

Advanced Micro Devices

The Am2960 Series Dynamic Memory Support Handbook

The International Standard of Quality guarantees these electrical AQLs on all parameters over the operating temperature range: 0.1% on MOS RAMs & ROMs; 0.2% on Bipolar Logic & Interface; 0.3% on Linear, LSI Logic & other memories.

© 1981 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The company assumes no responsibility for the use of any circuits described herein.

> 901 Thompson Place, P.O. Box 453, Sunnyvale, California 94086 (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

> > Printed in U.S.A. 2/81 MPR-502

Am2900 FAMILY DYNAMIC MEMORY SUPPORT

TABLE OF CONTENTS

1
16-Bit Error Detection and Correction (EDC) Unit
Am2960 Boosts Memory Reliability
EDC Data Bus Buffer (Inv. to Bus)
EDC Data Bus Buffer (Non-Inv. to Bus)
Dynamic Memory Controller
RAM Drivers (Inv.)
RAM Drivers (Non-Inv.)
Dynamic Memory Drivers Improve Memory Performance71
Dynamic Memory Timing, Refresh and EDC Controller 79
Extended Operating Temperature Range
16,384 x 1 Dynamic R/W Random Access Memory 80
16,384 x 1 Dynamic R/W Random Access Memory 90
Package Outlines A-1
Sales Office Listing B-1

The Am2960 Family **Dynamic Memory Support Products**

Advanced Micro Devices has developed a set of bipolar high-performance memory-support products to maximize the speed and reliability of MOS dynamic RAM systems. This family is designed to provide, in the minimum package count, all the logic, interface and control functions required in the address and data paths of memory systems based on 16K and 64K devices.

These TTL-compatible products are specified for use in equipment based on either bipolar or MOS CPUs. The Am2960 Series serves bipolar microprocessors such as the Am2901, Am29203, etc., while the AmZ8160 Series serves MOS microprocessors, such as the 16-bit AmZ8000.

Key System Level Features

Maximum Memory Performance

- Schottky performance with matched TPD paths and skew limit guarantees.
- Optimized interface devices for maximum speed.
- Hamming code EDC with internal ECL circuitry for maximum speed combined with maximum memory reliability.

Lowest Package Count Plus Maximum Flexibility

- LSI DMC Controller is designed for up to 64K RAMs.
- EDC is 16-bit expandable slice with byte I/O controls.
- Flexible interface for speed or minimum parts count.

Operation in Any Timing Environment

- Synchronous Clock Timing (AmZ8000 systems).
- Delay-line timing for maximum performance.

Operation with Any RAM Refresh Mode

128 of 256 Line Refresh

All Refresh Modes

Burst Refresh

- Hidden (transparent) Refresh
- Cucle Steal Refresh

Am2960 Family Product Summary

• Byte-op controls

Am2960 • AmZ8160 Error Detection and Correction (EDC)

- High-speed 16-bit slice expandable to 64 bits
- Single-bit correction/double-bit detection

Am2961/62 • AmZ8161/62 EDC Data Bus Buffer

- EDC interface between RAM, EDC and data bus
- 24mA bus drive with three-state control

AmZ8163 EDC and Refresh Control for AmZ8000 Systems

- RAS/MUX/CAS timing control for AmZ8164
- EDC control for word or byte read and write
- Memory/refresh request arbitration

Initialization and diagnostics built-in

• Refresh timer and control independent of CPU

Separated RAM I/O with undershoot protection

• Bus latches for byte-op or multiplexed buses

Am2964 • AmZ8164 Dynamic Memory Control (DMC)

- 16-bit address for up to 64K RAMs
- Refresh Counter for 128- or 256-line refresh

Am2965/66 • AmZ8165/66 Octal Dynamic RAM Drivers

- -0.5V maximum undershoot
- V_{OH}/I_{OH} specs for MOS with no external resistors
- 3-port 8-bit Schottky speed address MUX
- RAS and CAS paths on-chip for minimum skew
- tpi.H/tpHI min and max specs for 50pF and 500pF
- Pin-compatible with 'S240/244

System Overview

By John R. Mick

As larger and larger dynamic RAMs are used with microprocessors, minicomputers and even larger computer systems, the design engineer becomes increasingly concerned about the reliability of his memory system. As the RAM size increases, the error rate caused by alpha particles increases significantly. It is essential therefore that all new memory designs using higher density dynamic RAMs (and perhaps even larger static RAMs) use error detection and correction (EDC) to improve memory system reliability. Current estimates are that the reliability can be increased by a factor of 60 or more if a suitable error detection and correction scheme is employed.

Advanced Micro Devices is introducing a new set of LSI devices that allows the designer to implement error detection and correction in a cost effective fashion. In addition, EDC can slash field maintenance costs and allow systems to run longer uninterrupted due to soft or hard memory errors. If desired, memory errors can be logged for future use in determining marginal RAM chips by running memory diagnostics routines.

The Advanced Micro Devices Am2960 Memory Support family of products includes the Am2960 Error Detection and Correction Unit, the Am2961/2962 EDC Bus Buffers, the Am2964B Dynamic Memory Controller and the Am2965/2966 Dynamic RAM Drivers. The system interconnection of these devices is shown in Figure 1 where a typical Am2900 microcomputer memory system is configured. As shown in this diagram, the memory support subsystem interfaces to the System Data Bus, Address Bus, and control signals.

The Am2964B Dynamic Memory Controller is used to provide all address handling, as well as RAS and CAS decoding and control. A block diagram of the Am2964B dynamic memory controller is shown in Figure 2. The device contains 18 input latches for capturing an 18-bit address for memory control. The two highest order addresses are decoded in the Am2964B to select one of four banks of RAM by selecting one of the four RAS outputs.

The Am2964B is designed to operate with either 16K Dynamic RAMs or 64K Dynamic RAMs. Thus, the designer either uses 14 of the multiplexer address inputs and 7 of the address outputs or all 16 of the multiplexer address inputs and all 8 of the address outputs as needed by the memory. In the case of 16K dynamic RAMs, 7 address inputs are provided to the RAM during the RAS LOW signal and then the 8-bit multiplexer is switched so that 7 upper address bits are provided to the RAM for the \overline{CAS} LOW part of the cycle. The Am2964B Dynamic Memory Controller contains an 8-bit refresh counter that is used to supply the refresh address to the dynamic memory during the refresh mode. A \overline{CAS} buffer is included in the dynamic memory controller so that the \overline{CAS} output can be inhibited during refresh.

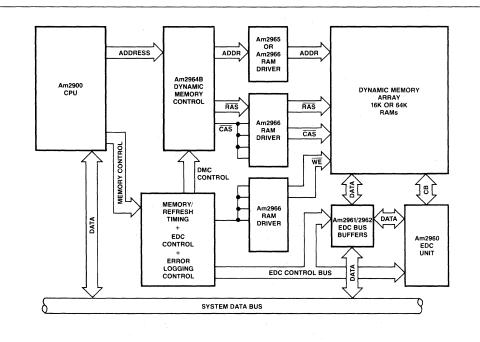
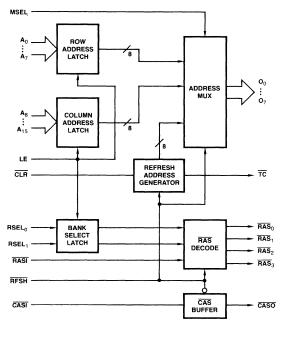



Figure 1. Am2900 High Performance Computer Memory

Normal operation of the Dynamic Memory Controller is to provide the address, close the input address latches and kick off a normal memory cycle. This is accomplished by bringing the RASI input LOW which will cause one of the RAS outputs to go LOW. After the required memory timing, the MSEL input will be used to switch the multiplexer to the other address latch. Then, the CASI input will be driven LOW causing the CASO output to go LOW and execute the CAS part of the memory cycle. The refresh cycle is executed by driving the RFSH input LOW which causes the multiplexer to select the refresh counter to its address outputs. Then, the RASI input is driven LOW which causes all four RAS outputs to go LOW. This will simultaneously refresh all four banks of dynamic RAMs controlled by the Am2964B Dynamic Memory Controller. When either the RFSH or RASI input is brought HIGH, the refresh counter is advanced so it will be ready for the next refresh cycle.

As can be seen in Figure 1, Dynamic RAM Drivers can be used in large memory systems to buffer the Address, RAS, CAS and WRITE ENABLE signals to the RAMs. The Am2965 and Am2966 are pin compatible devices with the Am74S240 and Am74S244. These RAM drivers are specifically designed for driving dynamic RAMs and feature high capacitance drive, guaranteed maximum undershoot of less than -0.5 volts and high V_{OH} of greater than V_{CC} -1.15 volts. The Am2965 is inverting and the Am2966 is noninverting. The devices feature symmetrical rise and fall times and have guaranteed minimum and maximum t_{PD} specifications at both 50pF and 500pF loads. loads.

Data interface between the dynamic memories, the Am2960 EDC chip and the system data bus is accomplished by means of the Am2961/2962 bus buffers. Figure 3 depicts the ar-

chitecture of these devices along with a simplified block diagram of the Am2960. The Am2961 is inverting between the system data bus and the EDC bus while the Am2962 is noninverting between the system data bus and the EDC bus. As shown in Figure 3, the Am2961 and Am2962 contain two internal latches, a multiplexer, and a RAM driver output buffer.

These devices feature 4-bit wide data paths to and from the RAM, to the EDC, and to the system data bus. The bus-input (BI) latch is used predominantly in byte WRITE operations so that an incoming byte from the system data bus can be stored while the memory is being read and any necessary correction is made in the bytes not being changed. The bus-output (BO) latch in the bus buffer is used predominantly for storing the output data if the processor is in the single step mode. In the single step mode it is necessary to hold the output data on the system data bus but the memory must be released for refresh.

The Am2960 Error Detection and Correction Unit contains all the logic necessary to generate check bits on a 16-bit data field according to a modified Hamming code and to correct the data word when check bits are supplied. Operating on the data read from memory, the Am2960 will correct any single bit error and will detect all double and some triple bit errors. For 16-bit words, 6 check bits are used. The Am2960 is expandable to operate on 32-bit words (7 check bits) and 64-bit words (8 check bits). In all configurations, the device makes the error syndrome bits available on separate outputs for data logging.

The Am2960 also features two diagnostic modes in which diagnostic data can be forced into portions of the device to simplify device testing and to execute system diagnostic functions.

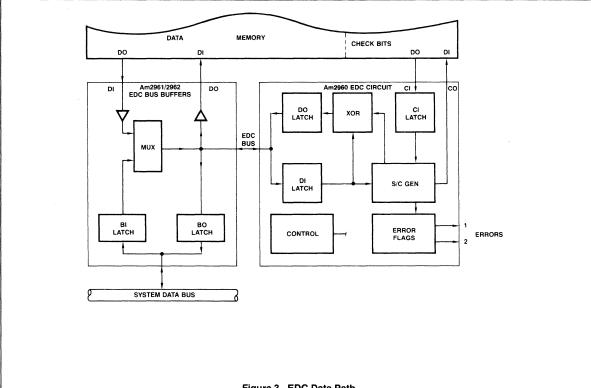


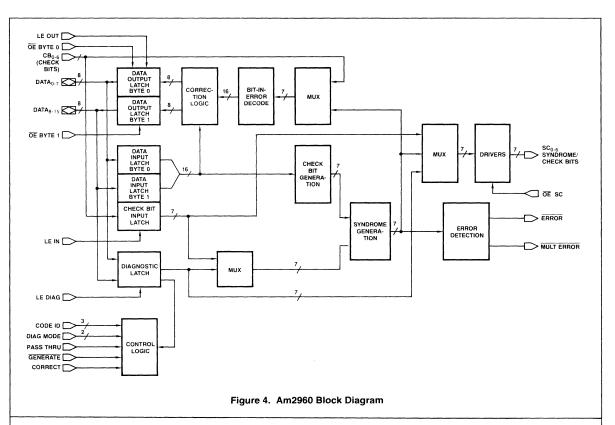
Figure 3. EDC Data Path

As shown in the Figure 4 Am2960 block diagram, the device consists of the following:

- · Data Input Latch
- Check Bit Input Latch
- Check Bit Generation Logic
- Syndrome Generation Logic
- · Error Detection Logic
- Error Correction Logic
- Data Output Latch
- Diagnostic Latch
- Control Latch

16 bits of data are loaded into the Data Input Latch from the bidirectional Data lines under control of the Latch Enable input. Depending on the control mode the input data is either used for check bit generation or error detection/correction.

Seven check bits are loaded into the Check Bit Input Latch under control of LE IN. Check bits are used in the Error Detection and Error Correction modes.


The Check Bit Generation Logic generates the appropriate check bits for the 16 bits of data in the Data Input Latch. The check bits are generated according to a modified Hamming code.

In both Error Detection and Error Correction modes, the Syndrome Generation Logic block compares the check bits read from memory against a newly generated set of check bits produced for the data read in from memory. If both sets of check bits match, then there are no errors. If there is a mismatch, then one or more of the data or check bits is in error. The syndrome bits are produced by an exclusive-OR of the two sets of check bits. If the two sets of check bits are identical (meaning there are no errors) the syndrome bits will be all zeroes. If the syndromes are non-zero, the syndrome bits can be decoded to determine the number of errors and the bit-in-error (single error).

The Error Detection Logic decodes the syndrome bits generated by the Syndrome Generation Logic. If there are no errors in either the input data or check bits, the ERROR and MULTI ERROR outputs remain HIGH. If one or more errors are detected, ERROR goes LOW. If two or more errors are detected, both ERROR and MULTI ERROR go LOW.

For single errors, the Error Correction Logic complements (corrects) the single data bit in error. This corrected data is loadable into the Data Output Latch, which can then be read onto the bidirectional data lines. If the single error is one of the check bits, the correction logic does not place corrected bits on the syndrome/check bit outputs. If the corrected check bits are needed the EDC must be switched to Generate Mode.

The Data Output Latch is used for storing the result of an error correction operation. The latch is loaded from the correction logic under control of the Data Output Latch Enable, LE OUT. The Data Output Latch may also be loaded directly from the Data Input Latch under control of the PASS THRU control input. The Data Output Latch is split into two 8-bit (byte) latches which may be enabled independently for reading onto the bidirectional data lines.

The Diagnostic Latch is a 16-bit latch loadable from the bidirectional data lines under control of the Diagnostic Latch Enable, LE DIAG. The Diagnostic Latch contains check bit information in one byte and control information in the other byte. The Diagnostic Latch is used for driving the device when in Internal Control Mode, or for supplying check bits when in one of the Diagnostic Modes.

The control logic determines the specific mode the device operates in. Normally the control logic is driven by external control inputs. However, in Internal Control Mode, the control signals are instead read from the Diagnostic Latch.

As can be seen, the Am2960 Family can be used to significantly improve the MTTF (Mean Time to Failure) of memory systems. By boosting memory reliability, two competitive advantages are gained. First, the system can run uninterrupted with either single soft errors or the loss of one memory chip. Second, field maintenance costs can be reduced in that service can be scheduled on a regular basis and faulty memory components can be replaced by reviewing logged errors.

The demand for reliable system performance is increasing steadily. Reliability is a must for applications in aerospace, medical, banking, process control and on-line systems. Applications such as word processors, small business systems and telecommunications also need memory reliability, as their users do not have the technical staff to handle system failures and are willing to pay for the convenience of smooth, error free operation. The Am2960 Family is the solution in these systems.

Am2960 Fast Error Detection and Correction for Memories

Corrects All Single-Bit Errors

Corrects all single bit errors. Detects all double and some triple bit errors.

Expandable

One Am2960 provides Error Detection and Correction for 16-bits. Two Am2960s handle 32 bits; four Am2960s handle 64 bits.

Fast

Worst case 32 nanoseconds for error detect and 65 nanoseconds for error correct (16 bits).

Latches Built-In

Check Bit, Data, and Diagnostic latches are built-in to save MSI.

Flexible

Can be used with Am2900-based designs, the AmZ8000 or other processors.

Diagnostics Built-In

Logic on-chip for device test and softwarecontrolled diagnostics.

Increases Memory Reliability

And can significantly reduce field maintenance costs.

A Must for 64K RAMs

Alpha error rates are several times higher for 64K RAMs than 16Ks.

Also available as the AmZ8160 for AmZ8000 Systems

Am2960 EDC

Cascadable 16-Bit Error Detection and Correction Unit

DISTINCTIVE CHARACTERISTICS

Boosts Memory Reliability

Corrects all single-bit errors. Detects all double and some triple-bit errors. Reliability of dynamic RAM systems is increased more than 60-fold.

Very High Speed

Perfect for MOS microprocessor, minicomputer, and mainframe systems.

- Data in to error detect: 32ns worst case.
- Data in to corrected data out: 65ns worst case.

High performance systems can use the Am2960 EDC in check-only mode to avoid memory system slowdown.

Replaces 25 to 50 MSI chips

All necessary features are built-in to the Am2960 EDC, including diagnostics, data in, data out, and check bit latches.

 Handles Data Words From 8 to 64 Bits The Am2960 EDC cascades: 1 EDC for 8 or 16 bits, 2 for 32 bits, 4 for 64 bits.

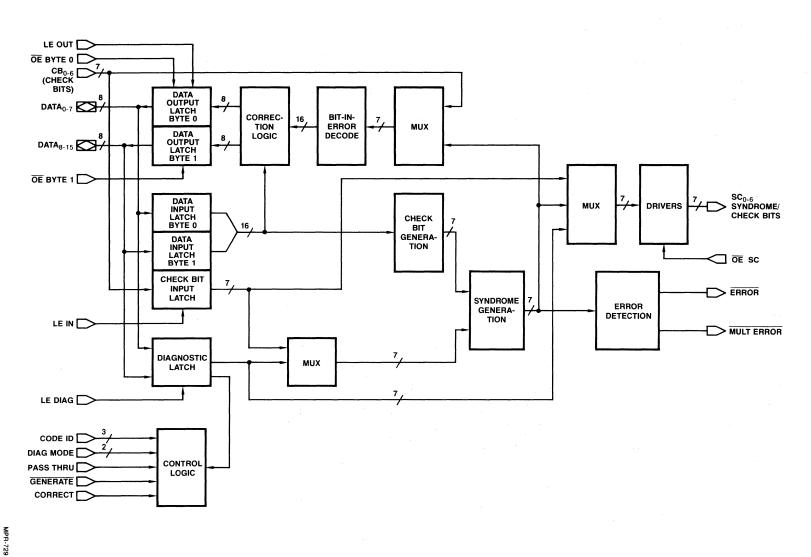
Easy Byte Operations

Separate byte enables on the data out latch simplify the steps and cuts the time required for byte writes.

• Diagnostics Built-In The processor may completely exercise the EDC under

software control to check for proper operation of the EDC.

TABLE OF CONTENTS


FUNCTIONAL DESCRIPTION
Block Diagram8
Architecture
Pin Definitions
16-Bit Configuration
32-Bit Configuration
64-Bit Configuration
ELECTRICAL SPECIFICATIONS
APPLICATIONS
Byte Write
Diagnostics
Eight-Bit Data Word
Other Word Widths
Single Error Correction Only
Check Bit Correction
Multiple Errors
SYSTEM DESIGN CONSIDERATIONS
High Performance Parallel Operation
EDC in the Data Path
Scrubbing Avoids Memory Errors
Correction of Double Bit Errors
Error Logging and Preventative Maintenance
Reducing Check Bit Overhead
EDC Per Board vs. EDC Per System
FUNCTIONAL EQUATIONS
Am2960 BOOSTS MEMORY RELIABILITY

GENERAL DESCRIPTION

The Am2960 Error Detection and Correction Unit (EDC) contains the logic necessary to generate check bits on a 16-bit data field according to a modified Hamming Code, and to correct the data word when check bits are supplied. Operating on data read from memory, the Am2960 will correct any single bit error and will detect all double and some triple bit errors. For 16-bit words, 6 check bits are used. The Am2960 is expandable to operate on 32-bit words (7 check bits) and 64-bit words (8 check bits). In all configurations, the device makes the error syndrome available on separate outputs for data logging.

The Am2960 also features two diagnostic modes, in which diagnostic data can be forced into portions of the chip to simplify device testing and to execute system diagnostic functions. The product is supplied in a 48 lead hermetic DIP package.

BLOCK DIAGRAM

Am2960

80

EDC Architecture

The EDC Unit is a powerful 16-bit cascadable slice used for check bit generation, error detection, error correction and diagnostics.

As shown in the block diagram, the device consists of the following:

- Data Input Latch
- Check Bit Input Latch
- Check Bit Generation Logic
- Syndrome Generation Logic
- Error Detection Logic
- Error Correction Logic
- Data Output Latch
- Diagnostic Latch
- Control Logic

Data Input Latch

16 bits of data are loaded from the bidirectional DATA lines under control of the Latch Enable input, LE IN. Depending on the control mode the input data is either used for check bit generation or error detection/correction.

Check Bit Input Latch

Seven check bits are loaded under control of LE IN. Check bits are used in the Error Detection and Error Correction modes.

Check Bit Generation Logic

This block generates the appropriate check bits for the 16 bits of data in the Data Input Latch. The check bits are generated according to a modified Hamming code.

Syndrome Generation Logic

In both Error Detection and Error Correction modes, this logic block compares the check bits read from memory against a newly generated set of check bits produced for the data read in from memory. If both sets of check bits match, then there are no errors. If there is a mismatch, then one or more of the data or check bits is in error.

The syndrome bits are produced by an exclusive-OR of the two sets of check bits. If the two sets of check bits are identical

(meaning there are no errors) the syndrome bits will be all zeroes. If there are errors, the syndrome bits can be decoded to determine the number of errors and the bit-in-error.

Error Detection Logic

This section decodes the syndrome bits generated by the Syndrome Generation Logic. If there are no errors in either the input data or check bits, the ERROR and MULT ERROR outputs remain HIGH. If one or more errors are detected, ERROR goes LOW. If two or more errors are detected, both ERROR and MULT ERROR go LOW.

Error Correction Logic

For single errors, the Error Correction Logic complements (corrects) the single data bit in error. This corrected data is loadable into the Data Output Latch, which can then be read onto the bidirectional data lines. If the single error is one of the check bits, the correction logic does not place corrected check bits on the syndrome/check bit outputs. If the corrected check bits are needed the EDC must be switched to Generate Mode.

Data Output Latch

The Data Output Latch is used for storing the result of an error correction operation. The latch is loaded from the correction logic under control of the Data Output Latch Enable, LE OUT. The Data Output Latch may also be loaded directly from the Data Input Latch under control of the PASS THRU control input.

The Data Output Latch is split into two 8-bit (byte) latches which may be enabled independently for reading onto the bidirectional data lines.

Diagnostic Latch

This is a 16-bit latch loadable from the bidirectional data lines under control of the Diagnostic Latch Enable, LE DIAG. The Diagnostic Latch contains check bit information in one byte and control information in the other byte. The Diagnostic Latch is used for driving the device when in Internal Control Mode, or for supplying check bits when in one of the Diagnostic Modes.

Control Logic

The control logic determines the specific mode the device operates in. Normally the control logic is driven by external control inputs. However, in Internal Control Mode, the control signals are instead read from the Diagnostic Latch.

PIN DEFINITIONS

- DATA₀₋₁₅ 16 bidirectional data lines. They provide input to the Data Input Latch and Diagnostic Latch, and receive output from the Data Output Latch. DATA₀ is the least significant bit; DATA₁₅ the most significant.
- CB₀₋₆ Seven Check Bit input lines. The check bit lines are used to input check bits for error detection. Also used to input syndrome bits for error correction in 32 and 64-bit configurations.
- LE IN Latch Enable Data Input Latch. Controls latching of the input data. When HIGH the Data Input Latch and Check Bit Input Latch follow the input data and input check bits. When LOW, the Data Input Latch and Check Bit Input Latch are latched to their previous state.
- GENERATE Generate Check Bits input. When this input is LOW the EDC is in the Check Bit Generate Mode. When HIGH the EDC is in the Detect Mode or Correct Mode.

In the Generate Mode the circuit generates the check bits or partial check bits specific to the data in the Data Input Latch. The generated check bits are placed on the SC outputs.

In the Detect or Correct Modes the EDC detects single and multiple errors, and generates syndrome bits based upon the contents of the Data Input Latch and Check Bit Input Latch. In Correct Mode, single-bit errors are also automatically corrected – corrected data is placed at the inputs of the Data Output Latch. The syndrome result is placed on the SC outputs and indicates in a coded form the number of errors and the bit-in-error.

- SC₀₋₆ Syndrome/Check Bit outputs. These seven lines hold the check/partial-check bits when the EDC is in Generate Mode, and will hold the syndrome/ partial syndrome bits when the device is in Detect or Correct Modes. These are 3-state outputs.
- **OE SC** Output Enable Syndrome/Check Bits. When LOW, the 3-state output lines SC₀₋₆ are enabled. When HIGH, the SC outputs are in the high impedance state.
- ERROR Error Detected output. When the EDC is in Detect or Correct Mode, this output will go LOW if one or more syndrome bits are asserted, meaning there are one or more bit errors in the data or check bits. If no syndrome bits are asserted, there are no errors detected and the output will be HIGH. In Generate Mode, ERROR is forced HIGH. (In a 64-bit configuration, ERROR must be externally implemented.)
- **MULT ERROR** Multiple Errors Detected output. When the EDC is in Detect or Correct Mode, this output if LOW indicates that there are two or more bit errors that have been detected. If HIGH this indicates that either one or no errors have been detected. In

Generate mode, MULT ERROR is forced HIGH. (In a 64-bit configuration, MULT ERROR must be externally implemented.)

- **CORRECT** Correct input. When HIGH this signal allows the correction network to correct any single-bit error in the Data Input Latch (by complementing the bit-in-error) before putting it onto the Data Output Latch. When LOW the EDC will drive data directly from the Data Input Latch to the Data Output Latch without correction.
- LE OUT Latch Enable Data Output Latch. Controls the latching of the Data Output Latch. When LOW the Data Output Latch is latched to its previous state. When HIGH the Data Output Latch follows the output of the Data Input Latch as modified by the correction logic network. In Correct Mode, singlebit errors are corrected by the network before loading into the Data Output Latch. In Detect Mode, the contents of the Data Input Latch are passed through the correction network unchanged into the Data Output Latch. The inputs to the Data Output Latch are unspecified if the EDC is in Generate Mode.
- **OE BYTE 0**, Output Enable Bytes 0 and 1, Data Output
- **OE** BYTE 1 Latch. These lines control the 3-state outputs for each of the two bytes of the Data Output Latch. When LOW these lines enable the Data Output Latch and when HIGH these lines force the Data Output Latch into the high impedance state. The two enable lines can be separately activated to enable only one byte of the Data Output Latch at a time.
- DIAG Diagnostic Mode Select. These two lines control MODE₀₋₁ the initialization and diagnostic operation of the EDC.
- **CODE ID**₀₋₂ Code Identification inputs. These three bits identify the size of the total data word to be processed and which 16-bit slice of larger data words a particular EDC is processing. The three allowable data word sizes are 16, 32 and 64 bits and their respective modified Hamming codes are designated 16/22, 32/39 and 64/72. Special CODE ID input 001 (ID₂, ID₁, ID₀) is also used to instruct the EDC that the signals CODE ID₀₋₂, DIAG MODE₀₋₁, CORRECT and PASS THRU are to be taken from the Diagnostic Latch, rather than from the input control lines.
- LE DIAG Latch Enable Diagnostic Latch. When HIGH the Diagnostic Latch follows the 16-bit data on the input lines. When LOW the outputs of the Diagnostic Latch are latched to their previous states. The Diagnostic Latch holds diagnostic check bits, and internal control signals for CODE ID₀₋₂, DIAG MODE₀₋₁, CORRECT and PASS THRU.

FUNCTIONAL DESCRIPTION

The EDC contains the logic necessary to generate check bits on a 16-bit data field according to a modified Hamming code. Operating on data read from memory, the EDC will correct any single-bit error, and will detect all double and some triple-bit errors. The Am2960 may be configured to operate on 16-bit data words (with 6 check bits), 32-bit data words (with 7 check bits) and 64-bit data words (with 8 check bits). In fact the EDC can be configured to work on data words from 8 to 64 bits. In all configurations, the device makes the error syndrome bits available on separate outputs for error data logging.

Code and Byte Specification

The EDC may be configured in several different ways and operates differently in each configuration. It is necessary to indicate to the device what size data word is involved and which bytes of the data word it is processing. This is done with input lines CODE ID_{0-2} , as shown in Table I. The three modified Hamming codes referred to in Table I are:

- 16/22 16 data bits
 - 6 check bits
 - 22 bits in total.
- 32/39 code 32 data bits
 - 7 check bits
- 39 bits in total.
- 64/72 code 64 data bits
 - 8 check bits
 - 72 bits in total.

CODE ID input 001 $(ID_2, ID_1, !D_0)$ is a special code used to operate the device in Internal Control Mode (described later in this section).

Control Mode Selection

The device control lines are GENERATE, CORRECT, PASS THRU, DIAG MODE₀₋₁ and CODE ID₀₋₂. Table III indicates the operating modes selected by various combinations of the control line inputs.

Diagnostics

Table II shows specifically how DIAG MODE₀₋₁ select between normal operation, initialization and one of two diagnostic modes.

The Diagnostic Modes allow the user to operate the EDC under software control in order to verify proper functioning of the device.

Check and Syndrome Bit Labeling

The check bits generated in the EDC are designated as follows:

- 16-bit configuration CX C0, C1, C2, C4, C8;
- 32-bit configuration CX, C0, C1, C2, C4, C8, C16;
- 64-bit configuration CX, C0, C1, C2, C4, C8, C16, C32.

Syndrome bits are similarly labeled SX through S32. There are only 6 syndrome bits in the 16-bit configuration, 7 for 32 bits and 8 syndrome bits in the 64-bit configuration.

Initialize Mode

The inputs of the Data Output Latch are forced to zeroes. The check bit outputs (SC) are generated to correspond to the all-zero data. ERROR and MULT ERROR are forced HIGH in the Initialize Mode.

Initialize Mode is useful after power up when RAM contents are random. The EDC may be placed in initialize mode and its' outputs written in to all memory locations by the processor.

TABLE I. HAMMING CODE AND SLICE IDENTIFICATION.

CODE ID ₂	CODE ID ₁	CODE ID ₀	Hamming Code and Slice Selected
0	0	0	Code 16/22
0	0	1	Internal Control Mode
0	1	0	Code 32/39, Bytes 0 and 1
0	1	1	Code 32/39, Bytes 2 and 3
1	0	0	Code 64/72, Bytes 0 and 1
1	0	1	Code 64/72, Bytes 2 and 3
1	1	0	Code 64/72, Bytes 4 and 5
1	1	1	Code 64/72, Bytes 6 and 7

TABLE II. DIAGNOSTIC MODE CONTROL.

DIAG MODE ₁	DIAG MODE ₀	Diagnostic Mode Selected
0	0	Non-diagnostic mode. The EDC functions normally in all modes.
0	1	Diagnostic Generate. The contents of the Diagnostic Latch are substi- tuted for the normally generated check bits when in the Generate Mode. The EDC functions normally in the Detect or Correct modes.
1	0	Diagnostic Detect/Correct. In the Detect or Correct Mode, the contents of the Diagnostic Latch are substituted for the check bits normally read from the Check Bit Input Latch. The EDC functions normally in the Generate Mode.
1	1	Initialize. The outputs of the Data Input Latch are forced to zeroes (and latched upon removal of the Initialize Mode) and the check bits generated correspond to the all-zero data.

HAMMING CODE SELECTION

The Am2960 EDC uses a modified Hamming Code that allows 1) the EDC to be cascaded, 2) all double errors to be detected, 3) the gross error conditions of all 0s or 1s to be detected.

The error correction code can be selected independent of the processor with the exception of diagnostics software.

Diagnostic software run by a processor to checkout the EDC system must know specifically which code is being used. This is only a problem when the EDC replaces an existing MSI im-

plementation on an existing computer. In this case, the computer's software must first determine which of two codes (the old one used by the MSI implementation or the new one used by the EDC) is used by the computer's memory system.

This is easily determined by writing a test data word into memory and then examining whether the generated check bits are typical of the old or the new code. From then on the software runs only the diagnostic appropriate for the code used on that particular computer's memory system.

Operating	Diagnosti	c Mode**	GEN	ERATE
Mode	DM ₁	DM ₀	0	1
Normal	0	0	Generate	Correct*
Diagnostic Generate	0	1	Diagnostic Generate	Correct*
Diagnostic Correct	1	0	Generate	Diagnostic Correct*
Initialize	1	1	Initialize	Initialize
Pass Thru			asserted the C e Pass Thru I	

TABLE III. Am2960 OPERATING MODES

*Correct if the CORRECT Input is HIGH, Detect if the CORRECT Input is LOW.

**In Code ID_{2-0} 001 (ID_2 , ID_1 , ID_0) DM_1 and DM_0 are taken from the Diagnostic Latch.

FUNCTIONAL DESCRIPTION – 16-BIT DATA WORD CONFIGURATION

The 16-bit format consists of 16 data bits, 6 check bits and is referred to as 16/22 code (see Figure 5.)

The 16-bit configuration is shown in Figure 6.

Generate Mode

In this mode check bits will be generated that correspond to the contents of the Data Input Latch. The check bits generated are placed on the outputs SC_{0-5} (SC₆ is a logical one, or high).

Check bits are generated according to a modified Hamming code. Details of the code for check bit generation are contained in Table IV. Each check bit is generated as either an XOR or XNOR of eight of the 16 data bits as indicated in the table. The XOR function results in an even parity check bit, the XNOR is an odd parity check bit.

Figure 1 shows the data flow in the Generate Mode.

Detect Mode

In this mode the device examines the contents of the Data Input Latch against the Check Bit Input Latch, and will detect all single-bit errors, all double-bit errors and some triple-bit errors. If one or more errors are detected, <u>ERROR</u> goes LOW. If two or more errors are detected, <u>MULT</u> ERROR goes LOW. Both error indicators are HIGH if there are no errors.

Also available on device outputs SC_{0-5} are the syndrome bits generated by the error detection step. The syndrome bits may be decoded to determine if a bit error was detected and, for single-bit errors, which of the data or check bits is in error. Table V gives the chart for decoding the syndrome bits generated by the 16-bit configuration (as an example, if the syndrome bits SX/S0/S1/S2/S4/S8 were 101001 this would be decoded to indicate that there is a single-bit error at data bit 9). If no error is detected the syndrome bits will all be zeroes.

In Detect Mode, the contents of the Data Input Latch are driven directly to the inputs of the Data Output Latch without correction.

Correct Mode

In this mode, the EDC functions the same as in Detect Mode except that the correction network is allowed to correct (complement) any single-bit error of the Data Input Latch before putting it. onto the inputs of the Data Output Latch. (see Figure 2.) If multiple errors are detected, the output of the correction network is unspecified. If the single-bit error is a check bit there is no automatic correction. If check bit correction is desired, this can be done by placing the device in Generate Mode to produce a correct check bit sequence for the data in the Data Input Latch.

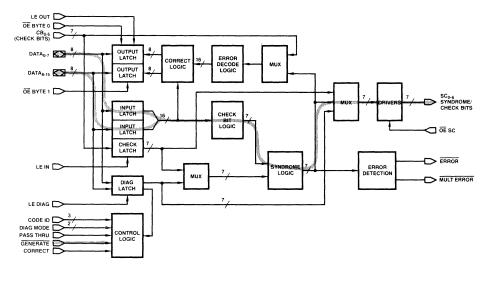
Pass Thru Mode

In this mode, the unmodified contents of the Data Input Latch are placed on the inputs of the Data Output Latch and the contents of the Check Bit Input Latch are placed on outputs SC_{0-5} . ERROR and MULT ERROR are forced HIGH in this mode.

Diagnostic Latch

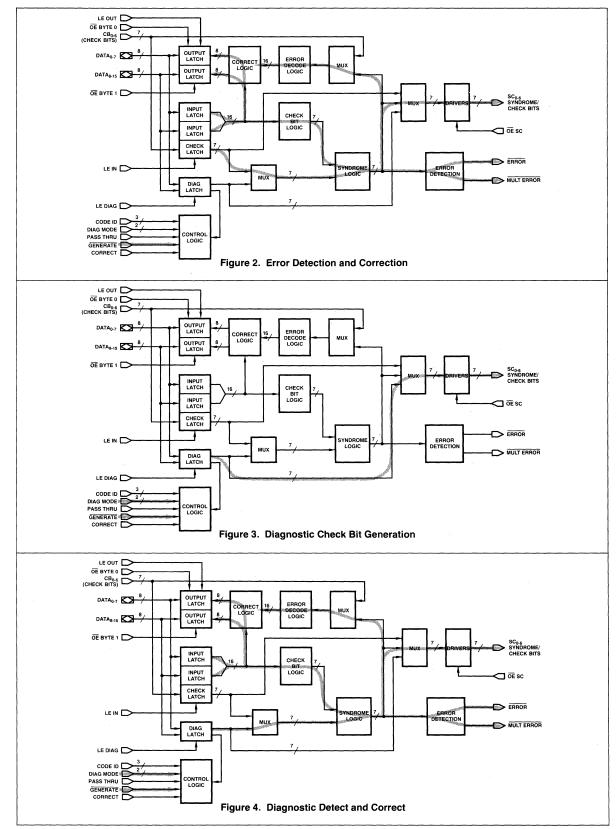
The Diagnostic Latch serves both for diagnostic uses and internal control uses. It is loaded from the DATA lines under the control of LE DIAG. Table VI shows the loading definitions for the DATA lines.

Diagnostic Generate Diagnostic Detect Diagnostic Correct


These are special diagnostic modes selected by DIAG MODE_{0-1} where either normal check bit inputs or outputs are substituted for by check bits loaded into the Diagnostic Latch. See Table III for details. Figures 3 and 4 illustrate the flow of data during the two diagnostic modes.

Internal Control Mode

This mode is selected by CODE ID₀₋₂ input 001 (ID₂, ID₁, ID₀).


When in Internal Control Mode, the EDC takes the CODE $\rm ID_{0-2}, DIAG\ MODE_{0-1},\ CORRECT$ and PASS THRU control signals from the internal Diagnostic Latch rather than from the external input lines.

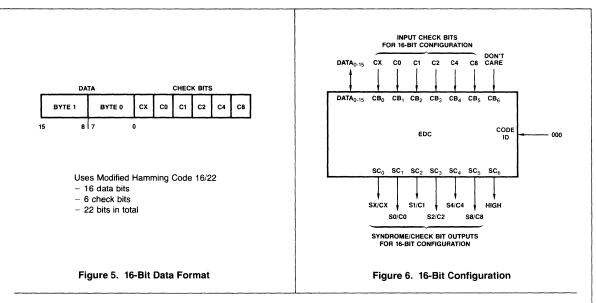

Table VI gives the format for loading the Diagnostic Latch.

Figure 1. Check Bit Generation

Am2960

TABLE IV. 16-BIT MODIFIED HAMMING CODE - CHECK BIT ENCODE CHART.

Generated Check										ipati Bits							
Bits	Parity	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CX	Even (XOR)		х	х	Х		х			X	х		х			х	
C0	Even (XOR)	X	х	х		X		Х		х		х		x			
C1	Odd (XNOR)	x			х	x			х		х	х			х		х
C2	Odd (XNOR)	x	х				х	Х	х				х	х	Х		
C4	Even (XOR)			Х	Х	X	Х	Х	Х							х	х
C8	Even (XOR)									х	х	х	х	x	х	х	х

The check bit is generated as either an XOR or XNOR of the eight data bits noted by an "X" in the table.

1 1 1

м т Т м

т

М

		ſ	ABLI		SYND TO B				DE		
Sy	ndro Bits	me	S8 S4 S2	0 0 0	1 0 0	0 1 0	1 1 0	0 0 1	1 0	0 1 1	-
SX	S0	S1	UZ	Ū				1	'	1	
0	0	0		*	C8	C4	Т	C2	Т	т	
0	0	1		C1	т	Т	15	т	13	7	
0	1	0		CO	т	т	м	Т	12	6	
0	1	1		Т	10	4	Т	0	т	т	

т

1 т т

т

11 5

м

М Т

14

М

т

TADLEN SYNDROME DECODE

TABLE VI. DIAGNOSTIC LATCH LOADING -16-BIT FORMAT.

Data Bit	Internal Function						
0	Diagnostic Check Bit X						
1	Diagnostic Check Bit 0						
2	Diagnostic Check Bit 1						
3	Diagnostic Check Bit 2						
4	Diagnostic Check Bit 4						
5	Diagnostic Check Bit 8						
6, 7	Don't Care						
8	CODE ID 0						
9	CODE ID 1						
10	CODE ID 2						
11	DIAG MODE 0						
12	DIAG MODE 1						
13	CORRECT						
14	PASS THRU						
15	Don't Care						

* - no errors detected

0

1

0 0

1

S

1 1 0 1

1 1

1

Number - the location of the single bit-in-error

сх т т

Т 9 3 т М т т М

т 8 2 т

М т

T - two errors detected

M - three or more errors detected

FUNCTIONAL DESCRIPTION -32-BIT DATA WORD CONFIGURATION

The 32-bit format consists of 32 data bits, 7 check bits and is referred to as 32/39 code (see Figure 7).

The 32-bit configuration is shown in Figure 8.

The upper EDC (Slice 0/1) handles the least significant bytes 0 and 1 - the external DATA lines 0 to 15 are connected to the same numbered inputs of the upper device. The lower EDC (Slice 2/3) handles the most significant bytes 2 and 3 - the external DATA lines for bits 16 to 31 are connected to inputs DATA₀ through DATA₁₅ respectively.

The valid syndrome and check bit outputs are those of Slice 2/3 as shown in the diagram. In Correct Mode these must be read into Slice 0/1 via the CB inputs and are selected by the MUX as inputs to the bit-in-error decoder (see block diagram), thus requiring external buffering and output enabling of the check bit lines as shown. The OE SC signal can be used to control enabling of check bit inputs - when syndrome outputs are enabled, the external check bit inputs will be disabled.

The valid ERROR and MULT ERROR outputs are those of the Slice 2/3. The ERROR and MULT ERROR outputs of Slice 0/1 are unspecified. All of the latch enables and control signals must be input to both of the devices.

Generate Mode

In this mode check bits will be generated that correspond to the contents of the Data Input Latch. The check bits generated are placed on the outputs SC₀₋₆ of Slice 2/3.

Check bits are generated according to a modified Hamming code. Details of the code for check bit generation are contained in Table X. Check bits are generated as either an XOR or XNOR of 16 of the 32 data bits as indicated in the table. The XOR function results in an even parity check bit, the XNOR in an odd parity check bit.

Detect Mode

In this mode the device examines the contents of the Data Input Latch against the Check Bit Input Latch, and will detect all single-bit errors, all double-bit errors and some triple-bit errors. If one or more errors are detected, ERROR goes LOW. If two or more errors are detected, MULT ERROR goes LOW. Both error indicators are HIGH if there are no errors. The valid ERROR and MULT ERROR signals are those of Slice 2/3 - those of Slice 0/1 are undefined.

Also available on Slice 2/3 outputs SC₀₋₆ are the syndrome bits generated by the error detection step. The syndrome bits may be decoded to determine if a bit error was detected and, for single-bit errors, which of the data or check bits is in error. Table VII gives the chart for decoding the syndrome bits generated for the 32-bit configuration (as an example, if the syndrome bits SX/S0/S1/S2/S4/S8/S16 were 0010011 this would be decoded to indicate that there is a single-bit error at data bit 25). If no error is detected the syndrome bits will be all zeroes.

In Detect Mode, the contents of the Data Input Latch are driven directly to the inputs of the Data Output Latch without corrections.

Correct Mode

In this mode, the EDC functions the same as in Detect Mode except that the correction network is allowed to correct (complement) any single-bit error of the Data Input Latch before putting it onto the inputs of the Data Output Latch. If multiple errors are detected, the output of the correction network is unspecified. If the single-bit error is a check bit there is no automatic correction - if desired this would be done by placing the device in Generate Mode to produce a correct check bit sequence for the data in the Data Input Latch.

For data correction, both Slices 0/1 and 2/3 require access to the syndrome bits on Slice 2/3's outputs SC0-6. Slice 2/3 has access to these syndrome bits through internal data paths, but for Slice 0/1 they must be read through the inputs CB₀₋₆. The device connections for this are shown in Figure 8. When in Correct Mode the SC outputs must be enabled so that they are available for reading in through the CB inputs.

Pass Thru Mode

In this mode, the unmodified contents of the Data Input Latch are placed on the inputs of the Data Output Latch and the contents of the Check Bit Input Latch are placed on outputs SC₀₋₆ of Slice 2/3. ERROR and MULT ERROR are forced HIGH in this mode.

TABLE VII. SYNDROME DECODE TO BIT-IN-ERROR.

	Synd Bi	rome its)	S16 Ş8 S4	0 0 0	1 0 0	0 1 0	1 1 0	0 0 1	1 0 1	0 1 1	1 1 1
SX	S0	S1	S2	-	-					·		
0	0	0	0		¥	C16	C8	Т	C4	Т	т	30
0	0	0	1		C2	Т	т	27	Т	5	м	Т
0	0	1	0		C1	Т	Т	25	Т	3	15	Т
0	0	1	1		Т	М	13	т	23	Т	т	м
0	1	0	0		CO	Т	Т	24	Т	2	М	Т
0	1	0	• 1		Т	1	12	Т	22	T	Т	м
0	1	1	0		т	м	10	Т	20	Т	Т	м
0	1	1	1		16	Т	Т	М	Т	м	м	Т
1	0	0	0		сх	Т	Т	м	Т	М	14	Т
1	0	0	1		т	м	11	т	21	Т	Т	м
1	0	1	0		Т	м	9	Т	19	т	Т	31
1	0	1	1		м	Т	т	29	Т	7	м	т
1	1	0	0		т	М	8	Т	18	т	Т	м
1,	1	0	1		17	Т	Т	28	Т	6	м	Т
1	1	1	0		м	Т	Т	26	т	4	м	Т
1	1	1	1		Т	0	м	Т	м	Т	Т	м

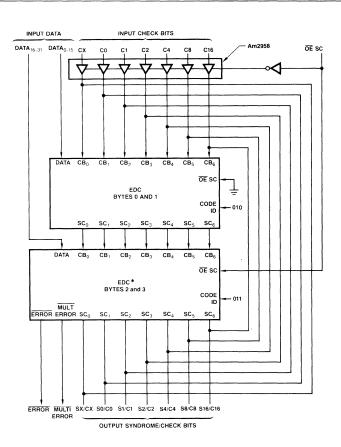
* - no errors detected

Numbers - number of the single bit-in-error

T - two errors detected

M – three or more errors detected

Uses Modified Hamming Code 32/39 - 32 data bits – 7 check bits


- 39 bits in total

		CHECK BITS									
	BYTE 3	BYTE 2	BYTE 1	BYTE 0	сх	CO	C1	C2	C4	C8	C16
3	1 24	23 16	15 8	7	D						

Figure 7. 32-Bit Data Format

MPR-732

Am2960

*Check Bit Latch is Forced Transparent in this Code ID Combination for this Slice.

TABLE VIII. KEY AC CALCULATIONS FOR THE 32-BIT CONFIGURATION

Propa	32-Bit agation Delay	Component Delay from Am2960 AC Specifications, Table C
From	То	
DATA	Check Bits Out	(DATA to SC) + (CB to SC, CODE ID 011)
DATA In	Corrected DATA Out	(DATA to SC) + (CB to SC, CODE ID 011) + (CB to DATA, CODE ID 010)
DATA	Syndromes Out	(DATA to SC) + (CB to SC, CODE ID 011)
DATA	ERROR for 32 Bits	(DATA to SC) + (CB to ERROR, CODE ID 011)
DATA	MULT ERROR for 32 Bits	(DATA to SC) + (CB to MULT ERROR, CODE ID 011)

	32-	BIT FORMAT.
· [Data Bit	Internal Function
	0	Diagnostic Check Bit X
	. 1	Diagnostic Check Bit 0
	.2	Diagnostic Check Bit 1
	3	Diagnostic Check Bit 2
	4	Diagnostic Check Bit 4
	5	Diagnostic Check Bit 8
	6	Diagnostic Check Bit 16
	7	Don't Care
	8	Slice 0/1 - CODE ID 0
	9	Slice 0/1 - CODE ID 1
	10	Slice 0/1 - CODE ID 2
	11	Slice 0/1 - DIAG MODE 0
	12	Slice 0/1 - DIAG MODE 1
	13	Slice 0/1 - CORRECT
	14	Slice 0/1 - PASS THRU
	15	Don't Care
	16-23	Don't Care
	24	Slice 2/3 - CODE ID 0
	25	Slice 2/3 - CODE ID 1
	26	Slice 2/3 - CODE ID 2
	27	Slice 2/3 - DIAG MODE (
×.	28	Slice 2/3 - DIAG MODE
5	29	Slice 2/3 - CORRECT
-	30	Slice 2/3 - PASS THRU
-	31	Don't Care

TABLE IX. DIAGNOSTIC LATCH LOADING -32-BIT FORMAT.

TABLE X. 32-BIT MODIFIED HAMMING CODE - CHECK BIT ENCODE CHART.

Generated Check		Participating Data Bits															
Bits	Parity	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
СХ	Even (XOR)	X				X		Х	х	Х	х		х			X	
CO	Even (XOR)	X	x	X		х		Х		Х		х	.,	X			
C1	Odd (XNOR)	X			х	X			Х		х	х			х		х
C2	Odd (XNOR)	х	х				х	х	х				х	Х	х		
C4	Even (XOR)			X	х	X	х	Х	х	1						х	х
C8	Even (XOR)									X	х	х	х	X	х	х	X
C16	Even (XOR)	X	х	Х	х	X	Х	Х	х								

Generated Check		Participating Data Bits															
Bits	Parity	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
СХ	Even (XOR)		х	х	х		х					х		X	Х		х
C0	Even (XOR)	X	Х	X		х		Х		X		х		X			
C1	Odd (XNOR)	X			х	X			х		Х	х			Х		х
C2	Odd (XNOR)	X	Х				х	х	х				х	X	х		
C4	Even (XOR)			х	Х	• X *	х	X	Х							х	х
C8	Even (XOR)									X	х	х	х	x	х	х	х
C16	Even (XOR)									x	х	х	х	X	х	х	х

The check bit is generated as either an XOR or XNOR of the sixteen data bits noted by an "X" in the table.

FUNCTIONAL DESCRIPTION --64-BIT DATA WORD CONFIGURATION

The 64-bit format consists of 64 data bits, 8 check bits and is referred to as 64/72 code (see Figure 9.).

The configuration to process 64-bit format is shown in Figure 6. In this configuration a portion of the syndrome generation and error detection is implemented externally of the EDCs in MSI. For error correction the syndrome bits generated must be read back into all four EDCs through the CB inputs. This necessitates the check bit buffering shown in the connection diagram of Figure 10. The \overline{OE} SC signal can control the check bit enabling – when syndrome bit outputs are enabled the external check bit lines will be disabled so that the syndrome bits may be read onto the CB inputs.

The error detection signals for the 64-bit configuration differ from the 16 and 32-bit configurations. The ERROR signal functions the same: it is LOW if one or more errors are detected, and HIGH if no errors are detected. The DOUBLE ERROR signal is HIGH if and only if a double-bit error is detected – it is LOW otherwise. All of the MULT ERROR outputs of the four devices are valid. MULT ERROR is LOW for all three ERROR cases and some DOUBLE ERROR combinations. (See TOME definition in Functional Equations section.) It is HIGH if either zero or one errors are detected.

This is a different meaning for MULT ERROR than in other configurations.

Generate Mode

In this mode check bits will be generated that correspond to the contents of the Data Input Latch. The check bits generated appear at the outputs of the XOR gates as indicated in Figure 10.

Check bits are generated according to a modified Hamming code. Details of the code for check bit generation are contained in Table XII. Check bits are generated as either an XOR or XNOR of 32 of the 64 bits as indicated in the table. The XOR function results in an even parity check bit, the XNOR in an odd parity check bit.

Detect Mode

In this mode the device examines the contents of the Data Input Latch against the Check Bit Input Latch, and will detect all single-bit errors, all double-bit errors and some triple-bit errors. If one or more errors are detected, ERROR goes LOW. If exactly two errors are detected, DUBLE ERROR goes HIGH. If three or more errors are detected, MULT ERROR goes LOW – the MULT ERROR output of any of the four EDCs may be used.

Available as XOR gate outputs are the generated syndrome bits (see Figure 10). The syndrome bits may be decoded to determine if a bit error was detected and, for single-bit errors, which of the data or check bits is in error. Table XIII gives the chart for encoding the syndrome bits generated for the 64-bit configuration (as an example, if the syndrome bits SX/S1/S2/S4/S8/ S16/S32 were 00100101 this would be decoded to indicate that there is a single-bit error at data bit 41). If no error is detected the syndrome bits will all be zeroes.

In Detect Mode the contents of the Data Input Latch are driven directly to the inputs of the Data Output Latch without corrections.

Correct Mode

In this mode, the EDC functions the same as in Detect Mode except that the correction network is allowed to correct (complement) any single-bit error of the Data Input Latch before putting it onto the inputs of the Data Output Latch. If multiple errors are detected, the output of the correction network is unspecified. If the single bit error is a check bit there is no automatic correction. Check bit correction can be done by placing the device in generate mode to produce a correct check bit sequence for the data in the Data Input Latch.

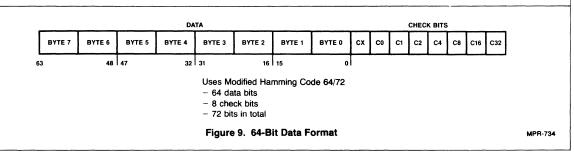
To perform the correction step, all four slices require access to the syndrome bits which are generated externally of the devices. This access is provided by reading the syndrome bits in through the CB inputs where they are selected as inputs to the bit-inerror decoder by the multiplexer (see block diagram). The device connections for this are shown in Figure 10. When in Correct Mode the SC outputs must be enabled so that the syndrome bits are available at the CB inputs.

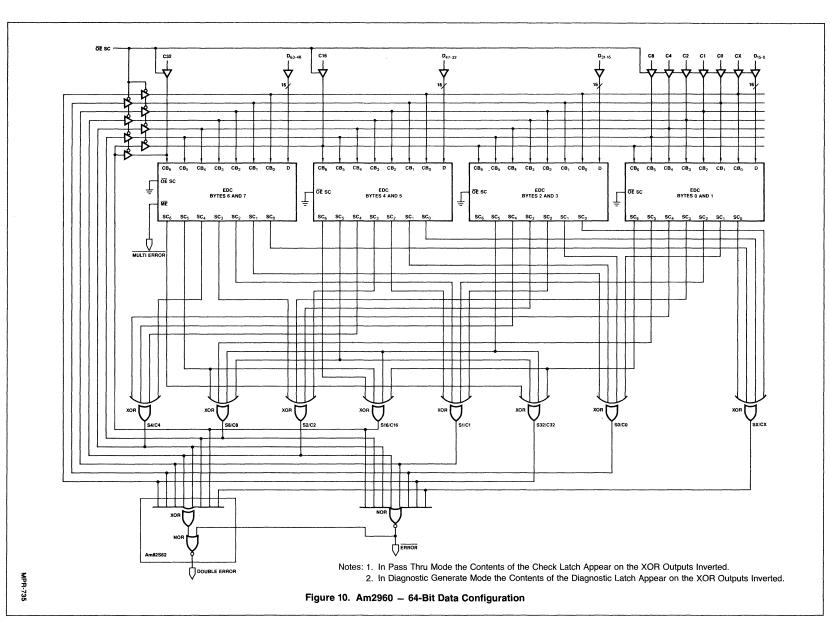
Pass Thru Mode

In this mode, the unmodified contents of the Data Input Latch are placed on the inputs of the Data Output Latch, and the contents of the Check Bit Input Latch are passed through the external XOR network and appear inverted at the XOR gate outputs labeled CX to C32 (see Figure 10).

Diagnostic Latch

The Diagnostic Latch serves both for diagnostic uses and internal control uses. It is loaded from the DATA lines under the control of LE DIAG. Table XIV shows the loading definitions for the DATA lines.


Diagnostic Generate Diagnostic Detect Diagnostic Correct


These are special diagnostic modes selected by DIAG MODE_{0-1} where either normal check bit inputs or outputs are substituted for by check bits from the Diagnostic Latch. See Table II for details.

Internal Control Mode

This mode is selected by CODE ID₀₋₂, input 001 (ID₂, ID₁, ID₀).

When in Internal Control Mode the EDC takes the CODE ID_{0-2} , DIAG MODE₀₋₁, CORRECT and PASS THRU signals from the internal Diagnostic Latch rather than from the external control lines. Table XIV gives format for loading the Diagnostic Latch.

20

TABLE XI. KEY AC CALCULATIONS FOR THE 64-BIT CONFIGURATION

	64-Bit Propagation Delay	Component Delays from Am2960 AC Specifications, Table C (plus MSI)
From	То	Ao opecifications, rable o (plus hiol)
DATA	Check Bits Out	(DATA to SC) + (XOR Delay)
DATA In	Corrected DATA Out	(DATA to SC) + (XOR Delay) + (Buffer Delay) + (CB to DATA, CODE ID 1xx)
DATA	Syndromes	(DATA to SC) + (XOR Delay)
DATA	ERROR for 64 Bits	(DATA to SC) + (XOR Delay) + (NOR Delay)
DATA	MULT ERROR for 64 Bits	(DATA to SC) + (XOR Delay) + (Buffer Delay) + (CB to MULT ERROR, CODE ID 1xx)
DATA	DOUBLE ERROR for 64 Bits	(DATA to SC) + (XOR Delay) + (XOR/NOR Delay)

TABLE XII. 64-BIT MODIFIED HAMMING CODE - CHECK BIT ENCODE

Generated Check		Participating Data Bits															
Bits	Parity	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CX C0	Even (XOR) Even (XOR)	x	x x	x x	x	x	X	x		X X	х	x	х	x		x	
C1 C2	Odd (XNOR) Odd (XNOR)	x x	x		х	x	x	x	X X		х	x	x	x	x x		х
C4 C8	Even (XOR) Even (XOR)			x	X	x	х	х	х	x	х	×	x	x	x	x x	X X
C16 C32	Even (XOR) Even (XOR)	x x	x x	x x	X X	X X	x x	X X	X X								

Generated Check		Participating Data Bits															
Bits	Parity	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
CX C0	Even (XOR) Even (XOR)	x	x x	x x	x	x	х	x		X X	х	х	х	x		х	
C1 C2	Odd (XNOR) Odd (XNOR)	x x	x		x	x	x	x	X X		х	x	x	x	x x		х
C4 C8	Even (XOR) Even (XOR)			x	x	x	х	х	х	x	x	x	x	x	x	x x	X X
C16 C32	Even (XOR) Even (XOR)									X X							

Generated Check		Participating Data Bits															
Bits	Parity	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
CX C0	Even (XOR) Even (XOR)	X X	x	x		X X		x x	х	x		x x		X X	х		х
C1 C2	Odd (XNOR) Odd (XNOR)	x x	x		х	×	x	x	X X		х	х	x	x	X X		х
C4 C8	Even (XOR) Even (XOR)			X	х	×	Х	х	х	x	x	x	x	x	x	x x	x x
C16 C32	Even (XOR) Even (XOR)	×	x	X	x	×	х	х	х	x	x	x	x	x	x	x	x

Generated Check							Pa	rtici	patir	ng D	ata I	Bits					
Bits	Parity	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
CX C0	Even (XOR) Even (XOR)	X X	x	x		x x		x x	х	x		x x		X X	x		x
C1 C2	Odd (XNOR) Odd (XNOR)	X X	x		х	×	x	x	x x		x	x	x	x	X X		x
C4 C8	Even (XOR) Even (XOR)			x	X	×	х	х	x	x	x	x	x	x	x	x x	X X
C16 C32	Even (XOR) Even (XOR)	x	x	x	x	x	x	x	x	x	х	x	x	x	x	x	x

The check bit is generated as either an XOR or XNOR of the 32 data bits noted by an "X" in the table.

	Synd Bi	rome its	•	S32 S16 S8	0 0 0	1 0 0	0 1 0	1 1 0	0 0 1	1 0 1	0 1 1	1 1 1	0 0 0	1 0 0	0 1 0	1 1 0	0 0 1	1 0 1	0 1 1	1 1 1
sx	S0	S1	S2	S4	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0		*	C32	C16	т	C8	т	т	М	C4	т	т	м	т	46	62	т
0	0	0	1		C2	Т	т	М	т	43	59	т	т	53	37	Т	м	Т	Т	м
0	0	1	0		Cì	т	Т	м	т	41	57	Т	Т	51	35	т	15	т	Т	31
0	0	1	1		Т	м	м	Т	13	Т	Т	29	23	Т	Т	7	Т	м	м	Т
0	1	0	0		C0	т	Т	М	Т	40	56	т	т	50	34	т	м	т	Т	м
0	1	0	1		Т	49	33	Т	12	Т	Т	28	22	Т	Т	6	Т	м	м	Т
0	1	1	0		Т	м	м	Т	10	Т	Т	26	20	Т	Т	4	т	м	м	т
0	1	1	1		16	т	Т	0	т	м	М	т	Т	М	м	т	м	т	Т	м
1	0	0	0		СХ	т	Т	М	т	м	М	Ť	Т	м	м	т	14	Т	Т	30
1	0	0	1		Т	м	м	Т	11	Т	Т	27	21	Т	Т	5	Т	м	м	т
1	0	1	0		Т	М	м	Т	9	Т	Т	25	19	Т	Т	3	Т	47	63	Т
1	0	1	1		М	Т	Т	М	Т	45	61	т	т	55	39	т	м	т	Т	м
1	1	0	0		Т	М	м	Т	8	Т	Т	24	18	т	Т	2	т	м	м	т
1	1	0	1		17	Т	Т	1	т	44	60	Т	Т	54	38	Т	м	т	Т	м
1	1	1	0		М	т	т	м	т	42	5 8	т	Т	52	36	т	м	т	Т	м
1	1	1	1		Т	48	32	т	м	т	т	м	м	т	Т	м	т	м	м	т

TABLE XIII. SYNDROME DECODE TO BIT-IN-ERROR.

* - no errors detected

T - two errors detected

Number – the number of the single bit-in-error M – more than two errors detected

TABLE XIV. DIAGNOSTIC LATCH LOADING - 64-BIT FORMAT.

Data Bit	Internal Function
0	Diagnostic Check Bit X
1	Diagnostic Check Bit 0
2	Diagnostic Check Bit 1
3	Diagnostic Check Bit 2
4	Diagnostic Check Bit 4
5	Diagnostic Check Bit 8
6, 7	Don't Care
8	Slice 0/1 - CODE ID 0
9	Slice 0/1 - CODE ID 1
10	Slice 0/1 - CODE ID 2
11	Slice 0/1 - DIAG MODE 0
12	Slice 0/1 - DIAG MODE 1
13	Slice 0/1 - CORRECT
14	Slice 0/1 - PASS THRU
15	Don't Care
16-23	Don't Care
24	Slice 2/3 - CODE ID 0
25	Slice 2/3 - CODE ID 1
26	Slice 2/3 - CODE ID 2
27	Slice 2/3 - DIAG MODE 0
28	Slice 2/3 - DIAG MODE 1
29	Slice 2/3 - CORRECT
30	Slice 2/3 - PASS THRU

Data Bit	Internal Function
31	Don't Care
32-37	Don't Care
38	Diagnostic Check Bit 16
39	Don't Care
40	Slice 4/5 - CODE ID 0
41	Slice 4/5 - CODE ID 1
42	Slice 4/5 - CODE ID 2
43	Slice 4/5 - DIAG MODE 0
44	Slice 4/5 - DIAG MODE 1
45	Slice 4/5 - CORRECT
46	Slice 4/5 - PASS THRU
47	Don't Care
48-54	Don't Care
55	Diagnostic Check Bit 32
56	Slice 6/7 - CODE ID 0
57	Slice 6/7 - CODE ID 1
58	Slice 6/7 - CODE ID 2
59	Slice 6/7 - DIAG MODE 0
60	Slice 6/7 - DIAG MODE 1
61	Slice 6/7 - CORRECT
62	Slice 6/7 - PASS THRU
63	Don't Care

Am2960

MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Case) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential	-0.5V to +7.0V
DC Voltage Applied to Outputs for high Output State	-0.5V to V _{CC} max.
DC Input Voltage	-0.5 to +5.5V
DC Output Current, Into Outputs	30mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

	P/N	Range	Temperature		V _{CC}
A	Am2960DC, XC	COM'L	$T_A = 0$ to $+70^{\circ}C$	$V_{CC}=~5.0V~\pm5\%$	(MIN = 4.75V, MAX = 5.25V)
A	Am2960DM, FM, XM	MIL	$T_{C} = -55 \text{ to } +125^{\circ}\text{C}$	$V_{CC}=5.0V\pm10\%$	(MIN = 4.50V, MAX = 5.50V)

DC CHARACTERISTICS

Parameters	Description	Tes	t Condit	ions (Not	e 1)	Min	Typ (Note 2)	Мах	Units	
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN,$		ы = -0.8	COM	L 2.7			Volts	
*OH		V _{IN} = V _{IH} or V	΄IL .C	H - 0.0	MIL	2.4			Volta	
V _{OL}	Output LOW Voltage	V _{CC} = MIN, V _{IN} = V _{IH} or V	, I _C	_{DL} = 8mA				0.5	Volts	
V _{IH}	Input HIGH Voltage	Guaranteed In Voltage for all				2.0			Volts	
V _{IL}	Input LOW Voltage	Guaranteed In Voltage for all						0.8	Volts	
V _I	Input Clamp Voltage	$V_{CC} = MIN, I_{II}$	_N = -18n	۱A				-1.5	Volts	
1 _{IL}	Input LOW Current	$V_{CC} = MAX$		DATA ₀₋₁₅			-410			
·iL .		$V_{IN} = 0.5V$	A	All Other Inputs				-360	μΑ	
цн	IIH Input HIGH Current		V _{CC} = MAX DATA ₀₋₁₅				70	μA		
		V _{IN} = 2.7V All Other Inputs				50				
I _I	Input HIGH Current	$V_{\rm CC} = MAX, V$	$V_{CC} = MAX, V_{IN} = 5.5V$				1.0	mA		
	Off State (High Impedance) Output Current			DATA ₀₋₁₅ $V_0 = 2.4$				70		
I _{OZH}		V _{CC} MAX			$V_{O} = 0.5$			-410	μΑ	
I _{OZL}			9	$V_0 =$	$V_{0} = 2.4$			50		
				0-6	$V_{O} = 0.5$			-50		
los	Output Short Circuit Current (Note 3)	$V_{CC} = V_{CC} M$	V_{CC} MAX +0.5V, $V_{O} = 0.5V$		-25		-85	mA		
Icc	Power Supply Current (Note 6)				i°C		275	390		
			$\begin{array}{ c c c c c } \hline COM'L & T_A = 0 \text{ to } + \\ \hline T_A = +70^{\circ}C & T_A = -70^{\circ}C & T_A = -7$		to +70°C			400		
								365	mA	
			MIL	MII $T_{\rm C} = -55 \text{ to } + 125^{\circ}{\rm C}$;		400	4	
				$T_{C} = +$	125°C			345		

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These are three-state outputs internally connected to TTL inputs. Input Characteristics are measured with output enables HIGH.
5. "MIL" = Am2960XM, DM, FM. "COML" = Am2960XC, DC.
6. Worst case I_{CC} is at minimum temperature.
7. These input levels provide zero noise immunity and should only be tested in a static, noise-free environment.

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the complexity and power levels of the part. The following notes may be useful.

- 1. Insure the part is adequately decoupled at the test head. Large changes in V_{CC} current as the device switches may cause erroneous function failures due to V_{CC} changes.
- 2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
- Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400mA in 5-8ns. Inductance in the ground cable

may allow the ground pin at the device to rise by 100's of millivolts momentarily.

- 4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using V_{IL} \leq 0.4V and V_{IH} \leq 2.4V for AC tests.
- 5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
- 6. To assist in testing, AMD offers documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

1. Am2960 Guaranteed Commercial Range Performance

The tables below specify the guaranteed performance of the Am2960 over the commercial operating range of 0 to $+70^{\circ}$ C, with

 V_{CC} from 4.75V to 5.25V. All data are in ns, with inputs switching between 0V and 3V at 1V/ns and measurements made at 1.5V. All outputs have maximum DC load.

This data applies to the following part numbers: Am2960DC, XC.

To Output From Input	SC ₀₋₆	DATA ₀₋₁₅	ERROR	MULT ERROR		
DATA ₀₋₁₅	32	65*	32	50		
CB ₀₋₆ (CODE ID ₂₋₀ 000, 011)	28	56	29	47		
CB ₀₋₆ (CODE ID ₂₋₀ 010, 100, 101, 110, 111)	28	45	29	34		
GENERATE	35	63	36	55		
CORRECT (Not Internal Control Mode)		45				
DIAG MODE (Not Internal Control Mode)	50	78	59	75		
PASS THRU (Not Internal Control Mode)	36	44	29	46		
CODE ID ₂₋₀	61	90	60	80		
LE IN (From latched to transparent)	39	72*	39	59		
LE OUT (From latched to transparent)	-	31	-	_		
LE DIAG (From latched to transparent; Not Internal Control Mode)	45	78	45	65		
Internal Control Mode: LE DIAG (From latched to transparent)	67	96	66	86		
Internal Control Mode: DATA ₀₋₁₅ (Via Diagnostic Latch)	67	96	66	86		

A. Combinational Propagation Delays $C_L = 50pF$

*Data In (or LE In) to Correct Data Out measurement requires timing as shown in Figure D opposite.

B. Set-up and Hold Times Relative to Latch Enables

From Input	To (Latching Up Data)	Set-up Time	Hold Time
DATA ₀₋₁₅	LE IN	6	7
СВ ₀₋₆	LE IN	5	6
DATA ₀₋₁₅	LE OUT	44	5
CB ₀₋₆ (CODE ID 000, 011)	LE OUT	35	0
CB ₀₋₆ (CODE ID 010, 100, 101, 110, 111)	LE OUT	27	0
GENERATE	LE OUT	42	0
CORRECT	LE OUT	26	1
DIAG MODE	LE OUT	69	0
PASS THRU	LE OUT	26	0
CODE ID ₂₋₀	LE OUT	81	0
LE IN	LE OUT	51	5
DATA ₀₋₁₅	LE DIAG	6	8

C. Output Enable/Disable Times

Output disable tests performed with $C_L = 5pF$ and measured to 0.5V change of output voltage level.

Input	Output	Enable	Disable
OE BYTE 0, OE BYTE 1	DATA ₀₋₁₅	30	30
OE SC	SC ₀₋₆	30	30

D. Minimum Pulse Widths

LE IN, LE OUT, LE DIAG	15

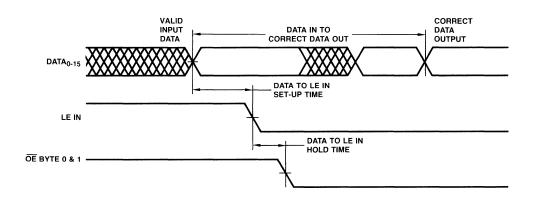


Figure D.

1. Am2960 Guaranteed Military Range Performance

The tables below specify the guaranteed performance of the Am2960 over the military operating range of -55 to $+125^\circ\text{C}$ case temperature, with V_CC from 4.5V to 5.5V. All data are in

ns, with inputs switching between 0V and 3V at 1V/ns and measurements made at 1.5V. All outputs have maximum DC load.

~				
To Output From Input	SC ₀₋₆	DATA ₀₋₁₅	ERROR	MULT ERROR
DATA ₀₋₁₅	35	73*	36	56
CB ₀₋₆ (CODE ID ₂₋₀ 000, 011)	30	61	31	50
CB ₀₋₆ (CODE ID ₂₋₀ 010, 100, 101, 110, 111)	30	50	31	37
GENERATE	38	69	41	62
CORRECT (Not Internal Control Mode)	-	49	-	_
DIAG MODE (Not Internal Control Mode)	58	89	65	90
PASS THRU (Not Internal Control Mode)	39	51	34	54
CODE ID ₂₋₀	69	100	68	90
LE IN (From latched to transparent)	44	82*	43	66
LE OUT (From latched to transparent)	_	33	-	_
LE DIAG (From latched to transparent; Not Internal Control Mode)	50	88	49	72
Internal Control Mode: LE DIAG (From latched to transparent)	75	106	74	96
Internal Control Mode: DATA ₀₋₁₅ (Via Diagnostic Latch)	75	106	74	96

A. Combinational Propagation Delays

C_L = 50pF

*Data In (or LE In) to Correct Data Out measurement requires timing as shown in Figure D opposite.

B. Set-up and Hold Times Relative to Latch Enables

From Input	To (Latching Up Data)	Set-up Time	Hold Time
DATA ₀₋₁₅	LE IN	7	7
СВ ₀₋₆	LE IN	5	7
DATA ₀₋₁₅	LE OUT	50	5
CB ₀₋₆ (CODE ID 000, 011)	LE OUT	38	0
CB ₀₋₆ (CODE ID 010, 100, 101, 110, 111)	LE OUT	30	0
GENERATE	LE OUT	46	0
CORRECT	LE OUT	28	1
DIAG MODE	LE OUT	84	0
PASS THRU	LE OUT	30	0
CODE ID ₂₋₀	LE OUT	89	0
LE IN	LE OUT	59	5
DATA ₀₋₁₅	LE DIAG	7	9

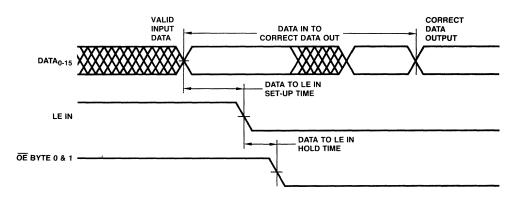
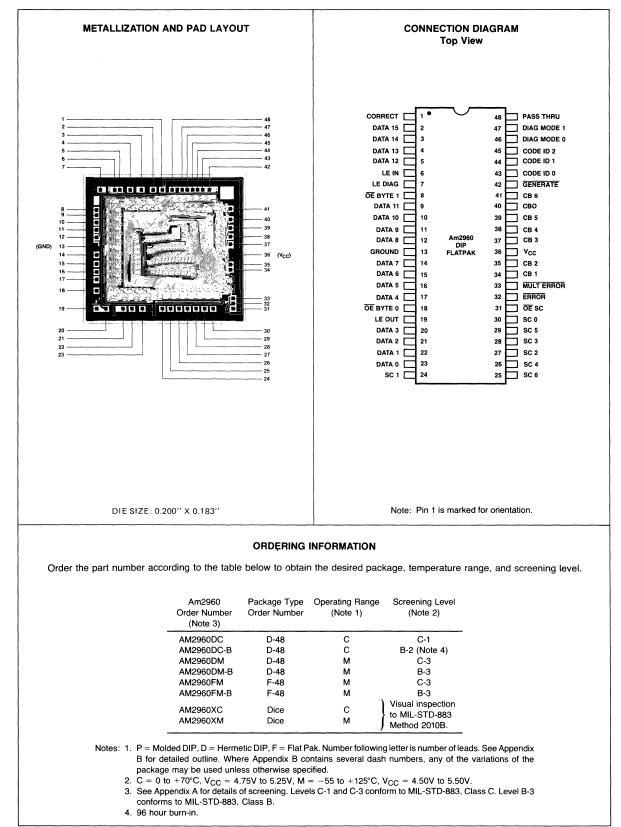
C. Output Enable/Disable Times

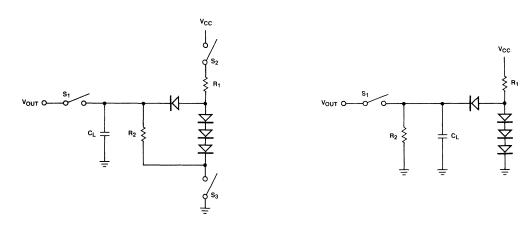
Output disable tests performed with C_{L} = 5pF and measured to 0.5V change of output voltage level.

Input	Output	Enable	Disable
OE BYTE 0, OE BYTE 1	DATA ₀₋₁₅	35	35
OE SC	SC ₀₋₆	35	35

D. Minimum Pulse Widths

LE IN, LE OUT, LE DIAG 15


Figure D.

Am2960

30

TEST OUTPUT LOAD CONFIGURATION FOR Am2960

Figure 11. Three-State Outputs

Figure 12. Normal Outputs

- Notes: 1. C_L = 50pF includes scope probe, wiring and stray capacitances without device in test fixture.

 - 2. S₁, S₂, S₃ are closed during function test and all A.C. tests, except output enable tests. 3. S₁ and S₃ are closed while S₂ is open for t_{PZH} test. S₁ and S₂ are closed while S₃ is open for t_{PZH} test. 4. R₂ = 1K for three-state output. R₂ is determined by the I_{OH} at V_{OH} = 2.4V for non-three-state outputs. 5. R₁ is determined by I_{OL} (MIL) with V_{CC} = 5.0V minus the current to ground through R₂.
 - 6. $C_L = 5.0 \text{ pF}$ for output disable tests.

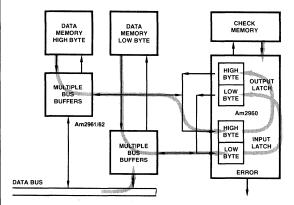
Pin #	Pin Label	Test Circuit	R ₁	R ₂
-	D ₀ -D ₁₅	Fig. 11	430Ω	1kΩ
24-30	SC0-SC6	Fig. 11	430Ω	1kΩ
32	ERROR	Fig. 12	470Ω	3kΩ
33	MULTERROR	Fig. 12	470Ω	3kΩ

TEST OUTPUT LOADS

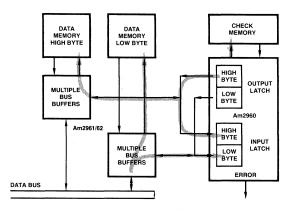
For additional information on testing, see section "Guidelines on Testing Am2900 Family Devices."

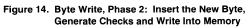
APPLICATIONS

Byte Write


Byte operations are increasingly common for 16 and 32-bit processors. These complicate memory operations because check bits are generated for a complete 16 or 32 or 64-bit memory word, not for a single byte.

To write a byte into memory with EDC requires the following steps:


- Latch the byte into the Am2961/62 bus buffers (Figure 13)
- Read the complete data word from memory (Figure 13)
- Correct the complete data word if necessary (Figure 13)
- Insert the byte to be written into the data word (Figure 14)
- Generate new check bits for the entire data word (Figure 14)
- Store the data word back into memory (Figure 14)


(In fact these steps must be taken for any piece of data being written into memory that is not as wide as a full memory word).

The Am2960 EDC is designed with the intent of keeping byte operations simple in EDC systems. The EDC has separate output enables for each byte in the Data Output Latch. As shown in figures 13 and 14, this allows the data word to be read from memory, the new byte to be inserted among the old, and new check bits to be generated using less time and less hardware than if separate byte enables were not available.

Figure 13. Byte Write, Phase 1: Read Out the Old Word and Correct

Diagnostics

EDC is used to boost the reliability of the overall system. It is necessary to also be able to check the operation of the EDC itself. For this reason the EDC has an internal control mode, a diagnostic latch, and two diagnostic modes.

To check that the EDC is functioning properly, the processor can put the EDC under software control by setting CODE ID_{2-0} to 001. This puts the EDC into Internal Control Mode. In Internal Control Mode the EDC is controlled by the contents of the Diagnostic Latch which is loaded from the DATA inputs under processor control.

The EDC is set into CORRECT Mode. The processor loads in a known set of check bits into the Diagnostic Latch, a known set of data bits into the Data In Latch, and forces data errors. The output of the EDC (syndromes, error flags, corrected data) is then compared against the expected responses. By exercising the EDC with a string of data/check combinations and comparing the output against the expected responses, the EDC can be fully checked out.

Eight Bit Data Word

Eight bit MOS microprocessors can use EDC too. Only five check bits are required. The EDC configuration for eight bits is shown in Figure 15. It operates as does the normal 16-bit configuration with the upper byte fixed at 0.

Check bit overhead for 8-bit data words can be reduced two ways. See the sections "Single Error Correction Only" and "Reducing Check Bit Overhead."

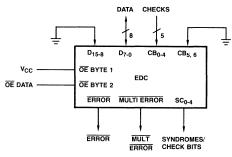
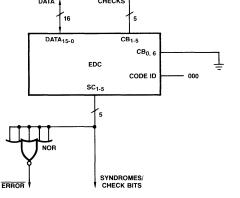


Figure 15. 8-Bit Configuration

Other Word Widths

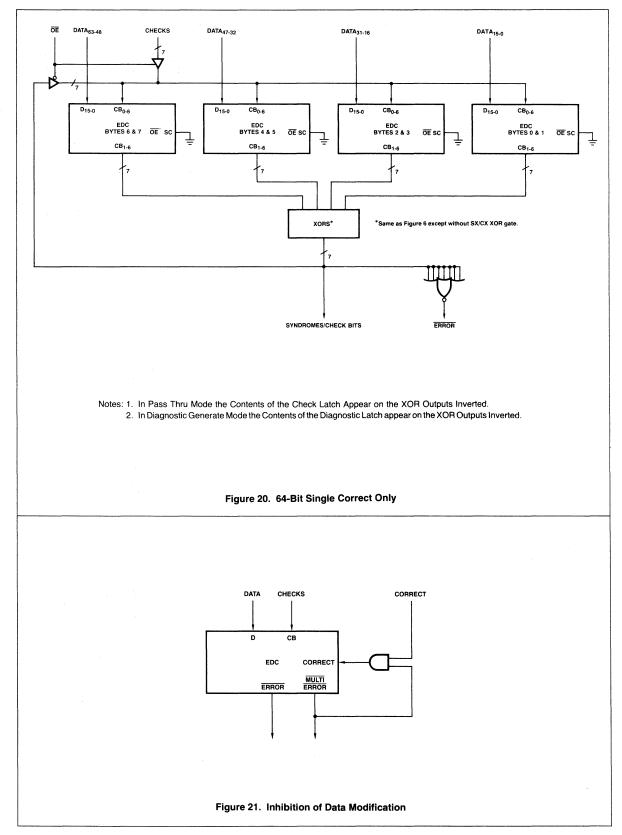

EDC on data words other than 8, 16, 32, of 64 bits can be accomplished with the Am2960. In most cases the extra data bits can be forced to a constant, and EDC will procede as normal. For example a 24-bit data word is shown in Figure 16.

Single Error Correction Only

The EDC normally corrects all single bit errors *and* detects all double bit and some triple bit errors. To save one check bit per word the ability to detect double bit errors can be sacrificed – single errors are still detected and corrected.

	Check B	its Required
Data Bits	Single Error Correction Only	Single Error Correct & Double Error Detect
8	4	5
16	5	6
32	6	7
64	7	8

The bit-in-error decode logic uses syndrome bits S0 through S32 to correct errors, SX is only used in developing the multiple error signal. This means that some multiple errors will cause a data bit


memory (see section in System Design Considerations).

For example, in the 16-bit mode if data bits 8 and 13 are in error the syndrome 111100 (SX, S0, S1, S2, S4, S8) is produced. This is flagged a double error by the error detection logic, but the bit-in-error decoder only receives syndrome 11100 (S0, S1, S2, S4, S8) which it decodes as a single error in data bit 0 and inverts that bit. If it is desired to inhibit this inversion, the multiple error output may be connected to the correct input as in Figure 21. This will inhibit correction when a multiple error occurs. Extra time delay may be introduced in the data to correct data path when this is done.

Multiple Errors

to be inverted.

Am2960

SYSTEM DESIGN CONSIDERATIONS

High Performance Parallel Operation

For maximum memory system performance the EDC should be used in the Check-Only configuration shown in Figure 22. With this configuration the memory system operates as fast with EDC as it would without.

On reads from memory, data is read out from the RAMs directly to the data bus (same as in a non-EDC system). At the same time, the data is read into the EDC to check for errors. If an error exists the EDC's error flags are used to interrupt the CPU and/or to stretch the memory cycle. If no error is detected, no slowdown is required.

If an error is detected, the EDC generates corrected data for the processor. At the designer's option the correct data may be written back into memory; error logging and diagnostic routines may also be run under processor control.

The Check-Only configuration allows data reads to proceed as fast with EDC as without. Only if an error is detected is there any slowdown. But even if the memory system had an error every hour this would mean only one error every 3-4 *billion* memory cycles. So even with a very high error rate, EDC in a Check-Only configuration has essentially zero impact on memory system speed.

On writes to memory, check bits must be generated before the full memory word can be written into memory. But using the Am2961/62 Data Bus Buffers allows the data word to be buffered on the memory board while check bits are generated. This makes the check bit generate time transparent to the processor.

EDC in the Data Path

The simplest configuration for EDC is to have the EDC directly in the data path as shown in Figure 23 (Correct-Always Configuration). In this configuration data read from memory is always corrected prior to putting the data on the data bus. The advantages are simpler operation and no need for mid-cycle interrupts. The disadvantage is that memory system speed is slowed by the amount of time it takes for error correction on ever cycle. Usually the Correct-Always Configuration will be used with MOS microprocessors which have ample memory timing budgets. Most high performance processors will use the high performance parallel configuration shown in Figure 22. (Check-Only Configuration).

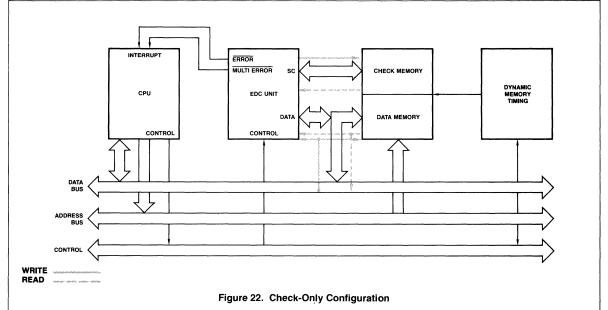
Scrubbing Avoids Double Errors

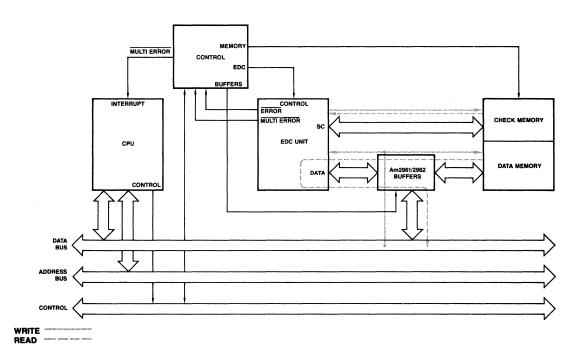
Single-bit errors are by far the most common in a memory system and are always correctable by the EDC.

Double bit memory errors are far less frequent than single bit (50 to 1, or 100 to 1) and are always detected by the EDC but not corrected.

In a memory system, soft errors occur only one at a time. A double bit error in a data word occurs when a single soft error is left uncorrected and is followed by another error in the data word hours, days, or weeks after the first.

"Scrubbing" memory periodically avoids almost all double-bit errors. In the scrubbing operation, every data word in memory is periodically checked by the EDC for single-bit errors. If one is found, it is corrected and the data word written back into memory. Errors are not allowed to pile up and so most double-bit errors are avoided.


The scrubbing operation is generally done as a background routine when the memory is not being used by the processor.


If memory is scrubbed frequently, errors that are detected and corrected during processor accesses need not be immediately written back into memory. Instead the error will be corrected in memory during scrubbing. This reduces the time delay involved in a processor access of an incorrect memory word.

Correction of Double-Bit Errors

In some cases, double-bit memory errors can be corrected! This is possible when one of the two bit errors is a hard error.

When a double bit error is detected the data word should be checked to determine if one of the errors is a hard error. If so the

hard error bit may be corrected by inverting it leaving only a single, correctable error. The time for this operation is negligible since it will occur infrequently.

The procedure after detection of a double error is as follows:

- · Invert the data bits read from memory.
- · Write the inverted data back into the same memory word.
- Re-read the memory location and XOR the newly read out value with the old. If there is no hard error then the XOR result will be all 1's. If there is a hard error, it will have the same bit value regardless of what was written in. So it will show as a 0 after the XOR operation
- Invert the hard error bit (this will "correct" it) leaving only one error in the data.
- The EDC can then correct the single bit error.
- Rewrite the correct data word into memory. This does not change the hard error but does eliminate the soft error. So the next memory access will find only a single-bit, correctable error.

An example helps to illustrate the procedure:

Example of Double Bit Error Correction When One is a Hard Error

 Data Read from Memory (D₁) 	16 data bits 1111111100000011	6 check bits
 EDC detects a multiple error. Syndromes: 		011000

3)	Syndrome decode indicates a double bit error.		
4)	Invert the bits read from memory (D ₁)	0000000011111100	100101
5)	Write D ₁ back to the same memory location		
6)	Read back the memory location (D ₂)	0000000011111101	100101
7)	XOR D ₁ and D ₂	11111111111111110	111111
8)	So the last data bit is the hard error. Use this to modify D ₁	1111111100000010	011010
9)	Pass the modified D_1 through the EDC. The EDC detects a single bit correctable error and outputs corrected data:	111111100000000	011010
10)	Write the corrected data back to memory to fix the soft error.		

Error Logging and Preventative Maintenance

The effectiveness of preventative maintenance can be increased by logging information on errors detected by the EDC. This is called error logging. The EDC provides syndromes when errors are detected. The syndromes indicate which bit is in error. In most memory systems, each individual RAM supplies only one bit of the memory word. So the syndrome and data word address specify which RAM was in error.

Typically a permanent/hard RAM failure is preceded by a period of time where the RAM displays an increasing frequency of intermittent, soft errors. Error logging statistic can be used to detect an increasing intermittent error frequency so that the RAM can be replaced before a permanent failure occurs.

Error logging also records the location of already hard failed RAMs. With EDC a hard failure will not halt system operation. EDC always can correct single bit errors even if it is a hard error. EDC can also correct double bit errors where one is hard and one soft (see "Correction of Double Bit Errors" Section). The ability to continue operation despite hard errors can greatly reduce the need for emergency field maintenance. The hard-failed RAMs can be instead replaced at low cost during a regularly scheduled preventative maintenance session.

Reducing Check Bit Overhead

Memory word widths need not be the same as the data word width of the processor. There is a substantial reduction in check bit overhead if wider memory words are used:

Memor	ry Word	Ohaala
# Data Bits	# Check Bits	Check Bit Overhead
8	5	38%
16	6	27%
32	7	14%
64	8	11%

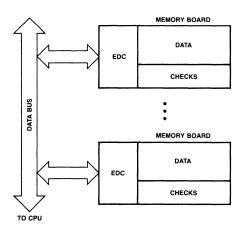
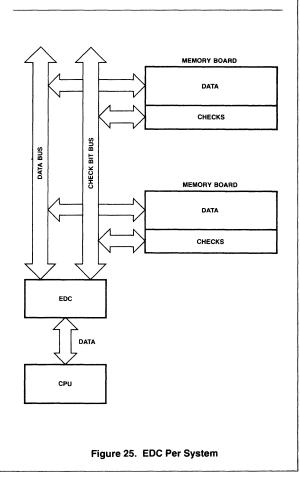


Figure 24. EDC Per Board

This reduction in check bit overhead lowers cost and increases the amount of data that can be packed on to each board.

The trade off is that when writing data pieces into memory that are narrower than the memory word width, more steps are required. These steps are exactly the same as those described in Byte Write in the Applications section. No penalty exists for reads from memory.

EDC Per Board vs EDC Per System


The choice of an EDC per system or per board depends on the economics and the architecture of the system.

Certainly the cheaper approach is to have only one EDC per system and this is a viable solution if only one memory location is accessed at at time.

This solution does require that the system has both data and check bit lines (see Figure 25). This makes retrofitting a system difficult and creates complications if static or ROM memory, which do not require check bits, are mixed in with dynamic RAM.

If the system has an advanced architecture it is quite likely that it is necessary to simultaneously access memory locations on different memory boards (see Figure 24). Architectural features that require this are interleaved memory, cache memory, and DMA that is done simultaneously with processor memory accesses. EDC per board is a simpler system from a design standpoint.

The EDC is designed to work efficiently in either the per system or per board configurations.

FUNCTIONAL EQUATIONS

The following equations and tables describe in detail how the output values of the Am2960 EDC are determined as a function of the value of the inputs and the internal states. Be sure to carefully read the following definitions of symbols before examining the tables.

Definitions

- $D_i \leftarrow (DATA_i \text{ if } LE \text{ IN is HIGH or the output of bit i of the Data Input Latch if LE IN is LOW)}$
- $C_i \leftarrow (CB_i \text{ if LE IN is HIGH or the output of bit i of the Check Bit Latch if LE IN is LOW)$
- DL_i ← Output of bit i of the Diagnostic Latch
- S_i ← Internally generated syndromes (same as outputs of SC_i if outputs enabled)
- $\mathsf{PA} \quad \leftarrow \mathsf{D0} \oplus \mathsf{D1} \oplus \mathsf{D2} \oplus \mathsf{D4} \oplus \mathsf{D6} \oplus \mathsf{D8} \oplus \mathsf{D10} \oplus \mathsf{D12}$
- $\mathsf{PB} \hspace{0.2cm} \leftarrow \hspace{0.2cm} \mathsf{D0} \oplus \mathsf{D1} \oplus \mathsf{D2} \oplus \mathsf{D3} \oplus \mathsf{D4} \oplus \mathsf{D5} \oplus \mathsf{D6} \oplus \mathsf{D7}$
- $\mathsf{PC} \hspace{0.2cm} \leftarrow \hspace{0.2cm} \mathsf{D8} \oplus \hspace{-0.2cm} \mathsf{D9} \oplus \hspace{-0.2cm} \mathsf{D10} \oplus \hspace{-0.2cm} \mathsf{D11} \oplus \hspace{-0.2cm} \mathsf{D12} \oplus \hspace{-0.2cm} \mathsf{D13} \oplus \hspace{-0.2cm} \mathsf{D14} \oplus \hspace{-0.2cm} \mathsf{D15}$
- $\mathsf{PD} \hspace{0.2cm} \leftarrow \hspace{0.2cm} \mathsf{D0} \oplus \mathsf{D3} \oplus \mathsf{D4} \oplus \mathsf{D7} \oplus \mathsf{D9} \oplus \mathsf{D10} \oplus \mathsf{D13} \oplus \mathsf{D15}$
- $\mathsf{PE} \hspace{0.2cm} \leftarrow \hspace{0.2cm} \mathsf{D0} \oplus \mathsf{D1} \oplus \mathsf{D5} \oplus \mathsf{D6} \oplus \mathsf{D7} \oplus \mathsf{D11} \oplus \mathsf{D12} \oplus \mathsf{D13}$
- $\mathsf{PF} \hspace{0.2cm} \leftarrow \hspace{0.2cm} \mathsf{D2} \oplus \mathsf{D3} \oplus \mathsf{D4} \oplus \mathsf{D5} \oplus \mathsf{D6} \oplus \mathsf{D7} \oplus \mathsf{D14} \oplus \mathsf{D15}$
- $\mathsf{PG}_1 \leftarrow \mathsf{D0} \oplus \mathsf{D4} \oplus \mathsf{D6} \oplus \mathsf{D7}$
- $PG_2 \leftarrow D1 \oplus D2 \oplus D3 \oplus D5$
- $\mathsf{PG}_3 \leftarrow \mathsf{D8} \oplus \mathsf{D9} \oplus \mathsf{D11} \oplus \mathsf{D14}$
- $PG_4 \leftarrow D10 \oplus D12 \oplus D13 \oplus D15$

Error Signals

 $\overline{\text{ERROR}} \leftarrow (\overline{\text{S6}} \bullet (\overline{\text{ID}}_1 + \overline{\text{ID}}_2)) \bullet \overline{\text{S5}} \bullet \overline{\text{S4}} \bullet \overline{\text{S3}} \bullet \overline{\text{S2}} \bullet \overline{\text{S1}} \bullet \overline{\text{S0}} + \overline{\text{GENERATE}} + \overline{\text{INITIALIZE}} + \overline{\text{PASSTHRU}} \\ \overline{\text{MULT ERROR}} (16 \text{ and 32-Bit Modes}) \leftarrow (\overline{(\overline{\text{S6}} \bullet \overline{\text{ID}}_1) \oplus \text{S5}} \oplus \overline{\text{S4}} \oplus \overline{\text{S3}} \oplus \overline{\text{S2}} \oplus \overline{\text{S1}} \oplus \overline{\text{S0}}) (\overline{\text{ERROR}}) + \overline{\text{TOME}} \\ + \overline{\text{GENERATE}} + \overline{\text{PASSTHRU}} + \overline{\text{INITIALIZE}} \\ - \overline{\text{MULT ERROR}} (16 \text{ and 32-Bit Modes}) \leftarrow \overline{(\overline{\text{S6}} \bullet \overline{\text{ID}}_1) \oplus \overline{\text{S5}}} \oplus \overline{\text{S4}} \oplus \overline{\text{S3}} \oplus \overline{\text{S2}} \oplus \overline{\text{S1}} \oplus \overline{\text{S0}}) (\overline{\text{ERROR}}) + \overline{\text{TOME}} \\ + \overline{\text{GENERATE}} + \overline{\text{PASSTHRU}} + \overline{\text{INITIALIZE}} \\ - \overline{\text{MULT ERROR}} (16 \text{ and 32-Bit Modes}) \oplus \overline{(\overline{\text{MULT ERROR}}) \oplus \overline{\text{S1}} \oplus$

MULT ERROR (64-Bit Modes) ← TOME + GENERATE + PASSTHRU + INITIALIZE

S1	S 2	\$0 **\$6 \$5 \$4 \$3	0 0 0 0	1 0 0 0	0 1 0 0	1 1 0 0	0 0 1 0	1 0 1 0	0 1 1 0	1 1 1 0	0 0 0 1	1 0 0 1	0 1 0 1	1 1 0 1	0 0 1 1	1 0 1 1	0 1 1 1	1 1 1 1
0	0	0	0	0	0	1	0	1	1	1	0	1	1	1	0	0	0	0
0	0	1	0	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
1	1	1	0	0	0	0	1	1	· 1	1	1	1	1	1.	1 /	1	1	1

TOME (Three or More Errors)*

*S6, S5, ..., S0 are internal syndromes except in Modes 010, 100, 101, 110, 111 (CODE ID₂, ID₁, ID₀). In these modes the syndromes are input over the Check-Bit lines. S6 \leftarrow C6, S5 \leftarrow C5, ..., S1 \leftarrow C1, S0 \leftarrow C0.

**The S6 internal syndrome is always forced to 0 in CODE ID 000.

Am2960

SC Outputs

Tables XV, XVI, XVII, XVIII, XIX show how outputs SC_{0-6} are generated in each control mode for various CODE IDs (internal control mode not applicable).

			TADLE AV.				
CODE ID ₂₋₀ GENERATE Mode (Check Bits)	000	010	011	100	101	110	111
SC ₀ ←	$PG_2 \oplus PG_3$	$PG_1 \oplus PG_3$	PG ₂ ⊕PG ₄	$PG_2 \oplus PG_3$	$PG_2 \oplus PG_3$	$PG_1 \oplus PG_4$	PG ₁ ⊕PG ₄
SC ₁ ←	PA	PA	PA	PA	PA	PA	PA
SC ₂ ←	PD	PD	PD	PD	PD	PD	PD
$SC_3 \leftarrow$	PĒ	PĒ	PE	ΡĒ	PE	PE	PE
SC ₄ ←	PF	PF	PF	PF	PF	PF	PF
SC ₅ ←	PC	PC	PC	PC	PC	PC	PC
SC ₆ ←	1	РВ	PC	PB	PB	PB	PB

TABLE XV

TABLE XVI.

CODE ID ₂₋₀ Detect and Correct Modes (Syndromes)	000	010	011*	100	101	110	111
SC ₀ ←	PG ₂ ⊕PG ₃ ⊕C0	PG ₁ ⊕PG ₃ ⊕C0	PG₂⊕PG₄ ⊕CB₀	PG ₂ ⊕PG ₃ ⊕C0	PG₂⊕PG₃	PG ₁ ⊕PG ₄	PG ₁ ⊕PG ₄
SC ₁ ←	PA⊕C1	PA⊕C1	PA⊕CB ₁	PA⊕C1	PA	PA	PA
SC ₂ ←	PD⊕C2	PD⊕C2	PD⊕CB ₂	PD⊕C2	PD	PD	PD
SC ₃ ←	PE⊕C3	PE⊕C3	PE⊕CB ₃	PE⊕C3	PE	PE	PE
SC₄ ←	PF⊕C4	PF⊕C4	PF⊕CB ₄	PF⊕C4	PF	PF	PF
SC ₅ ←	PC⊕C5	PC⊕C5	PC⊕CB ₅	PC⊕C5	PC	PC	PC
SC ₆ ←	1	PB⊕C6	PC⊕CB ₆	PB	PB	PB⊕C6	PB⊕C6

*In CODE ID_{2-0} 011 the Check-Bit Latch is forced transparent, the Data Latch operates normally.

CODE ID ₂₋₀ Diagnostic Read Mode	000	010	011*	100	101	110	111
SC ₀ ←	PG₂⊕PG₃ ⊕DL₀	$PG_1 \oplus PG_3 \oplus DL_0$	$PG_2 \oplus PG_4 \oplus CB_0$	PG₂⊕PG₃ ⊕DL₀	PG₂⊕PG₃	PG₁⊕PG₄	PG ₁ ⊕PG ₄
SC ₁ ←	PA⊕DL ₁	PA⊕DL ₁	PA⊕CB ₁	PA⊕DL ₁	PA	PA	PA
SC ₂ ←	PD⊕DL ₂	PD⊕DL ₂	PD⊕CB ₂	PD⊕DL ₂	PD	PD	PD
SC ₃ ←	₽E ⊕DL3	PE⊕DL ₃	PE⊕CB ₃	PE⊕DL ₃	PE	PE	PE
SC₄ ←	PF⊕DL₄	PF⊕DL₄	PF⊕CB ₄	PF⊕DL ₄	PF	PF	PF
SC ₅ ←	PC⊕DL ₅	PC⊕DL5	PC⊕CB ₅	PC⊕DL5	PC	PC	PC
SC ₆ ←	t	PB⊕DL ₆	PC⊕CB ₆	PB	PB	PB⊕DL ₆	PB OL7

TABLE XVII.

			TABLE XVIII				
CODE ID ₂₋₀ Diagnostic Write Mode	000	010	011*	100	101	110	111
SC ₀ ←	DL ₀	DL ₀	CB ₀	DL ₀	1	1	1
SC ₁ ←	DL ₁	DL ₁	CB1	DL ₁	1	1	1
SC ₂ ←	DL ₂	DL ₂	CB ₂	DL ₂	1	1	1
SC ₃ ←	DL ₃	DL ₃	CB ₃	DL ₃	1	1	1
SC ₄ ←	DL ₄	DL ₄	CB4	DL ₄	1	1	1
SC ₅ ←	DL ₅	DL ₅	CB5	DL ₅	1	1	1
SC ₆ ←	1	DL ₆	CB ₆	1	1	DL ₆	DL ₇

*In CODE ID₂₋₀ 011 the Check-Bit Latch is forced transparent; the Data Input Latch operates normally.

			TABLE XIX	•			
CODE ID ₂₋₀ PASS THRU Mode	000	010	011*	100	101	110	111
SC ₀ ←	CO	CO	CB ₀	CO	1	1	1
SC ₁ ←	C1	C1	CB1	C1	1	1	1
SC ₂ ←	C2	C2	CB ₂	C2	1	1	1
SC ₃ ←	C3	C3	CB3	C ₃	1	1	1
SC ₄ ←	C4	C4	CB4	C4	1	1	1
SC ₅ ←	C5	C5	CB ₅	C5	1	1	1
SC ₆ ←	1	C6	CB ₆	1	1	C6	C6

*In CODE ID₂₋₀ 011 the Check-Bit Latch is forced transparent; the Data Input Latch operates normally.

Data Correction

Tables XX to XXVI shows which data output bits are corrected (inverted) depending upon the syndromes and the CODE ID position. Note that the syndromes that determine data correction are in some cases syndromes input externally via the CB

inputs and in some cases syndromes generated internally by that EDC (S_i are the internal syndromes and are the same as the value of the SC_i output of that EDC if enabled).

The tables show the number of data bit inverted (corrected) if any for the CODE ID and syndrome combination.

TABLE XX. CODE ID₂₋₀ = 000*

S 2	S1	S5 S4 S3	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1
0	0		-	-	-	5	-	11	14	-
0	1		-	1	2	6	8	12	-	-
1	0		-		3	7	9	13	15	-
1	1		-	0	4	-	10	-	-	-

*Unlisted S combinations are no correction.

	TABLE XXI. CODE $D_{2-0} = 0.00$										
		CB ₆ CB ₅ CB ₄ CB ₃	0	0	0	0	1	1	1	1	
		CB ₅	1	1	1	1	0	0	0	0	
		CB ₄	0	0	1	1	0	0	1	1	
		CB3	0	1	0	1	0	1	0	1	
CB ₂	CB1										
0	0		-	11	14	-	-	-	-	5	
0	1		8	12	-	-	-	1	2	6	
1	0		9	13	15	-	-	-	3	7	
1	1		10	-	-	_	-	0	4	-	

*Unlisted CB combinations are no correction.

TABLE XXII. CODE ID₂₋₀ = 011*

		S6	0	0	0	0	1	1	1	1
		S5	0	0	0	0	1	1	1	1
		S4	0	0	1	1	0	0	1	1
		S3	0	1	0	1	0	1	0	1
S2	S1									
0	0		-	-	-	5	-	11	14	
0	1		-	1	2	6	8	12		-
1	0		-	-	3	7	9	13	15	-
1	1		-	0	4	-	10	-	-	-

*Unlisted S combinations are no correction.

TABLE XXIII. CODE ID₂₋₀ = 100*

			CB ₀ CB ₆ CB ₅ CB ₄ CB ₃	0	0	0	0	1	1	1	1
			CB ₆	0	0	0	0	1	1	1	1
			CB5	1	1	1	1	0	0	0	0
			CB ₄	0	0	1	1	0	0	1	1
,			CB ₃	0	1	0	1	0	1	0	1
1	CB ₂	CB1									
	0	0		-	11	14	~	-	-	-	5
	0	1		8	12	-	-		1	2	6
	1	0		9	13	15		-		3	7
	1	1		10		-	~	-	0	4	_

*Unlisted CB combinations are no correction

TABLE XXIV. CODE ID₂₋₀ = 101*

					1		1		1	
		CB ₀ CB ₆ CB ₅	0	0	0	0	1	1	1	1
		CB ₆	0	0	0	0	1	1	1	1
		CB5	0	0	0	0	1	1	1	1
		CB₄	0	0	1	1	0	0	1	1
		CB3	0	1	0	1	0	1	0	1
CB ₂	CB1									
0	0		-	-	-	5	-	11	14	
0	1		-	1	2	6	8	12	-	
1	0		-	-	3	7	9	13	15	-
1	1		-	0	4	-	10	~	-	-

*Unlisted CB combinations are no correction.

TABLE XXV. CODE $ID_{2-0} = 110^*$

CB	08	CB ₀ CB ₆ CB ₅ CB ₄ CB ₃	0 1 0 0 0	0 1 0 0 1	0 1 0 1 0	0 1 0 1 1	1 0 1 0 0	1 0 1 0 1	1 0 1 1 0	1 0 1 1 1
0 0	0 0		-	-		5	_	11	14	-
0	1		-	1	2	6	8	12	-	-
1	0		-	-	3	7	9	13	15	-
1	1		-	0	4		10	-	-	-

*Unlisted CB combinations are no correction.

CB₀ 0 CB₆ 1 CB₅ 1

TABLE XXVI. CODE ID₂₋₀ = 111*

CB ₂	CB ₁	CB ₄ CB ₃	0 0	0 1	1 0	1 1	0 0	0 1	1 0	1 1
0	0		-	11	14	-	-	-	-	5
0	1		8	12	-	-	_	1	2	6
1	0		9	13	15	-	-	-	3	7
1	1		10	-	-	-	-	0	4	-

*Unlisted CB combinations are no correction.

TECHNICAL REPORT Am2960 BOOSTS MEMORY RELIABILITY

ABSTRACT

Memory error frequency will increase due to the use of larger memory systems and the use of 16K and 64K RAMs, which are more susceptible to soft errors because of their smaller memory cell geometry.

At the same time, the need for reliability is increasing, both for the user and the system manufacturer. EDC (Error Detection and Correction) can reduce system downtime, can reduce field maintenance expenses and can provide manufacturers a marketing advantage due to increased reliability.

The Am2960 implements EDC using a modified Hamming code, and so boosts memory reliability by a factor of 60 or better. It slashes package count and adds initialization, byte-write and diagnostic features. It is fast and flexible enough to handle word widths from 8 to 64 bits.

The Am2960 is one of a series of Memory Support devices designed for use with dynamic MOS RAM memory systems.

Prepared by: Advanced Micro Devices, Bipolar Microprocessor.

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Advanced Micro Devices' product.

Am2960 BOOSTS MEMORY RELIABILITY

The Am2960 is a 16-bit, expandable Error Detection and Correction (EDC) unit. It is used in conjunction with system main memories to boost memory reliability.

The Am2960 can correct *all* single-bit memory errors in a data word. It detects all double-bit errors and even some triple-bit errors. The gross error conditions of all 0s or all 1s are always detected.

Memory error and detection using the Am2960 boosts system reliability by a factor of 60 or better. System crashes will occur far less frequently and maintenance costs can be slashed.

MEMORY ERRORS

Memory Error Frequency

Memory errors are becoming *more* frequent due to two general trends:

- 1. Total system memory size is growing, and,
- 2. The geometry of individual memory cells in dynamic RAMs is shrinking, making them more susceptible to "soft" errors.

There are two basic types of memory errors. Hard errors are permanent physical failures of either the whole RAM, a row, a column, or a single bit. Hard errors are caused by power shorts, open leads, and various other factors. Initial testing and burn-in will reduce but not eliminate hard error failures in RAMs during system operation.

Soft errors are non-repeating, single-bit errors where there is no permanent damage. A soft error occurs when the charge state of a bit incorrectly shifts from 0 to 1 or from 1 to 0. This can be caused by system noise, pattern sensitivity, power surges⁶ or alpha particles. The new 16K and 64K dynamic RAMs, with their smaller memory cell geometries are especially susceptible to soft errors induced by alpha particles. (The smaller the memory cell geometry, the less energy is required to cause the cell to change state.)

A paper given at Wescon, 1979¹ presented these failure rates for dynamic RAMs of increasing size (see Table 1). This table reflects only soft errors due to alpha particles.

Undetected Memory Failures are Expensive

Memory failures will occur in a system. When they do they will result either in a system crash or in loss of data integrity, unless memory error detection schemes are used. Either situation is expensive and inconvenient for the system users. Either situation can result in maintenance calls to the system manufacturer.

If the memory error occurs in an instruction word and the instruction is executed without being corrected, then a system crash will almost certainly occur. For example, an "Add" instruction could be changed to a "Jump" instruction with only a one-bit change – if the error is undetected, the jump would take place to essentially a random location.

If the error occurs in a word that is used for storing data, then data integrity is lost. In typical applications this could mean that bank account balances would be altered, blood diagnosis would be incorrect, or cooling water valves could be closed instead of opened.

System failures of any kind will often result in unscheduled maintenance requests to the system manufacturers. Maintenance calls are expensive for the system manufacturer and are to be avoided by preventative means if at all possible.

Strategies for Memory Errors

For reliability and maintenance cost reduction, memory errors must be dealt with by the system designer.

A common scheme is to use parity. But parity schemes cannot correct errors and can detect only single-bit errors. If a double-bit error occurs in a word, the parity is unchanged and so the error goes undetected. Parity cannot correct errors.

Error detection and correction (EDC) is implemented by the Am2960 using a modified Hamming code. The Hamming code scheme involves generating several check bits that contain enough redundant information to correct *all* single-bit errors and to detect all double-bit errors and some triple-bit errors. Also, the EDC modified Hamming code detects the gross error conditions of all 0s and all 1s.

Table 2 demonstrates that EDC is the superior strategy for both the system user and the system manufacturer.

Density		Error Rate 000 Hours)
Bits/Chip	Soft*	Hard**
1K	.001	.0001
4K	.02	.002
16K	.10	.011
64K	.5***	.016

TABLE 1. ERRORS ARE INCREASING.

*Reflects alpha particles only. Does not include errors due to noise, power, natterns

**After infant mortality.

***Based on initial customer evaluation.

Note: 0.1% per 1000 hours equals 1 failure in 10⁶ hours.

TABLE 2. COMPARISON OF ERROR STRATEGIES.

Error Type	No Checking	Parity	EDC Using Am2960
Single-Bit Error	System crash.	System halt.	Correctable. System runs.
Double-Bit Error	System crash.	System crash.	System halt.
Entire RAM Failure	System crash.	System halt.	Correctable. System runs.

With EDC, the incidence of maintenance calls is significantly reduced. Even the failure of an entire RAM chip will not necessarily result in a system failure. Double-bit errors are not corrected but are detected so that the system may be halted and the user informed of a memory error and the exact location of it. A controlled system halt is far more desirable than an uncontrolled system crash.

EDC Improves MTTF

Error detection and correction as implemented on the Am2960 significantly improves the MTTF (mean time to failure) of memory systems.

A paper presented at Wescon, 1979¹ used the dynamic RAM error rates shown previously to calculate the following MTTFs for a 16 Megabyte system using 64K RAMs (see Table 3).

TABLE	з.
-------	----

Error Type	MTTF*
Correctable Soft Error (Single-Bit)	13 days
Correctable Hard Error (Single-Bit)	110 days
Non-Correctable Soft Error (Double-Bit)	864 days
Non-Correctable Hard Error (Double-Bit)	7,021 days

*Based on 64K RAM alpha error rate of 0.13% per 1000 hours. The MTTF improves by a factor of at least 60 with EDC. This improvement factor has been noted by others².

Another paper ^{3,4} calculated that with EDC, RAM errors would become a small factor in memory based failures relative to failures of other board components such as MSI, capacitors and resistors. The same paper⁴ discusses how frequently preventative maintenance should be done so that a hardfailed RAM is replaced prior to a second RAM experiencing a hard-failure. The Am2960 has features that allow easy logging of data errors – this aids the maintenance engineer in quickly pinpointing hard-failed RAMs and RAMs displaying excessive soft error rates.

Memory Reliability is a Competitive Edge

EDC boosts memory reliability and gives you two competitive advantages:

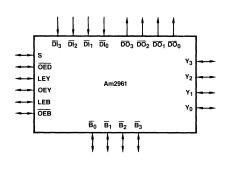
- 1. Your system is more reliable.
- 2. Your field maintenance costs are reduced.

The demand for reliable system performance is increasing steadily. Reliability is a must for applications in aerospace, medical, banking, process control and on-line systems. Applications such as word-processors, small business systems and telecommunications also need memory reliability, as their users do not have the technical staff to handle system failures and are willing to pay for the convenience of smooth, error-free operation.

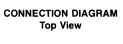
REFERENCES

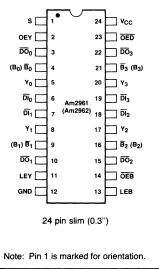
- 1. Eric C. Westerfield, Four-Phase Systems, "Memory System Strategies for Soft and Hard Errors," Wescon, September, 1979.
- 2. "As Memory Density Quadruples Again, Designers Focus on Reliability," Electronic Design, January 18, 1979.
- 3. Robert Koppel, "RAM Reliability in Large Memory Systems Significance of Predicting MTBF," Computer Design, February, 1979.
- 4. Robert Koppel, "RAM Reliability in Large Memory Systems Improving MTBF with ECC," Computer Design, March, 1979.
- A.V. Ferris-Prabhu, IBM General Technology Division, "Improving Memory Reliability Through Error Correction," Computer Design, July, 1979.
- 6. "Power-Line Disturbances Scorecard," Electronic Design, February 15, 1979.
- 7. "Alphas Stymie Statics," Electronics, March 15, 1979.
- 8. "Analyzing Computer Technology Costs," Computer Design, October, 1978.
- 9. "Alphas Cause Rift at ECC," Electronic Engineering Times, May 28, 1979.
- 10. Ernst L. Wall, ITT, "Applying the Hamming Code to Microprocessor-Based Systems," Electronics, November 22, 1979.

These devices are also characterized as: AmZ8161


AmZ8162

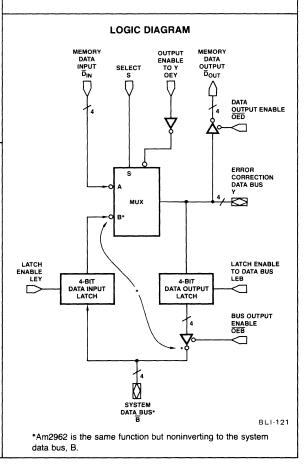
Am2961 • Am2962 4-Bit Error Correction Multiple Bus Buffers


DISTINCTIVE CHARACTERISTICS


- Quad high-speed LSI bus-transceiver
- Provides complete data path interface between the Am2960 Error Detection and Correction Unit, the system data bus and dynamic RAM memory
- Three-state 24mA output to data bus
- Three-state data output to memory
- Inverting data bus for Am2961 and noninverting for Am2962
- · Data bus latches allow operation with multiplexed buses
- Space saving 24-pin 0.3" package
- 100% MIL-STD-883 reliability assurance testing

LOGIC SYMBOL

B-Bus is noninverting for Am2962.



FUNCTIONAL DESCRIPTION

The Am2961 and Am2962 are high-performance, low-power Schottky multiple bus buffers that provide the complete data path interface between the Am2960 Error Detection and Correction Unit, dynamic RAM memory and the system data bus. The Am2961 provides an inverting data path between the data bus (B_i) and the Am2960 error correction data input (Y_i) and the Am2962 provides a noninverting configuration (B_i to Y_i). Both devices provide inverting data paths between the Am2960 and memory data bus thereby optimizing internal data path speeds.

The Am2961 and Am2962 are 4-bit devices. Four devices are used to interface each 16-bit Am2960 Error Detection and Correction Unit with dynamic memory. The system can easily be expanded to 32 or more bits for wider memory applications. The 4-bit configuration allows enabling the appropriate devices two-at-a-time for intermixed word or byte, read and write in 16-bit systems with error correction.

Data latches between the error correction data bus and the system data bus facilitate byte writing in memory systems wider than 8-bits. They also provide a data holding capability during singlestep system operation.

BLI-122

Am2961 • Am2962

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

$\label{eq:COM'L} COM'L \quad T_{A} = 0 \ \text{to} \ +70^{\circ}\text{C} \qquad \qquad V_{CC} = 5.0V \ \pm 5\% \quad (\text{MIN} = 4.75V \quad \text{MAX} = 5.25V)$

MIL $T_A = -55 \text{ to } +125^{\circ}\text{C}$ $V_{CC} = 5.0V \pm 10\%$ (MIN = 4.50V MAX = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE - Y BUS

							Тур.		
Parameters	Description	Test Co	onditions (No	te 1)		Min	(Note 2)	Max	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -3.	0mA		2.4	3.4		Volts
VOL	Output LOW Voltage	V _{CC} = MIN I _{OL} = 8mA				0.3	0.45	Volts	
*UL	Supur Lott Tonago	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 16 \text{mA}$			0.35	0.5	10110		
ViH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs				2.0			Volts
VIL	Input LOW Level	Guaranteed input log	Guaranteed input logical LOW MIL					0.7	Volts
*IL		voltage for all inputs	-		COM'L			0.8	1010
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -$	18mA					-1.5	Volts
կլ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0$).4V	OE,	Y ≖ LOW			-2.0	mA
Чн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2$	2.7V	OE,	Y = LOW			100	μA
4	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 5.5V$ OE		OE,	Y = LOW			1.0	mA
I _{SC}	Output Short Circuit Current (Note 3)	V _{CC} = MAX				-30		-130	mA

DC CHARACTERISTICS OVER OPERATING RANGE - B BUS

Parameters	Description	Test Conditions (Note 1)				Min	Typ. (Note 2)	Max	Units
VoH	Output HIGH Voltage	V _{CC} = MIN	I _{OH} = -3.0)mA		2.4			Volts
·Un	s alpan and a straigs	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -15 \text{mA}$		2.0				
VOL	Output LOW Voltage	V _{CC} = MIN	I _{OL} = 12m/	٩			0.3	0.45	Volts
-OL		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 24 \text{ mA}$				0.35	0.50		
Чн	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs				2.0			Volts
VIL	Input LOW Level	Guaranteed input log	gical LOW	MIL				0.7	Volts
		voltage for all inputs		COM	'L			0.8	
Vi	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -$	18mA					-1.5	Volts
կլ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0$	0.4V	ÕĒB = HIG	ЭH			-1.0	mA
IIH	Input HIGH Current	V _{CC} = MAX, V _{IN} =	2.7V	OEB = HIG	ЭН			100	μA
ų	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 5.5V$		ÕEB = HIG	зн			1.0	mA
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX			-50	i	-150	mA	

Notes: 1. For conditions as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

DC CHARACTERISTICS OVER OPERATING RANGE - DO OUTPUTS

Parameters	Description	Test C	onditions (Note 1)	Min	Typ. (Note 2)	Max	Units
ratameters	Description				(Note 2)	IVIAX	Units
Voн	Output HIGH Voltage	$V_{CC} = MIN$	MIL $I_{OH} = -50\mu A$	2.5			Volts
011		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$COM'L I_{OH} = -100 \mu A$	2.7			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 1mA			0.4	Volts
Isc	Output Short Circuit Current (Note 3)	$V_{CC} = MAX$		-50		-150	mA
lo	Off-State Out Current	$V_{CC} = MAX$	$V_0 = 0.4V$			- 100	μA
.0			$V_0 = 2.4V$			+100	<i>,</i> , (

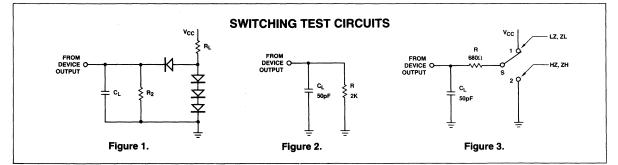
DC CHARACTERISTICS OVER OPERATING RANGE - DI INPUTS AND CONTROLS

Parameters	Description	Test Conditions (Note 1)	Min	Typ. (Note 2)	Max	Units Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			
VIL	Input LOW Level	Guaranteed input logical LOW	MIL			0.7	Volts
11		voltage for all inputs	COM'L			0.8	Volto
V _C	Input Clamp Voltage	$V_{CC} = MIN$, $I_{IN} = -18mA$				-1.5	Volts
Ι _Ι	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.4V$	DI Inputs			-1.0	mA
11			Controls			-1.6	mA
Чн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.7V$				50	μA
lį –	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 5.5V$				1.0	mA

DC CHARACTERISTICS OVER OPERATING RANGE - POWER SUPPLY

Parameters	Description	Test Conditions (Note 1)	Min	(Note 2)	Max	Units
Icc	Power Supply Current (Note 4)	V _{CC} = MAX		110	155	mA

Note 4:


MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} MAX
DC Input Voltage	5.5V
DC Output Current, Into Outputs	30mA
DC Input Current	-30 to +5.0mA

Am2961 • Am2962

Am2961 SWITCHII	NG CHARACTERISTICS	CC	DM'L	м	IL				
	ERATING RANGE*		to +70°C 5.0V ±5%		to +125°C 0V ±10%				
Parameters	Description	Min	Max	Min	Max	Units	Test Conditions		
t _{PLH}	Propagation Delay B to Y (Latch	-	25		28	ns			
tPHL	Transparent, $OEY = LEY = HIGH$)		25		28	ns			
t _{PLH}	Propagation Delay DI to Y		15		18	ns			
^t PHL	(OEY = HIGH, S = LOW)		15		18	ns	Figure 1		
^t PLH	Propagation Delay S to Y		25		28	ns		= 50pF = 390Ω	
t _{PHL}	(OEY = HIGH)		25		28	ns		$= 1k\Omega$	
^t PLH	Propagation Delay LEY to Y		25		30	ns]		
^t PHL	(OEY = S = HIGH)		35		40	ns			
^t PZH	Y Bus Output Enable Time		18		21	ns			
t _{PZL}	OEY to Y		18		21	ns			
^t PHZ	Y Bus Output Disable Time		18		21	ns			
^t PLZ	OEY to Y		18		21	ns			
^t PLH	Propagation Delay LEB to B		25		30	ns	Figure 1 $C_L = 50pF$ $R_L = 270\Omega$ $R_2 = 1k\Omega$		
^t PHL	(OEB = LOW)		35		40	ns			
t _{PLH}	Propagation Delay Y to B (Latch Transparent,		18		21	ns			
t _{PHL}	$LEB = HIGH, \overline{OEB} = LOW, OEY = LOW)$		20		23	ns	-		
^t PLH	Propagation Delay Y to \overline{B} (Latch Transparent,		26		30	ns	CL	Figure 1 C _L = 300pF	
^t PHL	$LEB = HIGH, \overline{OEB} = LOW, OEY = LOW)$		31		35	ns	$R_{L} = 270\Omega$ $R_{2} = 1k\Omega$		
^t PZH	B Bus Output Enable Time		18		21	ns	Fig	ure 1	
t _{PZL}			18		21	ns		= 50pF	
^t PLZ	B Bus Output Disable Time		18		21	ns		= 270Ω = 1kΩ	
^t PHZ	OEB to B		18		21	ns			
^t PLH	Propagation Delay Y to DO		15		18	ns		ure 2 = 50pF	
^t PHL	$(\overline{OED} = OEY = LOW)$		20		23	ns	-	= 2kΩ	
^t PZH	DO Output Enable Time		28		30	ns	S = 2		
^t PZL	OED to DO		28		30	ns	S = 1	Figure 3 C _I = 50pF	
^t PHZ	DO Output Disable Time		16		18	ns	S = 2	$R = 680\Omega$	
^t PLZ	OED to DO		24		28	ns	S = 1		
ts	\overline{B} to LEY Set-up Time ($\overline{OEB} = HIGH$)	6		6		ns	Figure 1 $C_L = 50pF$ $R_L = 390\Omega$ $R_2 = 1k\Omega$		
ţн	\overline{B} to LEY Hold Time ($\overline{OEB} = HIGH$)	9		10		ns			
t _S	Y to LEB Set-up Time (OEY = LOW)	6		6		ns	CL	ure 1 = 50pF	
tн	Y to LEB Hold Time (OEY = LOW)	9		10		ns		= 270Ω = 1kΩ	

*AC perfomance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

Am2962	NG CHARACTERISTICS	cc	DM'L	M	IIL				
	PERATING RANGE*	1	to +70°C 5.0V ±5%		to +125°C .0V ±10%				
Parameters	Description	Min	Max	Min	Max	Units	Test	Conditions	
^t PLH	Propagation Delay B to Y (Latch		27		28	ns			
^t PHL	Transparent, OEY = LEY = HIGH)		27		28	ns			
^t PLH	Propagation Delay DI to Y		15		18	ns			
^t PHL	(OEY = HIGH, S = LOW)		15		18	ns		ure 1	
^t PLH	Propagation Delay S to Y		25		28	ns		= 50pF = 390Ω	
t _{PHL}	(OEY = HIGH)		25		28	ns		$= 1 k\Omega$	
^t PLH	Propagation Delay LEY to Y		25		30	ns]		
^t PHL	(OEY = S = HIGH)		35		40	ns			
^t PZH	Y Bus Output Enable Time		18		21	ns			
^t PZL	OEY to Y		18		21	ns]		
^t PHZ	Y Bus Output Disable Time		18		21	ns			
tPLZ	OEY to Y		18		21	ns			
t _{PLH}	Propagation Delay LEB to B		25		30	ns	Fig	Figure 1	
t _{PHL}	$(\overline{OEB} = LOW)$		35		40	ns	$C_{L} = 50pF$ $R_{L} = 270\Omega$ $R_{2} = 1k\Omega$		
t _{PLH}	Propagation Delay Y to B (Latch Transparent,		20		23	ns			
t _{PHL}	$LEB = HIGH, \overline{OEB} = LOW, OEY = LOW)$		21		24	ns			
t _{PLH}	Propagation Delay Y to B (Latch Transparent,		28		32	ns	Figure 1 $C_L = 300pF$ $R_L = 270\Omega$ $R_2 = 1k\Omega$		
^t PHL	$LEB = HIGH, \ \overline{OEB} = LOW, \ OEY = LOW)$		32		36	ns			
^t PZH	B Bus Output Enable Time		18		21	ns	Fig	ure 1	
t _{PZL}	OEB to B		18		21	ns	CL	= 50pF	
t _{PLZ}	B Bus Output Disable Time		18		21	ns		= 270Ω = 1kΩ	
t _{PHZ}	OEB to B		18		21	ns			
t _{PLH}	Propagation Delay Y to DO		15		18	ns		ure 2	
t _{PHL}	$(\overrightarrow{OED} = OEY = LOW)$		20		23	ns		= 50pF = 2kΩ	
^t PZH	DO Output Enable Time		28		30	ns	S = 2		
t _{PZL}	OED to DO		28	1	30	ns	S = 1	Figure 3	
^t PHZ	DO Output Disable Time	+	16	1	18	ns	S = 2	C _L = 50pF R = 680Ω	
tPLZ	OED to DO		24		28	ns	S = 1		
ts	B to LEY Set-up Time ($\overline{OEB} = HIGH$)	8		8		ns	CĽ	ure 1 = 50pF	
tн	B to LEY Hold Time ($\overline{OEB} = HIGH$)	8		9		ns	RL	= 390Ω = 1kΩ	
ts	Y to LEB Set-up Time (OEY = LOW)	8		8		ns	C _L	ure 1 = 50pF	
tн	Y to LEB Hold Time (OEY = LOW)	8		9		ns		= 270Ω = 1kΩ	

*AC perfomance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

DEFINITION OF FUNCTIONAL TERMS

- B0, B1
B2, B3The four bidirectional system data bus inputs/
outputs. The B-to-Y path is inverting for the
Am2961 (Bi) and noninverting for the Am2962 (Bi).
- **OEB** The three-state Output Enable for the system data bus output drivers. When OEB is LOW data from the Data Output Latch is output to the system data bus. When OEB is HIGH the bus drivers are in the high-impedance state and the Data Input Latch can receive input data from the system data bus.
- LEB Latch Enable for the Data Output Latch. When LEB is HIGH the latch is transparent and Y-Bus data is output to the B-Bus. When LEB goes LOW, Y-Bus data meeting the latch set-up and hold time requirements is latched for output to the B-Bus.
- $\begin{array}{lll} Y_0, Y_1, & \mbox{The four bidirectional EDC data inputs/outputs for} \\ Y_2, Y_3 & \mbox{connection to the EDC data I/O port.} \end{array}$
- LEY The Latch Enable control for the Data Input Latch for the data input from the system data bus (B). When LEY is HIGH the latch is transparent and B input data is available at the MUX input for selection to the Y outputs. When LEY goes LOW, B input data meeting the latch set-up and hold time requirements is latched for subsequent selection to the Y outputs.

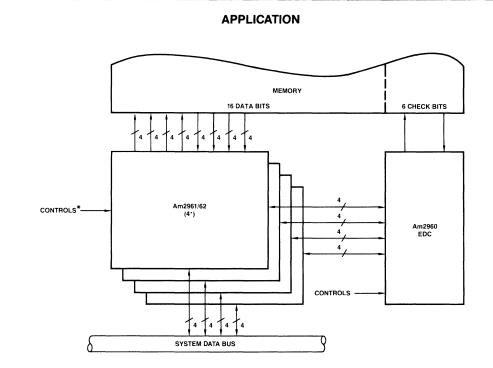
- **OEY** Output Enable for the Y (EDC) Bus outputs. When OEY is HIGH data selected by the input data multiplexer is output to the Y-bus. When OEY is LOW the MUX output is in the high-impedance state and the Y-Bus can receive input data from the EDC Unit.
- S The Select input for the input data multiplexer. A LOW input selects data from the memory data input, DI, for output to the EDC bus (Y). A HIGH input selects data from the system data bus Data Input Latch (B or B).
- \overline{DO}_{0} , \overline{DO}_{1} , The Data Outputs to the memory data inputs. The \overline{DO}_{2} , \overline{DO}_{3} \overline{DO} outputs are inverted with respect to the EDC
 - Bus (Y). These outputs are "RAM Driver" outputs with a collector resistor in the lower output driver to protect against undershoot on the HIGH-to-LOW transition.
- **OED** Output Enable for the DO outputs. An active LOW input causes the DO outputs to output inverted data from the EDC (Y) Bus and a HIGH input puts the DO outputs in the high-impedance state.
- Dio, Din, Din, Din, Dia Data Inputs from memory. Di inputs are selected by the data input MUX for output to the EDC (Y) Bus (controlled by S and OEY) and/or output to the system data bus (B) (controlled by LEB and OEE).

FUNCTION TABLES

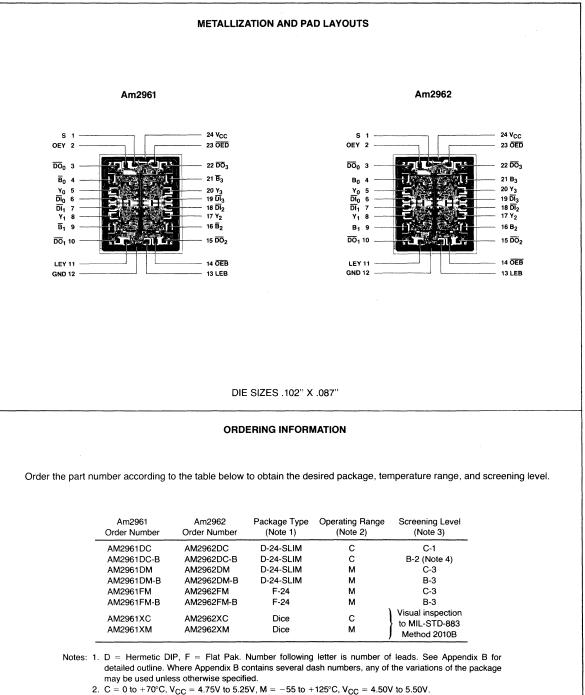
Y-BUS OUTPUT

LEY	Dīi	Ē _i * Am2961	B _i * Am2962	S	OEY	Y
X	х	х	х	Х	L	Z
X X	L H	X X	x x	L L	н Н	H L
н н	X X	L H	H L	н н	н Н	H L
L	Х	X	х	н	н	NC

B-BUS OUTPUT


Y* Input	LEB	ŌĒB	B Am2961	B Am2962
×	Х	н	Z	Z
L H	H H	L L	HL	L H
Х	L	L	NC	NC

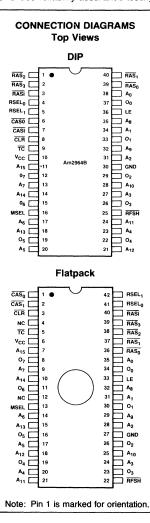
*OEY = LOW for B data input


* \overline{OEB} = HIGH for B data input

DO PORT OUTPUT

Y	OED	DO
х	н	Z
L	L	н
н	L	L

*Since the EDC Data Bus Buffers are four-bit wide devices, controls can be paired to device inputs to provide byte level controls (for any data width).



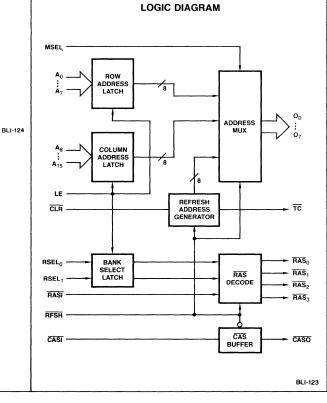
- See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
- 4. 96 hour burn-in.

Am2964B Dynamic Memory Controller

DISTINCTIVE CHARACTERISTICS

- Dynamic Memory Controller for 16K and 64K MOS dynamic RAMs
- 8-Bit Refresh Counter for refresh address generation, has clear input and terminal count output
- Refresh Counter terminal count selectable at 256 or 128
- Latch input RAS Decoder provides 4 RAS outputs, all active during refresh
- Dual 8-Bit Address Latches plus separate RAS Decoder Latches
- Grouping functions on a common chip minimizes speed differential or skew between address, RAS and CAS outputs
- 3-Port, 8-Bit Address Multiplexer with Schottky speed
 Burst mode, distributed refresh or transparent refresh mode determined by user
- Non-inverting address, RAS and CAS paths
- 100% MIL-STD-883 reliability assurance testing

FUNCTIONAL DESCRIPTION


The Am2964B Dynamic Memory Controller (DMC) replaces a dozen MSI devices by grouping several unique functions. Two 8-bit latches capture and hold the memory address. These latches and a clearable, 8-bit refresh counter feed into an 8-bit, 3-input, Schottky speed MUX, for output to the dynamic RAM address lines.

The same silicon chip also includes a special $\overline{\text{RAS}}$ decoder and $\overline{\text{CAS}}$ buffer. Placing these functions on the same chip minimizes the time skew between output functions which would otherwise be separate MSI chips, and therefore, allows a faster memory cycle time by the amount of skew eliminated.

The $\overline{\text{RAS}}$ Decoder allows upper addresses to select <u>one-of-four</u> banks of RAM by determining which bank receives a $\overline{\text{RAS}}$ input. During refresh ($\overline{\text{RFSH}}$ = LOW) the decoder mode is changed to four-of-four and all banks of memory receive a $\overline{\text{RAS}}$ input for refresh in response to a $\overline{\text{RAS}}$ active LOW input. $\overline{\text{CAS}}$ is inhibited during refresh.

Burst mode refresh is accomplished by holding RFSH LOW and toggling RASI.

 A_{15} is a dual function input which controls the refresh counter's range. For 64K RAMs it is an address input. For 16K RAMs it can be pulled to +12V through $1K\Omega$ to terminate the refresh count at 128 instead of 256.

Am2964B

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential	-0.5 to +7.0V
DC Voltage Applied to Outputs for High Output State	+0.5V to +V _{CC} MAX
DC Input Voltage	-0.5 to 5.5V
DC Output Current, Into Outputs	30mA
DC Input Current	-30 to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise noted)

	$a_{\rm c} = 0 \text{ to } + 70^{\circ}\text{C}$ $c_{\rm c} = -55 \text{ to } + 125^{\circ}\text{C}$	$V_{\rm CC} = 5.0V \pm 10\%$ (MIL)	MIN = 4.5	50V MAX = 5	5.50V	
	-						
arameters	Description	Test Conc	litions (Note 1)	Min	TYP (Note 2)	Max	Units
		V _{CC} = MIN	TC	2.5			Volts
VOH	Output HIGH Voltage	V _{IN} = V _{IH} or V _{IL} I _{OH} = -1mA	Others	3.0			Volts
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -15mA$	All outputs except TC	2.0			Volts
Vol	Output LOW Voltage	V _{CC} = MIN	$\frac{\text{All outputs except}}{\text{TC}, I_{OL} = 16\text{mA}}$			0.5	Volts
·0L		$V_{IN} = V_{IH} \text{ or } V_{IL}$	\overline{TC} , $I_{OL} = 8mA$			0.5	Volt
VIH	Input HIGH level	Guaranteed input lo voltage for all inputs		2.0			Volts
VIL	Input LOW level	Guaranteed input lo voltage for all inputs				0.8	Volts
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -$	18mA			-1.5	Volts
			RASI			-3.2	mA
կլ	Input LOW Current	$V_{CC} = MAX$ $V_{IN} = 0.4V$	CASI, MSEL, RFSH			-1.6	mA
			A ₀ – A ₁₅ , CLR RSEL _{0,1} , LE			-0.4	mA
		$V_{CC} = MAX$ $V_{IN} = 2.7V$	RASI			100	μA
ιн	Input HIGH Current		CASI, MSEL, RFSH			50	μA
'IN			A ₀ -A ₁₅ , CLR RSEL _{0,1} , LE			20	μΑ
		V _{CC} = MAX	RASI			2.0	mA
ų	Input HIGH Current	V _{IN} – 5.5V	CASI, MSEL, RFSH			1.0	mA
		$V_{CC} = MAX$ $V_{IN} = 7.0V$	A ₀ -A ₁₅ , CLR RSEL _{0,1} , LE			0.1	mA
ISC	Output Short Circuit Current	V _{CC} = MAX (Note 3)	-40		-100	mA
		25°C, 5V			122		mA
		0 to 70°C				173	mA
lcc	Power Supply Current	70°C	COM'L			165	mA
	(Note 4)	-55 to +125°C	MIL			165	mA
		+125°C				150	mA
lт	A ₁₅ Enable Current	A15 connected to +	12V through 1K Ω ± 10%			5	mA

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. I_{CC} is worst case when the Address inputs are latched HIGH, the refresh counter is at terminal count (255), RASI and CASI are HIGH and all other inputs are LOW.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE FOR $C_{L} = 50 \text{ pF}$

(Notes 5, 6)

				со	M'L	м	IL.		
			$\begin{array}{l} T_{A} \ = \ +25^{\circ}C \\ V_{CC} \ = \ 5.0V \end{array}$	$\begin{array}{l} T_{A} = O^{\circ}C \\ V_{CC} = 5 \end{array}$	to +70°C .0V ± 5%	$T_{C} = -55^{\circ}C$ $V_{CC} = 5.0$	C to +125°C OV ± 10%		Test
Para	meter	Description	Тур.	Min.	Max.	Min.	Max.	Units	Conditions
1	tPD	A _i to O _i Delay	14		19		23	ns	
2	t _{PHL}	\overrightarrow{RASI} to $\overrightarrow{RAS_i}$ (\overrightarrow{RFSH} = H)	14		20		23	ns	
3	^t PHL	\overrightarrow{RASI} to $\overrightarrow{RAS_i}$ (\overrightarrow{RFSH} = L)	14		20		23	ns	
4	t _{PD}	MSEL to Oi	17	9		9		ns	
5	tPD	MSEL to O _i	17		21		25	ns	
6	t _{PHL}	\overrightarrow{CASI} to \overrightarrow{CASO} (\overrightarrow{RFSH} = H)	12		17		19	ns	
7	^t PHL	$RSEL_i$ to $\overline{RAS_i}$ (LE = H, \overline{RASI} = L)	15		20		24	ns	
8	t _{PLH}	$\overrightarrow{RFSH} \text{ to } \overrightarrow{TC} (\overrightarrow{RASI} = L)$	30		40		50	ns	
9	^t PLH	\overrightarrow{RASI} to \overrightarrow{TC} (\overrightarrow{RFSH} = L)	25		35		40	ns	
10	^t PW	$\overline{RASI} = L (\overline{RFSH} = L)$	10	50		50		ns	
11	^t PW	$\overrightarrow{RASI} = H (\overrightarrow{RFSH} = L)$	10	50		50		ns	
12	tpD	\overrightarrow{RFSH} to O _i (\overrightarrow{RASI} = X)	17		21		25	ns	
13	t _{PHL}	\overrightarrow{RFSH} to \overrightarrow{RAS}_i ($\overrightarrow{RASI} = L$)	19		26		29	ns	$C_L = 50 pF$
14	^t PW	$\overline{CLR} = L$	10	30		35		ns	
15	^t PLH	$\overline{\text{RFSH}} \text{ to } \overline{\text{CASO}} $ $(\overline{\text{RASI}} = \text{L } \overline{\text{CASI}} = \text{L}, \text{ Note } 7)$	16		21		25	ns	
16	t _{PD}	LE to O _i	25		35		40	ns	
17	^t PHL	LE to RAS _i	30		40		45	ns	
18	^t PLH	CLR to TC	35		45		56	ns	
19	t _{PLH}	\overline{CLR} to O _i ($\overline{RFSH} = L$)	31		44		54	ns	
20	ts	A _i to LE Set-up Time	0	5		5		ns	
21	ţН	Ai to LE Hold Time	5	12		15		ns	
22	ts	RSEL _i to LE Set-up Time	0	5		5		ns	
23	tн	RSEL _i to LE Hold Time	10	17		25		ns	
24	ts	CLR Recovery Time	5	12		15		ns	
25	^t SKEW	O_i to \overline{RAS}_i ($\overline{RFSH} = H$, Note 8)	2		5		6	ns	
26	^t SKEW	O _i to CASO (Note 8)	4		6		8	ns	
27	^t SKEW	O_i to \overline{RAS}_i ($\overline{RFSH} = L$, Note 9)	6		8		10	ns	
28	^t SKEW	O_i to \overline{RAS}_i (MSEL = \overline{L} , Note 10)	1		5		5	ns	

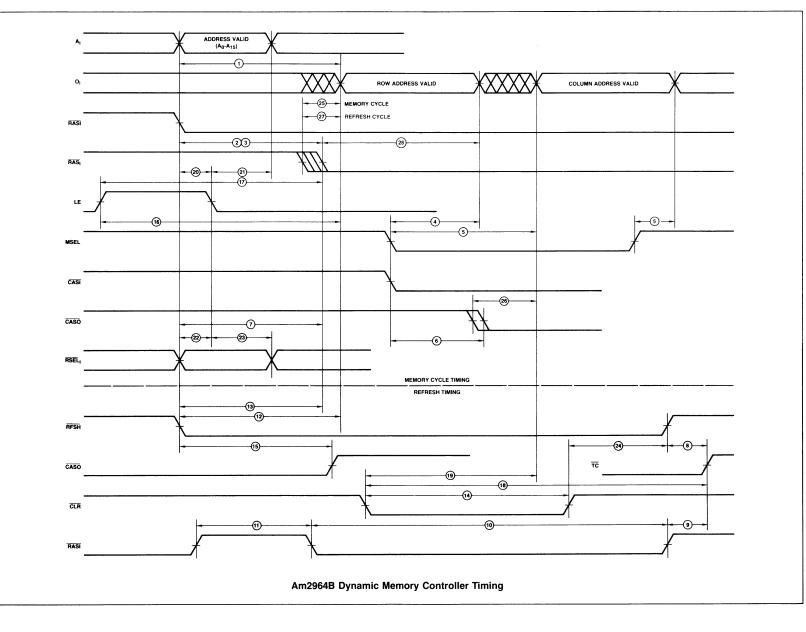
Notes: 5. Minimum spec limits for tpw, ts and tH are minimum system operating requirements. Limits for tSKEW and tPD are guaranteed test limits for the device.

6. All AC parameters are specified at the 1.5V level.

7. RFSH inhibits CASO during refresh. Specification is for CASO inhibit time.

8. Oi to RAS; (RFSH = HIGH) skew is guaranteed maximum difference between fastest RASI to RAS; delay and slowest Ai to O; delay within a single device. Oi to CASO skew is maximum difference between fastest CASI to CASO delay and slowest MSEL to Oi delay within a single device. See application section entitled Memory Cycle Timing for correlation to System Timing requirements.

9. Oi to RASi (RFSH = LOW) skew is guaranteed maximum difference between fastest RASI to RASi delay and slowest RFSH to Oi delay within a single device. See application section on Refresh Timing for correlation to system refresh timing requirements.


10. Oi to RAS; (MSEL = 7:) skew is guaranteed maximum difference between fastest MSEL 7: to Oi delay and slowest RASI to RAS; delay within a single device.

Am2964B

SWITCHING CHARACTERISTICS OVER OPERATING RANGE FOR $C_{L} = 150 \text{pF}$

(Notes 5, 6)

				со	M'L	M	IL		
			$\begin{array}{l} T_{A}=+25^{\circ}C\\ V_{CC}=5.0V \end{array}$	$T_{A} = O^{\circ}C$ $V_{CC} = 5.$		$T_{C} = -55^{\circ}C$ $V_{CC} = 5.0$	C to +125°C 0V ± 10%		Test
Para	meter	Description	Тур.	Min.	Max.	Min.	Max.	Units	Conditions
1	t _{PD}	A _i to O _i Delay	20		25		30	ns	
2	t _{PHL}	\overrightarrow{RASI} to \overrightarrow{RAS}_i ($\overrightarrow{RFSH} = H$)	18		24		27	ns	
3	^t PHL	\overrightarrow{RASI} to \overrightarrow{RAS}_i (\overrightarrow{RFSH} = L)	18		24		27	ns	
4	t _{PD}	MSEL to O _i	23	12		12	n dan	ns	
5	tPD	MSEL to O _i	23		27		31	ns	
6	^t PHL	\overrightarrow{CASI} to \overrightarrow{CASO} (\overrightarrow{RFSH} = H)	17	,	24		26	ns	
7	t _{PHL}	RSEL _i to \overrightarrow{RAS}_i (LE = H, \overrightarrow{RASI} = L)	19		27		30	ns	
8	^t PLH	$\overrightarrow{RFSH} \text{ to } \overrightarrow{TC} (\overrightarrow{RASI} = L)$	34		45		55	ns	
9	^t PLH	\overrightarrow{RASI} to \overrightarrow{TC} (\overrightarrow{RFSH} = L)	32		45		55	ns	
10	^t PW	\overrightarrow{RASI} = L (\overrightarrow{RFSH} = L)	10	50		50		ns	
11	t _{PW}	$\overrightarrow{RASI} = H (\overrightarrow{RFSH} = L)$	10	50		50		ns	
12	t _{PD}	\overrightarrow{RFSH} to O_i (\overrightarrow{RASI} = X)	21		27		30	ns	
13	^t PHL	\overrightarrow{RFSH} to \overrightarrow{RAS}_i (\overrightarrow{RASI} = L)	25		33		36	ns	$C_L = 150 pF$
14	^t PW	$\overline{\text{CLR}} = L$	0	30		35		ns	
15	^t PLH	$\overrightarrow{RFSH} \text{ to } \overrightarrow{CASO}$ $(\overrightarrow{RASI} = L \ \overrightarrow{CASI} = L, \text{ Note 7})$	21		27		31	ns	
16	tPD	LE to O _i	30		40		50	ns	
17	^t PHL	LE to RAS _i	34		45		54	ns	
18	^t PLH	CLR to TC	39		55		60	ns	
19	^t PLH	\overline{CLR} to O _i (RFSH = L)	38		50		62	ns	
20	t _S	A _i to LE Set-up Time	0	5		5		ns	
21	tн	Ai to LE Hold Time	5	12		12		ns	
22	ts	RSEL _i to LE Set-up Time	0	5		5		ns	
23	t _H	RSEL _i to LE Hold Time	10	17		25		ns	
24	t _S	CLR Recovery Time	5	12		15		ns	
25	^t SKEW	O_i to \overline{RAS}_i ($\overline{RFSH} = H$, Note 8)	3		6		7	ns	
26	^t SKEW	O _i to CASO (Note 8)	4		7		8	ns	
27	^t SKEW	O_i to \overline{RAS}_i (RFSH = L, Note 9)	6		9		10	ns	
28	^t SKEW	O_i to \overline{RAS}_i ($\overline{MSEL} = \overline{L}$, Note 10)	1		5		5	ns	

57

Am2964B

DEFINITIO	N OF FUNCTIONAL TERMS		qu
A ₀ -A ₇	The low order Address inputs are used to latch eight Row Address inputs for the RAM. These inputs drive the outputs 0 ₀ -0 ₇ when MSEL is HIGH.	CLR	se ac by Th
A ₈ -A ₁₅	The high order Address inputs are used to latch eight Column Address inputs for the RAM. These inputs drive the outputs 0_0-0_7 when MSEL is LOW.	LE	inp (re Th
A ₁₅	A ₁₅ is a dual input. With normal TTL level inputs A ₁₅ acts as address input A ₁₅ for 64K RAMs. If A ₁₅ is pulled up to +12V through a 1K Ω resistor, the terminal count output, TC, will go LOW every 128 counts (for 16K RAMs) instead of every 256 counts.		inp an pa LE ho
0 ₀ -0 ₇	The RAM address outputs. The eight-bit width is designed for dynamic RAMs up to 64K.	RSEL ₀ and RSEL ₁	Th the de
MSEL	The Multiplexer-SELect input determines whether low order or high order address inputs appear at the multiplexer outputs 0_0 - 0_7 . When MSEL is HIGH the low order address latches (A ₀ -A ₇) are connected to the outputs. When MSEL is LOW the high order address latches are connected to the outputs.	RASI	of or Th <u>me</u> RA res ref
RFSH	The Refresh control input. When active LOW the RFSH input switches the address output multi- plexer to output the inverted contents of the 8-bit refresh counter. RFSH LOW also inhibits the CAS buffer and changes the mode of the RAS decoder from one-of-four to four-of-four so that all four RAS decoder outputs, RAS ₀ , RAS ₁ , RAS ₂ and RAS ₃ , go LOW in response to a LOW input at RASI. This	$\overline{\text{RAS}}_0, \overline{\text{RAS}}_1$ $\overline{\text{RAS}}_2, \overline{\text{RAS}}_3$	
	action refreshes one row address in each of the four RAS decoded memory banks. The refresh counter is advanced at the end of each refresh cycle by the LOW-to-HIGH transition of RFSH or RASI (whichever occurs first). In burst mode refresh, RFSH may be held LOW and refresh accomplished by toggling RASI.		Th at C/ = Th LC
TC	The Terminal Count output A LOW output at \overline{TC}		int

TC The Terminal Count output. A LOW output at TC indicates that the refresh counter has been se-

quenced through either 128 or 256 refresh addresses depending on A_{15} . The TC output remains active LOW until the refresh counter is advanced by the rising edge of RASI or RFSH.

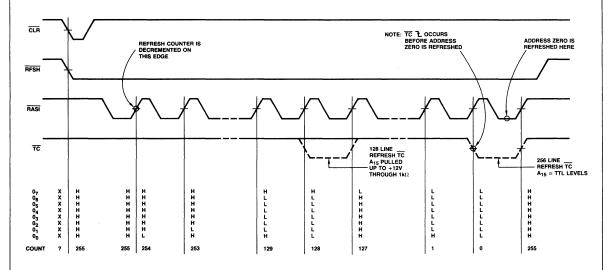
- LR The refresh counter Clear input. An active LOW input at CLR resets the refresh counter to all LOW (refresh address output to all HIGH).
- LE The address latch enable input. An active HIGH input at LE causes the two 8-bit address latches and the 2-bit RAS Select input latch to go transparent, accepting new input data. A LOW input on LE latches the input data which meets set-up and hold time requirements.
- RSEL₀ and The RAS decoder Select inputs. Data (latched) at these inputs (normally higher order addresses) is decoded by the RAS Decoder to "RAS Select" one of four banks of memory with RAS₀, RAS₁, RAS₂ or RAS₃.
- TASIThe Row Address Strobe Input. During normal
memory cycles the selected RAS Decoder output
RAS0, RAS1, RAS2 or RAS3 will go active LOW in
response to an active LOW input at RASI. During
refresh (RFSH = LOW), all RAS outputs go LOW
in response to RASI = LOW.
- RAS₀, RAS₁ Row Address Strobe outputs (RAS_i). Each pro-
- **RAS₂, RAS₃** vides a Row Address Strobe for one of the four banks of memory. Each will go active LOW only when <u>selected</u> by RSEL₀ and <u>RSEL₁</u> and only when <u>RASI</u> goes active L<u>OW</u>. All <u>RAS₀₋₃</u> outputs go active low in response RASI when RFSH goes LOW.
- The Column Address Strobe. An active LOW input at CASI will result in an active LOW output at CASO, unless a refresh cycle is in progress (RFSH = LOW).
- CASOThe Column Address Strobe output. The active
LOW CASO output strobes the Column Address
into the dynamic RAM. CASO is inhibited during
refresh (RFSH = LOW).

RFSH	RASI	RSEL1	RSEL ₀	RAS ₀	RAS ₁	RAS ₂	RAS ₃
L	н	X	х	н	н	н	н
L	L	х	Х	L	L.	L	L
н	н	x	X	н	н	н	Н
н	L	L	L	L	н	н	Н
Н., .	L	L	н	н	L	Н	, H
н	L	н	L	н	н	L	Н
н	L	н	н	н	Н	Н	L

RAS OUTPUT FUNCTION TABLE

CASO FUNCTION TABLE

RFSH	CASI	CASO
н	L	L
н	н	н
L	X	н


ADDRESS OUTPUT FUNCTION TABLE

MSEL	RFSH	0 ₀ -0 ₇
H .	н	A ₀ -A ₇
L	Н	A8-A15
Х	L	Refresh Address

A15	CLR	RFSH	RASI	TC	REFRESH COUNT	FUNCTION	
х	L	X	X	Х	FFH	Clear Counter	
x	н	٦_	x	х	NC	Output Refresh Address No Change for Counter	
x	н	1	L	x	Count – 1	Return to Memory Cycle Mode and Decrement Counter	
x	н	L	7_	x	NC	Output all RAS _i to RAM No Change for Counter	
x	Н	L		x	Count – 1	Return RAS _i to HIGH and Decrement Counter	
L or H	н	x	x	L	00 _H	Terminal Count for 256 Line Refresh	
+ 12V*	н	x	x	L	00 _H and 80 _H	Terminal Count for 128 Line Refresh	

REFRESH ADDRESS COUNTER FUNCTION TABLE

BURST REFRESH TIMING

The timing shown assumes that burst mode applications may power-down the Am2964B with the RAM. Therefore the counter is cleared prior to executing the refresh sequence.

APPLICATION

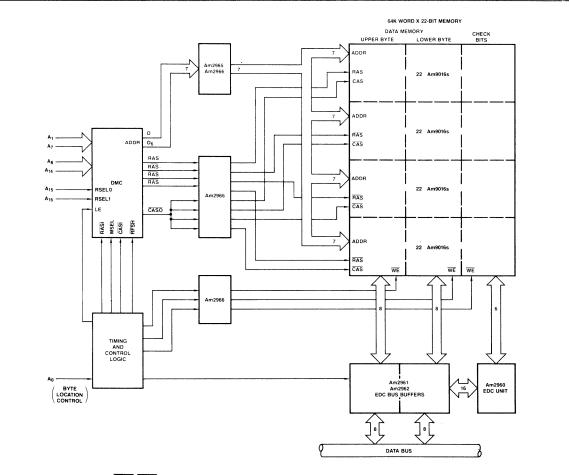
ARCHITECTURE

The Dynamic Memory Controller (DMC) provides address multiplexing, refresh address generation and $\overline{RAS}/\overline{CAS}$ control for the MOS dynamic RAM memories of any data width. The eight bit address path is designed for 64K RAMs and can be used with 16K RAMs.

Sixteen address input latches and two $\overline{\text{RAS}}$ Select latches (for higher order addresses) allow the DMC to control up to 256K words of memory (with 64K RAMs) by using the internal $\overline{\text{RAS}}$ decoder to select from one-of-four banks of RAMs.

SPEED WITH MINIMUM SKEW

The DMC provides Schottky speed in all of the critical paths. In addition, time skew between the Address, $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ paths is minimized (and specified) by placing these functions on the same chip. The inclusion of the $\overline{\text{CAS}}$ buffer allows matching of its propagation delay, plus provides the $\overline{\text{CAS}}$ inhibit function during $\overline{\text{RAS}}$ – only refresh.


INPUT LATCHES

The eighteen input latches are transparent when LE is HIGH and latch the input data meeting set-up and hold time requirements when LE goes LOW. In systems with separate address and data buses, LE may be permanently enabled HIGH.

REFRESH COUNTER

The 8-bit refresh counter provides both 128 and 256 line refresh capability. Refresh control is external to allow maximum user flexibility. Transparent (hidden), burst, synchronous or asynchronous refresh modes are all possible.

The refresh counter is advanced at the LOW-to-HIGH transition of RFSH (or RASI). This assures a stable counter output for the next refresh cycle. The counter will continue to cycle through 256 addresses unless reset to zero by CLR. This actually causes all outputs to go HIGH since the output MUX is inverting. (Address inputs to outputs are non-inverting since both the input latches and output MUX are inverting).

*Address and RAS/CAS drivers each drive 22 RAM inputs at each output. Timing skew is minimized by using one device for address lines and one device for RAS/CAS, spreading the CAS loading over four drivers to equalize the capacitive load on each driver.

Figure 1. Dynamic Memory Control with Error Detection and Correction

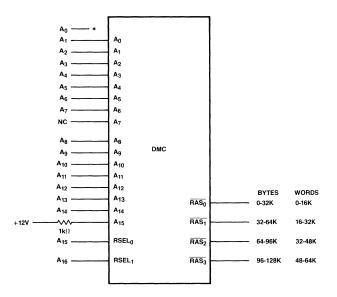
REFRESH TERMINAL COUNT

The refresh counter also provides a Terminal Count output for burst mode refresh applications. \overline{TC} normally occurs at count 255 (07 to 07 all LOW when \overline{RFSH} is LOW). \overline{TC} can be made to occur at count 127 for 128 line burst mode refresh by pulling A_{15} up to + 12V through a $1K\Omega\pm10\%$ resistor. The counter actually cycles through 256 with \overline{TC} determined by A_{15} . Otherwise A_{15} functions as an address input when driven at normal TTL levels.

THREE INPUT 8-BIT ADDRESS MULTIPLEXER

The address MUX is 8-bits wide (for 64K RAMs) and has three data sources, the lower address input latch (A₀ to A₇), the upper address input latch (A₈ to A₁₅) and the internal refresh counter. The lower address latch is selected when MSEL is HIGH. This is normally the Row address. The upper address latch is selected when MSEL is LOW. This is normally the Column address. The third source – the refresh counter is selected when RFSH is LOW and overrides MSEL.

When RFSH goes LOW, the MUX selects the refresh counter address and CASO is inhibited. Also, the RAS Decoder function


is changed from one-of-four to four-of-four so all \overline{RAS} outputs \overline{RAS}_0 - \overline{RAS}_3 go LOW to refresh all banks of memory when \overline{RAS}_3 goes LOW. When RFSH is HIGH only one \overline{RAS} output goes low, determined by the \overline{RAS} Select inputs, $RSEL_0$ and $RSEL_1$. In either case the RAS Decoder output timing is controlled by \overline{RAS}_0 - \overline{RAS}_3 go LOW. This assures meeting Row address Set-up time requirement of the RAM (t_{ASB}).

MAXIMUM PERFORMANCE SYSTEM

The typical organization of a maximum performance 16-bit system including Error Detection and Correction is shown in Figure 1. Delay lines provide the most accurate timing and are recommended for RAS/MSEL/CAS timing in this type of system.

CONTROLLING 16K RAMS OR SMALLER SYSTEMS

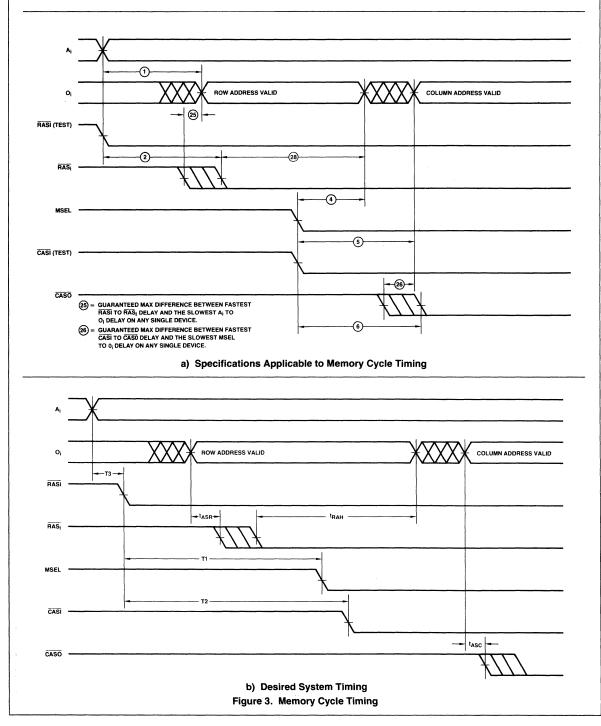
16K RAMs require seven address inputs and 128 line refresh. Also, A_0 is often used to designate upper or lower byte trans actions in 16-bit systems. These modifications are shown in Figure 2.

*A0 Controls Byte Select Logic

Figure 2. Word Organized Memory Using 16K RAMs

MEMORY CYCLE TIMING

The relationship between DMC specifications and system timing requirements are shown in Figure 3. T₁, T₂ and T₃ represent the minimum timing requirements at the DMC inputs to guarantee that RAM timing requirements are met and that maximum system performance is achieved.

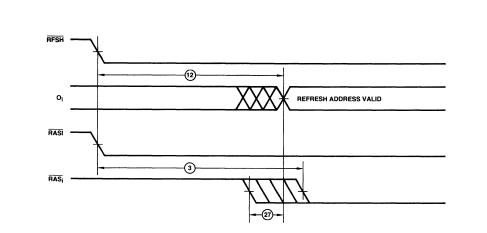

The minimum requirement for T_1 , T_2 , and T_3 are as follows:

 $T_1MIN = t_{RAH} + t_{28}$

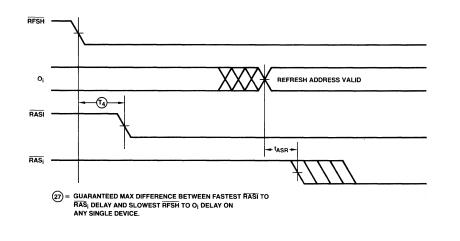
 $T_2MIN = T_1 + t_{26} + t_{ASC}$

 $T_3MIN = t_{ASR} + t_{25}$

See RAM data sheet for applicable values for $t_{\text{RAH},}$ t_{ASC} and t_{ASR}

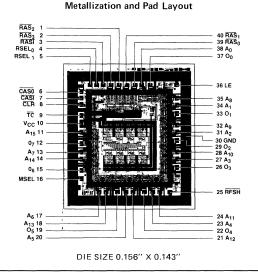


REFRESH CYCLE TIMING


The timing relationships for refresh are shown in Figure 4.

T₄ minimum is calculated as follows:

$$T_4 = t_{ASR} + t_{27}$$



a) Test Waveforms

b) Desired System Timing

Figure 4. Refresh Timing

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2964B Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
AM2964BPC	P-40	С	C-1
AM2964BDC	D-40	С	C-1
AM2964BDC-B	D-40	С	B-2 (Note 4)
AM2964BDM	D-40	м	C-3
AM2964BDM-B	D-40	м	B-3
AM2964BFM	F-42	М	C-3
AM2964BFM-B	F-42	М	B-3
AM2964BXC AM2964BXM	Dice Dice	C M	Visual inspection to MIL-STD-883 Method 2010B

- Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.

 - 2. C = 0°C to +70°C, V_{CC} = 4.75V to 5.25V, M = -55°C to +125°C, V_{CC} = 4.50V to 5.50V. 3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

4. 96 hour burn-in.

This device is also characterized as: AmZ8165 AmZ8166 Am2965 • Am2966 Octal Dynamic Memory Drivers with Three-State Outputs

DISTINCTIVE CHARACTERISTICS

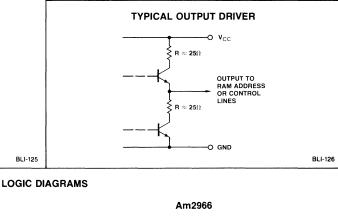
- Controlled rise and fall characteristics Internal resistors provide symmetrical drive to HIGH and LOW states, eliminating need for external series resistor.
- Output swings designed to drive 16K and 64K RAMs V_{OH} guaranteed at V_{CC} –1.15V. Undershoot going LOW guaranteed at less than 0.5V.
- Large capacitive drive capability 35mA min source or sink current at 2.0V. Propagation delays specified for 50pF and 500pF loads.
- Pin-compatible with 'S240 and 'S244 Non-inverting Am2966 replaces 74S244; inverting Am2965 replaces 74S240. Faster than 'S240/244 under equivalent load.
- No-glitch outputs

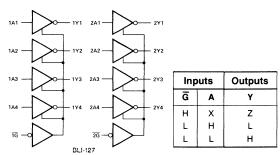
Outputs forced into OFF state during power up and down. No glitch coming out of three-state.

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

Am2965


FUNCTIONAL DESCRIPTION


The Am2965 and Am2966 are designed and specified to drive the capacitive input characteristics of the address and control lines of MOS dynamic RAMs. The unique design of the lower output driver includes a collector resistor to control undershoot on the HIGH-to-LOW transition. The upper output driver pulls up to V_{CC} – 1.15V to be compatible with MOS memory and is designed to have a rise time symmetrical with the lower output's controlled fall time. This allows optimization of Dynamic RAM performance.

The Am2965 and Am2966 are pin-compatible with the popular 'S240 and 'S244 with identical 3-state output enable controls. The Am2965 has inverting drivers and the Am2966 has non-inverting drivers.

The inclusion of an internal resistor in the lower output driver eliminates the requirement for an external series resistor, therefore reducing package count and the board area required. The internal resistor controls the output fall and undershoot without slowing the output rise.

These devices are designed for use with the Am2964 Dynamic Memory Controller where large dynamic memories with highly capacitive input lines require additional buffering. Driving eight address lines or four RAS and four CAS lines with drivers on the same silicon chip also provides a significant performance advantage by minimizing skew between drivers. Each device has specified skew between drivers to improve the memory access worst case timing over the min and max t_{PD} difference of unspecified devices.

172 2A2 2Y2 2Y3 Inputs Outputs G Α Y 274 z н Х L L L 16 2G L н н BLI-128

Am2965 • Am2966

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max
DC Input Voltage	-0.5 to +7.0V
DC Output Current, into Outputs	200mA
DC Input Current	-30 to +5.0mA

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

Am2965/66XC, DC, PC	$T_A = 0$ to 70°C	$V_{CC} = 5.0V \pm 10\%$	(MIN = 4.50V)	MAX = 5.50V)
Am2965/66XM, DM	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$	$V_{CC} = 5.0V \pm 10\%$	(MIN = 4.50V	MAX = 5.50V)
Am2965/66FM	$T_{C} = -55 \text{ to } + 125^{\circ}C$	$V_{CC} = 5.0V \pm 10\%$	(MIN = 4.50V)	MAX = 5.50V)

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Descrip	tion	Test Conditions (Note 1)		Min	Typ (Note 2)	Max	Units
V _{OH}	Output High Volt	age	$V_{CC} = MIN$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -1mA	V _{CC} -1.15	V _{CC} -0.7V		Volts
VOL	Output LOW Vol	tage	V _{CC} = MIN	I _{OL} = 1mA			0.5	Volts
•0L			$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 12mA			0.8	Volto
V _{IH}	Input HIGH Leve	ł	Guaranteed input lo for all inputs	gical HIGH voltage	2.0			Volts
V _{IL}	Input LOW Leve	l	Guaranteed input lo for all inputs	gical LOW voltage			0.8	Volts
Vi	Input Clamp Volt	age	$V_{CC} = MIN, I_{IN} = $	-18mA			-1.2	Volts
կլ	Input LOW Curre	ont	V _{CC} = MAX, V _{IN} =	DATA			-200	
4L			1 <u>G, 2</u> <u>G</u>				-400	μΑ
Ιн	Input HIGH Curr	ent	$V_{CC} = MAX, V_{IN} =$			20	μA	
4	Input HIGH Curr	ent	$V_{CC} = MAX, V_{IN} = 7.0V$				0.1	mA
lozн	Off-State Current	1	$V_0 = 2.7V$				100	μA
lozl	Off-State Current	1	$V_0 = 0.4V$				-200	μA
lol	Output Sink Curr	rent	V _{OL} = 2.0V		50			mA
юн	Output Source C	urrent	V _{OH} = 2.0V		-35			mA
I _{SC}	Output Short Cire (Note 3)	cuit Current	V _{CC} = MAX		−60 (see I _{OH})		-200	mA
			All Outputs HIGH			24	50	
		Am2965	All Outputs LOW	V _{CC} = MAX Outputs Open		86	125]
lcc	Supply Current		All Outputs Hi-Z			86	125	mA
100	Cupply Cullent		All Outputs HIGH			53	75]
		Am2966	All Outputs LOW	V _{CC} = MAX Outputs Open		92	130	1
			All Outputs Hi-Z			116	150	

.....

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

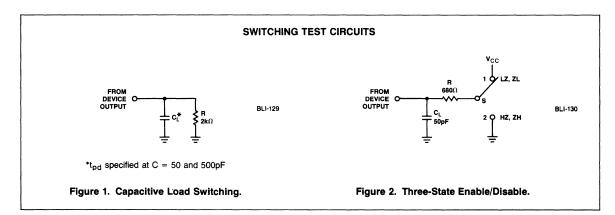
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Am2965 • Am2966 SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

Parameters	Description	Test Conditio	Min	Тур	Max	Units	
			C _L = 0pF		6	(Note 4)	
t _{PLH}	Propagation Delay Time from LOW-to-HIGH Output		$C_L = 50 pF$	6	9	15	ns
		Figure 1 Test Circuit	$C_L = 500 pF$	18	22	30	
^t PHL		Figure 3 Voltage Levels and Waveforms	$C_L = 0pF$		4	(Note 4)	ns
	Propagation Delay Time from HIGH-to-LOW Output		$C_L = 50pF$	5	7	15	
			$C_L = 500 pF$	18	22	30	
t _{PLZ}	Output Disable Time from	Figures 2 and 4, S = 1		11	20		
^t PHZ	LOW, HIGH	Figures 2 and 4, $S = 2$		6.5	12	ns	
tPZL	Output Enable Time from	Figures 2 and 4, S = 1			12	20	
t _{PZH}	LOW, HIGH	iH Figures 2 and 4, S = 2			12	20	ns
^t skew	Output-to-Output Skew	Figures 1 and 3, $C_L = 50$		±0.5	±3.0 (Note 5)	ns	
VONP	Output Voltage Undershoot	Figures 1 and 3, $C_L = 50$	pF		0	-0.5	Volts

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Note 6)


				CC	DM'L	MIL (Note 7)	
					to 70°C 5.0V <u>+10℃</u>	~	i to +125℃ .0V ±10%	
Parameters	Description	Test Conditions		Min	Max	Min	Max	Units
Propagation Delay Time	Figures 1 and 2	$C_L = 50pF$	4	17	4	20		
^t PLH	LOW-to-HIGH Output	Figures 1 and 3	$C_L = 500 pF$	18	35	18	40	ns
	Propagation Delay Time	Figures 1 and 3	$C_L = 50pF$	4	17	4	20	ns
^t PHL	HIGH-to-LOW Output		$C_L = 500 pF$	18	35	18	40	
t _{PLZ}	Output Disable Time from	Figures 2 and 4	S = 1		24		24	
t _{PHZ}	LOW, HIGH		S = 2		16		16	ns
tPZL	Output Enable Time from		S = 1		28		28	ns
t _{PZH}	LOW, HIGH	Figures 2 and 4	S = 2		28		28	ns
VONP	Output Voltage Undershoot	Figures 1 and 3,	C _L = 50pF		-0.5		-0.5	Volts

Notes: 4. Typical time shown for reference only - not tested.

5. Time Skew specification is guaranteed by design but not tested.

6. AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

7. $T_C = -55$ to $+125^{\circ}C$ for Flatpak versions.

TYPICAL SWITCHING CHARACTERISTICS **VOLTAGE WAVEFORMS** 3.0V ENABLE 1.5V INPUT ٥V Am2965 t_{PHZ} t_{PZH} 3.0V INPUT Vон 1.5V 1.5V 0.5V Am2966 2.7 tPHL t_{PI H} ٥٧ t_{PZL} tPLZ Vcc 2.7 VONF VOL 0.8V 0.5V ٥v VOL BLI-131 $t_{r} = t_{f} = 2.5 ns$ BLI-132 $t_r = t_f = 2.5 ns$ f = 2.5 MHz= 1MHz t_{pw} = 200ns t_{pw} = 800ns

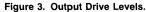
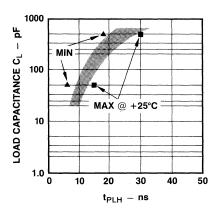



Figure 4. Three-State Control Levels.

The RAM Driver symmetrical output design offers significant improvement over a standard Schottky output by providing a balanced drive output impedance ($\approx 25\Omega$ both HIGH and LOW), and by pulling up to MOS V_{OH} levels (V_{CC} - 1.5V). External resistors, not required with the RAM Driver, protect standard Schottky drivers from error causing undershoot but also slow the output rise by adding to the internal R.

The RAM Driver is optimized to drive LOW at maximum speed based on safe undershoot control and to drive HIGH with a symmetrical speed characteristic. This is an optimum approach because the dominant RAM loading characteristic is input capacitance.

The curves shown below provide performance characteristics typical of both the inverting (Am2965) and non-inverting (Am2966) RAM Drivers.

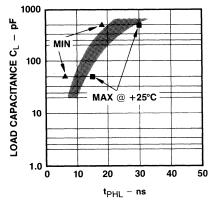
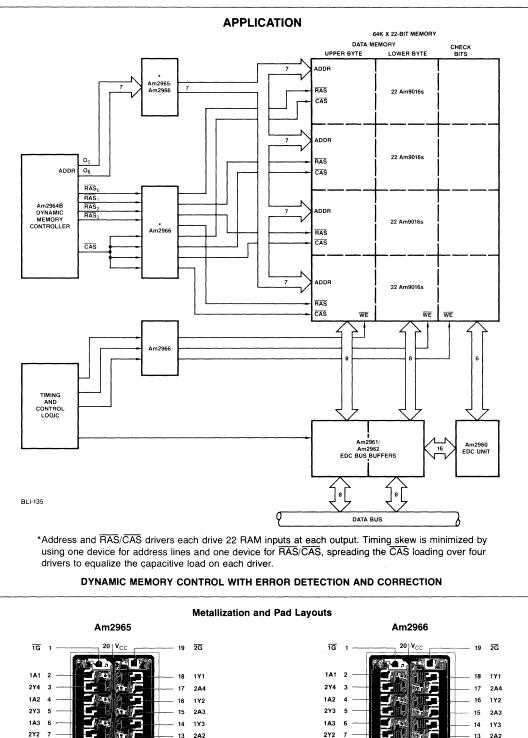


Figure 6. t_{PHL} for V_{OL} = 0.8 Volts vs. C_L .

The curves above depict the typical tPLH and tPHL for the RAM Driver outputs as a function of load capacitance. The minimums and maximums are shown for worst case design. The typical band is provided as a guide for intermediate capacitive loads.


BLI-133

Am2965 • Am2966

1Y4

11 2A1

10 GND DIE SIZE 0.094'' X 0.066'

1A4 8

2Y1 9

1¥4

12

11 2A1

10 GND

DIE SIZE 0.094" X 0.060"

1**A**4

2Y1 9

Am2965 • Am2966

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am2965 Order Number	Am2966 Order Number	Package Type	Temperature Range	Screening Level
AM2965PC	AM2966PC	P-20	C	C-1
AM2965DC	AM2966DC	D-20	С	C-1
AM2965DCB	AM2966DCB	D-20	С	B-1
AM2965DM	AM2966DM	D-20	М	C-3
AM2965DMB	AM2966DMB	D-20	м	B-3
AM2965FM	AM2966FM	F-20	м	C-3
AM2965FMB	AM2966FMB	F-20	М	B-3
AM2965XC AM2965XM	AM2966XC AM2966XM	Dice Dice	C M	Visual inspection to MIL-STD-883 Method 2010B.

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flatpak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless othewise specified.

2. C = 0 to 70° C, V_{CC} = 4.50V to 5.50V, M = -55 to +125°C, V_{CC} = 4.50V to 5.50V. 3. See Appendix A for details of screening. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

Am2965 • Am2966

DYNAMIC MEMORY DRIVERS IMPROVE MEMORY PERFORMANCE

By John Mick and Roy Levy

OVERVIEW

The Am2965 and Am2966 are bipolar octal drivers for 16K and 64K dynamic RAMs. The devices offer a guaranteed maximum undershoot of -0.5V without requiring external resistors. The Am2965 and Am2966 feature a t_{PD} minimum and maximum specified at 50pF and 500pF. The V_{OH} is guaranteed at V_{CC} -1.15V minimum, and I_{OH} and I_{OL} are specified at +2.0V for minimum guarantee of charging capacitance. There are glitchfree three-state outputs during power-up and power-down as well as symmetrical, controlled rise time and fall time.

While the Am2965 and Am2966 have low-power Schottky input characteristics and are pin-compatible replacement for design using the 'S240 and 'S244 (plus external resistors), the Am2965/2966 offer improved performance. The cost of the components is also comparable to Schottky buffer/external resistor systems.

To assure product quality, the Am2965 and Am2966 are specified for COM'L and MIL-STD-883.

INTRODUCTION

In the past, memory system designers have used Schottky devices such as the Am74S240 or Am74S244 to drive the highly capacitive inputs of MOS Dynamic RAMs. However, because of the distributed inductance and/distributed capacitance associated with many dynamic RAMs on printed circuit board, resistors are usually placed in series with the Schottky TTL outputs to minimize undershoot and dampen the ringing that occurs when driving the inductive/capacitive load.

To achieve maximum performance in today's memory systems, the designer should use the Am2965 or the Am2966 to drive large arrays of MOS Dynamic RAMs. These devices increase system speed by providing high-capacity drive and optimizing the drive characteristic time constant. They provide a new system solution for solving these problems that eliminates the external resistor and guarantees the maximum undershoot will not exceed -0.5V.

The address lines on most dynamic RAMs are specified at 5pF maximum while the RAS, write enable (WE) and CAS inputs can be as high as 10pF. Thus the RAM driver's output must drive extremely high capacitive levels with good speed and without undershoot. When several dynamic RAMs are put onto a printed circuit board, the traces look inductive, so the result resembles a transmission line with distributed inductance and capacitance.

More than 0.5V of undershoot at the RAM inputs can create serious memory system problems by causing internal breakdown and loss of data in RAM chips and possibly damaging the RAM.

System designers must also maintain voltage levels at the RAM inputs. Specifications require the data lines to exceed 2.4V, and the RAS and CAS lines actually have to exceed 2.7V. Speed must then be maintained while driving all of that capacity.

THE RAM DRIVING PROBLEM

The situation can be pinpointed to an inductor/capacitance driving problem (Figure 1a). There is some inductance in series with the capacitance associated with each RAM input. In a simplified circuit, the inductance is being driven from a voltage having source impedance marked as R_S on Figure 1b. If the transition is LOW-to-HIGH, the voltage goes from LOW-to-HIGH with ringing at the HIGH state (Figure 2). Only above the 2.7V or 2.4V levels, depending upon the type of input, can a steady-state HIGH level be guaranteed on the RAM input. The rise time of the signal is a design consideration, recognizing the amount of capacitance being driven.

Conversely, when the signal drops from HIGH-to-LOW again, ringing can occur. If the ringing causes the voltage to go below ground, it is called undershoot. Figure 3a shows the signal falling to zero volts more quickly than the signal in Fig. 3b, resulting in a severe undershoot that takes longer to settle at the LOW steady state voltage. This delay time associated with the RC time constant is independent of the specification for the HIGH-to-LOW propagation delay time, t_{PHL}. It is a hidden delay that must be compensated for.

VOLTAGE SWING CONSIDERATIONS

Recognizing that some ringing will occur, the system designer must determine how quickly the signal can be stabilized within the threshold limits of 0.5V below ground and 0.8V above ground. The best way to predict what happens with overshoot and undershoot is to examine the method of driving RAMs. Typically, it is done using one of several Schottky TTL devices connected directly to the RAM. Figure 4a shows an output transistor/resistor structure of a Schottky TTL device. When Q_1 is off and Q_2 is on, the LOW source impedance is about 3 ohms. When Q_2 is off and Q_1 is on, the HIGH impedance is that of the Q_1 transistor and the short circuit R_1 . R_1 typically represents about 30-ohm source impedance, so that the source impedance HIGH and source impedance LOW represent a 10-to-1 difference with respect to each other (Figure 4b).

Other TTL devices can be driven in this way, but it is unacceptable for driving RAMs with this type of source impedance for several reasons. First, low source impedance in the LOW states causes ringing by turning on so fast that undershoot results at the RAM inputs. The impedance, however, drives well in the HIGH state. However, to solve the HIGH-to-LOW transition and undershoot problems a resistor is usually placed in series externally between the Schottky TTL gate and the RAM (Figure 4c). The resistor, of about 30 ohms, virtually eliminates undershoot by raising the source impedance in the LOW state to 33 ohms (Q₁ plus R₂).

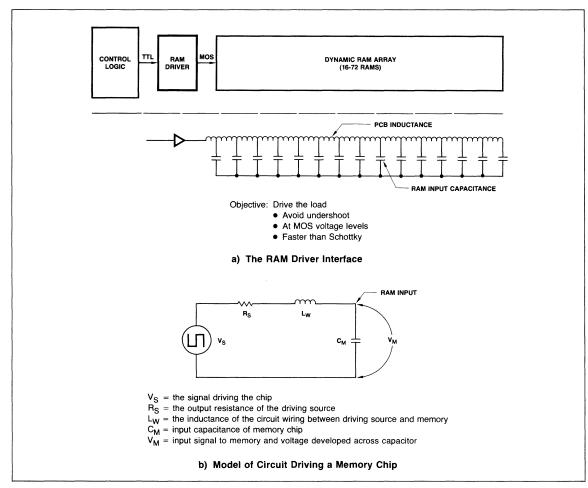


Figure 1.

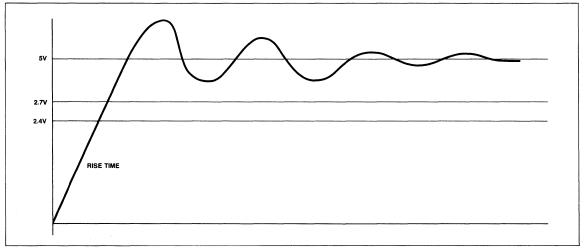


Figure 2. Overshoot in a Rising Signal

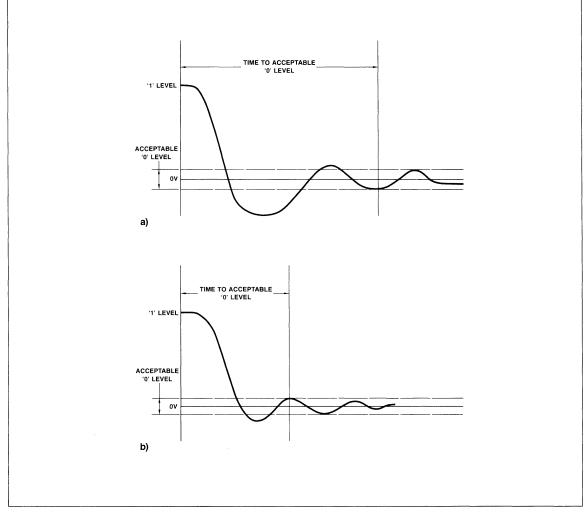


Figure 3. Undershoot in Falling Signals

When the HIGH state is turned on, the 30-ohm external resistor added to the 30-ohm terminal resistor in series totals 60 ohms of source impedance – an amount double of what is needed. While adding the external resistor in series solves undershoot, it causes the rise time (i.e., LOW-to-HIGH transition) to be slowed considerably – probably by a factor of two because resistance is doubled, so the RC time constant is doubled.

The ideal RAM driver source impedance is about 30 ohms in the HIGH state and 20 to 30 ohms in the LOW state (Figure 4d). The Am2965/2966 achieves the ideal RAM driver configuration by having approximately a 20- to 25-ohm source impedance in the LOW state and 25- to 30-ohm source impedance in the HIGH state. This ideal configuration is achieved by including a resistor (R₂) inside the Am2965/66 in series with the collector of Q₂. R₂ adds approximately a 15- to 20-ohm series resistance that has a source impedance in the LOW state of about 20 to 25 ohms and a source impedance in the HIGH state of about 25 to 30 ohms.

Remember, these figures are very nearly what was previously defined as the ideal RAM driver. What results is $R_1 + Q_1$ equivalent resistance in the HIGH state and $R_2 + Q_2$ resistance in the LOW state. The AMD family of RAM driver parts places the resistor inside and only increases the source impedance in the LOW state to achieve the ideal RAM driver configuration shown in Figures 4d and 4e. Now no resistor is needed outside the RAM driver as is typically used with today's Schottky devices.

APPLICATION

Figures 5a and 5b show typical overall memory subsystems for AmZ8000 and 2900 Family CPUs. The subsystems consist of the RAM drivers surrounding the RAMs almost directly; a dynamic memory controller; and interface, timing and controls required to drive the RAMS. There may also be an error detection and correction device as the figure shows. The objective of the memory subsystem is to drive the capacitive RAM inputs as rapidly as possible while meeting all the requirements for the undershoot and threshold levels. Figure 6 shows typical locations for RAM drivers to achieve this goal. Since a majority of the propagation delay times is an RC consideration, design flexibility allows the number of RAM input loads to be chosen for each RAM driver output. The best tradeoff includes fan-out choice and skew consideration. The skew specification for the Am2965 and Am2966 applies across the eight driver outputs but not between different devices.

The memory configuration of Figure 6 consists of an array of four rows by 16 columns of dynamic RAM chips for a total of 64 devices (Figure 7). The address drivers in Figure 6 have 16 x 4 x 5pF maximum = 320 pF (ignoring board capacitance) loading if one RAM driver drives all 64 RAM address inputs. Splitting this load with two RAM drivers reduces the capacitive load for each to 160pF and typically reduces the tpp by 6 to 8nsec.

One of the unique aspects of the design in Figure 7 is the balanced number of loads on the RAS outputs of the RAM drivers and the number on loads of the CAS outputs of the RAM drivers. Each driver drives the same number of RAMs. To balance the \overline{CAS} line, the \overline{CAS} inputs of four of the eight buffers are tied together on the RAM driver. Each RAM \overline{RAS} and \overline{CAS} input is 10pF maximum, so the \overline{RAS} and \overline{CAS} loading is 160pF at each RAM driver. The \overline{CAS} inputs of each row are spread across four outputs to match the RAS loading and are shown using the same driver to reduce skew between the \overline{RAS} and the \overline{CAS} signals. The \overline{WE} inputs are organized into upper and lower byte \overline{WE} drive for each of the four rows. This amounts to 8 inputs x 10pF maximum = 80pF loading. By fanning out a full driver to the \overline{WE} lines, four inputs are tied in parallel, balanced loading on the outputs are maintained.

If a full error detection and correction scheme shown in Figure 5 is used, all 22 bits in the row must be written simultaneously so a slightly different $\overline{\text{WE}}$ configuration would be used.

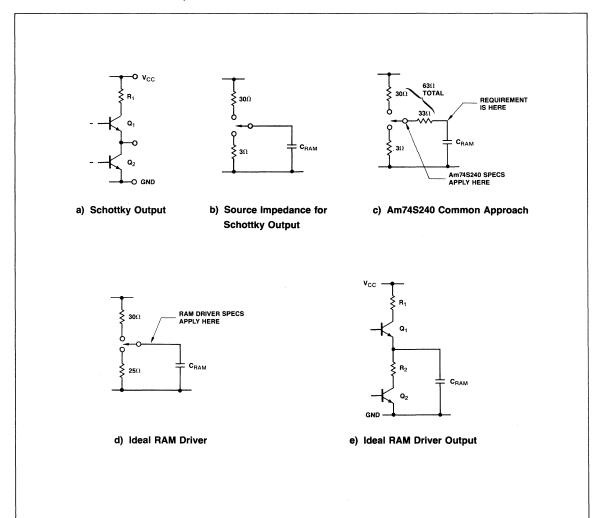
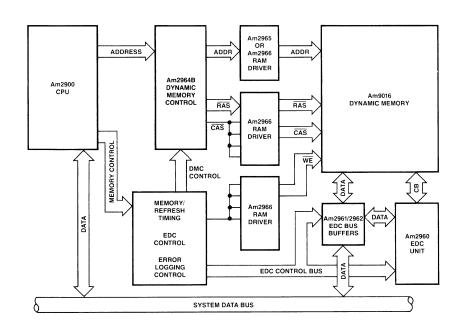



Figure 4. RAM Drivers vs. Schottky Output

a) High Performance Computer Memory

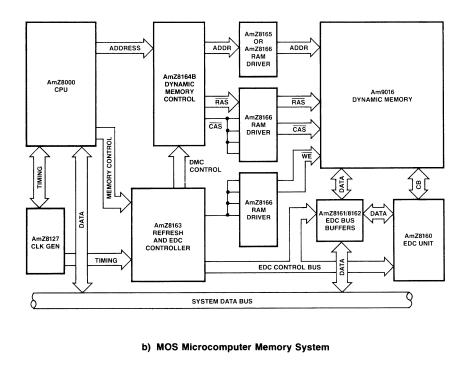


Figure 5. Overall Memory Subsystems for the Am2900 and AmZ8000 Family CPUs

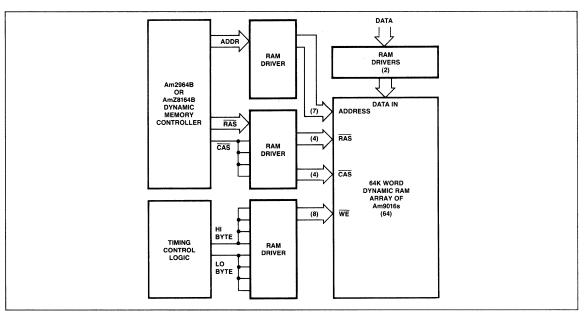


Figure 6. Typical Locations for RAM Drivers

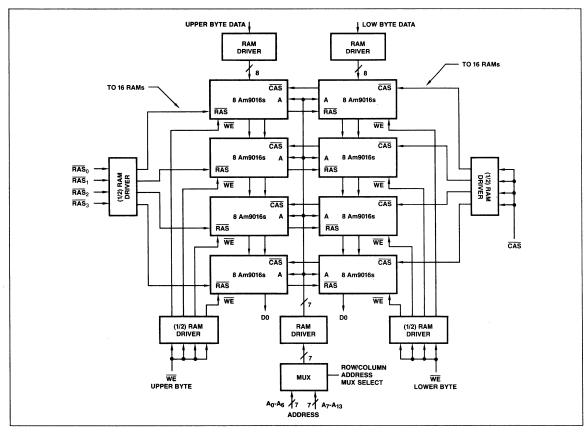


Figure 7. Typical 64K Word by 16-Bit Memory System

DESIGN ADVANTAGES OF THE Am2965/2966

Compared with Schottky parts such as the Am74S240 or Am74S244, which are used as RAM drivers today, the Am2965/66 RAM drivers offer more advantages than just a RAM driver having no external source resistor.

First, as Figure 8a shows, propagation delays for the Schottky Am74S240 or Am74S244 are measured at 1.5V. which is not where the RAM thresholds are. They are at 0.8V. 2.4V and 2.7V as shown in Figure 8b.

On the Am2965 and Am2966, the LOW-to-HIGH transition voltage propagation delay speeds are measured at 2.7V. Going from $\mbox{HIGH-to-LOW},$ speed is measured at 0.8V, which is where the actual RAM thresholds are.

Propagation delays are specified differently, which also makes the Am2965/66 unique (Figure 9). Both minimum and maximum propagation delays are specified at 25°C and 5V. This enables the design engineer to do a worst-case design using both minimum and maximum numbers for the drivers to determine the skew between various drivers. A specified tpD minimum of 50pF and an unusual maximum of 500pF provide a full range of capacitance specifications for both LOW-to-HIGH and HIGH-to-LOW transitions.

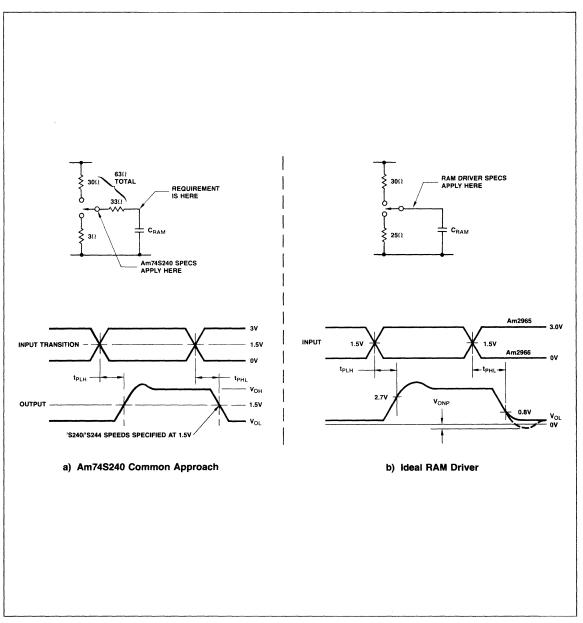


Figure 8. Am2965/66 • AmZ8165/66 Comparison with Am74S240

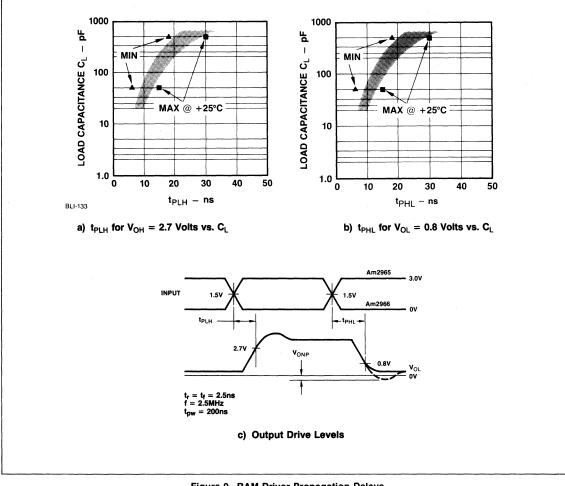


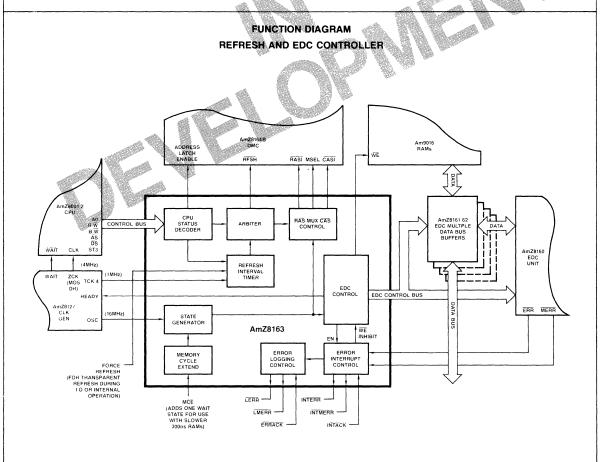
Figure 9. RAM Driver Propagation Delays

AmZ8163 Dynamic Memory Timing, Refresh and EDC Controller

DISTINCTIVE CHARACTERISTICS

- Complete AmZ8000 CPU to dynamic RAM contol interface
- RAS/CAS Sequencer to eliminate delay lines
- Memory request/refresh arbitration
- Controls for Word/Byte read or write
- · Complete EDC data path and mode controls

FUNCTIONAL DESCRIPTION


The AmZ8163 is a high speed bus interface controller forming an integral part of the AmZ8000 memory support chip set using dynamic MOS RAMs with Error Detection and Correction (EDC). The complete chip set includes the AmZ8127 Clock Generator and Controller, the AmZ8164 Dynamic Memory Controller, the AmZ8161/2 EDC Bus Buffers, the AmZ8160 EDC Unit and optional AmZ8165/6 RAM Drivers.

The AmZ8163 provides all of the control interface functions including RAS/Address MUX/CAS timing (without delay lines), refresh timing, memory request/refresh arbitration and all EDC

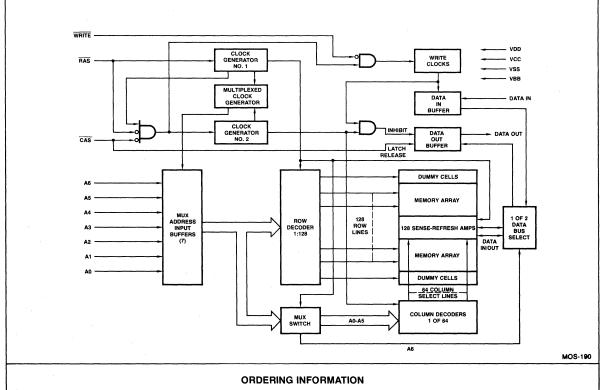
- · Refresh interval timer independent of CPU
- Refresh control during Single Step or Halt modes
- EDC error flag latches for error logging under software control
- Also, complete control for 8-Bit MOS μP

enables and controls. The enable controls are configured for both word and byte operations including the data controls for byte write with error correction. The AmZ8163 generates bus and operating mode controls for the AmZ8160 EDC Unit.

The AmZ8163 uses the AmZ8127 16MHz (4 x CLK) output to generate RAS/Address MUX/CAS timing. An internal refresh interval timer generates the memory refresh request independent of the CPU to guarantee the proper refresh timing under all combinations of CPU and DMA memory requests.

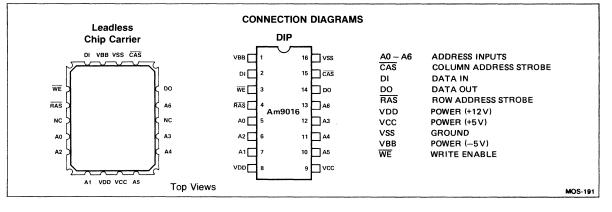
Am9016 Extended Operating Temperature Range 16,384 x 1 Dynamic R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS


- High density 16K x 1 organization
- Replacement for MK4116 (P)-83/84
- Low maximum power dissipation 462mW active, 20mW standby
- High speed operation 200ns access, 375ns cycle
- $\pm 10\%$ tolerance on standard +12, +5, -5 voltages
- TTL compatible interface signals
- Three-state output
- · RAS only, RMW and Page mode clocking options
- 128 cycle refreshing
- Unlatched data output
- Standard 16-pin, .3 inch wide dual-in-line package
- Double poly N-channel silicon gate MOS technology
- 100% MIL-STD-883 reliability assurance testing
- Extended ambient operating temperature (-55 to +85°C)

GENERAL DESCRIPTION

The Am9016 is a high-speed, 16K-bit, dynamic, read/write random access memory. It is organized as 16,384 words by 1 bit per word and is packaged in a standard 16-pin DIP or 18-pin leadless chip carrier. The basic memory element is a single transistor cell that stores charge on a small capacitor. This mechanism requires periodic refreshing of the memory cells to maintain stored information.


All input signals, including the two clocks, are TTL compatible. The Row Address Strobe (\overline{RAS}) loads the row address and the Column Address Strobe (\overline{CAS}) loads the column address. The row and column address signals share seven input lines. Active cycles are initiated when \overline{RAS} goes low, and standby mode is entered when \overline{RAS} goes high. In addition to normal read and write cycles, other types of operations are available to improve versatility, performance and power dissipation.

The 3-state output buffer turns on when the column access time has elapsed and turns off after CAS goes high. Input and output data are the same polarity.

Ambient	Package		Access Time	
Temperature	Туре	300ns	250ns	200ns
-55°C ≤ T₄ ≤ +85°C	Hermetic DIP	AM9016CDL	AM9016DDL	AM9016EDL
-55 C < 1 _A < +65 C	Chip Carrier	AM9016CZL	AM9016DZL	AM9016EZL

Am9016 (Military)

MAXIMUM RATINGS above which useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	-55 to +85°C
Voltage on Any Pin Relative to VBB	-0.5 to +20V
VDD and VCC Supply Voltages with Respect to VSS	-1.0 to +15.0V
VBB - VSS (VDD - VSS > 0V)	0V
Power Dissipation	1.0W
Short Circuit Output Current	50mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

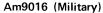
Ambient Temperature	VDD	vcc	VSS	VBB
$-55^{\circ}C \leq T_{A} \leq +85^{\circ}C$	+12V ±10%	+5V ±10%	0	-5.0V ±10%

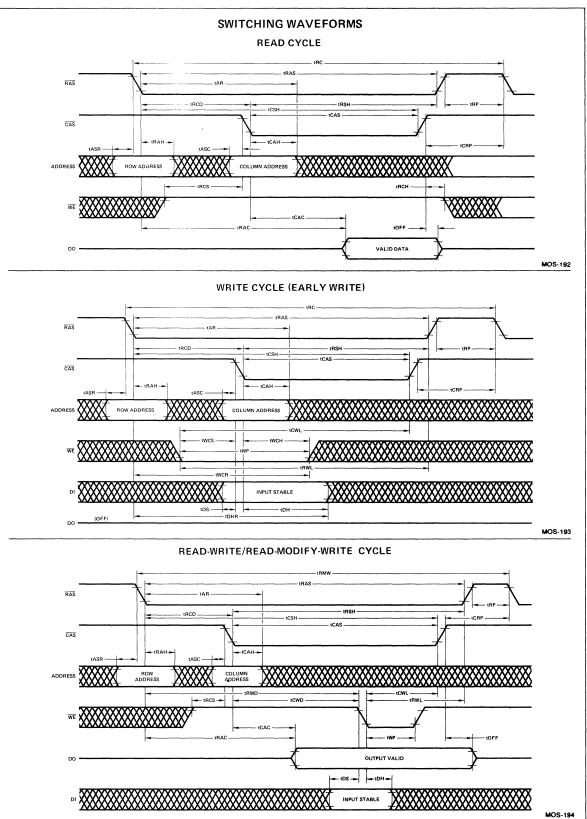
ELECTRICAL CHARACTERISTICS over operating range (Notes 1, 11)

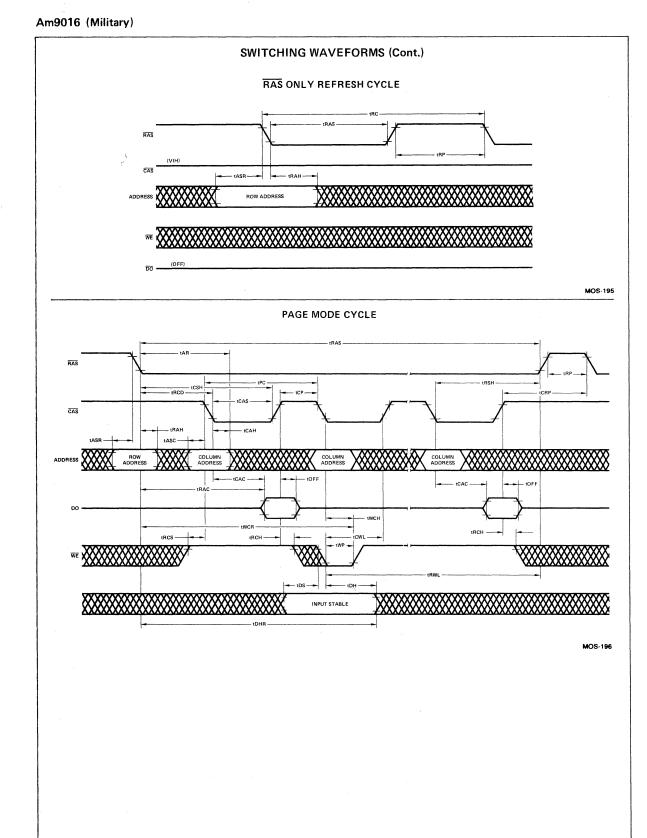
LECIRIC	CAL CHARACTERISTIC	S over opera	ating rang	ge (Notes 1, 11)		Am9	016X	
Parameters	Descripti	on		Test Conditions	Min	Тур	Max	Units
VOH	Output HIGH Voltage			IOH = -5.0 mA	2.4		VCC	Volts
VOL	Output LOW Voltage			IOL = 4.2mA	VSS		0.40	Volts
VIH	Input HIGH Voltage for Addres	s, Data In			2.4		7.0	Volts
VIHC	Input HIGH Voltage for CAS, F	AS, WE			2.7		7.0	Volts
VIL	Input LOW Voltage				-1.0		0.80	Volts
IIX	Input Load Current			VSS ≤ VI ≤ 7V	-10		10	μΑ
IOZ	Output Leakage Current			$VSS \le VO \le VCC$, Output OFF	-10		10	μA
ICC	VCC Supply Current			Output OFF (Note 4)	-10		10	μA
IBB	VBB Supply Current, Average			Standby, RAS ≥ VIHC			200	μΑ
	VBB Supply Current, Average			Operating, Minimum Cycle Time]		400	1
		Operating	IDD1	RAS Cycling, CAS Cycling, Minimum Cycle Times			35	
IDD	VDD Supply Current, Average	Page Mode	IDD4	RAS ≤ VIL, CAS Cycling, Minimum Cycle Times			27	mA
		RAS - Only Refresh	IDD3	RAS Cycling, CAS ≥ VIHC, Minimum Cycle Times			27]
		Standby	IDD2	RAS ≥ VIHC			2.25]
CI	Input Capacitance	RAS, CAS, W	/E	Inputs at 0V, f = 1MHz,			10.0	pF
<u> </u>		Address, Data	a In	Nominal Supply Voltages			5.0	
со	Output Capacitance			Output OFF			7.0	

Am9016 (Military)

SWITCHING CHARACTERISTICS over operating range (Notes 2, 3, 5, 10)


		Am9	016C	Am9	016D	Am9	Am9016E	
Parameters	Description	Min	Max	Min	Max	Min	Max	Units
tAR	RAS LOW to Column Address Hold Time	200		160		120		ns
tASC	Column Address Set-up Time	0		0		0		ns
tASR	Row Address Set-up Time	0		0		0		ns
tCAC	Access Time from CAS (Note 6)		185		165		135	ns
tCAH	CAS LOW to Column Address Hold Time	85		75		55		ns
tCAS	CAS Pulse Width	185	5,000	165	5,000	135	5,000	ns
tCP	Page Mode CAS Precharge Time	100		100		80		ns
tCRP	CAS to RAS Precharge Time	0		0		0		ns
tCSH	CAS Hold Time	300		250		200		ns
tCWD	CAS LOW to WE LOW Delay (Note 9)	145		125		95		ns
tCWL	WE LOW to CAS HIGH Set-up Time	100		85		70		ns
tDH	CAS LOW or WE LOW to Data In Valid Hold Time (Note 7)	8 5		75		55		ns
tDHR	RAS LOW to Data In Valid Hold Time	200		160		120		ns
tDS	Data In Stable to CAS LOW or WE LOW Set-up Time (Note 7)	0		0		0		ns
tOFF	CAS HIGH to Output OFF Delay	0	60	0	60	0	50	ns
tPC	Page Mode Cycle Time	295		275		225		ns
tRAC	Access Time from RAS (Note 6)		300		250		200	ns
tRAH	RAS LOW to Row Address Hold Time	45		35		25		ns
tRAS	RAS Pulse Width	300	5,000	250	5,000	200	5,000	ns
tRC	Random Read or Write Cycle Time	460		410		375		ns
tRCD	RAS LOW to CAS LOW Delay (Note 6)	35	115	35	85	25	65	ns
tRCH	Read Hold Time	0		0		0		ns
tRCS	Read Set-up Time	0		0		0		ns
tREF	Refresh Interval		2		2		2	ms
tRMW	Read Modify Write Cycle Time	600		500		405		ns
tRP	RAS Precharge Time	150		150		120		ns
tRSH	CAS LOW to RAS HIGH Delay	185		165		135		ns
tRWC	Read/Write Cycle Time	525		425		375		ns
tRWD	RAS LOW to WE LOW Delay (Note 9)	260		210		160		ns
tRWL	WE LOW to RAS HIGH Set-up Time	100		85		70		ns
tT	Transition Time	3	50	3	50	3	50	ns
tWCH	Write Hold Time	85		75		55		ns
tWCR	RAS LOW to Write Hold Time	200		160		120		ns
tWCS	WE LOW to CAS LOW Set-up Time (Note 9)	0		0		0		ns
tWP	Write Pulse Width	85		75		55		ns


NOTES


- 1. Typical values are for T_{A} = 25°C, nominal supply voltages and nominal processing parameters.
- 2. Signal transition times are assumed to be 5ns. Transition times are measured between specified high and low logic levels.
- 3. Timing reference levels for both input and output signals are the specified worst-case logic levels.
- 4. VCC is used in the output buffer only. ICC will therefore depend only on leakage current and output loading. When the output is ON and at a logic high level, VCC is connected to the Data Out pin through an equivalent resistance of approximately 135 Ω . In standby mode VCC may be reduced to zero without affecting stored data or refresh operations.
- 5. Output loading is two standard TTL loads plus 100pF capacitance.
- 6. Both RAS and CAS must be low to read data. Access timing will depend on the relative positions of their falliing edges. When tRCD is less than the maximum value shown, access time depends on RAS and tRAC governs. When tRCD is more than the maximum value shown access time depends on CAS and tCAC

governs. The maximum value listed for tRCD is shown for reference purposes only and does not restrict operation of the part.

- Timing reference points for data input set-up and hold times will depend on what type of write cycle is being performed and will be the later falling edge of CAS or WE.
- 8. At least eight initialization cycles that exercise RAS should be performed after power-up and before valid operations are begun.
- 9. The tWCS, tRWD and tCWD parameters are shown for reference purposes only and do not restrict the operating flexibility of the part. When the falling edge of WE follows the falling edge of CAS by at most tWCS, the data output buffer will remain off for the whole cycle and an "early write" cycle is defined. When the falling edge of WE follows the falling edges of RAS and CAS by at least tRWD and tCWD respectively, the Data Out from the addressed cell will be valid at the access time and a "read/write" cycle is defined. The falling edge of WE may also occur at intermediate positions, but the condition and validity of the Data Out signal will not be known.
- 10. Switching characteristics are listed in alphabetical order.
- 11. All voltages referenced to VSS.

APPLICATION INFORMATION

The Am9016 electrical connections are such that if power is applied with the device installed upside down it will be permanently damaged. Precautions should be taken to avoid this mishap.

OPERATING CYCLES

Random read operations from any location hold the $\overline{\text{WE}}$ line high and follow this sequence of events:

- 1) The row address is applied to the address inputs and RAS is switched low.
- After the row address hold time has elapsed, the column address is applied to the address inputs and CAS is switched low.
- 3) Following the access time, the output will turn on and valid read data will be present. The data will remain valid as long as CAS is low.
- 4) \overline{CAS} and \overline{RAS} are then switched high to end the operation. A new cycle cannot begin until the precharge period has elapsed.

Random write operations follow the same sequence of events, except that the \overline{WE} line is low for some portion of the cycle. If the data to be written is available early in the cycle, it will usually be convenient to simply have \overline{WE} low for the whole write operation.

Sequential Read and Write operations at the same location can be designed to save time because re-addressing is not necessary. A read/write cycle holds $\overline{\mathsf{WE}}$ high until a valid read is established and then strobes new data in with the falling edge of $\overline{\mathsf{WE}}.$

After the power is first applied to the device, the internal circuit requires execution of at least eight initialization cycles which exercise $\overline{\text{RAS}}$ before valid memory accesses are begun.

ADDRESSING

14 address bits are required to select one location out of the 16,384 cells in the memory. Two groups of 7 bits each are multiplexed onto the 7 address lines and latched into the internal address registers. Two negative-going external clocks are used to control the multiplexing. The Row Address Strobe (\overline{RAS}) enters the row address bits and the Column Address Strobe (\overline{CAS}) enters the column address bits.

When \overline{RAS} is inactive, the memory enters its low power standby mode. Once the row address has been latched, it need not be changed for successive operations within the same row, allowing high-speed page-mode operations.

Page-mode operations first establish the row address and then maintain \overline{RAS} low while \overline{CAS} is repetitively cycled and designated operations are performed. Any column address within the selected row may be accessed in any sequence. The maximum time that \overline{RAS} can remain low is the factor limiting the number of page-mode operations that can be performed.

Multiplexed addressing does not introduce extra delays in the access path. By inserting the row address first and the column address second, the memory takes advantage of the fact that the delay path through the memory is shorter for column addresses. The column address does not propagate through the cell matrix as the row address does and it can therefore arrive somewhat later than the row address without impacting the access time.

REFRESH

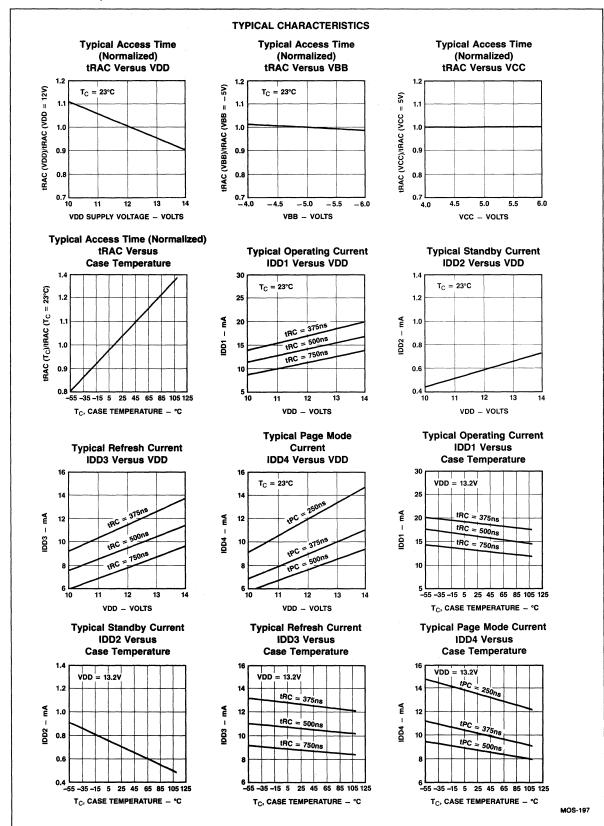
The Am9016 is a dynamic memory and each cell must be refreshed at least once every refresh interval in order to maintain the cell contents. Any operation that accesses a row serves to refresh all 128 cells in the row. Thus the refresh requirement is met by accessing all 128 rows at least once every refresh interval. This may be accomplished, in some applications, in the course of performing normal operations. Alternatively, special refresh operations may be initiated. These special operations could be simply additional conventional accesses or they could be " \overline{RAS} -only" cycles. Since only the rows need to be addressed, \overline{CAS} may be held high while \overline{RAS} is cycled and the appropriate row addresses are input. Power required for refreshing is minimized and simplified control circuitry will often be possible.

DATA INPUT/OUTPUT

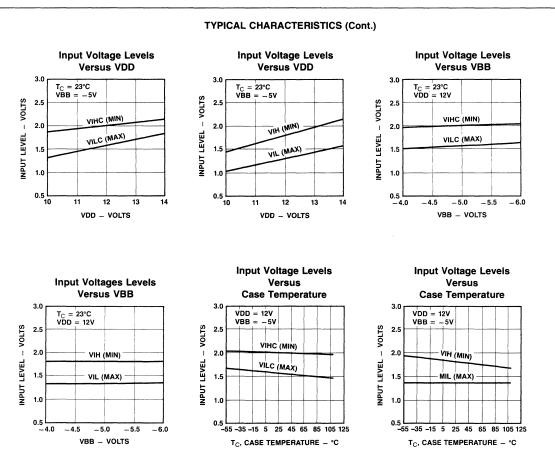
Data is written into a selected cell by the combination of \overline{WE} and \overline{CAS} while \overline{RAS} is low. The later negative transition of \overline{WE} or \overline{CAS} strobes the data into the internal register. In a write cycle, if the \overline{WE} input is brought low prior to \overline{CAS} , the data is strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} . If the cycle is a read/write cycle then the data set-up and hold times are referenced to the negative edge of \overline{WE} .

In the read cycle the data is read by maintaining \overline{WE} in the high state throughout the portion of the memory cycle in which \overline{CAS} is low. The selected valid data will appear at the output within the specified access time.

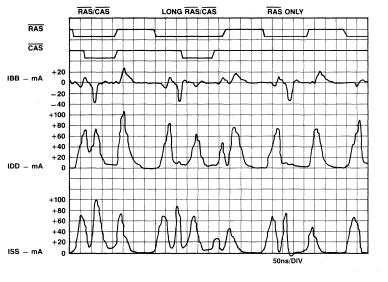
DATA OUTPUT CONTROL


Any time \overline{CAS} is high the data output will be off. The output contains either one or zero during read cycle after the access time has elapsed. Data remains valid from the access time until \overline{CAS} is returned to the high state. The output data is the same polarity as the input data.

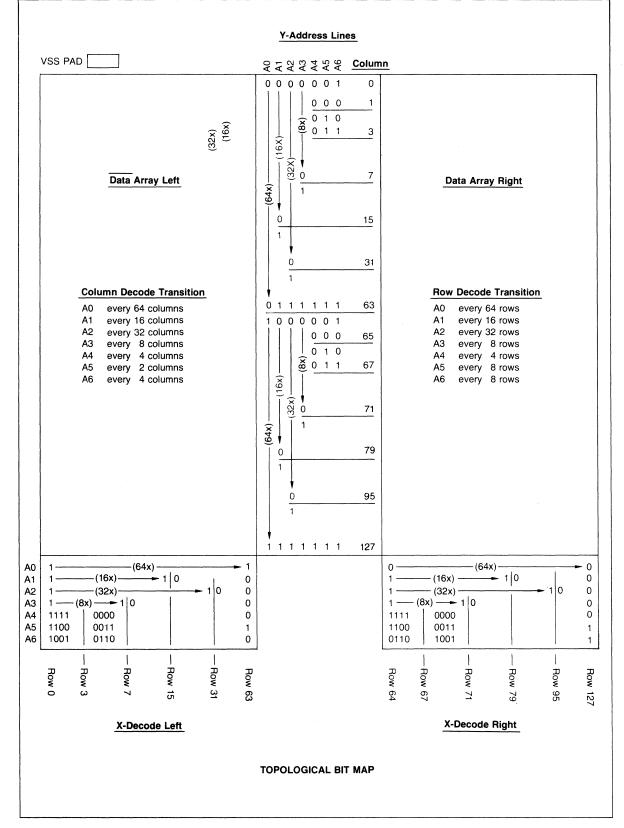
The user can control the output state during write operations by controlling the placement of the $\overline{\text{WE}}$ signal. In the "early write" cycle (see note 9) the output is at a high impedance state throughout the entire cycle.

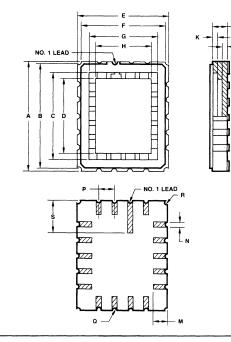

POWER CONSIDERATIONS

 \overline{RAS} and/or \overline{CAS} can be decoded and used as a chip select signal for the Am9016 but overall system power is minimized if \overline{RAS} is used for this purpose. The devices which do not receive \overline{RAS} will be in low power standby mode regardless of the state of \overline{CAS} .

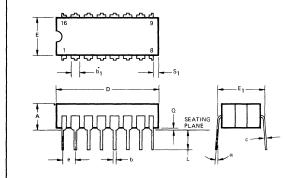

At all times the Absolute Maximum Rating Conditions must be observed. During power supply sequencing VBB should never be more positive than VSS when power is applied to VDD.

86




MOS-198

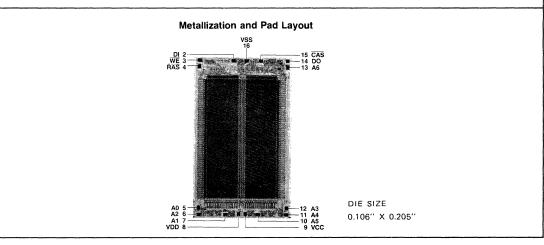
Am9016 (Military)



PHYSICAL DIMENSIONS

18-Pin Leadless Chip Carrier

16-Pin Hermetic



Reference	Incl	nes	Millim	eters	
Symbol	Min	Max	Min	Max	Notes
A	.350	.360	8.89	9.14	
В	.330	.340	8.38	8.64	
С	.275	.285	6.99	7.24	
D	.235	.245	5.97	6.22	
E	.285	.295	7.24	7.37	
F	.265	.275	6.73	6.99	
G	.210	.220	5.33	5.59	
н	.170	.180	4.32	4.57	
J	.042	.048	1.07	1.22	
к	.012	.018	0.33	0.46	
L	.012	.018	0.33	0.46	
м	.040	.050	1.02	1.27	
N	.020	.030	0.51	0.76	5
P	.045	.055	1.14	1.40	2
Q	.008R		0.20R		5
R	.012R		0.30R		3
S	.090	.110	2.29	2.79	1

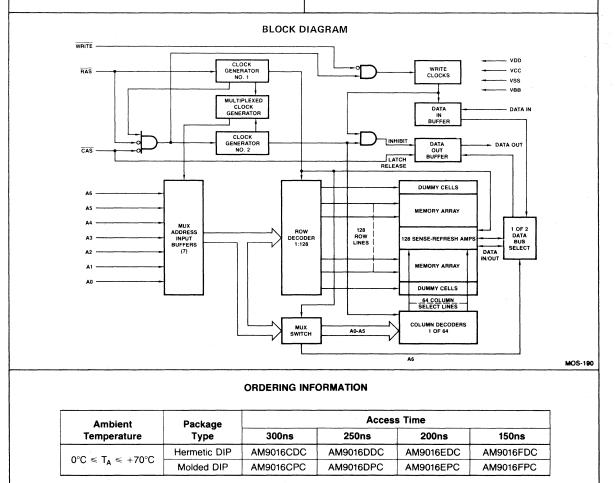
Notes:

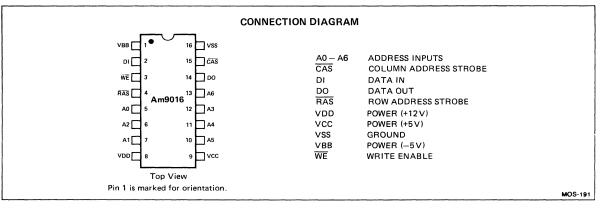
- 1. Index area: A notch, identification mark or elongation shall be used to identify pin 1.
- 2. 14 spaces.
- 3. Applies to all four corners.
- 4. Shaded areas are metallized to facilitate external connections.
- 5. 18 locations.
- 6. No organic or polymeric materials shall be molded to the package.

Reference	Inches				
Symbol	Min	Max			
A	.130	.200			
b	.016	.020			
b ₁	.050	.070			
c	.009	.011			
D	.745	.785			
E	.240	.310			
E 1	.290	.320			
e	.090	.110			
L	.125	.150			
Q	.015	.060			
S 1	.005				
α	3°	13°			
Standard Lead Finish	b				

Am9016 16,384 x 1 Dynamic R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS


- High density 16k x 1 organization
- Direct replacement for MK4116
- Low maximum power dissipation 462mW active, 20mW standby
- High speed operation 150ns access, 320ns cycle
- ±10% tolerance on standard +12, +5, -5 voltages
- TTL compatible interface signals
- Three-state output
- RAS only, RMW and Page mode clocking options
- 128 cycle refreshing
- Unlatched data output
- Standard 16-pin, .3 inch wide dual in-line package
- Double poly N-channel silicon gate MOS technology
- 100% MIL-STD-883 reliability assurance testing


GENERAL DESCRIPTION

The Am9016 is a high speed, 16k-bit, dynamic, read/write random access memory. It is organized as 16,384 words by 1 bit per word and is packaged in a standard 16-pin DIP. The basic memory element is a single transistor cell that stores charge on a small capacitor. This mechanism requires periodic refreshing of the memory cells to maintain stored information.

All input signals, including the two clocks, are TTL compatible. The Row Address Strobe (\overline{RAS}) loads the row address and the Column Address Strobe (\overline{CAS}) loads the column address. The row and column address signals share 7 input lines. Active cycles are initiated when \overline{RAS} goes low, and standby mode is entered when \overline{RAS} goes high. In addition to normal read and write cycles, other types of operations are available to improve versatility, performance, and power dissipation.

The three-state output buffer turns on when the column access time has elapsed and turns off after \overline{CAS} goes high. Input and output data are the same polarity.

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	0°C to +70°C
Voltage on Any Pin Relative to VBB	-0.5V to +20V
VDD and VCC Supply Voltages with Respect to VSS	-1.0V to +15.0V
$\overline{VBB} - VSS \; (VDD - VSS > 0V)$	0V
Power Dissipation	1.0W
Short Circuit Output Current	50mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulation of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling, and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

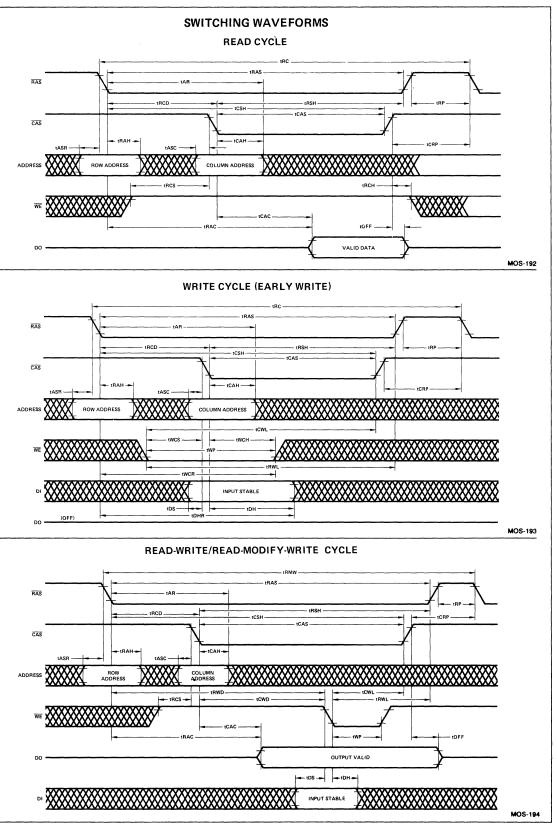
Ambient Temperature	VDD	VCC	VSS	VBB
0°C ≤ T _A ≤ +70°C	+12V ±10%	+5V ±10%	0	-5.0V ±10%

ELECTRICAL CHARACTERISTICS over operating range (Notes 1, 11)

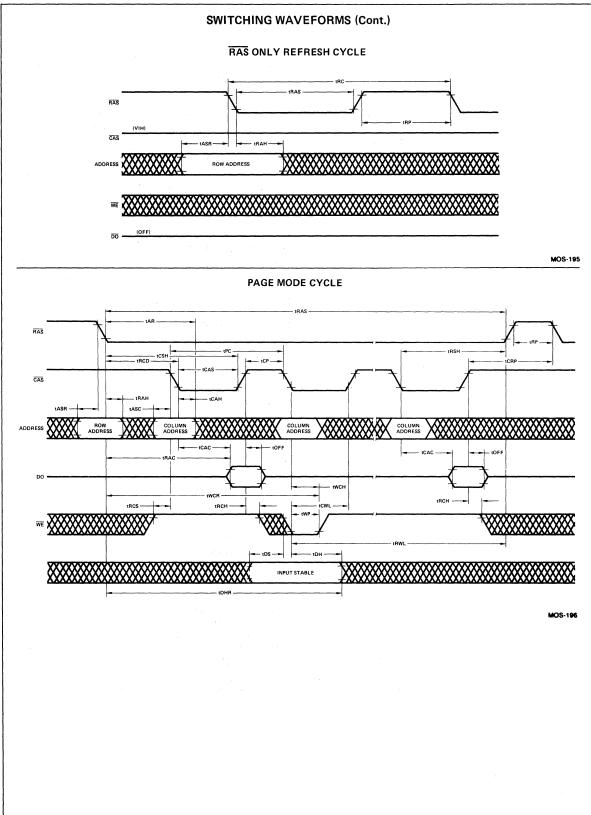
			anng rang			Ams	016X	
Parameters	Descripti	on		Test Conditions	Min.	Тур.	Max.	Units
VOH	Output HIGH Voltage			IOH = -5.0mA	2.4		VCC	Volts
VOL	Output LOW Voltage			IOL = 4.2mA	VSS		0.40	Volts
VIH	Input HIGH Voltage for Address	s, Data In			2.4		7.0	Volts
VIHC	Input HIGH Voltage for CAS, R	AS, WE			2.7		7.0	Volts
VIL	Input LOW Voltage				-1.0		0.80	Volts
IIX	Input Load Current			VSS ≤ VI ≤ 7V	-10		10	μΑ
IOZ	Output Leakage Current			VSS ≤ VO ≤ VCC, Output OFF	-10		10	μΑ
ICC	VCC Supply Current			Output OFF (Note 4)	-10		10	μA
IBB VBB Supply Curr	VBB Supply Current, Average	~~~		Standby, RAS ≥ VIHC			100	μA
100	VBB Supply Guiterit, Average			Operating, Minimum Cycle Time			200	
		Operating	IDD1	RAS Cycling, CAS Cycling, Minimum Cycle Times			35	
IDD	VDD Supply Current, Average	Page Mode	IDD4	RAS ≤ VIL, CAS Cycling, Minimum Cycle Times			27	mA
		RAS Only Refresh	IDD3	RAS Cycling, CAS ≥ VIHC, Minimum Cycle Times			27	
		Standby	IDD2	RAS ≥ VIHC			1.5	1
CI	Input Capacitance	RAS, CAS, V	VE	Inputs at 0V, f = 1MHz,			10	
	input Capacitance	Address, Dat	a in	Nominal Supply Voltages			5.0	pF
со	Output Capacitance			Output OFF			7.0	

Am9016 (Commercial)

SWITCHING CHARACTERISTICS over operating range (Notes 2, 3, 5, 10)


		Am9	016C	Am9	016D	Am9	016E	Am	9016F	
Parameters	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
tAR	RAS LOW to Column Address Hold Time	200		160	1	120		95		ns
tASC	Column Address Set-up Time	-10		-10		-10		-10		ns
tASR	Row Address Set-up Time	0		0		0		0		ns
tCAC	Access Time from CAS (Note 6)	1	185		165		135		100	ns
tCAH	CAS LOW to Column Address Hold Time	85		75		55		45		ns
tCAS	CAS Pulse Width	185	10,000	165	10,000	135	10,000	100	10,000	ns
tCP	Page Mode CAS Precharge Time	100		100		80		60		ns
tCRP	CAS to RAS Precharge Time	-20		-20		20		-20		ns
tCSH	CAS Hold Time	300		250		200		150		ns
tCWD	CAS LOW to WE LOW Delay (Note 9)	145		125		95		70		ns
tCWL	WE LOW to CAS HIGH Set-up Time	100		85	1	70		50		ns
tDH	CAS LOW or WE LOW to Data In Valid Hold Time (Note 7)	85		75		55		45		ns
tDHR	RAS LOW to Data In Valid Hold Time	200		160		120		95		ns
tDS	Data In Stable to CAS LOW or WE LOW Set-up Time (Note 7)	0		0		0		0		ns
tOFF	CAS HIGH to Output OFF Delay	0	60	0	60	0	50	0	40	ns
tPC	Page Mode Cycle Time	295		275		225		170		ns
tRAC	Access Time from RAS (Note 6)		300		250		200		150	ns
tRAH	RAS LOW to Row Address Hold Time	45		35		25		20		ns
tRAS	RAS Pulse Width	300	10,000	250	10,000	200	10,000	150	10,000	ns
tRC	Random Read or Write Cycle Time	460		410		375		320		ns
tRCD	RAS LOW to CAS LOW Delay (Note 6)	35	115	35	85	25	65	20	50	ns
tRCH	Read Hold Time	0		0		0		0		ns
tRCS	Read Set-up Time	0		0		0		0		ns
tREF	Refresh Interval	1	2		2		2		2	ms
tRMW	Read Modify Write Cycle Time	600		500		405		320		ns
tRP	RAS Precharge Time	150		150		120		100		ns
tRSH	CAS LOW to RAS HIGH Delay	185		165		135		100		ns
tRWC	Read/Write Cycle Time	525		425		375		320		ns
tRWD	RAS LOW to WE LOW Delay (Note 9)	260		210	1	160		120		ns
tRWL	WE LOW to RAS HIGH Set-up Time	100		85	1	70		50		ns
tT	Transition Time	3	50	3	50	3	50	3	35	ns
tWCH	Write Hold Time	85		75		55		45		ns
tWCR	RAS LOW to Write Hold Time	200		160		120		95		ns
tWCS	WE LOW to CAS LOW Set-up Time (Note 9)	-20		-20		-20		-20		ns
tWP	Write Pulse Width	85		75	1	55		45	1	ns

NOTES


- 1. Typical values are for $T_A = 25^{\circ}C$, nominal supply voltages and nominal processing parameters.
- 2. Signal transition times are assumed to be 5ns. Transition times are measured between specified high and low logic levels.
- 3. Timing reference levels for both input and output signals are the specified worst-case logic levels.
- 4. VCC is used in the output buffer only. ICC will therefore depend only on leakage current and output loading. When the output is ON and at a logic high level, VCC is connected to the Data Out pin through an equivalent resistance of approximately 135Ω. In standby mode VCC may be reduced to zero without affecting stored data or refresh operations.
- 5. Output loading is two standard TTL loads plus 100pF capacitance.
- 6. Both RAS and CAS must be low to read data. Access timing will depend on the relative positions of their falling edges. When tRCD is less than the maximum value shown, access time depends on RAS and tRAC governs. When tRCD is more than the maximum value shown access time depends on CAS and tCAC governs. The

maximum value listed for tRCD is shown for reference purposes only and does not restrict operation of the part.

- Timing reference points for data input set-up and hold times will depend on what type of write cycle is being performed and will be the later falling edge of CAS or WE.
- At least eight initialization cycles that exercise RAS should be performed after power-up and before valid operations are begun.
- 9. The tWCS, tRWD and tCWD parameters are shown for reference purposes only and do not restrict the operating flexibility of the part. When the falling edge of WE follows the falling edge of CAS by at most tWCS, the data output buffer will remain off for the whole cycle and an "early write" cycle is defined. When the falling edge of WE follows the falling edges of RAS and CAS by at least tRWD and tCWD respectively, the Data Out from the addressed cell will be valid at the access time and a "read/write" cycle is defined. The falling edge of WE follows the falling edge of the Data Out from the addressed cell will be valid at the access time and a "read/write" cycle is defined. The falling edge of WE may also occur at intermediate positions, but the condition and validity of the Data Out signal will not be known.
- 10. Switching characteristics are listed in alphabetical order.
- 11. All voltages referenced to VSS.

Am9016 (Commercial)

APPLICATION INFORMATION

The Am9016 electrical connections are such that if power is applied with the device installed upside down it will be permanently damaged. Precautions should be taken to avoid this mishap.

OPERATING CYCLES

Random read operations from any location hold the \overline{WE} line high and follow this sequence of events:

- The row address is applied to the address inputs and RAS is switched low.
- After the row address hold time has elapsed, the column address is applied to the address inputs and CAS is switched low.
- Following the access time, the output will turn on and valid read data will be present. The data will remain valid as long as CAS is low.
- CAS and RAS are then switched high to end the operation. A new cycle cannot begin until the precharge period has elapsed.

Random write operations follow the same sequence of events, except that the \overline{WE} line is low for some portion of the cycle. If the data to be written is available early in the cycle, it will usually be convenient to simply have \overline{WE} low for the whole write operation.

Sequential Read and Write operations at the same location can be designed to save time because re-addressing is not necessary. A read/write cycle holds \overline{WE} high until a valid read is established and then strobes new data in with the falling edge of \overline{WE} .

After the power is first applied to the device, the internal circuit requires execution of at least eight initialization cycles which exercise RAS before valid memory accesses are begun.

ADDRESSING

14 address bits are required to select one location out of the 16,384 cells in the memory. Two groups of 7 bits each are multiplexed onto the 7 address lines and latched into the internal address registers. Two negative-going external clocks are used to control the multiplexing. The Row Address Strobe (\overline{RAS}) enters the row address bits and the Column Address Strobe (\overline{CAS}) enters the column address bits.

When \overline{RAS} is inactive, the memory enters its low power standby mode. Once the row address has been latched, it need not be changed for successive operations within the same row, allowing high-speed page-mode operations.

Page-mode operations first establish the row address and then maintain \overline{RAS} low while \overline{CAS} is repetitively cycled and designated operations are performed. Any column address within the selected row may be accessed in any sequence. The maximum time that \overline{RAS} can remain low is the factor limiting the number of page-mode operations that can be performed.

Multiplexed addressing does not introduce extra delays in the access path. By inserting the row address first and the column address second, the memory takes advantage of the fact that the delay path through the memory is shorter for column addresses. The column address does not propagate through the cell matrix as the row address does and it can therefore arrive somewhat later than the row address without impacting the access time.

REFRESH

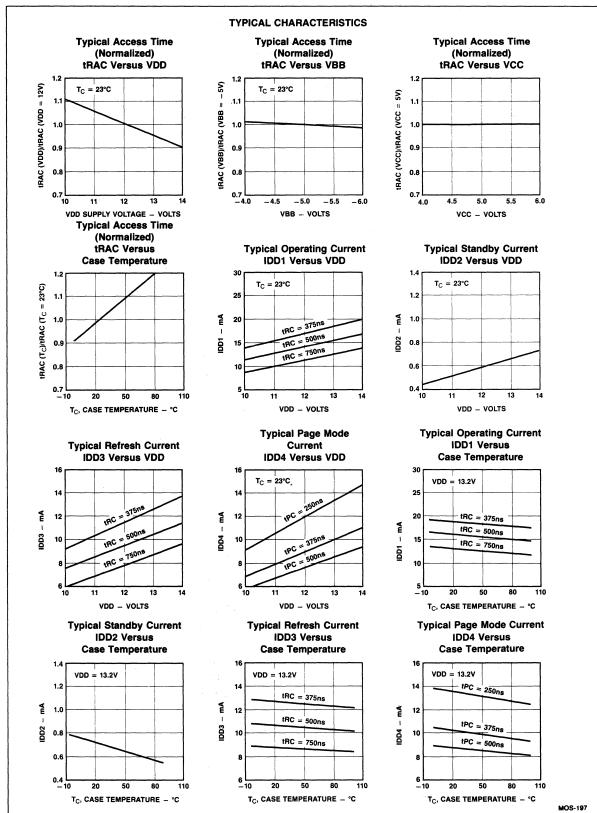
The Am9016 is a dynamic memory and each cell must be refreshed at least once every refresh interval in order to maintain the cell contents. Any operation that accesses a row serves to refresh all 128 cells in the row. Thus the refresh requirement is met by accessing all 128 rows at least once every refresh interval. This may be accomplished, in some applications, in the course of performing normal operations. Alternatively, special refresh operations may be initiated. These special operations could be simply additional conventional accesses or they could be "RAS-only" cycles. Since only the rows need to be addressed, CAS may be held high while RAS is cycled and the appropriate row addresses are input. Power required for refreshing is minimized and simplified control circuitry will often be possible.

DATA INPUT/OUTPUT

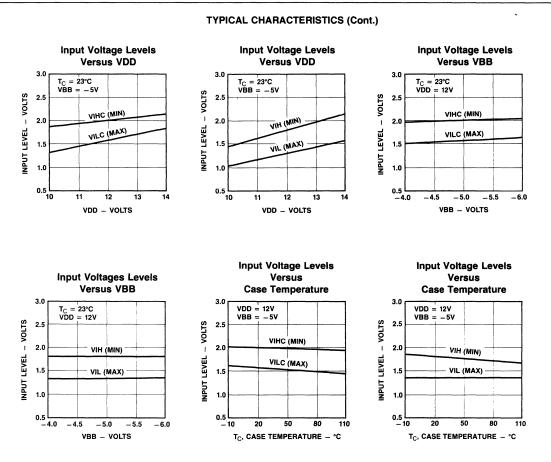
Data is written into a selected cell by the combination of \overline{WE} and \overline{CAS} while \overline{RAS} is low. The later negative transition of \overline{WE} or \overline{CAS} strobes the data into the internal register. In a write cycle, if the \overline{WE} input is brought low prior to \overline{CAS} , the data is strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} . If the cycle is a read/write cycle then the data set-up and hold times are referenced to the negative edge of \overline{WE} .

In the read cycle the data is read by maintaining \overline{WE} in the high state throughout the portion of the memory cycle in which \overline{CAS} is low. The selected valid data will appear at the output within the specified access time.

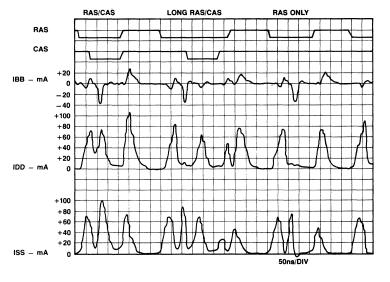
DATA OUTPUT CONTROL


Any time \overline{CAS} is high the data output will be off. The output contains either one or zero during read cycle after the access time has elapsed. Data remains valid from the access time until \overline{CAS} is returned to the high state. The output data is the same polarity as the input data.

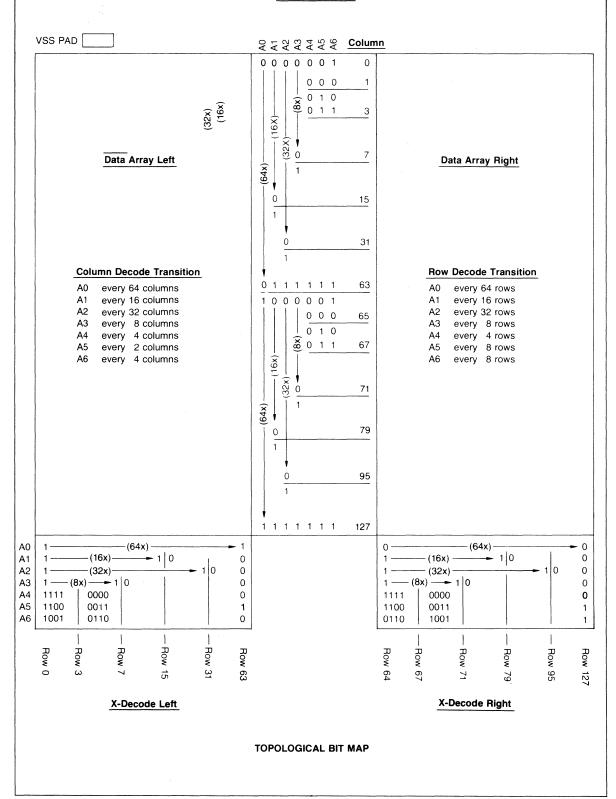
The user can control the output state during write operations by controlling the placement of the $\overline{\text{WE}}$ signal. In the "early write" cycle (see note 9) the output is at a high impedance state throughout the entire cycle.

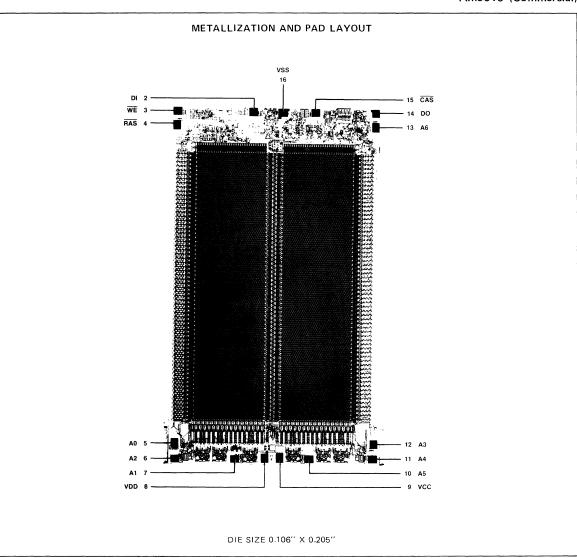

POWER CONSIDERATIONS

 \overline{RAS} and/or \overline{CAS} can be decoded and used as a chip select signal for the Am9016 but overall system power is minimized if \overline{RAS} is used for this purpose. The devices which do not receive \overline{RAS} will be in low power standby mode regardless of the state of \overline{CAS} .


At all times the Absolute Maximum Rating Conditions must be observed. During power supply sequencing VBB should never be more positive than VSS when power is applied to VDD.

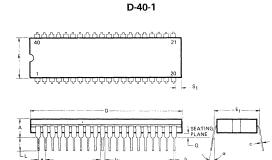
96



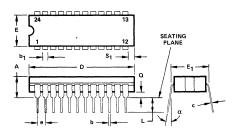

TYPICAL CURRENT WAVEFORMS

Am9016 (Commercial)

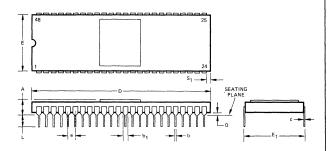
Y-Address Lines



Am9016 (Commercial)

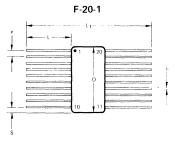

PACKAGE OUTLINES

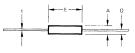
HERMETIC DUAL IN-LINE PACKAGES



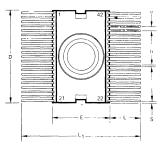
D-24-SLIM

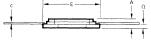
AMD Pkg	D-2	D-20-1 D-24 D-40-1		0-1	D-48-2 SIDE- BRAZED			
Common Name	CERDIP		SLIM				CERDIP	
38510 Appendix C	-		-		D-5		-	
Parameters	Min	Max	Min	Max	Min	Max	Min	Max
A	.140	.220	.120	.150	.150	.225	.100	.200
b	.016	.020	.016	.020	.016	.020	.015	.022
b ₁	.050	.070	.045	.065	.045	.065	.030	.060
c	.009	.011	.009	.011	.009	.011	.008	.013
D	.935	.970	1.230	1.285	2.020	2.100	2.370	2.430
E	.245	.285	.245	.285	.510	.550	.570	.610
E ₁	.290	.320	.290	.320	.600	.630	.590	.620
e	.090	.110	.090	.110	.090	.110	.090	.110
L	.125	.150	.1120	.150	.120	.150	.125	.160
Q	.015	.060	.015	.060	.015	.060	.020	.060
S ₁	.005		.010		.005		.005	
α	3°	13°	3°	13°	3°	13°		
Standard Lead Finish	b		_		b		b or c	

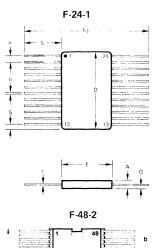

Notes: 1. Load finish b is tin plate. Finish c is gold plate

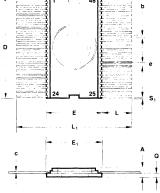

2. Used only for LM108/LM108A.

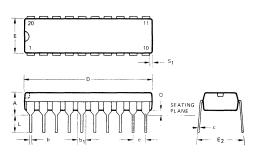
3. Dimensions E and D allow for off-center lid, meniscus and glass overrun.


PACKAGE OUTLINES (Cont.)

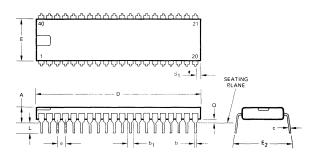

FLAT PACKAGES






AMD Pkg	F-20-1 CERPACK		F-24-1 CERPACK		F-42-1 CERAMIC FLAT PAK		F-48-2 CERAMIC FLAT PAK	
Common Name								
38510 Appendix C	-		F-6		_		_	
Parameters	Min	Max	Min	Max	Min	Max	Min	Max
A	.045	.085	.050	.090	.070	.115	.070	.110
b	.015	.019	.015	.019	.017	.023	.018	.022
c	.004	.006	.004	.006	.006	.012	.006	.010
D	.490	.520	.580	.620	1.030	1.090	1.175	1.250
D ₁						1.090		1.250
E	.245	.285	.360	.385	.620	.660	.615	.670
E ₁		.290		.410		.660		.670
е	.045	.055	.045	.055	.045	.055	.045	.055
L	.300	.370	.265	.320	.320	.370	.320	.370
L ₁	.920	.980	.920	.980	1.300	1.370	1.310	1.365
Q	.020	.040	.020	.040	.020	.060	.020	.055
S ₁	.005		.005		.005		.015	
Standard Lead Finish	b		b		С		C	

Notes: 1. Lead finish is tin plate. Finish c is gold plate.
2. Dimensions E₁ and D₁ allow for off-center lid, meniscus, and glass overrun.


PACKAGE OUTLINES (Cont.)

MOLDED DUAL IN-LINE PACKAGES

AMD Pkg	P-2	20-1	P-40-1		
Parameters	Min	Max	Min	Max	
A	.150	.200	.150	.200	
b	.015	.020	.015	.020	
b ₁	.055	.065	.055	.065	
c	.009	.011	.009	.011	
D	1.010	1.050	2.050	2.080	
E	.250	.290	.530	.550	
E ₂	.310	.385	.585	.700	
e	.090	.110	.090	.110	
L	.125	.150	.125	.160	
Q	.015	.060	.015	.060	
S ₁	.025	.055	.040	.070	

Notes: 1. Standard lead finish is tin plate or solder dip. 2. Dimension E₂ is an outside measurement.

SALES OFFICES

SOUTHWEST AREA SOUTHWEST AREA Advanced Micro Devices 9595 Wishire Boulevard Suite 401 Tel: (213) 278-9701 (213) 278-9701 TWX: 910-490-2143 Advanced Micro Devices 1414 West Broadway Road Suite 239 1414 West brodoway Suite 239 Tempe, Arizona 85282 Tel. (602) 244-9511 TWX: 910-950-0127 Advanced Micro Devices 4000 MacArthur Blvd. Suite 5000 Newport Beach, California 92660 Tel. (714) 752-6262 TWX: 910-595-1575 Advanced Micro Devices 6750 LBJ Freeway, Suite 1160 Dallas, Texas 75240 Tel: (214) 934-99099 TWX: 910-860-9264

Advanced Micro Devices 5955 Desoto Ave., Suite 249 Woodland Hills, California 91367 Tel: (213) 992-4155 TWX: 910-494-4720

Advanced Micro Devices International Sales Offices

BELGIUM Advanced Micro Devices Overseas Corporation Avenue de Tervueren, 412, bte 9 B-1150 Bruxelles Tel: (02) 771 99 93 TELEX. 61028 FRANCE Advanced Micro Devices, S.A. Silic 314, Immeuble Helsinki F-94588 Rungis Cedex Tél: (01) 666 91.86 TELEX: 202053

GERMANY Advanced Micro Devices GmbH Rosenheimer Str 139 D-8000 Muenchen 80 Tel: (089) 40 19 76 TELEX. 0-523883 Advanced Micro Devices GmbH Harthaeuser Hauptstrasse 4 D-7024 Filderstadt 3 Tel: (07158) 30 60 TELEX: 0-721211

SOUTHWEST AREA (Cont.)

NORTWHEST AREA Advanced Micro Devices 3350 Scott Boulevard Suite 1002, Blog, 10 Sania Cara, California 95051 Suite 302, Blog, 10 Advanced Micro Devices 7000 Broadway Suite 401 Deriver, Orando 80221 Deriver, Orando 80221

Advanced Micro Devices Honeywell Ctr., Suite 1002 600 108th Ave, N.E. Bellevue, Washington 98004 Tel: (206) 455-3600

Advanced Micro Devices 9455 Ridgehaven Court Suite 230 Suite 230 San Diego, CA 92123 Tel: (714) 560-7030

NORTHWEST AREA

ITALY Advanced Micro Devices S.R.L. Centro Direzionale Palazzo Vasari, 3º Piano I-20090 MI2 Segrate (MI) Tel: (02) 215 4913-4-5 TELEX: 315286

MID-AMERICA AREA

MID-AMERICA AREA Advanced Micro Devices Schaumburg, limons 60195 Tei: (12) 882-8660 TWX: 910-291-3589 Advanced Micro Devices 3400 West 66th Street Suite 375 Edina, Minnesota 55435 Tei: (612) 925-5400 TWX. 910-576-0929 Advanced Micro Devices

Advanced Micro Devices 50 McNaughton Road Suite 102 Columbus, Ohio 43213 Tel: (614) 864-9906 TWX: 810-339-2431

Advanced Micro Devices 33150 Schoolcraft, Suite 104 Livonia, Michigan 48150 Tel: (313) 425-3440 TWX: 810-242-8777

MID-ATLANTIC AREA Advanced Micro Devices 40 Crossway Park Way Woodbury, New York 11797 Tel: (516) 364-8020 TWX: 510-221-1819

MID-AMERICA AREA (Cont.) Advanced Micro Devices 290 Elwood Davis Rd Suite 316 Liverpool. New York 13088 Tel. (315) 457-5400

Advanced Micro Devices 2 Kilmer Road Limer Road
 Edison, New Jersay 08817
 Tel: (201) 985-6800
 TWX, 710-480-6260 Advanced Micro Devices 1 Gibralter Plaza, Surte 219 Horsham, Pennsylvania 19044 Tel: (215) 441-8210 TWX: 510-665-7572 Advanced Micro Devices 82 Washington Street, Suite 206 Poughkeepsie, New York 12601 Tel: (914) 471-8180 TWX, 510-248-4219

NORTHEAST AREA Advanced Micro Devices 300 New Boston Park Woburn, Massachusetts 0180⁴1 Tel: (617) 933-1234 TWX: 710-348-1332

JAPAN JAPAN Advanced Micro Devices, K.K. Dai 3 Hoya Building 8-17, Kamitakaido 1-chome Sugmami-ku, Tokyo 168 Tel: (03) 329-275' TELEX 2324064 Advanced Micro Devices, K.K. Daidoh-Seimer Ezaka Dai-2 Bidg. 23-5, 1-chome, Ezaka-cho, Suita-shi Osaka 564 Tel: (06) 386-9161 SOUTHEAST AREA Advanced Micro Devices Parkway Center One Parkway Drive Building 7257 Parkway Drive Building 7257 Parkway Drive Drive Suite 204 Dorsey, Maryland 21076 Tel: i3011 796-9310 TWX: 710-861-0503
 TWX: 710-681-0503
 Advanced Micro Devices

 1001 NW 62nd Street
 State 100

 State 100
 Berlen Florida 3309

 FL LabelFride Florida 3309
 FL State 100

 WX: 510-955 9490
 Advanced Micro Devices

 6755 Peachtree Industrial Boulevard
 State 104

 Atlana. Genega 30560
 Advanced Micro Devices

 6755 Peachtree Industrial 3004
 State 104

 Atlana. Genega 30560
 Advanced Micro Devices
 Advanced Micro Devices 501 Archdale Dr., Suite 227 Charlotte, North Carolina 28210 Tel: (704) 525-1875

SWEDEN Advanced Micro Devices AB Box 7013 S-172 07 Sundbyberg Tel: (08) 96 12 35 TELEX. 11602 Advanced Micro Devices (U.K.) Ltd. A.M.D. House, Goldsworth Road, Woking, Surrey (JU2): 1,JT Tel: Woking (04862) 22121 TeLEX: 859103

Advanced Micro Devices European Marketing Centre: France - 27, Blvd. Genéral-Vautrin, F-06400 Cannes. Tél: (093) 43.60.75. TELEX: 470966

International Sales Representatives and Distributors

ARGENTINA Thiko, S.A. Electronica ARGENTINA Thiko, S.A. Electronica Peru 653 1068 Buenos Aires Argentina Tel. (1) 30-4132 (1) 33-4870 TELEX: 17825 Koti International Corporation 1660 Rollins Road Burlingame, California 94010 Tel: (415) 692-3200 TELEX: 331491

AUSTRALIA AUSTRALIA A.J. Distributors Pty. Ltd. P O. Box 71 44 Prospect Road Prospect, S.A. 5082 Tel. (8) 269-1244 TELEX: 82635

R and D Electronics 257 Burwood Highway P O. Box 206 Burwood 3125 Victoria Tel: (03) 288-8232/62 TELEX. AA33288

R and D Electronics P.O. Box 57 Crows Nest N.S.W. 2065 Sydney Tel: (61) 439-5488 TELEX: (790) 25468

AUSTRIA Kontron Ges.m.b.H Industriestr. B 13 A-2345 Brunn am Gebirge Tel: (02236) 8 66 31 TELEX. 79337

BELGIUM MCA Tromx S.P.R.L. Route du Condroz. 513 B-4200 Ougree Tel: (041) 362780/362795 TELEX: 42052

DENMARK Advanced Electronic of Denmark Aps Manendalsvej 55 DK-2000 Copenhagen F Tel: (01) 19 44 33 TELEX: 22 431

FINLAND Korndel OY Komdel OY Vanha Finnoontie 4 Box 32 SF-02271 Espoo 27 Tel. (0) 885 011 TELEX 12 1926

FRANCE A2M A2M 6, Avenue du Général De Gaulle Hall A F-78150 Le Chesnay Tél: (01) 954.91.13 TELEX: 698 376 Lyon-Electronic-Direlec (LED) 18. rue Henri Pensier F-69352 Lyon Cedex 2 Tél: (078) 58.85.85 TELEX: 300 270

RTF 73. avenue Charles De Gaulle F-92200 Neuilly-sur-Seine Tei: (01) 747.11.01 TELEX. 611985

GERMANY Cosmos Elektronik GmbH Hegelstrasse 16 D-8000 Muenchen 83 Tel: (089) 60 20 86 TELEX: 0-522545 EBV-Elektronik Vertriebs GmbH Oberweg 6 D-8025 Unterhaching b. Muenchen Tel. (089) 6 11 05-1 TELEX 0-524535 EBV-Elektronik Vertriebs GmbH Oststr. 129 D-4000 Duesseldorf Tel. (0211) 8 48 46/7 TELEX: 0-8587267

EBV-Elektronik Vertriebs GmbH Kiebitzrain 18 D-3006 Burgwedel 1/Hannover Tel: (05139) 50 38 TELEX. 0-923694 EBV-Elektronik Vertriebs GmbH Mylusstr. 54 D-6000 Frankfurt 1 Tel: (0611) 72 04 16 TELEX: 0-413590 EBV-Elektronik Vertriebs GmbH Alexanderstr. 42 D-7000 Stuttgart 1 Tet: (0711) 24 74 81/83 TELEX: 0-722271 Elbatex GmbH Caecilienstr. 24 D-7100 Heilbronn Tel: (07131) 89 00 1 TELEX: 0-728362 Nordelektronik Vertriebs GmbH Bahnhofstr. 14 D-2301 Kiel-Raisdorf Tel: (04307) 54 83 Nordelektronik Vertnebs GmbH Harksheiderweg 238-240 D-2085 Quickborn Tel: (04106) 40 31 TELEX: 0-214299 MEV-Mikro Elektronik Vertrieb H. Lichotka GmbH Muenchener Strasse 16A D-8021 Deining b. Muenchen Tel: (08170) 71 61 TELEX: 0-527828 INDIA Fegu Electronics 3308 Middiefield Road Palo Alto, CA 94306 Tel: (415) 493-1788 TELEX: 345-599 TELEX: 343-355 SRI RAM Associates P.O. Box 60965 Sunnyvale, CA 94088 Tel: (408) 738-2295 TELEX: 348369 SRI RAM Associates 245 Jayanagara III Block Bangalore 560011 Tel: 611606 TELEX: 845-8162 ISRAEL Talviton Electronics, Ltd. P.O. Box 21104 9, Biltmor Street IL-61210 Tel-Aviv Tel: (03) 444572 TELEX: 03-3400 ITALY Indelco, S.R.L. - Milano Via S. Simpliciano, 2 I-20121 Milano Tel: (02) 862963 Indelco, S.R.L. - Roma Via C. Colombo, 134 I-00147 Roma Tel: (06) 514 0722 TELEX: 611517 Cramer Italia S.p.A. Via Ferrarese, 10/2 I-40128 Bologna Tel: (051) 372777 TELEX. 511870 Cramer Italia S.p.A. Via S. Simpliciano, 2 I-20121 Milano Tel. (02) 809326 Cramer Italia S.p.A. 3º Traversa Domenico Fontana, 22 A/B I-80128 Napoli Tel: (081) 255300 Cramer Italia S.p.A. Via C. Colombo, 134 I-00147 Roma Tel: (06) 517981 TELEX: 611517 Cramer Italia S.p.A. Corso Traiano, 109 I-10127 Torino Tel. (011) 619 2062/2067 TELEX: 211252

Lasi Elettronica S.p.A. Viale Masini 20 I-40126 Bologna Tel: (051) 353815 TELEX: 531116 Lasi Elettronica S.p.A. Viale Lombardia 6 I-20092 Cinisello Balsamo (Milano) Tel: (02) 6120441 TELEX. 331612 Lasi Elettronica S.p.A. Piazzale Caduti della Montagnola, 50 I-00142 Roma Tel: (06) 5405301 Lasi Elettronica S.p.A. Piazza C. Montanari, 162 I-10137 Torino Tel: (011) 359277 Silvestar Italia S.p.A Via del Porto, 30 I-40122 Bologna Tel. (051) 238657 Silvestar Italia S.p.A. Via dei Gracchi, 20 I-20146 Milano Tel: (02) 4996 TELEX: 332189 Silvestar Italia S.p.A. Via S. Sofia. 15 I-35100 Padova Tel. (049) 22338 Silvestar Italia S.p.A. Via Paisiello, 30 I-00198 Roma Tel: (06) 8448841 TELEX: 610511 Silvestar Italia S.p.A. P. Adriano, 9 I-10139 Torino Tel: (011) 443275/6 TELEX: 220181 JAPAN Asahi Glass Company, Ltd. 2-1-2, Marunouchi Chiyoda-ku, Tokyo 100 Tel: (03) 218-5690 Danichi Electronics Kohraku Building 1-8, 1-chome, Kohraku Bunkyo-ku, Tokyo Tel: (03) 811-9205 Dainichi Electronics Kintetsu-Takama Building 38-3 Takama-cho Narashi 630 Narashi 630 ISI Ltd. 8-3, 4-chome, Lidabashi Chiyoda-ku, Tokyo 102 Tel: (03) 264-3301 Kanematsu Denshi K.K. Takanawa Bidg., 2nd Floor 19-26, 3-chome, Takanawa Minatoku, Tokyo 108 Minatoku, Tokyo tu Microtek, Inc. Naito Building 7-2-8 Nishishinjuku Shinjuku-ku, Tokyo Tel: (03) 363-2317 TELEX: J28497 160 Tokyo Electron Limited Shinjuku-Nomura-Bldg. 1-26-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 160 Tel: (03) 343-4411 181. (05) 3434411 Tokyo Electron Limited Osaka Sales Office Recruit-Shinosaka-Dai 2-Bidg. 5-14-10 Nishi-Nakajima, Yodogawa-ku, Osaka-shi, Osaka 532 Tel. (06) 305-0888 Tokyo Electron Limited Yokohama Sales Office 1 Higashikata-Machi, Midori-ku, Yokohama-shi, Kanagawa 226 Tel: (405) 471-8811 Tokyo Electron Limited Sendai Sales Office S-Bidg 1-10-12 Honcho. Sendai-shi, Miyagi 980 Tel: (0222) 63-3950

Tokyo Electron Limited Mito Sales Office Taiyosemei-Mito-Bldg. 1-2-19 Chuo. Mito-shi. Ibaragi 310 Tel: (0292) 27-2292 Tokyo Electron Limited Hino Sales Office 2-3-1 Tamadaira, Hino-shi, Tokyo 191 Tel: (0425) 84-3711 Tokyo Electron Limited Kumagaya Sales Office Chiyodaseimei-Bldg. 2-142 Miyamachi, Kumagaya-shi, Salatama 360 Tel: (0485) 25-1421 Tokyo Electron Limited Kanda Sales Office Kanda Sales Office Time-Bldg. 1-28-5 Kanda-Suda-Cho, Chiyoda-ku, Tokyo 101 Tel: (03) 254-8741 Tokyo Electron Limited Kanda-Shop Mansei-Bidg. 1+16-1 Sotokanda, Chiyoda-ku. Tokyo 101 Tel: (03) 251-0048 Tokyo Electron Limited Nagoya Sales Office Nagoya-Fukutoku-Bidg 3-23-13 Meieki, Nakamura-ku, Nagoya-shi, Aichi 450 Tel: (052) 562-0825 Tel: (052) 752-0525 Tokyo Electron Limited Fukuoka Sales Office Shinkou-Bidg, 4-4-24 Tenjin, Chuo-ku, Fukuoka-shi Fukuoka 810 Tel: (052) 771-1144 KOREA Duksung Trading Co. Room 301 - Jinwon Bidg. 507-30 Sintim 4-Dong Gwanak-ku Seoul Tet: 856-9764 TELEX: K23459 Leewood International C.P.O. Box 4046 Tel. 28-5927 TELEX: K-25582 NETHERLANDS Arcobel BV

Arcobel BV Van Almondestraat 6 P.O. Box 344 NL-5340 AE Oss Tel: (04120) 24200/27574 TELEX: 37489

NEW ZEALAND G.T.S. Engineering, Ltd. P.O. Box 42:053, Orakei Auckland Tel: (Auck) 543 214 (Auck) 546 745 TELEX. NZ2591

NORWAY A.S Kjell Bakke Nygata 48 P.O. Box 143 N-2011 Stroemmen Tel: (02) 71 53 50 TELEX: 19407

SINGAPORE Sentry-Tech (Pte.) Ltd. 3210 Shaw Towers 100 Beach Road Singapore 0718 Tel: 292 4342 746 4260 TELEX: RS 34235

SOUTH AFRICA South Continental Devices (Pty.) Ltd. P.O. Box 56420 Pinegowrie 2123 Tel: (011) 789-2400 TELEX: 4-24849 SA

SOUTH AMERICA Intectra 2629, Terminal Bldg. Mountarn View. CA 94043 Tel: (415) 967-8825 TELEX: 345 545

SPAIN SPAIN Regula S.A. Avda. Baro. 19 Barcelona Tel: (03) 386 19 58 Regula S.A. Avda. de Ramón ý Cajal. 5 Madrid-16 Tel: (01) 459 33 00/04/08 TELEX: 42 207 Sagitrón, S.A. General de Importaciones Electronicas C/. Castelló, 25, 29 Madrid-1 Tel: (01) 275-4824 TELEX: 43819

Sweden Svensk Teleindustri AB Svensk Teleindustr Box 5024 S-162 05 Välkngby Tel: (08) 89 04 35 TELEX: 13033

SWITZERLAND SWITZERLAND Kontron Electronic Components Division Bernerstr. Sued 169 CH-8048 Zuerich Tel: (01) 62 82 82 TELEX: 58836 Kurt Hirt AG Thurgauerstr. 74 CH-8050 Zuerich Tel. (01) 302 21 21 TELEX: 53461

TAIWAN Everdata Pacific Co. 2320 'C' Walsh Ave. Santa Clara, CA 95051 Tel. (408) 727-4010 TELEX: 171470 Everdata International Corp. 11/F 219, Chung Hsiao E. Rd. Sec. 4, Taipei Tel: 752-9911 TELEX: 21528

UNITED KINGDOM

UNITED KINGDOM Hawke-Cramer Hawke Electronics Limited Amotex House 45 Hanworth Road Sunbury-on-Thames Middlesex TW16 SDA Tel. (01) 979-7799 TELEX: 923592 TELEX: 923592 Dage Eurosem, Ltd. Haywood House 64 High Street Pinner, Middlesex, H Tel. (01) 868 0028/9 TELEX: 24506 HA5 5QA ITT Electronic Services Edinburgh Way Harlow, Essex CM20 2DF Tel: Harlow (0279) 26777 TELEX: 81525 Memec, Ltd. Thame Park Industrial Estate Thame Oxon OX9 3RS Tel: Thame (084 421) 3146 TELEX: 837508 Quarndon Electronics (Semiconductors) Ltd. Slack Lane Derby DE3 3ED Tel: Derby (0332) 363291 TELEX: 37163

U.S. and Canadian Sales Representatives

ALABAMA Electronic Manufacturers Agents 2309 Starmount Circle, S.W. Huntsville, Alabama 35801 Tei: (205) 533-6440 TWX: 810-726-2110

CALIFORNIA (Northern) 1² Incorporated 3350 Scott Boulevard Suite 1001, Bidg, 10 Santa Clara, California 95050 Tei: (408) 988-3400 TWX: 910-338-0192

(Southern) Bestronics

(Sournern) Bestronics 7827 Convoy Court, Suite 407 San Diego, California 92111 Tel: (407) 278-2150 TWX: 910-335-1267

CANADA (Eastern) Vitel Electronics 3300 Cote Vertu, Suite 203 St. Laurent, Quebec, Canada H4R 2B7 Tel: (514) 331-7393 TWX: 610-421-3124 TELEX: 05-821762

Vitel Electronics 1 Vulcan St., Suite 203 Rexdale, Ontario, Canada M9W 1L3 Tel: (416) 245-8528 TWX: 610-491-3728

Vitel Electronics Vitel Electronics 85 Albert Street, Suite 1610 Ottawa, Ontario Canada K1P 6A4 Tel: (613) 236-0396 TELEX: 0533198

CANADA (Western) CANADA (western) Vitel Electronics 3665 Kingsway, Suite 211 Burnaby, British Columbia Canada V5R 5W2 Tel: (604) 438-6121 TWX: 610-953-4925

CONNECTICUT CONNECTICUT Scientific Components 1185 South Main Street Cheshire, Connecticut 06410 Tel: (203) 272-2965 TWX: 710-455-2078

FLORIDA Conley & Associates, Inc. P.O. Box 309 P.O. Box 309 235 South Central Ave. Oviedo, Florida 32765 Tel: (305) 365-3283 TWX: 810-856-3520

Conley & Associates, Inc. 1612 N.W. Second Ave. P.O. Box 700 Boca Raton, Florida 33432 Tei: (305) 395-6108 TWX: 510-953-7548

Conley & Associates, Inc. 4021 W. Waters Avenue 4021 W. Waters Aven Suite 2 Tampa, Florida 33614 Tel: (813) 885-7658 TWX: 810-876-9136

GEORGIA

GEORGIA Electronic Manufacturers Agents 6755 Peachtree Industrial Blvd., N.E. Suite 103 Atlanta. Georgia 30360 Tel: (404) 449-9430 TWX: 810-766-9430

ILLINOIS ILLINOIS Oasis Sales, Inc. 1101 Towne Road Elk Grove Village, Illinois 60007 Tel: (312) 640-1850 TWX: 910-222-1775

INDIANA INDIANA Electro Reps., Inc. -941 E. 86th St., Suite 101 Indianapolis, Indiana 46240 Tel: (317) 255-4147 TWX: 810-341-3217 Electro Reps., Inc. 3601 Hobson Rd., Suite 106 Ft. Wayne, Indiana 46815 Tel: (219) 483-0518 TWX: 810-332-1613

IOWA IOWA Lorenz Sales, Inc. 5270 No. Park Pl., N.E. Cedar Rapids, Iowa 52402 Tel: (319) 377-4666

KANSAS KANSAS Kebco Sales 7070 West 107th Street Suite 160 Overland Park, Kansas 66212 Tel: (913) 649-1051 TWX: 910-749-4077

MICHIGAN S.A.I. Marketing Corp. P.O. Box N Brighton, Michigan 481'f6 Tel: (313) 227-1786 TWX: 810-242-1518

MISSOURI Kebco Manufacturers 75 Worthington Drive, Ste. 101 Mariland Heights, Missouri 63043 Tel: (314) 576-4111 TWX: 910-764-0826

NEBRASKA Lorenz Sales 2809 Garfield Avenue Lincoln, Nebraska 68502 Tel: (402) 475-4660

NEW JERSEY T.A.I. Corp. 12 So. Black Horse Pike Bellmawr, New Jersey 08031 Tel: (609) 933-2600 TWX: 710-639-1810

NEW MEXICO The Thorson Company 1101 Cardenas, N.E. Suite 109 Albuquerque, New Mexico 87110 Tel: (505) 265-5655 TWX: 910-989-1174

NEW YORK Nycom, Inc. 10 Adler Drive East Syracuse, New York 13057 Tel: (315) 437-8343 TWX: 710-541-1506

оню OHIO Dolfuss-Root & Co. 13477 Prospect Road Strongsville, Ohio 44136 Tel: (216) 238-0300 TWX: 810-427-9148 Viv. 016 - 21 - 0140 Dolfuss-Root & Co. 683 Miamisburg-Centerville Road Suite 202 Centerville, Ohio 45459 Tel: (513) 433-6776

PENNSYLVANIA PENNSYLVANIA Dolfuss-Root & Co. United Industrial Park Suite 203A, Building A 98 Vanadium Road Pittsburgh, Pennsylvania 15017 Tel: (412) 221-4420

TEXAS TEXAS Bonser-Philhower Sales 13777 N. Central Expressway Suite 212 Dallas, Texas 75243 Tel: (214) 234-8438

Bonser-Philhower 11700 Southwest Fwy., Suite 200 Houston, Texas 77031 Tel: (713) 783-0063

Bonser-Philhower Sales 8330 Burnett Rd. Suite 133 Austin, Texas 78758 Tel: (512) 458-3569

UTAH R²

P40 North 400 East, Suite B North Salt Lake, Utah 84054 Tel: (801) 298-2631 TWX: 910-925-5607

WASHINGTON

WASHINGTON Venture Electronics 1601 116th N.E., Suite 109 P.O. Box 3034 Bellevue, Washington 98005 Tel: (206) 454-4594 TELEX: 32-8951

WISCONSIN

Oasis Sales, Inc. N. 81 W. 12920 Leon Road Suite 111 Menomonee Falls, Wisconsin 53051 Tel: (414) 445-6682

J.S. AND CANADIAN STOCKING DISTRIBUTORS

LABAMA ALABAMA familton/Avnet Electronics 812 Commercial Drive funtsville, Alabama 35805 fel: (205) 837-7210

Hall-Mark Electronics 1900 Bradford Drive, N.W. 2.O. Box 1133 Huntsville, Alabama 35807 Tel: (205) 837-8700

ARIZONA Vyle Distribution Group 1155 North 24th Avenue Phoenix, Arizona 85021 Fel: (602) 249-2232

Hamilton/Avnet Electronics 505 South Madison Drive Fempe, Arizona 85281 Fel: (602) 275-7851 FWX: 910-951-1535

TWX: 910-951-1535 **CALIFORNIA** Avnet Electronics 350 McCormick Avenue rvine Industrial Complex Costa Mesa, California 92626 Tel: (714) 754-6084 TWX: 910-595-1928

3ell Industries 1161 North Fairoaks Avenue Sunnyvale, California 94086 Tel: (408) 734-8570 TWX: 910-339-9378 TWX: 910-339-9378 Hamilton Electro Sales 10912 West Washington Boulevard Quiver City, California 90230 Tel: (213) 558-2131 (714) 522-8220 TWX: 910-340-6364 910-340-7073 TELEX: 67-36-92

Hamilton/Avnet Electronics 1175 Bordeaux Sunnyvale, California 94086 Tel: (408) 743-3300 TWX: 910-339-9332

Hamilton/Avnet Electronics 4545 View Ridge Road San Diego, California 92123 Tel: (714) 571-7500 TELEX: 69-54-15

Hamilton/Avnet Electronics 3170 Pullman Costa Mesa, California 92626 Tel: (714) 641-1850

Wyle Distribution Group 9525 Chesapeake Drive San Diego, California 92123 Tel: (714) 565-9171 TWX: 910-335-1590

Schweber Electronics 17811 Gillette Irvine, California 92714 Tel: (213) 537-4320 TWX: 910-595-1720

Schweber Electronics 3110 Patrick Henry Drive Santa Clara, California 95050 Tel: (408) 496-0200 TWX: 910-338-2043

Wyle Distribution Group 124 Maryland Avenue El Segundo, California 90545 Tel: (213) 322-8100 TWX: 910-348-7140 910-348-7111

Arrow Electronics 521 Weddell Drive Sunnyvale, California 94086 Tel: (408) 745-6600 TWX: 910-339-9371

Wyle Distribution Group/Santa Clara 3000 Bowers Avenue Santa Clara, California 95052 Tel: (408) 727-2500 TWX: 910-338-0296 910-338-0541

Wyle Distribution Group Orange County Division 17872 Cowan Irvine, California 92714 Tel: (714) 641-1600

CANADA CANADA Hamilton/Avnet Electronics 2670 Sabourin St. Laurent, Quebec, Canada H4S 1M2 Tel: (514) 331-6443 TWX: 610-421-3731

Hamilton/Avnet Electronics 3688 Nashua Road Mississauga, Ontario, Canada L4V 1M5 Tel: (416) 677-7432 TWX: 610-492-8867

Hamilton/Avnet Electronics 1735 Courtwood Crescent Ottawa, Ontario, Canada K2C 3J2 Tel: (613) 226-1700 TWX: 610-562-1906

IWX: bit-bbc-1906 INI-bbc-1906 ARE Industrial Electronics, Ltd. 3455 Gardner Court Burnaby, Briths Columbia Canada VSG 4J7 IEI: (604) 291-8866 TWX: 610-929-3065 TRUE: A0-929-3065 TRUE: A0-929-3065 TRUE: A0-929-3065 TRUE: A0-929-306 TRUE: (A0-929-306) TRUE: (A0-929-306) TRUE: (A0-929-306) TWX: 037-2653

TWX: 037-2653 Future Electronics 5647 Ferrier Street Montreal, Quebec, C Tel: (514) 731-7441 TWX: 610/421-3251 05-827789 Future Electronics 4800 Dufferin Street Downsview, Ontario Canada M3H 5S9 Tel: (416) 663-5563 Canada H4P 2K5

Future Electronics 3070 Kingsway Vancouver. British Columbia Canada V5R 5J7 Tel: (604) 438-5545 TWX: 610-922-1668

Future Electronics Baxter Centre 1050 Baxter Road Ottawa, Ontario Canada K2C 3P2 Tel: (613) 820-8313

COLORADO Wyle Distribution Group 451 East 124th Avenue Thornton, Colorado 80241 Tel: (303) 457-9953

Hamilton/Avnet Electronics 8765 East Orchard Road Suite 708 Englewood, Colorado 80111 Tel: (303) 740-1000

Bell Industries 8155 West 48th Avenue Weatridge, Colorado 80033 Tel: (303) 424-1985 TWX: 910-938-0393

CONNECTICUT Hamilton/Avnet Electronics Commerce Park Commerce Drive Danbury, Connecticut 06810 Tel: (203) 797-2800 TWX: 710-456-9974

Harvey Electronics 112 Main St. Norwalk, Connecticut 06851 Tel: (203) 853-1515 TWX: 710-468-3373

Schweber Electronics Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: (203) 792-3500

Arrow Electronics 12 Beaumont Road Wallingford, Connecticut 06492 Tel: (203) 265-7741 TWX: 710-476-0162

FLORIDA Arrow Electronics 115 Palm Bay Road, N.W. Suite 10 Suite 10 Palm Bay, Florida 22905 Tel: (305) 725-1480

Arrow Electronics 1001 N.W. 62nd Street, Suite 402 Ft. Lauderdale, Florida 33300 Tel: (305) 776-7790

Hall-Mark Electronics 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel: (305) 855-4020 TWX: 810-850-0183

Hall-Mark Electronics 1671 West McNabb Road Ft. Lauderdale, Florida 33309 Tel: (305) 971-9280 TWX: 510-956-9720

Hamilton/Avnet Electronics 6800 N.W. 20th Avenue Ft. Lauderdale, Florida 33309 Tel: (305) 971-2900

Hamilton/Avnet Electronics 3197 Tech Drive North St. Petersburg, Florida 33702 Tel: (813) 576-3930

Pioneer/Florida 6220 South Orange Blossom Trail Suite 412 Orlando, Florida 32809 Tel: (305) 859-3600 TWX: 810-850-0177

GEORGIA Arrow Electronics 2979 Pacific Drive Norcross, Georgia 30071 Tel: (404) 449-8252 TWX: 810/766-0439

Hamilton/Avnet Electronics 5825-D Peachtree Corners East Norcross, Georgia 30092 Tel: (404) 447-7500

ILLINOIS Arrow Electronics 492 Lunt Avenue Schaumburg, Illinois 60193 Tel: (312) 893-9420

Hall-Mark Electronics 1177 Industrial Drive Bensenville, Illinois 60106 Tel: (312) 860-3800 TWX: 910-222-1815

Hamilton/Avnet Electronics 3901 North 25th Avenue Schiller Park, Illinois 60176 Tel: (312) 678-6310 TWX: 910-227-0060

Pioneer/Chicago 1551 Carmen Drive Elk Grove Village, Illinois 60007 Tel: (312) 437-9680 TWX: 910-222-1834

Schweber Electronics 1275 Brummel Avenue Elk Grove Village, Illinois 60017 Tel: (312) 364-375 TWX: 910-222-3453

INDIANA INDIANA Pioneer/Indiana 6408 Castle Place Drive Indianapolis, Indiana 46250 Tel: (317) 849-7300 TWX: 810-260-1794 Arrow Electronics 2718 Rand Road Indianapolis, Indiana 46241 Tel: (317) 243-9353 TWX: 810-341-3119

Hamilton/Avnet Electronics 485 Gradle Drive Indianapolis, Indiana 46032 Tel: (317) 844-9333

KANSAS Hall-Mark Electronics 10815 Lakeview Drive Lenexa, Kansas 66215 Tel: (913) 888-4747 TWX: 510-928-1831

Hamilton/Avnet Electronics 9219 Quivira Road Overland Park, Kansas 66215 Tel: (913) 888-8900

MARYLAND Arrow Electronics 4801 Benson Avenue Baltimore, Maryland 21227 Tel: (301) 247-5200

Hall-Mark Electronics 6655 Amberton Drive Baltimore, Maryland 21227 Tel: (301) 796-9300 TWX: 710-862-1942

Hamilton/Avnet Electronics 7235 Standard Drive Hanover, Maryland 21076 Tel: (301) 796-5000 TWX: 710-862-1861 TELEX: 8-79-68

Pioneer/Washington 9100 Gaither Road Gaithersburg, Maryland 20760 Tel: (301) 948-0710 TWX: 710-828-0545

MASSACHUSETTS Arrow Electronics 96D Commerce Way Woburn, Massachusetts 01801 Tel: (617) 933-8130 TWX: 510-224-6494

Hamilton/Avnet Electronics 50 Tower Office Park Woburn, Massachusetts 01801 Tel: (617) 935-9700 TWX: 710-393-0382

Harvey Electronics 44 Hartwell Ave. Lexington, Massachusetts 02173 Tel: (617) 861-9200 TWX: 710-326-6617

Schweber Electronics 25 Wiggins Road Bedford, Massachusetts 01730 Tel: (617) 275-5100

MICHIGAN MICHIGAN Arrow Electronics 3810 Varsity Drive Ann Arbor, Michigan 48104 Tel: (313) 971-8220 TWX: 810-223-6020

Hamilton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: (313) 522-4700 TWX: 810-242-8775

Pioneer/Michigan 13485 Stamford Livonia, Michigan 48150 Tel: (313) 525-1800 TWX: 810-242-3271

MINNESOTA Arrow Electronics 5230 West 73rd Street Edina, Minnesota 55435 Tel: (612) 830-1800

Hall-Mark Electronics 7838 12th Avenue South Bloomington, Minnesota 55420 Tel: (612) 854-3223 TWX: 910-576-3187

Hamilton/Avnet Electronics 7449 Cahill Road Edina, Minnesota 55435 Tel: (612) 941-3801

MISSOURI MISSOURI Hall-Mark Electronics 13789 Rider Trail Earth City, Missouri 63045 Tel: (314) 291-5350 TWX: 910-760-0671

Hamilton/Avnet Electronics 13743 Shoreline Court Earth City, Missouri 63045 Tel: (314) 344-1200

Arrow Electronics 2380 Schuetz Road St. Louis, Missouri 63141 Tel: (314) 567-6888 TWX: 910-764-0882

NEW JERSEY Arrow Electronics Pleasant Valley Road Moorestown, New Jersey 08057 Tel: (609) 235-1900

Arrow Electronics 285 Midland Avenue Saddle Brook, New Jersey 07662 Tei: (201) 797-5800 TWX: 710-988-2206

Hamilton/Avnet Electronics 10 Industrial Road Fairfield, New Jersey 07006 Tel: (201) 575-3390

Hamilton/Avnet Electronics 1 Keystone Avenue Cherry Hill, New Jersey 08003 Tel: (609) 424-0100

Harvey Electronics 45 Route 46 Pine Brook, New Jersey 07058 Tei: (201) 575-3510 TWX: 710-734-4382

Harvey Electronics 840 Fairport Park Fairport, New Jersey 14450 Tel: (716) 381-7070 TWX: 510-253-7001

Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: (201) 227-7880 TWX: 710-480-4733

Hali-Mark Electronics 2091 Springdale Road Springdale Business Center Cherry Hill, New Jersey 08003 Tel: (215) 355-7300 TWX: 510-667-1750

NEW MEXICO Hamilton/Avnet Electronics 2450 Baylor Drive, S.E. Albuquerque, New Mexico 87119 Tel: (505) 765-1500

Electronic Devices Co., Inc. 308 Muriel Street N.E. Albuquerque, New Mexico 87123 Tel: (505) 293-1935

NEW YORK Arrow Electronics 900 Broad Hollow Road Farmingdale, New York 11735 Tel: (516) 694-6800 TWX: 510-224-6155

Arrow Electronics 7705 Maltage Drive Liverpool, New York 13088 Tel: (315) 652-1000 TWX: 710-545-0230

Arrow Electronics 3000 South Winton Road Rochester, New York 14623 Tel: (716) 275-0300 TWX: 510-253-4766

Arrow Electronics 20 Oser Avenue Hauppauge Long Island, New York 11787 Tel: (516) 231-1000 TWX: 510-227-6623

Hamilton/Avnet Electronics 333 Metro Park Rochester, New York 14623 Tel: (716) 475-9130

Hamilton/Avnet Electronics 5 Hub Drive Melville, New York 11746 Tel: (516) 454-6000 TWX: 510-224-6166

Hamilton/Avnet Electronics 6500 Joy Road East Syracuse, New York 13057 Tel: (315) 437-2642 TWX: 710-541-0959

Harvey Electronics 60 Crossways Park West Woodbury, New York 11797 Tel: (516) 921-8700 TWX: 510-221-2184

Harvey Electronics P.O. Box 1208 Binghamton, New York 13902 Tel: (607) 748-8211 TWX: 510-252-0893

Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: (716) 884-3450 TWX: 710-522-1692

Schweber Electronics Jericho Turnpike Westbury, New York 11590 Tel: (516) 334-7474 TWX: 510-222-9470 510-222-3660

Schweber Electronics 3 Town Line Circle Rochester, New York 14623 Tel: (716) 424-2222

NORTH CAROLINA Arrow Electronics 938 Burke Street Winston-Salem, North Carolina 27101 Tel: (919) 725-8711 TWX: 510-931-3169

Hall-Mark Electronics 1208 Front Street, Building K Raleigh, North Carolina 27609 Tel: (919) 832-4465 TWX: 510-928-1831

Hamilton/Avnet Electronics 2803 Industrial Drive Raleigh, North Carolina 27609 Tel: (919) 829-8030

OHIO Arrow Electronics 6238 Cochran Solon, Ohio 44139 Tel: (216) 248-3990

Arrow Electronics 7620 McEwen Road Centerville, Ohio 45459 Tel: (513) 435-5563 TWX: 810-459-1611

Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: (513) 433-0610 TWX: 810-450-2531

Hamilton/Avnet 4588 Emery Industrial Parkway Cleveland, Ohio 44128 Tel: (216) 831-3500 TWX: 810-427-9452

Pioneer/Cleveland 4800 East 131st Street Cleveland, Ohio 44105 Tel: (216) 587-3600 TWX: 810-422-2211

OKLAHOMA Hall-Mark Electronics 5460 S. 103rd East Avenue Tulsa, Oklahoma 74145 Tel: (918) 835-8458 TWX: 910-845-2290 OREGON Hamilton/Avnet Electronics 6024 S.W. Jean Road Bldg. C. Suite 10 Lake Oswego, Oregon 97034 Tel: (503) 635-8831

Almac Stroum Electronics 8022 Southwest Nimbus, Bldg. 7 Koll Business Park Portland, Oregon 97005 Tel: (503) 641-9070 TWX: 910-467-8743

PENNSYLVANIA Schweber Electronics 101 Rock Road Horsham. Pennsylvania 19044 Tel: (215) 441-0600

Pioneer/Pittsburgh 259 Kappa Drive Pittsburgh, Pennsylvania 15238 Tel: (412) 782-2300 TWX: 710-795-3122

Arrow Electronics 650 Seco Road Monroeville, Pennsylvania 15146 Tel: (412) 856-7000

TEXAS Hall-Mark Electronics P.O. Box 222035 11333 Page Mill Road Dallas, Texas 75222 Tel: (214) 343-5000 TWX: 910-867-4721

Hall-Mark Electronics 8000 Westglen Houston, Texas 77063 Tel: (713) 781-6100 TWX: 910-881-2711

Hall-Mark Electronics 12211 Technology Boulevard Austin, Texas 78759 Tel: (512) 258-8848 TWX: 910-874-2031

Hamilton/Avnet Electronics 2111 West Walnut Hill Lane Irving, Texas 75062 Tel: (214) 659-4111 TELEX: 73-05-11

Hamilton/Avnet Electronics 3939 Ann Arbor Street Houston, Texas 77042 Tel: (713) 780-1771

Hamilton/Avnet Electronics 2401 Rutland Drive Austin, Texas 78758 Tel: (512) 837-8911

Schweber Electronics 4202 Beltway Drive Dallas, Texas 75234 Tel: (214) 661-5010 TWX: 910-860-5493

Schweber Electronics 7420 Harwin Drive Houston, Texas' 77036 Tel: (713) 784-3600

UTAH Beli Industries 3639 West 2150 South Salt Lake City, Utah 84120 Tel: (801) 972-6969 TWX: 910-925-5686

Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, Utah 84119 Tel: (801) 972-2800 TWX: 910-925-4018

WASHINGTON Hamilton/Avnet Electronics 14212 N.E. 21st Street Bellevue, Washington 98005 Tel: (206) 453-5844 TWX: 910-443-2469

Wyle Distribution Group 1750 132nd Avenue, N.E. Bellevue, Washington 98005 Tel: (206) 453-8300 TWX: 910-443-2526

Almac Stroum Electronics 5811 Sixth Avenue South Seattle, Washington 98108 Tel: (206) 763-2300 TWX: 910-444-2067

WISCONSIN Arrow Electronics 434 West Rawson Avenue Oak Creek, Wisconsin 53154 Tel: (414) 764-6600 TWX: 910-262-1193

Hall-Mark Electronics 9657 South 20th Street Oak Creek, Wisconsin 53154 Tel: (414) 761-3000

Hamilton/Avnet Electronics 2975 Moorland Road New Berlin, Wisconsin 53151 Tel: (414) 784-4510

4-17-81

ADVANCED MICRO DEVICES, INC. 901 Thompson Place P. O. Box 453 Sunnyvale, California 94006 (408) 732-2400 TWX: 910-339-9280 TWX: 910-339-9280 TELEX: 34-6306 TOLL FREE (800) 538-8450

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ anananana 2 2 2 2 2 2222 2 2 22 22 22222 הה 2 1 алалалал ananananananana 222 2 1 20 222 ааааа алалалала 22