - Section VIII
Am105/205/305/305A Voltage Regulator 8-1
Am723/723C Voltage Regulator 8-5
Section IX
Package Outlines 9-1
Glossary 9-5
AMD Field Sales Offices, Sales Representatives, Distributor Locations 9-10

OPERATIONAL AMPLIFIERS

UNCOMPENSATED		
Page ${ }^{\text {No. }}$		
LM101	6.1	General Purpose, $500 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 5 \mathrm{mV}$ Vos
LM748	6-84	General Purpose, $500 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 5 \mathrm{mV}$ Vos
LM101A	6-5	Improved General Purpose, $75 n A I_{B}$, 2 mV Vos
AM1501	6-90	Dual Improved General Purpose, 75 nA $I_{B}, 2 m \vee V o s$
LH2101A	6-99	Dual Improved General Purpose, 75nA $I_{B}, 2 m V$ Vos
725	6-59	Instrumentation, $100 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 1 \mathrm{mV}$ Vos, $5.0 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ TCVIO
SSS725	6-64	Improved Instrumentation, $80 n A I_{B}$, .5 mV Vos, $1.0 \mathrm{~V} /{ }^{\circ} \mathrm{C}$. TCVIO
LM108	6.18	Low Input Current Precision, $2 n A I_{B}$, 2 mV Vos, 0.2 nA IOS
LM108A	6-18	Low Input Current and Offset Voltage Precision, $2 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 0.5 \mathrm{mV}$ Vos, 0.2 nA IOS, 5μ V/ ${ }^{\circ}$ C TCVIO
715	6-55	High Speed, $15 \mathrm{~V} / \mu \mathrm{sec}$ slew rate, 750 nA $I_{B}, 5 \mathrm{mV}$ Vos
INTERNALLY COMPENSATED		
741	6-70	General Purpose, $500 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 5 \mathrm{mV}$ Vos
741A, E	6-70	Improved General Purpose, 80nA IB, 3 mV Vos, 30 nA IOS, $50 \mu \mathrm{~V} / \mathrm{VPSRR}$
SSS741	6-64	High Performance, $50 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 2 \mathrm{mV}$ Vos
747	6.77	Dual General Purpose, $500 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 5 \mathrm{mV}$ Vos
747A, E	6-77	Dual Improved General Purpose, 80nA $\mathrm{I}_{\mathrm{B}}, 3 \mathrm{mV}$ Vos, 30 nA IOS, $50 \mu \mathrm{~V} / \mathrm{VPSRR}$
SSS747	6-64	Dual High Performance, $50 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 2 \mathrm{mV}$ Vos
AM1558	6.95	Dual General Purpose, $500 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 5 \mathrm{mV}$ Vos
LM124	6-36	Quad General Purpose, 150nA $\mathrm{I}_{\mathrm{B}}, 5 \mathrm{mV}$
LM124A	6-36	Vos, Single or Dual Supply, 3 to 30 V , $1 \mathrm{~mW} / \mathrm{op}$ amp at +5 V
LM148	6-41	Quad 741, $500 \mathrm{nA} \mathrm{IB}, 5 \mathrm{mV}$ Vos
LM149	6-41	Quad Decompensated, $500 \mathrm{nA} I_{B}, 5 \mathrm{mV}$ Vos $A_{V}(\min)=$.
LM107	6-14	Improved General Purpose, $75 n A I_{B}$, 2 mV Vos
LM112	6-26	Low Input Current Precision, $2 n A I_{B}$, 2 mV Vos
LM216	6-51	Very Low Input Current Precision, 150pA $I_{B}, 10 \mathrm{mV}$ Vos
LM216A	6-51	Very Low Input Current Precision, 50pA $I_{B}, 3 \mathrm{mV}$ Vos
LM118	6-30	High Speed, $50 \mathrm{~V} / \mu \mathrm{sec}$ slew rate, 4 mV Vos, 250nA IB
LF155	6-43	FET Input General Purpose, 5 mV Vos, $20 \mathrm{pA} \mathrm{I}_{\mathrm{OS}}, 100 \mathrm{pA} \mathrm{I}_{\mathrm{B}}$
LF155A	6-43	FET Input General Purpose, 2 mV Vos, $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ TC $V_{10}, 10 \mathrm{pA} \mathrm{I}_{\mathrm{OS}}, 50 \mathrm{pA} \mathrm{I}_{\mathrm{B}}$
LF156	6-43	FET Input Wideband, 5 mV Vos, 20pA $I^{\prime} \mathrm{SS}, 100 \mathrm{pA} \mathrm{I}_{\mathrm{B}}, 7.5 \mathrm{~V} / \mu \mathrm{sec} \mathrm{SR}$
LF156A	6-43	FET Input Wideband, 2 mV Vos, $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ TC V $10,10 \mathrm{pA}$ IOS, $50 \mathrm{pA} \mathrm{I}_{\mathrm{B}}, 10 \mathrm{~V} /$ $\mu \mathrm{sec}$ SR
LF157	6-43	FET Input Wideband Decompensated, 5 mV Vos, 20pA IOS, $100 \mathrm{pA} \mathrm{I}_{\mathrm{B}}, 30 \mathrm{~V} /$ $\mu \mathrm{sec}$ SR ($\mathrm{A}_{\mathrm{V}}=5$)
LF157A	6-43	FET Input Wideband Decompensated, 2 mV Vos, $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ TC V $10,10 \mathrm{pA}$ IOS, $50 \mathrm{pA} \mathrm{I}_{\mathrm{B}}, 40 \mathrm{~V} / \mu \mathrm{sec} \mathrm{SR}\left(\mathrm{A}_{\mathrm{V}}=5\right)$

VOLTAGE FOLLOWERS
Page No.

VOLTAGE COMPARATORS

 Page No.| LM111 | 2-5 | General Purpose, $100 \mathrm{nA} \mathrm{I}_{\mathrm{B}}, 3 \mathrm{mV}$ Vos, 250 ns Response Time, 50 V and 50 mA Output |
| :---: | :---: | :---: |
| LH2111 | 2.35 | Dual General Purpose, $100 \mathrm{nA} I_{\mathrm{B}}, 3 \mathrm{mV}$ Vos, 250 ns Response Time, 50 V and 50mA Output |
| AM1500 | 2-31 | Dual General Purpose, $100 \mathrm{nA} 1_{\mathrm{B}}, 3 \mathrm{mV}$ Vos, 250ns Response Time, 50V and 50mA Output |
| LM106 | $2 \cdot 1$ | High Speed, $20 \mu A I_{B}, 2 m V$ Vos, $40 n s$. Response Time, 24 V and 100 mA Output |
| LM119 | 2-9 | Dual General Purpose, 500nA $I_{B}, 4 \mathrm{mV}$ Vos, 80 ns Response Time, 35 V and 25 mA Output, +5 or +15 V Supply |
| LM139 | 2-13 | Quad General Purpose, 100nA $\mathrm{I}_{\mathrm{B}}, 2 \mathrm{mV}$ |
| LM139A | 2-13 | Vos, Single or Dual Supply 2 to 36 V , $1 \mathrm{~mW} /$ comp. at +5 V |
| AM685 | 2-19 | Very Fast ECL Output, $10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{B}}, 2 \mathrm{mV}$
 Vos, 6.5ns Response Time |
| AM686 | 2-27 | Very Fast TTL Output, $10 \mu \mathrm{~A} I_{\mathrm{B}}, 2 \mathrm{mV}$ Vos, 12ns Response Time |
| AM687 | 2.29 | Dual Very Fast ECL Output, $10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{B}}$, 2 mV Vos, 6.5 ns Response Time |

VOLTAGE REGULATORS

Page No.

723	$8-5$	General Purpose, 2-37V Output, 0.15\% load reg., 50V input, 150mA Output General Purpose, 4.5-40V Output, 0.05\% Load reg., 50V input, 12mA Output

DATA CONVERSION PRODUCTS Page No.

AM1508	3-14	8-Bit Multiplying D-to-A Converter, Accuracy 0.19%, Settling Time 300nsec typ.
SSS1508A	3-14	8-Bit Multiplying D-to-A Converter, Accuracy 0.1\%, Settling Time 135nsec
DAC-08	3-1	8-Bit High-Speed Multiplying D/A Converter
AM6070	3.28	Companding D-to-A Converter for Control Systems
AM6071	$3-40$	Companding D-to-A Converter for Control Systems
AM6072	3-52	Companding D-to-A Converter for PCM Communication Systems
AM6073	3-64	Companding D-to-A Converter for PCM Communication Systems
AM6080	3-76	Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter
AM6081	3-84	Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter
$\begin{aligned} & \text { LF198, } \\ & 298,398 \end{aligned}$	3-7	Monolithic Sample and Hold Circuits
$\begin{aligned} & \text { AM2502, } \\ & 03,04 \end{aligned}$	3-18	8-Bit/12-Bit Successive Approximation Registers

SELECTION GUIDE (Cont.)

LINE DRIVERS

DUAL DIFFERENTIAL		Use With
75109	Open collector differential outputs typical current 6 mA , inhibit controls	$\begin{aligned} & 75107 B \\ & 751088 \end{aligned}$
75110	12 mA output current version of Am75109	$\begin{aligned} & 75107 B \\ & 75108 \mathrm{~B} \end{aligned}$
8830	Designed for single 5.0 V supply operation	$\begin{aligned} & 7820 \text { or } \\ & 7820 \mathrm{~A} \end{aligned}$
8831	Dual differential device which may also be used as a quad single-ended driver. Three-state output.	$\begin{aligned} & 9615 \text { or } \\ & 2615 \end{aligned}$
8832	Similar to 8831 but no $V_{C C}$ clamp diodes	$9615 \text { or }$ 2615
9614	5 volt supply driver with complementary outputs	9615
9621	200 mA transient capability with 130Ω back matching resistor	9620
DIFFERENTIAL EIA RS-422, FEDERAL STD 1020		
$\begin{aligned} & \text { 26LS31 } \\ & \text { 26LS30 } \end{aligned}$	Quad, high-speed, low output skew Dual, high output CMR	$\left\lvert\, \begin{array}{l\|l} 26 L S 32 \text { or } \\ 26 L S 33 \end{array}\right.$
SINGLE ENDED		
2614	High-speed quad driver for multi-channel, common ground operation.	2615
SINGLE ENDED, EIA RS-232-C		
1488	Quad EIA RS-232C driver (14 pins)	$\left\lvert\, \begin{aligned} & 1489 / \\ & 1489 \mathrm{~A} \end{aligned}\right.$
2616	Quad 16-pin driver for EIA RS-232C, CCITT V. 24 and MIL-188C interface	2617
9616	Triple EIA RS-232C driver (14 pins)	9617
SINGLE ENDED, EIA RS-423, FEDERAL STD 1030		
$\begin{aligned} & \text { 26LS29 } \\ & \text { 26LS30 } \end{aligned}$	Quad, three-state Quad, mode control	$\begin{aligned} & \text { 26LS32 or } \\ & \text { 26LS33 } \end{aligned}$

BUS BUFFERS/DRIVERS

		$\begin{gathered} \mathrm{t}_{\mathrm{pd}} \\ (T Y P) \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{IOL} \\ \text { (MAX) } \end{array}$
25LS240	Inverting octal buffer/driver with threestate output	10	48
74LS240		10	24
74S240		4.5	68
81LS96		9.0	16
25LS241	Non-inverting octal buffer/driver with three-state output	12	48
74LS241		12	24
74S241		6.0	68
81LS95		12	16
25LS242	Inverting buffer/driver with two quad data paths connected input-to-output	10	48
74LS242		10	24
†74S242		4.5	68
25LS243	Non-inverting buffer/driver with two quad data paths connected input-tooutput	12	48
74LS243		12	24
†74S243		6.0	68
25LS244	Non-inverting octal buffer/driver with three-state output and two inverting enables	12	48
74LS244		12	24
74S244		6.0	68
81 LS97		12	16
81LS98	Inverting octal buffer/driver with threestate output and two inverting enables	9.0	16

[^0]
LINE RECEIVERS

DUAL DIFFERENTIAL		Use With
3603	Receiver with differential input to detect signals $>25 \mathrm{mV}$. Three-state outputs.	75110
75107B	Toterm-pole TTL output version of Am363	$\begin{aligned} & 75109 \text { or } \\ & 75110 \end{aligned}$
75108B	Open collector TTL output version of Am363	$\begin{aligned} & 75109 \text { or } \\ & 75110 \end{aligned}$
8820	Designed for $\pm 15 \mathrm{~V}$ common mode using 5.0 V supply	8830
8820A	Higher speed, tighter spec 8820	8830
9615	± 15 volt common mode, 5 volt supply receivers with uncommitted collector and active pull-up controls	9614
9620	± 15 volt common mode receiver with direct and attenuated inputs	9621
QUAD DIFFERENTIAL		
26LS33	± 15 volt common mode, 5 volt supply, three-state output	26LS31
QUAD DIFFERENTIAL EIA RS-422, FEDERAL STD 1020		
26LS32	± 7 volt common mode, 5 volt supply, three-state output	26LS31
SINGLE ENDED		
2615	Receiver for 3 volt single-ended TTL level data	2614
SINGLE ENDED, EIA RS-232-C		
1489	Quad EIA RS-232C receiver with input threshold hysteresis	1488
1489A	Higher threshold version of Am1489	1488
2617	Quad EIA RS-232 receiver specified over military temperature range (same pinout as Am1489A)	2616
9617	Triple EIA RS-232 receiver with adjustable hysteresis	9616
SINGLE ENDED, EIA RS-423, FEDERAL STD 1030		
26LS32	± 7 volt common mode, 5 volt supply, three-state output	$\begin{aligned} & \text { 26LS29 } \\ & \text { 26LS30 } \end{aligned}$

SPECIAL FUNCTIONS

TIMERS

MOS-MICROPROCESSOR INTERFACE CIRCUITS
8080A/9080A
8212 8-Bit input/output port, with storage
8216
8224
8226
8228
8238

8303B
8304B

4-Bit parallel bidirectional bus driver
Clock generator and driver
Inverting version 8216
System controller and bus driver
System controller and bus driver with extended
IOW/MEMW
Two 8226's in one 20 pin package
Two 8216's in one 20 pin package

BUS TRANSCEIVERS

Device	Output	Function	Hysteresis	Speed (Note 1)	Comments
QUAD					
Am26S10	100mA-O.C.	Inverting	No	20ns	SN55/75138 pin out
Am26S11	100mA-O.C.	Non-Inverting to bus; Inverting off bus	No	22ns	Same as Am26S10 except non-inverting to bus
Am26S12	100mA-O.C.	Inverting	Yes-0.6V	32ns	Same pin out as DS78/8838 and 8T38
Am26S12A	100mA-O.C.	Inverting	Yes-1.05V	32ns	Wider threshold Am26S12
Am2905	100mA-O.C.	Inverting	No	$\begin{gathered} 31 \mathrm{~ns} \\ \text { (Note } 2) \end{gathered}$	Has 2-input multiplexer
Am2906	100mA-O.C.	Inverting	No	31 ns (Note 2)	Has 2-input multiplexer and parity
Am2907	100mA-O.C.	Inverting	No	31ns (Note 2)	Includes parity, 2.0 V receiver V_{TH}
Am2908	100mA-O.C.	Inverting	No	$\begin{gathered} 31 \mathrm{~ns} \\ \text { (Note } 2 \text {) } \end{gathered}$	Includes parity, 1.5V receiver V_{TH}
Am2915A	48mA/3-St.	Inverting	No	31 ns (Note 2)	Has 2-input multiplexer
Am2916A	48mA/3-St.	Inverting	No	31ns (Note 2)	Has 2-input multiplexer and parity
Am2917A	48mA/3-St.	Inverting	No	31 ns (Note 2)	Includes parity
Am3216	$50 \mathrm{~mA} 3-\mathrm{St}$.	Non-Inverting	No	34ns	Same as 8216 except different A.C. loading spec
Am3226	$50 \mathrm{~mA} / 3-\mathrm{St}$.	Inverting	No	30ns	Same as 8216 except different A.C. loading spec
Am3448A	48mA/3-St.-O.C.	Non-Inverting	Yes	32ns	IEEE 488 compatible
Am78/8838	50 mA -O.C.	Inverting	No	38ns	Same pin out and function as Am26S12A and 8T38
Am8T26A	$48 \mathrm{~mA} / 3$-St.	Inverting	No	19ns	V_{OH} MOS compatible
Am8T28	$48 \mathrm{~mA} / 3-\mathrm{St}$.	Non-Inverting	No	25 ns	V_{OH} MOS compatible
Am8216	$50 \mathrm{~mA} 3-\mathrm{St}$.	Non-Inverting	No	34ns	Similar to 8T28
Am8226	$50 \mathrm{~mA} 3-\mathrm{St}$.	Non-Inverting	No	30 ns	Similar to 8T26A
OCTAL					
Am8303B	$48 \mathrm{~mA} / 3-\mathrm{St}$.	Inverting	No	14ns	Same as two 8226's in one 20 pin package
Am8304B	$48 \mathrm{~mA} 3-\mathrm{St}$.	Non-Inverting	No	24ns	Same as two 8216's in one 20 pin package

Notes: 1. Typical delay at $28^{\circ} \mathrm{C}$ for input to bus plus receiver to output.
2. Bus enable to bus plus bus to receiver output. All parts include register or driver plus receiver with latch.

SELECTION GUIDE (Cont.)

MONOSTABLES (ONE SHOTS)

Device No.	Description	Dual	Retriggerable	Reset Table	Initial Accuracy \%	Min. Output t_{pw} (ns)	Pulse Width Variation (\%) Temp. V_{CC}	$\begin{gathered} \text { Power } \\ \text { Dissipation } \\ \text { (mW typ.) } \\ \hline \end{gathered}$	No. Package Leads
Am2600	$\mathrm{t}_{\mathrm{pw}}=55$ ns to ∞, with guaranteed $<1 \%$ change over temperature range	X	X	X	± 10	45	$\pm 0.5 \pm 1.5$	95	14
Am2602	$t_{p w}=55 n$ to ∞, with guaranteed $<1 \%$ change over temperature range	X	X	X	± 10	45	$\pm 0.5 \pm 1.5$	175	16
Am26L02	Low-Power version 2602, $\mathrm{t}_{\text {pw }}=100 \mathrm{~ns}$ to x	x	x	X	± 10	110	$\pm 0.3 \pm 1.0$	50	16
Am26L123	Low-Power version 26123, $\mathrm{t}_{\mathrm{pw}}=120 \mathrm{~ns}$ to \times	X	X	X	± 10	120	$\pm 0.3 \pm 1.0$	60	16
Am26S02	High speed Schottky version 2602, $\mathrm{t}_{\mathrm{pw}}=$ 28ns to x	X	X	X	± 5.0	33	$\pm 0.4 \quad \pm 1.5$	240	16
Am26123	$\mathrm{t}_{\mathrm{pw}}=45$ ns to x, with guaranteed $<1 \%$ change over temperature range. Output stability latch improves noise immunity	X	X	X	± 10	45	$\pm 0.5 \quad \pm 0.5$	230	16
Am54/74123	Same as 26123, except no output latch, no $\Delta t_{\text {pw }}$ guarantee	X	X	X	± 10	45	$\pm 2.7 \pm 1.0$	230	16
Am54/74221	Schmitt-trigger input	x		x	± 7.0	30	$\pm 0.3 \quad \pm 0.3$	130	16
Am9600	Same as 2600, except no $\Delta t_{p w}$ guarantee		X	X	± 10	50	$\pm 1.5 \pm 1.5$	95	14
Am9601	Non-resettable version of $9600, \mathrm{t}_{\mathrm{pw}}=55 \mathrm{~ns}$ to x		X		± 10	45	$\pm 2.7 \pm 1.0$	95	14
Am9602	Same as 2602 , except $\mathrm{t}_{\mathrm{pw}}=60 \mathrm{~ns}$ to ∞, no Δt_{pw} guarantee	X	X	X	± 10	50	$\pm 1.5 \pm 1.5$	175	16
Am96L02	Same as 26L02, except $t_{p w}$ guaranteed $<1.6 \%$ change over temperature range	X	X	X	± 10	110	$\pm 0.3 \pm 0.5$	50	16

INDUSTRY CROSS REFERENCE

AMD*	Fairchild	Intel	Motorola	National	Signetics	Texas Instruments

Manufacturer Identification Cross Reference

AM	μ A, or None	None	M,MC	DM, DS, LM, MH	None	SN

Temperature Range Cross Reference

Commercial	C	C	-	$14,34,86$	$3,86,88$	NE, N	$72,74,75$
Military	M	M	M	$15,35,96$	$1,96,78$	SE, S	$52,54,55$

Package Cross Reference

Hermetic DIP	D	D	C, D	L	D	F, I	J
Molded DIP	P	P	P	P_{2}	N	$\mathrm{~A}, \mathrm{~B}$	N
Mini-Molded DIP	T	T	-	P_{1}	N	V	P
Flat Pack	F	F	-	F	F, W	W, Q	$\mathrm{H}, \mathrm{U}, \mathrm{Z}, \mathrm{W}$
TO-5 Type Can	H	H	-	G, R	H	$\mathrm{DB}, \mathrm{K}, \mathrm{T}$	L
TO-8 Type Can	G	-	-	H	G	-	-

-The original manufacturers' part number and package code are used for second source devices.

FAIRCHILD

FAIRCHILD (Cont.)

FAIRCHILD (Cont.)

Fairchild	AMD Direct Replacement	AMD Functional Replacement
μ A747ADM	747ADM	
μ A747AHM	747AHM	
μ A747EDC	747EDC	
μ A747EHC	747EHC	
μ A748DC	748DC	
μ A748DM	748DM	
$\mu \mathrm{A} 748 \mathrm{FM}$	748FM	
$\mu \mathrm{A} 748 \mathrm{HC}$	748 HC	
$\mu \mathrm{A} 748 \mathrm{HM}$	748HM	
$\mu \mathrm{A} 748 \mathrm{PC}$	748PC	
μ A760DC		AM686DC
μ A760DM		AM686DM
$\mu \mathrm{A} 760 \mathrm{HC}$		AM686HC
$\mu \mathrm{A} 760 \mathrm{HM}$		AM686HM
μ A775DM	LM139D	
μ A775DC	LM339D	
μ A775PC	LM339N	
54123DM	SN54123J	
54123FM	SN54123W	
55107ADM	SN55107BJ	
55107BDM	SN55107BJ	
55107AFM	SN55107BW	
55107 BFM	SN55107BW	
55108ADM	SN55108BJ	
55108AFM	SN55108BW	
55108BDM	SN55108BJ	
55108BFM	SN55108BW	
55109DM	SN55109J	
55109FM	SN55109W	
55110DM	SN55110J	
55110FM	SN55110W	
5520DM	SN5520J	
5521DM	SN5521J	
55234DM	SN55234J	
55234FM	SN55234W	
55235DM	SN55235J	
55235FM	SN55235W	
55238DM	SN55238J	
55238FM	SN55238W	
55239DM	SN55239J	
55239FM	SN55239W	
5524DM	SN5524J	
5525DM	SN5525J	
55325DM	SN55325J	
55325FM	SN55325W	
74123DC	SN74123J	
74123PC	SN74123N	
75107ADC	SN75107BJ	
75107APC	SN75107BN	
75107BDC	SN75107BJ	
75107BPC	SN75107BN	
75108ADC	SN75108BJ	
75108APC	SN75108BN	
75108BDC	SN75108BJ	
75108 BPC	SN75108BN	
75109DC	SN75109J	
75109PC	SN75109N	
75110DC	SN75110J	
75110 PC	SN75110N	

FAIRCHILD (Cont.)

Fairchild	AMD Direct Replacement	AMD Functional Replacement
9600 DC	9600 DC	
9600 DM	9600 DM	
960 FM	9600 FM	
9600 PC	9600 PC	

AM26LS31PC AM26LS31DC AM26LS31DM AM26LS33PC AM26LS33DC AM26LS33DM AM26LS30PC AM26LS30DC AM26LS30DM AM26LS32PC AM26LS32DC AM26LS32DM AM26LS32PC AM26LS32DC AM26LS32DM
AM26S10DC
AM26S10DM AM26S10PC AM26S11DC AM26S11DM AM26S11PC

AM26S02DC AM26S02PC
9614DC 9614DM 9614FM 9614PC 9615DC 9615DM 9615FM 9615PC 9616DC 9616DM 9616EDC 9616EPC 9616FM 9616PC 9617DC 9617PC

AM26S12APC AM26S12ADC AM26S12ADM

MOTOROLA (Cont.)

Motorola	AMD Direct Replacement	AMD Functional Replacement
MLM211L	LM211D	
MLM301AG	LM301AH	
MLM301API	LM301AN	
MLM305G	LM305H	
MLM307G	LM307H	
MLM310G	LM310H	
MLM311G	LM311H	
MLM211PI	LM311N	
MLM311L	LM311D	
MMH0026CG	MH0026CH	
MMH0026CL	MMH0026CL	
MMH0026CPI	MH0026CN	
MMH0026G	MH0026H	
MMH0026L	MMH0026L	

NATIONAL

Mfg.'s Ident.	Temperature Range	Device Type \quad Pa
National	AMD Functional Replacement	AMD Direct Replacement
DM54123J	SN54123J	
DM54123W	SN54123W	
DM54L123J		AM26L123DM
DM54L123W		AM26L123FM
DM71LS95J	DM71LS95J	SN54LS241J
DM71LS96J	DM71LS96J	SN54LS240J
DM71LS97J	DM71LS97J	SN54LS244J
DM71LS98J	DM71LS98J	SN54LS240J
DM74L123J		AM26L123DC
DM74L123N		AM26L123PC
DM74123J	SN74123J	AM26123DC
DM74123N	SN74123N	AM26123PC
DM81LS95J	DM81LS95J	SN74LS240J
DM81LS95N	DM81LS95N	SN74LS240N
DM81LS96J	DM81LS96J	SN74LS241J
DM81LS96N	DM81LS96N	SN74LS241N
DM81LS97J	DM81LS97J	SN74LS241J
DM81LS97N	DM81LS97N	SN74LS241N
DM81LS98J	DM81LS98J	SN74LS240J
DM81LS98N	DM81LS98N	SN74LS240N
DM8601J	9601DC	
DM8601N	9601PC	
DM8602J	9602DC	AM2602DC
DM8602N	9602PC	AM2602PC
DM9601J	9601DM	
DM9601W	9601FM	
DM9602J	9602DM	AM2602DM
DM9602W	9602FM	AM2602FM
DP7303BJ	DP7304BJ	
DP8303BJ	DP8303BJ	
DP8304BJ	DP8304BJ	
DS0026CG	MH0026CG	
DS0026CH	MH0026CH	
DS0026CJ	MMH0026CL	
DS0026CN	MH0026CN	
DS0026F	DS0026F	
DS0026G	MH0026G	
DS0026H	MH0026H	
DS0026J	MMH0026L	

NATIONAL (Cont.)

National	AMD Direct Replacement	AMD Functional Replacement
DS0056CG	DS0056CG	
DS0056CH	DS0056CH	
DS0056CJ	DS0056CJ	
DS0056CN	DS0056CN	
DS0056G	DS0056G	
DS0056H	DS0056H	
DS0056J	DS0056J	
DS1488J	MC1488L	
DS1488N	AM1488PC	
DS1489J	MC1489L	
DS1489N	AM1489L	
DS1489AJ	MC1489AL	
DS1489AN	AM1489APC	
DS1691J	AM26LS30DM	
DS1692J	DS1692J	
DS3691J	AM26LS30DC	
DS3691N	AM26LS30PC	
DS3692J	DS3692J	
DS3692N	DS3692J	
DS3692N	DS3692N	
DS7820J	DM7820J	
DS7820AJ	DM7820AJ	
DS7830J	DM7830J	
DS7831J	DM7831J	
DS7832J	DM7832J	
DS7835J		S8T26F
DS7838 J	DS7838J	AM26S12ADM
DS8820J	DM8820J	
DS8820N	DM8820N	
DS8820AJ	DM8820AJ	
DS8820AN	DM8820AN	
DS8830J	DM8830J	
DS8830N	DM8830N	
DS8831J	DM8831J	
DS8831N	DM8831N	
DS8832J	DM8832J	
DS8832N	DM8832N	
DS8835J		N8T26F
DS8835N		N8T26B
DS8838J	DS8838	AM26S12ADC
DS8838N	DS8838N	AM26S12APC
DS55107J	SN55107BJ	
DS55108J	SN55108BJ	
DS55109J	SN55109J	
DS55110J	SN55110J	
DS75107J	SN75107BJ	
DS75107N	SN75107BN	
DS75108J	SN75108BJ	
DS75108N	SN75108BN	
DS75109J	SN75109J	
DS75109N	SN75109N	
DS75110J	SN75110J	
DS75110N	SN75110N	
LF155H	LF155H	
LF155AH	LF155AH	
LF156H	LF156H	
LF156AH	LF156AH	
LF157H	LF157H	
LF157AH	LF157AH	
LF198H	LF198H	
LF255H	LF255H	
LF256H	LF256H	
LF257H	LF257H	
LF298H	LF298H	

NATIONAL (Cont.)

National	AMD Direct Replacement	AMD Functional Replacement
LF355H	LF355H	
LF355N	LF355N	
LF355AH	LF355AH	
LF356H	LF356H	
LF356N	LF356N	
LF356AH	LF356AH	
LF357H	LF357H	
LF357N	LF357N	
LF357AH	LF357AH	
LF398H	LF398H	
LH2101AD, J	LH2101AD	
LF2101AF	LH2101AF	
LF2111D, J	LH2111D	
LH2111F	LH2111F	
LH2201AD, J	LH2201AD	
LH2201AF	LH2201AF	
LH2211D, J	LH2211D	
LH2211F	LH2211F	
LH2301AD, J	LH2301AD	
LH2311D, J	LH2311D	
LM101D, J	LM101D	
LM101F	LM101F	
LM101H	LM101H	
LM101AD, J	LM101AD	
LM101AF	LM101AF	
LM101AH	LM101AH	
LM102D, J	LM102D	
LM102F	LM102F	
LM102H	LM102H	
LM105F	LM105F	
LM105H	LM105H	
LM106F	LM106F	
LM106H	LM106H	
LM107D, J	LM107D	
LM107F	LM107F	
LM107H	LM107H	
LM108D, J	LM108D	
LM108F	LM108F	
LM108H LM108AD, J	LM108H LM108AD	
LM108AF	LM108AF	
LM108AH	LM108AH	
LM110D, J	LM110D	
LM110F	LM110F	
LM110H	LM110H	
LM111D, J	LM111D	
LM111F	LM111F LM11H	
LM112D, J	LM112D	
LM112F	LM112F	
LM112H	LM112H	
LM118D, J	LM118D	
LM118F	LM118F	
LM118H	LM118H	
LM119D, J	LM119D	
LM119F	LM119F	
LM119H	LM119H	
LM124D, J	LM124D	
LM124F	LM124F	
LM139D, J	LM139D	
LM139AD, J	LM139AD	
LM139F	LM139F	
LM139AF	LM139AF	
LM148D	LM148D	

NATIONAL (Cont.)

National	AMD Direct Replacement	AMD Functional Replacement
LM149D	LM149D	
LM201H	LM201H	
LM201AD, J	LM201AD	
LM201AF	LM201AF	
LM201AH	LM201AH	
LM202H	LM202H	
LM205H	LM205H	
LM206H	LM206H	
LM207D, J	LM207D	
LM207F	LM207F	
LM207H	LM207H	
LM208AD, J	LM208AD	
LM208AF	LM208AF	
LM208AH	LM208AH	
LM208D, J	LM208D	
LM208F	LM208F	
LM208H	LM208H	
LM210D, J	LM210D	
LM210H	LM210H	
LM211D, J	LM211D	
LM211F	LM211F	
LM211H	LM211H	
LM212D, J	LM212D	
LM212F	LM212F	
LM212H	LM212H	
LM216D, J	LM216AD	
LM216AF	LM216AF	
LM216AH	LM216AH	
LM216D, J	LM216D	
LM216F	LM216F	
LM216H	LM216H	
LM218D, J	LM218D	
LM218F	LM218F	
LM218H	LM218H	
LM219D, J	LM219D	
LM219F	LM219F	
LM219H	LM219H	
LM224D, J	LM224D	
LM239D, J	LM239D	
LM239AD, J	LM239D	
LM248D	LM248D	
LM249D	LM249D	
LM301AD, J	LM301AD	
LM301AF	LM301AF	
LM301AH	LM301AH	
LM301AN	LM301AN	
LM302F	LM302F	
LM302H	LM302H	
LM305F	LM305F	
LM305H	LM305H	
LM305AH	LM305AH	
LM306F	LM306F	
LM306H	LM306H	
LM307D, J	LM307D	
LM307F	LM307F	
LM307H	LM307H	
LM308AD, J	LM308AD	
LM308AF	LM308AF	
LM308AH	LM308AH	
LM308AN	LM308AN	
LM308D, J	LM308D	
LM308F	LM308F	
LM308H	LM308H	
LM308N	LM308N	

NATIONAL (Cont.)

National	AMD Direct Replacement	AMD Functional Replacement
LM310D, J	LM310D	
LM310F	LM310F	
LM310H	LM310H	
LM310N	LM310N	
LM311D, J	LM311D	
LM311F	LM311F	
L.M311N	LM311N	
LM312D, J	LM312D	
LM312F	LM312F	
LM312H	LM312H	
LM316AD, J	LM316AD	
LM316AF	LM316AF	
LM316AH	LM316AH	
LM316D, J	LM316D	
LM316F	LM316F	
LM316H	L.M316H	
LM318D, J	LM318D	
LM318F	LM318F	
LM318H	LM318H	
LM318N	LM318N	
LM319H	LM319H	
LM319D, J	LM319D	
LM319N	LM319N	
LM324D, J	LM324D	
LM324N	LM324N	
LM339D, J	LM339D	
LM339AD, J	LM339AD	
LM339N	LM339N	
LM339AN	LM339AN	
LM348D	LM348D	
LM348N	LM348N	
LM349D	LM349D	
LM349N	LM349N	
LM723D, J	723DM	
LM723H	723 HM	
LM723CD, J	723 DC	
LM723CH	723 HC	
LM725H	725 HM	
LM725CH	${ }^{725 H C}$	
LM725CN	725 CN	
LM725D, J	725DM	
LM725CD, J	725DC	
LM733D, J	733 DM	
LM733H	733 HM	
LM733CD, J	733 DC	
LM733CH	${ }_{743} \mathbf{H C}$	
LM741D, J	741 DM	
LM741F	741 FM 741 HM	
LM741H	741 HM 741 DC	
LM741CF	741FC	
LM741CH	741HC	
LM747D, J	747 DM	
LM747H	747 HM	
LM747F	747 FM	
LM747CD, J	747 DC 747 PC	
LM747CH	747 HC	
LM747CN	747PC	
LM478H	748HM	
LM748CH	748 HC	
LM748CN	748 PC	
LM1458H	AM1458H	
LM1558H	AM1558H	

SIGNETICS

SIGNETICS (Cont.)

Signetics	AMD Direct Replacement	AMD Functional Replacement
N8T22A	9601PC	
N8T22F	9601 C	
N8T26B	N8T26B	
N8T26F	N8T26F	
N8T26AB	N8T26AB	
N8T26AF	N8T26AF	
N8T28B	N8T28B	
N8T28F	N8T28F	
N8T38B		DS8838N
N8T38F		DS8838J
N9602B	9602PC	
N9602F	9602DC	
SE529K		AM686HM
SE555T	SE555T	
SE556F	SE556F	
SE592A	AM592PC	
SE592K	AM592HM	
S54123F	SN54123J	
S54221F	SN54221J	
S9602F	9602 DM	
S8T26F	S8T26F	
S8T26AF	S8T26AF	
S8T28F	S8T28F	
S8T38F		DS7838J
$\mu \mathrm{AT23CF}$	723 DC	
$\mu \mathrm{A} 723 \mathrm{CL}$	723 HC	
$\mu 723 \mathrm{~F}$	723DM	
$\mu \mathrm{A} 723 \mathrm{~L}$	723 HM	
$\mu \mathrm{A} 733 \mathrm{CA}$	733 PC	
${ }_{\mu \text { A }}^{\mu \text { A } 733 C F}$	733 DC 733 HC	
${ }_{\mu \text { A }}{ }^{\text {A }}$ A33F	733DM	
$\mu \mathrm{A} 733 \mathrm{~K}$	733 HM	
$\mu \mathrm{A} 41 \mathrm{CF}$	741DC	
$\mu \mathrm{A} 741 \mathrm{CT}$	741 HC	
μ A741F	741 DM	
μ A741T	741 HM	
μ A747CA	747 PC	
$\mu \mathrm{A} 447 \mathrm{CF}$	747 DC	
$\mu \mathrm{A} 747 \mathrm{CK}$	747 HC 747 DM	
${ }_{\mu \text { A } 747 \mathrm{~K}}$	747 HM	
$\mu \mathrm{A} 488 \mathrm{CT}$	748 HC	
$\mu \mathrm{A} 748 \mathrm{~F}$	748DM	
$\mu \mathrm{A} 748 \mathrm{~T}$	748 HM	

TEXAS INSTRUMENTS

SN 75		110	
Mfg.'s Ident.	mperature Range	Device Type	
Texas Instruments	AMD Direct Replacement		nal nent
SN52101AJ	LM101AD		
SN52101AL	LM101AH		
SN52101AZ	LM101AF		
SN52105L	LM105H		
SN52106FA	LM106F		
SN52106L	LM106H		
SN52107J	LM107D		
SN52107L	LM107H		

TEXAS INSTRUMENTS (Cont.)

Texas Instruments	AMD Direct Replacement	AMD Functional Replacement
SN52107Z	LM107F	
SN52108AFA	LM108AF	
SN52108AJA	LM108AD	
SN52108AL	LM108AH	
SN52108FA	LM108F	
SN52108JA	LM108D	
SN52108L	LM108H	
SN52111FA	LM111F	
SN52111J	LM111D	
SN52111L	LM111H	
SN52118FA	LM118F	
SN52118JA	LM118D	
SN52118L	LM118H	
SN52723J	723DM	
SN52723L	723HM	
SN52733FA	733FM	
SN52733J	733DM	
SN52733L	733HM	
SN52741FA	741FM	
SN52741JA	741DM	
SN52741L	741 HM	
SN52747FA	747FM	
SN52747JA	747DM	
SN52747L	747HM	
SN52748FA	748FM	
SN52748JA	748DM	
SN52748L	748 HM	
SN54L123J		AM26L123DM
SN54L123W		AM26L123FM
SN54LS123J	SN54LS123L	AM25LS123AM
SN54LS123W	SN54LS123W	AM25LS123FM
SN54LS240J	SN54LS240J	AM25LS240DM
SN54LS241J	SN54LS24.1J	AM25LS241DM
SN54LS242J	SN54LS242J	AM25LS242DM
SN54LS243J	SN54LS243J	AM25LS243DM
SN54LS244J	SN54LS244J	AM25LS244DM
SN54S240J	SN54S240J	
SN54S241J	SN54S241J	
SN54123J	SN54123J	AM26123DM
SN54123W	SN54123W	AM26123DM
SN54221J	SN54221J	
SN54221W	SN54221W	
SN55107AJ	SN55107BJ	
SN55107BJ	SN55107BJ	
SN55108AJ	SN55108BJ	
SN55108BJ	SN55108BJ	
SN55109J	SN55109J	
SN55110J	SN55110J	
SN55114J	9614DM	
SN55114W	9614FM	
SN55115J	9615DM	
SN55115W	9615DM	
SN55182J	DM7820AJ	
SN55182W	DM7820AW	
SN55183J	DM7830J	
SN55183W	DM7830W	
SN55369J	MMH0026L	
SN72301AJ	LM301AD	
SN72301AL	LM301AH	
SN72305L	LM305H	
SN72306L	LM306H	
SN72307J	LM307D	
SN72307L	LM307H	
SN72308AJA	LM308AD	

TEXAS INSTRUMENTS (Cont.)

Texas Instruments	AMD Direct Replacement	AMD Functional Replacement
SN72308AL	LM308AH	
SN72308JA	LM308D	
SN72308L	LM308H	
SN72311J	LM311D	
SN72311L	LM311H	
SN72318JA	LM318H	
SN72318L	723DC	
SN72723J	723HC	
SN72723L	733DC	
SN72733J	733HC	
SN72733L	741DC	
SN72741JA	741HC	
SN72741L	747DC	
SN72747JA	748DC	
SN72747L	748HC	
SN72748JA		AM26L123DC
SN72748L	SN74LS123J	AM26L123PC
SN74L123J	SN74LS123N	AM25LS123DC
SN74L123N	SN74LS240J	AM25LS240DC
SN74LS123J	SN74LS240N	AM25LS240PC
SN74LS123N	SN74LS241J	AM25LS241DC
SN74LS240J	SN74LS241N	AM25LS241PC
SN74LS240N	SN74LS242J	AM25LS242DC
SN74LS241J	SN74LS242N	AM25LS242PC
SN74LS241N	SN74LS242J	AM25LS243DC
SN74LS242N	SN74LS243J	AM25LS243PC
SN74LS243J	SN74LS243N	AM25LS244DC
SN74LS243N	SN74LS244J	AM25LS244PC
SN74LS244J	SN74LS244N	
SN74LS244N	SN224	
SN74LS424J	SN74LS424N	P8224
SN74S240J	SN74S240J	
SN74S240N	SN74S240N	
SN74S241J	SN74S241J	

TEXAS INSTRUMENTS (Cont.)

Texas Instruments	AMD Direct Replacement	AMD Functional Replacement
SN74S241N	SN74S241N SN74S412J SN74S412	D8212 P8212
SN74123J	SN74123J	AM26123DC
SN74123N	SN74123N	AM26123PC
SN74221J	SN74221J	
SN74221N	SN74221N	
SN75107AJ	SN74107BJ	
SN75107AN	SN75107BN	
SN75107BJ	SN75107BJ	
SN75107BN	SN75107BN	
SN75108AJ	SN75108BJ	
SN75108AN	SN75108BN	
SN752108BJ	SN75108BJ	
SN75108BN	SN75108BN	
SN75109J	SN75109J	
SN75109N	SN75109N	
SN75110J	SN75110J	
SN75110N	SN75110N	
SN75114J	9614DC	
SN75114N	9614PC	
SN75115J	9615DC	
SN75115	9615PC	
SN75182J	DM8820AJ	
SN75182N	DM8820AN	
SN75183J	DM8830J	
SN75183N	DM8830N	
SN75188J	MC1488L	
SN75188N	AM1488PC	
SN75189J	MC1489L	
SN75189N	AM1489PC	
SN75189AJ	MC1489AL	
SN75189AN	AM1489APC	
SN75369J	MMH0026CL	
SN75369P	MH0026CN	

DICE POLICY

Advanced Micro Devices, interface and linear products are all available in dice form.

ELECTRICAL CHARACTERISTICS

Each die is electrically tested to the commercial or military grade DC parameters to guardbanded limits at $25^{\circ} \mathrm{C}$ to guarantee operation over the temperature range.

QUALITY ASSURANCE
All dice are 100% visually inspected to the requirements of MIL-STD-883A, Method 2010.2, condition B.
All dice are glass passivated with only the bonding pads exposed to provide scratch protection. All dice are provided without gold backing.

SHIPPING PACKAGES/ORDER INFORMATION
All dice are packaged in containers with individual compartments which prevent damage to the die during shipping.
Minimum order for AMD dice is 10 pcs .

SPECIAL CHIP PROCESSING

If there is a need for additional testing or processing, contact AMD for detailed information.
See following pages on ordering information for detail ordering number.

ORDERING INFORMATION

DEVICE NUMBER	ORDER NUMBER $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				ORDER NUMBER$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
	Metal Can	Hermetic DIP	Molded DIP	Dice	Metal Can	Hermetic DIP	Flat Pak	Dice
Am592	AM592HC	AM5920C	AM592PC	AM592XC	AM592HM	AM592DM		AM592XM
Am685*	AM685HL	AM685DL		AM685XL	AM685HM	AM685DM-		AM685XM
Am686	AM686HC	AM686DC		AM686XC	AM686HM	AM686DM		AM686XM
Am687*		AM687DL		AM687XL		AM687DM		AM687XM
Am1500		AM15000C				AM1500DM	AM1500FM	
						AM1500DL	AM1500FL	
Ami501		AM1501DC				AM15010M	AM1501FM	
*						AM1501DL	AM15091FL	
Ami508		AM1408L8				AM1508L8		
		AM1408L7						
		AM1408L6						
Am1558	AM1458H				AM1558H			
Am25 Series								
Am2502		AM2502DC	AM2502PC	AM2502XC		AM2502DM	AM2502FM	AM2502XM
Am2503		AM2503DC	AM2503PC	AM2503XC		AM2503DM	AM2503FM	AM2503XM
Am2504		AM2504DC	AM2504PC	AM2504XC		AM2504DM	AM2504FM	AM2504XM
Am25L02		AM25L02DC	AM25L02PC	AM25L02XC		AM25L02DM	AM25L02FM	AM25L02XM
Am25L03		AM25L03DC	AM25L03PC	AM25L03XC		AM25L03DM	AM25L03FM	AM25L03XM
Am25L04		AM25L04DC	AM25L04PC	AM25L04XC		AM25L04DM	AM25L04FM	AM25L04XM
Am25LS240		AM25LS240DC	AM25LS240PC	AM25LS240XC		AM25LS240DM	AM25LS240FM	AM25LS240XM
Am25LS241		AM25LS241DC	AM25LS241PC	AM25LS241XC		AM25LS2410M	AM25LS241FM	AM25LS241XM
Am25LS242		AM25LS242DC	AM25LS242PC	AM25LS242XC		AM25LS242DM	AM25LS242FM	AM25LS242XM
Am25LS243		AM25LS243DC	AM25LS243PC	AM25LS243XC		AM25LS243DM	AM25LS243FM	AM25LS243XM
Am25LS244		AM25LS244DC	AM25LS244PC	AM25LS244XC		AM25LS244DM	AM25LS244FM	AM25LS244XM
Am26 Sories								
Am2600		AM2600DC	AM2600PC	AM2600xC		AM2600DM	AM2600FM	AM2600xM
Am2602		AM26020 C	AM2602PC	AM2602XC		AM2602DM	AM2602FM	AM2602XM
Am2614		AM2614DC	AM2614PC	AM2614XC		AM2614DM	AM2614FM	AM2614XM
Am2615		AM2615DC	AM2615PC	AM2615XC		AM2615DM	AM2615FM	AM2615XM
Am2616		AM2616DC	AM2616PC	AM2616XC		AM2616DM	AM2616FM	AM2616XM
Am2617		AM2617DC	AM2617PC	AM2617XC		AM2617DM	AM2617FM	AM2617XM
Am26123		AM26123DC	AM26123PC	AM26123XC		AM26123DM	AM26123FM	AM26123XM
Am26LS29		AM26LS29DC	AM26LS29PC	AM26LS29XC		AM26LS29DM	AM26LS29FM	AM26LS29XM
Am26LS30		AM26LS30DC	AM26LS30PC	AM26LS30XC		AM26LS30DM	AM26LS30FM	AM26LS30XM
Am26LS31		AM26LS31DC	AM26LS31PC	AM26LS31XC		AM26LS31DM	AM26LS31FM	AM26LS31XM
Am26LS32		AM26LS32DC	AM26LS32PC	AM26LS32XC		AM26LS32DM	AM26LS32FM	AM26LS32XM
Am26LS33		AM26LS33DC	AM26LS33PC	AM26LS33XC		AM26LSS3DM	AM26LS33FM	AM26LS33XM
Am26L02		AM26L02DC	AM26L02PC	AM26L02XC		AM26L02DM	AM26L02FM	AM26L02XM
Am26L123		AM26L123DC	AM26L123PC	AM26L123xC		AM26L123DM	AM26L123FM	AM26L123XM
Am26S02		AM26S02DC	AM26S02PC	AM26S02XC		AM26S02DM	AM26S02FM	AM26S02XM
Am26S10		AM26S10DC	AM26S10PC	AM26S10xC		AM26S100M	AM26StoFm	AM26S10xM
Am26S 11		AM26S11DC	AM26S11PC	AM26S11XC		AM26S11DM	AM26S11FM	AM26S11XM
Am26S12		AM26S 12DC	AM26S12PC	AM26S12XC		AM26S12DM	AM26S12FM	AM26S12XM
Am26S12A		AM26S12ADC	AM26S12APC	AM26S12AXC		AM26S12ADM	AM26S12AFM	AM26S12AXM
Am29 Series								
Am2905		AM2905DC	AM2905PC	AM2905XC		AM2905DM	AM2905FM	AM2905XM
Am2906		AM2906DC	AM2906PC	AM2906XC		AM2906DM	AM2906FM	AM2906XM
Am2907		AM2907DC	AM2907PC	AM2907XC		AM2907DM	AM2907FM	AM2907XM
Am2908		AM2908DC	AM2908PC	AM2908XC		AM2908DM	AM2908FM	AM2908XM
Am2915A		AM2915ADC	AM2915APC	AM2915AXC		AM2915ADM	AM2915AFM	AM2915AXM
Am2916A		AM2916ADC	AM2916APC	AM2916AXC		AM2916ADM	AM2916AFM	Am2916AXM
Am2917A		AM2917ADC	AM2917APC	AM2917AXC		AM2917ADM	AM2917AFM	AM2917AXM
Am32xX Series								
Am3212		D3212	P3212	AM8212XC		MD3212		
Am3216		D3126	P3216	AM8212XC		MD3216		
Am3226		D3226	P3226	AM8226XC		MD3226		
Am6070		AM6070DC	AM6070PC	6070xC		AM6070DM	Am6071	
Am6072								
Am6073								
Am6080		AM60800 C	AM6080PC	6080xC		AM6080DM		
Am6081		AM6081DC	6081 PC	$6081 \times C$		AM6081DM		
		AMDAC-08EQ				AMDAC-08AQ		
DAC-08		AMDAC-08Ca				AMDAC-080		
DM, DP or DS Series								
DS0056 (8 pin)	DS0056CH		DS0056CN	AM0056CX	DS0056H			AM0056X
DS0056 (12 pin)	DS0056CG				DS0056G			
DS0056 (14 pin)		DS0056J				DS0056 J		
DS16/3692		DS3692J	DS3692N			DS1692J	DS1692W	
DM71/81LS95		DM81LS95N	DM81LS95J	AM81LS95X		DM71LS95J	DM71LS95W	AM71LS95X
DM71/81LS96		DM81LS96N	DM81LS96J	AM81LS96X		DM71LS96J	DM71LS96W	AM71LS96x
DM71/81LS97		DM81LS97N	DM81LS97J	AM81LS97X		DM71LS97J	DM71LS97W	AM71LS97X
DM71/81LS98		DM81LS98N	DM81LS98J	AM81LS98X		DM71LS98J	DM71LS98W	AM71LS98x
DM78/8820		DM8820J	DM8820N	AM8820X		DM7820J	DM7820W	AM7820X
DM78/8820A		DM8820AJ	DM8820AN	AM8820AX		DM7820AJ	DM7820AW	AM7820AX
DM78/8830		DM8830J	DM8830N	AM8830X		DM7830J	DM7830w	AM7830X
DM78/8831		DM8831J	DM8831N	AM8831X		DM7831J	DM7831W	AM7831X
DM78/8832		DM8832J	DM8832N	AM8832X		DM7832J	DM7832W	AM7832X
\dagger †M73/8303B		DP8303BJ	DP83038N	AM8303BX		DP7303BJ	DP7303BW	AM7303BX
DP73/8304B		DP8304BJ	DP8304BN	AM8304BX		DP7304BJ	DP73048W	AM7304BX
DS78/8838		DS8838J	DS8838N			DS7838	DS7838W	

ORDERING INFORMATION (Cont.)

ORDERING INFORMATION (Cont.)

DEVICE NUMBER	ORDER NUMBER $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				$\begin{aligned} & \text { ORDER NUMBER } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			
	Metal Can	Hermetic DIP	Molded DIP	Dice	Metal Can	Hermetic DIP	Flat Pak	Dice
SN54/74 Series								
SN54/74123		SN74123J	SN74123N	AM74123 X		SN54123J	SN54123W	AM54123X
SN54/74221		SN74221J	SN74221N	Am74221X		SN54221J	SN54221W	AM54221X
SN54/74LS240		SN74LS240J	SN74LS240N	AM74LS240X		SN54LS240J	SN54LS240W	AM54LS240X
SN54/74LS241		SN74LS241J	SN74LS241N	AM74LS241X		SN54LS241J	SN54LS241W	AM54LS241X
SN54/74LS242		SN74LS242J	SN74LS242N	AM74LS242X		SN54LS242J	SN54LS242W	AM54LS242X
SN54/74LS243		SN74LS243J	SN74LS243N	AM74LS243X		SN54LS243J	SN54LS243W	AM54LS243X
SN54/74LS244		SN74LS244J	SN74LS244N	AM74LS244X		SN54LS244J	SN54LS244W	AM54LS244X
SN54/74S240		SN74S240J	SN74S240N	AM74S240X		SN54S240J		AM54S240X
SN54/74S241		SN74S241J	SN74S241N	AM74S241X		SN54S241J		AM54S241X
+SN54/74S242		SN74S242J	SN74S242N	AM74S242X		SN54S242J		AM54S242X
SN54/74S243		SN74S243J	SN74S243N	AM74S243X		SN54S243J		AM54S243X
SN54/74S244		SN74S244J	SN74S244N	AM74S244X		SN54S244J		AM54S244X
SN55/75 Series								
SN55/75107B		SN751078J	SN75107BN	AM75107BX		SN55107BJ		AM55107BX
SN55/75108B		SN75108BJ	SN75108BN	AM75108BX		SN55108BJ		AM55108BX
SN55/75109		SN75109」	SN75109N	AM75109X		SN55109J		AM55109X
SN55/75110		SN75110J	SN75110N	AM75110X		SN55110J		AM55110X
715	715HC	715DC		715×C	715HM	715DM		715XM
723	723 HC	723DC	723PC	723XC	723HM	723DM		723XM
SSS725	SSS725CJ	SSS725CP			SSS725J	SSS725P		
733	733HC	733DC		$733 \times \mathrm{C}$	733HM	733DM	733FM	733XM
741	741HC	7410C	741 XC	741 HM	741DM	741 FM	741 XM	
741A	741EHC	741EDC	-		741AHM	741ADM	741AFM	
SSS741	SSS741CJ				SSS741J			
747	747HC	747DC	747PC	747XC	747HM	747DM	747FM	747XM
747A	747EHC	747EDC			747AHM	747ADM	747AFM	
SSS747	SSS747CK	SSS747CP			SSS747K	SSS747P	SSS747M	
748	748HC	748DC	748PC	748×C	748HM	748DM	748FM	748XM
$8 \mathrm{8XX}$ Series								
8 T 26		N8T26F	N8T26B	AM8T26X		S8T26F		AM8T26X
8T26A		N8T26AF	N8T26AB	AM8T26AX		S8T26AF		AM8T26AX
8T28		N8T28F	N8T28B	AM8T28X		S8T28F		AM8T28X
8212		D8212	P8212	AM8212XC		AM8212DM		
8216		D8216	P8216	AM8216XC		AM8216DM		
8224		D8224	AM8224PC	AM8224XC		AM8224DM		
Am8224-4		AM8224-4DC						
8226		D8226	AM8226PC	AM8226XC		AM8226DM		
8228		D8228	AM8228PC	AM8228XC		AM8228DM		
8238		D8238	AM8238PC	AM8238XC		AM8238DM		
Am8238-4		AM8238-4DC	AM8238-4PC					
96 Series								
9600		96000 C	9600 PC	AM9600xC		9600DM	9600 FM	AM9600×M
9601		9601 DC	9601 PC	AM9601XC		96010 M	9601FM	AM9601XM
9602		9602DC	9602PC	AM9602XC		9602DM	9602FM	AM9602XM
9614		9614DC	9614PC	AM9614XC		9614DM	9614FM	AM9614XM
9615		9615DC	9615PC	AM9615XC		9615DM	9615FM	AM9615XM
9616		9616DC	9616 PC	AM9616XC		9616DM		
9617		9617DC	9617PC	AM9617XC		9617DM		AM9617XM
96 L 02		96LO2DC	96L02PC	AM96L02XC		96L02DM	96LO2FM	AM96L02XM

PRODUCT ASSURANCE
 MIL-M-38510 • MIL-STD-883

The product assurance program at Advanced Micro Devices defines manufacturing flow, establishes standards and controls, and confirms the pioduct quality at critical points. Standardization under this program assures that all products meet military and government agency specifications for reliable ground applications. Further screening for users desiring flight hardware and other higher reliability classes is simplified because starting product meets all initial requirements for high-reliability parts.

The quality standards and screening methods of this program are equally valuable for commercial parts where equipment must perform reliably with minimum field service.

Two military documents provide the foundation for this program. They are:

MIL-M-38510 - General Specification for Microcircuits
MIL-STD-883 - Test Methods and Procedures for Microelectronics

MIL-M-38510 describes design, processing and assembly workmanship guidelines for military and space-grade integrated circuits. All circuits manufactured by Advanced Micro Devices for full temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operation meet these quality requirements of MIL-M-38510.

MIL-STD-883 defines detail testing and inspection methods for integrated circuits. Three of the methods are quality and processing standards directly related to product assurance:

Test Method 2010 defines the visual inspection of integrated circuits before sealing. By confirming fabrication and assembly quality, inspection to this standard assures the user of reliable circuits in long-term field applications. Standard inspection at Advanced Micro Devices includes all the requirements of the latest revision of Method 2010, condition B.

Test Method 5004 defines three reliability classes of parts. All must receive certain basic inspection, preconditioning and screening stresses. The classes are:

Class C - Used where replacement can be readily accomplished. Screening steps are given in the AMD processing flow chart.

Class B - Used where maintenance is difficult or expensive and where reliability is vital. Devices are upgraded from Class C to Class B by 160 -hour burn-in at $125^{\circ} \mathrm{C}$ followed by more extensive electrical measurements. All other screening requirements are the same.

Class S - Used where replacement is extremely difficult and reliability is imperative. Class S screening selects extra reliability parts by expanded visual and X -ray inspection, further burn-in, and tighter sampling inspection.

All hermetically sealed integrated circuits (military and commercial) manufactured by Advanced Micro Devices are screened to MIL-STD-883, Class C. Molded integrated circuits receive Class C screening except that centrifuge and hermeticity steps are omitted.

Optional extended processing to MIL-STD-883, Class B is available for all AMD integrated circuits. Parts procured to this screening are marked with a " $-\mathrm{B}^{\prime}$ following the standard part number, except that linear 100,200 or 300 series are suffixed " $883 \mathrm{~B}^{\prime \prime}$.

Test Method 5005 defines qualification and quality conformance procedures. Subgroups, tests and quality levels are given for Group A (electrical), Group B (mechanical quality related to the user's assembly environment), Group C (die related tests) and Group D (package related tests). Group A tests are always performed; Group B, C and D may be specified by the user.

INTEGRATED CIRCUITS

All integrated circuits are screened to MIL-STD-883, Method 5004, Class C; quality conformance inspection where required is performed to Class B quality levels on either Class B or Class C product.

All full-temperature-range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ circuits are manufactured to the workmanship requirements of MIL-M38510.

The flow chart identifies processing steps as they relate to MIL-STD-883 and MIL-M-38510.

STANDARD PROCESSING CLASS C Steps 1 Through 25

INSPECTION

Purchased or fabricated starting materials are inspected for conformance to specified requirements. Inspection follows written procedures, and records are analyzed for supplier quality negotiations.

WAFER FABRICATION
Repeated masking, etching and diffusion processes produce finished dice in wafer form.

IN-PROCESS INSPECTION

Each wafer is inspected prior to irreversible process steps.

FINISHED WAFER INSPECTION

Sample wafers from each finished diffusion lot are inspected to confirm lot quality before release for test and assembly.

WAFER ELECTRICAL TEST

Electrical probe test of every die. A computer-controlled system measures static and dynamic parameters and identifies dice that do not meet electrical requirements.

DIE SEPARATION
Wafers are separated into individual dice and electrical rejects are removed.

VISUAL INSPECTION

Separated dice are inspected and selected at high magnification.

QUALITY INSPECTION

Decisions at the 100% inspection are reviewed through periodic random sampling, confirming product quality and revealing any need for operator retraining.

DIE ATTACH

Subgroups	LTPD (Note 1)	Initial Sample Size
Subgroup 1 - Static tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 2 - Static tests at maximum rated operating temperature	7	32
Subgroup 3 - Static tests at minimum rated operating temperature	7	32
Subgroup 4 - Dynamic tests at $25^{\circ} \mathrm{C}$ - Linear devices	5	45
Subgroup 5 - Dynamic tests at maximum rated operating temperature - Linear devices	7	32
Subgroup 6 - Dynamic tests at minimum rated operating temperature - Linear devices	7	32
Subgroup 7 - Functional tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 8 - Functional tests at maximum and minimum rated operating temperatures	10	22
Subgroup 9 - Switching tests at $25^{\circ} \mathrm{C}$ - Digital devices	7	32
Subgroup 10 - Switching tests at maximum rated operating temperature - Digital devices (Note 2)	10	10
Subgroup 11 - Switching tests at minimum rated operating temperature - Digital devices (Note 2)	10	10

1. Sampling plans are based on LTPD tables of MIL-M-38510. The smaller initial sample size, based on zero rejects allowed, has been chosen unless otherwise indicated. If necessary, the sample size will be increased once to the quantity corresponding to an acceptance number of 2. The minimum reject number in all cases is 3 .
2. These subgroups are usually performed during initial device characterization only.

OPTIONAL EXTENDED PROCESSING
 CLASS B
 Steps 101 Through 110

Advanced Micro Devices offers several extended processing options to meet customer high-reliability requirements. These are defined in AMD document 00-003. The flow chart below outlines Option B, a $160-\mathrm{hr}$ burn in. Military temperature range devices processed to this flow (in the left column) meet the screening requirements of MIL-STD-883, Class B.

BEGINNING MATERIAL
Standard product taken after completion of step 20 (electrical test)

BURN IN

MIL-STD-883, Method 1015: $160 \mathrm{hr}, 125^{\circ} \mathrm{C}$, or time-temperature equivalents as allowed by Method 1015.

FINAL ELECTRICAL TEST
MIL-STD-883, Method 5004.
Military: Testing subgroups as defined for Class B. Static and functional at 3 temperatures, dynamic or switching at room temperature. Commercial: Repeat step 20.

QUALITY GROUP A ELECTRICAL SAMPLE (TABLE I)
MIL-STD-883, Method 5005 and Table I. Quality levels as defined for Class B. Temperature correlations may be used on commercial products.

QUALITY CONFORMANCE TESTS, GROUPS B, C, AND D
MIL-STD-883, Method 5005. Sample life and environmental tests if required by purchase order. Further information on specifying this is given in AMD document 00-003.

DATA PREPARATION AND REVIEW

MARK, INSPECT, PACK FOR SHIPMENT
Standard AMD parts with this burn-in option are marked with " $-B^{\prime \prime}$ ' after the part number, except that linear 100, 200 or 300 series are suffixed "/883B".

QUALITY INSPECTION, PRE-SHIPMENT

Confirmation of marking, physical quality, and product identity.
QUALITY INSPECTION FOR SHIPMENT RELEASE
Final review of shipment against order.
SHIP TO CUSTOMER

Military temperature range parts meet screening requirements of MIL-STD-883, Class B.

OTHER OPTIONS

Document 00-003, "Extended Processing Options", further defines Option B as well as other screening or sampling options available or special order. Available options are listed here for reference.

Option	Description	Effect
A	Modified Class A screen (Similar to Class S screening)	Provides space-grade product, following most Class S requirements of MIL-STD-883, Method 5004.
B	160-hr operating burn in	Upgrades a part from Class C to Class B.
x	Radiographic inspection (X-ray)	Related to Option A. Provides limited internal inspection of sealed parts.
S	Scanning Electron Microscope (SEM) metal inspection	Sample inspection of metal coverage of die.
V	Preseal visual inspection to MIL-STD-883, Method 2010, Cond. A	More stringent visual inspection of assemblies and die surfaces prior to seal.
P	Particle impact noise (PIN) screen with ultrasonic detection.	Detects loose particles of approximately 0.5 mil size or larger, which could affect reliability in zero-G or high vibration applications.
Q	Quality conformance inspection (Group B, C and D life and environmental tests)	Samples from the lot are stressed and tested per Method 5005. The customer's order must state which groups are required. Group B destroys 16 devices; Group C, 92 devices; Group D, 60 devices.

ALPHA NUMERIC INDEX FUNCTIONAL INDEX
SELECTION GUIDES
INDUSTRY CROSS REFERENCE DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS

MOS MEMORY AND MICROPROCESSOR INTERFACE

5

OPERATIONAL AMPLIFIERS

SPECIAL FUNCTIONS

VOLTAGE REGULATORS

PACKAGE OUTLINES
GLOSSARY
AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, 9 DISTRIBUTOR LOCATIONS
Comparators - Section II
Am106/206/306 Voltage Comparator/Buffer 2-1
Am111/211/311 Precision Voltage Comparator 2-5
Am119/219/319 Dual Voltage Comparator 2-9
Am139/239/339 Low Offset Voltage Quad Comparator 2-13
Am139A/239A/339A Low Offset Voltage Quad Comparator 2-13
Am685 Voltage Comparator 2-19
Am686 Voltage Comparator 2-27
Am687/687A Dual Voltage Comparator 2-29
Am1500 Dual Precision Voltage Comparator 2-31
LH2111/2211/2311 Dual Precision Voltage Comparator 2-35
Application Notes
A New High-Speed Comparator - The Am685 2-39
Am685/Am686/Am687 - Designing with High-Speed Comparators 2-48

Am106/206/306
 Voltage Comparator/Buffer

Distinctive Characteristics

- Functionally, electrically, and pin-for-pin equivalent to the National LM 106/206/306
- Drives RTL, DTL or TTL directly
- Output can switch voltages up to 24 V @ 100 mA
- Fan-out of 10 with DTL or TTL
- 100% reliability assurance testing in compliance with MIL STD 883.
- Electrically tested and optically inspected die for assemblers of hybrid products.
- Available in metal can and hermetic flat package.

FUNCTIONAL DESCRIPTION The Am106/206/306 are high-speed voltage comparators/ buffers designed to be used in applications where high accuracy and fast response times are required. The device is useful as a pulse-height discriminator, relay or lamp driver or a line receiver:	FUNCTIONAL DIAGRAM GND. STROBES
Level Detect LIC-073	Hysteresis Upper and Lower Trip Points: $\begin{aligned} & V_{U T}=V_{R E F}+\frac{R_{2}\left[V_{0 M A X}-V_{R E F}\right]}{R_{2}+R_{3}} \\ & \text { and } \\ & V_{L T}=V_{R E F}+\frac{R_{2}\left[V_{0 M I N}-V_{R E F}\right]}{R_{2}+R_{3}} \\ & \text { Hysteresis }=V_{H}=V_{U T}-V_{L T} \\ & =\frac{R_{2}\left[V_{0 M A X}-V_{0 M I N}\right]}{R_{2}+R_{3}} \end{aligned}$
ORDERING INFORMATION	CONNECTION DIAGRAMS Top Views

Am106/206/306

MAXIMUM RATINGS

Positive Supply Voltage	15 V
Negative Supply Voltage	-15 V
Output Voltage	24 V
Output to Negative Supply Voltage	30 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$
Power Dissipation (Note 1)	600 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	
Am106	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am206	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am306	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 2)

Parameter (see definitions)	Conditions	Min	$\underset{\text { Typ }}{\text { Am306 }}$	Max	Min	Am106 Am206 Typ	Max	Units
Input Offset Voltage	Note 3		1.6	5.0		0.5	2.0	mV
Input Offset Current	Note 3		1.8	5.0		0.7	3.0	$\mu \mathrm{A}$
Input Bias Current			16	25		10	20	$\mu \mathrm{A}$
Voltage Gain			40			40		V / mV
Response Time	Note 4		30	40		30	40	ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{t}_{\text {sink }}=100 \mathrm{~mA}$		0.8	2.0		1.0	1.5	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V}$		0.02	2.0		0.02	1.0	$\mu \mathrm{A}$
The Following Specifications Apply Over The Operating Temperature Ranges								
Input Offset Voltage	Note 3			6.5			3.0	mV
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{T}_{\mathrm{A}(\text { min })} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{A}(\text { max })}$		5.0	20		3.0	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}(\text { max })}$ Note 3, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}(\min)}$		$\begin{aligned} & 0.6 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$		$\begin{gathered} 0.25 \\ 1.8 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq T_{A} \leq T_{A(\text { max })} \\ & T_{A(\text { min })} \leq T_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 15 \\ & 24 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$		$\begin{aligned} & 5.0 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current				40			45	$\mu \mathrm{A}$
Input Voltage Range	$-7 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}$	± 5.0			± 5.0			V
Differential Input Voltage Range		± 5.0			± 5.0			V
Saturation Voltage	$\mathrm{V}_{1 \mathrm{~N}} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {sink }}=50 \mathrm{~mA}$			1.0			1.0	v
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {sink }} \leq 16 \mathrm{~mA}$			0.4			0.4	v
Positive Output Level	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=400 \mu \mathrm{~A}$	2.5		5.5	2.5		5.5	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V}$			100			100	$\mu \mathrm{A}$
Strobe Current	$\mathrm{V}_{\text {strobe }}=0.4 \mathrm{~V}$		1.7	3.3		1.7	3.3	mA
Strobe ON Voltage		0.9	1.4		0.9	1.4		V
Strobe OFF Voltage	$\mathrm{I}_{\text {sink }} \leq 16 \mathrm{~mA}$		1.4	2.5		1.4	2.5	V
Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=-5 \mathrm{mV}$		5.5	10		5.5	10	mA
Negative Supply Current			1.5	3.6		1.5	3.6	mA

Note 1: Derate metal can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $60^{\circ} \mathrm{C}$; derate flat package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $40^{\circ} \mathrm{C}$.
Note 2: These specifications apply for $-3 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Note 3: The offset voltages, offset currents, and bias currents given are the maximum values required to drive the output from the minimum output level up to the maximum output level. Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

PERFORMANCE CURVES

Input Current

Transconductance

Transfer Function

Power Consumption

Saturation Voltage

Short Circuit Output Current

ADDITIONAL APPLICATIONS

Level Detector and Lamp Driver

LIC-077
Relay Driver

LIC-079

Fast Response Peak Detector

Adjustable Threshold Line Receiver

Metallization and Pad Layout

Am111/211/311

Precision Voltage Comparator

Distinctive Characteristics

- The Am111/211/311 are functionally, electrically, and pin-for-pin equivalent to the Nationnal LM 111/211/311
- Output Drive - 50 V and 50 mA
- Input Bias Current - 150nA max.
- Input Offset Voltage - 4 mV max.
- Differential Input Voltage Range - $\pm 30 \mathrm{~V}$
- 100\% reliability assurance testing in compliance with MI L-STD-883
- Electrically tested and optically inspected die for assemblers of hybrid products
- Mixing privileges for obtaining price discounts. Refer to price list.
- Available in Metal Can, Hermetic Dual-In-Line or hermetic Flat Packages

MAXIMUM RATINGS

Voltage from V^{+}to V^{-}	36 V
Voltage from Collector Output to V^{-}	
Am111/211	50 V
Am311	40 V
Voltage from Emitter Output to V^{-}	30 V
Voltage between Inputs	$\pm 30 \mathrm{~V}$
Voltage from Inputs to V^{-}	$+30 \mathrm{~V},-0 \mathrm{~V}$
Voltage from Inputs to V^{+}	-30 V
Power Dissipation (Note 1)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am111	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am211	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am311	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 2)
Am111

Parameters (see definitions)	Test Conditions				Am211			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage (Note 3)			2.0	7.5		0.7	3.0	mV
Input Offset Current (Note 3)			6.0	50.0		4.0	10.0	nA
Input Bias Current (Note 3)			100	250		60	100	$n \mathrm{~A}$
Response Time (Note 4)	$\mathrm{R}_{\mathrm{L}}=500 \Omega$ to $+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0$		200			200		ns
Supply Current Positive (Note 5)			3.9	7.5		3.9	6.0	mA
Negative (Note 5)			2.6	5.0		2.6	4.5	mA
Voltage Gain			200			200		V / mV
Saturation Voltage	$\mathrm{V}_{1} \mathrm{~N} \leqslant-5 \mathrm{mV}, \mathrm{IC}=50 \mathrm{~mA}$					0.75	1.5	Volts
	$V_{\text {IN }} \leqslant-10 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$		0.75	1.5				Volts
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geqslant+5 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=50 \mathrm{~V}$					0.2	10.0	nA
	$\mathrm{V}_{\text {IN }} \geqslant+10 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=40 \mathrm{~V}$		0.2	50.0				nA

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage (Note 3)				10.0			4.0	mV
Input Offset Current (Note 3)				70.0			20.0	$n \mathrm{~A}$
Input Bias Current (Note 3)				300			150	nA
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leqslant-6 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=8 \mathrm{~mA}$					0.23	0.40	Volts
	$\mathrm{V}_{\text {IN }} \leqslant-10 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=8 \mathrm{~mA}$		0.23	0.40				Volts
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geqslant+6 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=50 \mathrm{~V}$					0.1	0.5	$\mu \mathrm{A}$
Input Voltage Range		± 13	± 14		± 13	± 14		Volts
Supply Current Positive (Note 5)	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$					2.7	4.5	mA
Negative (Note 5)						1.8	3.5	mA

Notes: 1. For the Am111/211/311, derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the $\mathrm{Dual} \operatorname{In}$-Line at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Packages at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. Unless otherwise specified, these specifications apply for $V^{+}=+15 \mathrm{~V}, V-=-15 \mathrm{~V}, V_{E}=-15 \mathrm{~V}$, and R_{L} at collector output $=7.5 \mathrm{k} \Omega$ to +15 V .
3. The offset voltage, offset current and bias current given are the maximum values required to drive the collector output to within 1 V of the supplies with a $7.5 \mathrm{k} \Omega$ load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
4. The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

PERFORMANCE CURVES

APPLICATIONS

Offset Balancing

LIC-086

Increasing Input
Stage Current*

LC--087

Strobing

LIC.088

Strobing OFF both Input and Output Stages**

LIC-089

[^1]**Typical input current $=50 \mathrm{pA}$ with inputs strobed OFF.

Metallization and Pad Layout

48×65 Mils

Am119/219/319
 Dual Comparator

Distinctive Characteristics

- The Am119/219/319 are functionally, electrically, and pin-for-pin equivalent to the National LM119/ 219/319.
- Two independent comparators.
- Operates from single 5V supply.
- Output drive -35 V and 25 mA .
- Input bias current $-1 \mu \mathrm{~A}$ max. $(1.2 \mu \mathrm{~A}$ for Am 319$)$
- Response time 80 ns typical at $\pm 15 \mathrm{~V}$.
- Minimum fan out of 2 each side.
- Inputs and outputs isolated from system ground.
- High common mode slew rate.
- 100\% reliability assurance testing in compliance with MIL-STD-883.
- Electrically tested and optically inspected die for assemblers of hybrid products.
- Available in Metal Can, Hermetic Dual-In-Line, Hermetic Flatpack or Molded DIP packages.

Am119/219/319

MAXIMUM RATINGS (Above which the useful life may be impaired)

Voltage from V^{+}to $\mathrm{V}-$	36 V
Voltage from Collector Output to $\mathrm{V}-$	36 V
Voltage from Ground to V^{+}	18 V
Voltage from Ground to V^{-}	25 V
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 s
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am119	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am219	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am319	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$, Unless Otherwise Noted) (Note 3) Am319

Am119/219
Parameters

(See definitions)		Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage (Note 4)		$\mathrm{R}_{\mathrm{S}} \leqslant 5 \mathrm{k}$		2.0	8.0		0.7	4.0	mV
Input Offset Current (Note 4)				80	200		30	75	nA
Input Bias Current				250	1000		150	500	nA
Response Time (Note 5)				80			80		ns
Supply Current	Positive	$\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3			4.3		mA
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		8.0	12.5		8.0	11.5	
	Negative	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3.0	5.0		3.0	4.5	
Voltage Gain			8.0	40		10	40		
Saturation Voltage ${ }^{\text {- }}$		$\mathrm{V}_{\text {in }} \leqslant-5.0 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$					0.75	1.5	Volts
		$\mathrm{V}_{\text {in }} \leqslant-10 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}$		0.75	1.5				
Output Leakage Current		$\mathrm{V}_{\text {in }} \geqslant+5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=35 \mathrm{~V}$					0.2	2.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {in }} \geqslant+10 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=35 \mathrm{~V}$		0.2	10				

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leqslant 5 \mathrm{k}$				10			7.0	mV
Input Offset Current (Note 4)					300			100	nA
Input Bias Current					1200			1000	nA
Saturation Voltage	$\mathrm{V}_{\text {in }} \leqslant-8.0 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=3.2 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}} \geqslant 0^{\circ} \mathrm{C}$					0.23	0.4	Volts
		$\mathrm{T}_{\mathrm{A}} \leqslant 0^{\circ} \mathrm{C}$						0.6	
	$\mathrm{V}_{\text {in }} \leqslant-12 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=3.2 \mathrm{~mA}$			0.3	0.4				
Output Leakage Current	$\mathrm{V}_{\text {in }} \geqslant+8.0 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=35 \mathrm{~V}$						1.0	10	$\mu \mathrm{A}$
Input Voltage Range	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}$			± 13			± 13		Volts
	$\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}-=0$		1.0		3.0	1.0		3.0	

Notes: 1. For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum rating is equal to the supply voltage.
2. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the Dual-In-Line at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at temperatures above $57^{\circ} \mathrm{C}$.
3. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
4. The offset voltages and offset currents given are the maximum values required to drive the output within 1 volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
5. The response time specified is for a 100 mV input step with 5 mV overdrive.

TYPICAL PERFORMANCE CURVES

Response Time for

Supply Current

Supply Current

Output Limiting Characteristics

APPLICATIONS

Metallization and Pad Layout

57×78 Mils

Am139/239/339•Am139A/239A/339A

Low Offset Voltage Quad Comparators

Distinctive Characteristics

- Four high precision comparators
- Reduced VOS drift over temperature
- Eliminates need for dual supplies
- Allows sensing near ground
- Wide single supply voltage range or dual supplies

$$
2.0 \mathrm{~V}_{\mathrm{DC}} \text { to } 36 \mathrm{~V}_{\mathrm{DC}}
$$

$$
\pm 1.0 \mathrm{~V}_{\mathrm{DC}} \text { to } \pm 18 \mathrm{~V}_{\mathrm{DC}}
$$

- Very low supply current drain (0.8 mA) -independent of supply voltage ($1.0 \mathrm{~mW} /$ comparator) makes these comparators suitable for battery operation.
- Low input bias current -35 nA
- Low input offset current - 3.0nA and offset voltage -2.0 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage
1.0 mV at $5.0 \mu \mathrm{~A}$

60 mV at 1.0 mA

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

FUNCTIONAL DESCRIPTION

The Am139, Am239, Am339, Am339A, Am239A and Am339A quad comparators are functionally, electrically and pin-for-pin equivalent to the National LM139, LM239, LM339, LM339A, LM239A and LM339A. This series of precision comparators consists of four independent voltage comparators which were specifically designed to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators have a unique characteristic
in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The Am139/A series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the Am139/A will directly interface with MOS logic - where the lower power drain of the Am139/A is a distinct advantage over standard comparators.

Am139/239/339• Am139A/239A/339A
MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage, $\mathrm{V}+$	$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}_{\mathrm{DC}}$
Differential Input Voltage	$36 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage	$-0.3 \mathrm{~V}_{\mathrm{DC}}$ to $+36 \mathrm{~V}_{\mathrm{DC}}$
Power Dissipation (Note 1)	
Ceramic Dip	900 mW
Plastic Dip	570 mW
Flat Pack	800 mW

Output Short Circuit to GND (Note 2)
Input Current ($\mathrm{V}_{\text {in }}-0.3 \mathrm{~V}_{\mathrm{DC}}$) (Note 3)
Continuous
Input Current $\left(\mathrm{V}_{\text {in }}-0.3 \mathrm{~V}_{\mathrm{DC}}\right)$ (Note 3) 50 mA
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Am339/A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am239/A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am139/A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

 ($\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\text {DC }}$) (Note 4)Am239
Parameters Am339

Am139 Am339A
Am139A

Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 9)		± 2.0	± 5.0		± 2.0	± 5.0		+1.0	± 2.0		± 1.0	± 2.0	mVDC
Input Bias Current (Note 5)	$I^{\prime} \mathrm{N}(+)$ or $\operatorname{I}_{\mathrm{N}(-)}$ with Output in Linear Range, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	250		25	100		25	250		25	100	nADC
Input Offset Current			± 5.0	± 50		± 3.0	± 25		± 5.0	± 50		± 3.0	± 25	nADC
Input Common-Mode Voltage Range (Note 6)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0		$\mathrm{v}^{+}-1.5$	$V_{D C}$									
Supply Current	$\begin{aligned} & R_{L}=\infty \text { on all Comparators } \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0		0.8	2.0		0.8	2.0		0.8	2.0	mADC
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (To Support } \\ & \text { Large } \mathrm{V}_{0} \text { Swing) } \end{aligned}$		200			200		50	200		50	200		V / mV
Large Signal Response Time	$\mathrm{V}_{\mathrm{IN}}=\mathrm{TTL}$ Logic Swing, $\mathrm{V}_{\text {REF }}=$ $+1.4 V_{D C}, V_{R_{L}}=5.0 V_{D C}, R_{L}=$ $5.1 \mathrm{k} \Omega$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		300			300			300			300		ns
Response Time (Note 7)	$\begin{aligned} & V_{R_{L}}=5.0 V_{D C} \text { and } R_{L}=5.1 \mathrm{k} \Omega \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		1.3			1.3			1.3			1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & V_{I N(-)} \geqslant+1.0 \vee_{D C}, V_{I N(+)}=0, \\ & \text { and } V_{0} \leqslant+1.5 \vee_{D C}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		6.0	16		6.0	16		6.0	16		mADC
Saturation Voltage	$\begin{aligned} & V_{I N(-)} \geqslant+1.0 \mathrm{~V}_{\mathrm{DC}}, V_{(N(+)}=0, \\ & \text { and } \mathrm{I}_{\text {sink }} \leqslant 4.0 \mathrm{~mA}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		250	400		250	400		250	400		250	400	$m V_{D C}$
Output Leakage Current	$\begin{aligned} & V_{\text {IN }(+)} \geqslant+1.0 V_{D C}, V_{I N(-)}=0 \\ & \text { and } V_{O}=5.0 V_{D C}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1			0.1			0.1		nADC
Input Offset Voltage	(Note 9)			9.0			9.0			4.0			4.0	mV DC
Input Offset Current	$\operatorname{IIN}(+)$ - IIN(-)			± 150			± 100			± 150			± 100	nADC
Input Bias Current	IN(+) or IIN(-) with Output in Linear Range			400			300			400			300	nADC
Input Common-Mode Voltage Range		0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	0		$v^{+}-2.0$	0		$v^{+}-2.0$	VDC
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)} \geqslant+1.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{1 \mathrm{~N}(+)}=0 \\ & \text { and } \mathrm{I}_{\text {sink }} \leqslant 4.0 \mathrm{~mA} \end{aligned}$			700			700			700			700	$m V_{D C}$
Output Leakage Current	$\begin{aligned} & V_{I N(+)} \geqslant+1.0 \vee_{D C}, V_{I N(-)}=0 \\ & \text { and } V_{O}=30 V_{D C} \end{aligned}$			1.0			1.0			1.0			1.0	$\mu \mathrm{ADC}$
Differential Input Voltage (Note 8)	Keep all $\mathrm{V}_{\mathrm{IN}} \mathrm{s} \geqslant 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}if used)			36			36			v^{+}			v^{+}	VDC

Note 1: For high temperature operation, the Am339/A must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The Am239/A and Am139/A must be derated based on $a+150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small ($\mathrm{Pd} \leqslant 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 m A independent of the magnitude of V^{+}.
3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the $V+$ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is, not destructive and normal outputs states wilf re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$.
4: These specifications apply for $V^{+}=+5.0 V_{D C}$ and $-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$, unless otherwise stated. With the Am239/A all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$ and the $\mathrm{Am} 339 / \mathrm{A}$ temperature specifications are limited to $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+70^{\circ} \mathrm{C}$.
5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +30 V DC without damage.
7: The response time specified is for a 100 mV input step with 5.0 mV overdrive. 300ns can be achieved with larger overdrive signals, see typical performance characteristics section.
8: If the voltage applied to any input exceeds V^{+}, all four comparator outputs will go to the high voltage level. The low input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or 0.3 V DC below the magnitude of the negative power supply, if used).
9: At output switch point, $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5.0 V_{D C}$; and over the full input common mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$).

TYPICAL PERFORMANCE CHARACTERISTICS

Response Time for Various Input Overdrives Negative Transition

Response Time for Various Input Overdrives Positive Transition

APPLICATION HINTS

The Am139/A is a high gain, wide bandwidth device; which like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. The oscillation shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Lowering the input resistors to $<10 k \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the I/C card attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.
The bias network of the Am139/A establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to 30 V DC .

It is not normally necessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode and input resistor can be used as shown in the applications section.

The output of the Am139/A is the uncommitted collector of a grounded-emitter NPN output transistor. Several collectors can be tied together to provide an output OR'ing function. An output "pull-up" resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the Am139/A package. The output can also be used as a simple SPST switch to ground (when a "pull-up" resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega r_{\text {sat }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp very nearly to ground level for small load currents.

TYPICAL APPLICATIONS (Cont.)

$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

LIC-108

Basic Comparator

LIC-109

LIC- 110

Driving CMOS

$$
\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)
$$

LIC-111

LIC-112

LIC-114

TYPICAL APPLICATIONS (Cont.)

$$
\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)
$$

LIC-115
One-Shot Multivibrator with Input Lock Out

LIC-116
Pulse Generator
Bi-Stable Multivibrator

Distinctive Characteristics:

- 6.5ns MAXIMUM PROPAGATION DELAY AT 5 mV overdivive

- 3.0ns Latch setup time
- Complementary ECL outputs
- 50Ω line driving capability
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically and optically inspected dice for assemblers of hybrid products
- Available in metal can and hermetic dual-in-line packages

FUNCTIONAL DESCRIPTION

The Am685 is a fast voltage comparator manufactured with an advanced bipolar NPN, Schottky diode high-frequency process that makes possible very short propagation delays (6.5 ns) without sacrificing the excellent matching characteristics hitherto associated only with slow, high-performance linear IC's. The circuit has differential analog inputs and complementary logic outputs compatible with most forms of ECL. The output current capability is adequate for driving terminated 50Ω transmission lines. The low input offset and high resolution make this comparator especially suitable for high-speed precision analog-to-digital processing.
A latch function is provided to allow the comparator to be used in a sample-hold mode. If the Latch Enable input is HIGH, the comparator functions normally. When the Latch Enable is driven LOW, the comparator outputs are locked in their existing logical states. If the latch function is not used, the Latch Enable must be connected to ground.

FUNCTIONAL DIAGRAM

LIC-118
The outputs are open emitters, therefore external pulldown resistors are required. These resistors may be in the range of $50-200 \Omega$ connected to -2.0 V , or $200-$ 2000Ω connected to -5.2 V .

CIRCUIT DIAGRAM

ORDERING INFORMATION			
Part Number	Package Type	Temperature Range	Order Number
Am685	$\begin{gathered} \text { Metal Can } \\ \text { DIP } \\ \hline \end{gathered}$	$\begin{array}{r} -30^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -30^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \text { Am685HL } \\ & \text { Am685D } \end{aligned}$
Am685	Metal Can DIP	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Am685HM Am685DM
Am685	Dice Dice	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Am685XL } \\ & \text { Am685XM } \end{aligned}$

Note 1: On metal package, pin 5 is connected to case. LIC-121 On DIP, pin 8 is connected to case.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Positive Supply Voltage	+7 V
Negative Supply Voltage	-7 V
Input Voltage	$\pm 4 \mathrm{~V}$
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Output Current	30 mA
Power Dissipation (Note 2)	500 mW

Operating Temperature Range	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am685-L	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am685-M	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 Sec.)	9.7 V
Minimum Operating Voltage $\left(\mathrm{V}^{+}\right.$to V)	

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified)

DC Characteristics

Symbol	Parameter (see definitions)	Conditions (Note 3)	Min.	Max.	Min.	Max.	Units
Vos	Input Offset Voltage	$\begin{aligned} & R_{S} \leqslant 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leqslant 100 \Omega \end{aligned}$	$\begin{array}{r} -2.0 \\ -2.5 \\ \hline \end{array}$	$\begin{array}{r} +2.0 \\ +2.5 \end{array}$	$\begin{array}{r} -2.0 \\ -3.0 \\ \hline \end{array}$	$\begin{array}{r} +2.0 \\ +3.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathbf{V}_{\text {OS }} / \Delta T$	Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega$	-10	+10	-10	+10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & -1.0 \\ & -1.3 \end{aligned}$	$\begin{aligned} & +1.0 \\ & +1.3 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.6 \end{aligned}$	$\begin{aligned} & +1.0 \\ & +1.6 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
'B	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 10 \\ & 13 \end{aligned}$		$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0		6.0		$\mathrm{k} \Omega$
$\mathrm{CIN}^{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		3.0	pF
$\mathrm{V}_{\text {CM }}$	Input Voltage Range		-3.3	+3.3	-3.3	+3.3	V
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega,-3.3 \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+3.3 \mathrm{~V}$	80		80		dB
SVRR	Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega, \Delta \mathrm{~V}^{\text {S }}= \pm 5 \%$	70		70		dB
V_{OH}	Output HIGH Voltage	$\begin{aligned} T_{A} & =25^{\circ} \mathrm{C} \\ T_{A} & \left.=T_{A(\text { min. }}\right) \\ T_{A} & \left.=T_{A(\text { max. }}\right) \end{aligned}$	$\begin{aligned} & -0.960 \\ & -1.060 \\ & -0.890 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.810 \\ -0.890 \\ -0.700 \\ \hline \end{array}$	$\begin{aligned} & -0.960 \\ & -1.100 \\ & -0.850 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.810 \\ -0.920 \\ -0.620 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & T_{A}=25^{\circ} C \\ & \left.T_{A}=T_{A(\text { min. }}\right) \\ & \left.T_{A}=T_{A(\text { max. }}\right) \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1.890 \\ & -1.825 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.650 \\ & -1.675 \\ & -1.625 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1.910 \\ & -1.810 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.650 \\ -1.690 \\ -1.575 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$1+$	Positive Supply Current			22		22	mA
1^{-}	Negative Supply Current			26		26	mA
PDISS	Power Dissipation			300		300	mW

Switching Characteristics ($\mathrm{V}_{\text {in }}=100 \mathrm{mV}, \mathrm{V}_{\text {od }}=5 \mathrm{mV}$)

${ }^{\text {tpd }}+$	Input to Output HIGH	$\begin{aligned} & T_{A(\min .)} \leqslant T_{A} \leqslant 25^{\circ} C \\ & T_{A}=T_{A(\text { max. } .)} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {p }}$ pd-	Input to Output LOW	$\begin{aligned} & T_{A(\text { min })} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & \left.T_{A}=T_{A(\text { max. }}\right) \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {pd }}+(E)$	Latch Enable to Output HIGH (Note 4)	$\begin{aligned} & T_{A(\min .)} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & \left.T_{A}=T_{A(\text { max. }}\right) \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 12 \end{aligned}$	ns ns
${ }^{\text {tpd_(E) }}$	Latch Enable to Output LOW (Note 4)	$\begin{aligned} & T_{A(\text { min } .)} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & \left.T_{A}=T_{A(\text { max. }}\right) \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{5}	Minimum Set-up Time (Note 4)	$\begin{aligned} & T_{A(\min .)} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & \left.T_{A}=T_{A(\text { max. }}\right) \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{h}	Minimum Hold Time (Note 4)	$\mathrm{T}_{\mathrm{A}}(\min) \leqslant \mathrm{T}_{A} \leqslant \mathrm{~T}_{\mathrm{A}}($ max.$)$		1.0		1.0	ns
${ }^{t} \mathrm{pw}^{\prime}(E)$	Minimum Latch Enable Pulse Width (Note 4)	$\begin{aligned} & T_{A(\min .)} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & T_{A}=T_{A(\max .)} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES: 2: For the metal can package, derate at $6.8 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+100^{\circ} \mathrm{C}$; for the dual-in-line package, derate at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+105^{\circ} \mathrm{C}$.
3: Unless otherwise specified $\mathrm{V}^{+}=6.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2.0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=50 \Omega$; all switching characteristics are for a 100 mV input step with 5 mV overdrive. The specifications given for $V_{o s}$, ! ${ }^{\prime}$, I_{B}, CMRR, SVRR, $t_{p d+}$ and $t_{p d-}$ apply over the full $V_{C M}$ range and for $\pm 5 \%$ supply voltages. The Am685 is designed to meet the specifications given in the table after thermal equilibrium has been established with a transverse air flow of 500 LFPM or greater.
4: Owing to the difficult and critical nature of switching measurements involving the latch, these parameters can not be tested in production. Engineering data indicates that at least 95% of the units will meet the specifications given.

TIMING DIAGRAM

KEY TO TIMING DIAGRAM

WAVEFORM	InPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM H TOL
WT7T	MAY CHANGE FROM LTOH	WILL BE CHANGING FROMLTOH
	DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN

Figure 1
The set-up and hold times are a measure of the time required for an input signal to propagate through the first stage of the comparator to reach the latching circuitry. Input signal changes occurring before t_{s} will be detected and held; those occurring after t_{h} will not be detected. Changes between t_{s} and t_{h} may or may not be detected.

DEFINITION OF TERMS

$V_{\text {OS }}$ INPUT OFFSET VOLTAGE - That voltage which must be applied between the two input terminals through two equal resistances to obtain zero voltage between the two outputs.
$\triangle V_{\text {OS }} / \triangle T$ AVERAGE TEMPERATURE COEFFICIENT OF INPUT OFFSET VOLTAGE - The ratio of the change in input offset voltage over the operating temperature range to the temperature range.
IOS INPUT OFFSET CURRENT - The difference between the currents into the two input terminals when there is zero voltage between the two outputs.
IB INPUT BIAS CURRENT - The average of the two input currents.
$R_{\text {IN }} \quad$ INPUT RESISTANCE - The resistance looking into either input terminal with the other grounded.
$C_{I N}$ INPUT CAPACITANCE - The capacitance looking into either input terminal with the other grounded.
$V_{C M}$ INPUT VOLTAGE RANGE - The range of voltages on the input terminals for which the offset and propagation delay specifications apply.
CMRR COMMON MODE REJECTION RATIO - The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.
SVRR SUPPLY VOLTAGE REJECTION RATIO - The ratio of the change in input offset voltage to the change in power supply voltages producing it.
$V_{O H}$ OUTPUT HIGH VOLTAGE - The logic HIGH output voltage with an external pull-down resistor returned to a negative supply.
$V_{\text {OL }}$ OUTPUT LOW VOLTAGE - The logic LOW output voltage with an external pull-down resistor returned to a negative supply.
1^{+}POSITIVE SUPPLY CURRENT - The current required from the positive supply to operate the comparator.
I- $^{-} \quad$ NEGATIVE SUPPLY CURRENT - The current required from the negative supply to operate the comparator.

PDISS POWER DISSIPATION - The power dissipated by the comparator with both outputs terminated in 50Ω to -2.0 V .

SWITCHING TERMS (refer to Fig. 1)

${ }^{\text {t }}$ pd $+\quad$ INPUT TO OUTPUT HIGH DELAY - The propagation delay measured from the time the input signal crosses the input offset voltage to the 50% point of an output LOW to HIGH transition.
$\mathbf{t}_{\text {pd- }} \quad$ INPUT TO OUTPUT LOW DELAY - The propagation delay measured from the time the input signal crosses the input offset voltage to the 50% point of an output HIGH to LOW transition.
$t_{\mathrm{pd}+(E)}$ LATCH ENABLE TO OUTPUT HIGH DELAY - The propagation delay measured from the 50\% point of the Latch Enable signal LOW to HIGH transition to the 50% point of an output LOW to HIGH transition.
$t_{\text {pd-(E) }}$ LATCH ENABLE TO OUTPUT LOW DELAY - The propagation delay measured from the 50% point of the Latch Enable signal LOW to HIGH transition to the 50% point of an output HIGH to LOW transition.
t_{s} MINIMUM SET-UP TIME - The minimum time before the negative transition of the Latch Enable signal that an input signal change must be present in order to be acquired and held at the outputs.
th MINIMUM HOLD TIME - The minimum time after the negative transition of the Latch Enable signal that the input signal must remain unchanged in order to be acquired and held at the outputs.
$t_{p w(E)}$ MINIMUM LATCH ENABLE PULSE WIDTH - The minimum time that the Latch Enable signal must be HIGH in order to acquire and hold an input signal change.

OTHER SYMBOLS

T_{A} Ambient temperature
\mathbf{R}_{S} Input source resistance
$\mathbf{V S}_{\mathbf{S}}$ Supply voltages
\mathbf{V}^{+}Positive supply voltage
\mathbf{V}^{-}Negative supply voltage
$\mathbf{V}_{\mathbf{T}}$ Output load terminating voltage \mathbf{R}_{L} Output load resistance $\mathbf{V}_{\text {in }}$ Input pulse amplitude
$\mathrm{V}_{\text {od }}$ Input overdrive
f Frequency

MEASUREMENT OF PROPAGATION DELAY

A voltage comparator must be able to respond to input signal levels ranging from a few millivolts to several volts, ideally with little variation in propagation delay. The most difficult condition is where the comparator has been driven hard into one state by a large signal, and the next input signal is just barely enough to make it switch to the other state. This forces the input stage of the circuit to swing from a full off (or on) state to a point somewhere near the center of its linear range, thus exercising both its large- and small-signal responses. If the comparator is fast for this condition, it should be as fast or faster for almost any other condition. The unofficial industry standard input signal is a 100 mV step with an overdrive of 5 mV (the overdrive is the voltage in excess of that needed to bring the output to the center of its dynamic range). The 100 mV is more than enough to fully turn on the input stage, but not so large to make measurement a problem. Large pulses would require exceptionally good control on waveform purity, since only a few tenths of a percent of overshoot or ripple would be enough to affect the value of the overdrive and, for sensitive comparators, result in false switching. The propagation delay is measured from the time the input signal crosses the input threshold voltage (i.e., the offset voltage) to the 50% point of either output. This definition ensures that each unit is measured under equal conditions, and also makes the measurement relatively independent of the input rise and fall times.

Figure 2

The test circuit of Figure 2 provides a means of automatically nulling out the offset voltage and applying the overdrive. With S1 in the "NULL" position, the feedback loop around the Am685 via the two operational amplifiers corrects for the offset of the circuit including any dc shift in the ground level of the input signal. When switched to "TEST', the offset is held on the storage capacitor of the Am216A and the overdrive is added at the Am216A non-inverting input. The duty cycle of the signal is made low so that the presence of the input pulse during nuiling will not disturb the offset. A solid ground plane is used for the test jig, and capacitors bypass the supply voltages. All power and signal leads are kept as short as possible. The Am685 input and output run directly into the 50Ω inputs of the sampling scope via equal lengths of 50Ω coaxial cable. For the conditions shown in the figure, $\mathrm{t}_{\mathrm{pd}+}$ is measured at the $\overline{\mathrm{Q}}$ output and tpd - at the Q output. If it is desired to measure the opposite output polarities, the polarities of the input signal and overdrive must be reversed.

THERMAL CONSIDERATIONS

To achieve the high speed of the Am685, a certain amount of power must be dissipated as heat. This increases the temperature of the die relative to the ambient temperature. In order to be compatible with ECL III and ECL 10,000 , which normally use air flow as a means of package cooling, the Am685 characteristics are specified when the device has an air flow across the package of 500 linear feet per minute or greater. Thus, even though different ECL circuits on a printed circuit board may have different power dissipations, all will have the same input and output levels, etc., provided each sees the same air flow and air temperature. This eases design, since the only change in characteristics between devices is due to the increase in ambient temperature of the air passing over the devices. If the Am685 is operated without air flow, the change in electrical characteristics due to the increased die temperature must be taken into account.

INTERCONNECTION TECHNIQUES

All high-speed ECL circuits require that special precautions be taken for optimum system performance. The Am685 is particularly critical because it features very high gain (60 dB) at very high frequencies $(100 \mathrm{MHz})$. A ground plane must be provided for a good, low inductance, ground current return path. The impedance at the inputs should be as low as possible and lead lengths as short as practical. It is preferable to solder the device directly to the printed circuit board instead of using a socket. Open wiring on the outputs should be limited to less than one inch, since severe ringing occurs beyond this length. For longer lengths, the printed-circuit interconnections become microstrip transmission lines when backed up by a ground plane, with a characteristic impedance of 50 to 150Ω. Reflections will occur unless the line is terminated in its characteristic impedance. The termination resistors normally go to -2.0 V , but a Thevenin equivalent to V^{-}can be used at some increase in power. Best results are usually obtained with the terminating resistor at the end of the driven line. The lower impedance lines are more suitable for driving capacitive loads. The supply voltages should be well decoupled with RF capacitors connected to the ground plane as close to the device supply pins as possible.

PERFORMANCE CURVES

(Unless otherwise specified, standard conditions for all curves are $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=6.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.2 \mathrm{~V}$,
$V_{T}=-2.0 \mathrm{~V}, R_{L}=50 \Omega$, and switching characteristics are for $V_{\text {in }}=100 \mathrm{mV}, V_{o d}=5 \mathrm{mV}$.)

PERFORMANCE CURVES (Cont.)

(Unless otherwise specified, standard conditions for all curves are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=6.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.2 \mathrm{~V}$, $V_{T}=-2.0 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega$, and switching characteristics are for $\mathrm{V}_{\text {in }}=100 \mathrm{mV}, \mathrm{V}_{\mathrm{od}}=5 \mathrm{mV}$.)

LIC-125

PERFORMANCE CURVES (Cont.)

(Unless otherwise specified, standard conditions for all curves are $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=6.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.2 \mathrm{~V}$, $V_{T}=-2.0 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega$, and switching characteristics are for $\mathrm{V}_{\text {in }}=100 \mathrm{mV}, \mathrm{V}_{\text {od }}=5 \mathrm{mV}$.)

TYPICAL APPLICATIONS

$$
\left(T_{A}=25^{\circ} \mathrm{C}\right)
$$

High-Speed Window Detector

LIC-127

300 MHz Line Receiver

LIC-128

High-Speed Sampling

LIC-129

Metallization and Pad Layout
32×54 Mils

Distinctive Characteristics

- 12ns MAXIMUM PROPAGATION DELAY AT 5mV OVERDRIVE
- Complementary Schottky TTL outputs
- Fanout of 5
- 100\% reliability assurance testing in compliance with MIL-STD-883
- Electrically and optically inspected dice for assemblers of hybrid products.
- Available in metal can and hermetic dual-in-line packages.

FUNCTIONAL DESCRIPTION

The Am686 is a fast voltage comparator manufactured with an advanced bipolar NPN, Schottky diode high-frequency process that makes possible very short propagation delays without sacrificing the excellent matching characteristics hitherto associated only with slow, high-performance linear IC's. The circuit has differential analog inputs and complementary logic outputs compatible with Schottky TTL. The output current capability is adequate for driving 5 standard Schottky inputs. The low input offset and high resolution make this comparator especially suitable for high-speed precision analog-to-digital processing.
A latch function is provided to allow the comparator to be used in a sample-hold mode. If the Latch Enable input is LOW, the comparator functions normally. When the Latch Enable is driven HIGH, the comparator outputs are locked in their existing logical states. If the latch function is not used, the Latch Enable may be left open or connected to ground.

Metallization and Pad Layout

CIRCUIT DIAGRAM

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
Am686	Metal Can	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Am686HC
	DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Am686DC
Am686	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Am686HM
	DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Am686DM
Am686	Dice	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Am686XC
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Am686XM

CONNECTION DIAGRAMS

Top Views

Am686
MAXIMUM RATINGS (Above which the useful life may be impaired)

Positive Supply Voltage	+7 V
Negative Supply Voltage	-7 V
Input Voltage	$\pm 4 \mathrm{~V}$
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Power Dissipation (Note 2)	600 mW
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range Am686-C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am686-M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Operating Supply Voltage Range

Am686-C	$\mathrm{V}^{+}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}^{-}=-6.0 \mathrm{~V} \pm 5 \%$
Am686-M	$\mathrm{V}^{+}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}^{-}=-6.0 \mathrm{~V} \pm 10 \%$
Minimum Operating Voltage $\left(\mathrm{V}^{+}\right.$to $\left.\mathrm{V}^{-}\right)$	9.7 V

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless Otherwise Specified) DC Characteristics

Symbol	Parameter	Conditions (Note 3)	Am686-C	Am686-M	Units
Vos	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{S} \leqslant 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{S} \leqslant 100 \Omega \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$m V M A X$. mV MAX.
$\Delta V_{\text {OS }} / \Delta T$	Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega$	10	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ MAX .
IOS	Input Offset Current	$\begin{aligned} & 25^{\circ} C \leqslant T_{A} \leqslant T_{A}(\max .) \\ & T_{A}=T_{A}(\min .) \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.6 \end{aligned}$	μA MAX. $\mu \mathrm{A}$ MAX.
I_{B}	Input Bias Current	$\begin{aligned} & 25^{\circ} C \leqslant T_{A} \leqslant T_{A}(\text { max. }) \\ & T_{A}=T_{A}(\text { min. }) \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	μA MAX. μA MAX.
V_{CM}	Input Voltage Range		+2.7, -3.3	+2.7, -3.3	\checkmark MIN.
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega,-3.3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+2.7 \mathrm{~V}$	80	80	dB MIN.
SVRR	Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega$	70	70	dB MIN.
V_{OH}	Output HIGH voltage	$\mathrm{I}_{\mathrm{L}}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}}(\mathrm{min}$.	2.7	2.5	\checkmark MIN.
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{S}}$ (max.)	0.5	0.5	$V \mathrm{MAX}$.
1^{+}	Positive Supply Current		42	40	mA MAX.
1^{-}	Negative Supply Current		34	32	mA MAX.
PDISS	Power Dissipation		415	400	mW MAX.

Switching Characteristics $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=100 \mathrm{mV}, \mathrm{V}_{\mathrm{od}}=5.0 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$ (Note 4)

${ }^{\text {tpd }}+$	Propagation Delay, Input to Output HIGH	$\begin{aligned} & \mathrm{T}_{A}(\min .) \leqslant \mathrm{T}_{A} \leqslant 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{A}(\max .) \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	ns MAX. ns MAX.
${ }^{\text {tpd }}$	Propagation Delay, Input to Output LOW	$\begin{aligned} & \mathrm{T}_{A}(\min .) \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\mathrm{A}(\max .)} \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	ns MAX. ns MAX.
$\Delta t_{\text {pd }}$	Difference in Propagation Delay between Outputs	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	ns MAX.

Notes: 2. For the metal can package, derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+95^{\circ} \mathrm{C}$; for the dual-in-line package, derate at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $115^{\circ} \mathrm{C}$.
3. Unless otherwise specified, $V^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-6.0 \mathrm{~V}$ and the Latch Enable input is at $V_{O L}$. The switching characteristics are for a. $100 \mathrm{~m} V$ input step with 5.0 mV overdrive.
4. The outputs of the Am686 are unstable when biased into their linear range. In order to prevent oscillation, the rate-of-change of the input signal as it passes through the threshold of the comparator must be at least $1 \mathrm{~V} / \mu \mathrm{s}$. For slower input signals, a small amount of external positive feedback may be applied around the comparator to give a few millivolts of hysteresis.

Am687•Am687A

Distinctive Characteristics

- 8.0ns MAXIMUM PROPAGATION DELAY AT 5 mV OVERDRIVE
- Complementary ECL outputs
- 50Ω line driving capability
- 100\% reliability assurance testing in compliance with MIL-STD-883.
- Electrically and optically inspected dice for assemblers of hybrid products.
- Available in the hermetic dual-in-line package.

FUNCTIONAL DESCRIPTION

The Am687 and Am687A are fast dual voltage comparators constructed on a single silicon chip with an advanced high-frequency process. The circuits feature very short propagation delays as well as excellent matching characteristics. Each comparator has differential analog inputs and complementary logic outputs compatible with most forms of ECL. The output current capability is adequate for driving terminated 50Ω transmission lines. The low input offsets and short delays make these comparators especially suitable for high-speed precision analog-to-digital processing.
The comparators are similar to the Am685 high-speed comparator but have been designed to operate from a 5 V positive supply (instead of 6V), dissipating less power than two Am685's. Separate latch functions are provided to allow each comparator to be independently used in a sample-hold mode. The Latch Enable inputs are intended to be driven from the complementary outputs of a standard ECL gate. If LE is HIGH and $\overline{L E}$ is LOW, the comparator functions normally. When LE is driven LOW and LE is driven HIGH, the comparator outputs are locked in their existing logical states. If the latch function is not used, LE must be connected to ground.

FUNCTIONAL DIAGRAM

LIC-134
The outputs are open emitters; therefore external pull-down resistors are required. These resistors may be in the range of $50-200 \Omega$ connected to -2.0 V , or $200-2000 \Omega$ connected to -5.2 V .

Am687/687A

MAXIMUM RATINGS (Above which the useful life may be impaired)

Positive Supply Voltage	+7 V
Negative Supply Voltage	-7 V
Input Voltage	$\pm 4 \mathrm{~V}$
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Output Current	30 mA
Power Dissipation (Note 2)	600 mW

Operating Temperature Range	
Am687-L, Am687A-L	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am687-M, Am687A-M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 Sec.$)$	$300^{\circ} \mathrm{C}$
Minimum Operating Voltage (V^{+}to V)	9.7 V

ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGES (Unless otherwise specified)

DC Characteristics

Am687A-L Am687A-M

Symbol
Parameter Am687-L

Am687A-M

Symbol	Parameter	Conditions (Note 3)	Min.	Max.	Min.	Max.	Units
V_{os}	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega \end{aligned}$	$\begin{aligned} & \hline-3.0 \\ & -3.5 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & -2.0 \\ & -3.0 \end{aligned}$	$\begin{aligned} & \hline+2.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathbf{V}_{\text {OS }} / \Delta \mathbf{T}$	Average Temperature Coefficient of Input Offset Voltage	$R_{S} \leqslant 100 \Omega$	-10	+10	-10	+10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant T_{A}(\text { max } .) \\ & T_{A}=T_{A}(\text { min. } .) \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.3 \end{aligned}$	$\begin{aligned} & +1.0 \\ & +1.3 \end{aligned}$	$\begin{aligned} & \hline-1.0 \\ & -1.6 \end{aligned}$	$\begin{aligned} & +1.0 \\ & +1.6 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
I_{B}	Input Bias Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant T_{A}(\text { max } .) \\ & T_{A}=T_{A}(\text { min. } .) \end{aligned}$		$\begin{aligned} & 10 \\ & 13 \end{aligned}$		$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
V_{CM}	Input Voltage Range		-3.3	+2.7	-3.3	+2.7	V
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega,-3.3 \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+2.7 \mathrm{~V}$	80		80		dB
SVRR	Supply Voltage Rejection Ratio	$\mathrm{R}_{\text {S }} \leqslant 100 \Omega, \Delta \mathrm{~V}_{\text {S }}= \pm 5 \%$	70		70		dB
V_{OH}	Output HIGH Voltage	$\begin{aligned} & T_{A}=25^{\circ} C \\ & T_{A}=T_{A}(\min .) \\ & T_{A}=T_{A}(\text { max. }) \end{aligned}$	$\begin{aligned} & \hline-0.960 \\ & -1.060 \\ & -0.890 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.890 \\ & -0.700 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.960 \\ -1.100 \\ -0.850 \\ \hline \end{array}$	$\begin{aligned} & -0.810 \\ & -0.920 \\ & -0.620 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\mathrm{A}}(\min .) \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}(\text { max. } .)} \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1.890 \\ & -1.825 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.650 \\ & -1.675 \\ & -1.625 \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1.910 \\ & -1.810 \end{aligned}$	$\begin{aligned} & -1.650 \\ & -1.690 \\ & -1.575 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
1^{+}	Positive Supply Current			35		32	mA
$1-$	Negative Supply Current			48		44	mA
P DISS	Power Dissipation			485		450	mW

Switching Characteristics ($\mathrm{V}_{\text {in }}=100 \mathrm{mV}, \mathrm{V}_{\text {od }}=5 \mathrm{mV}$)

${ }_{\text {t }}^{\text {pd }}$ +, $\mathrm{t}_{\text {pd }}$	Propagation Delay, Am687A	$\begin{aligned} & \mathrm{T}_{A(\min .)} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & T_{A}=T_{A(\text { max } .)} \end{aligned}$	$\begin{gathered} 8.0 \\ 10 \end{gathered}$	$\begin{gathered} \hline 8.0 \\ 12.5 \end{gathered}$	ns ns
${ }^{\text {t }}$ pd + , ${ }^{\text {pd }}$	Propagation Delay, Am687	$\begin{aligned} & T_{A(\text { min. })} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \\ & T_{A}=T_{A(\text { max. } .)} \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	ns ns
$\mathrm{t}_{\text {s }}$	Minimum Latch Set-up Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.0	4.0	ns

Notes: 2. Derate at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+115^{\circ} \mathrm{C}$.
3. Unless otherwise specified $\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=-2.0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=50 \Omega$; all switching characteristics are for a 100 mV input step with 5 mV overdrive. The specifications given for $V_{o s}, I_{o s} I_{B}, C M R R, S V R R, t_{p d+}$ and $t_{p d-a p p l y ~ o v e r ~ t h e ~ f u l l ~} V_{C M}$ range and for $\pm 5 \%$ supply voltages The Am687 and Am687A are designed to meet the specifications given in the table after thermal equilibrium has been established with a transverse air tlow of 500 LFPM or greater.

-PERFORMANCE CURVES

Propagation Delays as a Function of Input Overdrive

Propagation Delays as a Function of Temperature

Output Rise and Fall Times as a Function of Temperature

Am1500

Dual Precision Voltage Comparator

Distinctive Characteristics

- The Am1500 is functionally, electrically, and pin-forpin equivalent to the National LH2111
- The Am1500 is a dual 111, but requires 25% less power than two 111 comparators
- Output Drive - 50 V and 50 mA
- Input Bias Current - 150nA max.
- Input Offset Voltage - 4.0mV max.
- Differential Input Voltage Range $- \pm 30 \mathrm{~V}$
- 100\% reliability assurance testing in compliance with MIL-STD-883
- Available in Hermetic Dual-In-Line or Hermetic Flat Packages

FUNCTIONAL DESCRIPTION

The Am1500 is a voltage comparator featuring low input currents, high differential and common mode voltage ranges, wide supply voltage range, and outputs compatible with all bipolar and MOS circuitry. The inputs and outputs can be isolated from system ground, and the output can drive loads referred to ground or either supply. Strobing and offset balancing are available and the outputs can be wire-ORed.

FUNCTIONAL DIAGRAM
 (each half)

LIC-138

CONNECTION DIAGRAMS

Top Views

Dual In-Line

Note: Pin 1 is marked for orientation.
LIC-139

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
Am1500C	TO-99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM1500DC
	Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM1500FC
Am1500L	TO-99	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	AM1500DL
	Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	AM1500FL
Am1500M	Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM1500DM
	Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM1500FM

Voltage from V^{+}to V^{-}	36 V
Voltage from Collector Output to V^{-}	
Am1500M, L	50 V
Am1500C	40 V
Voltage from Emitter Output to V^{-}	30 V
Voltage between Inputs	$\pm 30 \mathrm{~V}$
Voltage from Inputs to V^{-}	$+30 \mathrm{~V},-0 \mathrm{~V}$
Voltage from Inputs to V^{+}	-30V
Power Dissipation (Note 1)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	
Am1500M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am1500L	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am1500C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 2)

Parameter (see definitions)	Conditions	Am1500C			Am1500M Am1500L			Units
Input Offset Voltage (Note 3)			2.0	7.5		0.7	3.0	mV
Input Offset Current (Note 3)			6.0	50.0		4.0	10.0	nA
Input Bias Current (Note 3)			100	250		60	100	nA
Response Time (Note 4)	$\mathrm{R}_{\mathrm{L}}=500 \Omega$ to $+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0$		200			200		ns
Supply Current-Positive (Note 5) -Negative (Note 5)			$\begin{aligned} & 3.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	mA
Voltage Gain			200			200		V/mV
Saturation Voltage	$\begin{aligned} & \mathrm{v}_{\text {in }} \leqslant-5.0 \mathrm{mV}, \mathrm{IC}_{\mathrm{C}}=50 \mathrm{~mA} \\ & \mathrm{vin}_{\mathrm{in}} \leqslant-10 \mathrm{mV}, \mathrm{IC}_{\mathrm{C}}=50 \mathrm{~mA} \end{aligned}$		0.75	1.5		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & V_{\text {in }} \geqslant+5.0 \mathrm{mV}, V_{C} \text { to } V_{E}=50 \mathrm{~V} \\ & V_{\text {in }} \geqslant+10 \mathrm{mV}, V_{C} \text { to } V_{E}=40 \mathrm{~V} \end{aligned}$		0.2	50.0		0.2	10.0	nA

The Following Specifications Apply Over The Operating Temperature Range

Input Offset Voltage (Note 3)				10.0			4.0	mV
Input Offset Current (Note 3)				70.0			20.0	nA
Input Bias Current (Note 3)				300			150	nA
Saturation Voltage	$\begin{aligned} & V_{\text {in }} \leqslant-6.0 \mathrm{mV}, \mathrm{I}_{\mathrm{C}}=8.0 \mathrm{~mA} \\ & V_{\text {in }} \leqslant-10 \mathrm{mV}, I_{C}=8.0 \mathrm{~mA} \end{aligned}$		0.23	0.40		0.23	0.40	V
Output Leakage Current	$\mathrm{V}_{\text {in }} \geqslant+6.0 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $V_{E}=50 \mathrm{~V}$					0.1	0.5	$\mu \mathrm{A}$
Input Voltage Range		± 12	± 14		± 13	± 14		V
Supply Current-Positive (Note 5) -Negative (Note 5)	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$					$\begin{aligned} & 4.8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 4.4 \end{aligned}$	mA

Notes: 1. For the Flat Package derate at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $83^{\circ} \mathrm{C}$, and the $\mathrm{Dual} / \mathrm{In}$-Line at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
2. Unless otherwise specified, these specifications apply for $V^{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=-15 \mathrm{~V}$, and R_{L} at collector output $=7.5 \mathrm{k} \Omega$ to +15 V .
3. The offset voltage, offset current and bias current given are the maximum values required to drive the collector output to within 1 V of the supplies with a $7.5 \mathrm{k} \Omega$ load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
4. The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
5. The Am 1500 supply current is the sum of the supply currents required by each side.

PERFORMANCE CURVES

APPLICATIONS

LIC-144

Strobing Off Both
Input and Output Stages**
LIC-143

Increasing Input
Stage Current*

LIC-145

* Increases input bias current and common-mode slew rate by a factor of 3.
* Typical input current $=50 \mathrm{pA}$ with inputs storbed OFF.

LH2111/2211/2311

Distinctive Characteristics

- The LH2111/2211/2311 are functionally, electrically, and pin-for-pin equivalent to the National LH2111/ 2211/2311
- The LH2111 is a dual 111 , but requires 25% less power than two 111 comparators
- Output Drive - 50 V and 50 mA
- Input Bias Current - 150nA max.
- Input Offset Voltage -4.0 mV max.
- Differential Input Voltage $- \pm 30 \mathrm{~V}$
- 100% reliability assurance testing in compliance with MIL-STD-883
- Available in Hermetic Dual-In-Line or Hermetic Flat Packages
FUNCTIONAL DESCRIPTION
The LH2111/2211/2311 are voltage comparators featuring
low input currents, high differential and common mode
voltage ranges, wide supply voltage range, and outputs com-
patible with all bipolar and MOS circuitry. The inputs and
outputs can be isolated from system ground, and the output
can drive loads referred to ground or either supply. Strobing
and offset balancing are available and the outputs can be
wire-ORed.

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
LH2311	DIP	$0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$	LH2311D
	Flat Pak	$0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$	LH2311F
LH2211	DIP	$-25^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$	LH2211D
	Flat Pak	$-25^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$	LH2211F
LH2111	DIP	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$	LH2111D
	Flat Pak	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$	LH2111F

LH2111/2211/2311

MAXIMUM RATINGS

Voltage from V^{+}to V^{-}	36 V
Voltage from Collector Output to V^{-}	50 V
LH2111/LH2211	40 V
LH2311	30 V
Voltage from Emitter Output to V^{-}	$\pm 30 \mathrm{~V}$
Voltage between Inputs	$+30 \mathrm{~V},-\mathbf{0} \mathrm{V}$
Voltage from Inputs to V^{-}	-30 V
Voltage from Inputs to V^{+}	500 mW
Power Dissipation (Note 1)	10 sec
Output Short Circuit Duration	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH2111	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LH2211	$-65^{\circ} \mathrm{C} \mathrm{to}+150^{\circ} \mathrm{C}$
LH2311	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 2)

		LH2311			$\begin{aligned} & \text { LH2111 } \\ & \text { LH2211 } \end{aligned}$			
Parameter (see definitions)	Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage (Note 3)			2	7.5		0.7	3.0	mV
Input Offset Current (Note 3)			6.0	50.0		4.0	10.0	$n \mathrm{~A}$
Input Bias Current (Note 3)			100	250		60	100	nA
Response Time (Note 4)	$R_{L}=500 \Omega$ to $+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0$		200			200		ns
Supply Current-Positive (Note 5)			3.9	7.5		7.0	9.5	mA
-Negative (Note 5)			2.6	5.0		4.8	7.5	
Voltage Gain			200			200		V / mV
Saturation Voltage	$\begin{aligned} & V_{I N} \leqslant-5 m V, I_{C}=50 m A \\ & V_{I N} \leqslant-10 m V, I_{C}=50 m A \end{aligned}$					0.75	1.5	V
			0.75	1.5				
Output Leakage Current	$\begin{aligned} & V_{I N} \geqslant+5 \mathrm{mV}, V_{C} \text { to } V_{E}=50 \mathrm{~V} \\ & V_{I N} \geqslant+10 \mathrm{mV}, V_{C} \text { to } V_{E}=40 \mathrm{~V} \end{aligned}$					0.2	10.0	nA
			0.2	50.0				
The Following Specifications Apply Over The Operating Temperature Ranges								
Input Offset Voltage (Note 3)				10.0			4.0	mV
Input Offset Current (Note 3)				70.0			20.0	nA
Input Bias Current (Note 3)				300			150	nA
Saturation Voltage	$\begin{aligned} & V_{I N} \leqslant-6 m V, I_{C}=8 m A \\ & V_{I N} \leqslant-10 m V, I_{C}=8 m A \end{aligned}$					0.23	0.40	V
			0.23	0.40				
Output Leakage Current	$\mathrm{V}_{\mathrm{IN}} \geqslant+6 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{E}}=50 \mathrm{~V}$					0.1	0.5	$\mu \mathrm{A}$
Input Voltage Range		± 13	± 14		± 13	± 14		V
Supply Current-Positive (Note 5) -Negative (Note 5)	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$					4.8	6.4	mA
						3.2	4.4	

Notes: 1. For the Flat Package derate at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $83^{\circ} \mathrm{C}$, and the Du ul-In-Line at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
2. Unless otherwise specified, these specifications apply for $V^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{E}=-15 \mathrm{~V}$, and R_{L} at collector output $=7.5 \mathrm{k} \Omega$ to +15 V .
3. The offset voltage, offset current and bias current given are the maximum values required to drive the collector output to within 1 V of the supplies with a $7.5 \mathrm{k} \Omega$ load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
4. The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
5. The LH2111 supply current is the sum of the supply currents required by each side.

PERFORMANCE CURVES

Common Mode Limits

Response Time For Various Input Overdrives

Supply Current

Input Offset Current

Transfer Function

Response Time For Various Input Overdrives

Supply Current

Offset Error

Response Time For Various Input Overdrives

Response Time For Various Input Overdrives

Leakage Current

APPLICATIONS

*Increases input bias current and common-mode slew rate by a factor of 3 .
** Typical input current $=50 \mathrm{pA}$ with inputs strobed OFF.

A NEW HIGH-SPEED COMPARATOR THE Am685

By Jim Giles and Alan Seales

INTRODUCTION

Modern electronic systems require more and more that operations be performed in a few nanoseconds so that the delay of the complete system, which may be very complex, be held to a minimum. There are abundant logic circuit elements available that meet this criterion: gold-doped TTL, Schottky TTL, and emitter-coupled logic (ECL), listed in descending order of propagation delay. Where it is necessary to interface from the analog world to the input of a logic system, or to detect very low-level logic signals in the presence of heavy noise, a high-speed precision comparator is needed. If such a comparator had a propagation delay less than 10 ns , it could replace costly and complex circuitry that designers are now forced to use in very high-speed analog-to-digital converters, data acquisition systems, and optical isolators, as well as make possible many applications hitherto considered unfeasible. It could also be used as a sensitive line receiver or sense amplifier, in 100 MHz sample and hold circuits, and in very highfrequency voltage-controlled oscillators.

The basic requirements for a high-speed precision comparator are few and well-defined: good resolution (high gain), high common-mode and differential voltage ranges, outputs compatible with standard logic levels, and, above all, very fast response to signal levels ranging from a few millivolts to several volts. The industry workhorse, the 710 , has come close to meeting these requirements, and except for the most demanding applications, its 40 ns propagation delay is adequate. A survey of presently available monolithic IC comparators (Table I) shows that there is really none that meets the requirements of very high-speed systems. The newer TTL-output circuits offer only marginal improvement over the 710 when measured under identical conditions of large input pulse and small overdrive, and the ECL-output comparator, although faster, has such poor resolution that it can be used only for large input signals. Advanced Micro Devices felt there was a need for a family of linear devices to fill the needs of very high-speed systems, with the first circuit being a precision comparator with less than 10ns delay.

Type No.	Logic Family	Propagation Delay	Resolution
Am111	TTL	200 ns	0.012 mV
$\mu \mathrm{A} 710$	TTL	40 ns	1.4 mV
Am106	TTL	40 ns	0.06 mV
$\mu \mathrm{A} 760$	TTL	25 ns	0.5 mV
NE527/529	TTL	25 ns	0.5 mV
MC1650	ECL	12 ns	30 mV

Table I: Propagation Delays of Available Monolithic IC Comparators (100 mV Input Step, 5 mV Overdrive)

DESIGN OBJECTIVES

In order to achieve the ultimate in speed, it is clear that the comparator outputs must be compatible with ECL, even
though at present the majority of systems use TTL. Designers striving for the highest possible speed will already be using ECL in the critical circuit areas of their systems to squeeze the last possible nanosecond out of the overall delay. Further, an ECL circuit requires only one-third the gain of an equivalent TTL circuit for the same resolution owing to its smaller output logic swing. This means that lower impedances can be used and consequently larger bandwidth realized for the same power dissipation. Also, there is no problem interfacing the linear input stages with the digital output gate since an ECL gate is basically a non-saturating overdriven differential amplifier. Properly driving a TTL gate from a linear amplifier is more difficult, however, because it requires a large voltage swing suitably biased to track the input logic threshold with temperature, plus a large peak negative current capability to turn off the gate with minimum delay.

The usefulness and versatility of a comparator can be enhanced by adding a strobe or latch function to the circuit. A strobe simply forces the output of the comparator to one fixed state, independent of input signal conditions, whereas a latch locks the output in the logical state it was in at the instant the latch was enabled. The latch can thus perform a sample and hold function, allowing short input signals to be detected and held for further processing. If the latch is designed to operate directly upon the input stage-so the signal does not suffer any additional delays through the comparator-signals only a few nanoseconds wide can be acquired and held. A latch, therefore, provides a more useful function than a strobe for very high-speed processing.
The most difficult input signal for a comparator to respond to is a large amplitude pulse that just barely exceeds the input threshold. This forces the input stage of the comparator to swing from a full off (or on) state to a point somewhere near the center of its linear range. This exercises both the large-and small-signal responses of the stage. If the comparator has less than 10 ns delay under these stringent conditions, then it should be as fast or faster for any other circumstances (see Figure 1). The industry standard measurement is with a

A NEW HIGH-SPEED COMPARATOR

100 mV input pulse and an overdrive 5 mV above input threshold (this was used for the delays given in Table 1). Pulses larger than 100 mV might be used, but this would multiply measurement difficulties, since only a few tenths of a percent aberration or ripple in the pulse generator waveform would be enough to seriously affect the accuracy of the small overdrive, and thus would give misleading results for the propagation delay.

To obtain satisfactory speed for all input signals and particularly for the worst case measurement conditions, the input stage of the comparator must have: 1) wide small-signal bandwidth, 2) high slew rate for large signals, 3) minimum voltage swings, and 4) high gain. The first requirement can be realized by using low-value load resistors, by making every effort in circuit design, device geometry and processing to minimize parasitic capacitances, and by using transistors with the highest f_{T} possible. The second item calls for high operating currents as well as minimum capacitance. The last two requirements are conflicting, since obtaining high gain normally requires a large voltage swing; therefore some means of clamping the swing must be used that does not degrade the propagation delay.

The overall gain of the complete comparator must also be high because, as illustrated in Figure 1, the propagation delay is less if each stage is well overdriven. To ensure that most of the input overdrive signal is actually used for overdriving, and not consumed in just moving the output from one state to the other, the gain error should be no more than about 10% of the input overdrive. Therefore, for a 5 mV overdrive and an ECL output swing of 800 mV , the minimum gain must be 1600 . It is not practical to strive for much higher gain than this because the small-signal rise time begins to suffer as the stage gain increases. Addition of another stage is undesirable as this also adds delay and increases circuit complexity. It must be remembered that there is a maximum limit on power dissipation that a single integrated circuit package can handle adequately, and this consideration must influence the choice of operating currents and impedance levels throughout the design of the circuit.

With a figure for the total gain required, it is now possible to determine the number of stages and the gain per stage. Since the output stage must be ECL-compatible, its design is fixed, giving a differential-input to single-ended-output gain of about 6. This leaves a differential gain of 270 to be provided by the remainder of the comparator. This is most efficiently divided between two stages, each with a gain somewhat over 16. Both stages should be identical, since minimum overall delay time is obtained when identical stages are cascaded.

A factor not yet discussed that affects the accuracy of the comparator is its input offset voltage. Unless this is trimmed out initially, it must be added to the overdrive in determining the worse-case value of input signal for which the propagation delay specifications will be met. Even with trimming, the temperature drift of high-offset units is typically much greater than that of low-offset units. Therefore, it is desirable to have low initial offset so that trimming is not necessary, and so that the offset temperature coefficient will be good. Also affecting the offset voltage and its drift at higher source resistances are the input currents. To keep this contribution to the total offset low requires high current gains in the input transistors. Therefore, obtaining offsets in the $1-2 \mathrm{mV}$ range requires close attention to circuit design, mask layout, and very tight process control (equivalent to that needed for the high-performance,
tow-frequency operational amplifiers), but with the added kicker of $\mathrm{f}_{\mathrm{T}} \mathrm{s}$ well above 1 GHz .
As was mentioned, large common-mode and differential voltage ranges are desirable features of a comparator. The limits of the common-mode range in a well-designed circuit should be close to the supply voltages. Since a high-speed comparator will, of necessity, operate at fairly high current levels, the supply voltages must be low to stay within the package power dissipation limits. As a minimum, the commonmode range should be equal to or exceed the differential voltage range to take full advantage of the voltage breakdown characteristics of the input transistors. The basic differential amplifier input stage has a differential voltage breakdown in the range of 5 to 6 volts; the design goal for the common mode range should thus be at least ± 3 volts.

In summary, the design objectives for a high-speed precision comparator are as follows:

1) propagation delay $<10 \mathrm{~ns}$ measured at 100 mV input step, 5 mV overdrive
2) ECL-compatible outputs
3) latch capability
4) gain >1600
5) input offset voltage $< \pm 2 \mathrm{mV}$
6) common -mode range $> \pm 3 \mathrm{~V}$

CIRCUIT DESIGN

The watchword in designing wideband circuits is simplicity - have the fewest possible active devices in the signal path, the lowest possible impedance levels, and the lowest possible capacitance. The simple, common-emitter differential amplifier can be designed to approach these ideals with one major exception: the deleterious shunting effect of the collector-tobase capacitance upon the driving source resistance is multiplied by the voltage gain of the stage (Miller effect). Even though the impedance levels will be only a few hundred ohms at most, this condition cannot be tolerated if maximum speed is to be achieved. The solution is to add an additional pair of common-base transistors to form a differential cascode amplifier (Figure 2). This circuit has all of the performance features of a common-emitter amplifier and no feedback capacitance.

Figure 2. Differential cascode amplifier

Further advantages of the cascode will become apparent later when the latch design is discussed. The only drawback is that there are more devices in the signal path, the positive common-mode range is reduced, and circuitry has to be provided to bias the cascode transistors.

It is now necessary to provide a means of shifting the signal at the output of the cascode (which is very near the positive supply voltage) down to a lower voltage to drive the inputs of the second stage. The use of PNPs is definitely out because of their poor frequency response. This leaves three possibilities: a chain of forward-biased diodes, a programmed voltage drop across a resistor, or a zener diode. The diode chain is useful for level shifts of only a few volts at most, above that, the number of diodes gets too large, with a consequent increase in shunt capacitance and temperature coefficient. The use of a currentsource/resistor combination is in the wrong direction for keeping impedance levels low. The resistors could be bypassed with capacitors, but this would offer only marginal improvement, since integrated capacitors have a large shunt component to the substrate. Besides, the addition of four capacitors (for both stages) would result in a large increase in chip area.

The zener diode is definitely superior for high-frequency applications because its shunt capacitance to ground is low, being equal to the collector-to-base capacitance of a transistor. It has no capacitance to the substrate, and its dynamic resistance is quite low. It does have the disadvantage that the level shift is limited to one voltage (6 V), which restricts the range of power supply variation the circuit can tolerate. In addition it requires very tight control of the manufacturing process to maintain the matching required. For an input stage gain of 16 the zener voltages have to be matched to better than 0.25% to produce less than 1 mV offset voltage at the input.

As shown in Figure 3, the zeners are buffered from the cascode collectors by emitter followers. The pulldown current through the zener-follower combination must be made large enough to discharge the node capacitance when the follower swings in the negative direction. The minimum value necessary is determined by the node capacitance, the signal swing, and the amount of delay that can be tolerated. The amount of signal swing can be reduced by adding clamping diodes across the collectors of the cascode. Regular diode-connected transistors could be used, but would add considerable collector-tosubstrate capacitance across the load resistors as well as base-to-emitter capacitance between them. Schottky diodes, on the other hand, require little additional chip area, and are very fast. With clamping, some of the common-mode range lost when the cascode was added can be regained because the cascode transistors can be biased closer to the positive supply without fear of going into saturation at the extremes of the signal swing. The use of Schottky diodes, however, puts a few more gray hairs on the head of the process engineer since he has to control another set of characteristics without affecting the other parameters. The circuit values given in Figure 3 are designed for a minimum differential gain of 16 , and a minimum negative-going slew rate at the output of the level-shifter of $1000 \mathrm{~V} / \mu \mathrm{s}$.

As mentioned earlier the design of the output stage (Figure 4) can vary little from that of a standard ECL gate. The output emitter followers have to be large enough to handle loading by a 50Ω transmission line (25 mA), yet small enough not to add a lot of capacitance that would slow down the response. Therefore, the transistor design must be as efficient as possible with regard to physical size and current-carrying

Figure 3. Basic cascode gain stage
capacity. Since the input common-mode level to the gate varies with changes in the power supplies and resistor tolerance, a current source is used to supply the emitters of the gate, rather than the usual resistor to the negative supply. The design of this current source must be such as to provide the correct logical " 1 " and " 0 " levels at the output and the proper variation with temperature and power supply changes. The propagation delays to either output of this gate will be equal, whereas they are slightly different in a standard ECL gate owing to the additional capacitive loading on the $\overline{\mathrm{O}}$ output caused by the multiple input transistors.

Implementation of the latch function must be accomplished without interfering with the normal comparator operation or degrading the speed in any way. It must be as close to the input as possible to permit short input signals to be acquired and held. One simple method of adding a latch to a differential

Figure 4. Output gate

Figure 5. Simple latch circuit

Figure 6. Cascode with latch
amplifier is shown in Figure 5. A pair of transistors, O_{5} and O_{6}, are cross-coupled at the collectors of the input transistors, Q_{1} and Q_{2}. The current source I_{2} is switched on when it is desired to enable the latch. If I_{2} is greater than I_{1}, the positive feedback via O_{5} and O_{6} will hold the circuit in whatever state it was in when the latch was turned on.

The simple circuit of Figure 5 is not the best for speed because of the added capacitance of Q_{5} and Q_{6} and the fact that they can saturate unless the signal swings are very small. However, it can be adapted to the cascode stage quite nicely as illustrated in Figure 6. Drive for the positive feedback transistors is taken from the level shifters, and the collectors go to the emitters of the cascode. With this arrangement there is no significant capacitive loading on the gain stage at all. The current source is switched by another differential amplifier, $\mathrm{O}_{9}-\mathrm{O}_{10}$, referenced to the ECL logic threshold voltage. This provides the correct input levels for the Latch Enable being driven from a standard ECL gate as well as being very fast, since only currents are being switched.
The latch current source $\left(I_{2}\right)$ must be about 1 mA greater than the input current source ((1) to ensure positive latching for any condition of input signal. Thus, for 5 mA in the input stage, at least 6 mA must be used to power the latch. This amounts to a lot of power consumed for a function that some users may never even need. However, there is a way to cut the latch standby power down to zero; this is accomplished by the addition of Q_{7} and Q_{8}, as shown in Figure 8.
To understand the function of these transistors, first refer to Figure 7. The differential voltage appearing across the emitters of the cascode transistors is equal to the input signal (for small input signals). This is because the currents through the lower pair of transistors in the cascode are equal to the corresponding currents through the upper pair, and the transistors are matched; therefore the differences in base-emitter voltages must be equal. Thus, Q_{7} and Q_{8} function as if they were

Figure 7. Cascode with "parallel" transistors

Figure 8. Complete input cascode stage with latch
simply connected in parallel with Q_{1} and Q_{2}, as far as the net effect at the collector load resistors is concerned. To obtain the desired total stage gain, the current I_{1} can be 2 mA and I_{3} can be 3 mA .

Now refer to Figure 8. With the latch enable HIGH, O_{9} will be switched on and the 3 mA current source will be supplied to the parallel transistors, $\mathrm{Q}_{7}-\mathrm{Q}_{8}$. The comparator functions normally, and no current is used up in the latch. When the latch enable goes LOW, I_{2} will be switched through Q_{10} to the positive feedback transistors, robbing 3 mA from the gain stage and giving it to the latch. The latch current is now 1 mA greater than the input stage current, but the total current required is still only 5 mA . As with the latch transistors, the collectors of the parallel transistors are connected to the emitters of the cascode, so no additional capacitance is added across the load resistors. This places the requirement on Q_{7} and O_{8} that they maintain their high f_{T} at zero collector-tobase voltage.

The use of the parallel transistors has the added bonus that the input bias currents are decreased by more than a factor of two, thus reducing their influence on the offset voltage. The penalty paid is that all three pairs of junctions $\left(\mathrm{O}_{1}-\mathrm{Q}_{2}\right.$, $\mathrm{O}_{3}-\mathrm{O}_{4}$ and $\mathrm{O}_{7}-\mathrm{Q}_{8}$) add equally to the input offset. Once again, the processing must be carefully controlled to keep the overall offset within the 2 mV goal.

The complete circuit of the comparator is given in Figure 9. It includes some additional refinements as well as the DC biasing. The drive for the latching transistors is taken from the emitters of the second cascode rather than from the level-shifting zeners. This removes their input capacitance from the level shifter and also ensures that Q_{10} cannot saturate. A resistor (Rg) is included to center the common-mode voltage at the input to the gate within its dynamic range; this prevents saturation of the gate or its current source over the expected range of signal swing, temperature drift and supply voltage variations. A separate ground is used for the output emitter followers so that heavy loading at the output will not couple back into the remainder of the circuit. The DC bias chain for the current sources is referenced to ground and the negative supply, so the output logic levels will track those of other ECL circuits connected to the same negative supply. The current sources are designed to stay constant with temperature, which keeps the open-loop gain high at elevated temperatures $\left(>1000\right.$ at $\left.+125^{\circ} \mathrm{C}\right)$, and thus helps to maintain good propagation delay.

Figure 9. Complete schematic of the Am685 comparator

A NEW HIGH-SPEED COMPARATOR

PROCESS TECHNOLOGY

Circuit design requirements for high speed and a latch function result in an input structure that has three pairs of transistors, the matching of which determines the offset voltage. This dictates that the matching of $V_{B E}$ shall be extremely good between the transistors in each pair in order to meet the 2 mV maximum offset voltage target. For the speeds necessary the transistor f_{T} has to be in the region above 1 GHz , so high-frequency performance can not be compromised. The slew rate of the input stage has to be very high for acceptable response with large input signals. This is achieved by high operating current and low stray capacitances. It is very desirable to keep both the input bias current and the input offset current very low so that the impedances in the source voltages do not introduce intolerable input voltage errors. It would be possible to use a Darlington-connected input stage to achieve these low currents, but the penalty exacted in offset voltage, offset voltage drift, and propagation delay is unacceptable, so high current-gain transistors that match extremely well are needed. The problems are thus centered on achieving very wellmatched transistors with high beta and high f .

As previously mentioned, it is desirable in a comparator to have a wide common-mode voltage range and high powersupply rejection ratio. This is facilitated by using Schottky diodes to clamp the collector-to-collector swings in the first two stages. Schottky diodes can be fabricated simply by making a window in the oxide over the N -type epitaxial layer and using the same evaporated aluminum as is used for the interconnects (see Figure 10). The contact potential between silicon and aluminum causes a potential barrier to the flow of electrons. Making the metal positive lowers this barrier, allowing electrons to pass over it by virtue of their thermal energy. This process is essentially the same as thermionic emission. Since these electrons are majority carriers, Schottky diodes show extremely fast turn-off characteristics, desirable in this application. Why the Schottky diode is so attractive is that the forward voltage necessary to produce a given current may, be several hundred millivolts less than that required to produce the same current in a p-n junction diode of about the same size. It can thus be used as a "clamp" to prevent a bipolar transistor from saturating, when connected from collector to base so as to prevent the forward voltage of the collector-base diode from rising to a level sufficient to cause appreciable current flow in the collector-base diode. This is the common application in Schottky TTL circuits.

In the ECL comparator the use is different. Here they are used back-to-back to limit the differential voltage swings between the collectors in both the first and the second stages. Connected in this way the reverse voltage seen by one Schottky diode is equal to the forward voltage drop of the other diode. Because this voltage is so small reverse leakage is not a great problem. In the simple Schottky diode structure, as described above, the reverse leakage is high. Most of this leakage current is generated at the perimeter of the metal, where there is an electric field concentration. In order to reduce this field the metal is extended all around the opening in the oxide, overlaying this oxide. Spacing the metal from the silicon in this way reduces the field and hence the leakage. In applications where low leakage is critical, the use of a $\mathrm{P}+$ guard ring is called for, but this carries with it extra capacitance, so in view of the fact that the reverse voltage is so low the guard ring technique was discarded for this application. Even so, the diodes used in the comparator have low leakage characteristics with a breakdown at about 45 V .

Figure 10. Cross section of transistor and Schottky diode showing sinker and $\mathrm{P}+$ base contact enhancement

At the very high speeds being considered, much effort has to go into reducing capacitances and resistances. Thinning down the epitaxial layer to the minimum required to sustain the voltages encountered is of benefit in two ways: 1) the collector-isolation sidewall area is reduced, lowering the collector-to-substrate capacitance; 2) the collector-series resistance is reduced. The two major contributions to collectorseries resistance are the resistance of the epitaxial material between the emitter and the buried $\mathrm{N}+$ layer, and the resistance of the epitaxial layer between the collector contact and the buried layer. However, the first resistance is subject to reduction by conductivity modulation during operation of the device and thus is less important than the second term. The second term can be made very small by using a "sinker", which is a high concentration N-type diffusion from the surface, through the epitaxial layer, to the buried $\mathrm{N}+$ layer. Contact to the collector is then made to the surface of the sinker. (see Figure 10)

Collector-to-base capacitance is held low by using very small dimensions and by using a relatively high epitaxial layer resistivity. The latter also serves to 'reduce the collector-tosubstrate capacitance. A further reduction in collector-to-base capacitance results from using a shallow, high sheet-resistivity diffusion for the base. However, this raises the base resistance, both because the bulk resistance from the contact to the active base region is increased and because the specific contact resistance is increased. These resistances may be reduced by depositing $\mathrm{P}+$ regions under the base contact areas after the main base diffusion.

A compromise has to be made in selecting emitter width. Large emitters are desirable for $V_{B E}$ matching, but very small emitters are essential for high f T. A stripe emitter, .25 -mil wide and $1-\mathrm{mil}$ long, was chosen as optimum. A difference in width, between two otherwise identical emitters, of $.01-\mathrm{mil}$ will be sufficient to cause an offset voltage of 1 mV . From this, it can be seen that the photolithography must be extremely carefully controlled, since the offset voltages of three pairs of transistors are summed to give the total offset of the comparator. Because the emitters are so narrow the normal procedure of making a contact cut inside of the emitter cannot be used. Instead, the emitter oxide is simply dissolved in hydrofluoric acid immediately before the aluminum evaporation in order to expose the emitter. As a consequence, the lateral distance between the metal and the emitter-base junction is very small, being equal to the lateral diffusion of the emitter. This means that the sintering process must be carried out at a temperature lower than is customary in linear circuit manufacture in order to avoid short-circuiting the
emitter-base junction by lateral migration of aluminum. An additional reason for lowering the sintering temperature is to avoid penetration of aluminum down through the emitter and base, causing emitter-to-collector shorts.

The requirement for high current gain, for low input bias currents, necessitates narrow base widths. Emitter-to-collector shorts can be a problem in these shallow, narrow-base structures. The probability of shorting can be minimized by careful cleaning procedures and by proper emitter doping levels. Keeping the emitter doping level low also reduces the magnitude of the "emitter dip" effect, whereby the diffusion coefficient of the boron in the region under the emitter is greatly increased by the lattice strain caused by the emitter, resulting in the running-on of the base under the emitter, making it very difficult to achieve a narrow base width.

An area that is neglected in digital circuit processing, because high beta is not necessary, but which is of major importance in linear processing, is the control of surface conditıons. It high current gains are to be realized, both the surface area of the emitter-base-depletion region and the surface recombination velocity must be minimized. The former implies that ionic contamination, such as sodium ions, must be eliminated and that the surface state charge density, Qss, should be made as low as possible. The surface recombination velocity is proportional to the fast surface state density and so can be minimized by making this density very low. These three goals; low ionic contamination, low Qss and low fast surface state density are achieved by using the well known techniques of MOS and linear circuit processing, such as annealing in an inert atmosphere and proper choice of sintering cycle.

In the interests of minimum capacitance, the metal interconnects are designed to be narrower than is usual in linear circuits. Special etching techniques have to be employed in order to reproduce these narrow lines reliably. These lines can be seen in the photomicrograph of Figure 11.

Figure 11. Photomicrograph of the Am685 comparator

PERFORMANCE

The primary design objective for the comparator was to obtain under 10 ns propagation delay for large input signals with small overdrive. It should then be as fast or faster for any other input conditions. The performance of the Am685 comparator for a 100 mV step input at various overdrives is shown in Figures 12 and 13. The propagation delay is measured from the time the input step crosses the input threshold voltage to the time the output crosses the logic threshold voltage. The input threshold voltage (i.e., the offset voltage) was adjusted for the figures so that the delay , can be simply measured by

Figure 12. Tpd -" 1 " for 100 mV step input and various overdrives (input $=5 \mathrm{mV} / \mathrm{cm}$, output $=$ $200 \mathrm{mV} / \mathrm{cm}$)

Figure 13. Tpd -" $0^{\prime \prime}$ for 100 mV step input and various overdrives (input $=5 \mathrm{mV} / \mathrm{cm}$, output $=$ $200 \mathrm{mV} / \mathrm{cm}$)
counting up 5,10 , or 20 mV from the bottom of the input pulse. The input pulse, therefore, is displayed on a magnified scale to facilitate this measurement and also to illustrate the purity of input signal required to make accurate measurements at millivolt overdrives.
For a 100 mV input step and 5 mV overdrive, the propagation delay for a logical " 0 " is 6.3 ns and for a logical " 1 " is about 300 ps less. A graph of delay as a function of overdrive is given in Figure 14. It was previously stated that any other condition

Figure 14. Delay times as a function of input overdrive

A NEW HIGH-SPEED COMPARATOR

Figure 15. Response to symmetrical input signals
of input signal should give faster response (refer back to Figure 1). This is demonstrated by Figure 15, which illustrates the response of the comparator to symmetrical inputs ranging from $\pm 5 \mathrm{mV}$ to $\pm 500 \mathrm{mV}$. The speeds are at least 1 to 2 ns faster than for small overdrives.

Figure 16 shows how the delay time varies with temperature. The adverse effects of resistor and gain changes at elevated temperatures result in an increase in delay from 6.3 ns at $25^{\circ} \mathrm{C}$ to 8.4 ns at $85^{\circ} \mathrm{C}$ and 10.4 ns at $125^{\circ} \mathrm{C}$. All of the above data were taken with output loads of 50Ω connected to -2.0 V . For lighter loading (such as 500Ω to -5.2 V) the output rise and fall times and propagation delays are all slightly faster.

The usefulness of the latch is directly related to how quickly it can be enabled following a change in the input signal. The input signal must be present long enough to pass through the first stage of the comparator before the latching transistors can act upon it. The minimum time that the input must be present before the latch can be turned on is defined as the latch enable time. This is measured as the minimum time that must elapse

Figure 16. Delay times as a function of temperature
between the time the input step crosses the input threshold voltage and the time the latch enable input crosses the logic threshold voltage for which the comparator outputs will assume the correct states.

Figure 17. Latch enable time and latch aperature time for 100 mV input step, 5 mV overdrive (input $=5 \mathrm{mV} / \mathrm{cm}$, latch $=200 \mathrm{mV} / \mathrm{cm}$, output $=400 \mathrm{mV} / \mathrm{cm}$)

The performance of the latch function is illustrated by Figure 17. The input signal is the standard 100 mV step with 5 mV overdrive and is in the direction to cause the output to switch from a logical " 0 " to a logical " 1 ". The delay of the latch signal relative to the input is adjusted until the output just switches to a "1"; this is the latch enable time and under these conditions is 1.8 ns . The difference between the latch timing for which the output just barely switches and when it does not switch is the latch aperture time; this is about 500 ps for 5 mV overdrive. The performance of the latch with input overdrive and temperature generally follows that of the propagation delays (Figure 14 and 16).

The overall performance of the Am685 is summarized in Table II. It is apparent from the table and the previous discussion that the device is ideally suited for applications where both precision and high speed are required, such as in analog-to-digital converters, data acquisition systems, and optical isolators. The device is the first in a family of new wideband linear integrated circuits designed to meet the requirements of very high-speed systems.

Propagation Delay (100 mV step, 5 mV overdrive)
6.5 ns MAX

Input Offset Voltage
2.0 mV MAX

Average Temperature Coefficient Of Input Offset Voltage
Input Offset Current
Input Bias Current
Common Mode Voltage Range
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Positive Supply Current
Negative Supply Current
$10 \mu \mathrm{~V} / \mathrm{C}_{\mathrm{C}} \mathrm{MAX}$
$1.0 \mu \mathrm{~A}$ MAX
$10 \mu \mathrm{~A}$ MAX
$\pm 3.3 \mathrm{~V}$ MIN
80 dB MIN
70dB MIN
22.mA MAX

26 mA MAX

Table II: Performance Characteristics of the Am685
Comparator ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=6.0 \mathrm{~V}$,
$\mathrm{V}^{-}=-5.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to -2.0 V)

THE A.D APPLICATION

Very fast, precision, analog-to-digital conversion stands to benefit considerably from the availability of a fast comparator. As the block diagram of a fast 10 -bit converter in Fig. 18 shows, a typical rapid conversion technique may resemble the use of feedforward compensation in an operational amplifier.
The analog input signal is sampled at the beginning of a conversion period and fed to a fast five-bit a-d converter, which provides the first five most significant bits of the output. These five bits also drive a companion d-a converter, which must be accurate to better than 10 bits. The output of the d -a converter is a replica of the input signal, quantized to five bits. This is compared with the actual input signal stored in the sample-and-hold amplifier. The difference between the two analog levels is the remaining part of the input signal that must be quantized. This difference is amplified and applied to another five-bit a-d converter to provide the five least-significantbits of the final output.

Typical five-bit a-d converters may consist of 31 106-type comparators connected to the signal source and referenced to the full-scale input in steps of $1 / 32$. The output of each comparator goes into a latch, and the latch outputs are decoded by three stages of TTL gages to develop the five-bit digital output.

Typical propagation delays are 40 ns for the comparators, 22 ns for the latches, and 10 ns for the decoding, resulting in a
total delay of 80 ns . Average settling time for the five-bit d -a converter and the difference amplifier together comes to about 200 ns , and the settling time for the input sample-and-hold amplifier is 70 ns. Thus, the over-all conversion time for this 10 -bit converter amounts to 430 ns.

Substitution of the high-speed ECL comparator for the 106 type in each of the five-bit converters leads to a significant improvement in propagation delay. The typical delay of the comparator is about 6.5 ns , and no external latch is required. With ECL it is possible to wire-OR outputs, so only one level of decoding gates is required. Allowing 1.5 ns for the gates, the total five-bit conversion time is only $8 \mathrm{~ns}-$ a tenfold improvement over the existing circuit.

If the latch function of the comparators is used as the sample-and-hold for the first five-bit converter, the sample-and-hold can be put in parallel with the first quantization step, as shown by the dotted lines in Fig. 18. This eliminates its settling time from the over-all delay of the system. With the new comparator, the total 10 -bit conversion time drops to 216 ns , with over 90% of the delay attributable to the d -a converter and the difference amplifier. Moreover, the availability of an 8 ns five-bit converter should provide the impetus to improve the slower sections of the system. A 10 -bit a-d converter with a delay under 100 ns is not an extravagant prediction.

Figure 18. Analog to digital.

Am685/Am686/Am687 DESIGNING WITH HIGH SPEED COMPARATORS

By Leonard Brown

INTRODUCTION

The Am685, Am686 and Am687 are a family of high-speed sampling comparators capable of detecting low-level signals of the order of $5-10 \mathrm{mV}$ in $12-15 \mathrm{~ns}$ over the temperature range $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 125^{\circ} \mathrm{C}$. The Am686 is fully TTL-compatible and complementary outputs are available generated from a true differential output stage assuring a maximum output skew of under 2 ns at $25^{\circ} \mathrm{C}$. The Am685 and Am687 are single and dual ECL-compatible versions, respectively, and have output skews of less than 1 ns . A high-speed latch is incorporated in the input stage permitting input signals to be acquired in 4.0 ns maximum for the ECL versions and 6.0 ns for the TTL device.
Applications of the devices are not limited to high-speed designs as the combination of the excellent DC input characteristics, availability of true differential outputs and the latch function permit unique solutions for slower speed applications where the response time of the comparators can be considered negligible.

THE SAMPLING COMPARATOR

The sampling comparator may be visualized as a conventional voltage comparator with the provision that the outputs may be latched into the logic states determined by the input signal conditions existing at the time of application of the latch signal. This is achieved by incorporating the latch circuitry in the input stage of the device. The minimum latch enable pulse width is necessarily less than the propagation delay of the device and, therefore, the comparator can be unlatched for a fraction of its propagation delay (4.Ons for the Am685). The outputs will then change in accordance with the input conditions existing at the time of the latch signal. Note: It is impossible for the comparator to oscillate under these conditions.
If the latch function is not used, the device operates as a conventional voltage comparator.

BACK TO BASICS

Comparators are designed to have both high gain and large bandwidth. This creates instability problems or oscillations when the device outputs are in the transition region. The tendency of a device to oscillate is a function of the layout, (poor layout increasing the amount of feedback caused by parasitic capacitance) and the source impedance of the circuit employed (The higher the source impedance the less parasitic coupling is necessary to cause oscillation.) It is mandatory with comparators of the gain and bandwidth of the Am685, Am686 and Am687 to ensure that power supplies are well decoupled, lead lengths are kept as short as possible, and wherever possible (especially in the case of the Am686), a ground plane should be employed.
In addition to reducing the effects of stray capacitance, a ground plane substantially reduces the possibility of the
output current spike coupling back to the inputs through the ground lead when the TTL output stages switch.
The minimum slew rate at which the input signal must cross the threshold region to prevent oscillation, regardless of the particular layout parasitics, may be determined by applying a DC voltage to the input until the circuit just commences to oscillate and increasing this voltage until the oscillation ceases. The minimum necessary input slew rate is then given by $\Delta V / t_{p d}$ MIN, where ΔV is the input voltage required to prevent oscillation and t_{pd} MIN is the minimum propagation delay of the comparator.
The minimum slew rate will be found to be a function of source impedance and source impedance mismatch.
The curves of Figures 1 and 2 show the minimum slew rate for the Am686 as a function of source impedance and source impedance mismatch.

Figure 1. Minimum Slew Rate Versus Source Resistance (TO-5).

Figure 2. Minimum Slew Rate Versus Source Resistance (DIP).

Figure 3. Minimum Slew Rate Versus Source Resistance (TO-5 \& DIP).

It can be seen that unbalanced sources dramatically effect the minimum input slew rate required. Note that for optimum performance, the source impedance seen by the comparator should be both DC and AC balanced to reduce the differential feedback to a minimum.
The effect of an AC unbalanced source is seen especially on the Am686 as when the output switches, the output current spike is coupled back to the input. This can be eliminated by forcing the $A C$ unbalance to result in positive feedback, which may be achieved by decoupling the inverting input or applying positive feedback via a $2-4 \mathrm{pF}$ capacitor from the Q output to the non-inverting input.
The curves of Figure 3 illustrate the improvement in minimum slew rate when a small amount of positive feedback is employed by virtue of a 2 pF feedback capacitor.

OPTIMUM SOURCE CONDITIONS ($\mathrm{C}_{\mathrm{f}}=0 \mathrm{pF}$)

With low source impedances $(<50 \Omega)$, the majority of the feedback between the output and the input occurs internal to the device. As the source impedance is raised, external feedback increases through the parasitic feedback capacitance until, at high source impedances, the external feedback dominates. This explains the anomolous characteristics of the minimum slew rate curves and suggests that the optimum source resistance for the device is between 300 and 500Ω for unbalanced sources and is approximately 1000Ω for a balanced source.

OPTIMUM SOURCE CONDITIONS ($\mathrm{C}_{\mathrm{f}}=2 \mathrm{pF}$)

With a source impedance of 100Ω, the minimum slew rate is $0.15 \mathrm{~V} / \mu \mathrm{s}$ for the DIP configuration and $0.02 \mathrm{~V} / \mu \mathrm{s}$ for the TO-5. For balanced sources the minimum slew rate is $0.03 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{RS}_{\mathrm{S}} \geqslant 100 \Omega$ and for a source impedance between $1 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$, the minimum slew rate is $<0.02 \mathrm{~V} / \mu \mathrm{s}$ regardless of impedance, DC imbalance or package type.

The use of the feedback capacitor is recommended when:

1. The input slew rate is within a factor of 2 greater than the minimum theoretical slew rate.
2. System constraints do not permit optimisation of layout and lead lengths.
3. Unbalanced source impedances are used (it is not always possible to provide input conditions which are both DC and AC balanced).

A FAMILY AFFAIR

It must be stressed that the concepts discussed concerning source imbalance and minimum input slew rate apply to all devices in the family. The Am686 was highlighted as it is more sensitive to layout constraints and parasitic feedback because of its significantly higher voltage gain.
Similarly all of the applications which follow may be implemented with any device in the series provided due caution is exercised with regard to the different output logic levels.

THE RELAXATION OSCILLATOR

The principal problems in the design of a classical relaxation oscillator are:

1. The variation in potential to which the energy storage device (normally a capacitor) is charged.
2. The variation in the threshold level at which the capacitor is to be discharged.
3. The variation inherent in the sensor element (normally a comparator) in detecting equivalence between the threshold level and the capacitor's instantaneous potential.
The variations are all functions of both time and temperature and are the primary causes of frequency drift, symmetry error, and jitter.
By taking advantage of two unique properties of the Am686, a relaxation oscillator may be designed to eliminate the first two problems and reduce the third to a second-order effect for oscillation frequencies from 1 MHz to 30 MHz .
The true differential output stage of the comparator ensures that the Q and $\overline{\mathrm{Q}}$ outputs change within $1-2 \mathrm{~ns}$ of each other. This feature ensures that the outputs can never be in the same logic state instantaneously, either HIGH or LOW, and that the only time they are equal in voltage is when traversing the logic uncertainty levels. This property permits the design of a threshold setting circuit that varies in accordance with the charging voltage applied to the timing capacitor. Therefore, any change in charging potential is automatically compensated by a corresponding change in threshold level.
Second, the combination of the short propagation delay $7-10 \mathrm{~ns}$, the minimum difference in propagation delay between outputs and the stability of these delays with temperature assures square wave symmetry of better than $1 \% @ 1 \mathrm{MHz}$ and $5 \% @ 25 \mathrm{MHz}$ and a frequency stability of 1% @ 10 MHz and 4% @ 25MHz.
The above statements are true from device to device and over the operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Over the industrial temperature range, a factor of two improvement should be obtained.

CIRCUIT THEORY (Fig. 4)

Assuming the circuit is in an oscillating mode, the voltage appearing at the non-inverting terminal will alternate between V_{X} and V_{Y} where:

$$
\begin{align*}
& v_{X}=\frac{R_{1}}{\left(R_{1}+R_{2}\right)}\left(v_{O H}-v_{O L}\right)+v_{O L} \tag{and}\\
& v_{Y}=\frac{R_{2}}{\left(R_{1}+R_{2}\right)}\left(v_{O H}-v_{O L}\right)+v_{O L}
\end{align*}
$$

When $V_{+I N}=V_{X}$, the timing capacitor C will be charging towards $V_{O H}$, and when $V_{+I N}=V_{Y}$, the timing capacitor will be discharging towards V_{OL}.

Figure 4. Circuit Design.

After the voltage on the capacitor equals the voltage on the non-inverting input, a finite time will elapse before the output of the circuit changes, during which time (the propagation delay of the Am686) the capacitor will continue to charge towards V_{OH}, or discharge towards $\mathrm{VOL}_{\mathrm{OL}}$.

Therefore, the capacitor will charge to a voltage
$V_{A}=V_{O H}-e^{-t_{P H L} / C R} \cdot\left(V_{O H}-V_{X}\right)$
and discharge to a voltage
$V_{B}=V_{O L}+e^{-t P L H} / C R \cdot\left(V_{Y}-V_{O L}\right)$
where $t_{\text {PHL }}$ and $t_{\text {PLH }}=$ propagation delay of the Am686 from the inputs to the output changing from HIGH - LOW and LOW - HIGH respectively.

The time to charge from V_{B} to V_{A} which is the positive half cycle is given by:
$t^{+}=C R 1 n \frac{V_{O H}-V_{B}}{V_{O H}-V_{A}}$
substituting for V_{A} and V_{B}
$t^{+}=C R \ln \left[\left(\frac{R_{1}}{R_{2}}+1\right) e^{t P H L} / C R-1\right]$

Similarily the negative half cycle is given by:
$\mathrm{t}^{-}=\mathrm{CR} \ln \frac{\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{OL}}}$
$t^{-}=C R \ln \left[\left(\frac{R_{1}}{R_{2}}+1\right) e^{t P L H} / C R-1\right]$

Note: The only assumptions are:

1. $\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right)$ of the Q output $=\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right)$ of the $\overline{\mathrm{Q}}$ output.
2. Offset voltage and offset current errors are negligible.
3. $\mathrm{e}^{\mathrm{t}_{\mathrm{PLH}} / \mathrm{CR}} \times \mathrm{e}^{-\mathrm{t}_{\mathrm{PHL}} / \mathrm{CR}}=1$

The only factor affecting pulse width variation is, therefore, $t_{P H L}$ and $t_{P L H}$. As $t_{P H L}>t_{\text {PLH }}$ by $1-2 n s$, it is therefore anticipated that t^{+}will be marginally greater than t^{-}.

MINIMUM OPERATING FREQUENCY

For the Am686, it is specified that the minimum slew rate at the input to insure that the device will not oscillate in the transition region is $1 \mathrm{~V} / \mu \mathrm{s}$. This will determine the minimum operating frequency of the circuit.

The rate of change of voltage on the timing node is given by:
$\rho=\frac{\partial v}{\partial t}=\frac{V o}{C R} \times e^{-t / C R}$
In the circuit,
a) $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{B}}$ (assuming positive ramp)
and
b) $t=C R 1 n\left[\left(\frac{R_{1}}{R_{2}}+1\right) e^{t_{\text {tPHL }} / C R}-1\right]$

As the slew rate is only critical in determining the lowest operating frequency, it may be assumed that $e^{t_{P H L} / C R}=1$ ($\mathrm{CR} \gg \mathrm{t}_{\mathrm{PH}}$); therefore, $\mathrm{Vo}_{\mathrm{o}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{B}} \approx \mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{Y}}$
$V_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \frac{R_{1}}{R_{1}+R_{2}} \quad$ and, $t=C R \ln \frac{R_{1}}{R_{2}}$
$\therefore \rho=\frac{\partial v}{\partial t}=\frac{\left(V_{O H}-V_{O L}\right)}{C R} \times \frac{R_{1}}{R_{1}+R_{2}} \times \frac{R_{2}}{R_{1}}$
$=\frac{\Delta V}{C R} \times \frac{R_{2}}{R_{1}+R_{2}}$
where, $\Delta \mathrm{V}=\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right)$
The minimum operating frequency
$f_{\text {MIN }}=\frac{1}{2 \operatorname{CR~} 1 n \frac{R_{1}}{R_{2}}}$
substituting

$$
C R=\frac{\Delta V}{\rho} \frac{R_{2}}{R_{1}+R_{2}} \quad f_{M I N}=\frac{\rho}{2 \Delta V} \times \frac{\left(R_{1} / R_{2}+1\right)}{\ln R_{1} / R_{2}}
$$

The expression for minimum frequency indicates that an optimum ratio of R_{1} / R_{2} exists that is independent of any particular RC time constant which may have been chosen.

The ratio may be determined by differentiating $f_{\text {MIN }}$ with respect to $\mathrm{R}_{1} / \mathrm{R}_{2}$.
$\frac{\partial f_{M I N}}{\partial \frac{R_{1}}{R_{2}}}=\frac{\rho}{2 \Delta V} \times \frac{\left.\ln \frac{R_{1}}{R_{2}}-\left(\frac{R_{1}}{R_{2}}+1\right) / \frac{R_{1}}{R_{2}}\right)}{\left(\ln \frac{R_{1}}{R_{2}}\right)^{2}}$

$$
=\frac{\rho}{2 \Delta V} \times \frac{\ln \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}-1-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}{\left(\ln \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{2}}
$$

Setting $\frac{\partial F}{\frac{\partial}{R_{1}}}=0$
$\ln \frac{R_{1}}{R_{2}}-1-\frac{R_{2}}{R_{1}}=0$
$\frac{R_{1}}{R_{2}}=\frac{1}{\ln \frac{R_{1}}{R_{2}}-1}$
$\therefore \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=3.59112$
Therefore, the lowest frequency the oscillator will perform consistent with the $1 \mathrm{~V} / \mu$ s constraint is:
$f_{\text {MIN }}=\frac{1 \times 4.6}{2 \times 3.5 \mathrm{nn} \mathrm{3.6}}=.513 \mathrm{MHz}$

D.C. OFFSET ERRORS

The presence of DC errors resulting from the bias and offset currents and offset voltage of the Am686 will cause the V_{Y} and V_{X} thresholds to be both shifted either positive or negative by an equal amount $\delta \mathrm{V}$ where $\delta \mathrm{V}$ is the sum of all such errors. The magnitude of these effects may be calculated as follows: When the capacitor is discharging -

LIC-171

Figure 5.
$V_{(t)}=V_{0} e^{-t / C R}$
$\frac{d v}{d t}=-\frac{1}{C R} V e^{-t / C R}=-\frac{1}{C R} V_{(t)}$
$\delta \mathrm{t}_{1}=-\frac{\delta \mathrm{V}}{\mathrm{V}_{\left(\mathrm{t}_{1}\right)}} \mathrm{CR}$
$\delta \mathrm{t}_{2}=\frac{-\delta \mathrm{VCR}}{\mathrm{V}_{\left(\mathrm{t}_{2}\right)}}$
Δt^{-}Negative Pulse Width Change $=$
$\delta \mathrm{t}_{2}-\delta \mathrm{t}_{1}=\delta \mathrm{VCR} \frac{\mathrm{V}_{\left(\mathrm{t}_{2}\right)}-\mathrm{V}_{\left(\mathrm{t}_{1}\right)}}{\mathrm{V}_{\left(\mathrm{t}_{1}\right)} \mathrm{V}_{\left(\mathrm{t}_{2}\right)}}$
As $V_{X}=V_{t_{1}}, V_{Y}=V_{t_{2}}$
$\Delta t^{-}=\frac{\delta V_{C R}\left(V_{Y}-V_{X}\right)}{\mathbf{V}_{\mathbf{X}} \mathrm{V}_{\mathbf{Y}}}$
Similarly for the positive pulse

Figure 6.
$V_{(t)}=V_{o}\left(1-e^{-t / C R}\right)$
Whence, $\mathrm{dv} / \mathrm{dt}=\frac{1}{C R}\left(V o-V_{(t)}\right)$
$\therefore \delta \mathrm{t}_{1}=\frac{\delta \mathrm{VCR}}{\mathrm{Vo}_{\mathrm{o}}-\mathrm{V}_{\mathrm{t}_{1}}}$
$\delta \mathrm{t}_{2}=\frac{\delta \mathrm{VCR}}{\mathrm{Vo}-\mathrm{V}_{\mathrm{t}_{2}}}$
Positive Pulse Width Change $\Delta \mathrm{t}^{+}=\delta \mathrm{t}_{2}-\delta \mathrm{t}_{1}$
$=\delta \operatorname{VCR} \frac{1}{\mathrm{Vo}-\mathrm{V}_{\left(\mathrm{t}_{2}\right)}}-\frac{1}{\mathrm{Vo}_{\mathrm{o}}-\mathrm{V}_{\left(\mathrm{t}_{1}\right)}}$
In the circuit $V_{t_{2}}=V_{X}, V_{t_{1}}=V_{Y}, V_{o}-V_{X}=V_{Y}$
$\Delta t^{+}=\delta \operatorname{VCR}\left(\frac{1}{V_{Y}}-\frac{1}{V_{X}}\right)=\delta \operatorname{VCR} \frac{V_{X}-V_{Y}}{V_{X} V_{Y}}=-\Delta t^{-}$
\therefore Offset errors do not affect the frequency of oscillation, only the symmetry of the waveshape.

SYMMETRY ERROR

Symmetry $S=\frac{\Delta t^{+}-\Delta t^{-}}{2 T} \times 100 \%$ where $T=C R 1 n \frac{V_{Y}}{V_{X}}$

$$
\begin{aligned}
S & =\frac{2 \Delta t^{+}}{2 T} \times 100 \% \\
& =\frac{\delta V C R\left(V_{X}-V_{Y}\right)}{V_{X} V_{Y}} \times \frac{1}{C R 1 n V_{Y} / V_{X}}
\end{aligned}
$$

Symmetry is worse for maximum value of $V_{X}-V_{Y}$. Maximum value of $V_{X}-V_{Y}$ occurs when R_{1} and R_{2} are arranged for minimum operating frequency, i.e., $R_{1} / R_{2}=3.6$

Substituing $\delta V=5 \mathrm{mV}$

$$
\begin{aligned}
& V_{X} / V_{Y}=3.6 \\
& V_{X} V_{Y}=\frac{1}{4.6} V_{\mathrm{OH}} \times \frac{3.6}{4.6} V_{\mathrm{OH}} \\
& V_{\mathrm{OH}}=3.5 \mathrm{~V} \text { and neglecting } \mathrm{V}_{\mathrm{OL}}
\end{aligned}
$$

Symmetry is $<0.38 \%$
Note: 1. For any given ratio of $R_{1}: R_{2}$ (i.e., V_{X} and V_{Y}), offset voltage Symmetry error is independent of frequency.
2. Symmetry improves to $.33 \%$ @ $R_{1}: R_{2}=2.5$

EXTENDING LOW FREQUENCY PERFORMANCE

If it is necessary to extend the lower limit of the oscillation frequency, a small amount of positive feedback may be introduced by connecting a $2-4 \mathrm{pF}$ capacitor between the Q output and the non-inverting input. This will decrease the minimum input slew rate required and enable oscillation frequencies of 1 kHz to be achieved without spurious oscillations occuring on the rising or falling edges of the waveform. At frequencies below 1 MHz , it is not necessary to take into account any potential frequency shift this additional feedback introduces. (Above 1 MHz , it is not necessary to use this additional feedback.)

PERFORMANCE CHARACTERISTICS:

Figure 7. Percentage Change in Frequency Versus Case Temperature.

Figure 8. Change in Symmetry Versus Case Temperature.

Figure 9. Output Waveform at 1.0 MHz .

Figure 10. Output Waveform at 10 MHz .

Figure 11. Output Waveform at 24 MHz and Expanded Falling Edge Exhibiting <50 ps Jitter.

Figure 12. Change in Pulse Width and Jitter from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$.

Figure 13. Expanded Fall Time Showing Change in Pulse Width from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, (Jitter $\sim \mathbf{3 0 0} \mathrm{ps}$).

Figure 14. Circuit and Component Values used in Obtaining Performance Characteristics.

LOW LEVEL PULSE DETECTOR

Figure 15.

CIRCUIT OPERATION

The input resistance is essentially determined by R_{4} which was chosen to be $1 \mathrm{k} \Omega$ on the basis that most sources would not be unduly loaded at this value and consequentially higher values would make the circuit excessively prone to oscillation. To minimize bias current errors, the inverting input is connected to the 10 mV reference source $\left(\mathrm{R}_{1}\right.$ and $\left.\mathrm{R}_{2}\right)$ through an equal-valued resistor (R_{3}).
Positive feedback is provided by C_{f} which provides a 50 $60 \mathrm{mV}, 3-4 \mathrm{~ns}$ pulse, significantly improving the switching time and narrowing the uncertainty region for pulses just in excess of the 10 mV threshold.

Am685/Am686/Am687

Capacitor C_{1} provides $\mathrm{A}-\mathrm{C}$ coupling and thus isolates the circuit from slowly varying signals which may be superimposed on the signal to be detected. Such is the case for a detector sensing the output from a fibreoptic cable receiver. The A-C coupling imposes additional constraints; namely, the repetition rate and duty cycle of the input signal.
The signal which is seen by the non-inverting terminal and then compared to the reference is not simply the peak value of the input pulse but the peak value less the average D.C. value of the input signal.
Assuming a 20 mV input pulse, 20 ns wide and repeated every 20ns, the signal seen across R_{4} will be as follows:

Figure 16.

By the ninth pulse, the peak signal will be 15.2 mV dropping to 14.6 mV by the end of the pulse; thus, after a pulse train of ~ 10 pulses, the detector will not detect the incoming signal.
Additionally, consider the case of a 20 ns pulse repeated every 60 nanoseconds.

Figure 17.

The peak signal at the input will now be only 15 mV ; therefore, the maximum repetition rate consistent with providing a 5.0 mV overdrive is $1 / 80 \mathrm{~ns}$ or 12.5 MHz .

Therefore, the circuit will only successfully detect $20 \mathrm{mV}, 20 \mathrm{~ns}$ signals if: a) the pulse train is $\leqslant 10$ pulses or b) the repetition rate $\leqslant 12 \mathrm{MHz}$.
To compensate for these problems, a $D C$ feedback signal is generated by R_{A}, R_{B} and C_{C}, which adjusts the reference level accordingly.
R_{A} and C_{C} form a low-pass filter that gives a maximum DC level of 1.7 volts at a $1: 1$ duty cycle. At this duty cycle, it is required to reduce the reference level by 5 mV to maintain adequate overdrive. R_{B} and R_{4} form an attenuator and the $D C$ voltage level returned to the non-inverting input $=1.7 \mathrm{~V}$ $x R_{4} /\left(R_{4}+R_{B}\right)=4.3 \mathrm{mV}$. Using this network permits the circuit to work up to 25 MHz , or better than a $1: 1$ duty cycle and removes the limitation imposed by the input A.C coupling.

Note: The response time of the feedback path must be the same as the input network; i.e., $\mathrm{RA}_{A} \mathrm{C}_{\mathrm{C}}=\mathrm{R}_{4} \mathrm{C}_{1}$ in order for the feedback to follow rapid changes in repetition rate or duty cycle.

PRECISION MONOSTABLE

Commercially available one-shots encounter problems in the generation of narrow $\ll 100 \mathrm{~ns}$) pulses. Namely, there is a significant delay between the input pulse and the output pulse of the order of 20 ns and the resultant output pulse width is highly temperature dependent due to the variation in internal delays with temperature. Second, the input pulse must be of the logic level for the type of logic employed in the design - TTL, DTL, RTL, etc. Thus, the circuits are incapable of responding to low-level input signals in the millivolt range.
The Am685 series of sampling comparators can be employed in the design of a custom one-shot to overcome both of these problems.

Figure 18 shows the design of a monostable employing the Am686 to generate precision output pulses in the $20 \cdot 100 \mathrm{~ns}$ range and the values shown are for a 50 ns pulse width.

Figure 18.

The timing diagram i!lustrates the circuit operation.

Figure 19.

Am685/Am686/Am687

The hysteresis is essentially symmetrical about zero and between ± 5 and $\pm 50 \mathrm{mV}$ of hysteresis can be generated before the relationship between the latch voltage and the thresholds become too sensitive.
The hysteresis is independent of changes in the positive supply voltage and the input common mode range and varies only with changes in temperature and negative supply voltage.

Figure 24. Input Hysteresis Versus Latch Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Figure 25. Change in Hysteresis Versus Change in Negative Supply Voltage.

Figure 26. Change in Hysteresis Versus Case Temperature.

COMPARATOR PERFORMANCE SPECIFICATIONS

The circuit triggers on the negative-going edge of the input pulse and the O output switches high. The output signal is attenuated by R_{A} and R_{B} to keep the coupled pulse inside the common mode limits of the device. The output remains high until the voltage on the non-inverting input reaches the threshold set by R_{1} and R_{2}. In order that the pulse width be independent of the input pulse amplitude, it is important to make the input time constant small compared to the desired output pulse width.
A unique feature of the circuit is the use of the differential outputs of the device to set the threshold, $\mathrm{V}_{\text {th }}$ thus providing temperature compensation and a reduction in pulse width variation from device to device.
Diode D_{1} shortens the recovery time of the timing capacitor and permits retriggering 30 ns after the end of the pulse with less than a 5% change in pulse width.
Complete isolation of the input signal and the timing network may be achieved by employing the latch function as shown below:

Figure 20.

When the input signal exceed $V_{\text {REF }}$, the output will switch and latch the comparator in the high state. When timing capacitor charges to the latch threshold, the latch will become disabled and the output will switch back to zero, providing the input is now below $V_{\text {REF }}$.
The advantages of this approach are:

1. No interaction between input signal and timing capacitor.
2. The input threshold set by $V_{\text {REF }}$ is independent of the timing threshold.
Thus, the input threshold can be varied from millivolts to volts. A practical circuit is shown:

Figure 21.

The circuit is applicable for situations where accuracy of trigger threshold is important, a large variation in input signal level is expected or the input signal level is low. Timing accuracy (pulse width) is independent of the amplitude of the input pulse, but the output pulse width varies with temperature in accordance with the temperature dependence of the latch threshold ($\sim 3.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for Am686).

APPLICATIONS REQUIRING INPUT HYSTERESIS

Comparators are frequently employed in systems where it is required that the transfer function contain a defined amount of hysteresis. Conventional comparators employing positive feedback can be used to generate hysteresis as shown below:

Figure 22.

Drawbacks of this technique include:

1. Response time of hysteresis loop \geqslant comparator propagation delay
2. Hysteresis varies with VOH and VOL changes
3. Hysteresis is not centered about zero unless an additional reference is used.
By utilizing the latch function on the Am685, Am686 and Am687, hysteresis can be inserted in a manner to overcome these drawbacks; namely:
4. Response time of hysteresis loop \ll propagation delay
5. Hysteresis not affected by V_{OH} and V_{OL} changes
6. Hysteresis is symmetrical about zero.
7. Full input differential capability maintained over complete common mode range.
The hysteresis is obtained by applying a slight bias to the latch inpuis. Tile tecimique is iiiustrated in the test circuit shown for the Am687.

Figure 23.

COMPARATOR PERFORMANCE SPECIFICATIONS (Cont.)

ALPHA NUMERIC INDEX FUNCTIONAL INDEX
SELECTION GUIDES
INDUSTRY CROSS REFERENCE DICE POLICY ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

Data Conversion Products - Section III
AmDAC-08 8-Bit High-Speed Multiplying D/A Converter 3-1
LF198 Monolithic Sample and Hold Circuits 3-7
LF298 Monolithic Sample and Hold Circuits 3-7
LF398 Monolithic Sample and Hold Circuits 3-7Am1508/1408
8 -Bit Multiplying D/A Converter 3-14
SSS1508A/1408A 8-Bit Multiplying D/A Converter 3-14
Am2502
Am25038-Bit/12-Bit Successive Approximation Registers3-18Am25048-Bit/12-Bit Successive Approximation Registers3-18
8-Bit/12-Bit Successive Approximation Registers 3-18
Am 25102
Am2SL02 Low Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
Am25L03 Low Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
Am25L04 Low Power, 8-Bit/12-Bit Successive Approximation Registers 3-24
Am6070 Companding D-to-A Converter for Control Systems 3-28
Am6071 Companding D-to-A Converter for Control Systems 3-40
Am6072 Companding D-to-A Converter for PCM Communication Systems 3-52
Am6073 Companding D-to-A Converter for PCM Communication Systems 3-64
Am6080 Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter 3-76
Am6081 Microprocessor System Compatible 8-Bit High-Speed Multiplying D/A Converter 3-84
Application Notes
Companding DAC 3-96

Distinctive Characteristics

- Fast settling output current -85 nsec
- Full scale current prematched to $\pm 1.0 \mathrm{LSB}$
- Direct interface to TTL, CMOS, ECL, HTL, NMOS
- Nonlinearity to $\pm 0.1 \%$ max over temperature range
- High output impedance and compliance -10 V to +18 V

- Différential current outputs

- Wide range multiplying capability 1.0 MHz bandwidth
- Low FS current drift $- \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Wide power supply range $- \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption $-33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

GENERAL DESCRIPTION

The DAC-08 series of 8 -bit monolithic multiplying Digital-to-Analog Converters provide very high speed performance coupled with low cost and outstanding applications flexibility.
Advanced circuit design achieves 85 nsec settling times with very low "glitch" and a low power consumption. Monotonic multiplying performance is attained over more than a 40 to 1 reference current range. Matching to within 1 LSB between reference and full scale currents eliminates the need for full scale trimming in most applications. Direct interface to all popular logic families with full noise immunity is provided by the high swing, adjustable threshold logic inputs.
High voltage compliance dual complementary current outputs are provided, increasing versatility and enabling differential operation to effectively double the peak-to-peak output swing. In many applications, the outputs can be directly converted to voltage without the need for an external op amp.

All DAC-08 series models guarantee full 8 -bit monotonicity, and nonlinearities as tight as 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range, with 33 mW power consumption attainable at $\pm 5 \mathrm{~V}$ supplies.

The compact size and low power consumption make the DAC-08 attractive for portable and military/aerospace applications. All devices are processed to MIL-STD-883.

DAC-08 applications include 8 -bit, $1.0 \mu \mathrm{sec}$ A/D converters, servo-motor and pen drivers, waveform generators, audio encoders and attenuators, analog meter drivers, programmable power supplies, CRT display drivers, high speed modems and other applications where low cost, high speed and complete input/output versatility are required.

AmDAC-08
MAXIMUM RATINGS (TA $=25^{\circ} \mathrm{C}$ Unless Otherwise Noted)

Operating Temperature

DAC-08AQ, Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC-08EQ, CQ, HO	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	500 mW
Derate above $100^{\circ} \mathrm{C}$	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

V+ supply to V -Supply	36 V
Logic Inputs	V - to $\mathrm{V}+$ plus 36 V
$\mathrm{~V}_{\mathrm{LC}}$	V - to $\mathrm{V}+$
Analog Current Outputs	See Fig. 12
Reference Inputs $\left(\mathrm{V}_{14}, \mathrm{~V}_{15}\right)$	V)
Reference Input Differential Voltage $\left(\mathrm{V}_{14}\right.$ to V_{15})	$\pm 18 \mathrm{~V}$
Reference Input Current $\left(\mathrm{I}_{14}\right)$	5.0 mA

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA}\right)$

AmDAC-08A AmDAC-08 AmDAC-08H AmDAC-08E

AmDAC-08C

Parameter Description Test Conditions Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units

	Resolution					8	8	8	8	8	8	8	8	8	Bits			
	Monotonicity					8	8	8	8	8	8	8	8	8	Bits			
	Nonlinearity		$\mathrm{T}_{A}=$ MIN. to MAX					± 0.1			± 0.19			± 0.39	\%FS			
${ }^{\text {t }}$	Settling Time		To $\pm 1 / 2$ LSB, all bits switched ON or OFF $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		DAC-08A DAC-08 DAC-08E DAC-08C		85	135		85 85	135		85	150	ns			
$\mathbf{t}_{\mathrm{PLH}}$. tPHL	Propagation Delay	Each Bit	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				35	60		35	60		35	60				
		All Bits Switched					35	60		35	60		35	60				
$\mathrm{TCI}_{\mathrm{FS}}$	Full Scale Tempco						± 10	± 50		± 10	± 50		± 10	± 80	ppm $/{ }^{\circ} \mathrm{C}$			
V_{OC}	Output Voltage Compliance		Full scale current change $<1 / 2$ LSB $R_{\text {OUT }}>20 \mathrm{Meg} \Omega$ typ.			-10		+18	-10		+18	-10		+18	Volts			
IFS4	Full Scale Current		$\begin{aligned} & V_{R E F}=10.000 \mathrm{~V} \\ & R_{14}, R_{15}=\dot{5} .000 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA			
$I_{\text {FSS }}$	Full Scale Symmetry		IFS4-1FS2				± 0.5	± 4.0		± 1.0	± 8.0		± 2.0	± 16	$\mu \mathrm{A}$			
Izs	Zero Scale Current						0.1	1.0		0.2	2.0		0.2	4.0	$\mu \mathrm{A}$			
$l_{\text {FSR }}$	Output Current Range		$\mathrm{V}-=-5.0 \mathrm{~V}$			0	2.0	2.1	0	2.0	2.1	0	2.0	2.1	mA			
			$V^{-}=-7.0 \mathrm{~V} \text { to }-18 \mathrm{~V}$			0	2.0	4.2	0	2.0	4.2	0	2.0	4.2				
$\mathrm{V}_{\text {IL }}$	Logic Input Levels	Logic '0'	$V_{L C}=0 V$					0.8			0.8			0.8				
$\mathrm{V}_{\text {IH }}$		Logic "1"				2.0			2.0			2.0						
IIL	Logic Input Current	Logic " ${ }^{\prime \prime}$	$V_{L C}=0 V$	$\mathrm{V}_{\text {IN }}=$	$\begin{aligned} & -10 \mathrm{~V} \text { to } \\ & +0.8 \mathrm{~V} \end{aligned}$		-2.0	-10		-2.0	-10		-2.0	-10	$\mu \mathrm{A}$			
${ }^{1} \mathrm{IH}$		Logic "1"		$V_{I N}=2$	$\begin{aligned} & 2.0 \mathrm{~V} \text { to } \\ & 18 \mathrm{~V} \end{aligned}$		0.002	10		0.002	10		0.002	10	$\mu \mathrm{A}$			
$V_{\text {IS }}$	Logic Input Swing		$\mathrm{V}-=-15 \mathrm{~V}$			-10		+18	-10		+18	-10		+18	Volts			
$V_{\text {THR }}$	Logic Threshold Range		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			-10		+13.5	-10		+13.5	-10		+13.5	Volts			
l_{15}	Reference Bias Current						-1.0	-3.0		-1.0	-3.0		-1.0	-3.0	$\mu \mathrm{A}$			
dl/dt	Reference Input Slew Rate					4.0	8.0		4.0	8.0		4.0	8.0		$\mathrm{mA} / \mu \mathrm{s}$			
PSSIFS+	Power Supply Sensitivity		$\mathrm{V}^{+}=4.5 \mathrm{~V}$ to 18 V				± 0.0003	± 0.01		± 0.0003	± 0.01		± 0.0003	± 0.01	\%/\%			
PSSI FS -			$\begin{aligned} & \mathrm{V}^{-}=-4.5 \mathrm{~V} \text { to }-18 \mathrm{~V} \\ & \text { I REF }=1.0 \mathrm{~mA} \end{aligned}$				± 0.002	± 0.01		± 0.002	± 0.01		± 0.002	± 0.01				
$1+$	Power Supply Current		$V_{S}= \pm 5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1.0 \mathrm{~mA}$				2.3	3.8		2.3	3.8		2.3	3.8	$m A$			
$1-$				-4.3	-5.8		-4.3	-5.8		-4.3	-5.8							
1^{+}			$V_{S}=+5.0 \mathrm{~V}$	-15 V ,			2.4	3.8		2.4	3.8		2.4	3.8				
1-			$\mathrm{I}_{\text {REF }}=2.0 \mathrm{~m}$				-6.4	-7.8		-6.4	-7.8		-6.4	-7.8				
1^{+}			$V_{S}= \pm 15 \mathrm{~V}, 1_{\text {REF }}=2.0 \mathrm{~mA}$				2.5	3.8		2.5	3.8		2.5	3.8				
1^{-}				-6.5	-7.8		-6.5	-7.8		-6.5	-7.8							
P_{D}	Power Dissipation					$\pm 5.0 \mathrm{~V}, \mathrm{I}_{\text {REF }}=1.0 \mathrm{~mA}$				33	48		33	48		33	48	mW
			$+5.0 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2.0 \mathrm{~mA}$				108	136		108	136		108	136				
			$\pm 15 \mathrm{~V}, 1_{\text {REF }}=2.0 \mathrm{~mA}$				135	174		135	174		135	174				

BASIC CONNECTIONS

$I_{F S}=\frac{+V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256}$
FOR FIXED REFERENCE, TTL OPERATION, TYPICAL VALUES ARE:

$$
\begin{aligned}
& V_{\text {REF }}=+10.000 \mathrm{~V} \\
& R_{R E F}=5.000 \mathrm{k} \\
& R_{15} \approx R_{\text {REF }} \\
& C_{C}=0.01 \mu \mathrm{~F} \\
& V_{\mathrm{LC}}=0 \mathrm{~V} \text { (GROUND) }
\end{aligned}
$$

Figure 1. Basic Positive Reference Operation.

LIC-193

Figure 2. Recommended Full Scale Adjustment Circuit.

LIC-194

$$
I_{F S} \approx \frac{-V_{R E F}}{R_{R E F}} \times \frac{255}{256}
$$

Note 1. RREF Sets IFS; R_{15} is for Bias Current Cancellation.

Figure 3. Basic Negative Reference Operation.

LIC-195

	B1	B2	B3	B4	B5	B6	B7	B8	$\mathbf{I}_{\mathbf{O}} \mathrm{mA}$	$\bar{T}_{\mathbf{O}} \mathbf{~ m A}$	$\mathbf{E}_{\mathbf{O}}$	$\bar{E}_{\mathbf{O}}$
FULL SCALE	1	1	1	1	1	1	1	1	1.992	000	-9.960	000
FULL SCALE -LSB	1	1	1	1	1	1	1	0	1.984	.008	-9.920	-.040
HALF SCALE +LSB	1	0	0	0	0	0	0	1	1.008	.984	-5.040	-4.920
HALF SCALE	1	0	0	0	0	0	0	0	1.000	.992	-5.000	-4.960
HALF SCALE -LSB	0	1	1	1	1	1	1	1	.992	1.000	-4.960	-5.000
ZERO SCALE +LSB	0	0	0	0	0	0	0	1	.008	1.984	-.040	-9.920
ZERO SCALE	0	0	0	0	0	0	0	0	.000	1.992	.000	-9.960

Figure 4. Basic Unipolar Negative Operation.

LIC-196

	B1	B2	B3	B4	B5	B6	B7	B8	$\mathbf{E}_{\mathbf{O}}$	$\bar{E}_{\mathbf{O}}$
POS FULL SCALE	1	1	1	1	1	1	1	1	-9.920	+10.000
POS FULL SCALE -LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
ZERO SCALE +LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
ZERO SCALE	1	0	0	0	0	0	0	0	0.000	+0.080
ZERO SCALE -LSB	0	1	1	1	1	1	1	1	+0.080	0.000
NEG FULL SCALE +LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
NEG FULL SCALE	0	0	0	0	0	0	0	0	+10.000	-9.920

Figure 5. Basic Bipolar Output Operation.

	B1	B2*	B3	B4	B5	B6	B7	B8	$\boldsymbol{E}_{\mathbf{O}}$
POS FULL SCALE	1	1	1	1	1	1	1	1	+9.960
POS FULL SCALE -LSB	1	1	1	1	1	1	1	0	+9.880
1+1 ZERO SCALE	1	0	0	0	0	0	0	0	+0.040
(-) ZERO SCALE	0	1	1	1	1	1	1	1	-0.040
NEG FULL SCALE +LSB	0	0	0	0	0	0	0	1	-9.880
NEG FULL SCALE	0	0	0	0	0	0	0	0	-9.960

Figure 6. Symmetrical Offset Binary Operation.

BASIC CONNECTIONS (Cont.)

LIC-199

$$
I_{F S} \cong \frac{255}{256} I_{R E F}
$$

FOR COMPLEMENTARY OUTPUT IOPERATION AS NEGATIVE LOGIC DAC), CONNECT INVERTING INPUT OF OP-AMP TO IO (PIN 2), CONNECT IO (PIN 4) TO GROUND

Figure 7. Positive Low Impedance Output Operation.

SET VOLTAGE AT NODE "A" EQUAL TO DESIRED LOGIC THRESHOLD.

Figure 9. Interfacing With Various Logic Families.

a) $I_{\text {REF }} \geqslant$ Peak Negative Swing of $\boldsymbol{I}_{\mathbf{I N}}$.

b) $+V_{\text {REF }}$ Must Be Above Peak Positive Swing of V_{IN}.

Figure 11. Accomodating Bipolar References.

FOR COMPLEMENTARY IOPERATION AS A NEGATIVE LOGIC DAC), CONNECT NON-INVERTING INPUT OF OP-AMP TO $\overline{I_{O}}$ (PIN 2); CONNECT IO (PIN 4) TO GROUND.

Figure 8. Negative Low Impedance Output Operation.

$$
\begin{aligned}
& R_{I N}=5 k \\
& +V_{I N}=10 V
\end{aligned}
$$

Figure 10. Pulsed Reference Operation.

FOR TURN-ON, $V_{L}=2.7 \mathrm{~V}$
FOR TURN-OFF, $V_{L}=0.7 \mathrm{~V}$
Figure 12. Settling Time Measurement.

APPLICATIONS INFORMATION

REFERENCE AMPLIFIER SET.UP

The DAC-08 is a multiplying D/A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +4.0 mA . The full scale output current is a linear function of the reference current and is given by:
$I_{F S}=\frac{255}{256} \times I_{\text {REF }}$ where $I_{\text {REF }}=I_{14}$.
In positive reference applications (Fig. 1), an external positive reference voltage forces current through R_{14} into the $\mathrm{V}_{\text {REF }}(+)$ terminal (pin 14) of the reference amplifier. Alternatively, a negative reference may be applied to $\mathrm{V}_{\mathrm{REF}(-)}$ at pin 15 (Fig. 3); reference current flows from ground through R_{14} into $\mathrm{V}_{\mathrm{REF}(+)}$ as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 15. The voltage at pin 14 is equal to and tracks the voltage at pin 15 due to the high gain of the internal reference amplifier. R_{15} (nominally equal to R_{14}) is used to cancel bias current errors; R_{15} may be eliminated with only a minor increase in error.
Bipolar references may be accommodated by offsetting $\mathrm{V}_{\text {REF }}$ or pin 15 as shown in Fig. 11. The negative common mode range of the reference amplifier is given by: $\mathrm{V}_{\mathrm{CM}}-=\mathrm{V}$ - plus ($I_{\text {REF }} \times 1.0 \mathrm{k} \Omega$) plus 2.5 V . The positive common mode range is $\mathrm{V}+$ less 1.5 V .
When a DC reference is used, a reference bypass capacitor is recommended. A 5.0 V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R_{14} should be split into two resistors with the junction bypassed to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
For most applications, a +10.0 V reference is recommended for optimum full scale temperature coefficient performance. This will minimize the contributions of reference amplifier V_{OS} and $\mathrm{TCV}_{\mathrm{OS}}$. For most applications the tight relationship between $I_{\text {REF }}$ and $I_{F S}$ will eliminate the need for trimming $\mathrm{I}_{\text {REF }}$. If required, full scale trimming may be accomplished by adjusting the value of R_{14}, or by using a potentiometer for R_{14}. An improved method of full scale trimming which eliminates potentiometer T.C. effects is shown in Fig. 2.
Using lower values of reference current reduces negative power supply current and increases reference amplifier negative common mode range. The recommended range for operation with a DC reference current is +0.2 mA to +4.0 mA .
The reference amplifier must be compensated by using a capacitor from pin 16 to $V-$. For fixed reference operation, a $0.01 \mu \mathrm{~F}$ capacitor is recommended. For variable reference applications, see section entitled "Reference Amplifier Compensation for Multiplying Applications."

MULTIPLYING OPERATION

The DAC-08 provides excellent multiplying performance with an extremely linear relationship between $I_{\text {FS }}$ and $I_{\text {REF }}$ over a range of 4.0 mA to $4.0 \mu \mathrm{~A}$. Monotonic operation is maintained over a typical range of $\mathrm{I}_{\text {REF }}$ from $100 \mu \mathrm{~A}$ to 4.0 mA ; consult factory for devices selected for monotonic operation over wider I Ref ranges.

REFERENCE AMPLIFIER COMPENSATION FOR MULTIPLYING APPLICATIONS

$A C$ reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to V -. The value of this capacitor depends on the impedance presented to pin 14: for R_{14} values of $1.0,2.5$ and $5.0 \mathrm{k} \Omega$, minimum values of C_{c} are 15,37 , and 75 pF . Larger values of R_{14} require proportionately increased values of C_{c} for proper phase margin.

For fastest response to a pulse, low values of R_{14} enabling small C_{c} values should be used. If pin 14 is driven by a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For $R_{14}=1.0 \mathrm{k} \Omega$ and $C_{C}=15 \mathrm{pF}$, the reference amplifier slews at $4.0 \mathrm{~mA} / \mu \mathrm{s}$ enabling a transition from $\mathrm{I}_{\mathrm{REF}}=0$ to $I_{\text {REF }}=2.0 \mathrm{~mA}$ in 500 ns .
Operation with pulse inputs to the reference amplifier may be accommodated by an alternate compensation scheme shown in Fig. 10. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff ($\mathrm{I}_{\text {REF }}=0$) condition. Full scale transition (0 to 2.0 mA) occurs in 120 ns when the equivalent impedance at pin 14 is 200Ω and $C_{c}=0$. This yields a reference slew rate of $16 \mathrm{~mA} / \mu \mathrm{s}$ which is relatively independent of $R_{I N}$ and V_{IN} values.

LOGIC INPUTS

The DAC-08 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, $2.0 \mu \mathrm{~A}$ logic input current and completely adjustable logic threshold voltage. For $\mathrm{V}-=-15 \mathrm{~V}$, the logic inputs may swing between -10 V and +18 V . This enables direct interface with +15 V CMOS logic, even when the DAC-08 is powered from a +5 V supply. Minimum input logic swing and minimum logic threshold voltage are given by: V - plus ($\mathrm{I}_{\mathrm{REF}} \times 1.0 \mathrm{k} \Omega$) plus 2.5 V . The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 1, $V_{\text {LC }}$). For TTL and DTL interface, simply ground pin 1 . When interfacing ECL, an I $\mathrm{I}_{\mathrm{REF}}=1.0 \mathrm{~mA}$ is recommended. For interfacing other logic families, see Fig. 9. For general set-up of the logic control circuit, it should be noted that pin 1 will source $100 \mu \mathrm{~A}$ typical; external circuitry should be designed to accommodate this current.
Fastest settling times are obtained when pin 1 sees a low impedance. If pin 1 is connected to a $1.0 \mathrm{k} \Omega$ divider, for example, it should be bypassed to ground by a $0.01 \mu \mathrm{~F}$ capacitor.

ANALOG OUTPUT CURRENTS

Both true and complemented output sink currents are provided, when $I_{0}+T_{0}=I_{F S}$. Current appears at the "true" output when a " 1 " is applied to each logic input. As the binary count increases, the sink current at pin 4 increases proportionally, in the fashion of a "positive logic" D/A converter. When a " 0 " is applied to any input bit, that current is turned off at pin 4 and turned on at pin 2. A decreasing logic count increases T_{O} as in a negative or inverted logic D/A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing $\mathrm{I}_{\text {FS }}$; do not leave an unused output pin open.
Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 36 V above V - and is independent of the positive supply. Negative compliance is given by $\mathrm{V}-$ plus ($\mathrm{I}_{\mathrm{REF}} \cdot 1.0 \mathrm{k} \Omega$) plus 2.5 V .
The dual outputs enable double the usual peak-to-peak load swing when driving loads in quasi-differential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving center-tapped coils and transformers.

AmDAC-08

POWER SUPPLIES

The DAC-08 operates over a wide range of power supply voltages from a total supply of 9 V to 36 V . When operating at supplies of $\pm 5 \mathrm{~V}$ or less, $\mathrm{I}_{\text {REF }} \leqslant 1 \mathrm{~mA}$ is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range. For example, operation at -4.5 V with $\mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA}$ is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8 V total must be applied to insure turn-on of the internal bias network.
Symmetrical supplies are not required, as the DAC-08 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required: however, an artificial ground may be useful to insure logic swings, etc. remain between acceptable limits.

Power consumption may be calculated as follows:
$\mathrm{P}_{\mathrm{d}}=(1+)(\mathrm{V}+)+(\mathrm{I}+)(\mathrm{V}-)+\left(2 \mathrm{I}_{\mathrm{REF}}\right)(\mathrm{V}-)$. A useful feature of the DAC-08 design is that supply current is constant and independent of input logic states; this is useful in cryptographic applications and further serves to reduce the size of the power supply bypass capacitors.

TEMPERATURE PERFORMANCE

The nonlinearity and monotonicity specifications of the DAC-08 are guaranteed to apply over the entire rated operating temperature range. Full scale output current drift is tight, typically $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, with zero scale output current and drift essentially negligible compared to $1 / 2$ LSB.
Full scale output drift performance will be best with +10.0 V references as $\mathrm{V}_{\text {OS }}$ and $T C V_{\text {OS }}$ of the reference amplifier will be very small compared to 10.0 V . The temperature coefficient of the reference resistor R_{14} should match and track that of the output resistor for minimum overall full scale drift. Settling times of the DAC- 08 decrease approximately 10% at $-55^{\circ} \mathrm{C}$; at $+125^{\circ} \mathrm{C}$ an increase of about 15% is typical.

SETTLING TIME

The DAC-08 is capable of extremely fast settling times, typically 85 nsec at $\mathrm{I}_{\text {REF }}=2.0 \mathrm{~mA}$. Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The logic switch design enables propagation delays of only 35 nsec for each of the 8 bits. Settling time to within $1 / 2$ LSB of the LSB is therefore 35 nsec , with each progressively larger bit taking successively longer. The MSB settles in 85 nsec , thus determining the overall settling time of 85 nsec . Settling to 6 -bit accuracy requires about 65 to 70 nsec. The output capacitance of the DAC-08 including the package is approximately 15 pF , therefore the output RC time constant dominates settling time if $R_{L}>500 \Omega$.
Settling time and propagation delay are relatively insensitive to logic input amplitude and rise and fall times, due to the high gain of the logic switches. Settling time also remains essentially constant for I IREF values down to 1.0 mA , with gradual increases for lower $I_{\text {REF }}$ values. The principal advantage of higher $I_{\text {REF }}$ values lies in the ability to attain a given output level with lower load resistors, thus reducing the output RC time constant.
Measurement of settling time requires the ability to accurately resolve $\pm 4 \mu \mathrm{~A}$, therefore a $1 \mathrm{k} \Omega$ load is needed to provide adequate drive for most oscilloscopes. The settling time fixture of Fig. 12 uses a cascode design to permit driving a $1 \mathrm{k} \Omega$ load with less than 5 pF of parasitic capacitance at the measurement node. At $\left.\right|_{\text {REF }}$ values of less than 1 mA , excessive RC damping of the output is difficult to prevent while maintaining adequate sensitivity. However, the major carry from 01111111 to 10000000 provides an accurate indicator of settling time. This code change does not require the normal 6.2 time constants to settle to within $\pm 0.2 \%$ of the final value, and thus settling times may be observed at lower values of $\mathrm{I}_{\text {REF }}$.
DAC-08 switching transients of "glitches" are very low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time.
Fastest operation can be obtained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply, reference and V_{LC} terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is independent of input logic states; $0.1 \mu \mathrm{~F}$ capacitors at the supply pins provide full transient protection.

LF198/LF298/LF398
 Monolithic Sample and Hold Circuits

Distinctive Characteristics

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than $10 \mu \mathrm{~s}$ acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002\% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

GENERAL DESCRIPTION

The LF198/LF298/LF398 are BI-FET monolithic sample and hold circuits with ultra-high DC accuracy, fast acquisition time $(6 \mu \mathrm{~s}$ to $0.01 \%)$ and low droop rate. A bipolar input stage is used to obtain the lowest possible offset voltage and wide bandwidth. These circuits are designed to have high common mode rejection and a gain accuracy of 0.002%. High input impedance ($10^{10} \Omega$) permits their use with a high impedance source without degrading accuracy.

The output buffer has a p-channel JFET input with a typical input current of 30 pA , giving a droop rate as low as $5 \mathrm{mV} / \mathrm{Min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET has a very low noise level and high temperature stability.
A differential logic input allows the logic to be referenced to a separate ground from analog ground, permitting a direct interface to nearly any logic family. The LF198 series guarantees no feed through in the hold mode including input signal swings equal to the power supply.

ORDERING INFORMATION				CONNECTION DIAGRAM Metal Can Top View	
Part Number	Package Type	Temperature Range	Order Number		
LF398	Metal Can Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { LF398H } \\ & \text { LD398 } \end{aligned}$		
LF298	Metal Can	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LF298H		
LF198	Metal Can Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { LF198H } \\ & \text { LD198 } \\ & \hline \end{aligned}$		

LF198/298/398

ABSOLUTE MAXIMUM RATINGS
Operating Ambient Temperature Range

LF198	$-55^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5 ^ { \circ } \mathrm { C }}$
LF298	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LF398	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (Package Limitation, Note 1)	500 mW
Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	Equal to Supply Voltage
Logic to Logic Reference Differential Voltage (Note 2)	$+7 \mathrm{~V},-\mathbf{3 0 \mathrm { V }}$
Hold Capacitor Short Circuit Duration	10 sec
Lead Temperature (Soldering 10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 3)

LF198/LF298

LF398

Parameter	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
Input Offset Voltage, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1	3		2	7	mV
	Full Temperature Range			5			10	mV
Input Bias Current, (Note 6)	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$		5	25		10	50	nA
	Full Temperature Range			75			100	nA
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{10}			10^{10}		Ω
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		0.002	0.005		0.004	0.01	\%
	Full Temperature Range			0.02			0.02	\%
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		80	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, " HOLD " mode		0.5	2		0.5	4	Ω
	Full Temperature Range			4			6	Ω
"HOLD' Step, (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 6)	$\mathrm{T}_{\mathrm{j}} \geqslant 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text {, (Note 5) }$ Hold Mode		30	100		30	200	pA
Acquisition Time to 0.1\%	$\Delta \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF}$		4			4		$\mu \mathrm{s}$
	$\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$		20			20		$\mu \mathrm{s}$
Hold Capacitor Charge Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$V_{\text {OUT }}=0$	80	110		80	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V

Notes: 1. The maximum junction temperature is $150^{\circ} \mathrm{C}$ for the LF198, $115^{\circ} \mathrm{C}$ for the LF298, and $100^{\circ} \mathrm{C}$ for the LF398. When used at a higher ambient temperature, the TO-5 can package must be derated based on a thermal resistance ($\theta \mathrm{j} \mathrm{A}$) of $150^{\circ} \mathrm{C} / \mathrm{W}$.
2. The differential voltage may not exceed this limit. The common mode voltage on the logic pins may equal the supply voltage without causing damage to the device. For the LF198 to operate properly, one of the logic pins must be at least 2 V below the positive supply and 3 V above the negative supply.
3. The following conditions apply unless otherwise noted: Device is in "sample mode". $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-11.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<+11.5 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{L}}=$ $10 \mathrm{k} \Omega$. Logic reference voltage $=0 \mathrm{~V}$. Logic input voltage $=2.5 \mathrm{~V}$.
4. The hold step is produced by a charge which is coupled from the logic input signal to the hold capacitor via parasitic capacitance and internal operating point changes. Stray capacitance equal to 1 pF will create a 0.5 mV step with a 5 volt logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. This step can be reduced by increasing the magnitude of the hold capacitor.
5. Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The junction temperature doubles the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over the full input signal range.
6. These values are guaranteed over the ± 5 to $\pm 18 \mathrm{~V}$ supply range.

TYPICAL PERFORMANCE CHARACTERISTICS

Hold Step

Input Bias Current

Phase and Gain
(Input to Output, Small Signal)

Hold Step Versus Input Voltage

APPLICATION INFORMATION

Freezing the input to an analog-to-digital (A/D) converter is an important application for the sample and hold amplifier. If the analog input to the A / D changes during conversion by the amount $\pm 1 / 2$ LSB, an ideal A/D would produce 1 LSB error beyond normal quantization error. A sample and hold amplifier eliminates this problem by holding the input signal to the A / D converter during the conversion interval. The proper choice of hold capacitor value and type is necessary to obtain optimum performance. The capacitor value directly affects several circuit parameters, particularly acquisition time, droop rate, and hold step. The hold step error is inversely proportional to the value of the hold capacitor.

Graphs are provided in this data sheet for use as guides in selecting a suitable value of capacitance. However, the capacitor should have extremely high insulation resistance and low dielectric absorption, or dielectric hysteresis. Polypropylene (below $+85^{\circ} \mathrm{C}$) and Teflon (above $+85^{\circ} \mathrm{C}$) types are recommended. The hysteresis error can be significantly reduced if the output of the LF198 is digitized immediately after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is $10-50 \mathrm{~ms}$, thus if A / D conversion can be made within 1 ms , hysteresis error will be reduced by a factor of ten.

The logic inputs on the LF198 are fully differential with low input current and will operate from TTL levels up to 15 V . Some typical logic input configurations are shown in this data sheet. The logic signal into the LF198 must have a minimum slew rate of $0.2 \mathrm{~V} / \mu \mathrm{s}$. Slower signals cause excess hold step errors.

When switched from sample to hold, delay in response to the hold command (aperture time and aperture time uncertainty) can cause the frozen value of a fast moving waveform to differ from the value it had at the instant the hold command is given. However, the hold capacitor has an additional lag due to the 300Ω series resistor on the chip which cancels out some of the error due to aperture time and aperture time uncertainty.

For example, using an analog input of 20 volts p-p at 10 kHz , maximum slew rate $0.5 \mathrm{~V} / \mu \mathrm{s}$, with no phase delay and 80 ns logic
delay, one could expect up to $(0.08 \mu \mathrm{~s}) \cdot(0.5 \mathrm{~V} / \mu \mathrm{s})=40 \mathrm{mV}$ error if the input is sampled during the maximum $\mathrm{dv} / \mathrm{dt}$ period. A positive going input would give a +40 mV error. Assume that the slew rate of the charging amplifier and the RC constant of the analog loop cause a delay of 120 ns. If the hold capacitor sees this exact delay, then the analog delay would be $(0.5 \mu \mathrm{~V} / \mathrm{sec}) \cdot(.12 \mu \mathrm{~s})=-60 \mathrm{mV}$. Total output error is +40 mV $-60 \mathrm{mV}=-20 \mathrm{mV}$.
For a sample and hold amplifier in a multiplexed A / D system, acquisition and aperture times are critical parameters. In order to maintain the acquired signal level within the specified accuracy, these times must be considered when selecting the sampling rate. For example, if a 16 channel MUX drives a sample and hold amplifier in which each channel is 5 KHz and 2 samples per cycle are needed to satisfy the Nyquist criteria, the minimum sampling rate $=160000$ samples $/ \mathrm{sec}$. $((5 \mathrm{KHzX}$ 16) cycles/sec $X 2$ samples/cycle). The minimum channel period is the reciprocal of the sampling rate of $6.25 \mu \mathrm{~s}$. During the hold mode the MUX can switch to another channel. This eliminates the need to consider the MUX and source settling time and shortens the channel period.
Calculating the sum of the sample and hold acquisition time, aperture time and A/D conversion time is usually a convenient method for estimating maximum channel period.
In multiplex applications, sample and hold feed-through is a significant problem. Since each channel voltage differs, the sample and hold input signal becomes a series of varied height pulses that cause errors in the sample and hold voltage.
Digital feed through occurs when a fast rising logic signal is coupled into the analog input. To minimize it, the logic signal trace in the PCB layout should be kept as far as possible from the analog input. Guarded trace may also be used around the input pin for shielding purposes.
To adjust the DC offset zeroing, the wiper of a 1 K potentiometer is connected to the offset adjust pin. One end of the potentiometer is connected to VCC and the other is connected through a resistor to ground. The value of the resistor is selected such that the current flows through it at approximately 6 mA .

51×66 Mils

APPLICATIONS (Cont.)

FAST ACQUISITION, LOW DROOP SAMPLE AND HOLD

DEFINITION OF TERMS

Acquisition Time - The time required to acquire a new analog input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.
Aperture time - The delay between the command to hold and the actual opening of the hold switch.
Aperture time uncertainty - The tolerance, or jitter of the aperture time.
Droop rate - The rate of change of output voltage in the hold mode. It is caused by leakage currents at the hold capacitor node.

Feed-through - During hold, a small part of the input signal feeds through the capacitor of the switch to the hold capacitor and output. This is usually a function of the level and frequency of the input signal and is expressed in dB .

Dynamic sampling error - The error introduced into the outputs due to input voltage varying when the hold command is issued. Error is expressed in mV with a given hold capacitor.

Gain error - The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

Hold step - The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (DC) analog input voltage.

Am1508/1408•SSS1508A/1408A

Distinctive Characteristics

- Improved direct replacement for MC1508/1408
- $\pm 0.19 \%$ nonlinearity guaranteed over temperature range
- Improved settling time (SSS1508A/1408A) 250ns, typ.
- Improved power consumption (SSS1508A/1408A) 157mW, typ.
- Compatible with TTL, CMOS logic
- Standard supply voltage: +5.0 V and -5.0 V to -15 V
- Output voltage swing: +0.5 V to -5.0 V
- High speed multiplying input: $4.0 \mathrm{~mA} / \mu \mathrm{s}$

FUNCTIONAL DESCRIPTION

The SSS1508A/1408A, Am1508/1408 are 8-bit monolithic multiplying Digital-to-Analog Converters consisting of a reference current amplifier, an R-2R ladder, and eight high speed current switches. For many applications, only a reference resistor and reference voltage need be added. Improvements in design and processing techniques provide faster settling times combined with lower power consumption while retaining direct interchangeability with MC1508/1408 devices.
The R-2R ladder divides the reference current into eight binarily-related components which are fed to the switches. A remainder current equal to the least significant bit is always
shunted to ground, therefore the maximum output current is $255 / 256$ of the reference amplifier input current. For example, a full scale output current of 1.992 mA would result from a reference input current of 2.0 mA .
The SSS1508A/1408A, Am1508/1408 is useful in a wide variety of applications, including waveform synthesizers, digitally programmable gain and attenuation blocks, CRT character generation, audio digitizing and decoding, stepping motor drives, programmable power supplies and in building Tracking and Successive Approximation Analog-to-Digital Converters.

MAXIMUM RATINGS (Above which the useful life may be impaired)
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Power Supply Voltage	
$V_{C C}$ +5.5 Vdc V -16.5 Vdc Vigital Input Voltage, $\mathrm{V}_{5}-\mathrm{V}_{12}$ $+5.5,0 \mathrm{Vdc}$ Applied Output Voltage, V_{O} $+0.5,-5.2 \mathrm{Vdc}$ Reference Current, I_{14} 5.0 mA Reference Amplifier Inputs, $\mathrm{V}_{14}, \mathrm{~V}_{15}$ $\mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}} \mathrm{Vdc}$	

| Power Dissipation (Package Limitation), PD_{D} |
| :--- | ---: |
| Ceramic Package 1000 mW
 Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $6.7 \mathrm{~mW}{ }^{\circ} \mathrm{C}$
 Operating Temperature Range, T_{A}
 SSS1508A-8, Am1508 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 SSS1408A Series, Am1408 Series $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
 Storage Temperature, $\mathrm{T}_{\mathrm{stg}}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

$\left(V_{C C}=5.0 \mathrm{Vdc}, V_{E E}=-15 \mathrm{Vdc}, \frac{V_{\text {ref }}}{R_{14}}=2.0 \mathrm{~mA}, \operatorname{SSS} 1508 \mathrm{~A}-8 / \mathrm{Am} 1508 \mathrm{~L} 8: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{SSS} 1408 \mathrm{~A} / \mathrm{Am} 1408$ Series: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted. All digital inputs at high logic level.)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
E_{R}	Relative Accuracy					\% IFS
	SSS1508A-8, SSS1408A-8, Am 1508L8, Am 1408L8				± 0.19	
	SSS1408A-7, Am1408L7				± 0.39	
	SSS1408A-6, Am1408L6				± 0.78	
${ }^{\text {t }}$	Settling Time to within 1/2 LSB (includes tPLH)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		250		ns
	SSS1508A/1408A					
	Am1508/1408			300		
${ }^{\text {tPLH, }}$ PHL	Propagation Delay Time	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	100	ns
$\mathrm{TCl}_{\mathrm{O}}$	Output Full Scale Current Drift			± 20		PPM/ ${ }^{\circ} \mathrm{C}$
	Digital Input Logic Levels (MSB)					Vdc
$\mathrm{V}_{\text {IH }}$	High Level, Logic " 1 "		2.0			
$V_{\text {IL }}$	Low Level, Logic "0"				0.8	
I_{IH}	Digital Input Current (MSB)	High Level, $\mathrm{V}_{1 \mathrm{H}}=5.0 \mathrm{~V}$		0	0.04	mA
IIL		Low Level, $\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$		-0.002	-0.8	
I_{15}	Referençe Input Bias Current (Pin 15)					$\mu \mathrm{A}$
	SSS1508A/1408A			-1.0	-3.0	
	Am1508/1408			-1.0	-5.0	
IOR	Output Current Range	$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	0	2.0	2.1	mA
		$\mathrm{V}_{\mathrm{EE}}=-7.0 \mathrm{~V}$ to -15 V	0	2.0	4.2	
10	Output Current	$\mathrm{V}_{\text {ref }}=2.000 \mathrm{~V}, \mathrm{R}_{14}=1000 \Omega$	1.9	1.99	2.1	mA
O (min.)	Output Current (All Bits Low)			0	4.0	$\mu \mathrm{A}$
v_{O}	Output Voltage Compliance	$\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$			$-0.6,+0.5$	Vdc
	($\mathrm{E}_{\mathrm{r}} \leqslant 0.19 \%$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {EE }}$ below -10 V			$-5.0,+0.5$	
SRI ${ }_{\text {ref }}$	Reference Current Slew Rate			4.0		$\mathrm{mA} / \mu \mathrm{s}$
PSSIO	Output Current Power Supply Sensitivity			0.5	2.7	$\mu \mathrm{A} / \mathrm{V}$
	Power Supply Current					mA
${ }^{1} \mathrm{CC}$	SSS1508A/1408A			2.5	14	
IEE				-6.4	-13	
ICC	Am1508/1408			2.5	22	
IEE				-6.4	-13	
$\mathrm{V}_{\text {CCR }}$	Power Supply Voltage Range	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4.5	5.0	5.5	Vdc
$\mathrm{V}_{\text {EER }}$			-4.5	-15	-16.5	
P_{d}	Power DissipationSSS1508A/1408A	All Bits Low				mW
		$V_{E E}=-5.0 \mathrm{Vdc}$		34	136	
		$\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}$		108	265	
		All Bits High				
		$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}$		34		
		$\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}$		108		
	Am1508/1408	All Bits Low				
		$V_{E E}=-5.0 \mathrm{Vdc}$		34	170	
		$\mathrm{V}_{\text {EE }}=-15 \mathrm{Vdc}$		108	305	
		All Bits High				
		$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}$		34		
		$\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}$		108		

TYPICAL APPLICATIONS

GENERAL INFORMATION AND APPLICATION NOTES

REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, I_{14} must always flow into pin 14 regardless of the setup method or reference voltage polarity.
Connections for a positive voltage are shown on page 3. The reference voltage source supplies the full current I_{14}. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R_{15} with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R_{14} to maintain proper phase margin; for R_{14} values of $1.0,2.5$ and 5.0 kilohms, minimum capacitor values are 15,37 , and 75 pF . The capacitor may be tied to either V_{EE} or ground, but using V_{EE} increases negative supply rejection.
A negative reference voltage may be used if R_{14} is grounded and the reference voltage is applied to R_{15} as shown. A high input impedance is the main advantage of this method. Compensation involves a capacitor to V_{EE} on pin 16 , using the values of the previous paragraph. The negative reference voltage must be at least 4.0 volts above the V_{EE} supply. Bipolar input signals may be handled by connecting R_{14} to a positive reference voltage equal to the peak positive input level at pin 15 .
When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, R_{14} should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5.0 V , a clamp diode is recommended between pin 14 and ground.
If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.6 to +0.5 volts when $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ due to the current switching methods employed in the SSS1508A-8, Am 1508.
The negative output voltage compliance of the SSS1508A-8, Am1508 is extended to -5.0 V where the negative supply voltage is more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_{L} up to 500 ohms do not significantly affect performance but a 2.5 -kilohm load increases "worst case" settling time to $1.2 \mu \mathrm{~S}$ (when all bits are switched on). Refer to the subsequent text section on Settling Time for more details on output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -7.0 volts, due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the SSS1508A-8, Am 1508 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the SSS1508A-8 has a very low full scale current drift with temperature.
The SSS1508A-8/Am1508 Series is guaranteed accurate to within $\pm 1 / 2$ LSB at a full scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA , with the loss of one LSB $(8.0 \mu \mathrm{~A})$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown on page 3. The 12 -bit converter is calibrated for a full scale output current of 1.992 mA . This is an optional step since the SSS1508A-8, Am1508 accuracy is essentially the same between 1.5 and 2.5 mA . Then the SSS1508A-8, Am 1508 circuits' full scale current is trimmed to the same value with R_{14} so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16 -bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.19 \%$ specification provided by the SSS1508A-8, Am 1508.

MULTIPLYING ACCURACY

The SSS1508A-8, Am1508 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of $256: 1$. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4.0 mA , the additional error contributions are less than $1.6 \mu \mathrm{~A}$. This is well within eight-bit accuracy when referred to full scale.
A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the SSS1508A-8, Am 1508 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a dc reference current is 0.5 to 4.0 mA .

SETTLING TIME

The "worst case" switching condition occurs when all bits are switched "on," which coresponds to a LOW-to-HIGH transition for all bits. This time is typically 250 ns for settling to within $\pm 1 / 2$ LSB, for 8 -bit accuracy, and 200 ns to $1 / 2$ LSB for 7 and 6 -bit accuracy. The turn off is typically under 100ns. These times apply when $R_{L} \leqslant 500$ ohms and $C_{O} \leqslant 25 p F$.
The slowest single switch is the least significant bit. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 250 ns may be realized.
Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

Am2502/2503/2504
 Eight-Bit/Twelve-Bit Successive Approximation Registers

Distinctive Characteristics

- Contains all the storage and control for successive approximation A-to-D converters.
- Provision for register extension or truncation.
- Can be operated in START-STOP or continuous conversion mode.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Can be used as serial-to-parallel converter or ring counters.
- Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

The Am2502, Am2503 and Am2504 are 8-bit and 12-bit TTL Successive Approximation Registers. The registers contain all the digital control and storage necessary for successive approximation analog-todigital conversion. They can also be used in digital systems as the control and storage element in recursive digital routines.
The registers consist of a set of master latches that act as the control elements in the device and change state when the input clock is ${ }^{\circ}$ LOW, and a set of slave latches that hold the register data and change on the input clock LOW-to-HIGH transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the Am2502 and Am2504 when the cleck gees from LOW-to-HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time that data enters the register bit the next less significant bit is set to a LOW ready for the next iteration.
The register is reset by holding the S (Start) signal LOW during the clock LOW-to-HIGH transition. The register synchronously resets to the state $\mathrm{Q}_{7}(11)$ LOW, (Note 2) and all the remaining register outputs HIGH. The CC (Conversion Complete) signal is also set HIGH at this time. The $\overline{\mathrm{S}}$ signal should not be brought back HIGH until after the
clock LOW-to-HIGH transition in order to guarantee correct resetting. After the clock has gone HIGH resetting the register, the $\overline{\mathrm{S}}$ signal is removed. On the next clock LOW-to-HIGH transition the data on the D input is set into the $Q_{7}(11)$ register bit and the $Q_{6}(10)$ register bit is set to a LOW ready for the next clock cycle. On the next clock LOW-to-HIGH transition data enters the $\mathrm{Q}_{6}(10)$ register bit and $\mathrm{Q}_{5}(9)$ is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into O_{0}, the $\overline{\mathrm{CC}}$ signal goes LOW, and the register is inhibited from further change until reset by a Start signal.
In order to allow complementary conversion the complementary output of the most significant register bit is made available. An active LOW enable input, $\overline{\mathrm{E}}$, on the Am2503 and Am2504 allows devices to be connected together to form a longer register by connecting the clock, D, and \bar{S} inputs together and connecting the $\overline{C C}$ output of one device to the \bar{E} input of the next less significant device. When the Start signal resets the register, the \bar{E} signal goes HIGH , forcing the $Q_{7}(11)$ bit HIGH and inhibiting the device from accepting data until the previous device is full and its $\overline{C C}$ goes LOW. If only one device is used the \bar{E} input should be held at a LOW logic level (Ground). If all the bits are not required, the register may be truncated and conversion time saved by using a register output going LOW rather than the $\overline{\mathrm{CC}}$ signal to indicate the end of conversion.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{cc}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	-30 mA to +5.0 mA
DC Input Current	-30

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am2502×C Am2502XM	Am $2503 \times C$ Am $2504 \times C$ Am $2503 \times \mathrm{M}$ Am $2504 \times \mathrm{M}$	$\begin{array}{ll} T_{A}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{array}$				Typ. (Note 1)	Max.	Units
Parameters	Description	Test Conditions			Min.			
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$H=-0.48$		2.4	3.6		Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} ., \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$L=9.6 \mathrm{~mA}$			0.2	0.4	Volts
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level	Guaranteed in voltage for al	t logical H puts		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed in voltage for all	at logical puts				0.8	Volts
	Unit Load			CP, D, \bar{S}		-1.0	-1.6	
	Input LOW Current	$V_{C C}=$ MAX.		\bar{E}		-1.5	-2.4	mA
	Unit Load			CP, D		6.0	40	
${ }^{1} \mathrm{IH}$	Input HIGH Current	$V_{C C}=$ MAX.	$\mathrm{N}=2.4 \mathrm{~V}$	E, \bar{S}		12.0	80	$\mu \mathrm{A}$
	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ MAX.,	$\mathrm{N}=5.5 \mathrm{~V}$				1.0	mA
${ }^{\text {ISC }}$	Output Short Circuit Current	$V_{C C}=$ MAX.	OUT $=0.0$		-10	-25	-45	mA
			Am2502	XM		65	85	mA
			Am2502	XC		65	95	mA
				XM		60	80	
${ }^{\text {CC }}$	Power Supply Current	$C=$ MAX	Am2503	XC		60	90	mA
				XM		90	110	
			Am2504	XC		90	124	mA

Notes: 1. Typical Limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. $\mathrm{V}_{\mathrm{OL}}(\mathrm{MAX})=.0.4 \mathrm{~V}$ with total device fanout of less than 50 TTL Unit Loads $(80 \mathrm{~mA})$. Otherwise, $\mathrm{V}_{\mathrm{OL}}(\mathrm{MAX})=.0.45 \mathrm{~V}$.

Switching Characteristics ($T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}, C_{L}=15 \mathrm{pF}$)

Parameters	Description		Min.	Typ.	Max.	Units
$t_{\text {pd }+}$	Turn Off Delay CP to Output HIGH (except $\mathrm{Q}_{11}, \overline{\mathrm{O}}_{11}$)		10	29	45	ns
$\mathrm{t}_{\mathrm{pd}+}$	Turn Off Delay CP to Q_{11} or $\overline{\mathrm{Q}}_{11} \mathrm{HIGH}$		10	35	50	ns
t_{pd} -	Turn On Delay CP to Output LOW		10	27	40	ns
t_{s} (D)	Set-up Time Data Input		-10	4.0	10	ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{S})$	Set-up Time Start Input		0	9.0	16	ns
$t_{\text {pd }}(\mathrm{E})$	Turn Off Delay E to $\mathrm{Q}_{7}(11) \mathrm{HIGH}$	(Am2503/Am2504)		15	23	ns
$t_{\text {pd- }}(E)$	Turn On Delay E to $\mathrm{Q}_{7}(11)$ LOW	$C_{P}=\mathrm{H}, \overline{\mathrm{S}}=\mathrm{L}$		20	30	ns
$t_{p w L}{ }^{(C P)}$	Minimum LOW Clock Pulse Width			28	46	ns
$\mathbf{t}_{\mathrm{pwH}}(\mathrm{CP})$	Minimum HIGH Clock Pulse Width			12	20	ns
$\mathrm{f}_{\text {max }}$.	Maximum Clock Frequency		15	25		MHz

DEFINITION OF TERMS

SUBSCRIPT TERMS:

H HIGH, applying to a HIGH logic level or when used with $V_{C C}$ to indicate high V_{CC} value.
I Input
L LOW, applying to LOW logic level or when used with V_{CC} to indicate low $V_{C C}$ value.
O Output

FUNCTIONAL TERMS:

Fan-Out The logic HIGH or LOW output drive capability in terms of Input Unit Loads.
Input Unit Load One T^{2} L gate input load. In the HIGH state it is equal to $I_{I H}$ and in the LOW state it is equal to $I_{I L}$.
CP The clock input of the register.
$\overline{\mathbf{C C}}$ The conversion complete output. This output remains HIGH during a conversion and goes LOW when a conversion is complete.
D The serial data input of the register.
$\overline{\mathrm{E}}$ The register enable. This input is used to expand the length of the register and when HIGH forces the $\mathrm{Q}_{7}(11)$ register output HIGH and inhibits conversion. When not used for expansion the enable is held at a LOW logic level (Ground).
$\mathrm{O}_{\mathbf{7}}(11)$ The true output of the MSB of the register.
$\overline{\mathrm{O}}_{\mathbf{7}}(11)$ The complement output of the MSB of the register.
$\mathrm{Q}_{\mathrm{i}} \mathrm{i}=\mathbf{7 (1 1)}$ to 0 The outputs of the register.
$\overline{\mathbf{S}}$ The start input. If the start input is held LOW for at least a clock period the register will be reset to $\mathrm{O}_{7}(11)$ LOW and all the remaining outputs HIGH. A start pulse that is LOW for a shorter period of time can be used if it meets the set-up time requirements of the $\overline{\mathrm{S}}$ input.
DO The serial data output. (The D input delayed one bit).

OPERATIONAL TERMS:

I/ Forward input load current.
I_{OH} Output HIGH current, forced out of output V_{OH} test.
$I_{\text {OL }}$ Output LOW current, forced into the output in V_{OL} test. $I_{\text {IH }}$ Reverse input load current.
Negative Current Current flowing out of the device.
Positive Current Current flowing into the device.
V_{IH} Minimum logic HIGH input voltage.
$V_{I L}$ Maximum logic LOW input voltage.
V_{OH} Minimum logic HIGH output voltage with output HIGH current I_{OH} flowing out of output.
V_{OL} Maximum logic LOW output voltage with output LOW current l_{OL} flowing into output.
SWITCHING TERMS: (Measured at the 1.5V logic level).
t_{pd} - The propagation delay from the clock signal LOW-HIGH transition to an output signal HIGH-LOW transition.
$\mathbf{t}_{\mathrm{pd}+}$ The propagation delay from the clock signal LOW-HIGH transition to an output signal LOW-HIGH transition.
$\mathbf{t}_{\mathrm{pd}} \mathbf{(\overline { E })}$ The propagation delay from the Enable signal HIGHLOW transition to the $\mathrm{O}_{7}(11)$ output signal HIGH-LOW transition.
$\mathbf{t}_{\mathrm{pd}+}(\overline{\mathrm{E}})$ The propagation delay from the Enable signal LOWHIGH transition to $\mathrm{Q}_{7}(11)$ output signal LOW-HIGH transition.
\mathbf{t}_{s} (D) Set-up time required for the logic level to be present at the data input prior to the clock transition from LOW to HIGH in order for the register to respond. The data input should remain steady between t_{s} max. and $\mathrm{t}_{\mathrm{s}} \mathrm{min}$. before the clock.
$\mathrm{t}_{\mathrm{S}}(\overline{\mathbf{S}})$ Set-up time required for a LOW level to be present at the $\stackrel{S}{s}$ input prior to the clock transition from LOW to HIGH in order for the register to be reset, or time required for a HIGH level to be present on S before the HIGH to LOW clock transition to prevent resetting.
$t_{\mathrm{pw}}(\mathrm{CP})$ The minimum clock pulse width (LOW or HIGH) required for proper register operation.

Am2502/3 TRUTH TABLE

Time	Inputs			Outputs									
t_{n}	D	$\overline{\mathrm{s}}$	E	D_{0}	Q_{7}	a_{6}		O_{4}	O_{3}	O_{2}	O_{1}	a_{0}	$\overline{\mathrm{CC}}$
0	\times	L	L	X	\times	\times	\times	\times	\times	x	X	\times	X
1	D_{7}	H	L	\times	L	H	H	H	H	H	H	H	H
2	D_{6}	H	L	D_{7}	D_{7}	L	H	H	H	H	H	H	H
3	D_{5}	H	L	D_{6}	D_{7}	D_{6}	L	H	H	H	H	H	H
4	D_{4}	H	L	D_{5}	D_{7}	D_{6}	D_{5}	L	H	H	H	H	H
5	D_{3}	H	L	D_{4}	D_{7}	D_{6}	D_{5}	D_{4}	L	H	H	H	H
6	D_{2}	H	L	D_{3}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	L	H	H	H
7	D_{1}	H	L	D_{2}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	L	H	H
8	D_{0}	H	L	D_{1}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	L	H
9	\times	H	L	D_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	L
10	X	\times	L	X	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	L
		x		X	H							NC	

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X $=$ Don't Care
NC = No Change
Note: Truth Table for Am2504 is extended to include 12 outputs.

USER NOTES FOR A/D CONVERSION

1. The register can be used with either current switches that require a low voltage level to turn the switch on, or current switches that require a high voltage level to turn the current switch on. If current switches are used which turn on with a low logic level the resulting digital output from the register is active LOW. That is, a logic " 1 " is represented as a low voltage level. If current switches are used that turn on with a high logic level then the digital output is active HIGH; a logic " 1 " is represented as a high voltage level.
2. For a maximum digital error of $\pm 1 / 2$ LSB the comparator must be biased. If current switches that require a high voltage level to turn on are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a high logic level to turn on then the comparator must be biased $-1 / 2$ LSB.
3. The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion. Additional data input gating should be used to eliminate the possibility of false BCD codes.
4. The register can be used to perform 2's complement conversion by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB Q_{7} $\left(\mathrm{O}_{11}\right)$ as the sign bit.
5. If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on poweron. This situation can be overcome by making the START input the OR function of $\overline{\mathrm{CC}}$ and the appropriate register output.

Am2502/3/4 APPLICATION
Continuous Conversion Analog-to-Digital Converter

This shows how the Am2502/3/4 registers are used with a Digital-to-Analog converter and a comparator to form a very high-speed con tinuous conversion Analog-to-Digital converter. Conversion time is limited mainly by the speed of the D/A converter and comparator with typical conversion rates of 100,000 conversions per second.

Metallization and Pad Layout

DIE SIZE 0.087" $\times 0.105^{\prime \prime}$

DIE SIZE 0.087" $\times 0.105^{\prime \prime}$

Am2504

DIE SIZE 0.087" $\times 0.135^{\prime \prime}$

Am25L02/25L03/25L04
 Low-Power, Eight-Bit/Twelve-Bit Successive Approximation Registers

Distinctive Characteristics

- Contains all the storage and control for successive approximation A-to-D converters.
- Can be operated in START-STOP or continuous conversion mode.
- 100\% reliability assurance testing in compliance with MIL-STD-883.
- Can be used as serial-to-parallel converter or ring counters.

FUNCTIONAL DESCRIPTION

The Am25L02, Am25L03 and Am25L04 are 8-bit and 12-bit TTL Successive Approximation Registers. The registers contain all the digital control and storage necessary for successive approximation analog-todigital conversion. They can also be used in digital systems as the control and storage element in recursive digital routines.

The registers consist of a set of master latches that act as the contro elements in the device and change state when the input clock is LOW, and a set of slave latches that hold the register data and change on the input clock LOW-to-HIGH transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the Am25L02 and Am25LO4 when the clock goes from LOW-to-HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time that data enters the register bit the next less significant bit is set to a LOW ready for the next iteration
The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal LOW during the clock LOW-to-HIGH transition. The register synchronously resets to the state $\mathrm{Q}_{7}(11)$ LOW, (Note 2) and all the remaining register outputs HIGH. The $\overline{\mathrm{CC}}$ (Conversion Complete) signal is also set HIGH at this time. The $\overline{\mathbf{S}}$ signal should not be brought back HIGH until after the clock LOW-to-HIGH transition in order to guarantee correct resetting.

After the clock has gone HIGH resetting the register, the $\overline{\mathrm{S}}$ signal is removed. On the next clock LOW-to-HIGH transition the data on the D input is set into the $Q_{7}(11)$ register bit and the $Q_{6}(10)$ register bit is set to a LOW ready for the next clock cycle. On the next clock LOW to-HIGH transition data enters the $\mathrm{O}_{6}(10)$ register bit and $\mathrm{O}_{5}(9)$ is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into Q_{0}, the $\overline{\mathrm{CC}}$ signal goes LOW, and the register is inhibited from further change until reset by a Start signal.
In order to allow complementary conversion the complementary output of the most significant register bit is made available. An active LOW enable input, \bar{E}, on the Am25L03 and Am25L04 allows devices to be connected together to form a longer register by connecting the clock, D , and $\overline{\mathrm{S}}$ inputs together and connecting the $\overline{\mathrm{CC}}$ output of one device to the E input of the next less significant device. When the Start signal resets the register, the E signal goes HIGH , forcing the $\mathrm{O}_{7}(11)$ bit HIGH and inhibiting the device from accepting data until the previous device is full and its $\overline{\mathrm{CC}}$ goes LOW. If only one device is used the $\overline{\mathrm{E}}$ input should be held at a LOW logic level (Ground). For continuous conversion the $\overline{\mathrm{CC}}$ output is connected to the $\overline{\mathrm{S}}$ input so that the device automatically restarts at the end of a conversion. If all the bits are not required, the register may be truncated and conversion time saved by using a register output going LOW rather than the $\overline{\mathrm{CC}}$ signal to indicate the end of conversion.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am25LO2XC	Am25LO3XC	Am25LO4XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
Am25L02XM	Am25LO3XM	Am25L.04XM	$T_{A}=-55{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

| Parameters | Description | Test Conditions | Min. | Typ.(Note 1) | Max. | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOH}=-0.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4	3.6		Volts
V_{OL}	Output LOW Voltage (Note 2)	$\begin{aligned} & V_{C C}=M I N ., I O L=4.92 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.15	0.3	Volts
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.7	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{1 \mathrm{IN}}=0.3 \mathrm{~V}$		CP, D, ${ }^{\text {S }}$		-0.25	-0.4	
				E		-0.4	-0.6	
${ }^{1 / H}$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		CP, D		2.0	20	$\mu \mathrm{A}$
				$\overline{\mathrm{E}}, \overline{\mathrm{s}}$		4.0	40	
	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			4.0	15	35	mA
Icc	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.	Am25L02	XM		25	33	mA
				XC		25	35	
			Am25L03	XM		22	31	mA
				xc		22	33	
			Am25L04	XM		30	42	mA
				xc		30	45	

Notes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. $V_{O L}(M A X)=0.3 V$ with total device fanout of less than 90 Low Power TTL Unit Loads $(36 \mathrm{~mA})$, otherwise, $V_{O L}(M A X)=0.35 V$.

Switching Characteristics ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$)

Parameters	Description		Min.	Typ.	Max.	Units
${ }_{\text {tpd }}+$	Turn Off Delay CP to Output HIGH (except $\mathrm{Q}_{11}, \overline{\mathrm{O}}_{11}$)		20	75	110	ns
$\mathrm{t}_{\text {pd }}+$	Turn Off Delay CP to Q_{11} or $\overline{\mathrm{O}}_{11} \mathrm{HIGH}$		30	100	140	ns
$t_{\text {pd }}$ -	Turn On Delay CP to Output LOW		20	75	100	ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{D})$	Set-up Time Data Input		-15	8.0	20	ns
$\mathrm{ts}_{s}(\mathrm{~S})$	Set-up Time Start Input		0	20	25	ns
$\mathrm{t}_{\mathrm{pd}+}$ (E)	Turn Off Delay E to Q_{7} (11) HIGH	$\begin{aligned} & (A m 25 L 03 / A m 25 L 04) \\ & C_{P}=H, S=L \end{aligned}$		50	75	ns
$\mathrm{t}_{\text {pd-(E) }}$	Turn On Delay E to $\mathrm{Q}_{7}(11)$ LOW			60	75	ns
	Minimum LOW Clock Pulse Width			100	150	ns
$t_{\text {pwh }}$ (CP)	Minimum HIGH Clock Pulse Width			70	100	ns
${ }^{\text {max. }}$	Maximum Clock Frequency		3.5	5.0		MHz

Am25L02/3 TRUTH TABLE												
Time		puts					Outp	puts				
t_{n}	D	$\bar{S} \bar{E}$	D_{0}		Q_{6}		O_{4}	a_{3}		O_{1}	Q_{0}	$\overline{\mathrm{CC}}$
0	X	L L	X	X	X	X	X	X	X	X	X	X
1		H L	\times	L	H	H	H	H	H	H	H	H
2		H L	D_{7}	D_{7}	L	H	H	H	H	H	H	H
3		H L	D_{6}	D_{7}	D_{6}	L	H	H	H	H	H	H
4		H L	D_{5}	D_{7}	D_{6}		L	H	H	H	H	H
5		H L	D_{4}	D_{7}	D_{6}	D_{5}	D_{4}	L	H	H	H	H
6		H L	D_{3}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	L	H	H	H
7		H L	D_{2}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	L	H	H
8		H L	D_{1}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	L	H
9	\times	H L	D_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	L
10	X	$\times \mathrm{L}$	X		D_{6}	D_{5}	D_{4}		D_{2}	D_{1}	D_{0}	L
	X	X H	X	H	NC							
$H=H I G H$ Voltage Level L = LOW Voltage Level X = Don't Care NC = No Change												
Note: Truth Table for Am25LO4 is extended to include 12 outputs.												

USER NOTES FOR A/D CONVERSION

1. The register can be used with either current switches that require a low voltage level to turn the switch on, or current switches that require a high voltage level to turn the current switch on. If current switches are used which turn on with a low logic level the resulting digital output from the register is active LOW. That is, a logic " 1 " is represented as a low voltage level. If current switches are used that turn on with a high logic level then the digital output is active HIGH; a logic " 1 " is represented as a high voltage level.
2. For a maximum digital error of $\pm 1 / 2$ LSB the comparator must be biased. If current switches that require a low voltage level to turn on are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a high logic level to turn on then the comparator must be biased -1/2LSB.
3. The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion.
4. The register can be used to perform 2 's complement conversion by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB Q_{7} (11) as the sign bit.
5. If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on power-on. This situation can be overcome by making the START input the OR function of $\overline{\mathrm{CC}}$ and the appropriate register output.

SWITCHING TIME WAVEFORMS

This shows how the Am25L02/3/4 registers are used with a Digital-to-Analog converter and a comparator to form a very high-speed continuous conversion Analog-to-Digital converter. Conversion time is limited mainly by the speed of the D/A converter and comparator with typical conversion rates of 300,000 conversions per second. The comparator can be the Am111 precision comparator, or Am106 high-speed comparator.

Am6070

Companding D-to-A Converter for Control Systems

Distinctive Characteristics

- Tested to μ-255 companding law
- Absolute accuracy specified - includes all errors over temperature range
- Settling time 300 ns typical
- Ideal for multiplexed PCM, audio, and 8-bit μ-P systems
- Output dynamic range of 72 dB
- 12-bit accuracy and resolution around zero
- Sign plus 12-bit range with sign plus 7-bit coding
- Improved pin-for-pin replacement for DAC-76
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6070 monolithic companding D/A converter achieves a 72 dB dynamic range which is equivalent to that achieved by a 12 -bit converter.
The transfer function of the Am6070 complies with the Bell system $\mu-255$ companding law, and consists of 15 linear segments or chords. A particular chord is identified with the sign bit input, (SB) and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are
determined by four step select input bits. Accuracy and monotonicity are assured by the internal circuit design and are guaranteed over the full temperature range.
Applications for the Am6070 include digital audio recording, servo-motor controls, electromechanical positioning, voice synthesis, secure communications, microprocessor controlled sound and voice systems, log sweep generators and various data acquisition systems.

MAXIMUM RATINGS above which useful life may be impaired

V+ Supply to V-Supply	36 V	Operating Temperature	
VLC Swing	V - plus 8 V to $\mathrm{V}+$	MIL Grade	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage Swing	V -plus 8 V to V -plus 36 V	COM'L Grade	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Reference Inputs	V - to $\mathrm{V}+$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reference Input Differential Voltage	$\pm 18 \mathrm{~V}$	Power Dissipation $\mathrm{T}_{\mathrm{A}} \leqslant 100^{\circ} \mathrm{C}$	500 mW
Reference Input Current	1.25 mA	For $\mathrm{T}_{A}>100^{\circ} \mathrm{C}$ derate at	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Logic Inputs	V -plus 8 V to V -plus 36 V	Lead Soldering Temperature	$300^{\circ} \mathrm{C}(60 \mathrm{sec})$

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	± 128 Steps
Monotonicity	For both groups of 128 steps and over full operating temperature range
Dynamic Range	$72 \mathrm{~dB},(20 \log (17,15 / 10,1))$

ELECTRICAL CHARACTERISTICS

These specifications apply for $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=528 \mu \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$, for the commercial grade, $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant$ +125 C , for the military grade, and for all 4 outputs unless otherwise specified.

Am6070ADM Am6070ADC

Am6070DM Am6070DC

Parameter
Description
Test Conditions
Min. Typ. Max.
Min.

	300	500		300	500	ns

t_{5}	Settling Time		output switched from $I_{\text {zs }}$ to $I_{F S}$			300	500		300	500	ns		
$\begin{aligned} & \mathrm{I}_{\mathrm{FS}(\mathrm{D})} \\ & \mathrm{I}_{\mathrm{FS}(\mathrm{E})} \end{aligned}$	Chord Endpoint Accuracy		Guaranteed by output current error specified below.				$\pm 1 / 2$			± 1	Step		
	Step Nonlinearity Full Scale Current Deviation From Ideal						$\pm 1 / 2$			± 1	Step		
					$\pm 1 / 2$			± 1					
					$\pm 1 / 2$			± 1					
Δl_{0}	Output Current Error				$\begin{aligned} & \mathrm{V}_{\text {REF }}=10.000 \mathrm{~V} \\ & \mathrm{R}_{\text {REF }}=18.94 \mathrm{k} \Omega \\ & \mathrm{R}_{\text {REF- }}=20 \mathrm{k} \Omega \\ & -5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant+18 \mathrm{~V} \end{aligned}$ Error referred to nominal values in Table 1.				$\pm 1 / 2$			± 1	Step
$\mathrm{l}_{(+)^{-1}} \mathrm{O}_{(-)}$	Full Scale Symmetry Error				$\begin{aligned} & V_{\text {REF }}=10.000 \mathrm{~V} \\ & R_{\text {REF }}=18.94 \mathrm{k} \Omega \\ & R_{\text {REF }}=20 \mathrm{k} \Omega \\ & -5.0 \mathrm{~V} \leqslant V_{\text {OUT }} \leqslant+18 \end{aligned}$ Error referred to nom in Table 1	al values		$\begin{aligned} & 1 / 40 \\ & 1 / 40 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \end{aligned}$		$\begin{aligned} & 1 / 20 \\ & 1 / 20 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & \text { Step } \\ & \text { Step } \end{aligned}$
$I_{\text {EN }}$	Encode Current		Additional output Encode/Decode = 1		$3 / 8$	1/2	5/8	1/4	$1 / 2$	$3 / 4$	Step		
izs	Zero Scale Current		Measured at selected with 0000000 input	utput		1/40	1/4		1/20	1/2	Step		
$\Delta \mathrm{I}_{\mathrm{FS}}$	Full Scale Drift		Operating temperatur	range		$\pm 1 / 20$	$\pm 1 / 4$		$\pm 1 / 10$	$\pm 1 / 2$	Step		
$V_{\text {Oc }}$	Output Voltage Compliance		Full scale current cha $\leqslant 1 / 2$ step		-5.0		+18	-5.0		+18	Volts		
IDIS	Disable Current		Output leakage Output disabled by	and SB		5.0	50		5.0	50	nA		
$\mathrm{I}_{\text {fSR }}$	Output Current Range				0	2.0	4.2	0	2.0	4.2	mA		
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Logic Input Levels	$\frac{\text { Logic " }{ }^{\prime \prime} \text { " }}{\text { Logic "1" }}$	$V_{\text {LC }}=0 \mathrm{~V}$		2.0		0.8	2.0		0.8	Volts		
$\mathrm{I}_{\text {IN }}$	Logic Input Current		$\mathrm{V}_{\mathrm{IN}}=-5.0 \mathrm{~V}$ to +18 V				40			40	$\mu \mathrm{A}$		
$V_{1 S}$	Logic Input Swing		$\mathrm{V}-=-15 \mathrm{~V}$		-5.0		+18	-5.0		+18	Volts		
$\mathrm{I}_{\mathrm{B} \text { REF- }}$	Reference Bias Current					-1.0	-4.0		-1.0	-4.0	$\mu \mathrm{A}$		
di/dt	Reference Input Slew Rate				0.12	0.25		0.12	0.25		$\mathrm{mA} / \mu \mathrm{s}$		
$\begin{aligned} & \text { PSSI }_{\text {FS }+} \\ & \text { PSSI }_{\text {FS- }} \end{aligned}$	Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)		$\begin{aligned} & V+=4.5 \text { to } 18 \mathrm{~V}, \mathrm{~V}- \\ & \mathrm{V}-=10.8+-18 \mathrm{~V}, \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & =15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 1 / 20 \\ \pm 1 / 10 \end{gathered}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$		$\begin{aligned} & \pm 1 / 20 \\ & \pm 1 / 10 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$		$\begin{aligned} & \text { Step } \\ & \text { Step } \end{aligned}$		
$\begin{aligned} & 1+ \\ & 1- \end{aligned}$	Power Supply Current		$\begin{aligned} & \mathrm{V}+=+5.0 \text { to }+15 \mathrm{~V}, \\ & I_{\text {FS }}=2.0 \mathrm{~mA} \end{aligned}$	$-=-15 \mathrm{~V}$		$\begin{array}{\|c\|} \hline 2.7 \\ -6.7 \end{array}$	$\begin{array}{r} \hline 4.0 \\ -8.8 \end{array}$		$\begin{array}{c\|} \hline 2.7 \\ -6.7 \end{array}$	$\begin{gathered} \hline 4.0 \\ -8.8 \end{gathered}$	mA		
P_{D}	Power Dissipation		$\begin{aligned} & \mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \\ & \mathrm{I}_{\mathrm{FS}}=2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}+=5.0 \mathrm{~V} \\ & \mathrm{~V}+=+15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 114 \\ & 141 \end{aligned}$	$\begin{aligned} & 152 \\ & 192 \end{aligned}$		$\begin{aligned} & \hline 114 \\ & 141 \\ & \hline \end{aligned}$	$\begin{aligned} & 152 \\ & 192 \\ & \hline \end{aligned}$	mW		

ELECTRICAL CHARACTERISTICS (Cont.)

TABLE 1
NOMINAL DECODER OUTPUT CURRENT LEVELS IN $\mu \mathrm{A}$

	CHORD								
STEP	0	1	2	3	4	5	6	7	
0	.000	8.250	24.750	57.750	123.75	255.75	519.75	1047.75	
1	.500	9.250	26.750	61.750	131.75	271.75	551.75	1111.75	
2	1.000	10.250	28.750	65.750	139.75	287.75	583.75	1175.75	
3	1.500	11.250	30.750	69.750	147.75	303.75	615.75	1239.75	
4	2.000	12.250	32.750	73.750	155.75	319.75	647.75	1303.75	
5	2.500	13.250	34.750	77.750	163.75	335.75	679.75	1367.75	
6	3.000	14.250	36.750	81.750	171.75	351.75	711.75	1431.75	
7	3.500	15.250	38.750	85.750	179.75	367.75	743.75	1495.75	
8	4.000	16.250	40.750	89.750	187.75	383.75	775.75	1559.75	
9	4.500	17.250	42.750	93.750	195.75	399.75	807.75	1623.75	
10	5.000	18.250	44.750	97.750	203.75	415.75	839.75	1687.75	
11	5.500	19.250	46.750	101.750	211.75	431.75	871.75	1751.75	
12	6.000	20.250	48.750	105.750	219.75	447.75	903.75	1815.75	
13	6.500	21.250	50.750	109.750	227.75	463.75	935.75	1879.75	
14	7.000	22.250	52.750	113.750	235.75	479.75	967.75	1943.75	
15	7.500	23.250	54.750	117.750	243.75	495.75	999.75	2007.75	
STEP	.5	1	2	4	8	16	32	64	
SIZE	5	1	2	4	8				

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM FULL SCALE

	CHORD								
STEP	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{0}$	-	-47.73	-38.18	-30.82	-24.20	-17.90	-11.74	-5.65	
$\mathbf{1}$	-72.07	-46.73	-37.51	-30.24	-23.66	-17.37	-11.22	-5.13	
2	-66.05	-45.84	-36.88	-29.70	-23.15	-16.87	-10.73	-4.65	
$\mathbf{3}$	-62.53	-45.03	-36.30	-29.18	-22.66	-16.40	-10.27	-4.19	
$\mathbf{4}$	-60.03	-44.29	-35.75	-28.70	-22.21	-15.96	-9.83	-3.75	
$\mathbf{5}$	-58.10	-43.61	-35.24	-28.24	-21.77	-15.53	-9.41	-3.33	
$\mathbf{6}$	-56.51	-42.98	-34.75	-27.80	-21.36	-15.13	-9.01	-2.94	
$\mathbf{7}$	-55.17	-42.39	-34.29	-27.39	-20.96	-14.74	-8.63	-2.56	
$\mathbf{8}$	-54.01	-41.84	-33.85	-26.99	-20.58	-14.37	-8.26	-2.19	
9	-52.99	-41.32	-33.44	-26.61	-20.22	-14.02	-7.91	-1.84	
10	-52.07	-40.83	-33.04	-26.25	-19.87	-13.68	-7.57	-1.51	
11	-51.25	-40.37	-32.66	-25.90	-19.54	-13.35	-7.25	-1.18	
12	-50.49	-39.93	-32.29	-25.57	-19.22	-13.03	-6.93	-0.87	
13	-49.80	-39.51	-31.95	-25.25	-18.91	-12.73	-6.63	-0.57	
14	-49.15	-39.11	-31.61	-24.94	-18.61	-12.43	-6.34	-0.28	
15	-48.55	-38.73	-31.29	-24.63	-18.32	-12.15	-6.06	0.00	

THEORY OF OPERATION

Functional Description

The Am6070 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, $I_{\text {FS }}$, is specified by the input binary code 111 1111, and is a linear function of the reference current, $I_{\text {REF }}$. There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E / \bar{D}), input signal. A logic 1 applied to the $E / \overline{\mathrm{D}}$ input places the Am6072 in the encode mode and current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E / \bar{D} input places the Am6070 in the decode mode.
The transfer characteristic is a piece-wise linear approximation to the Bell System μ - 225 logarithmic law which can be written as follows:
$Y=0.18 \ln (1+\mu|X|) \operatorname{sgn}(X)$
where: $X=$ analog signal level normalized to unity (encoder input or decoder output)
$\mathrm{Y}=$ digital signal level normalized to unity (encoder output or decoder input) $\mu=255$

The current flows from the external circuit into one of four possible analog outputs determined by the $S B$ and E / \bar{D} inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $0.5 \mu \mathrm{~A}$ found in the first chord near zero output current, and the largest step of $64 \mu \mathrm{~A}$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels near zero output cufrent. The accuracy for signal amplitudes corresponding to chord 0 is equivalent to that of a 12 -bit linear, binary D/A converter. However, the ratio (in dB) between the chord
endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3 dB over most of the dynamic range. The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at approximately 6 dB over most of the dynamic range. Resulting signal-to-quantizing distortions due to non-uniform quantizing levels maintain an acceptably low value over a 40 dB range of input speech signals. Note that the 72 dB output dynamic range for the Am6070 corresponds to the dynamic range of a sign plus 12-bit linear, binary D/A converter.

In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7 -bit input configuration is shown in Figure 1. The corresponding dynamic range is 72 dB , and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E / \bar{D} input enables switching between the encode, $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$, and the decode, $\mathrm{I}_{\mathrm{OD}(+)}$ or $\mathrm{I}_{\mathrm{OD}(-) \text {, outputs. A typical encode/decode test circuit is shown }}$ in Figure 2. This circuit is used for output current measurements. When the E/D input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the loe outputs (as determined by the SB input). When operating in the encode mode as shown in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current,

	E/ $\overline{\mathrm{D}}$	SB	\mathbf{B}_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	\mathbf{B}_{4}	$\mathrm{~B}_{5}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{7}$	E_{0}
POSITIVE FULL SCALE	0	1	1	1	1	1	1	1	1	5.019 V
$(+)$ ZERO SCALE +1 STEP	0	1	0	0	0	0	0	0	1	0.0012 V
$(+)$ ZERO SCALE	0	1	0	0	0	0	0	0	0	0 V
$1-)$ ZERO SCALE	0	0	0	0	0	0	0	0	0	0 V
$1-)$ ZERO SCALE +1 STEP	0	0	0	0	0	0	0	0	1	-0.0012 V
NEGATIVE FULL SCALE	0	0	1	1	1	1	1	1	1	-5.019 V

Figure 1. Detailed Decoder Connections.

LINE SELECTION TABLE

TEST GROUP	E / \bar{D}	SB	$\|c\|$ MEASUTPUT	
1	1	1	$\operatorname{IOE}(+)$	$\left(E_{01} / R_{1}\right)$
2	1	0	$\operatorname{IOE}(-)$	$\left(E_{01} / R_{2}\right)$
3	0	1	$\operatorname{IOD}(+)$	$\left(E_{02} / R_{3}\right)$
4	0	0	$1 O D(-)$	$\left(E_{02} / R_{4}\right)$

Figure 2. Output Current DC Test Circuit.
$I_{E N}$, is automatically added to the I_{OE} output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32 \mu \mathrm{~A}$. Similarly, the current levels in the first chord near the origin will be offset by $0.25 \mu \mathrm{~A}$, which will bring the ideal encode current value for step 0 on chord 0 to $\pm 0.25 \mu \mathrm{~A}$ with respect to the corresponding decode current value of $0.0 \mu \mathrm{~A}$. This additional encode half step of current can be used for extension of the output dynamic range from 72 dB to 78 dB , when the converter is performing only the decode function. The corresponding decoder connection utilizes the $E \bar{D}$ input as a ninth digital input and has the outputs $\mathrm{I}_{\mathrm{OD}(+)}$ and $\mathrm{I}_{\mathrm{OE}(+)}$ and the outputs $\mathrm{I}_{\mathrm{OD}(-)}$ and $\mathrm{I}_{\mathrm{OE}(-)}$ tied together, respectively.

When encoding or compression of an analog signal is required, the Am6070 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the AID data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper Start, $\overline{\mathrm{S}}$, and Conversion Complete, $\overline{C C}$, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E / \bar{D} input with a logic 0 level. No current flows into the l_{OE} outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.
The second clock pulse changes the E / \bar{D} input back to a logic 1 level because the $\overline{C C}$ signal changed. It also clocks the D
input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6070. Depending upon the SB input level, current will flow into the $\mathrm{IOE}(+)$ or $\mathrm{l}_{\mathrm{OE}(-)}$ output of the Am6070.

Nine total clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6070 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6070 output current to a bipolar voltage output. When the SB input is a logic 1, sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0 , sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6070. The resulting operational amplifier's output in Figure 1 should ideally be symmetrical with resistors R1 and R2 matched.
In Figure 2, two operational amplifiers measure the currents of each of the four Am6070 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2 \mu \mathrm{~A}$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10 nA and 1 nA , respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of

Figure 3. Detailed Encoder Connections.
LIC-248
$2.5 \mathrm{k} \Omega$, also contribute to the output measurement error by a factor of 400 nA for every mV of offset at the A 1 and A2 outputs. Therefore, to minimize error, the offset voltages of A1 and A2 should be nulled.

The recommended operating range for the reference current $I_{\text {REF }}$ is from 0.1 mA to 1.0 mA . The full scale output current, I_{FS}, is a linear function of the reference current, and may be calculated from the equation $\mathrm{I}_{\mathrm{FS}}=3.8 \mathrm{I}_{\mathrm{REF}}$. This tight relationship between $I_{\text {REF }}$ and $I_{F S}$ alleviates the requirement for trimming the $I_{\text {REF }}$ current if the R $_{\text {REF }}$ resistors values are within $\pm 1 \%$ of the calculated value. Lower values of $\mathrm{I}_{\text {REF }}$ will reduce the negative power supply current, (1-), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $\mathrm{I}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}} / \mathrm{R}_{\mathrm{REF}}$ is $528 \mu \mathrm{~A}$. The corresponding ideal full scale decode and encode current values are $2007.75 \mu \mathrm{~A}$ and $2039.75 \mu \mathrm{~A}$, respectively. A percentage change from the ideal $\mathrm{I}_{\text {REF }}$ value produced by changes in $V_{\text {REF }}$ or $R_{\text {REF }}$ values produces the same percentage change in decode and encode output current values. The positive voltage supply, $\mathrm{V}+$, may be used, with certain precautions, for the positive reference voltage $\mathrm{V}_{\text {REF }}$. In this case, the reference resistor $\mathrm{R}_{\text {REF(+) }}$ should be split into two resistors and their junction bypassed to ground with a capacitor of $0.01 \mu \mathrm{~F}$. The total resistor value should provide the reference current $\mathrm{I}_{\mathrm{REF}}=528 \mu \mathrm{~A}$. The resistor $\mathrm{R}_{\mathrm{REF}(-)}$ value should be approximately equal to the $\mathrm{R}_{\text {REF(}+ \text {) }}$ value in order to compensate for the errors caused by the reference amplifier's input offset current.

An alternative to the positive reference voltage applications shown in Figures 1,2 and 3 is the application of a negative voltage to the $\mathrm{V}_{\mathrm{R}(-)}$ terminal through the resistor $\mathrm{R}_{\mathrm{REF}(-)}$ with the $\mathbf{R}_{\text {REF (+) }}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $\mathrm{V}_{\mathrm{R}(-)}$ terminal while the reference current flows from ground through $\mathrm{R}_{\mathrm{REF}(+)}$ into the $\mathrm{V}_{\mathrm{R}(+)}$ terminal.

The Am6070 has a wide output voltage compliance suitable for driving a variety of loads. With $\mathrm{I}_{\text {REF }}=528 \mu \mathrm{~A}$ and $\mathrm{V}-=-15 \mathrm{~V}$, positive voltage compliance is +18 V and negative voltage compliance is -5.0 V . For other values of $I_{\text {REF }}$ and V-, the negative voltage compliance, $\mathrm{V}_{\mathrm{OC}(-)}$, may be calculated as follows:

$$
V_{O C(-)}=(V-)+\left(2 \cdot I_{R E F} \cdot 1.5 \mathrm{k} \Omega\right)+8.4 \mathrm{~V}
$$

The following table contains $\mathrm{V}_{\mathrm{OC}(-)}$ values for some specific $V-, I_{R E F}$, and $I_{F S}$ values.

$\mathrm{V}_{-}^{\substack{\mathrm{I}_{\mathrm{REF}} \\\left(I_{\mathrm{FS}}\right)}}$	$\begin{aligned} & 264 \mu \mathrm{~A} \\ & (1 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 528 \mu \mathrm{~A} \\ & (2 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 1056 \mu \mathrm{~A} \\ & (4 \mathrm{~mA}) \end{aligned}$
-12V	-2.8V	-2.0V	-0.4V
-15V	-5.8V	-5.0V	-3.4V
-18V	-8.8V	-8.0V	$-6.4 \mathrm{~V}$

The $V_{\text {LC }}$ input can accommodate various logic input switching threshold voltages allowing the Am6070 to interface with various logic families. This input should be placed at a potential which is 1.4 V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V value and +10 V .

With a V - value chosen between -15 V and -11 V , the $\mathrm{V}_{\mathrm{OC}(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15 V and the V - value chosen.

With a $V+$ value chosen between +5 V and +15 V , the reference amplifier common mode positive voltage range and the $V_{\text {LC }}$ input values are reduced by an amount equivalent to the difference between +15 V and the $\mathrm{V}+$ value chosen.

(See Notes 2 and 3)
Figure 4. Interfacing Circuits for ECL, CMOS, HTL, and NMOS Logic Inputs.

LIC-249

Figure 5. Resistive Output Connections. LIC-250

[^2]3. Allowable range of logic threshold is typically -5 V to +13.5 V when operating the companding DAC on $\pm 15 \mathrm{~V}$ supplies.

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3
Normalized Decoder Output (Sign Bit Excluded)

Chord (C) Step (S)		0	1	2	3	4	5	6	7
		000	001	010	011	100	101	110	111
0	0000	0	33	99	231	495	1023	2079	4191
1	0001	2	37	107	247	527	1087	2207	4447
2	0010	4	41	115	263	559	1151	2335	4703
3	0011	6	45	123	279	591	1215	2463	4959
4	0100	8	49	131	295	623	1279	2591	5215
5	0101	10	53	139	311	655	1343	2719	5471
6	0110	12	57	147	327	687	1407	2847	5727
7	0111	14	61	155	343	719	1471	2975	5983
8	1000	16	65	163	359	751	1535	3103	6239
9	1001	18	69	171	375	783	1599	3231	6495
10	1010	20	73	179	391	815	1663	3359	6751
11	1011	22	77	187	407	847	1727	3487	7007
12	1100	24	81	195	423	879	1791	3615	7263
13	1101	26	85	203	439	911	1855	3743	7519
14	1110	28	89	211	455	943	1919	3871	7775
15	1111	30	93	219	471	975	1983	3999	8031
Step Size		2	4	8	16	32	64	128	256

The normalized decode current, ($l_{\mathrm{c}, \mathrm{s}}$), is calculated using: $I_{C, S}=2\left(2^{\mathrm{C}}(\mathrm{S}+16.5)-16.5\right)$
where $\mathrm{C}=$ chord number; $\mathbf{S}=$ step number. The ideal decode current, (l_{OD}), in $\mu \mathrm{A}$ is calculated using:
$\mathrm{I}_{\mathrm{OD}}=\left(\mathrm{I}_{\mathrm{C}}, \mathrm{s} / \mathrm{I}_{7}, 15\right.$ (norm. $\left.)\right\rangle \cdot \mathrm{I}_{\mathrm{FS}}(\mu \mathrm{A})$
where $I_{c, s}$ is the corresponding normalized current. To obtain normalized encode current values the corresponding normalized half-step value should be added to all entries in Table 3.

Table 4
Normalized Encode Level (Sign Bit Excluded)

		0	1	2	3	4	5	6	711
		000	001	010	011	100	101	110	
0	0000	1	35	103	239	511	1055	2143	4319
1	0001	3	39	111	255	543	1119	2271	4575
2	0010	5	43	119	271	575	1183	2399	4831
3	0011	7	47	127	287	607	1247	2527	5087
4	0100	9	51	135	303	639	1311	2655	5343
5	0101	11	55	143	319	671	1375	2783	5599
6	0110	13	59	151	335	703	1439	2911	5855
7	0111	15	63	159	351	735	1503	3039	6111
8	1000	17	67	167	367	767	1567	3167	6367
9	1001	19	71	175	383	799	1631	3295	6623
10	1010	21	75	183	399	831	1695	3423	6879
11	1011	23	79	191	415	863	1759	3551	7135
12	1100	25	83	199	431	895	1823	3679	7391
13	1101	27	87	207	447	927	1887	3807	7647
14	1110	29	91	215	463	959	1951	3935	7903
15	1111	31	95	223	479	991	2015	4063	8159
Step Size		2	4	8	16	32	64	128	256

$I_{C . S}=2\left[2^{C}(S+17)-16.5\right]$
$C=$ chord no. (0 through 7)
$\mathrm{S}=$ step no. (0 through 15)

ADDITIONAL DECODE OUTPUT CURRENT TABLES (Cont.)

Table 5

Decoder Step Size Summary

	Step Size Normalized to Full Scale	Step Size in μ A with 2007.75 $\mu \mathrm{A} \mathrm{FS}$	Step Size as a \% of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a \% of Reading at Chord Endpoints	 Accuracy of Equivalent Binary DAC
0	2	0.5	0.025%	0.60	6.67%	Sign +12 Bits
$\mathbf{1}$	4	1.0	0.05%	0.38	4.30%	Sign +11 Bits
2	8	2.0	0.1%	0.32	3.65%	Sign +10 Bits
3	16	4.0	0.2%	0.31	3.40%	Sign +9 Bits
4	32	8.0	0.4%	0.29	3.28%	Sign +8 Bits
5	64	16.0	0.8%	0.28	3.23%	Sign +7 Bits
6	128	32.0	1.6%	0.28	3.20%	Sign +6 Bits
7	256	64.0	3.2%	0.28	3.19%	Sign +5 Bits

Table 6
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in μ A with 2007.75 μ A FS	Chord Endpoints as a \% of Full Scale	Chord Endpoints in dB Down from Full Scale
0	30	7.5	0.37%	-48.55
1	93	23.25	1.16%	-38.73
2	219	54.75	2.73%	-31.29
3	471	117.75	5.86%	-24.63
4	975	243.75	12.1%	-18.32
5	1983	495.75	24.7%	-12.15
6	3999	999.75	49.8%	-6.06
7	8031	2007.75	100%	0

Am6070

Notes: 4. Low distortion outputs are provided over a 72 dB range.
5. Up to 4 channels of output may be selected by E / \bar{D} and SB logic inputs.

TYPICAL PERFORMANCE CURVES

Reference Amplifier
Total Harmonic Distortion Versus Frequency (80 kHz Filter)
(Notes 6, 7, 8)

Power Supply Currents Versus Power Supply Voltages

POSITIVE OR NEGATIVE POWER SUPPLY - V

Bit Transfer Characteristics (Note 10)

 Input Frequency Response

Power Supply Currents Versus Temperature

Logic Input Current Versus Input Voltage and Logic Input Range (Note 11)

Reference Amplifier Input Common-Mode Range
(Note 9)

Output Current Versus
Output Voltage (Output Voltage Compliance)

OUTPUT VOLTAGE - V

Notes: 6. THD is nearly independent of the logic input code.
7. Similar results are obtained for a high input impedance connection using $\mathrm{V}_{\mathrm{R}(-)}$ as an input.
8. Increased distortion above 50 kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of $\pm \mathbf{2 . 5 V}$ peak (25% modulation), the bandwidth is 100 kHz .
9. Positive common mode range is always ($\mathrm{V}+$) -1.5 V .
10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8 V and 2.0 V over the operating temperature range.
11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

APPLICATIONS

The companding D/A converter is particularly suited for applications requiring a wide dynamic range.

Systems requiring fine control resulting in a constant rate of change or set point controls are economically achieved using these devices.
Instrumentation, Control and μ-Processor based applications include:

Digital data recording
PCM telemetry systems
Servo systems
Function generation
Data acquisition systems

Telecommunications applications include: PCM Codec telephone systems
Intercom systems
Military voice communication systems
Radar systems
Voice Encryption

Audio Applications:
Recording
Multiplexing of analog signals
Voice synthesis

SERIAL DATA TRANSCEIVING CONVERTER (1/2 OF SYSTEM SHOWN)

Notes:

1. Complementary send/receive commands are required for the two ends.
2. START must be held low for one clock cycle to begin a send or receive cycle.
3. The SAR is used as a serial-in/parallel out register in the receive mode.
4. CLOCK and START may be connected in parallel at both ends.
5. Conversion is completed in 9 clock cycles.
6. Receive output is available for one full clock cycle.

Metallization and Pad Layout

80×114 Mils

Am6071

Distinctive Characteristics

- Tested to A-law tracking specification
- Absolute accuracy specified - includes all errors over temperature range
- Settling time 300ns typical
- Ideal for multiplexed PCM, audio, and 8-bit μ-P systems
- Output dynamic range of 62 dB
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6071 is a monolithic 8-bit, companding digital-toanalog (D / A) converter with true current outputs and large output voltage compliance for fast driving a variety of loads. The transfer function of the Am6071 consists of 13 linear segments or chords. A particular chord is identified with the sign bit input, (SB) and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are determined by four step select input bits. The resulting dynamic range achieved with this format is 62 dB . Accuracy
and monotonicity are assured by the internal circuit design and are guaranteed over the full temperature range. The Am6071 is tested to the A-law tracking specification. Applications for the Am6071 include digital audio recording, servo motor controls, electro-mechanical positioning, voice synthesis, secure communications, microprocessor controlled sound and voice systems, log sweep generators, and various data acquisition systems.
(

MAXIMUM RATINGS above which usefut life may be impaired

V+ Supply to V-Supply	36 V	Operating Temperature	
$\mathrm{V}_{\text {LC }}$ Swing	V - plus 8 V to $\mathrm{V}+$	MIL Grade	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage Swing	V -plus 8 V to V -plus 36 V	COM'L Grade	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Reference Inputs	V - to V+	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reference Input Differential Voltage	$\pm 18 \mathrm{~V}$	Power Dissipation $\mathrm{T}_{\mathrm{A}} \leqslant 100^{\circ} \mathrm{C}$	500 mW
Reference Input Current	1.25 mA	For $\mathrm{T}_{A}>100^{\circ} \mathrm{C}$ derate at	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Logic Inputs	V -plus 8 V to V -plus 36 V	Lead Soldering Temperature	$300^{\circ} \mathrm{C}(60 \mathrm{sec})$

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	± 128 Steps
Monotonicity	For both groups of 128 steps and over full operating temperature range
Dynamic Range	$62 \mathrm{~dB},(20 \log (17,15 / 10,1))$

ELECTRICAL CHARACTERISTICS

These specifications apply for $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{I}_{\text {REF }}=512 \mu \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$, for the commercial grade, $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant$ $+125 C$, for the military grade, and for all 4 outputs unless otherwise specified.

Am6071ADM Am6071DM
 Am6071ADC
 Am6071DC

Parameter
Description

ELECTRICAL CHARACTERISTICS (Cont.)

TABLE I
NOMINAL DECODER OUTPUT CURRENT LEVELS IN $\mu \mathrm{A}$

STEP	CHORD								
	0	1	2	3	4	5	6	7	
0	.500	16.500	33.000	66.000	132.00	264.00	528.00	1056.00	
1	1.500	17.500	35.000	70.000	140.00	280.00	560.00	1120.00	
2	2.500	18.500	37.000	74.000	148.00	296.00	592.00	1184.00	
3	3.500	19.500	39.000	78.000	156.00	312.00	624.00	1248.00	
4	4.500	20.500	41.000	82.000	164.00	328.00	656.00	1312.00	
5	5.500	21.500	43.000	86.000	172.00	344.00	688.00	1376.00	
6	6.500	22.500	45.000	90.000	180.00	360.00	720.00	1440.00	
7	7.500	23.500	47.000	94.000	188.00	376.00	752.00	1504.00	
8	8.500	24.500	49.000	98.000	196.00	392.00	784.00	1568.00	
9	9.500	25.500	51.000	102.000	204.00	408.00	816.00	1632.00	
10	10.500	26.500	53.000	106.000	212.00	424.00	848.00	1696.00	
11	11.500	27.500	55.000	110.000	220.00	440.00	880.00	1760.00	
12	12.500	28.500	57.000	114.000	228.00	456.00	912.00	1824.00	
13	13.500	29.500	59.000	118.000	236.00	472.00	944.00	1888.00	
14	14.500	30.500	61.000	122.000	244.00	488.00	976.00	1952.00	
15	15.500	31.500	63.000	126.000	252.00	504.00	1008.00	2016.00	
STEP	1	1	2	4	8	16	32	64	
SIZE									

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+ 3dBmo)

STEP	CHORD								
	0	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	
0	72.11	41.74	35.72	29.70	23.68	17.66	11.64	5.62	
1	62.57	41.23	35.21	29.19	23.17	17.15	11.13	5.11	
2	58.13	40.75	34.73	28.71	22.68	16.66	10.64	4.62	
3	55.21	40.29	34.27	28.25	22.23	16.21	10.19	4.17	
4	53.03	39.85	33.83	27.81	21.79	15.77	9.75	3.73	
5	51.28	39.44	33.42	27.40	21.38	15.36	9.34	3.32	
6	49.83	39.05	33.03	27.00	20.98	14.96	8.94	2.92	
7	48.59	38.67	32.65	26.63	20.61	14.59	8.57	2.54	
8	47.50	38.31	32.29	26.27	20.24	14.22	8.20	2.18	
9	46.54	37.96	31.94	25.92	19.90	13.88	7.86	1.84	
10	45.67	37.62	31.60	25.58	19.56	13.54	7.52	1.50	
11	44.88	37.30	31.28	25.26	19.24	13.22	7.20	1.18	
12	44.15	36.99	30.97	24.95	18.93	12.91	6.89	0.87	
13	43.48	36.69	30.67	24.65	18.63	12.61	6.59	0.57	
14	42.86	36.40	30.38	24.38	18.34	12.32	6.30	0.28	
15	42.28	36.12	30.10	24.08	18.06	12.04	6.02	0.00	

THEORY OF OPERATION

Functional Description

The Am6071 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, $I_{\text {FS }}$, is specified by the input binary code 111 1111, and is a linear function of the reference current, $I_{\text {REF }}$. There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E / \bar{D}), input signal. A logic 1 applied to the E / \bar{D} input places the Am6073 in the encode mode and current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E / \bar{D} input places the Am6073 in the decode mode.
The transfer characteristic is a piece-wise linear approximation to the CCITT A-87.6 logarithmic law which can be written as follows:

$$
\begin{array}{ll}
Y=0.18(1+\ln (A|X|)) \operatorname{sgn}(X), & 1 / A \leqslant|X| \leqslant 1 \\
Y=0.18(A|X|) \operatorname{sgn}(X), & 0 \leqslant|X| \leqslant 1 / A
\end{array}
$$

where: $X=$ analog signal level normalized to unity
(encoder input or decoder output)
$\mathrm{Y}=$ digital signal level normalized to unity
(encoder output or decoder input)

$$
A=87.6
$$

The current flows from the external circuit into one of four possible analog outputs determined by the SB and E / \bar{D} inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. The two chords closest to the origin of the transfer function, chord 0 and chord 1 , are made colinear and contiguous. The beginning of chord 0 , specified by the input binary code 0000000 , is offset by $+0.5 \mu \mathrm{~A}$. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $1.0 \mu \mathrm{~A}$ found in the first two chords near zero output current, and the largest step of $64 \mu \mathrm{~A}$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels. The accuracy for signal amplitudes corres-
ponding to chords 0 and 1 is very close to that of an 11-bit linear, binary D/A converter. The ratio (in dB) between the chord endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3 dB over the entire dynamic range, with the exception of chord 0 . The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at 6 dB over the entire dynamic range. Resulting signal-to-quantizing distortions due to nonuniform quantizing levels maintain an acceptably low value over a 40 dB range of input speech signals. Note that the 62 dB output dynamic range for the Am6071 is very close to the dynamic range of a sign plus 11-bit linear, binary D/A converter.
In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Note that this does not apply to chord 0 and chord 1 where adjacent end points differ by only one step, because these two chords are colinear and have the same step sizes. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7 -bit input configuration is shown in Figure 1. The corresponding dynamic range is 62 dB , and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E / \bar{D} input enables switching between the encode, $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$, and the decode, $\mathrm{I}_{\mathrm{OD}(+)}$ or IOD(-), outputs. A typical encode/decode test circuit is shown in Figure 2. This circuit is used for output current measurements. When the E/D input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the I_{OE} outputs (as determined by the SB input). When operating in the encode mode as shown

	E/ $\overline{\mathrm{D}}$	SB	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{7}$	E_{0}
POSITIVE FULL SCALE	0	1	1	1	1	1	1	1	1	5.040 V
$1+)$ ZERO SCALE +1 STEP	0	1	0	0	0	0	0	0	1	0.004 V
$(+)$ ZERO SCALE	0	1	0	0	0	0	0	0	0	0.0012 V
$(-)$ ZERO SCALE	0	0	0	0	0	0	0	0	0	-0.0012 V
$(-)$ ZERO SCALE +1 STEP	0	0	0	0	0	0	0	0	1	-0.004 V
NEGATIVE FULL SCALE	0	0	1	1	1	1	1	1	1	-5.040 V

Figure 1. Detailed Decoder Connections.

LINE SELECTION TABLE

TEST GROUP	E/D	SB	OUTPUT MEASUREMENT	
1	1	1	$\operatorname{IOE}(+)$	$\left(E_{01} / R_{1}\right)$
2	1	0	$\operatorname{IOE}(-)$	$\left(E_{01} / R_{2}\right)$
3	0	1	$\operatorname{IOD}(+)$	$\left(E_{02} / \mathrm{R}_{3}\right)$
4	0	0	$\operatorname{IOD}(-)$	$\left(E_{02} / \mathrm{R}_{4}\right)$

Figure 2. Output Current DC Test Circuit.
in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current, $I_{E N}$, is automatically added to the IOE output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32 \mu \mathrm{~A}$. Similarly, the current levels in the first chord near the origin will be offset by $0.5 \mu \mathrm{~A}$, which will bring the ideal encode current value for step 0 on chord 0 to $1.0 \mu \mathrm{~A}$ with respect to the corresponding decode current value of $0.5 \mu \mathrm{~A}$. This additional encode half step of current can be used for extension of the output dynamic range from 62 dB to 66 dB , when the converter is performing only the decode function. The corresponding decoder connection utilizes the E / \bar{D} input as a ninth digital input and has the outputs $\mathrm{I}_{\mathrm{OD}(+)}$ and $\mathrm{I}_{\mathrm{OE}(+)}$ and the outputs $\mathrm{I}_{\mathrm{OD}(-)}$ and $\mathrm{I}_{\mathrm{OE}(-)}$ tied together, respectively.
When encoding or compression of an analog signal is required, the Am6071 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the A/D data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper $\overline{\text { START, }}(\overline{\mathrm{S}})$, and CONVERSION COM$\overline{\text { PLETE }}(\overline{C C})$, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/ \bar{D} input with a logic 0 level. No current flows into the loE outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E / \bar{D} input back to a logic 1 level because the $\overline{C C}$ signal changed. It also clocks the D input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6071. Depending upon the SB input level, current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output of the Am6071.
Nine clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6071 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6071 output current to a bipolar voltage output. When the SB input is a logic 1, sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0 , sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6071. The resulting operational amplifier's output in Figure 1 should ideally be symmetrical with resistors R1 and R2 matched.
In Figure 2, two operational amplifiers measure the currents of each of the four Am6071 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2 \mu \mathrm{~A}$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10 nA and 1 nA respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of $2.5 \mathrm{k} \Omega$, also contribute to the output measurement error by a factor of 400 nA for

Figure 3. Detailed Encoder Connections.
LIC-264
every mV of offset. Therefore, to minimize error, the offset voltages of A1 and A2 should be nulled.

The recommended operating range for the reference current $\mathrm{I}_{\mathrm{REF}}$ is from 0.1 mA to 1.0 mA . The full scale output current, I_{FS}, is a linear function of the reference current, and may be calculated from the equation $I_{F S}=3.94 I_{\text {REF }}$. This tight relationship between $I_{\text {REF }}$ and $I_{F S}$ alleviates the requirement for trimming the $I_{\text {REF }}$ current if the $R_{\text {REF }}$ resistor values are within $\pm 1 \%$ of the calculated value. Lower values of $I_{\text {REF }}$ will reduce the negative power supply current, (I-), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $I_{\text {REF }}=V_{\text {REF }} / R_{\text {REF }}$ is $512 \mu \mathrm{~A}$. The corresponding ideal full scale decode and encode current values are $2016 \mu \mathrm{~A}$ and $2048 \mu \mathrm{~A}$, respectively. A percentage change from the ideal $I_{\text {REF }}$ value produced by changes in $\mathrm{V}_{\text {REF }}$ or $\mathrm{R}_{\text {REF }}$ values produces the same percentage change in decode and encode output current values. The positive voltage supply, $\mathrm{V}+$, may be used, with certain precautions, for the positive reference voltage $\mathrm{V}_{\text {REF }}$. In this case, the reference resistor $\mathrm{R}_{\text {REF(+) }}$ should be split into two resistors and their junction bypassed to ground with a capacitor of $0.01 \mu \mathrm{~F}$. The total resistor value should provide the reference current $I_{\text {REF }}=512 \mu \mathrm{~A}$. The resistor $\mathrm{R}_{\mathrm{REF}(-)}$ value should be approximately equal to the $\mathrm{R}_{\mathrm{REF}(+)}$ value in order to compensate for the errors caused by the reference amplifier's input offset current.
An alternative to the positive reference voltage applications shown in Figures 1,2 and 3 is the application of a negative voltage to the $\mathrm{V}_{\mathrm{R}(-)}$ terminal through the resistor $\mathrm{R}_{\mathrm{REF}(-)}$ with the $R_{R E F(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $\mathrm{V}_{\mathrm{R}(-)}$ terminal while the reference current flows from ground through $R_{R E F(+)}$ into the $\mathrm{V}_{\mathrm{R}(+)}$ terminal.
The Am6071 has a wide output voltage compliance suitable for driving a variety of loads. With $\mathrm{I}_{\mathrm{REF}}=512 \mu \mathrm{~A}$ and $\mathrm{V}-=$ -15 V , positive voltage compliance is +18 V and negative
voltage compliance is -5.0 V . For other values of $\mathrm{I}_{\text {REF }}$ and V-, the negative voltage compliance, $\mathrm{V}_{\mathrm{OC}(-)}$, may be calculated as follows:

$$
V_{O C(-)}=(V-)+2\left(I_{R E F} \cdot 1.55 \mathrm{k} \Omega\right)+8.4 \mathrm{~V}
$$

where $1.55 \mathrm{k} \Omega$ and 8.4 V are equivalent worst case values for the Am6071.
The following table contains $\mathrm{V}_{\mathrm{OC}(-)}$ values for some specific $\mathrm{V}-, \mathrm{I}_{\mathrm{REF}}$, and I_{FS} values.

Negative Output Voltage Compliance $\mathbf{V}_{\mathbf{O C}(-)}$

V^{*}	$\mathrm{I}_{\text {REF }}\left(\mathrm{I}_{\mathrm{FS}}\right)$		
	$256 \mu \mathrm{~A}$ $(1 \mathrm{~mA})$	$512 \mu \mathrm{~A}$ $(2 \mathrm{~mA})$	$1024 \mu \mathrm{~A}$ $(4 \mathrm{~mA})$
-12 V	-2.8 V	-2.0 V	-0.4 V
-15 V	-5.8 V	-5.0 V	-3.4 V
-18 V	-8.8 V	-8.0 V	-6.4 V

The V_{Lc} input can accommodate various logic input switching threshold voltages allowing the Am6071 to interface with various logic families. This input should be placed at a potential which is 1.4 V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TL-driven logic inputs, the $V_{\text {LC }}$ input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V - value and +10 V .
With a V - value chosen between -15 V and -11 V , the $\mathrm{V}_{\mathrm{OC}(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15 V and the V - value chosen.
With a $V+$ value chosen between +5 V and +15 V , the reference amplifier common mode positive voltage range and the V_{Lc} input values are reduced by an amount equivalent to the difference between +15 V and the $\mathrm{V}+$ value chosen.

ECL
CMOS, HTL, NMOS

(See Notes 2 and 3)
Figure 4. Interfacing Circuits for ECL, CMOS, HTL, and NMOS Logic Inputs.

Figure 5. Resistive Output Connections.

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3
Normalized Decoder Output (Sign Bit Excluded)

STEP (S)		CHORD (C)							
		0	1	2	3	4	5	6	7
		000	001	010	011	100	101	110	111
0	0000	1	33	66	132	264	528	1056	2112
1	0001	3	35	70	140	280	560	1120	2240
2	0010	5	37	74	148	296	592	1184	2368
3	0011	7	39	78	156	312	624	1248	2496
4	0100	9	41	82	164	328	656	1312	2624
5	0101	11	43	86	172	344	688	1376	2752
6	0110	13	45	90	180	360	720	1440	2880
7	0111	15	47	94	188	376	752	1504	3008
8	1000	17	49	98	196	392	784	1568	3136
9	1001	19	51	102	204	408	816	1632	3264
10	1010	21	53	106	212	424	848	1696	3392
11	1011	23	55	110	220	440	880	1760	3520
12	1100	25	57	114	228	456	912	1824	3648
13	1101	27	59	118	236	462	944	1888	3776
14	1110	29	61	122	244	488	976	1952	3904
15	1111	31	63	126	252	504	1008	2016	4032
STEP SIZE		2	2	4	8	16	32	64	128

The normalized decode current, ($I_{c, s}$), where C is chord number and S is step number, is calculated using: $I_{C S}=2^{C}(S+16.5)$ for $C \geqslant 1$, and $I_{C, S}=2 S+1$ for $C=0$. The ideal decode current, ($I_{O D}$), in μA is calculated using: $I_{O D}=\left(I_{\mathrm{C}, \mathrm{s}} I_{7,15(\text { norm. }}\right) \cdot I_{\mathrm{FS}}(\mu \mathrm{A})$, where $\mathrm{I}_{\mathrm{C}, \mathrm{s}}$ is the corresponding normalized current.

Table 4
Normalized Encoder Output (Sign Bit Excluded)

STEP (S)		CHORD (C)							
		0	1	2	3	4	5	6	7
		000	001	010	011	100	101	110	111
0	0000	2	34	68	136	272	544	1088	2176
1	0001	4	36	72	144	288	576	1152	2304
2	0010	6	38	76	152	304	608	1216	2432
3	0011	8	40	80	160	320	640	1280	2560
4	0100	10	42	84	168	336	672	1344	2688
5	0101	12	44	88	176	352	704	1408	2816
6	0110	14	46	92	184	368	736	1472	2944
7	0111	16	48	96	192	384	768	1536	3072
8	1000	18	50	100	200	400	800	1600	3200
9	1001	20	52	104	208	416	832	1664	3328
10	1010	22	54	108	216	432	864	1728	3456
11	1011	24	56	112	224	448	896	1792	3584
12	1100	26	58	116	232	464	928	1856	3712
13	1101	28	60	120	240	480	960	1920	3840
14	1110	30	62	124	248	496	992	1984	3968
15	1111	32	64	128	256	512	1024	2048	4096
STEP SIZE		2	2	4	8	16	32	64	128

ADDITIONAL DECODE OUTPUT CURRENT TABLES (Cont.)

Table 5
Decoder Step Size Summary

	Step Size Normalized to Full Scale	Step Size in μ A with 2016 μ A F. S.	Step Size as a \% of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a \% of Reading at Chord Endpoints	Resolution \& Accuracy of Equivalent Binary DAC
0	2	1.0	0.05%	0.58	6.45%	Sign + 11 Bits
1	2	1.0	0.5%	0.28	3.17%	Sign + 11 Bits
2	4	2.0	0.1%	0.28	3.17%	Sign + 10 Bits
3	8	4.0	0.2%	0.28	3.17%	Sign + 9 Bits
4	16	8.0	0.4%	0.28	3.17%	Sign + 8 Bits
5	32	16.0	0.8%	0.28	3.17%	Sign +7 Bits
6	64	32.0	1.6%	0.28	3.17%	Sign +6 Bits
7	128	64.0	3.2%	0.28	3.17%	Sign + 5 Bits

Table 6
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in $\mu \mathbf{A}$ with 2016 $\mu \mathbf{A}$. S.	Chord Endpoints as a \% of Full Scale	Chord Endpoints in dB Down from Full Scale
0	31	15.5	0.77%	-42.28
1	63	31.5	1.56%	-36.12
2	126	12.0	3.13%	-30.10
3	252	252.0	6.25%	-24.08
4	504	12.5%	-18.06	
5	1008	1008.0	25.0%	-12.04
6	2016	2016.0	50.0%	-6.02
7	4032	100%	0	

BASIC CIRCUIT CONNECTIONS	
$\pm 10 \mathrm{~V}$ RANGE ENCODER/DECODER CONNECTIONS	COMPLIANCE EXTENSION USING AC COUPLED OUTPUT IDEAL VALUES: $\begin{aligned} & I_{R E F}=512 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{FS}}=2016 \mu \mathrm{~A} \end{aligned}$
LOW INPUT IMPEDANCE CONNECTION $I_{\text {REF }}=V_{\text {IN }} / R_{\text {IN }}+V_{\text {REF }} / R_{\text {REF }}$ $I_{\text {FS }} \approx 4 \cdot I_{\text {REF }}$	$\begin{aligned} & I_{R E F}=\left(V_{\text {REF }}-V_{I N}\right) / R_{\text {REF }} \\ & I_{\text {FS }} \approx 4 \cdot I_{\text {REF }} \end{aligned}$
LOGARITHMIC DIGITAL GAIN CONTROL (Notes 4 \& 5)	REFERENCE AMPLIFIER DYNAMIC TEST CIRCUIT
Notes: 4. Low distortion outputs are provided over a 72 dB range. 5. Up to 4 channels of output may be selected by E / \bar{D} and SB lo	nputs.

TYPICAL PERFORMANCE CURVES

Reference Amplifier
Total Harmonic Distortion Versus Frequency (80 kHz Filter)
(Notes 6, 7, 8)

Power Supply Currents Versus Power Supply Voltages

Bit Transfer Characteristics (Note 10)

Reference Amplifier Input Frequency Response

Power Supply Currents Versus Temperature

Logic Input Current Versus Input Voltage and Logic Input Range
(Note 11)

Reference Amplifier Input Common-Mode Range (Note 9)

Output Current Versus Output Voltage (Output Voltage Compliance)

OUTPUT VOLTAGE - V

Output Full Scale Current
Versus Reference Input Current

Notes: 6. THD is nearly independent of the logic input code.
7. Similar results are obtained for a high input impedance connection using $\mathrm{V}_{\mathrm{R}(-)}$ as an input.
8. Increased distortion above 50 kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of $\pm \mathbf{2 . 5 V}$ peak ($\mathbf{2 5 \%}$ modulation), the bandwidth is 100 kHz .
9. Positive common mode range is always $(\mathrm{V}+)-1.5 \mathrm{~V}$.
10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8 V and 2.0 V over the operating temperature range.
11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

APPLICATIONS

The companding D/A converter is particularly suited for applications requiring a wide dynamic range.

Systems requiring fine control resulting in a constant rate of change or set point controls are economically achieved using these devices.
Instrumentation, Control and μ-Processor based applications include:
Digital data recording
PCM telemetry systems
Servo systems
Function generation
Data acquisition systems

Telecommunications applications include: PCM Codec telephone systems
Intercom systems
Military voice communication systems
Radar systems
Voice Encryption

Audio Applications:
Recording
Multiplexing of analog signals
Voice synthesis

Other companding converters offered by Advanced Micro Devices:

If particular interest lies in a companding D/A converter operating to the D3 compandor tracking specification and meeting the Bell System μ-255 companding law, see the Am6072 data sheet.

For a CCITT unit having an A-law characteristic see the Am6073 data sheet.
μ-law applications other than telecommunications systems are described in the Am6070 data sheet.

SERIAL DATA TRANSCEIVING CONVERTER (1/2 OF SYSTEM SHOWN)

LIC-274

Notes:

1. Complementary send/receive commands are required for the two ends.
2. START must be held low for one clock cycle to begin a send or receive cycle.
3. The SAR is used as a serial-in/parallel out register in the receive mode.
4. CLOCK and START may be connected in parallel at both ends.
5. Conversion is completed in 9 clock cycles.
6. Receive output is available for one full clock cycle.

Metallization and Pad Layout

80×114 Mils

Am6072

Companding D-to-A Converter for PCM Communication Systems

PRELIMINARY INFORMATION

Distinctive Characteristics

- Tested to D3 compandor tracking specification
- Absolute accuracy specified - includes all errors over temperature range
- Settling time 300ns typical
- Ideal for multiplexed PCM systems
- Output dynamic range of 72 dB
- Improved pin-for-pin replacement for DAC-86
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6072 is a monolithic 8 -bit, companding digital-toanalog (D/A) data converter with true current outputs and large output voltage compliance for fast driving a variety of loads. The transfer function of the Am6072 complies with the Bell System $\mu-255$ companding law,. $Y=0.18 \ln (1+\mu x)$, and consists of 15 linear segments or chords. A particular chord is identified with the sign bit input, (SB), and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are determined by four step select input bits. The resulting dynamic range achieved with this 8 -bit format is 72dB. Accuracy and monoticity are assured by the internal circuit design and are guaranteed over the full temperature
range. The Am6072 is tested to the Bell D3 channel bank compandor tracking specification for pulse code modulation (PCM) transmission systems. The application of the Am6072 in communication systems provides an increased signal-tonoise ratio, reduces system signal distortion, and stimulates wider usage of computerized channel switching. Other application areas include digital audio recording, voice synthesis, and secure communications. When used in PCM communication systems, the Am6072 functions as a complete PCM decoder with additional encoding capabilities which make it ideal for implementation in CODEC circuits.

MAXIMUM RATINGS above which usefut life may be impaired

V+ Supply to V-Supply	36 V	Operating Temperature	
VLC Swing	V -plus 8 V to $\mathrm{V}+$	MIL Grade	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage Swing	V -plus 8 V to V -plus 36 V	COM'L Grade	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Reference Inputs	V - to $\mathrm{V}+$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reference Input Differential Voltage	$\pm 18 \mathrm{~V}$	Power Dissipation $\mathrm{T}_{\mathrm{A}} \leqslant 100^{\circ} \mathrm{C}$	500 mW
Reference Input Current	1.25 mA	For $T_{A}>100^{\circ} \mathrm{C}$ derate at	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Logic Inputs	V -plus 8 V to V -plus 36 V	Lead Soldering Temperature	$300^{\circ} \mathrm{C}(60 \mathrm{sec})$

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	± 128 Steps
Monotonicity	For both groups of 128 steps and over full operating temperature range
Dynamic Range	$72 \mathrm{~dB},\left(20 \log \left(17,15 / 1_{0}, 1\right)\right)$

ELECTRICAL CHARACTERISTICS (Note 1)

These specifications apply for $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, IREF $=528 \mu \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$, for the commercial grade, $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}$ $\leqslant+125^{\circ} \mathrm{C}$, for the military grade, and for all 4 outputs unless otherwise specified.
Test Conditions

t_{s}	Settling Time		To within $\pm 1 / 2$ step at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output switched from IZS to $I_{\text {FS }}$		-	300	500	ns		
	Chord Endpoint Accuracy		$\begin{aligned} & V_{\text {REF }}=+10,000 \mathrm{~V} \\ & R_{\text {REF }}=18.94 \mathrm{k} \Omega \\ & R_{R E F-}=20 \mathrm{k} \Omega \\ & -5 \mathrm{~V} \leqslant V_{\text {OUT }} \leqslant+18 \mathrm{~V} \end{aligned}$		See Table 1 for absolute accuracy limits which cover all errors related to the transfer characteristic.					
	Step Nonlinearity									
IEN	Encode Current									
$\begin{aligned} & \mathrm{I}_{\mathrm{FS}}(\mathrm{D}) \\ & \mathrm{I}_{\mathrm{FS}}(\mathrm{E}) \end{aligned}$	Full Scale Current Deviation from Ideal									
$10(+)^{10}(-)$	Full Scale Current Symmetry Error									
IZS	Zero Scale Current									
$\Delta \mathrm{I}_{\text {FS }}$	Full Scale Current Drift									
V OC	Output Voltage Compliance		Output within limits specified by Table 1		-5	-	+18	Volts		
IDIS	Disable Current		Leakage of output disabled by $\mathrm{E} / \overline{\mathrm{D}}$ or SB		-	5.0	50	nA		
IFSR	Output Current Range				0	2.0	4.2	mA		
$V_{\text {IL }}$	Logic Input Levels	Logic "0"	$V_{L C}=0 \mathrm{~V}$		-	-	0.8	Volts		
$\mathrm{V}_{\text {IH }}$		Logic "1"			2.0	-	-	Volts		
$\mathrm{I}_{\text {IN }}$	Logic Input Current		$\mathrm{V}_{\text {IN }}=-5 \mathrm{~V}$ to +18 V		-	-	40	$\mu \mathrm{A}$		
$V_{\text {IS }}$	Logic Input Swing		$\mathrm{V}-=-15 \mathrm{~V}$		-5	-	+18	Volts		
IBREF-	Reference Bias Current				-	-1.0	-4.0	$\mu \mathrm{A}$		
di/dt	Reference Input Slew Rate				0.12	0.25	-	$\mathrm{mA} / \mu \mathrm{s}$		
$\begin{aligned} & \text { PSSIFS }^{\prime} \\ & \text { PSSI }_{\text {FS }} \end{aligned}$	Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)		$\mathrm{V}+=+4.5$ to $+18 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$		-	0.005	0.1	dB		
			$\mathrm{V}-=-10.8 \mathrm{~V}$ to $-18 \mathrm{~V}, \mathrm{~V}+=+15 \mathrm{~V}$		-	0.01	0.1			
$\begin{aligned} & \text { I+ } \\ & \text { I- } \end{aligned}$	Power Supply Current		$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \text { to }+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{FS}}=2.0 \mathrm{~mA} \end{aligned}$		-	2.7	4.0	mA		
			-	-6.7	-8.8					
$P_{\text {D }}$	Power Dissipation				$\begin{aligned} & \mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{FS}}=2.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}+=+5 \mathrm{~V}$	-	114	152	mW
			$\mathrm{V}+=+15 \mathrm{~V}$	-		141	192			

Note 1. In a companding DAC the term LSB is not used because the step size within each chord is different. For example, in the first chord around zero (C_{0}) the step size is $0.5 \mu \mathrm{~A}$, while in the last chord near full scale (C_{7}) the step size is $64 \mu \mathrm{~A}$.

ELECTRICAL CHARACTERISTICS (Cont.)

TABLE 1
ABSOLUTE DECODER OUTPUT CURRENT LEVELS IN $\mu \mathrm{A}$

STEP NO.	CHORD NO.							
	0	1	2	3	4	5	6	7
0	$\begin{array}{r} -.250 \\ .000 \\ .250 \\ \hline \end{array}$	$\begin{aligned} & 7.789 \\ & 8.250 \\ & 8.739 \\ & \hline \end{aligned}$	$\begin{array}{r} 24.048 \\ 24.750 \\ 25.473 \\ \hline \end{array}$	$\begin{aligned} & 56.112 \\ & 57.750 \\ & 59.436 \end{aligned}$	$\begin{array}{r} 120.24 \\ 123.75 \\ 127.36 \\ \hline \end{array}$	$\begin{aligned} & 248.49 \\ & 255.75 \\ & 263.22 \end{aligned}$	$\begin{aligned} & 505.00 \\ & 519.75 \\ & 534.93 \\ & \hline \end{aligned}$	1018.02 1047.75 1078.34
1	$\begin{array}{r} .250 \\ .500 \\ .750 \\ \hline \end{array}$	$\begin{aligned} & 8.733 \\ & 9.250 \\ & 9.798 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.991 \\ & 26.750 \\ & 27.531 \\ & \hline \end{aligned}$	$\begin{aligned} & 59.998 \\ & 61.750 \\ & 63.553 \\ & \hline \end{aligned}$	$\begin{aligned} & 128.01 \\ & 131.75 \\ & 135.60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 264.04 \\ & 271.75 \\ & 279.69 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 536.10 \\ & 551.75 \\ & 567.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 1080.21 \\ & 1111.75 \\ & 1144.21 \end{aligned}$
2	$\begin{array}{r} .750 \\ 1.000 \\ 1.250 \\ \hline \end{array}$	$\begin{array}{r} 9.677 \\ 10.250 \\ 10.857 \end{array}$	$\begin{aligned} & 27.934 \\ & 28.750 \\ & 29.590 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.885 \\ & 65.750 \\ & 67.670 \end{aligned}$	$\begin{aligned} & 135.79 \\ & 139.75 \\ & 143.83 \\ & \hline \end{aligned}$	$\begin{aligned} & 279.59 \\ & 287.75 \\ & 296.15 \end{aligned}$	$\begin{aligned} & 567.19 \\ & 583.75 \\ & 600.80 \end{aligned}$	$\begin{aligned} & 1142.39 \\ & 1175.75 \\ & 1210.08 \end{aligned}$
3	$\begin{aligned} & 1.250 \\ & 1.500 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 10.621 \\ & 11.250 \\ & 11.917 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.878 \\ & 30.750 \\ & 31.648 \\ & \hline \end{aligned}$	$\begin{aligned} & 67.771 \\ & 69.750 \\ & 71.787 \end{aligned}$	$\begin{aligned} & 143.56 \\ & 147.75 \\ & 152.06 \end{aligned}$	$\begin{aligned} & 295.13 \\ & 303.75 \\ & 312.62 \\ & \hline \end{aligned}$	$\begin{aligned} & 598.28 \\ & 615.75 \\ & 633.73 \end{aligned}$	$\begin{aligned} & 1204.58 \\ & 1239.75 \\ & 1275.95 \end{aligned}$
4	$\begin{aligned} & 1.750 \\ & 2.000 \\ & 2.250 \end{aligned}$	$\begin{aligned} & 11.565 \\ & 12.250 \\ & 12.976 \end{aligned}$	$\begin{aligned} & 31.821 \\ & 32.750 \\ & 33.706 \end{aligned}$	$\begin{aligned} & 71.658 \\ & 73.750 \\ & 75.904 \\ & \hline \end{aligned}$	$\begin{aligned} & 151.33 \\ & 155.75 \\ & 160.30 \end{aligned}$	$\begin{aligned} & 310.68 \\ & 319.75 \\ & 329.09 \end{aligned}$	$\begin{aligned} & 629.37 \\ & 647.75 \\ & 666.66 \end{aligned}$	$\begin{aligned} & 1266.76 \\ & 1303.75 \\ & 1341.82 \end{aligned}$
5	$\begin{aligned} & 2.250 \\ & 2.500 \\ & 2.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.509 \\ & 13.250 \\ & 14.035 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.764 \\ & 34.750 \\ & 35.765 \\ & \hline \end{aligned}$	$\begin{aligned} & 75.544 \\ & 77.750 \\ & 80.020 \end{aligned}$	$\begin{aligned} & 159.10 \\ & 163.75 \\ & 168.53 \end{aligned}$	$\begin{aligned} & 326.22 \\ & 335.75 \\ & 345.55 \end{aligned}$	$\begin{aligned} & 660.46 \\ & 679.75 \\ & 699.60 \end{aligned}$	$\begin{aligned} & 1328.94 \\ & 1367.75 \\ & 1407.69 \end{aligned}$
6	$\begin{aligned} & 2.750 \\ & 3.000 \\ & 3.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.453 \\ & 14.250 \\ & 15.094 \end{aligned}$	$\begin{aligned} & 35.707 \\ & 36.750 \\ & 37.823 \end{aligned}$	$\begin{aligned} & 79.431 \\ & 81.750 \\ & 84.137 \\ & \hline \end{aligned}$	$\begin{aligned} & 166.88 \\ & 171.75 \\ & 176.77 \\ & \hline \end{aligned}$	$\begin{aligned} & 341.77 \\ & 351.75 \\ & 362.02 \end{aligned}$	$\begin{aligned} & 691.56 \\ & 711.75 \\ & 732.53 \end{aligned}$	1391.13 1431.75 1473.56
7	$\begin{aligned} & 3.250 \\ & 3.500 \\ & 3.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.397 \\ & 15.250 \\ & 16.154 \end{aligned}$	$\begin{aligned} & 37.651 \\ & 38.750 \\ & 39.882 \\ & \hline \end{aligned}$	$\begin{aligned} & 83.317 \\ & 85.750 \\ & 88.254 \\ & \hline \end{aligned}$	$\begin{aligned} & 174.65 \\ & 179.75 \\ & 185.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 357.32 \\ & 367.75 \\ & 378.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 722.65 \\ & 743.75 \\ & 765.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 1453.31 \\ & 1495.75 \\ & 1539.43 \end{aligned}$
8	$\begin{aligned} & 3.750 \\ & 4.000 \\ & 4.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.341 \\ & 16.250 \\ & 17.213 \end{aligned}$	$\begin{aligned} & 39.594 \\ & 40.750 \\ & 41.940 \end{aligned}$	$\begin{aligned} & 87.204 \\ & 89.750 \\ & 92.371 \end{aligned}$	$\begin{aligned} & 182.42 \\ & 187.75 \\ & 193.23 \end{aligned}$	$\begin{aligned} & \hline 372.86 \\ & 383.75 \\ & 394.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 753.74 \\ & 775.75 \\ & 798.40 \end{aligned}$	$\begin{aligned} & 1515.50 \\ & 1559.75 \\ & 1605.30 \end{aligned}$
9	$\begin{aligned} & 4.248 \\ & 4.500 \\ & 4.767 \end{aligned}$	$\begin{aligned} & 16.285 \\ & 17.250 \\ & 18.272 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.537 \\ & 42.750 \\ & 43.998 \\ & \hline \end{aligned}$	$\begin{aligned} & 91.090 \\ & 93.750 \\ & 96.488 \\ & \hline \end{aligned}$	$\begin{aligned} & 190.20 \\ & 195.75 \\ & 201.47 \end{aligned}$	$\begin{aligned} & \hline 388.41 \\ & 399.75 \\ & \mathbf{4 1 1 . 4 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 784.83 \\ & 807.75 \\ & 831.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 1577.68 \\ & 1623.75 \\ & 1671.16 \end{aligned}$
10	$\begin{aligned} & 4.720 \\ & 5.000 \\ & 5.296 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.229 \\ & 18.250 \\ & 19.331 \end{aligned}$	$\begin{aligned} & 43.480 \\ & 44.750 \\ & 46.057 \end{aligned}$	$\begin{array}{r} 94.977 \\ 97.750 \\ 100.604 \\ \hline \end{array}$	$\begin{aligned} & 197.97 \\ & 203.75 \\ & 209.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 403.95 \\ & 415.75 \\ & 427.89 \\ & \hline \end{aligned}$	$\begin{aligned} & 815.92 \\ & 839.75 \\ & 864.27 \end{aligned}$	$\begin{aligned} & 1639.87 \\ & 1687.75 \\ & 1737.03 \\ & \hline \end{aligned}$
11	$\begin{aligned} & \hline 5.192 \\ & 5.500 \\ & 5.826 \\ & \hline \end{aligned}$	$\begin{array}{r} 18.173 \\ 19.250 \\ 19.812 \\ \hline \end{array}$	$\begin{aligned} & \hline 45.424 \\ & 46.750 \\ & 48.115 \\ & \hline \end{aligned}$	$\begin{array}{r} 98.863 \\ 101.750 \\ 104.721 \\ \hline \end{array}$	$\begin{aligned} & 205.74 \\ & 211.75 \\ & 217.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 419.50 \\ & 431.75 \\ & 444.36 \end{aligned}$	$\begin{aligned} & 847.02 \\ & .871 .75 \\ & 897.21 \end{aligned}$	$\begin{aligned} & 1702.05 \\ & 1751.75 \\ & 1802.90 \\ & \hline \end{aligned}$
12	$\begin{aligned} & \hline 5.664 \\ & 6.000 \\ & 6.356 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.675 \\ & 20.250 \\ & 20.841 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.367 \\ & 48.750 \\ & 50.174 \end{aligned}$	$\begin{aligned} & 102.750 \\ & 105.750 \\ & 108.838 \\ & \hline \end{aligned}$	$\begin{aligned} & 213.52 \\ & 219.75 \\ & 226.17 \end{aligned}$	$\begin{aligned} & 435.05 \\ & 447.75 \\ & 460.82 \end{aligned}$	$\begin{aligned} & 878.11 \\ & 903.75 \\ & 930.14 \end{aligned}$	$\begin{aligned} & 1764.23 \\ & 1815.75 \\ & 1868.77 \end{aligned}$
13	$\begin{aligned} & 6.136 \\ & 6.500 \\ & 6.885 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.647 \\ & 21.250 \\ & 21.871 \end{aligned}$	$\begin{aligned} & 49.310 \\ & 50.750 \\ & 52.232 \\ & \hline \end{aligned}$	$\begin{aligned} & 106.636 \\ & 109.750 \\ & 112.955 \\ & \hline \end{aligned}$	$\begin{aligned} & 221.29 \\ & 227.75 \\ & 234.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 450.59 \\ & 463.75 \\ & 477.29 \end{aligned}$	$\begin{aligned} & 909.20 \\ & 935.75 \\ & 963.07 \end{aligned}$	$\begin{aligned} & 1826.42 \\ & 1879.75 \\ & 1934.64 \end{aligned}$
14	$\begin{aligned} & 6.608 \\ & 7.000 \\ & 7.415 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.619 \\ & 22.250 \\ & 22.900 \\ & \hline \end{aligned}$	$\begin{aligned} & 51.253 \\ & 52.750 \\ & 54.290 \end{aligned}$	$\begin{aligned} & 110.523 \\ & 113.750 \\ & 117.072 \\ & \hline \end{aligned}$	$\begin{aligned} & 229.06 \\ & 235.75 \\ & 242.63 \\ & \hline \end{aligned}$	$\begin{aligned} & 466.14 \\ & 479.75 \\ & 493.76 \\ & \hline \end{aligned}$	$\begin{aligned} & 940.29 \\ & 967.75 \\ & 996.01 \end{aligned}$	1888.60 1943.75 2000.51
15	$\begin{aligned} & 7.080 \\ & 7.500 \\ & 7.944 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22.590 \\ & 23.250 \\ & 23.929 \end{aligned}$	$\begin{aligned} & 53.197 \\ & 54.750 \\ & 56.349 \end{aligned}$	$\begin{aligned} & \hline 114.409 \\ & 117.750 \\ & 121.188 \end{aligned}$	$\begin{aligned} & 236.83 \\ & 243.75 \\ & 250.87 \end{aligned}$	481.68 495.75 510.23	$\begin{array}{r} 971.39 \\ 999.75 \\ 1028.94 \end{array}$	$\begin{aligned} & 1950.79 \\ & 2007.75 \\ & 2066.38 \end{aligned}$
$\begin{aligned} & \text { STEP } \\ & \text { SIZE } \\ & \hline \end{aligned}$. 5	1	2	4	8	16	32	64

Minimum, ideal and maximum values are specified for each step. The minimum and maximum values are specified to comply with the Bell D3 compandor tracking requirements. All four outputs are guaranteed, the encode outputs being specified to limits a half step higher than those shown above. This takes into account the combined effects of chord endpoint accuracy, step nonlinearity, encode current error, full scale current deviation from ideal, full scale symmetry error, zero scale current, full scale drift, and output impedance over the specified output voltage compliance range. Note that the guaranteed monotonicity ensures that adjacent step current levels will not overlap as might otherwise be implied from the minimum and maximum values shown in the above table.

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

CHORD	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{S T E P}$								
$\mathbf{0}$	-	-44.73	-35.18	-27.82	-21.20	-14.90	-8.74	$-\mathbf{- 2 . 6 5}$
$\mathbf{1}$	-69.07	-43.73	-34.51	-27.24	-20.66	-14.37	-8.22	$-\mathbf{- 2 . 1 3}$
$\mathbf{2}$	-63.05	-42.84	-33.88	-26.70	-20.15	-13.87	-7.73	-1.65
$\mathbf{3}$	-59.53	-42.03	-33.30	-26.18	-19.66	-13.40	-7.27	-1.19
$\mathbf{4}$	-57.03	-41.29	-32.75	-25.70	-19.21	-12.96	-6.83	-0.75
$\mathbf{5}$	-55.10	-40.61	-32.24	-25.24	-18.77	-12.53	-6.41	-0.33
$\mathbf{7}$	-53.51	-39.98	-31.75	-24.80	-18.36	-12.13	-6.01	+0.06
$\mathbf{8}$	-52.17	-39.39	-31.29	-24.39	-17.96	-11.74	-5.63	+0.44
$\mathbf{9}$	-51.01	-38.84	-30.85	-23.99	-17.58	-11.37	-5.26	+0.81
$\mathbf{1 0}$	-49.99	-38.32	-30.44	-23.61	-17.22	-11.02	-4.91	+1.16
$\mathbf{1 1}$	-49.07	-37.83	-30.04	-23.25	-16.87	-10.68	-4.57	+1.49
$\mathbf{1 2}$	-48.25	-37.37	-29.66	-22.90	-16.54	-10.35	-4.25	+1.82
$\mathbf{1 3}$	-47.49	-36.93	-29.29	-22.57	-16.22	-10.03	-3.93	+2.13
$\mathbf{1 4}$	-46.80	-36.51	-28.95	-22.25	-15.91	-9.73	-3.63	+2.43
$\mathbf{1 5}$	-46.15	-36.11	-28.61	-21.94	-15.61	-9.43	-3.34	+2.72

The -37 dBmo and -50 dBmo output points significant for the Bell D3 system specification can be found between steps 11 and 12 on chord 1 , and steps 8 and 9 on chord 0 , respectively. Outputs corresponding to points below -50 dB are specified in Table 1 for an accuracy of \pm a half step.

THEORY OF OPERATION

Functional Description

The Am6072 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, $I_{\text {FS }}$, is specified by the input binary code 111 1111, and is a linear function of the reference current, $I_{\text {REFF }}$. There are two operating modes, encode and decode, which are controlled by the Encode/Decode, ($E / \overline{\mathrm{D}})$, input signal. A logic 1 applied to the E / \bar{D} input places the Am6072 in the encode mode and current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E / \bar{D} input places the Am6072 in the decode mode.
The transfer characteristic is a piece-wise linear approximation to the Bell System μ - 225 logarithmic law which can be written as follows:
$Y=0.18 \ln (1+\mu|X|) \operatorname{sgn}(X)$
where: $X=$ analog signal level normalized to unity
(encoder input or decoder output)
$Y=$ digital signal level normalized to unity (encoder output or decoder input)
$\mu=255$
The current flows from the external circuit into one of four possible analog outputs determined by the $S B$ and E / \bar{D} inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $0.5 \mu \mathrm{~A}$ found in the first chord near zero output current, and the largest step of $64 \mu \mathrm{~A}$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels near zero output current. The accuracy for signal amplitudes corresponding to chord 0 is equivalent to that of a 12 -bit linear, binary D/A converter. However, the ratio (in dB) between the chord
endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3 dB over most of the dynamic range. The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at approximately 6 dB over most of the dynamic range. Resulting signal-to-quantizing distortions due to non-uniform quantizing levels maintain an acceptably low value over a 40 dB range of input speech signals. Note that the 72 dB output dynamic range for the Am6072 corresponds to the dynamic range of a sign plus 12-bit linear, binary D / A converter.

In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7 -bit input configuration is shown in Figure 1. The corresponding dynamic range is 72 dB , and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The $\mathrm{E} / \overline{\mathrm{D}}$ input enables switching between the encode, $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-) \text {, }}$, and the decode, $\mathrm{I}_{\mathrm{OD}(+)}$ or $\mathrm{I}_{\mathrm{OD}(-) \text {, outputs. A typical encode/decode test circuit is shown }}$ in Figure 2. This circuit is used for output current measurements. When the E / \bar{D} input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the loe outputs (as determined by the SB input). When operating in the encode mode as shown in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current,

	E/D	SB	B_{1}	B2	B3	B4	B5	B_{6}	B7	EO
POSITIVE FULL SCALE	0	1	1	1	1	1	1	1	1	5.019 V
(+) ZERO SCALE +1 STEP	0	1	0	0	0	0	0	0	1	0.0012V
(+) ZERO SCALE	0	1	0	0	0	0	0	0	0	OV
(-) ZERO SCALE	0	0	0	0	0	0	0	0	0	OV
(-) ZERO SCALE +1 STEP	0	0	0	0	0	0	0	0	1	-0.0012V
NEGATIVE FULL SCALE	0	0	1	1	1	1	1	1	1	$-5.019 \mathrm{~V}$

Figure 1. Detailed Decoder Connections.

LIC-279
LINE SELECTION TABLE

TEST GROUP GROUP	E / \bar{D}	SB	OUTPUT MEASUREMENT	
1	1	1	'on ${ }^{(+)}$	$\left(\mathrm{E}_{01} / \mathrm{R}_{1}\right)$
2	1	0	'oEf (-1	$\left(\mathrm{E}_{01} / \mathrm{R}_{2}\right)$
3	0	1	${ }^{100}(+)$	$\left(\mathrm{E}_{02} / \mathrm{R}_{3}\right)$
4	0	0		$\left(E_{02} / R_{4}\right)$

Figure 2. Output Current DC Test Circuit.
$I_{E N}$, is automatically added to the I_{OE} output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32 \mu \mathrm{~A}$. Similarly, the current levels in the first chord near the origin will be offset by $0.25 \mu \mathrm{~A}$, which will bring the ideal encode current value for step 0 on chord 0 to $\pm 0.25 \mu \mathrm{~A}$ with respect to the corresponding decode current value of $0.0 \mu \mathrm{~A}$. This additional encode half step of current can be used for extension of the output dynamic range from 72 dB to 78 dB , when the converter is performing only the decode function. The corresponding decoder connection utilizes the $E \bar{D}$ input as a ninth digital input and has the outputs $\mathrm{IOD(+)}$ and $\mathrm{I}_{\mathrm{OE}(+)}$ and the outputs $\mathrm{I}_{\mathrm{OD}(-)}$ and $\mathrm{I}_{\mathrm{OE}(-)}$ tied together, respectively.

When encoding or compression of analog signal is required, the Am6072 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the A/D data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper Start, $\overline{\mathbf{S}}$, and Conversion Complete, CC, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E / \bar{D} input with a logic 0 level. No current flows into the loe outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E / \bar{D} input back to a logic 1 level because the $\overline{C C}$ signal changed. It also clocks the D
input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6072. Depending upon the SB input level, current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output of the Am6072.

Nine total clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6072 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6072 output current to a bipolar voltage output. When the SB input is a logic 1 , sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0 , sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6072. The resulting operational amplifier's output in Figure 2 should ideally be symmetrical with resistors R1 and R2 matched.
In Figure 2, two operational amplifiers measure the currents of each of the four Am6072 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2 \mu \mathrm{~A}$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10 nA and 1 nA , respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of

Figure 3. Detailed Encoder Connections.
$2.5 \mathrm{k} \Omega$, also contribute to the output measurement error by a factor of 400 nA for every mV of offset at the A1 and A2 outputs. Therefore, to minimize error, the offset voltages of A1 and A2 should be nulled.

The recommended operating range for the reference current $\mathrm{I}_{\text {REF }}$ is from 0.1 mA to 1.0 mA . The full scale output current, $I_{F S}$, is a linear function of the reference current, and may be calculated from the equation $I_{F S}=3.8 \mathrm{I}_{\mathrm{REF}}$. This tight relationship between $I_{\text {REF }}$ and $I_{F S}$ alleviates the requirement for trimming the $I_{\text {REF }}$ current if the $\mathrm{R}_{\text {REF }}$ resistors values are within $\pm 1 \%$ of the calculated value. Lower values of $\mathrm{I}_{\text {REF }}$ will reduce the negative power supply current, (I-), and will increase the reference amplifier negative common mode input voltage range.

The ideal value for the reference current $I_{\text {REF }}=V_{\text {REF }} / R_{\text {REF }}$ is $528 \mu \mathrm{~A}$. The corresponding ideal full scale decode and encode current values are $2007.75 \mu \mathrm{~A}$ and $2039.75 \mu \mathrm{~A}$, respectively. A percentage change from the ideal $\mathrm{I}_{\mathrm{REF}}$ value produced by changes in $V_{\text {REF }}$ or $R_{\text {REF }}$ values produces the same percentage change in decode and encode output current values. The positive voltage supply, $\mathrm{V}+$, may be used, with certain precautions, for the positive reference voltage $\mathrm{V}_{\text {REF }}$. In this case, the reference resistor $\mathrm{R}_{\text {REF }(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of $0.01 \mu \mathrm{~F}$. The total resistor value should provide the reference current $\mathrm{I}_{\mathrm{REF}}=528 \mu \mathrm{~A}$. The resistor $\mathrm{R}_{\mathrm{REF}(-)}$ value should be approximately equal to the $\mathbf{R E F}_{\text {RE }}$) value in order to compensate for the errors caused by the reference amplifier's input offset current.

An alternative to the positive reference voltage applications shown in Figures 1,2 and 3 is the application of a negative voltage to the $\mathrm{V}_{\mathrm{R}(-)}$ terminal through the resistor $\mathrm{R}_{\mathrm{REF}(-)}$ with the $R_{\text {REF (}+ \text {) }}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $\mathrm{V}_{\mathrm{R}(-)}$ terminal while the reference current flows from ground through $\mathrm{R}_{\mathrm{REF}(+)}$ into the $\mathrm{V}_{\mathrm{R}(+)}$ terminal.

The Am6072 has a wide output voltage compliance suitable for driving a variety of loads. With $\mathrm{I}_{\mathrm{REF}}=528 \mu \mathrm{~A}$ and $\mathrm{V}-=-15 \mathrm{~V}$, positive voltage compliance is +18 V and negative voltage compliance is -5.0 V . For other values of $\mathrm{I}_{\mathrm{REF}}$ and $\mathrm{V}-$, the negative voltage compliance, $\mathrm{V}_{\mathrm{OC}(-)}$, may be calculated as follows:

$$
V_{\mathrm{OC}(-)}=(\mathrm{V}-)+\left(2 \cdot I_{\mathrm{REF}} \cdot 1.5 \mathrm{k} \Omega\right)+8.4 \mathrm{~V}
$$

The following table contains $\mathrm{V}_{\mathrm{OC}(-)}$ values for some specific $V-, I_{R E F}$, and $I_{F S}$ values.
Negative Output Voltage Compliance $\mathrm{V}_{\mathrm{OC}}(-)$

-$\mathrm{I}_{\text {REF }}$ $\left(\mathrm{I}_{\mathrm{FS}}\right)$	$264 \mu \mathrm{~A}$ $(1 \mathrm{~mA})$	$528 \mu \mathrm{~A}$ $(2 \mathrm{~mA})$	$1056 \mu \mathrm{~A}$ $(4 \mathrm{~mA})$
-12 V	-2.8 V	-2.0 V	-0.4 V
-15 V	-5.8 V	-5.0 V	-3.4 V
-18 V	-8.8 V	-8.0 V	-6.4 V

The $V_{L C}$ input can accommodate various logic input switching threshold voltages allowing the Am6072 to interface with various logic families. This input should be placed at a potential which is 1.4 V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V value and +10 V .

With a V - value chosen between -15 V and -11 V , the $V_{\mathrm{OC}(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15 V and the V - value chosen.
With a $V+$ value chosen between +5 V and +15 V , the reference amplifier common mode positive voltage range and the $V_{L C}$ input values are reduced by an amount equivalent to the difference between +15 V and the $\mathrm{V}+$ value chosen.

(See Notes 2 and 3)
Figure 4. Interfacing Circuits for ECL, CMOS, HTL, and NMOS Logic Inputs.

Figure 5. Resistive Output Connections.

Notes: 2. Set the voltage " A " to the desired logic input switching threshold.
3. Allowable range of logic threshold is typically -5 V to +13.5 V when operating the companding DAC on $\pm 15 \mathrm{~V}$ supplies.

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3
Normalized Decoder Output (Sign Bit Excluded)

Chord (C) Step (S)		0	1	2	3	4	5	6	7
		000	001	010	011	100	101	110	111
0	0000	0	33	99	231	495	1023	2079	4191
1	0001	2	37	107	247	527	1087	2207	4447
2	0010	4	41	115	263	559	1151	2335	4703
3	0011	6	45	123	279	591	1215	2463	4959
4	0100	8	49	131	295	623	1279	2591	5215
5	0101	10	53	139	311	655	1343	2719	5471
6	0110	12	57	147	327	687	1407	2847	5727
7	0111	14	61	155	343	719	1471	2975	5983
8	1000	16	65	163	359	751	1535	3103	6239
9	1001	18	69	171	375	783	1599	3231	6495
10	1010	20	73	179	391	815	1663	3359	6751
11	1011	22	77	187	407	847	1727	3487	7007
12	1100	24	81	195	423	879	1791	3615	7263
13	1101	26	85	203	439	911	1855	3743	7519
14	1110	28	89	211	455	943	1919	3871	7775
15	1111	30	93	219	471	975	1983	3999	8031
Step Size		2	4	8	16	32	64	128	256

The normalized decode current, ($l_{c, s}$), is calculated using:
$\mathrm{I}_{\mathrm{C}, \mathrm{s}}=2\left(2^{\mathrm{C}}(\mathrm{S}+16.5)-16.5\right)$
where $\mathrm{C}=$ chord number; $\mathrm{S}=$ step number. The ideal decode current, (lod), in $\mu \mathrm{A}$ is calculated using:
$I_{O D}=\left(I_{C}, s I_{7}, 15(\right.$ norm. $\left.)\right) \cdot I_{\text {FS }}(\mu \mathrm{A})$
where $\mathrm{I}_{\mathrm{C}, \mathrm{s}}$ is the corresponding normalized current. To obtain normalized encode current values the corresponding normalized half-step value should be added to all entries in Table 3.

Table 4
Decoder Step Size Summary

Chord	Step Size Normalized to Full Scale	Step Size in μ A with 2007.75 μ A FS	Step Size as a \% of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a \% of Reading at Chord Endpoints	 Accuracy of Equivalent Binary DAC
0	2	0.5	0.025%	0.60	6.67%	Sign +12 Bits
$\mathbf{1}$	4	1.0	0.05%	0.38	4.30%	Sign +11 Bits
2	8	2.0	0.1%	0.32	3.65%	Sign +10 Bits
3	16	4.0	0.2%	0.31	3.40%	Sign +9 Bits
4	32	8.0	0.4%	0.29	3.28%	Sign +8 Bits
5	64	16.0	0.8%	0.28	3.23%	Sign +7 Bits
6	128	32.0	1.6%	0.28	3.20%	Sign +6 Bits
7	256	64.0	3.2%	0.28	3.19%	Sign +5 Bits

Table 5
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in μ A with 2007.75 $\mu \mathrm{A} \mathrm{FS}$	Chord Endpoints as a \% of Full Scale	Chord Endpoints in dB Down from Full Scale
0	30	7.5	0.37%	-48.55
1	93	23.25	1.16%	-38.73
2	219	54.75	2.73%	-31.29
3	471	117.75	5.86%	-24.63
4	975	243.75	12.1%	-18.32
5	1983	495.75	24.7%	-12.15
6	3999	999.75	49.8%	-6.06
7	8031	2007.75	100%	0

TYPICAL PERFORMANCE CURVES

Reference Amplifier Total Harmonic Distortion Versus Frequency (80 kHz Filter) (Notes 6, 7, 8)

Power Supply Currents Versus Power Supply Voltages

Bit Transfer Characteristics (Note 10)

Power Supply Currents Versus Temperature

Logic Input Current Versus Input Voltage and Logic Input Range (Note 11)

Reference Amplifier Input Common-Mode Range (Note 9)
 REFERENCE COMMON-MODE VOLTAGE AT $V_{\text {REF }}$ PIN - V

Output Current Versus Output Voltage (Output Voltage Compliance)

Output Full Scale Current Versus Reference Input Current

Notes: 6. THD is nearly independent of the logic input code.
7. Similar results are obtained for a high input impedance connection using $V_{R(-)}$ as an input.
8. Increased distortion above 50 kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of $\pm \mathbf{2 . 5 V}$ peak (25% modulation), the bandwidth is 100 kHz .
9. Positive common mode range is always ($\mathrm{V}+$) -1.5 V .
10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8 V and 2.0 V over the operating temperature range.
11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

TIME SHARED CONVERTER CONNECTIONS

SINGLE CHANNEL PCM CODEC - PARALLEL DATA I/O

APPLICATION INFORMATION

1. To perform a transmit operation cycle the $\overline{\text { START }}$ pulse must be held low for one clock cycle; the receive operation is performed without the successive approximation register, SAR
2. XMT and RECEIVE command signals are mutually exclusive.
3. Duration of the RECEIVE command signal must accommodate the Am6072 settling time plus the sampling time required by the sample and hold, ($\mathrm{S} \& \mathrm{H}$), circuit used at the CODEC's analog output. The receiving data must not change during this time.
4. $A \overline{X M T}$ command signal must be issued after a high-tolow transition of the CONVERSION COMPLETE, CC, signal. Its duration depends on the time required by the digital time division switch circuitry to sample the 8 -bit parallel transmit data bus.
5. Data conversion for a transmit operation is completed in 9 clock cycles because the SAR must be initialized before every new conversion. Data conversion for a receive operation corresponds to the Am6072 settling time; the receiving and transmit data transfers can be done simultaneously by employing separate transmit and receive data buses and utilizing data storage devices for the receive data.
6. A sample command pulse for a transmit operation can coincide with the START pulse; its duration depends on the sample and hold circuit used at the CODEC's analog input.
7. A sample command pulse for a receive operation must be delayed from a low-to-high transition of the RECEIVE command signal by an amount equal to the Am6072 settling time. Its termination can coincide with a high-to-low transition of the RECEIVE command signal.

SINGLE CHANNEL PCM CODEC - SERIAL DATA I/O

LIC-291

APPLICATION INFORMATION

1. Before beginning either a transmit or a receive operation, the START signal must be held low for one complete clock cycle.
2. XMT and $\overline{\text { RECEIVE }}$ command signals are mutually exclusive. Their durations must accommodate the time required for conversion of an outgoing or an incoming series of 8 digital bits, respectively.
3. Data conversion for either operation, transmit or receive, is completed in 9 clock cycles.
4. During the receive cycle the successive approximation register, SAR, is acting as a serial-in to parallel-out shift register, with data supplied from data storage devices.
5. A sample command pulse for a transmit cycle must be issued before a XMT command signal; its duration depends on the sample and hold, $S \& H$, circuit used.
6. A sample command pulse for a receive cycle must be delayed by a time equal to the Am6072 settling time after a high-to-low transition of the CONVERSION COMPLETE, CC, signal occurs.

8 LINE CODEC TDM PCM/PABX SYSTEM - BLOCK DIAGRAM

COMPANDOR TRACKING SPECIFICATION

COMPANDOR TRACKING TEST BLOCK DIAGRAM

LIC-294

D3 NOISE AND DISTORTION SPECIFICATION

The Am6072 has a negligible idle channel noise contribution. Signal-to-quantizing-distortion ratio, (S/D), is guaranteed to exceed the minimum values specified for D3 channels as follows:

Input Level 1020 Hz Sinewave	S/D, C-Message Weighting
0 to -30 dBmo	33 dB
$\mathrm{At}-40 \mathrm{dBmo}$	27 dB
$\mathrm{At}-45 \mathrm{dBmo}$	22 dB

DECODER OPERATION DURING SIGNALLING FRAME

LIC-295

The Am6072 can perform the decoding function in a D3 channel bank system. During signalling frames the least significant bit; B7, of each 8 -bit word is used for signalling messages and only seven bits are used for sample coding. In order to minimize the quantizing error during these signalling frames, the Am6072 output is increased by a half step from its corresponding decode output value by switching the E / \bar{D} input from a logic level 0 to a logic 1.

Am6073

Companding D-to-A Converter for PCM Communication Systems

Distinctive Characteristics

- Tested to CCITT A-law tracking specification
- Absolute accuracy specified - includes all errors over temperature range
- Settling time 300 ns typical
- Ideal for multiplexed PCM systems
- Output dynamic range of 62 dB
- Improved pin-for-pin replacement for DAC-87
- Microprocessor controlled operations
- Multiplying operation
- Negligible output noise
- Monotonicity guaranteed over entire dynamic range
- Wide output voltage compliance
- Low power consumption

GENERAL DESCRIPTION

The Am6073 is a monolithic 8 -bit, companding digital-toanalog (D/A) data converter with true current outputs and large output voltage compliance for fast driving a variety of loads. The transfer function of the Am6073 complies with the CCITT A-87.6 companding law, and consists of 13 linear segments or chords. A particular chord is identified with the sign bit input, (SB), and three chord select input bits. Each chord contains 16 uniformly spaced linear steps which are determined by four step select input bits. The resulting dynamic range achieved with this 8 -bit format is 62 dB . Accuracy and monoticity are assured by the internal circuit design and are guaranteed over the full temperature range. The Am6073 is
tested to the CCITT A-law compandor tracking specification for pulse code modulation (PCM) transmission systems. The application of the Am6073 in communication systems provides an increased signal-to-noise ratio, reduces system signal distortion, and stimulates wider usage of computerized channel switching. Other application areas include digital audio recording, voice synthesis, and secure communications. When used in PCM communication systems, the Am6073 functions as a complete PCM decoder with additional encoding capabilities which make it ideal for implementation in CODEC circuits.

MAXIMUM RATINGS above which useful life may be impaired

V+ Supply to V-Supply	36 V	Operating Temperature	
VLC Swing	V - plus 8 V to $\mathrm{V}+$	MIL Grade	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage Swing	V -plus 8 V to V -plus 36 V	COM'L Grade	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Reference Inputs	V - to $\mathrm{V}+$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reference Input Differential. Voltage	$\pm 18 \mathrm{~V}$	Power Dissipation $\mathrm{T}_{A} \leqslant 100^{\circ} \mathrm{C}$	500 mW
Reference Input Current	1.25 mA	For $\mathrm{T}_{\mathrm{A}}>100^{\circ} \mathrm{C}$ derate at	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Logic Inputs	V -plus 8 V to V - plus 36 V	Lead Soldering Temperature	$300^{\circ} \mathrm{C}(60 \mathrm{sec})$

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution	± 128 Steps
Monotonicity	For both groups of 128 steps and over full operating temperature range
Dynamic Range	$62 \mathrm{~dB},\left(20 \log \left(17,15 / I_{0,1}\right)\right)$

ELECTRICAL CHARACTERISTICS (Note 1)

These specifications apply for $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, $\mathrm{I}_{\mathrm{REF}}=512 \mu \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$, for the commercial grade, $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}$ $\leqslant+125^{\circ} \mathrm{C}$, for the military grade, and for all 4 outputs unless otherwise specified.

Parameter
Description
Test Conditions
Min. Typ. Max. Unit

$\mathrm{t}_{\text {s }}$	Settling Time		To within $\pm 1 / 2$ step at $T_{A}=25^{\circ} \mathrm{C}$, Output switched from I ZS to I_{FS}		-	300	500	ns		
	Chord Endpoint Accuracy									
	Step Nonlinearity									
$\mathrm{I}_{\text {EN }}$	Encode Current									
$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{FS}}(\mathrm{D}) \\ \mathrm{I}_{\mathrm{FS}}(\mathrm{E}) \\ \hline \end{array}$	Fuil Scale Current Deviation from Ideal		$\begin{aligned} & R_{\text {REF }+}=19.53 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{REF}}=20 \mathrm{k} \Omega \\ & -5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant+18 \mathrm{~V} \end{aligned}$			ble 1 fo which co	lute ll erro			
$10^{(+1)-10(-)}$	Full Scale Current Symmetry Error Decode or Encode Pair					transfer	acteri			
Izs	Zero Scale Current									
$\Delta{ }^{\text {I }}$ FS	Full Scale Current Drift									
Voc	Output Voltage Compliance		Output within limits specified by Table 1		-5	-	+18	Volts		
IDIS	Disable Current		Leakage of output disabled by E / \bar{D} or SB		-	5.0	50.	nA		
${ }^{1}$ FSR	Output Current Range				0	2.0	4.2	mA		
$\mathrm{V}_{\text {IL }}$	Logic Input Levels	Logic "0"	$V_{\text {LC }}=0 \mathrm{~V}$		-	-	0.8	Volts		
$\mathrm{V}_{\text {IH }}$		Logic "1"			2.0	-	-	Volts		
IIN.	Logic Input Current		$\mathrm{V}_{\text {IN }}=-5 \mathrm{~V}$ to +18 V		-	-	40	$\mu \mathrm{A}$		
$\mathrm{V}_{\text {IS }}$	Logic Input Swing		$\mathrm{V}-=-15 \mathrm{~V}$		-5	-	+18	Volts		
IBREF-	Reference Bias Current				-	-1.0	-4.0	$\mu \mathrm{A}$		
dl/dt	Reference Input Slew Rate				0.12	0.25	-	$\mathrm{mA} / \mu \mathrm{s}$		
PSSI $_{\text {FS }}+$ PSSI $_{\text {FS }}-$	Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)		$\mathrm{V}+=+4.5$ to $+18 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$		-	0.005	0.1	dB		
			$\mathrm{V}-=-10.8 \mathrm{~V}$ to $-18 \mathrm{~V}, \mathrm{~V}$	+15V	-	0.01	0.1			
I+	Power Supply Current		$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V} \text { to }+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{FS}}=2.0 \mathrm{~mA} \end{aligned}$		-	2.7	4.0			
1-			-	-6.7	-8.8	mA				
P_{D}	Power Dissipation				$\begin{aligned} & \mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & I_{\mathrm{FS}}=2.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}+=+5 \mathrm{~V}$	-	114	152	
			$\mathrm{V}+=+15 \mathrm{~V}$	-		141	192			

Note 1. In a companding DAC the term LSB is not used because the step size within each chord is different. For example, in the first chord around zero (C_{0}) the step size is $1.0 \mu \mathrm{~A}$, while in the last chord near full scale (C_{7}) the step size is $64 \mu \mathrm{~A}$.

ELECTRICAL CHARACTERISTICS (Cont.)
TABLE I
ABSOLUTE DECODER OUTPUT CURRENT LEVELS IN $\mu \mathrm{A}$

STEP	CHORD							
	0	1	2	3	4	5	6	7
0	$\begin{array}{r} .000 \\ .500 \\ 1.000 \end{array}$	$\begin{aligned} & 16.032 \\ & 16.500 \\ & 16.982 \end{aligned}$	$\begin{aligned} & \mathbf{3 2 . 0 6 4} \\ & 33.000 \\ & 33.964 \end{aligned}$	$\begin{aligned} & 64.127 \\ & 66.000 \\ & 67.927 \end{aligned}$	$\begin{aligned} & 128.25 \\ & 132.00 \\ & 135.85 \end{aligned}$	$\begin{aligned} & 256.51 \\ & 264.00 \\ & 271.71 \end{aligned}$	$\begin{aligned} & 513.02 \\ & 528.00 \\ & 543.42 \end{aligned}$	$\begin{aligned} & 1026.04 \\ & 1056.00 \\ & 1086.84 \end{aligned}$
1	$\begin{aligned} & 1.000 \\ & 1.500 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 17.003 \\ & 17.500 \\ & 18.011 \end{aligned}$	$\begin{aligned} & 34.007 \\ & 35.000 \\ & 36.022 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 68.014 \\ 70.000 \\ 72.044 \end{array} \end{aligned}$	$\begin{aligned} & 136.03 \\ & 140.00 \\ & 144.09 \end{aligned}$	$\begin{aligned} & 272.06 \\ & 280.00 \\ & 288.18 \end{aligned}$	$\begin{aligned} & 544.11 \\ & 550.00 \\ & 576.35 \end{aligned}$	$\begin{aligned} & 1088.22 \\ & 1120.00 \\ & 1152.70 \end{aligned}$
2	$\begin{aligned} & 2.103 \\ & 2.500 \\ & 2.971 \end{aligned}$	$\begin{aligned} & 17.975 \\ & 18.500 \\ & 19.040 \end{aligned}$	$\begin{aligned} & 35.950 \\ & 37.000 \\ & 38.080 \end{aligned}$	$\begin{aligned} & 71.900 \\ & 74.000 \\ & 76.161 \end{aligned}$	$\begin{aligned} & 143.80 \\ & 148.00 \\ & 152.32 \end{aligned}$	$\begin{aligned} & 287.60 \\ & 296.00 \\ & 304.64 \end{aligned}$	$\begin{aligned} & 575.20 \\ & 592.00 \\ & 69.29 \end{aligned}$	$\begin{aligned} & 1150.41 \\ & 1184.00 \\ & 1218.57 \end{aligned}$
3	$\begin{aligned} & 2.945 \\ & 3.500 \\ & 4.160 \end{aligned}$	$\begin{aligned} & 18.947 \\ & 19.500 \\ & 20.069 \end{aligned}$	$\begin{aligned} & 37.893 \\ & 39.000 \\ & 40.139 \end{aligned}$	$\begin{aligned} & 75.787 \\ & 78.000 \\ & 80.278 \end{aligned}$	$\begin{aligned} & 151.57 \\ & 156.00 \\ & 160.56 \end{aligned}$	$\begin{aligned} & 303.15 \\ & 312.00 \\ & 321.11 \end{aligned}$	$\begin{aligned} & 606.30 \\ & 624.00 \\ & 642.22 \end{aligned}$	$\begin{aligned} & 1212.59 \\ & 1248.00 \\ & 1284.44 \end{aligned}$
4	$\begin{aligned} & 4.248 \\ & 4.500 \\ & 4.767 \end{aligned}$	$\begin{aligned} & 19.918 \\ & 20.500 \\ & 21.099 \end{aligned}$	$\begin{aligned} & 39.837 \\ & 41.300 \\ & 42.197 \end{aligned}$	$\begin{aligned} & 79.673 \\ & 82.000 \\ & 84.394 \end{aligned}$	$\begin{aligned} & 159.35 \\ & 164.00 \\ & 168.79 \end{aligned}$	$\begin{aligned} & 318.69 \\ & 328.00 \\ & 337.58 \end{aligned}$	$\begin{aligned} & 637.39 \\ & 656.00 \\ & 675.16 \end{aligned}$	$\begin{aligned} & 1274.78 \\ & 1312.00 \\ & 1350.31 \end{aligned}$
5	$\begin{aligned} & 5.192 \\ & 5.500 \\ & 5.826 \end{aligned}$	$\begin{aligned} & 20.890 \\ & 21.500 \\ & 22.128 \end{aligned}$	$\begin{aligned} & 41.780 \\ & 43.000 \\ & 44.256 \end{aligned}$	$\begin{aligned} & 83.560 \\ & 86.000 \\ & 88.511 \end{aligned}$	$\begin{aligned} & 167.12 \\ & 172.00 \\ & 177.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 334.24 \\ & 344.00 \\ & 354.04 \end{aligned}$	$\begin{aligned} & 668.48 \\ & 688.00 \\ & 708.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 1336.96 \\ & 1376.00 \\ & 1416.18 \\ & \hline \end{aligned}$
6	$\begin{aligned} & 6.136 \\ & 6.500 \\ & 6.885 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.862 \\ & 22.500 \\ & 23.155 \end{aligned}$	$\begin{aligned} & 43.723 \\ & 45.000 \\ & 46.314 \end{aligned}$	$\begin{aligned} & 87.447 \\ & 90.000 \\ & 92.628 \end{aligned}$	$\begin{aligned} & 174.89 \\ & 180.00 \\ & 185.26 \end{aligned}$	$\begin{aligned} & 349.79 \\ & 360.00 \\ & 370.51 \end{aligned}$	$\begin{aligned} & 699.57 \\ & 7720.00 \\ & 741.02 \end{aligned}$	$\begin{aligned} & 1399.14 \\ & 1440.00 \\ & 1482.05 \end{aligned}$
7	$\begin{aligned} & 7.080 \\ & 7.500 \\ & 7.944 \end{aligned}$	$\begin{aligned} & 22.833 \\ & 23.500 \\ & 24.188 \\ & \hline \end{aligned}$	$\begin{aligned} & 45.667 \\ & 47.000 \\ & 48.372 \end{aligned}$	$\begin{aligned} & 91.333 \\ & 94.000 \\ & 96.745 \end{aligned}$	$\begin{aligned} & 182.67 \\ & 188.00 \\ & 193.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 365.33 \\ & 376.00 \\ & 386.98 \end{aligned}$	$\begin{aligned} & 730.66 \\ & 752.00 \\ & 773.96 \end{aligned}$	$\begin{aligned} & 1461.33 \\ & 1504.00 \\ & 1547.92 \end{aligned}$
8	$\begin{aligned} & 8.025 \\ & 8.500 \\ & 9.004 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.805 \\ & 24.500 \\ & 25.215 \end{aligned}$	$\begin{aligned} & 47.610 \\ & 49.000 \\ & 50.431 \end{aligned}$	$\begin{array}{r} 95.220 \\ 98.000 \\ 100.862 \end{array}$	$\begin{aligned} & 190.44 \\ & 196.00 \\ & 201.72 \end{aligned}$	$\begin{aligned} & 380.88 \\ & 392.00 \\ & 403.45 \end{aligned}$	$\begin{aligned} & 761.76 \\ & 784.00 \\ & 806.89 \end{aligned}$	$\begin{aligned} & 1523.51 \\ & 1568.00 \\ & 1613.79 \end{aligned}$
9	$\begin{array}{r} \hline 8.969 \\ 9.500 \\ 10.063 \end{array}$	$\begin{aligned} & 24.777 \\ & 25.500 \\ & 26.245 \end{aligned}$	$\begin{aligned} & \hline 49.553 \\ & 51.000 \\ & 52.489 \end{aligned}$	$\begin{array}{r} 99.106 \\ 102.000 \\ 104.978 \end{array}$	$\begin{aligned} & 198.21 \\ & 204.00 \\ & 29.96 \end{aligned}$	$\begin{aligned} & 396.42 \\ & 408.00 \\ & 419.91 \end{aligned}$	$\begin{aligned} & 792.85 \\ & 816.00 \\ & 839.83 \end{aligned}$	$\begin{aligned} & 1585.70 \\ & 1632.00 \\ & 1679.66 \end{aligned}$
10	$\begin{array}{r} 9.913 \\ 10.500 \\ 11.122 \end{array}$	$\begin{aligned} & 25.748 \\ & 26.500 \\ & 27.274 \end{aligned}$	$\begin{aligned} & 51.496 \\ & 53.000 \\ & 54.548 \end{aligned}$	$\begin{aligned} & 102.993 \\ & 106.000 \\ & 109.095 \end{aligned}$	$\begin{aligned} & 205.99 \\ & 212.00 \\ & 218.19 \end{aligned}$	$\begin{aligned} & 411.97 \\ & 424.00 \\ & 436.38 \end{aligned}$	$\begin{aligned} & 823.94 \\ & 848.00 \\ & 872.76 \end{aligned}$	$\begin{aligned} & 1647.88 \\ & 1696.00 \\ & 1745.52 \end{aligned}$
11	$\begin{aligned} & 10.857 \\ & 11.500 \\ & 12.181 \end{aligned}$	$\begin{aligned} & 26.720 \\ & 27.500 \\ & 28.303 \end{aligned}$	$\begin{aligned} & 53.440 \\ & 55.000 \\ & 56.606 \end{aligned}$	$\begin{aligned} & 106.879 \\ & 110.000 \\ & 113.212 \end{aligned}$	$\begin{aligned} & 213.76 \\ & 220.00 \\ & 226.42 \end{aligned}$	$\begin{aligned} & 427.52 \\ & 440.00 \\ & 42.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 855.03 \\ & 880.00 \\ & 95.70 \\ & \hline \end{aligned}$	$\begin{array}{r} 1710.07 \\ 1760.00 \\ 1811.39 \\ \hline \end{array}$
12	$\begin{aligned} & 11.801 \\ & 12.500 \\ & 13.241 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.691 \\ & 28.500 \\ & 29.332 \\ & \hline \end{aligned}$	$\begin{aligned} & 55.383 \\ & 58.700 \\ & 58.664 \end{aligned}$	$\begin{aligned} & 110.766 \\ & 114.000 \\ & 117.329 \\ & \hline \end{aligned}$	$\begin{aligned} & 221.53 \\ & 228.00 \\ & 234.66 \end{aligned}$	$\begin{aligned} & 443.06 \\ & 456.00 \\ & 469.32 \end{aligned}$	$\begin{aligned} & 886.12 \\ & 912.00 \\ & 938.63 \end{aligned}$	$\begin{aligned} & 1722.25 \\ & 1824.00 \\ & 1877.26 \end{aligned}$
13	$\begin{aligned} & 12.745 \\ & 13.500 \\ & 13.894 \end{aligned}$	$\begin{aligned} & 28.663 \\ & 29.500 \\ & 30.361 \end{aligned}$	$\begin{aligned} & 57.326 \\ & 59.000 \\ & 60.723 \end{aligned}$	$\begin{aligned} & 114.652 \\ & 118.000 \\ & 121.446 \end{aligned}$	$\begin{aligned} & 229.30 .30 \\ & 236.00 \\ & 242.89 \end{aligned}$	$\begin{aligned} & 458.61 \\ & 472.00 \\ & 485.78 \end{aligned}$	$\begin{aligned} & 917.22 \\ & 944.00 \\ & 971.57 \end{aligned}$	$\begin{aligned} & 1834.43 \\ & 1888.00 \\ & 1943.13 \end{aligned}$
14	$\begin{aligned} & 14.089 \\ & 14.50 \\ & 14.923 \end{aligned}$	$\begin{array}{r} 29.635 \\ 30.500 \\ 31.39 \\ \hline \end{array}$	$\begin{aligned} & 59.269 \\ & 61.000 \\ & 62.781 \end{aligned}$	$\begin{aligned} & 118.539 \\ & 122.000 \\ & 125.562 \end{aligned}$	$\begin{aligned} & 237.08 \\ & 244.00 \\ & 21.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 474.15 \\ & 488.00 \\ & 502.25 \end{aligned}$	$\begin{array}{r} 948.31 \\ 976.00 \\ 1004.50 \\ \hline \end{array}$	$\begin{aligned} & 1896.62 \\ & 1952.00 \end{aligned}$ 2009.00
15	$\begin{aligned} & 15.060 \\ & 15.500 \\ & 15.953 \end{aligned}$	$\begin{aligned} & 30.606 \\ & 31.500 \\ & 32.420 \end{aligned}$	$\begin{aligned} & 61.231 \\ & 63.000 \\ & 64.840 \end{aligned}$	$\begin{aligned} & 122.425 \\ & 126.000 \\ & 129.679 \\ & \hline \end{aligned}$	$\begin{aligned} & 244.85 \\ & 252.00 \\ & 259.36 \end{aligned}$	$\begin{aligned} & 489.70 \\ & 504.00 \\ & 518.72 \\ & \hline \end{aligned}$	$\begin{array}{r} 979.40 \\ 1008.00 \\ 1037.43 \\ \hline \end{array}$	1958.80 2016.00 2074.87
$\begin{aligned} & \hline \text { STEP } \\ & \text { SIZE } \end{aligned}$	1	1	2	4	8	16	32	64

Minimum, ideal and maximum values are specified for each step. The minimum and maximum values are specified to comply with the CCITT A-law compandor tracking requirements. All four outputs are guaranteed, the encode outputs being specified to limits a half step higher than those shown above. This takes into account the combined effects of chord endpoint accuracy, step nonlinearity, encode current error, full scale current deviation from ideal, full scale symmetry error, zero scale current, full scale drift, and output impedance over the specified output voltage compliance range. Note that the guaranteed monotonicity ensures that adjacent step current levels will not overlap as might otherwise be implied from the minimum and maximum values shown in the above table.

TABLE 2
IDEAL DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

STEP	CHORD								
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{0}$	-69.11	-38.74	-35.72	-26.70	-20.68	-14.66	-8.64	-2.62	
$\mathbf{1}$	-59.57	-38.23	-32.21	-26.19	-20.17	-14.15	-8.13	-2.11	
$\mathbf{2}$	-55.13	-37.75	-31.73	-25.71	-19.68	-13.66	-7.64	-1.62	
$\mathbf{3}$	-52.21	-37.29	-31.27	-25.25	-19.23	-13.21	-7.19	-1.17	
$\mathbf{4}$	-50.03	-36.85	-30.83	-24.81	-18.79	-12.77	-6.75	-0.73	
$\mathbf{5}$	-48.28	-36.44	-30.42	-24.40	-18.38	-12.36	-6.34	-0.32	
$\mathbf{6}$	-46.83	-36.05	-30.03	-24.00	-17.98	-11.96	-5.94	+0.08	
$\mathbf{7}$	-45.59	-35.67	-29.65	-23.63	-17.61	-11.59	-5.57	+0.46	
$\mathbf{8}$	-44.50	-35.31	-29.29	-23.27	-17.24	-11.22	-5.20	+0.82	
$\mathbf{9}$	-43.54	-34.96	-28.94	-22.92	-16.90	-10.88	-4.86	+1.16	
$\mathbf{1 0}$	-42.67	-34.62	-28.60	-22.58	-16.56	-10.54	-4.52	+1.50	
11	-41.88	-34.30	-28.28	-22.26	-16.24	-10.22	-4.20	+1.82	
12	-41.15	-33.99	-27.97	-21.95	-15.93	-9.91	-3.89	+2.13	
$\mathbf{1 3}$	-40.48	-33.69	-27.67	-21.65	-15.63	-9.61	-3.59	+2.43	
$\mathbf{1 4}$	-39.86	-33.40	-27.38	-21.36	-15.34	-9.32	-3.30	+2.72	
$\mathbf{1 5}$	-39.28	-33.12	-27.10	-21.08	-15.06	-9.04	-3.02	+3.00	

The $-40 \mathrm{dBmo},-50 \mathrm{dBmo}$, and -55 dBmo output points significant for the CCITT A-87.6 PCM system specification can be found between steps 13 and 14 on chord 0 , steps 4 and 5 on chord 0 , and steps 2 and 3 on chord 0, respectively. Outputs corresponding to points below -55dBmo are specified in Table 1 for an accuracy of \pm a half step.

THEORY OF OPERATION

Functional Description

The Am6073 is an 8-bit, nonlinear, digital-to-analog converter with high impedance current outputs. The output current value is proportional to the product of the digital inputs and the input reference current. The full scale output current, $I_{F S}$, is specified by the input binary code 111 1111, and is a linear function of the reference current, $I_{\text {REF }}$. There are two operating modes, encode and decode, which are controlled by the Encode/Decode, (E / \bar{D}), input signal. A logic 1 applied to the E / \bar{D} input places the Am6073 in the encode mode and current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output, depending on the state of the Sign Bit (SB) input. A logic 0 at the E / \bar{D} input places the Am6073 in the decode mode.
The transfer characteristic is a piece-wise linear approximation to the CCITT A-87.6 logarithmic law which can be written as follows:

$$
\begin{array}{ll}
Y=0.18(1+\ln (A|X|)) \operatorname{sgn}(X), & 1 / A \leqslant|X| \leqslant 1 \\
Y=0.18(A|X|) \operatorname{sgn}(X), & 0 \leqslant|X| \leqslant 1 / A
\end{array}
$$

where: $X=$ analog signal level normalized to unity

> (encoder input or decoder output)
$\mathrm{Y}=$ digital signal level normalized to unity (encoder output or decoder input) $A=87.6$
The current flows from the external circuit into one of four possible analog outputs determined by the $S B$ and E / \bar{D} inputs. The output current transfer function can be represented by a total of 16 segments or chords addressable through the SB input and three chord select bits. The two chords closest to the origin of the transfer function, chord 0 and chord 1, are made colinear and contiguous. The beginning of chord 0 , specified by the input binary code 0000000 , is offset by $+0.5 \mu \mathrm{~A}$. Each chord can be further divided into 16 steps, all of the same size. The step size changes from one chord to another, with the smallest step of $1.0 \mu \mathrm{~A}$ found in the first two chords near zero output current, and the largest step of $64 \mu \mathrm{~A}$ found in the last chord near full scale output current. This nonlinear feature provides exceptional accuracy for small signal levels. The accuracy for signal amplitudes corres-
ponding to chords 0 and 1 is very close to that of an 11-bit linear, binary D / A converter. The ratio (in $d B$) between the chord endpoint current, (Step 15), and the current which corresponds to the preceding step, (Step 14), is maintained at about 0.3 dB over the entire dynamic range, with the exception of chord 0 . The difference between the ratios of full scale current to chord endpoint currents of adjacent chords is similarly maintained at 6 dB over the entire dynamic range. Resulting signal-to-quantizing distortions due to nonuniform quantizing levels maintain an acceptably low value over a 40 dB range of input speech signals. Note that the 62 dB output dynamic range for the Am6073 is very close to the dynamic range of a sign plus 11-bit linear, binary D/A converter.
In order to achieve a smoother transition between adjacent chords, the step size between these chord end points is equal to 1.5 times the step size of the lower chord. Note that this does not apply to chord 0 and chord 1 where adjacent end points differ by only one step, because these two chords are colinear and have the same step sizes. Monotonic operation is guaranteed by the internal device design over the entire output dynamic range by specifying and maintaining the chord end points and step size deviations within the allowable limits.

Operating Modes

The basic converter function is conversion of digital input data into a corresponding analog current signal, i.e., the basic function is digital-to-analog decoding. The basic decoder connection for a sign plus 7 -bit input configuration is shown in Figure 1. The corresponding dynamic range is 62 dB , and input-output characteristics conform to the standard decoder transfer function with output current values specified in Table 1. The E/ $\overline{\mathrm{D}}$ input enables switching between the encode, $\mathrm{IOE}_{(+)}$or $\mathrm{I}_{\mathrm{OE}(-)}$, and the decode, $\mathrm{IOD}_{(+)}$or lod(-), outputs. A typical encode/decode test circuit is shown in Figure 2. This circuit is used for output current measurements. When the E / \bar{D} input is high, (a logic 1), the converter will assume the encode operating mode and the output current will flow into one of the l_{OE} outputs (as determined by the SB input). When operating in the encode mode as shown
in Figure 3, an offset current equal to a half step in each chord is required to obtain the correct encoder transfer characteristic. Since the size of this step varies from one chord to another, it cannot easily be added externally. As indicated in the block diagram this required half step of encode current, I_{EN}, is automatically added to the loe output through the internal chip design. This additional current will, for example, make the ideal full scale current in the encode mode larger than the same current in the decode mode by $32 \mu \mathrm{~A}$. Similarly, the current levels in the first chord near the origin will be offset by $0.5 \mu \mathrm{~A}$, which will bring the ideal encode current value for step 0 on chord 0 to $\pm 1.0 \mu \mathrm{~A}$ with respect to the corresponding decode current value of $0.5 \mu \mathrm{~A}$. This additional encode half step of current can be used for extension of the output dynamic range from 62 dB to 66 dB , when the converter is performing only the decode function. The corresponding decoder connection utilizes the E / \bar{D} input as a ninth digital input and has the outputs $\mathrm{I}_{\mathrm{OD}(+)}$ and $\mathrm{I}_{\mathrm{OE}(+)}$ and the outputs $\mathrm{I}_{\mathrm{OD}(-)}$ and $\mathrm{I}_{\mathrm{OE}(-)}$ tied together, respectively.
When encoding or compression of an analog signal is required, the Am6072 can be used together with a Successive Approximation Register (SAR), comparator, and additional SSI logic elements to perform the AID data conversion, as shown in Figure 3. The encoder transfer function, shown on page 1, characterizes this A/D converter system. The first task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input value. When the proper START, (\mathbf{S}), and CONVERSION COM$\overline{\text { PLETE }}(\overline{\mathrm{CC}})$, signal levels are set, the first clock puise sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E/D input with a logic 0 level. No current flows into the loe outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with the ground applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the second input to the same exclusive-or gate is held at a logic 0 level by the additional successive approximation logic shown in Figure 3. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E / \bar{D} input back to a logic 1 level because the $\overline{C C}$ signal changed. It also clocks the D input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Am6073. Depending upon the SB input level, current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output of the Am6073.

Nine clock pulses are required to obtain a digital binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting Am6073 analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the analog signals at the A/D system input are usually prevented by using sample and hold circuitry.

Additional Considerations and Recommendations

In Figure 1, an optional operational amplifier converts the Am6073 output current to a bipolar voltage output. When the SB input is a logic 1 , sink current appears at the amplifier's negative input, and the amplifier acts as a current to voltage converter, yielding a positive voltage output. With the SB value at a logic 0, sink current appears at the amplifier's positive input. The amplifier behaves as a voltage follower, and the true current outputs will swing below ground with essentially no change in output current. The SB input steers current into the appropriate (+) or (-) output of the Am6073. The resulting operational amplifier's output in Figure 1 should ideally be symmetrical with resistors R1 and R2 matched.

In Figure 2, two operational amplifiers measure the currents of each of the four Am6073 analog outputs. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2 \mu \mathrm{~A}$ at full scale). The input offset currents of the A1 and A2 devices also increase output measurement error and this error is most significant near zero scale. The Am101A and 308 devices, for example, may be used for A1 and A2 since their maximum offset currents, which would add directly to the measurement error, are only 10 nA and 1 nA respectively. The input offset voltages of the A1 and A2 devices, with output resistor values of $2.5 \mathrm{k} \Omega$, also contribute to the output measurement error by a factor of 400 nA for

Figure 3. Detailed Encoder Connections.
every mV of offset at the A1 and A2 outputs. Therefore, to minimize error, the offset voltages of $A 1$ and $A 2$ should be nulled.
The recommended operating range for the reference current $I_{\text {REF }}$ is from 0.1 mA to 1.0 mA . The full scale output current, I_{FS}, is a linear function of the reference current, and may be calculated from the equation $I_{\text {FS }}=3.94 \mathrm{I}_{\text {REF }}$. This tight relationship between $I_{R E F}$ and $I_{F S}$ alleviates the requirement for trimming the $I_{\text {REF }}$ current if the $R_{\text {REF }}$ resistor values are within $\pm 1 \%$ of the calculated value. Lower values of $\mathrm{I}_{\text {REF }}$ will reduce the negative power supply current, (I-), and will increase the reference amplifier negative common mode input voltage range.
The ideal value for the reference current $I_{\text {REF }}=V_{\text {REF }} / R_{\text {REF }}$ is $512 \mu \mathrm{~A}$. The corresponding ideal full scale decode and encode current values are $2016 \mu \mathrm{~A}$ and $2048 \mu \mathrm{~A}$, respectively. A percentage change from the ideal $I_{\text {REF }}$ value produced by changes in $V_{\text {REF }}$ or $\mathrm{R}_{\text {REF }}$ values produces the same percentage change in decode and encode output current values. The positive voltage supply, $\mathrm{V}+$, may be used, with certain precautions, for the positive reference voltage $\mathrm{V}_{\text {REF }}$. In this case, the reference resistor $\mathrm{R}_{\text {REF }(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of $0.01 \mu \mathrm{~F}$. The total resistor value should provide the reference current $\mathrm{I}_{\mathrm{REF}}=512 \mu \mathrm{~A}$. The resistor $\mathrm{R}_{\mathrm{REF}(-)}$ value should be approximately equal to the $\mathbf{R}_{\mathrm{REF}(+)}$ value in order to compensate for the errors caused by the reference amplifier's input offset current.
An alternative to the positive reference voltage applications shown in Figures 1, 2 and 3 is the application of a negative voltage to the $\mathrm{V}_{\mathrm{R}(-)}$ terminal through the resistor $\mathrm{R}_{\mathrm{REF}(-)}$ with the $\mathrm{R}_{\mathrm{REF}(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $\mathrm{V}_{\mathrm{R}(-)}$ terminal while the reference current flows from ground through $\mathrm{R}_{\mathrm{REF}(+)}$ into the $\mathrm{V}_{\mathrm{R}(+)}$ terminal.
The Am6073 has a wide output voltage compliance suitable for driving a variety of loads. With $\mathrm{I}_{\mathrm{REF}}=512 \mu \mathrm{~A}$ and $\mathrm{V}-=$ -15 V , positive voltage compliance is +18 V and negative
voltage compliance is -5.0 V . For other values of $\mathrm{I}_{\text {REF }}$ and V -, the negative voltage compliance, $\mathrm{V}_{\mathrm{OC}(-)}$, may be calculated as follows:

$$
\mathrm{V}_{\mathrm{OC}(-)}=(\mathrm{V}-)+2\left(\mathrm{I}_{\mathrm{REF}} \cdot 1.55 \mathrm{k} \Omega\right)+8.4 \mathrm{~V},
$$

where $1.55 \mathrm{k} \Omega$ and 8.4 V are equivalent worst case values for the Am6073.

The following table contains $\mathrm{V}_{\text {OC(}-)}$ values for some specific $\mathrm{V}-, \mathrm{I}_{\mathrm{REF}}$, and I_{FS} values.

Negative Output Voltage Compliance $\mathbf{V}_{\mathbf{O C}(-)}$

V_{-}	$\mathbf{\prime}_{\text {REF }}\left(\mathbf{I}_{\mathrm{FS}}\right)$		
	$256 \mu \mathrm{~A}$ $(1 \mathrm{~mA})$	$512 \mu \mathrm{~A}$ $(2 \mathrm{~mA})$	$1024 \mu \mathrm{~A}$ $(4 \mathrm{~mA})$
-12 V	-2.8 V	-2.0 V	-0.4 V
-15 V	-5.8 V	-5.0 V	-3.4 V
-18 V	-8.8 V	-8.0 V	-6.4 V

The V_{Lc} input can accommodate various logic input switching threshold voltages allowing the Am6073 to interface with various logic families. This input should be placed at a potential which is 1.4 V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 4. For TTL-driven logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than the sum of the chosen V - value and +10 V .
With a V - value chosen between -15 V and -11 V , the $V_{\mathrm{OC}(-)}$, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15 V and the V - value chosen.
With a $\mathrm{V}+$ value chosen between +5 V and +15 V , the reference amplifier common mode positive voltage range and the $V_{\text {LC }}$ input values are reduced by an amount equivalent to the difference between +15 V and the $\mathrm{V}+$ value chosen.

(See Notes 2 and 3)
Figure 4. Interfacing Circuits for ECL, CMOS, HTL, and NMOS Logic Inputs.

Figure 5. Resistive Output Connections.

Notes: 2. Set the voltage " A " to the desired logic input switching threshold.
3. Allowable range of logic threshold is typically -5 V to +13.5 V when operating the companding DAC on +15 V supplies.

ADDITIONAL DECODE OUTPUT CURRENT TABLES

Table 3
Normalized Decoder Output (Sign Bit Excluded)

STEP (S)		CHORD (C)							
		0	1	2	3	4	5	6	7
		000	001	010	011	100	101	110	111
0	0000	1	33	66	132	264	528	1056	2112
1	0001	3	35	70	140	280	560	1120	2240
2	0010	5	37	74	148	296	592	1184	2368
3	0011	7	39	78	156	312	624	1248	2496
4	0100	9	41	82	164	328	656	1312	2624
5	0101	11	43	86	172	344	688	1376	2752
6	0110	13	45	90	180	360	720	1440	2880
7	0111	15	47	94	188	376	752	1504	3008
8	1000	17	49	98	196	392	784	1568	3136
9	1001	19	51	102	204	408	816	1632	3264
10	1010	21	53	106	212	424	848	1696	3392
11	1011	23	55	110	220	440	880	1760	3520
12	1100	25	57	114	228	456	912	1824	3648
13	1101	27	59	118	236	462	944	1888	3776
14	1110	29	61	122	244	488	976	1952	3904
15	1111	31	63	126	252	504	1008	2016	4032
STEP SIZE		2	2	4	8	16	32	64	128

The normalized decode current, ($\mathrm{I}_{\mathrm{C}, \mathrm{s}}$), where C is chord number and S is step number, is calculated using: $I_{C S}=2^{C}(S+16.5)$ for $C \geqslant 1$, and $I_{C, S}=2 S+1$ for $C=0$. The ideal decode current, ($I_{0 D}$), in μA is calculated using: $\mathrm{I}_{\mathrm{OD}}=\left(\mathrm{I}_{\mathrm{C}, \mathrm{s}} \mathrm{I}_{7,15(\text { norm. })}\right) \cdot I_{\mathrm{FS}}(\mu \mathrm{A})$, where $\mathrm{I}_{\mathrm{C}, \mathrm{s}}$ is the corresponding normalized current. To obtain normalized encode values the corresponding normalized half-step value should be added to all entries in Table 3.

Table 4
Decoder Step Size Summary

Chord	Step Size Normalized to Full Scale	Step Size in $\mu \mathrm{A}$ with 2016μ A F. S.	Step Size as a \% of Full Scale	Step Size in dB at Chord Endpoints	Step Size as a \% of Reading at Chord Endpoints	Resolution \& Accuracy of Equivalent Binary DAC
0	2	1.0	0.05\%	0.58	6.45\%	Sign + 11 Bits
1		1.0	0.05\%	0.28	3.17\%	Sign + 11 Bits
2	4	2.0	0.1\%	0.28	3.17\%	Sign + 10 Bits
3	8	4.0	0.2\%	0.28	3.17\%	Sign + 9 Bits
4	16	8.0	0.4\%	0.28	3.17\%	Sign +8 Bits
5	32	16.0	0.8\%	0.28	3.17\%	Sign +7 Bits
6	64	32.0	1.6\%	0.28	3.17\%	Sign + 6 Bits
7	128	64.0	3.2\%	0.28	3.17\%	Sign + 5 Bits

Table 5
Decoder Chord Size Summary

Chord	Chord Endpoints Normalized to Full Scale	Chord Endpoints in $\mu \mathbf{A}$ with $\mathbf{2 0 1 6} \mu \mathrm{A}$ F. S.	Chord Endpoints as a \% of Full Scale	Chord Endpoints in dB Down from Full Scale
$\mathbf{0}$	31	15.5	0.77%	-42.28
1	63	31.5	1.56%	-36.12
$\mathbf{2}$	126	63.0	3.13%	-30.10
$\mathbf{3}$	252	126.0	6.25%	-24.08
$\mathbf{4}$	504	252.0	12.5%	-18.06
5	1008	504.0	25.0%	-12.04
6	2016	1008.0	50.0%	-6.02
7	4032	2016.0	100%	0

Notes: 4. Low distortion outputs are provided over 62 dB range.
5. Up to 4 channels of output may be selected by E / \bar{D} and $S B$ logic inputs.

TYPICAL PERFORMANCE CURVES

Reference Amplifier
Total Harmonic Distortion Versus Frequency (80 kHz Filter)
(Notes 6, 7, 8)

Power Supply Currents Versus Power Supply Voltages

POSITIVE OR NEGATIVE POWER SUPPLY - V

Bit Transfer Characteristics
(Note 10)

Reference Amplifier Input Frequency Response

Power Supply Currents Versus Temperature

Logic Input Current Versus Input Voltage and Logic Input Range
(Note 11)

Reference Amplifier Input Common-Mode Range (Note 9)

Output Current Versus Output Voltage (Output Voltage Compliance)

Output Full Scale Current Versus Reference Input Current

Notes: 6. THD is nearly independent of the logic input code.
7. Similar results are obtained for a high input impedance connection using $V_{R(-)}$ as an input.
8. Increased distortion above 50 kHz is due to a slew rate limiting effect which determines the large signal bandwidth. For an input of $\pm 2.5 \mathrm{~V}$ peak (25% modulation), the bandwidth is 100 kHz .
9. Positive common mode range is always $(\mathrm{V}+$) -1.5 V .
10. All bits are fully switched with less than a half step error at switching points which are guaranteed to lie between 0.8 V and 2.0 V over the operating temperature range.
11. The logic input voltage range is independent of the positive power supply and logic inputs may swing above the supply.

TIME SHARED CONVERTER CONNECTIONS

SINGLE CHANNEL PCM CODEC - PARALLEL DATA I/O

APPLICATION INFORMATION

1. To perform a transmit operation cycle the START pulse must be held low for one clock cycle; the receive operation is performed without the successive approximation register, SAR.
2. XMT and RECEIVE command signals are mutually exclusive.
3. Duration of the RECEIVE command signal must accommodate the Am6073 settling time plus the sampling time required by the sample and hold, ($\mathrm{S} \& \mathrm{H}$), circuit used at the CODEC's analog output. The receiving data must not change during this time.
4. A $\overline{X M T}$ command signal must be issued after a high-tolow transition of the CONVERSION COMPLETE, $\overline{\mathrm{CC}}$, signal. Its duration depends on the time required by the digital time division switch circuitry to sample the 8 -bit parallel transmit data bus.
5. Data conversion for a transmit operation is completed in 9 clock cycles because the SAR must be initialized before
every new conversion. Data conversion for a receive operation corresponds to the Am6073 settling time; the receiving and transmit data transfers can be done simultaneously by employing separate transmit and receive data buses and utilizing data storage devices for the receive data.
6. A sample command pulse for a transmit operation can coincide with the START pulse; its duration depends on the sample and hold circuit used at the CODEC's analog input.
7. A sample command pulse for a receive operation must be delayed from a low-to-high transition of the RECEIVE command signal by an amount equal to the Am6073 settling time. Its termination can coincide with a high-to-low transition of the RECEIVE command signal.
8. The code assignment for outgoing or incoming parallel data provides uncomplemented binary values for signal sign and magnitude. The data bus, as a result, yields "high zeros" density for small signal amplitudes.

TIME SHARED CONVERTER CONNECTIONS (Cont.)

SINGLE CHANNEL PCM CODEC - SERIAL DATA I/O

LIC-312

APPLICATION INFORMATION

1. Before beginning either a transmit or a receive operation, the START signal must be held low for one complete clock cycle.
2. XMT and RECEIVE command signals are mutually exclusive. Their durations must accommodate the time required for conversion of an outgoing or an incoming series of 8 digital bits, respectively.
3. Data conversion for either operation, transmit or receive, is completed in 9 clock cycles.
4. During the receive cycle the successive approximation register, SAR, is acting as a serial-in to parallel-out shift re-
gister, with data supplied from data storage devices.
5. A sample command pulse for a transmit cycle must be issued before a XMT command signal; its duration depends on the sample and hold, $S \& H$, circuit used.
6. A sample command pulse for a receive cycle must be delayed by a time equal to the Am6073 settling time after a high-to-low transition of the CONVERSION COMPLETE, $\overline{\mathrm{CC}}$, signal occurs.
7. The code assignment for outgoing or incoming parallel data provides uncomplemented binary values for signal sign and magnitude. The data bus, as a result, yields "high zeros" density for small signal amplitudes.

8 LINE CODEC TDM PCM/PABX SYSTEM - BLOCK DIAGRAM

The Am6073 has a negligible idle channel noise contribution. Signal-to-quantizing-distortion ratio, (S/D), is guaranteed to exceed the minimum values specified for PCM channels at audio frequencies as follows:

Input Level $\mathbf{1 0 2 0} \mathrm{Hz}$ Sinewave	S/D, C-Message Weighting
0 to -30 dBmo	33 dB
At -40 dBmo	27 dB
At -45 dBmo	22 dB

Metallization and Pad Layout

80×114 Mils

Am6080

Microprocessor System Compatible 8-Bit High Speed Multiplying D/A Converter

DISTINCTIVE CHARACTERISTICS

- 8 -Bit D/A with 8 -Bit input data latch
- Compatible with most popular microprocessors including the Am9080A-4 and the Am2900
- Write, Chip Select and Data Enable logic on chip
- DAC appears as memory location to microprocessor
- MSB inversion under logic control
- Differential current output
- Choice of 6 coding formats
- Fast settling current output -160 ns
- Nonlinearity to $\pm 0.1 \%$ max over temperature range
- Full scale current pre-matched to ± 1 LSB
- High output impedance and voltage compliance
- Low full scale current drift $- \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Wide range multiplying capability -2.0 MHz bandwidth
- Direct interface to TTL, CMOS, NMOS
- High speed data latch - 80 ns min write time

GENERAL DESCRIPTION

The Am6080 is a monolithic 8 -bit multiplying Digital-to-Analog converter with an 8 -bit data latch, chip select and other control signal lines which allow direct interface with microprocessor buses.
The converter allows a choice of 6 different coding formats. The most significant bit (D_{7}) can be inverted or non-inverted under the control of the code select input. The code control also provides a zero differential current output for 2's complement coding. A high voltage compliance, complementary current output pair is provided. The data latch is very high speed which makes the Am6080 capable of interfacing with high speed microprocessors.
Monotonic multiplying performance is maintained over a more than 40 to 1 reference current range. Matching within ± 1 LSB
between reference and full scale current eliminates the need for full scale trimming in most applications.

The Am6080 guarantees full 8-bit monotonicity. Nonlinearities as tight as 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the full power supply voltage and temperature range.

Applications for the Am6080 include microprocessor compatible data acquisition systems and data distribution systems, 8 -bit A/D converters, servo-motor and pen drivers, waveform generators, programmable attenuators, analog meter drivers, programmable power supplies, CRT display drivers and high speed modems.

MAXIMUM RATINGS

Operating Temperature	Power Supply Voltage	$\pm 18 \mathrm{~V}$	
Am6080ADM, Am6080DM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Logic Inputs	-5 V to +18 V
Am6080ADC, Am 6080 DC		-12 V to +18 V	
Am6080APC, Am6080PC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Analog Current Outputs	$\mathrm{V}-$ to $\mathrm{V}+$
	Reference Inputs $\left(\mathrm{V}_{14} \mathrm{~V}_{15}\right)$	$\pm 18 \mathrm{~V}$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Reference Input Differential Voltage $\left(\mathrm{V}_{14}\right.$ to $\left.\mathrm{V}_{15}\right)$	1.25 mA
Lead Temperature (Soldering, 60 sec$)$	$300^{\circ} \mathrm{C}$	Reference Input Current $\left(\mathrm{l}_{14}\right)$	

ELECTRICAL CHARACTERISTICS

These specifications apply for $\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=0.5 \mathrm{~mA}$, over the operating temperature range unless otherwise specified. Output characteristics refer to all outputs.

Am6080 FUNCTIONAL PIN DESCRIPTION

Symbol Function
$D_{0}-D_{7} \quad D_{0}-D_{7}$ are the input bits $1-8$ to the input data latch. Data is transferred to the data latch when $\overline{\mathrm{CS}}, \overline{\mathrm{DE}}$, and \bar{W} are active and is latched when any of the enable signals go inactive.
$\overline{\mathbf{C S}} \quad$ Chip Select - This active low input signal enables the Am6080. Writing into the data latch occurs only when the device is selected.

W Write - This active low control signal enables the data latch when the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{DE}}$ inputs are active.
$\overline{\mathrm{DE}}$

CODE Code Select - When CODE SEL $=0$, the MSB $\left(D_{7}\right)$ is
SEL Γ_{0} output.
$\mathbf{V}_{\text {REF (+) }}$ Positive and negative reference voltage to the ref-
$\mathbf{V}_{\text {REF }(-)}$ erence bias amplifier. These differential inputs allow the use of positive, negative and bipolar references.
COMP Compensation - Frequency compensating terminal for the reference amplifier.
$\mathrm{I}_{\mathrm{O}}, \overline{\mathrm{I}}_{\mathrm{O}} \quad$ These are high impedance complementary current outputs. The sum of these currents is always equal to $I_{\text {FS }}$

FUNCTION TABLES

DATA LATCH CONTROL

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{D E}}$	Data Latch
0	0	0	Transparent
X	X	1	Latched
X	1	X	Latched
1	X	X	Latched

X = Don't Care

CODE SELECT
CODE

SEL	Function
0	MSB Inverted (Note 1)
1	MSB Non-inverted

Note 1 . LSB balance current is added to the $\bar{\Gamma}_{0}$ output.

AC CHARACTERISTICS

$\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<500 \Omega, \mathrm{C}_{\mathrm{L}}<15 \mathrm{pF}$ over the operating temperature range unless otherwise specified

Parameter	Description		Conditions	Commercial Temp. Grades			$\begin{gathered} \text { Military } \\ \text { Temp. Grades } \end{gathered}$			Unit	
			Min.	Typ.	Max.	Min.	Typ.	Max.			
t_{s}	Settling Time, All Bits Switched			$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \text { Settling to } \pm 1 / 2 L S B \end{aligned}$		160			160		ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	Each bit	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 50 \% \text { to } 50 \% \end{aligned}$		80	160		80	160	ns	
${ }_{\text {tPHL }}$		All bits switched			80	160		80	160		
${ }_{\text {t }}$	Data Hold Time		See timing diagram	10	-30		10	-30		ns	
${ }^{\text {t }}$ S	Data Set Up Time		See timing diagram	80	35		. 100	35		ns	
${ }^{\text {t }}$ W	Data Write Time		See timing diagram	80	35		100	35		ns	

Notes: 1. tow is the overlap of \bar{W} low, $\overline{\mathrm{CS}}$ low, and $\overline{\mathrm{DE}}$ low. All three signals must be low to enable the latch. Any signal going inactive latches the data.
2. Is is measured with the latches open from the time the data becomes stable on the inputs to the time when the outputs are settled to within $\pm 1 / 2$ LSB. All bits switched on or off.
3. The internal time delays from $\overline{\mathrm{CS}}, \overline{\mathrm{W}}$ and $\overline{\mathrm{DE}}$ inputs to the enabling of the latches are all equal.

APPLICATION HINTS:

1. Reference current and reference resistor.

There is a 1 to 4 scale up between the reference current ($l_{\text {REF }}$) and the full scale output current $\left(\mathrm{I}_{\mathrm{FS}}\right)$. If $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$ and I_{FS} $=2 \mathrm{~mA}$, the value of the R_{14} is:

$$
\mathrm{R}_{14}=\frac{4 \times 10 \mathrm{Volt}}{2 \mathrm{~mA}}=20 \mathrm{~K} \Omega
$$

LIC-064

2. Reference amplifier compensation.

For AC reference applications, a minimum value compensation capacitor $\left(\mathrm{C}_{\mathrm{C}}\right)$ is normally used. The value of this capacitor depends on R_{15}. The minimum values to maximize bandwidth without oscillation are as follows:

Table 2
Compensation Capacitor $\left(I_{\text {FS }}=2 \mathrm{~mA}, I_{\text {REF }}=0.5 \mathrm{~mA}\right)$

$\mathbf{R}_{\text {REF }}(\mathbf{k} \Omega)$	$\mathbf{C}_{\mathbf{C}}(\mathbf{p F})$
20	100
10	50
5	25
2	10
1	5
.5	0

Reference Amplifier Frequency Response

$\mathrm{A} 0.01 \mu \mathrm{~F}$ capacitor is recommended for the fixed reference operation.
LIC-065

Notes: 1. The compensation capacitor is a function of the impedance seen at the $+V_{R E F}$ input and must be at least $C=5 p F X R_{14(e q)}$ in $k \Omega$. For $R_{14}<800 \Omega$ no capacitor is necessary.
2. For negative values of $V_{I N}, V_{R+} / R_{14}$ must be greater than $-V_{I N} M a x / R_{I N}$ so that the amplifier is not turned off.
3. For positive values of $V_{I N}, V_{R+}$ must be greater than $V_{I N}$ Max so the amplifier is not turned off.
4. For pulsed operation, $\mathrm{V}_{\mathrm{R}}+$ provides a $D C$ offset and may be set to zero in some cases. The impedance at pin 14 should be 800Ω or less and an additional resistor may be connected from pin 14 to ground to lower the impedance.

CODE FORMAT		$\begin{gathered} \text { CODE } \\ \text { SEL } \end{gathered}$	CONNECTIONS	OUTPUT SCALE	$\begin{aligned} & \text { OUT } \\ & \text { SEL } \end{aligned}$	$\begin{gathered} \text { MSB } \\ \text { D7 } \end{gathered}$							$\begin{gathered} \text { LSB } \\ \text { DO } \end{gathered}$	$\begin{gathered} \mathrm{I}_{1} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{2} \\ (\mathrm{~mA}) \end{gathered}$	$\mathrm{V}_{\text {OUT }}$
UNIPOLAR	Straight binary: one polarity with true input code, true zero output.	1	$\begin{aligned} & a-c \\ & b-e \end{aligned}$	Positive full scale Positive full scale - LSB Zero scale	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 0	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|r\|} \hline 1.992 \\ 1.984 \\ .000 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 9.960 \\ 9.920 \\ .000 \end{array}$
	Complementary binary: one polarity with complementary input code, true zero output.	1	$\begin{aligned} & \text { a-e } \\ & \text { b-c } \end{aligned}$	Positive full scale Positive full scale - LSB Zero scale	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|r\|} 1.992 \\ 1.984 \\ .000 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 9.960 \\ 9.920 \\ .000 \end{array}$
SYMMETRICAL OFFSET	Straight offset binary: offset half scale, symmetrical about zero, no true zero output.	1	$\begin{aligned} & a-c \\ & b-d \end{aligned}$	Positive full scale Positive full scale - LSB (+) Zero scale (-) Zero scale Negative full scale - LSB Negative full scale	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 1.992 \\ 1.984 \\ 1.000 \\ .992 \\ .008 \\ .000 \end{array}$	$\begin{array}{r} .000 \\ .008 \\ .992 \\ 1.000 \\ 1.984 \\ 1.992 \end{array}$	$\begin{array}{r} 9.960 \\ 9.880 \\ .040 \\ -.040 \\ -9.880 \\ -9.960 \end{array}$
	1's complement: offset half scale, symmetrical about zero, no true zero output MSB complemented.(need inverter at D_{7})	$\left\|\begin{array}{c} 1 \\ \text { (Note 1) } \end{array}\right\|$	$\begin{aligned} & a-c \\ & b-d \end{aligned}$	Positive full scale Positive full scale - LSB (+) Zero scale (-) Zero scale Negative full scale - LSB Negative full scale	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 1.992 \\ 1.984 \\ 1.000 \\ .992 \\ .008 \\ .000 \end{array}$	$\begin{array}{r} .000 \\ .008 \\ .992 \\ 1.000 \\ 1.984 \\ 1.992 \end{array}$	9.960 9.980 .040 -.040 -9.880 -9.960
OFFSET WITH TRUE ZERO	Offset binary: offset half scale, true zero output MSB complemented remainder add to I_{0}. (need inverter at D_{7})	$\left\lvert\, \begin{gathered} 0 \\ \text { (Note 1) } \end{gathered}\right.$	$\begin{aligned} & a-c \\ & b-d \end{aligned}$	```Positive full scale Positive full scale - LSB + LSB Zero scale - LSB Negative full scale + LSB Negative full scale```	$\begin{aligned} & \hline x \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1 1 0 0 0 1 0 0	1 1 0 0 1 0 0	1 1 0 0 1 0 0	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r}1.992 \\ 1.984 \\ 1.008 \\ 1.000 \\ 1.992 \\ .008 \\ .000 \\ \hline 1\end{array}$.008 .016 .992 1.000 1.008 1.992 2.000	9.920 9.840 .080 .000 -.080 -9.920 -10.000
	2's complement: offset half scale true zero output MSB complemented.	0	$\begin{aligned} & a-c \\ & b-d \end{aligned}$	```Positive full scale Positive full scale - LSB + 1 LSB Zero scale -1 LSB Negative full scale + LSB Negative full scale```	$\begin{aligned} & \hline x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	1 1 0 0 1 0 0	1 1 1 0 0 1 0 0	1 1 0 0 1 0 0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1.992 1.984 1.008 1.000 .992 .008 .000	.008 .016 .992 1.000 1.008 1.992 2.000	9.920 9.840 .080 .000 -.080 -9.920 -10.000

Note 1: An external inverter is necessary since the code select inverts the MSB and adds a 1 LSB balance current to $\overline{\mathrm{O}}$. Only one of these features is desired for this code.

ADDITIONAL CODE MODIFICATIONS

1. Any of the offset binary codes may be complemented by reversing the output terminal pair.

SYSTEM APPLICATIONS

Am9080A DATA SYSTEM

WRITING DATA INTO THE Am6080 (2's Complement)
PORT 1 :EQU OOH OUTPUT PORT ADDRESS MOV A, M :GET DATA FROM MEMORY
OUT 0 PORT1 :SEND DATA

Am2900 DATA SYSTEM: MULTIPLE ANALOG INPUTS

APPLICATIONS

Instrumentation and Control

Data Acquisition
Data Distribution
Function Generation
Servo Controls
Programmable Power Supplies
Digital Zero Scale Calibration
Digital Full Scale Calibration
Digitally Controlled Offset Null

Signal Processing

CRT Displays
IF Gain Control
8×8 Digital Multiplication
Line Driver

A/D Converters

Ratiometric ADC
Differential Input ADC
Microprocessor Controlled ADC

Audio

Music Distribution
Digitally Controlled Gain
Potentiometer Replacement
Digital Recording
Speech Digitizing

Metallization and Pad Layout

DIE SIZE 0.085" $\times 0.124^{\prime \prime}$

Am6081
 Microprocessor System Compatible 8-Bit High Speed Multiplying D/A Converter

DISTINCTIVE CHARACTERISTICS

- 8-Bit D/A with 8 -Bit input data latch
- Compatible with most popular microprocessors including the Am9080A-4 and the Am2900
- Write, Chip Select and Data Enable logic on chip
- DAC appears as memory location to microprocessor
- MSB inversion under logic control
- Differential current outputs
- Output current mode multiplexer with logic selection
- 2-Bit status latch for output select and code select
- Choice of 8 coding formats
- Fast settling current output - 200ns
- Nonlinearity to $\pm 0.1 \%$ max over temperature range
- Full scale current pre-matched to ± 1 LSB
- High output impedance and voltage compliance
- Low full scale current drift $- \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Wide range multiplying capability -2.0 MHz bandwidth
- Direct interface to TTL, CMOS, NMOS
- Output range selection with on chip multiplexer
- High speed data latch - 80 ns min write time

GENERAL DESCRIPTION

The Am6081 is a monolithic 8 -bit multiplying Digital-to-Analog converter with an 8 -bit data latch, a 2 -bit status latch, chip select and other control signal lines which allow direct interface with microprocessor buses.
The converter allows a choice of 8 different coding formats. The most significant bit (D_{7}) can be inverted or non-inverted under the control of the code select input. The code control also provides a zero differential current output for 2's complement coding. A pair of high voltage compliance, dual complementary current output channels is provided and is selected by the output status command. The output multiplexer also allows analog bus connection of several converters, range or output load selection, and time-shared operation between D / A and A / D functions. The data and status latches are high speed which makes the Am6081 capable of interfacing with high speed microprocessors. The DE and SE control signals allow the data and status latches to be updated
individually or simultaneously.
Monotonic multiplying performance is maintained over a more than 40 to 1 reference current range. Matching within ± 1 LSB between reference and full scale current eliminates the need for full scale trimming in most applications.

The Am6081 guarantees full 8 -bit monotonicity. Nonlinearities as tight as 0.1% over the entire operating temperature range are available. Device performance is essentially unchanged over the full power supply voltage and temperature range.

Applications for the Am6081 include microprocessor compatible data acquisition systems and data distribution systems, 8 -bit A/D converters, servo-motor and pen drivers, waveform generators, programmable attenuators, analog meter drivers, programmable power supplies, CRT display drivers and high speed modems.

Am6081 FUNCTIONAL PIN DESCRIPTION

Symbol Function

$\overline{\mathbf{C S}} \quad$ Chip Select - This active low input signal enables the Am6081. Writing into the data or status latches occurs only when the device is selected.
$\overline{\mathrm{DE}} \quad$ Data Latch Enable - This active low input is used to enable the data latch. The $\overline{C S}, \overline{D E}$, and \bar{W} must be active in order to write into the data latch.

SE Status Latch Enable - This active high input is used to enable the status latches. The CS, SE, and \bar{W} must be active in order to write into the status latches.
W Write - This active low control signal enables the data and status latches when the $\overline{\mathrm{CS}}, \overline{\mathrm{DE}}$, and SE inputs are active.
$D_{0}-D_{7} \quad D_{0}-D_{7}$ are the input bits $1-8$ to the input data latch. Data is transferred to the data latch when $\overline{C S}, \overline{D E}$, and \bar{W} are active and is latched when any of the enable signals go inactive.

CODE Code Select - Input to the CODE SEL latch. The SEL latch is transparent when $\overline{C S}$, SE and \bar{W} are active and is latched when any of the above signals go inactive. When CODE SEL latch $=0$, the MSB $\left(D_{7}\right)$ is inverted and 1 LSB balance current is added to the $\overline{I_{\mathrm{O}}}$ output.
OUT Output Select - Input to the OUT SEL latch. The SEL latch is transparent when $\overline{\mathrm{CS}}, \mathrm{SE}$ and $\overline{\mathrm{W}}$ are active and is latched when any of the above signals go inactive. When the OUT SEL latch is low, the channel 1 output pair ($\mathrm{I}_{01}, \overline{\mathrm{I}_{01}}$) is selected. When the OUT SEL latch is high, the channel 2 output pair $\left(I_{\mathrm{O} 2}, \overline{\mathrm{I}_{\mathrm{O}}}\right)$ is selected.
$\mathbf{V}_{\text {REF }(+)}$ Positive and negative reference voltage to the ref-
$\mathbf{V}_{\text {REF }(-)}$ erence bias amplifier. These differential inputs allow the use of positive, negative and bipolar references.
COMP Compensation - Frequency compensating terminal for the reference amplifier.
$\mathrm{I}_{\mathrm{O} 1}, \overline{\bar{I}_{\mathrm{O} 1}}$ These high impedance current output pairs are
$\mathrm{I}_{\mathrm{O} 2}, \mathrm{I}_{\mathrm{O} 2}$ selected by the output select latch. I_{01} and $\mathrm{I}_{\mathrm{O} 2}$ are true outputs and $\overline{\mathrm{I}_{\mathrm{O} 1}}$ and $\overline{\mathrm{O} 2}$ are complementary outputs.

FUNCTION TABLES

DATA LATCH CONTROL

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{D E}}$	Data Latch
0	0	0	Transparent
X	X	1	Latched
X	1	X	Latched
$\mathbf{1}$	X	X	Latched

STATUS LATCH CONTROL

CODE SEL and

$\overline{\mathrm{CS}}$	W	SE	CODE SEL and OUT SEL Latch
0	0	1	Transparent
X	X	0	Latched
X	1	X	Latched
1	X	X	Latched

CODE SELECT AND OUTPUT SELECT

CODE OUT

SEL	SEL	Function
0	-	MSB Inverted (Note 1)
1	-	MSB Non-inverted
-	0	Output Channel 1
-	1	Output Channel 2

$\mathrm{X}=$ Don't Care

Note 1. 1LSB balance current is added to the $\overline{\Gamma_{0}}$ output.

MAXIMUM RATINGS

Operating Temperature	Power Supply Voltage	$\pm 18 \mathrm{~V}$	
Am6081ADM, Am6081DM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Logic Inputs	-5 V to +18 V
Am6081ADC, Am6081DC	 Am6081APC, Am6081PC	Analog Current Outputs	-12 V to +18 V
		Reference Inputs $\left(\mathrm{V}_{15}, \mathrm{~V}_{16}\right)$	$\mathrm{V}-$ to $\mathrm{V}+$
Storage Temperature		Reference Input Differential Voltage $\left(\mathrm{V}_{15}\right.$ to $\left.\mathrm{V}_{16}\right)$	$\pm 18 \mathrm{~V}$
Lead Temperature (Soldering, 60 sec$)$	$300^{\circ} \mathrm{C}$	Reference Input Current $\left(\mathrm{l}_{15}\right)$	1.25 mA

GUARANTEED FUNCTIONAL SPECIFICATIONS

Resolution		8 bits
Monotonicity	8 bits	

Am6081
ELECTRICAL CHARACTERISTICS
These specifications apply for $\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=0.5 \mathrm{~mA}$, over the operating temperature range unless otherwise specified. Output characteristics refer to all outputs.

Am6081A
Am6081

AC CHARACTERISTICS

$\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<500 \Omega, \mathrm{C}_{\mathrm{L}}<15 \mathrm{pF}$ over the operating temperature range unless otherwise specified

Parameter	Description		Conditions	Commercial Temp. Grades			Military Temp. Grades			Unit	
			Min.	Typ.	Max.	Min.	Typ.	Max.			
t_{s}	Settling Time, All Bits Switched			$T_{A}=25^{\circ} \mathrm{C}$ Settling to $\pm 1 / 2 L S B$		200			200		ns
${ }^{\text {PLLH }}$	Propagation Delay	Each bit	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 50 \% \text { to } 50 \% \end{aligned}$		90	180		90	180		
${ }_{\text {tPHL }}$		All bits switched			90	180		90	180		
tos	Output Switch Settling Time		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { to } \pm 1 / 2 \mathrm{LSB} \text { of } \mathrm{I}_{\mathrm{FS}} \end{aligned}$		250			250		ns	
${ }^{\text {top }}$	Output Switch Propagation Delay		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 50 \% \text { to } 50 \% \end{aligned}$		150	300		150	300	ns	
${ }^{\text {t }}$ DH	Data Hold Time		See timing diagram	10	-30		10	-30		ns	
${ }^{\text {t }}$ S	Data Set Up Time		See timing diagram	80	35		100	35		ns	
${ }^{\text {tow }}$	Data Write Time		See timing diagram	80	35		100	35		ns	
${ }^{\text {SH }}$	Status Hold Time		See timing diagram	10	-70		10	-70		ns	
${ }_{\text {tS }}$	Status Set Up Time		See timing diagram	200	100		250	100		ns	
$t_{\text {SW }}$	Status Write Time		See timing diagram	200	100		250	100		ns	

Notes: 1. t_{DW} is the overlap of $\overline{\mathrm{W}}$ low, $\overline{\mathrm{CS}}$ low, and $\overline{\mathrm{DE}}$ low. All three signals must be low to enable the latch. Any signal going inactive latches the data.
2. t_{s} is measured with the latches open from the time the data becomes stable on the inputs to the time when the outputs are settled to within $\pm 1 / 2$ LSB. All bits switched on or off.
3. t_{SW} is the overlap of $\overline{\mathrm{W}}$ low, $\overline{\mathrm{CS}}$ low and SE high, all three signals must be active to enable the latch and any signal going inactive will latch the data.
4. The internal time delays from $\overline{C S}, \bar{W}, S E$ and $\overline{D E}$ inputs to the enabling of the latches are all equal.

TIMING DIAGRAM

APPLICATION HINTS

1. Reference current and reference resistor

There is a 1 to 4 scale up between the reference current ($l_{\text {REF }}$) and the full scale output current $\left(\mathrm{I}_{\mathrm{FS}}\right)$. If $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$ and I_{FS} $=2 \mathrm{~mA}$, the value of the R_{15} is:

$$
\mathrm{R}_{15}=\frac{4 \times 10 \mathrm{Volt}}{2 \mathrm{~mA}}=20 \mathrm{~K} \Omega
$$

2. Reference amplifier compensation

For $A C$ reference applications, a minimum value compensation capacitor $\left(C_{C}\right)$ is normally used. The value of this capacitor depends on R_{15}. The minimum values to maximize bandwidth without oscillation are as follows:

Table 2
Compensation Capacitor $\left(\mathrm{I}_{\mathrm{FS}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{REF}}=0.5 \mathrm{~mA}\right)$

$\mathbf{R}_{\text {REF }}(\mathbf{k} \Omega)$	$\mathbf{C}_{\mathbf{C}}(\mathbf{p F})$
20	100
10	50
5	25
2	10
1	5
.5	0

Reference Amplifier
Frequency Response

LIC-006

A $0.01 \mu \mathrm{~F}$ capacitor is recommended for the fixed reference operation.

Reference Configuration	R_{15}	\mathbf{R}_{16}	$\mathrm{R}_{\text {IN }}$	C_{C}	$I_{\text {REF }}$
Positive Reference	$\mathrm{V}_{\text {R }+}$	OV	N/C	. $01 \mu \mathrm{~F}$	$\mathrm{V}_{\mathrm{R}+} / \mathrm{R}_{15}$
Negative Reference	OV	$\mathrm{V}_{\mathrm{R}-}$	N/C	. $01 \mu \mathrm{~F}$	$-V_{R-} / R_{15}$
Lo Impedance Bipolar Reference	$\mathrm{V}_{\mathrm{R}+}$	OV	$\mathrm{V}_{\text {IN }}$	(Note 1)	$\begin{aligned} & \left(V_{R+} / R_{15}\right)+\left(V_{i N} / R_{I N}\right) \\ & (\text { Note } 2) \end{aligned}$
Hi Impedance Bipolar Reference	$\mathrm{V}_{\mathrm{R}+}$	$\mathrm{V}_{\text {IN }}$	N/C	(Note 1)	$\begin{aligned} & \left(V_{R+}-V_{I N}\right) / R_{15} \\ & \text { (Note 3) } \end{aligned}$
Pulsed Reference (Note 4)	$\mathrm{V}_{\mathrm{R}+}$	OV	$V_{\text {IN }}$	$\begin{aligned} & \text { No } \\ & \text { Cap } \end{aligned}$	$\left(\mathrm{V}_{\mathrm{R}+} / \mathrm{R}_{15}\right)+\left(\mathrm{V}_{1 N} / \mathrm{R}_{\text {IN }}\right)$

Notes: 1. The compensation capacitor is a function of the impedance seen at the $+V_{R E F}$ input and must be at least $C=5 p F \times R_{15(E Q)}$ (in $\mathrm{K} \Omega$). For $R_{15}<800 \Omega$ no capacitor is necessary.
2. For negative values of $V_{I N}, V_{R+} / R_{15}$ must be greater than $-V_{I N} M a x / R_{I N}$ so that the amplifier is not turned off.
3. For positive values of $\mathrm{V}_{I N}, \mathrm{~V}_{\mathrm{R}+}$ must be greater than $\mathrm{V}_{\text {IN }}$ Max so the amplifier is not turned off.
4. For pulsed operation, V_{R+} provides a $D C$ offset and may be set to zero in some cases. The impedance at pin 15 should be 800Ω or less and an additional resistor may be connected from pin 15 to ground to lower the impedance.

Note 1: An external inverter is necessary since the code select inverts the MSB and adds a 1 LSB balance current to \bar{I}_{O}. Only one of the two features is desired for these codes.

ADDITIONAL CODE MODIFICATIONS

1. Any of the offset binary codes may be complemented by reversing the output terminal pair.
2. The sign on any of the sign-magnitude codes may be changed by reversing the output terminal pair.
3. The polarity of the unipolar codes may be changed by driving the opposite side of the balanced load.

SYSTEM APPLICATIONS

Am9080A DATA SYSTEM: SEPARATE UPDATE OF DATA AND STATUS

SELECT OUTPUT PORT 1
MVI A, 2 : SET STATUS TO 0 (SELECT OUTPUT 1)
OUT 1 : SEND STATUS
MOV A, M : GET DATA FROM MEMORY
OUT 0 : SEND DATA

SELECT OUTPUT PORT 2

MVI A, 3 : SET STATUS TO 1 (SELECT OUTPUT 2)
OUT 1 : SEND STATUS
MOV A,M : GET DATA FROM MEMORY
OUT 0 : SEND DATA
SELECT OUTPUT PORT 2 AND 2's COMPLEMENT CODE
MVI A, 1 : SET STATUS TO 3 (OUTPUT 2, MSB COMP)
OUT 1 : SEND STATUS
MOV A, M : GET DATA FROM MEMORY
OUT 0
SEND DATA
LIC-009

Am9080A DATA SYSTEM: SIMULTANEOUS UPDATE OF DATA AND STATUS

MOV A, M : GET DATA IN ACCUMULATOR
OUT 0 : OUTPUT DATA TO PORT 1, 2'S COMPLEMENT
OUT 1 : OUTPUT DATA TO PORT 2, 2'S COMPLEMENT
OUT 2 : OUTPUT DATA TO PORT 1, STRAIGHT BINARY
OUT 3 : OUTPUT DATA TO PORT 2, STRAIGHT BINARY

Am9080A DATA SYSTEM: 8-BIT PLUS SIGN CONVERSION

MOV A, M : LOAD MAGNITUDE (8-BITS)
OUT 0 : SEND POSITIVE OUTPUT
OUT 1 : SEND NEGATIVE OUTPUT

SYSTEM APPLICATIONS (Cont.)

Am2900 DATA SYSTEM: MULTIPLE ANALOG OUTPUTS

SYSTEM APPLICATIONS (Cont.)

D/A CONVERSION WITH 12-BIT DYNAMIC RANGE

LIC-013

A/D CONVERSION WITH AUTO RANGING AND DIFFERENTIAL INPUT

SYSTEM APPLICATIONS (Cont.)

ANALOG/DIGITAL TRANSCEIVER WITH HARDWARE CONTROLLED SUCCESSIVE APPROXIMATION A/D CONVERSION

SEQ	SOURCE STATEMENT		SEQ	SOURCE STATEMENT	
0 PORT1	EQU 00 H		18	CMA	
1 PORT3	EQU 02H		19	CRA A	;SET SIGN FLAG
2 PORT2	EQU 01H		20	JM NEXT	;IF SMALLER GO TO NEXT BIT
3	ORG 3E50H		21	MOV D,E	;SAVE RESULT
4 START:	LXI SP,STAKS-16	;INITIAL STAKS POINTER	22 NEXT:	MOV A,B	;GET NEXT TRIAL BIT
5 SAMPLE:	CALL ADCON	;CALL A/D CONVERSATION	23	RAR	;SHIFT RIGHT ONCE
6	CMA		24	RC	;RETURN ON CARRY
7	CALL DACON	;CALL D/A CONVERSION	25	MOV B,A	;STORE TEST BIT
8	JMP SAMPLE	;NEXT SAMPLE	26	ADD D	;ACCUMULATE RESULT
9 ADCON:	XRA A	:CLEAR ACC	27	JMP LOOP	;TRY NEXT BIT
10	MOV D,A	;CLEAR D REG	28 DACON:	OUT PORT 2	;OUTPUT TO D/A
11	STC	;SET CARRY	29	MVI C,05H	;LOAD C REG WITH TIME
12	RAR	;SET BIT 7 T0 1	30	DCR C	;TIME DELAY
13	MOV B,A	;STORE TEST BIT AT B REGISTER	31	RZ	;RETURN
14 LOOP:	MOV E,A	;STORE TEST WORD	32 FILT:	RET	
15	CMA		33 STAKS:	DS 16	
16	OUT PORT1	;OUTPUT TO A/D	34	END START	
17	IN PORT3	;INPUT FROM COMP			

ADVANCED MICRO DEVICES DATA CONVERSION PRODUCTS

Digital to Analog Converters

AmDAC-08 - 8-Bit High Speed Multiplying D/A Converter
Am1508/1408-8-Bit Multiplying D/A Converter
Am6070 - 8-Bit Companding D/A Converter for Control Systems (μ-law)
Am6071 - 8-Bit Companding D/A Converter for Control Systems (A-law)
Am6072 - 8-Bit Companding D/A Converter for Telecommunications (μ-law)
Am6073 - 8-Bit Companding D/A Converter for Telecommunicatons (A-law)
Am6080 - 8-Bit High Speed Multiplying D/A Converter System/Microprocessor Compatible
Am6081 - 8-Bit High Speed Multiplying D/A Converter System/Microprocessor Compatible
*Am6689 - 8-Bit, Ultra High Speed D/A Converter (ECL)
*Am6012 - 12-Bit High Speed Multiplying D/A Converter

Analog to Digital Converters

*Am6688 - 4-Bit Quantizer (Ultra High Speed A/D Converter)

Successive Approximation Registers

Am2502 - 8-Bit Successive Approximation Registers
Am2503 - 8-Bit Successive Approximation Registers
Am2504 - 12-Bit Successive Approximation Registers

Sample and Hold Amplifiers

LF198/398 -Monolithic Sample and Hold Amplifier
*Am6098 -Precision Sample and Hold Amplifier

Comparators

LM111/311	- Precision Voltage Comparator
LM119/319	- Dual Comparator
Am686	- High Speed Voltage Comparator

High Speed Operational Amplifiers

Am118/318 - High Speed Operational Amplifier
LF155/156/157 - JFET Input Operational Amplifiers
LF355/356/357 - JFET Input Operational Amplifiers

- To be announced.

APPLICATIONS

Instrumentation and Control

Data Acquisition
Data Distribution
Data Transceiver
Function Generation
Servo Controls
Programmable Power Supplies
Digital Zero Scale Calibration
Digital Full Scale Calibration
Digitally Controlled Offset Null

Audio

Music Distribution
Digitally Controlled Gain
Potentiometer Replacement
Digital Recording
Speech Digitizing

Signal Processing

CRT Displays
Floating Point Analog Processors
IF Gain Control
Four Quadrant Multiplexer
8×8 Digital Multiplication Line Driver

A/D Converters

Ratiometric ADC
Differential Input ADC
Multiple Input Range ADC
Two Channel ADC
Microprocessor Controlled ADC

D/A Converters

Single Quadrant Multiplying DAC
Two Quadrant Multiplying DAC
Four Quadrant Multiplying DAC
Two Channel DAC
Multiple Output Range DAC

Metallization and Pad Layout

DIE SIZE 0.085" $\times 0.124^{\prime \prime}$

DATA CONVERSION WITH COMPANDING DAC DEVICES

By Dragan Milojkovic

TABLE OF CONTENTS

INTRODUCTION 3-97
Companding Principles 3-97
Analog to Digital Conversion Using DACs 3-98
Companding DACs in Industrial Systems 3-99
Companding DACs in PCMTransmission Systems3-99
COMPANDING DAC CIRCUIT DESCRIPTION 3-100
General Circuit Description 3-100
Detailed Circuit Description 3-101
Generation of the μ-Law and A-Law Characteristics 3-104
Output Current Tables 3-104
Parametric Analysis and Recommendations 3-109
TYPICAL CIRCUIT APPLICATIONS 3-111
Basic Circuit Connections 3-111
Operating Modes 3-114
Microprocessor Based Data AcquisitionSystems Applications3-115
Motion Control Systems Applications 3-118
Audio System Applications 3-120
Telecommunication Systems Applications 3-123
SUMMARY 3-129
REFERENCES 3-129

INTRODUCTION

Modern electronic systems are replacing many of the analog signal processing and transmission functions with digital data processing. The use of digital electronics can lead to improvements in system cost, performance, accuracy and reliability. Digital systems can transmit many signals on the same line in a multiplexed mode and do not suffer from the same kinds of noise and crosstalk problems that are inherent in analog systems. The digital processing of analog information requires conversion of the analog signal into digital form and the reverse conversion of the digital result back into an analog signal. Analog to digital converters, (ADC), and digital to analog converters, (DAC), perform these functions. The DAC is the key circuit element in both of these processes since it is used in a feedback loop to generate the ADC function. Monolithic technology has advanced dramatically in the last few years making low cost 8 -bit DACs a reality today; in the near future, 10 and 12 -bit monolithic DACs will also become available. This trend in DAC technology will help accelerate the trend toward more digital processing and transmission of analog information.
Many analog signals vary in amplitude from very small values to very large values. The dynamic range of a converter is a measure of its ability to handle a wide range of input amplitudes and is defined as the ratio of the largest resolvable signal ($\mathrm{V}_{\text {IN }}$ max.) to the smallest signal ($\mathrm{V}_{\text {IN }}$ min.) that can be handled. This ratio is often expressed in decibels using the conversion formula $20 \log \left(V_{I N} \max / V_{\text {IN }} \mathrm{min}\right)$. Linear DACs resolve a ratio of $2^{n}: 1$, (n equals the number of bits), or $n \cdot 6 d B$. An 8-bit linear DAC, for example, resolves a ratio of $256: 1$ or 48 dB .
The accuracy of a converter is a prime concern in most applications. Accuracy is generally specified with respect to the full scale output (as a percent of full scale) or to the smallest step size (i.e., $\pm 1 / 2$ LSB refers to $\pm 1 / 2$ of the smallest step size). Linear converters tend to be more accurate as the number of steps increases because the step size decreases. Many systems require high accuracy as a percent of the input signal level rather than as a percent of full scale. The accuracy as a percent of input signal level (reading) decreases as the signal level decreases because the amount of error is constant. An 8 -bit linear DAC with an accuracy of $.2 \%$ of full scale ($\pm 1 / 2$ LSB) has an accuracy of $.2 \%$ of reading for input signals near full scale, but an accuracy of only 20% of reading for an input near 1% of full scale.
For many types of applications, the accuracy and dynamic range of an 8 -bit linear DAC are sufficient. However, there are many classes of problems that require a wider dynamic range to handle signal ratios of several thousand to one. Voice processing, speed control and music synthesis fall into this category. A 12 -bit linear DAC provides a wider dynamic range, 72 dB , and higher accuracy than an 8 -bit linear DAC. However, these devices are very expensive, and, furthermore, it turns out that while most applications require the dynamic range of the 12 -bit linear DAC they do not require its accuracy. A nonlinear DAC can provide such performance with fewer digital bits. It does so by using a nonlinear transfer characteristic to compress an analog signal into a digital word, and a complementary transfer characteristic to expand the digital values into analog signals with a wide dynamic range.
An 8 -bit nonlinear DAC can achieve a 72 dB dynamic range with accuracy expressed as a percent of reading that ranges from 1.6% to 3.2% over the entire dynamic range of the device. The overall nonlinear analog to digital and digital to
analog conversion procedure is called the companding process. This note will discuss the Am6070 family of Companding DACs and their applications.

Companding Principles

Companding transfer functions were originally developed to satisfy the requirements of telephone voice communication systems. Studies of speech signals have shown that the distribution of amplitudes covers a range of several thousand to one and that the lower amplitude signals occur more often than the large amplitude signals. More attention should, therefore, be paid to the low level signals. It is important to maintain a better signal to distortion ratio (the ratio of signal level to conversion error) for low level signals at the expense of a poorer ratio for the less probable high level signals. In order to accomplish this goal, a logarithmic type of transfer characteristic is used with more steps at low levels and fewer steps at high levels.
A true logarithmic function has a discontinuity at zero and thus cannot be used directly for signal compression. A modified transfer characteristic with the form " $\log (1+x)$ " can be used to smooth the characteristic near zero. Two popular schemes have been developed - the μ-law by the Bell system for use in U.S. telephone systems and the A-law by the CCITT for use in European systems. They can be described by the following mathematical equations:

$$
\begin{aligned}
& \mu \text {-Law: } Y=0.18 \ln (1+\mu|X|) \operatorname{sgn}(X) \\
& A \text {-Law: } Y=0.18(1+\ln (A|X|)) \operatorname{sgn}(X), 1 / A \leqslant|X| \leqslant 1 \\
& Y=0.18(A|X|) \operatorname{sgn}(X), \quad 0 \leqslant|X| \leqslant 1 / A \\
& \text { where: } X=\text { analog signal level normalized to unity } \\
& \quad \text { (encoder input or decoder output) } \\
& Y=\text { digital signal level normalized to unity } \\
& \text { (encoder output or decoder input) } \\
& \mu=255 \text { and } A=87.6
\end{aligned}
$$

Both functions require that the size of the analog output change increase for each increasing digital code. In order to implement such a function, an overly complex analog circuit would be needed. This requirement is met, instead, by a piecewise linear approximation. In this approximation, an 8-bit digital word generates 256 analog outputs with a transfer characteristic which is symmetrical about the origin. Figure 1 shows the μ-law and A-law transfer characteristics and the linear 8 -bit DAC transfer characteristic. The positive 128 steps are divided into 8 segments or chords of 16 steps each, from step 0 to step 15. The step size is constant within a chord and doubles for each increasing chord. If the step size in the first chord, chord 0 , is assigned a value of 1 , the next chord, chord 1 , has a step size of 2 , chord 2 has a step size of 4 , etc. The last chord has a step size of 128 units and ends roughly at the value 4000 . The 128 steps represent a 7 -bit digital word with a dynamic range of $72 \mathrm{~dB}, 20 \log (4000: 1)$, which is equivalent to the dynamic range of a 12-bit linear DAC.
The above description describes the μ-law curve. The A-law differs from the μ-law only in the first two chords. The step size in the A-law DAC does not change between the first and second chords, but doubles in all succeeding chords. The A-law DAC has a $1 / 2$ step offset at zero so that the positive and negative zero codes do not generate the same point. The A-law DAC has a dynamic range of 62 dB which is equivalent to an 11-bit linear DAC.

Fig. 1. Transfer Functions for μ-Law and A-Law Decoders.

Analog to Digital Conversion Using DACs

A digital input word to a DAC corresponds to an exact and unique analog output level. The total number of discrete output levels, m, depends on the number of DAC binary inputs, ($m=2^{n}, n=$ number of input bits), and each output level is specified to be within a certain error band of its ideal value. An analog input to an ADC, on the other hand, may have an infinite number of signal levels which must be represented with only a finite number of digital output combinations. The output code, ideally, identifies the digital word that most closely represents the analog input. The classical way to generate a fast ADC function is to use a DAC in a feedback loop together with special ADC logic, employing a comparator and a successive approximation register (SAR). The feedback loop compares the DAC output with the analog input and decides whether the digital code is greater than or less than the input to the DAC. The input to the DAC is then increased or decreased accordingly, and another comparison is made. This technique causes each bit to be changed one at a time, and, by comparing the DAC's output with the analog input, the value of that bit is determined. Modification of one bit at a time, starting with the most significant bit and ending with the least significant bit, leads to an output which with each successive bit becomes a closer approximation of the input level. A total of n comparisons are needed for an n-bit converter.

The overall transfer characteristic of the entire ADC system is shown in Figure 2a. The ADC logic approximates the input analog signal by rounding off to the closest lower digital value. The maximum uncertainty in the digital representation of the analog input will be a full bit. In order to reduce this uncertainty, the ADC transfer curve can be modified to round to the nearest digital code, instead of the lowest, by adding a half step offset to the characteristic as shown in Figure 2b. The ADC now changes its outputs for analog inputs halfway between digital code points and gives a reading with $\pm 1 / 2$ step uncertainty. The half step offset necessary for better ADC accuracy is easily provided by increasing the DAC's analog output level by a half step whenever the DAC is used in an ADC scheme. This additional half step is easy to generate with linear DACs because of their constant step size throughout the entire dynamic range. For a Companding DAC this addition is much more difficult since the step size varies with signal value. In order to alleviate this problem, the Companding DAC has a built in capability to produce an appropriate half step offset signal at its output by a logic command. When this command input ($\mathrm{E} / \overline{\mathrm{D}}$ pin) is at logic 0 , the Companding DAC is in the decode mode and the output will not contain the half step offset current. When the command input is at logic 1, the DAC is in the encode mode, i.e., within an ADC scheme, and the output current is increased by the correct half step for any input mode.

Fig. 2. Transfer Characteristic of an A to D Conversion System.

Companding DACs in Industrial Systems

Companding DACs differ from linear DACs in output dynamic range, transfer function, and the size of intermediate output steps. Comparable 8 -bit linear DACs, such as the popular AmDAC-08, have a linear transfer characteristic with 256 linear steps, where each step is $8 \mu \mathrm{~A}$ in size. The AmDAC-08 has a dynamic range of only 48 dB while the 8 -bit Companding DAC, (Am6070), has an output dynamic range of 72dB, which is also achievable with a 12 -bit linear DAC. The output current increments of the Companding DAC, corresponding to small output signals, are significantly smaller than $8 \mu \mathrm{~A}$, which is the step size for the AmDAC-08. The step sizes in the first four chords of the Companding DAC transfer function are $0.5 \mu \mathrm{~A}, 1.0 \mu \mathrm{~A}, 2.0 \mu \mathrm{~A}$, and $4.0 \mu \mathrm{~A}$, respectively, with a total of 64 steps and a current value at the end of the fourth chord of approximately $100 \mu \mathrm{~A}$. By comparison, the AmDAC08 uses only 12 uniform steps to resolve a $100 \mu \mathrm{~A}$ output current levet.
Given the assumption that most industrial systems employ an 8 -bit digital data bus, the 8 -bit DAC is a logical choice for interfacing with these systems. Companding DACs can be used in the same general applications as the AmDAC-08, particularly for reconstruction of analog signals with dynamic ranges that exceed 48 dB . One example is the measurement of gas or liquid pressure, in an industrial environment, by, pressure transducers with a pressure range of 0 to 3000 PSI . Another example is digital recording of sound signals which usually exhibit a very large dynamic range.
The Companding DAC's logarithmic-like nonlinear transfer function suggests the application of this device for simulation of nonlinear waveforms which can be generated by converting a sequence of bytes, from an 8 -bit processor, into an analog
signal with an exponential shape. This type of signal can be used in nonlinear control systems such as motor velocity controllers. Additionally, the high resolution and accuracy of the Companding DAC transfer function, for small output signal levels, provide a very smooth and precise analog control signal to devices whose outputs are voltage or current dependent.
In general, the Companding DAC should be used in any system where a large dynamic range is needed. Such systems include servo motor controls, electromechanical positioning, voice and music synthesis and recording, secure communications, log sweep generators, digital control of gain and attenuation, and microprocessor controlled signal generation.

Companding DACs in PCM Transmission Systems

The companding laws were developed to satisfy the requirements of the telephone system for the digital transmission of voice signals. Voice signals exhibit a dynamic range of several thousand to one. To transmit this information with 8 -bit words and retain reasonable accuracy at low levels, a companding transfer characteristic must be used to compress the analog signal prior to transmission and to restore the original signal after reception. The transmission of an analog signal in a digital format involves sampling, quantizing (A to D conversion), and compressing the analog signal as shown in Figure 3. The receiver must perform the complementary functions of expansion, digital to analog conversion and filtering to restore the analog signal waveform. The entire procedure is known as pulse code modulation, (PCM), and is the prevalent technique for digital transmission in communication systems. Currently, the Bell μ-law is the standard in the United States and the CCITT A-law is the standard in Europe.

LIC-020
Fig. 3. Pulse Code Modulation Example.

Companding DAC

Fig. 4 One-Way PCM Transmission System Block Diagram.

Fig. 5. One-Way PCM Transmission System Implemented with Companding DAC.

A simplified block diagram of a PCM transmission system is shown in Figure 4. The analog signal must be sampled at a rate that is at least twice as fast as the maximum bandwidth of the system, $(3.4 \mathrm{KHz})$, in order to achieve satisfactory signal reproduction at the receiver site. (This requirement is based on the Nyquist sampling theorem.) The telephone system uses a sampling rate of 8 kHz which allows 125μ s between samples. During this time the entire signal sampling, quantizing, encoding, and multiplexing must be completed.
The companding DAC is a complete PCM decoder (receiver) that performs both the decoding and D / A conversion. The DAC has additional encoding capabilities which make it very attractive for use in CODECs (a CODEC is both an Encoder and Decoder). The transfer characteristics of this device closely follow the characteristics defined by the μ-law, (Am6072), or A-law, (Am6073), A typical connection of a Companding DAC in a PCM transmission system is shown in Figure 5. In the transmitter side, the Companding DAC operates in a feedback loop using a SAR to perform the data encoding function. The corresponding logarithmic transfer curve for the entire feedback loop portion of the transmitter is also shown in Figure 5. The value of the sampled signal is estimated by a series of 9 iterations until its appropriate quantized digital representation appears at the 8 -bit parallel data output of the SAR. This 8 -bit digital code will be transmitted to the digital inputs of another Companding DAC for the decoding operation. The input/output transfer function for the Companding DAC is also shown in Figure 5.

The Companding DAC can be used in PCM decoders, encoders or complete CODECs. It is a high speed device that is capable of handling more than one channel in a multiplexed system. In multi-channel systems Companding DACs can be configured in a variety of ways depending on the number of channels, the method of transmission, (serial or parallel data), and synchronization of the system. A single Companding DAC can be used, for example, to decode all 24 channels in a standard Bell D3 data bank.

COMPANDING DAC CIRCUIT DESCRIPTION

General Circuit Description

The basic function of the 8 -bit, Companding DAC is to convert a digital input value into an analog output current. The output current is a function of the digital data inputs and the input reference current. The full scale current, I_{FS}, is generated by the 7 -bit data input binary code 111 1111, and is a linear function of the reference current, $I_{\text {REF }}$. There are two operating modes, Encode and Decode, which are controlled by the Encode/Decode, ($E / \overline{\mathrm{D}}$), digital control signal. The output dynamic ranges achieved with the sign-plus-7-bit Companding DACs are 62dB (A-law) and 72dB (μ-law) which correspond to the output dynamic ranges of sign-plus-11-bit and sign-plus-12-bit linear binary DACs. Digital data and control inputs provide for easy digital control of converter operations in computer based data conversion systems.

The internal device design assures the accuracy and monotonicity of the Companding DAC over the entire dynamic and temperature ranges by maintaining the chord end points and step size deviations within allowable limits. Parametric deviations and requirements can be expressed in terms of corresponding step fractions which are applied throughout the entire output dynamic range. In industrial environments it is customary to specify allowable deviations from ideal parametric values within \pm half a step. However, the μ-law and A-law based PCM communication systems specify the output current deviations in terms of dB , with respect to I_{FS}. Furthermore, these communication requirements in dB cannot be translated to some reasonable "step fraction" deviation which will be common for the entire output dynamic range. Consequently, Companding DACs applied in communication systems must be tested against specific output current values which are calculated separately for each step of the transfer characteristic. This difference between communication and industrial Companding DAC devices is recognized by Advanced Micro Devices which offers μ-law and A-law devices for both the industrial market, Am6070 and Am6071, and the telecommunication market, Am6072 and Am6073.
These Companding DACs are manufactured in an 18-pin package. There are seven digital data inputs, (B 1 through $B 7$), two control digital input signals, ($S B, E / \bar{D}$), and four analog current outputs, ($\left.\mathrm{I}_{\mathrm{OD}(+)}, \mathrm{I}_{\mathrm{OD}(-)}, \mathrm{I}_{\mathrm{OE}(+)}, \mathrm{I}_{\mathrm{OE}(-)}\right)$. The maximum output current value or full scale current, I_{FS}, is determined by the value of the reference current, $I_{\text {REF }}$, supplied to the Companding DAC via two analog reference inputs, $\left(\mathrm{V}_{\mathrm{R}(+)}\right.$ and $\left.\mathrm{V}_{\mathrm{R}(-)}\right)$. There are three power supply connections ($\mathrm{V}-, \mathrm{V}+$ and Ground).

Detailed Circuit Description

The block diagram of the Companding DAC is shown in Figure 6. The circuit consists of the following five major blocks:

- The chord generator produces the total current for each chord or segment of the curve.
- The pedestal generator generates the pedestal or starting point for each chord.
- The step generator generates the proper step current for each chord.
- The chord decoding logic decodes the chord inputs and controls the inputs to the pedestal and step generator circuits.
- The output switching matrix sums the step and pedestal currents and routes them to the proper output node.

To understand the circuitry of the Companding DAC it is important to understand how the companding curve is generated. The companding curve is a piecewise linear approximation of an exponential characteristic. It consists of 16 linear segments centered around the origin. The curve is symmetrical around the origin so we need only examine the positive portion of the curve. Each segment or chord consists of sixteen steps, step 0 through step 15, and the size of each step doubles as the chord number increases. In order to smooth out the characteristic as the chords change, the step current value for the first step of each higher chord, step 0 , is set to be $11 / 2$ times larger than the step current values in the lower chord. The succeeding fifteen steps, step 1 to step 15, are 2 times larger than steps of the previous chord. Figure 7 shows a detailed synthesis of the companding function. The first

Fig. 6. Companding DAC Functional Block Diagram.

Fig. 7. Construction of μ-Law Transfer Function.
chord, C 0 , is generated from a current source, I_{co}. The second chord, C 1 , starts at current I_{P}, (known as the pedestal current), and is generated from a current source, $\mathrm{I}_{\mathrm{C} 1}$, which is twice the value of $I_{c 0}$. The next chord current source, $I_{\mathrm{C} 2}$, starts at a pedestal current $I_{P 2}$ and has a total value equal to four times $l_{c o}$. This process continues with each chord N having a total chord current equal to $2^{N} \mathrm{I}_{\mathrm{C} 0}$ and starting at a pedestal current which equals the summation of all currents in the lower chords:

$$
I_{P N}=\sum_{M=0}^{N-1}\left(I_{C M}+1.5 \cdot I_{M}\right)=16.5 \sum_{M=0}^{N-1} I_{M},\left(I_{P O}=0\right)
$$

where I_{M} is the step current value in chord M.

The generation of the pedestal current by summing the lower chords ensures monotonic behavior in the transition between chords. The selection of the proper step within the given chord is accomplished by routing the chord current, ICN, through a step generator which chooses the proper fraction of the chord current necessary to generate the selected number of steps. The resulting net output current lout, can be expressed in terms of step currents, I_{N}, corresponding to the chord N :

$$
I_{\text {OUT }}=I_{P N}+S \cdot I_{N}=\left(16.5 \sum_{M=0}^{N-1} I_{M}\right)+S \cdot I_{N},\left(I_{P O}=0\right),
$$

where $\mathrm{S}=$ step number $=0,1, \ldots, 15$ and $\mathrm{N}=$ chord number $=0,1, \ldots, 7$.

The circuit has 9 digital inputs, an 8 -bit word and a control bit. The 8 -bit digital input word is broken into three parts. The first bit is the sign bit and specifies whether the output lies in the positive or negative portion of the curve. The next three bits define which of the 8 chords is to be selected. This three bit field has a value designated as N which is between 0 and 7 . The last four bits specify one of the sixteen steps and has a value equal to S. The control bit is the E / \bar{D} signal which controls the output switching.

The chord generator is the key element in the DAC. It must generate eight binary weighted chord currents and is similar to an 8-bit linear DAC. The detailed schematic, shown in Figure 8, shows a master/slave ladder arrangement biased from a reference amplifier and transistor. The reference amplifier forces the base voltage of the reference transistor, $\left(Q_{0}\right)$, to the value required to sink the reference current. This voltage will bias the master ladder so that Q1 runs at $2 \cdot \|_{\text {REF }}$, Q2 at $\mathrm{I}_{\mathrm{REF}}$, Q3 at $.5 \cdot \mathrm{I}_{\text {REF }}$, and Q4A and Q4B at $.25 \cdot I_{\text {REF }}$ each. The slave array uses a binary weighted resistor array to generate the lower four chord currents by dividing the current from Q4B. An 8 -bit linear DAC does not require the resistor array in the slave ladder but the Companding DAC does, in order to ensure 12-bit linearity in Chord 0 . The LSB current in an AmDAC-08 is $8 \mu \mathrm{~A} \pm 4 \mu \mathrm{~A}$ while the Chord 0 current source in an Am6070 has a value of $8 \mu \mathrm{~A} \pm .5 \mu \mathrm{~A}$.

LIC-025
Fig. 8. Chord Current Generator Diagram (Indicated current values correspond to the μ-law DAC).

Fig. 9. μ-Law Step Current Generator.

LIC-027
Fig. 10. A-Law Step Current Generator.

The chord select inputs, B1, B2, B3, control a one of eight decoder that selects one of the chords, routes that chord current source to the step generator and switches all the lower order chord current sources to the pedestal generator.

The step generator for the μ-law characteristic is shown in detail in Figure 9. This circuit divides the total chord current source, $I_{C N}$, into 33 equal parts, and the step current value, I_{N}, is equal to $2 / 33$ of the chord current source. The 33 parts accommodate the required 1.5 step transition between chords, so that the total internal chord current source is equal to 16.5 steps. The step generator is similar to a four bit DAC but has six current source outputs to generate 8, 4, 2, 1, 1 and $1 / 2$ step currents. This current division can be done using emitter area scaling with enough accuracy to meet the
monotonicity and linearity specifications without the use of emitter resistors. The four step bit inputs can choose from 0 to 15 steps to be switched into the output summing network. The $1 / 2$ step current is used as the encode offset current in the encode mode and will track the value of the chord current. When the transition to the next chord is made, the full chord current is switched to the pedestal generator causing a change in the output of 1.5 steps, i.e., from 15 steps to 16.5 steps. The step selector uses a fully differential current switch to ensure high speed performance. This switch does not require capacitive charging and discharging of low current nodes and has a nearly constant 40ns propagation delay over the dynamic range of the varying chord currents, from the first step current on chord 0 of $.5 \mu \mathrm{~A}$ to the last step current on chord 7 of .5 mA .

The output summing network sums the outputs of the pedestal generator, step generator, and encode current, and routes the current to the output selected by the combination of SB and E / \bar{D}. If the E / \bar{D} input is high, the encode current, $I_{E N}$, is summed with the step and pedestal currents and is routed to $l_{\mathrm{OE}(+)}$, if $S B$ is 1 , or to $\mathrm{I}_{\mathrm{OE}(-)}$, if $S B$ is 0 . If E / \bar{D} is low, only the step and pedestal currents are summed and sent to the output; the output current is routed to $\mathrm{l}_{\mathrm{OD}(+)}$ or $\mathrm{l}_{\mathrm{OD}(-)}$ depending on the state of SB. Only one output will be active and the other outputs will be in a high impedance, off, state.

Generation of the μ-Law and A-Law Characteristics

The μ-law and A-law devices have similar characteristics which differ in the chords near zero. In the μ-law device, the step size doubles when chord 0 ends and chord 1 begins and the first step of chord zero is equal to zero, and the points for positive and negative zero are the same. In the A-law curve, the step size does not change between chord 0 and chord 1. The first two chords are colinear and the step size does not start doubling until chord 2. Additionally, the A-law curve has a $1 / 2$ step offset at the zero point so that positive and negative zero are not equal. These differences in the two companding laws are relatively minor and the two laws can be generated from the same integrated circuit with only minor modifications.

The μ-law curve is generated using the earlier described step generator. If step size in the first chord is set to be $.5 \mu \mathrm{~A}$, the internal chord 0 current source must be $8.25 \mu \mathrm{~A}(16.5 \times .5 \mu \mathrm{~A})$. Each succeeding internal chord current source doubles in value so that the last two chord current sources are $528 \mu \mathrm{~A}$ and $1056 \mu \mathrm{~A}$. The reference current is equal to $1 / 2$ the largest current source, so the required reference current is $528 \mu \mathrm{~A}$. The full scale output current can be calculated by summing all the internal current sources and subtracting 1.5 steps from the most significant chord, because the full scale current output requires only 15 steps out of the available 16.5 steps to be switched into the output. This gives a full scale current of $2007.75 \mu \mathrm{~A}$. The output current for any point on the companding curve can be calculated in terms of the internal chord 0 source, $8.25 \mu \mathrm{~A}$, and its step value, $.5 \mu \mathrm{~A}$, using the following formula:

$$
\mathrm{I}_{\mathrm{N}, \mathrm{~S}}=\left(\left(2^{\mathrm{N}}-1\right) \cdot 8.25 \mu \mathrm{~A}\right)+\left(\mathrm{S} \cdot 2^{\mathrm{N}} \cdot 5 \mu \mathrm{~A}\right)
$$

TABLE 1
NORMALIZED A-LAW DECODER OUTPUT (SIGN BIT EXCLUDED)

STEP (S)	CHORD (C)								
	$\mathbf{0}$		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
	$\mathbf{7}$								
0	1	33	66	132	264	528	1056	2112	
1	3	35	70	140	280	560	1120	2240	
2	5	37	74	148	296	592	1184	2368	
3	7	39	78	156	312	624	1248	2496	
4	9	41	82	164	328	656	1312	2624	
5	11	43	86	172	344	688	1376	2752	
6	13	45	90	180	360	720	1440	2880	
7	15	47	94	188	376	752	1504	3008	
8	17	49	98	196	392	784	1568	3136	
9	19	51	102	204	408	816	1632	3264	
10	21	53	106	212	424	848	1696	3392	
11	23	55	110	220	440	880	1760	3520	
12	25	57	114	228	456	912	1824	3648	
13	27	59	118	236	462	944	1888	3776	
14	29	61	122	244	488	976	1952	3904	
15	31	63	126	252	504	1008	2016	4032	
STEP SIZE	2	2	4	8	16	32	64	128	

where N represents the chord number and S the step number. The first term represents the pedestal current value; the second term the value of the steps in the selected chord.

The A-law curve is generated by using the step generator shown in Figure 10. The internal chord current source is divided into 32 equal parts with current source values of $8,4,2$, $1,1 / 2$ and $1 / 2$ steps. The zero offset is generated by summing a $1 / 2$ step current with the output of the step generator independent of input code. The range of output values of the step generator is from $1 / 2$ step to 15.5 steps, and the internal chord current source has a value equal to 16 steps. The 1.5 step transition is accomplished by switching the total internal chord current source to the pedestal generator, i.e., adds $1 / 2$ step, (the encode current $I_{E N}$), and summing the $1 / 2$ step offset current from the next higher chord, which is the same as one step on the lower chord.

The A-law Companding DAC doubles the size of the chord 0 current source $I_{C 0}$ from the μ-law $I_{C 0}$ value by connecting the collector of Q8B to Q8A instead of its base as indicated in Figure 8, so that it is equal to the chord 1 current source. The reference current is adjusted to set the first chord step size to $1 \mu \mathrm{~A}$ and the internal chord 0 current source value to $16 \mu \mathrm{~A}$. The last two chords will have internal current source values of $512 \mu \mathrm{~A}$ and $1024 \mu \mathrm{~A}$ each. The reference current required to bias the chord generator is $512 \mu \mathrm{~A}$. The full scale output current can be calculated by summing all the internal chord current sources and subtracting $1 / 2$ step from the last chord, because only 15.5 steps of the 16 steps in the last chord are switched to the output. The full scale current is nominally $2016 \mu \mathrm{~A}$. The current at any point on the A-law companding curve can be calculated by using the following formula:
$\mathrm{I}_{\mathrm{N}, \mathrm{S}}=(2 \mathrm{~S}+1) \cdot .5 \mu \mathrm{~A}$, for $\mathrm{N}=0$, and

$$
=\left(2^{N-1} \cdot 16.5 \mu A\right)+\left(2^{N-1} \cdot S \cdot 1 \mu A\right), \text { for } N \geqslant 1
$$

Output Current Tables

All output current values on the A-law transfer characteristic curve are higher than corresponding μ-law current values, because of the larger step sizes in chord 0 for the A-law characteristic. The different step sizes in chord 0 were originally suggested by the International Telegraph and Telephone

TABLE 2 NORMALIZED μ-LAW DECODER OUTPUT (SIGN BIT EXCLUDED)

STEP (S)	CHORD (C)								
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
0	0	33	99	231	495	1023	2079	4191	
1	2	37	107	247	527	1087	2207	4447	
2	4	41	115	263	559	1151	2335	4703	
3	6	45	123	279	591	1215	2463	4959	
4	8	49	131	295	623	1279	2591	5215	
5	10	53	139	311	655	1343	2719	5471	
6	12	57	147	327	687	1407	2847	5727	
7	14	61	155	343	719	1471	2975	5983	
8	16	65	163	359	751	1535	3103	6239	
9	18	69	171	375	783	1599	3231	6495	
10	20	73	179	391	815	1663	3359	6751	
11	22	77	187	407	847	1727	3487	7007	
12	24	81	195	423	879	1791	3615	7263	
13	26	85	203	439	911	1855	3743	7519	
14	28	89	211	455	943	1919	3871	7775	
15	30	93	219	471	975	1983	3999	8031	
STEP SIZE	2	4	8	16	32	64	128	256	

TABLE 3
IDEAL A-LAW DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

STEP	CHORD								
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
0	-69.11	-38.74	-35.72	-26.70	-20.68	-14.66	-8.64	-2.62	
1	-59.57	-38.23	-32.21	-26.19	-20.17	-14.15	-8.13	-2.11	
2	-55.13	-37.75	-31.73	-25.71	-19.68	-13.66	-7.64	-1.62	
3	-52.21	-37.29	-31.27	-25.25	-19.23	-13.21	-7.19	-1.17	
$\mathbf{4}$	-50.03	-36.85	-30.83	-24.81	-18.79	-12.77	-6.75	-0.73	
5	-48.28	-36.44	-30.42	-24.40	-18.38	-12.36	-6.34	-0.32	
6	-46.83	-36.05	-30.03	-24.00	-17.98	-11.96	-5.94	+0.08	
7	-45.59	-35.67	-29.65	-23.63	-17.61	-11.59	-5.57	+0.46	
8	-44.50	-35.31	-29.29	-23.27	-17.24	-11.22	-5.20	+0.82	
9	-43.54	-34.96	-28.94	-22.92	-16.90	-10.88	-4.86	+1.16	
10	-42.67	-34.62	-28.60	-22.58	-16.56	-10.54	-4.52	+1.50	
11	-41.88	-34.30	-28.28	-22.26	-16.24	-10.22	-4.20	+1.82	
12	-41.15	-33.99	-27.97	-21.95	-15.93	-9.91	-3.89	+2.13	
13	-40.48	-33.69	-27.67	-21.65	-15.63	-9.61	-3.59	+2.43	
14	-39.86	-33.40	-27.38	-21.36	-15.34	-9.32	-3.30	+2.72	
15	-39.28	-33.12	-27.10	-21.08	-15.06	-9.04	-3.02	+3.00	

Consultive Committee (CCITT), in its recommendation for the encoding laws in Pulse Code Modulation communication systems for voice frequency signals of commercial quality.

This recommendation contains several different tables with information for A-law and μ-law encoding requirements. The most important pair of tables contain all 128 distinctive decoder output current values expressed in normalized units. The normalized current output values for A-law and μ-law Companding DACs are presented in Tables 1 and 2, respectively. Step 0 of chord 0 in the A-law table is equal to the value of one normalized unit, whereas the corresponding normalized zero current value in the μ-law table is zero. The actual size of this normalized unit is NOT REQUIRED TO BE THE SAME for A-law and for μ-law, and entries in Tables 1 and 2 should not be used for any comparison of the two encoding laws. Each table, independently, provides the information for a particular encoding law about required relationships between the output current magnitudes. In addition, the input data coding for Table 2, which contains entries for the μ-law normalized output values, is the one's complement of the input data codes suggested by the original CCITT and Bell D3 specification. However, data input coding shown in Tables 1 and 2 is accepted as standard input data coding in order to have consistent data coding for μ-law and A-law Companding DACs. The maximum normalized current values in Tables 1 and 2 are 4032 and 8031, respectively, and these values can be easily derived by summing all of the 128 normalized steps.

Additional conditions beyond the two maximum normalized values are related to the ratios, in $\mu \mathrm{A}$, between the amplitudes corresponding to full scale current values, and the amplitudes of output currents which are chosen as the reference outputs for A-law and for μ-law decoding devices. These reference outputs are generated as sinusoidal waveforms of 1 kHz by applying a periodic sequence of eight 8 -bit data words at the Companding DAC's inputs at an 8 kHz rate. These sequences are specified separately for both encoding laws. The signal level at the peaks of these reference sinusoidal waveforms is chosen as the reference 0 dB level. This level is implied to be the same for both encoding laws. The dB levels, calculated by using the peaks of the 1 kHz sinusoidal waveforms with amplitudes which correspond to the

TABLE 4
IDEAL μ-LAW DECODER OUTPUT VALUES EXPRESSED IN dB DOWN FROM OVERLOAD LEVEL (+3dBmo)

STEP	CHORD								
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{0}$	-	-44.73	-35.18	-27.82	-21.20	-14.90	-8.74	-2.65	
$\mathbf{1}$	-69.07	-43.73	-34.51	-27.24	-20.66	-14.37	-8.22	-2.13	
$\mathbf{2}$	-63.05	-42.84	-33.88	-26.70	-20.15	-13.87	-7.73	-1.65	
$\mathbf{3}$	-59.53	-42.03	-33.30	-26.18	-19.66	-13.40	-7.27	-1.19	
$\mathbf{4}$	-57.03	-41.29	-32.75	-25.70	-19.21	-12.96	-6.83	-0.75	
$\mathbf{5}$	-55.10	-40.61	-32.24	-25.24	-18.77	-12.53	-6.41	-0.33	
$\mathbf{6}$	-53.51	-39.98	-31.75	-24.80	-18.36	-12.13	-6.01	+0.06	
$\mathbf{7}$	-52.17	-39.39	-31.29	-24.39	-17.96	-11.74	-5.63	+0.44	
$\mathbf{8}$	-51.01	-38.84	-30.85	-23.99	-17.58	-11.37	-5.26	+0.81	
$\mathbf{9}$	-49.99	-38.32	-30.44	-23.61	-17.22	-11.02	-4.91	+1.16	
$\mathbf{1 0}$	-49.07	-37.83	-30.04	-23.25	-16.87	-10.68	-4.57	+1.49	
$\mathbf{1 1}$	-48.25	-37.37	-29.66	-22.90	-16.54	-10.35	-4.25	+1.82	
$\mathbf{1 2}$	-47.49	-36.93	-29.29	-22.57	-16.22	-10.03	-3.93	+2.13	
$\mathbf{1 3}$	-46.80	-36.51	-28.95	-22.25	-15.91	-9.73	-3.63	+2.43	
$\mathbf{1 4}$	-46.15	-36.11	-28.61	-21.94	-15.61	-9.43	-3.34	+2.72	
$\mathbf{1 5}$	-45.55	-35.73	-28.29	-21.63	-15.32	-9.15	-3.06	+3.00	

theoretical maximum output current values, are specified to be +3.14 dB and +3.17 dB above the common reference level for the A-law and μ-law decoding devices, respectively. The small difference in the specified theoretical maximum output current levels implies a very small difference between actual full scale current values for A-law and μ-law decoders. In practice, the actual level for the full scale output current values for both laws is set to be +3.00 dB above the reference OdB level. The ideal decoder output values expressed in dB down from the full scale current output for A-law and μ-law are presented in Tables 3 and 4. The reference 0 dB level can be found in these tables between steps 5 and 6 on chord 7 . Comparison of the numbers corresponding to step 1 in chord 0 shows a difference between the two encoding laws with respect to the output dynamic ranges. The output dynamic range is 62.57 dB for A-law, $(+3.00 \mathrm{~dB}$ to $-59.57 \mathrm{~dB})$, and 72.07 dB for μ-law, $(+3.00 \mathrm{~dB}$ to $-69.07 \mathrm{~dB})$.

In order to make the electrical designs of A-law and μ-law Companding DACs as similar as possible, the normalized unit value of current in Table 1, A-law table, is chosen to be $0.5 \mu \mathrm{~A}$ and the normalized unit current quantity in Table 2, μ-law table, is chosen to be $0.25 \mu \mathrm{~A}$. These different "unit" values will cause the steps in chord 0 for A-law Companding DACs to be twice as large as the corresponding μ-law device step sizes. Consequently, the ideal full scale absolute current values corresponding to 4032 and 8031 normalized units are $2016 \mu \mathrm{~A}$ for A-law and $2007.75 \mu \mathrm{~A}$ for μ-law DACs. Tables 5 and 6 contain all 128 absolute decoder output current values in $\mu \mathrm{A}$. These tables can be further expressed in terms of percent of full scale current output, which may be important for some "percentage" oriented applications. Tabulated summaries of step and chord endpoint sizes which can be extracted from Tables 1 through 6 are presented in Tables 7 and 8. The last column in these tables points out that the best resolution and accurac. ε re achieved in chord 0 of the Companding DAC's transfer function.
The output current values presented in Tables 5 and 6 are ideal output currents with ideal reference currents of $528 \mu \mathrm{~A}$ and $512 \mu \mathrm{~A}$, respectively. The output current deviations for the communication application of Companding DACs are specified by the compandor tracking system requirements which are illustrated for both decoders in Figures 11 and 12. In both figures a dotted line represents a total gain deviation, in dB , for

TABLE 5
IDEAL A-LAW DECODER OUTPUT CURRENT IN MICROAMPS (SIGN BIT EXCLUDED)

STEP	CHORD								
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
0	.500	16.500	33.000	66.000	132.00	264.00	528.00	1056.00	
1	1.500	17.500	35.000	70.000	140.00	280.00	560.00	1120.00	
2	2.500	18.500	37.000	74.000	148.00	296.00	592.00	1184.00	
3	3.500	19.500	39.000	78.000	156.00	312.00	624.00	1248.00	
4	4.500	20.500	41.000	82.000	164.00	328.00	656.00	1312.00	
5	5.500	21.500	43.000	86.000	172.00	344.00	688.00	1376.00	
6	6.500	22.500	45.000	90.000	180.00	360.00	720.00	1440.00	
7	7.500	23.500	47.000	94.000	188.00	376.00	752.00	1504.00	
8	8.500	24.500	49.000	98.000	196.00	392.00	784.00	1568.00	
9	9.500	25.500	51.000	102.000	204.00	408.00	816.00	1632.00	
10	10.500	26.500	53.000	106.000	212.00	424.00	848.00	1696.00	
11	11.500	27.500	55.000	110.000	220.00	440.00	880.00	1760.00	
12	12.500	28.500	57.000	114.000	228.00	456.00	912.00	1824.00	
13	13.500	29.500	59.000	118.000	236.00	472.00	944.00	1888.00	
14	14.500	30.500	61.000	122.000	244.00	488.00	976.00	1952.00	
15	15.500	31.500	63.000	126.000	252.00	504.00	1008.00	2016.00	
STEP	1	1	2	4	8	16	32	64	
SIZE	1								

TABLE 6
IDEAL μ-LAW DECODER OUTPUT CURRENT IN MICROAMPS (SIGN BIT EXCLUDED)

	CHORD							
STEP	0	1	2	3	4	5	6	7
0	. 000	8.250	24.750	57.750	123.75	255.75	519.75	1047.75
1	. 500	9.250	26.750	61.750	131.75	271.75	551.75	1111.75
2	1.000	10.250	28.750	65.750	139.75	287.75	583.75	1175.75
3	1.500	11.250	30.750	69.750	147.75	303.75	615.75	1239.75
4	2.000	12.250	32.750	73.750	155.75	319.75	647.75	1303.75
5	2.500	13.250	34.750	77.750	163.75	335.75	679.75	1367.75
6	3.000	14.250	36.750	81.750	171.75	351.75	711.75	1431.75
7	3.500	15.250	38.750	85.750	179.75	367.75	743.75	1495.75
8	4.000	16.250	40.750	89.750	187.75	383.75	775.75	1559.75
9	4.500	17.250	42.750	93.750	195.75	399.75	807.75	1623.75
10	5.000	18.250	44.750	97.750	203.75	415.75	839.75	1687.75
11	5.500	19.250	46.750	101.750	211.75	431.75	871.75	1751.75
12	6.000	20.250	48.750	105.750	219.75	447.75	903.75	1815.75
13	6.500	21.250	50.750	109.750	227.75	463.75	935.75	1879.75
14	7.000	22.250	52.750	113.750	235.75	479.75	967.75	1943.75
15	7.500	23.250	54.750	117.750	243.75	495.75	999.75	2007.75
$\begin{aligned} & \text { STEP } \\ & \text { SIZE } \end{aligned}$. 5	1	2	4	8	16	32	64

TABLE 7
A-LAW DECODER STEP SIZE AND CHORD SIZE SUMMARY

Chord	Step Size Normalized to Full Scale	Chord Endpoints Normalized to Full Scale	Step Size in $\mu \mathrm{A}$ with 2016μ A F. S.	Chord Endpoints in $\mu \mathrm{A}$ with 2016μ A F. S.	Step Size as a \% of Full Scale	Chord Endpoints as a \% of Full Scale	Chord Endpoints in dB Down from Full Scale	Resolution \& Accuracy of Equivalent Binary DAC
0	2	31	1.0	15.5	0.05\%	0.77\%	-42.28	Sign + 11 Bits
1	2	63	1.0	31.5	0.05\%	1.56\%	-36.12	Sign + 11 Bits
2	4	126	2.0	63.0	0.1\%	3.13\%	-30.10	Sign +10 Bits
3	8	252	4.0	126.0	0.2\%	6.25\%	-24.08	Sign +9 Bits
4	16	504	8.0	252.0	0.4\%	12.5\%	- 18.06	Sign +8 Bits
5	32	1008	16.0	504.0	0.8\%	25.0\%	-12.04	Sign +7 Bits
6	64	2016	32.0	1008.0	1.6\%	50.0\%	-6.02	Sign +6 Bits
7	128	4032	64.0	2016.0	3.2\%	100\%	0	Sign +5 Bits

TABLE 8
μ-LAW DECODER STEP SIZE AND CHORD SIZE SUMMARY

Chord	Step Size Normalized to Full Scale	Chord Endpoints Normalized to Full Scale	$\begin{gathered} \text { Step Size } \\ \text { in } \mu \mathrm{A} \text { with } \\ 2007.75 \mu \mathrm{~A} \text { FS } \end{gathered}$	Chord Endpoints in $\mu \mathrm{A}$ with 2007.75 $\mu \mathrm{A}$ FS	Step Size as a \% of Full Scale	Chord Endpoints as a \% of Full Scale	Chord Endpoints in dB Down from Full Scale	Resolution \& Accuracy of Equivalent Binary DAC
0	2	30	0.5	7.5	0.025\%	0.37\%	-48.55	Sign +12 Bits
1	4	93	1.0	23.25	0.05\%	1.16\%	-38.73	Sign +11 Bits
2	8	219	2.0	54.75	0.1\%	2.73\%	-31.29	Sign +10 Bits
3	16	471	4.0	117.75	0.2\%	5.86\%	-24.63	Sign +9 Bits
4	32	975	8.0	243.75	0.4\%	12:1\%	-18.32	Sign +8 Bits
5	64	1983	16.0	495.75	0.8\%	24.7\%	-12.15	Sign +7 Bits
6	128	3999	32.0	999.75	1.6\%	49.8\%	-6.06	Sign +6 Bits
7	256	8031	64.0	2007.75	3.2\%	100\%	0	Sign +5 Bits

Fig. 11. CCITT A-Law Compandor Tracking Specification.
various signal levels which can be distributed over the encoder and decoder portions of a "one way" communication system. It is understood that encoder and decoder system portions are implemented with corresponding Companding DACs. For the Bell D3 system μ-law tracking specification, the -37 dBmo and -50 dBmo output current levels can be found between steps 11 and 12 on chord 1, and steps 8 and 9 on chord 0 , respectively. For the CCITT A-law compandor tracking specification, the $-40 \mathrm{dBmo},-50 \mathrm{dBmo}$, and -55 dBmo output current levels can be found in the corresponding A-law tables between steps 13 and 14 on chord 0 , steps 4 and 5 on chord 0 , and steps 2 and 3 on chord 0 , respectively. Conversion of the requirements imposed by Figures 11 and 12 to absolute current values produces corresponding absolute decode output current tables with minimum, ideal and maximum values specified for each step.

Fig. 12. Bell D3 System Compandor Tracking Specification.

TABLE 9
ABSOLUTE DECODER OUTPUT CURRENT LIMITS IN $\mu \mathrm{A}$ CONFORMING TO BELL D3 COMPANDOR TRACKING SPECIFICATIONS

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	CHORD NO.							
	0	1	2	3	4	5	6	7
0	$\begin{array}{r} -.250 \\ .000 \\ .250 \end{array}$	7.789 8.250 8.739	$\begin{aligned} & 24.048 \\ & 24.750 \\ & 25.473 \\ & \hline \end{aligned}$	56.112 57.750 59.436	$\begin{aligned} & 120.24 \\ & 123.75 \\ & 127.36 \end{aligned}$	$\begin{aligned} & 248.49 \\ & 255.75 \\ & 263.22 \end{aligned}$	$\begin{aligned} & 505.00 \\ & 519.75 \\ & 534.93 \\ & \hline \end{aligned}$	1018.02 1047.75 1078.34
1	$\begin{aligned} & .250 \\ & .500 \\ & .750 \end{aligned}$	$\begin{aligned} & 8.733 \\ & 9.250 \\ & 9.798 \end{aligned}$	$\begin{aligned} & 25.991 \\ & 26.750 \\ & 27.531 \end{aligned}$	$\begin{aligned} & 59.998 \\ & 61.750 \\ & 63.553 \end{aligned}$	$\begin{aligned} & 128.01 \\ & 131.75 \\ & 135.60 \end{aligned}$	$\begin{aligned} & 264.04 \\ & 271.75 \\ & 279.69 \end{aligned}$	$\begin{aligned} & 536.10 \\ & 551.75 \\ & 567.86 \end{aligned}$	$\begin{aligned} & 1080.21 \\ & 1111.75 \\ & 1144.21 \\ & \hline \end{aligned}$
2	$\begin{array}{r} .750 \\ 1.000 \\ 1.250 \\ \hline \end{array}$	$\begin{array}{r} 9.677 \\ 10.250 \\ 10.857 \\ \hline \end{array}$	$\begin{aligned} & 27.934 \\ & 28.750 \\ & 29.590 \end{aligned}$	63.885 65.750 67.670	$\begin{aligned} & 135.79 \\ & 139.75 \\ & 143.83 \end{aligned}$	$\begin{aligned} & 279.59 \\ & 287.75 \\ & 296.15 \end{aligned}$	$\begin{aligned} & 567.19 \\ & 583.75 \\ & 600.80 \end{aligned}$	$\begin{aligned} & 1142.39 \\ & 1175.75 \\ & 1210.08 \end{aligned}$
3	$\begin{aligned} & 1.250 \\ & 1.500 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 10.621 \\ & 11.250 \\ & 11.917 \end{aligned}$	$\begin{aligned} & 29.878 \\ & 30.750 \\ & 31.648 \end{aligned}$	$\begin{aligned} & 67.771 \\ & 69.750 \\ & 71.787 \end{aligned}$	$\begin{aligned} & 143.56 \\ & 147.75 \\ & 152.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 295.13 \\ & 303.75 \\ & 312.62 \\ & \hline \end{aligned}$	$\begin{aligned} & 598.28 \\ & 615.75 \\ & 633.73 \end{aligned}$	$\begin{aligned} & \hline 1204.58 \\ & 1239.75 \\ & 1275.95 \end{aligned}$
4	$\begin{aligned} & 1.750 \\ & 2.000 \\ & 2.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.565 \\ & 12.250 \\ & 12.976 \end{aligned}$	$\begin{aligned} & 31.821 \\ & 32.750 \\ & 33.706 \end{aligned}$	$\begin{aligned} & 71.658 \\ & 73.750 \\ & 75.904 \end{aligned}$	$\begin{aligned} & 151.33 \\ & 155.75 \\ & 160.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 310.68 \\ & 319.75 \\ & 329.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 629.37 \\ & 647.75 \\ & 666.66 \end{aligned}$	1266.76 1303.75 1341.82
5	$\begin{aligned} & \hline 2.250 \\ & 2.500 \\ & 2.750 \end{aligned}$	$\begin{aligned} & 12.509 \\ & 13.250 \\ & 14.035 \end{aligned}$	$\begin{aligned} & 33.764 \\ & 34.750 \\ & 35.765 \end{aligned}$	$\begin{aligned} & 75.544 \\ & 77.750 \\ & 80.020 \end{aligned}$	$\begin{aligned} & 159.10 \\ & 163.75 \\ & 168.53 \end{aligned}$	$\begin{aligned} & 326.22 \\ & 335.75 \\ & 345.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 660.46 \\ & 679.75 \\ & 699.60 \end{aligned}$	$\begin{aligned} & 1328.94 \\ & 1367.75 \\ & 1407.69 \end{aligned}$
6	$\begin{aligned} & \hline 2.750 \\ & 3.000 \\ & 3.250 \end{aligned}$	$\begin{aligned} & 13.453 \\ & 14.250 \\ & 15.094 \end{aligned}$	$\begin{aligned} & 35.707 \\ & 36.750 \\ & 37.823 \end{aligned}$	$\begin{aligned} & 79.431 \\ & 81.750 \\ & 84.137 \end{aligned}$	$\begin{aligned} & 166.88 \\ & 171.75 \\ & 176.77 \\ & \hline \end{aligned}$	$\begin{aligned} & 341.77 \\ & 351.75 \\ & 362.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 691.56 \\ & 711.75 \\ & 732.53 \end{aligned}$	$\begin{aligned} & 1391.13 \\ & 1431.75 \\ & 1473.56 \end{aligned}$
7	$\begin{aligned} & 3.250 \\ & 3.500 \\ & 3.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.397 \\ & 15.250 \\ & 16.154 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.651 \\ & 38.750 \\ & 39.882 \end{aligned}$	$\begin{aligned} & 83.317 \\ & 85.750 \\ & 88.254 \end{aligned}$	$\begin{aligned} & 174.65 \\ & 179.75 \\ & 185.00 \end{aligned}$	$\begin{aligned} & 357.32 \\ & 367.75 \\ & 378.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 722.65 \\ & 743.75 \\ & 765.47 \end{aligned}$	$\begin{aligned} & 1453.31 \\ & 1495.75 \\ & 1539.43 \end{aligned}$
8	$\begin{aligned} & 3.750 \\ & 4.000 \\ & 4.250 \end{aligned}$	$\begin{aligned} & \hline 15.341 \\ & 16.250 \\ & 17.213 \end{aligned}$	$\begin{aligned} & 39.594 \\ & 40.750 \\ & 41.940 \end{aligned}$	$\begin{aligned} & 87.204 \\ & 89.750 \\ & 92.371 \end{aligned}$	$\begin{aligned} & 182.42 \\ & 187.75 \\ & 193.23 \end{aligned}$	$\begin{aligned} & 372.86 \\ & 383.75 \\ & 394.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 753.74 \\ & 775.75 \\ & 798.40 \end{aligned}$	1515.50 1559.75 1605.30
9	$\begin{aligned} & 4.248 \\ & 4.500 \\ & 4.767 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.285 \\ & 17.250 \\ & 18.272 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.537 \\ & 42.750 \\ & 43.998 \end{aligned}$	$\begin{aligned} & 91.090 \\ & 93.750 \\ & 96.488 \\ & \hline \end{aligned}$	$\begin{aligned} & 190.20 \\ & 195.75 \\ & 201.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 388.41 \\ & 399.75 \\ & 411.42 \\ & \hline \end{aligned}$	$\begin{aligned} & 784.83 \\ & 807.75 \\ & 831.34 \\ & \hline \end{aligned}$	1577.68 1623.75 1671.16
10	$\begin{aligned} & 4.720 \\ & 5.000 \\ & 5.296 \end{aligned}$	$\begin{aligned} & 17.229 \\ & 18.250 \\ & 19.331 \\ & \hline \end{aligned}$	$\begin{aligned} & 43.480 \\ & 44.750 \\ & 46.057 \end{aligned}$	$\begin{array}{r} 94.977 \\ 97.750 \\ 100.604 \\ \hline \end{array}$	$\begin{aligned} & 197.97 \\ & 203.75 \\ & 209.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 403.95 \\ & 415.75 \\ & 427.89 \\ & \hline \end{aligned}$	$\begin{aligned} & 815.92 \\ & 839.75 \\ & 864.27 \end{aligned}$	1639.87 1687.75 1737.03
11	$\begin{aligned} & 5.192 \\ & 5.500 \\ & 5.826 \end{aligned}$	$\begin{aligned} & \hline 18.173 \\ & 19.250 \\ & 19.812 \end{aligned}$	$\begin{aligned} & 45.424 \\ & 46.750 \\ & 48.115 \end{aligned}$	98.863 101.750 104.721	$\begin{aligned} & \hline 205.74 \\ & 211.75 \\ & 217.93 \end{aligned}$	$\begin{aligned} & 419.50 \\ & 431.75 \\ & 444.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 847.02 \\ & 871.75 \\ & 897.21 \end{aligned}$	$\begin{aligned} & 1702.05 \\ & 1751.75 \\ & 1802.90 \end{aligned}$
12	$\begin{aligned} & 5.664 \\ & 6.000 \\ & 6.356 \end{aligned}$	$\begin{aligned} & 19.675 \\ & 20.250 \\ & 20.841 \end{aligned}$	$\begin{aligned} & 47.367 \\ & 48.750 \\ & 50.174 \end{aligned}$	$\begin{aligned} & 102.750 \\ & 105.750 \\ & 108.838 \\ & \hline \end{aligned}$	$\begin{aligned} & 213.52 \\ & 219.75 \\ & 226.17 \end{aligned}$	$\begin{aligned} & 435.05 \\ & 447.75 \\ & 460.82 \\ & \hline \end{aligned}$	$\begin{aligned} & 878.11 \\ & 903.75 \\ & 930.14 \end{aligned}$	1764.23 1815.75 1868.77
13	$\begin{aligned} & 6.136 \\ & 6.500 \\ & 6.885 \end{aligned}$	$\begin{aligned} & 20.647 \\ & 21.250 \\ & 21.871 \end{aligned}$	$\begin{aligned} & 49.310 \\ & 50.750 \\ & 52.232 \\ & \hline \end{aligned}$	$\begin{aligned} & 106.636 \\ & 109.750 \\ & 112.955 \\ & \hline \end{aligned}$	$\begin{aligned} & 221.29 \\ & 227.75 \\ & 234.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 450.59 \\ & 463.75 \\ & 477.29 \\ & \hline \end{aligned}$	$\begin{aligned} & 909.20 \\ & 935.75 \\ & 963.07 \\ & \hline \end{aligned}$	1826.42 1879.75 1934.64
14	$\begin{aligned} & 6.608 \\ & 7.000 \\ & 7.415 \end{aligned}$	$\begin{aligned} & 21.619 \\ & 22.250 \\ & 22.900 \end{aligned}$	$\begin{aligned} & 51.253 \\ & 52.750 \\ & 54.290 \end{aligned}$	$\begin{aligned} & 110.523 \\ & 113.750 \\ & 117.072 \\ & \hline \end{aligned}$	$\begin{aligned} & 229.06 \\ & 235.75 \\ & 242.63 \end{aligned}$	$\begin{aligned} & 466.14 \\ & 479.75 \\ & 493.76 \\ & \hline \end{aligned}$	$\begin{aligned} & 940.29 \\ & 967.75 \\ & 996.01 \end{aligned}$	$\begin{aligned} & 1888.60 \\ & 1943.75 \\ & 2000.51 \\ & \hline \end{aligned}$
15	$\begin{aligned} & 7.080 \\ & 7.500 \\ & 7.944 \end{aligned}$	$\begin{aligned} & 22.590 \\ & 23.250 \\ & 23.929 \end{aligned}$	$\begin{aligned} & 53.197 \\ & 54.750 \\ & 56.349 \\ & \hline \end{aligned}$	$\begin{aligned} & 114.409 \\ & 117.750 \\ & 121.188 \end{aligned}$	$\begin{aligned} & 236.83 \\ & 243.75 \\ & 250.87 \\ & \hline \end{aligned}$	481.68 495.75 510.23	$\begin{array}{r} 971.39 \\ 999.75 \\ 1028.94 \\ \hline \end{array}$	1950.79 2007.75 2066.38
$\begin{aligned} & \text { STEP } \\ & \text { SIZE } \end{aligned}$. 5	1	2	4	8	16	32	64

The decoder output current values which comply with the Bell D3 compandor tracking requirements are presented in Table 9. A similar table can be generated for the CCITT A-law compandor tracking specification. The corresponding encode output values can be derived from the decode output values by adding a half a step to all entries in a given decode table. The specified limit values include the combined effects of chord end point deviations, step nonlinearity, encode output errors, full scale current deviation from ideal, full scale symmetry error, zero scale current error, full scale drift, and output impedance change over the specified voltage compliance and temperature ranges. The adjacent step current levels in Table

9 for any particular Companding DAC will not overlap, as might be implied from the presented minimum and maximum values, because the device is guaranteed to be monotonic.

If the decode output limits for the μ-law Companding DAC are specified to be $\pm 1 / 2$ step from the ideal values, Table 9 can be replaced by a similar table. The most important difference between the two tables would be found in the limit values corresponding to the lower step current values in chords 1 through 7. The approximate representations of $\pm 1 / 2$ step, ± 1 step limits and the corresponding Bell D3 compandor tracking limits in Table 9 are illustrated in Figure 13.

Fig. 13. Output Current Limit Diagrams for D3, $\pm 1 / 2$ Step, and ± 1 Step Tolerance Specifications.

Parametric Analysis and Recommendations

A detailed specification for a digital-to-analog converter should include information about important DAC parameters such as resolution, monotonicity, dynamic range, settling time, nonlinearity, full scale and zero scale current errors, gain error, output voltage compliance, input, output and reference signal levels, operating temperature range, power supply range and power dissipation.
The resolution of a DAC is determined by the maximum number of digital input combinations which can be used to generate analog output signals. The resolution for Companding DACs with sign-plus-7 bit digital data input signals is ± 128 steps. A converter is monotonic if its analog output always increases with an increase in the digital value of the input data code. Monotonicity for the Am6070/71/72/73 devices, is guaranteed over the full operating temperature range and for both groups of 128 steps. Two parameters which are used to describe nonlinear errors in a DAC's transfer function are the DAC's nonlinearity and the differential nonlinearity error. The nonlinearity of a Companding DAC is defined as the maximum deviation of the actual output values from an ideal piece-wise linear characteristic calculated from measurements of the actual full scale and zero scale current values. These two current measurements can be used to compute the corresponding theoretical chord endpoint values, and nonlinearity is measured as the difference between this calculated transfer characteristic and the actual current values at the output of the DAC. The differential nonlinearity of the device is a measure of how much any single step current value varies with respect to its theoretical value, (calculated from the actual full scale output current). Differential nonlinearity of $\pm 1 / 2$ step will ensure monotonic behavior. These errors and all other transfer function related errors are specified for the Am6070 Companding DAC Family by the limit current values in the corresponding Absolute Decoder Output Current Level Table.
The DAC's current outputs have a very high impedance, and the output current will not change its value significantly with changes in the applied voltage at the DAC's outputs. The output voltage compliance range is defined as the maximum range of voltages, at the DAC's output, that can be sustained while meeting the output current specifications. The absolute
maximum output voltage swing, $\left(I_{\text {REF }}=528 \mu \mathrm{~A}\right)$, is specified between V - plus 10 V and V - plus 36 V , where V - is the Companding DAC's negative power supply. The maximum range for the reference inputs $V_{R(-)}$ and $V_{R(+)}$ is specified to be between the V - and $V+$ power supply values. The maximum power supply range, $\mathrm{V}+$ to $\mathrm{V}-$, is specified at 36 V , and maximum power dissipation for temperatures less than $100^{\circ} \mathrm{C}$ is rated at 500 mW .

The settling time for a DAC is defined as the elapsed time, after an input code transition, required for the DAC's output to reach a final value within specified limits. These limits are generally $\pm 1 / 2$ of the corresponding step current value. The settling time is usually specified for the input code transition from zero scale to full scale value, and for the Companding DAC Am6070 family the typical value is 300 ns . However, this is not the worst case transition. Because of the different step sizes, the output current settling error band changes as the chord current changes, becoming smaller for lower chords. Settling times in chord 7 are measured when the output settles within $\pm 32 \mu \mathrm{~A}$ of its final value, while settling times in chord 0 are measured when the output settles to within $\pm .25 \mu \mathrm{~A}$ of it's final value. The worst case transition is, therefore, the transition from full scale current down to zero scale current value, and requires a settling time of $4 \mu \mathrm{~s}$ for μ-law DACs and $2.5 \mu \mathrm{~s}$ for A-law DACs.
The currents of each of the four Companding DAC's analog outputs can be measured using the circuit shown in Figure 14. This circuit contains 4 resistors, R1, R2, R3, R4, and two operational amplifiers, A1 and A2. Resistor tolerances of 0.1% give 0.1% output measurement error (approximately $2 \mu \mathrm{~A}$ at full scale). The input offset current of the operational amplifier also increases the output measurement error. This error is most significant near zero scale. The Am101A and Am308 devices, for example, may be used for A1 and A2, since their maximum offset currents which would add directly to the measurement error, are only 10 nA and 1 nA , respectively. The input offiset voltage of the amplifiers, with output resistor values of $2.5 \mathrm{k} \Omega$, also contributes to the output measurement error by a factor of 400 nA for every mV of offset voltage. Therefore, to minimize this error, the offset voltages of A1 and A2 should be nulled.

Fig. 14. Companding DAC Output Current DC Test Circuit.

The recommended operating range for the reference current $\mathrm{I}_{\mathrm{REF}}$ is 0.1 mA to 1.0 mA . The full scale output current, I_{FS}, is a linear function of the reference current, and may be approximated using the equation $I_{F S}=3.9 \circ I_{\text {REF }}$. This tight relationship alleviates the requirement for trimming the $I_{\text {REF }}$ current if the $R_{\text {REF }}$ resistors' values are within $\pm 1 \%$ of the calculated value. Lower values of $I_{\text {REF }}$ will reduce the negative power supply current, and will increase the reference amplifier negative common mode input voltage range. However, the device accuracy specifications are not guaranteed at reference currents below 0.5 mA .
The ideal value for the reference current, ($\mathrm{V}_{\mathrm{REF}} / \mathrm{R}_{\mathrm{REF}}$), is $528 \mu \mathrm{~A}$ for μ-law and $512 \mu \mathrm{~A}$ for A-law Companding DACs. The corresponding ideal full scale decode current values are $2007.75 \mu \mathrm{~A}$ and $2016 \mu \mathrm{~A}$, respectively. A percentage change from the ideal $\mathrm{I}_{\text {REF }}$ value produced by changes in the $\mathrm{V}_{\text {REF }}$ or $R_{\text {REF }}$ values produces the same percentage change in the decode and encode output current values. The positive voltage supply, $\mathrm{V}+$, may be used, with certain precautions, for the positive reference voltage. In this case, the reference resistor $\mathrm{R}_{\text {REF }(+)}$ should be split into two resistors and their junction bypassed to ground with a capacitor of about $0.01 \mu \mathrm{~F}$. The total resistor value should provide the required reference current. The $\mathrm{R}_{\mathrm{REF}(-)}$ resistor value should approximately equal the $R_{R E F(+)}$ value in order to compensate for errors caused by the reference amplifier's input bias current.
An alternative to the positive reference voltage biasing is the application of a negative voltage to the $\mathrm{V}_{\mathrm{R}(-)}$ terminal through the resistor $R_{\text {REF(}-1}$ with the $R_{R E F(+)}$ resistor tied to ground. The advantage of this arrangement is the presence of very high impedance at the $\mathrm{V}_{\mathrm{R}(-)}$ terminal while the reference current flows from ground through $\mathrm{R}_{\mathrm{REF}(+)}$ into the $\mathrm{V}_{\mathrm{R}(+)}$ terminal.
The Companding DAC can be used as a multiplying DAC by varying the reference current. It is important that the reference current have a DC component that guarantees an uninterrupted flow of current INTO the $\mathrm{V}_{\mathrm{R}(+)}$ terminal. The input reference amplifier has sufficient bandwidth and slew rate, ($0.12 \mathrm{~mA} / \mu \mathrm{s}$ minimum), to handle small signal inputs up to 5% of reference current at frequencies up to 500 KHz , and large signal inputs of up to 50% of reference current at frequencies up to 80 kHz .

The Companding DAC has a wide output voltage compliance suitable for driving a variety of loads. Using the ideal recommended value for $\mathrm{I}_{\mathrm{REF}}$ and $\mathrm{V}-=-15 \mathrm{~V}$, the positive voltage compliance limit is +18 V and the negative voltage compliance limit is -5.0 V . For other values of $\mathrm{I}_{\text {REF }}$ and V -, the negative voltage compliance limit, $\mathrm{V}_{\mathrm{OC}(-)}$, may be calculated as follows:
$\mathrm{V}_{\mathrm{OC}(-)}=(\mathrm{V}-)+2\left(\mathrm{I}_{\mathrm{REF}} \cdot 1.55 \mathrm{k} \Omega\right)+8.4 \mathrm{~V}$,
where $1.55 \mathrm{k} \Omega$ and 8.4 V are equivalent worst case values for the Companding DAC.
The V_{Lc} input controls the input logic threshold voltage, allowing the device to interface with various logic families. This input should be placed at a potential which is 1.4 V below the desired logic input switching threshold. Two external discrete circuits which provide this function for non-TTL driven inputs are shown in Figure 15. For TTL-level logic inputs, the V_{LC} input should be grounded. If negative voltages are applied at the digital logic inputs, they must have a value which is more positive than -5 V .

Notes: 1. Set the voltage " A " to the desired logic input switching threshold.
2. Allowable range of logic threshold is typically -5 V to +13.5 V when operating the companding DAC on \pm 15 V supplies.

LIC-032
Fig. 15. Interfacing Circuits for ECL, CMOS, HTL and NMOS Logic Inputs.

With the V - voltage between -15 V and -11 V , the $\mathrm{V}_{\mathrm{OC}(-)}$ value, the input reference common mode voltage range, and the logic input negative voltage range are reduced by an amount equivalent to the difference between -15 V and the V - value chosen. With $\mathrm{V}+$ between +5 V and +15 V , the reference amplifier common mode positive voltage range and the V_{LC} input values are reduced by an amount equivalent to the difference between +15 V and the $\mathrm{V}+$ value chosen.

TYPICAL CIRCUIT APPLICATIONS

Basic Circuit Connections

The Companding DAC belongs to the class of multiplying D to A converters with true current outputs. The input reference current can be generated by a unipolar constant reference voltage source or by a bipolar AC reference voltage. The applied bipolar reference source usually modulates the reference current, $I_{\text {REF }}$, supplied from the constant reference voltage as shown in Figure 16. Figure 16a shows a high input impedance configuration where the bipolar input signal $\mathrm{V}_{I N}$ modulates the voltage level at the $\mathrm{V}_{\mathrm{R}(+)}$ input by forcing the voltage across $R_{\text {REF }}$ to be $V_{\text {REF }}-V_{I N}$, which in turn modifies $\mathrm{I}_{\mathrm{REF}}$. Figure 16 b shows low input impedance connections, where $I_{\text {REF }}$ equals the sum of the $D C$ reference current from $V_{\text {REF }}$ and the $A C$ input current from $V_{I N}$. For both low impedance and high impedance connections, the minimum reference current value at the reference input, $\mathrm{V}_{\mathrm{R}(+)}$ should be at least 0.1 mA and the maximum value should not exceed 1.0 mA .

The wide output voltage compliance range, $(-5 \mathrm{~V}$ to $+18 \mathrm{~V}$ with $\mathrm{I}_{\mathrm{REF}}=528 \mu \mathrm{~A}$ and $\mathrm{V}-=-15 \mathrm{~V}$), allows a variety of loads to be driven. Two typical connections are shown in Figure 17. Voltage output relationships for single ended and differential resistive output connections are described in the output voltage table of Figure 17a. The reference current in this resistive load example is set to be $528 \mu \mathrm{~A}$ (μ-law Companding DAC). The resulting negative voltage generated by the cur-

Fig. 16. Companding DAC's Multiplying Connections.
rents at the outputs A, B, and C , does not exceed the minimum value of -5 V , which corresponds to the lower limit of the output voltage compliance range. In the example with balanced load connections, the sum of the common mode voltage, V_{CM}, and the differential voltage across the load should also be within the -5 V and +18 V output voltage compliance limit.

$\begin{gathered} \text { INPUT CODE } \\ \left(E / \bar{D}, S B, B_{1}, \ldots, B_{7}\right) \end{gathered}$	OUTPUT VOLTAGE (V)			
	" A "	"B"	"C'	DIFF
101111111	0			
101101111	+5.02	N/A	N/A	N/A
100000000	+10.00			
011111111		-5.00	+5.00	-10.00
011101111		+0.02	+5.00	-4.98
010000000		+5.00	+5.00	0
000000000	N/A	+5.00	$+5.00$	0
001101111		+5.00	+0.02	+4.98
001111111		+5.00	-5.00	+10.00

a. Resistive Output Connections.

b. Balanced Load Connections.

Fig. 17. Companding DAC's Output Connections.

Operational amplifiers and/or comparators can be driven by Companding DACs. The circuits shown in Figure 18 demonstrate various voltage ranges which can be achieved at the outputs of operational amplifiers. The circuit in Figure 18a provides $O V$ at the op-amp output whenever the $E / \overline{\bar{D}}$ input is set to logic 1. When the circuit is in the decode mode, $E / \bar{D}=0$ the output voltage polarity is determined by the sign bit input level. With the sign bit set low, the $\mathrm{I}_{\mathrm{OD}(-)}$ output is active and the corresponding full scale output current, $\mathrm{I}_{\mathrm{FS}} \approx$ 2 mA , will generate a maximum negative voltage of -5 V at the op-amp's positive input. The chosen resistor values and their connections provide the op-amp with a gain of 2 and a maximum negative output voltage of -10 V . With the sign bit set high the $\mathrm{I}_{\mathrm{OD}(+)}$ output is active and the op-amp's negative input will be held at virtual ground. With a full scale current of 2 mA flowing into the $\mathrm{l}_{\mathrm{OD}(+)}$ pin, the op-amp will act as a transconductance amplifier supplying 2 mA to the $\mathrm{l}_{\mathrm{OD}(+)}$ pin via the $5 \mathrm{k} \Omega$ feedback resistor. This current will generate a maximum of +10 V at the output, which will make the total output voltage swing between -10 V and +10 V . The circuit in Figure 18b similarly provides a voltage swing between -5 V and +5 V across the output capacitor. The output dynamic range expander circuit connections, shown in Figure 19, extend the μ-law Companding DAC's dynamic range from 72 dB to 78 dB . The A-law Companding DAC's dynamic range can be similarly increased from 62 dB to 66 dB . In this circuit, the
outputs $\mathrm{l}_{\mathrm{OD}(+)}$ and $\mathrm{I}_{\mathrm{OE}(+)}$ are tied together, and $\mathrm{l}_{\mathrm{OD}(-)}$ and $\mathrm{l}_{\mathrm{OE}(-)}$ are tied together; the $E / \overline{\mathrm{D}}$ input is used as a fifth step which represents the least significant digital data input, and provides the desired interleaving between the encode and decode current levels. Each chord now contains 32 uniform steps, with the smallest step size value $0.25 \mu \mathrm{~A}$ and the largest value $32 \mu \mathrm{~A}$. The resulting full scale current is equal to the corresponding full scale encode current value, and the ratio between the full scale current value and the smallest current step value, $I_{\text {FS }} / 0.25$, exceeds 8000 for the μ-law Companding DAC. The smallest and the largest current step sizes will generate 0.625 mV and 80 mV changes, respectively, at the op-amp output.

Digital inputs $S B$ and E / \bar{D} can be used together with data inputs B 1 through B 7 to provide an output multiplexing capability when connected as shown in Figure 20. The logarithmic digital attenuator circuit combines the companding DAC's multiplying capabilities with the multiplexing function which is accomplished by using the $S B$ and E / \bar{D} inputs as channel select inputs. The analog signal, $\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}$, applied at the $\mathrm{V}_{\mathrm{R}(-)}$ reference input can be attenuated by approximately 0.3 dB per step and 6 dB per chord, throughout most of the output dynamic range. The SB and E / \bar{D} inputs provide signal switching combinations which will multiplex the attenuated analog signal into four different analog channels.

a. $\pm 10 \mathrm{~V}$ Range Encode/Decode Connections.

b. Compliance Extension Using AC Coupled Output.

Fig. 18. Some Output Voltage Expansion Schemes.

IDEAL VALUES: $\quad I_{\text {REF }}=V_{\text {REF }} / \mathbf{R}_{\text {REF }+}=528 \mu \mathrm{~A}$

Fig. 19. Output Dynamic Range Expander.

LIC-040
Fig. 20. Logarithmic Digital Attenuator.

For applications where the output dynamic range is to be smaller than 78 dB , the circuit connection shown in Figure 21 can be used. With given $V_{\text {REF }}$ and $V_{I N}$ values, there are three resistor values, $\mathrm{R}_{\mathrm{REF}}, \mathrm{R} 1$, and R2, which need to be determined. The starting assumption is that a maximum gain of unity from $V_{\text {IN }}$ to $V_{\text {OUT }}$, (0 dB), is achieved with all digital inputs set to logic 1 . The digital inputs all set to logic 0 will determine the minimum gain of the circuit and consequently the desired output dynamic range. Considering the currents flowing through resistors R1, R2, and R REF, and the DAC's output with digital inputs at all 1 's, the following relationships can be established:

$$
\begin{align*}
& I_{R 1}=V_{O U T}^{\prime} / R 1=I_{\text {OUT }}+I_{R 2} ; I_{\text {OUT }} \approx 3.8 I_{R E F} ; I_{R 2}=V_{I N} / R 2 ; \\
& I_{R E F}=\left(V_{R E F}-V_{I N}\right) / R_{\text {REF }} \tag{1}
\end{align*}
$$

The relationship between output voltages V^{\prime} out and $\mathrm{V}_{\text {Out }}$ and input voltages, $\mathrm{V}_{\mathrm{REF}}$ and V_{IN}, can be expressed as follows:

$$
\begin{equation*}
V_{\text {OUT }}^{\prime}=3.8\left(R 1 / R_{\text {REF }}\right) V_{\text {REF }}-\left[3.8\left(R 1 / R_{\text {REF }}\right)+R 1 / R 2\right] \cdot V_{\text {IN }} \tag{2}
\end{equation*}
$$

In order to have unity gain, $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}=1$, the coefficient for $\mathrm{V}_{\text {IN }}$ in the equations (2) must also be 1 :

$$
\begin{equation*}
-\left[3.8\left(\mathrm{R} 1 / \mathrm{R}_{\mathrm{REF}}\right)+\mathrm{R} 1 / \mathrm{R} 2\right]=1 \tag{3}
\end{equation*}
$$

Two additional conditions for calculating $\mathrm{R}_{\text {REF }}, \mathrm{R} 1$ and R2 values are the minimum gain value $G_{\min }$, and the requirements for the minimum and maximum $I_{\text {REF }}$ values, 0.1 mA and 1 mA , respectively:

$$
\begin{align*}
& \mathrm{G}_{\min , \mathrm{dB}}=20 \log \left[\mathrm{~V}_{\mathrm{OUT}} / V_{I N}\right]=-20 \log (R 2 / R 1), \tag{4}\\
& \text { and } \quad 0.1 \mathrm{~mA} \tag{5}
\end{align*}
$$

The op-amp output in Figure 21 has a DC component that will be attenuated as well as the AC input signal. The output coupling capacitor is used to remove the DC level. However, during switching, the change in DC level will cause a step transient or "click" at the output.

Fig. 21. AC Coupled Digital Attenuator, Adjustable Range.

Operating Modes

The Companding DAC has two basic operating modes, decode and encode, which are controlled by the Encode/ Decode, E / \bar{D}, input signal. A logic 0 applied to the E / \bar{D} input places the Companding DAC in the decode mode, and current will flow into the $\mathrm{I}_{\mathrm{OD}(+)}$ or $\mathrm{I}_{\mathrm{OD}(-)}$ output, depending on the state of the sign bit, $S B$, input. A logic 1 at the E / \bar{D} input places the Companding DAC in the encode mode, which differs from the decode mode by a half step offset current in each chord, and current flows into one of the I_{OE} outputs.
The basic decoder connection for the Companding DAC is shown in Figure 22. The $E / \overline{\mathrm{D}}$ input is grounded, which keeps the Companding DAC in the decode mode. The eight digital data inputs generate an output decode current which is converted by an operational amplifier to a bipolar voltage, E_{O}. Several discrete E_{0} values are tabulated in Figure 22 for both μ-law and A-law versions of Companding DACs. The values indicated in parenthesis correspond to the A-law Companding DAC.
The Companding DAC can be used together with a Successive Approximation Register, SAR, a comparator, and additional SSI logic elements to perform the encoding or compression of an analog signal. The circuit, Figure 23, represents an Analog-to-Digital data conversion system. The first
task of this system is to determine the polarity of the incoming analog signal and to generate a corresponding SB input. When the proper START, $\overline{\mathrm{S}}$, and CONVERSION COMPLETE, $\overline{\mathrm{CC}}$, signal levels are set, the first clock pulse sets the MSB output of the SAR, Am2502, to a logic 0 and sets all other parallel digital outputs to logic 1 levels. At the same time, the flip-flop is triggered, and its output provides the E / \bar{D} input with a logic 0 level. No current flows into the l_{OE} outputs. This disconnects the converter from the comparator inputs, and the incoming analog signal can be compared with ground which is applied to the opposite comparator input. The resulting comparator output is fed to the Am2502 serial data input, D, through an exclusive-or gate. At the same time, the other input to the exclusive-or gate is held at a logic 0 level by the logic shown in Figure 23. This exclusive-or gate inverts the comparator's outputs whenever a negative signal polarity is detected. This maintains the proper output current coding, i.e., all ones for full scale and all zeros for zero scale.

The second clock pulse changes the E / \bar{D} input back to a logic 1 level because the $\overline{C C}$ signal changes. It also clocks the D input signal of the Am2502 to its MSB output, and transfers it to the SB input of the Companding DAC. Depending upon the SB input level, the Companding DAC's output current will flow into the $\mathrm{I}_{\mathrm{OE}(+)}$ or $\mathrm{I}_{\mathrm{OE}(-)}$ output.

Fig. 22. Detailed Companding DAC Decoder Connection.

Fig. 23. Detailed Companding DAC Encode Connection.

Nine clock pulses are required to obtain a digital, noncomplemented, binary representation of the incoming analog signal at the eight Am2502 digital outputs. The resulting analog output signal is compared with the analog input signal after each of the nine successive clock pulses. The analog input signal should not be allowed to change its value during the data conversion time. In high speed systems, fast changes of the input analog signals are usually prevented by using sample and hold circuitry.
When the Companding DAC is used in a feedback loop with a SAR, the data input transitions in the successive approximation search technique exhibit a maximum change of two adjacent bits, and the starting pattern is 01111111 . The next successive pattern after the first iteration, will be either 00111111 or 10111111. The worst case settling times are experienced during step bit changes in chord 0 , where the output current must settle to $\pm 0.25 \mu \mathrm{~A}$. The worst case settling time is about 600 ns for code changes in the upper end of chord zero and 1800 ns for code changes near zero. The system clock must take into account the settling time of the DAC, the switching speed of the comparator and the time delays in the SAR. In general, the DAC is the slowest component, (comparator Am311's delay is about 200ns and SAR delays are about 46 ns), and will determine the clock rate. For optimum accuracy the clock rate should accommodate the 1800 ns settling time near zero scale current. However, faster clock rates ($1100 \mathrm{~ns}-1800 \mathrm{~ns}$) can be used with some degradation in accuracy for signals near zero.

Microprocessor Based Data Acquisition
 Systems Applications

High output resolution with guaranteed monotonicity over its entire dynamic range and digitally controllable inputs makes the Companding DAC very attractive for application in data acquisition and control systems. The encoding capability, in
particular, provides an acquisition system with considerable flexibility, limited only by the rate of change of the acquired analog input signals.

A typical data acquisition system using the Companding DAC is shown in Figure 24. The A to D data conversion procedure is controlled by the 9080A Microprocessor set, (Am9080A 8 -bit Microprocessor, Am8224 Clock Generator and Driver, and Am8238 System Controller and Bus Driver). The START one-shot circuit, Am26S02 will be activated by the START A / D command, $(\overline{C S}=0, \overline{I O W}=0)$, which will initiate the A to D procedure by setting the \bar{S} input of the SAR circuit, Am2502, to a logic 0 . The width of the one-shot pulse must be greater than the period of the DATA CLOCK signal to initialize the SAR logic. The duration of DATA CLOCK period must accommodate the worst settling time of the DAC and comparator Am311, to ensure valid data at the SAR input. The one-shot circuit may be eliminated, provided that the expected worst case settling time does not exceed $1 \mu \mathrm{~s}$ and the SYSTEM CLOCK, $\phi 1$, does not exceed 2 MHz . The first data clock after $\overline{\mathrm{S}}$ goes low sets the $\overline{\mathrm{CC}}$ output high, which in turn switches the input sample and hold circuit, (LF198), into the hold mode and puts the microprocessor into a wait state. After eight subsequent DATA CLOCK periods, ($8 \times 2 \mu \mathrm{~s}$), the conversion complete signal, $\overline{\mathrm{CC}}$, changes from logic 1 to logic 0 , which puts the $\mathrm{S} \& \mathrm{H}$ circuit into the sample mode and allows the microprocessor to resume its functions by removing the logic 0 from the RDYIN input of the Am8224 chip. With a logic 1 at the SAR's \bar{S} input, the DATA CLOCK cannot change the SAR's digital data outputs after completion of conversion. Thus, these outputs will be stable and available for subsequent interrogation. The microcomputer will issue a READ A / D command, $(\overline{C S}=0, \overline{I O R}=0)$, which enables the threestate data buffer, Am25LS241, and transfers the data outputs of the SAR to the system data bus and into the micro-

Fig. 24. Microprocessor Controlled Data Acquisition System.
processor's accumulator. A subsequent memory write command, then stores this data in the desired memory location. For the next A to D data conversion, the microprocessor must generate another START A/D signal. An A to D data acquisition can be achieved using only three 9080A instructions.
OUT (to ADC device) - generation of START A/D command IN (from ADC device) - generation of READ A/D command STA (to MEMORY) -store digital representation of the acquired analog signal into memory
If the required nine DATA CLOCK periods present a prohibitively long wait state for the processor, the A to D procedure can be more efficiently handled using a suitable interrupt scheme. The logic shown in Figure 25 illustrates the A to D and D to A conversion using three interrupts. The external interrupt signal, VALID RECEIVE DATA, which initializes the A to D conversion, is received and processed by the Am9519 Universal Interrupt Controller. It's output, GINT, is recognized by the 9080A Microprocessor logic and generates the INTA signal at the output of the Am8238. The VALID RECEIVE DATA signal will cause the receive $\mathrm{S} \& \mathrm{H}$ circuit to switch into the hold mode after $5 \mu \mathrm{~s}$, via Am26S02 and associated flipflop circuitry. This delay is needed to satisfy the sample time requirements for the (Am)LF398 S \& H circuit, with $\mathrm{C}_{\mathrm{h}}=$ 1000 pF . This one-shot circuit may be eliminated if the analog input data is maintained unchanged for about $25 \mu \mathrm{~s}$ after recognition of the VALID RECEIVE DATA signal. Upon receipt of an INTA signal, the Am9519 provides the address of an appropriate subroutine to the CPU. This subroutine will initiate the A to D conversion by generating the START A/D command. After A to D conversion is complete, the DATA READY signal, identical to the $\overline{\mathrm{CC}}$ signal, generates an interrupt for the 9080A microprocessor to read and store the results of the A to D data conversion via an octal, non-inverting, three-state driver, the Am25LS241A. The $\overline{\mathrm{CC}}$ signal at the same time will
switch the receiving S \& H circuitry into the sample mode. Two sequences of 9080A instructions which perform the acquisition operations described are detailed in Table 10. The corresponding functional flow charts are shown in general form in Figure 26.

The addition of SSI logic shown in Figure 25 generates signals $\overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CS} 3}$ which transmit an analog signal generated by the DAC from digital information stored in the system memory. An external interrupt request for transmission of the analog signal, TRANSMISSION REQUEST, will initiate the D to A conversion subroutine. A corresponding word in memory will be fetched into the 9080A accumulator and then latched into the Am25LS374, Octal D type register, via signals CS2 and $\overline{\mathrm{IOWW}}$. At the same time, the non-inverting three-state data bus transceivers, Am8T28, will be turned to the direction which corresponds to the D to A conversion procedure. The latch captures valid 9080A accumulator data, which will be used as the digital inputs throughout the D to A conversion procedure. The next instruction in sequence will be a command to start sampling the Companding DAC's decode outputs, $(\overline{\mathrm{CS} 3}=0, \overline{\mathrm{IOW}}=0)$, which will be already settled. Assuming that one 9080A I/O instruction takes about $5 \mu \mathrm{~s}$ at a system clock frequency of 2 MHz , the next command in the instruction sequence may generate a signal VALID TRANSMISSION DATA, ($C S 3=0, I O R=0$), which will put the transmission S \& H circuitry into the hold mode and return the data transceivers, Am8T28, to the direction which corresponds to the A to D conversion procedure. Input data for the Companding DAC is supplied by the SAR circuitry. A sequence of 9080A instructions which could handle the D to A conversion procedure and analog signal transmission through the programming I/O interrupt scheme shown, is presented in Table 10. The corresponding functional flow chart is shown in Figure 26.

Fig. 25. Microprocessor Controlled Single Channel Transceiver Converter System.

Fig. 26. Functional Interrupt Subroutine Flow Charts for Data Transceiving Converter.

TABLE 10
INTERRUPT SUBROUTINES FOR SINGLE CHANNEL DATA TRANSCEIVING CONVERTER SYSTEM IMPLEMENTED WITH 9080A INSTRUCTIONS

| VALID RECEIVE DATA Interrupt Subroutine: | |
| :--- | :--- | :--- |
| OUT (to ADC) | - Generate START AVD command. |
| EI | - Enable other CPU interrupts. |
| RET | - Return to main program. |
| DATA READY Interrupt Subroutine: | |
| STA (to TEMP) | - Save accumulator content. |
| IN (from ADC) | - Read digital results from SAR outputs into accumulator. |
| STA (to Memory) | - Store accumulator's content into memory. |
| LDA (from TEMP) | - Restore accumulator's content before subroutine. |
| EI | - Enable other CPU interrupts. |
| RET | - Return to main program. |
| TRANSMISSION REQUEST Interrupt Subroutine: | |
| STA (to TEMP) | - Save Accumulator content. |
| LDA (from DATA) | - Load accumulator with digital data which will be converted to an analog signal. |
| OUT (to LATCH) | - Output data for D to A conversion to the latch circuit and START D/A conversion. |
| OUT (to DAC) | - Generate Transmission SAMPLE command for S \& H circuitry, CS3 $=0$, IOW $=0$. |
| IN (from DAC) | - Generate Transmission HOLD command for S \& H circuitry, and VALID TRANSMISSION DATA signal. |
| LDA (from TEMP) | - Restore accumulator's content before interrupt subroutine. |
| EI | - Enable other CPU interrupts. |
| RET | - Return to main program. |

Motion Control Systems Applications

The high resolution and accuracy of the Companding DAC transfer function for small output signal levels provide a very smooth and precise analog control signal to devices whose outputs are voltage or current dependent. However, when major disturbances are detected in the system, the Companding DAC will produce correspondingly larger control analog signals which cause very fast output response of the controlled analog device. Figure 27 shows the Companding DAC used in a feedback loop to provide a small analog error signal to control the speed and direction of a voltage controlled motor in order to properly position the shaft. The shaft encoder generates an 8-bit digital word which represents the current shaft position of the motor.
There are 256 discrete positions of the shaft which can be identified at the shaft encoder's output. This output will be
sampled and latched using an 8 -bit register, Am25LS273. The sampling rate is determined by dividing the time for one shaft revolution at the motor's highest speed by 256. The maximum rate will be limited by propagation delays through the comparator and ALU chips and by the settling time of the Companding DAC. The output of the shaft position sampling register, data " B ", is digitally compared with the desired shaft position, data " A ". The magnitude of the difference between digital words " A " and " B " is directly porportional to the error of the motor shaft position. The sign of this digital subtraction provides information about the polarity of the analog error signal which drives the motor in the direction necessary to decrease the error. The speed of the motor is proportional to the magnitude of the error $|A-B|$. The sign and magnitude of the error are determined by two comparator chips, (Am9324 Four-Bit Comparator), and two ALU chips, (Am25LS381

Figure 27. Nonlinear, Computer Controlled, Digital-to-Shaft-Position Conversion System.

Four-Bit Arithmetic Logic Unit). The end of the motor shaft correction procedure is indicated to the computer via the comparator's output " $\mathrm{A}=\mathrm{B}$ ".
The eight digital bits of the error magnitude $|A-B|$ are applied to the seven data inputs of the Am6070 and to the E / \bar{D} input. The Am6070 outputs are connected to provide 32 steps per chord, which totals 256 steps or a 78 dB output dynamic range. The smallest and largest step sizes are $0.25 \mu \mathrm{~A}$ and $32 \mu \mathrm{~A}$, respectively. The sign bit value is taken from the " $A>B$ " output of the comparator circuit, and determines the polarity of the op-amp, (Am)LF356, output voltage.
The computer function in Figure 27 is mainly confined to initializing the shaft correction procedure by latching the desired shaft position, data " A ". Clear commands may be issued during the power-up procedure in order to bring the motor shaft to some initial position. The application of the Companding DAC with its nonlinear transfer characteristic and its nonuniform step sizes which are proportional to the magnitude of the error, $|A-B|$, significantly reduces system transient response effects such as over-shoots and ringing while minimizing the time required to reach the new shaft position. The system can be programmed to be either critically damped (minimum response time) or under damped (no overshoot).
Figure 28 shows a Companding DAC in a feedback loop which provides small analog error signals for control of the velocity of a voltage controlled motor. This is a paper cutting control system where paper is unwound from a feed roll and cut to size by a mechanical knife. In this application the Companding DAC is in the velocity feedback path and its output is used to generate a velocity profile command signal. The motor rotation is initiated from a front panel by depressing the START button. A COUNT-UP command from a microprocessor sets the binary counter to its count up mode, which drives the Companding DAC inputs. When some predetermined number of counts has been reached, the counter stops and the Companding DAC is held at a constant output value. The incremental encoder produces pulse counts proportional

Fig. 28. Paper Cutting Control System.
to the distance of paper travel. The desired paper size expressed as a number of incremental encoder pulse counts is stored in a CPU storage register. The outputs of the incremental encoder are constantly accumulated in an internal CPU counter and are compared with the content of the CPU storage register throughout the entire velocity control procedure. When a match is found, the corresponding COUNT DOWN command is issued to the counter, the internal counter is cleared, and a new value is loaded into the internal storage register.
The values which control the velocity of the motor are stored in a register, external to the CPU, and its content is compared with the outputs of a binary up/down counter during the motor's acceleration and deceleration phases. Whenever a match is achieved, an interrupt signal will be generated and the working mode of the external counter changes. The final stop position is approached in a well controlled manner which stops the paper and cuts it with a minimum of overshoot and error.
Figure 29 shows the necessary logic for generation of the velocity profile control signal. The CPU will first load the external storage register, Am25LS273, via the LOAD signal, to the desired count-up value for the external up/down counter, Am25LS193. Upon recognition of the START request, the CPU issues the COUNT-UP command which enables the 8 -bit comparator chip, Am25LS2521. The zero initial digital code at the Companding DAC inputs produces zero voltage at the output, V increase the Companding DAC output current by a corresponding amount, and the $\mathrm{V}_{\text {OUT }}$ increases in accordance with the Companding DAC transfer characteristic. This portion of the velocity profile control signal corresponds to the motor acceleration phase. When the counter outputs match the content of the external storage register, the interrupt signal $\overline{\text { INT1 }}$ is generated, and the UP flip-flop is reset.
This stops the up/down counter and the motor continues to rotate with a constant velocity, V1. Duration of the acceleration phase depends on the value initially stored in the external storage register and the frequency of the conversion clock. Upon recognition of the INT1 signal, the CPU will load a new value into the external storage register, which is used to decelerate the motor from velocity V1 to a lower velocity, V2.
During the constant velocity phase, V1, the encoder pulses accumulate in the CPU counter until the value " m ", stored in the CPU internal storage register, is reached. At this time the CPU will issue a COUNT DOWN command and reload the internal storage register with the value " n ". The sum of these two values, $m+n$, should represent the length of the paper expressed in encoder pulses. This value is " p " pulses shorter than the desired ideal paper length.
The COUNT DOWN command initiates the count-down mode of the external up/down counter, PHASE I, and enables the comparator. When the counter outputs match the value stored in the external storage register, the interrupt signal $\overline{\mathrm{INT} 2}$ is generated and counting stops. The motor continues to rotate with some constant velocity, V2, which is significantly smaller than velocity V 1 . This velocity, V 2 , is a function of the conversion clock frequency and the motor's mechanical parameters such as inertia, weight, etc. The mechanical parameters may cause synchronization difficulties between the second deceleration phase of the voltage waveform at $\mathrm{V}_{\text {OUT }}$ and the actual velocity of the motor. The velocity V2 is much smaller than V1 and allows a smooth, well controlled stop of the motor at the end of the PHASE II of count-down mode, and thus ensures the smallest possible overshoot and error.

LIC-049
Fig. 29. Microprocessor Controlled Generation of Motor Velocity Control Signal.

The INT2 signal automatically clears the external storage register to all zeros and informs the CPU that the deceleration PHASE I is complete. The CPU continues, internally, to accumulate the encoder pulses until their number becomes " n ". At this time the CPU issues a new COUNT DOWN command to initiate PHASE II of the count-down mode, and reloads the internal storage register with a final number " p ". This number, when summed with the previous two numbers " m " and " n ", determines the final length of paper, $m+n+p$, and is accumulated in the internal CPU counter during PHASE II of counter's count-down mode. At the end of this phase, the $\overline{\mathrm{NT} 3}$ signal is generated and counting stops. The number of encoder pulses in the internal counter will be compared with the number " p " stored in the internal storage register. If a satisfactory match is found, the CPU issues a CUT command to the paper cutting station and the paper is cut to the desired size. Finally, the CPU issues the CLEAR command to initialize the INT flip-flops and clear the internal counter. It also reloads both internal and external storage registers with appropriate values, so that a new velocity profile control signal can be generated. Much of the logic shown could be implemented in software, but this would require that much of the microprocessor resources be dedicated to this speed control function.

Audio System Applications

Audio system equipment applications require signal converters which can process bipolar analog audio signals within a $\pm 10 \mathrm{~V}$ range. A DAC, in an audio system, provides digital gain and/or attenuation of input audio signals. This requires a multiplying DAC, i.e., it must accept an audio signal either in single ended or differential form, and process it as a function of the digital control inputs. Ideally, an audio level control device provides an equal change, in dB , of relative signal level
between any two adjacent digital codes or steps throughout its entire output dynamic range. However, differences between steps which exceed 1 dB can be annoying to the human ear. For high quality audio systems, the DAC must have low signal distortion, (on the order 0.05% or less over most of the dynamic range), large working dynamic range, $(80 \mathrm{~dB}$ or more), wide bandwidth, large signal to noise ratio, S / N, (80dB or more), and transient-free output gain-change operation which is independent of digital input states.

The Companding DAC with its multiplying feature and its ability to extend its dynamic range up to 78 dB , satisfies or exceeds most of these requirements. It handles audio input signals up to $\pm 10 \mathrm{~V}$, and its output signal distortion is 0.02% or less over most of the audio signal range. Its nominal level/ step resolution is 0.15 dB , and its S / N ratio is 80 dB or better when referred to a 1 V output. However, its total useful audio dynamic range, with a maximum 1 dB difference between two adjacent steps, is only 59 dB , and its output exhibits DC gain step transient effects, due to the required DC bias current.

The Companding DAC's DC output current potential "click" effects must be suppressed for applications in audio systems where there are large changes in the digital input code. Figure 30 shows the connection for the necessary DC output current compensation. The output dynamic range can be adjusted by varying the value of resistor R2. To suppress the DC step transients, the current I_{2} compensates for all DC changes in current I_{1}. The I_{3} current reflects only the $A C$ changes in current I_{1} and the current through resistor $R 2$ due to changes in the $\mathrm{V}_{\text {IN }}$ signal. This allows the attenuated $\mathrm{V}_{\text {IN }}$ signal to be DC coupled through op-amp A2. The maximum gain for the circuit is assumed to be unity, (0 dB), when all digital inputs are set

Fig. 30. DC Coupled Digital Attenuator, Adjustable Range.
at logic 1. A determination of the resistor values $R_{\text {REF }}, R 1$ and R2, was discussed in the section on the AC coupled digital attenuator. The $R_{\text {REF- }}$ value should be identical to $R_{\text {REF }+}$ value and the R3 and R4 values must be equal, so that the current, I_{2}, will compensate for the DC component of I_{1}.
The 1 dB audio resolution requirement truncates approximately 19 dB from the Companding DAC's total dynamic range of 78 dB . The level ratio becomes greater than 1 dB between the 9th and 8th step of chord $0,(0.25 \mu \mathrm{~A} /$ step $)$. If the 1 dB resolution criterion is applied to a comparable sign-plus-13 bit linear DAC, the corresponding 1 dB requirement also takes off 19 dB , and the breakpoint occurs between the 9th and 8th step of the linear 13-bit DAC transfer characteristic. The subtle difference between the 13 -bit linear DAC and the sign-plus-8 bit Companding DAC lies in the distribution of the dB ratio values within the steps of the 59 dB workable audio dynamic range. For a linearly scaled 13 -bit linear DAC, the level ratios in dB among the steps close to the full scale current are very small. The ratios increase as the step numbers decrease toward zero. On the other hand, the sign-plus-8 bit Companding DAC maintains a near constant 0.15 dB between steps over the entire dynamic range, with the exception of steps in chord 0 .

The 59 dB working dynamic range is not wide enough for high quality audio systems which require an 80 dB audio control range. To satisfy this requirement, two DACs can be cascaded with their digital inputs driven in parallel. The total dynamic range is now increased to 156 dB and the working range, ($1 \mathrm{~dB} /$ step or less), is now approximately 106 dB . A cascading scheme for Companding DACs, which also provides for DC transient-free operation, is shown in Figure 31. The advantage of the cascaded Companding DAC's scheme over a similar cascaded linear DAC's scheme is in the number of control bits required to achieve the 106 dB range and in the $0.3 \mathrm{~dB} /$ step uniform attenuation distribution
over most of the 106 dB range. The audio signal, $\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}$, is shown in Figure 31 as a single input.
All three Companding DACs in Figure 31 have their SB inputs tied to logic 1. The reference currents for all three DACs should be maintained at positive values throughout the attenuation procedure by proper selection of the input resistor, $R_{I N}=V_{I N} / I_{I N}$, where $I_{I N}<I_{\text {REF }}$. In Figure 31, the maximum $I_{I_{N}}$ value is equal to one half of the DC reference current, and the maximum value of $\mathrm{V}_{\text {IN }}$ is only limited by the output voltage swings of operational amplifiers A2 and A3. The DC transient effects in the cascaded DACs are compensated for by using a Companding DAC followed by the A1 op-amp. The DC compensation circuitry is completely isolated and independent of the $A C$ effects of the applied audio signal $V_{I N}$, and the only critical requirement is matching R_{1} and $\mathrm{R}_{\mathrm{REF}(+)}$. The step sizes in all chords should be matched for all three Companding DACs. For audio signals with amplitudes not more negative than -5 V , (Companding DAC's maximum negative output voltage is -5 V), the A 1 op-amp can be eliminated, and the positive inputs of the A2 and A3 op-amps can be driven by the DC compensating DAC directly.

Companding DACs, with their logarithmic transfer function, are natural generators for the attack and decay analog signal waveforms used in electronic organs and musical synthesizers. A waveform's attack, sustain, and decay times, together with additional harmonic content information, determine the sounds of a particular musical instrument. For example, woodwinds have very short attack and decay times. The circuit shown in Figure 32 generates trapezoidal-like waveforms with exponential rise and fall times under the control of an 8 -bit microprocessor, Am9080A. Digital inputs are supplied by two pairs of 4-bit binary counters, Am25LS191, which are set to the Count Down mode. All of the counters are simultaneously loaded by the LOAD command which is decoded from the microprocessor's

LIC-051
Fig. 31. DC Coupled Cascaded Digital Attenuator.

LIC-052
Fig. 32. Microprocessor Controlled Waveform Generator, Attack, Sustain and Decay Signal Waveforms.
address signal combination. Companding DACs 1 and 2 are in the decode mode. The SB inputs are determined by the most significant data bit, DB7, which is stored in the flip-flop during counter loading. The Companding DACs' decode outputs which have the same polarity are tied together and fed into an LF356 operational amplifier. After the settling time required for the Companding DAC's outputs, the currents at the op-amp's inputs should be equal, and its output, $V_{\text {Out }}$, should be OV. A command COUNT \#1 closes the analog switch, AH0014, and enables counters 1A and 1B via their ENABLE inputs. The 500 kHz clock frequency allows sufficient settling time for the Companding DAC's outputs. The initial rise of the op-amp output voltage, $\mathrm{V}_{\text {Out }}$, depends on the number initially stored in the counters, i.e., it depends on the starting point of the Companding DAC transfer characteristic. When Counter \#1 reaches zero, the INT1 signal indicates underflow, further counting stops, and the microprocessor is informed about the end of Counter \#1 operation. After a certain sustain time, which can be preprogrammed, the microprocessor issues the COUNT \#2 command and the $V_{\text {Out }}$ waveform starts its decay portion. The time duration of the Attack and Decay slopes generated by the logic in Figure 32 are equal and is specified by the starting count in Counters \#1 and \#2.
Note that the microprocessor can control the counting functions and the external counter could be replaced with simple, octal data latches. With the increased use of digital techniques and microprocessors for control functions in complex audio systems, microprocessor controlled analog waveforms, similar to those generated by the logic in Figure 32, may become very desirable and attractive tools for the generation of various audio effects. However, it is important to remember that the output from the Companding DAC consists of discrete, non-uniform steps and is not continuous. To obtain a real, continuous signal from the output, some filtering or integration may be required.

Telecommunication System Applications

Digital PCM transmission systems compress analog speech signals into a train of 8 digital bits for each sample. They transmit this information and then decode and expand it back into analog signals. The Companding DAC represents a monolithic solution for most requirements of the PCM encoding and decoding procedures. This device replaces a considerable number of discrete and hybrid components in existing PCM transmission schemes. At the same time, the Companding DAC provides increased signal-to-noise ratio in the system, reduces system signal distortions and stimulates further development and wider usage of digital channel switching techniques.
Currently, most transmission systems in the United States follow the Bell D3 communication channel bank specifications, where each channel bank consists of 24 voice channels and the necessary transmission equipment. The entire signal sampling, encoding and multiplexing procedure in the 24 channel bank system must be performed within $125 \mu \mathrm{~s}$. The PCM channel time slot distribution, within a one 125μ s time frame, is shown in Figure 33. Each slot contains an 8-bit digital representation of a particular signal sampled from a corresponding voice channel. The total number of bits in the D3 channel bank time frame is calculated as follows: (24 channels $\times 8$ bit/channel $)+1$ signalling bit $=193$ bits. The additional single bit is used to identify the beginning of a frame, and data is transmitted at 1.544 MHz (193 bits/samples $x 8000$ samples $/ \mathrm{sec}$). In addition, in every sixth frame the

Fig. 33. PCM Channel Timing Frame Format.
least significant bit in each channel slot is used for communication signalling purposes. Consequently, the signal samples in every sixth frame are represented with only 7 digital bits. The increase in signal distortions in this time frame is slight and is not considered significant for PCM voice transmission performance. When the Companding DAC is used as a simple decoder at the receiving side of a system, the connection shown in Figure 19 can be used to minimize distortion caused by the absence of the least significant bit, $B 7$, during these signalling frames. When the signalling frame is recognized, the Companding DAC output is increased by a half step from its corresponding decode output value by switching the E / \bar{D} input from a logic 0 level to a logic 1. However, the European systems, using A-law devices, have 32 channels per bank where the 2 channels are used for signalling information. Each frame requires $256(32 \times 8)$ bits. The corresponding data transmission rate is 2.048 MHz (256 bits/sample $\times 8000$ sample/sec).
In a two-way PCM communication system, a single Companding DAC can perform the time shared encoder and decoder functions known as the CODEC function. The logic state of the E / \bar{D} input determines the operating mode of the Companding DAC and switches the output current to the appropriate outputs. The Companding DAC digital inputs during the encode operation are generated by the successive approximation procedure. In the decode mode, the eight digital inputs are supplied from an external source, either in serial or parallel. The basic diagram for a typical CODEC is shown in Figure 34.
The logic in Figure 34 provides automatic handling of the E / \bar{D} signal levels during the CODEC's XMT mode of operation. The first task of the system is to initialize the SAR circuit by proper manipulation of the START input for the successive approximation procedure. The XMT COMMAND should be synchronized with the low-to-high transition of the START pulse, and its level must be held at logic 1 for the next 8 CLOCK pulses to keep the three-state XMT buffer, 74126, in the low impedance state. During the A to D conversion period, a serial train of 8 digital bits, which represent the sample at the TRANSMIT ANALOG INPUT in Figure 34, appears on the XMT DATA line. XMT and RECEIVE commands are mutually exclusive.
The CODEC in Figure 34 is set to the receive mode of operation by setting the $\overline{\text { RECEIVE }}$ command signal to a logic

Fig. 34. PCM Encoder/Decoder or Transceiving Converter.

0 level after the START pulse returns to its positive level. A serial data source, DATA STORAGE, supplies a digital train of 8 bits to the serial input D of the SAR circuit via the three-state buffer, RCV, 74126. At the same time, the $\overline{R E C E I V E}$ command signal level keeps the exclusive-or gate output separated from the same SAR's serial D input via another three-state buffer, SEP. The same command also keeps the E / \bar{D} input of the Companding DAC at logic 0 throughout the entire D to A procedure via the MODE flip-flop in the successive approximation logic. In this CODEC's receive mode, the SAR circuit acts as a serial-to-parallel shift register for the incoming data on the RECEIVE DATA line. After the 8 clock pulses, the outputs of the SAR are ready for the D to A conversion. An analog current representation of the RECEIVE DATA train appears at the RECEIVE ANALOG OUTPUT, after an appropriate settling time. During this time the SAR outputs must remain unchanged and the START signal must remain at logic 1. The RECEIVE command signal must be held at logic 0 for the entire D to A conversion time which includes the Companding DAC's settling time. The CODEC must sample the analog input prior to each A/D conversion. During this sampling period the analog input signal will be changing and the Companding DAC cannot be used to encode this signal. The total encoding time must include the sampling time and the A/D conversion time. If the sampling time period is greater than the time required for the
decoding procedure, the Companding DAC can be used as a decoder during this time period and thus, the decoding operation will not require any additional system time.
The CODEC operations in PCM communication systems can be performed on a single channel or on multiple channels in a multiplexed channel switching scheme. The final number of multiplexed channels which can be served by a single Companding DAC with a data sampling rate of 8 kHz is limited by the CODEC's sampling and settling times.

Two examples of a single channel PCM CODEC are shown in Figure 35 and 36. The major difference is in the structure of the XMT and RECEIVE data bus. The paratlel data I/O CODEC in Figure 35 transmits and receives digital data in parallel form. The parallel data CODEC contains data bus transceivers, (Am)8T26, for handling data in communications systems which might be controlled by one of the popular 8 -bit microprocessors. A parallel data 1/O CODEC has a considerably shorter D to A conversion time than a serial I/O CODEC.

The circuits shown in Figures 35 and 36 are controlled asynchronously with START, XMT, RECEIVE and their corresponding SAMPLE COMMANDS, which are generated and supplied externally by a communication system. The CLOCK signal is also externally supplied, and in the case of a serial data I/O CODEC, it must be synchronized with the incoming

Fig. 35. Single Channel PCM Codec Parallel Data I/O.

Fig. 36. Single Channel PCM Codec Serial Data I/O.
and outgoing serial data train. The CODEC's only output control signal, $\overline{\mathrm{CONVERSION}} \mathrm{COMPLETE}, \overline{\mathrm{CC}}$, provides the external communication system with information necessary to generate a XMT signal during the encoding procedure. XMT and RECEIVE commands are mutually exclusive. The transmit and receive data transfers can be performed either alternately or simultaneously. In the latter case the external communication system must employ separate transmit and receive data buses. In addition, storage devices external to the CODEC logic must be provided for the receive data. The code assignment for outgoing or incoming parallel data provides uncomplemented binary values for sign and magnitude. The DAC data bus, as a result, yields "high zeros" density for small output signal amplitudes.

To perform a transmit operation cycle, the START pulse must be held low for one clock cycle. Data conversion for a transmit operation is completed in 9 clock cycles, where the ninth cycle initializes the SAR for the next successive approximation procedure.

The RECEIVE operation in paraliel data I/O CODEC is performed without using SAR logic, and the corresponding D to A data conversion does not require a CLOCK signal. Duration of the RECEIVE command signal must accommodate the Companding DAC's settling time, plus the sampling time ($\approx 5 \mu \mathrm{~s}$) required by the $S \& H$ circuit, used at the CODEC's analog output. The typical settling time for the worst case input code transition from all ones to all zeros is about $4 \mu \mathrm{~s}$. The receiving data must not change during this time. A XMT command must be issued after a high-to-low transition of the $\overline{C C}$ signal, and its duration depends on the time required by the external system logic to sample the correct content from the 8-bit parallel data bus. A sample command pulse for a transmit operation can coincide with the START pulse; its duration depends on the sample and hold circuit used at the CODEC's analog input. A sample command pulse for a receive operation must be delayed from a low-to-high transition of the RECEIVE command signal by an amount equal to the Companding DAC's settling time. Its termination can coincide with a high-to-low transition of the RECEIVE command signal.

In the serial CODEC the duration of XMT and RECEIVE command signals must similarly accommodate all signal propagation delays, as well as the settling and sampling times, necessary for conversion of an outgoing or an incoming series of 8 digital bits. During the receive operation, the SAR is acting as a serial-in to parallel-out shift register for data supplied from an external serial source. Shifting data into the SAR requires 9 clock pulses. A sample command pulse for a transmit cycle must be issued before an XMT command signal; its duration depends on the S \& H sampling time used at the CODEC analog input. A sample command pulse for a receive cycle must be delayed by a time equal to the Companding DAC's settling time after a high-to-low transition of the $\overline{\mathrm{CC}}$ signal occurs. The data transmission rate at the receive line is limited only by the shifting speed of the SAR which is rated at 15 MHz . The data transmission rate at the serial CODEC's data XMT line is limited by the settling time of the Companding DAC and propagation delays through the comparator, exclusive-or, buffer (74126), and SAR devices.

In a one-way PCM communication system the Companding DAC can be used as the decoder at the receiver end of a system or as a part of the encoder at the transmission end of a system. The transmission data bit rate for 24 communication channels sampled at 8 kHz is 1.544 megabits $/ \mathrm{sec}$. This trans-
mission rate allocates $0.64 \mu \mathrm{~s}$ for each of 193 bits within a 125μ s long 24 -channel time frame. A 24-channel PCM decoder which is capable of handling this transmission bit rate is shown in Figure 37. This schematic does not show the logic necessary for recognition of frame and signalling bits. To handle a single bit in 0.64μ s the total signal propagation time through the 8-bit D-type register, Am25LS273, the Companding DAC, Am6072, and the op-amp must not exceed $8 \times$ $0.64 \mu \mathrm{~s}=5.12 \mu \mathrm{~s}$. This corresponds to the total shifting time of 8 bits through the serial-in, parallel-out, shift register, Am25LS164. The most critical propagation delay is caused by Companding DAC's worst case settling time which corresponds to the worst possible input transition of 1111111 to 0000000 , which can occur during D to A conversion. If $4 \mu \mathrm{~s}$ are taken for the worst case settling times of the DAC and op-amp, only 1.12μ s are left to be distributed to all other time delays in the system. The 4-bit counter, Am25LS161, and 8-bit shift register, Am25LS164, are synchronized with the system supplied data clock at 1.544 MHz . The additional logic in Figure 37 consists of analog switches AH0014 and AM9712, and the corresponding SSI control logic. This switching scheme provides a minimum of crosstalk between output analog channels which may occur due to a possible break-before-make switching problem. The output analog channel hold capacitor values depend a lot on the type of a load at these outputs. The Bell D3 specification specifies system performance down to signal levels of -50 dB (00000111 code on the transfer curve). Worst case settling time from full scale to -50 dB is about $2.5 \mu \mathrm{~s}$. Decoders in excess of 24 channels, can be built using this settling time but they will have somewhat higher distortion for signal levels below -50 dB .

In the PCM encoder schematic shown in Figure 38, the maximum settling time for the Am6072 is assumed to be $1.2 \mu \mathrm{~s}$ for the worst input bit change. The Bell D3 specification can be satisfied using a settling time of $1.2 \mu \mathrm{~s}$, which is the worst case settling time in the successive approximation procedure for signals near -50 dB (lowest level on D3 specification). There will be some additional error for very low level signals, but the overall system will meet the D3 specification. The additional logic delay in the feedback path is estimated to be 100 ns maximum, and is distributed among the comparator, Am686, the digital 2:1 multiplexer, Am74S258, the exclusiveor circuit, 74LS86, and the SAR, Am2502. This yields $1.3 \mu \mathrm{~s}$ for one successive approximation iteration. Further timing analysis shows that, with no additional delays, 12 channels can be encoded within the $125 \mu \mathrm{~s}$:

$$
\begin{aligned}
& 1.3 \mu \mathrm{~s} \cdot 8 \cdot 12=10.4 \mu \mathrm{~s} \cdot 12=124.8 \mu \mathrm{~s} \\
& \text { Clock }=1 / 1.3 \mu \mathrm{~s}=769.23 \mathrm{kHz}
\end{aligned}
$$

Two methods are used in the schematics in Figure 38, to prevent additional delays. First, a special switching scheme of analog input signals is employed to sample a channel from one group while a channel from the other group is encoded. This sampling scheme saves the time required for sampling of an analog input and provides a solution for encoding a maximum number of channels for the given "one-bit iteration" time. This design uses analog multiplexers, AM9712, and sample and hold circuits, (Am)LF398. The analog multiplexer at the Companding DAC output, AH0014, switches to another comparator during the time allocated for the first bit iteration, when the sign bit of a sample is established and no current flows through loe outputs. Secondly, a one shot circuit is used to modulate the positive period of the first data clock pulse, after the SAR's $\overline{\mathrm{CC}}$ signal is generated. The one shot pulse should split the positive portion of this first clock pulse into

Fig. 37. 24-Channel PCM Decoder.
two positive pulses, and the positive edge of the second pulse will initialize the SAR and eliminate the need for a ninth pulse. The net effect of this pulse modulation is a reduction of the time available to the SAR for the determination of the sign bit value and reduction of the time available for recording the SAR outputs with the correct least significant bit value. However, the time for sign bit evaluation is $1 \mu \mathrm{~s}$, and the LSB value can be taken from the SAR's serial data input D at the time of conversion completion. The encoding logic in Figure 38 is fully synchronized with the system supplied data clock which is input at a frequency of 769.23 kHz . A similar encoding scheme provides encoding of 8 channels within the $125 \mu \mathrm{~s}$ time without the circuits which are enclosed by dotted lines in Figure 38. Only one S \& H circuit and one comparator can be used, and the AH0014 and 74 S 258 circuits can be eliminated. This D3 system's 8 -channel PCM encoder has $15.6 \mu \mathrm{~s}$ for an A/D conversion, which allows $5.2 \mu \mathrm{~s}$ for the
analog multiplexer, (AM9712), and S \& H, (LF398), to switch and settle prior to the actual A/D conversion which takes $10.4 \mu \mathrm{~s}$.

One multiplexed CODEC using a single Companding DAC is shown in Figure 39. The CODEC's entire activity is synchronized with a data clock which drives the RECEIVING REGISTER, Am25LS22 (8-bit Serial/Parallel Register), the SAR, Am2502, and the 4-bit binary counter, Am25LS161. Maximum clock frequency is limited by the delays involved in the encoding path and by the data transfer protocol chosen for the XMT and RECEIVE data lines. Using $1.8 \mu \mathrm{~s}$ for the Companding DAC's longest settling time and 150 ns for all other propagation delays in the encoding path, the minimum time for eight iterations amounts to $8 \times 1.95 \mu \mathrm{~s}=15.6 \mu \mathrm{~s}$. The corresponding Data Clock frequency is 512.82 kHz . A time frame of $125 \mu \mathrm{~s}$ contains eight time-slots of $15.6 \mu \mathrm{~s}$ each.

* Note: Circuits enclosed by a dotted line may be eliminated in an 8-channel encoder for the D3 communication system which uses 5.2μ s for the input switching and sampling times, (Am9712 and LF398), and $10.4 \mu \mathrm{~s}$ for one A/D conversion.

Fig. 38. 12-Channel PCM Encoder.

The CODEC in Figure 39 has four multiplexed channels, and uses the data conversion protocol illustrated in Figure 40. This protocol allocates equal time to the encoding and decoding procedures. Although this is not the most economical timing scheme, it significantly simplifies the CODEC's logic. The value of the most significant bit, MSB, of the 4-bit counter controls the switching between the encode and decode functions, and the switching of the input and output analog channels in the analog multiplexers, AM9712, via 1 of 4 decoder
circuit, Am25LS2539, (Dual 1 of 4 decoder). During the negative half of the MSB period, the $S \& H$ circuit is placed in the hold mode, the DATA CLOCK and the outputs of BUFFER REGISTER, Am25LS373, (Octal Transparent Latch), are enabled and the Companding DAC is placed in the encode mode. At the same time, the RECEIVING REGISTER, Am25LS22, is receiving data with its outputs in the high impedance state. All analog switches, XMT and RECEIVE, are open during this negative portion of the MSB signal.

During the positive half of the MSB signal period, data clock inputs to the SAR and RECEIVING REGISTER, and START input to the SAR, are kept at logic 0 . The S \& H circuit is put into the sample mode, the BUFFER REGISTER is put in the high Z state, the RECEIVING REGISTER outputs are enabled, and the Companding DAC is put into the decode mode. During this positive period, the currently addressed XMT and RECEIVE analog switches are closed. The positive going edge of the MSB signal also updates the address code for the analog switches.

Additional timing analysis reveals that by using different and reduced maximum settling times, for the encode and decode portions of the above described data conversion protocol, the number of multiplexed channels can be significantly increased. However, the necessary logic for control and timing of unequal encode and decode data conversion time periods will be more complex than the logic shown in Figure 39. The same encode/decode alternating timing procedure, with $1.1 \mu \mathrm{~s}$ allocated for the A/D settling time, and with only $5.6 \mu \mathrm{~s}$ allowed for D to A conversion, (not limited by the DAC), will result in eight multiplexed channels. Systems requiring more than eight channels can be built using multi sample and hold circuits to reduce the input sampling time period. The maximum number of channels, limited by the Companding DAC's settling times, can be further increased by adjusting data clock frequency to its optimal values for each of the successive approximation bit-iterations, repeatedly, for every A / D data conversion.

SUMMARY

The Companding DAC was originally developed for the needs and requirements of PCM communication systems. When used to perform a decoder function, at an 8 kHz sampling rate, a single Companding DAC can comfortably serve up to 24 voice channels. As a part of the encoding scheme, the Companding DAC can accommodate 12 D3 communication channels. For implementation in CODEC functions, the Companding DAC is ideal for single channel CODEC schemes. The length of the output current's settling time is the most important parameter to be considered for the Companding DAC's implementation in multiple channel CODEC schemes. An 8 channel CODEC is probably an optimum number of channels which can be served by a single Companding DAC.
The timing restrictions are not of such importance in industrial systems. A logarithmic-like, piece-wise transfer function and the very fine resolution and accuracy of a 12-bit linear DAC which are achievable in the Companding DAC's chord 0, provides industrial systems with a very sensitive tool. In addition, the Companding DAC's compatibility with 8 -bit microprocessors offers a very powerful control vehicle in the areas of data acquisition and instrumentation systems. A wide dynamic range of 78 dB which can be extended by a cascading scheme to 156 dB or more, and a high signal-to-distortion ratio of 80 dB , allow usage of the Companding DACs for attenuation functions even in a high fidelity audio system. Industrial applications represent a large potential market for Companding DACs and they should be given serious consideration by industrial system designers.

REFERENCES

Transmission Systems for Communications, Bell Telephone Labs, Revised Fourth Edition, December 1971.
The International Telegraph and Telephone Consultative Committee, CCITT, Green Book, Volume III - 2, 1973.
American Telephone and Telegraph Company: The D3 Channel Bank Compatibility Specification, Issue 2, 1974. PCM Update - Parts 1 and 2, GTE Lenkurt, San Carlos, CA, 1975.
A User's Handbook of D/A and A/D Converters, E.R. Hnatek, John Wiley \& Sons, 1976.
A Versatile Integrated CODEC for PCM Systems, J.A. Schoeff, 1976 International Zurich Seminar on Digital Communications.
Applicaton Considerations for IC Data Converters Useful in Audio Signal Processing, W.G. Jung, 55th Convention of the Audio Engineering society, 1976, An Audio Engineering Society preprint.
A Monolithic Companding D/A Converter, J.A. Schoeff, 1977 ISSC Conference, Digest of Technical Papers, Philadelphia, PA, USA.
The Am6070, Am6071, Am6072 and Am6073 Data Sheets, Advanced Micro Devices, Sunnyvale, CA, 1977.

Fig. 39. 4-Channel PCM CODEC with Simultaneous XMT and Receive Data Transfers.

Fig. 40. Ideal Timing Diagrams for 4-Channel PCM CODEC.

ALPHA NUMERIC INDEX

FUNCTIONAL INDEX

SELECTION GUIDES
INDUSTRY CROSS REFERENCE DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS

MOS MEMORY AND MICROPROCESSOR INTERFACE

OPERATIONAL AMPLIFIERS

SPECIAL FUNCTIONS

VOLTAGE REGULATORS

PACKAGE OUTLINES
GLOSSARY
AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

Line Drivers/Receivers - Section IV

Am1488 Quad RS-232C Line Driver 4-1
Am1489Am1489AAm1692/3692Am25LS240Am25LS241Am25LS242Am25LS243Am25LS244Am26LS29Am26LS30
Am26LS31Am26LS32Am26LS33Am26S10Am26S11Am26S12Am26S12AAm2614Am2615Am2616
Quad RS-232C Line Receiver 4-4
Quad RS-232C Line Receiver 4-4
Three-State Differential Line Drivers 4-8
Octal Buffer; Inverting, Three-State 4-13
Octal Buffer; Non-Inverting, Three-State 4-17
Quad Three-State Bus Transceiver 4-21
Quad Three-State Bus Transceiver 4-21
Octal Buffer, Non-Inverting, Three-State 4-17
Quad Three-State Single-Ended RS-423 Line Driver 4-26
Dual Differential RS-422 Party Line/Quad Single-Ended RS-423 Line Driver 4-30
Quad RS-422 High-Speed Differential Line Driver 4-36
Quad RS-422 and RS-423 Differential Line Receiver 4-40
Quad Differential Line Receiver 4-40
Quad Bus Transceiver 4-57
Quad Bus Transceiver 4-57
Quad Bus Transceiver 4-62
Quad Bus Transceiver 4-62
Quad Single-Ended Line Driver 4-67
Dual Differential Line Receiver 4-72
Quad MIL-188C and RS-232C Line Driver 4-78
Am2617 Quad RS-232C Line Receiver 4-82
Am2905 Quad Two-Input OC Bus Transceiver with Three-State Receiver 4-86Am2906
Quad Two-Input OC Bus Transceiver with Parity 4-92
Am2907 Quad Bus Transceiver with Interface Logic 4-98
Am2908 Quad Bus Transceiver with Interface Logic 4-98
Am2915A Quad Three-State Bus Transceiver with Interface Logic 4-107
Am2916A Quad Three-State Bus Transceiver with Interface Logic 4-113
Am2917A Quad Three-State Bus Transceiver with Interface Logic 4-119
Am3212 8-Bit Input/Output Port 4-125
4-Bit Parallel Bidirectional Bus Driver 4-132
4-Bit Parallel Bidirectional Bus Driver 4-132
IEEE-488 Quad Bidirectional Transceiver 4-137
Octal Buffer; Inverting, Three-State 4-13
Octal Buffer; Non-Inverting, Three-State 4-17
Quad Three-State Bus Transceiver 4-21
Quad Three-State Bus Transceiver 4-21
Octal Buffer; Non-Inverting, Three-State 4-17
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Octal Buffer/Line Driver/Line Receiver with Three-State Outputs 4-142
Dual Line Receiver 4-147
Dual Line Receiver 4-147
Dual Line Driver 4-153
Dual Line Driver 4-153
Three-State Octal Buffers 4-159
Three-State Octal Buffers 4-159

Line Drivers/Receivers - Section IV (Cont.)

Am71LS/81LS97 Three-State Octal Buffers 4-159
Am71LS/81LS98 Three-State Octal Buffers 4-159
Am73/8303B Octal Three-State Inverting Bidirectional Transceiver 4-163
Am73/8304B Octal Three-State Bidirectional Transceiver 4-168
Am78/8820 Dual Differential Line Receiver 4-173
Am78/8820A Dual Differential Line Receiver 4-173
Am78/8830 Dual Differential Line Driver 4-178
Am78/8831 Three-State Line Driver 4-182
Am78/8832 Three-State Line Driver 4-182
Am78/8838 Quad Unified Bus Transceiver 4-188
Am8T26 Schottky Three-State Quad Bus Driver/Receiver 4-190
Am8T26A Schottky Three-State Quad Bus Driver/Receiver 4-195
Am8T28 Schottky Three-State Quad Bus Driver/Receiver 4-195
Am8212 8-Bit Input/Output Port 4-125
Am8216 4-Bit Paralle! Bidirectional Bus Driver 4-132
Am8226 4-Bit Parallel Bidirectional Bus Driver 4-132
Am9614 Differential Line Driver 4-200
Am9615 Dual Differential Line Receiver 4-72
Am9616 Triple EIA RS-232C/MIL-STD-188C Line Driver 4-205
Am9617 RS-232C Line Receiver 4-209
Application Notes
Use of the Am26LS29, 30, 31 and 32 Quad Driver/Receiver
Family in EIA-422 and 423 Applications 4-45

Am1488

Quad RS-232C Line Driver

Distinctive Characteristics:

- Conforms to EIA specification RS-232C
- Short circuit protected output
- Simple slew rate control with external capacitor
- 100% reliability assurance testing in compliance with MIL STD 883
- TTL/DTL compatible input

FUNCTIONAL DESCRIPTION The Am1488 is a quad line driver that conforms to EIA specification RS-232C. Each driver accepts one or two TTL/DTL inputs and produces a high-level logic signal on its output. The HIGH and LOW logic levels on the output are defined by the positive and negative power supplies to the drivers. For power supplies of plus and minus nine volts, the output levels are guaranteed to meet the ± 6-volt specification with a $3 \mathrm{k} \Omega$ load. There is an internal 300Ω resistor in series with the output to provide current limiting in both the HIGH and LOW logic levels. The Am1488 driver is intended for use with the Am1489 or Am1489A quad line receivers.	LIC-316
CIRCUIT	
Am1488 ORDERING INFORMATION	LIC-318

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	$\mathrm{V}^{+}+15 \mathrm{~V}$
	$\mathrm{~V}^{-}-15 \mathrm{~V}$
DC Voltage Applied to Outputs for High Output State	$\left(\mathrm{V}^{+}+5.0 \mathrm{~V}\right) \geq \mathrm{V}_{\mathrm{o}} \geq\left(\mathrm{V}^{-}-5.0 \mathrm{~V}\right)$
DC Input Voltage	$\pm 15 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The following conditions apply unless otherwise specified:
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}^{+}=+9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
IIL	Logical '0" Input Current	$V_{\text {IN }}=0 \mathrm{~V}$			-1.0	-1.6	mA
${ }_{1} \mathrm{H}$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=+5.0 \mathrm{~V}$			0.005	10.0	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & R_{L}=3.0 \mathrm{k} \Omega \\ & V_{I N}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$	6.0	7.0		Volts
			$\mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V}$	9.0	10.5		Volts
v_{OL}	Low Level Output Voltage	$\begin{aligned} & R_{\mathrm{L}}=3.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}=1.9 \mathrm{~V} \end{aligned}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$	-6.0	-6.8		Volts
			$\mathrm{V}^{+}=+3.2 \mathrm{~V}, \mathrm{~V}-=-13.2 \mathrm{~V}$	-9.0	-10.5		Volts
${ }^{\prime} \mathrm{SC}^{+}$	High Level Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$		-6.0	-10.0	-12.0	mA
${ }^{1} \mathrm{SC}{ }^{-}$	Low Level Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.9 \mathrm{~V}$		6.0	10.0	12.0	mA
ROUT	Output Resistance	$\mathrm{V}^{+}=\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.0 \mathrm{~V}$		300			Ω
ICC^{+}	Positive Supply Current (Output Open)	$V_{\text {IN }}=1.9 V$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V}$		15.0	20.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		19.0	25.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$		25.0	34.0	mA
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=9.0 \mathrm{~V}$		4.5	6.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		5.5	7.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		8.0	12.0	mA
${ }^{1} \mathrm{CC}-$	Negative Supply Current (Output Open)	$V_{1 N}=1.9 V$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-13.0	-17.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		-18.0	-23.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-25.0	-34.0	mA
		$V_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-1.0	-15	$\mu \mathrm{A}$
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V}$		-1.0	-15	$\mu \mathrm{A}$
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-0.01	-2.5	mA
$P_{\text {d }}$	Power Dissipation	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$			252	333	mW
		$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$			444	576	mW

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$)

Parameters	Definition	Test Conditions	Min	Typ	Max	Units
tPLH	Delay from input LOW to output HIGH	$\mathrm{Z}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$$\text { and } 15 \mathrm{pF}$		275	350	ns
${ }^{\text {P PHL }}$	Delay from input HIGH to output LOW			110	175	ns
$t_{\text {r }}$	Output rise time			55	100	ns
t_{f}	Output fall time			45	75	ns

Note 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS

Am1489•Am1489A

Distinctive Characteristics:

- Compatible with EIA specification RS-232C
- Input signal range ± 30 volts
- 100% reliability assurance testing in compliance with MIL STD 883
- Includes response control input and built-in hysterisis

$$
\begin{aligned}
& \text { FUNCTIONAL DESCRIPTION: } \\
& \text { The Am1489 and Am1489A are quad line receivers whose electrical char- } \\
& \text { acteristics conform to EIA specificatlon RS- } 232 \mathrm{C} \text {. Each receiver has a } \\
& \text { single data input that can accept signal swings of up to } \pm 30 \mathrm{~V} \text {. The output } \\
& \text { of each receiver is TTL/DTL compatible, and includes a } 2 \mathrm{k} \Omega \text { resistor } \\
& \text { pull-up to } V_{\text {CC. An internal feedback resistor causes the input to exhibit }}^{\text {hysterisis so that. AC noise immunity is maintained at a high level even }} \\
& \text { near the switching thresholds. For both devices, when a receiver is In a LOW } \\
& \text { state on the output, the input may drop as LOW as } 1.25 \text { volts without } \\
& \text { affecting the output. Both devices are guaranteed to switch to the HIGH } \\
& \text { state when the input voltage is below } 0.75 \mathrm{~V} \text {. Once the output has switched } \\
& \text { to the HIGH state, the input may rise to } 1.0 \mathrm{~V} \text { for the Am1489 of } 1.75 \mathrm{~V} \\
& \text { for the Am1489A without causing a change in the output. The Am1489 is } \\
& \text { guaranteed to switch to a LOW output when its input reaches } 1.5 \mathrm{~V} \text { and, } \\
& \text { the Am1489A is guaranteed to switch to a LOW output when its input } \\
& \text { reaches } 2.25 \mathrm{~V} \text {. Because of this hysterisis in switching thresholds, the } \\
& \text { devices can receive signals with superimposed noise or with slow rise and } \\
& \text { fall times without generating oscillations on the output. The threshold } \\
& \text { levels may be offset by a constant voltage by applying a DC bias to the } \\
& \text { response control input. A capacitor added to the response control input } \\
& \text { will reduce the frequency response of the receiver for applications in the } \\
& \text { presence of high frequency noise spikes. The companion line driver is } \\
& \text { the Am1488. }
\end{aligned}
$$

Am1489/Am1489A ORDERING INFORMATION			
Package Type	Temperature Range	Am1489 Order Number	Am1489A Order Number
14-pin Molded DIP 14-pin Hermetic DIP Dice	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$	AM1489PC MC1489L AM1489×C	AM1489APC MC1489AL AM1489AXC

CONNECTION DIAGRAM Top View

NOTE: PIN 1 is marked for orientation.

Am1489/1489A

MAXIMUM RATINGS
(Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	-0.5 V to +10 V
DC Voltage Anp̣lied to Outputs for High Output State	-0.5 V te $+\mathbf{V} \mathrm{cC} \mathrm{max}$
Input Signal Range	-30 V to +30 V
Output Current, Into Outputs	30 mA
DC Input Current	Defined by Input Voltage Limits

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted) Am1489, Am1489A
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $V_{C C}=5.0 \mathrm{~V} \pm 1 \%$ Response control pin open

Parameters	Description	Test Conditio		Min	Typ (Note 1)	Max	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.75 \mathrm{~V} \text { or open } \end{aligned}$		2.6	4.0		Volts
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=3.0 \mathrm{~V} \end{aligned}$			0.2	0.45	Volts
$\mathbf{V}_{\mathbf{I H}}$	Input HIGH Level Threshold	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{OL}}=0.45 \mathrm{~V} \end{aligned}$	Am1489	1.0	1.25	1.5	Volts
			Am1489A	1.75	1.95	2.25	
V_{12}	Input LOW Level Threshold	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{OH}}=+2.5 \mathrm{~V}$		0.75		1.25	Volts
I_{11}	Input LOW Current	$\mathrm{V}_{\text {IN }}=-3.0 \mathrm{~V}$		-0.43			mA
		$\mathrm{V}_{\text {IN }}=-25 \mathrm{~V}$		-3.6		-8.3	
I_{H}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=+3.0 \mathrm{~V}$		0.43			mA
		$\mathrm{V}_{1 \mathrm{~N}}=+25 \mathrm{~V}$		3.6		8.3	
I_{sc}	Output Short Circuit Current	$\begin{aligned} & V_{\text {IN }}=0.0 \mathrm{~V} \\ & V_{\text {OUT }}=0.0 \mathrm{~V} \end{aligned}$			3.0		mA
I_{cc}	Power Supply Current	$V_{C C}=M A X$.			20	26	mA

Note: 1) Typical Limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, response control pin open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$)

Parameters	Definition	Test Conditions	Min	Typ	Max	Units
tPLH	Delay from Input LOW to Output HIGH	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$		25	85	ns
${ }_{\text {tPHL}}$	Delay from Input HIGH to output LOW	$\mathrm{R}_{\mathrm{L}}=390 \Omega$		25	50	ns
tr_{r}	Output Rise Time (10% to 90%)	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$		120	175	ns
$\mathbf{t f}_{f}$	Output Fall Time (90% to 10%)	$\mathrm{R}_{\mathrm{L}}=390 \Omega$		10	20	ns

TYPICAL CHARACTERISTICS

Am1489 Input Threshold

Am1489A Input Threshold

AMBIENT TEMPERATURE ${ }^{\circ}{ }^{\circ} \mathrm{C}$,

SWITCHING TIME TEST CIRCUIT \& WAVEFORMS

LIC-324

Lic:-325

Metallization and Pad Layout

Am1692/3692
 Three-State Differential Line Drivers

DISTINCTIVE CHARACTERISTICS

- Individual three-state enables for each driver
- Dual differential driver or quad single ended line driver
- Short circuit protection for both source and sink outputs
- Individual rise time control for each output
- 50Ω transmission line drive capability
- High capacitive load drive capability
- Low I_{CC} and I_{EE} power consumption Differential mode $35 \mathrm{~mW} /$ driver Single-ended mode $\quad 26 \mathrm{~mW} /$ driver
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Advanced low power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am1692/Am3692 are low power Schottky TTL line drivers with three-state outputs. They feature $\pm 10 \mathrm{~V}$ output common mode range in three-state and OV output unbalance when operated with $\pm 5 \mathrm{~V}$ power supplies. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection.
A mode control input provides a choice of operation either as four independent line drivers or two differential line drivers. A rise time control pin allows the use of an external capacitor to reduce rise time for suppression of near end crosstalk to other receivers in the cable.
The Am1692/3692 is constructed using advanced low-power Schottky processing.

LOGIC DIAGRAM

(1/2 Circuit Shown)

Am1692/3692
ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage	
$\mathrm{V}+$	7.0 V
V	-7.0 V
Power Dissipation	600 mW
Input Voltage	-0.5 to +15 V
Output Voltage (Power Off)	$\pm 15 \mathrm{~V}$
Lead Soldering Temperature (10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range

The following conditions apply unless otherwise specified:
Am1692 (MIL)

$$
\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$
Am3692 (COM'L)
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$
DC CHARACTERISTICS over the operating temperature range
Typ.

Parameters	Description	Test Conditions (Note 2)		Min.	(Note 1)	Max.	Units
V_{0}	Differential Output Voltage, $\mathrm{V}_{\mathrm{A}, \mathrm{B}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	2.5	3.6	6.0	Volts
$\overline{V_{0}}$			$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	-2.5	-3.6	-6.0	Volts
V_{T}	Differential Output Voltage, $\mathrm{V}_{\mathrm{A}, \mathrm{B}}$	$R_{L}=100 \Omega$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	2	2.6		Volts
$\overline{V_{T}}$			$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-2	-2.6		Volts
$\mathrm{V}_{\text {OS }}, \overline{\mathrm{V}_{\text {OS }}}$	Common-Mode Offset Voltage	$R_{L}=100 \Omega$			2.5	3	Volts
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Difference in Differential Output Voltage	$R_{L}=100 \Omega$			0.05	0.4	Volts
$\left\|\mathrm{V}_{\text {OS }}\right\|-\left\|\overline{\mathrm{V}}_{\text {OS }}\right\|$	Difference in Common-Mode Offset Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$			0.05	0.4	Volts
$V_{\text {SS }}$	$\left\|V_{T}-\overline{V_{T}}\right\|$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		4.0	4.8		Volts
${ }^{\text {X }}$ A	Output Leakage Current	$V_{c c}=0$	$\mathrm{V}_{0}=15 \mathrm{~V}$		10	150	$\mu \mathrm{A}$
${ }^{\text {X }}$ B			$\mathrm{V}_{0}=-15 \mathrm{~V}$		-10	-150	$\mu \mathrm{A}$
lox	Three-State Output Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \geqslant-10 \mathrm{~V}$				-150	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \leqslant 15 \mathrm{~V}$				150	$\mu \mathrm{A}$
$I_{\text {SA }}$	Output Short Circuit Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$V_{O A}=6.0 \mathrm{~V}$		80	150	mA
			$\mathrm{V}_{\mathrm{OB}}=0 \mathrm{~V}$		-80	-150	mA
$\mathrm{I}_{\text {SB }}$		$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$	$V_{O A}=0 \mathrm{~V}$		-80	-150	mA
			$\mathrm{V}_{\text {OB }}=6.0 \mathrm{~V}$		80	150	mA
Icc	Supply Current				18	30	mA

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. R_{L} connected between each output and its complement.

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:
Am1692 (MIL)
Am3692 (COM'L)
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \pm 10 \%$
Mode Voltage $\leqslant 0.8 \mathrm{~V}$
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \pm 5 \%$

DC CHARACTERISTICS over the operating temperature range unless otherwise noted

Parameters	Description	Test Co	ditions	Min.	Typ. (Note 1)	Max.	Units
V_{0}	Output Voltage	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	7	8.5	12	Volts
V_{0}			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-7	-8.5	-12	Volts
V_{T}	Output Voltage	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	6	7.3		Volts
V_{T}			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-6	-7.3		Volts
$\left\|V_{T}\right\|-\left\|V_{T}\right\|$	Output Unbalance	$\left\|\mathrm{V}_{\mathrm{CC}}\right\|=\left\|\mathrm{V}_{\mathrm{EE}}\right\|, \mathrm{R}_{\mathrm{L}}$	200Ω		0.02	0.4	Volts
IX^{+}	Output Leakage Power OFF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	$\mathrm{V}_{0}=15 \mathrm{~V}$		20	150	$\mu \mathrm{A}$
I_{x}			$\mathrm{V}_{\mathrm{O}}=-15 \mathrm{~V}$		-20	-150	$\mu \mathrm{A}$
lox	Three-State Output Current	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \geqslant-10 \mathrm{~V}$				-150	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \leqslant 10 \mathrm{~V}$				150	$\mu \mathrm{A}$
I^{+}	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-80	-150	mA
I^{-}			$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		80	150	mA
ISLEW	Slew Control Current				± 140		$\mu \mathrm{A}$
Icc	Positive Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
$\mathrm{I}_{\text {EE }}$	Negative Supply Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA
V_{IH}	High Level Input Voltage	$\pm 5.25 \leqslant \mathrm{VEE} \leqslant 0 \mathrm{~V}$		2			Volts
V_{IL}	Low Level Input Voltage					0.8	Volts
$\mathrm{I}_{\mathbf{H}}$	High Level Input Current		$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		1	40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }} \leqslant 15 \mathrm{~V}$		10	100	
IIL	Low Level Input Current		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage		$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-1.5	Volts

AC CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$, Mode Select $=8.0 \mathrm{~V}$						
tr_{r}	Differential Output Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 1)		120	200	ns
t_{f}	Differential Output Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 1)		120	200	ns
$t_{\text {PDH }}$	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 1)		120	200	ns
${ }^{\text {tpDL }}$	Output Propagation Delay	$R_{L}=100 \Omega, C_{L}=500 \mathrm{pF}$, (Fig. 1)		120	200	ns
tpzL	Three-State Delay	$R_{L}=100 \Omega, C_{L}=500 \mathrm{pF}$, (Fig. 2)		180	250	ns
$\mathrm{t}_{\text {PZ }}$	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		180	250	ns
$\mathrm{t}_{\text {PLZ }}$	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		80	150	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		80	150	ns
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$, Mode Select $=0.8 \mathrm{~V}$						
t_{r}	Differential Output Rise Time	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 1)		190	300	ns
t_{f}	Differential Output Fall Time	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 1)		190	300	ns
tPDL	Output Propagation Delay	$R_{L}=200 \Omega, C_{L}=500 \mathrm{pF}$, (Fig. 1)		190	300	ns
${ }^{\text {tPDH }}$	Output Propagation Delay	$R_{L}=200 \Omega, C_{L}=500 \mathrm{pF}$, (Fig. 1)		190	300	ns
${ }_{\text {tPZL }}$	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		180	250	ns
$\mathrm{t}_{\text {PZH }}$	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		180	250	ns
tplz	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		80	150	ns
${ }^{\text {tPHZ }}$	Three-State Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Fig. 2)		80	150	ns

Am1692/3692 FUNCTIONAL TABLE

Mode	Inputs		Outputs	
	$\mathbf{A}(\mathbf{D})$	$\mathbf{B}(\mathbf{C})$	$\mathbf{A}(\mathbf{D})$	$\mathbf{B}(\mathbf{C})$
0	0	0	0	1
0	0	1	Z	Z
0	1	0	1	0
0	1	1	Z	Z
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUIT

*Current probe is the easiest way to display a differential waveform.

Figure 1. Rise and Fall Time

LIC-329

Figure 2. Three State Delays

Slew Rate (Rise or Fall Time) Versus External Capacitor

APPLICATION
Am1692/3692 USED AS A DRIVER MEETING MIL-STD-188-114

$V_{C C}=+5.0 \mathrm{~V}$
$V_{\text {EE }}=-5.0 \mathrm{~V}$
LIC-330

Am25LS240•Am54LS/74LS240

Octal Three-State Inverting Drivers

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- Data-to-output propagation delay times - 18ns MAX.
- Enable-to-output - 30ns MAX.
- Am25LS240 specified at 48 mA output current
- 20 pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The 'LS240 is an octal inverting line driver fabricated using advanced low-power Schottky technology. The 20-pin package provides improved printed circuit board density for use in memory address and clock driver applications.
Three-state outputs are provided to drive bus lines directly. The Am25LS240 is specified at 48 mA and 24 mA output sink current, while the Am5474LS240 is guaranteed at 12 mA over the military range and 24 mA over the commercial range. Four buffers are enabled from one common line and the other four from a second enable line.

Improved noise rejection and high fan-out are provided by input hysteresis and low current PNP inputs.

LOGIC DIAGRAM

INPUTS		OUTPUT
\bar{G}	A	Y
H	X	Z
L	H	L
L	L	H

Note: All devices have input hysteresis.

LIC-331

CONNECTION DIAGRAM Top View

Am25LS240

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
$\begin{array}{lllll}\text { COM'L } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% & \text { (MIN. }=4.75 \mathrm{~V} & \text { MAX. }=5.25 \mathrm{~V} \text {) } \\ \text { MIL } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% & \text { (MIN. }=4.50 \mathrm{~V} & \text { MAX. }=5.50 \mathrm{~V} \text {) }\end{array}$
DC CHARACTERISTICS OVER OPERATING RANGE

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current	150 mA
DC Input Current	-30 mA to +5.0 mA

Am54LST4LS240

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L
$\begin{array}{ll}T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 10 \%\end{array}$
(MIN. $=4.75 \mathrm{~V}$ MAX. $=5.25 \mathrm{~V}$)
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Parame	Description			Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units	
V_{OH}	High-Level Output Voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{MAX} . \end{aligned}$		2.4	3.4		Volts	
				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	MIL, $\mathrm{IOH}=-12 \mathrm{~mA}$	2.0				
				$\mathrm{COM}^{\prime} \mathrm{L}$, $\mathrm{OHH}=-15 \mathrm{~mA}$	2.0					
V_{OL}	Low-Level Output Voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	All, $\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4	Volts
				COM'L, $\mathrm{IOL}_{\text {O }}=24 \mathrm{~mA}$			0.35	0.5		
$\mathbf{V}_{\mathbf{I H}}$	High-Level Input Voltage			Guaranteed input logical HIGH voltage for all inputs		2.0			Volts	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		COM'L					0.8	Volts	
			MIL					0.7		
$\mathbf{V}_{\text {IK }}$	Input Clamp Voltage			$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	Volts	
	Hysteresis ($\mathrm{V}_{\mathbf{T +}}-\mathrm{V}_{\mathbf{T -}}$)			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.		0.2	0.4		Volts	
Iozh	Off-State Output Current, High Level Voltage Applied			$\begin{aligned} & V_{C C}=M A X . \\ & V_{I H}=2.0 V \\ & V_{I L}=V_{I L} M A X . \end{aligned}$	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			20		
lozL	Off-State Output Current, Low-Level Voltage Applied				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20		
1	Input Current at Maximum Input Voltage			$\mathrm{V}_{\text {cc }}=\mathrm{MAX} ., \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1	mA	
I_{IH}	High-Level Input Current, Any Input			V_{CC} MAX., $\mathrm{V}_{\text {IH }}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$	
IL	Low-Level Input Current			$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-200	$\mu \mathrm{A}$	
ISC	Short Circuit Output Current (Note 3)			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.		-40		-225	mA	
Icc	Supply Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}$. Outputs open		All Outputs HIGH			13	23	mA	
				All Outputs LOW			26	44		
				Outputs at Hi-Z			29	50		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Metallization and Pad Layout

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

		Am25LS240			Am54LS/74LS240			Units	Test Conditions (Notes 1-5)
Parame	Description	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output		8.0	12		9.0	14	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output		12	16		12	18	ns	
tPZL	Output Enable Time to Low Level		19	27		20	30	ns	
$t_{\text {PZH }}$	Output Enable Time to High Level		14	20		15	23	ns	
$t_{\text {PLZ }}$	Output Disable Time from Low Level		14	23		15	25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {tPHZ }}$	Output Disable Time from High Level		10	18		10	18	ns	$\mathrm{R}_{\mathrm{L}}=667 \Omega$

Am25LS ONLY SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Param	Description	$\begin{aligned} & \mathbf{V}_{\mathbf{C C}}= \\ & \text { Min. } \end{aligned}$	$\begin{gathered} V \pm 5 \% \\ \text { Max. } \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}= \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & \pm 10 \% \\ & \text { Max. } \end{aligned}$	Units	Test Conditions
${ }_{\text {t }}^{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output		16		19	ns	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output		22		25	ns	
${ }_{\text {t }}{ }_{\text {PLL }}$	Output Enable Time to Low Level		37		42	ns	
${ }_{\text {t }}$	Output Enable Time to High Level		27		31	ns	
${ }_{\text {tPLZ }}$	Output Disable Time from Low Level		31		36	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }}$ PHZ	Output Disable Time from High Level		25		28	ns	$\mathrm{R}_{\mathrm{L}}=667 \Omega$

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. PRR $\leqslant 1.0 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \cup \cup \mathrm{T} \approx 50 \Omega$ and $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.

Am25LS241•Am54LS/74LS241 Am25LS244•Am54LS/74LS244
 0ctal Three-State Quffers

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- Data-to-output propagation delay times - 18ns MAX.
- Enable-to-output - 30ns MAX.
- Am25LS241 and 244 specified at 48 mA output current
- 20 pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

FUNCTIONAL. DESCRIPTION

The 'LS241 and 'LS244 are octal buffers fabricated using advanced low-power Schottky technology. The 20-pin package provides improved printed circuit board density for use in memory address and clock driver applications.
Three-state outputs are provided to drive bus lines directly. The Am25LS241 and Am25LS244 are specified at 48mA and 24 mA output sink current, while the Am54LS/74LS241 and Am54LS/74LS244 are guaranteed at 12 mA over the military range and 24 mA over the commercial range. Four buffers are enabled from one common line and the other four from a second enable line.
The 'LS241 has enable inputs of opposite polarity to allow use as a transceiver without overlap. The 'LS244 enables are of similar polarity for use as a unidirectional buffer in which both halves are enabled simultaneously.
Improved noise rejection and high fan-out are provided by input hysteresis and low current PNP inputs.

Am25LS241•Am25LS244

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:
COM'L $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \quad$ (MIN. $\left.=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V}\right)$
MIL $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} V_{C C}=5.0 \mathrm{~V} \pm 10 \% \quad$ (MIN. $=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V}$)

DC CHARACTERISTICS OVER OPERATING RANGE

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current	150 mA
DC Input Current	-30 mA to +5.0 mA

Am54LS/74LS241•Am54LS/74LS244
ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:
$\begin{array}{lllll}\text { COM'L } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% & (\mathrm{MIN} .=4.75 \mathrm{~V} & \text { MAX. }=5.25 \mathrm{~V}) \\ \text { MIL } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 10 \% & \text { (MIN. }=4.50 \mathrm{~V} & \text { MAX. }=5.50 \mathrm{~V})\end{array}$

DC CHARACTERISTICS OVER OPERATING RANGE

Parame	Description			Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units	
V_{OH}	High-Level Output Voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{MAX} . \end{aligned}$		2.4	3.4		Volts	
				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	MIL, $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.0				
				COM'L, $\mathrm{IOH}^{\text {O }}=-15 \mathrm{~mA}$	2.0					
V_{OL}	Low-Level Output Voltage					All, $\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4	Volts
				$V_{C C}=M 1 N$.	COM'L, $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.5		
$\mathbf{V}_{\text {IH }}$	High-Level Input Voltage			Guaranteed input logical HIGH voltage for all inputs		2.0			Volts	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		COM'L					0.8	Volts	
			MIL					0.7		
$\mathbf{V}_{\text {IK }}$	Input Clamp Voltage			$\mathrm{V}_{\text {CC }}=$ MIN., I_{1}	$-18 \mathrm{~mA}$			-1.5	Volts	
	Hysteresis ($\mathrm{V}_{\mathrm{T}+}$	V_{T-})		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.		0.2	0.4		Volts	
Iozh	Off-State Output Current, High Level Voltage Applied			$\begin{aligned} & V_{C C}=M A X . \\ & V_{I H}=2.0 \mathrm{~V} \\ & V_{I L}=V_{I L} M A X . \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
Iozl	Off-State Output Current, Low-Level Voltage Applied				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20		
1	Input Current at Maximum Input Voltage			$\mathrm{V}_{\text {cc }}=\mathrm{MAX} ., \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1	mA	
I_{IH}	High-Level Input Current, Any Input			$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}^{\text {che }}$	$=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
ILL	Low-Level Input	rrent		$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {L }}$	$=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
ISC	Short Circuit Output Current (Note 3)			$\mathrm{V}_{C C}=\mathrm{MAX}$.		-40		-225	mA	
${ }^{\text {cc }}$	Supply Current	$v_{C C}=M A X .$ Outputs open		All Outputs HIG			13	23	mA	
				All Outputs LOW			27	46		
				Outputs at Hi-Z			32	54		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Metallization and Pad Layouts

LS241

DIE SIZE $0.060^{\prime \prime} \times 0.103^{\prime \prime}$
DIE SIZE 0.060': X 0.103'

SWITCHING CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parame	Description	Min.	Typ.	Max.	Min.	TYp.	Max.	Units	(Notes 1-5)
${ }^{\text {P PLH }}$	Propagation Delay Time, Low-to-High-Level Output		10	15		12	18	ns	$\begin{aligned} & C_{L}=45 p F \\ & R_{L}=667 \Omega \end{aligned}$
$\mathbf{t P H L}^{\text {Pr }}$	Propagation Delay Time, High-to-Low-Level Output		12	18		12	18	ns	
$t_{\text {PZL }}$	Output Enable Time to Low Level		20	30		20	30	ns	
$\mathbf{t P R H}$	Output Enable Time to High Level		15	23		15	23	ns	
$t_{\text {PLZ }}$	Output Disable Time from Low Level		15	25		15	25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }}$ PHZ	Output Disable Time from High Level		10	18		10	18	ns	$R_{L}=667 \Omega$

Am25LS ONLY
SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

Param	Description	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ & \text { Min. } \quad \text { Max. } \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ & \text { Min. } \quad \text { Max. } \end{aligned}$		Units	Test Conditions
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output		21		24	ns	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }^{\text {t }}$ PHL	Propagation Delay Time, High-to-Low-Level Output		25		28	ns	
$t_{\text {PZL }}$	Output Enable Time to Low Level		41		47	ns	
$\mathbf{t}_{\text {PZH }}$	Output Enable Time to High Level		31		47	ns	
$t_{\text {PLZ }}$	Output Disable Time from Low Level		34		36	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }_{\text {t }}$	Output Disable Time from High Level		25°		28	ns	$\mathrm{R}_{\mathrm{L}}=667 \Omega$

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
4. Pulse generator characteristics: $P R R \leqslant 1.0 \mathrm{MHz}, Z_{O U T} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
5. When measuring $t_{\text {PLH }}$ and $t_{P H L}$, switches S_{1} and S_{2} are closed.

Am25LS242•Am54LS/74LS242 Am25LS243•Am54LS/74LS243 Quaad Bus Transceivers with Three-State Uutputs

distinctive characteristics

- Three-state outputs drive bus lines directly
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- Data to output propagation delay times - 18ns MAX.
- Enable to output - 30ns MAX.
- Am25LS242 and Am25LS243 are specified at 48mA output current
- 100% product assurance testing to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The 'LS242 and 'LS243 are quad bus transceivers designed for asynchronous two-way communications between data buses.
The 'LS242 and 'LS243 have the two 4 -line data paths connected input-to-output on both sides to form an asynchronous transceiver/buffer with complementing enable inputs. The 'LS242 is inverting, while the 'LS243 presents noninverting data at the outputs.
Three-state outputs are provided to drive bus lines directly. The Am25LS242 and Am25LS243 are specified at 48mA and 24 mA output sink current, while the Am54/74LS242 and 243 are guaranteed at 12 mA over the military range and 24 mA over the commercial range.
Improved noise rejection and high fan-out are provided by input hysteresis and low current PNP inputs.

Am25LS242•Am25LS243

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply unless Otherwise Specified:
$\mathrm{COM}^{\prime} \mathrm{L} \quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
$(\mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V})$
MIL
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
$(\mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V})$

DC CHARACTERISTICS OVER OPERATING RANGE

Parame	Description			Test	nditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units	
V_{OH}	High-Level Output Voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{MAX} . \end{aligned}$		2.4	3.4		Volts	
				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	MIL, $\mathrm{IOH}=-12 \mathrm{~mA}$	2.0				
				$\mathrm{COM}^{\prime} \mathrm{L}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.0					
V_{OL}	Low-Level Output Voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	All $\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4	Volts
				All $\mathrm{IOL}=24 \mathrm{~mA}$			0.35	0.5		
				COM ${ }^{\prime}$, $\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$				0.55		
$\mathrm{V}_{\mathbf{I H}}$	High-Level Input Voltage			Guaranteed input logical HIGH voltage for all inputs		2.0			Volts	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		COM'L					0.8	Volts	
			MIL					0.7		
V_{IK}	Input Clamp Voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	Volts	
	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)			$\mathrm{V}_{\text {CC }}=$ MIN .		0.2	0.4		Volts	
Iozh	Off-State Output Current, High Level Voltage Applied			$\begin{aligned} & V_{C C}=M A X . \\ & V_{I H}=2.0 \mathrm{~V} \\ & V_{I L}=V_{I L} M A X . \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			40		
lozl	Off-State Output Current, Low-Level Voltage Applied				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$	
1	Input Current at Maximum Input Voltage			$V_{C C}=$ MAX .	$\mathrm{V}_{1}=7.0 \mathrm{~V}, \overline{\mathrm{G}} \mathrm{AB}$ or GBA			0.1	mA	
				$\mathrm{V}_{1}=5.5 \mathrm{~V}, \mathrm{~A}$ or B			0.1	mA		
I_{IH}	High-Level Input Current, Any Input				$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IH }}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low-Level Input Current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-200	$\mu \mathrm{A}$	
ISC	Short Circuit Output Current (Note 3)			$\mathrm{V}_{\text {CC }}=$ MAX .		-40		-225	mA	
${ }^{\prime} \mathrm{cc}$	Supply Current	$V_{C C}=M A X$. Outputs open (Note 4)		All Outputs HIGH	'LS242, 'LS243		22	38	mA	
				All Outputs LOW	'LS242, 'LS243		29	50		
				Outputs at $\mathrm{Hi}-\mathrm{Z}$	'LS242		29	50		
				'LS243		32	54			

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
4. For 'LS242 and 'LS243 ICC is measured with transceivers enabled in one direction only, or with all transceivers disabled.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current	150 mA
DC Input Current	-30 mA to +5.0 mA

Am54LS/74LS242•Am54LS/74LS243

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply unless Otherwise Specified:
COM'L $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
$(\mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V})$
MIL $\quad \mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad$ (MIN. $=4.50 \mathrm{~V}$ MAX. $=5.50 \mathrm{~V}$)

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description			Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units	
V_{OH}	High-Level Output Voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{MAX} . \end{aligned}$		2.4	3.4		Volts	
				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN. }, \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \end{aligned}$	MIL, $\mathrm{I}_{\text {OH }}=-12 \mathrm{~mA}$	2.0				
				COM'L, $\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	2.0					
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage				$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$.	All, $\mathrm{IOL}^{\text {a }}$, 12 mA		0.25	0.4	Volts
				COM'L, $\mathrm{IOL}^{\text {OL }}=24 \mathrm{~mA}$			0.35	0.5		
$\mathbf{V}_{\mathbf{I H}}$	High-Level Input Voltage			Guaranteed input logical HIGH voltage for all inputs		2.0			Volts	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		COM'L					0.8	Volts	
			MIL					0.7		
V_{IK}	Input Clamp Voltage			$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	Volts	
	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)			$\mathrm{V}_{\text {CC }}=$ MIN.		0.2	0.4		Volts	
Iozh	Off-State Output Current, High Level Voltage Applied			$\begin{aligned} & V_{C C}=\text { MAX. } \\ & V_{I H}=2.0 \mathrm{~V} \\ & V_{I L}=V_{I L} M A X . \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$	
Iozl	Off-State Output Current, Low-Level Voltage Applied				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200		
1	Input Current at Maximum Input Voltage			$V_{C c}=$ MAX .	$\mathrm{V}_{1}=7.0 \mathrm{~V}, \overline{\mathrm{G} A B}$ or GBA			0.1	mA	
1				$\mathrm{V}_{1}=5.5 \mathrm{~V}, \mathrm{~A}$ or B			0.1	mA		
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current, Any Input				$\mathrm{V}_{\text {CC }}$ MAX., $\mathrm{V}_{\text {IH }}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low-Level Input Current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{1 \mathrm{~L}}=0.4 \mathrm{~V}$,	-200	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {S }}$	Short Circuit Output Current (Note 3)			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$.		-40		-225	mA	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} .$ Outputs open (Note 4)		All Outputs HIGH	'LS242, 'LS243		22	38	mA	
				All Outputs LOW	'LS242, 'LS243		29	50		
				Outputs at Hi-Z	$\begin{aligned} & \text { 'LS242 } \\ & \text { 'LS243 } \end{aligned}$		$\begin{aligned} & 29 \\ & 32 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$		

Notes: 1. For conditions shown as MIN' or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
4. For 'LS242 and 'LS243 ICC is measured with transceivers enabled in one direction only, or with all transceivers disabled.

Metallization and Pad Layouts

DIE SIZE 0.060' $\times 0.103^{\prime \prime}$

Am25LS242•Am54LS/74LS242 SWITCHING CHARAC'TERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description	Min.	Typ.	Max.	Min.	Typ.	Max.	Units	(Notes 1-5)
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output		8.0	12		9.0	14	ns	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output		12	16		12	18	ns	
${ }^{\text {t }}$ PZL	Output Enable Time to Low Level		20	30		20	30	ns	
$t_{\text {PZH }}$	Output Enable Time to High Level		15	23		15	23	ns	
${ }^{\text {tplz }}$	Output Disable Time from Low Level		15	25		15	25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time from High Level		10	18		10	18	ns	$R_{L}=667 \Omega$

Am25LS242 ONLY SWITCHING CHARACTERISTICS OVER OPERATION RANGE*

		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \end{aligned}$		$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		Units	Test Conditions
Parameters	Description	Min.	Max.	Min.	Max.		
$\mathbf{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output		16		19	ns	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$
${ }^{\text {t }}$ PHL	Propagation Delay Time, High-to-Low-Level Output		22		25	ns	
${ }^{\text {t }}$ PLL	Output Enable Time to Low Level		37		42	ns	
${ }_{\text {t }}$	Output Enable Time to High Level		29		33	ns	
${ }_{\text {tPLZ }}$	Output Disable Time from Low Level		33		38	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time from High Level		25		28	ns	$R_{L}=667 \Omega$

Am25LS243•Am54LS/74LS243

 SWITCHING CHARACTERISTICS($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters

Description

Am25LS243			Am54LS/74LS243			Units	Test Conditions (Notes 1-5)
Min.	Typ.	Max.	Min.	Typ.	Max.		
	10	15		12	18	ns	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$
	12	18		12	18	ns	
	20	30		20	30	ns	
	15	23		15	23	ns	
	15	25		15	25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
	10	18		10	18	ns	$R_{L}=667 \Omega$

Am25LS243 ONLY SWITCHING CHARACTERISTICS OVER OPERATION RANGE*

OVER OPE Parameters	ATION RANGE* Description	$T_{A}=0$ $\mathrm{V}_{\mathrm{Cc}}=$ Min.	$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \mathrm{~V} \pm 5 \% \\ & \text { Max. } \end{aligned}$	$\begin{gathered} T_{A}=-55 \\ V_{C C}= \\ M i n . \end{gathered}$	$\begin{aligned} & +125^{\circ} \mathrm{C} \\ & \pm 10 \% \\ & \text { Max. } \end{aligned}$	Units	Test Conditions
${ }^{\text {tPLH }}$	Propagation Delay Time, Low-to-High-Level Output		21		24	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }^{\text {t }}$ PHL	Propagation Delay Time, High-to-Low-Level Output		25		28	ns	
$\mathbf{t}_{\text {PZL }}$	Output Enable Time to Low Level		41		47	ns	
${ }_{\text {t }}{ }^{\text {PRH }}$	Output Enable Time to High Level		33		49	ns	
${ }_{\text {t }}$	Output Disable Time from Low Level		36		38	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$
${ }^{\text {t }}$ PHZ	Output Disable Time from High Level		25		28	ns	$\mathrm{R}_{\mathrm{L}}=667 \Omega$

SWITCHING CHARACTERISTICS TEST CONDITIONS

LOAD CIRCUIT FOR

 THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

LIC-351

Notes: 1 . Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
4. Pulse generator characteristics: PRR $\leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$.
5. When measuring tPLH and tPHL, switches S_{1} and S_{2} are closed.

FUNCTION TABLES

Am54LS/74LS242

CONTROL INPUTS		DATA OUTPUTS	
$\overline{\text { GAB }}$	GBA	A	B
H	H	\bar{O}	I
L	H	$*$	$*$
H	L	ISOLATED	
L	L	I \bar{O}	

Am54LS/74LS243

CONTROL INPUTS		DATA OUTPUTS	
GAB	GBA	A	B
H	H	O	I
L	H	$*$	$*$
H	L	ISOLATED	
L	L	I	O

$I=$ Input	$H=H I G H$
$O=$ Output	$L=$ LOW
$\bar{O}=$ Inverting Output	

*Possible destructive oscillation may occur if the transceivers are enable in both directions at once.

Am26LS29
 Quad Three-State Single Ended RS-423 Line Driver

DISTINCTIVE CHARACTERISTICS

- Four single ended line drivers in one package for maximum package density
- Output short-circuit protection
- Individual rise time control for each output
- 50Ω transmission line drive capability
- High capacitive load drive capability
- Low $I_{C C}$ and I_{EE} power consumption ($26 \mathrm{~mW} /$ driver typ.)
- Meets all requirements of RS-423
- Three-state outputs for bus oriented systems
- Outputs do not clamp line with power off or in hi-impedance state over entire transmission line voltage range of RS-423
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Available in military and commercial temperature range
- Advanced low power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS29 is a quad single ended line driver, designed for digital data transmission. The Am26LS29 meets all the requirements of EIA Standard RS-423 and Federal STD 1030. It features four buffered outputs with high source and sink current, and output short circuit protection.
A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.
The Am26LS29 has three-state outputs for bus oriented systems. The outputs in the hi-impedance state will not clamp the line over the transmission line voltage of RS-423. A typical full duplex system would use the Am26LS29 line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS29 line drivers with only one enabled at a time and all others in the three-state mode.
The Am26LS29 is constructed using advanced low-power Schottky processing.

LOGIC DIAGRAM

BLI-001

ORDERING INFORMATION			CONNECTION DIAGRAM	
Package Type	Temperature Range	Order Number	${ }^{16} \square \begin{gathered} \text { SLEW RATE } \\ \text { CONTROL A } \end{gathered}$	
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS29DM		
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS29FM	${ }^{\text {INPUT B }} \square^{3} \quad 14{ }^{14}{ }^{\text {OUTPUT B }}$	
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS29XM		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26LS29DC	GNo $\square_{5}^{\text {Am26LS29 }}{ }^{12} \square^{\text {SLEW RATE }}$	
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26LS29PC		
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26LS29XC	inputc $\square^{6} \quad 11 \square$ OUtputc	
			${ }^{\text {INPUT O }} \square^{7} \quad 10{ }^{10} \square$ OUTPUT D	
			$\mathrm{VEE}_{\mathrm{EE}}^{8} \square_{8}^{8} \quad 9$SLEW RATE CONTROL D	
			Note: Pin 1 is marked for orientation.	BLI-004

Am26LS29
ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage

$\mathrm{V}+$	7.0 V
$\stackrel{\mathrm{~V}-}{ }$	-7.0 V
Power Dissipation	600 mW
Input Voltage	-0.5 to +15.0 V
Output Voltage (Power Off)	$\pm 15 \mathrm{~V}$
Lead Soldering Temperature (10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:

```
Am26LS29XM (MIL) \(\quad T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+10,-5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}-10,+5 \%\)
Am26LS29XC (COM'L) \(\quad T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{E E}=-5.0 \mathrm{~V} \pm 5 \%\)
```

DC CHARACTERISTICS over the operating temperature range (Notes 1 and 2)

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
V_{O}	Output Voltage	$R_{L}=\infty$	$V_{\text {IN }}=2.4 \mathrm{~V}$	4.0	4.4	6.0	Volts
$\overline{V_{0}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-4.0	-4.4	-6.0	Volts
V_{T}	Output Voltage	$R_{L}=450 \Omega$	$\mathrm{VIN}^{\text {IN }}=2.4 \mathrm{~V}$	3.6	4.1		Volts
$\overline{V_{T}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-3.6	-4.1		Volts
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Output Unbalance	$\left\|V_{C C}\right\|=\left\|V_{E E}\right\|$,			0.02	0.4	Volts
${ }^{1} \mathrm{X}^{+}$	Output Leakage Power Off	$V_{C C}=V_{E E}=0 V$	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
1 x			$\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}$		-2.0	-100	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{S}^{+}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-70	-150	mA
IS			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		60	150	mA
ISlew	Slew Control Current	$\mathrm{V}_{\text {SLEW }}=\mathrm{V}_{\text {EE }}+0.9 \mathrm{~V}$			± 110		$\mu \mathrm{A}$
'CC	Positive Supply Current	$V_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
IEE	Negative Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA
10	Off State (High Impedance) Output Current	$V_{C C}=$ MAX .	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}$		-2.0	-100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage			2.0			Volts
$V_{\text {IL }}$	Low Level Input Voltage					0.8	Volts
I_{1}	High Level Input Current	$V_{1 N}=2.4 \mathrm{~V}$			1.0	40	$\mu \mathrm{A}$
		$V_{1 N} \leqslant 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}$				-1.5	Volts

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Typ.

Parameters	Description	Test Conditions		Min.	(Note 1)	Max.	Units
t_{r}	Rise Time	$R_{L}=450 \Omega, C_{L}=500 p F$, Fig. 1	$\mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$		3.0		$\mu \mathrm{s}$
			$\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$		120	300	ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, Fig. 1	$\mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$		3.0		$\mu \mathrm{S}$
			$\mathrm{C}_{\mathrm{c}}=0 \mathrm{pF}$		120	300	ns
Src	Slew Rate Coefficient	$R_{L}=450 \Omega, C_{L}=500$ pF, Fig. 1			. 06		$\mu \mathrm{s} / \mathrm{pF}$
tLZ	Output Enable to Output	$R_{L}=450 \Omega, C_{L}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$, Fig. 2			180	300	ns
${ }_{\text {t }}^{\text {Hz }}$					250	350	
${ }_{\text {t }}$		$R_{L}=450 \Omega, C_{L}=500 p F, C_{C}=0 p F$, Fig. 2			250	350	
t_{zH}					180	300	

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Symbols and definitions correspond to EIA RS-423 where applicable.

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

BLI-006

Figure 1. Rise Time Control.

Figure 2. Three State Delays.
Am26LS29 EQUIVALENT CIRCUIT

TYPICAL APPLICATION

Slew Rate (Rise or Fall Time)
Versus External Capacitor

CAPACITANCE - pF
BLI-010

Metallization and Pad Layout

DIE SIZE 0.070" X 0.094"

Am26LS30

Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver

DISTINCTIVE CHARACTERISTICS

- Dual RS-422 line driver or quad RS-423 line driver
- Driver outputs do not clamp line with power off or in hi-impedance state
- Individually three-state drivers when used in differential mode
- Low I_{CC} and I_{EE} power consumption

RS-422 differential mode $35 \mathrm{~mW} /$ driver typ.
RS-423 single-ended mode $\quad 26 \mathrm{~mW} /$ driver typ.

- Individual slew rate control for each output
- 50Ω transmission line drive capability (RS-422 into virtual ground)
- Low current PNP inputs compatible with TTL, MOS and CMOS
- High capacitive load drive capability
- Exact replacement for DS16/3691
- Advanced low power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS30 is a line driver designed for digital data transmission. A mode control input provides a choice of operation either as two differential line drivers which meet all of the requirements of EIA Standard RS-422 or four independent single-ended RS-423 line drivers.
In the differential mode the outputs have individual three-state controls. In the hi-impedance state these outputs will not clamp the line over a common mode transmission line voltage of $\pm 10 \mathrm{~V}$. A typical full duplex system would be the Am26LS30 differential line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS30 differential drivers.
A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.

The Am26LS30 is constructed using Advanced Low Power Schottky processing.

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage	
$\mathrm{V}+$	7.0 V
$\mathrm{~V}-$	-7.0 V
Power Dissipation	600 mW
Input Voltage	-0.5 to +15.0 V
Output Voltage (Power Off)	$\pm 15 \mathrm{~V}$
Lead Soldering Temperature (10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The Following Conditions Apply Unless Otherwise Specified:
Am26LS30XM (MIL) $\quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$
Am26LS30XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$
EIA RS-422 Connection, Mode Voltage $=0.8 \mathrm{~V}$

Typ.
Parameters
Description
Test Conditions (Note 3) Min. (Note 1)

v_{0}	Differential Output Voltage, V_{A}, B	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		3.6	6.0	Volts
$\overline{v_{0}}$			$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$		-3.6	-6.0	Volts
V_{T}	Differential Output Voltage, $\mathrm{V}_{\text {A }}$, B	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	2.0	2.4		Volts
$\overline{V_{T}}$			$\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$	-2.0	-2.4		Volts
$\mathrm{V}_{\text {OS }}, \overline{\mathrm{v}_{\text {OS }}}$	Common Mode Offset Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$			2.5	3.0	Volts
$\left\|V_{T}\right\|-\left\|\bar{V}_{T}\right\|$	Difference in Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$			0.005	0.4	Volts
$\left\|v_{\text {OS }}\right\|-\|\overline{v o s}\|$	Difference in Common Mode Offset Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$			0.005	0.4	Voits
$\mathrm{V}_{\text {SS }}$	$\left\|V_{T}-\overline{V_{T}}\right\|$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		4.0	4.8		Volts
$\mathrm{V}_{\text {CMR }}$	Output Voltage Common Mode Range	$\mathrm{V}_{\text {ENABLE }}=2.4 \mathrm{~V}$		± 10			Volts
${ }^{1} \times$	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	$V_{C M R}=10 \mathrm{~V}$			100	$\mu \mathrm{A}$
${ }^{1} \times$ B			$\mathrm{V}_{\text {CMR }}=-10 \mathrm{~V}$			-100	$\mu \mathrm{A}$
Iox	Off State (High Impedance) Output Current	$V_{C C}=$ MAX .	$\mathrm{V}_{\mathrm{CMR}} \leqslant 10 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {CMR }} \geqslant-10 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$I_{\text {SA }}, I_{\text {SB }}$	Output Short Circuit Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	$\mathrm{V}_{\text {OA }}=6.0 \mathrm{~V}$		80	150	mA
			$\mathrm{V}_{\mathrm{OB}}=0 \mathrm{~V}$		-80	-150	mA
		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	$\mathrm{V}_{\text {OA }}=0 \mathrm{~V}$		-80	-150	mA
			$\mathrm{V}_{\mathrm{OB}}=6.0 \mathrm{~V}$		80	150	mA
ICC	Supply Current				18	30	mA
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage			2.0			Volts
$V_{\text {IL }}$	Low Level Input Voitage					0.8	Volts
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{1 \mathrm{IN}}=2.4 \mathrm{~V}$			1.0	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }} \leqslant 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$				-1.5	Volts

AC CHARACTERISTICS

EIA RS-422 Connection, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$, Mode $=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Typ.
Parameters
Description
Test Conditions Min. $\begin{gathered}\text { Typ. } \\ \text { (Note 1) }\end{gathered}$

Max. Units

t_{r}	Differential Output Rise Time	Fig. 2, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	120	200	ns
t_{f}	Differential Output Fall Time	Fig. 2, $\mathrm{C}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	120	200	ns
$\mathrm{t}_{\text {PDH }}$	Output Propagation Delay	Fig. 2, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	120	200	ns
$\mathrm{t}_{\text {PDL }}$	Output Propagation Delay	Fig. 2, $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{L}=500 \mathrm{pF}$	120	200	ns
tLz	Output Enable to Output	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$, Fig. 3	180	300	ns
t_{Hz}			250	350	
t_{ZL}		$R_{L}=450 \Omega, C_{L}=500 p F, C_{C}=0 p F$, Fig. 3	250	350	
t_{zH}			180	300	

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Symbols and definitions correspond to EIA RS-422 where applicable.
3. \mathbf{R}_{L} connected between each output and its complement.

ELECTRICAL CHARACTERISTICS over the operating temperature range The following conditions apply unless otherwise specified:
Am26LS30XM (MIL)
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{E E}=-5.0 \mathrm{~V} \pm 10 \%$
Am26LS30XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{\text {EE }}=-5.0 \mathrm{~V} \pm 5 \%$

RS-423 Connection, Mode Voltage $\geqslant 2.0 \mathrm{~V}$
DC CHARACTERISTICS over the operating temperature range (Notes 1 and 2)

Parameters Description \quad Test Conditions Min. | Typ. |
| :---: |
| (Note 1 |

V_{O}	Output Voltage	$\begin{aligned} & R_{L}=\infty, \\ & \left\|V_{C C}\right\|=\left\|V_{E E}\right\|=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	4.0	4.4	6.0	Volts
$\overline{V_{O}}$			$V_{\text {IN }}=0.4 \mathrm{~V}$	-4.0	-4.4	-6.0	Volts
V_{T}	Output Voltage	$\begin{aligned} & R_{\mathrm{L}}=450 \Omega, \\ & \left\|V_{\mathrm{CC}}\right\|=\left\|V_{\mathrm{EE}}\right\|=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$	3.6	4.1		Volts
$\overline{V_{T}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-3.6	-4.1		Volts
$\left\|V_{T}\right\|-\left\|\overline{V_{T}}\right\|$	Output Unbalance	$\left\|V_{C C}\right\|=\left\|V_{E E}\right\|, R_{L}=450 \Omega$			0.02	0.4	Volts
${ }^{1} \mathrm{X}^{+}$	Output Leakage Power Off	$V_{C C}=V_{E E}=O V$	$\mathrm{V}_{\mathrm{O}}=6.0 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
1 x			$\mathrm{V}_{\mathrm{O}}=-6.0 \mathrm{~V}$		-2.0	-100	$\mu \mathrm{A}$
IS^{+}	Output Short Circuit Current	$V_{O}=0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-80	-150	mA
IS-			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		80	150	mA
ISlew	Slew Control Current	$\mathrm{V}_{\text {SLEW }}=\mathrm{V}_{\text {EE }}+0.9 \mathrm{~V}$			± 140		$\mu \mathrm{A}$
${ }^{\text {I CC }}$	Positive Supply Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
${ }^{\text {IEE }}$	Negative Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA
$V_{\text {IH }}$	High Level Input Voltage			2.0			Volts
$V_{\text {IL }}$	Low Level Input Voltage					0.8	Volts
IH	High Level Input Current	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$			1.0	40	$\mu \mathrm{A}$
		$V_{\text {IN }} \leqslant 15 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
I_{1}	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1} \mathrm{~N}=-12 \mathrm{~mA}$				-1.5	Volts

AC CHARACTERISTICS

RS-423 Connection, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{Mode}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
t_{r}	Rise Time	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	$\mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$		3.0		$\mu \mathrm{s}$
			$\mathrm{C}_{\mathrm{C}}=0$		120	300	ns
t_{f}	Fall Time	Fig. $1, R_{L}=450 \Omega, C_{L}=500 p F$	$\mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$		3.0		$\mu \mathrm{s}$
			$\mathrm{C}_{\mathrm{C}}=0$		120	300	ns
Src	Slew Rate Coefficient	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{L}=500 \mathrm{pF}$. 06		$\mu \mathrm{s} / \mathrm{pF}$
$t_{\text {PDH }}$	Output Propagation Delay	Fig. 1, $\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$			180	300	ns
$t_{\text {PDL }}$	Output Propagation Delay	Fig. $1, \mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$			180	300	ns

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading. 2. Symbols and definitions correspond to EIA RS-423 where applicable.

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS FOR EIA RS-423 CONNECTION

BLI-006
BLI-007

Figure 1. Rise Time Control for RS-423.

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUIT FOR RS-422 CONNECTION

BLI-008
*Current probe is the easiest way to display a differential waveform.

Figure 2.

Figure 3. Three-State Delays.

Am26LS30 EQUIVALENT CIRCUIT

Metallization and Pad Layout

DIE SIZE 0.070" \times 0.094"

Am26LS31

Quad High Speed Differential Line Driver

DISTINCTIVE CHARACTERISTICS

- Output skew $-2.0 n$ s typical
- Input to output delay - 12ns
- Operation from single +5 V supply
- 16-pin hermetic and molded DIP package
- Outputs won't load line when $\mathrm{V}_{\mathrm{CC}}=0$
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100Ω terminated transmission lines
- Available in military and commercial temperature range
- Advanced low-power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS31 is a quad differential line driver, designed for digital data transmission over balanced lines. The Am26LS31 meets all the requirements of EIA standard RS-422 and federal standard 1020. Is is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.
The circuit provides an enable and disable function common to all four drivers. The Am26LS31 features 3 -state outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.
The Am26LS31 is constructed using advanced low-power Schottky processing.

LOGIC DIAGRAM

ORDERING INFORMATION			CONNECTION DIAGRAM (Top View)	
Package Type	Temperature Range	Order Number		
Hermetic DIP Flat Pak	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	AM26LS31DM AM26LS31FM		
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS31XM	-2,	
Hermetic DIP	$0^{\circ}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26LS31DC	Ts 05	
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26LS31PC	s	
			Note: Pin 1 is marked for orientation.	LIC-353

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage	7.0 V
Input Voltage	7.0 V
Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS over the operating temperature range
The following conditions apply unless otherwise specified:

Am26LS31 $\times M$ (MIL)	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5 \mathrm{~V} \pm 10 \%$
Am26LS31×C (COM $\left.{ }^{\prime} \mathrm{L}\right)$	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5 \mathrm{~V} \pm 5 \%$

Parameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	2.5	3.2		Volts
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.32	0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	2.0			Volts
$V_{\text {IL }}$	Input LOW Voltage	$V_{\text {CC }}=$ Max .			0.8	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-0.20	-0.36	mA
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		0.5	20	$\mu \mathrm{A}$
11	Input Reverse Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		0.001	0.1	mA
	Off-State (High Impedance)	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		0.5	20	
	Output Current	年 $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		0.5	-20	
V_{1}	Input Clamp Voltage	$V_{C C}=M i n ., l_{\text {IN }}=18 \mathrm{~mA}$		-0.8	-1.5	Volts
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max .	-30	-60	-150	mA
${ }^{\text {ICC }}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., all outputs disabled		60	80	mA
tPLH	Input to Output	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Load $=$ Note 2		12	20	ns
tPHL	Input to Output	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, Load $=$ Note 2		12	20	ns
SKEW	Output to Output	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, Load $=$ Note 2		2.0	6.0	ns
${ }^{\text {t }}$ LZ	Enable to Output	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		23	35	ns
${ }^{\text {t }} \mathrm{HZ}$	Enable to Output	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		17	30	ns
${ }^{\text {t }} \mathrm{ZL}$	Enable to Output	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Load $=$ Note 2		35	45	ns
${ }^{\text {2 }} \mathrm{H}$	Enable to Output	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Load $=$ Note 2		30	40	ns

Notes: 1. All typical values are $V_{C C}=5.0 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$.
2. $C_{L}=30 \mathrm{pF}, V_{I N}=1.3 \mathrm{~V}$ to $V_{O U T}=1.3 \mathrm{~V}, V_{P U L S E}=0 \mathrm{~V}$ to +3.0 V , See Below.

TYPICAL APPLICATION

Vout Versus Vcc

LIC-359

Metallization and Pad Layout

DIE SIZE $0.067^{\prime \prime} \times 0.084^{\prime \prime}$

Am26LS32•Am26LS33

Quad Differential Line Receivers

DISTINCTIVE CHARACTERISTICS

- Input voltage range of 15 V (differential or common mode) on Am26LS33; 7V (differential or common mode) on Am26LS32
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range on Am26LS32; $\pm 0.5 \mathrm{~V}$ sensitivity on Am26LS33
- The Am26LS32 meets all the requirements of RS-422 and RS-423
- 6 k minimum input impedance
- 30 mV input hysteresis
- Operation from single +5 V supply
- 16-pin hermetic and molded DIP package
- Fail safe input-output relationship. Output always high when inputs are open.
- Three-state drive, with choice of complementary output enables, for receiving directly onto a data bus.
- Propagation delay 17 ns typical
- Available in military and commercial temperature range
- Advanced low-power Schottky processing
- 100% reliability assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am26LS32 is a quad line receiver designed to meet the requirements of RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The Am26LS32 features an input sensitivity of 200 mV over the input voltage range of $\pm 7 \mathrm{~V}$.
The Am26LS33 features an input sensitivity of 500 mV over the input voltage range of $\pm 15 \mathrm{~V}$.
The Am26LS32 and Am26LS33 provide an enable and disable function common to all four receivers. Both parts feature 3state outputs with 8 mA sink capability and incorporate a fail safe input-output relationship which keeps the outputs high when the inputs are open.
The Am26LS32 and Am26LS33 are constructed using Advanced Low-Power Schottky processing.

ORDERING INFORMATION				CONNECTION DIAGRAM Top View	
Package Type	Temperature Range	Am26LS32 Order Number	Am26LS33 Order Number		
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS32DM	AM26LS33DM		
Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS32FM	AM26LS33FM	ENABLE -2	
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26LS32XM	AM26LS33XM	OUTPUT C -	
Hermetic DIP	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$	AM26LS32DC	AM26LS33DC		
Molded DIP Dice	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	AM26LS32PC AM26LS32XC	AM26LS33PC AM26LS33XC		
				Note: Pin 1 is marked for orientation.	LIC-360

Am26LS32 • Am26LS33
ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage	7.0 V
Common Mode Range	$\pm 25 \mathrm{~V}$
Differential Input Voltage	$\pm 25 \mathrm{~V}$
Enable Voltage	7.0 V
Output Sink Current	50 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Over the operating temperature range
The following conditions apply unless otherwise specified:
Am26LS32XM, Am26LS33XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \%$
Am26LS32XC, Am26LS33XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
Parameters
$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
Typ.

Parameters	Description		Conditi		Min.	(Note 1)	Max.	Units
			Am26LS	CM $\leqslant+7 \mathrm{~V}$	0.2	0.06	0.2	ts
			Am26	$\mathrm{V}_{\mathrm{CM}} \leqslant+15 \mathrm{~V}$	0.5	0.12	0.5	
RIN	Input Resistance	$-15 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+15 \mathrm{~V}$	e input		6.0k	8.5k		Ω
IIN	Input Current (Under Test)	$V_{\text {IN }}=+15 \mathrm{~V}$, Other In	$-15 \mathrm{~V}=$				2.3	mA
IIN	Input Current (Under Test)	$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$, Other Inp	-15V				-2.8	mA
		$\mathrm{V}_{\text {CC }}=$ Min., $\Delta \mathrm{V}_{\text {IN }}=+1$		COM ${ }^{\prime}$ L	2.7	3.4		
VOH	Output HIGH Volage	$V_{\text {ENABLE }}=0.8 \mathrm{~V}, \mathrm{I}$	$440 \mu \mathrm{~A}$	MIL	2.5	3.4		olts
		$V_{\text {CC }}=$ Min., $\Delta \mathrm{V}_{\text {IN }}=-1$		$1 \mathrm{OL}=4.0 \mathrm{~mA}$			0.4	Volts
O	,	$V_{\text {ENABLE }}=0.8 \mathrm{~V}$		$1 \mathrm{OL}=8.0 \mathrm{~mA}$			0.45	ols
$V_{\text {IL }}$	Enable LOW Voltage						0.8	Volts
$\mathrm{V}_{\text {IH }}$	Enable HIGH Voltage				2.0			Volts
V_{1}	Enable Clamp Voltage	$V_{C C}=$ Min., $I_{\text {IN }}=-18 \mathrm{~m}$					-1.5	Volts
10	Off-State (High Impedance)			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20	μ
O	Output Current			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Enable LOW Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				-0.2	-0.36	mA
$\mathrm{I}_{1 \mathrm{H}}$	Enable HIGH Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				0.5	20	$\mu \mathrm{A}$
11	Enable Input High Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	100	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} .$,	$1 \mathrm{~N}=+1.0$		-15	-50	-85	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=$ Max., All $V_{\text {IN }}=$	D, Outp			52	70	mA
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0$	$V_{C M}=0$			30		mV
tple	Input to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$	$C_{L}=15 \mathrm{pF}$	d. below		17	25	ns
tPHL	Input to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$C_{L}=15 \mathrm{pF}$	d. below		17	25	ns
${ }^{\text {t }} \mathrm{L} \mathrm{Z}$	Enable to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. below		20	30	ns
${ }^{\text {t }} \mathrm{HZ}$	Enable to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$,	below		15	22	ns
${ }^{\text {t }} \mathrm{ZL}$	Enable to Output	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$	$C_{L}=15 \mathrm{p}$	d. below		15	22	ns
t ZH	Enable to Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$C_{L}=15 \mathrm{pF}$	d. below		15	22	ns

Note: 1. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

LOAD TEST CIRCUIT FOR THREE-STATE OUTPUTS

PROPAGATION DELAY
(Notes 1 and 3)

ENABLE AND DISABLE TIMES
(Notes 2 and 3)

LIC-361

LIC-362

Notes:

1. Diagram shown for $\overline{\text { Enable LOW. }}$
2. S_{1} and S_{2} of Load Circuit are closed except where shown.
3. Pulse Generator for All Pulses: Rate $\leqslant 1.0 \mathrm{MHz}$; $Z_{o}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leqslant 6.0 \mathrm{~ns}$.

TYPICAL APPLICATION

LIC-365

Two Wire Balanced System.

LIC-366

Single Wire With Common Ground Unbalanced System.

LINE TERMINATION

It is important in a digital communication system to have the minimum amount of noise generated by undesired reflections at the driver and receiver. There are numerous ways of matching to the line. The line can be matched at the driver, at the receiver or both, each method has advantages and disadvantages. Generally for any but the longest lines it is sufficient to match at one place, and only when there are discontinuities in the line, party line operation, or lack of a reasonable match at the opposite end of the line is the extra hardware of matching at both ends justified. The majority of transmission lines have fairly low characteristic impedances (in the range of 50 to 200 ohms) and the currents involved for a reasonable voltage swing are quite large. It is more difficult to couple noise into this low impedance, but it is also more difficult to drive, and line drivers must have the ability to supply large currents.
Various matching techniques that can be employed are shown in Figure 1. These impedance charts are useful in showing what happens to wave fronts traveling down a line, when the line delay is longer than the wave front transition. The DC input characteristic of the receiver, including any external components, is plotted on the V-I graph together with the output characteristic of the driver, including any external components used at the driving end. There are always quiescent points points where the driver and receiver characteristics cross. These points represent the DC voltage/current conditions, which must eventually be satisfied. To determine the effect of switching from one quiescent point to the other, a line with a slope equal to the characteristic impedance of the transmission line is plotted, starting at the initial quiescent point and ending at the applicable output impedance characteristic. The point of intersection gives the voltage and current at the output of the driver (and the input of the transmission line immediately after the driver switched states). From this point a line having an equal but opposite slope is drawn to the input characteristic and, at the intersection shows the voltage/current conditions of the wave front at the input of the receiver. This procedure is repeated to the output characteristic and so on at each intersection of the characteristic, the voltage/current relationship for a particular reflection is given. The resulting time/
voltage relationships for the traveling wavefront at the two ends of the transmission line are shown alongside.

From the graphs several important features can be seen. If the line is not matched at either end considerable transient voltage swings can occur. In fact if the input and output characteristics are at right angles to one another, the reflections continue for an infinite time if the line is assumed to have zero loss. Most lines have extremely low losses, and, therefore, a very undesirable situation exists if the line is not matched at either end.

If the line is matched at the receiver, a voltage wave of constant amplitude travels down the line and is absorbed at the termination. Note whether the line is terminated to ground or to the power supply the system consumes DC power, either in the HIGH logic level or in the LOW logic level. In order to reduce the power dissipation, a blocking capacitor can be used in series with the receiver termination. The capacitor can be chosen to look like a short circuit to the voltage wavefront but stop DC (current) flow. Since the capacitor must be charged and discharged through the line, the data rate is reduced, when this technique is employed.
If the line is matched with a series resistor at the driver, then the line input initially rises to one half the final voltage. This wave front travels down the line and is reflected at the receiver. When the reflection reaches the driver the voltage at the driver rises to its final amplitude. The receiver, however, sees one transition from the initial to the final amplitude. When the driver switches from HIGH to LOW a similar situation occurs, in which the input of the line sees at first a step to one half the final value and, two line delays later, the final LOW condition. This back matching mode of operation consumes no DC power if the input impedance of the receiver is infinite. The advantage of the method is that if the input impedance of the receiver is high, very little power is dissipated and current only flows during the transition time, which is twice the line delay time. If back matching is used in a balanced system the terminating series resistance must be divided into two equal resistances with resistors inserted in series with each wire in order to maintain a balanced system.

USE OF THE Am26LS29, 30, 31 and 32 QUAD DRIVER/RECEIVER FAMILY IN EIA RS-422 AND 423 APPLICATIONS

By David A. Laws and Roy J. Levy

INTRODUCTION

Today's high-performance data processing systems demand significantly faster data communications rates than are possible with the EIA RS-232 specifications in use for the past ten years.

Two new standards prepared by the Electronic Industries Association address this need. EIA RS-423 is an unbalanced, bipolar voltage specification designed to interface with RS232C, while greatly enhancing its operation. It permits the communication of digital information over distances of up to 2000 feet and at data rates of up to 300 Kilobaud. EIA RS-422 is a balanced voltage digital interface for communicaton of digital data over distances of 4000 feet or data rates of up to 10 megabaud.

Advanced Micro Devices has developed a family of monolithic Low-power Schottky quad line drivers and receivers to meet the requirements of these specifications.
The Am26LS29 and 30 line drivers and the Am26LS32 receiver meet all requirements of RS-423 while the Am26LS31 differential line driver and the Am26LS32 receiver meet the requirements of RS-422.

A second receiver element, the Am26LS33 is available for use in high common mode noise environments, exceeding the common mode voltage requirements of RS-422 and RS423.

This application note reviews the use of these devices in implementing the new standards. Emphasis is given to the EIA RS-422 balanced interface.

EIA STANDARD SPECIFICATIONS

Two basic forms of operation are available for transmission of digital data over interconnecting lines. These are the single ended and differential techniques.
The single-ended form uses a single conductor to carry the signal with the voltage referenced to a single return conductor. This may also be the common return for other signal conductors. Figure 1a.

The single-ended form is the simplest way to send data as it requires only one signal line per circuit. This simplicity, however, is often offset by the inability of this form to allow discrimination between a valid signal produced by the driver, and the sum of the driver signal plus externally induced noise signals.
A solution to some of the problems inherent in the singleended form of operation is offered by the differential form of operation. Figure 1b. This consists of a differential driver (essentially two single-ended drivers with one driver always producing the complementary output signal level to the other driver), a twisted pair transmission line and a differential line receiver. The driver signal appears as a differential voltage to the line receiver, while the noise signals appear as a common mode signal. The two signals, therefore, can be discriminated by a line receiver with a sufficient common mode voltage operating range.
The Electronic Industries Association, EIA, has defined a number of specifications standardizing the interface between data terminal equipment and data circuit terminating equipment based on both single-ended and differential operation.
a) Single Wire With Common Ground.

BLI-013
b) Two Wire Balanced System.

BLI-014

Figure 1. Data Communication Techniques.

The most widely used standard for interfacing between data terminal equipment and data communications equipment today, is EIA RS-232C, issued in August 1969. The RS-232C electrical interface is a single-ended, bipolar-voltage, unterminated circuit. This specification is for serial binary data interchange over short distances (up to 50 feet) at low rates (up to 20 Kilobaud). It is a protocol standard as well as an electrical standard, specifying hand shaking signals and functions between terminal and the communications equipment. As already noted, single-ended circuits are susceptible to all forms of electromagnetic interference. Noise and cross talk susceptibility are proportional to length and bandwidth. RS-232C places restrictions on both. It limits slew rate of the drivers ($30 \mathrm{~V} / \mu \mathrm{s}$) to control radiated emission on neighboring circuits and allows bandwidth limiting on the receivers to reduce susceptibility to cross talk. The length and slew rate limits can adequately control reflections on unterminated lines, and the length and bandwidth limits are more than adequate to reduce susceptibility to noise.

Like EIA RS-232C, the new EIA RS-423 is also a single-ended, bipolar-voltage unterminated circuit. It extends the distance and data rate capabilities of this technique to distances of up to 4000 feet at data rates of 3000 baud, or at higher rates of up to 300 Kilobaud over a maximum distance of 40 feet.
EIA RS-422 is a differential, balanced voltage interface capable of significantly higher data rates over longer distances. It can accommodate rates of 100 Kilobaud over a distance of 4000 feet or rates of up to 10 megabaud. These performance improvements stem from the advantages of a balanced configuration which is isolated from ground noise currents. It is also immune to fluctuating voltage potentials between system ground references and to common mode electromagnetic interference. Figure 2 compares the driver output waveforms for the three EIA standard configurations, while Table I compares the key characteristics required by drivers and receivers intended for these applications. Since RS-232C has been in use for many years, RS-422 and 423 parameter values have been selected to facilitate an orderly transition from existing designs to new equipment.
a) EIA RS-232C Generator Output.

BLI-015
b) EIA RS-422 Generator Output.

$t_{D}=$ Time duration of the unit interval
at the applicable modulation rate
$t_{r} \leqslant 0.1 t_{D}$ when $t_{D} \geqslant 200 \mathrm{~ns}$
$t_{r} \leqslant 20 \mathrm{~ns}$ when $\mathrm{t}_{\mathrm{D}}<200 \mathrm{~ns}$

BLI-015

$V_{S S}=$ Difference in steady state voltages
$V_{S S}=\left|V_{t}-\bar{V}_{t}\right|$
$V_{S S} \min .=2 V ; V_{S S} \max .=6 \mathrm{~V}$
BLI-016
c) EIA RS-423 Generator Output.

$V_{S S}=\left|V_{t}-\bar{V}_{t}\right|$
$V_{S S}=$ Difference in steady
state voltages
$\mathrm{V}_{\mathrm{SS}} \min .= \pm 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}} \max .= \pm 6 \mathrm{~V}$
Figure 2. Driver Output Waveforms.

TABLE I
KEY PARAMETERS OF EIA SPECIFICATIONS

Characteristics	EIA RS-232C	EIA RS-423	EIA RS-422	Units
Form of Operation	Single Ended	Single Ended	Differential	
Max. cable length	50	2000	4000	Feet
Max. data rate	20K	300K	10M	Baud
Driver output voltage, open circuit*	± 25	± 6	6 volts between outputs	Volts (Max.)
Driver output voltage, Loaded output*	± 5 to ± 15	± 3.6	2 volts between outputs	Volts (Min.)
Driver output resistance power off	$\mathrm{Ro}=300 \Omega$	$100 \mu \mathrm{~A}$ between $-6 \text { to }+6 \mathrm{~V}$	$100 \mu \mathrm{~A}$ between +6 and -.25 V	Min.
Driver output short circuit current ISC	± 500	± 150	± 150	mA (Max.)
Driver output slew rate	$30 \mathrm{~V} / \mu \mathrm{sec}$ Max.	Slew rate must be controlled based upon cable length and modulation rate	No control necessary	
Receiver input resistance $\mathrm{R}_{\text {in }}$	3 K to 7K	$\geqslant 4 \mathrm{~K}$	$\geqslant 4 \mathrm{~K}$	Ω
Receiver input thresholds	-3 to +3	-0.2 to +0.2	-0.2 to +0.2	Volts (Max.)
Receiver input voltage	-25 to +25	-12 to +12	-12 to +12	Volts (Max.)

${ }^{*} \pm$ indicates polarity switched output.

INTEGRATED CIRCUIT CHARACTERISTICS

Most semiconductor manufacturers offer integrated circuits designed to satisfy the old RS-232C standard. A number of them have designs in progress to meet the new EIA specifications. Products available from Advanced Micro Devices to meet these needs are shown in Table II.

The Am26LS29, 30, 31 and 32 are a family of quad drivers and receivers designed specifically to meet the new EIA standards. These products utilize Low-Power Schottky technology to incorporate four drivers or four receivers, together with control logic, in the standard 16-pin package outlines.

The Am26LS29/30 and the Am26LS32 are driver and receiver pairs designed to implement the single-ended EIA RS-423 standard. The Am26LS31 is a differential line driver designed for use with the Am26LS32 receiver in a differential mode to meet EIA RS-422.

Am26LS29 AND Am26LS30 QUAD
 RS-423 LINE DRIVERS

The Am26LS29 and 30 consist of four single-ended line drivers designed to meet or exceed the requirements of RS-423. The buffered driver outputs are provided with sufficient source and sink current capability to drive 50 ohm to a virtual ground transmission line and high capacitive loads. The Am26LS29 has a three-state output control while the Am26LS30 has a Mocie Control input that allows it to operate as a dual RS-422 driver (with suitable power supply changes), Figure 3.

Each of the four driver inputs, as well as the Enable/Mode Control input is a PNP Low-Power Schottky input for reduced
input loading, one-half the normal fan-in. Since there are two inverters from each input to output, the driver is noninverting. When operating in the RS-423 mode, the Am26LS29 and 30 require both +5 V and -5 V nominal value power supplies. This allows the outputs to swing symmetrically about ground - producing a true bipolar output. The Mode Control (Pin 4) of the Am26LS30 should be HI or tied to

TABLE il ADVANCED MICRO DEVICES' EIA COMPATIBLE DEVICES

EIA Standard	Drivers	Receivers
RS-232C	Am1488	Am1489, 1489A
	Quad Driver	Quad Receivers with response control pin
	Am9616	Am9617
	Triple Driver with logic control	Triple Receiver with optional hysteresis
	Am2616	Am2617
	Quad Driver also specified for CCITT V. 24 and MIL-188C	Quad Receiver specified over MIL range
RS-422	Am26LS31	Am26LS32
	Quad Differential with three-state control gating	Quad Differential Driver single-ended Receiver
RS-423	Am26LS29	Am26LS32
	Quad Driver with three-state output	Quad single-ended/ Differential Receiver
	Am26LS30 Quad Driver with slew rate control	

a) Logic Diagrams

Am26LS30
RS-423 Operation (Mode Control HIGH)

Figure 3. Am26LS29 and Am26LS30 Drivers.
V_{Cc}. Each output is designed to drive the RS-423 load of 50 ohms with an output voltage equal or greater than +3.6 volts in the HI state and -3.6 volts in the LO state. Each output is current limited to 150 mA max. in either logic state. A Slew Rate control pin is brought out separately for each output to allow output ramp rate (rise and fall time) control. This provides suppression of near end cross talk to other receivers in the cable. Connecting a capacitor from this node to that
driver's respective output will produce a ramp (10% to 90%) of 50 ns typical for each picofarad of capacitance in that capacitor. RS-423 establishes recommended ramp rates versus length of line driven and modulation rate, Figure 4.

The Am26LS30 can be used at low data rates as a dual EIA RS-422 driver with three-state outputs by connecting the $V_{E E}$ supply and the mode control input to ground.

Am26LS31 QUAD RS-422 DRIVER

The Am26LS31 is a quad differential line driver designed to meet the RS-422 specification while operating with a single +5 volt supply. A common enable and disable function controls all four drivers, Figure 5. The driver features high speed, de-skewed differential outputs with typical propagation delays of 12 ns and residual skew of 2 ns . Both differential line outputs are designed for three-state operation to allow two-way half duplex and multiplex, data bus applications.

Table III is a summary of the essential requirements of the RS-422 standard. Section A describes the key characteristics satisfied by the Am26LS31 driver.
The balanced differential line driver consists of two halves, each of which is similar to a Low-power Schottky TTL gate with equal source and sink current capability. The two halves are emitter coupled in a differential input configuration. One side of the input circuit is tied to a fixed TTL bias threshold and the other side is tied to a sink diode in normal DTL/TTL fashion. This configuration offers complementary outputs with very low skew, dependent only upon component matching, a necessity to meet RS-422.

Figure 4. Data Modulation Rate or Cable Length Versus Risetime for EIA RS-423.

The circuit diagram of the driver is shown in Figure 6. The emitter-coupled input circuit is formed by Q 2 and Q 3 , which are biased by a current source. This source is a current mirror, formed by 01 which supplies the current, and D6 which is diode connected transistor matched to Q1. The fixed bias for Q3, formed by D5 and D6, is $2 \mathrm{~V}_{\mathrm{BE}} . A 2 \mathrm{~V}_{\mathrm{BE}}$ bias, less the D2 Schottky diode drop, provides the normal Low-power Schottky TTL threshold, $\mathrm{V}_{\text {IL }} \doteq 0.7 \mathrm{~V}$. R19 provides a boost to 0.8 V for a full 400 mV TTL noise margin. The differential outputs of the emitter coupled stage, A and \bar{A}, drive emitter followers Q14 and Q15, which provide the required speed and matching characteristics. The emitter followers, drive phase splitters Q4 and Q5, which in turn drive totem-pole outputs. The outputs at the line interface are of standard Low-power Schottky TTL configuration, except that circuit values are modified to provide high sourcing capability. The outputs are designed to source or sink 20 mA each, so that they can generate a voltage of at least 2.0 V across a 100 ohm load, as required by RS-422. Additional circuitry has been included to make the line outputs three-state for two-way bus applications. The Am26LS31 meets the RS-422 requirement that the driver not load the line in the powered down condition ($\mathrm{I}_{\mathrm{X}} \leqslant 100 \mu \mathrm{~A}$) or if the power supply to that device should fail.

Am26LS32 QUAD RS-422 AND 423 RECEIVER

The Am26LS32 is a quad line receiver which, operating from a single 5 volt supply, can be used in either differential or single-ended modes to satisfy RS-422 and 423 applications respectively. A complementary enable and disable feature, similar to that on the driver, controls all four receivers, Figure 7. The device's three-state outputs, which can sink 8 mA , incorporate a fail-safe input-output relationship which keeps the outputs high when the inputs are open.
The Am26LS32 meets the receiver input specification of Table III, a 200 mV threshold sensitivity with common mode rejection exceeding the supply line potentials, (greater than 7 volts). The same design feature of the input circuit which provides the common mode rejection also insures excellent power supply ripple rejection, which is important when switching the high currents involved in a system's interfaces. Furthermore, unlike operational amplifiers, where the DC common mode and power supply rejection ratios roll off with open loop gain, the full rejection capability of this line receiver is maintained at high frequencies. The receiver hysteresis of typically 30 mV , provides differential noise immunity. Signals received on long lines can have slow transition times, and without hysteresis, a small amount of noise around the switching threshold can cause errors in the receiver output.

Figure 5. Am26LS31 Logic Diagram.

TABLE III
SUMMARY OF EIA RS-422 STANDARD FOR A BALANCED DIFFERENTIAL INTERFACE

A. Line Driver

Open Circuit Voltage (either logic state)
Differential
Common Mode

$$
\begin{array}{r}
\left|\mathrm{V}_{\mathrm{do}}\right| \leqslant 6.0 \mathrm{~V} \\
\left|\mathrm{~V}_{\mathrm{cmo}}\right| \leqslant 3.0 \mathrm{~V}
\end{array}
$$

Common Mode
Differential Output Voltage (across 100 ohm load)
Either logic state

$$
\left|V_{d}\right| \geqslant \max \left(0.5 \mathrm{~V}_{\mathrm{do}}, 2.0 \mathrm{~V}\right)
$$

Output Impedance Either logic state
$R_{G} \leqslant 100$ ohms
Mark-Space Level Symmetry (across 100 ohm load)

$$
\begin{array}{ll}
\text { Differential } & \left|\mathrm{V}_{\mathrm{dS}}\right|-\left|\mathrm{V}_{\mathrm{dM}}\right| \leqslant 0.4 \mathrm{~V} \\
\text { Common Mode } & \left|\mathrm{V}_{\mathrm{cms}}\right|-\left|\mathrm{V}_{\mathrm{cm}}\right| \leqslant 0.4 \mathrm{~V}
\end{array}
$$

Output Short Circuit Current (to ground)
Either Output

$$
\left|I_{\mathrm{sc}}\right| \leqslant 150 \mathrm{~mA}
$$

Output Leakage Current (power off)

Voltage Range

$$
-0.25 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{x}} \leqslant+6.0 \mathrm{~V}
$$

Either Output at V_{x} $||x| \leqslant 100 \mu A$

Rise and Fall Times (across 100 ohm load)

$$
T=\text { Baud Interval } \quad\left(t_{r}, t_{f}\right) \leqslant \max (0.1 T, 20 n s)
$$

Ringing (across 100 ohm load)
Definitions
$V_{d S S}=V_{d}$ (steady state)
$V_{S S}=V_{d S}-V_{d M}$ (steady state)
Limits (either logic state)

Percentage	$\left\|\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{dSS}}\right\| \leqslant 0.1 \mathrm{~V}_{\mathrm{SS}}$
Absolute	$2.0 \mathrm{~V} \leqslant\left\|\mathrm{~V}_{\mathrm{d}}\right\| \leqslant 6.0 \mathrm{~V}$

B. Line Receiver

Signal Voltage Range
Differential
Common Mode
$\left|V_{d}\right| \leqslant 6.0 \mathrm{~V}$
$\left|V_{c M}\right| \leqslant 7.0 \mathrm{~V}$
Single-Ended Input Current (power ON or OFF)
Either Input at V_{x}
$\left|V_{\mathrm{x}}\right|=10 \mathrm{~V}$
Other Input Grounded
$|\mathrm{lv}| \leqslant 3.25 \mathrm{~mA}$
Single-Ended Input Bias Voltage (other input grounded)
Either Input Open Circuit

$$
\left|V_{B}\right| \leqslant 3.0 \mathrm{~V}
$$

Single-Ended Input Impedance (other input grounded)

> Either Input

$$
R_{L} \geqslant 4000 \text { ohms }
$$

Differential Threshold Sensitivity
Common Mode Voltage Range

$$
\left|\mathrm{V}_{\mathrm{cm}}\right| \leqslant 7.0 \mathrm{~V}
$$

Either Logic State
$\left|V_{T}\right| \leqslant 200 \mathrm{mV}$
Absolute Maximum Input Voltage
Differential

$$
\left|V_{d}\right| \leqslant 12 V
$$

Single-Ended
$\left|V_{x}\right| \leqslant 10 \mathrm{~V}$
Input Balance (threshold shift)
Common Mode Voltage Range

$$
\left|\mathrm{V}_{\mathrm{cm}}\right| \leqslant 7.0 \mathrm{~V}
$$

Differential Threshold (500 ohms in series with each input)

Either Logic State

$$
\left|V_{t}\right| \leqslant 400 \mathrm{mV}
$$

Termination (optional)
Total Load Resistance (differential) $\quad \mathrm{R}_{\mathrm{T}}>90$ ohms
Multiple Receivers (bus applications)
Up to 10 receivers allowed. Differential threshold sensitivity of 200 mV must be maintained.

Hysteresis (optional)
As required for applications with slow rise/fall time at receiver, to control oscillations.

Fail Safe (optional)

As required by application to provide a steady MARK or
SPACE condition under open connector or driver power

OFF condition.

C. Interconnecting Cable

Type
Twisted Pair Wire or Flat Cable Conductor Pair
Conductor Size
Copper Wire (solid or stranded) 24 AWG or larger
Other (per conductor) $\quad \mathrm{R} \leqslant 30$ ohms $/ 1000 \mathrm{ft}$.
Capacitance
Mutual Pair $\quad \mathrm{C} \leqslant 20 \mathrm{pF} / \mathrm{ft}$.
Stray

$$
\mathrm{C} \leqslant 40 \mathrm{pF} / \mathrm{ft} .
$$

Pair-to-Pair Cross Talk (balanced) Attenuation at 150 KHz

$$
A \geqslant 40 \mathrm{~dB}
$$

Figure 6. Am26LS31 Circuit Diagram (Only one driver shown).

The balanced differential line receiver is a three-stage circuit. The input stage consists of a low-impedance differential current amplifier with series resistor inputs to convert line signal voltage to current and provide a moderate input impedance. The input resistors provide an impedance greater than 6 K on each input, power on or power off, which exceeds the requirements of RS-422 and RS-423. This is one advantage of the current amplifier input circuit. Another advantage is that is can operate with immunity to common mode voltages above V_{cc} and below ground. The differential threshold sensitivity of this circuit is 200 mV , as required by RS-422. The second stage is a differential voltage amplifier, which interfaces to the single-ended output stage through an emitter follower. The output stage is a standard Low-power Schottky TTL totem-pole output with three-state capability.
The full circuit is shown in Figure 8. Resistors R_{20} and R_{21}, which connect the non-inverting input to V_{CC} and the inverting input to ground, provide the fail-safe feature, which guarantees a HIGH logic state for the receiver output when there is no signal on the line. The differential voltage amplifier in the second stage is formed by Q 6 and Q 3 which are biased by current source Q9. The hysteresis in the re-
ceiver switching characteristic is provided by 04 and 05 , a differential pair biased by current source Q6, whose collectors are connected in positive feedback to the input pull-up circuits. A small amount of current is switched by $Q 4$ and 05 , which must be overcome by the different voltage signal, resulting in the hysteresis. The output stage is driven from one side of the differential second stage by emitter follower Q17, which is a multiple emitter transistor. the second emitter is the control point for the three-state output. Q17 drives the phase splitter Q12, which in turn drives the three-state totempole output. The remainder of the circuit is the output enable control logic. This three-state capability on the receiver TTL side of the interface is a useful feature for modularizing two-way bus design.
A mask option of the input resistors ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{20}$ and R_{21}) modifies the receiver characteristics to improve operation in high common mode noise environments. This device, known as the Am26LS33, has these resistors at twice the value of the Am26LS32. An input differential or common mode voltage range of ± 15 volts is achieved at the expense of a minor decrease of input threshold sensitivity, to $\pm 500 \mathrm{mV}$ from $\pm 200 \mathrm{mV}$.

Figure 7. Am26LS32 Logic Diagram.

Figure 8. Am26LS32 and Am26LS33 Circuit Diagram (Only one receiver shown).

APPLICATIONS IN MIXED RS-232 AND 422/3 SYSTEMS

A system implemented with the RS-422 differential output cannot be used to drive an RS-232C system directly. An RS-423 single-ended. driver, such as the Am26LS29 or Am26LS30, may be used provided certain precautions are observed.

1. Although the RS-423 driver output specification of between 4 to 5 V does not meet the RS-232C specification of 6 V , operation is usually satisfactory with RS-232C receivers. This is achieved because the short cable lengths permitted by RS-232C cause very little signal degredation and because of the low source impedance of the RS-423 driver.
2. RS-232C specifies that the rise time for the signal to pass through the $\pm 3.0 \mathrm{~V}$ transition region shall not exceed 4% of the signal element duration. RS-423 requires much slower rise times, specified from 10% to 90% of the total signal amplitude, to reduce cross talk for operation over longer distances. Therefore, the RS-423 driver in the equipment must be waveshaped. This is achieved by selection of a capacitor value for the Am26LS30 to simultaneously meet the requirements of both RS-423 and RS232C for data rates covered by RS-232C.
3. RS-423 specifies one common return ground for each direction of transmission, RS-232C requires only one for both directions of transmission. Care must be taken to insure that a return ground path has been created when interfacing between the two systems.
4. RS-232C does not require termination, while it may be necessary for RS-422 and 423. Detailed consideration of termination is covered in the next section.
Note that RS-422 and RS-423 specifies that receivers should not be damaged by voltages up to 12 V , while RS-232C allows drivers to produce output voltages up to 25 V . The Am26LS32 receiver has been designed to avoid this hazard and can withstand input voltages of ± 25 volts.

RS-422 TRANSMISSION LINE FEATURES

Any time a receiver and transmitter are connected with more than a few inches of a wire, problems due to reflections can arise if care is not exercised to terminate the line correctly. RS-422 describes the cable as a twisted pair of approximately 120Ω impedance terminated in a resistor $R_{T} . R_{T}$ is not specified because there are two extreme values which may be chosen for the two following general classes of usage: (1) single direction transmission; and (2) multi-direction and multiple source transmission (party line). Considering the cable impedance only, the termination should equal the cable impedance of 120Ω. However this reduces the terminated cable resistance as seen by the driver to only 60Ω, with resulting loading of the output signal. This loading causes a reduction of S / N ratio at the received terminal due to the decrease in signal voltage swing. The solution lies in a compromise between an R_{T} of 120Ω which provides maximum power transfer at a reduced S / N ratio or R_{T} of 240Ω which causes a mis-match of 2 -to- 1 but no S / N reduction. The choice is left to the user as it is system dependent. Both schemes will work for an average line length and should only approach the margins at maximum line length and maximum bit rates.
Electronic Industries Association, when preparing EIA Stan-
dard RS-422 conducted their tests with 24 gauge twisted pair wire. The resulting length vs. data rate, is published as a guideline in RS-422 (Figure 9). This shows two important results: (1) Unmodulated baseband (NRZ) signalling is not recommended at distances greater than 4000 feet; (2) At data

Figure 9. Data Rate Versus Cable Length for Balanced, Twisted Pair Cable (From EIA RS-422).
rates above about 100 KHz , the maximum cable length for acceptable signal quality is inversely proportional to data rate.
Result (1) above is due to the DC resistance of the cable. For a 4000 foot cable with a DC resistance of 30 ohms $/ 1000$ feet, the DC series loop resistance is 240Ω. The minimum allowable terminated differential load impedance is 90Ω. The DC voltage attentuation is $90 /(90-240)=1 / 4(6 \mathrm{db})$, which is arbitrarily chosen as the maximum allowable limit.
Result (2) is due to line losses. Laboratory tests using the 26LS31 Line Driver connected to the 26LS32 Line Receiver by 800 feet of ordinary 20 AWG twisted pair (Beldon \#8205 plastic-jacketed wire), terminated in its characteristic impedance of 100Ω were evaluated. The input waveform was a 500 KHz square wave with (10% to 90%) rise and fall times of less than 10 ns . The output waveform produced rise and fall times which together accounted for approximately one-half the period ($\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}=500 \mathrm{~ns}$). This was due to line loss and constant capacity. The energy per cycle of the output waveform is approximately 25% lower than that of the input. The input rise and fall times are not a function of line length, assuming matching termination. The output rise and fall times are dependent upon length in a complex manner. Furthermore, it can be shown by observation that they build up along the line.
Many good reference sources are available on the subject of transmission lines (References 1, 2, 3 and 4). These will provide background information to the following discussion.
Seshadri in Reference (1) has analyzed a line with series resistance losses and has shown that rise time varies with the square of the length. This shows series resistance to be a function of the square root of frequency. However when one tries to use this result in combination with the previous result, it becomes apparent just how difficult the problem is. In Reference (2), the authors point out that skin depth implies a frequency dependent series inductance as well as resistance, and that one cannot be considered without the other.

They go on to show how this leads to the same result; namely that rise and fall times vary with the square of distance.
No attempt will be made to explain here why Figure 5 shows maximum length varying inversely with frequency rather than with the square of frequency. Certainly many complex factors are involved. Our laboratory observations showed a dependence somewhere in between linear and square law.

The Am26LS31 Quad Line Driver and the Am26LS32 Quad Line Receiver are capable of good, clean operation to the distance limits and data rate limits of RS-422.

SYSTEM APPLICATIONS

The Am26LS30, 31, 32 and 33 can be combined in various
signaling networks. Using Am26LS29, Am26LS30 and Am26LS32, Figure 10, a unidirectional RS-423 communication can be constructed. Allowing for the voltage variation described earlier, RS-232C requirements can be satisfied. It should be noted that the Am26LS29 or Am26LS30 is used above to meet the bipolar requirements. If a single-ended line, Figure 11, is required without a bipolar requirement, the Am26LS31 can be used by biasing the reference terminal of the receiver to approximately 1.5 volts. Note that additional resistors will enhance fail safe operation.

Figure 12 shows the use of the Am26LS31 and Am26LS32 to meet a balanced line, single direction RS-422 application. If bidirectionality is required, an additional termination should be added as shown in Figure 13.

Figure 10. Unidirectional RS-423 (partial RS-232C).

BLI-028
Figure 11. Single-Ended Line Without Bipolar Requirement.

Figure 12.

Use of the Am26LS29, 30, 31, and 32

Figure 13. Bidirectional RS-422.

Figure 14. Party Line Configuration.
a) Full Duplex Four-Wire Data Communication RS-422 Interface (with Data Modem).

Figure 15.
b) Full Duplex Four-Wire Data Communication RS-422 Interface (without Data Modem).

BLI-034
Figure 15. (Cont.)

The high speed capability of RS-422 has attracted the interest of many computer designers for use in the party line mode (Figure 14). The most common usage is that of a four wire full duplex exchange system (Figure 15). This mode of operation involves two pairs of wires each handling a single direction of traffic. The outgoing direction consists of one driver (Am26LS30 or Am26LS31) and n receivers (Am26LS32 or Am26LS33). The incoming direction consists of one receiver (Am26LS32 or Am26LS33) and n drivers (Am26LS30 or Am26LS31). This seems extremely simple to organize. However, problems arise when system ground is considered. If the network of receiver and driver span a moderate to long physical distance, ground loop noise or differences are developed changing the voltage that appears at the terminals of all receivers and drivers except for the one driver that is ac-
tive. It remains the system reference as long as it is active. This induced or system developed voltage is referred to as Common Mode voltage (CMV) and as such must be considered as a device parameter. All manufacturers specify CMV capability of their receiver in compliance with RS-422 (approx. 7 volts plus signal) but there is no specification for drivers. If the dimensions of the system are short compared to $1 / 4$ wave length of the maximum date rise and fall times, the CMV can be assumed to be minimal and drivers with single voltage supply and limited negative CMV can be used, i.e., Am26LS31. If the system dimensions are large, the CMV will cause problems in that the driver will clamp to the ground the moment the collective or apparent voltage swings below minus 0.5 volts relative to the driver ground, causing a short in the line and increasing level shift and noise. The clamping is caused in part by conduction of the I/C substrate diode. The problem can be avoided by using a driver with an output common mode range (Am26LS30). The Am26LS30 guarantees an output CMV range of ± 10 volts about the driver ground reference. New international standards are under consideration to specify this mode of operation. In conclusion, a good system of 4 wire full duplex for data communication would use as an outgoing pair an Am26LS30 line driver and up to 12 - Am26LS32 line receivers, with a termination at the near and far ends of the cable. The same system would use as an incoming pair an Am26LS32 line receiver and up to 32 - Am26LS30 line drivers with only one enabled at a time and all others in three-state mode with cable termination at both near and far ends of the cable.

Many other applications are possible using this family of devices. Although the designs are based on the requirements of the EIA data communications specifications, they are not limited to these situations. Aircraft buses and internal equipment interconnections will benefit from the features offered by these products.

REFERENCES

1. Seshadri, S. R., Fundamental of Transmission Lines and Electromagnetic Fields, (U. of Wisconsin), Addison-Wesley, Reading, Mass., 1971.
2. Adler, R. B., L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation, (MIT), John Wiley \& Sons, New York, 1963.
3. Matick, R. E., Transmission Lines for Digital and Communication Networks, (IBM), McGraw-Hill, New York, 1969.
4. Reference Data for Radio Engineers, (ITT), Fifth Edition, Howard W. Sams \& Company, Indianapolis, 1974.
5. Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal, RS-232C, August, 1969.
6. Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal 1220, Rev. RS-422, September 21, 1976.
7. Electronic Industries Association, 2001 Eye Street, N.W. Washington, D.C., RS Standard Proposal 1221, Rev. RS-423, September 21, 1976.

Am26S10•Am26S11

Distinctive Characteristics

- Input to bus is inverting on Am26S10
- Input to bus is non-inverting on Am26S11
- Quad high-speed open collector bus transceivers
- Driver outputs can sink 100 mA at 0.8 V maximum
- Bus compatible with Am2905, Am2906, Am2907
- Advanced Schottky processing
- PNP inputs to reduce input loading
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am26S10 and Am26S11 are quad Bus Transceivers consisting of four high-speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8 volts and four high-speed bus receivers. Each driver output is connected internally to the high-speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving ten Schottky TTL unit loads.
An active LOW enable gate controls the four drivers so that outputs of different device drivers can be connected together for party-line operation. The enable input can be conveniently driven by active LOW decoders such as the Am25LS139.
The bus output high-drive capability in the LOW state allows party-line operation with a line impedance as low as 100Ω. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2.0 volts.
The Am26S10 and Am26S11 feature advanced Schottky processing to minimize propagation delay. The device package also has two ground pins to improve ground current handling and allow close decoupling between V_{CC} and ground at the package. Both GND_{1} and GND_{2} should be tied to the ground bus external to the device package.

ORDERING INFORMATION			
		Am26S10	Am26S11
Package Type	Temperature Range	Order Number	Order Number
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26S10PC	AM26S11PC
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26S100C	AM26S11DC
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM26S10XC	AM26S11XC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26S10DM	AM26S11DM
Hermetic Flat Pack	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26S10FM	AM26S11FM
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM26S10XM	AM26S11XM
CONNECTION DIAGRAMS Top Views			
$\begin{array}{llllllll}16 & 15 & 14 & 13 & 12 & 11 & 10 & 9\end{array} \quad\left[\begin{array}{lllllllll}16 & 15 & 14 & 13 & 12 & 11 & 10 & 9\end{array}\right.$			
Am26S 10		Am26S11	
$0_{1} \quad 2 \quad 3 \quad 3 \quad 4$	$6 \quad 7 \quad 8$	$2 \quad 3 \quad 4$	$6 \quad 7 \quad 8$
LIC-368 N	Note: Pin 1 is marked for orientation. LIC-369		LIC-369

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Bus	200 mA
Output Current, Into Outputs (Except Bus)	-30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Am26S10×C, Am26S11×C	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%\left(C O M^{\prime} L\right)$	$\mathrm{MIN} .=4.75 \mathrm{~V}$	MAX. $=5.25 \mathrm{~V}$
Am26S10×M, Am26S11×M	$\mathrm{TA}^{\prime}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 V \pm 10 \%$ (MIL)	MIN $=4.5 \mathrm{~V}$	MAX $=5.5 \mathrm{~V}$

Am26S10×M, Am26S11 $\times M \quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \%(\mathrm{MIL}) \quad \mathrm{MIN} .=4.5 \mathrm{~V} \quad \mathrm{MAX} .=5.5 \mathrm{~V}$

Parameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M_{I N}, I_{O H}=-1.0 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL	2.5	3.4		Volts
			$\mathrm{COM}^{\prime} \mathrm{L}$	2.7	3.4		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=20 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$				0.5	Volts
$\mathrm{V}_{1 H}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs				0.8	Volts
v_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=. \mathrm{MAX} ., \mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$	Enable			-0.36	mA
			Data			-0.54	
I'H	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	Enable			20	$\mu \mathrm{A}$
			Data			30	
1	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				100	$\mu \mathrm{A}$
Isc	Output Short Circuit Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=$ MAX. (Note 3)	MIL	-20		-55	mA
			COM'L	-18		-60	
${ }^{\text {I CCL }}$	Power Supply Current (All Bus Outputs Low)	$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \text { Enable }=\mathrm{GND} \end{aligned}$	Am26S10		45	70	mA
			Am26S11			80	

Bus Input/Output Characteristics

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	MIL	$1 \mathrm{OL}=40 \mathrm{~mA}$		0.33	0.5	Volts
				$\mathrm{I}_{\mathrm{OL}}=70 \mathrm{~mA}$		0.42	0.7	
				$1 \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
			COM ${ }^{\prime}$ L	$\mathrm{IOL}^{\prime}=40 \mathrm{~mA}$		0.33	0.5	
				$\mathrm{IOL}=70 \mathrm{~mA}$		0.42	0.7	
				$1 \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
${ }^{1} \mathrm{O}$	Bus Leakage Current	$V_{C C}=$ MAX.		$\mathrm{V}_{\mathrm{O}}=0.8 \mathrm{~V}$			-50	$\mu \mathrm{A}$
			MIL	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			200	
			COM'L	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IofF	Bus Leakage Current (Power Off)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Input HIGH Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		MIL	2.4	2.0		Volts
				COM'L	2.25	2.0		
V_{TL}	Receiver Input LOW Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V} \\ & V_{C C}=M I N \end{aligned}$		MIL		2.0	1.6	Volts
				COM'L		2.0	1.75	

[^3]Am26S10 • Am26S11
Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description		Test Conditions	Min.	Typ.	Max.	Units
tPLH	Data Input to Bus	Am26S10	$\begin{gathered} R_{B}=50 \Omega \\ C_{B}=50 \mathrm{pF}(\text { Note } 1) \end{gathered}$		10	15	ns
tPHL					10	15	
${ }_{\text {tPLH }}$		Amess			12	19	
${ }_{\text {t PHL }}$					12	19	
${ }^{\text {tPLH }}$	Enable Input to Bus	Am26S10			14	18	ns
tPHL					13	18	
tPLH		Am26S11			15	20	
${ }_{\text {tPHL }}$					14	20	
${ }^{\text {tPLH }}$	Bus to Receiver Out		$R_{B}=50 \Omega, R_{L}=280 \Omega$		10	15	ns
${ }_{\text {tPHL }}$			$C_{B}=50 \mathrm{pF}\left(\right.$ Note 1), $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		10	15	
t_{r}	Bus		$\begin{gathered} R_{B}=50 \Omega \\ C_{B}=50 \mathrm{pF}(\text { Note } 1) \end{gathered}$	4.0	10		ns
t_{f}	Bus			2.0	4.0		ns

Note 1. Includes probe and jig capacitance.

TRUTH TABLES

Am26S10

Inputs	Outputs		
\bar{E}	I	\bar{B}	Z
L	L	H	L
L	H	L	H
H	X	Y	\bar{Y}

Am26S11

Inputs		Outputs	
\bar{E}	\bar{T}	\bar{B}	Z
L	L	L	H
L	H	H	L
H	X	Y	\bar{Y}

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Don't Care
$Y=$ Voltage Level of Bus (Assumes Control by
Another Bus Transceiver)
Am26S10/Am26S11 SCHEMATIC DIAGRAM

SWITCHING CHARACTERISTICS

TEST CIRCUIT

LIC-378

Note 1. Includes Probe and Jig Capacitance.

WAVEFORMS

Am26S12•Am26S12A

Distinctive Characteristics

- Quad high-speed bus transceivers
- Driver outputs can sink 100 mA at 0.7 V typically
- 100\% reliability assurance testing in compliance with MIL-STD-883
- Choice of receiver hysteresis characteristics

FUNCTIONAL DESCRIPTION

The Am26S12 - Am26S12A are high-speed quad Bus Transceivers consisting of four high-speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.7 volts and four high-speed bus receivers. Each driver output is brought out and also connected internally to the high-speed bus receiver. The receiver has an input hysteresis characteristic and a TTL output capable of driving ten TTL Loads.
An active LOW, two-input AND gate controls the four drivers so that outputs of different device drivers can be connected together for partyline operation. The enable inputs can be conveniently driven by active LOW decoders such as the Am54S/74S139.
The high-drive capability in the LOW state allows party-line operation with a line impedance as low 15100Ω. The line can be terminated at both ends, and still give con iderable noise margin at the receiver. The
hysteresis characteristic of the Am 26 S 12 receiver is chosen so that the receiver output switches to a HIGH logic level when the receiver input is at a HIGH logic level and moves to 1.4 volts typically, and switches to a LOW logic level when the receiver input is at a LOW logic level and moves to 2.0 volts typically. This hysteresis characteristic makes the receiver very insensitive to noise on the bus.
The Am26S12A is functionally identical to the Am26S12 but has a different hysteresis characteristic so that the output switches with the input being typically at 1.2 volts or 2.25 volts. In both devices the threshold margin, the difference between the switching points, is greater than 0.4 volts.

LIC-381

Am26S12/Am26S12A

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs (BUS)	200 mA
Output Current, Into Outputs (Receiver)	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
$\begin{array}{lll}\text { Am26S12 XC-Am26S12AXC } & T_{A}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \text { (COM Range) } \\ \text { Am26S12 } \times \mathrm{M}-\mathrm{Am} 26 \mathrm{~S} 12 \mathrm{AXM} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C}=5.0 \mathrm{~V} \pm 10 \% \text { (MIL Range) Note } 1\end{array}$

Parameters	Description	Test Conditions	Min.	Typ.(Note 2)	Max.	Units
${ }^{\text {c Cc }}$	Power Supply Current	$V_{C C}=$ MAX .		46	70	mA
$I_{\text {B }}$ US	Bus Leakage Current	$V_{C C}=M A X . \text { or } 0 V$ $V_{B U S}=4.0 \mathrm{~V}$; Driver in OFF State			100	$\mu \mathrm{A}$

Driver Characteristics

V_{OL} (Note 1)	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L	${ }^{1} \mathrm{OL}=100 \mathrm{~mA}$		0.7	0.8	Volts
				$\mathrm{I}_{\mathrm{OL}}=60 \mathrm{~mA}$		0.55	0.7	Volts
			MIL	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.7	0.85	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0			Volts
$V_{\text {IL }}$	Input LOW Voltage						0.8	Volts
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
11	Input Current at Maximum Input Voltage	$V_{C C}=M A X ., V_{1}=5.5 \mathrm{~V}$					1.0	mA
$\mathrm{IIH}^{\text {a }}$	Unit Load Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{1}=2.4 \mathrm{~V}$				1.0	40	$\mu \mathrm{A}$
IIL	Unit Load Input LOW Current	$V_{C C}=M A X ., V_{1}=0.4 V$				-0.4	-1.6	mA

Receiver Characteristics

VOH	Output HIGH Voltage	$\begin{aligned} & v_{\mathrm{CC}}= \\ & \mathrm{v}_{\mathrm{IN}}= \end{aligned}$	$\mathrm{J} ., \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}$ (Receiver)	2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & v_{C C}= \\ & v_{\text {IN }}= \end{aligned}$	$\mathrm{N} ., \mathrm{IOL}=20 \mathrm{~mA}$ (Receiver)		0.4	0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level Threshold	$\bar{E}=\mathrm{H}$	Am26S12	1.8	2.0	2.2	Volts
			Am26S12A	2.05	2.25	2.45	
$V_{\text {IL }}$	Input LOW Level Threshold	$\bar{E}=\mathrm{H}$	Am26S12	1.2	1.4	1.6	Volts
			Am26S12A	1.0	1.2	1.4	
$V_{\text {TM }}$	Input Threshold Margin	$\overline{\mathrm{E}}=\mathrm{H}$		0.4			Volts
IOS	Output Short Circuit Current	$V_{\text {CC }}=$ MAX., $V_{\text {OUT }}=0.0 \mathrm{~V}$		-20		-55	mA

Notes: 1. For the Am26S12FM, Am26S12AFM the output current must be limited at 60 mA or the maximum case temperature limited to 125° C for correct operation.
2. Typical limits are at $V_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {PLH }}$	Turn Off Delay Input to Bus	$C_{L B}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{LB}}=100 \Omega$		7	11	ns
${ }^{\text {t }}$ PHL	Turn On Delay Input to Bus	$C_{L B}=300 \mathrm{pF}, \mathrm{R}_{\mathrm{LB}}=50 \Omega$		14	21	ns
t PLH	Turn Off Delay Enable to Bus	$C_{L B}=15 p F, R_{L B}=50 \Omega$		10	15	ns
${ }^{\text {t PHL }}$	Turn On Delay Enable to Bus	$C_{L B}=15 p F, R_{L B}=50 \Omega$		10	15	ns
t PLH	Turn Off Delay Bus to Output	$C_{L}=15 \mathrm{pF}$		18	26	ns
${ }^{\text {t PHL }}$	Turn On Delay Bus to Output	$C_{L}=15 \mathrm{pF}$		18	26	ns

SWITCHING CIRCUITS AND WAVEFORMS

LIC-384

Figure 1. Bus Propagation Delays

LIC-385

LIC-386

Figure 2. Receiver Propagation Delays

PERFORMANCE CURVES

Am26S12 Typical
Receiver Input Characteristic

Figure 3

Am26S12A Typical Receiver Input Characteristic

Figure 4
LIC-388

INPUT/OUTPUT CIRCUITRY

Am26S12/26S12A APPLICATION

100Ω PARTY-LINE OPERATION.

Figure 6

Metallization and Pad Layout

DIE SIZE: $0.071^{\prime \prime} \times 0.072^{\prime \prime}$

Am2614

Quad Single-Ended Line Driver

Distinctive Characteristics

- Quad single-ended driver for multi-channel common ground operation
- Single 5 V power supply
- DTL, TTL compatible
- Short-circuit protected outputs
- Capable of driving 50Ω terminated transmission lines
- 100\% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2614 is a DTL, TTL compatible line driver operating off a single 5V supply. The Am2614 is a quad inverting driver with two separate inputs and one common-strobe input for each pair of drivers. The device has active pull-up outputs for high-speed and HIGH capacitance drive. The Am2614 is ideal for single-ended transmission line driving, or as a high-speed, high-fan-out driver for semiconductor memory decoding, buffering, clock driving and general logic use.

The Am2614 has short circuit protected active pull-ups, and incorporates input clamp diodes to reduce the effect of line transients, and also is capable of driving 50Ω terminated transmission lines.

LOGIC DIAGRAM

DRIVERS $\mathrm{B}_{1}, \mathrm{~B}_{2}$

$V_{C C}=\operatorname{Pin} 16$
$G N D=\operatorname{Pin} 8$
LIC-391

CIRCUIT DIAGRAM

MAXIMUM RATINGS
(Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	mA
DC Input Current	Note 1

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2614×M (MIL)
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CCM }}$ MIN. $=4.50 \mathrm{~V}$
$V_{C C M A X}=5.50 \mathrm{~V}$
Am2614XC (COM'L)
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C} M I N=4.75 \mathrm{~V}$
$V_{C C M A X}=5.25 \mathrm{~V}$

DC Characteristics (Note 2)
TA MIN.
Parameters Description

Parameters	Description	Test Conditions		Min.	Max.	Min.	Tур.	Max.	Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} . \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA} \end{aligned}$		2.4		2.4	3.2		2.4		Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M 1 N . \\ & \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$	MIL		0.4		0.2	0.4		0.4	Volts
			COM'L		0.45		0.2	0.45		0.45	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$V_{C C}=$ MIN	MIL	2.0		1.7	1.5		1.4		Volts
			COM'L	1.9		1.8	1.5		1.6		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$V_{C C}=$ MAX.	MIL		0.8		1.3	0.9		0.8	Volts
			COM'L		0.85		1.3	0.85		0.85	
${ }^{1} \mathrm{~F}$	Input Load Current	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{F}}=0.4 \mathrm{~V}, \mathrm{MIL}$		-2.4		-1.65	-2.4		-2.4	mA
			$V_{F}=0.45 \mathrm{~V}, \mathrm{COM}^{\prime} \mathrm{L}$								
I_{R}	Reverse Input Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{R}=4.5 \mathrm{~V} \end{aligned}$			90			90		90	$\mu \mathrm{A}$
${ }^{\text {I SC }}$	Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{VV} \end{aligned}$				-40	-90	-120			mA
IPD	Power Supply Current	$\begin{aligned} & V_{C C}=M A X . \\ & \text { Inputs }=0 V \end{aligned}$			48.7		33	48.7		48.7	
		$\begin{aligned} & V_{C C}=7.0 \mathrm{~V} \\ & \text { Inputs }=0 \mathrm{~V} \end{aligned}$	COM'L				46	70			
			MIL				46	65.7			
ICex	Reverse Output Current	$V_{C C}=$ MAX .	VCEX $=5.5 \mathrm{~V}, \mathrm{MIL}$		100		10	100		200	$\mu \mathrm{A}$
					100		10	100		200	
$V_{\text {OLC }}$	Output Low Clamp Voltage	$\begin{aligned} & V_{C C}=\mathrm{MAX} ., \\ & \mathrm{I}_{\mathrm{OLC}}=-40 \mathrm{~mA} \end{aligned}$					-0.8	-1.5			Volts
$V_{\text {IC }}$	Input Clamp Voltage	$\begin{aligned} & V_{C C}=\text { MIN. } \\ & I_{I C}=-12 \mathrm{~mA} \end{aligned}$					-1.0	-1.5			Volts

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

		Am2614XM				Am2614XC			Units
Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathbf{t p d}_{\text {p }}$	Turn Off Delay	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, C_{L}=30 \mathrm{pF} \\ & V_{M}=1.5 \mathrm{~V}, \text { Refer to Fig. } 92 \end{aligned}$		8	12		8	15	ns
$t_{\text {pd }}$	Turn On Delay			7	10		7	12	ns

Notes: 1. Maximum current defined by DC input voltage.
2. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type or grade.

TYPICAL ELECTRICAL CHARACTERISTICS

USER NOTES

SINGLE ENDED LINES. The Am2614 quad line driver and the Arm2615 dual differential amplifier allow data to be transmitted with only a single data wire per channel and a common ground for typically 8 data wires. This single-ended mode of interconnection offers considerable savings in integrated circuit packages required and effectively halves the number of interconnections as compared to a balanced differential system. The method still gives $\pm 15 \mathrm{~V}$ common mode rejection and DC noise margin of interconnected TTL logic. The common ground wire should be twisted in with the data wires so that any injected noise is common to all wires. If a multiwire cable with screen is used one of the wires is used as the common ground line, and the screen is tied to ground at the driving end only.
MATCHING. Transmission lines can be matched in a number of ways. The most widely used method is to terminate the line at the receiving end in its characteristic impedance. This impedance is connected across the input terminals of the receiver. A 130Ω resistor is included at the + input of each receiver for matching twisted pairs and this resistor, or if the characteristic impedance is not 130Ω, a discrete resistor is connected between the two receiver inputs. This method of
matching causes a DC component in the signal. Power is dissipated in the resistor and the signal is attenuated. The DC component can be effectively removed by connecting a large capacitor in series with the terminating resistor.

The transmission line can also be terminated through the receiver power supply by placing equal value resistors from the + input of the receiver to $V_{C C}$ and from the - input to ground. This method again has the disadvantage that a DC signal component exists, attenuation occurs, and power is dissipated in the terminating resistors but it does allow multiplexed operation in the balanced differential mode.

An alternate method of matching at the receiver is to back match at the driver. A resistor is placed in series with the line so that the signal from the driver which is reflected at the high input impedance of the receiver is absorbed at the driver. This method does not have a DC component and therefore no attenuation occurs and power is not dissipated in the resistor. For balanced differential driving a resistor is required in series with each line. The table below shows the value of each matching resistor required for lines of different characteristic impedance.

LOADING RULES

		Fanout			
Input/Output	Pin No.'s	Input			
Unit Load				\quad	Output
:---:					
HIGH	\quad	Output			
:---:					
LOW					

APPLICATIONS

Single-Ended Back-Matched Operation

 With Common Ground

SWITCHING CIRCUITS AND WAVEFORMS

$$
\text { Pulse Width }=110 \pm 10 \mathrm{~ns}
$$

$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5.0 \mathrm{~ns}$

Figure 1.

Am2615/9615

Distinctive Characteristics:

- Dual differential receiver (Am9615) pin-for-pin equivalent to the Fairchild 9615
- Dual differential receiver for single-ended data (Am2615)
- Single 5 -volt supply
- High common-mode voltage range (± 15 volts)
- Frequency response control, strobe, and internal terminating resistor
- Am2615 has fail safe capability
- Choice of uncommitted collector or active pull-up outputs
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION
The Am2615 and Am9615 are dual differential line receivers designed to receive digital data from transmission lines and operate over the military and industrial temperature ranges using a single 5 volt supply. The Am2615 can receive 3 volt single ended and the Am9615 $\pm 500 \mathrm{mV}$ differential data in the presence of high level ($\pm 15 \mathrm{~V}$) common mode voltages and deliver undisturbed logic levels to the following DTL or TTL circuitry. The response time of each receiver and thereby immunity to AC noise can be controlled by an external capacitor. A strobe is provided for each receiver together with a 130Ω input terminating resistor. Each output has an uncommitted collector with an active pull-up network available on an adjacent pin.

The Am2615 is identical to the Am9615 except for the input offset (threshold) voltage. The Am2615 has an input threshold of $\sim 1.5 \mathrm{~V}$ compatible with DTL \& TTL logic. The Am9615 has an input threshold of $\sim 0 \mathrm{~V}$. The Am2615 can directly replace the Am9615 and give fail safe protection in differential systems where the Input difference is $>2.0 \mathrm{~V}$.

LOGIC DIAGRAM

LIC-399
$\mathrm{V}_{\mathrm{CC}}=$ PIN 16 GND $=$ PIN 8
CIRCUIT DIAGRAM

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
	Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2615DM
Am2615	Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2615FM
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2615XM
	Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2615DC
	Molded DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2615PC
	Dice	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2615XC
	Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	9615 DM
	Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	9615 FM
Am9615	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM9615XM
	Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	9615 CC
	Molded DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	9615 C
	Dice	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM9615XC

CONNECTION DIAGRAM Top View

NOTE: PIN 1 is marked for orientation.

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to $+7 \mathrm{7V}$
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +13.2 V
DC Strobe Input Voltage	-0.5 V to +5.5 V
DC Data Input Voltage	-20 V to +20 V
Output Current, Into Outputs	30 mA

DC Input Current maximum current is defined by DC Input Voltage

Am2615 ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Switching Characteristics $\left(\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}\right)$

Parameters	Test Conditions	Min	$\begin{gathered} \text { Am2615XM } \\ \text { Typ } \end{gathered}$	Max	Min	$\underset{\operatorname{Typ}}{\text { Amp }^{2615 X C}}$	Max	Units
$\mathrm{t}_{\mathrm{pd}+}$ Turn Off Delay $\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} 3$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ Refer to figure 4		30	50		30	75	ns
$\mathrm{t}_{\mathrm{pd} \text { - }}$ Turn On Delay $\mathrm{R}_{\mathrm{L}}=390 \Omega$			30	50		30	75	
$\mathrm{t}_{\text {pd }+}$ Turn Off Delay Strobe to Output	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		7	12		7	15	ns
$\mathrm{t}_{\mathrm{pd} \text { - }}$ Turn On Delay Strobe to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega$		10	15		10	20	

Am9615 ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Am9615 $\times \mathrm{M}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V
Am9615 CC	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V

${ }^{\top} A=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(MIL grade)
Am9615 $\mathrm{XC} \quad \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(COM'L grade)

Limits

Switching Characteristics $\left(\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}\right)$

D. C. CHARACTERISTICS

Strobe Input-Output Transfer Characteristic Versus $\mathbf{V}_{\text {cc }}$

Input Current Versus Input Voltage

Output High Voltage

Versus

 Output High Current

Strobe Input-Output Transfer Characteristic Versus Ambient Temperature

Power Supply Current Versus
Power Supply Voltage

$\mathrm{V}_{\text {CC }}$ - POWER SUPPLY VOLTAGE - VOLTS
Switching Time Versus
Ambient Temperature
su - 3WIL SNIHOLIMS - pdi $^{\text {P }}$

Output Voltage Versus Ambient Temperature

Output Voltage Versus Common Mode Voltage (Am9615)

Power Supply Current Versus
Ambient Temperature

THRESHOLD CHARACTERISTICS

Am2615

Am9615

LIC-403

SWITCHING TIME TEST CIRCUIT \& WAVEFORMS

Figure 4

FREQUENCY RESPONSE CONTROL

Am2615 STANDARD USAGE
Single-Ended-Back Matched Operation With Common Ground

Am9615 STANDARD USAGE

Differential Operation

1/2 Am9614

Photograph of an Am9615 switching differential data in the presence of high common mode noise.

LIC. 410

Vertical $=\mathbf{2 . 0}$ V/Div. Horizontal $=\mathbf{5 0} \mathrm{ns} /$ Div.

Metallization and Pad Layout

53×58 Mils

Am2616

Quad MIL-188C and RS-232C Line Driver

Distinctive Characteristics

- Conforms to EIA RS-232C, CCITT V. 24 and MIL-188C specifications
- Short circuit protected output
- Internal slew rate limiting
- Supply independent output swing
- 100% reliability assurance testing in compliance with MIL-STD-883
- TTL/DTL compatible input
IRCUIT DIAGRAM
(One Driver Shown)

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2616DC
Molded DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2616PC
Dice	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2616XC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2616DM
Flat Pack	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2616FM
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2616XM

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation.
LIC-413

Am2616

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	+15 V
V_{CC}	-15 V
$\mathrm{~V}_{\text {EE }}$	$\pm 15 \mathrm{~V}$
DC Voltage Applied to Outputs	-1.5 V to +6 V
DC Input Voltage	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 30 sec.)	

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
(COM'L) $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(MIL) $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{E E}=-12 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ unless otherwise noted

Parameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage (Note 2)	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$	+5.0	+6.0	+7.0	Volts
V_{OL}	Output LOW Voltage (Note 2)	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$	-7.0	-6.0	-5.0	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage	2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage			0.8	Volts
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=0.4 \mathrm{~V}$ or $\mathrm{V}_{\text {INHIBIT }}=0.4 \mathrm{~V}$		-1.2	-1.6	mA
${ }_{1 / H}$	Input HIGH Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{IN}_{2}}=2.4 \mathrm{~V}$ or $\mathrm{V}_{\text {INHIBIT }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current (Positive) (Note 3)	$\begin{aligned} & R_{L}=0 \Omega \\ & V_{I N_{1}} \text { or } V_{I N_{2}}=V_{\text {INHIBIT }}=0.8 \mathrm{~V} \end{aligned}$	-10	-17	-30	mA
$I_{\text {SE }}$	Output Short Circuit Current (Negative) (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=0 \Omega \\ & \mathrm{~V}_{1 N_{1}} \text { or } V_{I N_{2}}=V_{\text {INHIBIT }}=2.0 \mathrm{~V} \end{aligned}$	+10	+17	+30	mA
${ }^{\prime} \mathrm{cc}$	Total Positive Supply Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$		19	28	mA
		$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$		9.5	17	
I_{EE}	Total Negative Supply Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$		0	-2	mA
		$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=\mathrm{V}_{\text {INHISIT }}=2.0 \mathrm{~V}$		-20	-30	

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. V_{OH} and V_{OL} are guaranteed to be equal within ± 10 percent of each other for MIL-188C operation. (i.e., $\mathrm{V}_{\mathrm{OH}}=6.0 \mathrm{~V}$ then $\mathrm{V}_{\mathrm{OL}}=-6.0 \mathrm{~V} \pm 0.6 \mathrm{~V}$).
3. The ISC and ISE minimum limits guarantee the output impedance to be less than 100 ohms.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+12.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12.0 \mathrm{~V}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPLH	Delay from Input LOW to Output HIGH	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\infty$		320	650	ns
tPHL	Delay from Input HIGH to Output LOW			320	650	ns
dV/dt (t)	Positive Slew Rate	$0 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{L}} \leqslant 2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geqslant 3 \mathrm{k} \Omega$	4.0	15	30	$\mathrm{V} / \mathrm{\mu s}$
$\mathrm{dV} / \mathrm{dt}(-)$	Negative Slew Rate		-30	-15	-4.0	V / s

TYPICAL CHARACTERISTICS

DEFINITION OF TERMS

FUNCTIONAL TERMS

RS-232C A specification of the Electronic Industries Association that defines the electrical characteristics of data signals transmitted between two pieces of digital equipment.
\mathbf{R}_{L} Load resistance. The DC resistance between the driver output and ground.

MIL-188C A Military specification that defines the electrical interface and characteristics of data signals transmitted between two pieces of digital equipment.
CCITT V. 24 A European specification similar to the MIL-188C and RS-232 specifications.

SWITCHING TEST CIRCUIT \& VOLTAGE WAVEFORMS

LIC-415
Note: Omit VIN2 for channels B, C and D.

LIC-416
Pulse Generator Rise Time $=10 \pm 5 \mathrm{~ns}$.

Am2617

Distinctive Characteristics

- Full military temperature range
- Compatible with EIA specification RS-232C
- Input signal range ± 30 volts
- Guaranteed input thresholds over full military temperature range
- 100\% reliability assurance testing in compliance with MIL-STD-883
- Includes response control input and built-in hysterisis

FUNCTIONAL DESCRIPTION

The Am2617 is a quad line receiver whose electrical characteristics conform to EIA specification RS-232C. Each receiver has a single data input that can accept signal swings of up to $\pm 30 \mathrm{~V}$. The output of each receiver is TTL/DTL compatible, and includes a $2 \mathrm{k} \Omega$ resistor pull-up to $V_{\text {CC }}$. An internal feedback resistor causes the input to exhibit hysterisis so that AC noise immunity is maintained at a high level even near the switching thresholds. For example, at $25^{\circ} \mathrm{C}$ when a receiver is in a LOW state on the output, the input may drop as LOW as 1.25 volts without affecting the output. The device is guaranteed to switch to the HIGH state when the input voltage is below 0.75 V . Once the output has switched to the HIGH state, the input may rise to 1.75 V without causing a change in the output. The Am2617 is guaranteed to switch to a LOW output when its input reaches 2.25 V . Because of this hysterisis in switching thresholds, the device can receive signals with superimposed noise or with slow rise and fall times without generating oscillations on the output. The threshold levels may be offset by a constant voltage by applying a DC bias to the response control input. A capacitor added to the response control input will reduce the frequency response of the receiver for applications in the presence of high frequency noise spikes. The companion line driver is the Am2616.

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
LIC-417

CIRCUIT DIAGRAM
(One Receiver)

LIC-418

ORDERING INFORMATION			CONNECTION DIAGRAM Top View		
	Temperature Range	Order Number			
Molded DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2617PC	A R.C. \qquad 2	$13 \square \mathrm{D} \operatorname{IN}$	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2617DC	a out \square^{3}	$12 \square$ D R.c.	
Dice	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM2617XC	Bin \square^{4}	${ }^{11} \square$ O OUT	
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2617DM	B R.C. \square_{5}	$10 \square \mathrm{cin}$	
Hermetic Flat Pack	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2617FM	8 OUt \square_{6}^{6}	$\bigcirc \square \text { с в.с. }$	
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2617XM	GND	8 C OUT	
			Note: Pin 1 is marked for orientation.		LIC-419

Am2617

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	-0.5 V to +10 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
Input Signal Range	-30 V to +30 V
Output Current, Into Outputs	30 mA
DC Input Current	Defined by Input Voltage Limits

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{C C}=5.0 V \pm 5 \%$
$V_{C C}=5.0 V \pm 10 \%$
Response control pin open.

Parameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ or open	2.4	4.0		Volts
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.0 \mathrm{~V}$		0.2	0.45	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {IN }}=-3.0 \mathrm{~V}$	-0.43			mA
		$V_{\text {IN }}=-25 \mathrm{~V}$	-3.6		-8.3	
${ }^{1} \mathrm{H}$	Input HIGH Current	$\mathrm{V}_{\text {IN }}=+3.0 \mathrm{~V}$	0.43			mA
		$\mathrm{V}_{\text {IN }}=+25 \mathrm{~V}$	3.6		8.3	
${ }^{1} \mathrm{SC}$	Output Short Circuit Current	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V}$	1.9	2.5	3.8	mA
${ }^{\text {ICC }}$	Power Supply Current	$V_{C C}=$ MAX		20	26	mA

Note 1. Typical Limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

Threshold Characteristics (Note 2)

Parameters	Description	Test Conditions	$\mathrm{T}_{\text {A }}$	Min.	Typ. (Note 1)	Max.	Units
$\mathbf{V}_{\mathbf{T}+}$	Positive-Going Threshold Voltage	$\mathrm{V}_{\mathrm{OL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$	2.3		3.1	Volts
			$0^{\circ} \mathrm{C}$	1.9		2.5	
			$25^{\circ} \mathrm{C}$	1.75	2.0	2.25	
			$75^{\circ} \mathrm{C}$	1.45		1.90	
			$125^{\circ} \mathrm{C}$	1.20		1.65	
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$	0.85		1.65	Volts
			$0^{\circ} \mathrm{C}$	0.75		1.40	
			$25^{\circ} \mathrm{C}$	0.75	0.95	1.25	
			$75^{\circ} \mathrm{C}$	0.60		1.10	
			$125^{\circ} \mathrm{C}$	0.50		0.95	

Notes: 1. Typical Limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. The input threshold margin for the device is greater than the voltage computed as the $\mathrm{V}_{\mathrm{T}_{+}-V_{\mathrm{T}_{-}} \text {value. For the minimum value see the input }}$ threshold margin versus temperature graph.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, response control pin open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Delay from Input LOW to Output HIGH	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$		25	85	ns
${ }^{\text {tPHL }}$	Delay from Input HIGH to Output LOW	$\mathrm{R}_{\mathrm{L}}=390 \Omega$		25	50	ns
t_{r}	Output Rise Time (10\% to 90\%)	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$		120	175	ns
t_{f}	Output Fall Time (90\% to 10\%)	$\mathrm{R}_{\mathrm{L}}=390 \Omega$		10	20	ns

TYPICAL CHARACTERISTICS

DEFINITION OF TERMS

FUNCTIONAL TERMS

Response Control Pin A pin available on each receiver that allows the user to set the switching thresholds and frequency response of the receiver.
Threshold Voltage The voltage level on the input that will cause the output to change state. Because the device exhibits hysterisis, the LOW level input threshold is different from the HIGH level
input threshold. Both thresholds can be moved by applying a bias to the response control pin.
RS-232C A specification of the Electronic Industries Association that defines the electrical characteristics of data signals transmitted between two pieces of digital equipment.
Input Signal Range The permitted range of DC voltages that can be applied to the receiver input without damage to the device.

SWITCHING TIME TEST CIRCUIT \& WAVEFORMS

Metallization and Pad Layout

DIE SIZE 0.047" $\times 0.059^{\prime \prime}$

Quad Two-Input OC Bus Transceiver With Three-State Receiver

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Open-collector bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 100 mA at 0.8 V max.
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 100\% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2905 is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches that feature three-state outputs.
This LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8 V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{B E}$ is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.
The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.

Data from the A or B inputs is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and $\overline{O E}$ LOW). When the $\overline{R L E}$ input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have threestate outputs and are controlled by a buffered common three-state control ($\overline{O E}$) input. When $\overline{\mathrm{OE}}$ is HIGH, the receiver outputs are in the high-impedance state.

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
$\mathrm{GND}_{1}=\mathrm{Pin} 6$
$\mathrm{GND}_{2}=\operatorname{Pin} 18$
MPR-063
CONNECTION DIAGRAM
Top View

Am2905

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

Am2905 \times C (COM'L)	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C M}{ }^{\text {M }}$. $=4.75 \mathrm{~V} V_{\text {CCMAX }}=5.25 \mathrm{~V}$
Am2905×M (MIL)	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}$ MIN. $=4.50 \mathrm{~V} V_{\text {CCM }}$ MAX.$=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
$\mathrm{V}_{\text {OL }}$	Bus Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$\mathrm{IOL}=40 \mathrm{~mA}$			0.32	0.5	Volts.
			$\mathrm{I}_{\mathrm{OL}}=70 \mathrm{~mA}$			0.41	0.7	
			$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$			0.55	0.8	
10	Bus Leakage Current	$V_{C C}=\mathrm{MAX}$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	MIL			200	
				COM'L			100	
IOFF	Bus Leakage Current (Power OFF)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathbf{V}_{\text {TH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL	2.4	2.0		Volts
				COM'L	2.3	2.0		
$\mathbf{V}_{\text {TL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL		2.0	1.5	Volts
				COM'L		2.0	1.6	

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

Am2905×C (COM'L)	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C M I N}=4.75 \mathrm{~V}$	$V_{C C} M A X .=5.25 \mathrm{~V}$
Am2905 $\times \mathrm{M}$ MIL)	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C} M I N=4.50 \mathrm{~V}$	$V_{C C M} M A X .=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2905XM			Am2905XC			Units
			Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	
${ }_{\text {tPHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 \mathrm{pF} \\ & R_{L}(B \cup S)=50 \Omega \end{aligned}$		21	40		21	36	
${ }^{\text {tPLH }}$				21	40		21	36	
tPHL	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
tPLH				13	26		13	23	
t_{5}	Data Inputs (A or B)	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$	25			23			ns
$t^{\text {h }}$			8.0			7.0			
$t_{\text {s }}$	Select Input (S)		33			30			ns
t_{h}			8.0			7.0			
${ }^{\text {tPW }}$	Driver Clock (DRCP) Pulse Width (HIGH)		28			25			ns
${ }_{\text {tPLH }}$	Bus to Receiver Output (Latch Enable)			18	37		18	34	ns
${ }_{\text {t PHL }}$				18	37		18	34	
$t_{\text {PLH }}$	Latch Enable to Receiver Output			21	37		21	34	ns
${ }_{\text {tPHL }}$				21	37		21	34	
$\mathrm{t}_{\text {s }}$	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		21			18			ns
t_{h}			7.0			5.0			
t_{ZH}	Output Control to Receiver Output			14	28		14	25	ns
${ }_{\text {t }}^{\text {LL }}$				14	28		14	25	
$\mathrm{t}_{\mathrm{H} Z}$	Output Control to Receiver Output			14	28		14	25	ns
${ }_{\text {t }} \mathrm{Z}$				14	28		14	25	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

FUNCTION TABLE

FUNCTION TABLE											
INPUTS							INTERNAL TO DEVICE		$\begin{array}{\|l} \text { BUS } \\ \hline \overline{B U S}_{\mathbf{i}} \end{array}$	$\begin{array}{\|c\|} \hline \text { OUTPUT } \\ \hline \mathrm{R}_{\mathrm{i}} \\ \hline \end{array}$	FUNCTION
S	A_{i}	B_{i}	DRCP	$\overline{B E}$	$\overline{\text { RLE }}$	$\bar{O} \bar{E}$	D_{i}	$\mathrm{a}_{\mathbf{i}}$			
X	X	x	X	H	X	X	X	\times	Z	\times	Driver output disable
x	x	X	X	X	X	H	X	X	\times	Z	Receiver output disable
$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & H \\ & L \end{aligned}$	Driver output disable and receive data via Bus input
X	X	x	X	X	H	X	X	NC	X	X	Latch received data
L	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{X} \\ \mathrm{X} \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline X \\ X \\ L \\ H \\ \hline \end{array}$	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \uparrow \\ & \uparrow \end{aligned}$	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \hline \end{gathered}$	$\begin{gathered} \hline x \\ x \\ x \\ x \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \\ \hline \mathrm{x} \\ \hline \mathrm{x} \\ \hline \end{gathered}$	$\begin{gathered} x \\ x \\ x \\ x \\ \hline \end{gathered}$	Load driver register
$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	(x	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{x} \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	NC NC	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	No driver clock restrictions
$\begin{array}{\|l} \mathrm{x} \\ \mathrm{x} \\ \hline \end{array}$	$\begin{gathered} x \\ x \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	L	x X	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	Drive Bus
$H=H I G H$ $Z=$ HIGH Impedance $X=$ Don't care $i=0,1,2,3$ $L=$ LOW $N C=$ No change $i=$ LOW to HIGH transition											

DEFINITION OF FUNCTIONAL TERMS

$A_{0}, A_{1}, A_{2}, A_{3}$
The " A " word data input into the two input multiplexer of the driver register.
$\mathrm{B}_{0}, \mathbf{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ The " B^{\prime} word data input into the two input multiplexers of the driver register.

S Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.
DRCP Driver Clock Pulse. Clock pulse for the driver register.
$\overline{B E}$
Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
$\overline{\operatorname{BUS}}_{0}, \overline{\mathrm{BUS}}_{1}$ The four driver outputs and receiver in$\overline{\mathrm{BUS}}_{2}, \overline{\mathrm{BUS}}_{3}$ puts (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{\mathrm{RLE}} \quad$ Receiver Latch Enable. When $\overline{\mathrm{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
$\overline{\mathbf{O E}}$
Output Enable. When the $\overline{O E}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2905PC	P-24	C	C-1
AM2905DC	D-24	C	C-1
AM2905DC-B	D-24	C	B-1
AM2905DM	D-24	M	$\mathrm{C}-3$
AM2905DM-B	D-24	M	$\mathrm{B}-3$
AM2905FM	F-24	M	C-3
AM2905FM-B	F-24	M	B-3
AM2905XC	Dice	C	Visual inspection
AM2905XM	Dice	M	to MIL-STD-883
			Method 2010B.

Notes:

1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD883, Class B.

LOAD TEST CIRCUIT

MPR-070
Metallization and Pad Layout

DIE SIZE 0.080" $\times 0.130^{\prime \prime}$

The Am2905 is a universal Bus Transceiver useful for many system data, address, control and timing input/output interfaces.

Using the Am2905 and Am26S10 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am2906

Quad Two-Input OC Bus Transceiver With Parity

Distinctive Characteristics

- Quad high-speed LSI bus transceiver.
- Open-collector bus driver.
- Two-port input to D-type register on driver.
- Bus driver output can sink 100 mA at 0.8 V max.
- Internal odd 4-bit parity checker/generator.
- Receiver has output latch for pipeline operation.
- Receiver outputs sink 12 mA .
- Advanced low-power Schottky processing.
- 100\% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am2906 is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four opencollector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches. The device also contains a four-bit odd parity checker/generator.
This LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8 V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{\mathrm{BE}}$ is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.
Data from the A or B input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{R L E}$) input. When the $\overline{\operatorname{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input.
The Am2906 features a built-in four-bit odd parity checker/ generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A or B field data input to the driver register. When $\overline{\mathrm{BE}}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the highimpedance state, the BUS parity is checked.

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
$\mathrm{GND}_{1}=\operatorname{Pin} 6$
$G N D_{2}=\operatorname{Pin} 18$

CONNECTION DIAGRAM
Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2906XC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.75 \mathrm{~V} \quad V_{C C} M A X .=5.25 \mathrm{~V}$
Am2906XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C} \mathrm{MIN}=4.50 \mathrm{~V} \quad V_{C C} M A X .=5.50 \mathrm{~V}$
BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units.
$\mathrm{V}_{\text {OL }}$	Bus Output LOW Voltage		$1 \mathrm{OL}=40 \mathrm{~mA}$			0.32	0.5	Volts
			$1 \mathrm{OL}=70 \mathrm{~mA}$			0.41	0.7	
			$1 \mathrm{OL}=100 \mathrm{~mA}$			0.55	0.8	
10	Bus Leakage Current	$V_{C C}=M A X$.	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	MIL			200	
				COM'L			100	
IOFF	Bus Leakage Current (Power OFF)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathbf{V}_{\text {TH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL	2.4	2.0		Volts
				COM'L	2.3	2.0		
$V_{\text {TL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$		MIL		2.0	1.5	Volts
				COM'L		2.0	1.6	

ELECTRICAL CHARACTERISTICS

The following conditions applv unless otherwise noted:
$\begin{array}{llll}\text { Am2906 } X C \text { (COM'L) } & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C} \mathrm{MIN} .=4.75 \mathrm{~V} & V_{C C} M A X=5.25 \mathrm{~V} \\ \text { Am2906XM (MIL) } & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C} \text { MIN. } 4.5 \mathrm{~V} & V_{C C} \text { MAX. }=5.5 \mathrm{~V}\end{array}$
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
$\mathrm{VOH}^{\text {O }}$	Receiver Output	$V_{C C}=$ MIN	MIL	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.4		Volts
	HIGH Voltage	$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$	COM'L	$1 \mathrm{OH}=-2.6 \mathrm{~mA}$	2.4	3.4		
	Parity Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN. }, \mathrm{IOH}_{\mathrm{OH}}=-660 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=V_{\text {IH }} \text { or } V_{\mathrm{IL}} \end{aligned}$		MIL	2.5	3.4		
				COM'L	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\mathrm{OL}=4 \mathrm{~mA}$$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$			0.27	0.4	Volts
						0.32	0.45	
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.37	0.5	
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM ${ }^{\prime}$ L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{I N}=-18 \mathrm{~mA}$					-1.2	Volts
$I_{\text {IL }}$	Input LOW Current (Except Bus)	$V_{C C}=$ MAX., $V_{1 N}=0.4 \mathrm{~V}$					-0.36	mA
$\mathrm{I}_{1} \mathrm{H}$	Input HIGH Current (Except Bus)	$V_{C C}=$ MAX., $V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{I N}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX.			-12		-65	mA
$I_{\text {cc }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} .$, All inputs $=$ GND				72	105	mA

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2906XM			Am2906XC			Units
			Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	
tpHL	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B U S)=50 p F \\ & R_{L}(B U S)=50 \Omega \end{aligned}$		21	40		21	36	
tPLH				21	40		21	36	,
tPHL	Bus Enable ($\overline{\mathrm{BE}})$ to Bus			13	26		13	23	ns
${ }^{\text {tPLH}}$				13	26		13	23	
t_{5}	Data Inputs (A or B)	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$	25			23			ns
th			8.0			7.0			
$t_{\text {s }}$	Select Inputs (S)		33			30			ns
th			8.0			7.0			
tpW	Clock Pulse Width (HIGH)		28			25			ns
${ }^{\text {P L L }}$	Bus to Receiver Output (Latch Enabled)			18	37		18	34	ns
tPHL				18	37		18	34	
${ }^{\text {tPLH }}$	Latch Enable to Receiver Output			21	37		21	34	ns
${ }_{\text {tPHL }}$				21	37		21	34	
t_{5}	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		21			18			ns
th			7.0			5.0			
tPLH	A or B Data to Odd Parity Output (Driver Enabled)			21	40		21	36	ns
$t_{\text {PHL }}$				21	40		21	36	
${ }_{\text {tPLH }}$	Bus to Odd Parity Output (Driver Inhibited, Latch Enabled)			21	40		21	36	ns
$t_{\text {PHL }}$				21	40		21	36	
tPLH	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	40		21	36	ns
tPHL				21	40		21	36	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

FUNCTION TABLE

| FUNCTION TABLE | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DEFINITION OF FUNCTIONAL TERMS

$A_{0}, A_{1}, A_{2}, A_{3}$ The " A " word data input into the two input multiplexer of the driver register.
$B_{0}, B_{1}, B_{2}, B_{3}$
The " B " word data input into the two input multiplexers of the driver register.

S

DRCP
$\overline{B E}$
$\overline{\mathrm{BUS}}_{0}, \overline{\mathrm{BUS}}_{1}$
$\overline{\mathrm{BUS}}_{2}, \overline{\mathrm{BUS}}_{3}$
$\mathbf{R}_{0}, \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{\text { RLE }} \quad$ Receiver Latch Enable. When $\overline{\mathrm{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
$\overline{\mathrm{OE}}$
Output Enable. When the $\overline{O E}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2906PC	P-24	C	$\mathrm{C}-1$
AM2906DC	D-24	C	$\mathrm{C}-1$
AM2906DC-B	$\mathrm{D}-24$	C	$\mathrm{B}-1$
AM2906DM	$\mathrm{D}-24$	M	$\mathrm{C}-3$
AM2906DM-B	$\mathrm{D}-24$	M	$\mathrm{B}-3$
AM2906FM	F-24	M	$\mathrm{C}-3$
AM2906FM-B	F-24	M	B-3
AM2906XC	Dice	C	
AM2906XM	Dice	M	$\}$Visual inspection to MIL-STD-883 Method 2010B.

Notes:

1. $\mathbf{P}=$ Molded DIP, $\mathbf{D}=$ Hermetic DIP, F $=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD883, Class B.

Generating or checking parity for 16 data bits.

Using the Am2906 and Am26S10 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am2907•Am2908
 Quad Bus Transceivers with Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Open-collector bus driver
- D-type register on driver
- Bus driver output can sink 100 mA at 0.8 V max.
- Internal odd 4-bit parity checker/generator
- Am2907 has 2.0 V input receiver threshold; Am2908 is "DEC Q or LSI-II bus compatible" with 1.5 V receiver threshold
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced Low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am2907 and Am2908 are high-performance bus transceivers intended for bipolar or MOS microprocessor system applications. The Am2908 is Digital Equipment Corporation "Q or LSI-II bus compatible" while the Am2907 features a 2.0 V receiver threshoid. These devices consist of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches, that feature three-state outputs. The devices also contain a four-bit odd parity checker/generator.

These LSI bus transceivers are fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100 mA at 0.8 V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input $(\overline{\mathrm{BE}})$ is used to force the driver outputs to the high-impedance state. When $\overline{B E}$ is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_{i} data into this driver register on the LOW-to-HIGH transition.

Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted form driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{R L E}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and $\overline{\mathrm{OE}}$ LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{O E}$) input. When $\overline{O E}$ is HIGH, the receiver outputs are in the high-impedance state.
The Am2907 and Am2908 feature a built-in four-bit odd parity checker/generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When $\overline{B E}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.
The Am2907 has receiver threshold typically of 2.0 V while the Am2908 threshold is typically 1.5 V .
LOGIC SYMBOL

$$
V_{C C}=\operatorname{Pin} 20
$$

$\mathrm{GND}_{1}=\operatorname{Pin} 5$
$\mathrm{GND}_{2}=\operatorname{Pin} 15$
MPR-083
CONNECTION DIAGRAM
Top View

Note: Pin 1 is marked for orientation.
MPR-084

ORDERING INFORMATION

Package Type	Temperature Range	Am2907 Order Number	Am2908 Order Number
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM2907PC	AM2908PC
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM2907DC	AM2908DC
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM2907XC	AM2908XC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2907DM	AM2908DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2907FM	
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2907XM	

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Except BUS)	30 mA
DC Output Current, Into Bus	200 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
$\begin{array}{llll}\text { Am2907XC, Am2908XC (COM'L) } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C} \text { MIN. }=4.75 \mathrm{~V} & V_{C C} M A X .=5.25 \mathrm{~V} \\ \text { Am2907XM, Am2908XM (MIL) } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \mathrm{V}_{\mathrm{CC}} \mathrm{MIN} .=4.50 \mathrm{~V} & \mathrm{~V}_{\mathrm{CC}} \text { MAX. }=5.50 \mathrm{~V}\end{array}$
BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ. (Note 2)	Max.	Units
$\mathrm{V}_{\text {OL }}$	Bus Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$\mathrm{l}_{\mathrm{OL}}=40 \mathrm{~mA}$			0.32	0.5	Volts
			$\mathrm{IOL}=70 \mathrm{~mA}$			0.41	0.7	
			$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$			0.55	0.8	
10	Bus Leakage Current	$V_{C C}=$ MAX.	$\mathrm{V}_{\mathrm{O}} 40.4 \mathrm{~V}$				-50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	MIL			200	
				COM'L			100	
Ioff	Bus Leakage Current (Power Off)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Receiver Input HIGH Threshold	Bus Enable $=2.4 \mathrm{~V}$	Am2907	MiL	2.4	2.0		Volts
				COM'L	2.3	2.0		
			Am2908	MIL	1.9	1.5		
				COM'L	1.7	1.5		
$V_{T L}$	Receiver Input LOW Threshold	Bus Enable $=2.4 \mathrm{~V}$	Am2907	MIL		2.0	1.5	Volts
				COM'L		2.0	1.6	
			Am2908	MIL		1.5	1.1	
				COM'L		1.5	1.3	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2907XC, Am2908XC (COM'L) $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}$ MIN. $=4.75 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}$ MAX. $=5.25 \mathrm{~V}$
Am2907XM, Am2908XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN} .=4.50 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}$ MAX. $=5.50 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	Typ.(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.4	3.4		V
			COM'L: ${ }^{\circ} \mathrm{OH}=-2.6 \mathrm{~mA}$		2.4	3.4		Vol
V_{OH}	Parity Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-660 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		MIL	2.5	3.4		Vol
				COM'L	2.7	3.4		olts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$			0.27	0.4	
			$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.32	0.45	Volts
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.37	0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
V_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{I N}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$V_{C C}=M A X ., V_{I N}=0.4 \mathrm{~V}$					-0.36	mA
I_{IH}	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX			-12		-65	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX., All Inputs $=$ GND				75	110	mA
I_{0}	Off-State Output Current (Receiver Outputs)	$V_{C C}=$ MAX .	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	

Am 2907 SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Units
${ }_{\text {tPHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 p F \\ & R_{L}(B \cup S)=50 \Omega \end{aligned}$		21	40		21	36	
tPLH				21	40		21	36	
${ }_{\text {tPHL }}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
tPLH				13	26		13	23	
$\mathrm{t}_{\text {s }}$	Data Inputs	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$	18			15			ns
th			8.0			7.0			
tpw	Clock Pulse Width (HIGH)		28			25			ns
${ }^{\text {tPLH }}$	Bus to Receiver Output (Latch Enabled)			18	37		18	34	ns
${ }_{\text {tPHL}}$				18	37		18	34	
$t_{\text {PLH }}$	Latch Enable to Receiver Output			21	37		21	34	ns
t_{PH}				21	37		21	34	
$\mathrm{t}_{\text {s }}$	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		21			18			ns
th			7.0			5.0			
tPLH	Data to Odd Parity Out (Driver Enabled)			21	40		21	36	ns
tPHL				21	40		21	36	
tPLH	Bus to Odd Parity Out (Driver Inhibit)			21	40		21	36	ns
tPHL				21	40		21	36	
tPLH	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	40		21	36	ns
${ }_{\text {tPHL }}$				21	40		21	36	
$t \mathrm{ZH}$	Output Control to Output			14	28		14	25	ns
${ }^{\text {t }} \mathrm{ZL}$				14	28		14	25	
${ }_{\text {t }}^{\mathrm{H}} \mathrm{Z}$	Output Control to Output	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$		14	28		14	25	ns
$t_{L} \mathrm{Z}$		$R_{L}=2,0 \mathrm{k} \Omega$		14	28		14	25	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am2908 SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameter	Description	Test Conditions							Units
			Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 2) } \end{aligned}$	Max.	Min.	Typ. (Note 2)	Max.	
$\mathrm{t}_{\text {PHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B U S)=50 \mathrm{pF} \\ & R_{\mathrm{L}}(B U S): 91 \Omega \text { to } \\ & V_{C C} \\ & 200 \Omega \text { to } G N D \end{aligned}$		21	40		21	36	
$\mathrm{t}_{\text {PLH }}$				21	40		21	36	ns
$\mathrm{t}_{\text {PHL }}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
${ }^{\text {PLLH }}$				13	26		13	23	
t_{r}	Bus Output Rise Time		5	10		7	10		ns
$\mathrm{t}_{\text {f }}$	Bus Output Fall Time		3	6		4	6		ns
t_{s}	Data Inputs		18			15			ns
$t_{\text {h }}$			8.0			7.0			
$t_{\text {PW }}$	Clock Pulse Width (HIGH)		28			25			ns
$t_{\text {PLH }}$	Bus to Receiver Output (Latch Enabled)	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$		18	38		18	35	ns
${ }^{\text {P }}$ PL				18	38		18	35	ns
$\mathrm{t}_{\text {PLH }}$	Latch Enable to Receiver Output			21	38		21	35	ns
$\mathrm{t}_{\text {PHL }}$				21	38		21	35	
t_{s}	Bus to Latch Enable ($\overline{\text { RLE }}$)		21			18			ns
t_{h}			7.0			5.0			
$t_{\text {PLH }}$	Data to Odd Parity Out (Driver Enabled)	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$		21	40		21	36	ns
$\mathrm{t}_{\text {PHL }}$				21	40		21	36	ns
$t_{\text {PLH }}$	Bus to Odd Parity Out (Driver Inhibit)			21	40		21	36	ns
${ }^{\text {tPHL }}$				21	40		21	36	
$t_{\text {PLH }}$	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	40		21	36	ns
$\mathrm{t}_{\text {PHL }}$				21	40		21	36	
t_{zH}	Output Control to Output			14	28		14	25	ns
t_{ZL}				14	28		14	25	
$t_{\text {Hz }}$	Output Control to Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$		14	28		14	25	ns
t_{Lz}				14	28		14	25	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics fo the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown

Am2907/08 SWITCHING WAVEFORMS

1. INPUT SET-UP AND HOLD TIMES.

Am2907/08 SWITCHING WAVEFORMS

 AND LOAD TEST CIRCUITS
2. DRIVER CLOCK (DRCP) TO BUS

3. BUS ENABLE ($\overline{\mathrm{BE}})$ TO BUS
DRIVER SWITCHING WAVEFORMS

MPR-511
Am2907
DRIVER LOAD TEST CIRCUIT

MPR-513
4. BUS TO RECEIVER OUTPUT (LATCH ENABLED)

RECEIVER SWITCHING WAVEFORMS

[^4]Am2907/08 RECEIVER LOAD TEST CIRCUIT.
$C_{L}=50 \mathrm{pF}$ for Am2908

Am2907/08 SWITCHING WAVEFORMS AND LOAD TEST CIRCUITS (Cont.)

MPR-516
6. RECEIVER TRI-STATE WAVEFORMS

ODD PARITY OUTPUT WAVEFORMS

MPR-519
LOAD FOR RECEIVER TRI-STATE TEST
Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{zL}}, \mathrm{t}_{\mathrm{zH}}$ $C_{L} \equiv 5 p F$ for $t_{L Z}, t_{H Z}$

MPR-520

TRUTH TABLE

INPUTS					INTERNAL TO DEVICE		BUS	OUTPUT	
$\mathrm{A}_{\boldsymbol{i}}$	DRCP	$\overline{B E}$	$\overline{\text { RLE }}$	$\overline{O E}$	D_{i}	$\mathrm{O}_{\mathbf{i}}$	B_{i}	R_{i}	
X	X	H	X	X	X	X	H	X	Driver output disable
X	X	X	X	H	X	X	X	Z	Receiver output disable
X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Driver output disable and receive data via Bus input
X	X	X	H	X	X	NC	X	X	Latch received data
$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Load driver register
$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	NC NC	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	No driver clock restrictions
X 	$\begin{aligned} & x \\ & x \end{aligned}$	L	x \times	X 	L	x X X	H L	$\begin{aligned} & x \\ & x \end{aligned}$	Drive Bus

$H=$ HIGH	$Z=$ High Impedance	$X=$ Don't Care	$i=0,1,2,3$
$L=$ LOW	$N C=$ No Change	$\uparrow=$ LOW-to-HIGH Transition	

PARITY OUTPUT FUNCTION TABLE

$\overline{B E}$	ODD PARITY OUTPUT
L	ODD $=A_{0} \oplus A_{1} \oplus A_{2} \oplus A_{3}$
H	ODD $=\mathbf{Q}_{0} \oplus \mathbf{Q}_{1} \oplus \mathbf{Q}_{2} \oplus \mathbf{Q}_{3}$

DEFINITION OF FUNCTIONAL TERMS

DRCP Driver Clock Pulse. Clock pulse for the driver register. $\overline{\mathrm{BE}}$ Bus Enable. When the Bus Enable is LOW, the four drivers are in the high impedance state.
BUS $_{0}$, BUS $_{1}$, BUS $_{2}$, BUS $_{3}$ 'The four driver outputs and receiver inputs (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is noninverted.
$\overline{\operatorname{RLE}}$ Receiver Latch Enable. When $\overline{\text { RLE }}$ is LOW, data on the BUS inputs is passed through the receiver latches. When $\overline{\mathrm{RLE}}$ is HIGH , the receiver latches are closed and will retain the data independent of all other inputs.
ODD Odd parity output. Generates parity with the driver enabled, checks parity with the driver in the high-impedance state.
$\overline{\mathrm{OE}}$ Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three-state receiver outputs are in the high-impedance state.

Metallization and Pad Layout

DIE SIZE 0.088' $\times 0.103^{\prime \prime}$

APPLICATIONS

The Am2907 can be used as an I/O Bus Transceiver and Main Memory I/O Transceiver in high-speed Microprocessor Systems.

Using the Am2907 and Am26S10 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am2915A

Quad Three-State Bus Transceiver With Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 48 mA at 0.5 V max.
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 100\% reliability assurance testing in compliance with MIL-STD-883
- 3.5 V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2915A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches that feature three-state outputs.
This LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5 V maximum. The bus enable input (BE) is used to force the driver outputs to the high-impedance state. When $\overline{B E}$ is HIGH, the driver is disabled. The $V_{O H}$ and $V_{O L}$ of the bus driver are selected for compatibility with standard and Low-Power Schottky inputs.
The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition. .
Data from the A or B inputs is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and OE LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is HIGH, the receiver outputs are in the highimpedance state.

LOGIC SYMBOL

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 24 \\
& G N D_{1}=\operatorname{Pin} 6 \\
& \mathrm{GND}_{2}=\operatorname{Pin} 18
\end{aligned}
$$

MPR-159
CONNECTION DIAGRAM
Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2915AXC (COM $\left.{ }^{\prime} \mathrm{L}\right) \quad \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M} M 1 N .=4.75 \mathrm{~V} \quad V_{C C M A X}=5.25 \mathrm{~V}$
Am2915AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C} M I N .=4.50 \mathrm{~V} \quad V_{C C} M A X .=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {OL }}$	Bus Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.4	Volts
			$\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$			0.5	
V_{OH}	Bus Output HIGH Voltage	$V_{C C}=$ MIN.	COM'L, $I^{\text {OH }}=-20 \mathrm{~mA}$	2.4			Volts
			$\mathrm{MIL}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				
l_{0}	Bus Leakage Current (High Impedance)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \text { Bus enable }=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power OFF)	$\begin{aligned} & V_{O}=4.5 V \\ & V_{C C}=0 V \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		2.0			Volts
$V_{\text {IL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$	COM'L			0.8	Volts
			MIL			0.7	
${ }^{\text {I SC }}$	Bus Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{O}=0 V \end{aligned}$		-50	-120	-225	mA

Am2915A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
$\begin{array}{llll}\text { Am2915AXC (COM'L) } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & V_{C C} \text { MIN. }=4.75 \mathrm{~V} & V_{C C} M A X .=5.25 \mathrm{~V} \\ \text { Am2915AXM (MIL) } & \top_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & V_{C C} \text { MIN }=4.50 \mathrm{~V} & V_{C C} M A X=5.50 \mathrm{~V}\end{array}$
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Co	ons	1)	Min.	(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM ${ }^{\prime}$	$\mathrm{IOH}^{\prime}=-2.6 \mathrm{~mA}$	2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			3.5			
V_{OL}	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$		$1 \mathrm{OL}=4.0 \mathrm{~mA}$		0.27	0.4	Volts
				$\mathrm{I}^{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.32	0.45	
				${ }^{\prime} \mathrm{OL}=12 \mathrm{~mA}$		0.37	0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=$ MIN., $I_{I N}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		$\overline{\mathrm{BE}}, \overline{\mathrm{RLE}}$			-0.72	mA
				All other inputs			-0.36	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX			-30		-130	mA
${ }^{\text {I CC }}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.				63	95	mA
10	Off-State Output Current (Receiver Outputs)	$V_{C C}=$ MAX		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	

SWITCHING CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2915AXM			Am2915AXC			Units
				Typ. (Note 2)	Max.		Typ. (Note 2)	Max.	
${ }^{\text {P PHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 p F \\ & R_{L}(B \cup S)=130 \Omega \end{aligned}$		21	36		21	32	
tPLH				21	36		21	32	
${ }^{\text {t }} \mathrm{ZH},{ }^{\text {t }} \mathrm{ZL}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
${ }^{\text {t }} \mathrm{HZ}, \mathbf{t}_{L Z}$				13	21		13	18	
${ }_{\text {t }}$	Data Inputs (A or B)	$\begin{aligned} C_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$	15			12			ns
t_{h}			8.0			6.0			
$\mathrm{t}_{\text {s }}$	Select Input (S)		28			25			ns
t^{6}			8.0			6.0			
tPW	Driver Clock (DRCP) Pulse Width (HIGH)		20			17			ns
tPLH	Bus to Receiver Output (Latch Enable)			18	33		18	30.	ns
tPHL				18	30		18	27	
${ }^{\text {tPLH }}$	Latch Enable to Receiver Output			21	33		21	30	ns
${ }^{\text {tPHL }}$				21	30		21	27	
$\mathrm{t}_{\text {s }}$	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		15			13			ns
$t^{\text {h }}$			6.0			4.0			
${ }^{\mathbf{t}} \mathrm{ZH}, \mathrm{t}_{\mathrm{ZL}}$	Output Control to Receiver Output			14	26		14	23	ns
$\mathrm{t}_{\mathrm{HZ}, \mathrm{t}_{\mathrm{LZ}}}$		$C_{L}=5 p F, R_{L}=2.0 \mathrm{k} \Omega$		14	26		14	23	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Note: Actual current flow direction shown.

SWITCHING TEST CIRCUIT

SWITCHING WAVEFORMS

Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the $\overline{\mathrm{BUS}}$ to R combinatorial delay.

FUNCTIONAL TABLE												Metallization and Pad Layout			
InPuts							INTERNAL TO DEVICE		Bus	OUTPUT	FUNCTION			23 DRCP	
s	A_{i}	B_{i}	DRCP	BE	RLE	OE	D_{i}	a_{i}	$\overline{B U S}_{i}$	Ri					
X	X	x	X	H	\bar{x}	X	\times	\times	z	\times	Driver output disable	$\mathrm{R}_{0} 2$	=	22	R_{3}
x	x	x	X	x	X	H	x	x	x	Z	Receiver output disable	$3_{0} 3$, ${ }^{4}$	21	B_{3}
$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	x x	x	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	x \times	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	H	Driver output disable and receive data via Bus input				A_{3}
x	x	x	x	X	H	x	X	NC	X	X	Latch received data		-2 0^{2}		BUS_{3}
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \mathrm{L} \\ \mathrm{H} \\ \mathrm{X} \\ \mathrm{X} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \mathrm{X} \\ \mathrm{X} \\ \mathrm{~L} \\ \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & \hline \uparrow \\ & \uparrow \\ & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	+ x	 	L H L H	x x x x x	x x x x	x x x x x	Load driver register	$\begin{array}{rr}\text { GND } & 6 \\ \\ \mathrm{BUS}_{1} & 7 \\ \mathrm{~A}_{1} & 8\end{array}$		18 17 16	$\begin{aligned} & \mathrm{GND}_{2} \\ & \overline{\mathrm{BUS}}_{2} \\ & \mathrm{~A}_{2} \end{aligned}$
$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	x 	$\begin{gathered} x \\ x \\ \hline \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	No driver clock restrictions	$\begin{aligned} & 8_{1} 9 \\ & \mathrm{R}_{1} 10 \end{aligned}$			$\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{R}_{2} \end{aligned}$
\bar{x}	$\begin{array}{\|l} x \\ x \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline x \\ x \\ \hline \end{array}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	L	x \times \times	H L	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	Drive Bus				
$H=$ HIGH $Z=$ HIGH Impedance $X=$ Don't care $I=0,1,2,3$ $L=$ LOW NC $=$ No change $\uparrow=$ LOW to HIGH transition													$\begin{array}{r} 12 \\ \mathrm{OE} \end{array}$	13	S
												DIE SIZE .074" \times. $130^{\prime \prime}$			

DEFINITION OF FUNCTIONAL TERMS

$A_{0}, A_{1}, A_{2}, A_{3}$ The " A " word data input into the two input multiplexer of the driver register.
$\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ The " B " word data input into the two input multiplexers of the driver register.

S

DRCP Driver Clock Pulse. Clock pulse for the driver register.
$\overline{B E}$
Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register. Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
$\overline{\mathrm{BUS}}_{0}, \overline{\mathrm{BUS}}_{1}$ $\overline{\mathrm{BUS}}_{2}, \overline{\mathrm{BUS}}_{3}$
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{\text { RLE }} \quad$ Receiver Latch Enable. When $\overline{\mathrm{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When $\overline{\mathrm{RLE}}$ is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
Output Enable. When the $\overline{O E}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

ORDERING INFORMATION
Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2915APC	P-24	c	C-1
AM2915ADC	D-24	c	C-1
AM2915ADC-B	D-24	C	B-1.
AM2915ADM	D-24	M	C-3
AM2915ADM-B	D-24	M	B-3
AM2915AFM	F-24	M	C-3
AM2915AFM-B	F-24	M	B-3
AM2915AXC	Dice	C	Visual inspection
AM2915AXM	Dice	M	to MIL-STD-883 Method 2010B.

Notes: 1. $\mathbf{P}=$ Molded DIP, $\mathbf{D}=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

APPLICATIONS

The Am2915A is a universal Bus Transceiver useful for many system data, address, control and timing input/output interfaces.

MPR-165

Using the Am2915A and Am8T26 in a terminated Bus system for the Am9080 MOS Microprocessor.

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- Two-port input to D-type register on driver
- Bus driver output can sink 48 mA at 0.5 V max.
- Internal odd 4-bit parity checker/generator
- Receiver has output latch for pipeline operation
- Receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 100% reliability assurance testing in compliance with MIL-STD-883
- 3.5 V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2916A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edgetriggered flip-flops with a built-in two-input multiplexer on each. The flip-flop outputs are connected to four three-state bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches. The device also contains a four-bit odd parity checker/ generator.
The LSI bus transceiver is fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5 V maximum. The bus enable input $(\overline{\mathrm{BE}})$ is used to force the driver outputs to the high-impedance state. When $\overline{\mathrm{BE}}$ is HIGH, the driver is disabled.
The input register consists of four D-type flip-flops with a buffered common clock and a two-input multiplexer at the input of each flip-flop. A common select input (S) controls the four multiplexers. When S is LOW, the A_{i} data is stored in the register and when S is HIGH, the B_{i} data is stored. The buffered common clock (DRCP) enters the data into this driver register on the LOW-to-HIGH transition.
Data from the A or B input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data in non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\mathrm{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted). When the $\overline{\operatorname{RLE}}$ input is HIGH, the latch will close and retain the present data regardless of the bus input.
The Am2916A features a built-in four-bit odd parity checker/ generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A or B field data input to the driver register. When $\overline{B E}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

LOGIC SYMBOL

$V_{C C}=P$ in 24
$\mathrm{GND}_{1}=\operatorname{Pin} 6$
$G N D_{2}=\operatorname{Pin} 18$
MPR-167
CONNECTION DIAGRAM
Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except Bus)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2916AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M I N}=4.75 \mathrm{~V} \quad V_{C C} M A X .=5.25 \mathrm{~V}$
Am2916AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C M I N}=4.50 \mathrm{~V} \quad V_{C C M A X}=5.50 \mathrm{~V}$
BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameter	Description	Test Condit	ions (Note 1)	Min.	Typ.	Max.	Units
V_{OL}	Bus Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$1 \mathrm{OL}=24 \mathrm{~mA}$			0.4	Volts
			$1 \mathrm{OL}=48 \mathrm{~mA}$			0.5	
	Bus Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	COM ${ }^{\prime} \mathrm{L}, \mathrm{IOH}=-20 \mathrm{~mA}$	2.4			Volts
V_{OH}			MIL, $\mathrm{IOH}^{\text {a }}=-15 \mathrm{~mA}$				
10	Bus Leakage Current (High Impedance)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \text { Bus enable }=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
Ioff	Bus Leakage Current (Power OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{1 \mathrm{H}}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$	COM'L			0.8	Volts
			MIL			0.7	
Isc	Bus Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$		-50	-120	-225	mA

Am2916A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM ${ }^{\text {L }} \mathrm{I} \mathrm{OH}=-2.6 \mathrm{~mA}$		2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			3.5			
V_{OH}	Parity Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-660 \mu \mathrm{~A} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$		$\mathrm{I}^{\mathrm{OL}}=4.0 \mathrm{~mA}$		0.27	0.4	Volts
				${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$		0.32	0.45	
				$\mathrm{I}^{\mathrm{OL}}=12 \mathrm{~mA}$		0.37	0.5	
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level (Except Bus)	Guaranteed input logical LOW for all inputs		MIL			0.7	Volts
				COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current (Except Bus)	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		$\overline{\mathrm{BE}}, \overline{\mathrm{RLE}}$			-0.72	mA
				All other inputs			-0.36	
I_{IH}	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Except Bus)	$V_{C C}=$ MAX .		RECEIVER	-30		-130	mA
				PARITY	-20		-100	
${ }^{1} \mathrm{CC}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} .$, All Inputs $=$ GND				75	110	mA

SWITCHING CHARACTERISTICS OVER

OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Am2916AXM			Am2916AXC			Units
				Typ. (Note 2)	Max.		Typ. (Note 2)	Max.	
${ }_{\text {tPHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B \cup S)=50 p F \\ & R_{L}(B U S)=130 \Omega \end{aligned}$		21	36		21	32	
tPLH				21	36		21	32	ns
$\mathrm{t}_{\mathrm{ZH}}, \mathrm{t}_{\mathrm{ZL}}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
${ }^{\text {thZ }}$, $t_{L Z}$				13	21		13	18	
$\mathrm{t}_{\text {s }}$	Data Inputs (A or B)		15			12			ns
${ }^{\text {th }}$			8.0			6.0			
t_{s}	Select Inputs (S)		28			25			ns
th			8.0			6.0			
${ }^{\text {tPW }}$	Clock Pulse Width (HIGH)		20			17			ns
${ }^{\text {tPLH }}$	Bus to Receiver Output (Latch Enabled)	$-\cdots$		18	33		18	30	
${ }_{\text {t PHL }}$				18	30		18	27	
${ }_{\text {t PLH }}$	Latch Enable to Receiver Output			21	33		21	30	ns
				21	30		21	27	
t_{s}	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \end{aligned}$	15			13			ns
$t_{\text {h }}$			6.0			4.0			ns
tPLH	A or B Data to Odd Parity Output (Driver Enabled)			32	46		32	42	ns
${ }_{\text {tPHL }}$				26	40		26	36	
${ }^{\text {tPLH }}$	Bus to Odd Parity Output (Driver Inhibited, Latch Enabled)			21	36		21	32	ns
${ }^{\text {tPHL }}$				21	36		21	32	
tPLH	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	36		21	32	ns
tPHL				21	36		21	32	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test shoul not exceed one second.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown

SWITCHING TEST CIRCUIT

Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the $\overline{B U S}$ to R combinatorial delay.

DEFINITION OF FUNCTIONAL TERMS

$A_{0}, A_{1}, A_{2}, A_{3}$ The " A " word data input into the two input multiplexer of the driver register.
$\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ The " B^{\prime} word data input into the two input multiplexers of the driver register.

S Select. When the select input is LOW, the A data word is applied to the driver register. When the select input is HIGH, the B word is applied to the driver register.

DRCP
$\overline{B E}$
Driver Clock Pulse. Clock pulse for the driver register.

Bus Enable. When the Bus Enable is HIGH, the four drivers are in the high impedance state.
$\overline{\operatorname{BUS}}_{0}, \overline{\mathrm{BUS}}_{1}$
$\overline{B U S}_{2}, \overline{B U S}_{3}$
$\mathrm{R}_{\mathrm{O}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$
The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is non-inverted.
$\overline{\operatorname{RLE}} \quad$ Receiver Latch Enable. When $\overline{\mathrm{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.

Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three state receiver outputs are in the high-impedance state.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2916APC	P-24	C	C-1
AM2916ADC	D-24	C	C-1
AM2916ADC-B	D-24	C	B-1
AM2916ADM	D-24	M	C-3
AM2916ADM-B	D-24	M	B-3
AM2916AFM	F-24	M	C-3
AM2916AFM-B	F-24	M	B-3
AM2916AXC	Dice	C	Visual inspection to MIL-STD-883 AM2916AXM
	Dice	M	Method 2010B.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2916A

Using the Am2916A and Am8T26 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am2917A
 Quad Three-State Bus Transceiver With Interface Logic

Distinctive Characteristics

- Quad high-speed LSI bus-transceiver
- Three-state bus driver
- D-type register on driver
- Bus driver output can sink 48 mA at 0.5 V max.
- Internal odd 4-bit parity checker/generator
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12 mA
- Advanced low-power Schottky processing
- 100\% reliability assurance testing in compliance with MIL-STD-883
- 3.5V minimum output high voltage for direct interface to MOS microprocessors

FUNCTIONAL DESCRIPTION

The Am2917A is a high-performance, low-power Schottky bus transceiver intended for bipolar or MOS microprocessor system applications. The device consists of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four threestate bus drivers. Each bus driver is internally connected to the input of a receiver. The four receiver outputs drive four D-type latches, that feature three-state outputs. The device also contains a four-bit odd parity checker/generator.
The LSI bus transceiver is fabricated using advanced lowpower Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The three-state bus output can sink up to 48 mA at 0.5 V maximum. The bus enable input ($\overline{\mathrm{BE}}$) is used to force the driver outputs to the high-impedance state. When $\overline{\mathrm{BE}}$ is HIGH, the driver is disabled.
The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_{i} data into this driver register on the LOW-toHIGH transition.
Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable ($\overline{\mathrm{RLE}}$) input. When the $\overline{\operatorname{RLE}}$ input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and $\overline{O E}$ LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is HIGH , the receiver outputs are in the high-impedance state.
The Am2917A features a built-in four-bit odd parity checker/ generator. The bus enable input ($\overline{\mathrm{BE}}$) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When $\overline{B E}$ is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

LOGIC SYMBOL

$$
\mathrm{v}_{\mathrm{Cc}}=\operatorname{Pin} 20
$$

$$
\text { GND }_{1}=\operatorname{Pin} 5
$$

$$
\mathrm{GND}_{2}=\operatorname{Pin} 15
$$

CONNECTION DIAGRAM

Top View

[^5]

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +VCC max
DC Input Voltage	-0.5 V to +7 V
DC Output Current, Into Outputs (Except BUS)	30 mA
DC Output Current, Into Bus	100 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am2917AXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}} \mathrm{MAX} .=5.25 \mathrm{~V}$
Am2917AXM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}$ MIN. $=4.50 \mathrm{~V} \quad V_{C C} M A X .=5.50 \mathrm{~V}$

BUS INPUT/OUTPUT CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)		Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {OL }}$	Bus Output LOW Voltage	$V_{C C}=\mathrm{MIN}$.	$\mathrm{IOL}^{\prime}=24 \mathrm{~mA}$			0.4	Volts
			$1 \mathrm{OL}=48 \mathrm{~mA}$			0.5	
V_{OH}	Bus Output HIGH Voltage	$V_{C C}=$ MIN.	$\mathrm{COM}^{\prime} \mathrm{L}, 1 \mathrm{OH}=-20 \mathrm{~mA}$	2.4			Volts
			$\mathrm{MIL}, \mathrm{IOH}=-15 \mathrm{~mA}$				
10	Bus Leakage Current (High Impedance)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \text { Bus enable }=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
			$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF	Bus Leakage Current (Power OFF)	$\begin{aligned} & V_{O}=4.5 \mathrm{~V} \\ & V_{C C}=0 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Receiver Input HIGH Threshold	Bus enable $=2.4 \mathrm{~V}$		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Receiver Input LOW Threshold	Bus enable $=2.4 \mathrm{~V}$	COM ${ }^{\prime}$ L			0.8	Volts
			MIL			0.7	
ISC	Bus Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X . \\ & v_{O}=O V \end{aligned}$		-50	-120	-225	mA

Am2917A

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
$\begin{array}{llll}\text { Am2917AXC (COM'L) } & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} & \mathrm{V}_{\text {CC MIN. }}=4.75 \mathrm{~V} & \mathrm{~V}_{\text {CCM MAX. }}=5.25 \mathrm{~V} \\ \text { Am2917AXM (MIL) } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \mathrm{V}_{\text {CC MIN }}=4.50 \mathrm{~V} & \mathrm{~V}_{\text {CC MAX. }}=5.50 \mathrm{~V}\end{array}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions (Note 1)			Min.	(Note 2)	Max.	Units
V_{OH}	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	MIL: $1 \mathrm{OH}=-1.0 \mathrm{~mA}$		2.4	3.4		Volts
			COM'L: $\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$		2.4	3.4		
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{IOH}=-100 \mu \mathrm{~A}$			3.5			
V_{OH}	Parity Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}_{.}, \mathrm{I}_{\mathrm{OH}}=-660 \mu \mathrm{~A} \\ & \mathrm{~V}_{I N}=\mathrm{V}_{I H} \text { or } \mathrm{V}_{1 L} \end{aligned}$		MIL	2.5	3.4		Volts
				COM'L	2.7	3.4		
V_{OL}	Output LOW Voltage (Except Bus)	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$		$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$		0.27	0.4	Volts
				$\mathrm{IOL}^{\prime}=8.0 \mathrm{~mA}$		0.32	0.45	
				$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.37	0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level (Except Bus)	Guaranteed input l for all inputs	$\mathrm{I} \mathrm{HIGH}$		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input log	LOW	MIL			0.7	Volts
	(Except Bus)	for all inputs		COM'L			0.8	
v_{1}	Input Clamp Voltage (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=$ MIN., I $\mathrm{IN}=$	A				-1.2	Volts
IL	Input LOW Current (Except Bus)	$V_{C C}=$ MAX $V_{\text {IN }}$		$\overline{\mathrm{BE}}, \overline{\mathrm{RLE}}$			-0.72	
IL	($V_{C C}$ MAX., ViN		All other inputs			-0.36	mA
${ }_{1 / H}$	Input HIGH Current (Except Bus)	$V_{C C}=M A X ., V_{\text {IN }}$					20	$\mu \mathrm{A}$
11	Input HIGH Current (Except Bus)	$V_{\text {CC }}=M A X ., V_{\text {IN }}$					100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$V_{C C}=M A X$.		RECEIVER	-30		-130	mA
	(Except Bus)			PARITY	-20		-100	
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=\mathrm{MAX}$.				63	95	mA
10	Off-State Output Current	$V_{C C}=$ MAX .		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	
O	(Receiver Outputs)	VC MAX.		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS OVER

OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions	Min.	Typ. (Note 2)	Max.	Min.	Typ. (Note 2)	Max.	Units
${ }^{\text {tPHL }}$	Driver Clock (DRCP) to Bus	$\begin{aligned} & C_{L}(B U S)=50 p F \\ & \left.R_{L} B U S\right)=130 \Omega \end{aligned}$		21	36		21	32	
tPLH				21	36		21	32	
${ }^{\text {t }} \mathrm{ZH}, \mathrm{t} \mathrm{ZL}$	Bus Enable ($\overline{\mathrm{BE}}$) to Bus			13	26		13	23	ns
${ }^{\text {thZ }}$, ${ }^{\text {L }}$ LZ				13	21		13	18	
t_{5}	A Data Inputs	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ R_{L} & =2.0 \mathrm{k} \Omega \end{aligned}$	15			12			ns
t_{h}			8.0			6.0			
tPW	Clock Pulse Width (HIGH)		20			17			ns
tPLH	Bus to Receiver Output (Latch Enabled)			18	33		18	30	ns
${ }^{\text {tPHL}}$				18	30		18	27	
${ }^{\text {tPLH }}$	Latch Enable to Receiver Output			21	33		21	30	ns
${ }_{\text {t }}$				21	30		21	27	
t_{s}	Bus to Latch Enable ($\overline{\mathrm{RLE}}$)		15			13			ns
th			6.0			4.0			s
${ }^{\text {tPLH }}$	A Data to Odd Parity Out (Driver Enabled)			32	46		32	42	ns
${ }^{\text {t PHL }}$				26	40		26	36	
${ }^{\text {t PLH }}$	Bus to Odd Parity Out (Driver Inhibit)			21	36		21	32	ns
${ }^{\text {tPHL}}$				21	36		21	32	
tPLH	Latch Enable ($\overline{\mathrm{RLE}}$) to Odd Parity Output			21	36		21	32	ns
${ }^{\text {tPHL}}$				21	36		21	32	
$\mathrm{t}_{\mathrm{ZH}}, \mathrm{t}_{\mathrm{ZL}}$	Output Control to Output			14	26		14	23	ns
$\mathrm{t}_{\mathrm{HZ}, \mathrm{t}_{\mathrm{L}} \mathrm{Z}}$		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$		14	26		14	23	

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

INPUT/OUTPUT CURRENT
 INTERFACE CONDITIONS

Note: Actual current flow direction shown.

SWITCHING TEST CIRCUIT

SWITCHING WAVEFORMS

Note: Bus to Receiver output delay is measured by clocking data into the driver register and measuring the BUS to R combinatorial delay.

| FUNCTION TABLE | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Metallization and Pad Layout

DIE SIZE .074" X .130"

DEFINITION OF FUNCTIONAL TERMS

DRCP Driver Clock Pulse. Clock pulse for the driver register.
$\overline{\mathrm{BE}}$ Bus Enable. When the Bus Enable is LOW, the four drivers are in the high impedance state.
BUS $_{0}$, BUS $_{1}$, BUS $_{2}$, BUS $_{3}$ The four driver outputs and receiver inputs (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}$ The four receiver outputs. Data from the bus is inverted while data from the A or B inputs is noninverted.
$\overline{\mathrm{RLE}}$ Receiver Latch Enable. When $\overline{\mathrm{RLE}}$ is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH , the receiver latches are closed and will retain the data independent of all other inputs.

ODD Odd parity output. Generates parity with the driver enabled, checks parity with the driver in the high-impedance state.
$\overline{\mathrm{OE}}$ Output Enable. When the $\overline{\mathrm{OE}}$ input is HIGH, the four three-state receiver outputs are in the high-impedance state.

PARITY OUTPUT FUNCTION TABLE

$\overline{B E}$	ODD PARITY OUTPUT
L	ODD $=A_{0} \oplus A_{1} \oplus A_{2} \oplus A_{3}$
H	$O D D=Q_{0} \oplus \mathbf{Q}_{1} \oplus \mathbf{Q}_{2} \oplus \mathbf{Q}_{3}$

APPLICATIONS

The Am2917A can be used as an I/O Bus Transceiver and Main Memory 1/O Transceiver in high-speed Microprocessor Systems.

Using the Am2917A and Am8T26 in a terminated Bus system for the Am9080 MOS Microprocessor.

Am3212•Am8212

Eight-Bit Input/Output Port

Distinctive Characteristics

- Fully parallel, 8-bit data register and buffer replacing latches, multiplexers and buffers needed in microprocessor systems.
- 4.0V output high voltage for direct interface to MOS microprocessors, such as the Am9080A family.
- Input load current $250 \mu \mathrm{~A}$ max.
- Reduces system package count

FUNCTIONAL DESCRIPTION

All of the principal peripheral and input/output functions of a Microcomputer System can be implemented with the Am3212 - Am8212. The Am3212 - Am8212 input/output port consists of an 8 -latch with 3 -state output buffers along with control and device selection logic, which can be used to implement latches, gated buffers or multiplexers.

- Available for operation over both commercial and military temperature ranges.
- Advanced Schottky processing with 100\% reliability assurance testing in compliance with MIL-STD-883.
- Service request flip-flop for interrupt generation
- Three-state outputs sink 15 mA
- Asynchronous register clear with clock over-ride

FUNCTIONAL DESCRIPTION (Cont'd)

Data Latch

The 8 flip-flops that make up the data latch are of a " D " type design. The output (Q) of the flip-flop will follow the data input (D) while the clock input (C) is high. Latching will occur when the clock (C) returns low.
The data latch is cleared by an asynchronous reset input $(\overline{C L R})$. (Note: Clock (C) Overrides Reset ($\overline{C L R}$)).

Output Buffer

The outputs of the data latch (Q) are connected to 3 -state, non-inverting output buffers. These buffers have a common control line (EN); this control line either enables the buffer to transmit the data from the outputs of the data latch (O) or disables the buffer, forcing the output into a high impedance state. (3 -state). This high-impedance state allows the Am3212-Am82.12 to be_connected directly onto the microprocessor bi-directional data bus.

Control Logic

The Am3212 • Am8212 has control inputs $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}, \mathrm{MD}$ And STB. These inputs are used to control device selection, data latching, output buffer state and service request flipflop.

$\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$ (Device Select)

These 2 inputs are used for device selection. When $\overline{\mathrm{DS}}_{1}$ is low and DS_{2} is high ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$) the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

MD (Mode)

This input is used to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.
When MD is high (output mode) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$).
When MD is low (input mode) the output buffer state is determined by the device selection logic ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$) and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

This input is used as the clock (C) to the data latch for the input mode MD $=0$) and to synchronously reset the service request flip-flop (SR).

Note that the SR flip-flop is negative edge triggered.

Service Request Flip-Flop

The SR flip-flop is used to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{C L R}$ input (active low). When the (SR) flip-flop is set it is in the non-interrupting state.
The output of the (SR) flip-flop (Q) is connected to an inverting input of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$). The output of the "NOR" gate ($\left.\overline{\mathrm{NNT}}\right)$ is active low (interrupting state) for connection to active low input priority generating circuits.

TRUTH TABLE

STB	MD	$\overline{\mathrm{DS}_{\mathbf{1}}}-\mathrm{DS}_{\mathbf{2}}$	Data Out Equals
0	0	0	Three-State
1	0	0	Three-State
0	1	0	Data Latch
1	1	0	Data Latch
0	0	1	Data Latch
$\mathbf{1}$	0	1	Data In
0	1	1	Data In
1	1	1	Data In

CLR	$\overline{\overline{D S}_{\mathbf{1}}}-\mathrm{DS}_{\mathbf{2}}$	STB	SR *	$\overline{\mathrm{INT}}$
$\mathbf{0}$	0	0	1	1
$\mathbf{0}$	1	0	1	0
$\mathbf{1}$	$\mathbf{1}$	$乙$	0	0
$\mathbf{1}$	1	0	1	0
$\mathbf{1}$	0	0	1	1
$\mathbf{1}$	$\mathbf{1}$	Z	1	0

[^6]
Am3212/Am8212

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	-0.5 V to +7.0 V
Output Voltage	-0.5 V to +7.0 V
Input Voltages	-1.0 V to +5.5 V
Output Current (Each Output)	125 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

P8212, D8212, P3212, D3212 (COM'L)	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
Am8212DM, MD3212 (MIL)	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

DC CHARACTERISTICS
Typ.

Parameters	Description	Test Conditions		Min.	Typ. (Note 1$)$	Max.	Units
${ }^{\prime} \mathrm{F}$	Input Load Current ACK, $\mathrm{DS}_{2}, \mathrm{CR}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Inputs	$V_{F}=0.45 \mathrm{~V}$				-0.25	mA
I_{F}	Input Load Current MD Input	$V_{F}=0.45 \mathrm{~V}$				-0.75	mA
I_{F}	Input Load Current DS 1 Input	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$				-1.0	mA
I_{R}	Input Leakage Current ACK, DS, CR, DI_{1} - DI 8 Inputs	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$				10	$\mu \mathrm{A}$
I_{R}	Input Leakage Current MO Input	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$				30	$\mu \mathrm{A}$
${ }^{1}$	Input Leakage Current DS ${ }_{1}$ Input	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$				40	$\mu \mathrm{A}$
v_{c}	Input Forward Voltage Clamp	${ }^{\prime} \mathrm{C}=-5.0 \mathrm{~mA}$	$\mathrm{COM}^{\prime} \mathrm{L}$			-1.0	Volts
			MIL			-1.2	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		СОМ'L			0.85	Volts
			MIL			0.80	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0			Volts
V_{OL}	Output LOW Voltage	$\mathrm{IOL}=15 \mathrm{~mA}$				0.45	Volts
V_{OH}	Output HIGH Voltage	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	COM'L	3.65	4.0		Volts
			MIL	3.3	4.0		
		$1 \mathrm{OH}=-0.5 \mathrm{~mA}$	MIL	3.4	4.0		
ISC	Short Circuit Output Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		-15		-75	mA
$1{ }^{1}$	Output Leakage Current High Impedance	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{CC}	Power Supply Current	Note 2			90	130	mA

AC CHARACTERISTICS (Note 3)

Parameters	Description	Min.	(Note 1)	Max.	Units
${ }_{\text {t }}$ w	Pulse Width	30	8		ns
${ }^{\text {t }}$ d	Data to Output Delay		12	30	ns
$\mathrm{t}_{\text {we }}$	Write Enable to Output Delay		18	40	ns
${ }_{\text {set }}$	Data Set-up Time	15			ns
$t_{\text {h }}$	Data Hold Time	20			ns
t_{r}	Reset to Output Delay		18	40	ns
t_{s}	Set to Output Delay		15	30	ns
t_{e}	Output Enable/Disable Time		14	45	ns
t_{c}	Clear to Output Delay		25	55	ns

CAPACITANCE (Note 4)
$F=1.0 \mathrm{MHz}, V_{B \mid A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameters	Typ.	Max.	Units	
C_{IN}	$\mathrm{DS}_{1} \mathrm{MD}$ Input Capacitance	9.0	12	pF
$\mathrm{C}_{1 \mathrm{~N}}$	$\mathrm{DS}_{2}, \mathrm{CK}, \mathrm{ACK}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Input Capacitance	5.0	9.0	pF
$\mathrm{C}_{\mathrm{OUT}}$	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$ Output Capacitance	8.0	12	pF

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. $C L R=S T B=H I G H ; D S_{1}=D S_{2}=M D=L O W$; all data inputs are gound, all data outputs are open.
3. Conditions of Test: a) Input pulse amplitude $=2.5 \mathrm{~V}$
b) Input rise and fall times 5.0 ns
c) Between 1.0 V and 2.0 V measurements made at 1.5 V with 15 mA and 30 pF Test Load.
4. This parameter is sampled and not 100% tested.

TEST LOAD (15 mA and 30 pF)

*Including Jig and Probe Capacitance. LIC-425

TYPICAL APPLICATIONS OF THE Am8212

GATED BUFFER (3-STATE)

By tying the mode signal low and the strobe input high, the data latch is acting as a straight through gate. The output buffers are then enabled from the device selection logic $\overline{\mathrm{DS}}_{1}$ and DS_{2}.
When the device selection logic is false, the outputs are 3 -state. When the device selection logic is true, the input data from the system is directly transferred to the output.

Bi-Directional Bus Driver

Two Am3212 - Am8212's wired back-to back can be used as a symmetrical drive, bi-directional bus driver. The devices are controlled by the data bus input control which is connected to $\overline{\mathrm{DS}}_{1}$ on the first Am3212 - Am8212 and to DS_{2} on the second. While one device is active, and acting as a straight through buffer the other is in its 3 -state mode.

Interrupting Input Port

The Am3212 - Am8212 accepts a strobe from the system input source, which in turn clears the service request flip-flop and interrupts the processor. The processor then goes through a service routine, identifies the port, and causes the device selection logic to go true - enabling the system input data onto the data bus.

TYPICAL APPLICATIONS OF THE Am8212 (Cont'd)

Interrupt Instruction Port

The Am3212 - Am8212 can be used to gate the interrupt instruction, normally RESTART instructions, onto the data bus. The device is enabled from the interrupt acknowledge signal from the microprocessor and from a port selection signal. This signal is normally tied to ground. ($\overline{\mathrm{DS}}_{1}$ could be used to multiplex a variety of interrupt instruction ports onto a common bus).

Output Port (With Hand-Shaking)

The Am3212 - Am8212 is used to transmit data from the data bus to a system output. The output strobe could be a hand-shaking signal such as "reception of data" from the device that the system is outputting to. It in turn, can interrupt the system signifying the reception of date. The selection of the port comes from the device selection logic. ($\left.\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\right)$.

Am9080A Status Latch

The input to the Am3212 - Am8212 latch comes directly from the Am9080A data bus. Timing shows that when the SYNC signal is true ($\overline{\mathrm{DS}}_{1}$ input), and $\phi 1$ is true,
($\overline{\mathrm{DS}}_{1}$ input) then the status data will be latched into the Am3212• Am8212. The mode signal is tied high so that the output on the latch is active and evabled all the time.

Am3216•Am3226 •Am8216 •Am8226

Four-Bit Parallel Bidirectional Bus Driver

Distinctive Characteristics

- Data bus buffer driver for 8080 type CPU's
- Low input load current -0.25 mA maximum
- High output drive capability for driving system data bus -50 mA at 0.5 V
- 100% reliability assurance testing in compliance with MIL-STD-883
- Am3216 and Am8216 have non-inverting outputs
- Output high voltage compatible with direct interface to MOS
- Three-state outputs
- Advanced Schottky processing
- Available in military and commercial temperature range
- Am3226 and Am8226 have inverting outputs

FUNCTIONAL DESCRIPTION

The Am3216, Am3226, Am8216 and Am8226 are four-bit, bi-directional bus drivers for use in bus oriented applications.
-The-non-inverting-Am3216-and-Am8216,-and-inverting Am3226 and Am8226 drivers are provided for flexibility in system design.
Each buffered line of the four bit driver consists of two separate buffers that are three-state to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this side is used to interface to the system side components such as memories, I/O, etc., because its interface is TTL compatible and it has high drive $(50 \mathrm{~mA})$. On the other side of the driver the inputs and outputs are separated to provide maximum flexibility. Of course, they can be tied
together so that the driver can be used to buffer a true bi-directional bus. The DO outputs on this side of the driver have a special-high voltage output drive capability so that direct interface to the 8080 type CPUs is achieved with an adequate amount of noise immunity.

The $\overline{\mathrm{CS}}$ input is a device enable. When it is "high" the output drivers are all forced to their high-impedance state. When it is a "LOW" the device is enabled and the direction of the data flow is determined by the DIEN input.

The $\overline{\text { DIEN }}$ input controls the direction of data flow which is accomplished by forcing one of the pair of buffers into its high impedance state and allowing the other to transmit its data. A simple two gate circuit is used for this function.

LOGIC DIAGRAMS

LIC-440

	ORDERING INFORMATION		
		Am3216	Am3226
		Am8216	Am8226
Package	Temperature	Order	Order
Type	Range	Number	Number
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MD3216	MD3226
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	D3216	D3226
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	P3216	P3226
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MD8216	MD8226
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	D8216	D8226
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	P8216	P8226
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8216XC	AM8226XC

MAXIMUM RATINGS (Above which the useful life may be impaired)

Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
AN Output and Supply Voltages	-0.5 V to +7.0 V
All Input Voltages	-1.0 V to +5.5 V
Output Currents	125 mA

Am3216, Am3226, Am8216 AND Am8226 MILITARY
ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
The following conditions apply unless otherwise specified:
MD3216, MD8216, MD3226, MD8226 (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

DC CHARACTERISTICS

Typ.

Parameter	Description		Test Conditions		Min.	Typ. (Note 1)	Max.	Units
$\mathrm{I}_{\mathrm{F} 1}$	Input Load Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$		$V_{F}=0.45$			-0.15	-0.5	mA
$\mathrm{I}_{\text {F } 2}$	Input Load Current All Other Inputs		$\mathrm{V}_{\mathrm{F}}=0.45$			-0.08	-0.25	mA
${ }^{1} \mathrm{R} 1$	Input Leakage Current $\overline{\text { DIEN, }} \overline{\text { CS }}$		$V_{R}=5.5 \mathrm{~V}$				80	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{R} 2}$	Input Leakage Current DI Inputs		$V_{R}=5.5 \mathrm{~V}$				40	$\mu \mathrm{A}$
v_{C}	Input Forward Voltage Clamp		${ }^{1} \mathrm{C}$ C $=-5.0 \mathrm{~mA}$				-1.2	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Am3216, Am8216					0.95	Volts
		Am3226, Am8226					0.9	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0			Volts
	Output Leakage Current	DO					20	
10	(Three-State)	DB					100	$\mu \mathrm{A}$
	P	Am3216, Am8216				95	130	
${ }^{\text {c }}$ C	Power Supply Current	Am3226, Am8226				85	120	mA
$\mathrm{V}_{\text {OL1 }}$	Output LOW Voltage		$\begin{aligned} & \text { DO Outputs IOL }=15 \mathrm{~mA} \\ & \text { DB Outputs IOL }=25 \mathrm{~mA} \end{aligned}$			0.3	0.45	Volts
$\mathrm{v}_{\text {OL2 }}$	Output LOW Voltage		DB Outputs $10 \mathrm{LL}=45 \mathrm{~mA}$			0.5	0.6	Volts
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage		DO Outputs	$1 \mathrm{OH}=-0.5 \mathrm{~mA}$	3.4	4.0		Volts
OHI	Oupur Hich vokage		DO Oupus	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	2.4			
$\mathrm{V}_{\mathrm{OH} 2}$	Output HIGH Voltage		DB Outputs $\mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA}$		2.4	3.0		Volts
	Output		DO Outputs $\cong 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		-15	-35	-65	
Ios	Output Shor Circuit Cur		DB Outputs $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		-30	-75	-120	ma

AC CHARACTERISTICS

Typ.

Parameter	Description		Test Conditions	Min.	(Note 1)	Max.	Units
tPD1	Input to Output Delay DO Outputs		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \mathrm{R}_{2}=600 \Omega$		15	25	ns
tPD2	Input to Output Delay DB Outputs	Am3216, Am8216	$C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \mathrm{R}_{2}=180 \Omega$		20	33	ns
		Am3226, Am8226			16	25	
${ }^{\text {t }}$ E	Output Enable Time	Am3216	Note 3		45	75	ns
		Am8216	Note 2		45	75	
		Am3226, Am8226	Note 3		35	62	
${ }^{\text {t }}$	Output Disable Time	Am3216, Am8216	Note 4		20	40	ns
		Am3226, Am8226			16	38	

Am3216, Am3226, Am8216 AND Am8226 COMMERCIAL
ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
The following conditions apply unless otherwise specified:
D3216, D8216, D3226, D8226, P3216, P8216, P3226, P8226 (COM'L)
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=5.0 V \pm 5 \%$
DC CHARACTERISTICS
Typ.

Parameters	Description		Test Conditions	Min.	(Note 1)	Max.	Units
$\mathrm{I}_{\mathrm{F} 1}$	Input Load Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$		$\mathrm{V}_{\mathrm{F}}=0.45$		-0.15	-0.5	mA
$\mathrm{I}_{\mathrm{F} 2}$	Input Load Current All Other Inputs		$V_{F}=0.45$		-0.08	-0.25	mA
$1_{\text {R1 }}$	Input Leakage Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$		$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{R} 2}$	Input Leakage Current DI Inpuits		$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$			10	$\mu \mathrm{A}$
V_{C}	Input Forward Voltage Clamp		${ }^{1} \mathrm{C}=-5.0 \mathrm{~mA}$			-1.0	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.95	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0			Volts
1 Ol	Output Leakge Current (Three-State)	DO	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
		DB				100	
${ }^{1} \mathrm{CC}$	Power Supply Current	Am3216, Am8216			95	130	mA
		Am3226, Am8226			85	120	
$\mathrm{v}_{\text {OL1 }}$	Output LOW Voltage		DB Outputs IOL $=15 \mathrm{~mA}$ DB Outputs $10 \mathrm{LL}=25 \mathrm{~mA}$		0.3	0.45	Volts
$\mathrm{v}_{\text {OL2 }}$	Output LOW Voltage	Am3216, Am8216	DB Outputs $1 \mathrm{OL}=55 \mathrm{~mA}$		0.5	0.6	Volts
		Am3226, Am8226	DB Outputs $1 \mathrm{OL}=50 \mathrm{~mA}$		0.5	0.6	
$\mathrm{v}_{\mathrm{OH} 1}$	Output HIGH Voltage		DO Outputs $\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA} \mathrm{COM'L}$	3.65	4.0		Volts
$\mathrm{v}_{\mathrm{OH} 2}$	Output HIGH Voltage		DB Outputs $\mathrm{IOH}^{\text {a }}=-10 \mathrm{~mA}$	2.4	3.0		Volts
Ios	Output Short Circuit Current		DO Outputs $\cong 0 \mathrm{~V}$	-15	-35	-65	mA
			DB Outputs $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-30	-75	-120	

AC CHARACTERISTICS

Parameter	Description		Test Conditions	Min.	(Note 1)	Max.	Units
tPD1	Input to Output Delay DO Outputs		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \mathrm{R}_{2}=600 \Omega$		15	25	ns
tPD2	Input to Output Delay DB Outputs	Am3216, Am8216	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \mathrm{R}_{2}=180 \Omega$		20	30	ns
		Am3226, Am8226			16	25	
${ }^{t} \mathrm{E}$	Output Enable Time	Am3216	Note 3		45	65	ns
		Am8216	Note 2		45	65	
		Am3226, Am8226	Note 3		35	54	
t_{D}	Output Disable Time		Note 4		20	35	ns

TEST CONDITIONS

Input pulse amplitude of 2.5 V .
Input rise and fall times of 5.0 ns between 1.0 and 2.0 volts.
Output loading is 5.0 mA and 10 pF .
Speed measurements are made at 1.5 V levels.

TEST LOAD CIRCUIT

LIC-442

CAPACITANCE (Note 5)

Parameters	Description
$\mathbf{c}_{\text {IN }}$	Input Capacitance
$\mathbf{c}_{\text {OUT1 }}$	Output Capacitance
$\mathbf{C}_{\text {OUT2 }}$	Output Capacitance

Test Conditions		Min.			
Typ. (Note 1$)$		Max.	Units		
$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		4.0	8.0	pF	
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$		6.0	10	pF
			13	18	pF

Notes: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
2. DO outputs, $C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=180 / 1.0 \mathrm{k} \Omega$; DB outputs, $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=180 / 1.0 \mathrm{k} \Omega$.
3. DO outputs, $C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=600 / 1.0 \mathrm{k} \Omega$; DB outputs, $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=180 / 1.0 \mathrm{k} \Omega$.
4. DO outputs, $C_{L}=5.0 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=600 / 1.0 \mathrm{k} \Omega$; DB outputs, $C_{L}=5.0 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{k} \Omega, \mathrm{R}_{2}=180 / 1.0 \mathrm{k} \Omega$.
5. This parameter is periodically sampled and not 100% tested.

SWITCHING WAVEFORMS

LIC-443

FUNCTION TABLE

			8216		8226	
$\overline{\text { DIEN }}$	$\overline{C S}$		DB	DO	DB	DO
L	L	$\mathrm{DI} \Rightarrow \mathrm{DB}$	DI	Z	$\overline{\mathrm{DI}}$	Z
H	L	$\mathrm{DB} \Rightarrow \mathrm{DO}$	Z	DB	Z	$\overline{\mathrm{DB}}$
L	H		Z	Z	Z	Z
H	H		Z	Z	Z	Z

$H=H I G H$
$L=L O W$

TYPICAL APPLICATION

Metallization and Pad Layout

DISTINCTIVE CHARACTERISTICS

- Four independent driver/receiver pairs
- Three-state outputs
- High impedance inputs
- Receiver hysteresis - 600 mV (Typ.)
- Fast Propagation Times - 50-20ns (Typ.)
- TTL compatible receiver outputs
- Single +5 volt supply
- Open collector driver output option with internal passive pull up
- Power up/power down protection (No invalid information transmitted to bus)
- No bus loading when power is removed from device
- Required termination characteristics provided
- Advanced Schottky processing
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am3448A is a quad bidirectional transceiver meeting the requirement of IEEE-488 standard digital interface for programmable instrumentation for the driver, receiver, and composite device load. One pull-up enable input is provided for each pair of transceivers which controls the operating mode of the driver outputs as either an open collector or active pull-up configuration.
The receivers feature input hysteresis for improved noise immunity in system applications. The device bus (receiver input) changes from standard bus loading to a high impedance load when power is removed. In addition no spurious noise is generated on the bus during power-up or power-down.

ABSOLUTE MAXIMUM RATINGS above which the useful life may be impaired
Storage Temperatur $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage $\quad 7.0 \mathrm{~V}$

Input Voltage 5.5 V
$\begin{array}{ll}\text { Driver Output Current } & 150 \mathrm{~mA}\end{array}$

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
Am3448A
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ MIN. $=4.75 \mathrm{~V}$
$V_{C C}$ MAX. $=5.25 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS over operating temperature range
Typ.

Parameters

Description
Test Conditions
Min. (Note 1) Max. Units

Bus Characteristics						
$V_{\text {(Bus) }}$	Bus Voltage	Bus Pin Open, $\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=0.8 \mathrm{~V}$	2.75	-	3.7	Volts
$V_{\text {IC(BUS }}$		$\mathrm{I}_{\text {(BUS) }}=-12 \mathrm{~mA}$	-	-	-1.5	
${ }^{\prime}$ (BUS)	Bus Current	$5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {(BUS) }} \leqslant 5.5 \mathrm{~V}$	0.7	-	2.5	mA
		$\mathrm{V}_{\text {(BUS) }}=0.5 \mathrm{~V}$	-1.3	-	-3.2	
		$\mathrm{V}_{C C}=0 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {(BUS }} \leqslant 2.75 \mathrm{~V}$	-	-	0.04	

Driver Characteristics

$\mathrm{V}_{1 \mathrm{C}} \mathrm{D}$)	Driver Input Clamp Voltage	$\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}, \mathrm{I}_{1 \mathrm{C}(\mathrm{D})}=-18 \mathrm{~mA}$		-	-	-1.5	Volts
$\mathrm{V}_{\mathrm{OH}(\mathrm{D})}$	Driver Output Voltage - High Logic State	$\begin{aligned} & \mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}(\mathrm{D})}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{H}(\mathrm{E})}=2.0 \mathrm{~V}, \mathrm{IOH}^{2}=-5.2 \mathrm{~mA} \end{aligned}$		2.5	-	-	Volts
$\left.\mathrm{V}_{\text {OL(}} \mathrm{D}\right)$	Driver Output Voltage - Low Logic State	$\mathrm{V}_{\mathrm{I}(\mathrm{S} / \mathrm{R})}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}(\mathrm{D})}=48 \mathrm{~mA}$		-	-	0.5	Volts
los(D)	Output Short Circuit Current	$\begin{aligned} & V_{I(S / R)}=2.0 \mathrm{~V}, V_{I H(D)}=2.0 \mathrm{~V} \\ & V_{I H(E)}=2.0 \mathrm{~V} \end{aligned}$		-30	-	-120	mA
$\mathrm{V}_{\text {IH(D) }}$	Driver Input Voltage - High Logic State	$\mathrm{V}_{\text {II } / \mathrm{S} / \mathrm{R})}=2.0 \mathrm{~V}$		2.0	-	-	Volts
$\left.\mathrm{V}_{\text {IL }} \mathrm{D}\right)$	Driver Input Voltage - Low Logic State	$\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}$		-	-	0.8	Volts
$\mathrm{I}_{(\text {(})^{\prime}}$	Driver Input Current - Data Pins	$V_{1(S / R)}=V_{1(E)}=2.0 \mathrm{~V}$	$0.5 \leqslant V_{1(D)} \leqslant 2.7 \mathrm{~V}$	-200	-	40	A
$\mathrm{I}_{\mathrm{B}(\mathrm{D})}$			$\mathrm{V}_{1(\mathrm{D})}=5.5 \mathrm{~V}$	-	-	200	

Receiver Characteristics		
$\mathrm{V}_{\mathrm{HYS}(\mathrm{R})}$	Receiver Input Hysteresis	
$\mathrm{V}_{\mathrm{ILH}(\mathrm{R})}$	Receiver Input Threshold	
$\mathrm{V}_{\mathrm{IHL}(\mathrm{R})}$		
$\mathrm{V}_{\mathrm{OH}(\mathrm{R})}$	Receiver Output Voltage - High Logic State	
$\mathrm{V}_{\mathrm{OL}(\mathrm{R})}$	Receiver Output Voltage - Low Logic State	
$\mathrm{I}_{\mathrm{OS}(\mathrm{R})}$	Receiver Output Short Circuit Current	

$\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=0.8 \mathrm{~V}$	400	600	-	mV
$\left.\mathrm{V}_{\text {I }} \mathrm{S} / \mathrm{R}\right)=0.8 \mathrm{~V}$, Low to High	-	1.6	1.8	Volts
$\mathrm{V}_{1(S / R)}=0.8 \mathrm{~V}$, High to Low	0.8	1.0	-	
$\begin{aligned} & V_{I(S / R)}=0.8 \mathrm{~V}, I_{O H(R)}=-800 \mu \mathrm{~A}, \\ & V_{(B U S)}=2.0 \mathrm{~V} \end{aligned}$	2.7	-	-	Volts
$\mathrm{V}_{(\mathrm{S} / \mathrm{R})}=0.8 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}(\mathrm{R})}=16 \mathrm{~mA}, \mathrm{~V}_{(\mathrm{BUS})}=0.8 \mathrm{~V}$	-	-	0.5	Volts
$\mathrm{V}_{\text {I }}(\mathrm{S} / \mathrm{R})=0.8 \mathrm{~V}, \mathrm{~V}_{(\mathrm{BUS})}=2.0 \mathrm{~V}$	-15	-	-75	mA

Enable, Send/Receive Characteristics

$I_{\text {I }}^{\text {S/R } / 2}$	Input Current - Send/Receive	$0.5 \leqslant V_{1(S / R)} \leqslant 2.7 \mathrm{~V}$	-100	-	20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{B}(\mathrm{S} / \mathrm{R})}$		$V_{1(S / R)}=5.5 \mathrm{~V}$	-	-	100	
1 (E)	Input Current - Enable	$0.5 \leqslant V_{\text {l(E) }} \leqslant 2.7 \mathrm{~V}$	-200	-	20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{B}(\mathrm{E})}$		$V_{1(E)}=5.5 \mathrm{~V}$	-	-	100	

Power Supply Current

$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current	Listening Mode - All Receivers On	-	63	85	mA
I CCH		Talking Mode - All Drivers On	-	106	125	

[^7]SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {PLH }}(\mathrm{D})$	Propagation Delay of Driver (Fig. 2)	Output Low to High	-		15	ns
$\left.\mathrm{t}_{\text {PHL }} \mathrm{D}\right)$		Output High to Low			17	
$\mathrm{t}_{\text {PLH(R) }}$	Propagation Delay of Receiver (Fig. 1)	Output Low to High	-		25	ns
$\mathrm{t}_{\text {PHL (R) }}$		Output High to Low	-		23	
$t_{\text {PHZ }}(\mathrm{R})$	Propagation Delay Time - Send/Receiver to Data (Fig. 4)	Logic High to Third State	-		30	ns
$t_{\text {PZ }}{ }^{\text {(R }}$ (R)		Third State to Logic High	-		30	
$t_{\text {PLZ }}(\mathrm{R})$		Logic Low to Third State	-		30	
$t_{\text {PZL }}(\mathrm{R})$		Third State to Logic Low			30	
$\mathrm{t}_{\mathrm{PHZ}}(\mathrm{D})$	Propagation Delay Time - Send/Receiver to Bus (Fig. 3)	Logic High to Third State	-		30	ns
${ }^{\text {t }} \mathrm{PZH}$ (D)		Third State to Logic High	-		30	
$t^{\text {t }}$ LZ ${ }^{\text {(D) }}$		Logic Low to Third State	-		30	
tpzu.(D)		Third State to Logic Low			30	
$\mathrm{t}_{\text {POFF(E) }}$	Turn-On Time - Enable to Bus (Fig. 5)	Pull-Up Enable to Open Collector	-		30	ns
$\mathrm{t}_{\text {PON(E) }}$		Open Collector to Pull-Up Enable	-		20	

TRUTH TABLE

Send/Rec.	Enable	Into Flow	Comments
0	X	Bus \rightarrow Data	
1	1	Data \rightarrow Bus	Active Pull-Up
1	0	Data \rightarrow Bus	Open Collector

$X=$ Don't Care

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

Figure 1. Bus Input to Data Output (Receiver).

Figure 2. Data Input to Bus Output (Driver).

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS (Cont.)

LIC-453
Figure 3. Send/Receive Input to Bus Output (Driver).

$$
\begin{aligned}
& \mathrm{f}=1.0 \mathrm{MHz} \\
& \mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}} \leqslant 5.0 \mathrm{~ns}(10-90 \%) \\
& \text { Duty Cycle }=50 \%
\end{aligned}
$$

Figure 4. Send/Receive Input to Data Output (Receiver).

Figure 5. Enable Input to Bus Output (Driver).

TYPICAL RECEIVER HYSTERESIS

CHARACTERISTICS

TYPICAL BUS LOAD LINE

TYPICAL APPLICATION

(FOUR Am3448A'S FOR EACH BUS INTERFACE)
LIC-460

TYPICAL MEASUREMENT SYSTEM APPLICATION

Am54S/74S240•Am54S/74S241 Am54S/74S242•Am54S/74S243 Am54S/74S244

Octal Buffers/Line Drivers/Line Receivers With Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- Three-state outputs drive bus lines directly
- Advanced Schottky processing
- Hysteresis at inputs improve noise margin
- PNP inputs reduce D.C. loading on bus lines
- V_{OL} of 0.55 V at 64 mA for $\mathrm{Am74S} ; 48 \mathrm{~mA}$ for Am 54 S
- Data-to-output propagation delay times:

Inverting - 7.0ns MAX
Non-inverting - 9.0ns MAX

- Enable-to-output--15.0ns MAX
- 100% reliability assurance testing in compliance with MIL-STD-883
- 20 pin hermetic and molded DIP packages for Am54S/ 74S240, Am54S/74S241, and Am54S/74S244

FUNCTIONAL DESCRIPTION

These buffers/line drivers, used as memory-address drivers, clock drivers, and bus oriented transmitters/receivers, provide improved PC board density. The outputs of the commercial temperature range versions have 64 mA sink and 15 mA source capability, which can be used to drive terminated lines down to 133Ω. The outputs of the military temperature range versions have 48 mA sink and 12 mA source current capability.
Featuring 0.2 V minimum guaranteed hysteresis at each low-current PNP data input, they provide improved noise rejection and high-fan-out outputs to restore Schottky TTL levels completely.
The Am54S/74S240, Am54S/74S241 and Am54S/74S244 have four buffers which are enabled from one common line, and the other four buffers are enabled from another common line. The Am54S/74S240 is inverting, while the Am54S/ 74 S 241 and Am54S74S244 present true data at the outputs.
The Am54S74S242 and Am54S/74S243 have the two 4-line data paths connected input-to-output on both sides to form an asynchronous transceiver/buffer with complementing enable inputs. The Am54S/74S242 is inverting, while the Am54S/74S243 presents non-inverting data at the outputs.

CONNECTION DIAGRAMS

 Top Views

ORDERING INFORMATION

Package Type	Temperature Range	Am54S/74S240	Am54S/74S241	Am54S/74S242	Am54S/74S243	Am54S/74S244
Hermetic	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SN54S240J	SN54S241J	SN54S242J	SN54S243J	SN54S244J
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM54S240X	AM54S241X	AM54S242X	AM54S243X	AM54S244X
Hermetic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SN74S240J	SN74S241J	SN74S242J	SN74S243J	SN74S244J
Molded	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SN74S240N	SN74S241N			SN74S244N
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM74S240X	AM74S241X	AM74S242X	AM74S243X	AM74S244X

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
DC Input Voltage	-0.5 V to +7.0 V
DC Output Current	150 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

Am54S240/S241/S242/S243/S244 (MIL)	$T_{A}=-55^{\circ} \mathrm{C}$ to $+.125^{\circ} \mathrm{C}$	$V_{C C}(\mathrm{M} / \mathrm{N})=.4.50 \mathrm{~V}$	$V_{C C}(\mathrm{MAX})=.5.50 \mathrm{~V}$
Am74S240/S241/S242/S243/S244 (COM'L)	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$V_{C C}(\mathrm{MIN)}=.4.75 \mathrm{~V}$	$V_{C C}(\mathrm{MAX})=.5.25 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE Typ.

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Propagation Delay Time, Low-to-High-Level Output	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=90 \Omega$ (Note 3)		4.5	7.0		6.0	9.0	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low-Level Output			4.5	7.0		6.0	9.0	ns
${ }^{\mathbf{Z} \mathrm{LL}}$	Output Enable Time to Low Level			10	15		10	15	ns
${ }_{\text {t }} \mathrm{H}$	Output Enable Time to High Level			6.5	10		8.0	12	ns
${ }_{\text {t }} \mathrm{L}$	Output Disable Time from Low Level	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=90 \Omega($ Note 3)		10	15		10	15	ns
${ }^{\text {t }} \mathrm{HZ}$	Output Disable Time from High Level			6.0	9.0		6.0	9.0	ns

Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. PRR $\leqslant 1.0 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \mathrm{OUT} \approx 50 \Omega$ and $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}$.

FUNCTION TABLES

Am54S/74S242				Am54S/74S240			$\begin{aligned} & \text { Am54S/74S241 } \\ & \text { Am54S/74S243 } \end{aligned}$				Am54S/74S244		
INPUTS			OUTPUTS	INPUTS		OUTPUT	INPUTS			OUTPUTS		UTS	OUTPUT
$\overline{\text { 1G }}$	2G	A	Y	$\overline{\mathrm{G}}$	A	Y	$\overline{\mathbf{1 G}}$	2G	A	Y	$\overline{\mathbf{G}}$	A	
H	L	x	z	H	\times	z	H	L	\times	z	H	\times	z
L	H	L	H	L	H	L	L	H	H	H	L	H	H
L	H	H	L	L	L	H	L	H	L	L	L	L	L

APPLICATIONS

Am54S/74S241'S USED AS REPEATER/LEVEL RESTORER

'S240 USED AS SYSTEM AND/OR.MEMORY BUS DRIVER -4-BIT ORGANIZATION CAN BE APPLIED TO HANDLE BINARY OR BCD

APPLICATIONS (Cont.)

INDEPENDENT 4-BIT BUS DRIVERS/RECEIVERS in A Single package

PARTY-LINE BUS SYSTEM
WITH MULTIPLE INPUTS, OUTPUTS, AND RECEIVERS

Metallization and Pad Layouts

$$
\begin{aligned}
& \text { Am54S/74S240 } \\
& \text { Am54S/74S241 } \\
& \text { Am54S/74S244 }
\end{aligned}
$$

DIE SIZE $0.077^{\prime \prime} \times 0.124^{\prime \prime}$

Am54S/74S242
Am54S/74S243

DIE SIZE $0.077^{\prime \prime} \times 0.124^{\prime \prime}$

Am55/75107B•Am55/75108B

Dual Line Receivers

Distinctive Characteristics

- Input sensitivity 3 mV typical
- Common mode range of $\pm 3 \mathrm{~V}$
- Common mode range of more than $\pm 15 \mathrm{~V}$ using external attenuator
- TTL compatible output
- High common mode rejection ratio
- Blocking diodes provide high input impedance
- Strobe and gate inputs for flexibility
- 100\% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am55/75107B and Am55/75108B are high speed dual line receivers designed for use as data receivers in balanced, unbalanced or party-line transmission systems. The two line receivers in each package share the common voltage and ground busses. The Am55/75107B has a standard active pull-up totempole output while the Am55/75108B has an open collector output for bus organized systems.
Each receiver has a high impedance differential input for minimum transmission line loading. The differential inputs of the Am55/75107B and Am55/75108B are designed to detect input signals of 25 mV or greater and provide TTL compatible outputs.

All devices contain blocking diodes in the input differential transistor pair collectors to provide high input impedance in the power-off condition. The SN55/75107A and SN55/75108A are identical devices except for these input protection diodes.
Each receiver has a separate gate input, G. When the gate is LOW, the output is HIGH regardless of the other inputs. The device also has a common strobe, S , which can be used to gate both receivers simultaneously. When the strobe is LOW, the output is HIGH regardless of the other inputs.

Note: Output HIGH on the Am55/75108B is high impedance condition.

MAXIMUM RATINGS (Above which the useful life may be impaired).

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Positive Supply Voltage $\mathrm{V}_{\mathrm{CC}}+$ to Ground Potential Continuous	+7.0 V
Negative Supply Voltage $\mathrm{V}_{\mathrm{CC}}-$ to Ground Potential Continuous	-7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}+\mathrm{max}$
DC Input Voltage - Strobe	-0.5 V to +5.5 V
Differential Input Voltage	$\pm 6.0 \mathrm{~V}$
Common Mode Input Voltage (with Respect to GND Terminal)	$\pm 5.0 \mathrm{~V}$
Any Differential Input to Ground	-5.0 V to +3.0 V

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:
Am75107B, Am75108B (COM ${ }^{\prime}$ L)
$V_{C C+}=5.0 \vee \pm 5 \%$
$V_{C C-}=-5.0 \vee \pm 5 \%\left(C O M{ }^{\prime} \mathrm{L}\right)$

Am55107B, Am55108B (MIL)
$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am5
$V_{C C+}=5.0 \vee \pm 10 \%$
$V_{C C-}=-5.0 \vee \pm 5 \%$ (MIL)

Parameters	Description	Test Conditions (Notes 1, 4, \& 5)		Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Output HIGH Voltage (Am55/75107B Only)	$\begin{aligned} & V_{C C+}=\text { MIN., } V_{C C-}=\text { MIN. } \\ & I_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {IC }}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C+}=\text { MIN. }, V_{C C}=M I N . \\ & I_{O L}=16 \mathrm{~mA}, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				0.4	Volts
$\mathrm{V}_{\text {IH }}$	Strobe or gate input HIGH Voltage	See Test Table		2.0			Volts
$V_{\text {IL }}$	Strobe or Gate Input LOW Voltage	See Test Table				0.8	Volts
VIDH	Differential Input Voltage for Output HIGH	See Test Table		0.025		5.0	Volts
VIDL	Differential Input Voltage for Output LOW	See Test Table		-5.0		-0.025	Volts
${ }^{\mathbf{I} H}$	Input HIGH Current into 1A or 2A	$\begin{aligned} & V_{C C+}=M A X ., V_{C C}=M A X . \\ & V_{I D}=0.5 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$			30	75	$\mu \mathrm{A}$
IIL	Input LOW Current into 1 A or 2 A	$\begin{aligned} & V_{C C+}=M A X ., V_{C C}=M A X . \\ & V_{1 D}=-2 V, V_{\text {IC }}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	Input HIGH Current	$\begin{aligned} & V_{C C+}=M A X ., V_{C C-}=M A X . \\ & V_{I H}=2.4 V \end{aligned}$	S			80	$\mu \mathrm{A}$
11	Input HIGH Current	$\begin{aligned} & V_{C C+}=\text { MAX., } V_{C C-}=\text { MAX. } \\ & V_{I H}=V_{C C}+\text { MAX. } \end{aligned}$	S			2	mA
IIL	Input LOW Current	$\begin{aligned} & V_{C C+}=M A X ., V_{C C}=M A X . \\ & V_{I L}=0.4 V \end{aligned}$	S			-3.2	mA
${ }^{1} \mathrm{OH}$	HIGH Level Output Leakage (Am55/75108B Only)	$\begin{aligned} & V_{C C+}=\text { MIN. }, V_{C C-}=\text { MIN. } \\ & V_{O H}=V_{C C+} \text { MAX. } \end{aligned}$				250	$\mu \mathrm{A}$
ISC	Output Short Circuit Current (Note 3) (Am55/75107B Only)	$V_{C C+}=$ MAX., $V_{C C-}=$ MAX.		-18		-70	mA
${ }^{\mathbf{I} C C H+}$	Positive Power Supply Current	$\begin{aligned} & V_{C C+}=M A X ., V_{C C-}=M A X . \\ & V_{I D}=25 m V, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			18	30	mA
${ }^{\mathrm{I} C+H}-$	Negative Power Supply Current	$\begin{aligned} & V_{C C+}=M A X, V_{C C-}=M A X . \\ & V_{I D}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage, S or G	$\begin{aligned} & V_{C C+}=\text { MIN., } V_{C C}=M I N . \\ & I_{I N}=-12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	Volts

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\vee_{C C}=5.0 \mathrm{~V}, \vee_{C C}=-5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. $V_{I C}=$ common mode voltage with respect to GND terminal.
$V_{I D}=$ differential voltage $\left(V_{A}-V_{B}\right)$.

Am55/75107B/108B
SWITCHING CHARACTERISTICS ($\left.T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-=-5 \mathrm{~V}\right)$

Parameters	Description	Test Conditions	Min.	Tур.	Max.	Units
Am55/75107B Only						
${ }^{\text {PPLH }}$	A and B to Output	$\begin{aligned} & R_{\mathrm{L}}=390 \Omega \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		17	25	ns
tPHL	A and B to Output			17	25	ns
${ }_{\text {tPLH }}$	G or S to Output			10	15	ns
tPHL	G or S to Output			8	15	ns

Am55/75108B Only

tPLH	A and B to Output	$\begin{aligned} & R_{L}=390 \Omega \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	19	25	ns
tPHL	A and B to Output		19	25	ns
tPLH	G or S to Output		13	20	ns
${ }_{\text {t }}$ PHL	G or S to Output		13	20	ns

AC PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

Notes: 1. The pulse generators have the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r}=t_{f}=10 \pm 5 \mathrm{~ns}, t_{p 1}=500 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, $\mathrm{t}_{\mathrm{p} 2}=1 \mathrm{~ms}, \mathrm{PRR}=500 \mathrm{kHz}$.
2. Strobe input pulse is applied to Strobe $1 G$ when inputs $1 A-18$ are being tested, to Strobe S when inputs $1 A-1 B$ or 2A-2B are being tested, and to Strobe 2G when inputs $2 A-2 B$ are being tested.
3. C_{L} includes probe and jig capacitance.

PERFORMANCE CURVES

Note: Use $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range only for commercial (Am75 Series) devices.

FUNCTION TABLE

Differential Input Voltage$V_{I D}=V_{A}-V_{B}$	Inputs		Output Y
	Gate	Strobe	
	G	S	
$V_{\text {ID }} \geqslant+25 \mathrm{mV}$	X	X	H
-25mV $<\mathrm{V}_{\text {ID }}<+25 \mathrm{mV}$	H	H	?
$V_{\text {ID }} \leqslant-25 \mathrm{mV}$	H	H	L
x	L	X	H
X	X	L	H

$$
\begin{aligned}
\mathrm{H} & =\text { HIGH } \\
\mathrm{L} & =\text { LOW } \\
\mathrm{X} & =\text { Don't Care } \\
? & =\text { Don't Know }
\end{aligned}
$$

DEFINITION OF SWITCHING TERMS

(All switching times are measured at the 1.5 V logic level unless otherwise noted.)
${ }^{\text {tpLH }}$ The propagation delay time from an input change to an output LOW-to-HIGH transition.
The propagation delay time from an input change to an output HIGH-to-LOW transition.
$t_{r} \quad$ Rise time. The time required for a signal to change from 10% to 90% of its measured values.
$t_{f} \quad$ Fall time. The time required for a signal to change from 90% to 10% of its measured values.

DEFINITION OF FUNCTIONAL TERMS

$1 A, 2 A$ The non-inverting input of the line receivers.
1B, 2B The inverting input of the line receivers.
$\mathbf{1 Y}, \mathbf{2 Y}$ The output of each line receiver.
1G, 2G The gate input of each line receiver. A LOW on the gate input forces the output HIGH.
$\mathbf{S} \quad$ The strobe input that is common to both line receivers. A LOW on the strobe forces both (1Y and 2 Y) outputs HIGH.
VIC Input Common Mode voltage with respect to ground terminal.
$V_{I D} \quad$ Differential Input voltage $\left(V_{A}-V_{B}\right)$.

DC TEST TABLE

Parameter	1 A	2A	$\begin{aligned} & 1 B \\ & 2 B \end{aligned}$	VIC (Common Mode)	VID (Differential)	$\begin{aligned} & 1 Y \\ & 2 Y \end{aligned}$	1G	2G	S	Note
$V_{\text {IDH }}$			-	-3 V to 3V	Test	$\begin{aligned} & -400 \mu \mathrm{~A} \\ & \text { (Note 2) } \\ & \hline \end{aligned}$			+5V	1
$\mathrm{V}_{\text {IDL }}$			-	-3 V to 3 V	Test	16 mA			+5V	1
$l_{\text {IH }}$ @ A			-	-3 V to 3 V	+0.5V	Open			Open	1
$\mathrm{I}_{\text {IL }} @ \mathrm{~A}$			-	-3 V to 3 V	-2V	Open			Open	1
$\mathrm{V}_{\mathrm{OL}} @ \mathrm{Y}$			-	-3V to 3V	-25mV	16 mA			$\mathrm{V}_{\text {IH }}$	1
V_{OH} @.Y			-	-3 V to 3 V	$+25 \mathrm{mV}$	$-400 \mu \mathrm{~A}$			$\mathrm{V}_{\text {IH }}$	1 \& 2
V_{OH} @ Y			-	-3V to 3V	-25mV	$-400 \mu \mathrm{~A}$			$\mathrm{V}_{\text {IH }}$	$1 \& 2$
V_{OH} @ Y			-	-3V to 3V	-25mV	$-400 \mu \mathrm{~A}$			$\mathrm{V}_{\text {IL }}$	182
IOH@Y			-	-3 V to 3V	$+25 \mathrm{mV}$	$V_{C C}+$ MAX.			$V_{\text {IH }}$	$1 \& 3$
$\mathrm{IOH}^{\text {@ }}$			-	-3V to 3V	-25mV	$\mathrm{V}_{\mathrm{CC}}+\mathrm{MAX}$.			$\mathrm{V}_{\text {IH }}$	183
IOH@Y			-	-3V to 3V	-25mV	$V_{C C}+$ MAX.			$V_{\text {IL }}$	1 \& 3
IIH@1G	+25mV	GND	GND	-	-	Open	$\mathrm{V}_{\text {IH }}$	GND	GND	-
$\mathbf{I I H}^{(1) 2 G}$	GND	+25mV	GND	-	-	Open	GND	$\mathrm{V}_{1 \mathrm{H}}$	GND	-
$\mathrm{I}_{1 \mathrm{H}}$ @ S	+25mV	$+25 \mathrm{mV}$	GND	-	-	Open	GND	GND	$\mathrm{V}_{\text {IH }}$	-
ILC @ 1G	-25mV	GND	GND	-	-	Open	$V_{\text {IL }}$	GND	4.5 V	-
IIL @ 2G	GND	-25mV	GND	-	-	Open	GND	$V_{\text {IL }}$	4.5 V	-
$\mathrm{I}_{1 \mathrm{~L}}$ @ S	-25mV	$-25 \mathrm{mV}$	GND	-	-	Open	4.5 V	4.5 V	$\mathrm{V}_{\text {IL }}$	-
Ios @ Y	+25mV		GND	-	-	GND	GND		GND	-
ICC+	+25mV		GND	-	-	Open	+5V		+5V	-
ICC-	+25mV		GND	-	-	Open	$+5 \mathrm{~V}$		+5V	-

Notes: 1. When testing one channel, the inputs of the other channels are grounded.
2. Am55/75107B only.
3. Am55/75108B only.

APPLICATIONS

BUS-ORGANIZED SYSTEM

Metallization and Pad Layouts

Am55/75107B

DIE SIZE: $0.049^{\prime \prime} \times 0.056^{\prime \prime}$

DIE SIZE: $0.049^{\prime \prime} \times 0.056^{\prime \prime}$

Am55/75109•Am55/75110

Dual Line Drivers

Distinctive Characteristics

- Input is TTL compatible.
- High common-mode output range of -3 V to +10 V .
- Separate and common output inhibits.
- Open-collector differential outputs for bus-organized systems.
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am55/75109 and Am55/75110 are dual line drivers characterized for applications in balanced, unbalanced, and party-line systems. The drivers provide a constant current output that is switched to either of the two differential output terminals under the control of the A and B inputs. When A and B are HIGH, the Y output is HIGH and Z output is LOW

These drivers feature a separate inhibit input, C , that is used to switch off the constant current output. This leaves the driver differential output in the high impedance state for use in bus organized systems. A LOW on the C input
forces the driver to the OFF state by switching off the current source of the differential output transistor pair. Likewise, the two drivers have a common inhibit input, D, that forces both drivers to the OFF state. A LOW on the D inputs turns off the output current sources of both drivers such that both differential outputs are in the high impedance state.

The driver outputs have a common mode voltage range of -3 V to +10 V . The Am55/75109 output current is typically 6 mA while the Am55/75110 output current is typically 12 mA .

SCHEMATIC DIAGRAM
(One Driver Shown)

LIC-479

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{\mathrm{CC}+}$ Supply Voltage to Ground Potential	+7 V
V_{CC} Supply Voltage to Ground Potential	-7 V
Common Mode DC Voltage Applied to Outputs	-5 V to +12 V
DC Input Voltage	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}+\mathrm{max}$
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted

Am75109, Am75110 Am55109, Am55110	$V_{C C}+\text { MIN. }=4.75 \mathrm{~V}$ $V_{C C+} \mathrm{MIN} .=4.5 \mathrm{~V}$	$V_{C C}+M A \lambda .=5.25 \mathrm{~V},$ $\mathrm{V}_{\text {CC }+} \mathrm{MAX} .=5.5 \mathrm{~V},$	$V_{C C-} \text { MIN. }=-4.75 \mathrm{~V}$ $V_{C C}-\operatorname{MIN} .=-4.5 \mathrm{~V}$	$V_{C C}-M A X .=-5.25 v$ $\mathrm{V} C \mathrm{C}-\mathrm{MAX}=-5.5 \mathrm{~V}$	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

Parameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0		5.5	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		0		0.8	Volts
I_{IL} (Note 3)	Input Low Current Am55/75109	$\begin{aligned} & V_{C C+}=\text { MAX. }, V_{I N}=0.4 \mathrm{~V} \\ & V_{\text {CC- }}=\text { MAX. } \end{aligned}$	A, B			-3	mA
			C			-1.6	
			D			-3	

	Input LOW Current Am55/75110	$\begin{aligned} & V_{C C+}=M A X ., V_{I N}=0.4 \mathrm{~V} \\ & V_{C C-}=M A X . \end{aligned}$	A, B, C			-3	mA
(Note 3)			D			-6	
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current	$\begin{aligned} & V_{C C+}=M A X ., V_{I N}=2.4 \mathrm{~V} \\ & V_{C C-}=M A X . \end{aligned}$	A, B, C			40	$\mu \mathrm{A}$
(Note 3)			D			80	
11	Input HIGH Current	$V_{C C+}=$ MAX., $V_{\text {IN }}=M A X$.	A, B, C			1	mA
		$V_{\text {CC- }}=$ MAX	D			2	
Io ${ }^{\text {(on) }}$	Output Current On-State	$V_{\text {CC }+}=$ MAX .	109			7	mA
		$V_{C C-}=$ MAX .	110			15	
$\mathrm{I}_{\mathrm{O}}(\mathrm{on})$	Output Current On-State	$\mathrm{V}_{\mathrm{CC}+}=\mathrm{MIN}$.	109	3.5			mA
		$V_{\text {CC }-}=$ MAX .	110	6.5			
IO(off)	Output Current Off-State	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{MIN} . \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} . \end{aligned}$				100	$\mu \mathrm{A}$
ICC+ ${ }^{\text {(on) }}$	Positive Supply Current; Driver Enabled	A and $\mathrm{B}=0.4 \mathrm{~V}$	109		18	30	mA
		C and $\mathrm{D}=2.0 \mathrm{~V}$	110		23	35	
ICC-(on)	Negative Supply Current; Driver Enabled	A and $\mathrm{B}=0.4 \mathrm{~V}$	109		-18	-30	mA
		C and $\mathrm{D}=2.0 \mathrm{~V}$	110		-34	-50	
${ }^{1} \mathrm{CC}+$ (off)	Positive Supply Current; Driver Disabled	All Inputs $=0.4 \mathrm{~V}$	109		18		mA
			110		21		
ICC-(off)	Negative Supply Current; Driver Disabled	All Inputs $=0.4 \mathrm{~V}$	109		-10		mA
			110		-17		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $V_{C C+}=5.0 \vee, V_{C C-}=-5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual inpuit currents $=$ Unit Load Current \times Input Load Factor (See Loading Rules).

Switching Characteristics ($\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Parameters	Dascription	Test Conditions	Min.	Typ.	Max.	Units
tPLH	A or B to Y or Z	$\begin{gathered} V_{C C+}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-5.0 \mathrm{~V} \\ R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} \end{gathered}$		9	15	ns
tPHL	A or B to Y or Z			9	15	ns
tple	C or D to Y or Z			16	25	ns
${ }^{\text {tPHL}}$	C or D to Y or Z			13	25	ns

FUNCTION TABLE

LOGIC INPUTS		INHIBIT INPUTS		OUTPUTS	
A	B	C	D	Y	Z
X	X	L	X	OFF	OFF
X	X	X	L	OFF	OFF
L	X	H	H	ON	OFF
X	L	H	H	ON	OFF
H	H	H	H	OFF	ON

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
$\mathrm{ON}=I_{\mathrm{O}}$ (on) Current
OFF = IO (off) Current
$X=$ Don't Care

LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	$\begin{array}{r} \text { Int } \\ \text { Unit } \\ \text { Am55/ } \\ 75109 \end{array}$	put Load Am55/ 75110	Fan Output HIGH	-out Output LOW
1 A	1	1-7/8	1-7/8	-	-
1B	2	1-7/8	1-7/8	-	-
1 C	3	1	1-7/8	-	-
2C	4	1	1-7/8	-	-
2A	5	1-7/8	1-7/8	-	-
2B	6	1-7/8	1-7/8	-	-
GND	7	-	-	-	-
$2 Y$	8	-	-	$\binom{\text { Diff }}{\text { output }}$	
2 Z	9	-	-		
D	10	1-7/8	3-3/4	-	-
V_{CC} -	11	-	-	-	-
12	12	-	-	$-\binom{\text { Diff }}{\text { output }}$	
1 Y	13	-	-		
$\mathrm{V}_{\text {CC }+}$	14	-	-	-	-

Am55109, Am75109 Output Current

 VersusLogic Input Voltage

Am55110, Am75110 Supply Current With Driver Enabled Versus.
Ambient Temperature

PERFORMANCE CURVES

(Typical)

Am55110, Am75110 Output Current Versus
Logic Input Voltage

Propagation Delay Time Logic Inputs Versus Ambient Temperature

Am55109, Am75109 Supply Current With Driver Enabled Versus
Ambient Temperature

Propagation Delay Time Inhibit Inputs Versus Ambient Temperature

DC TEST TABLE

Parameter	A	INPUTS		D	OUTPUTS	
		B	C		Y	Z
$\mathrm{V}_{\text {IH }}$	Test	Open	$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\text {IH }}$	OFF	ON
$\mathrm{V}_{\text {IH }}$	Open	Test	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	OFF	ON
$\mathrm{V}_{\text {IL }}$	Test	$\mathrm{V}_{\mathrm{CC}+}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	ON	OFF
$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}+}$	Test	$\mathrm{V}_{\text {IH }}$	$V_{\text {IH }}$	ON	OFF
I_{IH}	Test	GND	$\mathrm{V}_{\text {IH }}$	$V_{\text {IH }}$	GND	GND
$\mathrm{IIH}^{\text {I }}$	GND	Test	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	GND	GND
IIL	Test	4.5 V	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	GND	GND
IIL	4.5 V	Test	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	GND	GND
$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Test	Open	OFF	ON
$\mathrm{V}_{1 \mathrm{H}}$	$V_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Open	Test	OFF	ON
$\mathrm{V}_{1 H}$	$V_{\text {IL }}$	$V_{\text {IL }}$	Test	Open	ON	OFF
$\mathrm{V}_{\text {IH }}$	$V_{\text {IL }}$	$V_{\text {IL }}$	Open	Test	ON	OFF
$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{1 \mathrm{H}}$	Test	Open	OFF	OFF
$\mathrm{V}_{\text {IL }}$	$V_{\text {IH }}$	$V_{\text {IH }}$	Open	Test	OFF	OFF
$V_{\text {IL }}$	$V_{\text {IL }}$	$V_{\text {IL }}$	Test	$\mathrm{V}_{\text {CC }+}$	OFF	OFF
V_{IL}	$V_{\text {IL }}$	$V_{\text {IL }}$	$\mathrm{V}_{\text {CC }+}$	Test	OFF	OFF
$\mathrm{IIH}^{\text {I }}$	GND	GND	Test	GND	GND	GND
$\mathrm{IIH}^{\text {I }}$	GND	GND	GND	Test	GND	GND
$\mathrm{I}_{\text {IL }}$	GND	GND	Test	4.5 V	GND	GND
IIL	GND	GND	4.5 V	Test	GND	GND
IO(on)	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{1 \mathrm{H}}$	Test	Note 1
IO(on)	$\mathrm{V}_{\text {IL }}$	$V_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Test	Note 1
IO(on)	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Test	Note 1
IO(on)	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Note 1	Test
IO(off)	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Test	Note 1
IO(off)	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Note 1	Test
IO(off)	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	VIH	$\mathrm{V}_{\text {IH }}$	Note 1	Test
I_{O} (off)	$\mathrm{V}_{\text {IH }}$	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	Note 1	Test
IO(off)	X	X	$V_{\text {IL }}$	$V_{\text {IL }}$	Test	Test
IO(off)	\times	X	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	Test	Test
IO(off)	X	X	$V_{\text {IH }}$	$V_{\text {IL }}$	Test	Test
ICC+(on)	$V_{\text {IL }}$	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	GND	GND
ICC-(on)	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$V_{1 H}$	$\mathrm{V}_{\text {IH }}$	GND	GND
ICC+(off)	$\mathrm{V}_{\text {IL }}$	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$V_{\text {IL }}$	GND	GND
ICC-(off)	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$V_{\text {IL }}$	$V_{\text {IL }}$	GND	GND

$X=$ Don't Care; Note 1: Output not under test must have a low impedance, (<50 $)$ termination to GND.

AC VOLTAGE WAVEFORMS

Notes: 1. The pulse generators have the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r}=t_{f}=10 \pm 5 \mathrm{~ns} ; \mathrm{t}_{\mathrm{pw} 1}=500 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$; $t_{\text {pw } 2}=1 \mu \mathrm{~s}, \mathrm{PRR}=500 \mathrm{kHz}$.
2. C_{L} includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.

UNIT LOAD DEFINITIONS

SERIES	HIGH		LOW	
	Current	Measure Voltage	Current	Measure Voltage
Am25/26/2700	$40 \mu \mathrm{~A}$	2.4 V	-1.6mA	0.4 V
Am25S/26S/27S	$50 \mu \mathrm{~A}$	2.7 V	-2.0mA	0.5 V
Am25L/26L/27L	$20 \mu \mathrm{~A}$	2.4 V	-0.4 mA	0.3 V
Am25LS/26LS/27LS	$20 \mu \mathrm{~A}$	2.7 V	-0.36mA	0.4 V
Am54/74	$40 \mu \mathrm{~A}$	2.4 V	$-1.6 \mathrm{~mA}$	0.4 V
$54 \mathrm{H} / 74 \mathrm{H}$	$50 \mu \mathrm{~A}$	2.4 V	$-2.0 \mathrm{~mA}$	0.4 V
Am54S/74S	$50 \mu \mathrm{~A}$	2.7 V	$-2.0 \mathrm{~mA}$	0.5 V
$54 \mathrm{~L} / 74 \mathrm{~L}$ (Note 1)	$20 \mu \mathrm{~A}$	2.4 V	-0.8mA	0.4 V
$\begin{aligned} & 54 \mathrm{~L} / 74 \mathrm{~L} \\ & \text { (Note 1) } \end{aligned}$	$10 \mu \mathrm{~A}$	2.4 V	-0.18mA	0.3 V
Am54LS/74LS	$20 \mu \mathrm{~A}$	2.7 V	-0.36mA	0.4 V
Am9300	$40 \mu \mathrm{~A}$	2.4 V	$-1.6 \mathrm{~mA}$	0.4 V
Am93L00	$20 \mu \mathrm{~A}$	2.4 V	$-0.4 \mathrm{~mA}$	0.3 V
Am93S00	$50 \mu \mathrm{~A}$	2.7 V	$-2.0 \mathrm{~mA}$	0.5 V
Am75/85	$40 \mu \mathrm{~A}$	2.4 V	$-1.6 \mathrm{~mA}$	0.4 V
Am8200	$40 \mu \mathrm{~A}$	4.5 V	-1.6mA	0.4 V

Note: 1. 54L/74L has two different types of standard inputs.

DEFINITION OF FUNCTIONAL TERMS

1A, 2A, 1B, 2B The TTL data inputs to each driver. 1C, 2C The TTL inhibit inputs to each driver. A LOW input forces both outputs to the off-state.

D The common TTL inhibit input to both drivers. A LOW input forces all four outputs to the off-state.
1Y, 2Y, 1Z, 2Z The differential output of each driver.

APPLICATIONS

LIC-485
Am55/75109 or Am55/75110 in a unbalanced or single-ended connection.

Two line drivers connected in parallel for higher current.

Am71/81LS95 • Am71/81LS96 Am71/81LS97•Am71/81LS98

distinctive characteristics

- Three-state outputs drive bus line directly
- Typical propagation delay Am71/81LS95, Am71/81LS97 13ns Am71/81LS96, Am71/81LS98 10ns
- Typical power dissipation Am71/81LS95, Am71/81LS97 80mW Am71/81LS96, Am71/81LS98 65mW
- PNP inputs reduce DC loading on bus lines
- Am71/81LS96 and Am71/81LS98 are inverting; Am71/81LS95 and Am71/81LS97 are non-inverting
- 20-pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am71/81LS95, Am71/81LS96, Am71/81LS97 and Am71/ 81 LS98 are octal buffers fabricated using Advanced LowPower Schottky technology. The 20 -pin package provides improved printed circuit board density for use in memory address and clock driver applications.
The Am71/81LS95 and Am71/81LS97 present true data at the outputs, while the Am71/81LS96 and Am71/81LS98 are inverting. The Am71/81LS95 and Am71/81LS96 have a common enable for all eight buffers with access through a 2-input NOR gate. The Am71/81LS97 and Am71/81LS98 octal buffers have four buffers enabled from one common line, and the other four buffers enabled from another common line. In all cases the outputs are placed in the three-state condition by applying a high logic level to the enable pins. All parts feature low current PNP inputs.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+\mathbf{1 5 0 ^ { \circ } \mathrm { C }}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to $+\mathbf{7 . 0 \mathrm { V }}$
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to $+\mathbf{7 . 0 \mathrm { V }}$
DC Output Current	150 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	(MIN. $=4.75 \mathrm{~V}$	$\mathrm{MAX} .=5.25 \mathrm{~V}$)
MIL	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	(MIN. $=4.50 \mathrm{~V}$	MAX. $=5.50 \mathrm{~V}$)

Am71/81LS95
Am71/81LS96
-DC CHARACTERISTICS OVER OPERATING RANGE-
Am71/81LS97 Am71/81LS98

Typ.

Parameter	Des	ion		Te	ndition		Min.	(Note 1)	Max.	Units		
V_{IH}	High Level Input Voltage						2			Volts		
V_{IL}	Low Level Input Voltage								0.8	Volts		
V_{1}	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min.,	$=-18 \mathrm{~mA}$					-1.5	Volts		
${ }^{\mathrm{IOH}}$	High Level Output Current		MIL						-1.0			
			COM'L						-2.6			
V_{OH}	High Level Output Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$		COM'L	$\mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA}$	2.4					
				$\mathrm{OHH}=-2.6 \mathrm{~mA}$	2.7			Volts				
			MIL, IOH	$=-1.0 \mathrm{~mA}$	2.5							
IoL	Low Level Output Current				COM'L						16	mA
			MIL			8						
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$		COM'L, $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$				0.5	V
			MIL, IOL	8.0 mA					0.4			
lo(off)	Off-State (High-Impedance State) Output Current		$\begin{aligned} & V_{C C}=M a x ., V_{I H}=2.0 \mathrm{~V} \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=0$				-20			
			$\mathrm{V}_{\mathrm{O}}=2$				20	$\mu \mathrm{A}$				
1	Input Current at Maximum Input Voltage				$\mathrm{V}_{\text {cc }}=$ Max., $\mathrm{V}_{1}=7.0 \mathrm{~V}$						0.1	mA
I_{H}	High Level Input Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{1}=2.7 \mathrm{~V}$						20	$\mu \mathrm{A}$		
ILL	Low Level Input Current		$\mathrm{V}_{\mathrm{cc}}=$ Max.	Both $\overline{\mathrm{G}}$ Inputs at 2.0 V Both \bar{G} Inputs at 0.4 V		$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$		
						$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.36	mA		
		$\overline{\mathrm{G}}$ Input				$V_{1}=0.4 \mathrm{~V}$			-0.36			
los	Short Circuit Output Current		$\mathrm{V}_{\mathrm{CC}}=$ Max. (Note 2)				-30	-60	-130	mA		
Icc	Supply Current		$V_{\text {cc }}=$ Max.	Am71/81LS95, Am71/81LS97				16	26	mA		
			Am71/81LS96, Am71/81LS98		13	21						

Notes: 1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than output should be shorted at a time, and duration of the short circuit should not exceed one second.

SWITCHING CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Param	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$C_{L}=15 p F, R_{L}=2 k \Omega$		11	16		6	10	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output			15	22		13	17	ns
t_{zH}	Output Enable Time to High Level			16	25		17	27	ns
t_{zL}	Output Enable Time to Low Level			13	20		16	25	ns
t_{Hz}	Output Disable Time from HIGH Level	$C_{L}=5 p F, R_{L}=2 k \Omega$		13	20		13	20	ns
tLZ	Output Disable Time from Low Level			19	27		18	27	

APPLICATIONS

Am71/81LS96 USED AS SYSTEM AND/OR MEMORY BUS DRIVER

SYSTEM AND/OR MEMORY ADDRESS BUS
independent 4-BIT BUS DRIVERS/RECEIVERS IN A SINGLE PACKAGE

ORDERING INFORMATION

Package Type	Temperature Range	Am71/81LS95	Am71/81LS96	Am71/81LS97	Am71/81LS98
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DM81LS95N	DM81LS96N	DM81LS97N	DM81LS98N
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DM81LS95J	DM81LS96J	DM81LS97J	DM81LS98J
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DM71LS95J	DM71LS96J	DM71LS97J	DM71LS98J
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM81LS95X	AM81LS96X	AM81LS97X	AM81LS98X

Am73/8303B

Octal Three-State Inverting Bidirectional Transceiver

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- Three-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- $\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$ interfaces with TTL, MOS, and CMOS
- $48 \mathrm{~mA}, 300 \mathrm{pF}$ bus drive capability
- Transmit/Receive and Chip Disable simplify control logic
- 20 pin ceramic and molded DIP package
- Low power - 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am73/8303Bs are 8-bit three-state Schottky inverting transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16 mA drive capability on the A ports and 48 mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a threestate condition.

The output high voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is specified at $\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}$ minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

LOGIC DIAGRAM

CONNECTION DIAGRAM
TOD View
Top View

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
LIC-501

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage $\quad 7.0 \mathrm{~V}$
Input Voltage $\quad 5.5 \mathrm{~V}$

Output Voltage
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:
Am7303B
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.5 \mathrm{~V}$
$V_{C C} M A X=5.5 \mathrm{~V}$
Am8303B $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.75 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}=5.25 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS over operating temperature range

Param	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
A PORT ($\mathrm{A}_{0}-\mathrm{A}_{7}$)								
$\mathrm{V}_{1 \mathrm{H}}$	Logical "1" Input Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$			2.0			Volts
$V_{\text {IL }}$	Logical "0" Input Voltage	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \\ & \mathrm{~T} / \mathrm{R}=2.0 \mathrm{~V} \end{aligned}$	Am8303B				0.8	Volts
			Am7	303B			0.7	
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \\ & \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V} \end{aligned}$	${ }^{\text {OH }}$	$=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{\text {cc }}-0.7$		Volts
			${ }^{\text {OH }}$	$=-3.0 \mathrm{~mA}$	2.7	3.95		
V_{OL}	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \\ & \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V} \end{aligned}$	${ }^{\text {loL }}$	8 8 mA		0.3	0.4	Volts
			Am8	$303 \mathrm{~B}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.35	0.50	
los	Output Short Circuit Current	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} ., \text { Note } 2 \end{aligned}$			-10	-38	-75	mA
I_{IH}	Logical "1" Input Current	$C D=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$				0.1	80	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{1}=\mathrm{V}_{C C} \mathrm{MAX}$.					1	mA
112	Logical "0" Input Current	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$				-70	-200	$\mu \mathrm{A}$
V_{C}	Input Clamp Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$				-0.7	-1.5	Volts
Iod	Output/Input Three-State Current	$C D=2.0 \mathrm{~V}$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}$			80	
B PORT ($\mathrm{B}_{0}-\mathrm{B}_{7}$)								
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T}$	0.8 V		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}$		Am8303B			0.8	Volts
				Am7303B			0.7	
V_{OH}	Logical "1" Output Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$		$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{\mathrm{CC}}-0.8$		Volts
				$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.7	3.9		
				$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4	3.6		
V_{OL}	Logical "0" Output Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$		$\mathrm{I}^{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.4	Volts
				$1 \mathrm{OL}=48 \mathrm{~mA}$		0.4	0.5	
los	Output Short Circuit Current	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} ., \text { Note } 2 \end{aligned}$			-25	-50	-150	mA
I_{H}	Logical "1" Input Current	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$				0.1	80	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{1}=\mathrm{V}_{C C} \mathrm{MAX}$.					1	mA
ILL	Logical "0" Input Current	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$				-70	-200	$\mu \mathrm{A}$
V_{C}	Input Clamp Voltage	$C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-0.7	-1.5	Volts
IOD	Output/Input Three-State Current	$C D=2.0 \mathrm{~V}$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}$			200	
CONTROL INPUTS CD, T/R								
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage				2.0			Volts
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage						0.8	Volts
It	Logical "1" Input Current	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				0.5	20	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$V_{C C}=$ MAX., $V_{1}=V_{C C}$ MAX.					1.0	mA
IIL	Logical "0" Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		T/ \bar{R}		-0.1	-. 25	mA
				CD		-0.25	-. 5	
V_{c}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$				-0.8	-1.5	Volts
		POWER SU	CU	RRENT				
Icc	Power Supply Current	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				60	130	mA
		$C D=V_{\text {INA }}=0.4 V, T / \bar{R}=2 V, V_{C C}=M A X$.				80	160	

Am73/8303B
AC ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Param	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
A PORT DATA/MODE SPECIFICATIONS						
${ }^{\text {t PDHLA }}$	Propagation Delay to a Logical "0" from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=0.4 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF} \end{aligned}$		8		ns
tpdLha	Propagation Delay to a Logical " 1 " from B Port to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}, \mathrm{~T} / \bar{R}=0.4 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF} \end{aligned}$		7		ns
${ }^{\text {tpLZA }}$	Propagation Delay from a Logical " 0 " to Three-State from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF} \end{aligned}$		11		ns
${ }^{\text {t }}$ PHZA	Propagation Delay from a Logical "1" to Three-State from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF} \end{aligned}$		8		ns
${ }^{\text {tPZLA }}$	Propagation Delay from Three-State to a Logical " 0 " from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF} \end{aligned}$		27		ns
${ }^{\text {tPZHA }}$	Propagation Delay from Three-State to a Logical " 1 " from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF} \end{aligned}$		19		ns
B PORT DATA/MODE SPECIFICATIONS						
${ }^{\text {tPDHLB }}$	Propagation Delay to a Logical " 0 " from A Port to B Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\ & \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \end{aligned}$		12		ns
		$\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}$		7		
${ }_{\text {tPdLh }}$	Propagation Delay to a Logical " 1 " from A Port to B Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \end{aligned}$		10		ns
		$\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}$		7		
${ }^{\text {tpLZB }}$	Propagation Delay from a Logical " 0 " to Three-State from CD to B Port	$\begin{aligned} & A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure 3) } \\ & S_{3}=1, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF} \end{aligned}$		13		ns
${ }_{\text {tPhzB }}$	Propagation Delay from a Logical " 1 " to Three-State from CD to B Port	$\begin{aligned} & A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure 3) } \\ & S_{3}=0, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF} \end{aligned}$		8		ns
${ }^{\text {tPZLB }}$	Propagation Delay from Three-State to a Logical " 0 " from CD to B Port	$\begin{array}{\|l} \hline A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, T / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } 3 \text {) } \\ \hline \mathrm{S}_{3}=1, \mathrm{R}_{5}=100 \Omega, \mathrm{C}_{4}=300 \mathrm{pF} \\ \hline \end{array}$		32		ns
		$\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}$		16		
${ }^{\text {tPZHB }}$	Propagation Delay from Three-State to a Logical " 1 " from CD to B Port	A_{0} to $\mathrm{A}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}$ (Figure 3)		26		ns
		$\mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF}$				
		$\mathrm{S}_{3}=0, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}$		14		
TRANSMIT RECEIVE MODE SPECIFICATIONS						
${ }_{\text {tPHzR }}$	Propagation Delay from a Logical " 1 " to Three-State from T / \bar{R} to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V} \text { (Figure 2) } \\ & S_{1}=1, R_{4}=100 \Omega, C_{3}=300 \mathrm{pF} \\ & S_{2}=0, R_{3}=1 \mathrm{k}, C_{2}=15 \mathrm{pF} \end{aligned}$		7		ns
tplzr	Propagation Delay from a Logical " 0 " to Three-State from T / \bar{R} to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V} \text { (Figure 2) } \\ & \mathrm{S}_{1}=0, \mathrm{R}_{4}=1 \mathrm{k}, \mathrm{C}_{3}=300 \mathrm{pF} \\ & \mathrm{~S}_{\mathbf{2}}=1, \mathrm{R}_{3}=1 \mathrm{k}, \mathrm{C}_{2}=15 \mathrm{pF} \end{aligned}$		10		ns
${ }_{\text {tPHZT }}$	Propagation Delay from a Logical " 1 " to Three-State from T / \bar{R} to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\ & \mathrm{S}_{1}=0, \mathrm{R}_{4}=1 \mathrm{k}, \mathrm{C}_{3}=15 \mathrm{pF} \\ & \mathrm{~S}_{2}=1, \mathrm{R}_{3}=5 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF} \end{aligned}$		16		ns
${ }_{\text {tpLzt }}$	Propagation Delay from a Logical "0" to Three-State from T / \bar{R} to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V}(\text { Figure 2) } \\ & \mathrm{S}_{1}=1, \mathrm{R}_{4}=1 \mathrm{k}, \mathrm{C}_{3}=15 \mathrm{pF} \\ & \mathrm{~S}_{2}=0, \mathrm{R}_{3}=1 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF} \end{aligned}$		17		ns
$\mathrm{t}_{\text {PRL }}$	Propagation Delay from Transmit Mode to a Logical " 0 ", T / \bar{R} to A Port	$\mathrm{t}_{\text {PRL }}=\mathrm{t}_{\text {PHZT }}+\mathrm{t}_{\text {PDHLA }}$		23		ns
${ }^{\text {t PRH }}$	Propagation Delay from Transmit Mode to a Logical " 1 ", T / \bar{R} to A Port	$\mathrm{t}_{\text {PRH }}=\mathrm{t}_{\text {PLZT }}+\mathrm{t}_{\text {PDLHA }}$		28		ns
${ }^{\text {t PTL }}$	Propagation Delay from Receive Mode to a Logical " 0 ", $\mathrm{T} / \overline{\mathrm{R}}$ to B Port	$\mathrm{t}_{\text {PTL }}=\mathrm{t}_{\text {PHZR }}+\mathrm{t}_{\text {PDHLB }}$		23		ns
${ }_{\text {tPTH }}$	Propagation Delay from Receive Mode to a Logical " 1 ", T / \bar{R} to B Port	$\mathrm{t}_{\text {PTH }}=\mathrm{t}_{\text {PLZR }}+\mathrm{t}_{\text {PDLHB }}$		24		ns

Notes: 1. All typical values given are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Only one output at a time should be shorted.

FUNCTIONAL TABLE

Inputs	Conditions		
Chip Disable	0	0	1
Transmit/Receive	0	1	X
A Port	Out	In	HI-Z
B Port	In	Out	HI-Z

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$
10% to 90%

Note: C_{1} includes test fixture capacitance.

Figure 1. Propagation Delay from A Port to B Port LIC-502 or from B Port to A Port.

LIC-503

Figure 2. Propagation Delay from T / \bar{R} to A Port or B Port.

$$
\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}
$$

10\% to 90%

Figure 3. Propagation Delay from CD to A Port or B Port.
LIC-507

Metallization and Pad Layout

DIE SIZE $0.066^{\prime \prime} \times 0.086^{\prime \prime}$

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DP7303BJ
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DP8303BJ
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DP8303BN
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8303BX

Am73/8304B

Octal Three-State Bidirectional Transceiver

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- Three-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- $\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$ interfaces with TTL, MOS, and CMOS
- $48 \mathrm{~mA}, 300 \mathrm{pF}$ bus drive capability
- Transmit//Receive and Chip Disable simplify control logic
- 20 pin ceramic and molded DIP package
- Low power - 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am73/8304Bs are 8-bit three-state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16 mA drive capability on the A ports and 48 mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.
One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a threestate condition.
The output high voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is specified at $\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}$ minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Am73/8304B
ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage	7.0 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:
Am7304B
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.5 \mathrm{~V}$
$V_{C C} M A X=5.5 V$
Am8304B $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN}=4.75 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}} \mathrm{MAX}=5.25 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS over operating temperature range

Param	Description	Test Conditions			Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 1) } \\ & \hline \end{aligned}$	Max.	Units
A PORT ($\mathrm{A}_{0}-\mathrm{A}_{7}$)								
V_{IH}	Logical "1" Input Voltage	$C D=V_{\text {IL }}$ MAX., $T / \overline{\mathrm{R}}=2.0 \mathrm{~V}$			2.0			Volts
V_{IL}	Logical "0" Input Voltage	$\begin{aligned} & C D=V_{I I} M A X ., \\ & T / R=2.0 \mathrm{~V} \end{aligned}$	Am8304B				0.8	Volts
			Am730	04B			0.7	
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & C D=V_{\text {ILI }} M A X ., \\ & T / \bar{R}=8.0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$		V_{Cc}-1.15	$\mathrm{V}_{\mathrm{CC}}-0.7$		Volts
			$\mathrm{IOH}^{\text {a }}=$	$-3.0 \mathrm{~mA}$	2.7	3.95		
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage	$\begin{aligned} & C D=V_{11} \text { MAX }, \\ & T / R=8.0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.3	0.4	Voits
			Am8304B, $\mathrm{IOL}_{\text {L }}=16 \mathrm{~mA}$			0.35	0.50	
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{1 L} M A X ., T / \bar{R}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & V_{C C}=\text { MAX., Note 2 } \end{aligned}$			-10	-38	-75	mA
I_{1}	Logical "1" Input Current					0.1	80	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{1}=\mathrm{V}_{\text {CC }} \mathrm{MAX}$.					1	mA
IL	Logical "0" Input Current	$\mathrm{CD}=\mathrm{V}_{\mathrm{IL}} \mathrm{MAX}$., $\mathrm{T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$				-70	-200	$\mu \mathrm{A}$
V_{c}	Input Clamp Voltage	$C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$				-0.7	-1.5	Volts
IOD	Output/Input Three-State Current	$C D=2.0 \mathrm{~V}$		$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
				$\mathrm{V}_{0}=4.0 \mathrm{~V}$			80	
$\text { B PORT }\left(B_{0}-B_{7}\right)$								
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$C D=V_{I L} M A X ., T / \bar{R}=V_{I L} \text { MAX. }$			2.0			Volts
V_{IL}	Logical "0" Input Voltage	$\begin{aligned} & \mathrm{CD}=\mathrm{V}_{\mathrm{IL}} \text { MAX., } \\ & \mathrm{T} / \overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}} M A X . \end{aligned}$		Am8304B			0.8	Volts
				Am7304B			0.7	
V_{OH}	Logical "1" Output Voltage	$C D=V_{\text {IL }} M A X ., T / \bar{R}=2.0 \mathrm{~V}$		$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.15$	$\mathrm{V}_{\mathrm{CC}}-0.8$		Volts
				$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	2.7	3.9		
				$\mathrm{IOH}^{\text {OH}}=-10 \mathrm{~mA}$	2.4	3.6		
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage	$C D=V_{1 L} M A X ., T / \bar{R}=2.0 \mathrm{~V}$		$\mathrm{IOL}^{2}=20 \mathrm{~mA}$		0.3	0.4	Volts
				$\mathrm{IOL}=48 \mathrm{~mA}$		0.4	0.5	
los	Output Short Circuit Current	$\begin{aligned} & C D=V_{1 L} M A X ., T / \bar{R}=2.0 \mathrm{~V}, V_{O}=0 \mathrm{~V}, \\ & V_{C C}=M A X ., \text { Note 2 } \end{aligned}$			-25	-50	-150	mA
I_{H}	Logical "1" Input Current	$C D=V_{1 L} M A X ., T / \widetilde{R}=V_{\text {IL }}$ MAX., $V_{1}=2.7 \mathrm{~V}$				0.1	80	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX} ., \mathrm{V}_{1}=\mathrm{V}_{C C} \mathrm{MAX}$.					1	mA
ILL	Logical "0" Input Current	$C D=V_{\text {IL }}$ MAX., $\mathrm{T} / \overline{\mathrm{R}}=\mathrm{V}_{\text {IL }}$ MAX., $\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-70	-200	$\mu \mathrm{A}$
V_{c}	Input Clamp Voltage	$C D=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$				-0.7	-1.5	Volts
Iod	Output/Input Three-State Current	$C D=2.0 \mathrm{~V}$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
				$\mathrm{V}_{0}=4.0 \mathrm{~V}$			200	
CONTROL INPUTS CD, T/̄/								
$V_{\text {IH }}$	Logical "1" Input Voltage				2.0			Volts
V_{IL}	Logical "0" Input Voltage			Am8304B			0.8	Volts
				Am7304B			0.7	
$\mathrm{IIH}^{\text {l }}$	Logical "1" Input Current	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				0.5	20	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$V_{C C}=M A X ., V_{1}=V_{C C}$ MAX.					1.0	mA
IIL	Logical "0" Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		T//̄		-0.1	-. 25	mA
				CD		-0.25	-. 5	
V_{c}	Input Clamp Voltage	$\mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$				-0.8	-1.5	Volts
POWER SUPPLY CURRENT								
Icc	Power Supply Current	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IV }}=0.4 \mathrm{~V}$				60	100	mA
		$C D=V_{I N A}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{MAX}$.				80	130	

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Param	Description	Test Conditions	Min.	Typ. Note 1$)$	Max.	Units
A PORT DATA/MODE SPECIFICATIONS						
${ }^{\text {t PDHLA }}$	Propagation Delay to a Logical "0" from B Port to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF} \end{aligned}$		14	18	ns
${ }^{\text {t pdeha }}$	Propagation Delay to a Logical "1" from B Port to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V}(\text { (Figure } 1) \\ & \mathrm{R}_{1}=1 \mathrm{k}, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=30 \mathrm{pF} \end{aligned}$		13	18	ns
${ }^{\text {t PLZA }}$	Propagation Delay from a Logical " 0 " to Three-State from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \bar{R}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF} \end{aligned}$		11	15	ns
${ }^{\text {t PhZA }}$	Propagation Delay from a Logical "1" to Three-State from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF} \end{aligned}$		8	15	ns
${ }^{\text {tPZLA }}$	Propagation Delay from Three-State to a Logical " 0 " from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=1, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF} \end{aligned}$		27	35	ns
${ }^{\text {tPZHA }}$	Propagation Delay from Three-State to a Logical "1" from CD to A Port	$\begin{aligned} & \mathrm{B}_{0} \text { to } \mathrm{B}_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.4 \mathrm{~V} \text { (Figure 3) } \\ & \mathrm{S}_{3}=0, \mathrm{R}_{5}=5 \mathrm{k}, \mathrm{C}_{4}=30 \mathrm{pF} \end{aligned}$		19	25	ns
B PORT DATA/MODE SPECIFICATIONS						
${ }^{\text {tPDHLB }}$	Propagation Delay to a Logical "0" from A Port to B Port	$\begin{aligned} & C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure 1) } \\ & \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \end{aligned}$		18	23	ns
		$\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}$		11	18	
${ }^{\text {PPDLHB }}$	Propagation Delay to a Logical " 1 " from A Port to B Port	$\begin{gathered} C D=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V}(\text { Figure } 1) \\ \mathrm{R}_{1}=100 \Omega, \mathrm{R}_{2}=1 \mathrm{k}, \mathrm{C}_{1}=300 \mathrm{pF} \end{gathered}$		16	23	ns
		$\mathrm{R}_{1}=667 \Omega, \mathrm{R}_{2}=5 \mathrm{k}, \mathrm{C}_{1}=45 \mathrm{pF}$		11	18	
${ }^{\text {tPLZB }}$	Propagation Delay from a Logical " 0 " to Three-State from CD to B Port	$\begin{aligned} & \left.A_{0} \text { to } A_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } 3\right) \\ & S_{3}=1, R_{5}=1 \mathrm{k}, \mathrm{C}_{4}=15 \mathrm{pF} \end{aligned}$		13	18	ns
${ }^{\text {t }}$ PHZB	Propagation Delay from a Logical "1" to Three-State from CD to B Port	$\begin{aligned} & A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, T / \bar{R}=2.4 \mathrm{~V} \text { (Figure 3) } \\ & S_{3}=0, R_{5}=1 \mathrm{k}, C_{4}=15 \mathrm{pF} \end{aligned}$		8	15	ns
$t_{\text {PZLB }}$	Propagation Delay from Three-State to a Logical "0" from CD to B Port	$\mathrm{A}_{0} \text { to } \mathrm{A}_{7}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } 3 \text {) }$ $S_{3}=t, R_{5}=100 \Omega, C_{4}=300 \mathrm{pF}$		32	40	ns
		$\mathrm{S}_{3}=1, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}$		16	22	
$t_{\text {PzHB }}$	Propagation Delay from Three-State to a Logical "1" from CD to B Port	$\begin{aligned} & \hline A_{0} \text { to } A_{7}=2.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.4 \mathrm{~V} \text { (Figure } 3 \text {) } \\ & \mathrm{S}_{3}=0, \mathrm{R}_{5}=1 \mathrm{k}, \mathrm{C}_{4}=300 \mathrm{pF} \end{aligned}$		26	35	ns
		$\mathrm{S}_{3}=0, \mathrm{R}_{5}=667 \Omega, \mathrm{C}_{4}=45 \mathrm{pF}$		14	22	
TRANSMIT RECEIVE MODE SPECIFICATIONS						
${ }_{\text {t }}^{\text {PHZR }}$	Propagation Delay from a Logical "1" to Three-State from T / \bar{R} to A Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\ & \mathrm{S}_{1}=1, \mathrm{R}_{4}=100 \Omega, \mathrm{C}_{3}=300 \mathrm{pF} \\ & \mathrm{~S}_{2}=0, \mathrm{R}_{3}=1 \mathrm{k}, \mathrm{C}_{2}=15 \mathrm{pF} \end{aligned}$		7	12	ns
${ }_{\text {t }}^{\text {PLZR }}$	Propagation Delay from a Logical " 0 " to Three-State from T / \bar{R} to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V} \text { (Figure 2) } \\ & S_{1}=0, R_{4}=1 \mathrm{k}, \mathrm{C}_{3}=300 \mathrm{pF} \\ & S_{2}=1, R_{3}=1 \mathrm{k}, \mathrm{C}_{2}=15 \mathrm{pF} \end{aligned}$		10	14	ns
${ }^{\text {t }}$ PHZT	Propagation Delay from a Logical " 1 " to Three-State from T / \bar{R} to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\ & \mathrm{S}_{1}=0, \mathrm{R}_{4}=1 \mathrm{k}, \mathrm{C}_{3}=15 \mathrm{pF} \\ & \mathrm{~S}_{2}=1, \mathrm{R}_{3}=5 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF} \end{aligned}$		16	22	ns
tpLZT	Propagation Delay from a Logical "0" to Three-State from T / \bar{R} to B Port	$\begin{aligned} & \mathrm{CD}=0.4 \mathrm{~V} \text { (Figure 2) } \\ & \mathrm{S}_{1}=1, \mathrm{R}_{4}=1 \mathrm{k}, \mathrm{C}_{3}=15 \mathrm{pF} \\ & \mathrm{~S}_{2}=0, \mathrm{R}_{3}=1 \mathrm{k}, \mathrm{C}_{2}=30 \mathrm{pF} \end{aligned}$		17	22	ns
${ }_{\text {t PRL }}$	Propagation Delay from Transmit Mode to a Logical " 0 ", $T / \overline{\mathrm{R}}$ to A Port	$\mathrm{t}_{\text {PRL }}=\mathrm{t}_{\text {PHZT }}+\mathrm{t}_{\text {PDHLA }}$		25	40	ns
${ }^{\text {tPRH }}$	Propagation Delay from Transmit Mode to a Logical "1", $T / \overline{\mathrm{R}}$ to A Port	$\mathrm{t}_{\text {PRH }}=\mathrm{t}_{\text {PLZT }}+\mathrm{t}_{\text {PDLHA }}$		30	40	ns
$t^{\text {PTL }}$	Propagation Delay from Receive Mode to a Logical " 0 ", $T / \overline{\mathrm{R}}$ to B Port	$t_{\text {PTL }}=t_{\text {PHZR }}+t_{\text {PDHLB }}$		25	35	ns
${ }_{\text {tPTH }}$	Propagation Delay from Receive Mode to a Logical " 1 ", T / \bar{R} to B Port	$\mathrm{t}_{\text {PTH }}=\mathrm{t}_{\text {PLZR }}+\mathrm{t}_{\text {PDLHB }}$		26	35	ns

Notes: 1. All typical values given are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Only one output at a time should be shorted.

FUNCTIONAL TABLE

Inputs	Conditions		
Chip Disable	0	0	1
Transmit/Receive	0	1	X
A Port	Out	In	$\mathrm{HI}-\mathrm{Z}$
B Port	In	Out	$\mathrm{HI}-\mathrm{Z}$

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$
10% to 90%

Note: C_{1} includes test fixture capacitance.

Figure 1. Propagation Delay from A Port to B Port
LIC-511 or from B Port to A Port.

LIC-512

$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$
10% to 90%

Note: C_{2} and C_{3} include test fixture capacitance.

LIC-513
Figure 2. Propagation Delay from T / \bar{R} to A Port or B Port.
LIC-514

$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$
10\% to 90%

Note: C_{4} includes test fixture capacitance.
Port input is in a fixed logical condition.

Figure 3. Propagation Delay from $C D$ to A Port or B Port.

DIE SIZE $0.066^{\prime \prime} \times 0.086^{\prime \prime}$

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DP7304BJ
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DP8304BJ
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DP8304BN
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8304BX

Am78/8820•Am78/8820A

Distinctive Characteristics:

- Dual differential receiver pin-for-pin equivalent to the National 78/8820 and 78/8820A
- 500 mV sensitivity at $\pm 3 \mathrm{~V}$ common mode 1 V sensitivity at $\pm 15 \mathrm{~V}$ common mode
- Single 5 -volt supply
- Frequency response control, strobe and internal terminating resistor
- 100\% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am78/8820 and Am78/8820A are dual differential line receivers designed to receive digital data from transmission lines and provide up to 15 volts of common mode rejection with a single 5 -volt supply.
The device would normally be used in systems using twisted pair lines for connection, with each receiver having a terminating resistor included. The receivers respond to small differential signals and reject considerable amounts of common mode noise.
Each receiver has a strobe that enables the output and a response control that allows the time constant of the output circuit to be controlled by an external capacitor and give noise rejection of high frequency noise and short logic spikes.
Companion differential line drivers are the Am78/8830, Am78/8831 and Am78/8832.

LOGIC DIAGRAM

Receiver A

Receiver B

$V_{C C}=\operatorname{Pin} 14$
LIC-517
GND $=\operatorname{Pin} 7$

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

 of $160^{\circ} \mathrm{C}$ for the AM 7820 , or $150^{\circ} \mathrm{C} / \mathrm{W}$ and $115^{\circ} \mathrm{C}$ maximum junction temperature for the AM8820.
2. Typical values given are for $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ and $V_{C M}=O V$ unless stated differently.

Switching Characteristics ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {RESP }}$	Response Time	$\mathrm{C}_{\text {delay }}=0$		40		ns
tresp	Response Time	$\mathrm{C}_{\text {delay }}=100 \mathrm{pF}$		150		ns

Am78/8820 • Am78/8820A

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	-0.5 V to +8.0 V
DC Common Mode Voltage	-20 V to +20 V
DC Strobe Input Voltage	-0.5 V to +8.0 V
DC Data Input Voltage	-20 V to +20 V
Output Current, Into Outputs:	$\mathrm{Am} 78 / 8820$
	25 mA
	Am78/8820A
Power Dissipation (Note 1)	

Am7820A • Am8820A

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am8820A	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$	$V_{C M}=-15 \mathrm{~V}$ to +15 V
Am7820A	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$	$V_{C M}=-15 \mathrm{~V}$ to +15 V

Parameters Description Test Conditions

V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\text {DIFF }}=+1 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.5	4.0	5.5	Volts
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\text {DIFF }}=-1 \mathrm{~V}$	0		0.4	Volts
$\mathrm{V}_{\text {IH }}$	Strobe Input HIGH Level Voltage	$\begin{aligned} & V_{\text {DIFF }}=-3 \mathrm{~V} \\ & V_{\text {OUT }} \leqslant 0.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA} \end{aligned}$	2.1			Volts
$V_{\text {IL }}$	Strobe Input LOW Level Voltage	$\begin{aligned} & V_{\text {DIFF }}=-3 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }} \geqslant 2.5 \mathrm{~V}, \text { I OUT }=-400 \mu \mathrm{~A} \end{aligned}$			0.9	Volts
$\mathbf{V}_{\text {TH }}$	Differential Threshold Voltage	$-3 \mathrm{~V} \leqslant \mathrm{~V}_{\text {CM }} \leqslant+3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$		+0.06	+0.5	Volts
		$-15 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$		+0.06	+1.0	
		$-3 \mathrm{~V} \leqslant \mathrm{~V}_{\text {CM }} \leqslant+3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	-0.5	-0.08		
		$-15 \mathrm{~V} \leqslant \mathrm{~V}_{\text {CM }} \leqslant+15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	-1.0	-0.08		
$\mathrm{IIH}^{\text {H }}$	Strobe Input HIGH Current	$\mathrm{V}_{\text {STROBE }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=+3 \mathrm{~V}$		0.01	5.0	$\mu \mathrm{A}$
$I_{\text {IL }}$	Strobe Input LOW Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$	-1.4	-1.0		mA
IIN INV	Inverting Input Current	$V_{C M}=+15 \mathrm{~V}$		+3.0	+4.2	mA
		$V_{C M}=0 V$	-0.5	0		
		$\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$	-4.2	-3.0		
IIN NINV	Non-Inverting Input Current	$V_{C M}=+15 \mathrm{~V}$		+5.0	+7.0	mA
		$V_{C M}=0 \mathrm{~V}$	-1.6	-1.0		
		$V_{C M}=-15 \mathrm{~V}$	-9.8	-7.0		
${ }^{\text {I SC }}$	Output Short Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {STROBE }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-6.7	-4.5	-2.8	mA
${ }^{1} \mathrm{CC}$	Power Supply Current (Each Receiver)	$V_{\text {CM }}=+15 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$		+3.9	+6.0	mA
		$V_{\text {CM }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-0.5 \mathrm{~V}$		+6.5	+10.2	
		$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$		+9.2	+14.0	
RININV	Inverting Input Resistance		3.6	5.0		k Ω
$R_{\text {IN NINV }}$	Non-Inverting Input Resistance		1.8	2.5		k Ω
$\mathrm{R}_{\text {TERM }}$	Input Terminating Resistor	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	170	250	Ω

Notes: 1. For operating at elevated temperatures, the device must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ and a maximum junction temperature of $160^{\circ} \mathrm{C}$ for the AM7820A, or $150^{\circ} \mathrm{C} / \mathrm{W}$ and $115^{\circ} \mathrm{C}$ maximum junction temperature for the AM8820A.
2. Typical values given are for $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ and $V_{C M}=0 \mathrm{~V}$ unless stated differently.

Switching Characteristics ($T_{A}=25^{\circ} \mathrm{C}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tpHL	Differential Input to Output LOW	$v_{C C}=5.0 \mathrm{~V}$ See Switching Waveforms		25	45	ns
tPLH	Differential Input to Output HIGH			22	40	ns
tPHL	Strobe Input to Output LOW			16	25	ns
${ }^{\text {tPLH }}$	Strobe Input to Output HIGH			15	30	ns

TYPICAL PERFORMANCE CHARACTERISTICS

Transfer Function

Power Supply Current (Each Receiver)

Common-Mode Voltage

Termination Resistance

$\begin{array}{lllllllll}-75 & -50 & -25 & 0 & 25 & 50 & 75 & 100 & 125\end{array}$ T_{A} - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

Internal Power Dissipation (Each Receiver)

Strobe Delays

Input Characteristics

AC TEST CIRCUIT AND WAVEFORMS

LIC-521

$A=$ Differential Input to " 0 " Output
$B=$ Differential Input to " 1 " Output
C $=$ Strobe Input to " 0 " Output
$D=$ Strobe Input to " 1 " Output
LIC-522

TYPICAL APPLICATION

TYPICAL TWISTED PAIR DIFFERENTIAL COMMUNICATION SYSTEM

LIC-523
The Am78/8830 drives a twisted pair line which is terminated at the receiving end by an RC network. The R is approximately equal to the line impedance (170 $)$ and is part of the Am78/8820A differential receiver. The C_{B} is a blocking capacitor whieh stops $D C$ current flow, and for low duty cycles reduces power consumption. The value of this capacitor depends upon the data rate, C_{B} must be large compared to $\frac{f d-R}{}$ where $f d$ is the data rate. The capacitor C_{R} is used to control the response time of the receiver and limit high frequency noise. $C_{R} \sim 4 \times 10^{3} \frac{1}{f n}$ where C is in $p F$ and $f n$ is the lowest noise frequency expected in MHz .

Metallization and Pad Layout

DIE SIZE $0.045^{\prime \prime} \times 0.050^{\prime \prime}$

Am78/8830
 Dual Differential Line Driver

Distinctive Characteristics

- Single 5 -volt power supply
- Input diodes for prevention of line ringing
- Low output skew between NAND and AND propagation delays.
- Clamped outputs for reduction in positive and negative voltage transients.
- 100% reliability assurance testing in compliance with MIL-STD-883.

Am78/8830
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V CC max.
$\overline{\text { DC Input Voltage }}$	-0.5 V to +5.5 V
Output Current, Into Outputs	100 mA
DC Input Current	-30 mA to +5.0 mA
Output Short Circuit Duration at $125^{\circ} \mathrm{C}$	1 sec

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am8830	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
Am7830	$\top_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=0.8 \mathrm{~V} \end{aligned}$	${ }^{\mathrm{I}} \mathrm{OH}=-40 \mathrm{~mA}$	1.8	2.9		Volts
			$\mathrm{IOH}^{\prime}=-0.8 \mathrm{~mA}$	2.4	3.3		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$		0.22	0.5	Volts
			$1 \mathrm{OL}=32 \mathrm{~mA}$		0.2	0.4	
V_{IH}	Input HIGH Level Voltage	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Leve! Voltage	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 V$			-3.0	-4.8	mA
$\mathbf{I H}_{1 H}$	Input HIGH Current	$V_{C C}=$ MAX.,$V_{\text {IN }}=2.4 \mathrm{~V}$				120	$\mu \mathrm{A}$
	Input HIGH Current	$V_{C C}=M A X ., V_{1 N}=5.5 \mathrm{~V}$				2.0	mA
ISC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V}$		-40	-100	-120	mA
${ }^{\text {c cc }}$	Power Supply Current ${ }^{\text {a }}$	$\mathrm{V}_{\text {CC }}=$ MAX. ((Each Driver)			11	18	mA

Note 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
Note 2. Limits for $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ only.

Switching Characteristics ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameters	Description	Conditions	Min.	Typ.	Max.	Units
tPLH		$V_{C C}=5.0 \mathrm{~V}, C_{L}=15 \mathrm{pF}$ See Figure 1		8	12	ns
tPHL				11	18	ns
tPLH	Delay from Inputs to Output of NAND gate			8	12	ns
tPHL				5	8	ns
t_{1}	Differential Delay	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF} \\ & R_{\mathrm{L}}=100 \Omega, \text { See Figure } 2 \end{aligned}$		12	16	ns
${ }^{\prime} 2$				12	16	ns

Figure 1.

LIC-528
Figure 2.

LIC-529

TYPICAL ELECTRICAL CHARACTERISTICS

Differential Output Voltage $\mathrm{V}_{\text {AND }}$ - $\mathrm{V}_{\text {NAND }}$ Versus Differential Output Current

Power Dissipation (No Load) Versus Data Input Frequency

Output Low Voltage Versus Output Current

APPLICATIONS

LIC-531

TYPICAL TWISTED PAIR DIFFERENTIAL COMMUNICATION SYSTEM

The Am78/8830 drives a twisted pair line which is terminated at the receiving end by an RC network. The R is approximately equal to the line impedance (170Ω) and is part of the Am78/8820A differential receiver. The C_{B} is a blocking capacitor which stops $D C$ current flow, land for low duty cycles reduces power consumption. The value of this capacitor depends upon the data rate, C_{B} must be large compared to $\frac{1}{f d-R}$ where $f d$ is the data rate. The capacitor C_{R} is used to control the response time of the receiver and limit high frequency noise. $C_{R} \sim 4 \times 10^{3} \frac{1}{f n}$ where C is in $p F$ and $f n$ is the lowest noise frequency expected in MHz .

DIE SIZE $0.050^{\prime \prime} \times 0.063^{\prime \prime}$

Am78/8831•Am78/8832

Three-State Line Driver

Distinctive Characteristics

- Three-State Line Drivers pin-for-pin equivalent to the DM78/8831 and DM78/8832
- Mode control for quad single-ended or dual differential operation
- Common bus operation
- High-drive capability
- 40 mA sink and source current
- Series 54/74 compatible
- 13 ns typical propagation delay
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am78/8831 and Am78/8832 line drivers can be used either as a quad single-ended driver or as a dual differential driver. Each driver has a three-state output making the device particularly suitable for party-line operation where several drivers are directly connected to the same bus. The Am78/8832 does not have the V_{CC} clamp diodes found on the Am74/8831.
When used for single-ended operation the two differential/singleended control inputs are held LOW. The device then operates as four independent non-inverting drivers. For differential working at least one differential/single-ended control input is held HIGH. The A-channel inputs are connected together and the B-channel inputs are connected together. Signal inputs will then pass non-inverted to the A_{2} and B_{2} outputs and inverted on the A_{1} and B_{1} outputs.
For party-line operation outputs of different channels are tied together, and outputs of all channels except one are forced into the third high impedance state by having at least one of the channel disable inputs HIGH. The channel that is enabled has both channel disable inputs LOW, and the low-output impedance of this output at both logic levels controls the level of the bus, provides good capacitance drive and insures good waveform integrity.
The channel which is enabled can conveniently be selected by a decoding matrix using Am9301 1-of-10 or Am9311 1-of-16 active LOW output decoders. The high drive capability at both logic levels enables drivers to drive a low impedance tine and still supply the inverse leakage current of several disabled drivers.

LOGIC SYMBOL

$V_{C C}=P$ in 16
GND $=P$ in 8
LIC-532

LOGIC DIAGRAM

Am78/8831 • Am78/8832

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA
Time that 2 Bus-Connected Devires May Be in Opposite Low Impedance States Simultaneously	∞

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am8831, Am8832
Am7831, Am7832
TA $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

```
\(v_{C C}=5.0 \vee \pm 5 \%\) (COM'L)
\(V_{C C}=5.0 \mathrm{~V} \pm 10 \%\) (MIL)
```

MIN. $=4.75 \mathrm{~V}$
$\mathrm{MIN} .=4.5 \mathrm{~V}$

MAX. $=5.25 \mathrm{~V}$
$M A X=5.5 V$

Typ.

Parameters	Description	Test Conditions		Min.	(Note 1)	Miax.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M 1 N ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-40 \mathrm{~mA}$	1.8	2.8		
			Am7831, $32 \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	3.1		Volts
			Am8831, $32 \mathrm{I}^{\text {OH }}=-5.2 \mathrm{~mA}$	2.4	3.1		
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=\text { MIN. } \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$		0.29	0.5	Volts
			$1 \mathrm{OL}=32 \mathrm{~mA}$		0.2	0.4	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level Voltage	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$V_{\text {IL }}$	Input LOW Level Voltage	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
I_{L}	Unit Load Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-1.0	-1.6	mA
1/H	Unit Load Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			6.0	40	$\mu \mathrm{A}$
11	Input HIGH Current	$V_{C C}=$ MAX. $V_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
${ }^{\text {I LK }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \overline{\mathrm{E}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V}$			5.	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \overline{\mathrm{E}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}$			-5	-40	
V_{1}	Input Clamp Diode Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.5	Voits
V_{0}	Output Clamp Diode Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Am78/8831 Only				$\mathrm{V}_{\mathrm{cc}}+1.5 \mathrm{~V}$	Volts
V_{O}	Output Substrate Diode Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.5	Volts
$\begin{aligned} & \hline \text { ISC } \\ & \text { (Note 2) } \end{aligned}$	Output Short Circuit Current	$V_{C C}=M A X ., V_{\text {OUT }}=0.0 \mathrm{~V}, T_{A}=M A X$.		-40		-120	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.			57	90	mA

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Only one output should be shorted at a time.

SWITCHING CHARACTERISTICS (TA $=25^{\circ}$)

Parameters	Description	Min.	Typ.	Max.	Units
tpLH	Delay from Inputs $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ and		13	25	ns
tPHL	Single-Ended/ Diff. Control to Output		13	25	ns
${ }_{\mathbf{t}}^{\mathrm{HZ}}$	Delay from Output Enable to Output		6	12	ns
${ }_{\text {t }} \mathrm{L}$			14	22	ns
${ }^{\text {Z }} \mathrm{ZH}$	Delay from Output Enable to Output		14	22	ns
${ }^{\text {Z }} \mathrm{L}$			18	27	ns

Delay from Disable to High

Total Supply
Current Versus Frequency

$I_{\text {OUt }}$ Versus $V_{\text {OUt }}$ High Impedance Output State

Propagation Delay from Input to Output (Channel 1)

Delay from Disable to Low

Logical " 1 " Output Voltage Versus Source Current

Propagation Delay
in Differential Mode

Propagation Delay from Input to Output (Channel 2)

Logical "0" Output Voltage Versus Sink Current

NOTE: V_{OL} and V_{OH} refer to actual voltages on output LOW and HIGH states.
KEY TO TIMING DIAGRAM

Waveform	inputs	OUTPuts	Waverorm	inputs	OUTPUTS
	MUST BE	$\begin{aligned} & \text { WILL BE } \\ & \text { STEAOY } \end{aligned}$		onnt care any change pehmittid	Changing STATE UNKNOWN
	MAY CHANGE FAOMHTOL	WILL BE CHANGING FRONHTOL		DOESNOT APPLY	CENTER LINE IS MCH IMPEDANCE OFF" STATE
$\sqrt{717}$	may change fromiton	WILL BE changing fromiton			

	Switch S_{1}	Switch S_{2}	C_{L}
tPLH	closed	closed	50 pF
tPHL	closed	closed	50 pF
${ }_{\text {thz }}$	closed	closed	* 5 pF
${ }^{\text {t }}$ LZ	closed	closed	* 5 pF
${ }^{\text {t }} \mathrm{L} \mathrm{L}$	closed	open	50 pF
${ }^{\text {t }} \mathrm{ZH}$	open	closed	50 pF

TRUTH TABLE

(Shown for A Channels Only)

SINGLE-ENDED/ DIFF CONTROL	A ENABLE	IN	OUT	IN	OUT		
L	L	L	L	A_{1}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$
H	X	L	L	A_{1}	$\overline{\mathrm{~A}}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$
X	H	L	L	A_{1}	$\overline{\mathrm{~A}}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$
X	X	H	X	X	F	X	F
X	X	X	H	X	F	X	F

H = HIGH Voltage Level
L = LOW Voltage Level
F=Floating Output

TABLE I

MSI INTERFACING RULES

	Equivalent Input Unit Load HIGH	LOW

TABLE III

LOADING RULES (In Unit Loads)

			Fan-out			
Input/Output	Pin No.'s	Input	Onit Load	HIGH		Output
:---:						
LOW						

TABLE II

INPUT/OUTPUT INTERFACE CONDITIONS

Voltage Interface Conditions - LOW \& HIGH

Current Interface Conditions - FLOATING

Current Interface Conditions - HIGH

LIC-538

Am7838•Am8838

DISTINCTIVE CHARACTERISTICS

- 4 totally separate driver/receiver pairs per package.
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load
- Guaranteed minimum bus noise immunity of $1.3 \mathrm{~V}, 2 \mathrm{~V}$ typ.
- Temperature insensitive receiver thresholds track bus logic levels
- $20 \mu \mathrm{~A}$ typical bus terminal current with normal V_{CC} or with $V_{C C}=0 V$
- Open collector driver output allows wire-OR connection
- High-Speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs
- Advanced Schottky processing

FUNCTIONAL DESCRIPTION

The Am7838 - Am8838 are quad high-speed drivers/receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $\leqslant 1.0 \mu \mathrm{~s} / \mathrm{V}$.

LOGIC DIAGRAM AND LOGIC SYMBOL

LIC-541

$V_{C C}=$ PIN 16
GND $=$ PIN 8
LIC-542

Am7838•Am8838

MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage	7.0 V
Input and Output Voltage	5.5 V
Power Dissipation	600 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am7838	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am8838	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise specified:

Am7838 (MIL) Am8838 (CO Parameters	$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$ Description	$\begin{aligned} & V_{C C M I N}=4.50 \mathrm{~V} \\ & V_{C C M I N}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{C C} M A X=5.50 \mathrm{~V} \\ & V_{C C} M A X=5.25 \mathrm{~V} \end{aligned}$ Test Conditions	Min.	Typ. (Note 1)	Max.	Units
Driver and Disable Inputs							
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage			2.0			Volts
$V_{\text {IL }}$	Logical "0" Input Voltage					0.8	Volts
$1 /$	Logical "1" Input Current					1.0	mA
${ }_{1} \mathrm{IH}$	Logical "1" Input Current					40	$\mu \mathrm{A}$
$I_{\text {IL }}$	Logical '0' Input Current					-1.6	mA
V_{CL}	Input Diode Clamp Voltage		$2 m A, I_{I N}=-12 m A, I_{B U S}=-12 m A,$		-1.0	-1.5	Volts

Driver Output/Receiver Input

$V_{\text {OLB }}$	Low Level Bus Voltage	$V_{\text {DIS }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, 1_{\text {BUS }}=50 \mathrm{~mA}$			0.4	0.7	Volts
${ }^{1}$ IHB	Maximum Bus Current	$V_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=V_{\text {MAX }}$.			20	100	$\mu \mathrm{A}$
IILB	Maximum Bus Current	$V_{1 N}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4.0 \mathrm{~V}, \mathrm{~V}_{C C}=0 \mathrm{~V}$			2.0	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Receiver Threshold	$\mathrm{V}_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=16 \mathrm{~mA}$	Am7838	1.65	2.25	2.65	Volts
			Am8838	1.80	2.25	2.50	
$\mathrm{V}_{\text {IL }}$	Low Level Receiver Threshold	$V_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	Am7838	0.97	1.30	1.63	Volts
			Am8838	1.05	1.30	1.55	

Receiver Output

V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			Volts
V_{OL}	Logical "0' Output Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.25	0.4	Volts
${ }^{\text {I OS }}$	Output Short Circuit Current	$\begin{aligned} & V_{\text {DIS }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=0.5 \mathrm{~V}, \\ & V_{\mathrm{OS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}} .(\text { Note 3 }) \end{aligned}$	-18		-55	mA
ICC	Supply Current	$\mathrm{V}_{\text {DIS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$, (Per Package)		50	70	mA

AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

${ }^{t} \mathrm{pd}$	Propagation Delays	Disable to Bus ' 1 "	(Note 4)	19	30	ns
		Disable to Bus '0'	(Note 4)	15	23	ns
		Driver Input to Bus "1"	(Note 4)	17	25	ns
		Driver Input to Bus " 0 "	(Note 4)	9.0	15	ns
		Bus to Logical "1" Receiver Output	(Note 5)	20	30	ns
		Bus to Logical " 0 "' Receiver Output	(Note 6)	18	30	ns

Notes: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5.0 \mathrm{~V}$.
2. All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max. or min. on absolute value basis.
3. Only one output at a time should be shorted.
4. 91Ω from bus pin to $V_{C C}$ and 200Ω from bus pin to ground, $C_{L O A D}=15 p F$ total. Measured from $V_{I N}=1.5 \mathrm{~V}$ to $V_{B U S}=1.5 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$ to 3.0 V pulse.
5. Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{I N}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3.0 V pulse.
6. Fanout of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{I N}=2.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.0 V pulse.

Am8T26

Schottky Three-State Quad Bus Driver/Receiver

Distinctive Characteristics

- Advanced Schottky technology
- 40 mA driver sink current
- Three-state outputs on driver and receiver
- PNP inputs
- 20ns max. driver propagation delay
- 18ns max. receiver propagation delay
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8T26 is a high speed bus transceiver consisting of four bus drivers with three-state outputs and four bus receivers, also with three-state outputs. Each driver output is internally connected to a receiver input. Both the drivers and receivers have PNP inputs.
One buffered common "bus enable" input is connected to the four drivers and another buffered common "receiver enable" input is connected to the receivers. A LOW on the bus enable (B / E) input forces the four driver outputs to the high-impedance state. A HIGH on the bus enable allows input data to be transferred onto the data bus.
A HIGH on the receiver enable (R / E) input forces the four receiver outputs to the high-impedance state while a LOW on the receiver enable input allows the received data to be transferred to the output. The complementary design of the bus enable and receiver enable inputs allows these control inputs to be connected together externally such that a single transmit/receive function is derived.

LOGIC SYMBOL

LOGIC DIAGRAM

LIC-545

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Molded DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	N8T26B
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	N8T26F
Dice	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM8T26XC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	S8T26F
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM8T26XM

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

N8T26	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 5 \%$
S8T26	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{C C}=5.0 \mathrm{~V} \pm 10 \%$

Parameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
V_{OH}	Driver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-10 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.6	3.1		Volts
V_{OL}	Driver Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=40 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.5	Volts
$\mathrm{VOH}^{\text {O }}$	Receiver Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\frac{\mathrm{nA}, \mathrm{COM}^{\prime} \mathrm{L}}{\mathrm{nA}, \mathrm{MIL}}$	2.6	3.1		Volts
V_{OL}	Receiver Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=-16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.5	Volts
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs	$\frac{\operatorname{COM}^{\prime} \mathrm{L}}{\mathrm{MIL}}$			0.85	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-5 \mathrm{~mA}$				-1.0	Volts
IIL (Note 3)	Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.4 \mathrm{~V}$				-0.2	mA
$I_{1 H}$ (Note 3)	Input H1GH Current	$V_{C C}=$ MAX., $V_{\text {IN }}=5.25 \mathrm{~V}$				25	$\mu \mathrm{A}$
${ }^{\text {I SC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$	Driver	-50		-150	mA
	(Note 4)		Receiver	-30		-75	mA
${ }^{\text {ICC }}$	Power Supply Current	$V_{C C}=$ MAX .				87	mA
${ }^{1} 0$	Bus Leakage Current with Driver Off	$\begin{aligned} & V_{C C}=M A X,, V_{B U S}=2.6 V \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				100	$\mu \mathrm{A}$

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Driver Input to Bus	Figure 1		16	20	ns
${ }_{\text {tPHL }}$				16	20	
${ }^{\text {tPLH}}$	Bus to Receiver Output	Figure 2		13	18	ns
${ }_{\text {tPHL }}$				6	10	
t_{ZL}	Driver Enable 'to Bus	Figure 3		29	38	ns
${ }^{\text {t }}$ LZ				35	43	
${ }^{1} \mathrm{ZL}$	Receiver Enable to Receiver Output	Figure 4		20	30	ns
${ }^{\text {t }} \mathrm{L}$				10	17	

DEFINITION OF FUNCTIONAL TERMS

$D_{0}, D_{1}, D_{2}, D_{3}$ The four driver inputs.
$\mathbf{B}_{\mathbf{0}}, \mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ The four driver outputs and receiver inputs (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}$ The four receiver outputs. Data from the bus is inverted while data from the driver inputs is noninverted.
B/E Bus enable input. When the bus enable input is LOW, the four driver outputs are in the high-impedance state.
R/E Receiver enable input. When the receiver enable input is HIGH, the four receiver outputs are in the high-impedance state.

LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	LOW Input Unit Load	Fan-out	
			Output HIGH	Output LOW
R/E	1	1/8	-	-
R_{0}	2	-	50	10
B_{0}	3	1/16	250	25
D_{0}	4	1/8	-	-
R_{1}	5	-	50	10
B_{1}	6	1/16	250	25
D1	7	1/8	-	-
GND	8	-	-	-
D_{2}	9	1/8	-	-
B_{2}	10	1/16	250	25
R_{2}	11	-	50	10
D_{3}	12	1/8	-	-
B_{3}	13	1/16	250	25
R_{3}	14	-	50	10
B/E	15	1/8	-	-
v_{CC}	16	-	-	-

A TTL Unit Load is defined as -1.6 mA measured at 0.4 V LOW and $40 \mu \mathrm{~A}$ measured at 2.4 V HIGH.

DRIVER FUNCTION TABLE

INPUTS		OUTPUT
B / E	$D_{\mathbf{i}}$	$B_{\mathbf{i}}$
L	X	Z
H	L	H
H	H	L

$L=$ LOW	$X=$ Don't Care
$H=$ HIGH	$Z=$ High Impedance
$i=0,1,2$ or 3	

$H=H I G H \quad Z=$ High Impedance
$i=0,1,2$, or 3

RECEIVER FUNCTION TABLE

INPUTS		OUTPUT
R / E	$B_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{i}}$
H	X	Z
L	L	H
L	H	L

$L=$ LOW	$X=$ Don't Care
$H=$ HIGH	$Z=$ High Impedance
$i=0,1,2$, or 3	

HIGH
x Don't Care
$\mathbf{i}=0,1,2$, or 3

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY (Data In to Bus)

PROPAGATION DELAY (Bus Enable to Bus Output)

LIC-554

INPUT PULSE:
$t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
freq $=5 \mathrm{MHz}(50 \%$ duty cycle)
Amplitude $=2.6 \mathrm{~V}$

Figure 3
LIC-556

PROPAGATION DELAY (Receive Enable to Receive Output)

INPUT PULSE
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
$\mathrm{fr} \mathrm{f}^{2}=5 \mathrm{MHz}(50 \%$ duty cycle)
Amplitude $=2.6 \mathrm{~V}$
Amplitude $=2.6 \mathrm{~V}$

LIC-560

Metallization and Pad Layout

Am8T26A•Am8T28

Schottky Three-State Quad Bus Driver/Receiver

Distinctive Characteristics

- Advanced Schottky technology
- 48 mA driver sink current
- Three-state outputs on driver and reciever
- PNP inputs
- Am8T26A has inverting outputs
- Am8T28 has non-inverting outputs
- Driver propagation delay - 14 ns max. for 8T26A; 17ns max. for 8T28
- Receiver propagation delay - 14 ns max. for 8 T 26 A ; 17ns max. for 8T28
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8T26A/Am8T28 are high speed bus transceivers consisting of four bus drivers with three-state outputs and four bus receivers, also with three-state outputs. Each driver output is internally connected to a receiver input. Both the drivers and receivers have PNP inputs.
One buffered common "bus enable" input is connected to the four drivers and another buffered common "receiver enable" input is connected to the receivers. A LOW on the bus enable (B / E) input forces the four driver outputs to the high-impedance state. A HIGH on the bus enable aliows input data to be transferred onto the data bus.
A HIGH on the receiver enable (R/E) input forces the four receiver outputs to the high-impedance state while a LOW on the receiver enable input allows the received data to be transferred to the output. The complementary design of the bus enable and receiver enable inputs allows these control inputs to be connected together externally such that a single transmit/receive function is derived.

LOGIC SYMBOL

GND $=\operatorname{Pin} 8$
LIC-561

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs (Receiver)	30 mA
DC Output Current, Into Outputs (BUS)	80 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

The Following Conditions Apply Unless Otherwise Noted:
N8T26A, N8T28 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (COM'L) MIN. $=4.75 \mathrm{~V} \quad \mathrm{MAX} .=5.25 \mathrm{~V}$
S8T26A, S8T28 $\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (MIL) MIN. $=4.50 \mathrm{~V} \quad \mathrm{MAX} .=5.50 \mathrm{~V}$

DC CHAR Parameters	ACTERISTICS OVER OPER Description	G TEMPERATURE RANGE Test Conditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units
Driver						
IIL	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low Level Input Current (Disabled)	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-25	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	High Level Input Current (DIN, DE)	$V_{\text {IN }}=V_{\text {CC }} M A X$.			25	$\mu \mathrm{A}$
v_{OL}	Low Level Output Voltage	IOUT $=48 \mathrm{~mA}$ (Note 5)			0.5	Volts
V_{OH}	High Level Output Voltage	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\text {CC }}$ MIN. ((ote 6)	2.4			Volts
IOS	Short Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {CC }} \mathrm{MAX}$. ((ote 4)	-50		-150	mA

Receiver

$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-200	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High Level Input Current (R_{E})	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ MAX.		25	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	IOUT $=20 \mathrm{~mA}$ (Note 5)		0.5	Volts
V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{OUT}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	3.5		Volts
		$\mathrm{I}^{\text {OUT }}=-2.0 \mathrm{~mA}$ (Note 6)	2.4		
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {CC }} M A X$.	-30	-75	mA

Both Driver and Receiver

$\mathrm{V}_{\text {TL }}$	Low Level Input Threshold Voltage			0.85		Volts
$\mathrm{V}_{\text {TH }}$	High Level Input Threshold Voltage				2.0	Volts
10	Low Level Output Off Leakage Current		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		-100	$\mu \mathrm{A}$
	High Level Output Off Leakage Current		$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$		100	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage		$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-1.0	Volts
PWR/ ICC	Power/Current Consumption	Am8T26A	$V_{C C}=V_{C C} M A X$.		457/87	A
		Am8T28	$\mathrm{V}_{C C}=\mathrm{V}_{C C} M A X$.		578/110	A

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
${ }_{\text {tPLH }}$	Driver Input to Bus	Figure 1		10	14		13	17	ns
${ }_{\text {tPHL }}$				10	14		13	17	
${ }^{\text {tPLH }}$	Bus to Receiver Output	Figure 2		9.0	14		12	17	ns
${ }_{\text {t PHL }}$				6.0	14		9.0	17	
${ }^{\text {Z }}$ LL	Driver Enable to Bus	Figure 3		19	25		21	28	ns
${ }^{\text {t }} \mathrm{L} \mathrm{Z}$				15	20		18	23	
${ }^{\text {t }} \mathrm{L}$ L	Receiver Enable to Receiver Output	Figure 4		15	20		18	23	ns
${ }_{t} \mathrm{~L}$ Z				10	15		13	18	

[^8]
DEFINITION OF FUNCTIONAL TERMS

$\mathrm{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}, \mathbf{D}_{\mathbf{2}}, \mathbf{D}_{\mathbf{3}}$ The four driver inputs.
$\mathbf{B}_{\mathbf{0}}, \mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ The four driver outputs and receiver inputs (data is inverted).
$\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}$ The four receiver outputs. Data from the bus is inverted while data from the driver inputs is noninverted.
B/E Bus enable input. When the bus enable input is LOW, the four driver outputs are in the high-impedance state.
R/E Receiver enable input. When the receiver enable input is HIGH, the four receiver outputs are in the high-impedance state.

LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	LOW Input Unit Load	Fan-out	
			Output HIGH	Output LOW
R/E	1	1/8	-	-
R_{0}	2	-	50	10
B_{0}	3	1/16	250	25
D_{0}	4	1/8	-	-
R_{1}	5	-	50	10
B_{1}	6	1/16	250	25
D_{1}	7	1/8	-	-
GND	8	-	-	-
D_{2}	9	1/8	-	-
B_{2}	10	1/16	250	25
R_{2}	11	-	50	10
D_{3}	12	1/8	-	-
B_{3}	13	1/16	250	25
R_{3}	14	-	50	10
- B/E	15	1/8	-	-
V_{CC}	16	-	-	-

A TTL Unit Load is defined as -1.6 mA measured at 0.4 V LOW and $40 \mu \mathrm{~A}$ measured at 2.4 V HIGH .

DRIVER FUNCTION TABLE

INPUTS		Am8T26A OUTPUT	Am8T28 OUTPUT
B / E	D_{i}	B_{i}	B_{i}
L	X	Z	Z
H	L	H	L
H	H	L	H

$L=L O W$
$H=H I G H \quad Z=$ High Impedance
$i=0,1,2$, or 3

RECEIVER FUNCTION TABLE

INPUTS		Am8T26A OUTPUT	Am8T28 OUTPUT
R/E	B_{i}	$R_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{i}}$
H	X	Z	Z
L	L	H	L
L	H	L	H

$\mathrm{L}=\mathrm{LOW} \quad \mathrm{X}=$ Don't Care
$H=$ HIGH $\quad Z=$ High Impedance
$i=0,1,2$, or 3

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

AC TEST CIRCUITS AND WAVEFORMS

PROPAGATION DELAY (Data In to Bus)

LIC-566
Figure 1
LIC-568

PROPAGATION DELAY (Bus to Receiver Out)

INPUT PULSE:
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5$ ns (10% to 90%)
freq
$=$
Amplitude
$=10 \mathrm{MHz}$ (50% duty cycle)
Amplitude $=2.6 \mathrm{~V}$

LIC-569
Figure 2

PROPAGATION DELAY (Bus Enable to Bus Output)

LIC-572

PROPAGATION DELAY (Receive Enable to Receive Output)

INPUT PULSE
$t_{f}=t_{f}=5 \mathrm{~ns}(10 \%$ to 90%)
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
freq $=5 \mathrm{MHz}(50 \%$ duty cycle)
Amplitude $=2.6 \mathrm{~V}$

Am9614

Dual Differential Line Driver

Distinctive Characteristics

- Dual differential line driver with complementary outputs
- Single 5 -volt supply
- DTL, TTL compatible
- Short-circuit protected outputs
- Able to drive 50Ω terminated transmission lines
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am9614 is a DTL, TTL compatible line driver operating off a single 5 V supply.
The Am9614 is designed to drive either differential or singleended, back-matched or terminated transmission lines. The device has the active pull-down and active pull-up circuits split and brought out to adjacent pins. This allows multiplex operation (wire-AND) at the driving end in either the single-ended mode via the uncommitted collector or in the differential mode by use of the active pull-ups on one side and the uncommitted collectors on the other. The complementary outputs of the Am9614 give great application flexibility.
The Am9614 has short-circuit protected active pull-ups, and incorporates input clamp diodes to reduce the effect of line transients, and can drive into 50Ω terminated transmission lines.

LOGIC DIAGRAMS

Am9614
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Ouputs	200 mA
DC Input Current	Note 1

ELECTRICAL CHARACTERISTICS

The following conditions apply unless otherwise noted:
$9614 \times \mathrm{M}$ (MIL) $\quad \mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC Characteristics (Note 2)
DC Characteristics (Note 2) \quad TAMIN. $_{\text {LIMITS }}^{+25^{\circ} \mathrm{C}} \quad$ TAMAX.

Parameters	Description	Test Conditions		Min.	Max.	Min.	Typ.	Max.	Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \\ & \mathrm{IOH}_{\mathrm{OH}}=-10 \mathrm{~mA} \end{aligned}$		2.4		2.4	3.2		2.4		Volts
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & I O L=40 \mathrm{~mA} \end{aligned}$	MIL		0.4		0.2	0.4		0.4	Volts
			COM ${ }^{\text {L }}$		0.45		0.2	0.45		0.45	
V_{IH}	Input HIGH Voltage	$V_{C C}=$ MIN .	MIL	2.0		1.7	1.5		1.4		Volts
			COM'L	1.9		1.8	1.5		1.6		
V_{IL}	Input LOW Voltage	$V_{C C}=$ MAX .	MIL		0.8		1.3	0.9		0.8	Volts
			COM'L		0.85		1.3	0.85		0.85	
${ }^{1} \mathrm{~F}$	Input Load Current	$V_{C C}=$ MAX.	$V_{F}=0.4 \mathrm{~V}, \mathrm{MIL}$		-1.6		-1.1	-1.1		-1.6	mA
			$V_{F}=0.45 \mathrm{~V}, \mathrm{COM}^{\prime} \mathrm{L}$		-1.6		-1.0	-1.6		-1.6	
I_{R}	Reverse Input Current	$\begin{aligned} & V_{C C}=\operatorname{MAX} . \\ & V_{R}=4.5 \mathrm{~V} \end{aligned}$.		60			60		60	$\mu \mathrm{A}$
${ }^{\text {ISC }}$	Short Circuit Current	$\begin{aligned} & V_{C C}=M A X ., \\ & v_{O}=0 V \end{aligned}$				-40	-90	-120			mA
IPD	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \\ & \text { Inputs }=0 \mathrm{~V} \end{aligned}$			48.7		33	48.7		48.7	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}, \\ & \text { Inputs }=0 \mathrm{~V} \end{aligned}$	COM'L MIL				$\begin{aligned} & \hline 46 \\ & 46 \end{aligned}$	$\begin{gathered} 70 \\ 65.7 \end{gathered}$			
${ }^{\text {ICEX }}$	Reverse Output Current	$V_{C C}=$ MAX	$\mathrm{V}_{\text {CEX }}=12 \mathrm{~V}, \mathrm{MIL}$$\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}, \mathrm{COM}{ }^{\prime} \mathrm{L}$		100		10	100		200	$\mu \mathrm{A}$
					100		10	100		200	
VOLC	Output Low Clamp Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \\ & \mathrm{IOLC}^{2}=-40 \mathrm{~mA} \end{aligned}$					-0.8	-1.5			Volts
$V_{1 C}$	Input Clamp Voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN} ., \\ & I_{I C}=-12 \mathrm{~mA} \end{aligned}$					-1.0	-1.5			Volts

Switching Characteristics ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Description	Test Conditions	9614XM			9614XC			
Parameters			Min.	Typ.	Max.	Min.	Typ.	Max.	Units
$t_{p d}+$	Turn Off Delay	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{M}}=1.5 \mathrm{~V}, \text { Refer to Fig. } 1 \end{aligned}$		14	20		14	30	ns
$\mathrm{t}_{\text {pd- }}$	Turn On Delay			18	20		18	30	ns

Notes: 1. Maximum current defined by DC input voltage.
2. For conditions shown as MIN. or MAX. use the appropriate value specified under electrical characteristics for the applicable device type or grade.

TYPICAL ELECTRICAL CHARACTERISTICS

Output Low Current Versus

 Output Low Voltage

Supply Current Versus Supply Voltage

Output High Current Versus Output High Voltage

Supply Current Versus Temperature

Logic Levels Versus Ambient Temperature

Supply Current Versus Operating Frequency

Am9614

USERS NOTES

DIFFERENTIAL LINES. The Am9614 dual differential line driver can be used with the Am9615 dual differential line receiver to form an interconnection system which can tolerate extremely noisy environments and interconnect equipments where there is a $\pm 15 \mathrm{~V}$ difference in voltage level of the equipment grounds. Two wires are used for each channel to form a balanced transmission line. This method of sending data between equipments offers extremely high protection from common mode noise and also gives excellent DC noise margins.

MATCHING. Transmission lines can be matched in a number of ways. The most widely used method is to terminate the line at the receiving end in its characteristic impedance. This impedance is connected across the input terminals of the receiver. A 130Ω resistor is included at the + input of each receiver for matching twisted pairs and this resistor, or if the characteristic impedance is not 130Ω, a discrete resistor, is connected between the two receiver inputs. This method of matching causes a DC component in the signal. Power is dissipated in the resistor and the signal is attenuated. The DC component can be effectively removed by connecting a large capacitor in series with the terminating resistor.
The transmission line can also be terminated through the receiver power supply by placing equal value resistors from the + input of the receiver to $V_{C C}$ and from the - input to
ground. This method again has the disadvantage that a DC signal component exists, attenuation occurs, and power is dissipated in the terminating resistors but it does allow multiplexed operation in the balanced differential mode.
An alternate method to matching at the receiver is to back match at the driver. A resistor is placed in series with the line so that the signal from the driver which is reflected at the high input impedance of the receiver is absorbed at the driver. This method does not have a DC component and therefore no attenuation occurs and power is not dissipated in the resistor. For balanced differential driving a resistor is required in series with each line. The table below shows the value of each matching resistor required for lines of different characteristic impedance.
MULTIPLEXING. When operating in the balanced differential mode the Am9614 driver can be OR tied with other devices to allow multiplexed operation. The open collector NAND outputs are connected together and the active pull-up AND outputs are connected together. Selection of the active driver can be made by two of the three logic inputs on the driver. Multiplexed operation can only be performed with the lines terminated to the appropriate voltage level at the driver so that this method has a DC component and power is dissipated in the terminating resistors.

TYPICAL DC CHARACTERISTICS FOR MATCHING TO TRANSMISSION LINE

BACK MATCHING TABLE

$\mathbf{Z}_{\mathbf{O}}$	$\mathbf{R}_{\mathbf{M}}$ (ohms)
	Differential
50	12
75	24
92	33
100	36
130	54
300	140
600	290

LOADING RULES

			Fanout	
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW
APU A	1	-	166	-
Output A	2	-	-	25
Output A	3	-	-	25
APU A	4	-	166	-
Input A	5	1	-	-
Input A	6	1	-	-
Input A	7	1	-	-
GND	8	-	-	-
Input B	9	1	-	-
Input B	10	1	-	-
Input B	11	1	-	-
APU B	12	-	166	-
Output B	13	-	-	25
Output B	14	-	-	25
APU B	15	-	166	-
VCC	16	-	-	-

SWITCHING CIRCUITS AND WAVEFORMS

LIC-584

APPLICATION

Differential Mode Expansion

號 and by tieing active pull-up "AND" outputs together.
The drivers can be inhibited by taking one input to ground.

Metallization and Pad Layout

Am9616

Triple EIA RS-232C/MIL-STD-188C Line Driver

Distinctive Characteristics

- Conforms to EIA RS-232C and CCITT V. 24 specifications and/or MIL-STD-188C
- Short circuit protected output
- Internal slow rate limiting
- Supply independent output swing
- 100% reliability assurance testing in compliance with MIL-STD-883
- TTLLDTI compatible input

FUNCTIONAL DESCRIPTION

The Am9616 is a triple line driver specifically designed to meet the ÉIA RS-232C and CCITT V. 24 and/or MIL-STD-188C electrical interface requirements. Each driver accepts DTL/TTL logic levels and converts them to EIA/CCITT levels for data transmission between equipment. The output slew rate of each driver is internally limited, but can be lowered by an external capacitor. All outputs are short circuit protected, and protected against fault conditions specified in RS-232C. A HIGH logic level on the inhibit input forces the driver output to V_{OL} or mark state.
The Am9616EXC and Am9616XM meets the requirements of MIL-STD-188C and EIA RS-232C. The Am9616XC conforms to the requirements of EIA RS-232C.

CIRCUIT DIAGRAM
(One Driver Shown)

LIC-588

Am9616 ORDERING INFORMATION			CONNECTION DIAGRAM Top View		
Package Type	Temperature Range	Order Number		${ }_{34} \square^{\mathrm{v}_{\mathrm{cc}}}{ }^{\text {INPUT } \mathrm{B}_{1}}$	
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	9616DM	inhilita \square^{3}	${ }^{\text {INPUT } \mathrm{B}_{2}}$	
Dice Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM9616XM 9616EDC	outputa \square^{4}	inhisit ${ }^{\text {a }}$	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	9616DC	nputc \square	\square оитputs	
Molded DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	9616EPC	ниытс \square_{6}	\square оutputc	
Molded DIP	$0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}$	9616PC	Gno \square,] V_{EE}	
			Note: Pin 1 is m	or orientation.	LIC-589

Am9616

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	
V_{CC}	+15 V
V_{EE}	-15 V
DC Voltage Applied to Outputs	$\pm 15 \mathrm{~V}$
DC Input Voltage	-1.5 V to +6 V
Lead Temperature (Soldering, 30 sec.)	$300^{\circ} \mathrm{C}$

Am9616XM AND Am9616EXC RS232-C AND MIL-STD-188C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:
Am9616XM (MIL) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am9616EXC (COM'L) $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}=+12 \mathrm{~V} \pm 10 \%, V_{E E}=-12 \mathrm{~V} \pm 10 \%, R_{\mathrm{L}}=3 \mathrm{k} \Omega$
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE OF TA $=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ (Note 2)
Typ.

Parameters	Description	Test Conditions	Min.	(Note 1)	Max.	Units
	Positive Slew Rate	$\begin{aligned} & 0 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{L}} \leqslant 2500 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 3 \mathrm{k} \Omega \\ & \hline \end{aligned}$	4.0	15	30	$\mathrm{V} / \mathrm{\mu s}$
	Negative Slew Rate	$\begin{aligned} & 0 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{L}} \leqslant 2500 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 3 \mathrm{k} \Omega \\ & \hline \end{aligned}$	-30	-15	-4.0	V/ $/ \mathrm{s}$
tPLH	Propagation Delay Time	No Load		320		ns
tPHL	Propagation Delay Time	No Load		320		ns

Notes: 1. Typical values are at $V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
2. An external capacitor may be needed to meet signal wave shaping requirements of MIL-STD-188C at the applicable modulation rate.

Am9616

ELECTRICAL CHARACTERISTICS
Am9616XC
EIA RS-232-C
The Following Conditions Apply Unless Otherwise Noted:
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
Typ.

Parameters	Description	Test Conditions	Min.	(Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{1 \mathrm{~N}_{1}}$ or $\mathrm{V}_{1 \mathrm{IN}_{2}}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$	+5.0	+6.0	+7.0	Volts
V_{OL}	Output LOW Voltage	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{IN}_{2}}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$	-7.0	-6.0	-5.0	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage	2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage			0.8	Volts
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=0.4 \mathrm{~V}$ or $\mathrm{V}_{\text {INHIBIT }}=0.4 \mathrm{~V}$		-1.2	-1.6	mA
I_{H}	Input HIGH Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{IN}_{2}}=2.4 \mathrm{~V}$ or $\mathrm{V}_{\text {INHIBIT }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current (Positive)	$\begin{aligned} & R_{L}=0 \Omega \\ & V_{I N_{1}} \text { or } V_{I N_{2}}=V_{\text {INHIBIT }}=0.8 \mathrm{~V} \end{aligned}$	-8	-17	-30	mA
$I_{\text {SE }}$	Output Short Circuit Current (Negative)	$\begin{aligned} & R_{L}=0 \Omega \\ & V_{I N_{1}} \text { or } V_{I N_{2}}=V_{\text {INHIBIT }}=2.0 \mathrm{~V} \end{aligned}$	+8	+17	+30	mA
Icc	Total Positive Supply Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{IN}_{2}}=\mathrm{V}_{\text {INHIBIT }}=0.8 \mathrm{~V}$		15	22	mA
		$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{~N}_{2}}=\mathrm{V}_{\text {INHISIT }}=2.0 \mathrm{~V}$		7.5	13	
I_{EE}	Total Negative Supply Current	$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{IN}_{2}}=\mathrm{V}_{\text {INHISIT }}=0.8 \mathrm{~V}$		0	-1	mA
		$\mathrm{V}_{1 \mathrm{~N}_{1}}=\mathrm{V}_{1 \mathrm{IN}_{2}}=\mathrm{V}_{\text {INHIBIT }}=2.0 \mathrm{~V}$		-15	-22	

AC CHARACTERISTICS

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
${ }^{\text {tPLH }}$	Delay from Input LOW to Output HIGH	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=\infty$		320	650	ns
${ }^{\text {tPHL }}$	Delay from Input HIGH to Output LOW			320	650	ns
	Positive Slew Rate	$0 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{L}} \leqslant 2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geqslant 3 \mathrm{k} \Omega$	4.0	15	30	$\mathrm{V} / \mu \mathrm{s}$
	Negative Slew Rate		-30	-15	-4.0	$\mathrm{V} / \mu \mathrm{s}$

TYPICAL CHARACTERISTICS
Output Slew Rate

Transfer Characteristics

Short-Circuit Output Current \forall - \downarrow Nヨyy versus Temperature

versus Load Capacitance

Maximum Operating Temperature

SWITCHING TEST CIRCUIT

Note: Omit VIN2 for channel "C".

VOLTAGE WAVEFORMS

Pulse Generator Rise Time $=10 \pm 5 \mathrm{~ns}$.

Metallization and Pad Layout

DIE SIZE 0.069" $\times 0.103^{\prime \prime}$

Am9617
 RS-232C Line Receiver

Distinctive Characteristics

- Compatible with EIA RS-232C and CCITT V24 specifications.
- Input signal range ± 30 volts
- Available in commercial and military temperature range
- Variable hysteresis
- 100\% reliability assurance testing in compliance with Mill-STD-883
- Includes response control input and built-in hysteresis.

FUNCTIONAL DESCRIPTION

The Am9617 is a triple line receiver that meets both the CCITT TV24 and EIA RS-232C specifications. Each receiver has single data input that can accept signal swings of up to $\pm 30 \mathrm{~V}$. The output of each receiver is TTL/DTL compatible, and includes a $2 \mathrm{k} \Omega$ resistor pull-up to V_{CC}. Each receiver has a hysteresis input so that the hysteresis can be controlled by means of a series resistor between the HYST input and a response control input RESP.
Because of this hysteresis in switching thresholds, the device can receive signals with superimposed noise or with slow rise and fall times without generating oscillations on the output. The threshold levels may be offset by a constant voltage by applying a DC bias to the response control input. A capacitor added to the response control input will reduce the frequency response of the receiver for applications in the presence of high frequency noise spikes. The companion line driver is the Am9616.

LOGIC SYMBOL

$v_{C C}=\operatorname{Pin} 14$
GND $=$ Pin 7
LIC-593

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 14 to Pin 7) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
Input Signal Range	-30 V to +30 V
Output Current, Into Outputs	30 mA
DC Input Current	Defined by Input Voltage Limits

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:
Am9617XM (MIL) $\quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}$ MIN. $=4.50 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}} \mathrm{MAX} .=5.50 \mathrm{~V}$
Am9617XC (COM'L) $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}} \mathrm{MIN} .=4.75 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}$ MAX. $=5.25 \mathrm{~V}$
Response Control Pin Open Unless Otherwise Specified

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Parameters	Description	Test Conditions		Min.	$\begin{aligned} & \text { Typ. } \\ & \text { (Note 1) } \end{aligned}$	Max.	Units
$\mathrm{R}_{\text {IN }}$	Input Resistance	$V_{\text {IN }}= \pm 25 \mathrm{~V}$		3.0	4.0	7.0	k Ω
$\mathrm{V}_{\text {IN }}$	Open Circuit Input Voltage				0.2	2.0	Volts
V_{OH}	Output HIGH Voltage	$\begin{aligned} & I_{O H}=-0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V}, \mathrm{OV} \text { or Open Circuit } \end{aligned}$		2.4	3.0		Volts
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=+3.0 \mathrm{~V} \end{aligned}$			0.3	0.4	Volts
V_{IH}	Input HIGH Level Threshold	$V_{O L}=0.45 \mathrm{~V}, V_{\mathrm{CC}}=5.0 \mathrm{~V}$ Resp-Hyst Connected	$-55^{\circ} \mathrm{C}$	2.3		3.1	Volts
			$0^{\circ} \mathrm{C}$	1.9		2.5	
			$25^{\circ} \mathrm{C}$	1.75	2.0	2.25	
			$75^{\circ} \mathrm{C}$	1.45		1.90	
			$125^{\circ} \mathrm{C}$	1.20		1.65	
$v_{\text {IL }}$	Input LOW Level Threshold	$V_{O H}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ Resp-Hyst Connected	$-55^{\circ} \mathrm{C}$	0.85		1.65	Volts
			$0^{\circ} \mathrm{C}$	0.75		1.40	
			$25^{\circ} \mathrm{C}$	0.75	0.95	1.25	
			$75^{\circ} \mathrm{C}$	0.60		1.10	
			$125^{\circ} \mathrm{C}$	0.50		0.95	
V_{10}	Open Loop Input Threshold		$25^{\circ} \mathrm{C}$	0.4	1.0	1.2	Volts
				0.4		1.4	
IIL	Input LOW Current	$\mathrm{V}_{\text {IN }}=-25 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	-3.6		-8.0	mA
						-8.3	
I_{iH}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=+25 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	3.6		8.0	mA
						8.3	
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V}$			2.5		mA
ICC	Power Supply Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ Max.			12	18	mA

Notes: 1. Typical Limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. The input threshold margin for the device is greater than the voltage computed as the $V_{T+}-V_{T-} V_{\text {alue. }}$ For the minimum value see the input threshold margin versus temperature graph.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, response control pin open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$)

Parameters	Definition	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\mathrm{pd}+}$	Delay from Input LOW to Output HIGH	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$		25	85	ns
${ }_{\text {tpd- }}$	Delay from Input HIGH to Output LOW	$\mathrm{R}_{\mathrm{L}}=390$,		25	50	ns
t_{r}	Output Rise Time (10% to 90%)	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$		120	175	ns
t_{f}	Output Fall Time (90\% to 10\%)	$\mathrm{R}_{\mathrm{L}}=390 \Omega$		15	40	ns

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

LIC-596

Note: Wiring capacitance should be minimized between Outputs, Hysterisis and Response Pins.
LIC-597

TYPICAL CHARACTERISTICS

$R_{F}=8 \mathrm{k}$ Input Threshold Voltage Adjustment

$R_{F}=0$ Input Threshold Voltage Adjustment

Input Threshold Voltage
Versus Temperature

Input Threshold Versus Power-Supply Voltage

SWITCHING TIME TEST CIRCUIT \& WAVEFORMS

LIC-599

Metallization and Pad Layout

ALPHA NUMERIC INDEX FUNCTIONAL INDEX
SELECTION GUIDES
INDUSTRY CROSS REFERENCE
DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS

MOS MEMORY AND MICROPROCESSOR INTERFACE

OPERATIONAL AMPLIFIERS

SPECIAL FUNCTIONS

7

VOLTAGE REGULATORS

PACKAGE OUTLINES
GLOSSARY
AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, 9 DISTRIBUTOR LOCATIONS
MOS Memory and Microprocessor Interface - Section V
Am0026/0026C 5 MHz Two-Phase MOS Clock Driver 5-1
Am0056/0056C 5 MHz Two-Phase MOS Clock Driver 5-7
Am8224Clock Generator and Driver5-13
Am8228System Controller and Bus Driver5-20
Am8238
System Controller and Bus Driver 5-20

Am0026/Am0026C

5 MHz Two-Phase MOS Clock Driver

Distinctive Characteristics

- 20 ns rise and fall times with 1000 pF load
- 20 V output voltage swing
- $\pm 1.5 \mathrm{amps}$ output current drive
- High speed 5 to 10 MHz depending on load
- 100% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am0026 is a dual high speed MOS clock driver and interface circuit. The device is particularly suitable for driving two phase MOS circuits and can provide high speed operation even when driving into high capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. The output pulse width of the device is determined by the input pulse width.
The Am0026 can operate with a variety of MOS circuits. A popular application is a two-phase clock timer for driving
long silicon gate shift registers such as the Am1402/3/4 series. A single clock driver is able to drive 10 k bits at 5 MHz . The device can also be used with standard dynamic MOS RAMS such as the 1103 to provide address and precharge drive for memories up to 8 k by 16 -bits.

The device is available in an 8-lead TO-5, one watt copper lead frame 8-pin mini-DIP, a one and one-half watt TO-8 package, and a 14-pin ceramic package.

SCHEMATIC DIAGRAM
(One Driver Shown)

LIC-601

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
TO-99	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MH0026CH
Mini-DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MH0026CN
TO-8	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MH0026CG
Ceramic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MMH0026CL
Dice	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	AM0026XC
T0.99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MH0026H
TO-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MH0026G
Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MMH0026L
Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM0026XM

CONNECTION DIAGRAMS

Top Views

Am0026/0026C

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}^{+}-\mathrm{V}^{-}$Differential Voltage	22 V
Input Current	100 mA
Input Voltage (VIN $-\mathrm{V}^{-}$)	5.5 V
Peak Output Current	1.5 A
Power Dissipation	See curves

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)
Am0026C Am0026
Parameter

Parameter	Description	Test Conditions (Note 1)	Min.	Typ.(Note 2)	Max.	Units
$\mathrm{VOH}^{\text {O }}$	Output HIGH Voltage (Logical " O ")	$\begin{aligned} & \mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-12.0 \mathrm{~V} \\ & V_{I N}=-11.6 \mathrm{~V} \end{aligned}$	4.0	4.3		Volts
		$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=0.4 \mathrm{~V}$	$\mathrm{V}^{+}-1.0$	$\mathrm{V}^{+}-0.7$		
V_{OL}	Output LOW Voltage (Logical " 1 ")	$\begin{aligned} & \mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-12.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=-9.5 \mathrm{~V} \end{aligned}$		-11.5	-11.0	Volts
		$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=2.5 \mathrm{~V}$		$\mathrm{V}^{-}+0.5$	$\mathrm{V}^{-}+1.0$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	2.5	1.5		Volts
$V_{\text {IL }}$	Input LOW Level	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$		0.6	0.4	Volts
$I_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$		-0.005	-10	$\mu \mathrm{A}$
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$		10	15	mA
${ }^{1} \mathrm{CCON}$	"ON" Supply Current	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}-\mathrm{V}^{-}=2.5 \mathrm{~V}$		30	40	mA
${ }^{1} \mathrm{CC}$ OFF	"'OFF' Supply Current	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}-\mathrm{V}^{-}=0.0 \mathrm{~V}$	COM ${ }^{\text {L }}$	10	100	$\mu \mathrm{A}$
			MIL	50	500	

Notes: 1. These specifications apply for $\mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the Am 0026 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the Am0026C.
2. All typical values for $T_{A}=25^{\circ} \mathrm{C}$.

Switching Characteristics (Notes 1 and 2 Above)

Parameter	Description	Test Conditions	Min.	Typ.	Max.	Units
${ }^{\text {tPHL }}$	Turn On Delay		5.0	7.5	12	ns
tPLH	Turn Off Delay		5.0	12	15	ns
t_{r}	Rise Time (Note 3)	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		12		ns
		$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		15	18	
		$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		20	35	
$\mathbf{t f}_{\text {f }}$	Fall Time (Note 3)	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		10		ns
		$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		12	16	
		$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		1.7	25	

Note: 3. Rise and fall times are given for MOS logic levels; i.e., rise time is transition from logic "0" to logic " 1 " which is voltage fall. See switching time waveforms.

TYPICAL PERFORMANCE CHARACTERISTICS

SWITCHING TIME WAVEFORMS

LIC-604

APPLICATION INFORMATION

POWER DISSIPATION

The total average power dissipation of the Am0026 is the sum of the DC power and AC transient power. This total must be less than the given package power rating.

$$
P_{D I S S}=P_{A C}+P_{D C} \leqslant P_{M A X} .
$$

With the device dissipating only 2 mW when the output is at a HIGH voltage (MOS logic " 0 "), the dominant factor in average DC power is the duty cycle or fraction of the time the output is at a LOW voltage level (MOS logic "1"). For the shift register driving where the duty cycle is less than 25%, $P_{D C}$ is usually negligible. For RAM address line driver applications $P_{\text {DC }}$ dominates since duty cycle can exceed 50%.
DC Power per driver:
DC power is given by,

$$
P_{D C}=\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) \times I_{\mathrm{S}}(\text { LOW }) \times \text { Duty Cycle }
$$

where I_{S} (LOW) is $I_{\text {SUPPLY }}(O N)$ at $\left(V^{+}-V^{-}\right)$

$$
\begin{aligned}
& \text { ISUPPLYION }) \text { is } 40 \mathrm{~mA} \times \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)}{20 \mathrm{~V}} \text { worst case } \\
& \text { or } 30 \mathrm{~mA} \times \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)}{20 \mathrm{~V}} \text { typically }
\end{aligned}
$$

AC transient power per driver:
$A C$ transient power is given by,

$$
P_{A C}=\left(V^{+}-V^{-}\right)^{2} \times C_{L} \times f \times 10^{-3} \text { in } m W
$$

where $f=$ frequency of operation in MHz and $\mathrm{C}_{\mathrm{L}}=$ load capacitance including all strays and wiring in pF .

PACKAGE SELECTION

Power ratings are based on a maximum junction rating of $175^{\circ} \mathrm{C}$. The following guidelines are suggested for package selection. Graphs shown in the Performance Curves illustrate derating for various operating temperatures.
TO-5 ("H") Package: Rated at 600 mW in still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and rated at 900 mW with clip-on heat sink (derate at $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$). This popular hermetic package is recommended for small systems. Low cost (about 10d) clip-on-heat sink increases driving power dissipation capability by 50%.
8-pin ("N") Molded Mini-DIP: Rated at 600 mW still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and rated at 1.0 watt soldered to PC board (derate at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic
insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)

$$
C_{L}(\max .)=\frac{10^{3}}{n} \frac{\left(P_{\text {max }} \text { Req }-10^{3} n\left(V^{+}-V^{-}\right)^{2} \text { Duty Cycle }\right)}{\operatorname{Req}\left(V^{+}-V^{-}\right)^{2} \times f}
$$

where n is the number of drivers used in the package.
$P_{\text {max }}$ is the package power rating in milliwatts for given package, heat sink, and maximum ambient temperature.
Req is the equivalent resistance $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) / I_{\mathrm{S}}($ LOW $)=500 \Omega$ (worst case over temperature or 600Ω (typically).
Duty cycle is the fraction of the time that the output signal is in the LOW state.
f is the input signal frequency in MHz .
$\mathrm{C}_{\mathrm{L} \text { (max.) }}$) is the maximum load capacitance per driver in picofarads which can be driven without exceeding device power limits.
When used as a non-overlapping two phase driver with each side operating at the same frequency and duty cycle, and with $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)-17 \mathrm{~V}$, the above equation simplifies to

$$
\mathrm{C}_{\mathrm{L}}=\frac{10^{3}}{\mathrm{f}}\left[\frac{\mathrm{P}_{\text {max. }}}{578}-\text { Duty Cycle }\right]
$$

Table I gives maximum drive capability for various system conditions using the above equation.

PULSE WIDTH CONTROL

The Am0026 is intended for applications in which the input pulse width sets the output pulse width; i.e., the output pulse width is logically controlled by the input pulse. The output pulse width is given by:

$$
(P W)_{\text {OUT }}=(P W)_{I N}+t_{f}=P W_{I N}+25 n s
$$

Two external input coupling capacitors are required to perform the level translation between TTL/DTL and MOS logic levels. Selection of the capacitor size is determined by the desired output pulse width. Minimum delay and optimum performance is attained when the voltage at the input of the Am0026 discharges to just above the devices threshold (about 1.5 V). If the input is allowed to discharge below the threshold, t_{r} and t_{f} will be degraded. The graph in the Performance Curves shows optimum values for C_{IN} versus desired output pulse width. The value for $\mathrm{C}_{\text {IN }}$ mav be roughly predicted by:

$$
\mathrm{C}_{\mathrm{IN}}=\left(2 \times 10^{-3}\right) \quad(\mathrm{PW})_{\mathrm{OUT}}
$$

For an output pulse width of 500 ns , the optimum value for C_{IN} is:

$$
C_{I N}=\left(2 \times 10^{-3}\right)\left(500 \times 10^{-9}\right)=1000 \mathrm{pF}
$$

RISE AND FALL TIME CONSIDERATIONS (Note 3)

The Am0026's peak output current is limited to 1.5 A . The peak current limitation restricts the maximum load capacitance which the device is capable of driving and is given by:

$$
\mathrm{I}=\mathrm{C}_{\mathrm{L}} \frac{\mathrm{dv}}{\mathrm{dt}} \leqslant 1.5 \mathrm{~A}
$$

The rise time, t_{r}, for various loads may be predicted by:

$$
\mathrm{t}_{\mathrm{r}}=(\Delta \mathrm{V}) \quad\left(250 \times 10^{-12}+\mathrm{C}_{\mathrm{L}}\right)
$$

Where: $\Delta \mathrm{V}=$ the change in voltage across C_{L}

$$
\begin{gathered}
\cong \mathrm{V}^{+}-\mathrm{V}^{-} \\
\mathrm{C}_{\mathrm{L}}=\text { The load capacitance } \\
\text { for } \mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{t}_{\mathrm{r}} \text { is: } \\
\mathrm{t}_{\mathrm{r}} \cong(20 \mathrm{~V})\left(250 \times 10^{-12}+1000 \times 10^{-12}\right) \\
=25 \mathrm{~ns}
\end{gathered}
$$

For small values of C_{L}, the equation above predicts optimistic values for t_{r}. The graph in the performance curves shows typical rise times for various load capacitances.
The output fall time (see Graph) may be predicted by:

$$
\mathrm{t}_{\mathrm{f}} \cong 2.2 \mathrm{R}\left(\mathrm{C}_{\mathrm{S}}+\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{~h}_{\mathrm{FE}}+1}\right)
$$

CLOCK OVERSHOOT

The output waveform of the Am0026 can overshoot. The overshoot is due to finite inductance of the clock lines. It occurs on the negative going edge when Q_{7} saturates, and on the positive edge when Q_{3} turns OFF as the output goes through $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{be}}$. The problem can be eliminated by placing a small series resistor in the output of the Am0026. The
critical valve for $R_{S}=2 \sqrt{L / C_{L}}$ where L is the self-inductance of the clock line. In practice, determination of a value for L is rather difficult. However, R_{S} is readily determined emperically, and values typically range between 10 and 51Ω. R_{S} does reduce rise and fall times as given by:

$$
\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}} \cong 2.2 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{L}}
$$

CLOCK LINE CROSS TALK

At the system level, voltage spikes from ϕ_{1} may be transmitted to ϕ_{2} (and vice-versa) during the transition of ϕ_{1} to MOS logic " 1 ". The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Transistors Q_{3} and Q_{4} on the ϕ_{2} side of the Am0026 are essentially "OFF" when ϕ_{2} is in the MOS logic " 0 " state since only micro-amperes are drawn from the device. When the spike is coupled to ϕ_{2}, the output has to drop at least $2 V_{B E}$ before Q_{3} and Q_{4} come on and pull the output back to V^{+}. A simple method for eliminating or minimizing this effect is to add bleed resistors between the Am0026 outputs and ground causing a current of a few milliamps to flow in O_{4}. When a spike is coupled to the clock line O_{4} is already "ON" with a finite h_{fe}. The spike is quickly clamped by O_{4}. Values for R depend on layout and the number of registers being driven and vary typically between 2 k and $10 \mathrm{k} \Omega$.

POWER SUPPLY DECOUPLING

Adequate power supply decoupling is necessary for satisfactory operation. Decoupling of V^{+}to V^{-}supply lines with at least $0.1 \mu \mathrm{~F}$ noninductive capacitors as close as possible to each Am0026 is strongly recommended. This decoupling is necessary because otherwise 1.5 ampere currents flow during logic transition in order to rapidly charge clock lines.

TABLE I - WORST CASE MAXIMUM DRIVE CAPABILITY FOR Am0026*

Pack	e Type	T0.8 with Heat Sink		TO-8 Free Air		Mini-DIP Soldered Down		TO. 5 and Mini-DIP Free Air		14-Pin DIP Soldered Down
Max. Operating Frequency	Ambient Duty Temp. Cycle	$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$						
100 kHz	5\%	30k	24 k	19k	15k	13k	10k	7.5k	5.1 k	11k
500 kHz	10\%	6.5 k	5.1 k	4.1 k	3.2k	2.5 k	1.9 k	1.4 k	1.1 k	2 k
1 MHz	20\%	2.9 k	2.2 k	1.8 k	1.4 k	1.1 k	840	600	420	860
2 MHz	25\%	1.4 k	1.1 k	850	650	540	400	280	190	390
5 MHz	25\%	620	470	380	290	220	160	110	75	165
10 MHz	25\%	280	220	170	130	110	79	55	37	90

TYPICAL APPLICATIONS

DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)

Am0056•Am0056C

5MHz Two-Phase MOS Clock Driver

Distinctive Characteristics

- 20 ns rise and fall times with 1000 pF load
- 20 V output voltage swing
- $\pm 1.5 \mathrm{amps}$ outnut current drive
- High speed 5 to 10 MHz depending on load
- 100% reliability assurance testing in compliance with MIL-STD-883
- Improved V_{OH} compared with Am0026

FUNCTIONAL DESCRIPTION

The Am0056 is a dual high speed MOS clock driver and interface circuit. The device is particularly suitable for driving two phase MOS circuits and can provide high speed operation even when driving into high capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. The output pulse width of the device is determined by the input pulse width.
The Am0056 can operate with a variety of MOS circuits. A popular application is a two-phase clock timer for driving long silicon gate shift registers such as the Am1402/3/4 series. A single clock driver is able to drive 10 k bits at 5 MHz . The device can also be used with standard dynamic MOS

RAMS such as the 1103 to provide address and precharge drive for memories up to 8 k by 16 -bits.

The device is available in a TO-99, one watt copper lead frame 8-pin mini-DIP, a one and one-half watt TO-8 package, and a ceramic DIP.

The $V_{B B}$ terminal is intended to be connected through a series resistor to a supply higher than V^{+}. This connection will enable the output to pull-up to $\mathrm{V}^{+}-0.1 \mathrm{~V}$. Under no conditions should the V_{BB} terminal be connected directly to a positive supply as the device will be damaged when the driver switches LOW.

SCHEMATIC DIAGRAM (One Driver Shown)

Am0056/Am0056C
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}^{+}-\mathrm{V}$ - Differential Voltage	22 V
Input Current	100 mA
Input Voltage (VIN-V-1	5.5 V
Peak Output Current	1.5 A
Power Dissipation	See curves
V_{BB} Voltage	$\mathrm{V}^{+}+5.0 \mathrm{~V}$
Current Into V_{BB}	Am0056C

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
v_{OH}	Output HIGH Voltage (Logical '0' Output Voltage)	$\begin{aligned} & V_{I N}-V^{-}=0.4 V \\ & V_{B B} \text { Open Circuit }\left(R_{B B}=\infty\right) \end{aligned}$		$\mathrm{v}^{+}-2.5$	$\mathrm{v}^{+}-1.4$		Volts
		$R_{B B}=1 \mathrm{k} \Omega ; V_{B B} V_{B} \geqslant \mathrm{~V}^{+}+1.0 \mathrm{~V}$		$\mathrm{V}^{+}-0.3$	$\mathrm{V}^{+}-0.1$		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Logical "1" Output Voltage)	$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=2.4 \mathrm{~V}$			$V^{-}+0.7$	$v-+1.0$	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{-+1.0 V}$		2.0	1.5		Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	$\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$			0.6	0.4	Volts
IIL	Input LOW Current	$V_{\text {IN }}-V^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$			-0.005	-10	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	Input HIGH Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}^{-}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$			10	15	mA
${ }^{1} \mathrm{CCON}$	'ON" Supply Current	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}-\mathrm{V}^{-}=2.4 \mathrm{~V}$			15	30	mA
		$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}-\mathrm{V}^{-}=0.0 \mathrm{~V}$	COM ${ }^{\prime} \mathrm{L}$		10	100	$\mu \mathrm{A}$
${ }^{\text {CCC }}$ OFF	"OFF' Supply Current		MIL		50	500	
I_{BB}	"ON" Supply Current	$\begin{aligned} & V^{+}-V^{-}=20 \mathrm{~V}, \mathrm{~V}_{I N}-V^{-}=2.4 \mathrm{~V} \\ & V_{B B}=V^{+}+3.0 \mathrm{~V}, R_{B B}=1 \mathrm{k} \Omega \end{aligned}$			22		mA

Notes: 1. These specifications apply for $\mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the Am 0056 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the Am0056C.
2. All typical values for $T_{A}=25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS (Notes 1 and 2 Above)

Parameters	Description	Test Conditions		Min.	Typ.	Max.	Units
${ }^{\text {tPHL }}$	Turn ON Delay			5.0	8.0	12	ns
tPLH	Turn OFF Delay			5.0	12	15	ns
${ }^{\text {tr }}$	Rise Time (Note 3)	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}$,	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{p} \mathrm{F}$		15	18	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		20	35	
${ }_{\text {t }}$	Fall Time (Note 3)	$v^{+}-v^{-}=17 \mathrm{~V}$,	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		12	16	ns
			$C_{L}=1000 \mathrm{pF}$		17	25	

Note: 3. Rise and fall times are given for MOS logic levels; i.e., rise time is transition from logic "0" to logic " 1 " which is voltage fall. See switching time waveforms.

TYPICAL PERFORMANCE CURVES

SWITCHING TIME WAVEFORMS

Am0056/Am0056C

APPLICATION INFORMATION

POWER DISSIPATION

The total average power dissipation of the Am0056 is the sum of the DC power and AC transient power. This total must be less than the given package power rating.

$$
P_{D I S S}=P_{A C}+P_{D C} \leqslant P_{M A X}
$$

With the device dissipating only 10 mW when the output is at a HIGH voltage (MOS logic " 0 "), the dominant factor in average DC power is the duty cycle or fraction of the time the output is at a LOW voltage level (MOS logic " 1 "). For the shift register driving where the duty cycle is less than 25%, $P_{D C}$ is usually negligible. For RAM address line driver applications $P_{D C}$ dominates since duty cycle can exceed 50%.

DC Power per Driver

DC power is given by,

$$
P_{D C}=\left(V^{+}-V^{-}\right) \times I_{S}(\text { Low }) \times \text { Duty Cycle }
$$

where I_{S} (LOW) is $I_{\text {SUPPLY }}(O N)$ at $\left(V^{+}-V^{-}\right)$

$$
\begin{aligned}
& \text { ISUPPLY(ON) is } 30 \mathrm{~mA} \times \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)}{20 \mathrm{~V}} \text { worst case } \\
& \text { or } 15 \mathrm{~mA} \times \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)}{20 \mathrm{~V}} \text { typically }
\end{aligned}
$$

AC Transient Power per Driver

$A C$ transient power is given by,

$$
P_{A C}=\left(V^{+}-V^{-}\right)^{2} \times C_{L} \times f \times 10^{-3} \text { in } m W
$$

where $f=$ frequency of operation in MHz and $\mathrm{C}_{\mathrm{L}}=$ load capacitance including all strays and wiring in pF .

PACKAGE SELECTION

Power ratings are based on a maximum junction rating of $175^{\circ} \mathrm{C}$. The following guidelines are suggested for package selection. Graphs shown in the Performance Curves illustrate derating for various operating temperatures.
TO-99 (" H ") Package: Rated at 600 mW in still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and rated at 900 mW with clip-on heat sink (derate at $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$). This popular hermetic package is recommended for small systems. Low cost (about 10d) clip-on-heat sink increases driving power dissipation capability by 50%.
8-pin ("N") Molded Mini-DIP: Rated at 600 mW still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and rated at 1.0 watt soldered to PC board (derate at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)

TO-8 ("G") Package: Rated at 1.5 watts still air (derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and 2.3 watts with clip on heat sink (Wakefield type 215-1.9 or equivalent - derate at $15 \mathrm{~mW} / \mathrm{C}$). Selected for its power handling capability and moderate cost, this hermetic package will drive very large systems at the lowest cost per bit.

MAXIMUM LOAD CONSIDERATIONS

The maximum capacitive load that the Am0056 can drive is determined by:

The $A C$ power consumed $=n V^{2} C_{L} \times 10^{-3} \mathrm{~mW}$
The DC power consumed

$$
=\frac{n V s^{2}}{R e q} p \times 10^{3}
$$

mW

The package power rating
for a given package, heatsink, and maximum ambient temperature $=P \max$
mW
Combining these expressions:

$$
\operatorname{Pmax}=\frac{n V s^{2} \rho \times 10^{3}}{R e q}+n V s^{2} C_{L} f \times 10^{-3}
$$

from which the maximum capacitive load:

$$
C_{L(\max)}=\frac{10^{3}}{n} \cdot \frac{\left(\operatorname{Pmax} R e q-n \mathrm{Rs}^{2} \rho \times 10^{3}\right)}{{V s^{2} f} \operatorname{Req}}
$$

Where $n=$ number of drivers employed in the package
$V_{s}=$ total supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$across device
$\rho=$ duty cycle $=$ time in output LOW state/ time in output LOW + time in output HIGH
$\begin{aligned} \text { Req }= & \left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) / \mathrm{I}_{\mathrm{Cc}} \mathrm{ON}=1000 \Omega \text { worst case } \\ & \text { or } 1300 \Omega \mathrm{TYP}\end{aligned}$
or 1300Ω TYP
$C_{L}=$ load capacitance per driver in pF
$\mathrm{f}=$ input signal frequency in MHz
When used as a non-overlapping, two-phase driver with each side operating at the same frequency and duty cycle and with $V_{S}=17 \mathrm{~V}$, the above equation reduces to:

$$
C_{L(\max)}=\frac{10^{3}}{f}\left(\frac{P \max }{578}-\rho\right)
$$

Table 1 gives maximum drive capability using above equation.

PULSE WIDTH CONTROL

The Am0056 is intended for applications in which the input pulse width sets the output pulse width; i.e., the output pulse width is logically controlled by the input pulse. The output pulse width is given by:

$$
(P W)_{\text {OUT }}=(P W)_{I N}+t_{f}=P W_{I N}+17 n s
$$

Two external input coupling capacitors are required to perform the level translation between TTL/DTL and MOS logic levels. Selection of the capacitor size is determined by the desired output pulse width. Minimum delay and optimum performance is attained when the voltage at the input of the Am0056 discharges to just above the devices threshold (about 1.5 V). If the input is allowed to discharge below the threshold, t_{r} and t_{f} will be degraded. The graph in the Performance Curves shows optimum values for C_{IN} versus desired output pulse width. The value for $C_{I N}$ may be roughly predicted by:

$$
\mathrm{C}_{\mathrm{N}}\left(3 \times 10^{-3}\right)(\mathrm{PW})_{\text {OUT }}
$$

For an output pulse width of 500 ns , the optimum value for $\mathrm{C}_{\text {IN }}$ is:

$$
C_{I N}=\left(3 \times 10^{-3}\right)\left(500 \times 10^{-9}\right)=1500 \mathrm{pF}
$$

RISE AND FALL TIME CONSIDERATIONS (Note 3)

The Am0056's peak output current is limited to 1.5 A . The peak current limitation restricts the maximum load capacitance which the device is capable of driving and is given by:

$$
\mathrm{I}=\mathrm{C}_{\mathrm{L}} \frac{\mathrm{dv}}{\mathrm{dt}} \leqslant 1.5 \mathrm{~A}
$$

The rise time, t_{r}, for various loads may be predicted by:

$$
t_{r}=(\Delta V) \quad\left(250 \times 10^{-12}+C_{L}\right)
$$

Where: $\Delta V=$ the change in voltage across C_{L}

$$
\begin{gathered}
\cong \mathrm{V}^{+}-\mathrm{V}^{-} \\
\mathrm{C}_{\mathrm{L}}=\text { The load capacitance } \\
\text { for } \mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{t}_{\mathrm{r}} \text { is: } \\
\mathrm{t}_{\mathrm{r}} \cong(20 \mathrm{~V})\left(250 \times 10^{-12}+1000 \times 10^{-12}\right) \\
=25 \mathrm{~ns}
\end{gathered}
$$

For small values of C_{L}, the equation above predicts optimistic values for t_{r}.

The output fall time may be predicted by:

$$
t_{f} \cong 2.2 R\left(C_{S}+\frac{C_{L}}{h_{F E}+1}\right)
$$

CLOCK OVERSHOOT

The output waveform of the Am0056 can overshoot. The overshoot is due to finite inductance of the clock lines. It occurs on the negative going edge when Q_{7} saturates, and on the positive edge when Q_{3} turns OFF as the output goes through $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{be}}$. The problem can be eliminated by placing a small series resistor in the output of the Am0056. The critical value for $R_{S}=2 \sqrt{L / C_{L}}$ where L is the self-inductance of the clock line. In practice, determination of a value for L is
rather difficult. However, R_{S} is readily determined emperically, and values typically range between 10 and 51Ω. R R_{S} does reduce rise and fall times as given by:

$$
\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \cong 2.2 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{L}}
$$

CLOCK LINE CROSS TALK

At the system level, voltage spikes from ϕ_{1} may be transmitted to ϕ_{2} (and vice-versa) during the transition of ϕ_{1} to MOS logic " 1 ". The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Transistors Q_{3} and Q_{4} on the ϕ_{2} side of the Am0056 are essentially "OFF" when ϕ_{2} is in the MOS logic " 0 " state since only micro-amperes are drawn from the device. When the spike is coupled to ϕ_{2}, the output will drop until O_{4} becomes active. A simple method for eliminating or minimizing this effect is to add bleed resistors between the Am0056 outputs and ground causing a current of a few milliamps to flow in Q_{4}. When a spike is coupled to the clock line O_{4} is already "ON" with a finite h_{fe}. The spike is quickly clamped by Q_{4}. Values for R depend on layout and the number of registers being driven and vary typically between 2 k and $10 \mathrm{k} \Omega$.

POWER SUPPLY DECOUPLING

Adequate power supply decoupling is necessary for satisfactory operation. Decoupling of V^{+}and V^{-}supply lines with at least $0.1 \mu \mathrm{~F}$ noninductive capacitors as close as possible to each Am0056 is strongly recommended. This decoupling is necessary because of the 1.5 ampere currents which flow during logic transition when charging clock lines.

TABLE I - WORST CASE MAXIMUM DRIVE CAPABILITY FOR Am0056*

Package Type			TO-8 with Heat Sink		TO-8 Free Air		Mini-DIP Soldered Down		TO-5 and Mini-DIP Free Air		14-Pin DIP Soldered Down
Max		$\mathrm{P}_{\text {Max }}{ }^{\text {mW }}$	1775	1400	1150	900	769	604	460	360	665
Operating Frequency	Duty Cycle	Ambient Temp.	$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$						
100 kHz		5\%	30k	24k	19k	15k	13 k	10k	7.5k	5.1 k	11k
500 kHz		10\%	6.0 k	4.6 k	3.8 k	2.9k	2.5 k	1.9 k	1.4 k	1.0 k	2k
1 MHz		20\%	2.9 k	2.2 k	1.8k	1.4 k	1.1 k	840	600	420	860
2 MHz		25\%	1.4k	1.1 k	870	650	540	400	270	190	390
5 MHz		25\%	560	440	350	260	220	160	110	75	165
10 MHz		25\%	280	220	170	130	110	80	55	37	90

*Note: Values in pF and assume both sides in use as non-overlapping 2 phase driver; each side operating at same frequency and duty cycle with $\left(v^{+}-V^{-}\right)=17 \mathrm{~V}$.

TYPICAL APPLICATIONS

DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)

TYPICAL APPLICATIONS (Cont.)

Logically Controlled AC Coupled Clock Driver

DC Coupled MOS Clock Driver

Metallization and Pad Layout

Am8224

Distinctive Characteristics

- Single chip clock generator/driver for 8080A compatible CPU
- Power-up reset for CPU
- Ready synchronizing flip-flop
- Status strobe signal
- Oscillator output for external system timing
- Am8224-4 version available for use with $1 \mu \mathrm{sec}$ instruction cycle of Am9080A-4
- Available for operation over both commercial and military temperature ranges
- Crystal controlled for stable system operation
- Reduces system package count
- Advanced Schottky processing
- 100\% reliability assurance testing in compliance with MIL-STD-883

FUNCTIONAL DESCRIPTION

The Am8224 is a single chip Clock Generator/Driver for the Am9080A and 8080A CPU. It contains a crystal-controlled oscillator, a "divide by nine" counter, two high-level drivers and several auxiliary logic functions, including a power-up reset, status strobe and synchronization of ready. Also provided are TTL compatible oscillator and ϕ_{2} outputs for external system timing. The Am8224 provides the designer with a significant reduction of packages used to generate clocks and timing for the Am9080A or 8080A for both commercial and military temperature range applications. A high speed version, the Am8224-4, is available for use with the high speed Am9080A-4.

LOGIC DIAGRAM

LIC-619

	ORDERING INFORMATION	
Package Type	Temperature Range	Order Number
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM8224DM
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	D8224
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8224PC
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8224XC
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8224-4DC*

*For use with Am9080A-4 with clock period between 250 ns and 320 ns .

PIN DEFINITION

XTAL 1	CONNECTIONS FOR CRYSTAL
XTAL 2	
TANK	USED WITH OVERTONE XTAL
OSC	OSCILLATOR OUTPUT
ϕ_{2} (TTL)	ϕ_{2} CLK (TTL LEVEL)
$V_{\text {CC }}$	+5.0 V
$V_{\text {DD }}$	+12 V
GND	0 O
$\overline{\text { RESIN }}$	RESET INPUT
RESET	RESET OUTPUT
RDYIN	READY INPUT
READY	READY OUTPUT
SYNC	SYNC INPUT
$\overline{\text { STSTB }}$	STATUS STB (ACTIVE LOW)
ϕ_{1}	Am9080A/8080A CLOCKS
ϕ_{2}	

Am8224

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	
V_{CC}	7.5 V
$\mathrm{VDD}^{\text {Maximum Output Current } \phi_{1} \text { and } \phi_{2}(\text { Note } 1)}$	15 V

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
The Following Conditions Apply Unless Otherwise Noted:

Notes: 1. Caution: ϕ_{1} and ϕ_{2} outputs do not have short circuit protection.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

CRYSTAL REQUIREMENTS

Tolerance: $.005 \%$ at $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
Resonance: Series (Fundamental)*
Load Capacitance: 20-35pF
Equivalent Resistance: 75-20 ohms
Power Dissipation (Min): 4mW
*With frequency in excess of 18 MHz use 3rd overtone XTALs and tank circuit.

TEST CIRCUIT

AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Am8224XM Am8224Xc Am824-4XC

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
${ }^{t_{\phi 1}}$	ϕ_{1} Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { to } 50 \mathrm{pF} \end{aligned}$	$\frac{2 \mathrm{t} C \mathrm{C}}{9}-23 \mathrm{~ns}$			$\frac{2 \mathrm{t} \mathrm{CY}}{9}-20 \mathrm{~ns}$			45			ns.
${ }^{t}{ }_{\phi}$	ϕ_{2} Pulse Width		$\frac{5 \mathrm{tc},}{9}-35 \mathrm{~ns}$			$\frac{5 \mathrm{t} \mathrm{CY}}{9}-35 \mathrm{~ns}$			110			
tD1	ϕ_{1} to ϕ_{2} Delay		0			0			0			
${ }^{\text {t }}$ 2	ϕ_{2} to ϕ_{1} Delay		$\frac{2 \mathrm{t} \mathrm{CY}}{9}-17 \mathrm{~ns}$			$\frac{2 t^{\text {c }} \text { C }}{9}-14 \mathrm{n}$.			35			
${ }^{\text {t }}$ 3	ϕ_{1} to ϕ_{2} Delay		$\frac{2 \mathrm{t}_{\mathrm{C} Y}}{9}$		$\frac{2 \mathrm{tcy}}{9}+22 \mathrm{~ns}$	$\frac{2 \mathrm{t} \mathrm{CY}}{9}$		$\frac{2 \mathrm{t} \mathrm{CY}}{9}+20 \mathrm{~ns}$	55		76	
t_{r}	ϕ_{1} and ϕ_{2} Rise Time				20			20			20	
t_{f}	ϕ_{1} and ϕ_{2} Fall Time				20			20			20	
${ }^{t} \mathrm{D} \phi 2$	ϕ_{2} to $\phi_{2}(T T L)$ Delay	$\begin{gathered} \phi_{2}(T T L), \\ C_{L}=30 p F \\ R_{1}=300 \Omega \\ R_{2}=600 \Omega \\ \hline \end{gathered}$	-5.0		15	-5.0		15	-5.0		15	ns
${ }^{\text {t }}$ DSS	ϕ_{2} to STSTB Delay	$\begin{aligned} & \overline{\mathrm{STSTB}}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{1}=2.0 \mathrm{k} \Omega \\ & \mathrm{R}_{2}=4.0 \mathrm{k} \Omega \end{aligned}$	$\frac{6 \mathrm{t} C \mathrm{Y}}{9}-33 \mathrm{~ns}$		$\frac{6 \mathrm{tc} \mathrm{C}}{9}$	$\frac{6 \mathrm{t}_{\text {c }} \mathrm{C}}{9}-30 \mathrm{~ns}$		$\frac{6 r^{+} \mathrm{CY}}{9}$	137		167	ns
tPW	$\overline{\text { STSTB Puise Width }}$		$\frac{{ }^{\text {c }} \mathrm{CY}}{9}-18 \mathrm{~ns}$			$\frac{{ }^{\text {c }} \mathrm{C} Y}{9}-15 \mathrm{~ns}$			18			
${ }^{\text {t DRS }}$	RDYIN Set-up Time to Status Strobe		50ns- $\frac{4{ }^{4} \mathrm{CY} \mathrm{C}}{9}$			50ns- $\frac{4 \mathrm{t} \mathrm{C} Y}{9}$			-61			
t DRH	RDYIN Hold Time After STSTB		$\frac{45 \mathrm{CY}}{9}$			$\frac{4 t}{4 t} \mathrm{CY}$			111			
${ }^{t} \mathrm{DR}$	RDYIN or RESIN to ϕ_{2} Delay	$\begin{gathered} \text { Ready and Reset } \\ C_{L}=10 \mathrm{pF} \\ R_{1}=2.0 \mathrm{k} \Omega \\ R_{2}=4.0 \mathrm{k} \Omega \\ \hline \end{gathered}$	$\frac{4 \mathrm{t} \mathrm{CY}}{9}-25 \mathrm{~ns}$			$\frac{4 \mathrm{t} \mathrm{CY}}{9}-25 \mathrm{~ns}$			86			ns
${ }^{\text {t CLK }}$	CLK Period			${ }^{\text {t }} \mathrm{C} Y$			$\frac{\mathrm{t}}{\mathrm{C} Y} \mathrm{Y}$			28		
${ }^{\text {f Max. }}$	Maximum Oscillating Frequency		27			28.12			36			MHz
$c_{\text {in }}$	Input Canacitance	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{D D}=12 \mathrm{~V} \\ V_{\text {BIAS }}=2.5 \mathrm{~V} \\ f=1.0 \mathrm{MHz} \end{gathered}$			8.0			8.0			8.0	pF

AC CHARACTERISTICS (For $\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns}$)
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C}=+5.0 \mathrm{~V} \pm 5 \% \quad V_{D D}=+12 \mathrm{~V} \pm 6 \%$

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
$\mathbf{t}_{\boldsymbol{\phi} 1}$	ϕ_{1} Pulse Width	ϕ_{1} and ϕ_{2} Loaded$C_{L}=20 \text { to } 50 \mathrm{pF}$	89			ns
$\mathbf{t}_{\phi 2}$	ϕ_{2} Pulse Width		236			ns
${ }^{\text {t } 11}$	Delay ϕ_{1} to ϕ_{2}		0			ns
${ }^{\text {t }}$ 2	Delay ϕ_{2} to ϕ_{1}		95			ns
${ }^{\text {t }}$ (3	Delay ϕ_{1} to ϕ_{2} Leading Edges		109		129	ns
t_{r}	Output Rise Time				20	ns
t_{f}	Output Fall Time				20	ns
tDSS	ϕ_{2} to STSTB Delay		296		326	ns
${ }^{\text {t }}$ ¢ $\phi 2$	ϕ_{2} to ϕ_{2} (TTL) Delay		-5.0		15	ns
tPW	Status Strobe Pulse Width		40			ns
tDRS	RDYIN Set-up Time to $\overline{\text { STSTB }}$	Ready and Reset Loaded$\begin{gathered} C_{L}=20 \text { to } 50 \mathrm{pF} \\ R_{1}=2.0 \mathrm{k} \Omega, R_{2}=4.0 \mathrm{k} \Omega \end{gathered}$	-167			ns
tDRH	RDYIN Hold Time After STSTB		217			ns
tDR	Ready or Reset to ϕ_{2} Delay		192			ns
FREQ	Oscillator Frequency				18.432	MHz

Notes: 1. All measurements referenced to 1.5 V unless specified otherwise.
2. Am8224-4 parameter limits are given for $\mathrm{t}_{\mathrm{C}} \mathrm{Y}=250 \mathrm{~ns}$ or an oscillating frequency of 36 MHz . Between 28.12 MHz and 36 MHz min. and max. limits

Oscillator

The oscillator carcuit derives its basic operating frequency from an external, series resonant, fundamental mode crystal. Two inputs are provided for the crystal connections (XTAL1, XTAL2).

The selection of the external crystal frequency depends mainly on the speed at which the CPU is to be run. Basically, the oscillator operates at 9 times the desired processor speed.

The formula to determine the crystal frequency is:

$$
f(X T A L)=\frac{1}{t_{C Y}} \text { times } 9
$$

When using crystals above 10 MHz a small amount of frequency "trimming" is necessary to produce the desired frequency. The addition of a selected capacitance ($20 \mathrm{pF}-30 \mathrm{pF}$) in series with the crystal will accomplish this function.

Another input to the oscillator is TANK. This input allows the use overtone mode crystals. This type of crystal generally has a much lower output at its rated frequency and has a tendency to oscillate at its fundamental.

To avoid the unwanted oscillation and increase the desired frequency output it is necessary to provide a parallel tuned resonant circuit of low impedance. The external LC network is connected to the TANK input and is AC coupled. See typical application with Am8228 and Am9080A in Figure 2.

The formula for the LC network is:

$$
F=\frac{1}{2 \pi \sqrt{L C}}
$$

The output of the oscillator is buffered and brought out on OSC (pin 12) so that other system timing signals can be derived from this stable, crystal-controlled source.

Clock Generator

The Clock Generator consists of a synchronous "divide by nine" counter and the associated decode gating to create the waveforms of the two clocks and auxiliary timing signals.

The waveforms generated by the decode gating follow a simple 2-5-2 digital pattern. See Figure 2. The clocks generated; ϕ_{1} and ϕ_{2}, can best be thought of as consisting of "units" based on the oscillator frequency. Assume that one "unit" equals the period of the oscillator frequency. By multiplying the number of "units" that are contained in a pulse width or delay, times the period of the oscillator frequency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two high level drivers for direct interface to the CPU. A TTL level phase 2 is also brought out ϕ_{2} (TTL) for external timing purposes. It is especially useful in DMA dependent activities. This signal is used to gate the requesting device onto the bus once the CPU issues the Hold Acknowledgement (HLDA).

Several other signals are also generated internally so that optimum timing of the auxiliary flip-flops and status strobe (STSTB) is achieved.

Figure 1. Clock Generator Waveforms.

$\overline{\text { STSTB }}$ (Status Strobe)

At the beginning of each machine cycle the CPU issues status information on its data bus. This information tells what type of action will take place during that machine cycle. By bringing in the SYNC signal from the CPU, and gating it with an internal timing signal ($\phi_{1 \mathrm{~A}}$), an active low strobe can be derived that occurs at the start of each machine cycle at the earliest possible moment that status data is stable-on the bus. The $\overline{\text { STSTB }}$ signal connects directly to the Am8228 System Controller.
The power-on Reset also generates $\overline{\text { STSTB }}$, but of course, for a longer period of time. This feature allows the Am8228 to be automatically reset without additional pins devoted for this function.

Power-On Reset and Ready Flip-Flops

A common function in microcomputer systems is the generation of an automatic system reset and start-up upon initial power-on. The Am8224 has a built-in feature to accomplish this feature.
An external RC network is connected to the $\overline{\operatorname{RESIN}}$ input. The slow transition of the power supply rise is sensed by an internal Schmitt Trigger. This circuit converts the slow transition into a clean, fast edge when its input level reaches a predetermined value. The output of the Schmitt Trigger is connected to a "D" type flip-flop that is clocked with $\phi_{2 D}$ (an internal timing signal). The flip-flop is synchronously reset and an active high level that complies with the microprocessor input spec is generated. For manual switch type system Reset circuits, an active low switch closing can be connected to the RESIN input in addition to the power-on RC network.
The READY input to the CPU has certain timing specifications such as "set-up and hold" thus, an external synchronizing flip-
flop is required. The Am8224 has this feature built-in. The RDYIN input presents the asynchronous "wait request" to the " D " type flip-flop. By clocking the flip-flop with $\phi_{2 D}$, a synchronized READY signal at the correct input level, can be connected directly to the CPU.

Figure 2. Typical Application with Am8224 and Am9080A.

APPLICATION PRECAUTIONS WHEN USING Am8224 UP TO 36 MHz

Usage with Third Harmonic Crystal or Am9080A-4

The use of the Am8224 with a third harmonic crystal requires a minor modification to the external circuitry associated with the Am8224. The changes are as follows:

- Series capacitor in conjunction with the xtal
- Adding a tuned circuit in the "tank" lead
- Tuning of circuit to proper frequency

It is necessary to maintain the crystal activity to a proper level if an xtal controlled circuit is to operate properly. A 20-30pfd capacitor placed in series will help achieve this level in third overtone crystal, while helping to suppress the fundamental mode. The Am8224 has an auxiliary port provided to allow for a tuned circuit. This tuned circuit eliminates the tendency of the circuit to oscillate at the crystal's fundamental. The tank or tuned circuit must have the following properties:

1. It must be parallel resonant at the crystal frequency (third order).
2. The off resonance impedance must be low enough to spoil the AC gain of the Am8224.
3. The circuit must be DC decoupled (or returned to V_{CC}) at a low impedance (substantially below 100Ω).

All frequency determining components must be in close proximity to the Am8224. Insert crystal and tune tank for best waveform at Pin 12 (OSC). If counter is available, adjust for match of crystal marking. The circuit in Figure 3 will accomplish the above result for the 36 MHz range.

Figure 3.
$\mathrm{C}_{1}=$ E.F. Johnson
275-0430-005
5-30pF Trimmer or Equiv.
$\mathrm{L}_{1}=$ J.W. Miller Inductor
9230-08

VCC Ground

Due to the nature of our device (fast switching, higher voltage) it is necessary to provide a bypass capacitor from VCC to ground in the immediate proximity of the Am8224. This insures proper operation of the device while reducing noise spiking on adjacent circuits.

Resin Bypass

The use of a high impedance capacitor for timing R-C, and/or timing components remotely located from the Am8224 device may cause a disturbance to occur during the linear transition region. The capacitor for this function should be of the ceramic type and a value of 1000 pF or greater.

This can be cured by placing a >1000 pfd ceramic capacitor from Resin (Pin 2) to Ground (Pin 8) in the immediate proximity of the device. This will allow the timing R-C to be placed at will.

APPLICATIONS

LIC-626

LIC-627

The Am8224 can be driven from an external source of frequency by connecting as shown and driven with approximately 500 mV over a wide frequency range.

The Am8224 can oscillate without a xtal by placing a small value capacitor ($10 \rightarrow 200 \mathrm{pF}$) in place of a crystal.

Metallization and Pad Layout

Am8228•Am8238
 System Controller and Bus Driver for 8080A Compatible Microprocessors

Distinctive Characteristics

- Multi-byte instruction interrupt acknowledge
- Selectable single level vectored interrupt (RST-7)
- 28-pin molded or hermetic DIP package
- Single chip system controller and data bus driver for Am9080/8080A systems
- Am8238-4 high speed version available for use with $1 \mu \mathrm{sec}$ instruction cycle of Am9080A-4
- Bi-directional three-state bus driver for CPU independent operation
- Advanced low-power Schottky processing
- 100\% reliability assurance testing in compliance with MIL-STD-883
- Available in military and commercial temperature range
- Am8238 has extended $\overline{\mathrm{IOW}} / \overline{\mathrm{MEMW}}$ pulse width

FUNCTIONAL DESCRIPTION

The Am8228 and Am8238 are single chip System Controller Data Bus drivers for the Am9080A Microcomputer System. They generate all control signals required to directly interface Am9080A/8080A compatible system circuits (memory and I / O) to the CPU.

Bi-directional bus drivers with three-state outputs are provided for the system data bus, facilitating CPU independent bus operations such as direct memory access. Interrupt processing is accommodated by means of a single vectored interrupt or by means of the standard 8080A multiple byte interrupt vector operation.

ORDERING INFORMATION

Package Type	Temperature Range	Am8228 Order Number	Am8238 Order Number
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8228PC	AM8238PC
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	D 8228	D8238
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM8228DM	AM8238DM
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM8228XC	AM8238XX
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		AM8238-4DC*
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		AM8238-4PC*

*For use with Am9080A-4 with minimum clock period of 250 ns .

LOGIC SYMBOL

CONNECTION DIAGRAM
Top View

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Volatge to Ground Potential (Pin 28 to Pin 14) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Input Voltage	-1.5 V to +7.0 V
DC Output Current, Into Outputs	50 mA
DC Input Current	-30 mA to +5.0 mA

ELECTRICAL CHARACTERISTICS The Following Conditions Apply Unless Otherwise Noted:
$\begin{array}{llll}\text { Am8228 } & \mathrm{M}, \mathrm{Am8238} \times \mathrm{M} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \mathrm{V}_{C C} \mathrm{MIN} .=4.50 \mathrm{~V}\end{array} \quad \mathrm{~V}_{\mathrm{CC}} \mathrm{MAX} .=5.50 \mathrm{~V}$
$A m 8228 \times C, A m 8238 \times C, A m 8238-4 \times C \quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad V_{C C M I N}=4.75 \mathrm{~V} \quad V_{C C M A} M=5.25 \mathrm{~V}$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Typ.

VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.			MIL	3.35	3.8		Volts
			$\mathrm{IOH}^{\prime}=-10 \mu \mathrm{~A}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	COM'L	3.6	3.8		
			$1{ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$	All other outputs		2.4			
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$.	$\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$				0.45	Volts
			IOL $=10 \mathrm{~mA}$	All other outputs				0.45	
V_{C}	Input Clamp Voltage (All Inputs)	$\mathrm{V}_{C C}=\mathrm{MiN} ., \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}$					-0.75	-1.0	Volts
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage (All Inputs)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				0.8		2.0	Volts
${ }^{\prime} \mathrm{F}$	Input Load Current	$V_{C C}=M A X ., V_{F}=0.45 \mathrm{~V}$		STSTB				-500	$\mu \mathrm{A}$
				D_{2} and D_{6}				-750	
				All other inputs				-250	
I_{R}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$		All other inputs				20	$\mu \mathrm{A}$
						100			
IINT	INTA Current	See INTA test circuit						5.0	mA
IO(OFF)	Offstate Output Current (All Control Outputs)	$V_{C C}=$ MAX., $V_{0}=5.25 \mathrm{~V}$						100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$						-100	
los	Short Circuit Current (All Outputs)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				-15		-90	mA
${ }^{\text {I C }}$	Power Supply Current	$\mathrm{V}_{C C}=$ MAX .					140	190	mA

AC CHARACTERISTICS

 OVER OPERATING TEMPERATURE RANGE TestConditions

Parame	Description		Conditions
tpw	Width of Status Strobe		
tSS	Set-up Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$		
${ }^{\text {tS }} \mathrm{H}$	Hold Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$		
${ }^{\text {t }}$ C	Delay from STSTB to MEMR		$\mathrm{CL}=100 \mathrm{pF}$
	Delay from $\overline{\text { STSTB }}$ to $\overline{\mathrm{INTA}}, \overline{\mathrm{ORR}}$		
	Delay from STSTB to all other Control Signals		
trR	Delay from DBIN to Control Outputs		
tre	Delay from DBIN to 8080A Bus	Enable	$C_{L}=25 p F$
		Disable	
trD	Delay from System Bus to 8080A Bus During Read		
${ }^{\text {twR }}$	Delay from $\overline{\mathrm{WR}}$ to Control Outputs		$C_{L}=100 \mathrm{pF}$
tWE	Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ After STSTB		
${ }^{\text {tw }}$	Deiay from 8080A Bus $D_{0}-D_{7}$ to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ During Write		
${ }^{\text {t }}$ E	Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$		
thD	HLDA to Read Status Outputs		
tDS	Set-up Time, System Bus Inputs to HLDA		
tD	Hold Time, System Bus Inputs to HLDA		

Am8228XM/ Am8228XC/
Am8238XM Am8238XC Am8238-4XC Typ. Typ. Typ.

Min. (Note 1) Max. Min. (Note 1) Max. Min. (Note 1) Max. Units

22			22			22			ns
12			8.0			8.0			ns
5.0			5.0			5.0			ns
20	30	60	20	30	60	20	30	40	
20	30	60	20	30	60	20	30	45	n
20	30	60	20	30	60	20	30	60	
	15	35		15	30		15	30	ns
	25	45		25	45		12	20	n
	25	45		25	45		25	35	ns
	15	30		15	30		15	20	ns
5.0	20	45	5.0	20	45	5.0	20	45	ns
	25	36		25	30		25	30	ns
5.0	20	40	5.0	20	40	5.0	20	40	ns
	25	35		25	30		20	30	ns
	15	28		15	25		15	25	ns
10			10			10			ns
20			20			20			ns

Notes: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
2. For conditions shown as MIN. or MAX., use the appropriate value specified under electrical characteristics for the applicable device type.

Am8228 • Am8238
CAPACITANCE (This parameter is periodically sampled and not 100% tested.)

Parameters	Description	Test Conditions	Min.	(Note 1)	Max.	Units
$\mathrm{CIN}^{\text {N }}$	Input Capacitance	$\begin{gathered} V_{B \backslash A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \end{gathered}$		8.0	12	pF
COUT	Output Capacitance Control Signals			7.0	15	pF
1/0	I/O Capacitance (D or DB)			8.0	15	pF

SWITCHING WAVEFORMS

Voltage measurements points: $D_{0}-D_{7}$ (when outputs) Logic " 0 " $=0.8 \mathrm{~V}$, Logic " $1 "=3.0 \mathrm{~V}$. All other signals measured at 1.5 V .
*Extended $\overline{\overline{1 O W}} / \overline{\mathrm{MEMW}}$ for Äm8238 only.

TEST CIRCUITS

LIC-633
Note 1. For $D_{0}-D_{7}: R_{1}=4.0 \mathrm{k} \Omega, R_{2}=\infty \Omega, C_{L}=25 \mathrm{pF}$.
For all other outputs: ${\underset{\sim}{R}}_{1}=500 \Omega, R_{2}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \quad$ INTA (for RST 7)

LIC-634

tRE	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{2}}$
Enable 8080 bus, HIGH-Z to logic " 0 "	Closed	Open
Enable 8080 bus, HIGH-Z to logic "1"	Open	Closed
Disable 8080 bus, logic " 0 " to HIGH-Z	Closed	Open
Disable 8080 bus, logic "1" to HIGH-Z	Open	Closed

> Test Circuit for DBIN to 8080A BUS

FUNCTIONAL DESCRIPTION

Bi-Directional Bus Driver: An eight-bit, bi-directional bus driver is provided to buffer the Am9080A/8080A data bus from Memory and I/O devices. The Am9080A data bus has an input requirement of ${ }^{*} 3.0$ volts (min) and can drive (sink) a current of at least 3.2 mA . The Am8228-Am8238 data bus driver matches these input requirements and provides enhanced noise immunity. The output drive is set for 10 mA typical for Memory and I/O devices.

The Bi-Directional Bus Drive is controlled by signals from the Gating Array for proper bus flow and the outputs can be forced to high impedance state (three-state) for DMA activities.

Status Latch: The Am8228 - Am8238 stores the status information in the Status Latch when the STSTB input goes "LOW". The output of the Status Latch is connected to the Gating Array and is part of the Control Signal generation.

Gating Array: The Gating Array generates control signals ($\overline{\text { MEM R }}, \overline{M E M ~ W}, \overline{\mathrm{I} / O R}, \overline{1 / O W}$ and $\overline{\mathrm{INTA}}$) by gating the outputs of the Status Latch Am9080A signals; i.e., DBIN, WE, and HLDA.

[^9]The "read" control signals (MEM R, I/O R and INTA) are derived by combinational logic from Status Bit and the DBIN input.
The "write" control signals (MEM W, I/O W) are similarly derived from the Status Bits and the WR input.

All Control Signals are "active LOW" and directly interface RAM, ROM and I/O components.

The INTA control signal is normally used to gate the "interrupt instruction port" onto the bus. It also provides a special feature in the Am8228 - Am8238. If only one basic vector is needed in the interrupt structure, the Am8228 - Am8238 can automatically insert a RST 7 instruction onto the bus. To use this option, connect the INTA output of the Am8228 Am8238 (pin 23) to the +12 volt supply through a series resistor (1 k ohms). The voltage is sensed internally by the Am8228 - Am8238 and logic is "set-up" so that when the DBIN input is active, a RST 7 instruction is gated on to the bus when an interrupt is acknowledged.
When using a multiple byte instruction as an Interrupt Instruction, the Am8228-Am8238 will generate an INTA pulse for each of the instruction bytes.
The BUSEN (Bus Enable) input of the Gating Array is an asynchronous input that forces the data bus output buffers and control signal buffers into their high-impedance state if it is a "HIGH". If BUSEN is a "LOW", normal operation of the data buffer and control signals take place. This facilitates CPU independent bus operations such as direct memory access.

DEFINITION OF FUNCTIONAL TERMS

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data bus to-from Am9080A/8080A
$\mathrm{DB}_{7}-\mathrm{DB}_{0}$	Data bus to-from user system
$\overline{\text { I/OR }}$	Input/output read strobe output active LOW
$\overline{\text { I/OW }}$	Input/output write strobe output active LOW
$\overline{\text { MEM } R}$	Memory read strobe, output, active LOW
$\overline{\text { MEM W }}$	Memory write strobe, output, active LOW
DBIN	Data bus input strobe, input active HIGH
INTA	Interrupt acknowledge strobe, input, active LOW
HLDA	Hold input from Am9080A/8080A active HIGH
$\overline{W R}$	Write input strobe, active HIGH
BUSEN	BUS ENABLE INPUT, input, 3 -state output control, active LOW for 3-state out
$\overline{\text { STSTB }}$	Status Strobe, input, strobes status on data bus into status latch, active LOW

LOADING RULES

Signal	Pin No.	n..put Load	Output Sink	Output Source
D_{0}	15	$250 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{1}	17	$250 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{2}	12	$750 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{3}	10	$250 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{4}	6	$250 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{5}	19	$250 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{6}	21	$750 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
D_{7}	8	$250 \mu \mathrm{~A}$	2 mA	$-10 \mu \mathrm{~A}$
DB_{0}	13	$250 \mu \mathrm{~A}$	10 mA	-1mA
DB_{1}	16	$250 \mu \mathrm{~A}$	10 mA	$-1 \mathrm{~mA}$
DB_{2}	11	$250 \mu \mathrm{~A}$	10 mA	-1mA
DB_{3}	9	$250 \mu \mathrm{~A}$	10 mA	$-1 \mathrm{~mA}$
DB_{4}	5	$250 \mu \mathrm{~A}$	10 mA	$-1 \mathrm{~mA}$
DB_{5}	18	$250 \mu \mathrm{~A}$	10 mA	$-1 \mathrm{~mA}$
DB_{6}	20	$250 \mu \mathrm{~A}$	10 mA	-1mA
DB_{7}	7	$250 \mu \mathrm{~A}$	10 mA	-1mA
$\overline{\text { STSTB }}$	1	$500 \mu \mathrm{~A}$	-	-
DBIN	4	$250 \mu \mathrm{~A}$	-	-
$\overline{\mathrm{WR}}$	3	$250 \mu \mathrm{~A}$	-	-
HLDA	2	$250 \mu \mathrm{~A}$	-	-
MEM ${ }^{\text {P }}$	24	-	10 mA	$-1 \mathrm{~mA}$
MEM W	26	-	10 mA	-1mA
$\overline{\text { IOR }}$	25	-	10 mA	-1mA
Iow	27	-	10 mA	-1mA
BUSEN	22	$250 \mu \mathrm{~A}$	-	-
INTA	23	-	10 mA	-1mA
GND	14			
V_{CC}	28			

STATUS WORD CHART

		TYPE OF MACHINE CYCLE											
$\begin{gathered} \text { Data Bus } \\ \text { Bit } \end{gathered}$	Status Information	Instruction Fetch	Memory Read	Memory Write	Stack Read	Stack Write	Input Read	Output Write	Interrupt Acknowledge	Halt Acknowledge	Interrupt Acknowledg While Halt		
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
D_{0}	INTA	0	0	0	0	0	0	0	1	0	1		
D_{1}	WO	1	1	0	1	0	1	0	1	1	1		
D_{2}	STACK	0	0	0	1	1	0	0	0	0	0		
D_{3}	HLTA	0	0	0	0	0	0	0	0	1	1		
D_{4}	OUT	0	0	0	0	0	0	1	0	0	0		
D_{5}	M_{1}	1	0	0	0	0	0	0	1	0	1		
D_{6}	INP	0	0	0	0	0	1	0	0	0	0		
D_{7}	MEM R	1	1	0	1	0	0	0	0	1	0		

ALPHA NUMERIC INDEX
FUNCTIONAL INDEX
SELECTION GUIDES
INDUSTRY CROSS REFERENCE
DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS

MOS MEMORY AND MICROPROCESSOR INTERFACE

5

OPERATIONAL AMPLIFIERS
6

SPECIAL FUNCTIONS

VOLTAGE REGULATORS

PACKAGE OUTLINES

GLOSSARY

AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS
Operational Amplifiers - Section VI
Am101/201/301 Operational Amplifier 6-1
Am101A/201A/301A Operational Amplifier 6-5
Am102/202/302
Am107/207/307Voltage Follower6-10
Frequency Compensated Operational Amplifier 6-14
Am108/208/308 Operational Amplifier 6-18
Am108A/208A/308A Operational Amplifier 6-18
Am110/210/310
Am112/212/312Voltage Follower6-22
Compensated, High-Performance Operational Amplifier 6-26
Am118/218/318 High-Speed Operational Amplifier 6-30
Am124/224/324 Quad Operational Amplifier 6-36
Am124A/224A/324A Quad Operational Amplifier 6-36
Am148/248/348
Am149/249/349
LF155/255/355LF155A/255A/355A
LF156/256/356
LF156A/256A/356A
LF157/257/357
LF157A/257A/357A
Am216/316
Am216A/316A
Am715/715CAm725/725CSSS725/725B/725E
Quad 741 Operational Amplifier 6-41
Quad 741 Operational Amplifier 6-41
Monolithic JFET Input Operational Amplifier 6-43
Monolithic JFET Input Operational Amplifier 6.43
Monolithic JFET Input Operational Amplifier 6-43
Compensated, High-Performance Operational Amplifier 6-51
Compensated, High-Performance Operational Amplifier 6-51
High-Speed Operational Amplifier 6-55
Instrumentation Operational Amplifier 6-59
High-Performance Operational Amplifier 6-64
Am741/741A/741C/741E Frequency-Compensated Operational Amplifier 6-70
SSS741/741C High-Performance Operational Amplifier 6-64
Am747/747A/747C/747E Dual Frequency-Compensated Operational Amplifier 6-77
SSS747/747C Dual 741 Operational Amplifier 6-64
Am748/748C Operational Amplifier 6-84
Am1501
Am1558/1458
LH2101A/LH2201A/LH2301A
Dual Operational Amplifier 6-90
Dual Frequency-Compensated Operational Amplifier 6-95
Dual Operational Amplifier 6-99

Am101/201/301

Description: The Am101/201/301 monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalent to the National LM101, and LM201. They are available in the hermetic TO-99 metal can, dual-inline packages, and flat packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883 Class B.
Electrically tested and optically inspected dice for the assemblers of hybrid products.
FUNCTIONAL DESCRIPTION
The Am101/201/301 are differential input, class AB output op-
erational amplifiers. The inputs and outputs are protected
against overload and the amplifiers may be frequency com-
pensated with an external 30 pF capacitor.

Am101/201/301

MAXIMUM RATINGS

Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
Am 101	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am 201	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am301	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 3)
Parameter

(see definitions)	Conditions	Min	Typ	Max	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$		2.0	7.5		1.0	5.0	mV
Input Offset Current			100	500		40	200	nA
Input Bias Current			250	1500		120	500	nA
Input Resistance		0.1	0.4		0.3	0.8		$\mathrm{M} \Omega$
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.8	3.0		1.8	3.0	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{L}>2 \mathrm{k} \Omega \end{aligned}$	20	150		50	160		V/mV

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	10				6.0		mV
Input Offset Current	$\begin{aligned} & T_{A}=T_{A(\text { min }} \\ & T_{A}=T_{A(\text { max })} \end{aligned}$		$\begin{gathered} 150 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 750 \\ & 400 \\ & \hline \end{aligned}$		$\begin{gathered} 100 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{Almin}]}$		0.32	2		0.28	1.5	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	15			25			V/mV
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	65	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{CV} \mathrm{S}_{\mathrm{S}}= \pm 20 \mathrm{~V}$					1.2	2.5	mA

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual-In-Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
3. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and $\mathrm{C}_{1}=30 \mathrm{pF}$.

GUARANTEED PERFORMANCE CURVES

(Curves apply over the Operating Temperature Ranges)

PERFORMANCE CURVES

FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation

$c_{1} \geq \frac{R_{1} C_{5}}{R_{1}+R_{2}}$

年 for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

> Compensating for Stray Input Capacitance/Large Feedback Resistance

Isolating Large Capacitive Loads

LIC-644
The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

Metallization and Pad Layout

49×56 Mils

Am101A/201A/301A

Operational Amplifiers

Description: The Am101A, Am201A and Am301A monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalent to the National LM101A, LM201A, and LM301A. They are available in the hermetic TO-99 metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100\% reliability ssurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice tor the assemblers of hybrid products.

FUNC The A output tected compe tion of versati Am301A cation	ONAL DESCRIPTION 101A/Am201A/Am301A are differential inpu operational amplifiers. The inputs and output gainst overload and the amplifiers may be sated with an external 30 pF capacitor. The low-input currents, low-offset voltage, low ty of compensation classify the Am101A amplifiers for low level and general purp	class AB are prorequency combinaise, and Am201A/ se appli-	FUNCTIONAL DIAGRAM
APPLICATIONS INPUT/OUTPUT OVERLOAD PROTECTION If an input is driven from a low-impedance source, a series resistor, \mathbf{R}_{1} should be used to limit the peak instantaneous output current of the source to less than 100 mA . A large capacitor ($>0.1^{\prime} \mu \mathrm{F}$) is equivalent to a low-source impedance and should be protected against by an isolation resistor. The amplifier output is protected against damage from shorts to ground or to the power supplies by device design. Protection of the output from voltages exceeding the specified operating power supplies can be obtained by isolating the output via limiting resistors R_{4} or R_{5}. The power supplies must never become reversed, even under transient conditions. Reverse voltages as low as 1 volt can cause damage through excessive current. This hazard can be reduced by using clamp diodes of high peak current rating connected to the device supply lines.			
Part Number	ORDERING INFORMATION Package Temperature Order Type Range Number	CONNECTION DIAGRAM Top Views	
Am301A	DIP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ LM301AD Metal Can $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ LM301AH Molded DIP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ LM301AN Dice $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ LD301A		
Am201A	$\begin{array}{cll}\text { DIP } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} & \text { LM201AD } \\ \text { Metal Can } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} & \text { LM201AH } \\ \text { Flat Pak } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} & \text { Lm201AF }\end{array}$		
Am101A	DIP $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LM101AD Metal Can $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LM101AH Flat Pak $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LM101AF Dice $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LD101A		

Am101A/201A/301A

MAXIMUM RATINGS

Supply Voltage Am 101A, 201A Am 301A	$\begin{aligned} & \pm 22 \mathrm{~V} \\ & \pm 18 \mathrm{~V} \\ & \hline \end{aligned}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range Am 101A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am 201A Am301A	$\begin{array}{r} -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{\wedge}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 3)

Parameter (see definitions)	Conditions	$\operatorname{Min}_{\text {Typ }}^{\text {Am 301A }}$		Max	$\begin{aligned} & \text { Am 101A } \\ & \text { Am 201A } \end{aligned}$			Units
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		2.0	7.5		0.7	2.0	mV
Input Offset Current			3	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2		1.5	4		$\mathrm{M} \Omega$
Supply Current	$\begin{aligned} & V_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		1.8	3.0		1.8	3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25	160		50	160		V/mV
Slew Rate	$\mathrm{V}_{5}= \pm 20 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$		0.5			0.5		$\mathrm{V} / \mu \mathrm{S}$

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			10			3.0	mV
Input Offset Current				70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{T}_{\text {A } \text { min })} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {A (max) }}$		6.0	30		3.0	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq T_{A} \leq T_{A(\text { max })} \\ & T_{A \text { (min) }} \leq T_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$		$\begin{aligned} & \hline 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current				300			100	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25			25			V/mV
Input Voltage Range	$\begin{aligned} & V_{\mathrm{s}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 15 \mathrm{~V} \end{aligned}$	+15, -12			± 15			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	70	90		80	96		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	70	96		80	96		dB
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$					1.2	2.5	mA

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual In -Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for opera tion at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage
3. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the 101 A and 201 A , and from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the 301 A .

FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation

$C_{1} \geq \frac{R_{1} C_{8}}{R_{1}+A_{2}}$
$C_{5}=30 \mathrm{pF}$
LIC-648
Figure 1

Two Pole Compensation

LIC-649
Figure 2

Feedforward Compensation

LIC-650
Figure 3

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

Compensating for
Stray Input Capacitance/Large
Feedback Resistance
Isolating Large Capacitive Loads

Figure 4
Figure 5

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

PERFORMANCE CURVES (Note 3)

GUARANTEED PERFORMANCE CURVES (Note 3)

(Curves apply over the Operating Temperature Ranges)

PERFORMANCE CURVES (Note 3)

Am102/202/302

Voltage Follower

Distinctive Characteristics

- The Am102/202/302 are functionally, electrically, and pin-for-pin equivalent to the National LM102/ 202/302
- Slew rate: $20 \mathrm{~V} / \mu \mathrm{s}$
- Small signal bandwidth: 20 MHz
- Input current: 100nA max. over temperature
- Supply voltage range: $\pm 5.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected dice for hybrid manufacturers
- Available in metal can, hermetic dual-in-line or hermetic flat packages

FUNCTIONAL DESCRIPTION

The Am102/202/302 is a monolithic Operational Amplifier internally connected as a unity gain non-inverting amplifier. This circuit is ideal for such applications as fast sample and hold circuits, active filters, or as a general purpose buffer. Super-beta transistors are used allowing the devices to operate at very low input currents without sacrificing speed. It may be used to replace conventional op amps such as 101 and the 741 in voltage follower applications; where lower offset voltage, drift, bias current, noise, plus higher speed and a wider operating voltage range is desirable.

FUNCTIONAL DIAGRAM

TYPICAL APPLICATION
Fast Integrator With
Low-Input Current

LIC-656

ORDERING INFORMATION				CONNECTION DIAGRAMS Top Views	
Part Number	Package Type	Temperature Range	Order Number	Dual-In-Line	Metal Can HAI ANCE B
Am302	TO-99 Hermetic DIP Dice	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LM302H } \\ & \text { LM302D } \\ & \text { LD302 } \end{aligned}$		
Am202	TO-99 Hermetic DIP	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LM202H } \\ & \text { LM202D } \end{aligned}$	ccic	
Am102	TO-99 Hermetic DIP Flat Pak Dice	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	LM102H LM102D LM102F LD102	Flat Package LIC-657	NOTES: (1) On Metal Can, pin 4 is connected to case. (2) On DIP, pin 6 is connected to bottom of package. (3) On Flat Package, pin 5 is connected to bottom of package.

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	
Am102	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am202	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am302	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 4)

Notes: 1. Derate Metal Can package $6.8 \mathrm{~mW} /^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the Dual -In-Line at $9.0 \mathrm{~mW} / /^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Packages at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
3. To prevent damage when the output is shorted, it is necessary to insert a resistor larger than $2.0 \mathrm{k} \Omega$ in series with the input. Continuous short circuit is allowed for case temperatures to $+125^{\circ} \mathrm{C}$ and ambient temperatures to $+70^{\circ} \mathrm{C}$ for the $102 / 202$. For 302 , the corresponding temperatures are $+70^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$ respectively.
4. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$.
5. Greater output voltage swing can be obtained by connecting a resistor from booster terminal to $V-$.

AC TEST CIRCUIT

TYPICAL PERFORMANCE CURVES

Voltage Gain

Output Resistance

Large Signal Frequency Response

Output Noise Voltage

Voltage Gain

TEMPERATURE $-{ }^{\circ} \mathrm{C}$

Voltage Gain

Large Signal Pulse Response

Positive Output Swing

Supply Current

Am107/207/307

Frequency Compensated Operational Amplifier

Description: The Am107/207/307 Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the National LM107/207/307. They are available in the hermetic metal can, flat package, and dual-in-line packages.

Distinctive Characteristics: 100\% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883.
Electrically tested and optically inspected dice for the assemblers of hybrid products.

MAXIMUM RATINGS

Supply Voltage Am107, Am 207, Am 307	$\pm 22 \mathrm{~V}$ $\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
Am107 Am207 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Am307 $-25^{\circ} \mathrm{Co}+85^{\circ} \mathrm{C}$ Storage Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec.) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 3)

ELECTRICAL CHARAC	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		(Nota			m10		
Parameter			Am307			m20		
(see definitions)	Conditions	Min	Typ	Max	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		2.0	7.5		0.7	2.0	mV
Input Offset Current			3	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2		1.5	4		M Ω
Supply Current	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		1.8	3.0		1.8	3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	160		50	160		V / mV
Slew Rate	$R_{L} \geq 2 \mathrm{k} \Omega$	0.2	0.5		0.2	0.5		$\mathrm{V} / \mu \mathrm{S}$

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage	$\mathrm{R}_{5} \leq 50 \mathrm{k} \Omega$		10			3.0	mV
Input Offset Current			70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{T}_{\mathrm{A} \text { (min) }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{A}(\text { max })}$	6.0	30		3.0	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq T_{A} \leq T_{A \text { max }} \\ & T_{A} \text { (min) } \leq T_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current			300			100	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25		25			V / mV
Input Voltage Range	$\begin{aligned} & V_{5}= \pm 20 \mathrm{~V} \\ & \mathrm{v}_{5}= \pm 15 \mathrm{~V} \end{aligned}$	+15, -12		± 15			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Common Mode Rejection Ratio	$\mathrm{R}_{5} \leq 50 \mathrm{k} \Omega$	$70 \quad 90$		80	96		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	$70 \quad 96$		80	96		dB
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \end{aligned}$	$\begin{array}{ll} \pm 12 & \pm 14 \\ \pm 10 & \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$				1.2	2.5	mA

[^10]

PERFORMANCE CURVES (Note 3)

ADDITIONAL APPLICATION INFORMATION

Stray Input Capacitance/Large

 Feedback ResistanceLIC-668
L.arge Capacitive Loads

LIC-669

Stability is guaranteed for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF , and capacitive loads smaller than 100 pF . If any of these conditions is not met, lead capacitors may be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads. Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card.

Metallization and Pad Layout

49×56 Mils

Am108/208/308•Am108A/208A/308A

Operational Amplifiers

Description: The 108, 208, 308, 108A, 208A and 308A monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalents to the National LM108, LM208, LM308, LM108A, LM208A and LM308A. They are available in the hermetic TO-99 metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883.
Electrically tested and optically inspected dice for the assemblers of hybrid products.

FUNCTIONAL DESCRIPTION

These differential input, precision amplifiers provide low input current and offset voltage competitive with FET and chopper stabilized amplifiers. They feature low power consumption over a supply voltage range of $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. The amplifiers may be frequency compensated with a single external capacitor and are pin-for-pin interchangeable with the 101A/ 201A/301A. The 108A, 208A, and 308A are high performance selections from the 108/208/308 amplifier family.

FUNCTIONAL DIAGRAM Frequency Compensation Circuits

$$
\begin{aligned}
& c_{1} \geq c_{0}\left(\frac{1}{1+\frac{R_{2}}{R_{1}}}\right) \\
& c_{0}=30 \mathrm{pF}
\end{aligned}
$$

LIC-670

MAXIMUM RATINGS

Supply Voltage Am108, 208, $108 \mathrm{~A}, 208 \mathrm{~A}$, Am308, 308A	$\pm 20 \mathrm{~V}$ $\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am108, 108A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am208, 208A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am308, 308A	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	

ELECTRICAL. CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 4)

 Parameter Am308 Am308A Am208 Am208A

(see definitions)	Conditions	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Units
Input Offset Voltage		$2.0 \quad 7.5$	0.30 .5	0.72 .0	0.30 .5	mV
Input Offset Current		$\begin{array}{ll}0.2 & 1.0\end{array}$	0.21 .0	0.05 0.2	$\begin{array}{ll}0.05 & 0.2\end{array}$	nA
Input Bias Current		1.57	1.57	$\begin{array}{ll}0.8 & 2.0\end{array}$	$0.8 \quad 2.0$	nA
Input Resistance		$10 \quad 40$	1040	$30 \quad 70$	$30 \quad 70$	M Ω
Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	0.30 .8	0.30 .8	0.30 .6	0.30 .6	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25300	80300	$50 \quad 300$	80300	V/mV
The Following Specifications Apply Over The Operating Temperature Ranges						
Input Offset Voltage		10	0.73	3.0	1.0	mV
Input Offset Current		1.5	1.5	0.4	0.4	nA
Average Temperature Coefficient of Input Offset Voltage		6.030	1.05	3.015	1.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current		210	$2.0 \quad 10$	$0.5 \quad 2.5$	$0.5 \quad 2.5$	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current		10	10	3.0	3.0	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	15	60	25	40	V / mV
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 13.5	± 13.5	± 13.5	V
Common Mode Rejection Ratio		80100	$96 \quad 110$	85100	96110	dB
Supply Voltage Rejection Ratio		8096	$96 \quad 110$	8096	$96 \quad 110$	dB

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the $\mathrm{Dual} \operatorname{In}-\mathrm{Line}$ package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
3. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
4. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the $108,208,108 \mathrm{~A}$ and 208 A and from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the 308 and 308A.

TYPICAL PERFORMANCE CURVES

Output Swing

Input Noise Voltage

Supply Current

Large Signal Frequency Response

Voltage Gain

Open Loop Frequency Response

Voltage Follower
Pulse Response

LIC-675

ADDITIONAL APPLICATION INFORMATION

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at $125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration.)

bortom view
Board layout for Input Guarding with TO-99 package.

Metallization and Pad Layout

56×56 Mils

Am110/210/310

Distinctive Characteristics

- The Am110/210/310 are functionally, electrically, and pin-for-pin equivalent to the National LM 110/210/310
- Slew rate: $30 \mathrm{~V} / \mu \mathrm{s}$
- Small signal bandwidth: 20 MHz
- Input current: 10 nA max. over temperature
- Supply voltage range: $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- 100% reliability assurance testing in compliance with MIL STD 883.
- Electrically tested and optically inspected dice for hybrid manufacturers.
- Available in metal can, hermetic dual-in-line or hermetic flat packages.

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range Am110	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am210	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am310	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 4)

Parameter

Am310
Am110

(see definitions)	Conditions	Min	Typ	Max	Min	Typ	Max	Units
Input Offset Voltage			2.5	7.5		1.5	4.0	mV
Input Bias Current			2.0	7.0		1.0	3.0	nA
Input Resistance		10^{4}	10^{6}		10^{4}	10^{6}		$\mathrm{M} \Omega$
Input Capacitance			1.5			1.5		pF
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	0.999	0.9999		0.999	0.9999		V / V
Output Resistance			0.75	2.5		0.75	2.5	Ω
Supply Current			3.9	5.5		3.9	5.5	mA
Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		30		20	30		$\mathrm{V} / \mu \mathrm{s}$

The Following Specifications Apply Over The Operating Temperature Ranges

Notes:1. Derate Metal Can package $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the Dual in -Line at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Packages at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
3. To prevent damage when the output is shorted, it is necessary to insert a resistor larger than $2 \mathrm{k} \Omega$ in series with the input. Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$ for the $110 / 210$. For 310 , the corresponding temperatures are $70^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ respectively.
4. Uniess otherwise specified, these specifications apply for supply voltages from ± 5 to $\pm 18 \mathrm{~V}$.
5. Greater output voltage swing can be obtained by connecting a resistor from booster terminal to $V-$.

AC TEST CIRCUIT

PERFORMANCE CURVES

Voltage Gain

Large Signal Frequency Response

Output Noise Voltage

Voltage Gain

Power Supply Rejection

Large Signal Pulse Response

Voltage Gain

Positive Output Swing

LIC-683
LIC-684

Distinctive Characteristics

- The Am112/212/312 are functionally, electrically, and pin-for-pin equivalents to the National LM112/212/312.
- Low input bias currents: 800pA
- Low input offset currents: 50pA
- Low power consumption: 3 mW
- Internal frequency compensation.
- Offset nulling provisions.
- 100\% reliability assurance testing in compliance with MIL-STD-883.
- Electrically tested and optically inspected die for assemblers of hybrid products.
- Mixing privileges for obtaining price discounts. Refer to price list.
- Available in metal can, hermetic dual-in-line or hermetic flat packages.

MAXIMUM RATINGS

Supply Voltage Am112, 212 Am312	$\pm 20 \mathrm{~V}$
Internal Power Dissipation (Note 1)	$\pm 18 \mathrm{~V}$
Differential Input Current (Note 2)	500 mW
Input Voltage (Note 3)	$\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration	$\pm 15 \mathrm{~V}$
Operating Temperature Range	Indefinite
Am112	
Am212	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am312	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 4)
Am112
Parameter
Am312
Am212

(see definitions)	Conditions	Min.	Max.	Min.	Max.	Units
Input Offset Voltage			7.5		2.0	mV
Input Offset Current			1		0.2	$n \mathrm{~A}$
Input Bias Current			7		2.0	nA
Input Resistance		10		30		$\mathrm{M} \Omega$
Supply Current			0.8		0.6	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \end{aligned}$	25		50		V / mV
The Following Specifications Apply Over The Operating Temperature Ranges						
Input Offset Voltage			10		3.0	mV
Average Temperature Coefficient of Input Offset Voltage			30		15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current			1.5		0.4	nA
Average Temperature Coefficient of Input Offset Current			10		2.5	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current			10		3.0	nA
Supply Current	$T_{\text {A }}=+125^{\circ} \mathrm{C}$				0.4	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \end{aligned}$	15		25		V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13		± 13		V
Input Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 13.5		± 13.5		V
Common Mode Rejection Ratio		80		85		dB
Supply Voltage Rejection Ratio		80		80		dB

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual- In -Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
3. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
4. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the Am112, Am212 and from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the Am312.

Input Noise Voltage

Voltage Gain

Maximum Drift Error

Power Supply Rejection

Output Swing

Voltage Follower Pulse Response

Closed Loop Output Impedance

Supply Current

Open Loop Frequency Response

ADDITIONAL APPLICATION INFORMATION

gUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 112 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble at $125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to tower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard Am741 and Am101A pin configuration.)

BOTTOM VIEW

Note: Board layout for input Guarding with TO-99 package.

62×72 Mils

High-Speed Operational Amplifier

Distinctive Characteristics

- The Am118/218/318 are functionally, electrically, and pin-for-pin equivalent to the National LM118/218/318
- Slew rate: $70 \mathrm{~V} / \mu \mathrm{s}$
- Small signal bandwidth: 15 MHz
- Internal frequency compensation
- Supply voltage range: $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- 100\% reliability assurance testing in compliance with MIL-STD-883.
- Electrically tested and optically inspected dice for hybrid manufacturers.
- Available in metal can, hermetic dual-in-line, hermetic flat package or plastic minidip.

MAXIMUM RATINGS

Supply Voltage	$\pm 20 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage (Note 2)	$\pm 5 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
Am118	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am218	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am318	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 4)

Parameter (see definitions)	Conditions		cified)	(4				Units
		Am318			Min.	$\begin{gathered} \text { Am218 } \\ \text { Typ. } \end{gathered}$	Max.	
Input Offset Voltage	$R_{S} \leq 5 k \Omega$		4	10		2	4	mV
Input Offset Current			30	200		6	50	$n \mathrm{~A}$
Input Bias Current			150	500		120	250	$n \mathrm{~A}$
Input Resistance		0.5	3		1.0	3		$\mathrm{M} \Omega$
Supply Current	$\mathrm{V}_{S}= \pm 20 \mathrm{~V}$		5	10		5	8	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O U T}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	200		50	200		V / mV
Slew Rate	$\begin{aligned} & A_{V}=+1, V_{S}= \pm 15 \mathrm{~V}(\text { Fig.1) } \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF} \end{aligned}$	50	70		50	70		$\mathrm{V} / \mu \mathrm{s}$
Small Signal Bandwidth	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		15			15		MHz
The Following Specifications Apply Over The Operating Temperature Ranges								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \Omega$			15			6	mV
Input Offset Current				300			100	$n \mathrm{~A}$
Input Bias Current				750			500	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	20			25			V / mV
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11.5			± 11.5			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \Omega$	70			80			dB
Supply Voltage Rejection Ratio	$R_{S} \leq 5 k \Omega$	65			70			dB
Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		\checkmark
Supply Current	$V_{S}= \pm 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$						7	mA

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the Dual- n -Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. The inputs are shunted with diodes for overvoltage protection. To limit the current in the protection diodes, resistances of $2 \mathrm{k} \Omega$ or greater should be inserted in series with the input leads for differential input voltages greater than $\pm 5 \mathrm{~V}$.
3. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
4. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

PERFORMANCE CURVES

Input Current

Closed Loop

Input Current-Am318

Voltage Follower

PERFORMANCE CURVES

The high gain and large bandwidth of the Am118 make it mandatory to observe the following precautions in using the device, as is the case with any high-frequency amplifier. Circuit layout should be arranged to keep all lead lengths as short as possible and the output separated from the inputs. The values of the feedback and source impedances should be kept small to reduce the effect of stray capacitance at the inputs. The power supplies must be bypassed to ground at the supply leads of the amplifier with low inductance capacitors. Capacitive loading must be kept to minimum, or the amplifier must be isolated as shown in the applications.

ADDITIONAL APPLICATIONS

High Speed Summing Amplifier with Low Input Bias Currents

Figure 10
Figure 11
LIC-706
LIC-707

Am124/224/324
 Am124A/224A/324A

Quad Op Amps

Distinctive Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated
- Internally frequency compensated for unity gain
- Large dc voltage gain - 100 dB
- Wide bandwidth (unity gain) -1 MHz (temperature compensated)
- Wide power supply range:

Single supply -3 V to 30 V
Dual supplies $- \pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

- Very low supply current drain $(800 \mu \mathrm{~A})$ - essentially independent of supply voltage ($1 \mathrm{~mW} / \mathrm{op}$ amp at +5 V)
- Low input biasing current $-45 n A$ (temperature compensated)
- Low input offset voltage -- 2 mV and offset current - 5nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing -0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

FUNCTIONAL DESCRIPTION

The Am124 series consists of four independent, high gain, internally frequency compensated operational amplifiers designed primarily to operate from a single power supply over a wide range of voltages. These devices can also operate from split power supplies and the low power supply current drain is independent of the magnitude of the power supply voltage.
Functional applications consist of all the conventional op amp circuits which can now be more easily implemented in single power supply systems along with transducer amplifiers and dc gain blocks.

CONNECTION DIAGRAM
 Top View

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
Am324	Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM324D
	Molded DIP		
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM324N	
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD324		
Am224	Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LM224D
	Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM124D
Am124	Flat Pack	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM124F
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM124
	Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM324AD
Am324A	Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM324AN
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM324A
Am224A	Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LM224AD
	Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM124AD
Am124A	Flat Pack	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM124AF
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD124A

SCHEMATIC DIAGRAM (Each Amplifier)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}\right.$, Note 4)
Am124A Am224A Am324A Am124/Am224 Am324
Parameter Conditions Min. Typ. Max. Units

Notes: 1. For operating at high temperatures, the Am324 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The Am224 and Am124 can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The dissipation is the total of all four amplifiers - use external resistors, where possible to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
2. Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA independent of the magnitude of V^{+}. At values of supply voltage in excess of +15 V , continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V ,
4. These specifications apply for $V^{+}=+5 V_{D C}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$, unless otherwise stated. With the Am224, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$ and the Am324 temperature specifications are limited to $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$.
5. $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$).
6. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
7. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can 90 to +32 V without damage.
8. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitive coupling increases at higher frequencies.

Am124/224/324•Am124A/224A/324A
MAXIMUM RATINGS (Above which the useful life may be impaired)

Supply Voltage, V^{+}	32 V or $\pm 16 \mathrm{~V}$
Differential Input Voltage	32 V
Input Voltage	-0.3 V to +32 V
Power Dissipation (Note 1)	570 mW
Molded DIP	900 mW
Cavity DIP	800 mW
Flat Pak (Am124F)	Continuous
Output Short Circuit to GND (Note 2)	
(One Amplifier) $\mathrm{V}^{+} \leqslant 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50 mA
Input Current $\left(\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}\right.$ oL) (Note 3)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am324/Am324A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am224/Am224A	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Am124/Am124A	$300^{\circ} \mathrm{C}$

TYPICAL PERFORMANCE CURVES

Supply Current

TYPICAL PERFORMANCE CURVES (Cont.)

Output Characteristics
Current Sinking

Current Limiting

58×63 MILS

APPLICATION INFORMATION

The Am 124 series are op amps primarily operating from a single power supply voltage and have true-differential inputs remaining in the linear mode with an input common-mode voltage of 0 V . These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. The bias network of the amplifier establishes a drain current independent of the magnitude of the power supply voltage over the range of from 3 V to 30 V .

The pin configuration is designed to simplify PC board layouts. Since the amplifier outputs are placed at the corners of the package (pins 1, 7, 8, and 14) and are adjacent to the inverting inputs.

Extra care should be taken to insure that the power for the circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket. This prevents a possible fusing of the internal conductors and becoming a destroyed unit which could occur from the unlimited current surge through the resulting forward diode within the IC.

The use of input differential voltage protection diodes is not needed since large differential voltages can be readily applied resulting in no large input currents. The differential input voltage may be larger than V^{+}without damaging the device. Protection, such as an input clamp diode with a resistor to the IC input terminal, should be provided to prevent the input voltages from going negative more than -0.3 V (at $25^{\circ} \mathrm{C}$).

The amplifiers contain a class A output stage for small signal levels which converts to class B in a large signal mode, to reduce the power supply current drain. Since this allows the amplifiers to both source and sink large output currents, both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to rise approximately 1 diode drop above
ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For AC coupled applications crossover distortion can be minimized by utilizing a resistor from the output of the amplifier to ground. However, in DC applications, where the load is directly coupled, there is no crossover distortion.
To maintain resistance to destruction, output short circuits either to ground or to the positive power supply should be restricted to short time durations. The possibility of destruction exists, not as a result of the short circuit current metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short circuits on more than one amplifier at a time increases the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see section on typical performance characteristics) than a standard IC op amp.
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accomodated using the worst case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The series, as presented in the section on typical applications, emphasize operations on only a single power supply voltage. Yet, if complementary power supplies are available, all of the standard op amp circuits can be implemented. A unique feature in introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}^{+} / 2$) is allowing operation above and below this value in single power supply systems. In most cases, input biasing is not required and input voltages which range to ground can be easily accomodated.

Am148•Am149

Distinctive Characteristics

- 741 op amp operating characteristics
- Low supply current drain -0.6 mA /amplifier
- Class $A B$ output state - no crossover distortion
- Pin compatible with the Am124
- Low input offset voltage -1.0 mV
- Low input offset current - 4.0nA
- Low input bias current -30 nA
- Gain bandwidth product

Am 148 (unity gain) -1.0 MHz
Am $149\left(\mathrm{~A}_{\mathrm{V}} \geqslant 5\right)-4.0 \mathrm{MHz}$
Am $149\left(A_{V} \geqslant 5\right)-4.0 \mathrm{MHz}$

- High degree of isolation between amplifiers - 120dB
- Overload protection for inputs and outputs

FUNCTIONAL DESCRIPTION

The Am148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low-power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers
has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The Am149 series has the same features as the Am148 plus a gain bandwidth product of 4.0 MHz at a gain of 5.0 or greater.

The Am148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.

Am148•Am149

ABSOLUTE MAXIMUM RATINGS

	Am148/Am149	Am248/Am249	Am348/Am349
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 36 \mathrm{~V}$
Input Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Output Short Circuit Duration (Note 1)	Continuous	Continuous	Continuous

Power Dissipation (P_{d} at $25^{\circ} \mathrm{C}$) and Thermal
Resistance ($\theta_{\mathrm{j}} \mathrm{A}$), (Note 2)

Molded DIP (N)	$-\mathrm{P}_{\mathrm{d}}$	570 mW	500 mW
	$-\theta_{\mathrm{jA}}$		$150^{\circ} \mathrm{C} / \mathrm{W}$
Cavity DIP (D) (J) $-\mathrm{P}_{\mathrm{d}}$	900 mW	900 mW	$150^{\circ} \mathrm{C} / \mathrm{W}$
$-\theta_{\mathrm{jA}}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	900 mW
Maximum Junction Temperature (Tjmax.)	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leqslant \mathrm{TA}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

See Am741 for Typical Performance Characteristics.

ELECTRICAL CHARACTERISTICS (Note 3)

Am 148/Am149 Am248/Am249 Am348/Am349

Parameters	Conditions		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			4.0	25		4.0	50		4.0	50	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			30	100		30	200		30	200	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.5		0.8	2.5		0.8	2.5		$\mathrm{M} \Omega$
Supply Current All Amplifiers	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$			2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega \end{aligned}$		50	160		25	160		25	160		V / mV
Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}$ (Input Referred)			-120			-120			-120		dB
Small Signal Bandwidth	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Am148 Series		1.0			1.0			1.0		MHz
		Am149 Series		4.0			4.0			4.0		
Phase Margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Am148 Series ($A V=1$)		60			60			60		degrees
		Am149 Series $(A V=5)$		60			60			60		
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Am148 Series $\left(A_{V}=1\right)$		0.5			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
		Am149 Series $\left(A_{V}=5\right)$		2.0			2.0			2.0		
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			25			25			25		mA
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$				6.0			7.5			7.5	mV
Input Offset Current					75			125			100	$n \mathrm{~A}$
Input Bias Current					325			500			400	$n \mathrm{~A}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega \end{aligned}$		25			15			15			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		± 12	± 13		V
		$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		± 10	± 12		
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		± 12			± 12			± 12			V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		70	90		70	90		70	90		dB
Supply Voltage Rejection	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		77	96		77	96		77	96		dB

Notes: 1. Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
2. The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j m a x .}, \theta_{j A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j m a x} .-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{d \text { max. }}$, whichever is less. Derate Dual in-Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
3. These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leqslant T_{A} \leqslant T_{H}$) unless otherwise noted.
4. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.

LF155/LF156/LF157

Monolithic JFET Input Operational Amplifiers

DISTINCTIVE CHARACTERISTICS

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance - very low $1 / \mathrm{f}$ corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads ($10,000 \mathrm{pF}$) without stability problems
- Internal compensation and large differential input voltage capability

COMMON FEATURES (LF155A, LF156A, LF157A)	
Low input bias current 30 pA Low input offset current 3.0 pA High input impedance 1012Ω Low input offset voltage 1.0 mV Low input offset voltage temperature drift $3.0 \mu \mathrm{~V} / \mathrm{C}$ Low input noise current $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ High common-mode rejection ratio 100 dB Large dc voltage gain 106 dB	

UNCOMMON FEATURES				
	LF155A	LF156A	LF157A $\left(A_{V}=5\right)$	Units
Extremely fast settling time to 0.01\%	4.0	1.5	1.5	$\mu \mathrm{s}$
Fast slew rate	5.0	12	50	$\mathrm{V} / \mu \mathrm{s}$
Wide gain bandwidth	2.5	5.0	20	MHz
Low input noise voltage	20	12	12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

CONNECTION DIAGRAMS
 Top Views

Dual-In-Line

Notes: 1. On Dual-In-Line Pin 1 is marked for orientation.
2. On Metal Can Pin 4 is connected to case.

GENERAL DESCRIPTION

These are the first monolithic JFET input operational amplfiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors. These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.
The LF155, LF156, LF157 series are direct replacements for National LF155, LF156, LF157 series.

APPLICATIONS

- Precision high speed integrators
- Fast D/A and A / D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

ORDERING INFORMATION

Part Number	Package Type	Temperature Range	Order Number
LF355	Metal Can	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF355H
	Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF355N
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD355
LF255	Metal Can	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LF255H
LF155	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LF155H
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD155
LF355A	Metal Can	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF355AH
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD355A
LF155A	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LF155AH
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD155A
LF356	Metal Can	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF356H
	Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF356N
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD356
LF256	Metal Can	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LF256H
LF156	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LF156H
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD156
LF356A	Metal Can	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF356AH
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD356A
LF156A	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LF156AH
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD156A
LF357	Metal Can	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF357H
	Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF357N
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD357
LF257	Metal Can	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LF257H
LF157	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LF157H
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD157
LF357A	Metal Can	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LF357AH
	Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LD357A
LF157A	Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LF157AH
	Dice	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LD157A

ABSOLUTE MAXIMUM RATINGS

LF355A/6A/7A
LF155A/6A/7A
LF155/6/7
LF255/6/7
LF355/6/7

Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) TO-99 (H Package)	670 mW	670 mW	570 mW	500 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TJ(Max.)	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 16 \mathrm{~V}$
Output Short Circuit Duration	Continous	Continuous	Continuous	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Note 3) DC CHARACTERISTICS

-				5A/6			5A/6		
Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
		$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	2.0		1.0	2.0	mV
VOS	Input Offset Voitage	Over Temperature			2.5			2.3	mV
$\Delta V_{O S} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		3.0	5.0		3.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\triangle T C / \Delta V_{O S}$	Change in Average TC with $\mathrm{V}_{\text {OS }}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5		$\mu V{ }^{\circ} \mathrm{C}$ per mV
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (Note 3,5)		3.0	10		3.0	10	pA
IOS	Input Offset Current	$T_{J} \leqslant T_{H I G H}$			10			1.0	nA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (Notes 3,5)		30	50		30	50	pA
IB	Input Bias Current	$\mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\mathrm{HIGH}}$			25			5.0	nA
$\mathrm{R}_{1} \mathrm{~N}$	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}		Ω
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	200		50	200		V / mV
${ }^{A} \mathrm{VOL}$	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ Over Temperature	25			25			V / mV
V_{0}	ing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		Volts
O	,	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		Volts
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		± 11	$\begin{gathered} +15.1 \\ -12 \\ \hline \end{gathered}$		Volts
CMRR	Common-Mode Rejection Ratio		85	100		85	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		dB

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

AC CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)
LF155A/355A LF156A/356A LF157A/357A

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
SR	Slew Rate	LF155A/6A: AV = 1	3.0	5.0		10	12					$\mathrm{V} / \mathrm{\mu s}$
		LF157A: $A_{V}=5$							40	50		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product			2.5		4.0	4.5		15	20		MHz
t_{s}	Settling Time to 0.01\%	(Note 7)		4.0			1.5			1.5		$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \end{aligned}$		25			15			15		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$		20			12			12		
i_{n}	Equivalent Input Noise Current	$\mathrm{f}=100 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$		0.01			0.01			0.01		
CIN	Input Capacitance			3.0			3.0			3.0		pF

LF155/LF156/LF157

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

 DC CHARACTERISTICS (Note 3)LF155/6/7
LF255/6/7
LF355/6/7

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Units
$\mathrm{v}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		3.0	5.0		3.0	5.0		3.0	10	mV
					7.0			6.5			13	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offsct Voltage	$\mathrm{R}_{S}=50 \Omega$		5.0			5.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\triangle T C / \Delta V_{O S}$	Change in Average TC with $V_{\text {OS }}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5			0.5		$\mu \vee{ }^{\circ} \mathrm{C}$ per mV
${ }^{\prime}$ OS	Input Offset Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (Notes 3, 5)		3.0	20		3.0	20		3.0	50	pA
		$\mathrm{T}_{\mathrm{J}} \leqslant \mathrm{T}_{\text {HIGH }}$			20			1.0			2.0	$n \mathrm{~A}$
I_{B}	Input Bias Current	$\mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (Notes 3,5)		30	100		30	100		30	200	pA
		$\mathrm{T}_{\mathrm{J}} \leqslant \mathrm{T}_{\text {HIGH }}$			50			5.0			8.0	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}			10^{12}		Ω
$\mathrm{AV}_{\mathrm{OL}}$	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	200		50	200		25	200		V / mV
		$V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ Over Temperature	25			25			15			
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		± 12	± 13		Volts
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		± 10	± 12		
V_{CM}	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$			$\begin{gathered} +15.1 \\ -12 \end{gathered}$		± 11	$\begin{gathered} \hline+15.1 \\ -12 \\ \hline \end{gathered}$		Volts
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		80	100		dB

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)													
	LF155A/355A LF155/255		LF355		LF156A LF156/256		LF356A/356		$\begin{aligned} & \text { LF157A } \\ & \text { LF157/257 } \end{aligned}$		LF357A/357		
Parameters	Typ.	Max.	Units										
Supply Current	2.0	4.0	2.0	4.0	5.0	7.0	5.0	10	5.0	7.0	5.0	10	mA

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$

Parameters	Description	Test Conditions	$\begin{gathered} \text { LF 155/255/ } \\ \text { LF355 } \\ \text { Typ. } \end{gathered}$	LF156/256 Min.	$\begin{gathered} \text { LF 156/256/ } \\ \text { LF356 } \\ \text { Typ. } \\ \hline \end{gathered}$	$\begin{gathered} \text { LF } 157 / 257 \\ \text { Min. } \end{gathered}$	LF157/257 LF357 Typ.	Units
SR	Slew Rate	$\begin{aligned} & \text { LF155/6: } A V=1, \\ & \text { LF157: } A V=5 \end{aligned}$	5.0	7.5	12			$\mathrm{V} / \mathrm{\mu s}$
						30	50	$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product		2.5		5.0		20	MHz
$\mathrm{t}_{\text {s }}$	Settling Time fo 0.01\%	(Note 7)	4.0		1.5		1.5	$\mu \mathrm{s}$
en_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega \\ & \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$	25		15		15	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$	20		12		12	
i_{n}	Equivalent Input Noise Current	$f=100 \mathrm{~Hz}$	0.01		0.01		0.01	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$	0.01		0.01		0.01	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.0		3.0		3.0	pF

Notes: 1. The TO-99 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case; for the DIP package, the device must be derated based on thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
2. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
3. These specifications apply for $\pm 15 \mathrm{~V} \leqslant V_{S} \leqslant \pm 20 \mathrm{~V},-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{HIGH}}=+125^{\circ} \mathrm{C}$ unless otherwise stated for the LF155A/6A/7A and the LF155/6/7. For the LF $255 / 6 / 7$, these specifications apply for $\pm 15 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V},-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{HIGH}}=85^{\circ} \mathrm{C}$ unless otherwise stated. For the LF355A/6A/7A, these specifications apply for $\pm 15 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 20 \mathrm{~V}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{HIGH}}=+70^{\circ} \mathrm{C}$, and for the LF $355 / 6 / 7$ these specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$. V_{OS}, ${ }^{\prime} \mathrm{B}$ and I_{OS} are measured at $V_{C M}=0$.
4. The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$) typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
5. The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\Theta_{\mathrm{j}} \mathrm{Pd}$ where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
6. Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
7. Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF 155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF157, $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit, page 9).

TYPICAL DC PERFORMANCE CHARACTERISTICS

TYPICAL AC PERFORMANCE CHARACTERISTICS (Cont.)

Common-Mode Rejection
Ratio

Equivalent Input Noise Voltage

Equivalent Input Noise Voltage (Expanded Scale)

Output Impedance

Bode Plot

Power Supply Rejection Ratio

Output Impedance

APPLICATION HINTS

The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

TYPICAL CIRCUIT CONNECTIONS AND PAD LAYOUT

Settling Time Test Circuit

Settling time is tested with the LF $155 / 156$ connected as unity gain converter and LF 157 connected for $A_{V}=-5.0$ Output $=10 \mathrm{~V}$ step

* $A V=-5.0$ for LLF157

A Large Power BW Amplifier (LF157)

LIC-723
For distortion $\leqslant 1 \%$ and a $20 \mathrm{Vp-p} \mathrm{~V}_{\text {OUT }}$ swing, power bandwidth is: 500 kHz .

Metallization and Pad Layout

75×45 Mils

Am216/316•Am216A/316A

Compensated, High-Performance Operational Amplifier

Distinctive Characteristics

- The Am216/Am216A/Am316/Am316A are functionally, electrically, and pin-for-pin equivalent to the National LM216/LM216A/LM316/LM316A.
- Low input bias currents: 50pA
- Low input offset currents: 15 pA
- Low power consumption: 3 mW
- Internal frequency compensation
- Offset nulling provisions
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Electrically and optically inspected dice for assemblers of hybrid products.
- Available in metal can, hermetic dual-in-line and flat packages.

Am216/316•Am216A/316A

iviAXIMUM RATINGS

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
Am216/Am216A	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Am316/Am316A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 4)

Parameter

(see definitions)	Conditions	Am216	Am216A	Am316	Am316A	Units
Input Offset Voltage		10	3	10	3	mV
Input Offset Current		50	15	50	15	pA
Input Bias Current		150	50	150	50	pA
Input Resistance		1	5	1	5	G Ω
Supply Current		0.8	0.6	0.8	0.6	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geqslant 10 \mathrm{k} \Omega \end{aligned}$	20	40	20	40	V / mV
The Following Specifications Apply Over The Operating Temperature Ranges						
Input Offset Voltage		15	6	15	6	mV
Input Offset Current		100	30	100	30	pA
Input Bias Current		250	100	250	100	pA
Supply Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$.		0.5		0.5	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \end{aligned}$	10	20	15	30	V / mV
Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	± 13	± 13	V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 13	± 13	± 13	± 13	V
Common Mode Rejection Ratio		80	80	80	80	dB
Supply Voltage Rejection Ratio		80	80	80	80	dB

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual-In-Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
3. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
4. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Voltage Gain

Open Loop
Frequency Response

Power Supply Rejection

Output Swing

Large Signal Frequency Response

Input Current

Closed Loop Output Impedance

Supply Current

Voltage Follower
Pulse Response

ADDITIONAL APPLICATION INFORMATION

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the Am216 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble at $125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration.)

BOTTOM VIEW
Note: Board layout for input Guarding with TO-99 package.

62×72 Mils

Am715/715C

High-Speed Operational Amplifier

Description: The Am715 and Am715C high-speed operational amplifiers are functionally, electrically, and pin-for-pin equivalent to the Fairchild $\mu A 715$ and $\mu \mathrm{A} 715 \mathrm{C}$. Both are available in the hermetic metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100\% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.
Electrically tested and optically inspected dice for the assemblers of hybrid products.

Am715/715C

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	
Ami715C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am 715	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter (see definitions)	Conditions	Min	715 Typ	Max	Min	$\underset{\text { Typ }}{\text { Am7 }^{2} 715}$	Max	Units
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		2.0	7.5		2.0	5.0	mV
Input Offset Current			70	250		70	250	nA
Input Bias Current			0.4	1.5		0.4	0.75	$\mu \mathrm{A}$
Input Resistance			1.0			1.0		$\mathrm{M} \Omega$
Input Voltage Range		± 10	± 12		± 10	± 12		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74	92		74	92		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		70	400		70	300	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	10	30		15	30		V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Output Resistance			75			75		Ω
Supply Current			5.5	10		5.5	7.0	mA
Power Consumption			165	300		165	210	mW
```Transient Response (Voltage Risetime Follower) Overshoot```	$\begin{aligned} & V_{\text {out }}= \pm 200 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 50 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \% \end{aligned}$
Slew Rate	$\begin{array}{ll} A v=100 \text { (Fig. 8) } & V_{\text {out }}=0 \text { to }+10 \mathrm{~V}, \\ A v=10 \text { (Fig. } 7) & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ A v=1 \text { (Figs. } 1 \& 2) & C_{L}=30 \mathrm{pF} \\ \hline \end{array}$	10	$\begin{aligned} & 65 \\ & 40 \\ & 20 \\ & \hline \end{aligned}$		15	$\begin{aligned} & 65 \\ & 40 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
The Following Specifications Apply Over The Operating Temperature Ranges								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			10			7.5	mV
Input Offset Current	$\begin{aligned} & T_{A}=T_{A \max } \\ & T_{A}=T_{A \min } \end{aligned}$			$\begin{aligned} & 250 \\ & 750 \end{aligned}$			$\begin{aligned} & 250 \\ & 800 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A}=T_{A \max } \\ & T_{A}=T_{A \min } \end{aligned}$			$\begin{aligned} & 1.5 \\ & 7.5 \end{aligned}$			$\begin{gathered} 0.75 \\ 4.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Common Mode Rejection Ratio	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$	74			74			dB
Supply Voltage Rejection Ratio	$R_{5} \leq 10 \mathrm{k} \Omega$			400			300	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	8.0			10			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$R_{L} \geq 2 \mathrm{k} \Omega$	$\pm 10$			$\pm 10$			V

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the $\mathrm{Dual}-\mathrm{In}$-Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for opera tion at ambient temperatures above $95^{\circ} \mathrm{C}$, the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.

## PERFORMANCE CURVES

Voltage Follower


Figure 1

X1 Inverting Amplifier


Figure 2

The high gain and large bandwidth of the Am 715 make it mandatory to observe the following precautions in using the device, as is the case with any high frequency amplifier. Circuit layout should be arranged to keep all lead lengths as short as possible and the output separated from the inputs and frequency compensation pins. The values of the feedback and source impedances should be kept small to reduce the effect of stray capacitance of the inputs. The power supplies must be bypassed to ground at the supply leads of the amplifier with low inductance capacitors. Capacitive loading must be kept to an absolute minimum, since the amplifier cannot tolerate more than 30 pF directly at its output with full feedback.

Follower \& X1 Inverter Positive Large-Signa Pulse Response


Follower \& X1 Inverter
Negative Large-Signal Pulse Response


X1 Inverter
Small-Signal Pulse Response


## Voltage Follower Small-Signal

 Pulse Response


## Am725/725C

## Description:

The Am725 and Am725C monolithic operational amplifiers are functionally, electrically and pin-for-pin equivalent to the Fairchild 725 and 725C. They are available in the hermetic metal can and DIP packages.

Distinctive Characteristics: 100\% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883.
Electrically tested and optically inspected dice for the assemblers of hybrid products.


Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 2)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
Am 725	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ami 725 C	$-65^{\circ} \mathrm{C} \mathrm{to}+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Test Conditions	Am725C				Am725		
Input Offset Voltage (Without external trim)	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		0.5	2.5		0.5	1.0	mV
Input Offset Current			3.0	35		2.0	20	nA
Input Bias Current			50	125		42	100	nA
Input Noise Voltage	$\begin{aligned} & f_{0}=10 \mathrm{~Hz} \\ & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \hline \end{aligned}$
Input Noise Current	$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.6 \end{aligned}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$   $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$   $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Resistance			3.0			1.5		$\mathrm{M} \Omega$
Input Voltage Range		$\pm 13.5$	$\pm 14$		$\pm 13.5$	$\pm 14$		V
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \end{aligned}$	0.25	3.0		1.0	3.0		$V / \mu \mathrm{V}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	96	120		110	120		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		2.0	35		2.0	10	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{array}{r}  \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r}  \pm 13 \\ \pm 13 \\ \hline \end{array}$		$\begin{array}{r}  \pm 12 \\ \pm 12 \\ \hline \end{array}$	$\begin{array}{r}  \pm 13.5 \\ \pm 13.5 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Resistance			150			150		$\Omega$
Power Consumption			80	150		80	105	mW

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage (Without external trim)	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		0.8	3.5			1.5	mV
Average Temperature Coefficient of Input Offset Voltage (Without external trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		1.2			2.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Voltage (With external trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.5			0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}(\max )} \\ & \mathrm{T}_{\mathrm{A}(\min )} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Average Temperature Coefficient of Input Offset Current			25			25	150	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	TA(max)   $T_{A}(\min )$		$\begin{gathered} 25 \\ 100 \\ \hline \end{gathered}$	$\begin{array}{r} 125 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{array}{r} 100 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geqslant 2 k \Omega T_{A} T_{\text {max }} \\ & R_{L} \geqslant 2 k \Omega, T_{A}(\min ) \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.125 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 0.25 \end{aligned}$			$\mathrm{V} / \mu \mathrm{V}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		115		100			dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		20				20	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$R_{L} \geqslant 2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		$\pm 10$			V

Notes: 1. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage

## PERFORMANCE CURVES



Open Loop Voltage Gain As A Function Of Temperature For Various Supply Voltages


Change In Input Offse Voltage Due To Thermal Shock
As A Function Of Time


Transient Response
Test Circuit



Nulled Input Offset Voltage As A Function Of Temperature


Transient Response


Stabilization Time Of Input Offset Voltage From Power Turn-On


Frequency Response For Various Closed Loop Gains


Unnulled Input Offset Voltage As A Function Of Temperature


Absolute Maximum Power Dissipation As A Function Of Ambient Temperature


Power Consumption
As A Function Of Temperature

$\square$


## SSS725•SSS741•SSS747

High-Performance Operational Amplifiers

## Functional Description

The SSS series are high-performance operational amplifiers designed for systems demanding extremely high accuracy. Superior DC and AC characteristics of low input offset voltage, low input offset current, low input bias current and high large signal voltage gain provide performance comparable to discrete or hybrid modules. The SSS series are functionally, electrically and pin-for-pin equivalent to the PMI SSS series.

## Distinctive Characteristics

- Superior DC and $A C$ characteristics $V_{O S}, I_{O S}, A_{V o}, I_{B}$, CMRR, PSRR
- 100\% reliability assurance testing in compliance with MI L-STD-883

Supply Voltage $\quad \pm 22 \mathrm{~V}$

Internal Power Dissipation (Note 1)
Metal Can (TO-99)

$\overline{\text { Differential Input Voltage }} \pm 5 \mathrm{~V}$
Input Voltage (Note 2) $\pm 22 \mathrm{~V}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range

SSS725	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
SSS725B	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SSS725E	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ad Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
tput Short-Circuit Duration	Indefinite

Output Short-Circuit Duration
Indefinite

## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Noted)
SSS725/725E
Symbol

$\mathbf{V}_{\text {os }}$	Input Offset Voltage   (Without external trim)
$\mathbf{I}_{\text {os }}$	Input Offset Current
$\mathbf{I}_{\mathrm{B}}$	Input Bias Current
$\boldsymbol{e}_{\mathrm{n}}$	Input Noise Voltage (Note 3)
$\mathbf{i}_{\mathrm{n}}$	Input Noise Current (Note 3)
$\mathbf{R}_{\text {in }}$	Input Resistance
$\mathbf{A}_{\text {vo }}$	Large Signal Voltage Gain
$\mathbf{V}_{\text {om }}$	Maximum Output Voltage Swing
CMVR	Input Voltage Range
CMRR	Common Mode Rejection Ratio
PSRR	Power Supply Rejection Ratio
$\mathbf{P}_{\mathrm{d}}$	Power Consumption
$\mathbf{A}_{\text {vo }}$	Large Signal Voltage Gain
$\mathbf{P}_{\mathrm{d}}$	Power Consumption

Condition
Min. Max.
$\mathrm{R}_{\mathrm{S}} \leqslant 20 \mathrm{kS}$

SSS725B
Min. Max. Units
$\left.\begin{array}{|c|c|c|}\hline & 0.75 & \mathrm{mV} \\ \hline & 5.0 & \mathrm{nA} \\ \hline & 80 & \mathrm{nA} \\ \hline & 15.0 & \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\ & 9.0 & \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\ 7.5 & \mathrm{nV} / \sqrt{ } \mathrm{Hz}\end{array}\right]$

The Following Specifications Äpply Over The Operating Temperature Range

Symbol	Parameter	Condition	SSS725	SSS725E	SSS725B	Units
			Min. Max.	Min. Max.	Min. Max.	
$V_{\text {os }}$	Input Offset Voltage (Withou't external trim)	$\mathrm{R}_{\mathrm{S}} \leqslant 20 \mathrm{k} \Omega$	0.7	0.6	1.0	mV
	Average Input Offset Voltage Drift (Without external trim) (Note 4)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	2.0	$\begin{gathered} 2.0 \\ \text { (Note 3) } \end{gathered}$	$\frac{2.8}{(\text { Note 3) }}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Average Input Offset Voltage Drift (With external trim) (Note 4)	$\mathrm{R}_{\mathrm{s}}=50 \Omega$	1.0	0.6	$\begin{gathered} 1.0 \\ \text { (Note 3) } \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {os }}$	Input Offset Current	TA MAX. TAMIN.	$\begin{gathered} 4.0 \\ 18.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 5.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
	Average Input Offset Current Drift		90	$\begin{gathered} 40 \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} 90 \\ \text { (Note 3) } \end{gathered}$	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{A} \text { MAX. } \\ & \mathrm{T}_{\mathrm{A}} \text { MIN. } \end{aligned}$	$\begin{array}{r} 70 \\ 180 \\ \hline \end{array}$	$\begin{gathered} \hline 80 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 150 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 20 \mathrm{k} \Omega$	110	115	106	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 20 \mathrm{k} \Omega$	8.0	7.0	8.0	$\mu \mathrm{V} / \mathrm{V}$
$A_{\text {vo }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} ; \mathrm{T}_{A} \text { MAX. } \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega ; \mathrm{T}_{A} \text { MIN. } \end{aligned}$	$\begin{array}{\|c} \hline 1,000,000 \\ 500,000 \\ \hline \end{array}$	$\begin{array}{r} 1,000,000 \\ 800,000 \\ \hline \end{array}$	$\begin{gathered} 1,000,000 \\ 500,000 \\ \hline \end{gathered}$	
$\mathrm{V}_{\text {om }}$	Maximum Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	$\pm 12.0$	$\pm 12.0$	$\pm 12.0$	V

Notes 1. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Parameter is not $100 \%$ tested. $90 \%$ of all units meet these specifications.
4. Thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent the realization of the performance indicated if both sides of the contacts are not kept at approximately the same temperature. Therefore, the device ambient temperature should not be altered without simultaneously changing the contact temperature.

SSS725•SSS741•SSS747
MAXIMUM RATINGS HIGH-PERFORMANCE FREQUENCY COMPENSATED OP AMP
Supply Voltage

SSS741	$\pm 22 \mathrm{~V}$
SSS741C	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Voltage between Offset Null and $\mathrm{V}^{-}$	$\pm 0.5 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
SSS741	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SSS741C	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) (Note 4)
Symbol Parameter Conditions Min. Max. Min. Max. Units

$\mathrm{V}_{\text {os }}$	Input Offset Voltage	$\mathrm{R}_{5} \leqslant 50 \mathrm{k} \Omega$	2.0	5.0	mV
$\mathrm{I}_{\text {os }}$	Input Offset Current		5.0	20	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current		50	100	nA
$\mathrm{R}_{\text {in }}$	Input Resistance		2.0	1.0	$\mathrm{M} \Omega$
$\mathrm{A}_{\mathrm{vo}}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V} \end{aligned}$	100	50	V/mV
$\mathrm{V}_{\text {om }}$	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
CMVR	Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 15 \\ & \hline \end{aligned}$	$\pm 12$	V
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	80	70	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	100	150	$\mu \mathrm{V} / \mathrm{V}$
$\mathrm{Pd}_{\mathrm{d}}$	Power Consumption	$\mathrm{V}_{\mathrm{s}} \leqslant \pm 15 \mathrm{~V}$	85	85	mW
The Following Specifications Apply Over the Operating Temperature Range					
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$	3.0	6.0	mV
$\mathrm{I}_{\text {os }}$	Input Offset Current		10	50	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current		100	200	nA
$\mathrm{A}_{\mathrm{vo}}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & V_{\text {out }}= \pm 10 \mathrm{~V} \end{aligned}$	25	25	$\mathrm{V} / \mathrm{mv}$
$\mathrm{V}_{\text {om }}$	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
CMVR	Input Voltage Range	$V_{\text {s }}= \pm 20 \mathrm{~V}$	$\pm 15$		V
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$	80	70	dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$	100	150	$\mu \mathrm{V} / \mathrm{V}$

Notes 1. Derate metal can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature
4. The SSS 741 specifications apply for $\pm 5 \mathrm{~V} \leqslant V_{s} \leqslant \pm 20 \mathrm{~V}$. The SSS741C specifications apply for $V_{s}= \pm 15 \mathrm{~V}$.

GUARANTEED PERFORMANCE




	SSS725 •SSS741•SSS747   MAXIMUM RATINGS   HIGH-PERFORMANCE DUAL FREQUENCY COMPENSATED OP AMP SSS747/747C
Supply Voltage	
SSS747	$\pm 22 \mathrm{~V}$
SSS747C	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	
DIP, Metal Can	
Flat Package	800 mW
Differential Input Voltage	500 mW
Voltage between Offset Null and V	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 0.5 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	$- \pm 15 \mathrm{~V}$
Operating Temperature Range	Indefinite
SSS747	
SSS747C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)($ Note 4)

Symbol	Parameter	Conditions	SSS747		SSS747C		Units
			Min.	Max.	Min.	Max.	
$V_{\text {os }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{s}} \leq 50 \mathrm{k} \Omega$		2.0		5.0	mV
$\mathrm{I}_{\text {os }}$	Input Offset Current			5.0		20	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current			50		100	$n \mathrm{~A}$
$\mathrm{R}_{\text {in }}$	Input Resistance		2.0		1.0		$\mathrm{M} \Omega$
$A_{\text {vo }}$	Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geqslant 2 \mathrm{k} \Omega, V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & V_{\text {out }}= \pm 10 \mathrm{~V} \end{aligned}$	100		50		$\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{\text {om }}$	Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
CMVR	Input Voltage Range	$\begin{aligned} & V_{\mathrm{s}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 20 \mathrm{~V} \end{aligned}$	$\pm 15$		$\pm 12$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$	80		70		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$		100		150	$\mu \mathrm{V} / \mathrm{V}$
$\mathrm{P}_{\mathrm{d}}$	Power Dissipation	$\mathrm{V}_{\mathrm{s}} \leqslant \pm 15 \mathrm{~V}$		85		85	mW
CS	Channel Separation		100				dB
The Following Specifications Apply Over The Operating Temperature Ranges							
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$		3.0		6.0	mV
$\mathrm{I}_{0}$	Input Offset Current			10		50	$n \mathrm{~A}$
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current			100		150	$n \mathrm{~A}$
$A_{\text {vo }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	25		25		$\mathrm{V} / \mathrm{mV}$
$V_{\text {om }}$	Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
CMVR	Input Voltage Range	$\mathrm{V}_{\mathrm{s}}= \pm 20 \mathrm{~V}$	$\pm 15$				V
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$	80		70		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leqslant 50 \mathrm{k} \Omega$		100		150	$\mu \mathrm{V} / \mathrm{V}$

Notes 1. Derate metal can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $30^{\circ} \mathrm{C}$, the dual-in-line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $60^{\circ} \mathrm{C}$, and the Flat package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be ground or either supply. Rating applies to $125^{\circ} \mathrm{C}$ case temperature or $+60^{\circ} \mathrm{C}$ ambient temperature for each side.
4. The SSS 747 specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 20 \mathrm{~V}$, unless otherwise noted. The SSS 747 C specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 15 \mathrm{~V}$, unless otherwise noted.


## Metallization and Pad Layouts

## SSS725



SSS741

$56 \times 56$ Mils

SSS747

$56 \times 106$ Mils

## Am741/741C/741A/741E

Frequency-Compensated Operational Amplifier

## Description:

The Am741 Series Frequency Compensated Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the Fairchild $\mu 741$ series. The are available in the hermetic metal can, flat package, and dual-inline packages as well as plastic dual-in-line.
The Am741A and Am741E are tested to the electrical characteristics of the current revision of MIL-M-38510/ 10101.

## Distinctive Characteristics:

100\% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MI L-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.


## MAXIMUM RATINGS

Supply Voltage   Am741/741A/741E   Am741C	$\pm 22 \mathrm{~V}$   $\pm 18 \mathrm{~V}$   Internal Power Dissipation (Note 1)   Differential Input Voltage   Voltage between Offset Null and $\mathrm{V}-$   Input Voltage (Note 2 )
Output Short-Circuit Duration (Note 3)	500 mW
Operating Temperature Range	$\pm 30 \mathrm{~V}$
Am741/741A   Am741C/741E	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$\pm 15 \mathrm{~V}$
Lead Temperature (Soldering, 60 sec.)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter (see definitions)	Conditions	Am741C			Am741			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		2.0	6.0		1.0	5.0	mV
Input Offset Current			20	200		20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance			1.4			1.4		pF
Offset Voltage Adjustment Range			$\pm 15$			$\pm 15$		mV
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	20	200		50	200		$\mathrm{V} / \mathrm{mV}$
Output Resistance			75			75		$\Omega$
Output Short-Circuit Current			25			25		mA
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Current			1.7	2.8		1.7	2.8	mA
Power Consumption			50	85		50	85	mW
Transient Response (unity gain) Risetime Overshoot	$\mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$		$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	0.3	0.4		0.3	0.4		$\mathrm{V} / \mu \mathrm{s}$


Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		7.5			6.0	mV
Input Offset Current	$\begin{aligned} & T_{A(\text { max })} \\ & T_{A(\text { min })} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 35 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A(\text { max })} \\ & T_{A \text { min })} \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		$\begin{gathered} 0.03 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Voltage Range		$\pm 12 \pm 13$		$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	$70 \quad 90$		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	15		25			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{array}{ll}  \pm 12 & \pm 14 \\ \pm 10 & \pm 13 \\ \hline \end{array}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Supply Current	$\begin{aligned} & T_{A(\text { max } ;} \\ & T_{A(\text { min })} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{A}(\text { max })} \\ & \mathrm{T}_{\mathrm{A} \text { (min) }} \end{aligned}$	$\begin{aligned} & 48 \\ & 54 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{gathered} 75 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

[^11]
## Am741/741C/741A/741E

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) Am741A/741E

Parameters (see definitions)	Conditions	Min.	Typ.	Max.	Units
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \Omega$		0.8	3.0	mV
Input Offset Current			3.0	30	nA
Input Bias Current (Note 5)			30	110	nA
Power Supply Rejection Ratio (Note 6)	$\mathrm{V}_{\mathrm{S}}=+10,-20 ; \mathrm{V}_{\mathrm{S}}=+20,-10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$		15	50	$\mu \mathrm{V} / \mathrm{V}$
Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 15 \mathrm{~V}$	80			dB
Output Short Circuit Current	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$   Short to Other Supply	9		40	mA
Power Dissipation		10		150	mW
Large Signal Voltage Gain	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	50			$\mathrm{V} / \mathrm{mV}$
	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	10			$\mathrm{V} / \mathrm{mV}$
Transient Response (unity gain) Rise Time			0.30	0.8	$\mu \mathrm{s}$
Overshoot			5.0	20	\%
Adjustment for Input Offset Voltage	(Note 7)	7.5			mV
Large Signal Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	32			Volts
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	30			Volts
Slew Rate (unity gain)	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	0.3	0.42		$\mathrm{V} / \mu \mathrm{s}$
Noise	Bandwidth $=5 \mathrm{kHz}$			15	$\mu$ V RMS
	Bandwidth $=5 \mathrm{kHz}$			40	$\mu \vee$ Peak

The Following Specifications Apply for $\mathrm{Min}_{\mathrm{I}} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \operatorname{Max}$

Input Offset Voltage			4.0	mV
Average Input Offset Voltage Drift			15	$\mu \vee /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A} \text { (max) }}$		30	nA
	$\mathrm{T}_{\mathrm{A}(\mathrm{min})}$		70	nA
Average Input Offset Current Drift	$25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant$ Max		200	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
	Min $\leqslant T_{A} \leqslant 25^{\circ} \mathrm{C}$		500	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 5)	$\mathrm{T}_{\mathrm{A} \text { (max) }}$	1.0	110	$n \mathrm{~A}$
	$\mathrm{T}_{\mathrm{A}(\mathrm{min})}$	1.0	265	nA
Output Short Circuit Current	TA(max)	9.0	40	mA
	$\mathrm{T}_{\mathrm{A}}(\mathrm{min})$	9.0	55	mA
Power Dissipation	$\mathrm{T}_{\mathrm{A} \text { (max) }}$		135	mW
	$\mathrm{T}_{\mathrm{A}(\mathrm{min})}$		165	mW
Large Signal Voltage Swing	$R_{L}=10 \mathrm{k} \Omega$	32		Volts
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	30		Volts
Large Signal Voltage Gain	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	32		$\mathrm{V} / \mathrm{mV}$
	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	10		$\mathrm{V} / \mathrm{mV}$

Notes: 1. Rating applies to ambient temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the $\mathrm{metal} \mathrm{can}, 8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the $\mathrm{D} / \mathrm{P}$ and $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the Flatpak.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $75^{\circ} \mathrm{C}$ ambient temperature.
4. $T_{A(\min )}$ for 741 A is $-55^{\circ} \mathrm{C}$ and for 741 E is $0^{\circ} \mathrm{C}$. $\mathrm{T}_{\mathrm{A}}(\max )$ for 741 A is $+125^{\circ} \mathrm{C}$ and for 741 E is $+70^{\circ} \mathrm{C}$.
5. Input bias currents are measured individually to specified limits.
6. PSRR measured separately for positive and negative supply to specified limits.
7. $V_{\mathrm{OS}}$ adjust is measured in both positive and negative direction to the specified limit.

## PERFORMANCE CURVES



## Slew Rate and Transient Response

 Test Circuit



## INVERTING AMPLIFIER



NON-INVERTING AMPLIFIER


$$
\begin{array}{rcccc}
\text { GAIN } & R_{1} & R_{2} & B . W . & R_{1 N} \\
10 & 1 \mathrm{k} \Omega & 9 \mathrm{k} \Omega & 100 \mathrm{kHz} & 400 \mathrm{M} \Omega \\
100 & 100 \Omega & 9.9 \mathrm{k} \Omega & 10 \mathrm{kHz} & 280 \mathrm{M} \Omega \\
1000 & 100 \Omega & 99.9 \mathrm{k} \Omega & 1 \mathrm{kHz} & 80 \mathrm{M} \Omega
\end{array}
$$

LIC゙-770


# Am747/747C/747A/747E <br> Dual Frequency-Compensated Operational Amplifiers 

## Description:

The Am747 Series Dual Frequency-Compensated Operational Amplifiers are functionally, electrically, and pinfor pin equivalent to the Fairchild $\mu \mathrm{A} 747$ series. They are available in the hermetic metal can, dual-in-line and flat packages as well as plastic dual-in-line.
The Am747A and Am747E are tested to the electrical characteristics of the current revision of MIL-M-38510/ 10102.

## Distinctive Characteristics:

$100 \%$ reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.

Electrically tested and optically inspected dice for the assemblers of hybrid products.


## FUNCTIONAL DESCRIPTION

The Am747 is a dual Am741 internally compensated operational amplifier. The Am747 Series are differential input, class $A B$ output amplifiers intended for general purpose applications. They are protected against faults at input and output, and require no external components for frequency compensation.

APPLICATIONS
QUADRATURE OSCILLATOR


LIC-772

FUNCTIONAL DIAGRAM


Note: $\mathrm{V}^{+} \mathrm{A}$ and $\mathrm{V}^{+} \mathrm{B}$ connected internally. For separate
$\mathrm{V}^{+}$pins order as 747-1.

## Am747/747C/747A/747E

## MAXIMUM RATINGS

Supply Voltage	
Am747, Am747A, Am747E	$\pm 22 \mathrm{~V}$
Am747C	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	
DIP, Metal Can	800 mW
Flat Package	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Voltage between Offset Null and $\mathrm{V}^{-}$	$\pm 0.5 \mathrm{~V}$
Input Voltage (Note2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3).	Indefinite
Operating Temperature Range	
Am747, Am747A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am747C, Am747E	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS—Each Amplifier ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter (see definitions)	Conditions	Am747C			Am747			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$		2.0	6.0		1.0	5.0	mV
Input Offset Current			20	200		20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance			1.4			1.4		pF
Offset Voltage Adjustment Range			$\pm 15$			$\pm 15$		mV
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	25	200		50	200		$\mathrm{V} / \mathrm{mV}$
Output Resistance			75			75		$\Omega$
Output Short-Circuit Current			25			25		mA
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	${ }_{\mu} \mathrm{V} / \mathrm{V}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Current			1.7	2.8		1.7	2.8	mA
Power Consumption			50	85		50	85	mW
Transient Response (unity gain) Risetime Overshoot	$\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$		$\begin{aligned} & 0.3 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.3 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \\ & \hline \end{aligned}$
Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	0.3	0.4		0.3	0.4		$\mathrm{V} / \mu \mathrm{s}$
Channel Separation	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$		120			120		dB


Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			7.5			6.0	mV
Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}(\text { max })} \\ & \mathrm{T}_{\mathrm{A}(\text { min })} \end{aligned}$		$\begin{aligned} & 9.0 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A(\text { max })} \\ & T_{A \text { min }} \end{aligned}$		$\begin{aligned} & 0.04 \\ & 0.13 \end{aligned}$	0.8 0.8		$\begin{gathered} 0.03 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	15			25			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Supply Current	$\begin{aligned} & T_{A(\text { max })} \\ & T_{A(\text { min })} \end{aligned}$		$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{A}(\text { max })} \\ & \mathrm{T}_{\mathrm{A}(\text { min })} \end{aligned}$		$\begin{aligned} & 48 \\ & 54 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{gathered} 75 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

[^12] at ambient temperatures above $60{ }^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57{ }^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be ground or either supply. Rating applies to $125^{\circ} \mathrm{C}$ case temperature or $+60^{\circ} \mathrm{C}$ ambient temperature for each side.

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) Am747A/747E

Parameters (see definitions)	Conditions	Min.	Typ.	Max.	Units
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \Omega$		0.8	3.0	mV
Input Offset Current			3.0	30	nA
Input Bias Current (Note 5)			30	110	nA
Power Supply Rejection Ratio (Note 6)	$\mathrm{V}_{\mathrm{S}}=+10,-20 ; \mathrm{V}_{\mathrm{S}}=+20,-10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$		15	50	$\mu \mathrm{V} / \mathrm{V}$
Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 15 \mathrm{~V}$	80			dB
Output Short Circuit Current	$\pm V_{C C}= \pm 15 \mathrm{~V}, V_{O}= \pm 15 \mathrm{~V}$   Short to Other Supply	9		40	mA
Power Dissipation		10		150	mW
Large Signal Voltage Gain	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	50			$\mathrm{V} / \mathrm{mV}$
	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	10			$\mathrm{V} / \mathrm{mV}$
Transient Response (unity gain) Rise Time			0.30	0.8	$\mu \mathrm{s}$
Overshoot			5.0	20	\%
Adjustment for Input Offset Voltage	(Note 7)	7.5			mV
Large Signal Voltage Swing	$R_{L}=10 \mathrm{k} \Omega$	32			Volts
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	30			Volts
Slew Rate (unity gain)	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	0.3	0.42		$\mathrm{V} / \mu \mathrm{s}$
Noise	Bandwidth $=5 \mathrm{kHz}$			15	$\mu \mathrm{V}$ RMS
	Bandwidth $=5 \mathrm{kHz}$			40	$\mu \vee$ Peak

## The Following Specifications Apply for Min $\leqslant \mathrm{T}_{\mathrm{A}} \leqslant \operatorname{Max}$

Input Offset Voltage			4.0	mV
Average Input Offset Voltage Drift			15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A} \text { (max) }}$		30	$n \mathrm{~A}$
	$\mathrm{T}_{\mathrm{A}(\mathrm{min})}$		70	nA
Average Input Offset Current Drift	$25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant$ Max		200	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
	Min $\leqslant \mathrm{T}_{\mathrm{A}} \leqslant 25^{\circ} \mathrm{C}$		500	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 5)	$\mathrm{T}_{\mathrm{A} \text { (max) }}$	1.0	110	$n \mathrm{~A}$
	$\mathrm{T}_{\mathrm{A}}(\min )$	1.0	265	$n \mathrm{~A}$
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}(\max )$	9.0	40	mA
	$\mathrm{T}_{\mathrm{A}(\mathrm{min})}$	9.0	55	mA
Power Dissipation	$\mathrm{T}_{\mathrm{A} \text { (max) }}$		135	mW
	$\mathrm{T}_{\mathrm{A}(\mathrm{min})}$		165	mW
Large Signal Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	32		Volts
	$R_{L}=2 \mathrm{k} \Omega$	30		Volts
Large Signal Voltage Gain	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	32		$\mathrm{V} / \mathrm{mV}$
	$\pm \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, 10 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	10		$\mathrm{V} / \mathrm{mV}$

Notes: 1. Rating applies to ambient temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the $\mathrm{metal} \mathrm{can}, 8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the DIP and $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the Flatpak.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $75^{\circ} \mathrm{C}$ ambient temperature.
4. $\mathrm{T}_{\mathrm{A}(\min )}$ for 741 A is $-55^{\circ} \mathrm{C}$ and for 741 E is $0^{\circ} \mathrm{C}$. $\mathrm{T}_{\mathrm{A}(\max )}$ for 741 A is $+125^{\circ} \mathrm{C}$ and for 741 E is $+70^{\circ} \mathrm{C}$.
5. Input bias currents are measured individually to specified limits.
6. PSRR measured separately for positive and negative supply to specified limits.
7. VOS adjust is measured in both positive and negative direction to the specified limit.

## PERFORMANCE CURVES

(Each Amplifier)

## Power Consumption As A Function Of <br> Supply Voltage



Input Bias Current As A Function Of Ambient Temperature


Input Resistance
As A Function Of Ambient Temperature


Transient Response
Test Circuit


LIC-777
$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

## PERFORMANCE CURVES (Cont.)

(Each Amplifier)
Output Resistance
As A Function Of Frequency


Voltage Follower
Large-Signal Pulse Response


Common Mode Rejection
Ratio As A Function Of Frequency


Frequency Characteristics As A Function Of Supply Voltage



Output Voltage Swing As A Function Of Supply Voltage


Open Loop Voltage Gain As A Function Of Supply Voltage


Input Common Mode
Voltage Range As A Function Of Supply Voltage



## Am748/748C

Description: The Am748/748C Monolithic Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the Fairchild $\mu \mathrm{A} 748$ and $\mu \mathrm{A} 748 \mathrm{C}$. Both are available in the hermetic metal can, dual-in-line, and flat packages.

Distinctive Characteristics: 100\% reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL STD 883 Class B.
Electrically tested and optically inspected dice for the assemblers of hybrid products.


MAXIMUM RATINGS

Supply Voltage	
Am748	$\pm 22 \mathrm{~V}$
Am748C	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	
Am748	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am748C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter (see definitions)	Conditions	Am748C			Am748			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$		2.0	6.0		1.0	5.0	mV
Input Offset Current			20	200		20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		Ms
Input Capacitance			1.4			1.4		pF
Offset Voltage Adjustment Range			$\pm 15$			$\pm 15$		mV
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	50	200		50	200		$\mathrm{V} / \mathrm{mV}$
Output Resistance			75			75		$\Omega$
Output Short-Circuit Current			25			25		mA
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Current			1.7	2.8		1.7	2.8	mA
Power Consumption			50	85		50	85	mW
Transient Response (unity gain) Risetime Overshoot	$\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$		$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	0.2	0.5		0.2	0.5		$\mathrm{V} / \mu \mathrm{S}$
The Following Specifications Apply Over The Operating Temperature Ranges								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			7.5			6.0	mV
Input Offset Current	$\begin{aligned} & T_{A(\text { max })} \\ & T_{A(\text { min })} \end{aligned}$		$\begin{aligned} & 9.0 \\ & 35 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A(\text { max })} \\ & T_{A(\text { min })} \end{aligned}$		$\begin{aligned} & 0.04 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		$\begin{gathered} 0.03 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{5} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large-Signa! Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	25			25			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}(\max )} \\ & \mathrm{T}_{\mathrm{A}(\min )} \end{aligned}$		$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Consumption	$T_{A(\text { max })}$   $T_{A(\text { min })}$		$\begin{aligned} & 48 \\ & 54 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{gathered} 75 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the $\mathrm{Dual} \mathrm{In}-\mathrm{Line}$ package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

## PERFORMANCE CURVES




LIC-788
$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

## PERFORMANCE CURVES





Metallization and Pad Layout

$49 \times 56$ Mils

## Am1501

Dual Operational Amplifiers

## Distinctive Characteristics

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier


## FUNCTIONAL DESCRIPTION

The Am1501 series are differential input, class $A B$ output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensated with an external 30 pF capacitor. The combination of low-input currents, low-offset voltage, low noise, and versatility of compensation classify the Am1501 series amplifiers for low level and general purpose applications.

## DESCRIPTION

The Am1501 series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. They are functionally, electrically and pin-for-pin equivalent to the National LH2101A series. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles.
The Am 1501M is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The Am1501L is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The Am1501C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## FUNCTIONAL DIAGRAM



LIC-794
ORDERING INFORMATION

Part   Number	Package   Type	Temperature   Range	Order   Number
Am1501C	Hermetic Dip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM1501DC
	Flat Pak	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM1501FC
Am1501L	Hermetic Dip	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	AM1501DL
	Flat Pak	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	AM1501FL
Am1501M	Hermetic Dip	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM1501DM
	Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM1501FM

## CONNECTION DIAGRAMS <br> Top Views

Dual-In-Line


Flat Package


## MAXIMUM RATINGS

Supply Voltage   Am1501M, Am1501L   Am1501C	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	$\pm 18 \mathrm{~V}$
Differential Input Voltage	500 mW
Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Output Short-Circuit Duration	$\pm 15 \mathrm{~V}$
Operating Temperature Range	Indefinite
Am1501M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am1501L	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am1501C	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 3) (EACH AMPLIFIER)

Am1501M
Parameter (see definitions) Conditions Min. Typ. Max. Min. Typ. Max. Units

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$		2.0	7.5		0.7	2.0	mV
Input Offset Current			3.0	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2.0		1.5	4.0		$\mathrm{M} \Omega$
Supply Current (Total Both Amplifiers)	$\begin{aligned} & V_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		3.6	6.0		3.6	6.0	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}>2.0 \mathrm{k} \Omega \end{aligned}$	25	160		50	160		$\mathrm{V} / \mathrm{mV}$
Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{AV}=+1.0$	0.2	0.5		0.2	0.5		$\mathrm{V} / \mu \mathrm{s}$

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$			10			3.0	mV
Input Offset Current				70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{T}_{\mathrm{A}(\min .)} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{T}_{\mathrm{A}}(\max$.		6.0	30		3.0	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant T_{A}(\text { max } .) \\ & T_{A}(\text { min }) \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \end{aligned}$			0.3		0.01	0.1	$n \mathrm{Al}{ }^{\circ} \mathrm{C}$
Input Bias Current				300			100	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}>2.0 \mathrm{k} \Omega \end{aligned}$	25			25			$\mathrm{V} / \mathrm{mV}$
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	+15,-12			$\pm 15$			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	70	90		80	96		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	70	96		80	96		dB
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	$\pm 12$ $\pm 10$	$\pm 14$ $\pm 13$		$\pm 12$ $\pm 10$	$\pm 14$ $\pm 13$		V
Supply Current (Total Both Amplifiers)	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$					2.4	5.0	mA

Notes: 1. The maximum junction temperature of the Am 1501 M is $150^{\circ} \mathrm{C}$, while that of the Am 1501 L and Am 1501 C is $100^{\circ} \mathrm{C}$. For operating temperatures, devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. These specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$, unless otherwise specified. With the Am1501L, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$. For the Am 1501 C these specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, \pm 5 \mathrm{~V}$ and $\leqslant \mathrm{V}_{S} \leqslant$ $\pm 15 \mathrm{~V}$. Supply current and input voltage range are specified as $V_{S}= \pm 15 \mathrm{~V}$ for the $\mathrm{Am} 1501 \mathrm{C} . \mathrm{C}_{1}=30 \mathrm{pF}$ unless otherwise specified.

## FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation


Figure 1

Two Pole Compensation


Figure 2

Feedforward Compensation


Figure 3

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

## Compensating for

Stray Input Capacitance/Large
Feedback Resistance


Figure 4


Figure 5

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

## PERFORMANCE CURVES (Note 3)














GUARANTEED PERFORMANCE CURVES (Note 3)
(Curves apply over the Operating Temperature Ranges)


PERFORMANCE CURVES (Note 3)





## Am1558/1458

## Description

The Am1558 and Am1458 Dual Frequency Compensated Operational Amplifiers are functionally, electrically, and pin-for-pin equivalent to the Motorola MC1558 and MC1438. Both are available in the hermetic metal can package.

## Distinctive Characteristics

- $100 \%$ reliability assurance testing including hightemperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883
- Electrically tested and optically inspected dice for the assemblers of hybrid circuits

FUNCTIONAL DESCRIPTION   The Am1558 is a dual 741 internally compensated operational amplifier. The Am1558 and Am1458 are differential input, class $A B$ output amplifiers intended for general purpose applications. They are protected against faults at input and output, and require no external components for frequency compensation.				FUNCTIONAL DIAGRAM		
APPLICATIONS   quadrature oscillator   NOTCH FILTER USING THE 1558 AS A GYRATOR   Notch Frequency As A Function of $\mathrm{C}_{1}$   LIC-806						
ORDERING INFORMATION				CONNECTION DIAGRAM Top View		
$\begin{gathered} \text { Part } \\ \text { Number } \\ \hline \end{gathered}$	Package   Type Temperature   Range		Order Number			
Am1458	Metal Can Dice	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { AM1458H } \\ & \text { LD1458 } \end{aligned}$			
Am1558	Metal Can Dice	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	AM1558H LD1558			
	See Am747 for dice layout			Note: Pin 4 Connected to Case.		

Am1558/1458
MAXIMUM RATINGS

Supply Voltage   Am1558   Am1458	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	$\pm 18 \mathrm{~V}$
Metal Can	
Differential Input Voltage	$\pm 00 \mathrm{~mW}$
Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am1558	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am1458	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	

Transient Response
Test Circuit

$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

LIC-808

ELECTRICAL CHARACTERISTICS-Each Amplifier $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter (see definitions)	Conditions	Am1458			Am1558			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		2.0	6.0		1.0	5.0	mV
Input Offset Current			20	200		20	200	nA
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance			1.4			1.4		pF
Offset Voltage Adjustment Range			$\pm 15$			$\pm 15$		mV
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$	20	100		50	200		$\mathrm{V} / \mathrm{mV}$
Output Resistance			75			75		$\Omega$
Output Short-Circuit Current			25			25		mA
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Current (Both Amplifiers)			3.4	5.6		3.4	5.6	mA
Power Consumption (Both Amplifiers)			100	170		100	170	mW
Transient Response (Unity Gain) Risetime Overshoot	$V_{I N}=20 \mathrm{mV}, R_{L}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate	$\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega$	0.3	0.5		0.3	0.5		$\mathrm{V} / \mu \mathrm{s}$
Channel Separation	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$		120			120		dB

The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			7.5			6.0	mV
Input Offset Current	$\begin{aligned} & \text { TA MAX. }^{\text {TA }} \\ & \text { TAIN. }_{\text {A }} \end{aligned}$		$\begin{aligned} & 9.0 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \\ & \hline \end{aligned}$	nA
Input Bias Current	$\begin{aligned} & \text { TA MAX. }_{\text {M }} \\ & \text { TA }_{A} \text {. } \end{aligned}$		$\begin{aligned} & 0.04 \\ & 0.13 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$		$\begin{gathered} 0.03 \\ 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	$\mu \mathrm{A}$
Input Voltage Range		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		$\checkmark$
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$.
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	15			25			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
Supply Current (Both Amplifiers)	TAMAX.   TA MIN.		$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.6 \end{aligned}$	mA
Power Consumption (Both Amplifiers)	$\begin{aligned} & T_{A} M A X . \\ & T_{A} M I N . \end{aligned}$		$\begin{aligned} & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \end{aligned}$		$\begin{array}{r} 90 \\ 120 \end{array}$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mW

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $30^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+60^{\circ} \mathrm{C}$ ambient temperature for each side.

# PERFORMANCE CURVES 

(Each Amplifier)


## PERFORMANCE CURVES

 (Each Amplifier)



Output Voltage Swing As A Function of Supply Voltage


SUPPLY VOLTAGE - $\pm V$

Output Resistance
As A Function Of Frequency


Voltage Follower Large-Signal Pulse Response


Open Loop Voltage Gain As A Function Of Supply Voltage


Input Common Mode
Voltage Range As A
Function Of Supply Voltage


Common Mode Rejection Ratio As A Function Of Frequency


Frequency Characteristics As A Function Of Supply Voltage


Input Bias Current As A Function Of Ambient Temperature


Input Resistance
As A Function Of Ambient Temperature


# LH2101A/LH2201A/LH2301A 

## Distinctive Characteristics

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier


## FUNCTIONAL DESCRIPTION

The LH2101A series are differential input, class $A B$ output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensated with an external 30 pF capacitor. The combination of low-input currents, low-offset voltage, low noise, and versatility of compensation classify the LH2101A series amplifiers for low level and general purpose applications.

## DESCRIPTION

The LH2101A series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. They are functionally electrically and pin for pin equivalent to the National LH2101A series. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles.
The LH2101A is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2201A is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2301A is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

LIC-811			
ORDERING INFORMATION			
Part Number	Package Type	Temperature Range	Order Number
LH2301A	DIP   Flat Pak	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LH2301AD } \\ & \text { LH2301AF } \end{aligned}$
LH2201A	$\begin{gathered} \text { DIP } \\ \text { Flat Pak } \end{gathered}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LH2201AD } \\ & \text { LH2201AF } \end{aligned}$
LH2101A	DIP   Flat Pak	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LH2101AD } \\ & \text { LH2101AF } \end{aligned}$

## MAXIMUM RATINGS

Supply Voltage   LH2101A, LH2201A   LH2301A	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	$\pm 18 \mathrm{~V}$
Differential Input Voltage	500 mW
Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Output Short-Circuit Duration	$\pm 15 \mathrm{~V}$
Operating Temperature Range	Indefinite
LH2101A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH2201A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH2301A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 3)
(Each Amplifier)

Parameter	Conditions	LH2301A			LH2101A   LH2201A			Units
(see definitions)		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$		2.0	7.5		0.7	2.0	mV
Input Offset Current			3.0	50		1.5	10	nA
Input Bias Current			70	250		30	75	nA
Input Resistance		0.5	2.0		1.5	4.0		$M \Omega$
Supply Current (Total Both Amplifiers)	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		3.6	6.0		3.6	6.0	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25	160		50	160		V/mV
Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$	0.2	0.5		0.2	0.5		$\mathrm{V} / \mu \mathrm{s}$

## The Following Specifications Apply Over The Operating Temperature Ranges

Input Offset Voltage	$R_{S} \leqslant 50 \mathrm{k} \Omega$			10			3.0	mV
Input Offset Current				70			20	nA
Average Temperature Coefficient of Input Offset Voltage	$T_{A}(M I N) \leqslant T_{A} \leqslant T_{A}(M A X)$		6.0	30		3.0	15	$\mu \vee{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant T_{A}(M A X) \\ & T_{A}(M \mid N) \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \end{aligned}$		0.01	0.3		0.01	0.1	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
			0.02	0.6		0.02	0.2	
Input Bias Current				300			100	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25			25			$\mathrm{V} / \mathrm{mV}$
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$				$\pm 15$			Voits
		+15,-12						
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	70	90		80	96		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	70	96		80	96		dB
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		Volts
		$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$		
Supply Current (Total Both Amplifiers)	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$					2.4	5.0	mA

Notes:1. The maximum junction temperature of the LH2101A is $150^{\circ} \mathrm{C}$, while that of the LH2201A and LH2301A is $100^{\circ} \mathrm{C}$. For operating temperatures, devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. These specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2201A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$. For the LH2301A these specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 70^{\circ} \mathrm{C}$, $\pm 5 \mathrm{~V}$ and $\leqslant \mathrm{V}_{\mathrm{S}} \leqslant \pm 15 \mathrm{~V}$. Supply current and input voltage range are specified as $V_{S}= \pm 5 \mathrm{~V}$ for the LH2301A. $C_{1}=30 \mathrm{pF}$ unless otherwise specified.

## FREQUENCY COMPENSATION CIRCUITS

Single Pole Compensation

$C_{1} \geq R_{1} C_{s}$
$C_{s}=30 p F$

Two Pole Compensation


Figure 2

Feedforward Compensation


Figure 3

Power supplies should be bypassed to ground at one point, minimum, on each card. More bypass points should be considered for five or more amplifiers on a single card. For applications using feed-forward compensation, the power supply leads of each amplifier should be bypassed with low inductance capacitors.

Compensating for Stray Input Capacitance/Large

Feedback Resistance


Figure 4


Figure 5

The values given for the frequency compensation capacitor guarantee stability only for source resistances less than $10 \mathrm{k} \mathrm{\Omega}$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions is not met, it is necessary to use a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors, or an RC network can be added to isolate capacitive loads.

Metallization and Pad Layout


PERFORMANCE CURVES (Note 3)


GUARANTEED PERFORMANCE CURVES (Note 3)
(Curves apply over the Operating Temperature Ranges)


PERFORMANCE CURVES (Note 3)

Input Current - LH2101A, LH2201A


Input Noise Voltage


Input Current - LH2301A


Input Noise Current


ALPHA NUMERIC INDEX FUNCTIONAL INDEX
SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

## COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS


MOS MEMORY AND MICROPROCESSOR INTERFACE

OPERATIONAL AMPLIFIERS

SPECIAL FUNCTIONS

## 7



VOLTAGE REGULATORS

## 5




## PACKAGE OUTLINES

## GLOSSARY

AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS
Special Functions - Section VII
Am592Differential Video Amplifier7-1
Am733/733C Differential Video Amplifier ..... 7-4

## Am592

Differential Video Amplifier

PRELIMINARY DATA

## Distinctive Characteristics

- The Am592 and Am592C differential video amplifiers are functionally, electrically and pin-for-pin equivalent to the Signetics SE592 and NE592.
- Bandwidths: 40 to 120 MHz
- Rise times: 2.5 to 10 ns
- Propagation delay: 3.6 to 10 ns
- $100 \%$ reliability assurance testing in compliance with MIL-STD-883A
- Electrically tested and optically inspected dice for hybrid manufacturers
- 120 MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Available in metal can, hermetic dual-in-line or plastic dual-in-line packages

FUNCTIONAL DESCRIPTION   The Am592/Am592C is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function'as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.				CONNECTION DIAGRAMS Top Views   Note: On Metal Can, pin 5 is conneted to case.
ORDERING INFORMATION				Metallization and Pad Layout
Part   Number	Package Type	Temperature Range	Order   Number	$\mathrm{G}_{2} \mathrm{~B} \longrightarrow \quad \square \quad \mathrm{G}_{2} \mathrm{~A}$
Am592C	TO-100 DIP   Molded DIP Dice	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	AM592HC   AM592DC   AM592PC   LD592C	
Am592	$\begin{gathered} \text { TO-100 } \\ \text { DIP } \\ \text { Dice } \end{gathered}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	AM592HM AM592DM LD592	
				DIE SIZE $41 \times 41$ mils


Supply Voltage	$\pm 8 \mathrm{~V}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Common Mode Input Voltage	$\pm 6 \mathrm{~V}$
Output Current	10 mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am592	$00^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am592C	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	

ELECTRICAL CHARACTERISTICS Standard Conditions ( $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ unless otherwise specified)

Parameter		Conditions		Am592C			Am592*			Units		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
Differential Voltage Gain	Gain 1			Note 1	$R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V} p-\mathrm{p}$	250	400	600	300	400	500	
	Gain 2	Note 2	80	100		120	90	100	110			
Bandwidth	Gain 1	Note 1			40			40		MHz		
	Gain 2	Note 2			90			90				
Rise Time	Gain 1	Note 1	$V_{\text {OUT }}=1 V_{\text {p-p }}$		11			11		ns		
	Gain 2	Note 2			6.0	12		6.0	10			
Propagation Delay	Gain 1	Note 1	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ p-p		7.5			7.5		ns		
	Gain 2	Note 2			6.0	10		6.0	10			
Input Resistance	Gain 1	Note 1			4.0			4.0		$k \Omega$		
	Gain 2	Note 2		10	30		20	30				
Input Capacitance	Gain 2	Note 2			2.0			2.0		pF		
Input Offset Current					0.4	5.0		0.4	3.0	$\mu \mathrm{A}$		
Input Bias Current					9.0	30		9.0	20	$\mu \mathrm{A}$		
Input Noise Voltage		BW 1 kH	to 10 kHz		12			12		$\mu \mathrm{V}$ rms		
Input Voltage Range						$\pm 1.0$			$\pm 1.0$	Volts		
Common Mode Rejection Ratio	Gain 2	$V C M \pm 1$	, F $<100 \mathrm{kHz}$	60	86		60	86		dB		
	Gain 2	$V C M \pm$	, $F=5 \mathrm{MHz}$		60			60				
Supply Voltage Rejection Ratio	Gain 2	$\Delta V S= \pm$	. 5 V	50	80		50	80		dB		
Output Offset Voltage	Gain 3	Note 3	$\mathrm{R}_{\mathrm{L}}=\infty$		0.2	0.75		0.2	0.75	Volts		
Output Common Mode Voltage		$\mathrm{R}_{\mathrm{L}}=\infty$		2.4	2.9	3.4	2.4	2.9	3.4	Volts		
Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	, Single Ended	3.0	3.9		3.0	3.9		Volts		
Output Resistance					20			20		$\Omega$		
Power Supply Current		$\mathrm{R}_{\mathrm{L}}=\infty$			16	24		16	24	mA		

Recommended Operating Supply Voltage ( $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ )
Notes: 1. Gain select pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.

## TYPICAL APPLICATIONS

DISC/TAPE PHASE MODULATED READBACK SYSTEMS


DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION


FOR FREQUENCY $F_{1} \ll 1 / 2 \pi$ (32) C $v_{0} \geqslant 1.4 \times 10^{4} C \frac{d v i}{d T}$

LIC-822

FILTER NETWORKS

$\mathrm{re}_{\mathrm{e}} \stackrel{\text { r }}{ }_{+6}^{8}$		LOW PASS	$\frac{1.4 \times 10^{4}}{L}\left[\frac{1}{s+R / L}\right]$
	-	HIGH PASS	$\frac{1.4 \times 10^{4}}{R}\left[\frac{s}{s+1 / R C}\right]$
	$0 \text { - }$	BAND PASS	$\frac{1.4 \times 10^{4}}{L}\left[\frac{s}{s^{2}+R / L s+1 / L C}\right]$
$\begin{aligned} \frac{v_{0}(s)}{v_{1}(\mathrm{~s})} & \geqslant \frac{1.4 \times 10^{4}}{Z(\mathrm{~s})+2 \mathrm{r}_{\mathrm{e}}} \\ & \geqslant \frac{1.4 \times 10^{4}}{Z(\mathrm{~s})+32} \end{aligned}$		BAND REJECT	$\frac{1.4 \times 10^{4}}{R}\left[\frac{s^{2}+1 / L C}{s^{2}+1 / L C+s / R C}\right]$

Note: In the networks above, the value used is assumed to include $2 \mathrm{r}_{\mathrm{e}}$, or approximately 32 ohms.
LIC-823

## TEST CIRCUITS

( $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Unless Otherwise Noted)


Differential Video Amplifier

## Distinctive Characteristics

- The Am733 and Am733C differential video amplifiers are functionally, electrically and pin-for-pin equivalent to the Fairchild $\mu \mathrm{A} 733$ and 733C.
- Bandwidths: 40 to 120 MHz
- Rise Times: 2.5 to 10 ns
- Propagation Delay: 3.6 to 10 ns
- $100 \%$ reliability assurance testing in compliance with MIL STD 883.
- Electrically tested and optically inspected dice for hybrid manufacturers.
- Available in metal can, hermetic dual-in-line or hermetic flat packages.

FUNCTIONAL DESCRIPTION   The Am733 is a monolithic two-stage differential input, emitter follower differential output video amplifier. Internal seriesshunt feedback is used to obtain fixed gains of 10,100 or 400 , and adjustable gains from 10 to 400 by the use of an external resistor.				FUNCTIONAL DIAGRAM		
TYPICAL APPLICATION HIGH-GAIN WIDEBAND AMPLIFIER						
$\begin{array}{c}\text { Part } \\ \text { Number }\end{array}$   Am733C      Am733		G INFORMATION Temperature Range	Order   Number   733 HC   733 DC   $733 \times \mathrm{C}$   733 HM   $733 D M$   733 FM   $733 \times M$	CONNECTION DIAGRAMS   Top Views   Dual-In-Line   Flat Package   LIC-828   Metal Can   NOTES:   (1) On Metal Can, pin 5 is connected to case.   (2) On DIP, pin 5 is connected to bottom of package.   (3) On Flat Package, pin 4 is connected to bottom of package.		

MAXIMUM RATINGS

Supply Voltage
Differential Input Voltage
Common Mode Input Voltage
Output Current
Internal Power Dissipation (Note 1)
Operating Temperature Range
Am733C   Am733   Storage Temperature Range   Lead Temperature (Soldering, 60 sec.)

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ unless otherwise specified)

Parameter (see definitions)	Conditions	Am733C			Am733			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Differential Voltage Gain   Gain 1 (Note 2)   Gain 2 (Note 3)   Gain 3 (Note 4)		$\begin{gathered} 250 \\ 80 \\ 8.0 \end{gathered}$	$\begin{gathered} 400 \\ 100 \\ 10 \end{gathered}$	$\begin{gathered} 600 \\ 120 \\ 12 \end{gathered}$	$\begin{gathered} 300 \\ 90 \\ 9.0 \end{gathered}$	$\begin{gathered} 400 \\ 100 \\ 10 \end{gathered}$	$\begin{gathered} 500 \\ 110 \\ 11 \end{gathered}$	
Bandwidth Gain 1 Gain 2 Gain 3	$\mathrm{R}_{5}=50 \Omega$		$\begin{gathered} 40 \\ 90 \\ 120 \end{gathered}$			$\begin{gathered} 40 \\ 90 \\ 120 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Risetime Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {out }}=1 \mathrm{Vpp}$		$\begin{gathered} 10.5 \\ 4.5 \\ 2.5 \\ \hline \end{gathered}$	12		$\begin{gathered} 10.5 \\ 4.5 \\ 2.5 \end{gathered}$	10	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Gain 1 Gain 2 Gain 3	$\bar{R}_{S}=50 \Omega, \mathrm{~V}_{\text {out }}=1 \mathrm{Vpp}$		$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10		$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Resistance   Gain 1   Gain 2   Gain 3		10	$\begin{gathered} 4.0 \\ 30 \\ 250 \end{gathered}$		20	$\begin{gathered} 4.0 \\ 30 \\ 250 \end{gathered}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Input Capacitance	Gain 2		2.0			2.0		pF
Input Offset Current			0.4	5.0		0.4	3.0	$\mu \mathrm{A}$
Input Bias Current			9.0	30		9.0	20	$\mu \mathrm{A}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12			12		$\mu \mathrm{Vrms}$
Input Voltage Range		$\pm 1.0$			$\pm 1.0$			V
Common Mode Rejection Ratio Gain 2   Gain 2	$\begin{aligned} & V_{\mathrm{cm}}= \pm 1 \mathrm{~V}, \mathrm{f} \leq 100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{cm}}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		60	$\begin{aligned} & 86 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		50	70		dB
Output Offset Voltage Gain 1   Gain 2 and Gain 3			$\begin{gathered} 0.6 \\ 0.35 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{gathered} 0.6 \\ 0.35 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
- Output Common Mode Voltage		2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing	Single Ended	3.0	4.0		3.0	4.0		Vpp
Output Sink Current		2.5	3.6		2.5	3.6		mA
Output Resistance			20			20		$\Omega$
Power Supply Current			18	24		18	24	mA

The Following Specifications Apply Over The Operating Temperature Ranges

Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)		$\begin{array}{r} 250 \\ 80 \\ 8.0 \end{array}$	$\begin{gathered} 400 \\ 100 \\ 10 \end{gathered}$	$\begin{array}{r} 600 \\ 120 \\ 12 \end{array}$	$\begin{array}{r} 200 \\ 80 \\ 8.0 \end{array}$	$\begin{gathered} 400 \\ 100 \\ 10 \end{gathered}$	$\begin{array}{r} 600 \\ 120 \\ 12 \end{array}$	
Input Resistance   Gain 1   Gain 2   Gain 3		8.0	$\begin{gathered} 4.0 \\ 30 \\ 250 \end{gathered}$		8.0	$\begin{gathered} 4.0 \\ 30 \\ 250 \end{gathered}$		$k \Omega$ $k \Omega$ $k \Omega$
Input Offset Current			0.4	6.0		0.4	5.0	$\mu \mathrm{A}$
Input Bias Current			9.0	40		9.0	40	$\mu \mathrm{A}$
Input Voltage Range		$\pm 1.0$			$\pm 1.0$			V

Am733C
Am733
(see definitions) Conditions
Min. Typ. Max.
Min.
Typ. Max. Units

The Following Specifications Apply Over The Operating Temperature Ranges

Common Mode Rejection Ratio Gain 2	$V_{c m}= \pm 1 \mathrm{~V}, \mathrm{f} \leq 100 \mathrm{kHz}$	50	86		50	86		dB
Supply Voltage Rejection Ratio Gain 2	$\Delta V_{S}= \pm 0.5 \mathrm{~V}$	50	70		50	70		dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3			$\begin{gathered} 0.6 \\ 0.35 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{gathered} 0.6 \\ 0.35 \end{gathered}$	1.5 1.2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Voltage Swing	Single Ended	2.8	4.0		2.5	4.0		Vpp
Output Sink Current		2.5	3.6		2.2	3.6		mA
Power Supply Current			'	27			27	mA

Notes: 1. Derate metal can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $85^{\circ} \mathrm{C}$ and Dual ln -Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $100^{\circ} \mathrm{C}$.
. Gain Select pins $G_{1 A}$ and $G_{1 B}$ connected together.
3. Gain Select pins $G_{2 A}$ and $G_{2 B}$ connected together.
4. All Gain Select pins open.

## VOLTAGE GAIN ADJUST CIRCUIT



## Metallization and Pad Layout


$41 \times 41$ Mils

## PERFORMANCE CURVES



Gain
Vs. Frequency


Gain Vs.
Frequency and
Supply Voltage


Output Voltage Swing
Vs. Load Resistance


Input Noise Voltage


Gain
Vs. Supply Voltage


Gain Vs.
Frequency and
Temperature


Output Voltage Swing
Vs. Frequency


Gain
Vs. Temperature


Gain
Vs. $R_{\text {Adjust }}$


Output Voltage Swing
And Sink Current
Vs, Supply Voltage


Supply Current
Vs. Temperature


## PERFORMANCE CURVES



Supply Current Vs. Supply Voltage


ALPHA NUMERIC INDEX FUNCTIONAL INDEX


SELECTION GUIDES
INDUSTRY CROSS REFERENCE DICE POLICY
ORDERING INFORMATION MIL-M-38510/MIL-STD-883


COMPARATORS


DATA CONVERSION PRODUCTS


LINE DRIVERS/RECEIVERS

MOS MEMORY AND MICROPROCESSOR INTERFACE

## 5



OPERATIONAL AMPLIFIERS

SPECIAL FUNCTIONS


VOLTAGE REGULATORS

PACKAGE OUTLINES
GLOSSARY
AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS
Voltage Regulators - Section VIII
Am105/205/305/305A Voltage Regulator ..... 8-1
Am723/723CVoltage Regulator8-5

## Am105/205/305/305A

Voltage Regulator

## Distinctive Characteristics

- The Am105/205/305/305A are functionally, electrically, and pin-for-pin equivalent to the National LM 105/205/305/305A.
- Output voltage adjustable from 4.5 V to 40 V .
- Output currents in excess of 10A possible by adding external transistors.
- $100 \%$ reliability assurance testing in compliance with MIL STD 883.
- Electrically tested and optically inspected die for assemblers of hybrid products.


Am105/205/305/305A
MAXIMUM RATINGS

	$\begin{aligned} & 50 \mathrm{~V} \\ & 40 \mathrm{~V} \end{aligned}$
Input-Output Voltage Differential	40 V
Internal Power Dissipation (Note 1)	
Metal Can (Similar to TO-99)	500 mW
	800 mW
Operating Temperature Range	
Am105	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am205	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Am305/305A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 2)

Parameter (see definitions)	Conditions	Am305			Am305A			Am205			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Voltage Range		8.5		40	8.5		50	8.5		50	V
Output Voltage Range		4.5		30	4.5		40	4.5		40	V
Input-Output Voltage Differential		3.0		30	3.0		30	3.0		30	V
Line Regulation (Note 3)	$\begin{aligned} & V_{\text {in }}-V_{\text {out }} \leq 5 \mathrm{~V} \\ & V_{\text {in }}-V_{\text {out }} \geq 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load Regulation (Note 3)	$\begin{aligned} & 0 \leq \mathrm{I}_{\mathrm{O}} \leq 12 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{SC}}=18 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{SC}}=15 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}(\max ) \\ & \mathrm{R}_{\mathrm{SC}}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}(\max ) \\ & \mathrm{R}_{\mathrm{SC}}=18 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}(\min ) \\ & 0 \leq \mathrm{I}_{\mathrm{O}} \leq 45 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{SC}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{SC}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}(\max ) \\ & \mathrm{R}_{\mathrm{SC}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}(\min ) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.03 \\ & \\ & 0.03 \end{aligned}$	$\begin{gathered} 0.05 \\ 0.1 \\ 0.1 \end{gathered}$		$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.02 \\ & \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.1 \end{aligned}$	\%   \%   \%   \%   $\%$   \%   \%
Feedback Sense Voltage		1.63	1.70	1.81	1.55	1.70	1.85	1.63	1.70	1.81	V
Ripple Rejection	$\mathrm{C}_{\text {REF }}=10 \mu \mathrm{f}, \mathrm{f}=120 \mathrm{~Hz}$		0.003	0.01		0.003			0.003	0.01	\%/V
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{C}_{\text {REF }}>0.1 \mu \mathrm{f} \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$			$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$			$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$		$\%$
Standby Current Drain	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{in}}=50 \mathrm{~V} \end{aligned}$		0.8	2.0		0.8	2.0		0.8	2.0	mA
Long Term Stability			0.1	1.0		0.1	1.0		0.1	1.0	\%
Temperature Stability			0.3	1.0		0.3	1.0		0.3	1.0	\%
Current Limit Sense Voltage (Note 4)	$\begin{aligned} & \mathrm{R}_{\mathrm{SC}}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {out }}=0 \mathrm{~V} \end{aligned}$	225	300	375	225	300	375	225	300	375	mV

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $25^{\circ} \mathrm{C}$.
2. These specifications apply over the operating temperature range, for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $2 \mathrm{k} \Omega$, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
3. The output currents given; as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.
4. With no external pass transistor.
5. Connect booster output to unregulated input when no external pass transistor is used.

## PERFORMANCE CURVES



Load Regulation Characteristics With Current Limiting


Optimum Divider Resistance Values


Current Limiting Characteristics


## ADDITIONAL APPLICATIONS

Linear Regulator with Foldback Current Limiting


Metallization and Pad Layout


## Am723/723C

## Voltage Regulator

Description: The Am723 and Am723C monolithic voltage regulators are functionally and electrically equivalent to the Fairchild $\mu$ A723 and $\mu$ A723C. Both are available in the hermetic dual-in-line and metal can packages and are pin for pin replacements for the Fairchild $\mu \mathrm{A} 723$ and $\mu \mathrm{A} 723 \mathrm{C}$.

Distinctive Characteristics: $100 \%$ reliability assurance testing including high-temperature bake, temperature cycling, centrifuge and fine leak hermeticity testing in compliance with MIL-STD-883.
Electrically tested and optically inspected dice for the assemblers of hybrid products.


Am723/723C

## maximum ratings

Pulse Voltage from $\mathrm{V}^{+}$to $\mathrm{V}^{-}(50 \mathrm{msec})$	50 V
Continuous Voltage from $\mathrm{V}^{+}$to $\mathrm{V}^{-}$	40 V
Input-Output Voltage Differential	40 V
Maximum Output Current	150 mA
Current from $\mathrm{V}_{\mathrm{Z}}$	25 mA
Current from $\mathrm{V}_{\text {REF }}$	15 mA
Internal Power Dissipation (Note 1) Metal Can DIP	$850 \mathrm{~mW}$ $900 \mathrm{~mW}$
Operating Temperature Range $\begin{aligned} & \text { Am 723C } \\ & \text { Am } 723 \end{aligned}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Note 2)

Parameter			m723C			Am723		
(see definitions)	Conditions	Min	Typ	Max	Min	Typ	Max	Units
Line Regulation (Note 3)	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V} \text { to } V_{\text {IN }}=15 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V} \text { to } V_{\text {IN }}=40 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.01 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \% v_{\text {OUT }} \\ & \% \mathrm{~V}_{\text {Out }} \end{aligned}$
Load Regulation (Note 3)	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$		0.03	0.2		0.03	0.15	$\% \mathrm{~V}_{\text {OUT }}$
Ripple Rejection	$\begin{aligned} & f=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{f}=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 74 \\ & 86 \end{aligned}$			$\begin{aligned} & 74 \\ & 86 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Short Circuit Current Limit	$\mathrm{R}_{\text {SC }}=10 \Omega, \mathrm{~V}_{\text {OUT }}=0$		65			65		mA
Reference Voltage		6.80	7.15	7.50	6.95	7.15	7.35	V
Output Noise Voltage	$\begin{aligned} & \mathrm{BW}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{BW}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 20 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 20 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \mu V_{\text {rms }} \\ & \mu V_{\text {rms }} \end{aligned}$
Long Term Stability			0.1			0.1		\%/1000 hrs
Standby Current Drain	$\mathrm{I}_{\mathrm{L}}=0, \mathrm{~V}_{\mathrm{IN}}=30 \mathrm{~V}$		2.3	4.0		2.3	3.5	mA
Input Voltage Range		9.5		40	9.5		40	V
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	V
The Following Specifications Apply	ly Over The Operating Temperature R							
Line Regulation	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$			0.3			0.3	$\% \mathrm{~V}_{\text {Out }}$
Load Regulation	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$			0.6			0.6	$\% \mathrm{~V}_{\text {OUT }}$
Average Temperature Coefficient of Output Voltage			0.003	0.015		0.002	0.015	\%/ ${ }^{\circ} \mathrm{C}$

Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $25^{\circ} \mathrm{C}$ and $\mathrm{Dual}-\mathrm{In}-\mathrm{Line}$ package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $50^{\circ} \mathrm{C}$.
2. Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V+=V_{C}=12 \mathrm{~V}, V-=0 V, V_{\text {out }}=5 V, I_{L}=1 \mathrm{~mA}, R_{S C}=0, C_{1}=100 \mathrm{pF}, C_{R E F}=0$ and divider impedance as seen by error amplifier $\leqslant 10 \mathrm{k} S 2$ when connected as shown in Fig. 3 .
3. The load \& line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.

## PERFORMANCE CURVES



Current Limiting Characteristics As A
Function of Junction Temperature


Load Transient Response


Line Transient Response


Maximum Load Current As A Function Of Input-Output Voltage Differential


Maximum Load Current As A Function Of Input-Output Voltage Differential


Line Regulation As A Function Of Input-Output Voltage Differential


Load Regulation As A Function Of Input-Output Voltage Differential


Load Regulation Characteristics With Current Limiting


Load Regulation Characteristics Without Current Limiting


Load Regulation
Characteristics With Current Limiting



ALPHA NUMERIC INDEX FUNCTIONAL INDEX
SELECTION GUIDES INDUSTRY CROSS REFERENCE DICE POLICY
ORDERING INFORMATION
MIL-M-38510/MIL-STD-883

COMPARATORS

DATA CONVERSION PRODUCTS

LINE DRIVERS/RECEIVERS

MOS MEMORY AND MICROPROCESSOR INTERFACE

OPERATIONAL AMPLIFIERS


SPECIAL FUNCTIONS

VOLTAGE REGULATORS


PACKAGE OUTLINES
GLOSSARY
AMD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

## Section IX

Package Outlines
Glossary ..... 9-5
AMD Field Sales Offices, Sales Representatives, Distributor Locations ..... 9-10

## PACKAGE OUTLINES

## METAL CAN PACKAGES

H-8-1


H-10-1


G-12-1


Parameters	H.8-1		H-10-1		G-12-1	
	Min.	Max.	Min.	Max.	Min.	Max.
A	. 165	. 185	. 165	. 185	. 155	. 180
e	. 185	. 215	. 215	. 245	. 390	. 410
e1	. 090	. 110	. 105	. 125	. 090	. 110
F	. 013	. 033	. 013	. 033	. 020	. 030
k	. 027	. 034	. 027	. 034	. 024	. 034
k1	. 027	. 045	. 027	. 045	. 024	. 038
L	. 500	. 570	. 500	. 610	. 500	. 600
$\mathrm{L}_{1}$		. 050		. 050		
$\mathrm{L}_{2}$	. 250		. 250			
$\alpha$	$45^{\circ} \mathrm{BSC}$		$36^{\circ} \mathrm{BSC}$		$45^{\circ}$	
$\phi \mathbf{b}$	. 016	. 019	. 016	. 019		
$\phi \mathrm{b}_{1}$	. 016	. 021	. 016	. 021	. 016	. 021
$\phi \mathrm{D}$	. 350	. 370	. 350	. 370	. 590	. 610
$\phi \mathrm{D}_{1}$	. 305	. 335	. 305	. 335	. 540	. 560
$\phi \mathrm{D}_{2}$	. 120	. 160	. 120	. 160	. 390	. 410
Q	. 015	. 045	. 015	. 045		

Notes: 1. Standard lead finish is bright acid tin plate or gold plate.
2. $\phi \mathrm{b}$ applies between $\mathrm{L}_{1}$ and $\mathrm{L}_{2} . \phi \mathrm{b}_{1}$ applies between $\mathrm{L}_{1}$ and $0.500^{\prime \prime}$ beyond reference plane.

## PACKAGE OUTLINES (Cont.)

P-8-1
8-LEAD MOLDED DUAL-IN-LINE


P-16-1
16-LEAD MOLDED DUAL-IN-LINE


P-24-1
24-LEAD MOLDED DUAL-IN-LINE


P-14-1
14-LEAD MOLDED DUAL-IN-LINE (TO-116)


P-20-1
20-LEAD MOLDED DUAL-IN-LINE


P-28-1
28-LEAD MOLDED DUAL-IN-LINE


DIMENSIONS (inches)

Parameters	P-8-1		P-14-1		P-16-1		P-20-1		P-24-1		P-28-1	
	Min.	Max.										
A	. 150	. 200	. 150	. 200	. 150	. 200	. 150	. 200	. 170	. 215	. 150	. 200
b	. 015	. 022	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020
$\mathrm{b}_{1}$	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065
c	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011
D	. 375	. 395	. 745	. 775	. 745	. 775	1.010	1.050	1.240	1.270	1.450	1.480
E	. 240	. 260	. 240	. 260	. 240	. 260	. 250	. 290	. 515	. 540	. 530	. 550
$E_{2}$	. 310	. 385	. 310	. 385	. 310	. 385	. 310	. 385	. 585	. 700	. 585	. 700
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 160	. 125	. 160
Q	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060
$\mathrm{S}_{1}$	. 010	. 030	. 040	. 065	. 010	. 040	. 025	. 055	. 035	. 065	. 040	. 070

## PACKAGE OUTLINES (Cont.)

D-8-1
8-LEAD HERMETIC DUAL-IN-LINE



D-16-1
16-LEAD HERMETIC DUAL-IN-LINE


D-24-1
24-LEAD HERMETIC DUAL-IN-LINE

D.14-1

14-LEAD HERMETIC DUAL-IN-LINE


tD-14-3
14-LEAD METAL HERMETIC DUAL-IN-LINE


D-20-1
20-LEAD HERMETIC DUAL-IN-LINE


D-28-1
28-LEAD HERMETIC DUAL-IN-LINE


DIMENSIONS (inches)

Parameters	D-8-1		D-14-1		$\begin{gathered} \text { D-14-3 } \\ \text { (Note 2) } \end{gathered}$		D-16-1		D-20-1		D-24-1		D-28-1	
	Min.	Max.												
A	. 130	. 200	. 130	. 200	. 100	. 200	. 130	. 200	. 140	. 220	. 150	. 225	. 150	. 225
b	. 016	. 020	. 016	. 020	. 015	. 023	. 016	. 020	. 016	. 020	. 016	. 020	. 016	. 020
$\mathrm{b}_{1}$	. 050	. 070	. 050	. 070	. 030	. 070	. 050	. 070	. 050	. 070	. 045	. 065	. 045	. 065
C	. 009	. 011	. 009	. 011	. 008	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 012
D	. 370	. 400	. 745	. 785	. 660	. 785	. 745	. 785	. 935	. 970	1.230	1.285	1.440	1.490
E	. 240	. 285	. 240	. 285	. 230	. 265	. 240	. 310	. 245	. 285	. 510	. 545	. 510	. 545
$\mathrm{E}_{1}$	. 300	. 320	. 290	. 320	. 290	. 310	. 290	. 320	. 290	. 320	. 600	. 620	. 600	. 620
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 125	. 150	. 125	. 150	. 100	. 150	. 125	. 150	. 125	. 150	. 120	. 150	. 125	. 150
Q	. 015	. 060	. 015	. 060	. 020	. 080	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060
$\mathrm{S}_{1}$	. 004		. 010		. 020		. 005		. 005		. 010		. 010	
$\alpha$	$3^{\circ}$	$13^{\circ}$												

## PACKAGE OUTLINES (Cont.)

F-10-1
10-LEAD CERPAK


F-16-1
16-LEAD CERPAK


F-24-1
24-LEAD CERPAK

†F-10-2
10-LEAD FLAT PACKAGE


F-14-1
14-LEAD CERPAK


F-20-1 20-LEAD CERPAK


F-28-2
28-LEAD FLAT PACKAGE


DIMENSIONS (inches)

Parameters	F-10-1		F-10-2		F-14-1		F-16-1		F-20-1		F-24-1		F-28-1	
	Min.	Max.												
A	. 045	. 080	. 045	. 080	. 045	. 080	. 045	. 085	. 045	. 085	. 050	. 090	. 045	. 080
b	. 015	. 019	. 012	. 019	. 015	. 019	. 015	. 019	. 015	. 019	. 015	. 019	. 015	. 019
c	. 004	. 006	. 003	. 006	. 004	. 006	. 004	. 006	. 004	. 006	. 004	. 006	. 003	. 006
D	. 230	. 255	. 235	. 275	. 230	. 255	. 370	. 425	. 490	. 520	. 580	. 620	. 360	. 410
$\mathrm{D}_{1}$				. 275										. 410
E	. 240	. 260	. 240	. 260	. 240	. 260	. 245	. 285	. 245	. 285	. 360	. 385	. 360	.410
$E_{1}$		. 275		. 280		. 275		. 290		. 290		. 410		.410
e	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055
L	. 300	. 370	. 300	. 370	. 300	. 370	. 300	. 370	. 300	. 370	. 265	. 320	. 270	. 320
$\mathrm{L}_{1}$	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 955	1.000
Q	. 010	. 040	. 010	. 040	. 010	. 040	. 020	. 040	. 020	. 040	. 020	. 040	. 010	. 040
$\mathrm{S}_{1}$	. 005		. 005		. 005		. 005		. 005		. 005		0	

## GLOSSARY

$\triangle I_{O S} / \triangle T_{A} \quad$ Average Temperature Coefficient of Input Offset Current - The ratio of the change in input offset current, over the operating temperature range, to the operating temperature range. $\left(\mathrm{pA} /{ }^{\circ} \mathrm{C}\right)$
$\Delta V_{\mathrm{OS}} / \Delta \mathrm{T}_{\mathrm{A}} \quad$ Average Temperature Coefficient of Input Offset Voltage - The ratio of the change in input offset voltage, over the operating temperature range, to the operating temperature range. $\left(\mu \vee /{ }^{\circ} \mathrm{C}\right)$

BW Bandwidth - The frequency at which the gain of the device is 3 dB below its low frequency value.
Channel Separation - The log of the ratio of the input of an undriven amplifier to the output of an adjacent driven amplifier. (dB)

VOHC Clamped Output High Voltage - The voltage potential necessary to turn on (forward bias) the clamping diode on the output pin. (V)

VOLC Clamped Output Low Voltage - The voltage potential necessary to turn off (reverse bias) the clamping diode on the output pin. (V)
fclock Clock Frequency - The reciprocal of the clock period; the clock repetition rate.
Clock Input, Amplitude - The peak amplitude of the clock signal.
tPW Clock Input, Width - The time duration of the clock pulse.
Common Mode Gain - The ratio of the output voltage change to the input common mode voltage producing that change.
Common Mode Input Overload Recovery Time - The time delay between removal of an input common mode voltage outside the input common mode range, and resumption of normal device operation. (ns)
Common Mode Input Resistance - The value of resistance with respect to a common mode signal, seen when looking into both inputs. ( $\Omega$ )
Common Mode Input Voltage Swing - The peak value of the common mode input voltage at which the device will operate in a linear fashion. (V)

Common Mode Output Voltage - The output voltage resulting from the application of a voltage common to both inputs and the average of the two output voltages of a differential output amplifier. (V)
CMRR

VCM Common Mode Voltage - The arithmetic mean of the voltage present at the differential inputs with respect to the device ground reference. (V)
$t_{d} \quad$ Delay Time - See Propagation Delay. (ns)
Differential Input Bias Current - The current required in the differential input stage to bias the stage into operation.

Differential Input Capacitance - The effective capacitance between the two inputs, operating open loop.
Differential Input Impedance - The impedance seen looking between the input terminals.
Differential Input Offset Current - The difference in currents required by the transistors in the input stage to bias the input stage to its quiescent operation point.

Differential Input Overload Recovery Time - The time delay between removal of a differential input voltage that exceeds the differential input voltage operating range, and resumption of normal device operation.
Differential Input Resistance - The effective resistance between the two inputs, operating open loop.
Differential Input Threshold Voltage - The voltage difference between the + and - inputs required to guarantee the output logic state.
Differential Input Voltage Range - The range of voltage applied between the input terminals for which operation remains within specifications.
Differential Load Rejection - The ratio of the change in input offset voltage to the change in differential load current.

Differential Output Resistance - The resistance measured between the two output terminals.
Differential Output Voltage Swing - The peak differential output voltage that can be obtained without clipping the output voltage waveform.
Differential Voltage Gain - The ratio of the change in differential output voltage to the change in differential input voltage.
VDO Dropout Voltage - The input-output voltage differential that causes the output voltage to decrease by $5 \%$ of its initial value. (V)

## GLOSSARY (Cont.)

tZH Enable HIGH - The delay time from a control input change to the three-state output high-impedance to HIGH. level transition.
tZL Enable LOW - The delay time from a control input change to the three-state output high-impedance to LOW-level transition.
in Equivalent Input Noise Current - The input noise current that would reproduce the noise seen at the output if all amplifier noise sources were set to zero and the source impedances were large compared to the optimum source impedance. ( $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ )
$\mathrm{e}_{\mathrm{n}} \quad$ Equivalent Input Noise Voltage - The input noise voltage that would reproduce the noise seen at the output if all amplifier noise sources and the source resistances were set to zero. ( $\mathrm{nV} / \sqrt{\mathrm{Hz} \text { ) }}$
tf Fall Time - The time required for the signal to fall from $90 \%$ to $10 \%$ of its output value into a specified load network. (ns)
Feedback Capacitance - The effective value of the capacitive coupling from output to input.
$V_{\text {sense }} \quad$ Feedback Sense Voltage - The voltage measured on the feedback terminal of the regulator, with respect to ground, when the device is operating in regulation. (V)

Frequency Response - The frequency at which the output drops to 0.707 of its low frequency value.
$f_{t}$
H
$h_{f e}$
thZ
th Hold Time - The time interval for which a signal must be retained at one input after an active transition occurs at another input terminal.
$\Delta V_{T H} \quad H y s t e r e s i s ~-~ T h e ~ v o l t a g e ~ d i f f e r e n c e ~ b e t w e e n ~ t h e ~ s w i t c h i n g ~ p o i n t s ~ o f ~ t h e ~ d e v i c e . ~ S e e ~ L o w e r ~ I n p u t ~ T h r e s h o l d ~ V o l-~$ tage and Upper Input Threshold Voltage.
I
IBIAS

CIN
VIH
$V_{C}$

CMVR Input Common Mode Voltage Range - The range of common mode input voltage over which the device will operate within specifications. (V)
IIN Input Current - The current flowing into the input with a specified voltage applied to the input.
Input Current at Maximum Input Voltage - The current into a TTL or DTL input with the absolute maximum allowed input voltage applied to the input.
$I_{F}$
Input Forward Current - See Input LOW Current.
$I_{1 H}$
Input HIGH Current - The current flowing out of an input when a specified LOW voltage is applied.
Input HIGH Voltage - The range of input voltages that represents a logic HIGH in the system.
Input Latch Voltage - See Input Clamp Diode Voltage.
IIL Input LOW Current - The current flowing out of an input when a specified LOW voltage is applied.
VIL Input LOW Voltage - The range of input voltages that represents a logic LOW in the system.
Input Noise Voltage - The rms noise voltage present at the amplifier output divided by the gain of the amplifier, measured with the inputs connected to ground through a low resistance. ( $e_{\mathrm{n}}$ )
IOS Input Offset Current - The difference in current into the two input terminals with the output voltage at zero. In a comparator, it is the difference between the two input currents with the output at the logic threshold voltage. Also, it is defined as the difference in input currents required to give equal output currents from a matched pair of devices. (nA or pA)
Input Offset Current Drift - The change in input offset current produced with time, voltage or temperature.

VOS
$\Delta V, \Delta t(p A \rho C, V, s)$
Input Offset Voltage - The voltage applied between the input terminals to obtain zero output voltage. In Compar-

## GLOSSARY (Cont.)

ators, it is the voltage applied to the input terminals to give the logic threshold voltage at the output. It is also defined as the input voltage differential required to give equal output currents from a matched pair of devices. (mV)
$\Delta V_{O S} / \Delta T$, Input Offset Voltage Drift - The change in input offset voltage with time, voltage or temperature. ( $\mu \mathrm{V} /{ }^{\rho} \mathrm{C}, \mathrm{V}, \mathrm{s}$ )

## $\Delta V, \Delta t$

Input-Output Voltage Differential - The voltage range between the unregulated input voltage and the regulated output voltage in which a regulator operates within specifications.
RIN Input Resistance - The equivalent resistance seen looking into either input terminal with the other terminal grounded. ( $\mathrm{M} \Omega$ )
IR Input Reverse Current - See Input HIGH Current. ( $\mu \mathrm{A}$ )
Input to Output Delay - See Propagation Delay.
VIN Input Voltage - The voltage potential between the input terminal and the device ground reference. (V)
VIN(MIN)
Input Voltage (Min) - The minimum voltage required to bias the reference to specification limits. (V)
VIN Input Voltage Range - The range of voltage on an input terminal over which the device operates as specified. (V) Large Signal Voltage Gain - The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
$\Delta V_{\text {OUT }} / \Delta V_{\text {IN }}$ Line Regulation - The change in output voltage for a specified change in input voltage. ( mV •or $\%$ ) Linearity - The deviation of the characteristic from a straight line.
$\triangle V_{O U T} / \triangle I_{L} \quad$ Load Regulation - The change in output voltage for a specified change in load current. ( mV or \%)
L LOW - Applying to a LOW voltage level.
tLZ LOW to Disable - The delay time from a control input change to the three-state output LOW-level to high-impedance transition (measured at 0.5 V change).
VILMAX Maximum input LOW voltage - The maximum allowed input LOW in a system. This value represents the guaran-
VIHMIN Minimum input HIGH Voltage - The minimum allowed input HIGH in a logic system. This value represents the

VT- Negative-going Threshold Voltage - The input voltage of a variable threshold device that is interpreted as a VIL as the input transition falls from above $\mathrm{V} T+(M A X)$
Negative Current - Current flowing out of the device.
NF Noise Figure - The ratio of the input signal-to-noise ratio to the output signal-to-noise ratio. Usually expressed as common log. (dB)

1/F Noise - The noise measured at a specified low frequency below the frequency range where the device noise spectrum is essentially flat. ( $n \mathrm{~V}$ )
AVOL $\quad \begin{aligned} & \text { Open Loop Voltage Gain }- \text { The ratio of the output signal voltage to the differential input signal voltage, with no } \\ & \text { feedback applied. ( } \mathrm{dB} \text { or } \mathrm{V} / \mathrm{mV} \text { ) } \\ & \text { Oscillator Control Sensitivity - The ratio of the change in oscillator frequency to the change in control voltage } \\ & \text { causing it. } \\ & \text { Oscillator Pull-In Range - The range of free-running frequency over which the oscillator is locked to the incoming } \\ & \text { signal. }\end{aligned}$
O Output.
Output Common Mode Voltage - The arithmetic mean of the two output voltages for devices with differential outputs.
$\mathrm{IOH} \quad$ Output High Current - The current flowing out of an output which is in the HIGH state.
VOH Output HIGH Voltage - The minimum voltage at an output terminal for the specified output current loH and at the minimum value of $V_{C C}$.
VOL Output Low Voltage - The maximum voltage at an output terminal sinking the maximum specified load current $I^{\prime} \mathrm{OL}$ and at the minimum value of $\mathrm{V}_{\mathrm{CC}}$.
Zo Output Impedance - The equivalent impedance seen looking into the output terminal. ( $\Omega$ )
ICEX Output Leakage Current - The leakage current into the output transistor at the specified output voltage potential for uncommitted or open-collector outputs. ( $\mu \mathrm{A}$ )
IOL Output LOW Current - The current flowing into an output which is in the LOW state.

## GLOSSARY (Cont.)

$\mathrm{en}_{\text {no }}$	Output Noise Voltage - The rms value of the noise voltage measured at the output with constant load current and no input ripple. ( $\mu \mathrm{V}$ )
IOZH	Output Off Current HIGH - The current flowing into a disabled 3-state output with a specified HIGH output voltage applied.
IOZL	Output Off Current LOW - The current flowing out of a disabled 3-state output with a specified LOW output voltage applied.
	Output Offset Voltage - The voltage difference between the two outputs with both inputs grounded.
Ro	Output Resistance - The small signal ac resistance seen looking into the output with no feedback applied and the output dc voltage near zero. For comparators, it is the resistance seen looking into the output with the dc output level at the logic threshold. ( $\Omega$ )
	Output Saturation Voltage - The dc voltage between output and ground in the saturated condition.
ISC	Output Short Circuit Current - The current flowing out of an output which is in the HIGH state when that output is short circuited to ground (or other specified potential).
ISINK	Output Sink Current - The maximum current into the collector of an open-collector device. (mA)
VOUT	Output Voltage - The voltage present at the output terminal referred to ground. (V)
$\triangle V_{\text {OUT }}$	Output Voltage Range - The range of output voltages over which the specifications apply. (V)
$\pm$ VOUT	Output Voltage Swing - The peak output voltage swing, referred to zero, that can be obtained wihtout clipping the output voltage waveform. (V)
	Overshoot - The difference between the peak amplitude of the output and the final value of the output divided by the output times $100 \%$. (\%)
IOUT(Pk)	Peak Output Current - The maximum current delivered by the device for a period too short for thermal protection to be activated. (A)
	Phase Margin - The difference between $180^{\circ}$ and the phase shift at the frequency where the open loop gain equals unity.
$\mathrm{V}_{\mathrm{T}+}$	Positive-going Threshold Voltage - The input voltage of a variable threshold device that is interpreted as a $\mathrm{V}_{1 H}$ as the input transition rises from below $\mathrm{V}_{\mathrm{T}}$-(MIN).
tPW	Pulse Width -
	Power Bandwidth The maximum frequency at which the maximum output can be maintained without significant distortion.
	Power Consumption - The dc power required to operate the device under no load conditions.
$P_{\text {d }}(\mathrm{MAX})$	Power Dissipation (Max) - The maximum power that can be dissipated in the device with a given heat sink beyond which the device may not perform to specification. (mW)
Iss	Power Supply Current - The current required from the power supply to operate the amplifier with no load and no signal applied. (mA)
PSRR	Power Supply Rejection Ratio - The ratio of the change in input offset voltage to the change in power supply voltage producing it. ( $\mu \mathrm{V} / \mathrm{V}$ )
	Power Supply Sensitivity - The ratio of the change of a specified parameter to the change in supply voltage.
$\mathrm{t}_{\mathrm{pd}}$	Propagation Delay - The time interval between application of an input voltage step and its arrival at the output.
IQ	Quiescent Current - That part of a regulator input current that is not delivered to the load. (mA)
	Quiescent Output Current - The output current with no signal applied to the input.
Iref	Reference (Control) Current - The current drawn or supplied by the reference (control) terminal. ( $\mu \mathrm{A}$ )
$V_{\text {REF }}$	Reference Voltage - The output of the reference amplifier measured with respect to the negative supply. (V)
IRIN	Response Control Input Current - The current flowing out of the response control pin that is available to charge the response control capacitor.
$t_{\text {resp }}$	Response Time - The interval between the application of an input step function and the time when the output voltage crosses the logic threshold level. (ns)
$\mathrm{trr}^{\text {r }}$	Reverse Recovery Time - The time taken for the reverse recovery current to fall to a specified value after removal of the reverse bias under specified conditions. (ns)
${ }^{\text {tR }}$	Release Time - The time interval for which a signal may be indeterminant at one input terminal before an active transition occurs at another input terminal. (The release time falls within the set-up time interval and is specified by some manufacturers as a negative hold time).

## GLOSSARY (Cont.)

Ripple Rejection - The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage. (dB)
Rise Time - The time interval required for a signal to rise from $10 \%$ to $90 \%$ of its final amplitude. (ns or $\mu \mathrm{s}$ )
Settling Time .- The time from a step change of input to the time the corresponding output settles to within a specified percentage of the final value. (ns)
Set-up Time - The time interval for which a signal must be applied and maintained at one input terminal before an active transition occurs at another input terminal.
Short-Circuit Current Limit - The output current of a regulator with the output shorted to common (ground). (mA)
Short-Circuit Load Current - The maximum output current which the device will provide into a short-circuit.
SR Slew Rate - The maximum rate of change of output under large signal conditions. ( $\mathrm{V} / \mu \mathrm{s}$ )

Standby Current Drain - The supply current drawn by a regulator with no output load and no reference voltage load (see Quiescent Current).
$\mathbf{t}_{\mathbf{s}} \quad$ Storage Time - The propagation delay due to stored charge in the transistor. (ns)
Strobe Activation Voltage - The voltage applied to the strobe terminal beyond which the device does not respond to the conditions at the input terminals. (V)

IStrobe Strobe Current - The maximum current taken by the strobe terminal during activation. ( $\mu \mathrm{A})$
Strobe Release Time - The time required for the outputs to rise to the logic threshold voltage after the strobe terminal has been activated.

Strobed Output Level - The dc output voltage, independant of input voltage, with the voltage on the strobe terminal in excess of the strobe activation voltage. (V)

ICC Supply Current - The current flowing into the VCC supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst case operation.

Supply Regulation - The change in internal device supply voltage for a specified change in external power supply voltage.
VCC Supply Voltage - The range of power supply voltage over which the device is guaranteed to operate within the specified limits.
Supply Voltage Rejection Ratio - See Power Supply Rejection Ratio.
Switching Speed - See Propagation Delay.
tPLH The propagation delay time from an input change to an output LOW-to-HIGH transition.
tPHL The propagation delay time from an input change to an output HIGH-to-LOW transition.
Temperature Coefficient - See Average Temperature Coefficient of specific parameter.
$\Delta V_{\text {OUT }} / \Delta \mathrm{T}_{\mathrm{A}}$ Temperature Stability - The percentage change in output voltage over a specified ambient temperature range (V/ ${ }^{\circ} \mathrm{C}$ )

Terminating Resistance - The resistance normally used to provide a termination to a transmission line.
VTH Threshold Voltage - The input voltage at which the output logic level changes state. (V)
fMAX Toggle Frequency/Operating Frequency - The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function.
THD Total Harmonic Distortion - The rms value of the harmonic content of a signal expressed as a percentage of the rms value of its fundamental.
Transient Response - The closed loop step function response of the circuit under small signal conditions.
Transition Time, HIGH to LOW Output - See Fall Time.
Transition Time, LOW to HIGH Output - See Rise Time.
tPHL Turn-on Time - See Propagation Delay Time, HIGH to LOW Output. (ns)
$f_{t} \quad$ Unity Gain Bandwidth - The frequency at which the open loop gain is reduced to unity. ( MHz )
VTH+ Upper Threshold Voltage - The input voltage that causes the output to change logic stage, when the input voltage is increasing in a device with hysteresis.
AV Voltage Gain - The ratio of the output voltage to the input voltage under small signal conditions. For comparators, it is the ratio of the change in output voltage to the change in voltage between the input terminals, with the dc output in the vicinity of the logic threshold. ( dB or $\mathrm{V} / \mathrm{mV}$ )

LES OFFICES AND REPR	atives				
SOUTHWEST AREA Advanced Miero Devices 9595 Wishree Eloulevarid Sute 401   Beverly Hults. Callorma 90212   Tel ${ }^{[21313} 278.9700$   12133 1278.9701 910.490 .2143   Advanced Micro Devices   1414 West Broadway Road Sulde 239   Tempe. Arizona 85282   Tel (602) 244.951   TWX 910 95,-4216   Advanced Micra Devices   1201 Dove Stree: Sulle 250   Newporl Beach, CA 92660 Tel 17141 752-6262   Adyanced Micro Devices 13771 No. Central Expy Suite 1008 Dallas Tex   Tel 1214) 2345243   TwX 910 867.4795	NORTHWEST AREA Advanced Micro Devices 3350 Scott Boulevard Sute 1002   Tel   Tel (408) 727-1300   Advanced Micre Devices   7100 Broadway   Blag 6. Penthouse Sulte 0   Denver. CO 80221   Tel (303) 427.3307   TWX 910-931.2562   Advanced Micro Devices   6443 S W. Beaverton Highway Sulte 410   Pontand OR 97221   Tel is03) 292-26566 $\mathrm{TWX} 910.454-4792$	MID-AMERICA AREA Advanced Micro Devices 2625 Butterfield Road Sulie 225 N   Oak Brook. Mlinols 60521   Tel (312) 323.9600   (312) 323.9601 $\times 910.254 .2295$   Advanced Micro Devices 8009 34th Ave $S$   Bloominglon, Minnesota 55420   Tel (612) 854.6500   (612) 854.6520   Aduanced Micro Devices   Commerce Center   1631 N W. Prolessional Plaza   Sulte 204   Columbus. OH 43220   Advanced Micro Devices   33150 Schoolcratt   Lvonia. Michıgan 48150   Tel WX 810.242 .8777	MID-ATLANTIC AREA   Advanced Micro Devicus 99 Powerhouse Road Sulte 303   Roslyn Heights. N. Y. 11577   Tel: ( 516 ) 484-4990   ( 516 ) 484.4991 $\times 510-223.0649$   Advanced Micro Devices 6806 Newbrook Ave E. Syracuse. N.Y. 13057 Tel (315) 437.7546 TELEX: 93-7201   Advanced Micro Oevices 2 kilmer Poad   Edison. New Jersey 08817 Tel (201) $985-6800$	NORTHEAST AREA Advanced Micro Devices 300 New Boston Park Woburn, Massachusetts 10801 Tel (617) 933-1234	SOUTHEAST AREA   Advanced Micro Devices   6100 Ealtimore National Pike   Battimore, MD 21228   Tel: (301) 744-8233   Advanced Micro Devices   1001 N W. 62nd Street   Sule 409   Tel Lauderdale, FL 33309   Tel (305) 771.6510 TWX 510.955 .9490   TWX 510.955.9490
Advanced Micro Devices In   belaium   Advanced Micro Devices   Avenue de Tervueren, 412   bie 9   1150 Brussels. Belgium   Tel: (02) 7719993   TELEX 61028	ational Sales Offices   france   Advanced Micro Devices SA   Silic 314   74. Rue CAitucit   94588 Rungrs Cedex. France   Tel: (1) $686-91-86$   TELEX: 202053	GERMANY   Advanced Micro Devices   Mikro Elektronik Resennermerstr 139   D-8000 Muenchen 80   West Germany   Tel: $(089) 401976$ TLX: 0523883 (AMD   TLX: 0523883 (AMD D)	Advanced Micro Devices   Mikro Elentronik GmbH Buro Sudwestdeutschid Ronart-L picht-Strasse 128 D-7000 Stuttgart-Vaihingen West Germany Tel: 0711.681001	JAPAN   Advanced Micro Devices, K.K. Dar-San Hoya Building. 1-8-17, Kamitakaido Suginamı-ku. I Ckyo 168 vapan TLX 2324064	UNITED KINGDOM   Advanced Micro Devices. UK Lid 16 Grosvenor Place   London. SW $1 \times 7 \mathrm{HH}$. England      (01) 235-6389   TELEX: $88-68.33$
International Sales Represe   australia   AJ Ferguson Piy lio   44 Prospect Rd   Prospect. S Australa 5082   TELEX 18269.1244   P and D Electroncs   Postorice sox 206   Burwood 3125   Australia   TLXX AA3 103289232   $R$ and $D$ Electronics   P. O. Box 57   Crows Nest NSW 2065   Syaney Australa   TLX 〈 790 ) 25468   AUSTRIA   Elbatex GmbH      Austria   Te. $10222 ; 885611$ TWX 01128   belgium   MCA Tronix   62 Roule Du Condroz   ${ }_{T e l}^{4200}$ Ougree Belgum   TELEX 42052   brazil   leatron SA.   ind de Componentes Electronicos   $05110 \cdot \mathrm{Av}$ Mulngaz 3650.60 Andar   Pirtuta San Praulo   Caxa Postal 1375   Blazi   TLX   TLX. ( 011 ) $222741 C 0$ В   DENMARK   Advanced Electronic of Denmark   Godthabsve) 7   Denmark   Tel (as)   Tel (45) (1) 194433 TLX $055: 22431$   FINLAND   Komdel Oy Box 32   02211 Espoo-21   Firland   Tel (0) 885011   Shipping   Maapallonkatu 8   O2210 Espoo. 21 Finland	ives and Distributors   FRANCE   A2M   18 Avenue Dulartre   78150 Le Chesnay   France   Tel: (1) 955-32.49   TLX: 698376 (AMM)   Radro Television Francaise   73. Av. Ch. De Gaulle   92202 Neully-Sur-Sene   Tel. 747.11-01 TELEX: 611985   GERMANY   Cosmas Electronic GmbH   Hegelstrasse 16   D-8000 Muenchen 83   West Germany   Tel: (089) 602088   EBV-Elektronik   Gabriel Max Str. 72   D. 8000 Muenchen 90   Tel 089-644055   EBV-Elektronix   Oststr. 129   D. 4000 Duesseldort   Tel: $0211-84846$   ELEX: 0-8587267   EBV-Elektronik   In der Merneworth 9A   D. 3006 Burqwedel 1   EBV.Elektronik   Myluusstr 54   D. 6000 Frankfurt 1   TELEX: $0-413590$   EBV-Elektronk   Alexanderstr. 42 D. 7000 Siutigart   Tel: 0711 -247481   TELEX: 0.722271   Elbatex GmbH   Cacilenstrasse 24   West Germany   Tel: 07131.89001 TELEX: 0.728362   Nordelektronik Vertriebs GmbH   Bahnhofstr. 14   D. 2301 Kier-Raiscort   West Germany   Nordelektronik Vertriebs GmbH Harksheiderweg 238-240 2085 Quickborn West Germany   West Germany Tel $\{04106\} 4031$ TELEX: $0-214299$	holland   Van Almondestraat 6   B.O. Box 344   Oss   Holland   Tel: 04120.24200   TELEX 50835   HONG KONG   Ace Enterpnse   Suite 1212   363 Nathan Road   Tel: 3-302925 Kong   3-302927   INDIA   Zenith Electronics   541 Panchratna   Mama Parmanand Marg   Dombay 400004   India   Tel 384214   TELEX: 0113152   FEGU   260 Sheridan Ave   Palo Alto, CA 94306 Tel: (415) 493-1788   TELEX: 345.599   Sujata Sales and Exports Ltd.   11.2 Bajaj Ghavan   Nariman Point   Bombay 21. India   Tel: 3254275 TLX. 011.3855   American Components   1601 Civic Center Drive   Santa Clara, CA 95050   CABLE: ELCOMP TLX: 352073   Ashwin Enterprises   28. Ilro Cross   Shankarapuram Bangalore 56004   India   Tel: 62120   Ashwin Enterprises   86 Dix Highway   Dix Kills   New York, NY 11746   Tel (516) 667-4819   Hincuslan Semiconductor   Brelv Rod Abdulla   Bombay, india   Tel: 818105812772   TLX. (953) 112726 APAR IN   IRELAND   ITT Electronic Services   142 Phibsborough Rd.   Phibsborough   Publen Ireland	ISRAEL   Talviton Electronics   P. O Box 21104   Tel-Aviv, Israel   Tet: 444572   TELEX: VITKO 33400   RN Electronics Agencies, Lid 103. Hagolan Street   Ramat Hachayal. Israel   POB. 10205. 10299 Zahala   T:X: $32470: 341730$   ITALY   AMD - Elettronica, SA L.   Via Pascoh, 70.4   Ground Floor   1.20133 M, lan, Italy   TELEX AMO Eletronica   Via Pascoin 70-TF2364284   Via Milan P O. TELEX 311250 PPM1   Indelco, SAL. Rome   Via C Colombo, 134   Tel: 5140722 , Italy   TELEX 611517   Indelco. S.RL. - Milan   Via S. Simpliciano, 2 1.20121 Milan, lialy   Tel: 862963   JAPAN   Advanced Technology Corporation of Japan   Tashi Bidg. 3rd Floor   No. 8. Minami Motomachı   Shinjuku-ku. Tokyo 160 Japan Tel: $103 ; 265-9416$   TELEX: (781) 22180   Dainichi Electronics   Kohraku Building   1-8. 1-Chome. Koraku   Bunkyo-ku. Tokyo, Japan Tel: (03; B13-6876   isi Lid.   8-3, 4-Chome, lidabashi   Chiyoda-ku, Tokyo 102 Japan   Kanematsu-Denshı K.K.   Takanawa Bidg. 2nd Floor   19-26. 3-Chome. Takanawa   Minatoku. Tokyo 108 Japan   Microtek. Inc   lto Building   7.9.17   Nishishiryuku   Shinjuku-Ku. Tokyo 160 Japan Tel: $03.363-2317$   TWX: J28497	Dainichi Electronics   Kıntetşu-Takarna Buildıng   38-3 Takama Cho   Narashi-Japan 630   KOREA   Cassia Electronics Products. Inc. Noodside Filtancial Center 2055 Woo Sulte 160   Redwood City. CA 94061 Tel:   Caduceus Limited Poom 508   Sindo Building   $65-4,2 \cdot \mathrm{Ka}$, Chung Mu Fio   Chung.ku, Seoul-Korea   TLX. K 26453 NAMSTRA   NORWAY   ASS Kell Bakke   Nygata 48 P. 6 Box 1   2011 Stroemmen   Norway   Tel. (02) 715350   TLX 19407   SOUTH AFRICA   South Continental Devices (Pty.) Lid   Suite 516, 5th Floor   Randover House   Cor. Hendrik Verwoerd   Mail address: PO. Box 56420   Pinegowrie 2123. South Ainca Tel $48 \cdot 0515$   TELEX 83324   SOUTH AMERICA   Intectra   2349 Charleston Road   Tel. 967 View. California 94043   $967-8825$   CABLE: INTECTRA   SPAIN   Electronic Services S A   Adv. de Ramon y Cajal. 5   Madrid 8 Spaın   Tel: 457.6615 TELEX: 42207   Regula S.A   Av Ramon y Cajal 5   Madrid-16 Spain Tel: 4593300   4593304   TELEX: 42207	Sertern   Julto Urquipo 12   Tel 4357200   4357209   Reguia $\$ \mathrm{~A}$   Avda Baro 19   Earcelona Spain Tel 386 i9 58   SWEDEN   Suensk Teleindusif!   Box 502   16205 Vallingby, Sweden   Tel: vx 08-890435   TWX: 13033   SWITZERLAND   Kurt Hirt AG   Thurgauers!t 74   CH -8048 Zuench   TELEX: 0045-53461   TAIWAN   Multtech Internationat Corp   $2 n d$ floor   977 Min Shen E Road   Tape, 105 Taiwan. R.O.C   CABLE MULTIIC   UNITED KINGDOM   Dage International Lid   Eurosem Division   Kaywood Ho High Street   Pinner, Middlesex. HA5 5QA England   Tel $01.868-0024$   TELEX 24506   Cramer Components Lid   Hawke House Green Siree!   Sunbury on Thames   Middlesex-England   Tel Sunbury (76) 85577   ITT Ebectronic Services   Edintburgh Way   Harlow, Essex   England   Tel: Harlow 26811   Memec. Ltd   Thames Park Industrial Estale   Thames   Oxon. OX9 3RS   England   Tel. (084 421) 3146   Quarndon Electronics   (Serriconductors) Lid   Slack Lane   Derby DE 3 3ED England   Tel Derby 32651 TELEX 37163
U.S. and Canadian Sales R   ALABAMA   Electronic Manutacturers Agents   2309 Starmount Circle SW   Huntsville. Alabama 35801 Tel 1205) 533.6440   Tel 1205$) 533-6440$ TWx 810-726.2110   CALIFORNIA   (Northern)   I Incorporated   3350 Scott Boulevard   Tel 14081996 Caltornia 95050   TWX 910-338-0192   Shipping   3641 Edward Avenue   Santa Clara Catfornia 95050   (Southern)   Bestronics the   7827 Convoy Court   Sulte 407   San Diego. Califorma 92111   Tel $17141278-2150$ TwX $910-335.1267$   CANADA (Eastern)   Vitel Electionics   3300 Cote Vertu. Suite 203   SI Laurent. Quebec Canada H4R 287   Tel (514) 331-7393   TWX 610.421-3124   TLX 05-821762   Vitel Electromics   1. Vulcan St. Sulte 203   Rexdale Oriario   Canada M9W 113   TWX 610.491 .3728   TLX 05-967881   Shipping   Vitel Elecironcs   84 Man Street   Champlans. New York 12919	sentatives   CANADA (Western)   Venture Electronics   PO. Box 3034   Bellevue. Washington 98009 Tel: (206) $454-4594$   TLX: $32-8951$   Shipping   1645 Rambing Lane   Bellevue. Washington 98004   COLORADO   $\mathrm{R}^{2}$ Marketing   10018 No. Regency Prace   PO. Box 554   Parker. Colorado 80134 Tel. (303) 841-5822   CONNECTICUT   Scientilic Components   South Main Street   Tel: (203) 272.2160   FLORIDA   Conley 8 Associates. Inc PO Box 309   235 South Ceniral Ave   Oviedo. Flonda 32765   Tel (305) 365.3263 TWX 810.856-3520   Conley \& Assoctales, Inc.   1612 N W. Second Ave PO. Box 700   Boca Raton, Flonda 33432 Tel 4305$) 395.6108$   TWX 510.953 .7548   Conley \& Associates, Inc   7515 North Armeria Avenue   Ter (813) 933-1759   GEORGIA   Electronic Manulacturers Agents   2800 Foresi Vale Lane   Sulte VI   Norcross. Georgia 30093   Tel (4041448-2921	ILLINOIS   Oasiss Sales, Inc   2250 K Landmeler Road Elk Grove Vilige Alinols 60007 TWX. 910-222-2170   INDIANA   C.S Electronic Sales Inc 2122-A Miami Street South Bend. Indiana 46613 Yel: (219) 291.6258 Twx. $810-299.2535$   C-S Electronic Sales. Inc 1157-B South Jackson Frankfort. Indiana 46041 Tel: (317) 659.1874   IOWA   Lotenz Sales. Inc. 5270 No Park PI. NE Cedat Rapids lowa 52402 Ter. 1319) 393 -6912   KANSAS   Kebco Manutaclurers 7070 West 107th Street Sulte 160   Overiand Park Kansas 66212TWX   TW   $1910.749-4077$   MARYLAND   Burgin-Kreh Associales Inc. 6 100 Baltimore National Pikp Tel 43011788.5200 TWX 710.862-1450   MICHIGAN   SAI Marketing Corp PO Box N   Brighton. Michigan 48116   TWX 810.242-1518	smpping   Fist Feceral Bark Buiding   Sunte 109   9880 E Grand River Avenue Brighlion. Nichigan 48116   MISSOURI   Kebco Manutacturers   75 Wornhington Dive   Marland Helahts, M.ssourn 63043 Tel ( $3 / 4$ ) $576-4,11$   NEW MEXICO   The Thorson Company   2201 San Peoro. NE   Sulte 107 Bulding ${ }^{2}$   AIBuquarque. New Mexico 87110   TWX   NEW YORK   Ossmann Component Sales Corp   280 Merro Path   Temester. New York 13623      Ossmann Component Sales Corp   154 Pickard Buiding   Syracuse. New rork 13211      north carolina   Burgin-Kreh Associates. Inc   PO. Box 19510      Shoping   Faleng 日arent Drve   Raletgh Nont Carolina 27609   OHO   Dolluss Reot \& Co   13477 Prospect Road   Strongsvile. Ohio 44136   Tel ${ }^{121661236.0300}$ TWX 810.427 .9148	Dolluss-Rool 8 Co   354 Silvertiee Lane   Cenlerville OM10 45459 Tel $\{513$ ( $433-6776$   PENNSYLVANIA   (Western)   Bacon Electronic Sales   Watertord Pennsylvania 16441   Tel 8814,796 -2381   (Eastern)   GCM Associates   1014 Bethlehem Pike   Erdenherm. Pennsylvanta 19118   TWX 510-661.0607   TENNESSEE   (Western)   Burgen kreh Assocales Inc.   king Race Streel   Kingsion. Tenriessee 37763   (Eastern)   Burgin. Krent Associates inc   PO. Box 268 125 kyline D   Kingston Heights.   Kingsion. Tenriessee 37763 Tel $16151590-6100$   Tel (615) $650-6100$   TEXAS   Bonser-Phulnower Sabes   13777 N Central Expressway   Sulte 212   Tet 1214$) 234.8438$   Bonser Philhower   3300 Chimneyrock Sulle 206   Houston Texas 77056   Tel 17131783.0063	UTAH   3688 W 2100 So   Sall Lake Cily Utah 84120   Tet 18011972.5646 TWX 910.925 .5607   VIRGINIA   Burgin- Kreh Assocates inc PO Bnx 4254   S521 For Avenue      WASHINGTON   Venlure Electronics PO Box 3034   Bellevue Washington 98004 TELEX 32.895   Stupping   1645 Rambing Lane   Bellevue Wastungton 98004

U.S. AN.) CANADIAN STOCKING DISTRIBUTORS


Future Electronics Baxter Centre 1050 Baxter Rd. Ottawa, Ontano Canada K2C 3P2 Tel: (613) 820-9471	Hamilton/Avnet Electronics 3219 Quivira Road Overland Park, Kansas 66215 Tel: (913) 888-8900	
COLORADO   Elmar Electronics   6777 E. 50th Avenue   Commerce City, Colorado 80022   Tel: (303) 287-9611   TWX: 910-936-0770	MARYLAND	
	4801 Benson Avenue	
	Baltimore, Maryland 2122	
	Tell: (301) 247-5200	
	Hall-Mark Electroni	
Hamilton/Avnet Electronics   5921 N. Broadway   Denver, Colorado 80216   Tel: (303) 534-1212   TWX: 910-931-0510	Baltimore, Maryland 2122	
	Tel: (301) 796-9300	
	TWX: 710-662-1942	
	Hamilton/Avnet Electronics 7235 Standard Drive	
Bell Industries	Hanover, Maryland 21076	
8155 W. 48ith Avenue ${ }^{\text {Weatridge }}$	Tel: (301) 796-5000	
Weatridge. Colorado 80033	TWX 710-862-1861	
Tel: (303) 424-1985	TELEX: 8-79-68	
CONNECTICUT   Hamilton/Avnet Electronics 643 Danbury Road Georgetown. Connecticut 06829 Tel: (203) 762-0361	Schweber Electronics	
	9218 Gaither Rd	
	Gaithersburg, MD 20	
	Tel: (301) 840.5900	
	massachusetts	
Schweber Electronics   Finance Drive   Commerce Industrial Park   Danbury. Connecticut 06810   Tel: (203) 792-3500	Arrow Electronics	
	Woburn, Massachuset	
	Woburn Massachusetts 0   Tel: (617) 933-8130	
	Hamilton/Avnet Electronics	
Arrow Electronics 295 Treadwell Street Hamden. CT 06514   Tel: (203) 248-3801   TWX 710-465-0780	100 East Commerce Way	
	Woburn, Massachusetts 01801	
	TWX: 710-393-1201	
	Schweber Electronics	
Wilshire Electronics 2554 Stale Street Hamden, Connecticut 06517 Tel. (203) 281 11166 TWX: 710-465-0747	25 Wiggins Hoad	
	Tel: (617) 275-5100	
	Wilshire Electronics	
	One Wilshire Road	
FLORIDA	Tel: (617) 272-8200	
Arrow Electronics	TWX: 710-332-6359	
115 Palm Road N.W.		
Suite 10 Florida 22905	michigan	
Paim Bay, Florida 22905	Arrow Electronics	
Tel: (305) $725 \cdot 1480$	3921 Varsity Drive	
Arrow Electronics   1001 N.W. 62nd St., Suite 402   Ft Lauderdale, Florida 33300   Tel: (305) 776-7790	Ann Arbor. Michigan 481	
	TWX: 810-223-6020	
	Hamilon/Avnet Electroni	
	32487 Schoolcratt	
Hall-Mark Electronics 7233 Lake Ellenor Dr. Orlando, Floria 32809   Tel: (305) 855.4020   TWX: 810-850-0183	Livonia. Michigan 48150	
	Tel: (313) 522.5700	
	TWX: 810-242-8775	
	Schweber Electronics	
	Livonia. Michigan 48150	
Hamilton;Avnet Electronics 6800 N.W. 20th Ave. Ft. Lauderdale, Florida 33309 Tel: (305) 971-2900	Tel: (313) 525-8100	
	Minnesota	
	Arrow Electronics	
Hamilton/Avnet Electronics	9700 Newton Avenue South	
3197 Tech Drive North	Bloomington. Minnesota 554	
St. Petersburg. Florida 3	(612) 888.5522	
	Hall-Mark Electronics	
Schweber Electronics	1 Penn Avenue South	
Hollywood, Florida 33020	Suite to	
Tel: (305) 927-0511	Bloomington. Minnesota 55431	
TWX: 510-954-0304	TWX: $910-576.3187$	
	Hamilton/Avnet Electronic	
	7449 Cahill Rd.	
3406 Oak Clitt Road	Edina, Minnesota 55435	
Doraville, GA 30340	Tel: (612) 941.3801	
Tel: (404) 455-4054		
	7402 Washington Avenue South	
Hamilton/Avnet Electronics 67001.85	Eden Prairie. Minnesota 55343	
6700 Suite 2 Pa	Tel: (612) 941.5280	
Norcross, Georgia 30071		
Tel: (404) 448-0800		
Schweber Electronics 4126 Pleasantdale Road	Hall-Mark Electronics	
	13789 Rider Trail	
Atlanta, Georgia 30340	Earth City, Missouri 63045	
	Tel: (314) $291-5350$	
illinois	TWX: 910-760-0671	
Arrow Electronics	Hamilton/Avnet Electronics 364 Brookes Lane Hazelwood, Missouri 63042 Tel: (314) 731-1144 TELEX: 44-23-48	
492 Lunt Avenue		
Schaumburg, Hlinois 60193		
Tel' (312) 893-9420		
Hamilton/Avnet Electronics3901 Notht 5 th AvenueSchiller Park, Ilinois 60176		
Tel (312) 678 -6310	Arrow Electronics	
	Pleasant Valley Road	
Schweber Electronics   1275 Brummel Avenue   Elk Grove Village, Illinois 60007   Tel: (312) 593-2740   TWX: 910-222-3453   KANSAS   Hall-Mark Electronics   11870 West 91 st Street   Congleton Industrial Park   Shawnee Mission. Kansas 66214   Tel: (913) 888-4747   TWX: 510-928-1831	Moorestown. New Jersey 08057 Tel: (609) 235-1900	
	Arrow Electronics 285 Midland Ave. Saddle Brook, NJ Tel: (201) 797-5800 TWX: 710-988-2206   Hamilton/Avnet Electronics 10 Industrial Road Fairlield, NJ 07006 Tel: (201) 575-3390	


Hamilton/Avnet Electronics   113 Gaither Drive   East Gate Industrial Park   Mt. Laurel, New Jersey 08057   Tel: (609) 234-2133	Hamilton/Avnet Electronics   954 Senate Drive   Dayton. Ohio 45459   Tel: (513) 433-0610   TWX: 810-450-2531		
Schweber Electronics 43 Belmont Drive Somerset, New Jersey 08873   Tel: (201) 469-6008   TWX: 710-480-4733	Hamilton/Avnet		
	761 Beta Drive, Suite E Cleveland Ohio 44143		
	Tel: (216) 461 -1400		
	Schweber Electronics   23880 Commerce Park Road   Beachwood, Ohio 44122   Tel: (216) 464-2970		
Wilshire Electronics   1111 Paulison Avenue   Clifton, New Jersey 07015   Tel: (201) 340-1900   TWX: 710-989-7052			
	Sheridan/Cincinnati		
	10 Knolicrest Drive		
	Tel: ( 513 ) 761 -5432		
	TWX: 810-461-2870		
NEW MEXICO	OKLAHOMA		
Bell industries	Hall-Mark Electronics		
121 Elizabeth N.E.	4846 South 83rd E. Avenue		
Albuquerque, New Mexico 87123	Tulsa, Oklahoma 74145		
Tel: $(505)$ 292-2700 TWX: $910-989-0625$	Tel: 1918 ) 835-8458		
	TWX: 910-645-2290		
Hamilton/Avnet Electronics 2450 Baylor Drive S.E.   Albuquerque, New Mexico 87119   Tel: (505) 765-1500	PENNSYLVANIA		
	Hall-Mark Electronics		
	Pike Industrial Park		
	Hike industria Park		
	Pennsylvania 19006		
NEW YORK   Arrow Electronics   900 Broad Hollow Road   Farmingdale, New York 11735   Tel: (516) 694-6800	TWX:510-667-1750		
	Schweber Electronics		
	$\text { Tel: (215) } 441-0600$		
167 Clay Road   Rochester, New York 14623	TE		
	Hall-Mark Electronics		
	9333 Forest Lane		
	Dallas, Texas 75231		
Hamilton/Avnet Electronics 70 State Street	Tell: (214) 2344.7300		
	TWX: 910-867-4721		
Westbury L.I.) New York 11590	Hall-Mark Electronics 8000 Westglen		
Tel: (516) 333-5800			
TWX: 510-222-8237	Houston. Texas 77063		
Hamilton/Avnet Electronics	TWX.910-881-2711		
E. Syracuse, New York 13057   Tel: (315) 437-2642			
	Hall-Mark Electronics		
	10109 McKalla Drive		
Schweber Electronics 2 Town Line Circle Rochester. New York 14623 Tel: (716) 461-4000	Austin,		
	Tel: (512) 837.2814		
	TWX: 910-874-2010		
	Hamilton/Avnet Electronics 4445 Sigma Road		
Schweber Electronics Jericho Turnpike   Westbury, New York 11590   Tel: (516) 334-7474   TWX: 510-222-9470   510-222-3660			
	Tel: (214)661-8661		
	TELEX; 73-05-11		
	Hamilton/Avnet Electronics 3939 Ann Arbor Street P.O. Box 42802		
Summit Distributors, Inc. 916 Main Street			
Buffalo, NY 14202			
Tel: (716) $884-3450$	Schweber Electronics		
TWX: 710-522-1692	14177 Proton Road		
	Dallas. Texas 75240		
Wilshire Electronics 110 Parkway South	TWX:910-860.5493		
110 Parkway South Hauppauge	TWX: 910-860-54		
Long \|sland, NY 11787	Schweber Electronics 7420 Harwin Drive		
Tel: (516) 543-5599			
$\begin{array}{ll}\text { Wilshire Electronics } & \\ 1260 \text { Scotsville Road } & \text { Tel: } \\ & \text { (713) } \\ \text { P84-3600 }\end{array}$			
Rochester, NY ${ }^{14623}$ Tel $(716)$ 235-7620 ${ }^{\text {a }}$			
	UTAH   Bell industries 2258 South 2700 West		
Wilshire Electronics10 Hooper Road	Sall Lake City. Utah 84119		
	Tel: ${ }^{\text {TWX }}$ ( 910 10-925-5686		
10 Hooper Road   Endwell, NY 13760	Hamilton Avnet Electronics 1585 West 2100 South Salt Lake City. Utah 84119 Tel: (801) 972-2800		
Tel: (607) 754-1570 TWX: 510-252.0194			
NORTH CAROLINAArrow Electronics			
1377-G South Park Drive Kernersville NC 27284	WASHINGTONHamiton Avnet Electronics		
Kernersville. NC 27284			
Tel: (919) 996-2039	Hamilton Avnet Electronics 142.12 N.E. 21 st Street Bellevue, Washingtion 98005		
Hall-Mark Electronics 1208 Front Street, Building K	Tel: (206) ${ }^{\text {(246-8750 }}$		
Raieigh, North Carolina 27609Tel:(1919) $332-4465$			
	Liberty Electronics 1750 132nd Avenue N.E Bellevue, Washington 98005 Tel: (206) 453-8300		
TWX: 510-928-1831			
Hamilton/Avnet Electronics 2803 Industrial Drive Raleigh, NC 27609 Tel: (919) 829-8030			
	4653 Guide Meridian Road		
	Bellingham, Washington 982		
OHIOArrow Electronics6238 CochranSolon Onio 44139Tel: (216) 248 -3990	WISCONSIN   Arrow Electronics   434 W. Rawson Avenue   Oak Creek. Wisconsin 53154   Tel: (414) 764-6600   TWX: 910-262-1193		
Arrow Electronics 3100 Plainfield Road Kettering, Ohio 45432   Tel: (513) 253-9176   TWX: 810-459-1611			
	Hamilton Avnet Electronics 2975 Moorland Road New Berlin, Wisconsin 53151   Tel: (414) 784-4510		


[^0]:    tin development

[^1]:    *Increases input bias current and common mode slew rate by a factor of 3

[^2]:    Notes: 2. Set the voltage " $A$ " to the desired logic input switching threshold.

[^3]:    Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
    2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
    3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

[^4]:    MPR-515

[^5]:    Note: Pin 1 is marked for orientation.

[^6]:    $\overline{C L R}$ - Resets Data Latch

    - Sets SR Flip-Flop (no effect on Output Buffer)
    *Internal SR Flip-Flop

[^7]:    Note 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.

[^8]:    Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
    2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
    3. Actual input currents = Unit Load Current $\times$ Input Load Factor (See Loading Rules).
    4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
    5. Output sink current is supplied through a resistor to $\mathrm{V}_{\mathrm{CC}}$.
    6. Measurements apply to each output and the associated data input independently.

[^9]:    *The 8080A has an input requirement of 3.3 V and çan drive a maximum current of 1.9 mA .

[^10]:    Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the Dual In - Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
    2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
    3. Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the Am 107 and Am 207 and from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the Am307.

[^11]:    Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$, the Dual In-Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$, and the Flat Package at $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $57^{\circ} \mathrm{C}$.
    2. For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
    3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

[^12]:    Notes: 1. Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $30^{\circ} \mathrm{C}$, the Dual In -Lime package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation

