ADVANCED MICRO DEVICES

Bipolar Memory Generic PROM Series

Copyright (©) 1980 by Advanced Micro Devices Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 453, Sunnyvale, California 94086
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

INTRODUCTION

GENERIC SERIES CHARACTERISTICS

The devices included in this book are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

TABLE OF CONTENTS

Page
BIPOLAR PROM CROSS REFERENCE GUIDE 1
BIPOLAR PROM SELECTION GUIDE 2
RELIABILITY REPORT BIPOLAR GENERIC PROM SERIES 3
Am27LS18 256-Bit (32 x 8) PROM Open Collector (Low Power) 12
Am27LS19 256-Bit (32×8) PROM 3-State (Low Power) 12
Am27S18 256-Bit (32 x 8) PROM Open Collector 18
Am27S19 256-Bit (32×8) PROM 3-State 18
Am27S20 1024-Bit (256×4) PROM Open Collector 24
Am27S21 1024-Bit (256×4) PROM 3-State 24
Am27S12 2048-Bit (512 x 4) PROM Open Collector 30
Am27S13 2048-Bit (512×4) PROM 3-State 30
Am27S15 4096-Bit (512×8) PROM 3-State with Output Latches 36
Am27S25 4096-Bit (512 x 8) PROM 3-State with Output Registers (Slim line) 42
Am27S26 4096-Bit (512×8) PROM Open Collector with Output Registers 51
Am27S27 4096-Bit (512 x 8) PROM 3-State with Output Registers 51
Am27S28 4096-Bit (512×8) PROM Open Collector 20 Pin 60
Am27S29 4096-Bit (512×8) PROM 3-State 20 pin 60
Am27S30 4096-Bit (512×8) PROM Open Collector 24 Pin 65
Am27S31 4096-Bit (512×8) PROM 3-State 24 pin 65
Am27S32 4096-Bit (1024×4) PROM Open Collector 71
Am27S33 4096-Bit (1024×4) PROM 3-State 71
Am27S180 8192-Bit (1024×8) PROM Open Collector 77
Am27S181 8192-Bit (1024×8) PROM 3-State 77
Am27S184 8192-Bit (2048 x 4) PROM Open Collector 83
Am27S185 8192-Bit (2048×4) PROM 3-State 83
PROM PROGRAMMING EQUIPMENT INFORMATION 89
PACKAGE OUTLINES 90
ORDERING INFORMATION 93
PRODUCT ASSURANCE DOCUMENT 15-010 REV. E 95
SALES OFFICE AND REPRESENTATIVES 101

Bipolar PROM Cross Reference Guide

											$\overleftarrow{c}^{\delta_{0}^{0}}$	人
Am27LS18 (Low Power)	256	32×8	OC	16					53/63LS080		N/S82S23	
Am27LS19 (Low Power)	256	32×8	35	16					53/63LS081		N/S82S123	
Am27S18	256	32×8	OC	16		HM7602		IM5600	53/6330-1	DM75/8577 DM54/74S188	N/S82S23	$\begin{aligned} & \text { SN54/74188A } \\ & \text { SN54/74S188 } \end{aligned}$
Am27S19	256	32×8	3 S	16		HM7603		IM5610	53/6331-1	DM75/8578 DM54/74S288	N/S82S123	SN54/74S288
Am27S20	1024	256×4	OC	16	93417	HM7610	3601	IM5603A IM56S03	53/6300-1	DM54/74S387	N/S82S126	SN54/74S387
Am27S21	1024	256×4	3 S	16	93427	HM7611	3621	$\begin{aligned} & \text { IM5623 } \\ & \text { IM56S23 } \end{aligned}$	53/6301-1	DM54/74S287	N/S82S129	SN54/74S287
Am27S12	2048	512×4	OC	16	93436	HM7620	3602	IM5604 IM56S04	53/6305-1	DM54/74S570	N/S82S130	
Am27S13	2048	512×4	35	16	93446	HM7621	3622	$\begin{aligned} & \text { IM5624 } \\ & \text { IM56S24 } \end{aligned}$	53/6306-1	DM54/74S57.	N/S82S131	
Am27S15	4096	512×8	35	24		HM7647R					N/S82S115	
Am27S25	4096	512×8	3 S	24								
Am27S26	4096	512×8	OC	22								
Am27S27	4096	512×8	35	22								
Am27S28	4096	512×8	OC	20		HM7648			53/6348	DM54/74S473	N/S82S146	SN54/74S473
Am27S29	4096	512×8	35	20		HM7649			53/6349	DM54/74S472	N/S82S147	SN54/74S472
Am27S30	4096	512×8	OC	24	93438	HM7640	3604	IM5605	53/6340	DM77/87S475	N/S82S140	SN54/74S475
Am27S31	4096	512×8	35	24	93448	HM7641	3624	IM5625	53/6341	DM77/87S474	N/S82S141	SN54/74S474
Am27S32	4096	1024×4	OC	18	93452	HM7642	3605	IM5606	53/6352	DM54/74S572	N/S82S136	SN54/74S477
Am27S33	4096	1024×4	35	18	93453	HM7643	3625	IM5626	53/6353	DM54/74S573	N/S82S137	SN54/74S476
Am27S180	8192	1024×8	OC	24	93450	HM7680	3608		53/6380	DM77/87S180	N/S82S180	SN54/74S479
Am27S181	8192	1024×8	35	24	93451	HM7681	3628		53/6381	DM77/87S181	N/S82S181	SN54/74S478
Am27S184*	8192	2048×4	OC	18		HM7684			53/63100	DM77/87S184	N/S82S184	
Am27S185*	8192	2048×4	3 S	18		HM7685			53/63101	DM77/87S185	N/S82S185	

*Available 1st Qtr. 1980

Bipolar PROM Selection Guide

Device	Size	Organization	Output	Package Pins	Max Acce COM'L	Time (ns) MIL	$\begin{gathered} \operatorname{Max} \\ \operatorname{ICC}_{\mathrm{CC}}(\mathrm{~mA}) \\ \hline \end{gathered}$	Other Features
$\begin{aligned} & \text { Am27LS18 } \\ & \text { (Note 2) } \end{aligned}$	256	32×8	OC	16	50	65	80	Low Power
Am27LSi9 (Note 2)	256	32×8	3 S	16	50	65	80	Low Power
Am27S18	256	32×8	OC	16	40	50	115	
Am27S19	256	32×8	3 S	16	40	50	115	
Am27S20	1024	256×4	OC	16	45	60	130	
Am27S21	1024	256×4	3 S	16	45	60	130	
Am27S12	2048	512×4	OC	16	50	60	130	
Am27S13	2048	512×4	3 S	16	50	60	130	
Am27S15	4096	512×8	3 S	24	60	90	175/185 (Note 3)	Output Latches
Am27S25	4096	512×8	35	24	$\begin{gathered} \text { N.A. } \\ (\text { Note 4) } \end{gathered}$	N.A. (Note 4)	185	Output Registers Slimline Package
Am27S26	4096	512×8	OC	22	N.A. (Note 4)	N.A. (Note 4)	185	Output Registers
Am27S27	4096	512×8	3 S	22	N.A. (Note 4)	N.A. (Note 4)	185	Output Registers
Am27S28	4096	512×8	OC	20	55	70	160	
Am27S29	4096	512×8	3 S	20	55	70	160	
Am27S30	4096	512×8	OC	24	55	70	175	
Am27S31	4096	512×8	35	24	55	70	175	
Am27S32	4096	1024×4	OC	18	55	70	$\begin{aligned} & 140 / 145 \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	
Am27S33	4096	1024×4	35	18	55	70	140/145 (Note 3)	
Am27S180	8192	1024×8	OC	24	60	80	185	
Am27S181	8192	1024×8	35	24	60	80	185	
Am27S184*	8192	2048×4	OC	18	60	70	130	
Am27S185*	8192	2048×4	35	18			130	

*Available 1st Qtr. 1980.
Notes: 1. $\mathrm{COM}^{\prime} \mathrm{L}=0$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$
MIL $=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
2. Replaces Am27LS08/09
3. COM'LMIL
4. Normal access time not applicable - this product contains built-in pipeline registers - nominal address to clock set up time typ 40ns. Clock to output typ 15ns.

TECHNICAL REPORT

RELIABILITY REPORT BIPOLAR GENERIC PROM SERIES

Abstract

This report is a review of the manufacturing process, the circuit design techniques, the testing, the fuse element, and the reliability of Advanced Micro Devices' Generic Bipolar PROM Series. Results indicate that platinum silicide forms a fuse with excellent reliability characteristics.

The purpose of this report is to present a description of Advanced Micro Devices' Bipolar PROM circuits, their manufacturing process and their reliability. Included is a discussion of the wafer fabrication in which an advanced, highly reliable platinum silicide fuse is utilized, a description of the circuits and their testing, an analysis of the fusing characteristics of platinum silicide and supportive reliability data.
The products evaluated in this report are members of a generic family of field programmable-read-only memories (PROMs) from 256 bits through 8192 bits. All of these devices use the manufacturing process described in this report. The circuit de-
sign concepts are similar on each of the PROMs with the result that the products can be programmed using the same hardware. Only the socket adaptor required for the PROM configuration and pin count is different. The same programming algorithm is used for all devices with completeiy satisiactory resuits. The PROMs utilize a platinum Schottky diode structure with barrier metal. Dual-layer metallization is also employed to maximize speed and minimize chip size. All Advanced Micro Devices' circuits receive screening per MIL-STD-883, Method 5004 class C. Ongoing reliability monitors confirm the continuing integrity of these products.

Prepared by: Advanced Micro Devices Quality and Reliability Department in Conjunction with Bipolar Memory Engineering.

[^0]
THE PROCESS TECHNOLOGY

Advanced Micro Devices has chosen a platinum silicide Schottky, washed emitter, dual-layer metal process for its bipolar PROMs. Platinum silicide has been chosen as the material to form the fuse for several reasons. First, it has been demonstrated to be an extremely reliable fuse material. It does not have the growback phenomenon common to nichrome technologies; it is not moisture sensitive in freeze-out tests; it is less fragile than nichrome, and it does not have mass transport problems associated with moderate current densities. Second, the manufacturing process is easily controlled with regard to reliability factors and fusing currents. Third, the fuses are quite easy to form during the manufacturing process without a substantial number of additional processing steps.
Figure 2 is a cross section of a transistor and a fuse. A heavily doped buried layer diffusion is first performed to allow for the fabrication of NPN transistors with low saturation resistances. A thin epitaxial layer is grown followed by isolation and base diffusions. The isolation and base are effectively self-aligned using a composite masking approach. A short series of steps results in the definition of polycrystalline silicon in the shape of the fuse.

A second composite mask now defines all the emitter, contact, Schottky diode and ohmic contact areas.
Following the emitter diffusion and the contact mask, platinum is sputtered over the entire wafer. Since all contacts, Schottkies, and fuses are exposed at this point, an alloying op-
eration allows platinum silicide to form. The residual platinum is etched off the wafer leaving the silicide contacts, Schottkies, and fuses. After this step, the semiconductor elements of the circuit have been completely formed, and all that remains is the interconnect metallization.

To form the interconnects, aluminum is used as the primary conducting element. Aluminum has a very strong affinity for silicon, including that in platinum silicide. To retain the advantages of the very stable platinum silicide Schottky devices, it is necessary to sputter an inactive metal, tungsten, with a small amount of titanium as a bonding agent over the surface of the wafers to serve as a barrier to the diffusion or microalloying of the aluminum. Aluminum is now evaporated over the surface of the wafers and conventional masking and etching cycles are used to define the aluminum interconnections. Figure 3 shows the structure of this metal layer.

To complete the dual-layer metallization structure, silicon dioxide is chemically vapor deposited on the wafer and etched with interlayer metal contact openings (vias). A second layer of aluminum is then placed on top of the dielectric. This layer has a thickness substantially greater than the first one and is especially suited for power busses and output lines.

To complete the circuit, a passivation layer is deposited over the top of the wafers and etched at the appropriate locations to allow for bonding pad contact.

Figure 2. Transistor \& Fuse Structures.

Figure 3. 2 Layer Metallization Structure.

PROGRAMMABLE READ-ONLY MEMORY CIRCUITRY

Advanced Micro Devices' bipolar PROM designs have the general configuration shown in Figure 4. Although the figure is for that of the Am27S20, the circuit techniques are the same for the entire generic family of PROMs.

Input, Memory \& Output Circuitry

Two groups of input buffers and decoders called " X " and " Y " are used to drive word lines and columns respectively. The X-decode addresses $\left(A_{3}-A_{7}\right)$ have Schottky clamp diode protected, PNP inputs for minimum loading. (Figure 5). The X -input buffers $\left(A_{3}-A_{7}\right)$ provide A and \bar{A} outputs to a Schottky decode matrix which selects one of 64 word drivers. The word line drivers are very fast high current, high voltage, non-saturating buffers providing voltage pull down to the selected word line.

The Y-decode address buffers ($A_{0}-A_{2}$) are also Schottky diode clamped, PNP inputs driving a Schottky diode matrix. However, this diode matrix selects one of eight columns on each of the four output bits. The selected column line drives the sense amplifier input to a high level in the case of a blown fuse, or current is shunted through an unblown fuse through the selected word driver to ground resulting in a "low" input to the sense amplifier.

The sense amplifier is a proprietary fast level shifter-inverter with temperature and voltage threshold sensitivities compensated for the driving circuitry. Each of the four sense amplifiers in this circuit provides active drive to an output buffer.
Each output buffer also contains a disable input, which is driven from the chip-enable buffer. The chip-enable buffer input is a Schottky diode clamped PNP buffered design with an active pull up and pull down to drive the output buffer. Additionally, the chip-enable gate contains circuitry to provide fuse control as described below.

Fusing Circuitry

Platinum silicide fuses as implemented in Advanced Micro Devices' PROMs have extremely high fuse current to sense current ratios. Sensing normally requires that only a few hundred microamps flow through the fuse, whereas absolute minimum requirements for opening the fuse are approximately 100 times that amount. This provides a significant safety margin for transient protection and long-term reliability.
High-yield fusing of platinum silicide fuses requires that a substantial current be delivered to each fuse. This current is sourced from the output terminals through darlingtons which can drive the column lines when enabled. These darlingtons are driven directly from the output and are selected by the Y decode column select circuitry. Current during fusing flows from the output through the darlington directly to the fuse

Figure.4. PROM Circuitry Block Diagram.

Figure 5. Input Buffer Schematic.
through the selected array Schottky and finally through the word-driver output transistor to ground. This path is designed for a very large fusing current safety margin.
The control circuitry works as follows: After $V_{c c}$ is applied, the appropriate address is selected and the $\overline{C E}$ input is taken to a logic high, the programmer applies 20 volts to the bit output to be programmed. The application of the 20 volts simultaneously deselects the output buffer to prevent destructive current flow, and powers down internal circuitry unneeded during fusing to minimize chip heating.

It also enables the darlington base drive circuitry, makes power available to the darlington from the output and enables the fusing control circuitry. At this point, the PROM is ready for the control line at the chip-select pin to release the selected word driver to allow current flow through the fuse. This technique is particularly advantageous because the control signal does not
supply the large fusing currents. They are supplied through the darlington from the output power supply. Some care must be taken to avoid excessive line inductance on the output line. Reasonable and normal amounts of care will reward the user with high-programming yields.

Special Test Circuitry

All Advanced Micro Devices PROMs include high-threshold voltage gates paralleling several address lines to allow the selection of special test words and the deselection of the columns to allow for more complete testing of the devices. Additionally, special test pads accessible prior to assembly allow for testing of some key attributes of the devices. The function of these special circuits will be described in more detail in the section, "Testing", later in this report.

THE PLATINUM SILICIDE FUSE

Fusing Technique

Advanced Micro Devices' PROM circuits have been designed to use a programming algorithm which minimizes the requirements on the programmer yet allows the circuit to fuse the platinum silicide links quickly and reliably. Specifically, the foilowing sequence of events must take place:

1. V_{CC} power is applied to the chip;
2. The appropriate address is selected;
3. The chip is deselected;
4. The programming voltage is applied to one output;
5. The chip enable voltage is raised to enable high-threshold voltage gate. This action gates the current flow through the proper fuse resulting in an open fuse in a few microseconds;
6. The output voltage is lowered; the programming voltage is removed.
7. The device is enabled and the bit is sensed to verify that the fuse is blown. In the unusual event that the fuse does not verify as blown, a sequence of much longer pulses is applied to the fuse at a high duty cycle until the fuse opens; and,
8. The sequence of 2 through 7 is repeated for each bit which must be fused.

There are several advantages to this technique. First, the two high current power sources, V_{CC} and the voltage applied to the output do not have critical timing requirements. The low current chip select pin gates the fusing current into the circuit. Since it is generally desirable to gate the fusing current into the chip at relatively fast rates, the use of the chip select for this purpose avoids the speed trade-off which would exist using the output voltage as the control. The output voltage must not be raised too quickly to avoid breakdown and latchback conditions which might occur with sub-microsecond rise times on the output.
The second major advantage of this technique is that in the event that the fuse does not open during the first attempt to
blow it, a near DC condition may be safely applied to it with no danger of developing a reliability problem such as that which occurs with nichrome fuses. This will be discussed in more detail later. The algorithm can therefore be designed first to minimize the time required to program the PROM, i.e. with a fast first pulse, and second, to maximize the probability that any circuit will program. Most PROMs do, of course, fuse satisfactorily with all short pulses. However, it is impossible for any manufacturer to guarantee absolutely that all fuses in all circuits receive 100 percent of the rated fusing current during programming.
Circuit defects which may be resistant to pre-programming testing prevent such a guarantee. It is, therefore, quite important to have a fuse material insensitive to marginal conditions. Even the application of single, short pulses does not guarantee that no fuse received marginal amounts of current during fusing. The silicide fuse provides this safety margin and allows the programmer to maximize the possibility of fusing by applying near DC condition to the fuses.

Fuse Characteristics

When a fast (less than 500ns rise time) current pulse is applied to a fuse, the fuse voltage rises abruptly to a value approaching the level anticipated from calculations of the room temperature resistance. However, it quickly falls to a value of approximately two volts. This value is nearly independent of the applied current. During this period of time, typically, the fuse is molten. Very abruptly, the fuse current drops to zero indicating the separation of the platinum silicide into two distinct sections. Scanning Electron Microscope photographs of the resulting fuses (see Figure 6) indicate that the typical case is a sharp, clean separation in excess of a micron. This separation occurs in the center of the fuse because the bow-tie structure (see Figure 7) concentrates the energy density in the center away from the aluminum lines. The energy density in the center of the fuse is capable of creating temperatures substantially greater than required to melt the silicide. The very abrupt, high

Unprogrammed Fuse

Programmed Fuse

Figure 6.
power applied to the fuse melts the fuse center and results in a wicking of material on either side due to surface tension.

Reliability of Fuses Programmed Under Non-optimal Conditions

The marginally opened fuse has been studied in some detail even though it rarely occurs in. practice. Under conditions where the fuse is purposely blown at much slower rates, it is possible for the fuse to assume a high impedance state which is sensed as an open fuse by the circuit. This occurs because the fuse cools before separation is achieved. Electrical and SEM studies of fuses blown with these characteristics indicate that a small conductive path of silicon remains of sufficiently high resistance to prevent appropriate power transfer required for complete opening on subsequent applications of power. Under these slow-blow conditions, the thermal conductivity of the silicon nitride pedestal on which the fuse rests, the silicon dioxode beneath that, and the silicon chip become factors because sufficient time exists for the heat flow to carry a significant amount of energy away from the fuse. This is extremely unusual in practice since it requires a rather narrow set of conditions. However, a number of PROMs have been specially programmed under these unusual conditions which can cause this type of fuse to occur. These devices have been life tested for over two thousand hours. No failures occurred in any of these circuits. It is clear from this study that partially opened platinum silicide fuses are stable. Although it is very rare to see such a fuse in a circuit which has been programmed under normal conditions, Advanced Micro Devices believes that such fuses do not represent a reliability hazard based on this study and the results of the other studies run on the programmable-
read-only memories. It should be noted that most manufacturers carefully specify the conditions under which their devices must be programmed in order to avoid reliability problems. Reliability data available on these devices must be assumed to have been generated using optimally programmed devices. Advanced Micro Devices believes that the study described here and four billion fuse hours of data from many production lots of PROMs demonstrate the capability of the platinum slicide fuse under a wide variety of conditions.

Figure 7. Bowtie Fuse Design.

FINAL TESTING OF ADVANCED MICRO DEVICES' MEMORIES

Wafer Level Tests

In addition to all the standard DC tests, Advanced Micro Devices performs a series of special tests to conform to the screening criteria of MIL-STD-883, Method 5004 3.3; also, AMD performs special tests to increase the confidence level of unique address selection and to demonstrate fusing capability on all columns and word drivers. To accomplish this, diodes are connected from the column lines and the word lines to special test pads which are accessible only during wafer probing. (See Figure 4). Using these diodes, Advanced Micro Devices confirms that each word driver is capable of sinking sufficient current to blow fuses, has appropriate saturation characteristics for AC performance, and has sufficient voltage breakdown to withstand fusing voltages. In addition, using special software, a sequence of tests dramatically increases the confidence of unique address selection on the address decoding. All darlingtons are checked to confirm that sufficient current drive is available to blow fuses from any column. Schottky diode array leakage is also checked to affirm that it is sufficiently low so as not to overload the pull down circuitry during the high-voltage application of fusing. Finally, high voltages are applied to the inputs and outputs to remove potentially weak devices before the PROM's are assembled.

Test Fusing

Each PROM has two additional word drivers connected to special test fuses. These test words are valuable in demonstrating beyond reasonable doubt that the device is capable of opening fuses in all columns. They also increase the confidence level in unique addressing. Furthermore, the test words serve as cor-
relatable measures of the access times that the user can expect from his devices after he has placed his own program in the memory. These test words are not visible to the user unless he applies special voltages to certain address pins. Figure 8 is a diagram of this input circuit. One hundred percent of the PROM devices shipped from Advanced Micro Devices have had AC testing for access and enable times at high-and lowpower supply voltages to affirm their AC characteristics.
The result of this extensive testing at both the wafer and finished device level is a product with very high-programming yields and virtually guaranteed AC performance after the user places his program in the parts. Additionally, the high voltage tests provide an additional level of confidence that the oxide and junction integrity is excellent in each circuit and that the devices will be relatively insensitive to small transients common to programming equipment.

Figure 8. Special Input Circuit Used for Array Deselection and Test Word Check.

THE MANUFACTURING PROCESS

All products bearing the Advanced Micro Devices' logo will have screening meeting the requirements of the MIL-STD-883 Method 5004, for Class C microcircuits. A summary of the standard processing is shown below. The presence of the Advanced Micro Devices' logo on the package is confirmation that
the screening has been completed. The only exceptions to this procedure are special products revised by contract for a customer's lesser requirements and distinctly marked for that customer alone. Standard burn-in option B is available on standard product which allows the customer to upgrade to Class B microcircuits.

Assembly and Environmental Standard Processing

1. Die Visual Inspection	Method 2010 Condition B
2. Wire Bond	Method 2010 Condition B
	rebonds less than 10 percent
3. Internal Visual	Method 2010 Condition B
4. Seal	
5. High Temperature Storage	Method 1008 Condition C
6. Temperature Cycle	Method 1010 Condition C
7. Constant Acceleration	Method 2001 Condition E
8. Visual Inspection	Method 5004
9. Fine Leak	Method 1014 Condition A or B
10. Gross Leak	Method 1014 Condition C
	Step 2

Electrical Test through Shipping Standard Processing

1. Initial Electrical Test	Method 5004 to device specifications. Method 5005, Class B quality levels.
2. Group A Electrical	Per customer order or Advanced Micro Devices catalog identification.
3. Mark	Method 2009
5. External Visual	Sample Quality Inspection
	Physical or electrical
verification of product identity.	

Note: Steps 7-10 not required for solid packages.

RELIABILITY TESTING

Advanced Micro Devices has an ongoing reliability program to evaluate its bipolar memory products. Reliability testing conforms to MIL-STD-883 Method 1005 Conditions C or D. Examples of the test circuits used are shown in Figure 9. Data has now been accumulated on the process described here in excess of ten thousand hours on some devices. Over four billion fuse hours have been completed with no fuse oriented failures.

Advanced Micro Devices selects samples of its product stratified by product type at periodic intervals for this testing. Thus, the tests are representative of a total cross section of time and product base during the past year and a half. Figure 10 is a tabulation of the results of the lots placed on test during this period of time. The data demonstrates a highly reliable process. The fuse has an immeasurably low contribution to the failure rate at this point in the reliability testing.

Condition C - Static
BPM-127

Condition D - Dynamic
Figure 9. Burn-In Circuits For Conditions C \& D-27S20.

BIPOLAR MEMORY RELIABILITY SUMMARY

Product	Production Lots	Units Tested	Total Unit-Hours	Total Fuse Hours (billions)	Unit Failures	Fuse Related Fallures	Unit Fallure Rate @ 60\% Confidence \%/1000 hrs. at $125^{\circ} \mathrm{C}$	Unit Fallure Rate* @ 60\% Confidence \%/1000 hrs. at $70^{\circ} \mathrm{C}$
27S20/21 (1K Bit PROM)	10	731	1,610,000	1.648B	2**	0	0.12	0.0011
$\begin{gathered} 27 \mathrm{~S} 12 / 13 \\ (2 \mathrm{~K} \text { Bit PROM) } \end{gathered}$	7	156	1,011,000	2.070B	0	0	0.10	0.0009
$\begin{array}{\|c\|} \hline 27 \mathrm{~S} 15 \\ 27 \mathrm{~S} 26 / 27 \\ (4 \mathrm{~K} \text { Bit PROM }) \\ \hline \end{array}$	7	136	139,000	0.569	0	0	0.72	0.0067
Totals For PROM Products	24	1023	2,760,000	4.287	2**	0	0.072	0.0007

*Assuming an activation energy of 1.0 eV .
**Oxide failures

Figure 10.

SUMMARY

The Advanced Micro Devices' bipolar memory process has been described with particular emphasis on programmable-read-only memories. An advanced form of the low-power Schottky process is used in conjunction with a highly reliable
and stable platinum silicide fuse. Extensive testing and screening have been used to assure that the products will meet all specification after the user has placed his program into the device and that the circuit reliability will be outstanding.

Am27LS18•Am27LS19

DISTINCTIVE CHARACTERISTICS

- High Speed - 50ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

FUNCTIONAL DESCRIPTION

The Am27LS18 and Am27LS19 are high speed electrically programmable Schottky read-only memories. Organized in the industry standard 32×8 configuration, they are available in both open collector (Am27LS18) and three-state (Am27LS19) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{4}$ and holding the chip select input, CS, at a logic LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{7}$ go to the off or high impedance state.

GENERIC SERIES CHARACTERISTICS

The Am27LS18 and Am27LS19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

BLOCK DIAGRAM

LOGIC SYMBOL

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

ORDERING INFORMATION		
Package Type	Temperature Range	Order Number
Open Collectors		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27LS18DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27LS18DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27LS18FM
Three-State Outputs		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27LS19DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27LS19DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27LS19FM

CONNECTION DIAGRAM
 Top View

Note: Pin 1 is marked for orientation.

Am27LS18 • Am27LS19	
MAXIMUM RATINGS (Above which the useful life may be impaired) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature (Ambient) Under Bias -0.5 V to +7.0 V Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous -0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$ DC Voltage Applied to Outputs (Except During Programming) 21 V DC Voltage Applied to Outputs During Programming 200 mA Output Current into Outputs During Programming (Max. Duration of 1 sec.) -0.5 V to +5.5 V DC Input Voltage -30 mA to. +5 mA DC Input Current \mathbf{l}	

OPERATING RANGE

COM'L	Am27LS18XC, Am27LS19XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL.	Am27LS18XM, Am27LS19XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
V_{OH} (Am27LS19 only)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
$\mathrm{VOL}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
$\mathbf{V I H}^{\text {I }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
IIL	Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
11	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
${ }^{\prime} \mathrm{SC}$ (Am27LS1S oniv)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	All inputs = GND $V_{C C}=M A X$.				60	80	mA
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $I_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{\overline{C S}}=2.4 V \end{aligned}$		$V_{0}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27LS19	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
			only	$V_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

Notes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 PRELIMINARY DATA| Parameter | Description | Test Conditions | Typ | Max | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$ | COM'L | MIL | |
| $t_{A A}$ | Address Access Time | AC Test Load (See Notes 1-3) | 30 | 55 | 75 | ns |
| $t_{\text {EA }}$ | Enable Access Time | | 22 | 40 | 50 | ns |
| t_{ER} | Enable Recovery Time | | 18 | 35 | 40 | ns |

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

PROGRAMMING

The Am27LS18 and Am27LS19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$V_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{C S}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
lonp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{Cs}}\right) / \mathrm{dt}$	Rate of $\overline{C S}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{P}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058
Am27LS18 • Am27LS19 ADAPTERS AND CONFIGURATORS	715-1407-1	PA16-6 and 32×8 (L)

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\star}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 32 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns, starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

(A) = CARRIAGE RETURN
(L) $=$ LINE FEED

RESULTING DEVICE TRUTH TABLE ($\overline{C S}=$ LOW)

A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{0}
L	L	L	L	L	H	L	H	H	L	L	L	H
L	L	L	L	H	H	H	H	H	H	H	L	L
L	L	L	H	L	L	L	L	H	H	H	H	L
L	L	L	H	H	L	L	L	L	L	L	L	L
L	L	H	L.	L	H	L	L	L	L	L	L	H
L	L	H	L	H	L	H	H	L	H	H	L	L
L	L	H	H	L	H	L	L	H	H	H	L	L
H	H	H	H	H	L	L	L	L	H	H	H	L

APPLYING THE Am27LS18 AND Am27LS19

The Am27LS18 and Am27LS19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal or BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking con-
trol or code selector input. The use of a single Am27LS18 or Am27LS19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

TRUTH TABLE

ADDRESS					COMPLEMENT$\mathrm{O}_{7} \mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{4}$				O_{3}			O_{0}	
0	0	0	0	0	1	1	0	0	0	0	1	1	
0	0	0	0	1	1	0	1	1	0	1	0	0	
0	0	0	1	0	1	0	1	0	0	1	0	1	
0	0	0	1	1	1	0	0	1	0	1	1	0	m
0	0	1	0	0	1	0	0	0	0	1	1	1	$\widehat{8}$
0	0	1	0	1	0	1	1	1	1	0	0	0	0
0	0	1	1	0	0	1	1	0	1	0	0	1	\bigcirc
0	0	1	1	1	0	1	0	1	1	0	1	0	글
0	1	0	0	0	0	1	0	0	1	0	1	1	3
0	1	0	0	1	0	0	1	1	1	1	0	0	界
0	1	0	1	0	X	X	X	X	X	X	X	X	\bigcirc
0	1	0	1	. 1	X	X	X	X	X	X	x	x	8
0	1	1	0	0	X	X	X	X	X	X	X	X	m
0	1	1	0	1	X	X	X	X	X	X	X	X	
0	1	1	1	0	X	X	X	X	X	X	x	X	
0	1	1	1	1	X	X	X	X	X	X	X	X	
1	0	0	0	0	1	1	1	1	0	0	0	0	
1	0	0	0	1	1	1	1	0	0	0	0	1	
1	0	0	1	0	1	1	0	0	0	0	1	1	
1	0	0	1	1	1	1	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	1	0	1	1	0	
1	0	1	0	1	1	0	0	0	0	1	1	1	๑
1	0	1	1	0	1	0	1	0	0	1	0	1	3
1	0	1	1	1	1	0	1	1	0	1	0	0	2
1	1	0	0	0	0	0	1	1	1	1	0	0	\bigcirc
1	1	0	0	1	0	0	1	0	1	1	0	1	O
1	1	0	1	0	0	0	0	0	1	1	1	1	m
1	1	0	1	1	0	0	0	1	1	1	1	0	
1	1	1	0	0	0	1	0	1	1	0	1	0	
1	1	1	0	1	0	1	0	0	1	0	1	1	
1	1	1	1	0	0	1	1	0	1	0	0	1	
1	1	1	1	1	0	1	1	1	1	0	0	0	

PHYSICAL DINENSIONS
 Dual-in-Line

16-Pin Ceramic

16-Pin Fiat Package

Am27S18•Am27S19 256-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed - 40ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

FUNCTIONAL DESCRIPTION

The Am27S18 and Am27S19 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 32×8 configuration, they are available in both open collector Am27S18 and three-state Am27S19 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{4}$ and holding the chip select input, $\overline{\mathrm{CS}}$, at a logic LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{7}$ go to the off or high impedance state.

GENERIC SERIES CHARACTERISTICS

The Am27S18 and Am27S19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

BLOCK DIAGRAM

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$ $G N D=\operatorname{Pin} 8$

BPM-019

ORDERING INFORMATION		
Package Type	Temperature Range	Order Number
Open Collectors		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S18DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S18DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S18FM
Three-State Outputs		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S19DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S19DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S19FM

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

Am27S18 - Am27S19	
MAXIMUM RATINGS (Above which the useful life may be impaired)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\text {cc }}$ max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.)	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30mA to, +5 mA

OPERATING RANGE

COML	Am27S18XC, Am27S19XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S18XM, Am27S19XM	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
PRELIMINARY DATA

Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
V_{OH} (Am27LS19 only)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
1 IL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$., $\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{I}_{1 \mathrm{H}}$	Input HIGH Current	$V_{C C}=M A X_{1}, V_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
11	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
$\begin{aligned} & \text { ISC } \\ & \text { (Am27LS19 only) } \end{aligned}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} . \end{aligned}$				90	115	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{IIN}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \\ & \mathrm{V}_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27LS19	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
			only	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

[^1]SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	25	40	50	ns
$t_{E A}$	Enable Access Time		15	25	30	ns
$t_{E R}$	Enable Recovery Time		15	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $V_{O H}$ -0.5 V ; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM H TOL		DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROMLTOH	WILL BE CHANGING FROMLTO H			

AC TEST LOAD

PROGRAMMING

The Am27S18 and Am27S19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{Cc} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$.	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {cSP }}$	$\overline{\text { CS }}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$d\left(V_{c s}\right) / d t$	Rate of $\overline{\mathrm{CS}}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{\prime}{ }_{P}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp.	Pro-Log Corp.
	P.O. Box 308	2411 Garden Road
Issaquah, Wash. 98027	Monterey, Ca. 93940	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 32 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

RESULTING DEVICE TRUTH TABLE ($\overline{\mathbf{S}}=$ LOW)

A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	0_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{0}
L	L	L	L	L	H	L	H	H	L.	L	L	H
L	L	L	L	H	H	H	H	H	H	H	L	L
1	L	L	H	L	L	L	L	H	H	H	H	L
L.	L	L	H	H	L	L	L	L	L	L	L	L
L	L	H	L	L	H	L	L	L	L	L	L	H
L	L	H	L	H	L	H	H	L	H	H	L	L
L	L	H	H	L.	H	L	L	H	H	H	L	L
H	H	H	H	H	L	L	L	L	H	H	H	L

ASCII PAPER TAPE

APPLYING THE Am27S18 AND Am27S19

The Am27S18 and Am27S19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal or BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking con-
trol or code selector input. The use of a single Am27S18 or Am27S19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

TRUTH TABLE

ADDRESS				A_{0}	COMPLEMENT				TRUE				
0	0	0	0	0	1	1	0	0	0	0	1	1	
0	0	0	0	1	1	0	1	1	0	1	0	0	
0	0	0	1	0	1	0	1	0	0	1	0	1	
0	0	0	1	1	1	0	0	1	0	1	1	0	7
0	0	1	0	0	1	0	0	0	0	1	1	1	¢
0	0	1	0	1	0	1	1	1	1	0	0	0	0
0	0	1	1	0	0	1	1	0	1	0	0	1	0
0	0	1	1	1	0	1	0	1	1	0	1	0	고
0	1	0	0	0	0	1	0	0	1	0	1	1	再
0	1	0	0	1	0	0	1	1	1	1	0	0	m
0	1	0	1	0	X	X	X	X	X	X	X	X	8
0	1	0	1	1	X	x	X	x	X	X	X	x	0
0	1	1	0	0	X	X	X	X	X	X	X	X	m
0	1	1.	0	1	X	X	X	x	X	X	X	X	
0	1	1	1	0	X	X	X	X	X	X	X	X	
0	1	1	1	1	X	X	X	X	X	X	X	X	
1	0	0	0	0	1	1	1	1	0	0	0	0	
1	0	0	0	1	1	1	1	0	0	0	0	1	
1	0	0	1	0	1	1	0	0	0	0	1	1	
1	0	0	1	1	1	1	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	1	0	1	1	0	
1	0	1	0	1	1	0	0	0	0	1	1	1	
1	0	1	1	0	1	0	1	0	0	1	0	1	0
1	0	1	1	1	1	0	1	1	0	1	0	0	2
1	1	0	0	0	0	0	1	1	1	1	0	0	\bigcirc
1	1	0	0	1	0	0	1	0	1	1	0	1	\bigcirc
1	1	0	1	0	0	0	0	0	1	1	1	1	m
1	1	0	1	1	0	0	0	1	1	1	1	0	
1	1	1.	0	0	0	1	0	1	1	0	1	0	
1	1	1	0	1	0	1	0	0	1	0	1	1	
1	1	1	1	0	0	1	1	0	1	0	0	1	
1	1	1	1	1	0	1	1	1	1	0	0	0	

PHYSICAL DIMENSIONS

Dual-In-Line

16-Pin Ceramic

16-Pin Flat Package

Am27S20 • Am27S21
 1024-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed - 45ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

GENERIC SERIES CHARACTERISTICS

The Am27S20 and Am27S21 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

	ORDERING INFORMATION Package Type	Temperature Range	
Open Collectors Number			
Hermetic DIP Hermetic DIP Hermetic Flat Pak	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S20DC	
	AM27S20DM		
	Three-State Outputs		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S21DC	
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S21DM	
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S21FM	

FUNCTIONAL DESCRIPTION

The Am27S20 and Am27S21 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 256×4 configuration, they are available in both open collector Am27S20 and three-state Am27S21 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{7}$ and holding the chip select inputs, $\overline{\mathrm{CS}}_{1}$ and $\overline{C S}_{2}$, at a logic LOW. If either chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or high impedance state.

Am27S20 • Am27S21
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to +V cc max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

OPERATING RANGE

COML	Am27S20XC, Am27S21XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S20XM, Am27S21XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

LECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) RELIMINARY DATA

arameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \text { (Am27S21 only) } \end{aligned}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
$\mathrm{V}_{\mathbf{1 H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
${ }_{1 / H}$	Input HIGH Current	$V_{C C}=M A X_{1,}, V_{I N}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
$\begin{aligned} & \text { ISC } \\ & \text { (Am27S21 only) } \end{aligned}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2$)$			-20	-40	-90	mA
${ }^{\prime} \mathrm{Cc}$	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=\text { MAX. } \end{aligned}$				95	130	mA
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{\overline{C S} 1}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27S21	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
			only	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{Cin}^{\text {I }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

[^2]SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	25	45	60	ns
$t_{\text {EA }}$	Enable Access Time		15	20	30	ns
$t_{\text {ER }}$	Enable Recovery Time		15	20	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; $\mathrm{S}_{\boldsymbol{j}}$ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $\mathrm{C}_{L}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of V_{OH} -0.5 V ; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

AC TEST LOAD

PROGRAMMING

The Am27S20 and Am27S21 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{c c}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$V_{\text {ccp }}$	$V_{\text {cc }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {cSP }}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\text {cs }}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$, Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{\text {ONP }}$ through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp.	Pro-Log Corp.
	P.O. Box 308	2411 Garden Road
Issaquah, Wash. 98027	Monterey, Ca. 93940	
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	$909-1286-1$	PM9058
Am27S20 • Am27S21	$715-1408-1$	
ADAPTERS AND CONFIGURATOR		

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{(1}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 256 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of four Ps or Ns , starting with output O_{3}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.

A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the four Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

RESULTING DEVICE TRUTH TABLE ($\overline{C S}_{1} \& \overline{\mathbf{C S}}_{2}=$ LOW $)$

A_{7}	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	O_{3}	O_{2}	O_{1}	O_{0}
L	L	L	L	L	L	L	L	L	L	L	H
L	L	L	L	L	L	L	H	H	H	L	L
L	L	L	L	L	L	H	L	H	H	H	L
L	L	L	L	L	L	H	H	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	H
L	L	L	L	L	H	L	H	H	H	L	L
L	L	L	L	L	H	H	L	H	H	L	L
H	H	H	H	H	H	H	H	H	H	H	L

ASCII PAPER TAPE

APPLYING THE Am27S20/21

Typical application of the Am27S20/21 is shown below. The Am27S20/21's are employed as mapping ROMs in a microprogram computer control unit. The eight-bit macroinstruction from main memory is brought into the A_{0-7} inputs of the mapping ROM array. The instruction is mapped into a 12-bit address space with each PROM output supplying 4 bits. The 12 bits of address are then supplied to the " D " inputs of the Am2910 as a possible next address source for microprogram
memory. The $\overline{\mathrm{MAP}}$ output of the Am2910 is connected to the $\overline{\mathrm{CS}}_{1}$ input of the Am27S20/21 such that when the $\overline{\mathrm{CS}}_{1}$ input is HIGH, the outputs of the PROMs are either HIGH in the case of the Am27S20 or in the three-state mode in the case of the Am27S21. In both cases the $\overline{\mathrm{CS}}_{2}$ input is grounded, thus data from other sources are free to drive the D inputs of the Am2910 when MAP is HIGH.

MICROPROGRAMMING INSTRUCTION MAPPING
BPM-035
PHYSICAL DIMENSIONS

Dual-In-Line

16-Pin Ceramic

16-Pin Flat Package

Am27S12•Am27S13
 2048-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed - 50ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

GENERIC SERIES CHARACTERISTICS

The Am27S12 and Am27S13 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION		
Package Type	Temperature Range	Order Number
Open Collectors		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S12DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S12DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S12FM
Three-State Outputs		
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S13DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S13DM
Hermetic Flat Pak	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S13FM

FUNCTIONAL DESCRIPTION

The Am27S12 and Am27S13 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×4 configuration, they are available in both open collector Am27S12 and three-state Am27S13 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $A_{0}-A_{8}$ and holding the chip select input, $\overline{C S}$, at a logic LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or high impedance state.

Am27S12 • Am27S13	
MAXIMUM RATINGS (Above which the useful life may be impaired)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

JPERATING RANGE

COM'L $^{\prime}$	Am27S12XC, Am27S13XC	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S12XM, Am27S13XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ミLECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 'RELIMINARY DATA

'arameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \text { (Am27S13 only) } \end{aligned}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.45	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
$1 /$	Input HIGH Current	$\mathrm{V}_{C C}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
ISC (Am27S13 only)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
Icc	Power Supply Current	All inputs $=$ GND $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$.				100	130	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} . \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27S13	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
			only	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

Votes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{A A}$	Address Access Time	AC Test Load (See Notes 1-3)	30	50	60	ns
$t_{\text {EA }}$	Enable Access Time		15	25	30	ns
ter	Enable Recovery Time		15	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. tER is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $V_{O H}$ -0.5 V ; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

AC TEST LOAD

PROGRAMMING

The Am27S12 and Am27S13 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycle. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$V_{\text {ccp }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {cSP }}$	$\overline{C S}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
VonP	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
lonp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {Op }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\text {CS }}\right) / \mathrm{dt}$	Rate of $\overline{C S}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
tp	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; l.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058
Am27S12 • Am27S13 ADAPTERS AND CONFIGURATOR	715-1408-2	PA16-5 and 512×4 (L)

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 512 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of four Ps or Ns , starting with output O_{3}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.

A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the four Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B , then the word re-typed beginning with the B .

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

RESULTING DEVICE TRUTH TABLE ($\overline{\mathrm{CS}}=$ LOW)

A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	A_{1}	A_{0}	\mathbf{O}_{3}	\mathbf{O}_{2}	\mathbf{O}_{1}	\mathbf{O}_{0}
L	H											
L	H	H	H	L	L							
L	H	L	H	H	H	L						
L	H	H	L	L	L	L						
L	L	L	L	L	L	H	L	L	L	L	L	H
L	L	L	L	L	L	H	L	H	H	H	L	L
L	L	L	L	L	L	H	H	L	H	H	L	L
					\vdots							
H	L											

ASCII PAPER TAPE

APPLYING THE Am27S12 AND Am27S13

The Am27S12 and Am27S13 can be used with a high speed counter to form a pico-controller for microprogrammed systems. A typical application is illustrated below wherein a multiplexer, under control of one of the PROMs, is continuously sensing the CONDITIONAL TEST INPUTS. When the selected condition occurs, a HIGH signal will result at the mul-
tiplexer output causing a predetermined branch address to be loaded into the parallel inputs of the counters on the next clock pulse. The counter then accesses the preprogrammed data or control information sequence from the Am27S12 or Am27S13 PROMs.

PHYSICAL DIMENSIONS

Dual-In-Line

16-Pin Ceramic

16-Pin Flat Package

Am27S15

4096-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- On-chip data latches
- Latched true and complemented output enables for easy word expansion
- Predetermined OFF outputs on power-up
- Plug-in replacement for the 82S115
- Fast access time - 60ns commercial and 90ns military maximum
- Performance pretested with N^{2} patterns
- Highly reliable, ultra-fast programming Platinum-Silicide fuses - High programming yield
- Low current PNP inputs
- High current three-state outputs
- Common Generic PROM Series characteristics and programming procedures

FUNCTIONAL DESCRIPTION

The Am27S15 is an electrically programmable Schottky read only memory incorporating on-chip data and enable latches. The device is organized as 512 words of 8 bits and features three-state outputs with full 16 mA drive capability.
When in the transparent mode, with the strobe (ST) input HIGH, reading stored data is accomplished by enabling the chip (\bar{E}_{1} LOW and E_{2} HIGH) and applying the binary word address to the address inputs, $A_{0}-A_{8}$. In this mode, changes of the address inputs cause the outputs, $Q_{0}-Q_{7}$, to read a different stored word; changes of either enable input level disable the outputs, causing them to go to the high impedance state.
Dropping the strobe input to the LOW level places the device in the latched mode of operation. The output condition present (reading a word of stored data or disabled) when the strobe goes LOW remains at the outputs, regardless of further address or enable transitions, until a positive (LOW to HIGH) strobe transition occurs. With the strobe H IGH, $Q_{0}-Q_{7}$ again respond to the address and enable input conditions.
If the strobe is LOW (latched mode) when V_{Cc} power is first applied, the outputs will be in the disabled state, eliminating the need for special "power-up" design precautions.

BLOCK DIAGRAM

Im27S15
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to +V Cc (max)
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration $=1 \mathrm{sec})$	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

OPERATING RANGE

COM'L	Am27S15XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S15XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Uniess Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min	(Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		COM'L	2.7			Volts
				MIL	2.4			
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$	$16 \mathrm{~mA}$				0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		COM'L			0.85	Volts
				MIL			0.80	
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		COM'L			-0.100	mA
				MIL			-0.150	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
1	Input HIGH Current	$V_{C C}=$ MAX., $V_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X ., V_{O U T}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		COM'L	-20		-70	mA
				MIL	-15		-85	
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\text { GND } \\ & V_{C C}=\text { MAX. } \end{aligned}$		COM'L		125	175	mA
				MIL		125	185	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V V_{C C}=M A X . \\ & V E_{1}=2.4 V \\ & V E_{2}=0.4 V \end{aligned}$	$\mathrm{V}_{0}=4.5 \mathrm{~V}$				100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4$				40	
			$\mathrm{V}_{0}=0.4$				-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ 4=1 \mathrm{MHz}$ (Note 3)				12		

[^3]| Parameter | Description | Test Conditions | Typ. (Note 1) | COM'L | | MIL | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Min. | Max. | Min. | Max. | |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}(\mathrm{~A}) \\ & \mathrm{t}_{\mathrm{PLH}}(\mathrm{~A}) \\ & \hline \end{aligned}$ | Transparent Mode Address to Output Access Time | $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
 S_{1} Closed (See AC Test Load Below) | 35 | | 60 | | 90 | ns |
| | Strobe Pulse Width (HIGH) | | 10 | 30 | | 40 | | ns |
| $t_{s}(\mathrm{~A})$ | Address to Strobe (LOW) Set-up Time | | 35 | 60 | | 90 | | ns |
| $t_{H}(A)$ | Address to Strobe (LOW) Hold Time | | -10 | 0 | | 5 | | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}\left(\mathrm{E}_{1}\right) \\ & \mathrm{t}_{\mathbf{s}}\left(\mathrm{E}_{2}\right) \\ & \hline \end{aligned}$ | Enable to Strobe (LOW) Set-up Time | | | 40 | | 50 | | ns |
| $\begin{aligned} & t_{H}\left(E_{1}\right) \\ & t_{H}\left(E_{2}\right) \end{aligned}$ | Enable to Strobe (LOW) Hold Time | | 0 | 10 | | 10 | | ns |
| | Transparent Mode Enable to Output Enabled (HIGH or LOW) Time | $\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{~S}_{1} \text { Closed for } \mathrm{t}_{\mathrm{PZL}}, \\ \text { \& Open for } \mathrm{t}_{\mathrm{PLH}} \\ \hline \end{gathered}$ | 20 | | 40 | | 50 | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}(\mathrm{~S}) \\ & \mathrm{t}_{\mathrm{PLZ}}(\mathrm{~S}) \end{aligned}$ | Strobe Delatch (HIGH) to Output Disabled (OFF or HIGH impedance) Time | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 2)
 S_{1} closed for $\mathrm{t}_{\mathrm{pLz}}$ \& Open for $\mathrm{t}_{\mathrm{PHZ}}$ | | | 35 | | 45 | ns |
| $\begin{aligned} & \operatorname{t}_{\text {PHZ }}\left(\overline{\bar{E}}_{1}, \mathrm{E}_{2}\right) \\ & \operatorname{tppLZ}^{\left(\bar{E}_{1}, \mathrm{E}_{2}\right)} \\ & \hline \end{aligned}$ | Transparent Mode Enable to Output Disabled (OFF or high impedance) Time | | 20 | | 40 | | 50 | ns |

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. t_{PHZ} and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
3. Tests are performed with input rise and fall times (10% to 90%) of 5 ns or less.

SWITCHING WAVEFORMS

AC TEST LOAD

PROGRAMMING

The Am27S15 is manufactured with a conductive PlatinumSilicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \bar{E}_{1} input is at a logic HIGH. Current is gated through the addressed fuse by raising the \bar{E}_{1} input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the current drops to approximately 40 mA . Current into the $\overline{\mathrm{E}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$V_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {ENP }}$	\bar{E}_{1} Voltage During Programming	14.5	15.5	Volts
$\mathrm{V}_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0.0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$d\left(V_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$d\left(V_{E N}\right) / d t$	Rate of \bar{E}_{1} Voltage Change	100	1000	$\mathrm{v} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058
Am27S15 ADAPTERS AND CONFIGURATOR	715-1411-1	PA24-14 and 512×8 (L)

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\left({ }^{*}\right.}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 512 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output Q_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

$\phi \varnothing \varnothing$	BPNPPINNMPF	WORD ZERO (® ($^{\text {L }}$
	BPPPPPPNNF	COMMENT FIELD (${ }^{\text {(1) }}$
$\phi \varnothing 2$	BNNNPPPPNF	ANY (R)
	BNINNNINNTF	TEXI (B)
$\phi \phi 4$	BPNNININNPF	CAN (R) (L)
	BNPPNPPNNF	G0 (A) (L)
$\phi \phi 6$	BPNNPPPNNF	HERE (B) (L)
.	::::::::::	
511	BNNNMPPNT	END (R) (L)
	ARRIAGE RETU	

RESULTING DEVICE TRUTH TABLE (\bar{E}_{1} and \bar{E}_{2} LOW)

A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	Q_{7}	Q_{6}	C_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	Q_{0}
L	L	L	L	L	L	L	L	L	H	L	H	H	L	L	L	H
L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	1	L
L	L	L	L	L	L	L	H	L	L	L	L	H	H	H	H	L
L	L	L	L	L	L	L	H	H	L	L	L	L	L	L	L	L
L	L	L	L	L	L	H	L	L	H	L	L	L	L	L	L	H
L	L	L	L	L	L	H	L	H	L	H	H	L	H	H	L	L
L	L	L	L	L	L	H	H	L	H	L	L	H	H	H	L	L
H	H	H	H	H	H	H	H	H	L	L	L	L	H	H	H	L

GENERIC SERIES CHARACTERISTICS

The Am27S15 is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

PHYSICAL DIMENSIONS

Dual-In-Line

24-Pin Hermetic

Am27S25
 4096-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- On chip edge triggered registers - Ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Buffered common asynchronous $\overline{\text { PRESET }}$ and $\overline{\text { CLEAR }}$ inputs
- Space saving 24-pin package with 300 mil lateral centers
- Predetermined OFF outputs on power-up
- Fast 50 ns address setup and 20 ns clock to output times
- Excellent performance over the military range
- Performance pretested with N^{2} patterns
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current three-state outputs
- Common Generic PROM Series characteristics and programming procedures

FUNCTIONAL DESCRIPTION

The Am27S25 is an electrically programmable Schottky TTL. read only memory incorporating true D-type, master-slave data registers on chip. This device features the versatile 512 word by 8 bit organization and is available in the three-state Am27S25 output version. Designed to optimize system performance, this device also substantially reduces the cost and size of pipelined microprogrammed systems and other designs wherein accessed PROM data is temporarily stored in a register. The Am27S25 also offers maximal flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

When $V_{C C}$ power is first applied, the synchronous enable (\bar{E}_{S}) flipflop will be in the set condition causing the outputs, $Q_{0}-Q_{7}$, to be in the OFF or high impedance state. Reading data is accomplished by first applying the binary word address to the address inputs, $A_{0}-A_{8}$, and a logic LOW to the synchronous output enable, $\bar{E}_{\mathbf{S}}$. During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock, CP, data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable, \bar{E}, is also LOW, stored data will appear on the outputs, $Q_{0}-Q_{7}$. If $\bar{E}_{\text {S }}$ is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state. The outputs may be disabled at any time by switching \bar{E} to a HIGH level. Following the positive clock edge, the address and synchronous enable inputs are free to change; changes do not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.
The on-chip, edge triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.
The Am27S25 has buffered asynchronous $\overline{\text { PRESET }}$ and CLEAR inputs. These functions are common to all registers and are useful during power up timeout sequences. With outputs enabled the $\overline{\mathrm{PS}}$ input asserted LOW will cause all outputs to be set to a logic 1 (HIGH) state. When the CLR input is LOW, the internal flip-flops of the data register are reset and, a logic 0 (LOW) will appear on all outputs. These functions will control the state of the data register, independent of all other inputs but exclusive of each other.

CONNECTION DIAGRAM - Top View

Note: Pin 1 is marked for orientation.

GENERIC SERIES CHARACTERISTICS

The Am27S25 is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, largegap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply, and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.)	200 mA
DC Input Voltage	

OPERATING RANGE

COM'L	AM27S25XC	$T_{A}=0$ to $75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	AM27S25XM	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4			Volts
$V_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			0.38	0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.010	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)		-20	-40	-90	mA
${ }^{\text {Icc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs = GND } \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \end{aligned}$			130	185	mA
V_{1}	Input Clamp Voltage	$V_{C C}=M I N ., I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X . \\ & V E=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=2.4 \mathrm{~V}$			40	
			$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			12		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRE!-IMINARY DATA

$$
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}
\end{gathered}
$$

COM'L
MIL

Parameter	Description	Test Conditions	Typ	Min	Max	Min	Max	Units
$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Address to CP (HIGH) Setup Time		35		50		60	ns
$t_{H}(\mathrm{~A})$	Address to CP (HIGH) Hold Time		-15	0		0		ns
$\begin{aligned} & \mathrm{t}_{\text {PHL }}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PLH}}(\mathrm{CP}) \end{aligned}$	Delay from CP (HIGH) to Output (HIGH or LOW)		15		36		30	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{WH}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{WL}}(\mathrm{CP}) \end{aligned}$	CP Width (HIGH or LOW)	A	10					ns
$\mathrm{t}_{\mathrm{S}}\left(\bar{E}_{\text {S }}\right)$	\bar{E}_{S} to CP (HIGH) Setup Time	30 pF	10					ns
$t_{H}\left(\bar{E}_{S}\right)$	\bar{E}_{S} to CP (HIGH) Hold Time	(See AG Te	-10					ns
$\mathrm{t}_{\mathrm{PLH}}(\overline{\mathrm{PS}})$	Delay from $\overline{\text { PS }}$ (LOW) to Output (HIGH)	ofetmelio	17					ns
$\mathrm{t}_{\text {PHL }}(\overline{\mathrm{CLR}})$	Delay from CLR (LOW) to Output (LOW)	(i)	17					ns
$\mathrm{t}_{\mathrm{WL}}(\overline{\mathrm{PS}})$	PRESET Pulse Width (LOW)	+3	10					ns
$\mathrm{t}_{\text {WL }}(\overline{\text { CLLR }}$)	CLEAR Pulse Width (LOW)		10					ns
$\mathrm{t}_{\mathrm{S}}(\overline{\mathrm{PS}})$	$\overline{\text { PS Recovery (}}$ (l (${ }^{\text {active) to CLock (HIGH) }}$		12					ns
$\mathrm{t}_{\mathrm{s}}(\overline{\mathrm{CLR}})$	$\overline{\text { CLR }}$ Recovery (Inactive) to Clock (HIGR ${ }^{\text {a }}$,		12					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PZH}}(\mathrm{CP}) \\ & \hline \end{aligned}$	Delay from CP (HIGH) to Active Outzi4 (HIGH or LOW)	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{~S}_{1} \text { is closed for } \mathrm{t}_{\mathrm{PLL}} \end{gathered}$	22					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PzL}}(\overline{\mathrm{E}}) \\ & \mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{E}}) \end{aligned}$	Delay from $\overline{\mathrm{E}}$ (LOW) to Active Outpub (HIGH or LOW)	and open for $\mathrm{t}_{\mathrm{PzH}}$	22					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PHZ}}(\mathrm{CP}) \end{aligned}$	Delay from $\overrightarrow{\mathrm{E}}$ (HIGH) to Inactive Output (OFF or High Impedance)	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text { (Note 1) }$ S_{1} closed for $\mathrm{t}_{\mathrm{PLZ}}$	22					ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \overline{\overline{(E)}} \\ & \mathrm{t}_{\mathrm{PHZ}}^{(\mathrm{E})} \end{aligned}$	Delay from $\overline{\mathrm{E}}$ (HIGH to Inactive Output (OFF or High Impedance)		22					ns

Notes: 1. $\mathrm{t}_{\mathrm{PHZ}}$ and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
2. Tests are performed with input 10 to 90% rise and fall times of 5 ns or less.

PROGRAMMING

The Am27S25 is manufactured with a conductive PlatinumSilicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the E input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{E}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level. Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the
current drops to approximately 40 mA . Current into the \bar{E} pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	V
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	V
$V_{\text {ILP }}$	Input LOW Level During Prọgramming	0.0	0.45	V
$V_{\text {ENP }}$	E Voltage During Programming	14.5	15.5	V
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	V
Vonp	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	V
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of \bar{E} Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{\text {P }}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{6} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{\text {ONP }}$ through resistor R which provides output current limiting.
5. $\overline{\mathrm{PS}}$ and $\overline{\mathrm{CLR}}$ must be connected to $\mathrm{V}_{\mathrm{IHP}}$ during programming.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058
Am27S25 ADAPTERS AND CONFIGURATOR	715-1617	PA24-16 and 512×8 (L)

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\text {® }}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 512 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output Q_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter "B".
3. A trailer of at least 25 rubouts.
$A P$ is a HIGH logic level $=2.4$ volts. An N is a LOW logic level $=0.4$ volts.

A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B , then the word re-typed beginning with the B .

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

$\phi \phi \phi$	BPNPPNNNPF	WORD ZERO (${ }^{\text {(}}$ (L)
	BPPPPPPRNF	COMMENT FIELD (R) (L)
$\phi \varnothing 2$	BNNNPPPPNF	ANY (R) L
	BNNNNNNNNF	TEXI (R)
$\phi \varnothing 4$	BPNNNNNNPF	CAN (R) (L)
	BNPPNPPNNF	$G 0$ (R) (L)
$\phi \emptyset 6$	BPNNPPPNNF	HERE (R) (L)
	:::::::: : :	
511	BNNNNPPPNF	END (R) (L)
$\begin{aligned} & \text { (R) }= \\ & (\mathrm{L})= \end{aligned}$	ARRIAGE RETU INE FEED	

RESULTING DEVICE TRUTH TABLE (\bar{E} AND \bar{E}_{S} LOW, $\overline{\text { PS }}$ AND CLR HIGH)

A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{7}	Q_{6}	Q_{5}	\mathbf{Q}_{4}	a_{3}	Q_{2}	Q_{1}	\mathbf{Q}_{0}
L	L	L	L	L	L	L	L	L	H	L	H	H	L	L	L	H
L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	L	L
L	L	L	L	L	L	L	H	L	L	L	L	H	H	H	H	L
L	L	L	L	L	L	L	H	H	L	L	L	L	L	L	L	L
L	L	L	L	1	L	H	L	L	H	L	L	L	L	L	L	H
L	L	L.	L	L	L	H	L	H	L	H	H	L	H	H	L	L
L	L	L	L	L	L	H	H	L	H	L	L	H	H	H	,	L
H	H	H	H	H	H	H	H	H	L	L	L	L	H	H	H	L

APPLYING THE Am27S25 IN BIPOLAR

MICROCOMPUTERS

With the advent of the Am2901 and Am2903 4-bit microprocessor slices, the Am2910 bipolar microprogram sequencer. and the Am27S25 registered PROM, the design engineer can upgrade the performance of existing systems or implement new systems taking advantage of the latest state-of-the-art technology in Low-Power Schottky integrated circuits. These devices, however, utilize a new concept in machine design not familiar to many design engineers. This technique is called microprogramming.

Basically, a microprogrammed machine is one in which a coherent sequence of microinstructions is used to execute various commands required by the machine. If the machine is a computer, each sequence of microinstructions can be made to execute a machine instruction. All of the little elemental tasks performed by the machine in executing the machine instruction are called microinstructions. The storage area for these microinstructions is usually called the microprogram memory.

Figure 1. A Typical Computer Control Unit Using the Am27S25.

APPLYING THE Am27S25 IN BIPOLAR MICROCOMPUTERS (Cont.)

A microinstruction usually has two primary parts. These are: (1) the definition and control of all elemental micro-operations to be carried out and (2) the definition and control of the address of the next microinstruction to be executed.
The definition of the various micro-operations to be carried out usually includes such things as ALU source operand selection, ALU function, ALU destination, carry control, shift control, interrupt control, data-in and data-out control, and so forth. The definition of the next microinstruction function usually includes identifying the source selection of the next microinstruction address and, in some cases, supplying the actual value of that microinstruction address.
Microprogrammed machines are usually distinquished from non-microprogrammed machines in the following manner. Older, non-microprogrammed machines implemented the control function by using combinations of gates and flip-flops connected in a somewhat random fashion in order to generate the required timing and control signals for the machine. Microprogrammed machines, on the other hand, are normally considered highly ordered, particularly with regard to the control function field, and use high speed PROMs for control definition. In its simplest definition, a microprogram control unit consists of the microprogram memory and the structure required to determine the address of the next microinstruction.

The microprogram memory control unit block diagram of Figure 1 is easily implemented using the Am2910 and the Am27S25 registered PROMs. This architecture provides a structured state machine design capable of executing many highly sophisticated next address control instructions. The Am2910 contains a next address multiplexer that provides four different inputs from which the address of the next microinstruction can be selected. These are the direct input (D), the register input (R), the program counter (PC), and file (F). The starting address decoder (mapping PROM) output and the Am27S25's pipeline register output are connected together at the D input to the Am2910 and are operated in the three-state mode.

The architecture of Figure 1 shows an instruction register capable of being loaded with a machine instruction word from the data bus. The op code portion of the instruction is decoded using a mapping PROM to arrive at a starting address for the microinstruction sequence required to execute the machine instruction. When the microprogram memory address is to be the first microinstruction of the machine instruction sequence, the Am2910 next address control selects the multiplexer D input and enables the three-state output from the mapping PROM. When the current microinstruction being executed is selecting the next microinstruction address as a JUMP function, the JUMP address will be available at the multiplexer D input. This is accomplished by having the Am2910 select the next address multiplexer D input and also enabling the three-state output of the pipeline register branch address field. The register enable input to the Am2910 can be grounded so that this register will load the value at the Am2910 D input. The value at D is clocked into the Am2910's register (R) at the end of the current microcycle, which makes the D value of this microcycle available as the R value of the next microcycle. Thus, by using the branch address field of two sequential microinstructions, a conditional JUMP-TO-ONE-OF-TWO-SUBROUTINES or a conditional JUMP-TO-ONE-OF-TWO-BRANCH-ADDRESSES can be executed by either selecting the D input or the R input of the next address multiplexer.

When sequencing through continuous microinstructions in the Am27S25 microprogram memory, the program counter in the

Am2910 is used. Here, the control logic simply selects the PC input of the next address multiplexer. In addition, most of these instructions enable the three-state outputs of the Am27S25 pipeline register associated with the branch address field, which allows the register within the Am2910 to be loaded. The 5×12 stack in the Am2910 is used for looping and subroutining in microprogram operations. Up to five levels of subroutines or loops can be nested. Also, loops and subroutines can be intermixed as long as the five word depth of the stack is not exceeded.
The Am27S25 contains a $\overline{\text { PRESET }} \overline{(\overline{P S})}$ and a $\overline{\text { CLEAR }}$ ($\overline{\mathrm{CLR})}$ function that is useful for power-up operations and other initialization functions. These signals can also be used to provide "trap" jumps to the all zeros or ones addresses in microprogram memory.

The expansion scheme for increasing the depth of Am27S25 is shown in Figure 2. Note that no speed degradation results when devices are cascaded. This is because the decode of the Am74S139 is in parallel with the PROM access time.
In order to provide an overall view of a typical Am2900 Bipolar Microprocessor, the block diagram of Figure 3 is presented. Here, the computer control unit (CCU) using the Am2910 and Am27S25 registered PROMs is depicted. In addition, the typical connection scheme for the Am2903 Bipolar Microprocessor slices is shown. The four Am2903 devices in the block diagram form a typical 16-bit architecture. Also shown in Figure 3 is the general connection for the Am2914 Priority Interrupt Controller and the Am2920 as a Memory Address Register.

The block diagram also shows the Am2917 as the bus interface unit. Note that the Am2917 can interface directly with a data bus and the drive levels and receive levels are such that the instruction register can be built using standard Low-Power Schottky devices. This is possible because the receiver threshold on the Am2917 is designed identically to the thresholds on standard power Schottky and the Low-Power Schottky devices.

Figure 2. Word Expansion Scheme for the Am27S25.

Figure 3. Typical Bipolar Microcomputer Using the Am27S25.

USING THE Am27S25 IN A PIPELINED ARCHITECTURE

BPM-082

A Register at the Microprogram Memory output contains the microinstruction being executed. The microprogram memory and Am2903 delay are in series. Conditional branches are executed on same cycle as the ALU operation generating the condition.

One level pipeline provides better speed than the architecture to the left. The Microprogram Memory and the Am2903 array are in parallel speed paths instead of in series. This is the recommended architecture for Am2900 designs. Note that the Am27S25 reduces the parts count of the microprogram memory/pipeline by a factor of two.

PHYSICAL DIMENSIONS

Dual In-Line

24-Pin Slim Cerdip

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
	Three-State Outputs	
Hermetic DIP	0 to $75^{\circ} \mathrm{C}$	AM27S25DC
Hermetic DIP	-55 to $+125^{\circ} \mathrm{C}$	AM27S25DM

Am27S26•Am27S27
 4096-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- On chip edge triggered registers - Ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Predetermined OFF outputs on power-up
- Fast 50 ns address setup and $20 n s$ clock to output times
- Excellent performance over the military range
- Performance pretested with N^{2} patterns
- Space saving 22 pin package
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Common Generic PROM Series characteristics and programming procedures

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The Am27S26 and Am27S27 are electrically programmable Schottky TTL read only memories incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 512 word by 8 bit organization and are available in both the open collector Am27S26 and three-state Am27S27 output versions. Designed to optimize system performance, these devices also substantially reduce the cost of pipelined microprogrammed system and other designs wherein accessed PROM data is temporarily stored in a register. The Am27S26 and Am27S27 also offer maximal flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.
When $V_{C C}$ power is first applied, the synchronous enable (\bar{E}_{S}) flip-flop will be in the set condition causing the outputs, $Q_{0}-Q_{7}$, to be in the OFF or high impedance state, eliminating the need for a register clear input. Reading data is accomplished by first applying the binary word address to the address inputs, $A_{0}-A_{8}$, and a logic LOW to the synchronous output enable, \bar{E}_{S}. During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock, CP, data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable, \bar{E}, is also LOW, stored data will appear on the outputs, $Q_{0}-Q_{7}$. If \bar{E}_{S} is - HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state. The outputs may be disabled at any time by switching $\overline{\mathrm{E}}$ to a HIGH level. Following the positive clock edge, the address and synchronous enable inputs are free to change; changes do not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.
The on-chip, edge triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

$V_{C C}=\operatorname{Pin} 22$ GND $=\operatorname{Pin} 11$

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

GENERIC SERIES CHARACTERISTICS

The Am27S26 and Am27S27 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, largegap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 22 to Pin 11) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

OPERATING RANGE

COM'L	AM27S26XC, AM27S27XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	AM27S26XM, AM27S27XM	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
V_{OH} (Am27S27 only)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{MiN} ., \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$				0.38	0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for, all inputs					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
IIH	Input HIGH Current	$V_{C C}=M A X ., V_{i N}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
I_{1}	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
```IsC (Am27S27 only)```	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs = GND } \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} . \end{aligned}$				130	185	mA
$\mathrm{V}_{1}$	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X . \\ & V E=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
			Am27S27	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
			Only	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 3)				12		

[^4]Am26S26•Am27S27

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter	Description	Test Conditions	Typ 5V	COM'L		MIL		Units
			$25^{\circ} \mathrm{C}$	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Address to CP (HIGH) Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$   $\mathrm{S}_{1}$ closed.   (See AC Test Load below)	40	55		65		ns
$t_{H}(\mathrm{~A})$	Address to CP (HIGH) Hold Time		-15	0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHLL}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PLLH}}(\mathrm{CP}) \\ & \hline \end{aligned}$	Delay from CP (HIGH) to Output (HIGH or LOW)		15		27		30	ns
$t_{\mathrm{WH}}(\mathrm{CP})$   $t_{W L}$ (CP)	CP Width (HIGH or LOW)		10	30		40		ns
$\mathrm{t}_{\mathrm{S}}\left(\overline{\mathrm{E}}_{\text {S }}\right)$	$\overline{\bar{E}}_{\text {S }}$ to CP (HIGH) Setup Time		10	25		30		ns
$t_{H}\left(\bar{E}_{S}\right)$	$\bar{E}_{\text {S }}$ to CP (HIGH) Hold Time		-10	0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzL}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PZH}}(\mathrm{CP}) \\ & \hline \end{aligned}$	Delay from CP (HIGH) to Active Output (HIGH or LOW) (Note 1)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{~S}_{1} \text { closed for } \mathrm{t}_{\mathrm{PZL}} \\ & \text { and open for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	15		35		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{E}}) \\ & \mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{E}}) \\ & \hline \end{aligned}$	Delay from $\overline{\mathrm{E}}$ (LOW) to Active Output (HIGH or LOW) (Note 1)		15		40		45	ns
$\begin{aligned} & t_{P L Z(C P)} \\ & t_{P H Z}(C P) \end{aligned}$	Delay from CP (HIGH) to Inactive Output (OFF or High Impedance) (Note 1)	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 2) $\mathrm{S}_{1}$ closed for $\mathrm{t}_{\mathrm{PLZ}}$ and open for $\mathrm{t}_{\mathrm{PHZ}}$	15		35		45	ns
$\begin{aligned} & t_{\mathrm{PLZ}}(\overline{\mathrm{E}}) \\ & \mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{E}}) \end{aligned}$	Delay from $\overline{\mathrm{E}}$ (HIGH) to Inactive Output (OFF or High Impedance) (Note 1)		10		30		40	ns

Notes: 1. $\mathrm{t}_{\mathrm{PHZ}}$ and $\mathrm{t}_{\mathrm{PZH}}$ apply to the three-state Am27S27 only.
2. $\mathrm{t}_{\mathrm{PHZ}}$ and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
3. Tests are performed with input $10 \%$ to $90 \%$ rise and fall times of 5 ns or less.


## PROGRAMMING

The Am27S26 and Am27S27 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\bar{E}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\bar{E}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the
current drops to approximately 40 mA . Current into the $\overline{\mathrm{E}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $\mathrm{V}_{\mathrm{Cc}}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

## PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	V
$V_{\text {iHP }}$	Input HIGH Level During Programming	2.4	5.5	V
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	V
$V_{\text {ENP }}$	E Voltage During Programming	14.5	15.5	V
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	V
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\mathrm{CCP}+0.3}$	V
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of $\bar{E}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{t_{P}}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays $t_{1}$ through $t_{6}$ must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During $t_{v}$, a user defined period, the output being programmed is switched to the load $R$ and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{\text {ONP }}$ through resistor $R$ which provides output current limiting.


## PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp.   P.O. Box 308   Issaquah, Wash. 98027	Pro-Log Corp.   2411 Garden Road   Monterey, Ca: 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR	$909-1286-1$	PM9058
PROM PERSONALITY BOARD		
Am27S26 • Am27S27	$715-1412-2$	PA22-4 and $512 \times 8(\mathrm{~L})$
ADAPTERS AND   CONFIGURATOR		

## OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

## ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts,
2. The data patterns for all 512 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except " $B$ ".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns, starting with output $Q_{7}$.
d. The letter " $F$ ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter "B".
3. A trailer of at least 25 rubouts.

A $P$ is a HIGH logic level $=2.4$ volts.
An $N$ is a LOW logic level $=0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the $B$ and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter $B$, then the word re-typed beginning with the $B$.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

## TYPICAL PAPER TAPE FORMAT

$\not \varnothing \varnothing \varnothing$	BPNPPNNNPF	WORD ZERO ( ${ }^{\text {( }}$ (L)
	BPPPPPPINNF	COMMENT FIELD (R) (L)
$\phi \varnothing 2$	BNNTPPPPNNF	ANY R (L)
	Bnnonnwnng	TEXI (R) L
$\phi \not ¢ 4$	BPNNNNNNPF	CAN (R) (L)
	BNPPNPPNNF	GO (R) (L)
$\not \varnothing \varnothing 6$	BPNNPPPNNF	HERE (R) (L)
	::::: :: : : :	
511	BNNNNPPPNF	END (R) (L)
(8) $=$	ARRIAGE RET	
(L) $=$	Ne feed	

RESULTING DEVICE TRUTH TABLE (E AND $\bar{E}_{\text {S }}$ LOW)

| $\mathbf{A}_{8}$ | $\mathbf{A}_{7}$ | $\mathbf{A}_{6}$ | $\mathbf{A}_{5}$ | $\mathbf{A}_{4}$ | $\mathbf{A}_{3}$ | $\mathbf{A}_{2}$ | $\mathbf{A}_{1}$ | $\mathbf{A}_{0}$ | $\mathbf{a}_{7}$ | $\mathbf{Q}_{6}$ | $\mathbf{a}_{5}$ | $\mathbf{a}_{4}$ | $\mathbf{Q}_{3}$ | $\mathbf{a}_{\mathbf{2}}$ | $\mathbf{a}_{1}$ | $\mathbf{a}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | L | L | L | L | L | H | L | H | H | L | L | L | H |
| L | L | L | L | L | L | L | L | H | H | H | H | H | H | H | L | L |
| L | L | L | L | L | L | L | H | L | L | L | L | H | H | H | H | L |
| L | L | L | L | L | L | L | H | H | L | L | L | L | L | L | L | L |
| L | L | L | L | L | L | H | L | L | H | L | L | L | L | L | L | H |
| L | L | L | L | L | L | H | L | H | L | H | H | L | H | H | L | L |
| L | L | L | L | L | L | H | H | L | H | L | L | H | H | H | L | L |
|  |  |  |  | $:$ |  |  |  |  |  |  |  | . | $:$ |  |  |  |
| H | H | H | H | H | H | H | H | H | L | L | L | L | H | H | H | L |



## APPLYING THE Am27S26 AND Am27S27 IN BIPOLAR MICROCOMPUTERS

With the advent of the Am2901 and Am29034-bit microprocessor slices, the Am2910 bipolar microprogram sequencer and the Am27S26/27 registered PROM, the design engineer can upgrade the performance of existing systems or implement new systems taking advantage of the latest state-of-the-art tech-
nology in Low-Power Schottky integrated circuits. These devices, however, utilize a new concept in machine design not familiar to many design engineers. This technique is called microprogramming.


Fig. 1. A Typical Computer Control Unit using the Am27S26/27.

## APPLYING THE Am27S26 and Am27S27 IN BIPOLAR MICROCOMPUTERS (Cont.)

Basically, a microprogrammed machine is one in which a coherent sequence of microinstructions is used to execute various commands required by the machine. If the machine is a computer, each sequence of microinstructions can be made to execute a machine instruction. All of the little elemental tasks performed by the machine in executing the machine instruction are called microinstructions. The storage area for these microinstructions is usually called the microprogram memory.
A microinstruction usually has two primary parts. These are: (1) the definition and control of all elemental micro-operations to be carried out and (2) the definition and control of the address of the next microinstruction to be executed.
The definition of the various micro-operations to be carried out usually includes such things as ALU source operand selection, ALU function, ALU destination, carry control, shift control, interrupt control, data-in and data-out control, and so forth. The definition of the next microinstruction function usually includes identifying the source selection of the next microinstruction address and, in some cases, supplying the actual value of that microinstruction address.
Microprogrammed machines are usually distinquished from non-microprogrammed machines in the following manner. Older, non-microprogrammed machines implemented the control function by using combinations of gates and flip-flops connected in a somewhat random fashion in order to generate the required timing and control signals for the machine. Microprogrammed machines, on the other hand, are normally considered highly ordered, particularly with regard to the control function field, and use high speed PROMs for control definition. In its simplest definition, a microprogram control unit consists of the microprogram memory and the structure required to determine the address of the next microinstruction

The microprogram memory control unit block diagram of Figure 1 is easily implemented using the Am2910 and the Am27S26/27 registered PROM's. This architecture provides a structured state machine design capable of executing many highly sophisticated next address control instructions. The Am2910 contains a next address multiplexer that provides four different inputs from which the address of the next microinstruction can be selected. These are the direct input (D), the register input (R), the program counter (PC), and the file (F). The starting address decoder (mapping PROM) output and the Am27S26/27's pipeline register output are connected together at the D input to the Am2910 and are operated in the three-state mode.
The architecture of Figure 1 shows an instruction register capable of being loaded with a machine instruction word from the data bus. The op code portion of the instruction is decoded using a mapping PROM to arrive at a starting address for the microinstruction sequence required to execute the machine instruction. When the microprogram memory address is to be the first microinstruction of the machine instruction sequence, the Am2910 next address control selects the multiplexer D input and enables the three-state output from the mapping PROM. When the current microinstruction being executed is selecting the next microinstruction address as a JUMP function, the JUMP address will be available at the multiplexer D input. This is accomplished by having the Am2910 select the next address multiplexer D input and also enabling the three-state output of the pipeline register branch address field. The register enable input to the Am2910 can be grounded so that this register will load the value at the Am2910 D input. The value at D is clocked into the Am2910's register $(R)$ at the end of the current microcycle, which makes the $D$ value of this microcycle available as the $R$ value of the next
microcycle. Thus, by using the branch address field of two sequential microinstructions, a conditional JUMP-TO-ONE-OF-TWO-SUBROUTINES or a conditional JUMP-TO-ONE-OF-TWO-BRANCH-ADDRESSES can be executed by either selecting the $D$ input or the $R$ input of the next address multiplexer.
When sequencing through continuous microinstructions in the Am27S26/27 microprogram memory, the program counter in the Am2910 is used. Here, the control logic simply selects the PC input of the next address multiplexer. In addition, most of these instructions enable the three-state outputs of the Am27S26/27 pipeline register associated with the branch address field, which allows the register within the Am2910 to be loaded. The $5 \times 12$ stack in the Am2910 is used for looping and subroutining in microprogram operations. Up to five levels of subroutines or loops can be nested. Also, loops and subroutines can be intermixed as long as the five word depth of the stack is not exceeded.
The expansion scheme for increasing the depth of Am27S26/ 27's is shown in Figure 2. Note that no speed degradation results when devices are cascaded. This is because the decode of the Am74S139 is in parallel with the PROM access time.
In order to provide an overall view of a typical Am2900 Bipolar Microprocessor, the block diagram of Figure 3 is presented. Here, the computer control unit (CCU) using the Am2910 and Am27S26/27 registered PROM's is depicted. In addition, the typical connection scheme for the Am2903 Bipolar Microprocessor slices is shown. The four Am2903 devices in the block diagram form a typical 16-bit architecture. Also shown in Figure 3 is the general connection for the Am2914 Priority Interrupt Controller and the Am2920 as a Memory Address Register.
The block diagram also shows the Am2917 as the bus interface unit. Note that the Am2917 can interface directly with a data bus and the drive levels and receive levels are such that the instruction register can be built using standard Low-Power Schottky devices. This is possible because the receiver threshold on the Am2917 is designed identically to the thresholds on standard power Schottky and the Low-Power Schottky devices.


Fig. 2. Word Expansion Scheme for the Am27S26 and Am27S27.


## USING THE Am27S26/27 IN A PIPELINED ARCHITECTURE



A Register at the Microprogram Memory output contains the microinstruction being executed. The microprogram memory and Am2903 delay are in series. Conditional branches are executed on same cycle as the ALU operation generating the condition.


One level pipeline provides better speed than the architecture to the left. The Microprogram Memory and the Am2903 array are in parallel speed paths instead of in series. This is the recommended architecture for Am2900 designs. Note that the Am27S26/27 reduces the parts count of the microprogram memory/pipeline by a factor of two.

PHYSICAL DIMENSIONS
Dual In-Line
22-Pin Hermetic


ORDERING INFORMATION

Package   Type	Temperature   Range	Order   Number
	Open Collectors	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S26DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S26DM
	Three-State Outputs	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S27DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S27DM

# Am27S28 • Am27S29 

## 4096-Bit Generic Series Bipolar PROM

## DISTINCTIVE CHARACTERISTICS

- High Speed - 55ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with $\mathrm{N}^{2}$ patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.


## GENERIC SERIES CHARACTERISTICS

The Am27S28 and Am27S29 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test rows are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION		
Package Type	Temperature Range	Order Number
Open Collectors		
Hermetic DIP Hermetic DIP	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	AM27S28DC AM27S28DM
Three-State Outputs		
Hermetic DIP Hermetic DIP	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	AM27S29DC   AM27S29DM

## FUNCTIONAL DESCRIPTION

The Am27S28 and Am27S29 are high speed electrically programmable Schottky read only memories. Organized in the industry standard $512 \times 8$ configuration, they are available in both open collector Am27S28 and three-state Am27S29 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{8}$ and holding the chip select input, $\overline{\mathrm{CS}}$, at a logic LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{7}$ go to the off or high impedance state.

BLOCK DIAGRAM


BPM-08:
LOGIC SYMBOL


Am27S28 - Am27S29	
MAXIMUM RATINGS (Above which the useful life may be impaired)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-0.5 V to +7.0 V
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Voltage Applied to Outputs (Except During Programming)	21 V
DC Voltage Applied to Outputs During Programming	200 mA
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	-0.5 V to +5.5 V
DC Input Voltage	-30 mA to +5 mA
DC Input Current	

## OPERATING RANGE

COML	Am27S28XC, Am27S29XC	$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S28XM, Am27S29XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ミLECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 'RELIMINARY DATA

'arameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
$\mathrm{V}_{\mathrm{OH}}$   (Am27S29 only)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\mathrm{OL}}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.50	Volts
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input Low Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
1 IL	Input LOW Current	$V_{C C}=$ MAX., $V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
```Isc (Am27S29 only)```	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} . \end{aligned}$				105	. 160	mA
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27S29	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter Description

$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	35	55	70	ns
$t_{\text {EA }}$	Enable Access Time		15	25	30	ns
ter	Enable Recovery Time		15	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$;
3. For three state outputs, $t_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $V_{O H}$ -0.5 V ; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while CS is HIGH is determined externally.

PROGRAMMING

The Am27S28 and Am27S29 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the CS input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{cc} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$V_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Voits
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {cSP }}$	$\overline{\text { CS }}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0.0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of CS Voltage Change	100	1000	$\mathrm{v} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{V}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058
Am27S28 - Am27S29 ADAPTERS AND CONFIGURATOR	715-1413	PA20-4 and 512×8 (L)

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 512 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts. $\mathrm{An} N$ is a LOW logic level $=0.4$ volts.

A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B , then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

$\phi \varnothing \varnothing$	BPNPPNNNFF	WORD ZERO (R) (L)
	BPPPPPPMNF	COMMENT FIELD ${ }^{\text {R }}$
$\phi \varnothing 2$	BNNNPPPPNF	ANY (R) L
	bNNWNNNNNTF	TEXI R (L)
$\phi \phi 4$	BPNNINNNPF	CAN (R)
	BNPPNPPNNF	60 (8) (D)
$\not ¢ \varnothing 6$	BPNNPPPNNF	HERE (R) (L)
511	:::::::::::	
511	BNNNNPPPNF	END (${ }^{\text {((1) }}$
	arriage retu	

RESULTING DEVICE TRUTH TABLE (CS LOW)

| A_{8} | A_{7} | A_{6} | A_{5} | A_{4} | A_{3} | A_{2} | A_{1} | A_{0} | \mathbf{O}_{7} | \mathbf{O}_{6} | \mathbf{O}_{5} | $\mathbf{O}_{\mathbf{4}}$ | \mathbf{O}_{3} | $\mathbf{O}_{\mathbf{2}}$ | \mathbf{O}_{1} | $\mathbf{O}_{\mathbf{0}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L | H | L | H | H | L | L | L | H |
| L | H | L | L |
| L | H | L | L | L | L | H | H | H | H | L |
| L | H | H | L |
| L | L | L | L | L | L | H | L | L | H | L | L | L | L | L | L | H |
| L | L | L | L | L | L | H | L | H | L | H | H | L | H | H | L | L |
| L | L | L | L | L | L | H | H | L | H | L | L | H | H | H | L | L |
| | | | | \vdots | | | | | | | | | \vdots | | | |
| H | L | L | L | L | H | H | H | L |

ASCII PAPER TAPE

Am27S30•Am27S31
 4096-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed - 55 ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

GENERIC SERIES CHARACTERISTICS

The Am27S30 and Am27S31 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test rows are preprogrammed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION		
Package Type	Temperature Range	Order Number
Open Collectors		
Hermetic DIP Hermetic DIP	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	AM27S30DC Am27S30DM
Three-State Outputs		
Hermetic DIP Hermetic DIP	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -.55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	AM27S31DC AM27S31DM

FUNCTIONAL DESCRIPTION

The Am27S30 and Am27S31 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×8 configuration, they are available in both open collector Am27S30 and three-state Am27S31 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{8}$ and holding $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2} \frac{\mathrm{LOW}}{}$ and CS_{3} and $\mathrm{CS}_{4} \mathrm{HIGH}$. All other valid input conditions on $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

OPERATING RANGE

COM'	Am27S30XC, Am27S31XC	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S30XM, Am27S31XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
V_{OH} (Am27S31 only)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
v_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
IIL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
1 IH	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}^{\text {. }} \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
$\begin{aligned} & \text { ISC } \\ & \text { (Am27S31 only) } \end{aligned}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ MAX., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
${ }^{\text {Icc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} . \end{aligned}$				115	175	mA
v_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}^{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & v_{C C}=\operatorname{MAX} \\ & V_{\overline{C S 1}}=2.4 V \end{aligned}$	Am27S31 only	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

Notes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but periodically sampled.

Am27S30 • Am27S31

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 PRELIMINARY DATA| Parameter | Description | Test Conditions | Typ | Max | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$ | COM'L | MIL | |
| $t_{\text {AA }}$ | Address Access Time | AC Test Load (See Notes 1-3) | 35 | 55 | 70 | ns |
| teA | Enable Access Time | | 15 | 25 | 30 | ns |
| $t_{\text {ER }}$ | Enable Recovery Time | | 15 | 25 | 30 | ns |

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of V_{OH} -0.5 V ; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while chip is disabled is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS .	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM H TO L	$H \quad \square$	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROM LTO H	WILL BE CHANGING FROM L TO H			

AC TEST LOAD

PROGRAMMING

The Am27S30 and Am27S31 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 sec onds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS .

Parameter	Description	Min.	Max.	Units
$V_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {HPP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\widetilde{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0.0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{v} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{V}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5,7 and 9	M900 and M920

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 512 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=^{\prime} 0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B , then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

$\phi \phi \varnothing$	BPNPPNNNPF	WORD ZERO © ${ }^{\text {R }}$
	BPPPPPPNNF	COMMENT FIELD® (${ }^{\text {(}}$
$\phi \varnothing 2$	BNNIPPPPPNF	ANY (R) (L)
	bNANMNNMNF	TEXT (${ }^{\text {(}}$
$\phi \phi 4$	BPNNANNNFF	CAN (R) (L)
	BNPPNPPNNF	G0 (B) (D)
$\phi \varnothing 6$	BPNNPPPNNF	HERE (R) (L)
511		
(B) = CARRIAGE RETURN		
(L) = LINE FEED		

A_{8}	A_{7}	RESULTING DEVICE TRUTH TABLE ($\overline{\mathbf{C S}}_{1}$ AND $\overline{\mathrm{CS}}_{2}$ LOW, CS_{3} AND CS ${ }_{4}$ HIGH)														
		A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{0}
L	L.	L	L	L	L	L	L	L	H	L	H	H	L	L	L	H
L	L	1	L	L	L	L	L	H	H	H	H	H	H	H	L	L
L	L	L	L	L	L	L	H	L	L	L	L	H	H	H	H	L
L	L	1	L	L	L	L	H	H	L	L	L	L	L	L	L	L
L	L	L	L	L	L	H	L	L	H	L	L	L	L	L	L	H
L	L	L	L	L	L	H	L	H	L	H	H	L	H	H	L	L
L	L	L	L	L	L	H	H	L	H	L	L.	H	H	H	L	L
				:												
H	H	H	H	H	H	H	H	H	L	L	L.	L	H	H	H	L

PHYSICAL DIMENSIONS

Dual-In-Line

24-Pin Hermetic

Am27S32•Am27S33

4096-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed - 55ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

GENERIC SERIES CHARACTERISTICS

The Am27S32 and Am27S33 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, largegap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
	Open Collectors	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S32DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S32DM
	Three-State Outputs	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S33DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	AM27S33DM

FUNCTIONAL DESCRIPTION

The Am27S32 and Am27S33 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×4 configuration, they are available in both open collector Am27S32 and three-state Am27S33 output versions. After programming, stored information is read on outputs $\mathrm{OO}-\mathrm{O} 3$ by applying unique binary addresses to AO-A9 and holding the chip select inputs, $\overline{\mathrm{CS} 1}$ and CS2, LOW. If either chip select input goes to a logic HIGH, OO-O3 go to the off or high impedance state.

Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to +VCC max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

OPERATING RANGE

COM'L	Am27S32XC, Am27S33XC	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S32XM, Am27S33XM	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Untess Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
$\begin{aligned} & \text { VOH } \\ & \text { (Am27S33 only) } \end{aligned}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{VCC}=\mathrm{MIN} ., 1 \mathrm{OH}=-2.0 \mathrm{~mA} \\ & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & \text { VCC }=\text { MIN., } I O L=16 \mathrm{~mA} \\ & V I N=V I H \text { or } V I L \end{aligned}$					0.45	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
IIL.	Input LOW Current	$\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VIN}=0.45 \mathrm{~V}$				-0.020	-0.250	mA
IIH	Input HIGH Current	$\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VIN}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
II	Input HIGH Current	$\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VIN}=5.5 \mathrm{~V}$					1.0	mA
$\begin{aligned} & \text { ISC } \\ & \text { (Am27S33 only) } \end{aligned}$	Output Short Circuit Current	$\mathrm{VCC}=\mathrm{MAX} ., \mathrm{VOUT}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
ICC	Power Supply Current	All inputs = GND $V C C=M A X$.		COM'L		105	140	mA
				MIL		105	145	
VI	Input Clamp Voltage	VCC $=$ MIN., IIN $=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V C C=M A X . \\ & V \overline{C S 1}=2.4 V \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Am27S33 } \\ \text { only } \end{array} \\ \hline \end{array}$	$\mathrm{VO}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
				$\mathrm{VO}=2.4 \mathrm{~V}$			40	
				$\mathrm{VO}=0.4 \mathrm{~V}$			-40	
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V} @ \mathrm{i}=1 \mathrm{MHz}$ (Note 3)				5		pF
COUT	Output Capacitance	VOUT $=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				12		

[^5]
Am27S32•Am27S33

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 PRELIMINARY DATA| Parameter | Description | .Test Conditions | Typ | Max | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$ | COM'L | MIL | |
| $t_{A A}$ | Address Access Time | AC Test Load (See Notes 1-3) | 38 | 55 | 70 | ns |
| $\mathrm{t}_{\text {EA }}$ | Enable Access Time | | 10 | 25 | 30 | ns |
| $t_{\text {ER }}$ | Enable Recovery Time | | 10 | 25 | 30 | ns |

Notes: 1. tAA is tested with switch S1 closed and CL=30pF.
2. For open collector outputs, tEA and tER are tested with S1 closed to the 1.5 V output level. $\mathrm{CL}=30 \mathrm{pF}$.
3. For three state outputs, tEA is tested with $\mathrm{CL}=30 \mathrm{pF}$ to the 1.5 V level; S 1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t ER is tested with $\mathrm{CL}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S1 open to an output voltage of VOH -0.5 V ; LOW to high impedance tests are made with S 1 closed to the $\mathrm{VOL}+0.5 \mathrm{~V}$ level.

AC TEST LOAD

PROGRAMMING

The Am27S32 and Am27S33 are manufactured with conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycle. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including VCC should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
VCCP	VCC During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
VCSP	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
VOP	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs. Not to be Programmed	0	VCCP +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(VOP)/dt	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
d(VCS)/dt	Rate of $\overline{\mathrm{CS}_{1}}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
tP	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e. not to the midpoints.
2. Delays $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3$ and t 4 must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During tv, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each base part type in the series

SOURCE AND LOCATION	Data I/O Corp.	Pro-Log Corp.
	P.O. Box 308	2411 Garden Road
Issaquah, Wash. 98027	Monterey, Ca. 93940	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\text {® }}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 1024 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of four Ps or Ns, starting with output O3.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.

A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the four Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

RESULTING DEVICE TRUTH TABLE
($\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}=$ LOW)

A9	A8	A7	A6	A5	A4	A3	A2	A1	AO	03	02	01	00
L	L	L	L	L	L	L	L	L	L	L	L	L	H
L	L	L	L	L	L	L	L	L	H	H	H	L	L
L	L	L	L	L	L	L	L	H	L	H	H	H	L
L	L	L	L	L	L	L	L	H	H	L	L	L	L
L	L	L	L	L	L	L	H	L	L	L	L	L	H
L	L	L	L	L	L	L	H	L	H	H	H	L	L
L	L	L	L	L	L	L	H	H	L	H	H	L	L
H	H	H	H	H	H	H	H	H	H	H	H	H	L

ASCII PAPER TAPE

PHYSICAL DIMENSIONS

Dual-In-Line

18-Pin Hermetic

Am27S180 • Am27S181

PRELIMINARY DATA

DISTINCTIVE CHARACTERISTICS

- High Speed - 60ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

GENERIC SERIES CHARACTERISTICS

The Am27S180 and Am27S181 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliabilty. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
	Open Collectors	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S180DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S180DM
	Three-State Outputs	
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	AM27S181DC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM27S181DM

FUNCTIONAL DESCRIPTION

The Am27S180 and Ami27S181 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×8 configuration, they are available in both open collector Am27S180 and three-state Am27S181 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{9}$ and enabling the chip ($\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$, low and $\mathrm{CS}_{3}, \mathrm{CS}_{4}$ high). Changes of chip select input levels disables the outputs causing them to go to the off or high impedance state.

BLOCK DIAGRAM

LOGIC DIAGRAM

CONNECTION DIAGRAM

Top Vlew

BPM-100

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

COM'L	Am27S180XC, Am27S181XC	$T_{A}=0$ to $75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S180XM, Am27S181XM	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min.	Typ. (Note 1)	Max.	Units
V_{OH} (Am27S181 only)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOL}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$				0.38	0.50	Volts
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0	.		Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
I_{1}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$					1.0	mA
Isc (Am27S181 only)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-40	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\text { GND } \\ & V_{C C}=\text { MAX. } \end{aligned}$				120	185	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$V_{C C}=M A X$, $\mathrm{V}_{\overline{\mathrm{CS}} 1,2}=2.4 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CS} 3,4}=0.4 \mathrm{~V}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27S181	$\mathrm{V}_{0}=2.4 \mathrm{~V}$			40	
			Only	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				12		

Notes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	40	60	80	ns
$t_{\text {EA }}$	Enable Access Time		20	40	50	ns
ter	Enable Recovery Time		20	40	50	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $V_{O H}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

AC TEST LOAD

PROGRAMMING

The Am27S180 and Am27S181 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated throurgh the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}{ }_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{Cc} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\text {cCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Votts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {cSP }}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\text {cs }}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$, Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.
\(\left.$$
\begin{array}{lll}\text { SOURCE AND LOCATION } & \begin{array}{l}\text { Data I/O Corp. } \\
\text { P.O. Box 308 } \\
\text { Issaquah, Wash. } 98027\end{array} & \begin{array}{l}\text { Pro-Log Corp. } \\
2411 \text { Garden Road } \\
\text { Monterey, Ca. } 93940\end{array}
$$

PROGRAMMER MODEL(S) \& Model 5, 7 and 9 \& M900 and M920\end{array}\right\}\)	PM9058

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\star}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 1024 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ voits.
An N is a LOW logic level $=0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B , then the word re-typed beginning with the B .

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

00	BPNPPNNNPF	WORD ZERO (18) (1)
	BPPPPPPNNF	COMMENT FIELD (12) (1)
$\emptyset \emptyset 2$	BMNNPPPPNF	ANY (8) (1)
	BNNNNNNNNF	TEXT (8) (1)
004	bPNNNNNMPF	CAN (8) (1)
	BNPPNPPNNF	co (®) (1)
006	BPNNPPPNNF	HERE (®) (1)
:	:::7::::::7:	:
1023	BNNNNPPPNF	END (8) (1)
$\begin{aligned} & \text { (B) }=C \\ & (1)=L I \end{aligned}$	riage return FEED	

RESULTING DEVICE TRUTH TABLE ($\overline{\mathrm{CS}}_{1}$ AND $\overline{\mathrm{CS}}_{2}$ LOW, CS_{3} AND $\mathrm{CS}_{4} \mathrm{HIGH}$)

	L.	L	L	L		L	L	L	L	H	L	H	H			L	L	
L	L	L	L	L	L	L	L	L	H	H	H	H	H	H		H	L	
L	L	L	L	L	L	L	L	H	L	L	L	L	H			H	H	
L	L	L	L	L	L	L	L	H	H	L	L	1	L	L		L	L	
L	L	L	L	L	L	L	H	L	L	H	1	L	L			L		
L	L	L	L	L	L	L	H	L	H	L	H	H	L			H	L	
L	1	L	L	L	L	L	H	H	1	H	L	L				H	L	
H	H	H	H	H	H	H	H	H	H	L	L	L				H	H	

ASCII PAPER TAPE

PHYSICAL DIMENSIONS

Dual-In-Line

24-Pin Hermetic

Am27S184•Am27S185
 8192-Bit Generic Series Bipolar PROM

PRELIMINARY DATA

DISTINCTIVE CHARACTERISTICS

- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.

GENERIC SERIES CHARACTERISTICS

The Am27S184 and Am27S185 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed tora logec HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming tighly reliable Platinum-Silicide Fuse technology. Utilizing easity 'implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric coffelation. Platinum-Silicide was selected as the fase-link material te achieve a well controlled melt ratel fesulting fin large noh conductive gaps that ensure-very stable long term reliabilty. Extensive operating testhy fas proven that-this low-field, large-gap technology offers the bast teliability for fusible link PROMs.
Commot design tratures incluge active loading of all critical AC paths tegulated by sboilt-in temperature and voltage compensated bias hetwork to provide excellent parametric performance dver MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

ORDERING INFORMATION

ORDERING INFORMATION		
Package Type	Temperature Range	Order Number
Open Collectors		
Hermetic DIP Hermetic DIP	$\begin{gathered} 0 \text { to }+75^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	AM27S184DC AM27S184DM
Three-State Outputs		
Hermetic DIP Hermetic DIP	$\begin{gathered} 0 \text { to }+75^{\circ} \mathrm{C} \\ -55 \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	AM27S185DC AM27S185DM

FUNCTIONAL DESCRIPTION

The Am27S184 and Am27S185 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048×4 configuration, they are available in both open collector Am27S184 and three-state Am27S185 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding the chip select input $\overline{C S}$ LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or high-impedance state.

Note 1: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)	
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{cc}} \mathrm{max}$.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	200 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

COM'L	Am27S184XC, Am27S185XC	$T_{A}=0$ to $75^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
MIL	Am27S184XM, Am27S185XM	$\mathrm{T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY DATA

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \text { (Am27S185 only) } \end{aligned}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.50	Volts
$V_{\text {iH }}$	Input HIGH Leve!	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
$I_{\text {IL }}$	Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.45 \mathrm{~V}$				-0.020	-. 250	mA
1 IH	Input HIGH Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
1	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					40	mA
Isc (Am27S185 only)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-20	-45	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} . \end{aligned}$				80	130	mA
V_{1}	Input Clamp Voltage	$V_{C C}=M I N ., I_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
${ }^{\text {ICEX }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=\operatorname{MAX} \\ & V_{\overline{C S}}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27S185 only	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {in }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.

Am27S184 • Am27S185
SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY DATA

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	40	-	-	ns
$t_{\text {EA }}$	Enable Access Time		10	-	-	ns
t_{ER}	Enable Recovery Time		10	-	-	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $\mathrm{t}_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

PROGRAMMING

The Am27S184 and Am27S185 are manufactured with conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{C S}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{c c}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min	Max	Units
$V_{\text {CCP }}$	$\mathrm{V}_{\text {cc }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {CSP }}$	$\overline{\mathrm{CS}}$ Voltage During Programming	14.5	15.5	Volts
$\mathrm{V}_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$V_{\text {CCP }}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$d\left(V_{O P}\right) / d t$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$d\left(V_{\text {cS }}\right) / d t$	Rate of CS, Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{\text {ONP }}$ through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058
Am27S184 • Am27S185 ADAPTERS AND CONFIGURATOR	715-1616	PA18-8 and 2048×4 (L)

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\oplus}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 2048 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of four Ps or Ns , starting with output O_{3}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.

A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the four Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

RESULTING DEVICE TRUTH TABLE ($\overline{\mathrm{CS}}$ LOW)

| A_{10} | A_{9} | A_{8} | A_{7} | A_{6} | A_{5} | A_{4} | A_{3} | A_{2} | A_{1} | A_{0} | O_{3} | O_{2} | O_{1} | \mathbf{O}_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | H |
| L | H | H | H | L | L |
| L | H | L | H | H | H | L |
| L | L | H | H | L | L | L | L |
| L | H | L | L | L | L | L | H |
| L | H | L | H | H | H | L | L |
| | | L | L | L | L | H | H | L | H | H | L | L | | |
| | H | L |

ASCII PAPER TAPE

PHYSICAL DIMENSIONS

Dual-In-Line
18-Pin Hermetic

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

SOURCE AND LOCATION
Data I/O Corp.
P.O. Box 308

Issaquah, WA 98027

PROGRAMMER MODEL(S)
AMD GENERIC BIPOLAR
PROM PERSONALITY BOARD

Model 5, 7 and 9 Systems 17 and 19

909-1286-1

Pro-Log Corp. International Microsystems, Inc. 2411 Garden Road Monterey, CA 93940

M900 and M920

PM9058

11554 C. Ave.
DeWitt Center
Auburn, CA 95603

IM 1010
IMAMDGEN1
.ADAPTORS AND
CONFIGURATOR

Am27LS18/19	$715-1407-1$
Am27S18/19	$715-1407-1$
Am27S20/21	$715-1408-1$
Am27S12/13	$715-1408-2$
Am27S15	$715-1411-1$
Am27S25	$715-1617$
Am27S26/27	$715-1412-2$
Am27S28/29	$715-1413$
Am27S30/31	$715-1545$
Am27S32/33	$715-1414$
Am27S180/181	$715-1545-2$
Am27S184/185	$715-1616$

PA16-6 and 32×8 (L)	IM32 $\times 8$-16-AMD
PA16-6 and 32×8 (L)	IM32 $\times 8$-16-AMD
PA16-5 and 256×4 (L)	IM256 $\times 4$-16-AMD
PA16-5 512×4 (L)	IM512 54 -16-AMD
PA24-14 and 512×8 (L)	IM512 $\times 8$-24-27S15-AMD
PA24-16 and 512×8 (L)	IM512 $\times 8$-24-27S25-AMD
PA22-4 and 512×8 (L)	IM512 $\times 8$-22-27S26/27-AMD
PA20-4 and 512×8 (L)	IM512 $\times 8$-20-AMD
PA24-13 and 512×8 (L)	IM512 $\times 8$-24-AMD
PA18-6 and 1024×4 (L)	IM1024 $\times 4$-18-AMD
PA24-13 and 1024×8 (L)	IM1024 $\times 8$-24-AMD
PA18-8 and 2048×4 (L)	IM2048 $\times 4$-18-AMD

Below are listed other programming equipment manufacturers who are currently in various stages of implementation and evaluation of programming hardware for AMD Bipolar Generic PROMs:

Accutest Corp.	Takeda Riken Industry Co., Ltd.	Kontron Electronic, Inc.
25 Industrial Ave.	1-32-1 Asahi-cho Nerima-Ku	700 S. Claremont St.
Chelmsford, MA 01824	Tokyo, Japan 176	San Mateo, CA 94402
(617) 256-8124	Tel: Tokyo: 930-4111	Tel: (415) 348-7291
TWX: 710-347-0620	Cable Address: Tritronics Tokyo	Telex: 00255-910-374-3001
E-H International, Inc.	Telex: $272-2140$	
515 11th St.	Digitronics Israel Ltd.	
Oakland, CA 94604	3 Tevuot Haaretz St.	
Tel: (415) 834-3030	Tel-Aviv, Israel	
TWX: $910-366-7258$	Tel: 03-472010	
	Telex: 32470, Coin II Attn: Digitronics	

PACKAGE OUTLINES

molded dual in-line packages

AMD Pkg.	P-16-1		P-18-1		P-20-1		P-22-1		P-24-1	
Parameters	Min.	Max.								
A	.150	.200	.150	.200	.150	.200	.150	.200	.170	.215
b	.015	.020	.015	.020	.015	.020	.015	.020	.015	.020
b1 $^{\text {A }}$.055	.065	.055	.065	.055	.065	.055	.065	.055	.065
c	.009	.011	.009	.011	.009	.011	.009	.011	.009	.011
D	.745	.775	.895	.925	1.010	1.050	1.080	1.120	1.240	1.270
E	.240	.260	.240	.260	.250	.290	.330	.370	.515	.540
E2	.310	.385	.310	.385	.310	.385	.410	.480	.585	.700
e	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110
L	.125	.150	.125	.150	.125	.150	.125	.160	.125	.160
Q	.015	.060	.015	.060	.015	.060	.015	.060	.015	.060
S1	.010	.040	.030	.040	.025	.055	.015	.045	.035	.065

Notes: 1. Standard lead finish is tin plate or solder DIP.
2. Dimension E_{2} is an outside measurement.

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

AMD Pkg.	D-16-1		D-18-1		D-20-1		D-22-1		D-24-1		$\begin{aligned} & \text { SLIM } \\ & \text { CERDIP } \end{aligned}$	
Common Name	CERDIP											
$\begin{aligned} & 38510 \\ & \text { Appendix C } \end{aligned}$	D-2(1)		-		-		-		D-3(1)		-	
Parameters	Min	Max										
A	. 130	. 200	. 130	. 200	. 140	. 220	. 140	. 220	. 150	. 225	. 140	. 220
b	. 016	. 020	. 016	. 020	. 016	. 020	. 016	. 020	. 016	. 020	. 016	. 020
b_{1}	. 050	. 070	. 050	. 070	. 050	. 070	. 045	. 065	. 045	. 065	. 045	. 065
c	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011
D	. 745	. 785	. 870	. 920	. 935	. 970	1.045	1.110	1.230	1.285	1.230	1.285
E	. 240	. 310	. 280	. 310	. 245	. 285	. 360	. 405	. 510	. 545	. 245	. 285
E_{1}	. 290	. 320	. 290	. 320	. 290	. 320	. 390	. 420	. 600	. 620	. 290	. 320
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 150	. 120	. 150	. 120	. 150
Q	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060
S_{1}	. 005		. 005		. 005		. 005		. 010		. 010	
α	3°	13°										
Standard Lead Finish	b				b		b		b			

Notes: 1. Load finish b is tin plate. Finish c is gold plate.
2. Used only for LM108/LM108A.
3. Dimensions E and D allow for off-center lid, meniscus and glass overrun.

FLAT PACKAGES

F-16-1

Note: Notch is pin 1 index on cerpack.

AMD Pkg.	F-16-1	
Common NAME	CERPACK	
38510 Appendix C	F-5	
Parameters	Min.	Max.
A	.045	.085
b	.015	.019
c	.004	.006
D	.370	.425
D $_{1}$		
E	.245	.285
E $_{1}$.290
e	.045	.055
L	.300	.370
L1	.920	.980
Q	.020	.040
S	.005	
Standard Lead Finish	b	

Notes: 1. Lead finish b is tin plate. Finish c is gold plate.
2. Dimensions E_{1} and D_{1} allow for off-center lid, meniscus, and glass overrun.

ORDERING INFORMATION

All Advanced Micro Devices' products listed are stocked locally and distributed nationally by Franchised Distributors. See back of this book for the location nearest you. Please consult them for the latest price revisions. For direct factory orders, call Advanced Micro Devices, 901 Thompson Place, Sunnyvale, California 94086, (408) 732-2400, TWX: 910-339-9280, TELEX: 34-6306.

Minimum Order

The minimum direct factory order is $\$ 100.00$ for a standard product.
The minimum direct factory order for Class B , burned-in, product is $\$ 250.00$.

Proprietary Product Ordering, Package and Temperature Range Codes

The following scheme is used to identify Advanced Micro Devices' proprietary products.

Package Style

D = Hermetic DIP
F = Flat Package
P = Molded DIP
$\mathrm{X}=$ Dice

Temperature Range

C = Commercial 0 to $70^{\circ} \mathrm{C}$
M = Military
-55 to $+125^{\circ} \mathrm{C}$

Additional Processing

$B=$ Burn-in (Signifies full MIL-STD-883
Class B product for military temperature range devices)

STANDARD PRODUCT PROCESSING AND OPTIONS

1. AMD STANDARD PRODUCT - CLASS C PROCESSING

All products manufactured by Advanced Micro Devices, including Bipolar Memory, Bipolar Logic and Interface, Microprocessors, Linear and MOS/LSI meet the quality requirements of MIL-M-38510. In addition all products, both commercial and military temperature range receive the 100% screening procedures defined in the current revision of MIL-STD-883, Method 5004, Class C. This processing is described in Advanced Micro Devices' Product Assurance Document 15-010.
a) Internal visual inspection: Method 2010. Condition B.
b) High temperature storage: Method 1008 , Condition $\mathrm{C} ; 150^{\circ} \mathrm{C}, 24$ hours.
c) Temperature cycling: Method 1010 , Condition $\mathrm{C} ;-65^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}, 10$ cycles.
d) Constant acceleration: Method 2001, Condition E; $30,000 \mathrm{~g} ., \mathrm{Y}_{1}$ plane. (Hermetic packages only.)
e) Fine leak: Method 1014, Condition A; 5×10^{-8} atm cc per second. (Hermetic packages only.)
f) Gross leak: Method 1014, Condition C, Step 2. (Hermetic packages only.)
g) Final electrical test: 100% D.C. and functional testing at $25^{\circ} \mathrm{C}$ and Group A sample per Method 5005.

To order this product, use the order number shown for the product desired. Example: Am27S29DM for full military temperature range part in dual-in-line package, Am27S29DC for commercial temperature range in dual-in-line package.

As noted, all material is processed to Class C and no additional price adders are imposed to deliver this level of reliability.
2. CLASS B PROCESSING

Military Temperature Range
Standard product is upgraded to Class B with a 160 -hour burn-in at $125^{\circ} \mathrm{C}$ followed by 100% electrical testing of D.C. parameters at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ and A.C. parameters at $25^{\circ} \mathrm{C}$.
Burn-in conditions are steady state power (MIL-STD-883, Method 1015.1, Condition B) for linear circuits, and steady state power and reverse bias (Condition C) for all others. Standard burn-in circuit specifications for any device are available upon request. Condition D burn-in is available to special order. Consult your local AMD sales office for price and delivery.
To order this product, use the order number shown for the product desired and add the suffix "B". Example: Am27S29DMB for military temperature product in dual-in-line package with burn-in as described. This processing meets all of the requirements of MIL-STD-883, Class B product.

Commercial Temperature Range

Standard AMD Class C commercial temperature range product is burned-in for use in non-military systems to a modified Class B program. A 160 hour burn-in, to a method meeting the requirements of Method 1015.1, Conditions A and B, is followed by the standard Class C electrical test procedures.
To order this level of screening, use the order number shown for the commercial device and add the suffix " B ". Example: Am27S29DCB.

3. CLASS S PROCESSING (FORMERLY CLASS A)

Class S processing is recommended only for applications where replacement is extremely difficult and reliability is imperative. This material is only produced to special order. Consult AMD for further details.

PRODUCT ASSURANCE
 MIL-M-38510 • MIL-STD-883

The product assurance program at Advanced Micro Devices defines manufacturing flow, establishes standards and controls, and confirms the product quality at critical points. Standardization under this program assures that all products meet military and government agency specifications for reliable ground applications. Further screening for users desiring flight hardware and other higher reliability classes is simplified because starting product meets all initial requirements for high-reliability parts.

The quality standards and screening methods of this program are equally valuable for commercial parts where equipment must perform reliably with minimum field service. .

Two military documents provide the foundation for this program. They are:

MIL-M-38510 - General Specification for Microcircuits
MIL-STD-883 - Test Methods and Procedures for Microelectronics

MIL-M-38510 describes design, processing and assembly workmanship guidelines for military and space-grade integrated circuits. All circuits manufactured by Advanced Micro Devices for full temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operation meet these quality requirements of MIL-M-38510.

MIL-STD-883 defines detail testing and inspection methods for integrated circuits. Three of the methods are quality and processing standards directly related to product assurance:

Test Method 2010 defines the visual inspection of integrated circuits before sealing. By confirming fabrication and assembly quality, inspection to this standard assures the user of reliable circuits in long-term field applications. Standard inspection at Advanced Micro Devices includes all the requirements of the latest revision of Method 2010, condition B.

Test Method 5004 defines three reliability classes of parts. All must receive certain basic inspection, preconditioning and screening stresses. The classes are:

Class C - Used where replacement can be readily accomplished. Screening steps are given in the AMD processing flow chart.

Class B - Used where maintenance is difficult or expensive and where reliability is vital. Devices are upgraded from Class C to Class B by 160 -hour burn-in at $125^{\circ} \mathrm{C}$ followed by more extensive electrical measurements. All other screening requirements are the same.

Class S - Used where replacement is extremely difficult and reliability is imperative. Class \mathbf{S} screening selects extra reliability parts by expanded visual and X-ray inspection, further burn-in, and tighter sampling inspection.

All hermetically sealed integrated circuits (military and commercial) manufactured by Advanced Micro Devices are screened to MIL-STD-883, Class C. Molded integrated circuits receive Class C screening except that centrifuge and hermeticity steps are omitted.

Optional extended processing to MIL-STD-883, Class B is available for all AMD integrated circuits. Parts procured to this screening
are marked with a " $-B$ " following the standard part number, except that linear 100,200 or 300 series are suffixed " $883 B^{\prime \prime}$.

Test Method 5005 defines qualification and quality conformance procedures. Subgroups, tests and quality levels are given for Group A (electrical), Group B (mechanical quality related to the user's assembly environment), Group C (die related tests) and Group D (package related tests). Group A tests are always performed; Group B, C and D may be specified by the user.

MANUFACTURING, SCREENING AND INSPECTION FOR INTEGRATED CIRCUITS

All integrated circuits are screened to MIL-STD-883, Method 5004, Class C; quality conformance inspection where required is performed to Class B quality levels on either Class B or Class C product.

All full-temperature-range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ circuits are manufactured to the workmanship requirements of MIL-M38510.

The flow chart identifies processing steps as they relate to MIL-STD-883 and MIL-M-38510.

QUALITY GROUP A ELECTRICAL TEST (TABLE I)
MIL-STD-883, Method 5005. See the table below. Quality levels
as defined for Class B are applied to both Class B and Class C
parts. Proven correlations supported by periodic reconfirma-
tion may be used for some parameters.
MARK, INSPECT, PACK FOR SHIPMENT
QUALITY INSPECTION, PRE-SHIPMENT
Confirmation of marking, physical quality, and product identity.
Confirmation of product type, count, package.
Confirmation of completion of all process requirements.
Confirmation of required documentation.
SHIP TO CUSTOMER
This AMD standard product meets screening requirements of
MIL-STD-883, Class C.

GROUP A ELECTRICAL TESTS
From MIL-STD-883, Method 5005, Table I

Subgroups	LTPD (Note 1)	Initial Sample Size
Subgroup 1 - Static tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 2 - Static tests at maximum rated operating temperature	7	32
Subgroup 3 - Static tests at minimum rated operating temperature	7	32
Subgroup 4 - Dynamic tests at $25^{\circ} \mathrm{C}$ - Linear devices	5	45
Subgroup 5 - Dynamic tests at maximum rated operating temperature - Linear devices	7	32
Subgroup 6 - Dynamic tests at minimum rated operating temperature - Linear devices	7	32
Subgroup 7 - Functional tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 8 - Functional tests at maximum and minimum rated operating temperatures	10	22
Subgroup 9 - Switching tests at $25^{\circ} \mathrm{C}$ - Digital devices	7	32
Subgroup 10 - Switching tests at maximum rated operating temperature - Digital devices (Note 2)	10	10
Subgroup 11 - Switching tests at minimum rated operating temperature - Digital devices (Note 2)	10	10

1. Sampling plans are based on LTPD tables of MIL-M-38510. The smaller initial sample size, based on zero rejects allowed, has been chosen unless otherwise indicated. If necessary, the sample size will be increased once to the quantity corresponding to an acceptance number of 2. The minimum reject number in all cases is 3 .
2. These subgroups are usually performed during initial device characterization only.

OPTIONAL EXTENDED PROCESSING
 CLASS B
 Steps 101 Through 110

Advanced Micro Devices offers several extended processing options to meet customer high-reliability requirements. These are defined in AMD document 00-003. The flow chart below outlines Option B, a $160-\mathrm{hr}$ burn in. Military temperature range devices processed to this flow (in the left column) meet the screening requirements of MIL-STD-883, Class B.

BEGINNING MATERIAL
Standard product taken after completion of step 20 (electrical test)
BURN IN
MIL-STD-883, Method 1015: $160 \mathrm{hr}, 125^{\circ} \mathrm{C}$, or time-temperature equivalents as allowed bý Method 1015.

FINAL ELECTRICAL TEST
MIL-STD-883, Method 5004.
Military: Testing subgroups as defined for Class B. Static and functional at 3 temperatures, dynamic or switching at room temperature.
Commercial: Repeat step 20.
QUALITY GROUP A ELECTRICAL SAMPLE (TABLE I)
MIL-STD-883, Method 5005 and Table I. Quality levels as defined for Class B. Temperature correlations may be used on commercial products.
QUALITY CONFORMANCE TESTS, GROUPS B, C, AND D
MIL-STD-883, Method 5005. Sample life and environmental tests if required by purchase order. Further information on specifying this is given in AMD document 00-003.

DATA PREPARATION AND REVIEW

MARK, INSPECT, PACK FOR SHIPMENT
Standard AMD parts with this burn-in option are marked with "-B" after the part number, except that linear 100, 200 or 300 series are suffixed " 8883 B ".

QUALITY INSPECTION, PRE-SHIPMENT

Confirmation of marking, physical quality, and product identity.

QUALITY INSPECTION FOR SHIPMENT RELEAASE

Final review of shipment against order.

SHIP TO CUSTOMER

Military temperature range parts meet screening requirements of MIL-STD-883, Class B.

OTHER OPTIONS

Document 00-003, "Extended Processing Options", further defines Option B as well as other screening or sampling options available or special order. Available options are listed here for reference.

Option	Description	Effect
A	Modified Class A screen (Similar to Class S screening)	Provides space-grade product, following most Class S requirements of MIL-STD-883, Method 5004.
B	160-hr operating burn in	Upgrades a part from Class C to Class B.
X	Radiographic inspection (X-ray)	Related to Option A. Provides limited internal inspection of sealed parts.
S	Scanning Electron Microscope (SEM) metal inspection	Sample inspection of metal coverage of die.
V	Preseal visual inspection to MIL-STD-883, Method 2010, Cond. A	More stringent visual inspection of assemblies and die surfaces prior to seal.
P	Particle impact noise (PIN) screen with ultrasonic detection.	Detects loose particles of approximately 0.5 mil size or larger, which could affect reliability in zero-G or high vibration applications.
Q	Quality conformance inspection (Group B, C and D life and environmental tests)	Samples from the lot are stressed and tested per Method 5005. The customer's order must state which groups are required. Group B destroys 16 devices; Group C, 92 devices; Group D, 60 devices.

U.S. AND CANADIAN STOCKING DISTRIBUTORS

ALABAMA
Hamiiton/Avner Elecrive
4812 Commercial Drive
Huntsville, Alabama 35805
Huntsville, Alabama
Tel: (205) $533-1170$
Hall-Mark Electronics
4739 Commercial Drive
Huntsville, Alabama 35805
Tel: (205) 837-8700
ARIZONA
Liberty Electronics
8155 North 24th Avenue
Thoenix, Arizona 850
Hamitton/Avnet Electronics
2615 S. 21st Street
2615 S. 21st Street
Tel: (602) 275-7851
TWX: $910-951-1535$
CALIFORNIA
Avnet Electronics
350 McCormick Avenue
Irvine Industrial Complex
Costa Mesa, Californla 92626
Costa Mesa, Californ
Tel: (714) 754 -6084
TWX: $910-595-1928$
Bell Industries
161 N. Fairoaks Avenue
Tel: (408) $734-8570$
TWX: $910-339-9378$
Hamilton Electro Salos
10912 W. Washington Blvd.
Tel: (213) $558-2100$
TWX: $910-340-6364$
TELEX: 67-36-92
Hamilton/Avnet Electronics
1175 Bordeaux
Tel:
TWX: $910-339-9332$
Hamilton/Avnet Electronics
4545 View Ridge Road
Tel: (714), 571-7500
TELEX: $69-54-15$
Hamilton/Avnet Electronics 3170 Pullman
Costa Mesa, Californla 92626
Tel: (714) 979-6864
Liberty Electronics
9525 Chesapeake Drive
San Diego, Californla 9212
San Diego, Californla
Tel: (714) $565-9171$
TWX: $910-335.1590$
Schweber Electronics
17811 Gillette
Irvine, California 92714
TWX: $910-595-1720$
Liberty Electronics
124 Maryland Avenue Tel: (213) $322-8100$
TWX: $910-348-7140$

910-348-7111
Arrow Electronics
720 Palomar Ave.
Sunnyvale, California 94086
Tel: (408) 739-3011
TWX: $910-339-9371$
Wyle Distribution Group/Santa Clara
3000 Bowers Avenua 95052
Tel: (408) 727-2500
TWX: 910-338-0296
Wyle Distribution Group
17981 Skypark Circlo
Suite M
Irvine, California 92713
Tel: (714) 751-9850
CANADA
Hamitton/Avnet Electronics
2670 Paulus
St. Laurent, Quebec. Canada H4S1G2
Tel: (514) $331-6443$
TWX: $610-421-3731$
Hamilton/Avnet Eloctionics
6291-16 Dorman Road
Mississauga, Ontario. Canada L4V1H2
TWX: (416) 677-7432
Hamilton/Avnet Electronics
1735 Courtwood Croscont
Tel: (613) 226-1700
TWX: 610-562-1900
RAE Industrial Electronics, Ltd.
Burnaby British Colur
Canada V5G 417
Tel: (604) 291-8860
Twx: 610-929-3065
TWX: 610-929-30
Future Electronics
5647 Ferrier Street
Montreal. Quebec, Canada H4P2K5
TWX: $610 / 421-3251$
05-827789
Future Electronics
800 Dufferin Street
Canada M3H 5S9
Tel: (416) 663-5563

Wilshire Electronics 1111 Paulison Avenue Clitton, New Jersey 07015 Tel: (201) 340-1900 TWX: 710-989-7052	Pennsylvania	
	Hall-Mark Electro	
	458 Pike Road	
	Pike Industrial Park	
	Huntingdon Valley. Pennsylvania 19006	
NEW MEXICO	Tel: ${ }^{(215)}$ 355-7300	
	TWX: 510-667-1750	
11728 Linn N.E. Albuquerque, New Mexico 87123	Schweber Electronics	
Tel: (505) 292-2700		
WX: 910-989-0625	Tel: (215) 441-0600	
Hamitoon/Avnet Electronics	Pioneer/Pittsburgh	
2450 Baylor Drive S.E.		
Albuquerque. New Mexico 87119 Tel: (505) 765-1500	Pittsburgh. Pennsylvania 1	
Electronic Devices Co., Inc. TWx. 70-795-3122		
A3lbuquergue, New Mexico 87111	TEXAS	
Ald: (505) $293-1935$Alduquerque,	Hall-Mark Electronics P.O. Box 22035	
NEW YORK	11333 Page Mill Road	
	Dallas, Texas 75222	
Broad Holiow Road TWx: 910-867-4721		
Farmingdale, New Yor	Hall-Mark Electronics 8000 Westglen	
Tel: (516) 694-6800 TWX: 510-224-6155		
Hamilton/Avnet Electronics	Houston, Texas 77063	
167 Clay Road	TWX: 910-881-2711	
Rochester, New Y Tel: (716) 442-78	Hall-Mark Electronics 10109 McKalla Drive	
${ }_{\text {Hamitor/Avnet Electronics }}$	Austin, Texas 78758	
Melville, New York 11746	Austin Texas ${ }^{\text {Tel }}$ (512) $837-2814$	
454	TWX: 910-874-2010	
	Hamiton/Avnet Electronics	
Hamithon/Avnet Electronics	4445 Sigma Road Dallas, Texas 75240	
E. Syracuse, New York 13057	Tel: (214) 661-8661 TELEX: 73-05-11	
TWX: 710-541-0959	Hamilton/Avnet Electronics 3939 Ann Arbor Street	
Summit Distributors, Inc.		
Butfato, NY 14202	P.O. Box 42802	
	Mouston, Texas 77042 Tel: (713) 780-1771	
TWX: 710-522-1692	Hamilton/Avnet Electronics	
Wilshire Electronics		
Hauppauge ${ }^{\text {celel }}$ (512) 837-891	10508A Boyer BlvdAustin Texas 78757Tell: (512) 837-8911	
Leng Island. (5Y 116 S43-5599	Schweber Electronics 14177 Proton Road	
Tel: (516) 543-5599		
Wilshire Electronics	Dallas, Texas 75240 Tel: (214) 661-5010 TWX: 910-860-5493	
1260 Scotsvilie Road		
Rochester. New York 14623Tel: 71616 23-7.720TWX: $510-253-5226$		
	Schweber Electronics 7420 Harwin Drive	
Wilshire Electronics	Houston, Texas 77036 Tel: (713) 784-3600	
Endwell, New Y York 13760		
	UTAH ${ }_{\text {Bell }}$ Industries	
TWX: 510-252-0194		
Schweber Electronics Jericho Tumpike Westbury, New York 11590 Tel: (516) 334-7474 TWX: $510-222-9470$ 510-222-3660		
	Tel: (801) 972-6969 $\text { TWX: } 910-925.5686$	
	Hamilton/Avnet Electronics	
	1585 West 2100 South	
	Salt Lake City, Utah 84119	
NORTH CAROLINA Arrow Electronics	TW: (801) 972-2800	
1377-G South Park Drive	WAShington	
Kernersville, North Carolina 27284	Hamiltor/Avnet Electronics	
Tet: (919) 996-2039	14212 N.E. 21 st Street	
Hail-Mark Electronics	Telleve, Washington 98005	
1208 Front Street, Building K Raleigh, North Carolina 27609	TWX: 910 -443-2449	
Tel: (919) 832-4465	Liberty Electronics	
TWX: 510-928-1831	$1750{ }^{132 n d}$ Avenue N.E.	
Hamiton/Avnet Electronics 2803 Industrial Drive	Bellevue, Washington 98005 Tel: (206) 453-8300	
2803 industrial Drive Raleigh, North Carolina 27609	TWX: 910-443-2526	
Tel: (919) 829	WISCONSIN	
	Arrow Electronics	
	434 W. Rawson Avenue	
Arrow Electronics	Oak Creek, Wisconsin 53154	
6238 cochran Solon. Onio 44139	TWX: $910-262-1193$	
Tel: (216) 248-3990	Hall Mark Electronics	
3100 Plainfield Road Kettering, Ohio 45432	Oak Creek, Wisconsin 53154 Tel: (414) 761-3000	
Tel: (513) 253-9176		
TWX: 810-459-1611	2975 Moorland Road	
	New Berlin. Wisconsin 53151 Tel: (414) 784-4510	
954 Senate Drive Dayton, Ohio 45459	Te: (414) 784 -4510	
Tel: TW: $^{(513)} \mathbf{8 1 0 - 4 3 3 - 0 6 1 0}$		
Hamilhon/Avnet 761 Beta Drive, Suite E Cleveland, Ohio 44143 Tel: (216) 461-1400		
Arrow Electronics 10 Knollcres! Drive Reading, Ohio 45237 Tel: (513) 761-5432 TWX: 810-461-2670		
Pioneer/Cleveland 4800 E. 131 st Street Cleveland, Ohio 44105 Tel: (216) 587-3600 TWX: 810-422-2211		
OKLAHOMA Hall-Mark Electronics 5460 S. 103 rd E. Avenue Tulsa, Oklahoma 74145 Tel: (918) 835-8458 TWX: 910-845-2290		

[^0]: Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Advanced Micro Devices' product.

[^1]: Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
 2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
 3. These parameters are not 100% tested, but periodically sampled.

[^2]: lote 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$
 2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
 3. These parameters are not 100% tested, but are periodically sampled.

[^3]: Notes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
 2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
 3. These parameters are not 100% tested, but are periodically sampled.

[^4]: Notes: 1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
 2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
 3. These parameters are not 100% tested, but are periodically sampled.

[^5]: Notes: 1. Typical limits are at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
 3. These parameters are not 100% tested, but are periodically sampled.

