

AAAAAAA<mark>AA</mark>AAAAAAAAAAAA

. . . •

Advanced Micro Devices

Bipolar/MOS Memories Data Book

© 1982 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The company assumes no responsibility for the use of any circuits described herein.

> 901 Thompson Place, P.O. Box 453, Sunnyvale, California 94086 (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

> > Printed in U.S.A. 10/82 BPM-2100

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE **INDUSTRY CROSS REFERENCE APPLICATION NOTE**

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY **MEMORIES (ROM)**

MOS UV ERASABLE **PROGRAMMABLE ROM (EPROM)**

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

5

Index Section

Numerical Device	Index	1-1
Functional Index a	Ind Selection Guide	1-5
	ference	
Application Note	Testing High-Performance Bipolar Memory	1-19

NUMERICAL DEVICE INDEX

Am100415	ECL 1024 x 1 IMOX™ II Bipolar RAM	
Am100415A	ECL 1024 x 1 IMOX II Bipolar RAM	
Am100470	ECL 4096 x 1 IMOX Bipolar RAM	
Am100470A	ECL 4096 x 1 IMOX Bipolar RAM	
Am100470SA	ECL 4096 x 1 IMOX Bipolar RAM	
Am100474	ECL 1024 x 4 IMOX Bipolar RAM	
Am100474A	ECL 1024 x 4 IMOX Bipolar RAM	
Am100474SA Am10415	ECL 1024 x 4 IMOX Bipolar RAM ECL 1024 x 1 IMOX Bipolar RAM	
Am10415A	ECL 1024 x 1 IMOX Bipolar RAM	
Am10415SA	ECL 1024 x 1 IMOX Bipolar RAM	
Am10470	ECL 4096 x 1 IMOX Bipolar RAM	3-76
Am10470A	ECL 4096 x 1 IMOX Bipolar RAM	
Am10470SA	ECL 4096 x 1 IMOX Bipolar RAM	
Am10474	ECL 1024 x 4 IMOX Bipolar RAM	
Am10474A	ECL 1024 x 4 IMOX Bipolar RAM	
Am10474SA	ECL 1024 x 4 IMOX Bipolar RAM	
Am1702A	256-Word by 8-Bit Programmable Read Only Memory	
Am2101	256 x 4 Static R/W Random Access Memories	
Am2111	256 x 4 Static R/W Random Access Memories	
Am2147	4096 x 1 Static R/W Random Access Memory	
Am2148	1024 x 4 Static R/W Random Access Memory	
Am2149	1024 x 4 Static R/W Random Access Memory	
Am21L41	4096 x 1 Static R/W Random Access Memory	
Am2708	1024 x 8 Erasable Read Only Memory	
Am27128	16,384 x 8-Bit UV Erasable PROM	
Am2716	2048 x 8-Bit UV Erasable PROM	
Am2732	4096 x 8-Bit UV Erasable PROM	
Am2732A	4096 x 8-Bit UV Erasable PROM	
Am2764	8192 x 8-Bit UV Erasable PROM	
Am27LS00	Low-Power Schottky 256-Bit Bipolar RAM	
Am27LS00A	Low-Power Schottky 256-Bit Bipolar RAM	3-36
Am27LS00-1	Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM	3-42
Am27LS00-1A	Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM	3-42
Am27LS01	Low-Power Schottky 256-Bit Bipolar RAM	3-36
Am27LS01A	Low-Power Schottky 256-Bit Bipolar RAM	3-36
Am27LS01-1	Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM	3-42
Am27LS01-1A	Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM	
Am27LS02	Low-Power Schottky 64-Bit Bipolar RAM	
Am27LS03	Low-Power Schottky 64-Bit Bipolar RAM	
Am27LS06	Low-Power, Noninverting 64-Bit Bipolar RAM	
Am27LS07	Low-Power, Noninverting 64-Bit Bipolar RAM	3-32
Am27LS18	Low-Power Schottky 256-Bit Generic Series Bipolar PROM	2-8
Am27LS184	8192-Bit Generic Series Bipolar IMOX PROM	
Am27LS185	8192-Bit Generic Series Bipolar IMOX PROM	
Am27LS19	Low-Power Schottky 256-Bit Generic Series Bipolar PROM	2-8
Am27PS181	8,192-Bit Generic Series IMOX Bipolar PROM	
Am27PS181A	8,192-Bit Generic Series IMOX Bipolar PROM	
Am27PS185	8192-Bit Generic Series Bipolar IMOX PROM	
Am27PS191	16,384-Bit Generic Series IMOX Bipolar PROM	
Am27PS191A	16,384-Bit Generic Series IMOX Bipolar PROM	
Am27PS281	8,192-Bit Generic Series IMOX Bipolar PROM	2-80

1

IMOX is a trademark of Advanced Micro Devices.

NUMERICAL DEVICE INDEX (Cont.)

A	
Am27PS281A	8,192-Bit Generic Series IMOX Bipolar PROM
Am27PS291	16,384-Bit Generic Series IMOX Bipolar PROM
Am27PS291A	16,384-Bit Generic Series IMOX Bipolar PROM
Am27PS41	16,384-Bit Generic Series Bipolar IMOX PROM
Am27S02	Schottky 64-Bit Bipolar RAM
Am27S02A	Schottky 64-Bit Bipolar RAM
Am27S03	Schottky 64-Bit Bipolar RAM
Am27S03A	Schottky 64-Bit Bipolar RAM 3-1
Am27S06	Noninverting Schottky 64-Bit Bipolar RAM
Am27S06A	Noninverting Schottky 64-Bit Bipolar RAM
Am27S07	Noninverting Schottky 64-Bit Bipolar RAM 3-26
Am27S07A	Noninverting Schottky 64-Bit Bipolar RAM 3-26
Am27S12	2048-Bit Generic Series Bipolar PROM 2-22
Am27S12A	2048-Bit Generic Series Bipolar PROM 2-22
Am27S13	2048-Bit Generic Series Bipolar PROM 2-22
Am27S13A	2048-Bit Generic Series Bipolar PROM 2-22
Am27S15	4096-Bit Generic Series Bipolar PROM 2-29
Am27S18	256-Bit Generic Series Bipolar PROM 2-1
Am27S18A	256-Bit Generic Series Bipolar PROM 2-1
Am27S180	1024 x 8-Bit Generic Series Bipolar IMOX PROM 2-73
Am27S180A	1024 x 8-Bit Generic Series Bipolar IMOX PROM 2-73
Am27S181	1024 x 8-Bit Generic Series Bipolar IMOX PROM 2-73
Am27S181A	1024 x 8-Bit Generic Series Bipolar IMOX PROM 2-73
Am27S184	8192-Bit Generic Series Bipolar IMOX PROM 2-87
Am27S184A	8192-Bit Generic Series Bipolar IMOX PROM 2-87
Am27S185	8192-Bit Generic Series Bipolar IMOX PROM 2-87
Am27S185A	8192-Bit Generic Series Bipolar IMOX PROM
Am27S19	256-Bit Generic Series Bipolar PROM
Am27S19A	256-Bit Generic Series Bipolar PROM 2-1
Am27S190	16,384-Bit Generic Series Bipolar IMOX PROM2-102
Am27S190A	16,384-Bit Generic Series Bipolar IMOX PROM2-102
Am27S191	16,384-Bit Generic Series Bipolar IMOX PROM2-102
Am27S191A	16,384-Bit Generic Series Bipolar IMOX PROM
Am27S20	1024-Bit Generic Series Bipolar PROM 2-15
Am27S20A	1024-Bit Generic Series Bipolar PROM 2-15
Am27S21	1024-Bit Generic Series Bipolar PROM 2-15
Am27S21A	1024-Bit Generic Series Bipolar PROM 2-15
Am27S25	4K-Bit (512 x 8) Generic Series Bipolar IMOX Registered PROM 2-34
Am27S25A	4K-Bit (512 x 8) Generic Series Bipolar IMOX Registered PROM 2-34
Am27S27	4096-Bit Generic Series Bipolar Registered PROM 2-41
Am27S28	4096-Bit Generic Series Bipolar PROM 2-47
Am27S28A	4096-Bit Generic Series Bipolar PROM
Am27S280	1024 x 8-Bit Generic Series Bipolar IMOX PROM
Am27S280A	1024 x 8-Bit Generic Series Bipolar IMOX PROM
Am27S281	1024 x 8-Bit Generic Series Bipolar IMOX PROM
Am27S281A	1024 x 8-Bit Generic Series Bipolar IMOX PROM
Am27S29	4096-Bit Generic Series Bipolar PROM
Am27S29A	4096-Bit Generic Series Bipolar PROM
Am27S290	16,384-Bit Generic Series Bipolar IMOX PROM
Am27S290A	16,384-Bit Generic Series Bipolar IMOX PROM
Am27S291	16,384-Bit Generic Series Bipolar IMOX PROM
Am27S291A	16,384-Bit Generic Series Bipolar IMOX PROM
Am27S30	4096-Bit Generic Series Bipolar PROM
Am27S30A	4096-Bit Generic Series Bipolar PROM

NUMERICAL DEVICE INDEX (Cont.)

Am27S31	4096-Bit Generic Series Bipolar PROM	
Am27S31A	4096-Bit Generic Series Bipolar PROM	
Am27S32	4096-Bit Generic Series Bipolar PROM	
Am27S32A	4096-Bit Generic Series Bipolar PROM	
Am27S33	4096-Bit Generic Series Bipolar PROM	2-57
Am27S33A	4096-Bit Generic Series Bipolar PROM	2-57
Am27S35	8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM	2-64
Am27S35A	8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM	2-64
Am27S37	8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM	2-64
Am27S37A	8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM	2-64
Am27S40	16,384-Bit Generic Series Bipolar IMOX PROM	2-125
Am27S40A	16,384-Bit Generic Series Bipolar IMOX PROM	2-125
Am27S41	16,384-Bit Generic Series Bipolar IMOX PROM	2-125
Am27S41A	16,384-Bit Generic Series Bipolar IMOX PROM	2-125
Am27S43	32,768-Bit Generic Series Bipolar IMOX PROM	
Am27S43A	32,768-Bit Generic Series Bipolar IMOX PROM	2-137
Am27S45	16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM	2-116
Am27S45A	16K-Bit (2048 x 8) Generic Series Bipolar IMCX Registered PROM	2-116
Am27S47	16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM	
Am27S47A	16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM	
Am27S65	Generic Series 4-Wide Bipolar IMOX Registered PROMs with	
	SSR Diagnostics Capability	2-62
Am27S75	Generic Series 4-Wide Bipolar IMOX Registered PROMs with	
	SSR Diagnostics Capability	2-62
Am27S85	Generic Series 4-Wide Bipolar IMOX Registered PROMs with	
	SSR Diagnostics Capability	2-62
Am29700	Noninverting Schottky 64-Bit RAM	
Am29701	Noninverting Schottky 64-Bit RAM	
Am29702	Schottky 64-Bit RAM	
Am29703	Schottky 64-Bit RAM	
Am29720	Low-Power Schottky 256-Bit Random Access Memories	
Am29721	Low-Power Schottky 256-Bit Random Access Memories	
Am29750A	256-Bit Generic Series Bipolar PROM	
Am29751A	256-Bit Generic Series Bipolar PROM	
Am29760A	1024-Bit Generic Series Bipolar PROM	
Am29761A	1024-Bit Generic Series Bipolar PROM	
Am29770	2048-Bit Generic Series Bipolar PROM	
Am29771	2048-Bit Generic Series Bipolar PROM	
Am29775	4096-Bit Generic Series Bipolar PROM with Register	
Am3101	Schottky 64-Bit Write Transparent Bipolar RAM	3-11
Am3101A	Schottky 64-Bit Bipolar RAM	
Am3101-1	Schottky 64-Bit Write Transparent Bipolar RAM	
Am31L01	64-Bit Write Transparent Bipolar RAM	
Am31L01A	64-Bit Write Transparent Bipolar RAM	
Am5489	Schottky 64-Bit Write Transparent Bipolar RAM	
Am5489-1	Schottky 64-Bit Write Transparent Bipolar RAM	
Am54S189	Schottky 64-Bit Bipolar RAM	
Am54S289	Schottky 64-Bit Bipolar RAM	
Am7489	Schottky 64-Bit Write Transparent Bipolar RAM	
Am7489-1	Schottky 64-Bit Write Transparent Bipolar RAM	
Am74S189	Schottky 64-Bit Bipolar RAM	
Am74S289		3-16
8316E	2048 x 8 Read Only Memory	5-1
Am9016		4-59
,		

NUMERICAL DEVICE INDEX (Cont.)

Am9044	4096 x 1 Static R/W Random Access Memory 4-3	7 4
Am9101	256 x 4 Static R/W Random Access Memories	
Am9111	256 x 4 Static R/W Random Access Memories	•
Am9112	256 x 4 Static R/W Random Access Memories	•
Am9114	1024 x 4 Static R/W Random Access Memory	
Am9122	256 x 4 Static R/W RAMs 4-3	
Am9124	1024 x 4 Static R/W Random Access Memory	
Am9124 Am9128	•	
Am9120 Am9167	2048 x 8 Static R/W Random Access Memory	
	16,384 x 1 Static R/W Random Access Memory	
Am9168	4096 x 4 Static R/W Random Access Memory	
Am9169	4096 x 4 Static R/W Random Access Memory	
Am91L01	256 x 4 Static R/W Random Access Memories	•
Am91L11	256 x 4 Static R/W Random Access Memories	•
Am91L12	256 x 4 Static R/W Random Access Memories	
Am91L22	256 x 4 Static R/W RAMs	
Am92128	128K (16,384 x 8) Read Only Memory	
Am9218	2048 x 8 Read Only Memory	-
Am92256	256K (32,768 x 8) Read Only Memory 5-1	
Am9232	4096 x 8 Read Only Memory	
Am9233	4096 x 8 Read Only Memory	•
Am9244	4096 x 1 Static R/W Random Access Memory 4-3	
Am9264	64K (8192 x 8) Read Only Memory 5-	-
Am9265	64K (8192 x 8) Read Only Memory 5-1	
Am93412	TTL 1024-Bit Bipolar IMOX RAM	
Am93412A	TTL 1024-Bit Bipolar IMOX RAM 3-4	
Am93415	TTL 1024-Bit Bipolar IMOX RAM 3-5	
Am93415A	TTL 1024-Bit Bipolar IMOX RAM 3-5	
Am93422	TTL 1024-Bit Bipolar IMOX RAM 3-4	
Am93422A	TTL 1024-Bit Bipolar IMOX RAM 3-4	
Am93425	TTL 1024-Bit Bipolar IMOX RAM 3-5	
Am93425A	TTL 1024-Bit Bipolar IMOX RAM 3-5	
Am93L412	Low-Power TTL 1024-Bit Bipolar IMOX RAM	
Am93L412A	Low-Power TTL 1024-Bit Bipolar IMOX RAM	
Am93L422	Low-Power TTL 1024-Bit Bipolar IMOX RAM	
Am93L422A	Low-Power TTL 1024-Bit Bipolar IMOX RAM	
Am9708	1024 x 8 Erasable Read Only Memory 6-	-7
Am9716	2048 x 8-Bit UV Erasable PROM 6-1	
	Testing High-Performance Bipolar Memory 1-1	19
	Technical Report	
	Guide to the Analysis of Programming Problems	51
	PROM Programming Equipment Guide	

Bipolar PROM Functional Index and Selection Guide

Part Number	Organization	Access Time COM'L/MIL Max	I _{CC} COM'L/MIL Max	Output	Number of Pins	Packages	Comments	Page No.
Am27LS181	32 x 8	50/65	80/80	OC	16	D, P, F, L		2-8
Am27LS19 ¹	32 x 8	50/65	80/80	3S	16	D, P, F, L	Low power	2-8
Am27S18	32 x 8	40/50	115/115	oc	16	D, P, F, L		2-1
Am27S18A	32 x 8	25/35	115/115	oc	16	D, P, F, L		2-1
Am27S19	32 x 8	40/50	115/115	35	16	D, P, F, L		2-1
Am27S19A	32 x 8	25/35	115/115	38	16	D, P, F, L		2-1
Am27S20	256 x 4	45/60	130/130	oc	16	D, P, F, L		2-15
Am27S20A	256 x 4	30/40	130/130	oc	16	D, P, F, L		2-15
Am27S21	256 x 4	45/60	130/130	35	16	D, P, F, L		2-15
Am27S21A	256 x 4	30/40	130/130	35	16	D, P, F, L		2-15
Am27S12	512 x 4	50/60	130/130	oc	16	D, P, F, L		2-22
Am27S12A	512 x 4	30/40	130/130	oc	16	D, P, F, L		2-22
Am27S13	512 x 4	50/60	130/130	3S	16	D, P, F, L		2-22
Am27S13A	512 x 4	30/40	130/130	35	16	D, P, F, L		2-22
Am27S15	512 x 8	60/90	175/185	35	24	D, P, F, L		2-29
Am27S25	512 x 8	N.A. ² /N.A. ²	185/185	3S	24	D, P, F, L	Output registers, THINDIP Pkg ³	2-34
Am27S25A	512 x 8	N.A. ⁴ /N.A. ⁴	185/185	3S	24	D, P, F, L	Output registers, THINDIP Pkg ³	2-34
Am27S27	512 x 8	N.A. ² /N.A. ²	185/185	3S	22	D, P, L	Output registers	2-41
Am27S28	512 x 8	55/70	160/160	oc	20	D, P, L		2-47
Am27S28A	512 x 8	35/45	160/160	oc	20	D, P, L		2-47
Am27S29	512 x 8	55/70	160/160	3S	20	D, P, L		2-47
Am27S29A	512 x 8	35/45	160/160	3S	20	D, P, L		2-47
Am27S30	512 x 8	55/70	175/175	oc	24	D, P, F, L		2-52
Am27S30A	512 x 8	35/45	175/175	oc	24	D, P, F, L		2-52
Am27S31	512 x 8	55/70	175/175	38	24	D, P, F, L		2-52
Am27S31A	512 x 8	35/45	175/175	3S	24	D, P, F, L		2-52
Am27S32	1024 x 4	55/70	140/145	oc	18	D, P, F, L		2-57
Am27S32A	1024 x 4	35/45	140/145	OC	18	D, P, F, L	Ultra fast	2-57
Am27S33	· 1024 x 4	55/70	140/145	3S	18	D, P, F, L		2-57
Am27S33A	1024 x 4	35/45	140/145	3S	18	D, P, F, L	Ultra fast	2-57
Am27S35	1024 x 8	N.A. ² /N.A. ²	185	35	24	D, P, F, L	Output registers, asynchronous initialize, THINDIP Pkg ³	2-64
Am27S35A	1024 x 8	N.A. ⁴ /N.A. ⁴	185	35	24	D, P, F, L	Ultra fast, output registers, asynchronous initialize, THINDIP Pkg ³	2-64
Am27S37	1024 x 8	N.A. ² /N.A. ²	185	35	24	D, P, F, L	Output registers, synchronous initialize, THINDIP Pkg ³	2-64

BIPOLAR PROM (Cont.)

Part Number	Organization	Access Time COM'L/MiL Max	I _{CC} COM'L/MIL Max	Output	Number of Pins	Packages	Comments	Page No.
Am27S37A	1024 x 8	N.A. ⁴ /N.A. ⁴	185	35	24	D, P, F, L	Ultra fast, output registers, synchronous initialize, THINDIP Pkg ³	2-64
Am27S180	1024 x 8	60/80	185/185	oc	24	D, P, F, L		2-73
Am27S180A	1024 x 8	35/50	185/185	oc	24	D, P, F, L	Ultra fast	2-73
Am27S181	1024 x 8	60/80	185/185	35	24	D, P, F, L		2-73
Am27S181A	1024 x 8	35/50	185/185	35	24	D, P, F, L	Ultra fast	2-73
Am27PS181	1024 x 8			3S	24	D, P, F, L	Power switched	2-80
Am27PS181A	1024 x 8			3S	24	D, P, F, L	Power switched	2-80
Am27S280	1024 x 8	60/80	185/185	oc	24	D, P, F, L	THINDIP Pkg ³	2-73
Am27S280A	1024 x 8	35/50	185/185	oc	24	D, P, F, L	Ultra fast, THINDIP Pkg ³	2-73
Am27S281	1024 x 8	60/80	185/185	3S	24	D, P, F, L	THINDIP Pkg ³	2-73
Am27S281A	1024 x 8	35/50	185/185	35	24	D, P, F, L	Ultra fast, THINDIP Pkg ³	2-73
Am27PS281	1024 x 8	- -		35	24	D, P, F, L	Power switched, THINDIP Pkg ³	2-80
Am27PS281A	1024 x 8			35	24	D, P, F, L	Ultra fast, power switched, THINDIP Pkg ³	2-80
Am27S184	2048 x 4	50/55	150/150	oc	18	D, P, F, L		2-87
Am27S184A	2048 x 4	35/45	150/150	oc	18	D, P, F, L	Ultra fast	2-87
Am27S185	2048 x 4	50/55	150/150	35	18	D, P, F, L		2-87
Am27S185A	2048 x 4	35/45	150/150	35	18	D, P, F, L	Ultra fast	2-87
Am27LS184	2048 x 4	60/65	120/125	_ oc	18	D, P, F, L	Low power	2-92
Am27LS185	2048 x 4	60/65	120/125	35	18	D, P, F, L	Low power	2-92
Am27PS185	2048 x 4	60/65	150/75 ⁵	35	18	D, P, F, L	Power switched	2-97
Am27S190	2048 x 8	50/65	185/185	oc	24	D, P, F, L		2-102
Am27S190A	2048 x 8	35/50	185/185	oc	24	D, P, F, L	Ultra fast	2-102
Am27S191	2048 x 8	50/65	185/185	35	24	D, P, F, L		2-102
Am27S191A	2048 x 8	35/50	185/185	3S	24	D, P, F, L	Ultra fast	2-102
Am27PS191	2048 x 8	65/75	185/80 ⁵	35	24	D, P, F, L	Power switched	2-109
Am27PS191A	2048 x 8	50/65	185/80 ⁵	3S	24	D, P, F, L	Ultra fast, power switched	2-109
Am27S290	2048 x 8	50/65	185/185	oc	24	D, P, F, L	THINDIP Pkg ³	2-102
Am27S290A	2048 x 8	35/50	185/185	oc	24	D, P, F, L	Ultra fast, THINDIP Pkg ³	2-102
Am27S291	2048 x 8	50/65	185/185	35	24	D, P, F, L	THINDIP Pkg ³	2-102
Am27S291A	2048 x 8	35/50	185/185	3S	24	D, P, F, L	Ultra fast, THINDIP Pkg ³	2-102
Am27PS291	2048 x 8	65/75	185/80 ⁵	35	24	D, P, F, L	Power switched, THINDIP Pkg ³	2-109
Am27PS291A	2048 x 8	50/65	185/80 ⁵	3S	24	D, P, F, L	Ultra fast, power switched, THINDIP Pkg ³	2-109
Am27S40	4096 x 4	50/65	165/170	oc	20	D, P, L		2-125
Am27S40A	4096 x 4	35/50	165/170	oc	20	D, P, L	Ultra fast	2-125
Am27S41	4096 x 4	50/65	165/170	35	20	D, P, L		2-125
Am27S41A	4096 x 4	35/50	165/170	3S	20	D, P, L	Ultra fast	2-125
Am27PS41	4096 x 4	50/65	170/85 ⁵	35	20	D, P, L	Power switched	2-131

BIPOLAR PROM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	I _{CC} COM'L/MIL Max	Output	Number of Pins	Packages	Comments	Page No.
Am27S43	4096 x 8	N.A.	185	35	24	D, P, F, L		2-137
Am27S43A	4096 x 8	N.A.	185	3S	24	D, P, F, L	Ultra fast	2-137
Am27PS43	4096 x 8	N.A.	N.A.	35	24	D, P, F, L	Power switched	_
Am27S45	2048 x 8	N.A. ²	185/185	35	24	D, P, L	Output registers, asynchronous initialize, THINDIP Pkg ³	2-116
Am27S45A	2048 x 8	N.A. ⁴	185/185	35	24	D, P, L	Ultra fast, output registers, asynchronous initialize, THINDIP Pkg ³	2-116
Am27S47	2048 x 8	N.A. ²	185/185	35	24	D, P, L	Output registers, synchronous initialize, THINDIP Pkg ³	2-116
Am27S47A	2048 x 8	N.A. ⁴	185/185	3S	24	D, P, L	Ultra fast, output registers, synchronous initialize, THINDIP Pkg ³	2-116

Notes: 1. Replaces Am27LS08/09

Contains built-in pipeline registers: nominal address to clock setup time = 35ns (typ), clock to output = 20ns (typ).
 3. 300-mil lateral pin spacing.

Contains built-in pipeline registers: nominal address to clock setup time = 25ns (typ), clock to output = 15ns (typ).
 I_{CC} are power up and power down current limits respectively.

Bipolar Memory RAM Functional Index and Selection Guide

BIPOLAR ECL RAM

Part Number	Organization	Access Time COML/MIL Max	I _{EE} COML/MIL Max	ECL Series	Number of Pins	Packages	Comments	Page No.
Am10415SA	1024 x 1	15/20	-150/165	10K	16	D, P, F, L		3-62
Am10415A	1024 x 1	20/25	-150/-165	10K	16	D, P, F, L		3-62
Am10415	1024 x 1	35/40	-150/-165	10K	16	D, P, F, L		3-62
Am100415A	1024 x 1	15/—	-150/-	100K	16	D, P, F, L		3-69
Am100415	1024 x 1	20/	-150/-	100K	16	D, P, F, L		3-69
Am10470SA	4096 x 1	15/20	-230/-255	10K	18	D, F ¹ , L		3-76
Am10470A	4096 x 1	25/30	-200/-220	10K	18	D, F ¹ , L		3-76
Am10470	4096 x 1	35/40	-200/-220	10K	18	D, F ¹ , L		3-76
Am100470SA	4096 x 1	15/-	-230/	100K	18	D, F ¹ , L		3-83
Am100470A	4096 x 1	25/—	-195/	100K	18	D, F ¹ , L		3-83
Am100470	4096 x 1	35/—	-195/-	100K	18	D, F ¹ , L		3-83
Am10474A	1024 x 4	15/20	-230/-255	10K	24	D, F, L		3-74
Am10474	1024 x 4	25/30	-230/-220	10K	24	D, F, L		3-74
Am100474A	1024 x 4	15/-	-230/	100K	24	D, F, L		3-75
Am100474	1024 x 4	25/	-200/-	100K	24	D, F, L		3-75

Note: 1. For flat package consult factory.

BIPOLAR TTL RAM

Part Number	Organization	Access Time COML/MIL Max	I _{CC} COML/MIL Max	Output	Number of Pins	Packages (Note 1)	Comments	Page No.
Am27S02A	16 x 4	25/30	100/105	OC	16	D, P, F, L	Ultra Fast	3-1
Am27S03A	16 x 4	25/30	100/105	3S	16	D, P, F, L	Ollia Tast	3-1
Am27S02	16 x 4	35/50	105/105	oc	16	D, P, F, L		3-1
Am27S03	16 x 4	35/50	125/125	35	16	D, P, F, L		3-1
Am27LS02	16 x 4	55/65	35/38	oc	16	D, P, F, L	Low Power	3-7
Am27LS03	16 x 4	55/65	35/38	35	16	D, P, F, L		3-7
Am74/54S289	16 x 4	35/50	105/105	oc	16	D, P, F, L	·····	3-16
Am74/54S189	16 x 4	35/50	125/125	3S	16	D, P, F, L		3-16
Am27S06A	16 x 4	25/30	100/105	oc	16	D, P, F, L		3-26
Am27S07A	16 x 4	25/30	100/105	35	16	D, P, F, L	Noninverting	3-26
Am27S06	16 x 4	35/50	100/105	oc	16	D, P, F, L	Outputs	3-26
Am27S07	16 x 4	35/50	100/105	35	16	D, P, F, L	-	3-26
Am27LS06	16 x 4	55/65	35/38	ос	16	D, P, F, L	Noninverting	3-32
Am27LS07	16 x 4	55/65	35/38	3S	16	D, P, F, L	Outputs, Low Power	3-32
Am3101A	16 x 4	35/50	100/105	oc	16	D, P, F, L		3-16
Am3101-1	16 x 4	35/50	100/105	oc	16	D, P, F, L	Write	3-11
Am3101	16 x 4	50/60	100/105	oc	16	D, P, F, L	Transparent ²	3-11

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

BIPOLAR TTL RAM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	I _{CC} COM'L/MIL Max	Output	Number of Pins	Packages (Note 1)	Comments	Page No.
Am31L01A	16 x 4	55/65	35/38	OC	16	D, P, F, L	Low Power,	3-21
Am31L01	16 x 4	80/90	35/38	OC	16	D, P, F, L	Write Transparent ²	3-21
Am74/5489-1	16 x 4	35/50	100/105	oc	16	D, P, F, L	Write Transparent ²	3-11
Am74/5489	16 x 4	50/60	100/105	OC	16	D, P, F, L	vvrite i ransparent-	3-11
Am27LS00A	256 x 1	35/45	115/115	3S	16	D, P, F, L	Liller Cost	3-36
Am27LS01A	256 x 1	35/45	115/115	OC	16	D, P, F, L	Ultra Fast	3-36
Am27LS00	256 x 1	45/55	70/70	35	16	D, P, F, L	Frank Law David	3-36
Am27LS01	256 x 1	45/55	70/70	oc	16	D, P, F, L	Fast, Low Power	3-36
Am27LS00-1A	256 x 1	35/45	115/115	3S	16	D, P, F, L		3-42
Am27LS01-1A	256 x 1	35/45	115/115	OC	16	D, P, F, L		3-42
Am27LS00-1	256 x 1	45/55	70/70	35	16	D, P, F, L	Noninverting Outputs	3-42
Am27LS01-1	256 x 1	45/55	70/70	oc	16	D, P, F, L		3-42
Am93415A	1024 x 1	30/40	155/170	OC	16	D, P, F, L	Liller Coot	3-57
Am93425A	1024 x 1	30/40	155/170	3S	16	D, P, F, L	Ultra Fast	3-57
Am93415	1024 x 1	45/65	155/170	OC	16	D, P, F, L		3-57
Am93425	1024 x 1	45/65	155/170	35	16	D, P, F, L		3-57
Am93412A	256 x 4	35/45	155/170	OC	22 ³	D, P, F, L	1.0. 54	3-47
Am93422A	256 x 4	35/45	155/170	3S	22 ³	D, P, F, L	Ultra Fast	3-47
Am93412	256 x 4	45/60	155/170	oc	22 ³	D, P, F, L		3-47
Am93422	256 x 4	45/60	155/170	3S	22 ³	D, P, F, L		3-47
Am93L412A	256 x 4	45/55	80/90	OC	22 ³	D, P, F, L		3-52
Am93L422A	256 x 4	45/55	80/90	35	22 ³	D, P, F, L		3-52
Am93L412	256 x 4	60/75	80/90	oc	22 ³	D, P, F, L	Low Power	3-52
Am93L422	256 x 4	60/75	80/90	35	22 ³	D, P, F, L	1	3-52

Notes: 1. D = Hermetic DIP, P = Molded DIP, F = Cerpak, L = Chip-Pak™.
2. Complement of data in is available on the outputs in the write mode when both CS and WE are low.
3. Cerpak (F) is 24 pin.

MOS Memory Functional Index and Selection Guide

1K STATIC RAMs

Part		Access	Power Dissipation (mW)			Supply	Temp		Page
Number	Organization	Time (ns)	Standby	Active	Pins	Voltage (V)	Range	Package	No.
Am9101A	256 x 4	500	47	290	22	5	C, M	D, P	4-1
Am91L01A	256 x 4	500	38	173	22	5	C, M	D, P	4-1
Am9101B	256 x 4	400	47	290	22	5	C, M	D, P	4-1
Am91L01B	256 x 4	400	38	173	22	5	C, M	D, P	4-1
Am9101C	256 x 4	300	47	315	22	5	C, M	D, P	4-1
Am91L01C	256 x 4	300	38	189	22	5	C, M	D, P	4-1
Am9101D	256 x 4	250	47	315	22	5	С	D, P	4-1
Am9111A	256 x 4	500	47	290	18	5	С, М	D, P	4-7
Am91L11A	256 x 4	500	38	173	18	5	C, M	D, P	4-7
Am9111B	256 x 4	400	47	290	18	5	C, M	D, P	4-7
Am91L11B	256 x 4	400	38	173	18	5	C, M	D, P	4-7
Am9111C	256 x 4	300	47	315	18	5	C, M	D, P	4-7
Am91L11C	256 x 4	300	38	189	18	5	С, М	D, P	4-7
Am9111D	256 x 4	250	47	315	18	5	С	D, P	4-7
Am9112A	256 x 4	500	47	290	16	5	C, M	D, P	4-13
Am91L12A	256 x 4	500	38	173	16	5	C, M	D, P	4-13
Am9112B	256 x 4	400	47	290	16	5	C, M	D, P	4-13
Am91L12B	256 x 4	400	38	173	16	5	С, М	D, P	4-13
Am9112C	256 x 4	300	47	315	16	5	С, М	D, P	4-13
Am91L12C	256 x 4	300	38	189	16	5	С, М	D, P	4-13
Am9112D	256 x 4	250	47	315	16	5	С	D, P	4-13
Am9122-25	256 x 4	25	-	660	22	5	C	D, P	4-19
Am9122-35	256 x 4	35	-	660	22	5	C, M	D, P	4-19
Am91L22-35	256 x 4	35	-	440	22	5	C	D, P	4-19
Am91L22-45	256 x 4	45	-	440	22	5	С, М	D, P	4-19
Am91L22-60	256 x 4	60	- 1	248	22	5	C	D, P	4-19

4K STATIC RAMs

			· · · · · · · · · · · · · · · · · · ·						
Am21L41-12	4096 x 1	120	25	200	18	5	С	D, P	4-25
Am21L41-15	4096 x 1	150	25	200	18	5	С	D, P	4-25
Am21L41-20	4096 x 1	200	25	200	18	5 5	С	D, P	4-25
Am21L41-25	4096 x 1	250	25	250	18		С	D, P	4-25
Am9044B	4096 x 1	450		350	18	5	С, М	D, P	4-31
Am90L44B	4096 x 1	450		250	18	5	C, M	D, P	4-31
Am9044C	4096 x 1	300		350	18	5	C, M	D, P	4-31
Am90L44C	4096 x 1	300		250	18	5 5	C, M	D, P	4-31
Am9044D	4096 x 1	250		350	18	5	C, M	D, P	4-31
Am90L44D	4096 x 1	250		250	18	5	C, M	D, P	4-31
Am9044E	4096 x 1	200		350	18	5	С	D, P	4-31
Am90L44E	4096 x 1	200		250	18	5	С	D, P	4-31
Am9244B	4096 x 1	450	150	350	18	5 5	C, M	D, P	4-31
Am92L44B	4096 x 1	450	100	250	18		C, M	D, P	4-31
Am9244C	4096 x 1	300	150	350	18	5	С, М	D, P	4-31
Am92L44C	4096 x 1	300	100	250	18	5	C, M	D, P	4-31
Am9244D	4096 x 1	250	150	350	18	5	C, M	D, P	4-31
Am92L44D	4096 x 1	250	100	250	18	5 5	C, M	D, P	4-31
Am9244E	4096 x 1	200	150	350	18	5	С	D, P	4-31
Am92L44E	4096 x 1	200	100	250	18	5	С	D, P	4-31
Am9114B	1024 x 4	450		350	18	5	C, M	D, P, F	4-35
Am91L14B	1024 x 4	450		250	18	5	С, М	D, P, F	4-35
Am9114C	1024 x 4	300		350	18	5 5	C, M	D, P, F	4-35
Am91L14C	1024 x 4	300		250	18	5	C, M	D, P, F	4-35
Am9114E	1024 x 4	200		350	18	5	С, М	D, P	4-35
Am91L14E	1024 x 4	200		250	18	5	С	D, P	4-35
Am9124B	1024 x 4	450	150	350	18	5	С, М	D, P, F	4-35
Am91L24B	1024 x 4	450	100	250	18	5	C, M	D, P, F	4-35
Am9124C	1024 x 4	300	150	350	18	5	C, M	D, P, F	4-35
Am91L24C	1024 x 4	300	100	250	18	5	С, М	D, P, F	4-35

4K STATIC RAMs (Cont.)

Part		Access	Power Dissi	pation (mW)		Supply	Temp.		Page
Number	Organization	Time (ns)	Standby	Active	Pins	Voltage (V)	Range	Package	No.
Am2147-35	4096 x 1	35	165	990	18	5	С	D	4-39
Am2147-45	4096 x 1	45	165	990	18	5	М	D,L	4-39
Am2147-55	4096 x 1	55	165	990	18	5	С, М	D,L	4-39
Am2147-70	4096 x 1	70	110	880	18	5	С, М	D, L	4-39
Am21L47-45	4096 x 1	45	83	688	18	5	С	D	4-39
Am21L47-55	4096 x 1	55	83	688	18	5	C	D	4-39
Am2148-55	1024 x 4	55	165	990	18	5	С, М	D, L	4-45
Am2148-70	1024 x 4	70	165	990	18	5	С, М	D,L	4-45
Am2149-55	1024 x 4	55	-	990	18	5	С, М	D,L	4-45
Am2149-70	1024 x 4	70	-	990	18	5	С, М	D,L	4-45

16K STATIC RAMs

Part		Access	Power Dissi	pation (mW)		Supply	Temp		Page	
Number	Organization	Time (ns)	Standby	Active	Pins	Voltage (V)	Range	Package	No.	
Am9128-10	2048 x 8	100	83	660	24	5	С	D, P	4-51	
Am9128-15	2048 x 8	150	83	550	24	5	С, М	D, P	4-51	
Am9128-20	2048 x 8	200	165	660	24	5	С, М	D, P	4-51	
Am9128-70*	2048 x 8	70	165	770	24	5	С	D, P	4-51	
Am9167-45*	16384 x 1	45	165	660	20	5	С	D	4-57	
Am9167-55*	16384 x 1	55	165	660	20	5	С, М	D	4-57	
Am9168-45*	4096 x 4	45	165	660	20	5	С	D	4-58	
Am9168-55*	4096 x 4	55	165	660	20	5	С, М	D	4-58	

*Available in 1983.

DYNAMIC RAMs

Part		Access	Power Dissi	pation (mW)		Supply	Temp	· .	Page
Number	Organization	Time (ns)	Standby	Active	Pins	Voltage (V)	Range	Package	No.
Am9016C	16384 x 1	300	20	420	16	+12 ±5	C, L	P, D, L	4-59
Am9016D	16384 x 1	250	20	420	16	+12 ±5	C, L	P, D, L	4-59
Am9016E	16384 x 1	200	20	420	16	+12 ±5	C, L	P, D, L	4-59
Am9016F	16384 x 1	150	20	420	16	+12 ±5	Ċ	P, D, L	4-59

ROMs

Part Number	Organization	Access Time (ns)	Temp Range	Supply Voltage	Pins	Operating Power Max (mW)	Outputs	Page No.
8316E	2048 x 8	450	C, M	+5	24	499	3-State	5-1
Am9218B	2048 x 8	450	C, M	+5	24	368	3-State	5-1
Am9218C	2048 x 8	350	C	+5	24	368	3-State	5-1
Am9232B	4096 x 8	450	C, M	+5	24	420	3-State	5-4
Am9232C	4096 x 8	300	С	+5	24	420	3-State	5-4
Am9232D	4096 x 8	250	C	+5	24	420	3-State	5-4
Am9233B	4096 x 8	450	С, М	+5	24	420	3-State	5-4
Am9233C	4096 x 8	300	C	+5	24	420	3-State	5-4
Am9233D	4096 x 8	250	C	+5	24	420	3-State	5-4
Am9264B	8192 x 8	450	С, М	+5	24	440	3-State	5-8
Am9264C	8192 x 8	300	C C	+5	24	440	3-State	5-8
Am9264D	8192 x 8	250	С	+5	24	440	3-State	5-8
Am9265B	8192 x 8	450	С, М	+5	28	440, 110 ¹	3-State	5-12
Am9265C	8192 x 8	300	C	+5	28	440, 110 ¹	3-State	5-12
Am9265D	8192 x 8	250	C	+5	28	440, 110 ¹	3-State	5-12
Am92128B	16384 x 8	450	С, М	+5	28	440, 137 ¹	3-State	5-15
Am92128C	16384 x 8	300	C	+5	28	440, 137 ¹	3-State	5-15
Am92128D	16384 x 8	250	l c	+5	28	440, 1371	3-State	5-15
Am92256B	32768 x 8	450	C	+5	28	660, 165 ¹	3-State	5-18
Am92256C	32768 x 8	300	C	+5	28	660, 165 ¹	3-State	5-18
Am92256D	32768 x 8	250	С	+5	28	660, 165 ¹	3-State	5-18

Note: 1. Standby

U.V. ERASABLE PROMs

Part Number	Organization	Access Time (ns)	Temp Range	Operating Power – Act/Stby Max (mW)	Supply Voltages	Outputs	Number of Pins	Page No.
Am1702A	256 x 8	1000	C, L	676	-9, +5	3-State	24	6-1
Am1702AL	256 x 8	1000	C, L	-	-9, +5	3-State	24	6-1
Am1702A-1	256 x 8	550	C, L	676	9, +5	3-State	24	6-1
Am1702AL-1	256 x 8	550	C, L		-9, +5	3-State	24	6-1
Am1702A-2	256 x 8	650	C, L	676	-9, +5	3-State	24	6-1
Am1702AL-2	256 x 8	650	C, L	-	-9, +5	3-State	24	6-1
Am2708/9708	1024 x 8	450/480	С, М	800	+5, +12, -5	3-State	24	6-7
Am2708-1	1024 x 8	350	С	800	+5, +12, -5	3-State	24	6-7
Am2716	2048 x 8	450	C, I, L, M	525/132	+5	3-State	24	6-11
Am9716	2048 x 8	300	С	525/132	+5	3-State	24	6-11
Am2716-1	2048 x 8	350	C, I, L	525/132	+5	3-State	24	6-11
Am2716-2	2048 x 8	390	С	525/132	+5	3-State	24	6-11
Am2732	4096 x 8	450	C, I, L, M	787/157	+5	3-State	24	6-16
Am2732-1	4096 x 8	350	C	787/157	+5	3-State	24	6-16
Am2732-2	4096 x 8	390	С	787/157	+5	3-State	24	6-16
Am2732A*	4096 x 8	250	С	787/184	+5	3-State	24	6-21
Am2764-2	8192 x 8	200	C, I	525/105	+5	3-State	28	6-22
Am2764	8192 x 8	250	С, І, М	525/105	+5	3-State	28	6-22
Am2764-3	8192 x 8	300	C, I	525/105	+5	3-State	28	6-22
Am2764-4	8192 x 8	450	С, І, М	525/105	+5	3-State	28	6-22
Am27128*	16384 x 8	250	C	525/210	+5	3-State	28	6-27

*Available first quarter 1983

Temperature Ranges

C = Commercial 0 to 70°C

 $\begin{array}{l} \label{eq:linear_state} & \mbox{I} = \mbox{O} \mbox{I} = \mbox{I} \mbox{I} \mbox{I} = \mbox{I} \mbox{I} \mbox{I} = \mbox{I} \mbox{I} \mbox{I} = \mbox{I} \mbox{I} \mbox{I} \mbox{I} = \mbox{I} \m$

Package Types

D = Cerdip P = Plastic F = Flat Pack

L = Leadless Chip Carrier

Bipolar PROM Cross Reference Guide

ź	0.		tion		bins a	<i>M</i>				2	9		6 6	
AMD Pa	o. 	Organis	8 035	Pact La		Faire.	^{cnil} o	Harris	Inter	Monolith Memori	Valional	Raythe	Signetics	~
Am27LS18 ¹	256	32 x 8	0C	16	50/65	Γ				53/63LS080			N/S82S23	TBP18SA030
Am27LS19 ¹	256	32 x 8	3S	16	50/65					53/63LS081			N/S82S123	TBP18S030
Am27S18	256	32 x 8	oC	16	40/50			HM7602		53/6330-1	DM75/8577 DM54/74S188		N/S82S23	TBP18SA030
Am27S18A	256	32 x 8	OC	16	25/35					53/6330-1				
Am27S19	256	32 x 8	3S	16	40/50			HM7603		53/6331-1	DM75/8578 DM54/74S288		N/S82S123	TBP18S030
Am27S19A	256	32 x 8	3S	16	25/35					53/6331-1				
Am27S20	1024	256 x 4	0C	16	45/60	93417		HM7610A	M3601	53/6300-1	DM54/74S387	29660	N/S82S126	TBP24SA10
Am27S20A	1024	256 x 4	00	16	30/40					53/6300-1				
Am27S21	1024	256 x 4	3S	16	45/60	93427		HM7611A	M3621	53/6301-1	DM54/74S287	29661	N/S82S129	TBP24S10
Am27S21A	1024	256 x 4	3S	16	30/40					53/6301-1	· ·			
Am27S12	2048	512 x 4	0C	16	50/60	93436		HM7620A	M3602	53/6305-1	DM54/74S570	29610	N/S82S130	
Am27S12A	2048	512 x 4	0C	16	30/40				3602					
Am27S13	2048	512 x 4	3S	16	50/60	93446		HM7621A	M3622	53/6306-1	DM54/74S571	29611	N/S82S131	
Am27S13A	2048	512 x 4	35	16	30/40									
Am27S15	4096	512 x 8	35	24	60/90			HM7647R		· ·			N/S82S115	
Am27S25	4096	512 x 8	3S	24	N.A. ²									•
Am27S25A	4096	512 x 8	3S	24	N.A. ⁴									
Am27S27	4096	512 x 8	3S	22	N.A. ²									
Am27S28	4096	512 x 8	oC	20	55/70		MB7123	HM7648		53/6348	DM54/74S473	29620	N/S82S146	TBP28SA42
Am27S28A	4096	512 x 8	0C	20	35/45									
Am27S29	4096	512 x 8	3S	20	55/70		MB7124	HM7649		53/6349	DM54/74S472	29621	N/S82S147	TBP28S42
Am27S29A	4096	512 x 8	35	20	35/45									-
Am27S30	4096	512 x 8	0C	24	55/70	93438		HM7640A	M3604	53/6340	DM77/87S475	29624	N/S82S140	TBP28SA46
Am27S30A	4096	512 x 8	0C	24	35/45									
Am27S31	4096	512 x 8	35	24	55/70	93448		HM7641A	M3624	53/6341	DM77/87S474	29625	N/S82S141	TBP28S46
Am27S31A	4096	512 x 8	3S	24	35/45									
Am27S32	4096	1024 x 4	0C	18	55/70	93452	MB7121E	HM7642A	M3605	53/6352	DM54/74S572	29640	N/S82S136	TBP24SA41
Am27S32A	4096	1024 x 4	0C	18	35/45		MB7121H							
Am27S33	4096	1024 x 4	3S	18	55/70	93453	MB7122E	HM7643A	M3625	53/6353	DM54/74S573	29641	N/S82S137	TBP24S41
Am27S33A	4096	1024 x 4	3S	18	35/45		MB7122H			53/63S441A				
Am27S35	8192	1024 x 8	3S	24	N.A. ²									
Am27S35A	8192	1024 x 8	3S	24	N.A. ⁴									
Am27S37	8192	1024 x 8	3S	24	N.A. ²						DM87SR81			
Am27S37A	8192	1024 x 8	35	24	N.A. ⁴									
Am27S180	8192	1024 x 8	0C	24	60/80	93450	MB7131	HM7680		53/6380	DM77/87S180	29630	N/S82S180	TBP28SA86
Am27S180A	8192	1024 x 8	0C	24	35/50									
Am27S181	8192	1024 x 8	3S	24	60/80	93451	MB7132	HM7681	M3628	53/6381	DM77/87S181	29631	N/S82S181	TBP28S86
Am27S181A	8192	1024 x 8	3S	24	35/50									
Am27PS181	8192	1024 x 8	35	24								29633		
Am27PS181A	8192	1024 x 8	35	24										
Am27S280 ³	8192	1024 x 8	0C	24	60/80					53/6380JS				
Am27S280A ³	8192	1024 x 8	0C	24	35/50									
Am27S281 ³	8192	1024 x 8	3S	24	60/80					53/6381JS				
Am27S281A ³	8192	1024 x 8	35	24	35/50									

BIPOLAR PROM CROSS REFERENCE GUIDE

A.	þ.	2	6		Pins	2				رن .	6 4		•	
4MD Part N.	Size	Orgeniza	out ngin	Packa, I		Fairchild	Fullisu	Harris	Inter	Monolitic Menolitic	Valional V	Reyrine	Signetics	~
Am27PS281	8192	1024 x 8	3S	24	35/50			1	1					
Am27PS281A ³	8192	1024 x 8	35	24										
Am27S184	8192	2048 x 4	0C	18	50/55		MB7127	HM7684		53/63100	DM77/87S184	29650	N/S82S184	TBP24SA81
Am27S184A	8192	2048 x 4	oC	18	35/45		MB7127H							
Am27S185	8192	2048 x 4	3S	18	50/55		MB7128	HM7685		53/63101	DM77/87S185	29651	N/S82S185	TBP24S81
Am27S185A	8192	2048 x 4	3S	18	35/45		MB7128H			53/63S841A				
Am27LS184	8192	2048 x 4	0C	18	60/65									
Am27LS185	8192	2048 x 4	3S	18	60/65									
Am27PS185	8192	2048 x 4	3S	18	60/65							29653		
Am27S190	16384	2048 x 8	0C	24	50/65	93510	MB7137	HM76160			DM77/87S190	29680	N/S82S190	
Am27S190A	16384	2048 x 8	0C	24	35/50									
Am27S191	16384	2048 x 8	3S	24	50/65	93511	MB7138	HM76161	M3636B		DM77/87S191	29681	N/S82S191	TBP28S166
Am27S191A	16384	2048 x 8	3S	24	35/50	1			M3636B-1					
Am27PS191	16384	2048 x 8	3S	24	65/75							29683		
Am27PS191A	16384	2048 x 8	3S	24	50/65									
Am27S290 ³	16384	2048 x 8	ос	24	50/65									
Am27S290A ³	16384	2048 x 8	ос	24	35/50									
Am27S291 ³	16384	2048 x 8	35	24	50/65							29681S		
Am27S291A ³	16384	2048 x 8	3S	24	35/50									
Am27PS2913	16384	2048 x 8	3S	24	65/75							296835		
Am27PS291A ³	16384	2048 x 8	3S	24	50/65									
Am27S40	16384	4096 x 4	oc	20	50/65			HM76164						
Am27S40A	16384	4096 x 4	oc	20	35/50									
Am27S41	16384	4096 x 4	3S	20	50/65		MB7134	HM76165		53/63S1641		29641	N/S82S195	
Am27S41A	16384	4096 x 4	3S	20	35/50					53/63S1641A				
Am27PS41	16384	4096 x 4	3S	20	50/65							29643		
Am27S43	32768	4096 x 8	3S	24	N.A.		MB7142		3632				N/S82S321	
Am27S43A	32768	4096 x 8	3S	24	N.A.									
Am27PS43	32768	4096 x 8	35	24	N.A.									
Am27S45	16384	2048 x 8	3S	24	N.A. ²									
Am27S45A	16384	2048 x 8	3S	24	N.A. ⁴									
Am27S47	16384	2048 x 8	3S	24	N.A. ²				L					
Am27S47A	16384	2048 x 8	35	24	N.A. ⁴									

Notes: 1. Replaces Am27LS08/LS09. 2. Contains built-in pipeline registers: nominal address to clock setup time = 35ns (typ), clock to output = 20ns (typ).

3. 300-mil lateral pin spacing.

4. Contains built-in pipeline registers: nominal address to clock setup time = 25ns (typ), clock to output = 15ns (typ).

Bipolar Memory RAM TTL and ECL Cross Reference Guide

BIPOLAR ECL RAM CROSS REFERENCE GUIDE

ere No	י: געריי,	40/1	Suid	ries	In	in with			5	<i></i>		5° ,
AMD POINT NO	Ologhi Sentise	\$0. .0.	5 '2'	2 4 5 0 K	ter Court	Fairch	Fuller	Hitachi	Molo ^{lo} olo	National	Signett	Siemen.
Am10415SA	1024 x 1	16	10K	15/20	~150/-165			HM2110-2 HM2110-1			10415A	
Am10415A	1024 x 1	16	10K	20/25	-150/-165	F10415A	MBM10415AN	HM2110-2 HM2110-1	MCM10146	DM10415	10415	GXB10415
Am10415	1024 x 1	16	10K	35/40	- 150/- 165	F10415	MBM10415A	HM2110		DM10415A		
Am100415A	1024 x 1	16	100K	15/-	- 150/-						100415A	
Am100415	1024 x 1	16	100K	20/-	150/	F100415A					100415	
Am10470SA	4096 x 1	18	10K	15/20	-230/-255		MBM10470A	HM10470-1				
Am10470A	4096 x 1	18	10K	25/30	-200/-220	F10470A		HM10470	MCM10470A		10470A	
Am10470	4096 x 1	18	10K	35/40	-200/-220	F10470	MBM10470			DM10470		
Am100470SA	4096 x 1	18	100K	15/	-230/-		MBM100470A	HM100470-1				
Am100470A	4096 x 1	18	100K	25/-	- 195/-			HM100470			100470A	
Am100470	4096 x 1	18	100K	35/	- 195/	F100470	MBM100470					
Am10474A	1024 x 1	24	10K	15/-	-230/-			HM10474-1				
Am10474	1024 x 1	24	10K	25/-	-230/-	F10474	MBM10474	HM10474				
Am100474A	1024 x 1	24	100K	15/-	-230/-			HM100474-1				
Am100474	1024 x 1	24	100K	25/	-230/-	F100474	1	HM100474				GXB100474

BIPOLAR TTL RAM CROSS REFERENCE GUIDE

AMD Part No.	¢ ∙	hoin	ins Sup	. 6	In (br	T. MIL	0		N.W.W		ey 19	S.		
4MD	Oregu	Å₀. 0.	O cuto	140		Fairch	Intel	Interes	'W W	Motor	Vational	Signetics	~	
Am27S02A	16 x 4	16	ос	25/30	100/105				6560A		DM74/54S289A			
Am27S03A	16 x 4	16	3S	25/30	100/105				6561		DM74/54S189A			
Am27S02	16 x 4	16	oc	35/50	105/105	93403					DM74/54S289	N/S82S25		
Am74/54S289	16 x 4	16	ос	35/50	105/105	93403 74S289	3101A	5501	65/5560	4064		N/S74/54S289	SN74/54S289	
Am3101A	16 x 4	16	ос	35/50	105/105							N3101A		
Am27S03	16 x 4	16	35	35/50	125/125	93405			65/5561		DM74/54S189	N/S74/54S189	SN74/54S189	
Am74/54S189	16 x 4	16	3S	35/50	125/125	74S189					DM85/7599			
Am27LS02	16 x 4	16	ос	55/65	35/38				L65/5560		DM74/54LS289			
Am27LS03	16 x 4	16	35	55/65	35/38				L65/5561		DM74/54LS189			
Am27S06A(1)	16 x 4	16	oc	25/30	100/105									Proprietary
Am27S07A(1)	16 x 4	16	3 S	25/30	100/105									Proprietary
Am27S06(1)	16 x 4	16	ос	35/50	100/105									Proprietary
Am27S07(1)	16 x 4	16	3S	35/50	100/105									Proprietary
Am27LS06(1)	16 x 4	16	ос	55/65	35/38									Proprietary
Am27LS07(1)	16 x 4	16	35	55/65	35/38									Proprietary
Am3101-1(2)	16 x 4	16	oc	35/50	100/105	7489	3101				DM74/5489		SN74/5489	
Am74/5489-1(2)	16 x 4	16	ос	35/50	100/105	/409	3101				01114/0409		311/4/3469	
Am3101(2)	16 x 4	16	ос	50/60	100/105									
Am74/5489(2)	16 x 4	16	ос	50/60	100/105									
Am31L01A(2)	16 x 4	16	ос	55/65	35/38									Proprietary
Am31L01(2)	16 x 4	16	ос	80/90	35/38									Proprietary
Am27LS00A	256 x 1	16	35	35/45	115/115									Proprietary
Am27LS01A	256 x 1	16	oc	35/45	115/115									Proprietary
Am27LS00	256 x 1	16	3S	45/55	70/70	93L420 93421 93L421	3106		65/5531	4256	DM74/54S200	N/S82S116 N/S82S16	SN74/54S201 SN74/54S200 SN74/54LS200	

BIPOLAR TTL RAM CROSS REFERENCE GUIDE (Cont.)

W LED OWF	y A	uojio .	in suit	. 6	(b1	L'IMI	Þ,		i win		, শুন	it. S		
440	Organ	*°.	onio Onio	<u>ج</u> ک		Fairc	Inte,	Inter-	A. A.	Molorols	National	Signetics	~	
Am27LS01	256 x 1	16	ос	45/55	70/70	93411 93L411	3107		65/5530		DM74/54S206	N/S82S117 N/S82S17	SN74/54S301 SN74/54S300 SN74/54LS300	
Am27LS00-1A(1)	256 x 1	16	3S	35/45	115/115									Proprietary
Am27LS01-1A(1)	256 x 1	16	oc	35/45	115/115									Proprietary
Am27LS00-1(1)	256 x 1	16	3S	45/55	70/70									Proprietary
Am27LS01-1(1)	256 x 1	16	oc	45/55	70/70									Proprietary
Am93415A	1024 x 1	16	ос	30/40	155/170	93415A	2115					N/S82S110		
Am93425A	1024 x 1	16	35	30/40	155/170	93425A	2125					N/S82S111		
Am93415	1024 x 1	16	oc	45/60	155/170	93415	2115			MCM93415		N/S82S10	SN74/54S314	
Am93425	1024 x 1	16	35	45/60	155/170	93425	2125			MCM93425		N/S82S11	SN74/54S214	
Am93412A	256 x 4	22 ³	oc	35/45	155/70	93412A								
Am93422A	256 x 4	223	3S	35/45	155/70	93422A								
Am93412	256 x 4	223	ос	45/60	155/170	93412				MCM93412				
Am93422	256 x 4	223	3S	45/60	155/170	93422				MCM93422				
Am93L412A	256 x 4	22 ³	oc	45/55	80/90	93L412A								
Am93L422A	256 x 4	22 ³	3S	45/55	80/90	93L422A								
Am93L412	256 x 4	223	oc	60/75	80/90	93L412								
Am93L422	256 x 4	22 ³	3S	60/75	80/90	93L422								

Notes: 1. Noninverting outputs.
2. Write transparent; complement of data-in is available on the outputs in the Write Mode when both CS and WE are low.
3. Cerpak is 24 pin.

Competitive MOS Memory Cross Reference

AMI S2333 S2364 S4216B S4264 S68A364 S6831B S68332 EA EA-2316E/8316E EA-2364 EA-23128 EA-8332 EA-8333 FAIRCHILD F16K F2114 F2114L F2533 F2708 F3341 F3341A F3347 F3357-2 F4116 F93422 F93L422 FUJITSU MBM2147 MBM2148 MBM2149 MBM2716 MBM2732 MBM2764 MBM4044 MBM8114 MB8116 MB8128 MB8216 MB8414 (CMOS) MB8416 (CMOS) G.I. RO3-9322 HITACHI HM4334 (CMOS) HN462532 HN462716 HN462732 HM4716A HM472114 HM4847 HM6116 (CMOS) HM6147 (CMOS) HM6148 (CMOS) INTEL 1402A 1403A 1404A 1405A

1406

1407

AMD Am9233 Am9265 Am9218 Am9264 Am9264² Am9218 Am9232 AMD Am9218 Am9264 Am92128 Am9232 Am9233 Am9016 Am9114 Am9114 Am2833 Am2708 Am2841 Am2841A Am2847 Am2847 Am9016 Am9122 Am91L22 AMD Am2147 Am9148 Am9149 Am2716 Am2732 Am2764 Am9044 Am9114 Am9016 Am9128 Am9016 Am91L14² Am9128² AMD Am9232 AMD Am91L14² Am2732³ Am2716 Am2732 Am9016 Am9114 Am2147 Am9128² Am2147² Am9148² Am2802 Am2803 Am2804 Am2805

Am1406

Am1407

INTEL (Cont.) 1506 1507 1702A 1702AL 2114A 2114AL 2117 2128 2141 2147 2148 2149 2316/8316E 2332 2364 2401 2405 2708 2716 2732 2732A 2764 27128 MOSTEK MK1002P MK1007 MK2147 MK2716 MK2764 MK32000 MK34000 MK36000 MK37000 MK3702 MK3708 MK38000 MK4104 MK4104 MK4116 MK4802 MOTOROLA MCM2114 MCM2147 MCM2708 MCM2716 MCM2532 MCM4016 MCM4116 MCM58366 MCM68A364 MCM68B364 MCM68308 MCM68332 MCM68365 MCM8316E NATIONAL MM1402A MM1403A MM1404A MM1702A MM2114 MM2114L MM2116

AMD Am1506 Am1507 Am1702A Am1702AL Am9114 Am91L14 Am9016 Am9128 Am21L41 Am2147 Am9148 Am9149 Am9218 Am9233 Am9265 Am2401 Am2405 Am2708 Am2716 Am2732 Am2732 Am2764 Am27128 AMD Am2810 Am2847 Am2147 Am2716 Am2764 Am9232 Am9218 Am9264 Am9265 Am1702A Am2708 Am922563 Am9244² Am21L41 Am9016 Am9128 Am9114 Am2147 Am2708 Am2716 Am27323 Am9128 Am9016 Am9264 Am9264² Am9264² Am9208 Am9232 Am9264² Am9218 AMD Am2802 Am2803 Am2804 Am1702A Am9114 Am9114 Am9128

NATIONAL (Cont.) AMD MM2147 Am2147 MM2708 Am2708 MM2716 Am2716 Am1406 MM4006 Am1407 MM4007 MM4025 Am2825 MM4026 Am2826 MM4027 Am2827 MM4055 Am2855 MM4056 Am2856 MM4057 Am2857 MM5025 Am2855 MM5026 Am2826 MM5027 Am2827 MM5055 Am2855 MM5057 Am2857 Am2833 MM5058 MM5202AQ Am1702A MM52116 Am9218 MM52132 Am9232 Am9264 MM52164 MM5235 Am9265 MM5257 Am9044 MM5258 Am9218 MM5290 Am9016 NEC AMD μPD2114L Am9114 μPD2147 Am2147 µPD2149 Am9149 μPD2316E Am9218 µPD2332 Am9232 Am921282 µPD23128 µPD2364 Am9264 µPD2708 Am2708 µPD2716 Am2716 μPD4104 Am92L442 µPD4104 Am21L41² μPD416 Am9016 Am91L142 μPD444 (CMOS) µPD446 (CMOS) Am9128² μPD6514 (CMOS) Am91L14² . μPD2732 Am2732 AMD SIGNETICS 1702A Am1702A Am9233 2332 Am9265² 2364 Am92128² 23128 Am2802 2502 2503 Am2803 Am2804 2504 2505 Am2805 2506 Am1406/1506 Am1407/1507 2507 2512 Am2806 Am2809 2521 Am2807 2524 2525 Am2808 2532 Am2847 2533 Am2833 Am9218 2616 2632 Am9232 2664 Am9264

COMPETITIVE MOS MEMORY CROSS REFERENCE (Cont.)

SYNERTEK	AMD	т.і.	AMD	TOSHIBA	AMD
SY1402	Am2802	TMS2147	Am2147	TC5516 (CMOS)	Am9128 ²
SY1403	Am2803	TMS2149	Am9149	TMM2016	Am9128
SY1404	Am2804	TMS2708	Am2708	TMM2732D	Am2732-1
SY2101	Am9101	TMS2516	Am2716	TMM323D	Am2716
SY2111	Am9111	TMS2532	Am2732 ³	TMM416	Am9016
SY2112	Am9112	TMS3114	Am2814		
SY2114	Am9114	TMS3120	Am2847		
SY2114L	Am9114	TMS3128	Am2809	and the second	
SY2128	Am9128	TMS3133	Am2833		
SY2316E	Am9218	TMS3406	Am1406		
SY2332	Am9232	TMS3407	Am1407		
SY2333	Am9233	TMS2412	Am2802		
SY2364	Am9264	TMS3413	Am2803		
SY2365	Am9265	TMS3414	Am2804	[
SY23128	Am92128	TMS4016	Am9128		
SY2405	Am2405	TMS40L44	Am90L44		
SY2802	Am2802	TMS4044	Am9044		
SY2803	Am2803	TMS40L45	Am91L14		
SY2804	Am2804	TMS4045	Am9114		
SY2825	Am2825	TMS4116	Am9016		
SY2826	Am2826	TMS4244	Am9244		
SY2827	Am2827	TMS4245	Am9124	Notes: 1. 110mW Star	
SY2833	Am2833	TMS4732	Am9232	2. Pin-for-pin fu	inctional equivalent.
		TMS4764	Am9264	3. Different pin	out.

Testing High-Performance Bipolar Memory

By Bob Lutz Advanced Micro Devices

INTRODUCTION

During the last several years, the state-of-the-art of TTL compatible bipolar memory integrated circuits has advanced very rapidly. Device complexity has increased dramatically not only in terms of the memory storage capacity but also by the addition of new on-chip functions such as the inclusion of output data registers. Simultaneously, advances in bipolar LSI design and manufacturing technology have generated significant improvements in the performance levels of bipolar memory. Similarly, the complexity and performance levels of systems which employ these devices have grown. The concomitant growth of system complexity has placed additional demands on both the device manufacturer and the user's incoming inspection area to assure the performance capabilities of each component before it is assembled into the system.

Several test equipment manufacturers now supply sophisticated, computer controlled testers for these inspection tasks. Most of this equipment is inherently capable of the millivolt and nanosecond accuracies which are required; most memory testers can generate the complex waveforms and test patterns needed. However, the details of applying this equipment to a specific test problem, including the problem of interfacing the tester to the device-under-test, are usually left to the user. The purpose of this application note is to discuss several problems which are frequently encountered when testing high performance bipolar memory devices, and to aquaint the user with how such problems may be identified, measured and corrected.

WHAT MAKES A MEMORY GOOD?

Before discussing the specifics of bipolar memory testing problems, it is important to understand the basic characteristics which these devices should exhibit. Clearly each device must meet all product specification parameters but, first and foremost, a bipolar memory should be fast! Address access time (delay from address input to data output), enable access time, and enable recovery time should be as small as possible. High performance is often the primary reason for using bipolar memory. Similarly, the performance of the ideal bipolar memory should remain relatively constant with changes in supply voltage, ambient temperature and output load capacitance. Fast devices, offering stable performance over a broad range of conditions, permit the user to qualify a smaller number of part types; one fast device can accommodate many standard as well as high performance applications. Such devices provide added safety margin for the system design, permit simplification of system test and debug, and assure trouble-free system performance in the field. Hence the "best" memory is a fast, stable device which not only meets a given user specification, but also offers the extra performance needed for a broad range of applications.

Advanced Micro Devices offers a family of bipolar Random Access Memories (RAMs) and Programmable Read Only Memories (PROMs) which are designed to meet this idealized definition as closely as possible. First, each AMD device is designed to meet a "military design goal." This means AMD bipolar memories are designed to provide the extra margins and higher output drive capabilities needed to assure proper performance over the extended military supply voltage and operating temperature ranges. This often necessitates the use of more advanced design techniques such as on-chip regulators, temperature and voltages compensation networks, and feedback circuits. Second, AMD has conceived and developed an advanced, oxide separated, ion implanted manufacturing process called IMOX™. Developed specifically for the production of high density bipolar memories, this technology provides both high density and excellent performance in a truly reliable and manufacturable process. This combination of advanced design and fabrication technologies assures the military user of receiving components which are intended for his application while providing the commercial user with the extra margins, performance advantages and procurement benefits mentioned above.

THE SYSTEM ENVIRONMENT

To understand the problems of high-performance memory testing, it is helpful to understand the electrical environment in which the memory devices will actually operate, i.e., the typical system environment. The system designer must address and resolve several critically important questions if the system is to consistently perform to its design specifications. These questions include:

- 1. What noise voltages can the system's logic and memory devices tolerate?
- 2. What are the sources of system noise?
- 3. What can be done to control and minimize this noise?

The first question is answered relatively easily. The magnitude of noise which can be tolerated relates directly to the worst case noise immunity specified for the logic family. Noise immunity is simply the difference between the worst case output levels (V_{OH} and V_{OL}) of the driving circuit and the worst case input voltage requirements (V_{IH} and V_{IL}, respectively) of the receiving circuit. For TTL devices the worst case noise immunity is typically 400mV for both the high and low logic levels.

If "system noise" is defined as the sum of things which subtract from this noise immunity, several sources can be identified. A few of the most important sources found in a digital, TTL system are listed below:

- Cross-Talk: The desire to pack system components as tightly as possible inevitably causes signal wires or PC board traces to be placed in close proximity. The lead-to-lead capacitance and mutual inductance thus created (see Figure 1) causes "noise" voltages to appear when adjacent signal paths switch.
- Transmission Line Reflections: Like it or not, every signal path in the system has transmission line characteristics. TTL signal paths are usually not designed as transmission lines, with predictable and uniform characteristic impedances. This is partly because of the higher costs implied for multilayer PC boards with internal ground planes, termination resistors, etc. It is also the result of TTL logic's limited ability to drive the low impedance lines provided by current PC board technologies. Hence, TTL signal paths do exhibit the ringing and reflection problems associated with improperly terminated transmission lines. These reflections subtract from the available noise immunity as shown in Figure 2.
- Ground Network Noise: Most high-performance systems employ large numbers of high-performance ICs. These devices typically draw large I_{CC} currents from the power supply. Cumulatively, these currents can reach several amperes per board. Such currents, flowing in the ground network, cause non-negligible DC voltage drops to occur; not all device ground pins are at zero volts. Since the output levels and the input thresholds of each TTL device reference the local ground (Figure 3a), these drops also subtract from the available noise immunity. Additional noise margin losses occur each time the device outputs switch. This occurs because large currents must flow to rapidly charge and discharge the interconnect and input capacitances which load each output. These charging currents flow in a loop (Figure 3b) through the ground network which is normally a simple interconnection of

IMOX is a trademark of Advanced Micro Devices, Inc.

Testing High-Performance Bipolar Memory

Figure 1. An Example of Cross-Talk

Figure 2. Line Reflections

Testing High-Performance Bipolar Memory

wires, each with some value of resistance and inductance per unit length. Some additional resistive drops occur. But, the rapid changes in these currents (large di/dt), occurring as charging starts and stops, mean a transient ground noise voltage is also generated. This voltage obeys the law of v = L(di/dt) where L is the ground circuit inductance and di/dt is the rate of change of the charging currents. Notice that adding local bypass capacitors can only reduce this voltage by paralleling the ground inductance with the V_{CC} network inductance. Bypassing cannot eliminate this problem because these capacitors shunt the devices and not the ground and V_{CC} network inductances where the noise is generated.

Controlling and minimizing noise in a digital system becomes more challenging as the system performance requirements increase. These requirements demand devices capable of short propagation delays, e.g., ultra-fast memories with excellent drive characteristics to minimize fully loaded access times. Since noise margin violations result in system malfunctions, the system designer must define a set of rules governing the physical construction techniques to be used within the system. These rules address a host of considerations including power distribution, AC grounding, lead placement, line termination requirements, logic loading (fan in and fan out), and interconnect delays. Specifying these rules is a complex process of making appropriate cost-performance tradeoffs.

For a medium to high performance system, these rules might specify arranging devices in an array with V_{CC} power traces running vertically up the columns while ground metal running horizontally between the rows. Inserting bypass capacitors at each grid intersection forms an AC ground mesh (Figure 4), limiting the amount of ground inductance at each array site. If limits are also placed on the total capacitance each device may drive (cumulative interconnect and input capacitance on all outputs), the total charging currents may be controlled thus limiting

Figure 4. Example of an AC Ground Mesh

the noise immunity eroded by ground circuit noise. Similarly, the distance between adjacent traces and the maximum length of unterminated lines may be specified to control noise immunity losses caused by cross-talk and termination mismatches. Ultra-high performance systems may require additional measures; e.g., multilayer boards with true ground planes or increased usage of line drivers and receivers. Though the preceding descriptions have been simplified, it should be clear that distances between driving and receiving devices, the quantity and distribution of load capacitance, as well as the AC ground network integrity are all essential elements of the system design.

THE MEMORY TEST ENVIRONMENT

Ideally the test system hardware and fixtures would be designed to even more stringent rules than those used for the system. This is reasonable as the tester is the standard employed for accepting or rejecting components used in the system. Because a collection of additional objectives constrain the test environment, designing test hardware to equally or more stringent rules is usually impractical.

Memory testers must test many types of components under a variety of conditions. Tests performed include DC parametric tests, functional and AC tests with complex test patterns, and margin tests to assure device operation at the extremes of applied conditions and supply voltage. To accomplish this, connections to sets of programmable input drivers and output receivers (comparators), multiple device bias and power supplies, relays to permit connection of the DC parametric test unit, and special load circuits must all converge at the test site.

To provide flexibility and facilitate repair, test hardware must be modular. This requirement dictates placing the hardware (drivers, receivers, etc.) on many small PC boards which then must talk to the DUT (device under test) through additional wiring and connectors.

Frequently the quantity of parts tested necessitates mating an automatic device handler to the tester. Handlers also provide capabilities for testing at temperature extremes when needed. The DUT must be tested inside this equipment, requiring still more wiring between the test head and the actual test site.

Ideally, all test hardware would be located immediately adjacent to the test site to minimize cross-talk, reflections and ground noise. However, this objective must be compromised to address the other objectives and constraints outlined above. Techniques commonly employed in making this compromise are illustrated in Figure 5. Notice that DUT drivers are remote from the test site, driving signal to the DUT through "series terminated" transmission lines. Similarly the receivers are some distance from the test site, receiving signals from the DUT through a series of connectors and wires which can degrade the signal. Most annoving of all, the test site ground connection has been compromised. This single path must carry heavy transient and DC currents during test and should provide a very solid, low impedance reference against which all AC and DC tests are made. Accumulating resistance and inductance in this path jeopardizes the integrity of all test results.

Hence, the electrical environment provided at the test site is generally inferior to the actual system environment where the memory component will be used.

TEST RELATED PROBLEMS AND SOLUTIONS

Accurately measuring or verifying memory performance in the test system environment requires a recognition of its inherent limitations. Outlined below are five problem areas commonly encountered when testing high-performance bipolar memories. Methods of identifying and alleviating these problems are indicated.

 Contending with Ground Noise: Ground noise is one of the most common and troublesome test problems. As defined above, ground noise is caused by switching currents flowing through the ground network impedance. Whereas the system environment (Figure 4) may provide multiple low inductance ground paths into a ground mesh or plane, the tester provides one long, higher inductance path back to the test system ground (Figure 5). This path includes handler contacts, connectors and the DUT load board, all of which increase ground

Figure 5. The Test System Environment

Testing High-Performance Bipolar Memory

inductance and resistance. Transient currents which result when the DUT switches can be enormous. Consider the case of a byte wide (8 output) memory functional test. At some point in the test sequence, all memory outputs will switch from high to low (VOH to VOL) at the same instant, discharging all eight load capacitances simultaneously. If the input capacitance of the receiver is 40pF and the interconnect capacitance of the test fixture is 10pF, the total load capacitance driven by all device outputs would be 400pF. A fast memory device could discharge this load at a 1V/ns rate. The relationship i = C(dv/dt) implies peak charging currents of 400mA must flow through ground. As Figure 6 illustrates, this charging current does not build to its full value instantaneously. For a fast device the time required to go from zero to full charging current would approximate 2ns A resultant ground current di/dt of 200mA/ns is implied. If the ground inductance is 1 nanohenry (approximate inductance of 1 inch of straight, small guage wire), then v = L(di/dt) predicts AC ground noise of 200mV. As you have probably guessed, the typical test site ground inductance exceeds 1nh. The path is longer and it is usually not a straight line connection. Actual tester ground noise of up to 800mV is common when testing high-performance byte wide memories. This noise can be measured easily with a high bandwidth oscilloscope by attaching the scope ground to the actual test system ground and monitoring the DUT ground pin with one channel.

Excessive ground noise creates several problems. First, this noise is capacitively coupled to the input drive signals through the DUT input capacitances; if large enough, DC coupling through the DUT input clamp diodes can occur (Figure 7). The DUT output levels are, of course, referenced to the DUT ground potential whereas the receiver board is referenced to test system ground, introducing inaccuracy in access time measurements, etc.

Figure 6. Byte Wide Memory Ground Transients

Figure 7. Ground Noise Coupling to the Inputs

Worst of all severe ground noise can make functional testing at or near the guaranteed input levels (VIH and VIL) impossible. To demonstrate, assume the device ground noise reaches a positive 0.8V with respect to test system ground during output switching. Assume the input driver high level is programmed to 2.0V, minimum VIH for most TTL devices. The actual voltage between a "high" DUT input and its ground is only 1.2V. The typical room temperature threshold voltage of a TTL device is 1.5V, and the device interprets 1.2V as a logic "low." This causes the memory to access a new memory location momentarily. The resultant momentary change in output data interferes with access time measurements. In severe cases, this momentary switching of output data creates additional ground noise which also feeds back to the inputs resulting in sustained oscillations. This noise interaction can also be viewed with a dual trace oscilloscope as shown in Figure 8. Channel A of the scope is connected to the address input while channel B monitors the DUT ground pin. The input voltage, as seen by the DUT, can be viewed directly by putting the scope in "A - B," algebraic subtract mode. Note the scope ground is connected to test system ground as before. Attaching scope ground to the DUT pin ground should be avoided as this creates a "ground loop." If connected this way, large noise currents flow in the alternate ground path provided by the scope back to earth ground; this interferes with the scope's ability to measure high-speed events and modifies the condition which is to be observed.

Several techniques can be employed to reduce ground noise problems:

 Keep the ground path as short as possible; use large diameter wire and "straight line" wiring techniques.

- Minimize the number of series connections in the DUT ground path; provide as many parallel ground connections as possible through each remaining connector.
- If the system uses a Kelvin (force sense) ground system, terminate the system by shorting force to sense on the DUT load board. Kelvin systems provide DC accuracy, but their response times are much too slow to aid in the suppression of ground noise at the test site. Terminating Kelvin early sacrifices a little DC accuracy, but the ability to use the previous sense line as second, low impedance ground path usually improves the overall test accuracy.
- Provide multiple high frequency bypass capacitors as close as possible to the DUT, and again on the DUT load board. This allows the V_{CC} wiring to serve as an extra AC ground path for high frequency ground noise.
- Reduce the DUT load capacitance (receiver and interconnect capacitance) as much as possible; avoid using low values of load resistors. Both techniques reduce the transient currents, thus improving test accuracy. When necessary, DUT output drive capability can usually be verified with DC tests.
- If V_{IL} and V_{IH} tests are necessary, measure the maximum amount of ground noise that the specific device type to be tested generates in the actual test site. Set the input drive levels no tighter than "V_{IH} plus the maximum noise" and "V_{IL} minus the maximum noise." Using tighter limits over tests the device!
- Alternatively, use DC bench tests on a sample basis to verify that input margins are acceptable. This is a sound practice as the input thresholds of bipolar devices are ex-

Figure 8. Monitoring Ground Noise

tremely insensitive to fabrication process variations. Virtually any process variation or defect which would result in a threshold failure would also result in the catastrophic failure of other tests.

- DC verification of V_{IL} and V_{IH} can also be performed on the test system, but care must be exercised to insure that input voltages NEVER cross through the 0.8 to 2.0V window; voltages residing in this window can cause the DUT to switch, triggering sustained oscillations.
- The Output "Tank Circuit": A second common problem encountered is resonance in the circuitry which connects the DUT outputs to the output comparators or receivers. This resonance occurs because the wire connecting the DUT outputs to the receivers is actually an inductor connected in series with the comparator input capacitance, forming a series resonant tank circuit (Figure 9). This load circuit is quite different from the typical loading situation found in a system environment. Notice that the capacitance in the tester tends to be a single large value of capacitance, lumped at the end of the DUT output drive line. The load capacitance in the system is generally smaller and it is distributed along the drive line; this configuration looks much more like a transmission line, with per unit length values of inductance and capacitance, than it does a resonant tank. The resonant frequencies found at the test site vary with wire length and capacitive load, but tend to be in the 100 - 500MHz range. The input voltage sensed by the receiver is actually the voltage at the center connection within the tank circuit, which can ring violently when the outputs switch; measurement errors of 5ns or more can occur. A good evaluation technique for this problem is to compare the waveforms observed at the output of the device with a "shmoo plot" of the output. Assuming a simple pattern is used, differences in these results may indicate a resonance problem.

Corrective action for this problem includes:

- Use short, low inductance connections from the DUT output to the receiver; minimize comparator and interconnect capacitance. Both techniques raise the resonant frequency of the tank circuit which limits the time measurement error and reduces the DUT's ability to stimulate ringing in the tank.
- Use twisted pair wiring techniques to connect DUT outputs to the receivers. Though this raises the capacitance slightly, it reduces the purely inductive character of the interconnect, usually tending to reduce ringing.
- Minimizing Cross-Talk: Cross-talk between the input and output lines of the DUT is also a common problem. Obviously, the greater the number of paths which must be packed into a given area, the greater the problem. The signal coupling that occurs adds noise to both the input lines, making V_{IH} and V_{IL} testing difficult, and output lines, reducing the accuracy of timing measurements. Techniques which tend to reduce cross-talk include the following:
 - Keep wires as short as possible and avoid laying wires on top of each other.
 - Reduce output loading to minimize the magnitude of current transients which could be coupled into adjacent lines.
 - Use twisted pair or coaxial cable wherever possible; take care to tie all grounds from these transmission lines together at both ends.
 - Use ground plane or ground mesh techniques in the load board and the handler interface if possible. A true ground plane permits the use "strip" transmission lines which not only minimize cross-talk, but also reduce ground noise.

Though expensive, ground plane techniques offer the test engineer a consistent reference voltage which can be used to identify and segregate the various components and sources of noise.

Figure 9. Resonance at the Outputs

Testing High-Performance Bipolar Memory

CONCLUSION

Advanced Micro Devices has invested significantly in the development of advanced, high-performance bipolar memory technologies and products. As the preceding discussion demonstrates, the memory tester presents a very different environment to the memory device than does the system. The additional constraints placed on the tester virtually guarantee that devices which function in this "worst case" environment will perform satisfactorily in the system. However, this worst case environment may also selectively reject the best performing devices; i.e., those with the fastest access times and best drive characteristics. This occurs because high-performance devices magnify the problems found in the tester environment. The information presented here should aid the component engineer in recognizing and resolving these special test environment problems. Attention to these details will reward the bipolar memory user by assuring acceptance of the best and broadest range of bipolar memories currently available.

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY MEMORIES (ROM)

MOS UV ERASABLE

PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

Bipolar Programmable Read Only Memory (PROM) Index

Am27S18A/19A Series Am29750A/Am29751A Am27LS18/19 Am27S20A/21A Series Am29760A/Am29761A Am27S12A/13A Series Am29770/Am29771 Am27S15 Am27S25A/25 Am27S27 Am29775 Am27S28A/29A Series Am27S30A/31A Series Am27S32A/33A Series Am27S65 Am27S35A/37A Series Am27S180A/181A Series Am27S280A/281A Series Am27PS181A/281A Series Am27S184A/185A Series Am27LS184/185 Am27PS185 Am27S75 Am27S190A/191A Series Am27S290A/291A Series Am27PS191A/291A Series Am27S45A/47A Series Am27S40A/41A Series Am27PS41 Am27S85 Am27S43A/43

256-Bit Generic Series Bipolar PROM	2-1
256-Bit Generic Series Bipolar PROM	2-7
Low-Power Schottky 256-Bit Generic Series Bipolar PROM	2-8
1024-Bit Generic Series Bipolar PROM	2-15
1024-Bit Generic Series Bipolar PROM	2-21
2048-Bit Generic Series Bipolar PROM	2-22
2048-Bit Generic Series Bipolar PROM	2-28
4096-Bit Generic Series Bipolar PROM	2-29
4K-Bit (512 x 8) Generic Series Bipolar IMOX Registered PROM	2-34
4096-Bit Generic Series Bipolar Registered PROM	2-41
4096-Bit Generic Series Bipolar PROM with Register	2-46
4096-Bit Generic Series Bipolar PROM	2-47
4096-Bit Generic Series Bipolar PROM	2-52
4096-Bit Generic Series Bipolar PROM	2-57
Generic Series 4-Wide Bipolar IMOX Registered PROMs	2-62
8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM	2-64
1024 x 8-Bit Generic Series Bipolar IMOX PROM	2-73
1024 x 8-Bit Generic Series Bipolar IMOX PROM	2-73
8192-Bit Generic Series IMOX Bipolar PROM	2-80
8192-Bit Generic Series Bipolar IMOX PROM	2-87
8192-Bit Generic Series Bipolar IMOX PROM	2-92
8192-Bit Generic Series Bipolar IMOX PROM	2-97
Generic Series 4-Wide Bipolar IMOX Registered PROMs	
16,384-Bit Generic Series Bipolar IMOX PROM	
16,384-Bit Generic Series Bipolar IMOX PROM	
16,384-Bit Generic Series Bipolar IMOX PROM	
16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM	
16,384-Bit Generic Series Bipolar IMOX PROM	2-125
16,384-Bit Generic Series Bipolar IMOX PROM	
Generic Series 4-Wide Bipolar IMOX Registered PROMs	
32,768-Bit Generic Series Bipolar IMOX PROM	2-137
Technical Report	
Guide to the Analysis of Programming Problems	
PROM Programming Equipment Guide	2-154

Am27S18A • Am27S19A Am27S18 • Am27S19 ^{256-Bit Generic Series Bipolar PROM} (32 x 8 bits with ultra fast access time)

"A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed 25ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

This Am27S18A/18 and Am27S19A/19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S18A/18 and Am27S19A/19 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 32 x 8 configuration, they are available in both open collector Am27S18A/18 and three-state Am27S19A/19 output versions. After programming, stored information is read on outputs O₀-O₇ by applying unique binary addresses to A₀-A₄ and holding the chip select input, \overline{CS} , at a logic LOW. If the chip select input goes to a logic HIGH, O₀-O₇ go to the off or high impedance state.

DIP

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S18A/S19A/S18/S19

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Те	st Conditio	ns	Min	Typ (Note 1)	Max	Units
V _{OH} (Note 2)	Output HIGH Voltage	$\label{eq:VCC} \begin{split} V_{CC} &= \text{MIN}, \text{I}_{OH} = -2.0\text{mA} \\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$			2.4			Volts
V _{OL}	Output LOW Voltage	$\label{eq:VCC} \begin{split} V_{CC} &= MIN, \ I_{OL} = 16 mA \\ V_{IN} &= V_{IH} \ or \ V_{IL} \end{split}$					0.45	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
hL	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$				-0.010	-0.250	mA
Чн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.7V$					25	μA
ISC (Note 2)	Output Short Circuit Current	$V_{CC} = MAX, V_{C}$	UT = 0.0V (N	ote 4)	-20	-40	-90	mA
lcc	Power Supply Current	All inputs = GNI	D, V _{CC} = MAX	x		90	115	mA
ν _I	Input Clamp Voltage	$V_{CC} = MIN, I_{IN}$	= - 18mA				-1.2	Volts
		V _{CC} = MAX		$V_0 = 4.5V$			40	
ICEX	Output Leakage Current	$V_{\overline{CS}} = 2.4V$	Note 2	$V_0 = 2.4V$			40	μA
				$V_{O} = 0.4V$			-40	
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 5)				4		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @	f = 1MHz (N	ote 5)		8		μ.

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. This applies to three-state devices only.

These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

			Тур						
Parameter	Description	Test Conditions	5\ A	/ 25° STD	C(A	OM'L STD	A	MIL STD	Units
t _{AA}	Address Access Time		18	25	25	40	35	50	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1-3)	13	15	20	25	25	30	ns
tER	Enable Recovery Time	(13	15	20	25	25	30	ns

Notes: 1. t_{AA} is tested with switch S₁ closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. C_L = 30pF.

3. For three state outputs, t_{EA} is tested with $C_L = 30$ pF to the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{EA} is tested with $C_L = 5$ pF. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} - 0.5V$; LOW to high impedance tests are made with S_1 closed to the $V_{OL} + 0.5V$ level.

PROGRAMMING

The Am27S18A/18 and Am27S19A/19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the CS input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS} input from a logic HIGH to 15 volts. After 50 µsec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec. If a link has not opened after a total elapsed programming time of 400 msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the CS pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

Parameter	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Voits
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS})/dt	Rate of CS Voltage Change	100	1000	V/µsec
•	Programming Period – First Attempt	50	100	μsec
tp	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints. 2. Delays t1, t2, t3 and t4 must be greater than 100 ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

APPLYING THE Am27S18A/18 AND Am27S19A/19

The Am27S18A/18 and Am27S19A/19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal of BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking control

or code selector input. The use of a single Am27S18A/18 or Am27S19A/19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

BPM-278

	AD	DRI	ESS	;	со	MP	LEN	IENT		тя	UE		
A 4	A 3	A ₂	A 1	A 0	07	0 6	0 5	O 4	0 3	O ₂	0 1	00	
0	0	0	0	0	1	1	0	0	0	0	1	1	
0	0	0	0	1	1	0	1	1	0	1	0	0	
0	0	0	1	0	1	0	1	0	0	1	0	1	
0	0	0	1	1	1	0	0	1.	0	1	1	0	
0	0	1	0	0	1	0	0	0	0	1	1	1	EXCESS
0	0	1	0	1	0	1	1	1	1	0	0	0	i i i
0	0	1	1	0	0	1	1	0	1	0	0	1	
0	0	1	1	1	0	1	0	1	1	0	1	0	=
0	1	0	0	0	0	1	0	0	1	0	1	1	THREE
0	1	0	0	1	0	0	1	1	1	1	0	0	
0	1	0	1	0	х	Х	Х	х	X	Х	Х	х	CODE
0	1	0	1	1	X	Х	X	х	X	х	х	х	U B
0	1	1.	0	0	Х	х	х	х	X	х	Х	х	m
0	1	1	0	1	Х	х	х	х	X	х	Х	х	
0	1	1	1	0	х	х	х	х	X	х	Х	х	
0	1	1	1	1	X	х	х	х	X	х	X	х	
1	0	0	0	0	1	1	1	1	0	0	0	0	
1	0	0	0	1	1	1	1	0	0	0	0	1	
1	0	0	1	0	1	1	0	0	0	0	1	1	
1	0	0	1	1	1	1	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	1	0	1	1	0	
1	0	1	0	1	1	0	0	0	0	1	1	1.	ດ
1	0	1	1	0	1	0	-1	0	0	1	0	1	GRAY CODE
1	0	1	1	1	1	0	1	1	0	1	0	0	~
1	1	0	0	0	0	0	1	1	1	1	0	0	2
1	1	0	0	1	0	0	1	0	1	1	0	1	8
1	1	0	1	0	0	0	0	0		1	1	1	m l
1	1	0	1	1	0	0	0	1		1	1	0	
1	1	1 1	0	0 1	0	1	0	•		0 0	1	0	
1	-	-	0	-	0	1	0	0		-	-	1	
1	1	1 1	1	0 1	0	1	1	·0 1	1	0 0	0 0	1 0	
	1		•	1	0	1	1		1	<u> </u>	0	U	

TRUTH TABLE

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80S	UPP-801	UPP-803	PPX	
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90	
Am27S18A/18 Am27S19A/19	715-1407-1	PA 16-6 and 32 x 8 L	IM 32 x 8-16 AMD	SA 3-1	DIS-156 AM	DA 22	AM 110-2	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

PROM PROGRAMMING EQUIPMENT INFORMATION

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

	Orde	r Code	Package	Screening	Operating	
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)	
25ns	AM27S18APC AM27S18APCB AM27S18ADC AM27S18ADC AM27S18ADCB AM27S18ALC AM27S18ALCB	AM27S19APC AM27S19APCB AM27S19ADC AM27S19ADCB AM27S19ADCB AM27S19ALC AM27S19ALCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L	
35ns	AM27S18ADM AM27S18ADMB AM27S18AFM AM27S18AFMB AM27S18AFMB AM27S18ALM AM27S18ALMB	AM27S19ADM AM27S19ADMB AM27S19AFM AM27S19AFMB AM27S19AFMB AM27S19ALM AM27S19ALMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3	MIL	
40ns	AM27S18PC AM27S18PCB AM27S18DC AM27S18DC AM27S18DCB AM27S18LC AM27S18LCB	AM27S19PC AM27S19PCB AM27S19DC AM27S19DC AM27S19DCB AM27S19LC AM27S19LCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COMIL	
50ns	AM27S18DM AM27S18DMB AM27S18FM AM27S18FMB AM27S18LM AM27S18LMB	AM27S19DM AM27S19DMB AM27S19FM AM27S19FMB AM27S19LM AM27S19LMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29750A • Am29751A 256-Bit Generic Series Bipolar PROM

Refer to Am27S18 • Am27S19 Bipolar Memory PROM Product Specification

The Am29750A is replaced by the Am27S18 (open collector).

The Am29751A is replaced by the Am27S19 (three-state).

Am27LS18 • Am27LS19 Low - Power Schottky 256-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed 55ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27LS18 and Am27LS19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27LS18 and Am27LS19 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 32 x 8 configuration, they are available in both open collector Am27LS18 and three-state Am27LS19 output versions. After programming, stored information is read on outputs O₀-O₇ by applying unique binary addresses to A₀-A₄ and holding chip select input, GS, at a logic LOW. If either chip select input goes to a logic HIGH, O₀-O₇ go to the OFF or high impedance state.

BLOCK DIAGRAM

BPM-018

Am27LS18/LS19

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

_						Тур		
Parameters	Description	т	est Conditions		Min	(Note 1)	Max	Units
V _{OH} (Am27LS19 only)	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$			2.4			Volts
V _{OL}	Output LOW Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= MIN, \ I_{OL} = 16mA \\ V_{IN} &= V_{IH} \ or \ V_{IL} \end{split}$					0.45	Volts
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
lιL	Input LOW Current	$V_{CC} = MAX$, $V_{IN} = 0.45V$				-0.010	-0.250	mA
l _{IH}	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.7V$					25	μA
I _{SC} (Am27LS19 only)	Output Short Circuit Current	V _{CC} = MAX, V	V _{CC} = MAX, V _{OUT} = 0.0V (Note 3)			-40	-90	mA
lcc	Power Supply Current	All inputs = Gl V _{CC} = MAX	ND			60	80	mA
VI	Input Clamp Voltage	V _{CC} = MIN, I _{II}	_N = -18mA				-1.2	Volts
				V _O = 4.5V			40	
ICEX	Output Leakage Current	$V_{CC} = MAX$ $V_{CS} = 2.4V$	Am27LS19	V _O = 2.4V		40		μΑ
		.03 2.17	Only	$V_0 = 0.4V$			-40	
C _{IN}	Input Capacitance	V _{IN} = 2.0V @	f = 1MHz (Note 4))		4		-E
COUT	Output Capacitance	V _{OUT} = 2.0V	@ f = 1MHz (Note	94)		8		pF

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C. 2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

4. These parameters are not 100% tested, but are periodically sampled.

Am27LS18/LS19 SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			Тур	Ma	ĺ	
Parameter	Description	Test Conditions	5V 25°C	COM'L	MIL	Units
t _{AA}	Address Access Time		30	55	75	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1-3)	22	40	50	ns
t _{ER}	Enable Recovery Time		18	35	40	ns

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{EB} are tested with S_1 closed to the 1.5V output level. $C_L = 30pF$. 3. For three state outputs, t_{EA} is tested with $C_L = 30pF$ to the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $C_L = 5pF$. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} - 0.5V$; LOW to high impedance tests are made with S_1 closed to the $V_{OL} + 0.5V$ level.

PROGRAMMING

The Am27LS18 and Am27LS19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS} input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS} input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming periods is 5 msec. If a link has not opened after a total elapsed programming time of 400 msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which

the current drops to approximately 40mA. Current into the \overline{CS} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameter	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS})/dt	Rate of CS Voltage Change	100	1000	V/µsec
•	Programming Period – First Attempt	50	100	μsec
t _P	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
 2. Delays t₁, t₂, t₃ and t₄ must be greater than 100 ns; maximum delays of 1 μsec are recommended to minimize heating during programming.

3. During t_v, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp. P.O. Box 308 Issaquah, Wash. 98027	Pro-Log Corp. 2411 Garden Road Monterey, Ca. 93940	、
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920	
AMD GENERIC BIPOLAR PROM PERSONALITY BOARD	909-1286-1	PM9058	
Am27LS18 • Am27LS19 ADAPTERS AND CONFIGURATORS	715-1407-1	PA16-6 and 32 x 8 (L)	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype® or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

- 1. A leader of at least 25 rubouts.
- 2. The data patterns for all 32 words, starting with word 0, in the following format:
 - Any characters, including carriage return and line feed, except "B".
 - b. The letter "B", indicating the beginning of the data word.
 - c. A sequence of eight Ps or Ns, starting with output O7.
 - d. The letter "F", indicating the finish of the data word.
 - e. Any text, including carriage return and line feed, except the letter "B".

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

3. A trailer of at least 25 rubouts.

A P is a HIGH logic level = 2.4 volts. An N is a LOW logic level = 0.4 volts.

A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

APPLYING THE Am27LS18 AND Am27LS19

The Am27LS18 and Am27LS19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal or BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking con-

trol or code selector input. The use of a single Am27LS18 or Am27LS19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

BPM-026

					TR	UTI	н тл	ABLE						
	AD	DRI	ESS	;	со	MPL	EM	IENT		TR	UE] '
\mathbf{A}_4	\mathbf{A}_3	A ₂	\mathbf{A}_1	A 0	0 7	O 6	0 5	O ₄	0 3	O ₂	0 1	0 0		
0	0	0	0	0	1	1	0	0	0	0	1	1]
0	0	0	0	1	1	0	1	1	0	1	0	0	1	
0	0	0	1	0	1	0	1	0	0	1	0	1	· ·	Ľ
0	0	0	1	1	1	0	0	1	0	1	1	0		
0	0	1	0	0	.1	0	0	Ο.	0	1	1.	1	EXCESS	
0	0	1	0	1	0	1	1	1	1	0	0	0	i iii	
0	0	1	1	0	0	1	1	0	1	0	.0	1		
0	0	1	1	1	0	1	0	1	1	0	1	0	THREE	
0	1	0	0	0	0	1	0	0	1	0	1	1		
0	1	0	0	1	0	0	1	1	1	1	0	0		Ł
0	1	0	1	0	X	Х	Х	х	X	Х	X	х	CODE	
0	1	0	1	1	X	Х	Х	X	X	X	Х	X	ĕ	Ł
0	1	1	0	0	X	Х	X	X	X	X	Х	X	m	
0	1	1	0	1	X	Х	Х	X	X	Х	X	X		
0	1	1	1	0	X	X	X	X X	X	X	X	X		
0	1	1	1	1	X	X	X		X	X	X	X		-
1 1	0 0	0 0	0 0	0	1	1 1	1	1 0	0	0 0	0 0	0 1		
1	0	0	1	1 0	1	1	ò	0	0	0	1	1		
i	ŏ	ő	1	1	1	1	ŏ	1.	Ö	ŏ	1	ò		
i	ŏ	1	ò	ò		ò	ŏ	1	ŏ	1	i	ŏ		
i	ŏ	i	õ	1		ŏ	ŏ	ò	ŏ	1	1	1	-	
i	ŏ	i	1	ò	1	ŏ	1	ŏ	ŏ	1	ò	1	GRAY CODE	
i	ŏ	i	1	1		ŏ	i	ĭ	ŏ	i	ŏ	ò	Σ.	
1	1	ò	ò	ò	Ó	ō	1	1	1	1	ō	ō		
1	1	Ō	õ	1	Ō	Ō	1	Ó	1	1	Ō	1	ŏ '	
1	1	0	1	0	0	Ō	0	0	1	1	1	1		
1	1	0	1	1	0	Ó	0	1	1	1	1	0		
1	1	1	0	0	0	1	0	1	1	0	1	0		1
1	1	1	0	1	0	1	0	0	1	0	1	1		
1	1	1	1	0	0	1	1	0	1	0	0	1		1
1	1	1	1	1	0	1	1	1	1	0	0	0		

TRUTH TABLE

9

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, A		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX	
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 16 02)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90	
Am27LS18/19	715-1407-1	PA 16-6 and 32 x 8(L)	IM 32 x 8-16-AMD	SA 3-1 B 32 x 8/16	DIS-156 AM	DA-22	AM110	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

	Orde	r Code	Package	Screening	Operating	
Speed Selection	Open Collector	Three-State	(Note 1)	Flow Code (Note 2)	Range (Note 3)	
55ns	AM27LS18PC AM27LS18PCB AM27LS18PCB AM27LS18DC AM27LS18DCB AM27LS18LC AM27LS18LCB	AM27LS19PC AM27LS19PCB AM27LS19DC AM27LS19DCB AM27LS19DCB AM27LS19LC AM27LS19LCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L	
75ns	AM27LS18DM AM27LS18DMB AM27LS18FM AM27LS18FMB AM27LS18FMB AM27LS18LM AM27LS18LMB	AM27LS19DM AM27LS19DMB AM27LS19FM AM27LS19FMB AM27LS19FMB AM27LS19LM AM27LS19LMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3	MIL	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S20A • Am27S21A Am27S20 • Am27S21 ^{1024-Bit Generic Series Bipolar PROM} (256 x 4 bits with ultra fast access time)

"A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed 30ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- · High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S20A/20 and Am27S21A/21 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S20A/20 and Am27S21A/21 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 256 x 4 configuration, they are available in both open collector Am27S20A/20 and three-state Am27S21A/21 output versions. After programming, stored information is read on outputs O₀-O₃ by applying unique binary addresses to A₀-A₇ and holding chip select inputs, \overline{CS}_1 and \overline{CS}_2 , at a logic LOW. If either chip select input goes to a logic HIGH, O₀-O₃ go to the OFF or high impedance state.

CONNECTION DIAGRAMS – Top Views

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am27S20A/S21A/S20/S21

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	 -55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	 -0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	 $-0.5V$ to $+V_{CC}$ max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	 250mA
DC Input Voltage	 -0.5 to +5.5V
DC Input Current	 -30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature		
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}C$		
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}C$		

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	T	est Conditio	ns	Min	Typ (Note 1)	Max	Units
V _{OH} (Note 2)	Output HIGH Voltage	V _{CC} = MIN, I _C V _{IN} = V _{IH} or V			2.4			Volts
V _{OL}	Output LOW Voltage		$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.45	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
۱ _{IL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$				-0.010	-0.250	mA
Iн	Input HIGH Current	V _{CC} = MAX, V			25	μΑ		
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, \	V _{CC} = MAX, V _{OUT} = 0.0V (Note 4)			-40	- 90	mA
lcc	Power Supply Current	All inputs = G V _{CC} = MAX	ND			100	130	mA
Vi	Input Clamp Voltage	V _{CC} = MIN, I _{II}	_N = -18mA				-1.2	Volts
				V _O = 4.5V			40	
CEX	Output Leakage Current	$V_{CC} = MAX$ $V_{\overline{CS}_1} = 2.4V$		V _O = 2.4V			40	μΑ
			(Note 2)	$V_0 = 0.4V$			-40	
CIN	Input Capacitance	V _{IN} = 2.0V @	f = 1MHz (Note	5)		4		-5
COUT	Output Capacitance	V _{OUT} = 2.0V	@ f = 1MHz (No	ote 5)	•	8		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

			T	Typ 5V 25°C A STD		Max			
Parameter	Description	Test Conditions	5V : A			COM'L A STD		NIL STD	Units
t _{AA}	Address Access Time		20	25	30	45	40	60	ns
^t EA	Enable Access Time	AC Test Load (See Notes 1-3)	15	15	20	20	25	30	ns
tER	Enable Recovery Time	(,	15	15	20	20	25	30	ns

Notes: 1. t_{AA} is tested with switch S₁ closed and C_L = 30pF.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. $C_L = 30$ pF.

3. For three state outputs, t_{EA} is tested with $C_L = 30pF$ to the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $C_L = 5pF$. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} - 0.5V$; LOW to high impedance tests are made with S_1 closed to the $V_{OL} + 0.5V$ level.

PROGRAMMING

The Am27S20A/20 and Am27S21A/21 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS}_1 input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50μ sec, the 20 volt supply is removed, the chip is enabled, and the output level is sensed to determine if the link has opened. Most links will open within 50μ sec. Occassionlly a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
V _{ILP}	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS})/dt	Rate of \overline{CS}_1 Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
Ψ	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

During t_v, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
 Outputs not being programmed are connected to V_{ONP} through resistor R which provides output current limiting.

SIMPLIFIED PROGRAMMING DIAGRAM

BPM-274

APPLYING THE Am27S20A/20 AND Am27S21A/21

Typical application of the Am27S20A/20 and Am27S21A/21 is shown below. The Am27S20A/20 and the Am27S21A/21 are employed as mapping ROMs in a microprogram computer control unit. The eight-bit macroinstruction from main memory is brought into the A₀-A₇ inputs of the mapping ROM array. The instruction is mapped into a 12-bit address space with each PROM output supplying 4 bits. The 12 bits of address are then supplied to the "D" inputs of the Am210 as a possible next

address source for microprogram memory. The MAP output of the Am2910 is connected to the \overline{CS}_1 input of the Am27S20A/20/21A/21 such that when the \overline{CS}_1 input is HIGH, the outputs of the PROMs are either HIGH in the case of the Am27S20A/20 or in the three-state mode in the case of the Am27S21A/21. In both cases the \overline{CS}_2 input is grounded; thus data from other sources are free to drive the D inputs of the Am2910 when MAP is HIGH.

MICROPROGRAMMING INSTRUCTION MAPPING

BPM-275

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, Az		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Çode 90
Am27S20A/21A Am27S20/21	715-1408-1	PA 16-5 and 256 x 4(L)	IM 256 x 4-16 AMD	SA 4-2	DIS-133 AM	DA 21	AM130-2

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

PROM PROGRAMMING FOUIPMENT INFORMATION

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

	Orde	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	(Note 1)	Flow Code (Note 2)	Range (Note 3)
30ns	AM27S20APC AM27S20APCB AM27S20ADC AM27S20ADC AM27S20ADCB AM27S20ALC AM27S20ALCB	AM27S21APC AM27S21APCB AM27S21ADC AM27S21ADC AM27S21ADCB AM27S21ALC AM27S21ALCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
40ns	AM27S20ADM AM27S20ADMB AM27S20AFM AM27S20AFMB AM27S20ALM AM27S20ALMB	AM27S21ADM AM27S21ADMB AM27S21AFM AM27S21AFMB AM27S21AFMB AM27S21ALM AM27S21ALMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3	MIL
45ns	AM27S20PC AM27S20PCB AM27S20DC AM27S20DCB AM27S20DCB AM27S20LC AM27S20LCB	AM27S21PC AM27S21PCB AM27S21DC AM27S21DC AM27S21DCB AM27S21LC AM27S21LCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
60ns	AM27S20DM AM27S20DMB AM27S20FM AM27S20FMB AM27S20LM AM27S20LMB	AM27S21DM AM27S21DMB AM27S21FM AM27S21FMB AM27S21LM AM27S21LMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29760A • Am29761A 1024-Bit Generic Series Bipolar PROM

Refer to Am27S20 • Am27S21 Bipolar Memory PROM Product Specification

The Am29760A is replaced by the Am27S20 (open collector).

The Am29761A is replaced by the Am27S21 (three-state).

Am27S12A • Am27S13A Am27S12 • Am27S13 ²⁰⁴⁸-Bit Generic Series Bipolar PROM (512 x 4 bits with ultra fast access time)

"A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed 30ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S12A/12 and Am27S13A/13 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S12A/12 and Am27S13A/13 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512 x 4 configuration, they are available in both open collector Am27S12A/12 and three-state Am27S13A/13 output versions. After programming, stored information is read on outputs O₀-O₃ by applying unique binary addresses to A₀-A₈ and holding the chip select input, \overline{CS} , at a logic LOW. If the chip select input goes to a logic HIGH, O₀-O₃ go to the off or high impedance state.

CONNECTION DIAGRAMS - Top Views

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_C = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	٦	Fest Condition	ns	Min	Typ (Note 1)	Max	Units
V _{OH} (Note 2)	Output HIGH Voltage	$V_{CC} = MIN, I_{C}$ $V_{IN} = V_{IH} \text{ or } V$	_{DH} = -2.0mA /IL		2.4			Volts
V _{OL}	Output LOW Voltage		$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.45	Volts
VIH	Input HIGH Level		Guaranteed input logical HIGH		2.0			Volts
ViL	Input LOW Level		Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
lιL	Input LOW Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.010	-0.250	mA
Чн	Input HIGH Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = 2.7V$				25	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V	VOUT = 0.0V (N	ote 4)	-20	-40	-90	mA
lcc	Power Supply Current	All inputs = G V _{CC} = MAX	ND			100	130	mA
VI	Input Clamp Voltage	V _{CC} = MIN, I	N = -18mA				-1.2	Volts
				V ₀ = 4.5V			40	
ICEX	Output Leakage Current	$V_{CC} = MAX$ $V_{CS} = 2.4V$		V _O = 2.4V			40	μA
		.03 2.74	(Note 2)	$V_0 = 0.4V$			-40	
CIN	Input Capacitance	V _{IN} = 2.0V @	f = 1MHz (Note	5)		4		.
COUT	Output Capacitance	V _{OUT} = 2.0V	@f = 1MHz (No	ote 5)		8		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

Am27S12A/S13A/S12/S13

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

			-	Гур		м	ax		
Parameter	Description	Test Conditions	5V A	25°C STD	A C	OM'L STD	A	MIL STD	Units
t _{AA}	Address Access Time	· · · · ·	20	30	30	50	40	60	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1-3)	15	15	20	25	25	30	ns
tER	Enable Recovery Time	······································	15	15	20	25	25	30	ns

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{EB} are tested with S₁ closed to the 1.5V output level. $C_L = 30 pF$.

3. For three state outputs, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ closed to the V_{OL} + 0.5V level.

PROGRAMMING

The Am27S12A/12 and Am27S13A/13 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the CS input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS} input from a logic HIGH to 15 volts. After 50 usec, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within 50µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which

the current drops to approximately 40mA. Current into the \overline{CS} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS})/dt	Rate of CS Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
T	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

Ŧ

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	ms, Inc. 630 Price Avenue 7335 E. Acoma Dr. 528-5 Venue Redwood City, Scottsdale, AZ 85260 Sunny		7335 E. Acoma Dr. 528-5 Wedd	Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S12A/13A Am27S12/13	715-1408-2	PA 16-5 and 512 x 4(L)	IM 512 x 4-16-AMD	SA 4-1	DIS-134 AM	DA-21	AM130-3

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

PROM PROGRAMMING EQUIPMENT INFORMATION

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

APPLYING THE Am27S12A/12 AND Am27S13A/13

The Am27S12A/12 and Am27S13A/13 can be used with a high speed counter to form a pico-controller for microprogrammed systems. A typical application is illustrated below wherein a multiplexer, under control of one of the PROMs, is continuously sensing the CONDITIONAL TEST INPUTS. When the selected condition occurs, a HIGH signal will result at the multiplexer

output causing a predetermined branch address to be loaded into the parallel inputs of the counters on the next clock pulse. The counter then accesses the preprogrammed data or control information sequence from the Am27S12A/12 or Am27S13A/13 PROMs.

	Order	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
30ns	AM27S12APC AM27S12APCB AM27S12ADC AM27S12ADC AM27S12ADCB AM27S12ALC AM27S12ALCB	AM27S13APC AM27S13APCB AM27S13ADC AM27S13ADC AM27S13ADCB AM27S13ALC AM27S13ALCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
40ns	AM27S12ADM AM27S12ADMB AM27S12AFM AM27S12AFM AM27S12AFMB AM27S12ALM AM27S12ALMB	AM27S13ADM AM27S13ADMB AM27S13AFM AM27S13AFMB AM27S13AFMB AM27S13ALM AM27S13ALMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3	MIL
50ns	AM27S12PC AM27S12PCB AM27S12DC AM27S12DCB AM27S12DCB AM27S12LC AM27S12LCB	AM27S13PC AM27S13PCB AM27S13DC AM27S13DC AM27S13DCB AM27S13LC AM27S13LCB	P-16-1 P-16-1 D-16-1 D-16-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COMIL
60ns	AM27S12DM AM27S12DMB AM27S12FM AM27S12FMB AM27S12FMB AM27S12LM AM27S12LMB	AM27S13DM AM27S13DMB AM27S13FM AM27S13FMB AM27S13FMB AM27S13LM AM27S13LMB	D-16-1 D-16-1 F-16-1 F-16-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3 C-3 B-3	MIL

ORDERING INFORMATION

. **.** . .

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B. 3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29770 • Am29771 2048-Bit Generic Series Bipolar PROM

Refer to Am27S12 • Am27S13 Bipolar Memory PROM Product Specification

The Am29770 is replaced by the Am27S12 (open collector).

The Am29771 is replaced by the Am27S13 (three-state).

Am27S15 4096-Bit Generic Series Bipolar PROM (512 x 8 Bits with Output Data Latches)

DISTINCTIVE CHARACTERISTICS

- On-chip data latches
- Latched true and complemented output enables for easy word expansion
- Predetermined OFF outputs on power-up
- Plug-in replacement for the 82S115
- Fast access time 60ns commercial and 90ns military maximum
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

This 4K PROM is a member of an Advanced PROM series incorporating common electrical characteristics and programing procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S15 is an electrically programmable Schottky read only memory incorporating on-chip data and enable latches. The device is organized as 512 words of 8 bits and features three-state outputs with full 16mA drive capability.

When in the transparent mode, with the strobe (ST) input HIGH, reading stored data is accomplished by enabling the chip (\overline{E}_1 LOW and E₂ HIGH) and applying the binary word address to the address inputs, A₀-A₈. In this mode, changes of the address inputs cause the outputs, Q₀-Q₇, to read a different stored word; changes of either enable input level disable the outputs, causing them to go to the high impedance state.

Dropping the strobe input to the LOW level places the device in the latched mode of operation. The output condition present (reading a word of stored data or disabled) when the strobe goes LOW remains at the outputs, regardless of further address or enable transitions, until a positive (LOW to HIGH) strobe transition occurs. With the strobe HIGH, Q_0 - Q_7 again respond to the address and enable input conditions.

If the strobe is LOW (latched mode) when V_{CC} power is first applied, the outputs will be in the disabled state, eliminating the need for special "power-up" design precautions.

Am27S15

MAXIMUM RATINGS (Above which the useful life may be impaired)	
Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

· _ ·

OPERATING RANGE

Range	Vcc	Temperature
COML	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Condition	IS	Min	Typ (Note 1)	Max	Units
V.		$V_{CC} = MIN, I_{OH} = -2.0 mA$		2.7			Volts
Voн	Output HIGH Voltage	V _{IN} = V _{IH} or V _{IL}	MIL	2.4			Voits
V _{OL}	Output LOW Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{MIN}, \ \text{I}_{OL} = 16\text{mA} \\ V_{IN} &= V_{IH} \ \text{or} \ V_{IL} \end{split}$				0.5	Volts
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
V	Innut I OW Lovel	Guaranteed input logical LOW	COM'L			0.85	Volts
VIL	Input LOW Level	voltage for all inputs (Note 4)	MIL			0.80	VOIIS
	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$	COM'L			-0.100	
¹ ι.			MIL			-0.150	mA
l _H	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.7V$				25	μĂ
		$V_{CC} = MAX, V_{OUT} = 0.0V$	COM'L	-20		-70	
Isc	Output Short Circuit Current	(Note 2)	MIL	- 15		-65	mA
	D	All Inputs = GND	COM'L		125	175	
lcc	Power Supply Current	V _{CC} = MAX	MIL		125	185	mA
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -18mA				1.2	Volts
	• • • • • • •	V _{CC} = MAX,	$V_0 = 4.5V$			40	μA
CEX	Output Leakage Current	$V\overline{E}_1 = 2.4V$ $VE_2 = 0.4V$	$V_0 = 0.4V$			-40	μη
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 3)			5		
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz (Note 3)	· · · · · · · · · · · · · · · · · · ·		12		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

 These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

. . . .

			Тур.	co	M'L	M	IIL	
Parameter	Description	Test Conditions	(Note 1)	Min.	Max.	Min.	Max.	Units
t _{PHL} (A) t _{PLH} (A)	Transparent Mode Address to Output Access Time		35		60		90	ns
t _W (S)	Strobe Pulse Width (HIGH)		10	30		40		ns
t _S (A)	Address to Strobe (LOW) Set-up Time	C _L = 30pF S₁ Closed	35	60		90		ns
t _H (A)	Address to Strobe (LOW) Hold Time	(See AC Test	-10	0		5		ns
$t_{S}(\overline{E}_{1})$ $t_{S}(E_{2})$	Enable to Strobe (LOW) Set-up Time	Load Below)		40		50		ns
t _H (Ē ₁) t _H (E ₂)	Enable to Strobe (LOW) Hold Time		0	10		10		ns
$t_{PZH}(\overline{E}_1, E_2)$ $t_{PZL}(\overline{E}_1, E_2)$	Transparent Mode Enable to Output Enabled (HIGH or LOW) Time	C _L = 30pF S ₁ Closed for t _{PZL} , & Open for t _{PZH}	20		40		50	ns
t _{PHZ} (S) t _{PLZ} (S)	Strobe Delatch (HIGH) to Output Disabled (OFF or HIGH impedance) Time	$C_L = 5pF$ (Note 2)			35		45	ns
$t_{PHZ}(\overline{E}_1, E_2)$ $t_{PLZ}(\overline{E}_1, E_2)$	Transparent Mode Enable to Output Disabled (OFF or high impedance) Time	S ₁ closed for t _{PLZ} & Open for t _{PHZ}	20		40		50	ns

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.

 t_{PHZ} and t_{PLZ} are measured to the V_{OH} - 0.5V and V_{OL} + 0.5V output levels respectively. All other switching parameters are tested from and to the 1.5V threshold levels.

3. Tests are performed with input rise and fall times (10% to 90%) of 5ns or less.

PROGRAMMING

The Am27S15 is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{E}_1 input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{E}_1 input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip is enabled and the output level sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which

PROGRAMMING PARAMETERS

the current drops to approximately 40mA. Current into the \overline{E}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

Parameter	Description	Min.	Max.	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
VENP	E ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0.0	V _{CCP} +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{EN})/dt	Rate of \overline{E}_1 Voltage Change	100	1000	V/µsec
•	Programming Period – First Attempt	50	100	μsec
tp	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t₁ through t₄ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

- - -

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev G* 919-1286-1 Rev G*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12
Am27S15	715-1411-1	PA 24-14 and 512 x 8(L)	IM 512 x 8-24- 27S15-AMD	SA 17-3B 512 x 8/24	DIS-165 AMD	DA 33

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
60ns	AM27S15PC AM27S15PCB AM27S15DC AM27S15DCB	P-24-1 P-24-1 D-24-1 D-24-1	C-1 B-1 C-1 B-1	COM'L
90ns	AM27S15DM AM27S15DMB AM27S15FM AM27S15FMB	D-24-1 D-24-1 F-24-1 F-24-1	C-3 B-3 C-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S25A • Ar 4K•Bit (512 x 8) Generic Series IMOX™ Bipolar High Performance Registered PROM with PRESET and CLEAR INPUTS "A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Member of AMD's Generic Family of 8-bit wide registered PROMs
- On-chip edge-triggered registers ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Buffered common PRESET and CLEAR inputs
- Slim, 24-pin, 300-mil lateral center package occupies approximately 1/3 the board space required by standard discrete PROM and register
- Consumes approximately 1/2 the power of separate PROM/register combination for improved system reliability
- Standard version 50ns max setup and 27ns max clock-to-output allows system speed improvements
- "A" version offers improved AC performance in critical paths (30ns max setup and 20ns max clock-to-output)
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ>98%)
- AC performance is factory tested utilizing programmed test words and columns

BLOCK DIAGRAM

- 100% MIL-STD-883C processing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S25A/25 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 512-word by 8-bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S25A/25 also offer maximum flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

When V_{CC} power is first applied, the synchronous enable (\overline{E}_{S}) flip-flop will be in the set condition causing the outputs (Q0-Q7) to be in the OFF or high-impedance state. Reading data is accomplished by first applying the binary word address to the address inputs (An-An) and a logic LOW to the synchronous enable (E_S). During the address setup time, stored data is accessed and loaded into the master flipflops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable (\overline{E}) is also LOW, stored data will appear on the outputs (Q_0 - Q_7). If \overline{E}_S is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state regardless of the state of E. The outputs may be disabled at any time by switching \overline{E} to a HIGH level. Following the positive clock edge the address and synchronous enable inputs are free to change; changes will not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively elimated by tying it to ground.

The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

The Am27S25 has buffered asynchronous $\overrightarrow{\mathsf{PRESET}}$ and $\overrightarrow{\mathsf{CLEAR}}$ inputs. These functions are common to all registers and are useful during power up timeout sequences. With outputs enabled the $\overrightarrow{\mathsf{PS}}$ input asserted LOW will cause all outputs to be set to a logic 1 (HIGH) state. When the $\overrightarrow{\mathsf{CLR}}$ input is LOW, the internal flip-flops of the data register are reset and, a logic 0 (LOW) will appear on all outputs. These functions will control the state of the data register, independent of all other inputs but exclusive of each other.

IMOX is a trademark of Advanced Micro Devices, Inc.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

GENERIC SERIES CHARACTERISTICS

The Am27S25A/25 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure long-term reliability. Extensive operating testing has shown that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltagecompensated bias network to provide excellent parametric performance over the full military power supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

AMD's GENERIC FAMILY OF 8-WIDE REGISTERED PROMS

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S25A/S25

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature			
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$			
MIL	4.5 to 5.5V	$T_C = -55 \text{ to } + 125^{\circ}C$			

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	Typ (Note 1)	Max	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	2.4			Volts	
V _{OL}	Output LOW Voltage	$\label{eq:VCC} \begin{array}{l} V_{CC} = MIN, I_{OL} = 16mA \\ V_{IN} = V_{IH} \text{ or } V_{IL} \end{array}$		<u> </u>	0.38	0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
l _μ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	-0.250	mA
lн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μA
I _{SC}	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V (Note 3)		-20	-40	-90	mA
lcc	Power Supply Current	All inputs = GND, V _{CC} = MAX			120	185	mA
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$				-1.2	Volts
ICEX	Output Leakage Current	$V_{CC} = MAX$ $V_{\overline{E}} = 2.4V$	$V_{O} = V_{CC}$			40	μA
			$V_0 = 0.4V$			-40	
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 4)			5		
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz (Note 4)			12		pF

Notes: 1. Typical values are at V_{CC} = 5.0V and T_A = 25°C.
 2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).

3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.

4. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (See Notes on Testing) **'A' VERSION ADVANCE INFORMATION**

. . . .

				Am27S25A		Am27S25						
			Тур	со	M'L	M	IL	со	M'L	М	IL	
Parameters	Descriptio	n	(Note 1)	Min	Мах	Min	Max	Min	Max	Min	Max	Units
t _S (A)	Address to CP (HIGH) Setup	Time	35	30		35		50		55		ns
t _H (A)	Address to CP (HIGH) Hold 1	īme	- 10	0		0		0		0		ns
t _{PHL} (CP)	Delay from CP (HIGH) to	All Outputs Simultaneous	15		20		25		27		30	ns
t _{PLH} (CP)	Output (HIGH or LOW)	Single Output (Note 3)	13		15		20		23		26	
t _{WH} (CP)	CP Width (HIGH or LOW)			20		20		20		20		ns
t _{WL} (CP)				20		20		20		20		115
t _S (Ē _S)	\overline{E}_S to CP (HIGH) Setup Time		5	10		15		10		15		ns
t _H (Ē _S)	\overline{E}_S to CP (HIGH) Hold Time		-2	5		5		5		5		ns
t _{PHL} (CLR)	Delay from PRESET or CLEAR (LOW)		16		20		25		25		30	ns
t _{PLH} (PS)	to Outputs (LOW or HIGH)										_	
t _R (PS)	PRESET or CLEAR Recovery	/	10	20		25		20		25		ns
t _R (CLR)	(Inactive) to CP (HIGH)											
t _{WL} (PS)	PRESET or CLEAR Pulse Wi	dth	10	20		25		30		25		ns
t _{WL} (CLR)												
t _{PZL} (CP)	Delay from CP (HIGH) to Act	ve Output	18		25		30		35		45	ns
t _{PZH} (CP)	(HIGH or LOW)										_	
t _{PZL} (Ē)	Delay from \overline{E} (LOW) to Active Output (HIGH or LOW)		15		25		30		35		45	ns
t _{PZH} (Ē)												
t _{PLZ} (CP)	Delay from CP (HIGH) to Inac		21		25		30		35		45	ns
t _{PHZ} (CP)	(OFF or High Impedance) (No	ote 4)	_									
t _{PLZ} (Ē) t _{PHZ} (Ē)	Delay from E ₁ (HIGH) to Inac (OFF or High Impedance) (No		15		25		30		35		45	ns

Notes: 1. Typical values are at V_{CC} = 5.0V and T_A = 25°C.
2. Tests are performed with input 10 to 90% rise and fall times of 5ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.

t_{PLZ} and t_{PLZ} are measured to the V_{OH} -0.5V and V_{OL} +0.5V output levels respectively. All other switching parameters are tested from and to the 1.5V threshold levels.

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

- 1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
- 2. Do not leave any inputs disconnected (floating) during any test.
- 3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

PROGRAMMING

The Am27S25A/25 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{E} input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{E} input from a logic HIGH to 15 volts. After 50μ sec, the 20 volt supply is removed, the chip enabled, and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within 50µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the

current drops to approximately 40mA. Current into the \overline{E} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
V _{iHP}	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
VENP	E Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(VEN)/dt	Rate of E Voltage Change	50	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
·r	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

Delays t₁ through t₇ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

.....

Am27S25A/S25

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 735 E. Acoma Scottsdale, Az		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev G* 919-1286-1 Rev G* Unipak Rev H 003 (Code 62 65)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Socket Adapters Am27S25	715-1617	PA 24-16 and 512 x 8(L)	IM 512 x 8-27S25 AMD	SA 31-2 B 512 x 8/24	DIS-213 AM	DA 31-5	AM 190-2

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

Speed Selection (Setup Time)	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)					
30ns	AM27S25APC AM27S25APCB AM27S25ADC AM27S25ADC AM27S25ADCB AM27S25ALC AM27S25ALCB	P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L					
35ns	AM27S25ADM AM27S25ADMB AM27S25AFM AM27S25AFMB AM27S25AFMB AM27S25ALM AM27S25ALMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL					
50ns	AM27S25PC AM27S25PCB AM27S25DC AM27S25DCB AM27S25DCB AM27S25LC AM27S25LCB	P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COMIL					
55ns	AM27S25DM AM27S25DMB AM27S25FM AM27S25FMB AM27S25FMB AM27S25LM AM27S25LMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL					

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. This package will be available soon. Consult Factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S27 4096-Bit Generic Series Bipolar Registered PROM (512 x 8 Bits with D-Type Output Data Register)

DISTINCTIVE CHARACTERISTICS

- On-chip edge triggered registers Ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Predetermined OFF outputs on power-up
- Fast 55ns address setup and 27ns clock to output times
- Excellent performance over the military range
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S27 is a 512 word x 8-bit PROM which incorporates an on-chip D-type, master-slave data register with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost of pipelined microprogrammed system and other designs wherein accessed PROM data is temporarily stored in a register. The Am27S27 also offers maximal flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

When V_{CC} power is first applied, the synchronous enable (\overline{E}_{S}) flip-flop will be in the set condition causing the outputs, Q0-Q7, to be in the OFF or high impedance state, eliminating the need for a register clear input. Reading data is accomplished by first applying the binary word address to the address inputs, A0-A8, and a logic LOW to the synchronous output enable, Es. During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock, CP, data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable, E, is also LOW, stored data will appear on the outputs, Q_0 - Q_7 . If \overline{E}_S is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state. The outputs may be disabled at any time by switching \overline{E} to a HIGH level. Following the positive clock edge, the address and synchronous enable inputs are free to change; changes do not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.

The on-chip, edge triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

2

GENERIC SERIES CHARACTERISTICS

The Am27S27 is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation. Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, largegap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 22 to Pin 11) Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	$-0.5V$ to $+V_{CC}$ max.
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max. Duration of 1 sec.)	250mA
DC Input Voltage	-0.5V to +5.5V
DC Input Current	-30mA to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless otherwise noted)

Parameters	Description	Test Condition	ons	Min.	Typ. (Note 1)	Max.	Units
Voh	Output HIGH Voltage	$V_{CC} = MIN., I_{OH} = -2.$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	0mA	2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN., I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$			0.38	0.50	Volts
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
կլ	Input LOW Current	$V_{CC} = MAX., V_{IN} = 0.45V$			-0.010	-0.250	mA
Чн	Input HIGH Current	$V_{CC} = MAX., V_{IN} = 2.7V$				25	μA
li i	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5V				1.0	mA
I _{SC}	Output Short Circuit Current	V _{CC} = MAX., V _{OUT} = 0. (Note 2)	V _{CC} = MAX., V _{OUT} = 0.0V (Note 2)		-40	-90	mA
Icc	Power Supply Current	All inputs = GND V _{CC} = MAX.			130	185	mA
VI	Input Clamp Voltage	$V_{CC} = MIN., I_{IN} = -18$	$V_{CC} = MIN., I_{IN} = -18mA$			-1.2	Volts
ICEX	Output Leakage Current	V _{CC} = MAX.	V _O = 4.5V		1	40	μΑ
'UEX	Culput Loundyb Odironi	VE = 2.4V	$V_0 = 0.4V$			-40	
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MH;	z (Note 3)		5		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1M	Hz (Note 3)		12		

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

 These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			Тур 5V	со	M'L	м	IL	
Parameter	Description	Test Conditions	25°C	Min	Max	Min	Max	Units
t _s (A)	Address to CP (HIGH) Setup Time		40	55	· ·	65		ns
t _H (A)	Address to CP (HIGH) Hold Time		-15	0		0		ns
t _{PHL} (CP) t _{PLH} (CP)	Delay from CP (HIGH) to Output (HIGH or LOW)	C _L = 30pF S ₁ closed.	15		27		30	ns
t _{WH} (CP) t _{WL} (CP)	CP Width (HIGH or LOW)	(See AC Test Load below)	10	30		40		ns
$t_S(\overline{E}_S)$	Es to CP (HIGH) Setup Time		10	25		30		ns
t _H (Ē _S)	Es to CP (HIGH) Hold Time		-10	0		0		ns
t _{PZL} (CP) t _{PZH} (CP)	Delay from CP (HIGH) to Active Output (HIGH or LOW)	$C_L = 30pF$ S ₁ closed for t _{PZL}	15		35		45	ns
t _{PZL} (Ē) t _{PZH} (Ē)	Delay from E (LOW) to Active Output (HIGH or LOW)	and open for t _{PZH}	15		40		45	ns
t _{PLZ} (CP) t _{PHZ} (CP)	Delay from CP (HIGH) to Inactive Output (OFF or High Impedance)	$C_L = 5pF$ (Note 1)	15		35		45	ns
t _{PLZ} (Ē) t _{PHZ} (Ē)	Delay from \overline{E} (HIGH) to Inactive Output (OFF or High Impedance)	S ₁ closed for t _{PLZ} and open for t _{PHZ}	10		30		40	ns

Notes: 1. tPHZ and tPLZ are measured to the VOH - 0.5V and VOL + 0.5V output levels respectively. All other switching parameters are tested from and to the 1.5V threshold levels.

2. Tests are performed with input 10% to 90% rise and fall times of 5ns or less.

AC TEST LOAD

BPM-040

PROGRAMMING

The Am27S27 is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{E} input is at a logic HIGH. Current is gated through the addressed fuse by raising the E input from a logic HIGH to 15 volts. After 50 µsec, the 20 volt supply is removed, the chip is enabled and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within 50 µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec. If a link has not opened after a total elapsed programming time of 400 msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the E pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameter	Description	Min.	Max.	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	v
VIHP	Input HIGH Level During Programming	2.4	5.5	v
VILP	Input LOW Level During Programming	0.0	0.45	v
VENP	E Voltage During Programming	14.5	15.5	v
V _{OP}	Output Voltage During Programming	19.5	20.5	v
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} +0.3	V
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{EN})/dt	Rate of E Voltage Change	50	1000	V/µsec
	Programming Period – First Attempt	50	100	μsec
t _P	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t₁ through t₆ must be greater than 100 ns; maximum delays of 1 µsec are recommended to minimize heating during programming. 3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

-- ---

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Scottsdale, AZ &	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev G* 919-1286-1 Rev G*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12
Am27\$27	715-1412-2	PA 22-4 and 512 x 8(L)	IM 512 x 8-22- 27S27-AMD	SA 18 B 512 x 8/22	DIS-168 AMD	DA 28

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

Speed Selection (t _S (A))	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)	
	AM27S27PC	P-22-1	C-1		
	AM27S27PCB	P-22-1	B-1	00141	
55ns	AM27S27DC	D-22-1	C-1	COM'L	
	AM27S27DCB	D-22-1	B-1		
6Ema	AM27S27DM	D-22-1	C-3	NAU.	
65ns	AM27S27DMB	D-22-1	B-3	MIL	

Notes: 1. P = Molded DIP, D = Hermetic DIP. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29775 4096-Bit Generic Series Bipolar PROM with Register

- - -

Refer to Am27S27 Bipolar Memory PROM Product Specification

The Am29775 is replaced by the Am27S27 (three-state).

Am27S28A • Am27S29A Am27S28 • Am27S29 4096-Bit Generic Series Bipolar PROM (512 x 8 bits with ultra fast access time)

"A" VERSION – ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S28A/28 and Am27S29A/29 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test rows are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S28A/28 and Am27S29A/29 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512 x 8 configuration, they are available in both open collector Am27S28A/28 and three-state Am27S29A/29 output versions. After programming, stored information is read on outputs O₀-O₇ by applying unique binary addresses to A₀-A₈ and holding the chip select input, \overline{CS} , at a logic LOW. If the chip select input goes to a logic HIGH, O₀-O₇ go to the off or high impedance state.

CONNECTION DIAGRAMS – Top Views

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am27S28A/S29A/S28/S29

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

- - - - -

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } + 75^{\circ}\text{C}$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	I	Fest Conditior	IS	Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$V_{CC} = MIN, I_{C}$ $V_{IN} = V_{IH} \text{ or } V$			2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_C$ $V_{IN} = V_{IH} \text{ or } V$					0.50	Volts
VIH	Input HIGH Level		Guaranteed input logical HIGH		2.0	-		Volts
VIL	Input LOW Level		Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
IIL	Input LOW Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.010	-0.250	mA
Чн	Input HIGH Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = 2.7V$				25	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V	$V_{OUT} = 0.0V$ (No	ote 4)	-20	-40	-90	mA
lcc	Power Supply Current	All inputs = G $V_{CC} = MAX$	ND		-	105	160	mA
VI	Input Clamp Voltage	V _{CC} = MIN, I _I	_N =18mA				-1.2	Volts
				V _O = 4.5V	1		40	
ICEX	Output Leakage Current	$V_{CC} = MAX$ $V_{CS} = 2.4V$		V ₀ = 2.4V			40	μA
		103 2.11	(Note 2)	$V_0 = 0.4V$	Ţ		-40	
CIN	Input Capacitance	V _{IN} = 2.0V @	f = 1MHz (Note	5)		4		
COUT	Output Capacitance	V _{OUT} = 2.0V	@ f = 1MHz (No	te 5)	1	8		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

				Гур		M	ax		
Parameter	Description	Test Conditions	5V A	25°C STD	C A	OM'L STD	A	MIL STD	Units
t _{AA}	Address Access Time		30	35	35	55	45	70	ńs
t _{EA}	Enable Access Time	AC Test Load (See Notes 1-3)	12	15	20	25	25	30	ns
t _{ER}	Enable Recovery Time	(12	15	20	25	25	30	ns

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

 1. IAA is tested with switch S1 closed and CL = Sopi .
 2. For open collector outputs, t_{EA} and t_{ER} are tested with S1 closed to the 1.5V output level. CL = 30pF.
 3. For three-state outputs, t_{EA} is tested with CL = 30pF to the 1.5V level; S1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with CL = 5pF. HIGH to high impedance tests are made with S1 open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S_1 closed to the V_{OL} + 0.5V level.

2-49

PROGRAMMING

The Am27S28A/28 and Am27S29A/29 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{CS} input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS} input from a logic HIGH to 15 volts. After 50 µsec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the \overline{CS} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameter	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
V _{ILP}	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0.0	V _{CCP} +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{EN})/dt	Rate of CS Voltage Change	100	1000	v/µsec
•	Programming Period – First Attempt	50	100	μsec
tp	Programming Period – Subsequent Attempts	5.0	15	msec

PROGRAMMING PARAMETERS

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
 2. Delays t₁ through t₄ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		7335 E. Acoma Dr. 528-5		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ		
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90		
Am27S28A/29A Am27S28/29	715-1413	PA 20-4 and 512 x 8 (L)	IM 512 x 8-20-AMD	SA 6	DIS-158 AM	DA-34	AM120-3		

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

	Ordei	Code	Package	Screening	Operating
Speed Selection	Open Collector Three-State		(Note 1)	Flow Code (Note 2)	(Note 3)
40ns	AM27S28APC AM27S28APCB AM27S28ADC AM27S28ADC AM27S28ADCB AM27S28ALC AM27S28ALCB	AM27S29APC AM27S29APCB AM27S29ADC AM27S29ADCB AM27S29ADCB AM27S29ALC AM27S29ALCB	P-20-1 P-20-1 D-20-1 D-20-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S28ADM AM27S28ADMB AM27S28ALM AM27S28ALMB	AM27S29ADM AM27S29ADMB AM27S29ALM AM27S29ALMB	D-20-1 D-20-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3	MIL
55ns	AM27S28PC AM27S28PCB AM27S28DC AM27S28DCB AM27S28DCB AM27S28LC AM27S28LCB	AM27S29PC AM27S29PCB AM27S29DC AM27S29DC AM27S29DCB AM27S29LC AM27S29LCB	P-20-1 P-20-1 D-20-1 D-20-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COMIL
70ns	AM27S28DM AM27S28DMB AM27S28LM AM27S28LMB	AM27S29DM AM27S29DMB AM27S29LM AM27S29LMB	D-20-1 D-20-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S30A • Am27S31A Am27S30 • Am27S31 4096-Bit Generic Series Bipolar PROM (512 x 8 bits with ultra fast access time)

"A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- · High current open collector and three-state outputs
- · Fast chip select
- Access time tested with N² patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S30A/30 and Am27S31A/31 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test rows are preprogrammed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S30A/30 and Am27S31A/31 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512 x 8 configuration, they are available in both open collector Am27S30A/30 and three-state Am27S31A/31 output versions. After programming, stored information is read on outputs O₀-O₇ by applying unique binary addresses to A₀-A₈ and holding \overline{CS}_1 and \overline{CS}_2 LOW and \overline{CS}_3 and CS_4 HIGH. All other valid input conditions on \overline{CS}_1 , \overline{CS}_2 , CS_3 and CS_4 place O₀-O₇ into the OFF or high impedance state.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S30A/S31A/S30/S31

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

	Range	Vcc	Temperature
Γ	COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
	MIL	4.5 to 5.5V	$T_C = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	г	est Conditio	าร	Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	V _{CC} = MIN, I _C V _{IN} ≕ V _{IH} or V			2.4			Volts
V _{OL}	Output LOW Voltage					0.50	Volts	
VIH	Input HIGH Level		Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts
VIL	Input LOW Level		Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
IIL .	Input LOW Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.010	-0.250	mA
Чн	Input HIGH Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = 2.7V$			1	25	μΑ
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V	/ _{OUT} = 0.0V (Ne	ote 4)	-20	-40	-90	mA
lcc	Power Supply Current	All inputs = G V _{CC} = MAX	ND			115	175	mA
Vt	Input Clamp Voltage	V _{CC} = MIN, I _{II}	N = -18mA				-1.2	Volts
				$V_0 = 4.5V$			40	•
ICEX	Output Leakage Current	$V_{CC} = MAX$ $V_{\overline{CS}_1} = 2.4V$		$V_0 = 2.4V$			40	μA
		1 .031	(Note 2)	$V_0 = 0.4V$			-40	
CIN	Input Capacitance	V _{IN} = 2.0V @	f = 1MHz (Note	5)		4		~F
COUT	Output Capacitance	V _{OUT} = 2.0V	@ f = 1MHz (No	ote 5)		8		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. This applies to three-state devices only.

3. These are absolute voltages with respect to ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but periodically sampled.

2-53

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

			-	Тур		M	ax		
Parameter	Description	Test Conditions	5V A	25°C STD	C A	OM'L STD	A	MIL STD	Units
t _{AA}	Address Access Time		30	35	35	55	45	70	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1-3)	12	15	20	25	25	30	ns
t _{ER}	Enable Recovery Time	(12	15	20	25	25	30	ns

- - - -----

Notes: 1. t_{AA} is tested with switch S₁ closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. $C_L = 30 pF$.

3. For three state outputs, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ closed to the V_{OL} + 0.5V level.

PROGRAMMING

The Am27S30A/30 and Am27S31A/31 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS}_1 input is a logic HIGH. Current is gated through the addressed fuse by raising the CS1 input from a logic HIGH to 15 volts. After 50 µsec, the 20 volt supply is removed, the chip is enabled and the output level sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0.0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{EN})/dt	Rate of $\overline{\text{CS}}_1$ Voltage Change	100	1000	V/µsec
t _p	Programming Period – First Attempt	50	100	μsec
ч Т	Programming Period – Subsequent Attempts	5.0	15	msec

tion of the first edge to beginning of the second edge; i.e., not to the mi

2. Delays t₁ through t₄ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

Source and Location	Data I/O Pro-Log Corporation International Kontron Electronic, 10525 Willows Rd. N.E. 2411 Garden Road Microsystems, Inc. 630 Price Avenue Redmond, WA 98052 Monterey, CA 93940 11554 C. Avenue Redwood City, Auburn, CA 95603 CA 94063 CA 94063		Microsystems, Inc. 630 Price Avenue 7335 E. 0 11554 C. Avenue Redwood City, Scottsd		Digelec, Inc. 7335 E. Acoma Scottsdale, AZ	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12
Am27S30A/31A Am27S30/31	715-1545	PA 24-13 and 512 x 8(L)	IM 512 x 8-24-AMD	SA 22-6	DIS-135 AM	DA 29

PROM PROGRAMMING EQUIPMENT INFORMATION

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

	Ordei	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
40ns	AM27S30APC AM27S30APCB AM27S30ADC AM27S30ADCB AM27S30ALCB AM27S30ALCB	AM27S31APC AM27S31APCB AM27S31ADC AM27S31ADCB AM27S31ALCB AM27S31ALCB	P-24-1AC P-24-1AC D-24-1AC D-24-1AC L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S30ADM AM27S30ADMB AM27S30AFM AM27S30AFMB AM27S30ALM AM27S30ALMB	AM27S31ADM AM27S31ADMB AM27S31AFM AM27S31AFMB AM27S31AFMB AM27S31ALM AM27S31ALMB	D-24-1AC D-24-1AC F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL
55ns	AM27S30PC AM27S30PCB AM27S30DC AM27S30DCB AM27S30DCB AM27S30LC AM27S30LCB	AM27S31PC AM27S31PCB AM27S31DC AM27S31DC AM27S31DCB AM27S31LC AM27S31LCB	P-24-1AC P-24-1AC D-24-1AC D-24-1AC L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
70ns	AM27S30DM AM27S30DMB AM27S30FM AM27S30FMB AM27S30LM AM27S30LM	AM27S31DM AM27S31DMB AM27S31FM AM27S31FMB AM27S31LM AM27S31LMB	D-24-1AC D-24-1AC F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S32A • Am27S33A Am27S32 • Am27S33 4096-Bit Generic Series Bipolar PROM (1024 x 4 bits with ultra fast access time)

DISTINCTIVE CHARACTERISTICS

- High Speed 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- · High current open collector and three-state outputs
- Fast chip select
- Access time tested with N² patterns
- · Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S32A/32 and Am27S33A/33 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S32A/32 and Am27S33A/33 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024 x 4 configuration, they are available in both open collector Am27S32A/32 and three-state Am27S33A/33 output versions. After programming, stored information is read on outputs O₀-O₃ by applying unique binary addresses to A₀-A₉ and holding the chip select input, \overline{CS}_1 , and \overline{CS}_2 LOW. If either chip select input goes to a logic HIGH, O₀-O₃ go to the off or high impedance state.

CONNECTION DIAGRAMS Top Views

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S32A/S33A/S32/S33

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +VCC max.
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max. Duration of 1 sec.)	250mA
DC Input Voltage	-0.5V to +5.5V
DC Input Current	-30 to +5mA

- -

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_C = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test	Condition	s	Min	Typ (Note 1)	Max	Units	
V _{OH} (Note 2)	Output HIGH Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = \text{MIN}, \ I_{OH} = -2.0\text{mA} \\ V_{IN} = V_{IH} \ \text{or} \ V_{IL} \end{array}$			2.4			Volts	
V _{OL}	Output LOW Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = MIN, I_{OL} = 16 \text{mA} \\ V_{IN} = V_{IH} \text{ or } V_{IL} \end{array}$					0.45	Volts	
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts	
l _{IL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$				-0.020	-0.250	mA	
۱ _{IH}	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.7V$					25	μA	
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _O	V _{CC} = MAX, V _{OUT} = 0.0V (Note 4)			-40	- 90	mA	
	D	All inputs = GNI	Э,	COM'L		105	140	mA	
lcc	Power Supply Current	V _{CC} = MAX		MIL		105	145		
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN}	= - 18mA				-1.2	Volts	
				V _O = 4.5V			40		
ICEX	Output Leakage Current	$V_{CC} = MAX$ $V_{\overline{CS_1}} = 2.4V$	(1)	V _O = 2.4V			40	μΑ	
i		$V_{\overline{CS}_1} = 2.4V$ (Note 2)		$V_0 = 0.4V$			-40	1	
CIN	Input Capacitance	V _{IN} = 2.0V @f =	= 1MHz (No	te 5)		5		-5	
COUT	Output Capacitance	V _{OUT} = 2.0V @	f = 1MHz (I	Note 5)		12		pF	

Notes: 1. Typical limits are at $V_{CC}=5.0V$ and $T_A=25^\circ C.$

2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			-	Гур		М	ax		
Parameter	Description	Test Conditions	5V A	25°C STD	A	OM'L STD	A	MIL STD	Units
t _{AA}	Address Access Time		25	38	35	55	45	70	ns
tEA	Enable Access Time	AC Test Load (See Notes 1-3)	18	20	25	25	30	30	ns
tER	Enable Recovery Time	(18	20	25	25	30	30	ns

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. $C_L = 30 pF$.

3. For three state outputs, t_{EA} is tested with $C_L = 30pF$ to the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $C_L = 5pF$. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} - 0.5V$; LOW to high impedance tests are made with S_1 closed to the $V_{OL} + 0.5V$ level.

PROGRAMMING

The Am27S32A/32 and Am27S33A/33 are manufactured with conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS}_1 input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including VCC should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

Parameter	Description	Min	Max	Units
VCCP	VCC During Programming	5.0	5.5	Voits
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
VCSP	CS ₁ Voltage During Programming	14.5	15.5	Volts
VOP	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs. Not to be Programmed	0	VCCP+0.3	Volts
IONP	Current into Outputs. Not to be Programmed		20	mA
d(VOP)/dt	Rate of Output Voltage Change	20	250	V/µsec
d(VCS)/dt	Rate of CS1 Voltage Change	100	1000	V/µsec
tP	Programming Period ~ First Attempt	50	100	μsec
۱۳ <u> </u>	Programming Period ~ Subsequent Attempts	5	15	msec

PROGRAMMING PARAMETERS

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e. not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100 ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During tv, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063			Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 9408	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ	
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*			MOD 14	PM 102 FAM-12		PM 2000 Code 90	
Am27S32A/33A Am27S32/33	715-1414	PA 18-6 and 1024 x 4(L)	IM 1024 x 4-18-AMD	SA 24	DIS 136 AM	DA 38	AM170-2	

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

	Orde	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
35ns	AM27S32APC AM27S32APCB AM27S32ADC AM27S32ADCB	AM27S33APC AM27S33APCB AM27S33ADC AM27S33ADC AM27S33ADCB	P-18-1 P-18-1 D-18-1 D-18-1	C-1 B-1 C-1 B-1	COM'L
	AM27S32ALC AM27S32ALCB	AM27S33ALC AM27S33ALCB	L-20-1 L-20-1	C-1 B-1	
45ns	AM27S32ADM AM27S32ADMB AM27S32ALM AM27S32ALMB	AM27S33ADM AM27S33ADMB AM27S33ALM AM27S33ALMB	D-18-1 D-18-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3	MIL
55ns	AM27S32PC AM27S32PCB AM27S32DC AM27S32DCB AM27S32DCB AM27S32LC AM27S32LCB	AM27S33PC AM27S33PCB AM27S33DC AM27S33DC AM27S33DCB AM27S33LC AM27S33LCB	P-18-1 P-18-1 D-18-1 D-18-1 L-20-1 L-20-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
70ns	AM27S32DM AM27S32DMB AM27S32LM AM27S32LMB	AM27S33DM AM27S33DMB AM27S33LM AM27S33LMB	D-18-1 D-18-1 L-20-1 L-20-1	C-3 B-3 C-3 B-3	MIL

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Flat packages are available upon special request. Consult factory.

Am27S65 • Am27S75 • Am27S85 Generic Series 4-Wide Bipolar IMOX TH Registered PROMS

with SSR[™] Diagnostics Capability

ADVANCED INFORMATION

IMOX and SSR are trademarks of Advanced Micro Devices, Inc.

Am27S65/S75/S85

_ _ _ . .

Am27S85

BPM-344

Am27S35A • Am27S35 Am27S37A • Am27S37 8K-Bit (1024 x 8) Generic Series IMOXTM Bipolar High Performance Registered PROM with Programmable INITIALIZE

DISTINCTIVE CHARACTERISTICS

- Member of AMD's Generic Family of 8-bit wide registered PROMs
- On-chip edge-triggered registers ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Versatile programmable register INITIALIZE either asynchronous (Am27S35A/35) or synchronous (Am27S37A/37)
- Slim, 24-pin, 300-mil lateral center package occupies approximately 1/3 the board space required by standard discrete PROM and register
- Consumes approximately 1/2 the power of separate PROM/register combination for improved system reliability
- Fast standard version 40ns max setup and 25ns max clock-to-output allows system speed improvements
- "A" version offers improved AC performance in critical paths (35ns max setup and 20ns max clock-to-output)
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ>98%)
- AC performance is factory tested utilizing programmed test words and columns
- 100% MIL-STD-883C processing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S35A/35 and Am27S37A/37 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are preprogrammed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure long-term reliability. Extensive operating testing has shown that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltagecompensated bias network to provide excellent parametric performance over the full military power supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

Am27S37

BLOCK DIAGRAMS

IMOX is a trademark of Advanced Micro Devices, Inc.

FUNCTIONAL DESCRIPTION

The Am27S35A/35 and Am27S37A/37 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 1024-word by 8-bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S35A/35 and Am27S37A/37 also offer maximum flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

When V_{CC} power is first applied, the synchronous enable ($\overline{E_S}$) flip-flop will be in the set condition causing the outputs (Q_0-Q_7) to be in the OFF or high impedance state. Reading data is accomplished by first applying the binary word address to the address inputs (A0-A9) and a logic LOW to the synchronous enable (ES). During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable (\overline{E}) is also LOW, stored data will appear on the outputs (Q_0 - Q_7). If $\overline{E_S}$ is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state regardless of the value of \overline{E} . The outputs may be disabled at any time by switching \overline{E} to a HIGH level. Following the positive clock edge the address and synchronous enable inputs are free to change; changes will not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively elimated by tying it to around.

The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from system clock

without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

These devices also contain a built-in initialize function. When activated, the initialize control input (INIT) causes the contents of an additional (1025th) 8-bit word to be loaded into the on-chip register. This extra word is user programmable. Since each bit is individually programmable, the initialize function can be used to load any desired combination of HIGHs and LOWs into the register. In the unprogrammed state, activating INIT will perform a register CLEAR (all outputs LOW). If all bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).

This ability to tailor the initialize outputs to the system requirements simplifies system design and enhances performance. The initialize function is useful during power up and timeout sequences. This flexible feature can also facilitate implementation of other sophisticated functions such as a built-in "jump-start" address.

The Am27S35A/35 has an asynchronous initialize input (INIT). Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the slave flip-flops of the register independent of all other inputs(including CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (\overline{E}) LOW.

The Am27S37A/37 has a synchronous $\overline{INIT_S}$ input. Applying a LOW to the $\overline{INIT_S}$ input causes an immediate load of the programmed initialize word into the master flip-flops of the register only independent of all other inputs (including CP). To bring this data to the device outputs, the synchronous enable ($\overline{E_S}$) should be held LOW until the next LOW-to-HIGH transition of the clock (CP). Following this, the data will appear on the outputs after the asynchronous enable (\overline{E}) is brought LOW.

. . . .

- -

Am27S35A/S35/S37A/S37

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

.

Parameters	Description	Test Condit	ions	Min	Typ (Note 1)	Мах	Units
VOH	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -2.0m/$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	2.4			Volts	
V _{OL}	Output LOW Voltage	$V_{CC} = MIN$, $I_{OL} = 16mA$ $V_{IN} = V_{IH}$ or V_{IL}		0.38	0.50	Volts	
VIH	Input HIGH Level	Guaranteed input logical H voltage for all inputs (Note a	2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical L0 voltage for all inputs (Note 2			0.8	Volts	
ել	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	-0.250	mA
1 _{IH}	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μA
I _{SC}	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$	(Note 3)	-20	-40	90	mA
lcc	Power Supply Current	All inputs = GND, V _{CC} = N	IAX		130	185	mA
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$				-1.2	Volts
•	Outratil askara Ormani	V _{CC} = MAX	$V_0 = V_{CC}$			40	
CEX	Output Leakage Current	$V_{E_1} = 2.4V$	$V_0 = 0.4V$			-40	μA
C _{IN}	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 4)			5		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz		12		рг	

Notes: 1. Typical values are at V_{CC} = 5.0V and T_A = 25°C.
 2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).

3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.

4. These parameters are not 100% tested, but are periodically sampled.

Am27S35A/S35/S37A/S37

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (See Notes on Testing)

				Am2	7S35A	• Am27	537A	Am27S35 • Am27S37				
Parameters	Description	ı	Typ (Note 1)	CO Min	M'L. Max	M Min	IL Max	CO Min	M'L Max	M Min	iL Max	Units
t _S (A)	Address to CP (HIGH) Setup Time		25	35	1	40		40	1	45	1	ns
t _H (A)	Address to CP (HIGH) Hold Tir	ne	-4	0		0		0		0		ns
t _{PHL} (CP)	Delay from CP (HIGH) to	All Outputs Simultaneous	13		20		25		25		30	ns
t _{PLH} (CP)	Output (HIGH or LOW)	Single Output (Note 3)	11		18		21		20		23	
t _{WH} (CP) t _{WL} (CP)	CP Width (HIGH or LOW)			20		20		20		20		ns
$t_{S}(\overline{E_S})$	s to CP (HIGH) Setup Time		5	15		15		15		15	<u> </u>	ns
t _H (Ēs)	Es to CP (HIGH) Hold Time			5		5		5		5		'ns
t _{PHL} (INIT)	Delay from INIT (LOW) to Outputs (LOW or HIGH)		20		30		35		35		40	ns
t _R (INIT)	INIT Recovery (Inactive) to CP (HIGH)	Am27S35 Only	8	20		20		20		20		ns
t _{WL} (INIT)	INIT Pulse Width	1	10	25		30		25		30		ns
t _S (ĪNIT _S)	INIT _S to CP (HIGH) Setup Time	Am27S37 Only	18	25		30		30		35		ns
t _H (INIT _S)	INIT _S to CP (HIGH) Hold Time	,	-5	0		0		0		0		ns
t _{PZL} (CP) t _{PZH} (CP)	Delay from CP (HIGH) to Active (HIGH or LOW)	e Output	15		25		30		30		35	ns
t _{PZL} (Ē) t _{PZH} (Ē)	Delay from E (LOW) to Active ((HIGH or LOW)	Dutput	15		25		30		30		35	ns
t _{PLZ} (CP) t _{PHZ} (CP)	Delay from CP (HIGH) to Inactive Output (OFF or High Impedance) (Note 4)		15		25		30		30		35	ns
t _{PLZ} (Ē) t _{PHZ} (Ē)	Delay from \overline{E} (HIGH) to Inacti (OFF or High Impedance) (No		10		25		30		30		35	ns

~ - ~

Notes: 1. Typical values are at V_{CC} = 5.0V and T_A = 25°C.
2. Tests are performed with input 10 to 90% rise and fall times of 5ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.
4. t_{PHZ} and t_{PLZ} are measured to the V_{OH} -0.5V and V_{OL} +0.5V output levels respectively. All other switching parameters are tested from and to the 1.5V threshold levels.

.

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

- 1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
- 2. Do not leave any inputs disconnected (floating) during any test.
- 3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

PROGRAMMING

The Am27S35A/35 and Am27S37A/37 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{E} and INIT/INITs inputs are at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{E} input from a logic HIGH to 15 volts. After 50µsec, the 20 volt supply is removed, the chip enabled, and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within 50µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

The initialize word is programmed by setting the $\overline{INIT/INIT_S}$ input to a logic LOW and programming the desired initialize word, output by output, in the same manner as any other address location. This is easily implemented by inverting the A₁₀ address input from a PROM programmer and applying this signal to the $\overline{INIT/INIT_S}$ input. Using this method the initialize word would be programmed as address 1024.

When $\overline{\text{INIT}}/\overline{\text{INIT}_S}$ is asserted LOW the internal programming circuitry for all other addresses is deselected.

Typical current into an output during programming will be approximately 140mA until the fuse link is opened, after which the current drops to approximately 40mA. Current into the \vec{E} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units	
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts	
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts	
VILP	Input LOW Level During Programming	0.0	0.45	Volts	
VENP	E Voltage During Programming	14.5	15.5	Volts	
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts	
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts	
IONP	Current into Outputs Not to be Programmed		20	mA	
d(V _{OP})/dt	Rate of Output Voltage Change	Output Voltage Change 20		V/µsec	
d(VEN)/dt	Rate of E Voltage Change	50	1000	V/µsec	
tp	Programming Period – First Attempt	50	100	μsec	
т —	Programming Period – Subsequent Attempts	5.0	15	msec	

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays 11 through 16 must be greater than 100ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During t_v, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to V_{ONP} through resistor R which provides output current limiting.

- - - --

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev G* 919-1286-1 Rev G* Unipak Rev H 003 (Code 62 66)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Socket Adapters Am27S35 Am27S37	715-1723	PA 24-18 and 1025 x 8(L)	IM 1024 x 8-27S35/ 37-AMD	SA 31-1 B 1024 x 8/24	DIS-218 AM	DA 65	AM 190-3

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION								
Speed	Order	Code	Package	Screening	Operating			
Selection (Setup Time)	Asynchronous INITIALIZE	Synchronous INITIALIZE	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)			
35ns	AM27S35APC AM27S35APCB AM27S35ADC AM27S35ADCB AM27S35ALC AM27S35ALCB	AM27S37APC AM27S37APCB AM27S37ADC AM27S37ADC AM27S37ADCB AM27S37ALC AM27S37ALCB	P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COMIL			
40ns	AM27S35ADM AM27S35ADMB AM27S35AFM AM27S35AFMB AM27S35AFMB AM27S35ALM AM27S35ALMB	AM27S37ADM AM27S37ADMB AM27S37AFM AM27S37AFMB AM27S37AFMB AM27S37ALM AM27S37ALMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL			
40ns	AM27S35PC AM27S35PCB AM27S35DC AM27S35DC AM27S35DCB AM27S35LC AM27S35LCB	AM27S37PC AM27S37PCB AM27S37DC AM27S37DC AM27S37DCB AM27S37LC AM27S37LCB	P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COML			
. 45ns	AM27S35DM AM27S35DMB AM27S35FM AM27S35FMB AM27S35FMB AM27S35LM AM27S35LMB	AM27S37DM AM27S37DMB AM27S37FM AM27S37FMB AM27S37FMB AM27S37LM AM27S37LMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL			

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. This package will be available soon. Consult Factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S180A • Am27S181A Am27S280A • Am27S281A Ultra Fast Access Time

Am27S180 • Am27S181 Am27S280 • Am27S281 Fast Access Time

1024 x 8 Bit Generic Series Bipolar IMOX[™] PROM

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features
Am27S180A		Ultra fast – 35ns max
Am27S181A	24-Pin, Plug in Replacement for Industry Standard	onia last oblis max
Am27S180	600-mil Configuration No Board Changes Required	Fast – 60ns max
Am27S181		Tust oons max
Am27S280A		Ultra fast – 35ns max
Am27S281A	New Space-Saving 24-Pin, THINDIP, 300-mil	on a last of the max
Am27S280	Configuration Increases Overall Board Density	Fast – 60ns max
Am27S281		

2

DISTINCTIVE CHARACTERISTICS

- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Members of Generic PROM series utilizing standard programming algorithm
- 100% processed to MIL-STD-883C
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

These 8K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024 x 8 configuration, they are available in both open collector (Am27S180A/180 and Am27S280A/280) and three-state (Am27S181A/181 and Am27S281/281) output versions. After programming, stored information is read on outputs O_0 - O_7 by applying unique binary addresses to A₀-A₉ and holding \overline{CS}_1 and \overline{CS}_2 LOW and CS_3 and CS_4 HIGH. All other valid input conditions on \overline{CS}_1 , \overline{CS}_2 , CS_3 and CS_4 place O_0 - O_7 into the OFF or high impedance state.

10 11 13 14 15 16 17

BPM-099

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S180A/S181A/S280A/S281A/S180/S181/S280/S281

MAXIMUM RATINGS (Above which the useful life may be impaired)

- ---

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	- 55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	V _{CC}	Temperature				
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } + 75^{\circ}\text{C}$				
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$				

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Co	onditions		Min	Typ (Note 1)	Max	Units
V _{OH} (Note 2)	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$			2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL} = 16$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
1 _{IL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.$	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.010	-0.250	mA
Чн	Input HIGH Current	V _{CC} = MAX, V _{IN} = V _C					40	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V C		COM'L	-20	-40	-90	mA
.50 (1010 2)		(Note 4)		MIL	-15	-40	90	
lcc	Power Supply Current	All inputs = GND, V _C	c = MAX			115	185	mA
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -10$	BmA				-1.2	Volts
	Output Looks as Ourport	V _{CC} = MAX	$V_0 = V_{CC}$				40	
ICEX	Output Leakage Current	$V_{\overline{CS}_1} = 2.4V$ $V_0 = 0.4V$					-40	μΑ
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 5)				4.0		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1	MHz (Note 5)			8.0		۴.

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

Am27S180A/S181A/S280A/S281A/S180/S181/S280/S281 SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			Тур 5V 25°С		Max				
					COM'L		MIL		
Parameters	Description	Test Conditions	Α	STD	Α	STD	A	STD	Units
tAA	Address Access Time		25	30	35	60	50	80	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1, 2, 3)	10	10	25	40	30	50	ns
t _{ER}	Enable Recovery Time	(10	10	25	40	30	50	ns

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. $C_L = 30$ pF.

3. For three-state outputs, t_{EA} is tested with $C_L = 30$ pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $C_L = 5$ pF. HIGH to high impedance tests are made to an output voltage to with S₁ open to V_{OH} - 0.5V with S₁ open; LOW to high impedance tests are made to the V_{OL} + 0.5V level with S₁ closed.

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{Cs}_1 input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{Cs}_1 input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CS1P}	CS ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(VCS1)/dt	Rate of CS1 Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
*	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

During t_V, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
 Outputs not being programmed are connected to V_{ONP} through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, A		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920 and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev K* (Code 16 37)	PM 9058	IM AMDGEN1	MOD 14	PM 102 FAM-12		PM 2000 Code 90
Am27S180A/181A Am27S180/181	715-1545-2	PA 24-13 and 1024 x 8(L)	IM 1024 x 8-24- AMD	SA 22-7 B 1024 x 8/24	DIS-137 AM	DA 29	AM100-6
Am27S280A/281A Am27S280/281	715-1545-3	PA 24-28 and 1024 x 8(L)	IM 1024 x 8-24- 27S280/281-AMD	SA 29 B 1024 x 8/24	DIS-214 AM	DA 60	AM190-6

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

Speed Selection	Orde Open Collector	r Code Three-State	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)					
35ns	AM27S180APC AM27S180APCB AM27S280APC AM27S280APCB AM27S180ADCB AM27S180ADCB AM27S280ADCB AM27S280ADCB AM27S280ADCB AM27S180ALC AM27S180ALCB	AM27S181APC AM27S181APCB AM27S281APC AM27S281APCB AM27S181ADC AM27S181ADCB AM27S281ADC AM27S281ADCB AM27S281ADCB AM27S181ALCB	P-24-1AC P-24-1AC P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AC D-24-1AC D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1	COM'L					
50ns	AM27S180ADM AM27S180ADMB AM27S280ADM AM27S280ADMB AM27S180AFM AM27S180AFMB AM27S180ALM AM27S180ALMB	AM27S181ADM AM27S181ADMB AM27S281ADM AM27S281ADMB AM27S181AFM AM27S181AFMB AM27S181ALM AM27S181ALMB	D-24-1AC D-24-1AC D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL					
60ns	AM27S180PC AM27S180PCB AM27S280PC AM27S280PCB AM27S180DC AM27S180DCB AM27S280DC AM27S280DCB AM27S280DCB AM27S180LCB	AM27S181PC AM27S181PCB AM27S281PC AM27S281PCB AM27S181DC AM27S181DCB AM27S281DC AM27S281DC AM27S281DCB AM27S181LC AM27S181LCB	P-24-1AC P-24-1AC P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AC D-24-1AC D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1	COM'L					
80ns	AM27S180DM AM27S180DMB AM27S280DM AM27S280DMB AM27S180FM AM27S180FMB AM27S180LMB	AM27S181DM AM27S181DMB AM27S281DM AM27S281DMB AM27S181FM AM27S181FMB AM27S181FMB AM27S181LMB	D-24-1AC D-24-1AC D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3 C-3 B-3	MIL					

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. AC = 600 mil center package. AA = 300 mil center package.

Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS181A • Am27PS281A Ultra Fast Access Time Am27PS181 • Am27PS281 Fast Access Time 8,192-Bit Generic Series IMOX[™] Bipolar PROM

8,192-Bit Generic Series IMOX™ Bipola<u>r PROM</u> 1024 x 8 Bits with Power-Down Via CS₁ PRELIMINARY DATA

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features
Am27PS181A	24-Pin, Plug in Replacement for Industry Standard	Ultra fast - 50ns max
Am27PS181	600-mil Configuration No Board Changes Required	Fast - 65ns max
Am27PS281A	New Space-Saving 24-Pin, THINDIP, 300-mil	Ultra fast - 50ns max
Am27PS281	Configuration Increases Overall Board Density	Fast - 65ns max

IMOX is a trademark of Advanced Micro Devices, Inc.

DISTINCTIVE CHARACTERISTICS

- Fast access time allows high system speed
- 50% power savings on deselected parts enhances reliability through total system heat reduction
- Plug in replacement for industry standard product no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Rapid recovery from power-down state provides minimum delay
- Members of generic PROM series utilizing standard programming algorithm
- 100% processed to MIL-STD-883C
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

dard 1024 x 8

FUNCTIONAL DESCRIPTION

Schottky read only memories. Organized in the industry standard 1024 x 8 configuration, they are available in both the standard 600-mil package (Am27PS181A/181) and the space-saving THINDIP, 300-mil package (Am27PS281A/281) versions. After programming, stored information is read on outputs $O_0 - O_7$ by applying unique binary addresses to $A_0 - A_9$ and holding \overline{CS}_1 and \overline{CS}_2 LOW and CS₃ and CS₄ HIGH. All other input combinations on \overline{CS}_1 , \overline{CS}_2 , CS₃ and CS₄ place $O_0 - O_7$ into the OFF or high impedance state and reduce I_{CC} by more than 50%.

These 8K PROMs are high speed electrically programmable

Note: Pin 1 is marked for orientation. BPM-304

Am27PS181A/PS281A/PS181/PS281

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	- 30 to + 5mA

OPERATING RANGE

Range	V _{CC}	Temperature
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } + 75^{\circ}\text{C}$
MIL	4.5 to 5.5V	T _C = -55 to +125°C

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Те	est Co	nditions		Min	Typ (Note 1)	Max	Units
V _{OH}	Output HIGH Voltage		$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		2.4			Volts	
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		nA				0.50	Volts
VIH	Input HIGH Level		Guaranteed input logical HIGH voltage for all inputs (Note 4)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)					0.8	Volts	
կլ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$				-0.010	-0.250	mA	
liH	Input HIGH Current	$V_{CC} = MAX, V_I$	N = VC	с				40	μA
I _{SC}	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V COM'L (Note 2) MIL		-20	-40	- 90	mA		
-50				- 15	-40	- 90			
lcc	Power Supply Current	All inputs = GN	D				115	185	mA
ICCD	Power Down Supply Current	$\overline{\text{CS}}_1 = 2.7\text{V}$	All ot	her inputs = G	ND		50	80	
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN}	$V_{CC} = MIN, I_{IN} = -18mA$				-1.2	Volts	
.	Output Lookogo Current	$V_{CC} = MAX \qquad V_O = V_{CC}$ $V_{\overline{CS}_1} = 2.4V \qquad V_O = 0.4V$		$V_{O} = V_{CC}$				40	
ICEX	Output Leakage Current			$V_0 = 0.4V$				-40	μΑ
C _{IN}	Input Capacitance	V _{IN} = 2.0V @ f	V _{IN} = 2.0V @ f = 1MHz (Note 3)			4.0		pF	
COUT	Output Capacitance	V _{OUT} = 2.0V @	⊉f = 1N	/Hz (Note 3)			8.0		

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

 These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE PRELIMINARY

				Тур		M	ax	-	
				5V 25°C	cc	DM'L	Ν	AIL.	
Parameters	Description	Test C	onditions	STD	Α	STD	Α	STD	Units
t _{AA1}	Address Access Time	t _{EAS} ≥ 25ns	AC	30	50	65	65	75	ns
t _{AA2}	Power Switched Address Access Time	t _{EAS} = 0ns	Test Load	50	65	80	75	90	ns
t _{EA}	Enable Access Time	t _{AES} > 0ns	Fig. 1-3, 5 (Notes 1, 5 & 6)	50	65	80	75	90	ns
t _{ER}	Enable Recovery Time			15	25	35	30	45	ns

Notes: 5. t_{AA} is tested with switch S₁ closed and C_L = 30pF.

t_{EA} is tested with C_L = 30p^E to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V with S₁ open; LOW-to-high impedance tests are made to the V_{OL} + 0.5V level with S₁ closed.

Am27PS181A/PS281A/PS181/PS281

The Am27PS181A/181 and Am27PS281A/281 are power switched devices. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, I_{CC} is reduced to less than half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

- selected, a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu f$ ceramic capacitor be connected from pin 24 to pin 12 at each device. (See Figure 4.)
- 2. Address access time (t_{AA}) can be optimized if a chip enable setup time (tEAS) of greater than 25ns is observed. Negative setup times on chip enable (t_{EAS} < 0) should be avoided. (For typical and worse case characteristics, see Figure 5.)

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{CS}_1 input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS							
Parameters	Description	Min	Max	Units			
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts			
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts			
V _{ILP}	Input LOW Level During Programming	0.0	0.45	Volts			
VCS1P	CS ₁ Voltage During Programming	14.5	15.5	Volts			
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts			
V _{ONP}	Voltage on Outputs Not to be Programmed	. 0	V _{CCP} + 0.3	Volts			
IONP	Current into Outputs Not to be Programmed		20	mA .			
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec			
d(V _{CS1})/dt	Rate of $\overline{\text{CS}}_1$ Voltage Change	100	1000	V/µsec			
tp	Programming Period – First Attempt	50	100	μsec			
	Programming Period – Subsequent Attempts	5.0	15	msec			

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t₁, t₂, t₃ and t₄ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, A2		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19 and 29	M900, M900B, M910, M920 and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 16 37)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27PS181A/ 181	715-1545-2	PA 24-13 and 1024 x 8(L)	IM 1024 x 8-24- AMD	SA 22-7 B 1024 x 8/24	DIS-137 AM	DA 61	AM100-6
Am27PS281A/ 281			IM 1024 x 8-24- 27S280/281-AMD		DIS-214 AM	DA 60	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

Speed	Order Code	Package Type	Screening Flow Code	Operating Range
Selection	Three-State	(Note 1)	(Note 2)	(Note 3)
	AM27PS181APC	P-24-1AC	C-1	
	AM27PS181APCB	P-24-1AC	B-1	
	AM27PS281APC	P-24-1AA (Note 4)	C-1	
	AM27PS281APCB	P-24-1AA (Note 4)	B-1	
50ns	AM27PS181ADC	D-24-1AC	C-1	COMIL
SUNS	AM27PS181ADCB	D-24-1AC	B-1	CONTL
	AM27PS281ADC	D-24-1AA	C-1	
	AM27PS281ADCB	D-24-1AA	B-1	
	AM27PS181ALC	L-32-2	C-1	
	AM27PS181ALCB	L-32-2	B-1	
	AM27PS181ADM	D-24-1AC	C-3	
	AM27PS181ADMB	D-24-1AC	B-3	
	AM27PS281ADM	D-24-1AA	C-3	
	AM27PS281ADMB	D-24-1AA	B-3	MIL
65ns	AM27PS181AFM	F-24-1	C-3	- MIL
	AM27PS181AFMB	F-24-1	B-3	
	AM27PS181ALM	L-32-2	C-3	
	AM27PS181ALMB	L-32-2	B-3	
	AM27PS181PC	P-24-1AC	C-1	
	AM27PS181PCB	P-24-1AC	B-1	
	AM27PS281PC	P-24-1AA (Note 4)	C-1	
	AM27PS281PCB	P-24-1AA (Note 4)	B-1	
65ns	AM27PS181DC	D-24-1AC	C-1	COMIL
oons	AM27PS181DCB	D-24-1AC	B-1	COML
	AM27PS281DC	D-24-1AA	C-1	
	AM27PS281DCB	D-24-1AA	B-1	
	AM27PS181LC	L-32-2	C-1	
	AM27PS181LCB	L-32-2	B-1	
	AM27PS181DM	D-24-1AC	C-3	
	AM27PS181DMB	D-24-1AC	B-3	
	AM27PS281DM	D-24-1AA	C-3	
75.55	AM27PS281DMB	D-24-1AA	B-3	MIL
75ns	AM27PS181FM	F-24-1	C-3	INIT INIT
	AM27PS181FMB	F-24-1	B-3	
	AM27PS181LM	L-32-2	C-3	
	AM27PS181LMB	L-32-2	B-3	

ORDERING INFORMATION

.

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. AC = 600 mil center package. AA = 300 mil center package.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

See Operating Range Table.
 This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S184A • Am27S185A Am27S184 • Am27S185 B192-Bit Generic Series Bipolar IMOXTM PROM

(2048 x 4 bits with ultra fast access time)

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time "A" version (35ns max) Fast access time Standard version (50ns max) – allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX[™]. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27S184A and Am27S185A, Am27S184 and Am27S185 are high speed electrically programmable Schottky read only memories. Organized in 2048 x 4 configuration, they are available in both open collector (Am27S184A and Am27S184) and three-state (Am27S185A and Am27S185) output versions. After programming, stored information is read on outputs O_0 - O_3 by applying unique binary addresses to A_0 - A_{10} and holding the chip select input, \overline{CS} LOW. If the chip select input goes to a logic HIGH, O_0 - O_3 go to the OFF or high impedance state.

Am27S184A/S185A/S184/S185

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	$-0.5V$ to $+V_{CC}$ max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

• ----

OPERATING RANGE

	Range V _{CC}		Temperature		
	COM'L 4.75 to 5.25V		$T_A = 0$ to $+75^{\circ}C$		
ĺ	MIL 4.5 to 5.5V		$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$		

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Condit	ions	Min	Typ (Note 1)	Max	Units
V _{OH} (Note 2)	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	A	2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
կլ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	-0.250	mA
lін	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μA
I _{SC} (Note 2)	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$	(Note 4)	-20	-45	-90	mA
lcc	Power Supply Current	All inputs = GND, V _{CC} = MAX			105	150	mA
V _I	Input Clamp Voltage	$V_{CC} = MIN$, $I_{IN} = -18mA$	$V_{CC} = MIN, I_{IN} = -18mA$			-1.2	Volts
	Output Lookana Current	V _{CC} = MAX	V _O = V _{CC}			40	
ICEX	Output Leakage Current	$V_{\overline{CS}} = 2.4V$	$V_{O} = 0.4V$			-40	μΑ
C _{IN}	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 5)			5.0		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz	(Note 5)		8.0		

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				Тур		M	ax		
			5V	25°C	C	OM'L	1	NIL.	
Parameters	Description	Test Conditions	A	STD	A	STD	A	STD	Units
tAA	Address Access Time		28	30	35	50	45	55	ns
tEA	Enable Access Time	AC Test Load (See Notes 1, 2, 3)	10	10	25	25	30	30	ns
t _{ER}	Enable Recovery Time	(,,,,,,,,,,,,,,,,,,,,	10	10	25	25	30	30	ns

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. $C_L = 30 pF$.

.

3. For three-state outputs, t_{EA} is tested with $C_L = 30$ For the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{EA} is tested with $C_L = 30$ For the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{EA} is tested with $C_L = 5$ F. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} - 0.5$ V; LOW to high impedance tests are made with S_1 closed to the $V_{OL} + 0.5$ V level.

BPM-199

PROGRAMMING

This entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS} input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS} input from a logic HIGH to 15 volts. After $50\,\mu$ sec, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within $50\,\mu$ sec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CSP})/dt	Rate of CS Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
· –	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

Delays 1, 12, t3 and t4 must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.
 During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, A		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 & 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
Bipolar PROM	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 1606)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S184A/185A Am27S184/185	715-1616	PA 18-8 and 2048 x 4(L)	IM 2048 x 4-18-AMD	SA 4-4 B 2048 x 4/18	DIS-211 AM	DA 23	AM 140-3

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

	ORDERING INFORMATION								
Speed Selection	Orde Open Collector	r Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)				
			<u>_</u>	, <i>,</i>	(1.010 0)				
35ns	AM27S184APC AM27S184APCB AM27S184ADC AM27S184ADCB AM27S184ALCB AM27S184ALCB	AM27S185APC AM27S185APCB AM27S185ADC AM27S185ADCB AM27S185ALCB AM27S185ALCB	P-18-1 P-18-1 D-18-1 D-18-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COMIL				
45ns	AM27S184ADM AM27S184ADMB AM27S184ALM AM27S184ALMB AM27S184AFM AM27S184AFMB	AM27S185ADM AM27S185ADMB AM27S185ALM AM27S185ALMB AM27S185AFM AM27S185AFM	D-18-1 D-18-1 L-28-2 L-28-2 (Note 4) (Note 4)	C-3 B-3 C-3 B-3 C-3 B-3	MIL				
50ns	AM27S184PC AM27S184PCB AM27S184DC AM27S184DCB AM27S184DCB AM27S184LC AM27S184LCB	AM27S185PC AM27S185PCB AM27S185DC AM27S185DC AM27S185DCB AM27S185LC AM27S185LCB	P-18-1 P-18-1 D-18-1 D-18-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L				
55ns	AM27S184DM AM27S184DMB AM27S184LM AM27S184LMB AM27S184LMB AM27S184FMB AM27S184FMB	AM27S185DM AM27S185DMB AM27S185LM AM27S185LMB AM27S185FMB AM27S185FMB	D-18-1 D-18-1 L-28-2 L-28-2 (Note 4) (Note 4)	C-3 B-3 C-3 B-3 C-3 B-3	MIL				

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. Consult factory for flat package outline drawings.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27LS184 • Am27LS185 ^{8192-Bit Generic Series Bipolar IMOX™ PROM} (2048 x 4 bits with low power dissipation)

DISTINCTIVE CHARACTERISTICS

- Excellent performance over the full military and commercial ranges
- Low power dissipation
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, $IMOX^{TM}$. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27LS184 and Am27LS185 are high speed electrically programmable Low-Power Schottky read only memories. Organized in the industry standard 2048 x 4 configuration, they are available in both open collector Am27LS184 and three-state Am27LS185 output versions. After programming, stored information is read on outputs O₀-O₃ by applying unique binary addresses to A₀-A₁₀ and holding the chip select input $\overline{\rm CS}$ LOW. If the chip select input goes to a logic HIGH, O₀-O₃ go to the off or high-impedance state.

CONNECTION DIAGRAMS - Top Views

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27LS184/LS185

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions	;	Min	Typ (Note 1)	Max	Units
V _{OH} (Note 2)	Output HIGH Voltage	$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
հլ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	-0.250	mA
liH	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V (Note	ə 4)	-20	-45	-90	mA
lcc	Power Supply Current	All inputs = GND, V _{CC} = MAX			80	125	mA
Vi	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$				-1.2	Volts
•	Output Lookage Ourput	V _{CC} = MAX	$V_{O} = V_{CC}$			40	
CEX	Output Leakage Current	$V_{\overline{CS}} = 2.4V$	$V_0 = 0.4V$			-40	μA
C _{IN}	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 5)			5		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz (Note	5)		8		PL

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. These parameters are not 100% tested, but are periodically sampled.

Am27LS184/LS185 SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter			Тур	Ma	X	
	Description	Test Conditions	5V 25°C	COM'L	MIL	Units
t _{AA}	Address Access Time	AC Test Load (See Notes 1-3)	40	60	65	ns
tea	Enable Access Time		10	25	30	ns
t _{ER}	Enable Recovery Time		10	25	30	ns

- -

Notes: 1. t_{AA} is tested with switch S₁ closed and C_L = 30pF.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. C_L = 30pF. 3. For three state outputs, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $C_L = 5pF$. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} - 0.5V$; LOW to high impedance tests are made with S_1 closed to the V_{OL} + 0.5V level.

PROGRAMMING

The Am27LS184 and Am27LS185 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

.....

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS} input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS} input from a logic HIGH to 15 volts. After 50μ sec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50μ sec. Occasionally a link will be stronger and require additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

Parameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
ViLP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Voits
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CSP})/dt	Rate of CS, Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
T	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During t_v, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are

required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7 and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27LS184 Am27LS185	715-1616	PA 18-8 and 2048 x 4(L)	IM 2048 x 4-18-AMD	SA 4-4 B 2048 x 4/18	DIS-211 AM	DA 23	AM 140-3

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

	Order	Code	Package	Screening	Operating	
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	(Note 3)	
60ns	AM27LS184PC AM27LS184PCB AM27LS184PCB AM27LS184DC AM27LS184DCB AM27LS184LC AM27LS184LCB	AM27LS185PC AM27LS185PCB AM27LS185DC AM27LS185DCB AM27LS185DCB AM27LS185LC AM27LS185LCB	P-18-1 P-18-1 D-18-1 D-18-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COMIL	
65ns	AM27LS184DM AM27LS184DMB AM27LS184LM AM27LS184LMB AM27LS184LMB AM27LS184FM AM27LS184FMB	AM27LS185DM AM27LS185DMB AM27LS185LM AM27LS185LMB AM27LS185FM AM27LS185FMB	D-18-1 D-18-1 L-28-2 L-28-2 (Note 4) (Note 4)	C-3 B-3 C-3 B-3 C-3 B-3	MIL	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

- 3. See Operating Range Table.
- 4. Consult factory for flat package outline drawings.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS185 8192-Bit Generic Series Bipolar IMOX[™] PROM (2048 x 4 bits with power-down via CS)

DISTINCTIVE CHARACTERISTICS

- Fast access time (60ns max) allows system speed improvements
- 50% power savings on deselected parts enhances reliability through total system heat reduction
- Plug in replacement for industry standard product no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test rows and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27PS185 is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX[™]. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27PS185 is a high speed electrically programmable Schottky read only memory. Organized in the industry standard 2048 x 4 configuration, it is available in the three-state (Am27PS185) output version. After programming, stored information is read on outputs O_0 - O_3 by applying unique binary addresses to A_0 - A_{10} and holding the chip select input \overline{CS} LOW. If the chip select input goes to a logic HIGH, O_0 - O_3 go to the OFF or high-impedance state, and I_{CC} is reduced by 50%.

CONNECTION DIAGRAMS – Top Views

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27PS185

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature		
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$		
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$		

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	т	est Conditions		Min	Typ (Note 1)	Мах	Units
Voн	Output HIGH Voltage	$V_{CC} = MIN, I_O$ $V_{IN} = V_{IH} \text{ or } V_I$			2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_O$ $V_{IN} = V_{IH} \text{ or } V_I$					0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts	
ЧL	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	250	mA	
l _{IH}	Input HIGH Current	V _{CC} = MAX, V	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μΑ
Isc	Output Short Circuit Current	V _{CC} = MAX, V	OUT = 0.0V (Note	2)	-15	-40	-90	mA
		All inputs = GN	All inputs = GND			105	150	
lcc	Power Supply Current	$\overline{\text{CS}} = 2.7\text{V}$	All other inputs	= GND		50	75	mA
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN}	i = 18mA				-1.2	Volts
1	Output Lookooo Current	V _{CC} = MAX		$V_{O} = V_{CC}$			40	
CEX	Output Leakage Current	$V_{CS} = 2.4V$		$V_0 = 0.4V$			-40	μΑ
CIN	Input Capacitance	V _{IN} = 2.0V @	f = 1MHz (Note 3)			5		
COUT	Output Capacitance	V _{OUT} = 2.0V (@f = 1MHz (Note 3	3)		8		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				тур	1714	ax	
Parameter	Description	Test C	Conditions	5V 25°C	COM'L	MIL	Units
t _{AA1}	Address Access Time	t _{EAS} ≥ 25ns		28	50	55	ns
t _{AA2}	Power Switched Address Access Time	t _{EAS} = 0ns	AC Test Load	41	60	65	ns
^t EA	Enable Access Time	t _{AES} ≥ 0ns	Fig. 1-3, 5 (Notes 1, 4 and 5)	41	60	65	ns
t _{ER}	Enable Recovery Time			10	25	30	ns

Two

May

Notes: 4. t_{AA} is tested with switch S₁ closed and $C_L = 30 pF$.

5. t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} −0.5V with S₁ open; LOW-to-HIGH impedance tests are made to the V_{OL} +0.5V level with S₁ closed.

POWER SWITCHING

The Am27PS185 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, I_{CC} is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

- 1. When the Am27PS185 is selected by a low level on \overline{CS} , a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a 0.1 μ f ceramic capacitor be connected from pin 18 to pin 9 at each device. (See Figure 4.)
- 2. Address access time (t_{AA}) can be optimized if a chip enable set-up time (t_{EAS}) of greater than 25ns is observed. Negative set-up times on chip enable ($t_{EAS} < 0$) should be avoided. (For typical and worse case characteristics see Figure 5.)

3PM-148

PROGRAMMING

The Am27PS185 is manufactured with conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the CS input is a logic HIGH. Current is gated through the addressed fuse by raising the CS input from a logic HIGH to 15 volts. After 50µsec, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 usec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS} pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAM	MING PAR	AMETERS
---------	----------	---------

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CSP}	CS Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CSP})/dt	Rate of CS, Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
· –	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required. 4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, A		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17 and 19	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak (Code 1606)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27PS185	715-1616	PA 18-8 and 2048 x 4(L)	IM 2048 x 4-18-AMD	SA 4-4 B 2048 x 4/18	DIS-211 AM	DA 23	AM 140-3

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	AM27PS185PC	P-18-1	C-1	
	AM27PS185PCB	P-18-1	B-1	
$t_{AA1} = 50$ ns $t_{AA2} = 60$ ns	AM27PS185DC	D-18-1	C-1	COM'L
	AM27PS185DCB	D-18-1	B-1	COML
	AM27PS185LC	L-28-2	C-1	
	AM27PS185LCB	L-28-2	B-1	
	AM27PS185DM	D-18-1	C-3	
	AM27PS185DMB	D-18-1	B-3	
t _{AA1} = 55ns	AM27PS185LM	L-28-2	C-3	MIL
$t_{AA2} = 65 ns$	AM27PS185LMB	L-28-2	B-3	WILL
	AM27PS185FM	(Note 4)	C-3	
	AM27PS185FMB	(Note 4)	B-3	

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter

is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. Consult factory for flat package outline drawing.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S190 • Am27S191 Am27S290 • Am27S291 Fast Access Time

16,384-Bit Generic Series Bipolar IMOX™ PROM

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features	
Am27S190A		Ultra fast – 35ns max	
Am27S191A	24-Pin, Plug in Replacement for Industry Standard		
Am27S190	600-mil Configuration No Board Changes Required	Fast – 50ns max	
Am27S191			
Am27S290A		Ultra fast - 35ns max	
Am27S291A	New Space-Saving 24-Pin, THINDIP, 300-mil	ente las outo max	
Am27S290	Configuration Increases Overall Board Density	Fast – 50ns max	
Am27S291		i dot obno max	

IMOX is a trademark of Advanced Micro Devices, Inc.

--- - .

DISTINCTIVE CHARACTERISTICS

 Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)

........

- · AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Members of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 16K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

These 16K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048 x 8 configuration, they are available in both open collector (Am27S190A/190 and Am27S290A/290) and three-state (Am27S191A/191 and Am27S291A/291) output versions. After programming, stored information is read on outputs $O_0 - O_7$ by applying unique binary addresses to A_0 - A_{10} and holding \overline{CS}_1 LOW and CS2 and CS3 HIGH. All other valid input conditions on \overline{CS}_1 , CS_2 , and CS_3 place O_0 - O_7 into the OFF or HIGH impedance state.

00

1 Τ

9

01 02 03 04 05 06 07

10 11 13 14 15 16 17

Τ

1

BPM-204

 $V_{CC} = PIN 24$ GND = PIN 12

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S190A/S191A/S290A/S291A/S190/S191/S290/S291

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

	Range	v _{cc}	Temperature
ĺ	COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
	MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}C$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH (TS Devices only)	Output HIGH Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = MIN, \ I_{OH} = -2.0 \text{mA} \\ V_{IN} = V_{IH} \ \text{or} \ V_{IL} \end{array}$	2.4			Volts	
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
I _{IL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.010	-0.250	mA
Чн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μΑ
Isc	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$	COM'L	-20	-40	-90	mA
(TS Devices only)		(Note 2)	MIL		-40	90	
lcc	Power Supply Current	All inputs = GND, V_{CC} = MAX			115	185	mA
Vi	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$				-1.2	Volts
1	Output Lookage Current	V _{CC} = MAX	$V_0 = V_{CC}$			40	
ICEX	Output Leakage Current	$V_{\overline{CS}_1} = 2.4V$	$V_{O} = 0.4V$		•.	-40	μΑ
C _{IN}	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 3)		4.0		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1MHz (Note	3)		8.0		

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_{A} = 25°C.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

-

Am27S190A/S191A/S290A/S291A/S190/S191/S290/S291

SWITCHING CHARACTERISTICS

			-	Гур		М	ax		
			5V	25°C	C	OM'L	1	NIL	
Parameters	Description	Test Conditions	Α	STD	A	STD	A	STD	Units
t _{AA}	Address Access Time	AO Tastiland	25	30	35	50	50	65	ns
t _{EA}	Enable Access Time	AC Test Load (See Notes 1, 2, 3)	10	10	25	25	30	30	ns
t _{ER}	Enable Recovery Time	(10	10	25	25	30	30	ns

Notes: 1. t_{AA} is tested with switch S₁ closed and C_L = 30pF.

2. For open collector outputs, t_{EA} and t_{ER} are tested to the 1.5V output level with S₁ closed; $C_L = 30 pF$.

For three-state outputs, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made to an output voltage to V_{OH} - 0.5V with S₁ open; LOW to high impedance tests are made to the V_{OL} + 0.5V level with S₁ closed.

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{CS}_1 input is at a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the

current drops to approximately 90mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CS1P}	CS ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS1})dt	Rate of CS1 Voltage Change	50	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
чр —	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

Outputs not being programmed are connected to V_{ONP} through resistor R which provides output current limiting.

2-106

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063			Stag Systems, Inc. 1120 San Antonio Rd Palo Alto, CA 94303
Model 5, 7, and 9 Systems 17, 19 and 29	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 16 68)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
715-1688-1	PA 24-17 and 2048 x 8(L)	IM 2048 x 8-24- AMD	SA 22-10 B 2048 x 8/24	DIS-151 AM	DA 61	AM100-5
715-1688-2	PA 24-28 and 2048 x 8(L)	IM 2048 x 8-24- 27S290/291-AMD	SA 29 B 2048 x 8/24	DIS-215 AM	DA 62	AM190-7
	10525 Willows Rd. N.E. Redmond, WA 98052 Model 5, 7, and 9 Systems 17, 19 and 29 909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 16 68) 715-1688-1	10525 Willows Rd. N.E. 2411 Garden Road Redmond, WA 98052 Monterey, CA 93940 Model 5, 7, and 9 M900, M900B, M910, Systems 17, 19 and 29 M920, and M980 909-1286-1 Rev H* PM 9058 Unipak Rev H* PM 9058 (Code 16 68) PA 24-17 and 715-1688-1 PA 24-28 and	10525 Willows Rd. N.E. Redmond, WA 98052 2411 Garden Road Monterey, CA 93940 Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603 Model 5, 7, and 9 Systems 17, 19 and 29 M900, M900B, M910, M920, and M980 IM1010 909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 16 68) PM 9058 IM AMDGEN1 715-1688-1 PA 24-17 and 2048 x 8(L) IM 2048 x 8-24- AMD 715-1688-2 PA 24-28 and IM 2048 x 8-24-	10525 Willows Rd. N.E. Redmond, WA 98052 2411 Garden Road Monterey, CA 93940 Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603 630 Price Avenue Redwood City, CA 94063 Model 5, 7, and 9 Systems 17, 19 and 29 M900, M900B, M910, M920, and M980 IM1010 MPP-80 909-1286-1 Rev H* Unipak Rev H* (Code 16 68) PM 9058 IM AMDGEN1 MOD 14 715-1688-1 PA 24-17 and 2048 x 8(L) IM 2048 x 8-24- AMD SA 22-10 B 2048 x 8/24 715-1688-2 PA 24-28 and IM 2048 x 8-24- AMD SA 29 B 2048 x 8/24	10525 Willows Rd. N.E. Redmond, WA 98052 2411 Garden Road Monterey, CA 93940 Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603 630 Price Avenue Redwood City, CA 94063 3 Tevuot Haal Tel-Aviv, Israt Model 5, 7, and 9 Systems 17, 19 and 29 M900, M900B, M910, M920, and M980 IM1010 MPP-80 UPP-801 909-1286-1 Rev H* Unipak Rev H* (Code 16 68) PM 9058 IM AMDGEN1 MOD 14 PM 102 715-1688-1 PA 24-17 and 2048 x 8(L) IM 2048 x 8-24- AMD SA 22-10 B 2048 x 8/24 DIS-151 AM 715_1688-2 PA 24-28 and IM 2048 x 8-24- SA 29 B 2048 x 8/24 DIS-151 AM	10525 Willows Rd. N.E. Redmond, WA 98052 2411 Garden Road Monterey, CA 93940 Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603 630 Price Avenue Redwood City, CA 94063 3 Tevuot Haaretz St. Tel-Aviv, Israel Model 5, 7, and 9 Systems 17, 19 and 29 M900, M900B, M910, M920, and M980 IM1010 MPP-80 UPP-801 UPP-803 909-1286-1 Rev H* Unipak Rev H* (Code 16 68) PM 9058 IM AMDGEN1 MOD 14 PM 102 FAM-12 715-1688-1 PA 24-17 and 2048 x 8(L) IM 2048 x 8-24- AMD SA 22-10 B 2048 x 8/24 DIS-151 AM DA 61 715-1688-2 PA 24-28 and IM 2048 x 8-24- AMD SA 29 B 2048 x 8/24 DIS-215 AM DA 62

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a timesharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype[®] or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

- 1. A leader of at least 25 rubouts.
- 2. The data patterns for all 2048 words, starting with word 0, in the following format:
 - a. Any characters, including carriage return and line feed, except "B".
 - b. The letter "B", indicating the beginning of the data word.
 - c. A sequence of eight Ps or Ns, starting with output O_7 .
 - d. The letter "F", indicating the finish of the data word.
 - e. Any text, including carriage return and line feed, except the letter "B".

- 3. A trailer of at least 25 rubouts.
- A P is a HIGH logic level = 2.4 volts. An N is a LOW logic level = 0.5 volts.

A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT	RESULTING DEVICE TRUTH TABLE $(\widehat{CS}_1 \text{ LOW AND } CS_2 \text{ CS}_3 \text{ HIGH})$
<pre>\$</pre>	A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 O7 O6 O5 O4 O3 O2 O1 O0 L

Am27S190A/S191A/S290A/S291A/S190/S191/S290/S291

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. AC = 600 mil center package. AA = 300 mil center package.

AM27S191DC

AM27S191DCB

AM27S291DC

AM27S191LC

AM27S191LCB

AM27S191DM

AM27S191DMB

AM27S291DMB

AM27S291DM

AM27S191FM

AM27S191FMB

AM27S191LM

AM27S191LMB

AM27S291DCB

D-24-1AC

D-24-1AC

D-24-1AA

D-24-1AA

D-24-1AC

D-24-1AC

D-24-1AA

D-24-1AA

F-24-1

F-24-1

L-32-2

L-32-2

L-32-2

L-32-2

C-1

B-1

C-1

B-1

C-1

B-1

C-3

B-3

C-3

B-3

C-3

B-3

C-3

B-3

COM'L

MIL.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

AM27S190DC

AM27S190DCB

AM27S290DCB

AM27S290DC

AM27S190LC

AM27S190LCB

AM27S190DM

AM27S190DMB

AM27S290DMB

AM27S190FM

AM27S190FMB

AM27S190LMB

AM27S190LM

AM27S290DM

50ns

65ns

4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS191 • Am27PS291 Fast Access Time 16,384-Bit Generic Series IMOXTH Bipolar PROM

2048 x 8 Bits with Power-Down Via CS

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features		
Am27PS191A	24-Pin, Plug in Replacement for Industry Standard	Ultra fast — 50ns max		
Am27PS191	600-mil Configuration No Board Changes Required	Fast – 65ns max		
Am27PS291A	New Space-Saving 24-Pin, THINDIP, 300-mil	Ultra fast — 50ns max		
Am27PS291	Configuration Increases Overall Board Density	Fast – 65ns max		

DISTINCTIVE CHARACTERISTICS

- · Fast access time allows high system speed
- 50% power savings on deselected parts enhances reliability through total system heat reduction
- Plug in replacement for industry standard product no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Rapid recovery from power-down state provides minimum delay
- Members of generic PROM series utilizing standard programming algorithm
- 100% processed to MIL-STD-883C
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 16K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

These 16K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048 x 8 configuration, they are available in both the standard 600-mil package (Am27PS191A/191) and the spacesaving THINDIP, 300-mil package (Am27PS291A/291) versions. After programming, stored information is read on outputs $O_0 - O_7$ by applying unique binary addresses to $A_0 - A_{10}$ and holding \overline{CS}_1 LOW and CS₂ and CS₃ HIGH. All other input combinations on CS₁, CS₂, and CS₃ place $O_0 - O_7$ into the OFF or high impedance state and reduce I_{CC} by more than 50%.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

Range	Vcc	Temperature
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Те	est Co	nditions		Min	Typ (Note 1)	Max	Units
V _{OH}	Output HIGH Voltage	$\label{eq:VCC} \begin{array}{l} V_{CC} = \text{MIN}, \text{I}_{OH} = -2.0\text{mA} \\ V_{IN} = V_{IH} \text{ or } V_{IL} \end{array}$				2.4			Volts
V _{OL}	Output LOW Voltage		$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$					0.50	Volts
VIH	Input HIGH Level		Guaranteed input logical HIGH voltage for all inputs (Note 4)						Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)						0.8	Volts
Ι _{IL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$					-0.010	-0.250	mA
ιн	Input HIGH Current	V _{CC} = MAX, V _I	$V_{CC} = MAX, V_{IN} = V_{CC}$					40	μA
I _{SC}	Output Short Circuit Current	V _{CC} = MAX, V _C	сот = ().0V	COM'L	-20	-40	-90	mA
.50		(Note 2)			MIL	-15	-40	-90	
lcc	Power Supply Current	All inputs = GN	ID				115	185	mA
ICCD	Power Down Supply Current	CS1 = 2.7V	All ot	her inputs = G	ND		50	80	
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN}	= - 18	mA				-1.2	Volts
	Output Laskage Current	V _{CC} = MAX	Vcc = MAX Vo = Vcc					40	
CEX	Output Leakage Current	$V_{\overline{CS_1}} = 2.4V$		$V_{O} = 0.4V$				-40	μA
CIN	Input Capacitance	V _{IN} = 2.0V @ f	= 1MH	lz (Note 3)			4.0		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @)f = 11	/Hz (Note 3)			8.0		F.

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				Тур		Max			
				5V 25°C	COM'L		MIL		
Parameters	Description	Test C	onditions	STD	A	STD	A	STD	Units
t _{AA1}	Address Access Time	t _{EAS} ≥ 25ns	AC	30	50	65	65	75	ns
t _{AA2}	Power Switched Address Access Time	t _{EAS} = 0ns	Test Load	50	65	80	75	90	ns
t _{EA}	Enable Access Time	t _{AES} > 0ns	Fig. 1-3, 5 (Notes 5 and 6)	50	65	80	75	90	ns
t _{ER}	Enable Recovery Time		(140105 5 8110 6)	15	25	35	30	45	ns

Notes: 5. t_{AA} is tested with switch S_1 closed and $C_L = 30 pF$.

6. t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V with S₁ open; LOW-to-high impedance tests are made to the V_{OL} + 0.5V level with S₁ closed.

- - -

Am27PS191A/PS291A/PS191/PS291

NOTES ON POWER SWITCHING

The Am27PS191A/191 and Am27PS291A/291 are power switched devices. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, I_{CC} is reduced to less than half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

- 1. When the Am27PS191A/191 and Am27PS291A/291 are selected, a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a 0.1μ f ceramic capacitor be connected from pin 24 to pin 12 at each device. (See Figure 4.)
- Address access time (t_{AA}) can be optimized if a chip enable set-up time (t_{EAS}) of greater than 25ns is observed. Negative set-up times on chip enable (t_{EAS} < 0) should be avoided. (For typical and worse case characteristics, see Figure 5.)

- - -

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \overline{CS}_1 input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50µsec, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within 50µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including Voc should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

ROGRAMMI	NG PARAMETERS			
Parameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CS1P}	CS ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
I _{ONP}	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS1})/dt	Rate of CS1 Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
· .	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	venue 7335 E. Acoma Dr.		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX	
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev H* (Code 16 68)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90	
Am27PS191A/ 191	715-1688-1	PA 24-17 and 2048 x 8(L)	IM 2048 x 8-24- AMD	SA 22-10 B 2048 x 8/24	DIS-151 AM	DA 61	AM100-5	
Am27PS291A/ 291	715-1688-2	PA 24-28 and 2048 x 8(L)	IM 2048 x 8-24- 27S290/291-AMD	SA 29 B 2048 x 8/24	DIS-215 AM	DA 62	AM190-7	

'Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
Selection	AM27PS191APC	P-24-1AC	C-1	(NOLE 3)
	AM27PS191APCB AM27PS291APC AM27PS291APCB	P-24-1AC P-24-1AA (Note 4) P-24-1AA (Note 4)	B-1 C-1 B-1	
$T_{AA1} = 50$ ns $T_{AA2} = 65$ ns	AM27PS191ADC AM27PS191ADC AM27PS191ADCB	D-24-1AC D-24-1AC D-24-1AC	C-1 B-1	COM'L
1442 - 00113	AM27PS291ADC AM27PS291ADCB	D-24-1AA D-24-1AA	C-1 B-1	
	AM27PS191ALC AM27PS191ALCB	L-32-2 L-32-2	C-1 B-1	
	AM27PS191ADM AM27PS191ADMB	D-24-1AC D-24-1AC	C-3 B-3	
T _{AA1} = 65ns T _{AA2} = 75ns	AM27PS291ADM AM27PS291ADMB AM27PS191AFM	D-24-1AA D-24-1AA F-24-1	C-3 B-3 C-3	MIL
1442 - 70113	AM27PS191AFMB AM27PS191ALM AM27PS191ALMB	F-24-1 L-32-2 L-32-2	B-3 C-3 B-3	
	AM27PS191PC	P-24-1AC	C-1	
T 05	AM27PS191PCB AM27PS291PC AM27PS291PCB	P-24-1AC P-24-1AA (Note 4) P-24-1AA (Note 4)	B-1 C-1 B-1	:
T _{AA1} = 65ns T _{AA2} = 80ns	AM27PS191DC AM27PS191DCB AM27PS291DC	D-24-1AC D-24-1AC D-24-1AA	C-1 B-1 C-1	COM'L
	AM27PS291DCB AM27PS191LC AM27PS191LCB	D-24-1AA L-32-2 L-32-2	B-1 C-1 B-1	
	AM27PS191DM AM27PS191DMB	D-24-1AC D-24-1AC	C-3 B-3	
T _{AA1} = 75ns	AM27PS291DM AM27PS291DMB	D-24-1AA D-24-1AA	C-3 B-3	MIL
T _{AA2} = 90ns	AM27PS191FM AM27PS191FMB AM27PS191LM	F-24-1 F-24-1 L-32-2	C-3 B-3 C-3	
	AM27PS191LMB	L-32-2 L-32-2	B-3	

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. AC = 600 mil center package. AA = 300 mil center package. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

.

Am27S45A • Am27S45 Am27S47A • Am27S45 16K-Bit (2048 x 8) Generic Series IMOXTM Bipolar High Performance Registered PROM with

Programmable INITIALIZE PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Member of AMD's Generic Family of 8-bit wide registered PROMs
- On-chip edge-triggered registers ideal for pipelined microprogrammed systems
- User programmable for synchronous or asynchronous enable for simplified word expansion
- Versatile programmable register INITIALIZE either asynchronous (Am27S45A/45) or synchronous (Am27S47A/47)
- Slim, 24-pin, 300-mil lateral center package occupies approximately 1/3 the board space required by standard discrete PROM and register
- Consumes approximately 1/2 the power of separate PROM/register combination for improved system reliability
- Fast standard version 45ns max setup and 25ns max clock-to-output allows system speed improvements
- "A" version offers improved AC performance in critical paths (40ns max setup and 20ns max clock-to-output)
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ>98%)
- AC performance is factory tested utilizing programmed test words and columns
- 100% MIL-STD-883C processing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S45A/45 and Am27S47A/47 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW which can be selectively programmed to a logic HIGH by applying appropriate programming voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming algorithms (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are preprogrammed during manufacturing to insure extremely high field programming yields and produce excellent AC and DC parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths, which are regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over the full military power supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

BLOCK DIAGRAMS

Am27S47A/47

IMOX is a trademark of Advanced Micro Devices, Inc.

. . .

FUNCTIONAL DESCRIPTION

The Am27S45A/45 and Am27S47A/47 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 2048-word by 8-bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S45A/45 and Am27S47A/47 also offer maximum flexibility for system design by providing either synchronous or asynchronous initialize, and sychronous or asynchronous output enable.

When V_{CC} power is first applied, the state of the ouputs will depend on whether the enable has been programmed to be a synchronous or asynchronous enable. If the synchronous enable (E_S) is being used, the register will be in the set condition causing the outputs $(Q_0 \text{ to } Q_7)$ to be in the OFF or HIGH impedance state. If the asynchronous enable (\overline{E}) is being used, the outputs will come up in the OFF or HIGH impedance state only if the enable (E) input is at a logic HIGH level. Reading data is accomplished by first applying the binary word address to the address inputs (An through A10) and a logic LOW to the enable input. During the address setup time, the stored data is accessed and loaded into the master flip-flops of the data register. Upon the next LOW-to-HIGH transition of the clock input (CP), data is transferred to the slave flip-flops which drive the output buffers, and the accessed data will appear at the outputs (Q0 through Q7). If the asynchronous enable (\overline{E}) is being used, the outputs may be disabled at any time by switching the enable to a logic HIGH, and may be returned to the active state by switching the enable back to the logic LOW state. For devices using the synchronous enable (E_S), the outputs will go into the OFF or HIGH impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the next positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change, since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the PROM

decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

These devices also contain a built-in initialize function. When activated, the initialize control input (\overline{INIT}) causes the contents of an additional (2049th) 8-bit word to be loaded into the on-chip register. This extra word is user programmable. Since each bit is individually programmable, the initialize function can be used to load any desired combination of HIGHs and LOWs into the register. In the unprogrammed state, activating \overline{INIT} will perform a register CLEAR (all outputs LOW). If all bits of the initialize word are programmed, activating \overline{INIT} performs a register PRESET (all outputs HIGH).

This ability to tailor the initialize outputs to the system requirements simplifies system design and enhances performance. The initialize function is useful during power up and timeout sequences. This flexible feature can also facilitate implementation of other sophisticated functions such as a built-in "jump-start" address.

The Am27S45A/45 has an asynchronous initialize input (INIT). Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register independent of all other inputs (including CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (\overline{E}) LOW.

The Am27S47A/47 has a synchronous $\overline{\rm INIT}_S$ input. Applying a LOW to the $\overline{\rm INIT}_S$ input causes an immediate load of the programmed initialize word into the master flip-flops of the register only independent of all other inputs (including CP). To bring this data to the outputs of a device with a synchronous enable, the synchronous enable ($\overline{\rm E}_S$) should be held LOW until the next LOW-to-HIGH transition of the clock (CP). For a device with an asynchronous enable, the data will appear at the device outputs after the next LOW-to-HIGH clock transition if the enable ($\overline{\rm E}$) is held LOW.

PRELIMINARY

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

OPERATING RANGE

_	Range	Vcc	Temperature
	COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
Γ	MIL	4.5 to 5.5V	T _C = −55 to +125°C

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY

Parameters	Description	Te	est Conditions		Min	Typ (Note 1)	Max	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = MIN, I_{OH}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$			2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.38	0.50	Volts
VIH	Input HIGH Level	Guaranteed inp voltage for all in			2.0			Volts
VIL	Input LOW Level		Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
IIL .	Input LOW Current	$V_{CC} = MAX, V_{II}$	$V_{CC} = MAX, V_{IN} = 0.45V$				-0.250	mA
կн	Input HIGH Current	$V_{CC} = MAX, V_{II}$	N = V _{CC}				40	μA
Isc	Output Short Circuit Current	V _{CC} = MAX, V _C	OUT = 0.0V (Note	3)	-20	-40	-90	mA
lcc	Power Supply Current	All inputs = GN	D, $V_{CC} = MAX$			130	185	mA
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{ N}$	= -18mA				-1.2	Volts
1	Output Leakage Current (Note 4)	$V_0 = V_{CC}$			40			
CEX		V _E = 2.4V	$V_0 = 0.4V$			-40	μΑ	
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 5)				5		~ F
COUT	Output Capacitance	V _{OUT} = 2.0V @	f = 1MHz (Note 5	5)		12		pF

Notes: 1. Typical values are at $V_{CC}=5.0V$ and $T_{A}=25^{\circ}C.$

2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment (see Notes on Testing).

3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.

4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.

5. These parameters are not 100% tested, but are periodically sampled.

Am27S45A/S45/S47A/S47

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (See Notes on Testing) PRELIMINARY

				Am2	7S45A	Am27	547A	Am	27\$45	• Am27	S47	
_			Тур	со		M			M'L		IIL	
Parameters	Description	1	(Note 1)	Min	Max	Min	Мах	Min	Max	Min	Max	Units
t _S (A)	Address to CP (HIGH) Setup T	ime	25	40		45		45		50		ns
t _H (A)	Address to CP (HIGH) Hold Tir	ne	4	0		0		0		0		ns
t _{PHL} (CP)	Delay from CP (HIGH) to	All Outputs Simlutaneous	13		20		25		25		30	ns
t _{PLH} (CP)	Output (HIGH or LOW)	Single Output (Note 3)	11		18		21		20		23	
t _{WH} (CP)			10	20		20		20		20		
t _{WL} (CP)	CP Width (HIGH or LOW)		10	20		20		20		20		ns
t _S (Ē _S)	E _S to CP (HIGH) Setup Time		5	15		15		15		15		ns
t _H (Ē _S)	Es to CP (HIGH) Hold Time		-2	5		5		5	0.00	5		ns
t _{PHL} (INIT)	Delay from INIT (LOW) to Outputs		20	1 200	30		35	35 M	35		40	ns
t _{PLH} (INIT)	(LOW or HIGH) (Note 5)		20				33				40	115
t _R (ĪNIT)	INIT Recovery (Inactive) to CP (HIGH) (Note 5)		8	20		20		20		20		ns
t _{WL} (INIT)	INIT Pulse Width (Note 5)		10	25		30		25		30		ns
t _S (INIT _S)	INIT _S to CP (HIGH) Setup Time	e (Note 6)	18	25		30		30		35		ns
t _H (INIT _S)	INITS to CP (HIGH) Hold Time	(Note 6)	-5	0		0		0		0		ns
t _{PZL} (CP)	Delay from CP (HIGH) to Active	e Output	15		25		30		30		35	ns
t _{PZH} (CP)	(HIGH or LOW) (Note 7)	and the second s	15		25		30		30		35	115
t _{PLZ} (CP)	Delay from CP (HIGH) to Inacti	ve Output	15		25		30		30		35	ns
t _{PHZ} (CP)	(OFF or High Impedance) (Notes 4 and 7)		15		20		30		30		35	115
t _{PZL} (E)	Delay from E (LOW) to Active Output		15		25		30		30		35	ns
t _{PZH} (E)	(HIGH or LOW) (Note 8)		15		20	Ì	- 50		30	1	35	115
t _{PLZ} (Ē)	Delay from E (HIGH) to Inacti	ve Output	10		25		30		30		35	ns
t _{PHZ} (E)	(OFF or High Impedance) (No				25		30		30		35	115

- - --- - - -----

Notes: 1. Typical values at $V_{CC}=5.0V$ and $T_{A}=25^{\circ}C.$

2. Tests are performed with input 10 to 90% rise and fall times of 5ns or less.

3. Single register performance numbers provided for comparison with discrete register test data.

4. t_{PLZ} and t_{PLZ} are measured to the V_{OH} – 0.5V and V_{OL} + 0.5V output levels respectively. All other switching parameters are tested from and to the 1.5V threshold levels.

Applies only to the Am27S45A/45 (asynchronous INITIALIZE function).
 Applies only to the Am27S47A/47 (synchronous INITIALIZE function).
 Applies only when synchronous ENABLE function is used.

8. Applies only when asynchronous ENABLE function is used.

.....

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

- 1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
- 2. Do not leave any inputs disconnected (floating) during any tests.
- 3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

PROGRAMMING

These 16K registered PROMs are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. Programming each bit location (i.e. opening the fusible links) is accomplished by first applying a logic HIGH to the $\overline{E/E}_S$ and $\overline{INIT/INIT}_S$ inputs, followed by a LOW-to-HIGH clock transition in order to disable the outputs (although devices with an asynchronous ENABLE input do not require this clock pulse, it nevertheless may be included in the programming algorithm without affecting the programmability of the devices. This feature allows the use of a common generic programming algorithm for use on all registered PROMs). The output is then raised to 20 volts, and current from this 20 volt supply is then gated through the addressed fuse by raising the $\overline{E}/\overline{E}_{S}$ input from a logic HIGH to 15 volts. After 50μ sec, the 20 volt supply is removed, the chip is enabled and the CP input is clocked. Each data verification must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within 50µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec. If a link has not opened after total elapsed programming time of 400 msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

The initialize word is programmed by setting the $\overline{INIT/INIT_S}$ input to a logic LOW and programming the desired initialize word, output by output, in the same manner as any other address location. The address inputs may assume either logic state, but should not be left open, in order to avoid the possibility of oscillation. This is easily implemented by inverting the A₁₁ address input from a PROM programmer and applying this signal to the $\overline{INIT/INIT_S}$ input. Using this method the initialize word would be programmed as address 2048. When $\overline{INIT/INIT_S}$ is asserted LOW the internal programming circuitry for all other addresses is deselected. Address A₀ must be LOW.

The enable input for these devices is shipped from the factory as an asynchronous enable (\overline{E}) and may be programmed to a synchronous enable (\overline{E}_S) by using the following programming procedure. To program the enable function to a synchronous enable the INIT/INIT_S input must be set to a logic LOW, with address A₀ in a logic HIGH state. A standard programming pulse should then be applied to output Q₀. The remaining address inputs may assume either logic state, but should not be left open

in order to avoid possibility of oscillation. This is easily implemented by inverting the A_{11} address from a PROM programmer and applying this signal to the $\overline{INIT/INIT_S}$ input. Using this method the synchronous enable word would be treated as address 2049.

Typical current into an output during programming will be approximately 190mA until the fuse link is opened, after which the current drops to approximately 110mA. Current into the $\overline{E}/\overline{E}_{S}$ pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

It should be noted that when programming \overline{E}_S , the enable pin is changing from an asynchronous enable (\overline{E}) to a synchronous enable (\overline{E}_S). This is a functional change rather than a data change to the part. Therefore, verification that the programming event has taken place must be performed in a different manner.

The Am27S45/47 contains on-chip circuitry which when enabled will cause the $\overline{E}/\overline{E}_S$ fuse to appear as data on all outputs simultaneously; i.e. fuse intact = asynchronous enable = 00_{16} and fuse programmed = synchronous enable = FF_{16} . This verification circuitry is enabled by taking the A_0 input to a "zener high level" (14V. to 15V.). This "zener high level" should be used for read and verification cycles only (not programming) and preferably for the explicit address used for $\overline{E}/\overline{E}_S$ data only.

An alternative to using the on-chip verification circuitry would be for the programming equipment to utilize decision making capability in conjuction with clock and enable to determine in which functional mode the enable is operating.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
VENP	E/E _S Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(VEN)/dt	Rate of $\overline{E}/\overline{E}_{S}$, Voltage Change	50	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
	Programming Period – Subsequent Attempts	5.0	15	msec

-

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t₁ through t₇ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During t_v, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to V_{ONP} through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

BPM-328

SIMPLIFIED PROGRAMMING DIAGRAM

BPM-329

2-123

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	7335 E. Acoma Dr.		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev J* 919-1286-1 Rev J*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Socket Adapters	and Configurators						
Am27S45 Am27S47	715-1660	PA 24 and 2049 x 8(L)	IM 2048 x 8-27S45/ 47 AMD	SA 31 B 2048 x 8/24	DIS-217 AM	DA 64	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be

delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Speed Selection (Setup Time)	on Asynchronous Synchronous		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)			
40ns	AM27S45APC AM27S45APCB AM27S45ADC AM27S45ADCB AM27S45ALCB AM27S45ALCB	AM27S47APC AM27S47APCB AM27S47ADC AM27S47ADC AM27S47ADCB AM27S47ALC AM27S47ALCB	P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L			
45ns	AM27S45ADM AM27S45ADMB AM27S45AFM AM27S45AFMB AM27S45AFMB AM27S45ALM AM27S45ALMB	AM27S47ADM AM27S47ADMB AM27S47AFM AM27S47AFMB AM27S47AFMB AM27S47ALM AM27S47ALMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL			
45ns	AM27S45PC AM27S45PCB AM27S45DC AM27S45DCB AM27S45DCB AM27S45LC AM27S45LCB	AM27S47PC AM27S47PCB AM27S47DC AM27S47DC AM27S47DCB AM27S47LC AM27S47LCB	P-24-1AA (Note 4) P-24-1AA (Note 4) D-24-1AA D-24-1AA L-32-2 L-32-2	C-1 B-1 C-1 B-1 C-1 B-1	COMIL			
50ns	AM27S45DM AM27S45DMB AM27S45FM AM27S45FMB AM27S45FMB AM27S45LM AM27S45LMB	AM27S47DM AM27S47DMB AM27S47FM AM27S47FMB AM27S47FMB AM27S47LM AM27S47LMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL			

OBDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

4. This package will be available soon. Consult Factory.

. . . . -

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S40A • Am27S41A Am27S40 • Am27S41 ^{16,384-Bit Generic Series Bipolar IMOX™ PROM} (4096 x 4 bits with ultra fast access time)

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time "A" version (35ns max) Fast access time Standard version (50ns max) – allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 16K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX[™]. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27S40A, Am27S41A, Am27S40, and Am27S41 are high speed electrically programmable Schottky read only memories. Organized in 4096 x 4 configuration, they are available in both open collector (Am27S40A and Am27S40) and three-state (Am27S41A and Am27S41) output versions. After programming, stored information is read on outputs O_0 - O_3 by applying unique binary addresses to A_0 - A_{11} and holding the chip select inputs, \overline{CS}_1 and \overline{CS}_2 , LOW. If either chip select input goes to a logic HIGH, O_0 - O_3 go to the OFF or HIGH impedance state.

CONNECTION DIAGRAMS – Top Views

IMOX is a trademark of Advanced Micro Devices, Inc.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S40A/S41A/S40/S41

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	$-0.5V$ to $+V_{CC}$ max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

- - -

OPERATING RANGE

1	Range	Vcc	Temperature
	COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}C$
	MIL.	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}C$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	Type (Note 1)	Max	Units	
V _{OH} (TS Devices only)	Output HIGH Voltage	$\label{eq:VCC} \begin{array}{l} V_{CC} = MIN, \ I_{OH} = -2.0mA \\ V_{IN} = V_{IH} \ \text{or} \ V_{IL} \end{array}$		2.4			Volts	
VoL	Output LOW Voltage	$V_{CC} = MIN, I_{OL} = 16mA$	COM'L			0.45	Volts	
*OL		$V_{IN} = V_{IH} \text{ or } V_{IL}$	MIL			0.50	Volto	
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)			0.8	Volts		
Ι _{ΙL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$		-0.020	-0.250	mA		
ોમ	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μA	
Isc	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$	COM'L	-20	-40	- 90	mA	
(TS Devices only)	Output Short Circuit Current	(Note 2)	MIL	- 15	-40	-90		
1	Bauer Suzzlu Current	All inputs = GND,	COM'L		110	165	m A	
lcc	Power Supply Current	V _{CC} = MAX	MIL		110	170	mA	
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$				-1.2	Volts	
I _{CEX}	0.4.4.1	V _{CC} = MAX	$V_0 = V_{CC}$			40		
	Output Leakage Current	$V_{\overline{CS}_1} = 2.4V$ $V_0 = 0.4$				-40	μΑ	
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1MHz (Note 3))		5.0		pF	
COUT	Output Capacitance	Vout = 2.0V @ f = 1MHz (Note	3)		8.0			

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

3. These parameters are not 100% tested, but are periodically sampled.

4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				Тур		м	ax			
			5V	25°C	C	OM'L	1	MIL		
Parameters	Description	Test Conditions	A	STD	A	STD	A	STD	Units	
t _{AA}	Address Access Time		25	30	35	50	50	65	ns	
t _{EA}	Enable Access Time	AC Test Load (See Notes 1, 2, 3)	10	10	25	25	30	30	ns	
t _{ER}	Enable Recovery Time] (,,,,,,,,,,,,	10	10	25	25	30	30	ns	

.

Notes: 1. t_{AA} is tested with switch S_1 closed and C_L = 30pF.

2. For open collector outputs, t_{EA} and t_{ER} are tested with S₁ closed to the 1.5V output level. C_L = 30pF.

For three-state outputs, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ open tests are

PROGRAMMING

This entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{CS_1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{CS_1}$ input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the

current drops to approximately 90mA. Current into the $\overline{\text{CS}}_1$ pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	Ó.0	0.45	Volts
V _{CS1P}	CS1 Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS1})/dt	Rate of CS1 Voltage Change	50	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
 Delays t₁, t₂, t₃ and t₄ must be greater than 100ns; maximum delays of 1µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

BPM-201

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 3 Tevuot Haaretz St. Tel-Aviv, Israel		Stag Systems, Inc. 1120 San Antonio Rd Palo Alto, CA 94303	
Programmer Model(s)	Model 5, 7, and 9 Systems 17 and 19	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ	
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90	
Am27S40A/41A Am27S40/41	715-1282	PA 20-9 and 4096 x 4(L)	IM 4096 x 4-20-AMD	SA 30 B 4096 x 4/20	DIS-216 AM	DA 63	AM 120-6	

Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype[®] or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

- 1. A leader of at least 25 rubouts.
- 2. The data patterns for all 4096 words, starting with word 0, in the following format:
 - Any characters, including carriage return and line feed, except "B".
 - b. The letter "B", indicating the beginning of the data word.
 - c. A sequence of four Ps or Ns, starting with output O_3 .
 - d. The letter "F", indicating the finish of the data word.
 - e. Any text, including carriage return and line feed, except the letter "B".

3. A trailer of at least 25 rubouts.

A P is a HIGH logic level = 2.4 volts. An N is a LOW logic level = 0.5 volts.

A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the four Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FO	RMAT	RESULTING DEVICE TRUTH TABLE (\overline{CS}_1 AND \overline{CS}_2 = LOW)													
 ØØØ BNNNPF WORD ZERC BPPNNF COMMENT F ØØ2 BPPPNF ANY (R) [L] BNNNPF CAN (R) [L] ØØ4 BNNNPF CAN (R) [L] ØØ4 BPPNNF GO (R) [L] ØØ6 BPPNNF HERE (R) [L] 4095 BPPPNF END (R) [L] 		A11 L L L L L H		Ag Ag L L L L L L L L L L H H				- L - Ľ - L - L - L	3 A2 - L - L - H - H - H - H		Ao LHLHLHL	О 3 Ц Н Ц Ц Н Н	О2 L H L L H H H	01 L L L L L L H	

Am27S40A/S41A/S40/S41

ORDERING INFORMATION

	Orde	r Code					
Speed Selection	•		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)		
35ns	AM27S40APCAM27S41APCAM27S40APCBAM27S41APCBAM27S40ADCAM27S41ADCAM27S40ADCBAM27S41ADCBAM27S40ADCBAM27S41ADCBAM27S40ALCAM27S41ALCAM27S40ALCBAM27S41ALCB		P-20-1 P-20-1 D-20-1 D-20-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L		
50ns	AM27S40ADM AM27S40ADMB AM27S40ALM AM27S40ALMB	MB AM27S41ADMB D-20-1 M AM27S41ALM L-28-2		AM27S41ADMB D-20-1 E AM27S41ALM L-28-2 C		C-3 B-3 C-3 B-3	MIL
50ns	AM27S40PC AM27S40PCB AM27S40DC AM27S40DCB AM27S40DCB AM27S40LC AM27S40LCB	AM27S41PC AM27S41PCB AM27S41DC AM27S41DC AM27S41DCB AM27S41LC AM27S41LCB	P-20-1 P-20-1 D-20-1 D-20-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COMI		
65ns	AM27S40DM AM27S40DMB AM27S40LM AM27S40LMB	AM27S41DM AM27S41DMB AM27S41LM AM27S41LMB	D-20-1 D-20-1 L-28-2 L-28-2	C-3 B-3 C-3 B-3	MIL		

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS41 16,384-Bit Generic Series Bipolar IMOX[™] PROM 4096 x 4 Bits with Power-Down Via CS

DISTINCTIVE CHARACTERISTICS

- Fast access time Standard version (50ns max) allows tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

This 16K PROM is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27PS41 is a high speed electrically programmable Schottky read only memory. Organized in 4096 x 4 configuration, it is available in the three-state (Am27PS41) output version. After programming, stored information is read on outputs O_0 - O_3 by applying unique binary addresses to A_0 - A_{11} and holding the chip select inputs, \overline{CS}_1 and \overline{CS}_2 , LOW. If either chip select input goes to a logic HIGH, O_0 - O_3 go to the OFF or HIGH impedance state.

BLOCK DIAGRAM

BPM-194

CONNECTION DIAGRAMS – Top Views

_ 2

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27PS41

ATIMOC

MAXIMUM RATINGS (Above which the useful life may be impaired)					
Storage Temperature	-65 to +150°C				
Temperature (Ambient) Under Bias	-55 to +125°C				
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0V				
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max				
DC Voltage Applied to Outputs During Programming	21V				
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA				
DC Input Voltage	-0.5 to +5.5V				
DC Input Current	-30 to +5mA				

- - -

- - - - -

OPERATING RANGE

Range	Vcc	Temperature		
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$		
MIL	4.5 to 5.5V	$T_C = -55 \text{ to } + 125^{\circ}\text{C}$		

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Те	est Conditions		Min	Typ (Note 1)	Max	Units
V _{OH}	Output HIGH Voltage		$V_{CC} = MIN, I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		2.4			Volts
VOL	Output LOW Voltage	V _{CC} = MIN, I _{OL}	= 16mA	COM'L			0.45	Volts
VOL	Oulput LOW Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ MI		MIL		· · ·	0.50	VOIIS
VIH	Input HIGH Level		Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts	
۱ _{IL}	Input LOW Current	V _{CC} = MAX, V _I	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	-0.250	mA
lн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$				40	μA	
1	Output Short Circuit Current	V _{CC} = MAX, V _C	_{DUT} = 0.0V	COM'L	- 20	-40	-90	
ISC	Output Short Circuit Current	(Note 2)		MIL	- 15	-40	-90	mA
1	Power Supply Current	All inputs = GN	D .			110	170	mA
lcc		$\overline{\text{CS}}_1 = 2.7\text{V}$	All other inputs -	= GND		50	85	nia.
V _I	Input Clamp Voltage	$V_{CC} = MIN, I_{IN}$	= - 18mA				-1.2	Volts
1	Output Leokono Current	V _{CC} = MAX		$V_{O} = V_{CC}$			40	
CEX	Output Leakage Current			$V_{O} = 0.4V$			-40	μΑ
CIN	Input Capacitance	V _{IN} = 2.0V @ f	= 1MHz (Note 3)			5.0		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @	9 f = 1MHz (Note 3	5)		8.0		

Notes: 1. Typical limits are at $V_{CC}=5.0V$ and $T_{A}=25^{\circ}C.$

2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

- - - -

3. These parameters are not 100% tested, but are periodically sampled.

These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				ј Тур	M		
Parameters	Description	Test C	conditions	5V 25°C	COM'L	MIL	Units
t _{AA1}	Address Access Time	t _{EAS} ≥ 25ns		30	50	65	ns
t _{AA2}	Power Switched Address Access Time	t _{EAS} = 0ns	AC Test Load	50	70	85	ns
^t EA	Enable Access Time	t _{AES} ≥ 0ns	(Notes 1 and 2)	50	70	85	ns .
t _{ER}	Enable Recovery Time			10	25	30	ns

Notes: 1. t_{AA} is tested with switch S₁ closed and C_L = 30pF. t_{EAS} is defined as chip enable setup time.

2. For the three-state output, t_{EA} is tested with C_L = 30pF to the 1.5V level; S₁ is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with C_L = 5pF. HIGH to high impedance tests are made with S₁ open to an output voltage of V_{OH} - 0.5V; LOW to high impedance tests are made with S₁ closed to the V_{OL} + 0.5V level.

- -

POWER SWITCHING

The Am27PS41 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, I_{CC} is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

- 1. When the Am27PS41 is selected by a low level on $\overline{\text{CS}}_1$, a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a 0.1μ F ceramic capacitor be connected from pin 20 to pin 10 at each device. (See Figure 1.)
- Address access time (t_{AA}) can be optimized if a chip enable set-up time (t_{EAS}) of greater than 25ns is observed. Negative set-up times on chip enable (t_{EAS} < 0) should be avoided. (For typical and worse case characteristics, see Figure 2.)

.

PROGRAMMING

This entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS}_1 input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50µsec, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within 50µsec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the

current drops to approximately 90mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Мах	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CS1P}	CS ₁ Voltage During Programming	14.5	15.5	Volts
VOP	Output Voltage During Programming	19.5	20.5	Volts
V _{ONP}	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS1})/dt	Rate of \overline{CS}_1 Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
т —	Programming Period – Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During ty, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required. 4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	Microsystems, Inc. 630 Price Avenue 7335 E. Acoma Dr.		Microsystems, Inc. 11554 C. Avenue			Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	РРХ	
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H*	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90	
Am27PS41	715-1282	PA 20-9 and 4096 x 4(L)	IM 4096 x 4-20-AMD	SA 30 B 4096 x 4/20	DIS-216 AM	DA 63	AM 120-6	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

Speed	Order Code	Package Type	Screening Flow Code	Operating Range
Selection	Three-State	(Note 1)	(Note 2)	(Note 3)
	AM27PS41PC	P-20-1	C-1	
	AM27PS41PCB	P-20-1	B-1	
	AM27PS41DC	D-20-1	C-1	0010
$t_{AA1} = 50$ ns	AM27PS41DCB	D-20-1	B-1	COML
t _{AA2} = 70ns	AM27PS41LC	L-28-2	C-1	
	AM27PS41LCB	L-28-2	B-1	
	AM27PS41DM	D-20-1	C-3	
t _{AA1} = 65ns	AM27PS41DMB	D-20-1	B-3	MIL
$t_{AA2} = 85 \text{ns}$	AM27PS41LM	L-28-2	C-3	
	AM27PS41LMB	L-28-2	B-3	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

- - -

Am27S43A • Am27S43 32,768-Bit Generic Series Bipolar IMOX[™] PROM (4096 x 8 bits with ultra fast access time) ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time "A" version (40ns max) Fast access time Standard version (55ns max) – allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 32K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX[™]. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27S43A and Am27S43 are high speed electrically programmable Schottky read only memories. Organized in 4096 x 8 configuration, they are available in three-state (Am27S43A and Am27S43) output versions. After programming, stored information is read on outputs O₀-O₇ by applying unique binary addresses to A₀-A₁₁ and holding the chip select inputs, \overline{CS}_1 , LOW and CS₂, HIGH. If \overline{CS}_1 goes to logic HIGH or CS₂ goes to a logic LOW, O₀-O₇ go to the OFF or HIGH impedance state.

CONNECTION DIAGRAMS – Top Views

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S43A/S43

A VIBALIBE DATINGO (AL

MAXIMUM RATINGS (Above which the useful life may be impaired)	· · · · · · · · · · · · · · · · · · ·
Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs (Except During Programming)	-0.5V to +V _{CC} max
DC Voltage Applied to Outputs During Programming	21V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250mA
DC Input Voltage	-0.5 to +5.5V
DC Input Current	-30 to +5mA

a lately the supervised of the supervised by the supervised at

- ----

OPERATING RANGE

	Range	Vcc	Temperature
ſ	COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$
Į	MIL	4.5 to 5.5V	$T_{C} = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) ADVANCED INFORMATION

Parameters	Description	Test Cor	ditions	Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$V_{CC} = MIN$, $I_{OH} = -2.0mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		2.4			Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN, I_{OL} = 16mA$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.50	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
Ι _Ι	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.45V$			-0.020	-0.250	mA
I _{IH}	Input HIGH Current	$V_{CC} = MAX, V_{IN} = V_{CC}$			·	40	μΑ
Isc	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} =	0.0V (Note 3)	- 15	-40	- 100	mA
		All inputs = GND,	COM'L		135	185	
lcc	Power Supply Current	V _{CC} = MAX	MIL		135	185	mA
VI	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -1$	BmA			-1.2	Volts
· · · · · · · · · · · · · · · · · · ·	Output Leakage Current	V _{CC} = MAX	$V_0 = V_{CC}$			40	
CEX	Output Leakage Current	$V\overline{CS}_1 = 2.4V$	$V_{O} = 0.4V$			-40	μΑ
CIN	Input Capacitance	V _{IN} = 2.0V @ f = 1M	Hz (Note 4)		5.0		pF
COUT	Output Capacitance	V _{OUT} = 2.0V @ f = 1	MHz (Note 4)		8.0		ļ " .

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment. 3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

4. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE **ADVANCED INFORMATION**

			·	Тур	ĺ	M	lax		ĺ
			5V	25°C	С	OM'L		MIL	
Parameters	Description	Test Conditions	A	STD	A	STD	A	STD	Units
t _{AA}	Address Access Time		30	35	40	55	55	65	ns
^t EA	Enable Access Time	AC Test Load (See Notes 1 and 2)	20	20	30	35	35	40	ns
^t ER	Enable Recovery Time		20	20	30	35	35	40	ns

.

-- --

Notes: 1. t_{AA} is tested with switch S_1 closed and $C_L = 30$ pF. 2. For three-state outputs, t_{EA} is tested with $C_L = 30$ pF to the 1.5V level; S_1 is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $C_L = 5pF$. HIGH to high impedance tests are made with S_1 open to an output voltage of $V_{OH} = 0.5V$; LOW to high impedance tests are made with S_1 closed to the $V_{OL} = 0.5V$ level.

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the \overline{CS}_1 input is a logic HIGH. Current is gated through the addressed fuse by raising the \overline{CS}_1 input from a logic HIGH to 15 volts. After 50 μ sec, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 μ sec. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5msec. If a link has not opened after a total elapsed programming time of 400msec, further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180mA until the fuse link is opened, after which the current drops to approximately 90mA. Current into the \overline{CS}_1 pin when it is raised to 15 volts is typically 1.5mA.

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

arameters	Description	Min	Max	Units
V _{CCP}	V _{CC} During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
V _{CS1P}	CS ₁ Voltage During Programming	14.5	15.5	Volts
V _{OP}	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs Not to be Programmed	0	V _{CCP} + 0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(V _{OP})/dt	Rate of Output Voltage Change	20	250	V/µsec
d(V _{CS1})/dt	Rate of \overline{CS}_1 Voltage Change	100	1000	V/µsec
tp	Programming Period – First Attempt	50	100	μsec
т Г	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.

2. Delays t1, t2, t3 and t4 must be greater than 100ns; maximum delays of 1 µsec are recommended to minimize heating during programming.

3. During t_v, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.

4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

o

BPM-270

Ŧ

Vcs, P

2-140

Am27S43A/S43

PROM PROGRAMMING EQUIPMENT INFORMATION The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD: Source and Data I/O Pro-Log Corporation International Kontron Electronic, Inc. Digelec, Inc. Stag Systems, Inc. Location 10525 Willows Rd. N.E. 2411 Garden Road Microsystems, Inc. 630 Price Avenue 7335 E. Acoma Dr. 528-5 Weddell Dr. Redmond, WA 98052 Monterey, CA 93940 11554 C. Avenue Redwood City, CA 94063 Scottsdale AZ 85260 Sunnyvale, CA 94086 Auburn, CA 95603 IM1010 Programmer Model 5, 7, and 9 M900, M900B, M910, MPP-80 UPP-801 UPP-803 PPX Model(s) Systems 17, 19, 29 M920, and M980 and 100 909-1286-1 Rev H* IM AMDGEN1 PM 102 AMD Generic PM 9058 MOD 14 FAM-12 PM 2000 **Bipolar PROM** 919-1286-1 Rev H* Code 90 Personality Module Am27S43A/43 715-1698-002 IM 4096 x 8-24-AMD *Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format. Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

Speed	Order Code	Package Type	Screening Flow Code	Operating Range
Selection	Three-State	(Note 1)	(Note 2)	(Note 3)
	AM27S43APC	P-24-1AC	C-1	
	AM27S43APCB	P-24-1AC	B-1	
40	AM27S43ADC	D-24-1AC	C-1	0014
40ns	AM27S43ADCB	D-24-1AC	B-1	COM'L
	AM27S43ALC	L-32-2	C-1	
	AM27S43ALCB	L-32-2	B-1	
	AM27S43ADM	D-24-1AC	C-3	
55ns	AM27S43ADMB	D-24-1AC	B-3	MIL
5505	AM27S43ALM	L-32-2	C-3	MIL
	AM27S43ALMB	L-32-2	B-3	
	AM27S43PC	P-24-1AC	C-1	
	AM27S43PCB	P-24-1AC	B-1	
55ns	AM27S43DC	D-24-1AC	C-1	COM'L
00/13	AM27S43DCB	D-24-1AC	B-1	OOME
	AM27S43LC	L-32-2	C-1	
	AM27S43LCB	L-32-2	B-1	
	AM27S43DM	D-24-1AC	C-3	
65ns	AM27S43DMB	D-24-1AC	B-3	MIL
00115	AM27S43LM	L-32-2	C-3	WIL
	AM27S43LMB	L-32-2	B-3	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is

number of leads.

- 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.
 - Levels B-1 and B-3 conform to MIL-STD-883, Class B.
- 3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Technical Report

Reliability Report Bipolar Generic PROM Series

ABSTRACT

This report is a review of the manufacturing process, the circuit design techniques, the testing, the fuse element, and the reliability of Advanced Micro Devices' Generic Bipolar PROM Series. Results indicate that platinum silicide forms a fuse with excellent reliability characteristics.

The purpose of this report is to present a description of Advanced Micro Devices' Bipolar PROM circuits, their manufacturing process and their reliability. Included is a discussion of the wafer fabrication in which an advanced, highly reliable platinum silicide fuse is utilized, a description of the circuits and their testing, an analysis of the fusing characteristics of platinum silicide and supportive reliability data.

The products evaluated in this report are members of a generic family of field programmable-read-only memories (PROMs) from 256 bits through 16384 bits. Advanced Micro Devices utilizes two manufacturing processes. The first is the platinum-silicide Schottky, washed emitter process described in this report. The second is the IMOX[™] process. IMOX is the trademark name for a selective oxide isolation process which employs ion-implantation of various transistor elements. This improved process incorporates many of the technologies previously developed, such as platinum silicide fuses, dual layer metal, and platinum-silicide Schottkies. IMOX allows further reduction in chip size due to tighter device spacings and device dimensions. All new product developments for the PROM family use the IMOX process. This high density process allows Advanced Micro Devices to con-

tinue to supply very high speed, high performance products while increasing device complexity. The circuit design concepts are similar on each of the PROMs with the result that the products can be programmed using the same hardware. Only the socket adaptor required for the PROM configuration and pin count is different. The same programming algorithm is used for all devices with completely satisfactory results. The PROMs utilize a platinum Schottky diode structure with barrier metal. Dual-layer metallization is also employed to maximize speed and minimize chip size. All Advanced Micro Devices' circuits receive screening per MIL-STD-883, Method 5004 class C or better. Part of the 883 flow involves sample acceptance tests in which all temperature requirements are sampled to Lot Tolerance Percent Defective (LTPD) plans. A 5% LTPD corresponds to about a 0.65% Acceptance Quality Level (AQL). In early 1981 Advanced Micro Devices announced a new program that guarantees the highest quality levels for semiconductor devices in the industry. The new program is called INTERNATIONAL STAN-DARD 123. Under INT-STD-123 all Bipolar Memory PROMs are sampled to a 0.3% AQL. This is a direct statement of AMD's commitment to excellence.

Prepared by: Advanced Micro Devices Quality and Reliability Department in Conjunction with Bipolar Memory Engineering.

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Advanced Micro Devices' product.

THE PROCESS TECHNOLOGY

Advanced Micro Devices has chosen a platinum silicide Schottky, washed emitter, dual-layer metal process for its bipolar PROMs. Platinum silicide has been chosen as the material to form the fuse for several reasons. First, it has been demonstrated to be an extremely reliable fuse material. It does not have the growback phenomenon common to nichrome technologies; it is not moisture sensitive in freeze-out tests; it is less fragile than nichrome, and it does not have mass transport problems associated with moderate current densities. Second, the manufacturing process is easily controlled with regard to reliability factors and fusing currents. Third, the fuses are quite easy to form during the manufacturing process without a substantial number of additional processing steps.

Figure 2 is a cross section of a transistor and a fuse. A heavily doped buried layer diffusion is first performed to allow for the fabrication of NPN transistors with low saturation resistances. A thin epitaxial layer is grown followed by isolation and base diffusions. The isolation and base are effectively self-aligned using a composite masking approach. A short series of steps results in the definition of polycrystalline silicon in the shape of the fuse.

A second composite mask now defines all the emitter, contact, Schottky diode and ohmic contact areas.

Following the emitter diffusion and the contact mask, platinum is sputtered over the entire wafer. Since all contacts, Schottkies, and fuses are exposed at this point, an alloying operation allows platinum silicide to form. The residual platinum is etched off the wafer leaving the silicide contacts, Schottkies, and fuses. After this step, the semiconductor elements of the circuit have been completely formed, and all that remains is the interconnect metallization.

To form the interconnects, aluminum is used as the primary conducting element. Aluminum has a very strong affinity for silicon, including that in platinum silicide. To retain the advantages of the very stable platinum silicide Schottky devices, it is necessary to sputter an inactive metal, tungsten, with a small amount of titanium as a bonding agent over the surface of the wafers to serve as a barrier to the diffusion or microalloying of the aluminum. Aluminum is now evaporated over the surface of the wafers and conventional masking and etching cycles are used to define the aluminum interconnections. Figure 3 shows the structure of this metal layer.

To complete the dual-layer metallization structure, silicon dioxide is chemically vapor deposited on the wafer and etched with interlayer metal contact openings (vias). A second layer of aluminum is then placed on top of the dielectric. This layer has a thickness substantially greater than the first one and is especially suited for power busses and output lines.

To complete the circuit, a passivation layer is deposited over the top of the wafers and etched at the appropriate locations to allow for bonding pad contact.

Figure 2. Transistor & Fuse Structures.

Figure 3. 2 Layer Metallization Structure.

PROGRAMMABLE READ-ONLY MEMORY CIRCUITRY

Advanced Micro Devices' bipolar PROM designs have the general configuration shown in Figure 4. Although the figure is for that of the Am27S20, the circuit techniques are the same for the entire generic family of PROMs.

Input, Memory & Output Circuitry

Two groups of input buffers and decoders called "X" and "Y" are used to drive word lines and columns respectively. The X-decode addresses (A₃-A₇) have Schottky clamp diode protected, PNP inputs for minimum loading. (Figure 5). The X-input buffers (A₃-A₇) provide A and \overline{A} outputs to a Schottky decode matrix which selects one of 64 word drivers. The word line drivers are very fast high current, high voltage, non-saturating buffers providing voltage pull down to the selected word line.

The Y-decode address buffers (A_0-A_2) are also Schottky diode clamped, PNP inputs driving a Schottky diode matrix. However, this diode matrix selects one of eight columns on each of the four output bits. The selected column line drives the sense amplifier input to a high level in the case of a blown fuse, or current is shunted through an unblown fuse through the selected word driver to ground resulting in a "low" input to the sense amplifier. The sense amplifier is a proprietary fast level shifter-inverter with temperature and voltage threshold sensitivities compensated for the driving circuitry. Each of the four sense amplifiers in this circuit provides active drive to an output buffer.

Each output buffer also contains a disable input, which is driven from the chip-enable buffer. The chip-enable buffer input is a Schottky diode clamped PNP buffered design with an active pull up and pull down to drive the output buffer. Additionally, the chip-enable gate contains circuitry to provide fuse control as described below.

Fusing Circuitry

Platinum silicide fuses as implemented in Advanced Micro Devices' PROMs have extremely high fuse current to sense current ratios. Sensing normally requires that only a few hundred microamps flow through the fuse, whereas absolute minimum requirements for opening the fuse are approximately 100 times that amount. This provides a significant safety margin for transient protection and long-term reliability.

High-yield fusing of platinum silicide fuses requires that a substantial current be delivered to each fuse. This current is sourced from the output terminals through darlingtons which can drive the column lines when enabled. These darlingtons are driven directly from the output and are selected by the Ydecode column select circuitry. Current during fusing flows from the output through the darlington directly to the fuse

Figure 4. PROM Circuitry Block Diagram.

Figure 5. Input Buffer Schematic.

through the selected array Schottky and finally through the word-driver output transistor to ground. This path is designed for a very large fusing current safety margin.

The control circuitry works as follows: After V_{CC} is applied, the appropriate address is selected and the \overline{CE} input is taken to a logic high, the programmer applies 20 volts to the bit output to be programmed. The application of the 20 volts simultaneously deselects the output buffer to prevent destructive current flow, and powers down internal circuitry unneeded during fusing to minimize chip heating.

It also enables the darlington base drive circuitry, makes power available to the darlington from the output and enables the fusing control circuitry. At this point, the PROM is ready for the control line at the chip-select pin to release the selected word driver to allow current flow through the fuse. This technique is particularly advantageous because the control signal does not supply the large fusing currents. They are supplied through the darlington from the output power supply. Some care must be taken to avoid excessive line inductance on the output line. Reasonable and normal amounts of care will reward the user with high-programming yields.

Special Test Circuitry

All Advanced Micro Devices PROMs include high-threshold voltage gates paralleling several address lines to allow the selection of special test words and the deselection of the columns to allow for more complete testing of the devices. Additionally, special test pads accessible prior to assembly allow for testing of some key attributes of the devices. The function of these special circuits will be described in more detail in the section, "Testing", later in this report.

THE PLATINUM SILICIDE FUSE

Fusing Technique

Advanced Micro Devices' PROM circuits have been designed to use a programming algorithm which minimizes the requirements on the programmer yet allows the circuit to fuse the platinum silicide links quickly and reliably. Specifically, the following sequence of events must take place:

- 1. V_{CC} power is applied to the chip;
- 2. The appropriate address is selected;
- 3. The chip is deselected;
- 4. The programming voltage is applied to one output;
- The chip enable voltage is raised to enable high-threshold voltage gate. This action gates the current flow through the proper fuse resulting in an open fuse in a few microseconds;
- The output voltage is lowered; the programming voltage is removed.
- The device is enabled and the bit is sensed to verify that the fuse is blown. In the unusual event that the fuse does not verify as blown, a sequence of much longer pulses is applied to the fuse at a high duty cycle until the fuse opens; and,
- 8. The sequence of 2 through 7 is repeated for each bit which must be fused.

There are several advantages to this technique. First, the two high current power sources, V_{CC} and the voltage applied to the output do not have critical timing requirements. The low current chip select pin gates the fusing current into the circuit. Since it is generally desirable to gate the fusing current into the chip at relatively fast rates, the use of the chip select for this purpose avoids the speed trade-off which would exist using the output voltage as the control. The output voltage must not be raised too quickly to avoid breakdown and latchback conditions which might occur with sub-microsecond rise times on the output.

The second major advantage of this technique is that in the event that the fuse does not open during the first attempt to blow it, a near DC condition may be safely applied to it with no danger of developing a reliability problem such as that which occurs with nichrome fuses. This will be discussed in more detail later. The algorithm can therefore be designed first to minimize the time required to program the PROM, i.e. with a fast first pulse, and second, to maximize the probability that any circuit will program. Most PROMs do, of course, fuse satisfactorily with all short pulses. However, it is impossible for any manufacturer to guarantee absolutely that all fuses in all circuits receive 100 percent of the rated fusing current during programming.

Circuit defects which may be resistant to pre-programming testing prevent such a guarantee. It is, therefore, quite important to have a fuse material insensitive to marginal conditions. Even the application of single, short pulses does not guarantee that no fuse received marginal amounts of current during fusing. The silicide fuse provides this safety margin and allows the programmer to maximize the possibility of fusing by applying near DC condition to the fuses.

Fuse Characteristics

When a fast (less than 500ns rise time) current pulse is applied to a fuse, the fuse voltage rises abruptly to a value approaching the level anticipated from calculations of the room temperature resistance. However, it quickly falls to a value of approximately two volts. This value is nearly independent of the applied current. During this period of time, typically, the fuse is molten. Very abruptly, the fuse current drops to zero indicating the separation of the platinum silicide into two distinct sections. Scanning Electron Microscope photographs of the resulting fuses (see Figure 6) indicate that the typical case is a sharp, clean separation in excess of a micron. This separation occurs in the center of the fuse because the bow-tie structure (see Figure 7) concentrates the energy density in the center away from the aluminum lines. The energy density in the center of the fuse is capable of creating temperatures substantially greater than required to melt the silicide. The very abrupt, high

Unprogrammed Fuse

Programmed Fuse

Figure 6.

- - - - - -

power applied to the fuse melts the fuse center and results in a wicking of material on either side due to surface tension.

Reliability of Fuses Programmed Under Non-optimal Conditions

The marginally opened fuse has been studied in some detail even though it rarely occurs in practice. Under conditions where the fuse is purposely blown at much slower rates, it is possible for the fuse to assume a high impedance state which is sensed as an open fuse by the circuit. This occurs because the fuse cools before separation is achieved. Electrical and SEM studies of fuses blown with these characteristics indicate that a small conductive path of silicon remains of sufficiently high resistance to prevent appropriate power transfer required for complete opening on subsequent applications of power. Under these slow-blow conditions, the thermal conductivity of the silicon nitride pedestal on which the fuse rests, the silicon dioxode beneath that, and the silicon chip become factors because sufficient time exists for the heat flow to carry a significant amount of energy away from the fuse. This is extremely unusual in practice since it requires a rather narrow set of conditions. However, a number of PROMs have been specially programmed under these unusual conditions which can cause this type of fuse to occur. These devices have been life tested for over two thousand hours. No failures occurred in any of these circuits. It is clear from this study that partially opened platinum silicide fuses are stable. Although it is very rare to see such a fuse in a circuit which has been programmed under normal conditions, Advanced Micro Devices believes that such fuses do not represent a reliability hazard based on this study and the results of the other studies run on the programmableread-only memories. It should be noted that most manufacturers carefully specify the conditions under which their devices *must* be programmed in order to avoid reliability problems. Reliability data available on these devices must be assumed to have been generated using optimally programmed devices. Advanced Micro Devices believes that the study described here and four billion fuse hours of data from many production lots of PROMs demonstrate the capability of the platinum slicide fuse under a wide variety of conditions.

Figure 7. Bowtie Fuse Design.

FINAL TESTING OF ADVANCED MICRO DEVICES' MEMORIES

Wafer Level Tests

In addition to all the standard DC tests, Advanced Micro Devices performs a series of special tests to conform to the screening criteria of MIL-STD-883, Method 5004 3.3 and the 0.3% AQL INT-STD-123. Also, AMD performs special tests to increase the confidence level of unique address selection and to demonstrate fusing capability on all columns and word drivers. To accomplish this, diodes are connected from the column lines and the word lines to special test pads which are accessible only during wafer probing. (See Figure 4). Using these diodes, Advanced Micro Devices confirms that each word driver is capable of sinking sufficient current to blow fuses, has appropriate saturation characteristics for AC performance, and has sufficient voltage breakdown to withstand fusing voltages. In addition, using special software, a sequence of tests dramatically increases the confidence of unique address selection on the address decoding. All darlingtons are checked to confirm that sufficient current drive is available to blow fuses from any column. Schottky diode array leakage is also checked to affirm that it is sufficiently low so as not to overload the pull down circuitry during the highvoltage application of fusing. Finally, high voltages are applied to the inputs and outputs to remove potentially weak devices before the PROM's are assembled.

Test Fusing

Each PROM has two additional word drivers connected to special test fuses. These test words are valuable in demonstrating beyond reasonable doubt that the device is capable of opening fuses in all columns. They also increase the confidence level in unique addressing. Furthermore, the test words serve as cor-

THE MANUFACTURING PROCESS

All products bearing the Advanced Micro Devices' logo will have screening meeting the requirements of the MIL-STD-883 Method 5004, for Class C microcircuits and INT-STD-123 Quality Levels. A summary of the standard processing is shown below. The presence of the Advanced Micro Devices' logo on

Assembly and Environmental Standard Processing

Method 2010 Condition B
Method 2010 Condition B
rebonds less than 10 percent
Method 2010 Condition B
Method 1008 Condition C
Method 1010 Condition C
Method 2001 Condition E
Method 5004
Method 1014 Condition A or B
Method 1014 Condition C
Step 2

relatable measures of the access times that the user can expect from his devices after he has placed his own program in the memory. These test words are not visible to the user unless he applies special voltages to certain address pins. Figure 8 is a diagram of this input circuit. One hundred percent of the PROM devices shipped from Advanced Micro Devices have had AC testing for access and enable times at high-and lowpower supply voltages to affirm their AC characteristics.

The result of this extensive testing at both the wafer and finished device level is a product with very high-programming yields and virtually guaranteed AC performance after the user places his program in the parts. Additionally, the high voltage tests provide an additional level of confidence that the oxide and junction integrity is excellent in each circuit and that the devices will be relatively insensitive to small transients common to programming equipment.

Figure 8. Special Input Circuit Used for Array Deselection and Test Word Check.

the package is confirmation that the screening has been completed. The only exceptions to this procedure are special products revised by contract for a customer's lesser requirements and distinctly marked for that customer alone. Standard burn-in option B is available on standard product which allows the customer to upgrade to Class B microcircuits.

Electrical Test through Shipping Standard Processing

1. Initial Electrical Test	Method 5004 to device specifications.
2. Group A Electrical	INT-STD-123 quality levels.
3. Mark	Per customer order or Advanced Micro Devices catalog identification.
4. External Visual	Method 2009
5. Sample Quality Inspection	Physical or electrical verification of product identity.

Note: Steps 7-10 not required for solid packages.

RELIABILITY TESTING

Advanced Micro Devices has an ongoing reliability program to evaluate its bipolar memory products. Reliability testing conforms to MIL-STD-883 Method 1005 Conditions C or D. Examples of the test circuits used are shown in Figure 9. Data has now been accumulated on the process described here in excess of ten thousand hours on some devices. Over forty billion fuse hours have been completed with no fuse oriented failures. Advanced Micro Devices selects samples of its product stratified by product type at periodic intervals for this testing. Figure 10 is a tabulation of the results of the lots placed on test during this period of time. The data demonstrates a highly reliable process. The fuse has an immeasurably low contribution to the failure rate at this point in the reliability testing.

. .

Figure 9. Burn-In Circuits For Conditions C & D-27S20.

Product	Production Lots	Units Tested	Total Unit Hours (thousands)	Total Fuse Hours (billions)	Unit Failures	Fuse Related Failures	Unit Failure Rate @ 60% Confidence %/1000 hrs at 125°C	Unit Failure Rate* @ 60% Confidence %/1000 hrs at 70°C
27S18/19 (256 bit PROM)	5	491	982	.251B	0	0	0.10	0.0010
27S20/21 (1K bit PROM)	16	1321	2207	2.260B	2**	0	0.01	0.0001
27S12/13 (2K bit PROM)	11	571	1840	3.768B	0	0	0.05	0.0005
27S15 27S27 27S28/29 27S32/33 (4K bit PROM)	24	1870	1408	5.767B	0	0	0.07	0.0007
27S180/181 (8K bit PROM)	12	463	926	7.586B	0	0	0.11	0.0010
27S184/185 IMOX (8K bit PROM)	15	556	1112	9.109B	0	0	0.09	0.0008
27S190/191 IMOX (16K bit PROM)	2	69	795	13.025B	0	0	0.12	0.0011
Totals for PROM products	85	5341	9270	41.766B	2**	0	0.02	0.0002

BIPOLAR MEMORY RELIABILITY SUMMARY

*Assuming on activation energy of 1.0 eV.

**Oxide failure.

Figure 10.

SUMMARY

The Advanced Micro Devices' bipolar memory process has been described with particular emphasis on programmableread-only memories. An advanced form of the low-power Schottky process is used in conjunction with a highly reliable and stable platinum silicide fuse. Extensive testing and screening have been used to assure that the products will meet all specification after the user has placed his program into the device and that the circuit reliability will be outstanding.

Guide to the Analysis of Programming Problems

Advanced Micro Devices Bipolar Memory Product Engineering

INTRODUCTION

Advanced Micro Devices' Generic Series of Programmable Read Only Memory (PROM) circuits have been designed to provide extremely high programming yields. Available programming currents are over designed by a factor of four and special circuitry accessible only during testing is incorporated into each product to eliminate ordinarily difficult to detect shorts and opens in the array and decoders. As a result, unique decoding and very large fusing currents are virtually assured to the user. AMD PROMs have test fuses programmed prior to shipment as a further guarantee. The results of such extensive testing and design considerations are programming yields consistently in the 98% to 99.5% range. Key to the achievement of such yields is a programmer properly calibrated to the AMD specification with good contactors, "clean" electrical wave forms and properly functioning subcircuits. In the event that your programming yields fall below 98%, you should investigate the characteristics of the failed devices to find a prominent failure mode, then use the attached information as a guide to resolving the problem. Simple problems can be very costly if not detected and corrected.

Should you continue to have trouble optimizing your programming yield, contact your AMD representative or local programmer manufacturer representative.

Guide to the Analysis of Programming Problems

Primary Symptom	Secondary Symptom	Possible Causes
 Units fail to program all desired bits 	A) Binary blocks of missing data	 Address driver output which remains continuously low or continuously high.
	-	 Address driver with a "low" voltage greater than 0.5V or a "high" voltage less than 2.4V.
		3) Poor, intermittent or no electrical contact to one or more address input pins.
		Any of the above may result in over programming half the array and not programming the other half.
	 B) Random bits of missing data 	 Address driver with a "low" voltage greater than 0.5V or a "high" voltage less than 2.4V.
		2) Poor electrical contact to address, chip enable and output pins.
		 Excessive transient noise on V_{CC}, output pin (> 20.5V), or ground pins. Check with a high speed storage oscilloscope for peak values during programming. Use transient suppression networks where appropriate.
		 Programmer does not comply with AMD Programming Specification. (See Programming Parameters.)
		Examples: — Output voltage during programming less than 19.5V — V _{CC} during programming less than 5.0V — CS voltage during programming less than 14.5V
	C) All data associated with	1) Poor or no electrical contact to that output pin.
	a single output missing	2) Defective current switch in programmer.
	D) No data change	1) Wrong device or programming socket.
		 Programmer does not comply with AMD's Programming Specifications. (See Programming Parameters.)
		Examples: — Output voltage during programming less than 19.5V — V _{CC} during programming less than 5.0V — CS voltage during programming less than 14.5V
II) Over-Programmed Devices	 A) One output continuously at a Logic "1" 	 Programmer does not comply with AMD's Programming Specifications. (See Programming Parameters.)
		Examples: – Output voltage during programming greater than 20.5V – Programmer timing incorrect
		2) Open outputs can appear to be programmed to Logic "1" with the presence of a pullup resistor even though the device has not actually been programmed.
		 Excessive voltage transients on output lines during programming. Be sure appropriate transient suppression networks are placed on the outputs. (See Figure 1.)
	B) All outputs continuously	1) No V _{CC} applied to device.
	at a Logic "1"	2) No ground applied to device.
		3) Incorrect device type.

- Incorrect device type.
- 4) Incorrect programming socket.
- 5) Excessive voltage transients on output lines. Use transient suppression network shown in Figure 1.

DEFINITIONS

Fuse

 Conductive Platinum-Silicide link used as a memory element in Advanced Micro Devices' PROM circuits.

Unprogrammed Bit

A conductive fuse.

Programmed Bit

- A nonconductive fuse, that is one which has been opened.

Output Low (Logic "0")

- An output condition created by an unprogrammed bit.

Output High (Logic "1")

An output condition created by a programmed bit.

Failure to Program

 A device failure in which a fuse selected to be opened failed to open during the fusing operation.

Over Programmed

 A device failure in which a fuse which was not selected to open nevertheless opened during the fusing operation.

Address Driver

 The voltage source which drives an individual address pin in the PROM. This source is part of the programmer and drives the address pin with "0"s (0 to .45V) and "1"s (2.4 to 5.5V) depending on instructions from the programmer control circuitry. There is a separate address driver for every PROM address pin.

Programmer

 A system capable of providing the appropriate array of signals to a PROM circuit to cause certain user controlled bits to be programmed (i.e., fuses opened) in the device. As a minimum it consists of a memory containing the pattern to be programmed, control circuitry to sequence the addressing and fusing control pulses, power supplies, and address drivers.

- - - -

Notes: 1. Clamp diodes should be connected to each output as close as physically possible to the device pin.

2. V_{CC} should be decoupled at the device pin using $.01\mu F/.1\mu F$ capacitors.

3. AMD recommends that all address pins be decoupled using .001µF capacitors.

Figure 1.

PROM Programming Equipment Guide

- - -- -----

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052		Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 93940	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acom Scottsdale, A 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7 and Systems 17, 19 and 100		M900, M900B, M910, M920 and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX	
AMD Generic Bipolar PROM Personality Module	909-1286-1 919-1286-1 Rev H	Unipak Rev 003 (Family and Pin Code)	PM 9058	IM AMDGEN1	EN1 MOD 14 F		FAM-12	PM 2000 Code 90	
Socket Adapters	s and Configur	ators				· · · · ·			
Am27S18/19 Am27LS18/19	715-1407-1	16 02	PA 16-6 and 32 x 8(L)	IM 32 x 8-16-AMD	SA 3-1 B 32 x 8/16	DIS-156 AM	DA 22	AM 110-2	
Am27S20/21	715-1408-1	16 01	PA 16-5 and 256 x 4(L)	IM 256 x 4-16-AMD	SA 4-2 B 256 x 4/16	DIS-133 AM	DA 21	AM 130-2	
Am27S12/13	715-1408-2	16 03	PA 16-5 and 512 x 4(L)	IM 512 x 4-16-AMD	SA 4-1 B 512 x 4/16	DIS-134 AM	DA 21	AM 130-3	
Am27S15	715-1411-1		PA 24-14 and 512 x 8(L)	IM 512 x 8-24- 27S15-AMD SA 17-3 B 512 x 8/24		DIS-165 AM	DA 33	-	
Am27S25	715-1617	62 65	PA 24-16 and 512 x 8(L)	IM 512 x 8-24- 27S25-AMD	SA 31-2 B 512 x 8/24	DIS-213 AM	DA 31	AM 190-2	
Am27S27	715-1412-2		PA 22-4 and 512 x 8(L)	IM 512 x 8-22- 27S27-AMD	SA 18 B 512 x 8/22	DIS-168 AM	DA 28	-	
Am27S28/29	715-1413	16 09	PA 20-4 and 512 x 8(L)	IM 512 x 8-20-AMD	SA 6 B 512 x 8/20	DIS-158 AM	DA 34	AM 120-3	
Am27S30/31	715-1545	16 36	PA 24-13 and 512 x 8(L)	IM 512 x 8-24-AMD	SA 22-6 B 512 x 8/24	DIS-135 AM	DA 29	-	
Am27S32/33	715-1414	16 38	PA 18-6 and 1024 x 4(L)	IM 1024 x 4-18-AMD	SA 24 B 1024 x 4/18	DIS-136 AM	DA 38	AM 170-2	
Am27S35 Am27S37	715-1723	62 66	PA 24-18 and 1025 x 8(L)	IM 1024 x 8-27S35/ 37-AMD	SA 31-1 B 1024 x 8/24	DIS-218 AM	DA 65	AM 190-3	
Am27S180/181 Am27PS181	715-1545-2	16 37	PA 24-13 and 1024 x 8(L)	IM 1024 x 8-24-AMD	SA 22-7 B 1024 x 8/24	DIS-137 AM	DA 29	AM 100-6	
Am27S280/281 Am27PS281		16 37	-	IM 1024 x 8-24- 27S280/281-AMD	-	DIS-214 AM	DA 60	-	
Am27S184/185 Am27LS184/185 Am27PS185	715-1616	16 06	PA 18-8 and 2048 x 4(L)	IM 2048 x 4-18-AMD	SA 4-4 B 2048 x 4/18	DIS-211 AM	DA 23	AM 140-3	
Am27S190/191 Am27PS191	715-1688-1	16 68	PA 24-17 and 2048 x 8(L)	IM 2048 x 8-24-AMD	SA 22-10 B 2048 x 8/24	DIS-151 AM	DA 61	AM 100-5	
Am27S290/291 Am27PS291	715-1688-2	16 68	PA 24-28 and 2048 x 8(L)	IM 2048 x 8-24- 27S290/291-AMD	SA 29 B 2048 x 8/24	DIS-215 AM	DA 62	AM 190-7	
Am27S40/41 Am27PS41	715-1282	-	PA 20-9 and 4096 x 4(L)	IM 4096 x 4-20-AMD	SA 30 B 4096 x 4/20	DIS-216 AM	DA 63	AM 120-6	
Am27S45 Am27S47	715-1660	-	_	IM 2048 x 8-24- 27S45/47-AMD	SA 31 B 2048 x 8/24	-	DA 64	AM 170-3	
Am27S43	715-1698-002	2 -	-	IM 4096 x 8-24-AMD	-	-	-	-	

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS

MEMORIES (RAM)

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY MEMORIES (ROM)

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

Bipolar Random Access Memories (RAM) Index

TTL

Am27S02A/03A Series	Schottky 64-Bit Bipolar RAM 3-1
Am29702/Am29703	Schottky 64-Bit RAM
Am27LS02/03	Low-Power Schottky 64-Bit Bipolar RAM 3-7
Am3101-1/54/7489-1 Series	Schottky 64-Bit Write Transparent Bipolar RAM
Am3101A/54S/74S289 Series	Schottky 64-Bit Bipolar RAM
Am31L01A/31L01	64-Bit Write Transparent Bipolar RAM
Am27S06A/07A Series	Noninverting Schottky 64-Bit Bipolar RAM
Am29700/Am29701	Noninverting Schottky 64-Bit RAM
Am27LS06/07	Low-Power, Noninverting 64-Bit Bipolar RAM
Am27LS00A/01A Series	Low-Power Schottky 256-Bit Bipolar RAM
Am29720/Am29721	Low-Power Schottky 256-Bit Random Access Memories
Am27LS00-1A/01-1A Series	Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM
Am93412A/422A Series	TTL 1024-Bit Bipolar IMOX RAM 3-47
Am93L412A/L422A Series	Low-Power TTL 1024-Bit Bipolar IMOX RAM
Am93415A/425A Series	TTL 1024-Bit Bipolar IMOX RAM 3-57
ECL	
Am10415SA Series	ECL 1024 x 1 IMOX Bipolar RAM
Am100415A/415	ECL 1024 x 1 IMOX II Bipolar RAM
Am 1047404 Carias	

Am100415A/415 Am10474SA Series Am100474SA Series Am10470SA Series Am100470SA Series

ECL 1024 x 1 IMOX Bipolar RAM	3-62
ECL 1024 x 1 IMOX II Bipolar RAM	3-69
ECL 1024 x 4 IMOX Bipolar RAM	3-74
ECL 1024 x 4 IMOX Bipolar RAM	3-75
ECL 4096 x 1 IMOX Bipolar RAM	
ECL 4096 x 1 IMOX Bipolar RAM	3-83

Am27S02A • Am27S03A Am27S02 • Am27S03 Schottky 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low-power Schottky RAMs
- Ultra-Fast "A" Version: Address access time 25ns
- Standard Version: Address access time 35ns
- Low Power: I_{CC} typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with open collector outputs (Am27S02/02A) or with three-state outputs (Am27S03/03A)
- Pin compatible replacements for 3101A, 74S289, 93403, 6560 (use Am27S02A/02); for 74S189, 6561, DM8599 (use Am27S03A/03)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S02/02A and Am27S03/03A are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs (Am27S02/02A) or three-state outputs (Am27S03/03A). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.

An active LOW Write line (WE) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_0 to D_3 is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \overline{O}_0 to \overline{O}_3 .

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

Am27S02A/S03A/S02/S03

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	- 55 to + 125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC input Voltage	-0.5 to +5.5V
Output Current, Into Outputs	20mA
DC Input Current	-30 to +5.0mA

OPERATING RANGE

Range	Vcc	Ambient Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

FUNCTION TABLE

In	put		Data Output Status
CS	WE	Function	$\overline{O}_0 - \overline{O}_3$
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output Disabled

DC CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

arameters	neters Description Test Conditions					Min	Typ (Note 1)	Max	Units
)/	Quater at 111Q111) (alterna	V _{CC} = MIN,	I _{OH} = -5	5.2mA COM'L					Malla
V _{OH} (Note 2)	Output HIGH Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -2$.0mA	MIL	2.4	3.2		Volts
	Output I OW/ Veltage	V _{CC} = MIN,	$V_{CC} = MIN,$ $I_{OL} = 16mA$			0.350	0.45	Volts	
V _{OL}	Output LOW Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20n	nA			0.380	0.5	VOIIS
VIH	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 3)				2.0			Volts
VIL	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Input (Note 3)						0.8	Volts
I.,	Input LOW/ Current	$V_{CC} = MAX,$ $\overline{WE}, D_0 - D_3, A_0 - A_3$			-0.015	-0.25	mA		
μ	Input LOW Current	$V_{IN} = 0.40V$	$N = 0.40V$ \overline{CS}			-0.030	-0.25		
lн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2$	2.4V				0.0	10	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} =	= 0.0V (Note	4)		-20	45	-90	mA
1	Downer Sumply Current	All inputs = GND		COM'L			75	100	mA
lcc	Power Supply Current	V _{CC} = MAX		MIL			75	105	
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -1$	$V_{CC} = MIN, I_{IN} = -18mA$				-0.850	-1.2	Volts
		$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{OUT} = 2.4V$	VIL	Am27S0 Am27S0			0	40	μA
ICEX	Output Leakage Current	$ \begin{array}{c} V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL} \\ V_{OUT} = 0.4V, V_{CC} = MAX \end{array} (Note 2) $			-40	0		μA.	

Note 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3, 4, and 5

		Am2	Am27S02A • Am27S03A					Am27S02 • Am27S03					
Parameters	Description		Typ (Note 1)	CO Min	M'L Max		IIL Max	Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Units
t _{PLH} (A) t _{PHL} (A)	Delay from Address to Output	See Fig. 2	15		25		30	22		35		50	ns
t _{PZH} (CS) t _{PZL} (CS)	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 2	10		15		20	14		17		25	ns
t _{PZH} (WE) t _{PZL} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery – See Note 2)	See Fig. 1	12		20		25	19		35		40	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-6.0	0		0		-6.0	0		0		ns
t _h (A)	[•] Hold Time Address (After Termination of Write)	See Fig. 1	-2.5	0		0		-2.5	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	9.0	20		25		18	25		25		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-4.0	0		0		-4.0	0		0		ns
t _{pw} (WE)	MIN Write Enable Pulse Width to Insure Write	See Fig. 1	10	20		25		18	25		25		ns
$t_{PHZ}(\overline{CS})$ $t_{PLZ}(\overline{CS})$	Delay from Chip Select (HIGH) to Inactive Output (HI-Z)	See Fig. 2	10		15		20	13		17		25	ns
t _{PLZ} (WE) t _{PHZ} (WE)	Delay from Write Enable (LOW) to Inactive Output (HI-Z)	See Fig. 1	12		20		25	15		25		35	ns

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)

 ipLH(A) and tpHL(A) are tested with S1 closed and CL = 30pF with both input and output timing referenced to 1.5V.
 For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), tpLZ(WE), tpLZ(CS) t_{PZL} (WE) and t_{PZL} (CS) are measured with S₁ closed and C_L = 30pF; and with both the input and output timing referenced to 1.5V.

5. For 3-state output, $t_{PZH}(\overline{WE})$ and $t_{PZH}(\overline{CS})$ are measured with S₁ open, $C_L \approx 30$ pF and with both the input and output timing referenced to 1.5V. $t_{PZL}(\overline{WE})$ and $t_{PZL}(\overline{CS})$ are measured with S₁ closed, $C_L = 30pF$ and with both the input and output timing referenced to 1.5V. $t_{PHZ}(\overline{WE})$ and $t_{PHZ}(\overline{CS})$ are measured with S₁ open and C_L \leq 5pF and are measured between the 1.5V level on the input to the V_{OH} - 500mV level on the output. $t_{PLZ}(WE)$ and $t_{PLZ}(\overline{CS})$ are measured with S₁ closed and C_L \leq 5pF and are measured between the 1.5V level on the input and the V_{OL} + 500mV level on the output.

Am27S02A/S03A/S02/S03

- ----

3-4

Am27S02A/S03A/S02/S03

	Orde	r Code		Screening	
Speed Selection	Open Collector	3-State	Package Type (Note 1)	Flow Code (Note 2)	Operating Range (Note 3)
25ns	AM27S02ADCB AM27S03ADCB D-16-1 AM27S02ALC AM27S03ALC Consult Fact AM27S02ALCB AM27S03ALCB Consult Fact AM27S02ALCB AM27S03ALCB Consult Fact AM27S02ALCB AM27S03ADM D-16-1 AM27S02ADMB AM27S03ADMB D-16-1 AM27S02ADMB AM27S03AFM F-16-1 AM27S02AFM AM27S03AFMB F-16-1 AM27S02AFMB AM27S03AFMB F-16-1 AM27S02AFMB AM27S03AFMB F-16-1 AM27S02ALM AM27S03ALM Consult Fact		P-16-1 D-16-1	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
30ns			D-16-1 F-16-1	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL
35ns	AM27S02PC AM27S02PCB AM27S02DC AM27S02DCB AM27S02DCB AM27S02LC AM27S02LCB	AM27S03PC AM27S03PCB AM27S03DC AM27S03DC AM27S03DCB AM27S03LC AM27S03LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S02DM AM27S02DMB AM27S02FM AM27S02FMB AM27S02LM AM27S02LMB	AM27S03DM AM27S03DMB AM27S03FM AM27S03FMB AM27S03LM AM27S03LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See operating range table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

.

Am29702 • Am29703 Schottky 64-Bit RAM

Refer to Am27S02 • Am27S03 Bipolar Memory RAM Product Specification

The Am29702 is replaced by the Am27S02 (open collector).

The Am29703 is replaced by the Am27S03 (three-state).

Am27LS02 • Am27LS ow-Power Schottky 64-Bit Bipolar RAM.

.

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low-power Schottky RAMs
- Ultra-low power: I_{CC} typically 30mA
- High speed: Address access time typically 40ns
- Internal ECL circuitry for optimum speed/power • performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery alitch
- Available with three-state outputs (Am27LS03) or with open collector outputs (Am27LS02)
- Pin compatible replacements for DM74L89A, . DM74LS289, L6560, 7489 (use Am27LS02), for DM86L99, DM74LS189, (use Am27LS03).
- 100% MIL-STD-883C assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products

LOGIC BLOCK DIAGRAM

Guaranteed to INT-STD-123

□ ^3 13

∐ ō₃

12 D D3

11 D D2

10 <u>ס</u> 1

Note: Pin 1 is marked for orientation.

FUNCTIONAL DESCRIPTION

The Am27LS02 and Am27LS03 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications where power is at a premium. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (CS) input and open collector OR tieable outputs (Am27LS02) or three-state outputs (Am27LS03). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74LS138.

An active LOW write line (WE) controls the writing/reading operation of the memory. When the chip select and write lines are LOW, the information on the four data inputs Do to D₃ is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \overline{O}_0 to \overline{O}_3 .

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

CONNECTION DIAGRAMS – Top Views

Chip-Pak™

BPM-347

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

D₀

Dţ

ō,

GND

ōο [

Am27LS02/LS03

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	-0.5 to +5.5V
Output Current, Into Outputs	20mA
DC Input Current	-30 to +5.0mA

OPERATING RANGE

Range	Vcc	Ambient Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	D Test Co	Min	Typ (Note 1)	Max	Units		
V _{OH}		V _{CC} = MIN,	$I_{OH} = -5.2 \text{mA}$	COM'L	2.4	3.6		Volts
(Am27LS03 only)	Output HIGH Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -2.0mA	MIL	5 .7	0.0		VOIIS
VOL	Output LOW Voltage	V _{CC} = MIN,	I _{OL} = 8.0mA			0.280	0.45	Volts
·OL	ouput com tonago	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 10mA			0.310	0.5	
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts	
lμ	Input LOW Current	V _{CC} = MAX,	WE, D0-D3, A0-A3		-0.015	-0.250	mA	
.IF		V _{IN} = 0.40V	<u>CS</u>			-0.030	-0.250	
IIH	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.4V$				0	10	μA
I _{SC} (Am27LS03 only)	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$			-20	-45	-90	mA
lcc	Power Supply Current	All inputs = GND		COM'L		30	35	mA
		V _{CC} = MAX		MIL		30	38	
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN$, $I_{IN} = -18mA$				-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 2.4V$	Am27LS02/03			0	40	μA
UEA			Am27LS03		-40	0		μA

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.
 2. These are absolute voltages with respect to device ground pin and include all overshoots and undershoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

FUNCTION TABLE

In	put		Data Output
<u>Ē</u> s	WE	Function	Status O ₀₋₃
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output Disabled

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

-- -

			AC	Тур	/p COM'L		м		
Parameters	Description		Test Conditions	(Note 1)	Min	Max	Min	Max	Units
t _{PLH} (A)	Delay from Address to Output	See Fig. 2		40		55		65	ns
t _{PHL} (A)	Delay Iron Address to Output	See Fig. 2		40		55		05	115
t _{PZH} (CS)	Delay from Chip Select to Active	See Fig. 2		18		30		35	ns
t _{PZL} (CS)	Output and Correct Data	366 Fig. 2		10		30		- 35	115
t _{PZH} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data	See Fig. 1		18		30		35	ns
t _{PZL} (WE)	(Write Recovery – See Note 2)	See Fig. 1		10		30		35	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	Figure 3 Test Load	-17	0		0		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	and Figure 4 for Input Waveform	-6	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	Characteristics See Notes 3 and 4	16	45		55		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1		-8	0		0		ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write	See Fig. 1		25	45		55		ns
t _{PHZ} (CS)	Delay from Chip Select to	See Fig. 2		18		30		35	ns
t _{PLZ} (CS)	Inactive Output (HI-Z)	366 Fly. 2		10		30		35	115
t _{PLZ} (WE) t _{PHZ} (WE)	Delay from Write Enable (LOW) to Inactive Output (HI-Z)	See Fig. 1		18		30		35	ns

Notes: 1. Typical limits are at $V_{CC}=5.0V$ and $T_{A}=25^{\circ}C.$

 Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch)

3. For open collector Am27LS02, all delays from Write Enable (WE) or Chip Select (CE) inputs to the Data Output (DOUT), tPLZ(WE), tPLZ(CS),

 $t_{PZL}(\overline{WE})$ and $t_{PZL}(\overline{CS})$) are measured with S₁ closed and C_L = 30pF; and with both the input and output timing referenced to 1.5V.

4. For 3-state output Am27LS03, $t_{PZH}(\overline{WE})$ and $t_{PZH}(\overline{CS})$ are measured with S₁ open, C_L = 30pF and with both the input and output timing referenced to 1.5V. $t_{PZL}(\overline{WE})$ and $t_{PZL}(\overline{CS})$ are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. $t_{PZL}(\overline{WE})$ and $t_{PZL}(\overline{CS})$ are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. $t_{PHZ}(\overline{WE})$ and $t_{PLZ}(\overline{CS})$ are measured with S₁ open and C_L \leq 5pF and are measured between the 1.5V level on the input to the V_{OH} - 500mV level on the output. $t_{PLZ}(\overline{VE})$ and $t_{PLZ}(\overline{CS})$ are measured with S₁ closed C_L \leq 5pF and are measured between the 1.5V level on the output.

Am27LS02/LS03

3. See Operating Range Table.

Am3101-1 • Am54/7489-1 Am3101 • Am54/7489 Schottky 64-Bit Write Transparent Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low-power write transparent Schottky RAMs
- Fast "-1" Version: Address access time 35ns
- Standard Version: Address access time 50ns
- Low Power: I_{CC} typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Available with open collector outputs
- Pin compatible replacements for 6560, 93403
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am3101-1/3101 and Am54/7489-1/Am54/7489 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoder such as the Am74S138.

An active LOW Write line (\overline{WE}) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D₀ to D₃ is written into the addressed memory word. During the write cycle, the outputs are active and invert the four data inputs, D₀ to D₃.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \overline{O}_0 to \overline{O}_3 .

When the chip select line is HIGH, the four outputs of the memory go to an inactive high impedance state.

LOGIC SYMBOL

LOGIC BLOCK DIAGRAM

 $V_{CC} = Pin 16$ GND = Pin 8

Am3101-1/54/7489-1/3101/54/7489

MAXIMUM RATINGS (Above which the useful life may be impaired)

-65 to +150°C
-55 to +125°C
-0.5 to +7V
-0.5V to V _{CC} max
-0.5 to +5.5V
20mA
-30 to +5.0mA

OPERATING RANGE

FUNCTION TABLE

		Ambient
Range	Vcc	Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

In	put	а а 1	Data Output Status
CS	WE	Function	$\overline{O}_0 - \overline{O}_3$
Low	Low	Write	D ₀ -D ₃ (Inverted)
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output and Write Disabled

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters Description		Test Co	Test Conditions			Мах	Units
VOL	Output LOW Voltage	V _{CC} = MIN,	l _{OL} ≓ 16mA		0.350	0.45	Volts
101		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20mA		0.380	0.5	
VIH	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)		2.0			Volts
V _{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
	Innut I OW/ Current	V _{CC} = MAX,	WE, D0-D3, A0-A3		-0.015	-0.25	mA
հլ	Input LOW Current	V _{IN} = 0.40V	CS		-0.030	-0.25	- mA
IIH	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.4V$			0.0	10	μA
lcc	Power Supply Current	All inputs = GND	COM'L		75	100	mA
		$V_{CC} = MAX$	MIL		75	105]
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$			-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH}$ $V_{OUT} = 2.4V$ $V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$			0	40	μA

 Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.
 2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3 and 4

			Am3101-1 • Am54/7489-1 Am310						m3101	• Am54			
Parameters	Description		Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Units
t _{PLH} (A) t _{PHL} (A)	Delay from Address to Output	See Fig. 2	22		35		50	32		50		60	ns
t _{PZL} (CS)	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 2	14		17		25	20	<u> </u>	30		40	ns
t _{PZL} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery – See Note 2)	See Fig. 1	19		35		50	30		50		60	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-6.0	0		0		-6.0	0		0		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	-2.5	0		0		-2.5	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	18	25		25		24	30		30		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-4.0	0	,	0		-4.0	0		0		ns
t _{pw} (WE)	MIN Write Enable Pulse Width to Insure Write	See Fig. 1	18	25		25		24	30	· •	30 -		ns
t _{PLZ} (CS)	Delay from Chip Select (HIGH) to Inactive Output (Hi-Z)	See Fig. 2	13		17		25	20		30		40	ns
t _{PLH} (DI) t _{PHL} (DI)	Delay Data Input to Correct Data Output ($\overline{WE} = \overline{CS} = V_{IL}$)	See Fig. 1	18		35		50	30		50		60	ns

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.
 2. Output is conditioned to data in (inverted) during write to insure correct data is present on all outputs during write and after write is terminated.

 tpLH(A) and tpHL(A) are tested with S₁ closed and C_L = 30pF with both input and output timing referenced to 1.5V.
 For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), tpLZ(WE), tpLZ(CS), tpZL(WE) and $t_{PZL}(\overline{CS})$ are measured with S₁ closed and C_L = 30pF; and with both the input and output timing referenced to 1.5V.

Am3101-1/54/7489-1/3101/54/7489

	Order Code	Package	Screening	Operating
Speed Selection	Open Collector	(Note 1)	Type Flow Code	
	AM3101-1PC	P-16-1	C-1	
	AM7489-1N	P-16-1	C-1	
	AM3101-1PCB	P-16-1	B-1	
	AM7489-1NB	P-16-1	B-1	
	AM3101-1DC	D-16-1	C-1	
35ns	AM7489-1J	D-16-1	C-1	COM'L
30115	AM3101-1DCB	D-16-1	B-1	COMIL
	AM7489-1JB	D-16-1	B-1	
	AM3101-1LC	Consult Factory	C-1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	AM7489-1LC	Consult Factory	C-1	
	AM3101-1LCB	Consult Factory	B-1	
	AM7489-1LCB	Consult Factory	B-1	
	AM3101-1DM	D-16-1	C-3	
	AM5489-1J	D-16-1	C-3	
	AM3101-1DMB	D-16-1	B-3	
	AM5489-1JB	D-16-1	B-3	
	AM3101-1FM	F-16-1	C-3	
50ns	AM5489-1W	F-16-1	C-3	MIL
00110	AM3101-1FMB	F-16-1	B-3	
	AM5489-1WB	F-16-1	B-3	
	AM3101-1LM	Consult Factory	C-3	
	AM5489-1LM	Consult Factory	C-3	
	AM3101-1LMB	Consult Factory	B-3	
	AM5489-1LMB	Consult Factory	B-3	
	AM3101PC	P-16-1	C-1	
	AM7489N	P-16-1	C-1	
	AM3101PCB	P-16-1	B-1	
	AM7489NB	P-16-1	B-1	
	AM3101DC	D-16-1	C-1	
50ns	AM7489J	D-16-1	C-1	COML
00110	AM3101DCB	D-16-1	B-1	00002
	AM7489JB	D-16-1	B-1	
	AM3101LC	Consult Factory	C-1	
	AM7489LC	Consult Factory	C-1	
	AM3101LCB	Consult Factory	B-1	
	AM7489LCB	Consult Factory	B-1	
	AM3101DM	D-16-1	C-3	
	AM5489J	D-16-1	C-3 B-3	
	AM3101DMB	D-16-1		1
	AM5489JB	D-16-1	B-3	
	AM3101FM Am5489W	F-16-1	C-3 C-3	
60ns		F-16-1 F-16-1	B-3	MIL
	AM3101FMB AM5489WB	F-16-1	B-3 B-3	
	AM3101LM	Consult Factory	C-3	
	AM5489LM AM3101LMB	Consult Factory	C-3 B-3	
		Consult Factory		
	AM5489LMB	Consult Factory	B-3	

ORDERING INFORMATION

-

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

3-15

Am3101A • Am54S/74S289/ Am54S/74S189 Schottky 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low power Schottky RAMs
- Ultra-High speed: Address Access time 35ns
- Low Power: Icc typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with open collector outputs (Am54S/74S289/Am3101A) or with three-state outputs (Am54S/74S189)
- Pin compatible replacements for Am27S02, 93403, 6560 (use Am54S/74S289/Am3101A); for Am27S03, 6561, DM8599 (use Am54S/74S189)
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123 guality levels

FUNCTIONAL DESCRIPTION

The Am3101A/Am54S/74S289 and Am54S/74S189 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs (Am3101A/Am54S/74S289) or three-state outputs (Am54S/74S189). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.

An active LOW Write line ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D₀ to D₃ is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \overline{O}_0 to \overline{O}_3 .

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	0.5 to +5.5V
Output Current, Into Outputs	20mA
DC Input Current	-30 to +5.0mA

OPERATING RANGE

	Ambient				
Range V _{CC}		Temperature			
COM'L	4.75 to 5.25V	0 to +75°C			
MIL	4.5 to 5.5V	-55 to +125°C			

FUNCTION TABLE

In	put		Data Output Status
ĈŜ	WE	Function	$\overline{O}_0 - \overline{O}_3$
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output Disabled

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Min	Typ (Note 1)	Max	Units			
Voн	Output HIGH Voltage	V _{CC} = MIN,	I _{OH} = -5.2mA	COM'L	2.4	3.2		Volts
(Note 2)	Note 2) V _{IN} = V _{IH} or V _{IL}		I _{OH} = -2.0mA	MIL		0		
V _{OL}	Output LOW Voltage	V _{CC} = MIN,	I _{OL} = 16mA			0.350	0.45	Volts
·0L	$V_{IN} = V_{IH} \text{ or } V_{IL}$		I _{OL} = 20mA			0.380	0.5	
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts	
IIL Input LOW Current		V _{CC} = MAX,	WE, D ₀ -D ₃ , A ₀ -A ₃			-0.015	-0.250	mA
		$V_{IN} = 0.40V$ \overline{CS}				-0.030	-0.250	mA
l _{iH}	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.4V$				0.0	10	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V (Note 4)			-20	-45	-90	mA
lcc	Power Supply Current	All inputs = GND	COMIL			75	100	mA
	i olioi cappiy callolit	V _{CC} = MAX MIL			75	105		
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN$, $I_{IN} = -18mA$	nA			-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 2.4V$				0	40	μA
ICEX Output Leakage Outrent			(Note 2)		-40	0		μA

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 1 and 2 and Notes 3, 4, 5

		Тур	co	COM'L		MIL		
Parameters	Description		(Note 1)	Min	Max	Min	Max	Units
t _{PLH} (A)	- Delay from Address to Output	See Fig. 2	22		35		50	ns
t _{PHL} (A)	Delay Ion Address to Output	See Fig. 2	22		- 55		50	115
t _{PZH} (CS)	Delay from Chip Select (LOW) to Active	See Fig. 2	14		17		25	ns
t _{PZL} (CS)	Output and Correct Data	300 Fig. 2	14		17		25	115
t _{PZH} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery –	See Fig. 1	19		35		40	ns
t _{PZL} (WE)	See Note 2)	Ū						
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-6.0	0		0		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	-2.5	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	18	25		25		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-4.0	0		0		ns
t _{pw} (WE)	MIN Write Enable Pulse Width to Insure Write	See Fig. 1	18	25		25		ns
t _{PHZ} (CS)	Delay from Chip Select (HIGH) to	See Fig. 2	13		17		25	ns
t _{PLZ} (CS)	Inactive Output (HI-Z)							
t _{PLZ} (WE)	Delay from Write Enable (LOW) to	See Fig. 1	15		25		35	ns ·
t _{PHZ} (WE)	Inactive Output (HI-Z)]						

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)

3. $t_{PLH}(A)$ and $t_{PHL}(A)$ are tested with S₁ closed and C_L = 30pF with both input and output timing referenced to 1.5V. 4. For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}, $t_{PLZ}(WE)$, $t_{PLZ}(WE)$

 4. For objection, and early show while Enable (WE) of only Select (S) inputs to the Data Output (D_O(**r**, **b**)_2(WE), **b**)_2(CS), **i** <u>b</u>2(CS), **i** <u>b2(CS), **i** <u>b</u>2(CS), **i** <u>b2(CS), **i** <u>b2(CS), **i** <u>b</u>2(CS), **i** <u>c</u>2(CS), **i**2(CS), **i**2(</u></u></u> measured between the 1.5V level on the input and the V_{OL} + 500mV level on the output.

3-19

	Ordei	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	(Note 1)	Flow Code (Note 2)	Range (Note 3)
35ns	AM74S289N AM3101APC AM74S289NB AM3101APCB AM74S289J AM3101ADC AM74S289JB AM3101ADC AM74S289LC AM3101ALC AM74S289LCB AM3101ALCB	AM74S189N AM74S189NB AM74S189J AM74S189JB AM74S189LC AM74S189LCB	P-16-1 P-16-1 P-16-1 D-16-1 D-16-1 D-16-1 D-16-1 Consult Factory Consult Factory Consult Factory Consult Factory	C-1 C-1 B-1 C-1 C-1 B-1 B-1 C-1 B-1 B-1 B-1	COM'L
50ns			D-16-1 D-16-1 D-16-1 F-16-1 F-16-1 F-16-1 F-16-1 Consult Factory Consult Factory Consult Factory	C-3 C-3 B-3 C-3 C-3 B-3 C-3 C-3 C-3 C-3 B-3 B-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am31L01A • Am31L01 64-Bit Write Transparent Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16 word x 4-bit ultra low-power write transparent Schottky RAM
- High-Speed "A" version: Address access time typically 40ns Fast Standard version: Address access time typically 50ns
- Ultra Low Power: I_{CC} typically 30mA
- Internal ECL circuitry for optimum speed power
 performance over voltage and temperature
- Output reflects inverted input data during write cycle
- Electrically tested and optically inspected die are available for the assemblers of hybrid products
- 100% reliability assurance testing in compliance with MIL-STD-883

LOGIC BLOCK DIAGRAM

Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am31L01A and Am31L01 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoders, such as the Am74LS138.

An active LOW Write line (\overline{WE}) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D₀ to D₃ is written into the addressed memory word. During the write cycle, the outputs are active and invert the four data inputs, D₀ to D₃.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \overline{O}_0 to \overline{O}_3 .

When the chip select line is HIGH, the four outputs of the memory go to an inactive high impedance state.

LOGIC SYMBOL

CONNECTION DIAGRAMS Top Views

DIP Chip-Pak™ 10 BE MINER 16 Vcc An E cs 🗋 15 🗖 A1 □ ^2 ₽₀ [13 A A3 ōο [12 D D3 P1 [11 J 03 ō, [10 D D2 9 🗖 ō2 GND BPM-245

Note: Pin 1 is marked for orientation.

Am31L01A/31L01

MAXIMUM RATINGS (Above which the useful life may be impaired)

−65 to +150°C
-55 to +125°C
-0.5 to +7V
-0.5V to V _{CC} max
-0.5 to +5.5V
20mA
-30 to +5.0mA

OPERATING RANGE

Range	Vcc	Ambient Temperature
COM'L	4.75 to 5.25V	$T_A = 0$ to $+75^{\circ}C$
MIL	4.5 to 5.5V	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$

FUNCTION TABLE

Inp	out		Data Output Status
CS	WE	Function	$\overline{O}_0 - \overline{O}_3$
Low	Low	Write	Data In (Inverted)
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output and Write Disabled

DC CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters Description		on Test Conditions			Typ (Note 1)	Max	Units
VOL	Output LOW Voltage	V _{CC} = MIN,	I _{OL} = 8mA		0.280	0.45	Volts
0L	$V_{IN} = V_{IH} \text{ or } V_{II}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 10mA		0.310	0.50	
V _{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)					Volts
VIL	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)			0.8	Volts	
l _{IL}	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.40V$	$V_{CC} = MAX, V_{IN} = 0.40V$			-0.25	mA
ŀн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.4V$			0.0	10	μA
lcc	Power Supply Current	All inputs = GND	COM'L	1	25	35	mA
	i onoi ouppiy ourion	V _{CC} = MAX	MIL		25	38	
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN, I_{IN} = -18mA$			-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH}, V_{OUT} = 2.4V$			0	40	μA

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C
 2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

-

- -

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

- - - -

Test Conditions: See Figures 3 and 4 and Notes 3 and 4

			Am31L01A					Am31L01					
Parameters	Description		Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Units
·	Description							(1010-1)					0
t _{PLH} (A) t _{PHL} (A)	Delay from Address to Output	See Fig. 2	40		55	ļ	65	50		80		90	ns
t _{PZL} (CS)	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 2	18		30		35	18		60		70	ns
t _{PZL} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery – See Note 2)	See Fig. 1	18		30		35	18		80		100	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-17	0		0		-17	0		0		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	-6	0		0		-6	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	16	45		55		16	60		80		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-8	0		0		-8	0		0		ns
t _{pw} (WE)	MIN Write Enable Pulse Width to Insure Write	See Fig. 1	25	45		55		25	60		80		ns
t _{PLZ} (CS)	Delay from Chip Select (HIGH) to Inactive Output (HIGH-Z)	See Fig. 2	18		30		35	18		50		60	ns
t _{PLH} (DI)	Delay from Data Input to Correct	See Fig. 1	40		55		65	50		80		90	ns
t _{PHL} (DI)	Data Output ($\overline{WE} = \overline{CS} = V_{IL}$)												

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs during write and when write is terminated.

3. $t_{PLH}(A)$ and $t_{PHL}(A)$ are tested with S₁ closed and $C_L = 30 pF$ with both input and output timing referenced to 1.5V.

For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), tp_{LZ}(WE), tp_{LZ}(CS), tp_{ZL}(WE) and tp_{ZL}(CS) are measured with S₁ closed and C_L = 30pF; and with both the input and output timing referenced to 1.5V.

Write Cycle Timing. The cycle is initiated by an address change. After $t_s(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_h(A)$ min must be allowed before the address may be changed again. The output will be the complement of the Data Input while the write enable is LOW.

Figure 1.

3

Am31L01A/31L01

- - -

- - -

÷ •

ORDERING INFORMATION									
	Order Code	Package	Operating						
Speed Selection	Open Collector	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)					
55ns	AM31L01APC AM31L01APCB AM31L01ADC AM31L01ADCB AM31L01ALCB AM31L01ALCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COMIL					
65ns	AM31L01ADM AM31L01ADMB AM31L01AFM AM31L01AFMB AM31L01AFMB AM31L01ALM AM31L01ALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL					
80ns	AM31L01PC AM31L01PCB AM31L01DC AM31L01DCB AM31L01DCB AM31L01LC AM31L01LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COMI					
90ns	AM31L01DM AM31L01DMB AM31L01FM AM31L01FMB AM31L01FMB AM31L01LM AM31L01LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL					

ORDERING INFORMATION

- - -

- ---

- -

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak.

Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upor request.

3-25

- - - -----

Am27S06A • Am27S07A Am27S06 • Am27S07 Noninverting Schottky 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit low-power, noninverting Schottky RAMs
- Ultra-high speed "A" version: Address access time typically 15ns High speed standard version: Address access time typically 22ns
- Low power: I_{CC} typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with three-state outputs (Am27S07A/07) or with open collector inputs (Am27S06A/06)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123 quality levels
- Electrically tested and optically inspected die are available for the assemblers of hybrid products

FUNCTIONAL DESCRIPTION

The Am27S06A/06 and Am27S07A/07 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs (Am27S06A/06) or three-state outputs (Am27S07A/07). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.

An active LOW write line \overline{WE} controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D₀ to D₃ is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four noninverting outputs O_0 to O_3 .

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S06A/07A/06/07

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	0.5 to +5.5V
Output Current, Into Outputs	20mA
DC Input Current	-30 to +5.0mA

- -

- - ----

OPERATING RANGE

Range	Vcc	Ambient Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Co	nditions		Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	V _{CC} = MIN,	l _{OH} = -5.2mA	COM'L	2.4	3.2		Volts
(Note 2)	Ouputhian Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -2.0mA	MIL	2.7	0.2		VOIIS
VOL	Output LOW Voltage	V _{CC} = MIN,	I _{OL} = 16mA			0.350	0.45	Volts
-01	ou.put 10 m tonago	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20mA			0.380	0.5	
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
L.	V. V	V _{CC} = MAX,	WE, D0-D3, A0-A3			-0.015 -0.250		mA
կլ	Input LOW Current	V _{IN} = 0.40V	CS			-0.030	-0.250	IIIA
I _{IH}	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.4V$				0.0	10	μΆ
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT} = 0.0V (Note 4)			-20	-45	-90	mA
lcc	Power Supply Current	All inputs = GND	COM'L			75	100	mA
		V _{CC} = MAX	MIL			75	105	
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN$, $I_{IN} = -18mA$				-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 2.4V$				0	40	μΑ
			(Note 2)		-40	0		μA

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

FUNCTION TABLE

In	put		Data Output
CS	WE	Function	Status O ₀₋₃
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word
High	Don't Care	Deselect	Output Disabled

Am27S06A/07A/06/07

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3, 4, 5

			Am	Am27S06A • Am27S07A			Am27S06 • Am27S07						
Parameters	Description		Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Typ (Note 1)	CO Min	M'L Max	MI Min	L Max	Units
t _{PLH} (A)	Delay from Address to Output	See Fig. 2	15		25		30	22		35		50	ns
t _{PHL} (A)		Jeerig. 2			2.5							50	113
t _{PZH} (CS)	Delay from Chip Select (LOW) to	See Fig. 2	10		15		20	14		17		25	ns
t _{PZL} (CS)	Active Output and Correct Data	Ocerng. 2	10					17				25	
t _{PZH} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data	See Fig. 1	12		20		25	19		35		40	ns
t _{PZL} (WE)	(Write Recovery - See Note 2)												
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-6.0	о		0		-6.0	0		0		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	-2.5	0		0		-2.5	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	9.0	20		25		18	25		25		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-4.0	0		0		-4.0	0		0		ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write	See Fig. 1	10	20		25		18	25		25		ns
t _{PHZ} (CS)	Delay from Chip Select (HIGH)	See Fig. 2	10		15		20	13		17		25	ns
t _{PLZ} (CS)	to Inactive Output (Hi-Z)												
t _{PLZ} (WE)	Delay from Write Enable (LOW)	See Fig. 1	12		20		25	15		25		35	ns
t _{PHZ} (WE)	to Inactive Output (Hi-Z)			L				[

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.

2. Output is preconditioned to data in (noninverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery alitch.)

3. $t_{PLH}(A)$ and $t_{PHL}(A)$ are tested with S_1 closed and $C_L = 30pF$ with both input and output timing referenced to 1.5V. 4. For open <u>collector</u>, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), $t_{PLZ}(WE)$, $t_{PLZ}(CS)$, $t_{PZL}(WE)$ and $t_{PZL}(\overline{CS})$ are measured with S₁ closed and C_L = 30pF and with both the input and output timing referenced to 1.5V.

5. For 3-state output, t_{PZH}(WE) and t_{PZH}(CS) are measured with S₁ open, C_L = 30pF and with both the input and output timing referenced to 1.5V. t_{PZL}(WE) and t_{PZL}(CS) are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. t_{PHZ} (WE) and t_{PHZ} (CS) are measured with S1 open and $C_L \leq 5pF$ and are measured between the 1.5V level on the input to the $V_{OH} = 500$ mV level on the output. t_{PLZ}(\overline{WE}) and t_{PLZ}(\overline{CS}) are measured with S₁ closed and C_L \leq 5pF and are measured between the 1.5V level on the input and the V_{OL} + 500mV level on the output.

Figure 1.

Figure 4.

BPM-358

- - - -

	Order	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	(Note 1)	Flow Code (Note 2)	(Note 3)
25ns	AM27S06APC AM27S06APCB AM27S06ADC AM27S06ADCB AM27S06ALCB AM27S06ALCB	AM27S07APC AM27S07APCB AM27S07ADC AM27S07ADCB AM27S07ADCB AM27S07ALC AM27S07ALCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
30ns	AM27S06ADM AM27S06ADMB AM27S06AFM AM27S06AFMB AM27S06ALM AM27S06ALMB	AM27S07ADM AM27S07ADMB AM27S07AFM AM27S07AFMB AM27S07AFMB AM27S07ALM AM27S07ALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL
35ns	AM27S06PC AM27S06PCB AM27S06DC AM27S06DCB AM27S06DCB AM27S06LC AM27S06LCB	AM27S07PC AM27S07PCB AM27S07DC AM27S07DCB AM27S07DCB AM27S07LC AM27S07LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S06DM AM27S06DMB AM27S06FM AM27S06FMB AM27S06FMB AM27S06LM AM27S06LMB	AM27S07DM AM27S07DMB AM27S07FM AM27S07FMB AM27S07FMB AM27S07LM AM27S07LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B. 3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29700 • Am29701 Noninverting Schottky 64-Bit RAM

Refer to Am27S06 • Am27S07 Bipolar Memory RAM Product Specification

The Am29700 is replaced by the Am27S06 (open collector).

The Am29701 is replaced by the Am27S07 (three-state).

3

Am27LS06 • Am27LS07 Low Power, Noninverting 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- · Fully decoded 16-word x 4-bit low power Schottky RAMs
- Ultra-low power: I_{CC} typically 30mA
- High-speed: Address access time typically 40ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS07) or with open collector outputs (Am27LS06)
- 100% MIL-STD-883 assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27LS06 and Am27LS07 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs (Am27LS06) or three-state outputs (Am27LS07). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74LS189.

An active LOW Write line \overline{WE} controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D₀ to D₃ is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four noninverting outputs O_0 to O_3 .

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27LS06/LS07

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	-0.5 to +5.5V
Output Current, Into Outputs	20mA
DC Input Current	-30 to +5.0mA

_ _

- -

OPERATING RANGE

		Ambient
Range	Vcc	Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

FUNCTION TABLE

Ing	out		Data Output
CS	WE	Function	Status O ₀₋₃
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Not Inverted)
High	Don't Care	Deselect	Output Disabled

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	DC Description Test Conditions				Typ (Note 1)	Мах	Units
V _{OH}	Output LUCI LV altana	V _{CC} = MIN,	I _{OH} = -5.2mA	COM'L	2.4	3.6		Volts
(Am27LS07 only)	Output HIGH Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -2.0mA	MIL		0.0		Voits
Vol	Output LOW Voltage	V _{CC} = MIN,	I _{OL} = 8.0mA			0.280	0.45	Volts
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 10mA			0.310	0.5]
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)	1 0					Volts
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
ΙL	Input LOW Current	V _{CC} = MAX,	WE, D0-D3, A0-A3	WE, D0-D3, A0-A3		-0.015	-0.250	mA
11		V _{IN} = 0.40V	CS		-0.030	-0.250	1	
lн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 2.4V$				0	10	μA
I _{SC} (Am27LS07 only)	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$			20	-45	-90	mA
lcc	Power Supply Current	All inputs = GND		COM'L		30	35	mA
		$V_{CC} = MAX$		MIL.		30	38]
V _{CL}	Input Clamp Voltage	$V_{CC} = MIN$, $I_{IN} = -18mA$				-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 2.4V$	Am27LS06/07			0	40	μA
		$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 0.4V, V_{CC} = MAX$			-40	0		μA

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. These are absolute voltages with respect to device ground pin and include all overshoots and undershoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

Am27LS06/LS07

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

			AC	Тур	со	M'L	M	IL.	
Parameters	Description		Test Conditions	(Note 1)	Min	Max	Min	Max	Units
t _{PLH} (A)	Delay from Address to Output	See Fig. 2		40		55		65	ns
t _{PHL} (A)	Delay non Address to Odiput	366 Fly. 2		40		55		65	ns
t _{PZH} (CS)	Delay from Chip Select to Active	See Fig. 2		18		30		35	ns
t _{PZL} (CS)	Output and Correct Data	See Fig. 2		10		30		35	
t _{PZH} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data	See Fig. 1		18		30		35	ns
t _{PZL} (WE)	(Write Recovery - See Note 2)	J. S.							
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	Figure 3 Test Load	-17	0		0		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	and Figure 4 for Input Waveform	6	0		0		ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	Input Waveform Characteristics See Notes 3 and 4	16	45		55		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1		-8	0		0		ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write	See Fig. 1		25	45		55		ns
t _{PHZ} (CS)	Delay from Chip Select to	See Fig. 2		18		30		35	
t _{PLZ} (CS)	Inactive Output (HI-Z)	300 Fly. 2		10		30		35	ns
t _{PLZ} (WE)	Delay from Write Enable (LOW)	See Fig. 1		18		30		35	ns
t _{PHZ} (WE)	to Inactive Output (HI-Z)								

- - - -

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Output is preconditioned to data in (noninverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)

For open collector Am27LS06, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (O₀-O₃), t_{PLZ}(WE), t_{PLZ}(CS), t_{PZL}(WE) and t_{PZL}(CS) are measured with S₁ closed and C_L = 30pF and with both the input and output timing referenced to 1.5V.
 For 3-state output Am27LS07, t_{PZH}(WE) and t_{PZH}(CS) are measured with S₁ open, C_L = 30pF and with both the input and output timing referenced to 1.5V.

4. For 3-state output Am27LS07, $t_{PZH}(\overline{WE})$ and $t_{PZH}(\overline{CS})$ are measured with S_1 open, $C_L = 30pF$ and with both the input and output timing referenced to 1.5V. $t_{PZL}(WE)$ and $t_{PZL}(\overline{CS})$ are measured with S_1 closed, $C_L = 30pF$ and with both the input and output timing referenced to 1.5V. $t_{PZL}(WE)$ and $t_{PLZ}(\overline{CS})$ are measured with S_1 closed, $C_L = 30pF$ and with both the input and output timing referenced to 1.5V. $t_{PLZ}(WE)$ and $t_{PLZ}(\overline{CS})$ are measured with S_1 open and $C_L \leq 5pF$ and are measured between the 1.5V level on the $V_{OH} - 500mV$ level on the output. $t_{PLZ}(WE)$ and $t_{PLZ}(\overline{CS})$ are measured with S_1 closed and $C_L \leq 5pF$ and are measured between the 1.5V level on the input and the $V_{OL} + 500mV$ level on the output.

Write Cycle Timing. The cycle is initiated by an address change. After $t_s(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_h(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27LS07) while the write enable is LOW or the chip select is HIGH.

Figure 1.

Am27LS06/LS07

Figure 3.

See notes 2, 3 and 4 of Switching Characteristics.

ORDERING INFORMATION

	Order	Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
55ns	AM27LS06PC AM27LS06PCB AM27LS06DC AM27LS06DCB AM27LS06DCB AM27LS06LC AM27LS06LCB	AM27LS07PC AM27LS07PCB AM27LS07DC AM27LS07DCB AM27LS07LCB AM27LS07LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
65ns	AM27LS06DM AM27LS06DMB AM27LS06FM AM27LS06FMB AM27LS06LM AM27LS06LMB	AM27LS07DM AM27LS07DMB AM27LS07FM AM27LS07FMB AM27LS07LM AM27LS07LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

Am27LS00A • Am27LS01A Am27LS00 • Am27LS01 Low-Power Schottky 256-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256-word x 1-bit low-power Schottky RAMs
- Low power dissipation: "A" version typically 80mA Standard version typically 55mA
- High-speed "A" version: Address access time typically 25ns Fast standard version: Address access time typically 35ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS00A/00) or with open collector outputs (Am27LS01A/01)
- 100% MIL-STD-883C quality assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27LS00A/00 and Am27LS01A/01 are fully decoded bipolar random access memories for use in high-speed buffer memories. The memories are organized 256-words by 1-bit with an 8-bit binary address field and separate data in and data output lines. The memories have three active LOW chip select inputs and a three-state output (Am27LS00A/00) or open-collector output (Am27LS01A/ 01). All inputs are buffered to present an input load of only 0.5 TTL unit loads.

Read/write operation is controlled by an active LOW write enable input. When the write enable is LOW and the chip is selected the data on the data input is written into the location specified by the address inputs. During this operation the output floats allowing the data bus to be used by other memories or open-collector logic elements that are tied to the inverting data output. Reading is accomplished by having the chip selected and the write enable input HIGH. Data stored in the location specified by the address inputs is read out and appears on the data output inverted.

The chip is selected by three active LOW inputs all of which must be LOW in order for the data output to be active during the read operation and for data to be written into or read from the memory. These three active LOW chip select inputs permit MSI decoders to select memories in either a linear select, two or three dimensional mode of operation when large memory systems are being built. The delay from the chip select to the output is considerably faster than from the address inputs and extra delay can be tolerated in the chip select path without affecting system performance.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max
DC Input Voltage	-0.5V to +V _{CC}
Output Current, Into Outputs	30mA
DC Input Current	-30 to +5mA

_ _ - -

OPERATING RANGE

Range	Vcc	Ambient Temperature
COM'L	4.75 to 5.25V	T _A = 0 to +75°C
MIL	4.5 to 5.5V	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Tes	t Conditions		Min	Typ (Note 1)	Мах	Units
Mary (Nata 2)	Output HIGH Voltage	V _{CC} = MIN,	2.4	3.2		Volts		
VOH (Note 2)	Oulput HIGH Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -2.0 \text{mA}$ N		2.4	3.2	_	VOILS
V _{OL}	Output LOW Voltage	$\begin{array}{l} V_{CC} = MIN, \\ V_{IN} = V_{IH} \mbox{ or } V_{IL} \end{array}$		0.3	0.45	Volts		
VIH	Input HIGH Level	Guaranteed input voltage for all inp			2.0			Volts
VIL	Input LOW Level	Guaranteed input voltage for all inp					0.8	Volts
ΊL	Input LOW Current	$V_{CC} = MAX, V_{IN}$	= 0.40V			0.030	0.25	mA
Чн	Input HIGH Current	$V_{CC} = MAX, V_{IN}$	= 2.7V			<1	20	μΑ
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OL}	דע = 0.0V		-20	-30	-60	mA
	Device Current	All inputs = GND)	"A" version		80	115	
lcc	Power Supply Current	V _{CC} = MAX		Standard		55	70	mA
V _{CL}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} =	- 18mA			-0.850	-1.2	Volts
ICEX	Output Leakage Current	bakage Current $\frac{V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}}{V_{OUT} = 2.4V}$ $\frac{V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}}{V_{OUT} = 0.4V, V_{CC} = MAX}$ (Note 2)			0	30	μΑ	
UEA				(Note 2)	-30	0		μΑ

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies to three-state devices only.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

FUNCTION TABLE

	Input			Data Output Status				
<u>c</u> s	WE	DI	Function	$\overline{DO}(t_{n+1})$				
High	Don't Care	Don't Care	No Selection	Output Disabled				
Low	Low	Low	Write '0'	Output Disabled				
Low	Low	High	Write '1'	Output Disabled				
Low	High	Don't Care	Read	Selected Bit (Inverted)				

Am27LS00A/LS01A/LS00/LS01

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5

			Am27LS00A · Am27LS				1A	Am	m27LS00 • Am27LS01				í
Parameters	Description		Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Units
t _{PLH} (A) t _{PHL} (A)	Delay from Address to Output	See Fig. 4	25		35		45	35		45		55	ns
t _{PZH} (CS) t _{PZL} (CS)	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 4	15	1	25		25	15		25		30	ns
t _{PZH} (WE) t _{PZL} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data	See Fig. 3		5		5			5		5		ns
t _{rec} (WE)	Delay from Write Enable (HIGH) to Correct Output Data	See Fig. 3	25		35		45	35		45		55	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 3	0		0		5	-5		0		5	ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 3	0		о		5	-5		0		5	ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 3	25		25		30	25		30		55	ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 3	0		5		5	-5		0		5	ns
t _{pw} (WE)	MIN Write Enable Pulse Width to Insure Write	See Fig. 3	20	25		30		20	30		35		ns
t _{PHZ} (CS) t _{PLZ} (CS)	Delay from Chip Select (HIGH) to Inactive Output (HI-Z)	See Fig. 4	15		25		25	15		25		30	ns
t _{PLZ} (WE) t _{PHZ} (WE)	Delay from Write Enable (LOW) to Inactive Output (HI-Z)	See Fig. 3	20		30		40	20		30		40	ns

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)

 I_{PLH}(A) and I_{PHL}(A) are tested with S closed and C_L = 50pF with both input and output timing referenced to 1.5V.
 For open <u>coll</u>ector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), t_{PLZ}(WE), t_{PLZ}(CS), t_{PZL}(WE) and $t_{PZL}(\overline{CS})$ are measured with S closed and $C_L = 50 pF$; and with both the input and output timing referenced to 1.5V.

5. For 3-state output, tpzH(WE) and tpzH(CS) are measured with S open, CL = 50pF and with both the input and output timing referenced to 1.5V. t_{PZL}(\overline{WE}) and t_{PZL}(\overline{CS}) are measured with S closed, C_L = 50pF and with both the input and output timing referenced to 1.5V. t_{PHZ}(\overline{WE}) and t_{PHZ}(\overline{CS}) are measured with S open and C_L \leq 5pF and are measured between the 1.5V level on the input to the $V_{OH} - 500$ mV level on the output. t_{PLZ}(WE) and t_{PLZ}(\overline{CS}) are measured with S closed and C_L \leq 5pF and are measured between the 1.5V level on the input and the V_{OL} + 500mV level on the output.

- -

- - -

	Order	Code	Package	Screening	Operating						
Speed Selection	• • •		Type (Note 1)	Flow Code (Note 2)	Range (Note 3)						
35ns	45ns AM27LS01ADCB AM27LS00ADCB AM27LS01ALC AM27LS00ALC AM27LS01ALCB AM27LS00ALCB AM27LS01ADCB AM27LS00ADM AM27LS01ADMB AM27LS00ADMB AM27LS01AFM AM27LS00AFM AM27LS01AFMB AM27LS00AFMB AM27LS01AFMB AM27LS00AFMB		P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L						
45ns			D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL						
45ns	AM27LS01ALMB AM27LS00ALMB AM27LS01PC AM27LS00PC AM27LS01PCB AM27LS00PCB AM27LS01DC AM27LS00DC AM27LS01DCB AM27LS00DC AM27LS01DCB AM27LS00DC AM27LS01LC AM27LS00DC AM27LS01LCB AM27LS00LC		P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L						
55ns	AM27LS01DM AM27LS01DMB AM27LS01FM AM27LS01FMB AM27LS01FMB AM27LS01LM AM27LS01LMB	AM27LS00DM AM27LS00DMB AM27LS00FM AM27LS00FMB AM27LS00LM AM27LS00LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL						

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

- -

- -

Refer to Am27LS00 • Am27LS01 Bipolar Memory RAM Product Specification

The Am29720 is replaced by the Am27LS01 (open collector).

The Am29721 is replaced by the Am27LS00 (three-state).

.

Am27LS00-1A • Am27LS01-1A Am27LS00-1 • Am27LS01-1 Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256-word x 1-bit low-power Schottky RAMs
- Low-power dissipation: "A" version typically 80mA Standard version typically 55mA
- High-speed "A" version: address access time typically 25ns Fast standard version: address access time typically 35ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS00-1A/00-1) or with open collector outputs (Am27LS01-1A/01-1)
- 100% MIL-STD-883C quality assurance testing ٠
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to IND-STD-123

BPM-359 Note: Pin 1 is marked for orientation.

FUNCTIONAL DESCRIPTION

The Am27LS00-1A/00-1 and Am27LS01-1A/01-1 are fully decoded bipolar random access memories for use in highspeed buffer memories. The memories are organized 256-words by 1-bit with an 8-bit binary address field and separate data in and data output lines. The memories have three active LOW chip select inputs and a three-state output (Am27LS00-1A/00-1) or open collector output (Am27LS01-1A/01-1). All inputs are buffered to present an input load of only 0.5 TTL unit loads.

Read/write operation is controlled by an active LOW write enable input. When the write enable is LOW and the chip is selected the data on the data input is written into the location specified by the address inputs. During this operation the output floats allowing the data bus to be used by other memories or open-collector logic elements that are tied to the inverting data output. Reading is accomplished by having the chip selected and the write enable input HIGH. Data stored in the location specified by the address inputs is read out and appears on the data output noninverted.

The chip is selected by three active LOW inputs all of which must be LOW in order for the data output to be active during the read operation and for data to be written into or read from the memory. These three active LOW chip select inputs permit MSI decoders to select memories in either a linear select, two or three dimensional mode of operation when large memory systems are being built. The delay from the chip select to the output is considerably faster than from the address inputs and extra delay can be tolerated in the chip select path without affecting system performance.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27LS00-1A/LS01-1A/LS00-1/LS01-1

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max
DC Input Voltage	-0.5V to +V _{CC}
Output Current, Into Outputs	30mA
DC Input Current	-30 to +5mA

- - -

- - -

OPERATING RANGE

OPERATIN	COM'L 4.75 to 5.25V	Ambient						
Range	Range V _{CC}	Temperature						
COM'L	4.75 to 5.25V	$T_A = 0 \text{ to } +75^{\circ}\text{C}$						
MIL	4.5 to 5.5V	T _A = −55 to +125°C						

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Tes	t Conditions		Min	Typ (Note 1)	Мах	Units
Var (Nata 0)		V _{CC} = MIN,	2.4	3.2		Volts		
V _{OH} (Note 2)	Output HIGH Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = −2.0mA	MIL	2.4	3.2		vons
V _{OL}	Output LOW Voltage	$V_{CC} = MIN,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		0.310	0.45	Volts		
VIH	Input HIGH Level	Guaranteed input voltage for all inpu			2.0			Volts
VIL	Input LOW Level	Guaranteed input voltage for all inpu					0.8	Volts
կլ	Input LOW Current	V _{CC} = MAX, V _{IN}		0.030	0.25	mA		
lιH	Input HIGH Current	V _{CC} = MAX, V _{IN}	= 2.7V			<1	20	μA
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OU}	T = 0.0V		-20	-30	-60	mA
١.	Bauer Guarly Current	All inputs = GND		"A" version		80	115	mA
lcc	Power Supply Current	V _{CC} = MAX		Standard		55	70	
V _{CL}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} =	-18mA			-0.850	-1.2	Volts
ICEX	Output Leakage Current	$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 2.4V$				0	30	μΑ
UEA		$ \begin{array}{l} V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL} \\ V_{OUT} = 0.4V, V_{CC} = MAX \end{array} (Note 2) $			-30	0		μΑ

Notes: 1. Typical limits are at V_{CC} = 5.0V and T_A = 25°C.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

FUNCTION TABLE

	Input			Data Output Status
CS	WE	DI	Function	DO
High	Don't Care	Don't Care	No Selection	Output Disabled
Low	Low	Low	Write "0"	Output Disabled
Low	Low	High	Write "1"	Output Disabled
Low	High	Don't Care	Read	Selected Word

. . . .

. .

Am27LS00-1A/LS01-1A/LS00-1/LS01-1

Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

- - -

- -

			Am27LS00-1A • Am27LS01-1A					Am2					
Parameters	Description		Typ (Note 1)	CO Min	M'L Max	M Min	IL. Max	Typ (Note 1)	CO Min	M'L Max	M Min	IL Max	Units
t _{PLH} (A) t _{PHL} (A)	Delay from Address to Output	See Fig. 4	25		35		45	35		45		55	ns
$t_{PZH}(\overline{CS})$ $t_{PZL}(\overline{CS})$	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 4	15		25		25	15		25		30	ns
t _{PZH} (WE) t _{PZL} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data	See Fig. 3		5		5			5		5		ns
t _{rec} (WE)	Delay from Write Enable (HIGH) to Correct Output Data	See Fig. 3	25		35		45	35		45		55	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 3	0		0		5	-5		0		5	ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 3	0		0		5	-5		0		5	ns
t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 3	25		25		30	25		30		55	ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 3	0		5		5	-5		0		5	ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write	See Fig. 3	20	25		30		20	30		35		ns
t _{PHZ} (CS) t _{PLZ} (CS)	Delay from Chip Select (HIGH) to Inactive Output (HI-Z)	See Fig. 4	15		25		25	15		25	1	30	ns
t _{PLZ} (WE) t _{PHZ} (WE)	Delay from Write Enable (LOW) to Inactive Output (HI-Z)	See Fig. 3	20		30		40	20		30		40	ns

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Output is preconditioned to data in during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)

IPLH(A) and IPHL(A) are tested with S closed and CL = 50pF with both input and output timing referenced to 1.5V.
 For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), t_{PLZ}(WE), t_{PLZ}(CS)

tp2L(WE) and tp2L(CS) are measured with S closed and $C_L = 50$ pF and with both the input and output timing referenced to 1.5V. 5. For 3-state output, tp2H(WE) and tp2H(CS) are measured with S open, $C_L = 50$ pF and with both the input and output timing referenced to 1.5V. tpzL(WE) and tpzL(CS) are measured with S closed, CL = 50pF and with both the input and output timing referenced to 1.5V. $t_{PHZ}(\overline{WE})$ and $t_{PHZ}(\overline{CS})$ are measured with S open and $C_L \le 5pF$ and are measured between the 1.5V level on the input to the V_{OH} – 500mV level on the output. t_{PLZ}(WE) and t_{PLZ}(CS) are measured with S closed and C_L \leq 5pF and are measured between the 1.5V level on the input and the V_{OL} + 500mV level on the output.

3-45

Am27LS00-1A/LS01-1A/LS00-1/LS01-1

	Order (Code	Package	Screening	Operating
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
35ns	AM27LS01-1APC AM27LS01-1APCB AM27LS01-1ADC AM27LS01-1ADCB AM27LS01-1ALC AM27LS01-1ALCB	AM27LS00-1APC AM27LS00-1APCB AM27LS00-1ADC AM27LS00-1ADCB AM27LS00-1ALC AM27LS00-1ALCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
45ns	AM27LS01-1ADM AM27LS01-1ADMB AM27LS01-1AFM AM27LS01-1AFMB AM27LS01-1ALM AM27LS01-1ALM	AM27LS00-1ADM AM27LS00-1ADMB AM27LS00-1AFM AM27LS00-1AFMB AM27LS00-1ALM AM27LS00-1ALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL.
45ns	AM27LS01-1PC AM27LS01-1PCB AM27LS01-1DC AM27LS01-1DCB AM27LS01-1LCB AM27LS01-1LCB	AM27LS00-1PC AM27LS00-1PCB AM27LS00-1DC AM27LS00-1DCB AM27LS00-1LCB AM27LS00-1LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM.T
55ns	AM27LS01-1DM AM27LS01-1DMB AM27LS01-1FM AM27LS01-1FMB AM27LS01-1LM AM27LS01-1LMB	AM27LS00-1DM AM27LS00-1DMB AM27LS00-1FM AM27LS00-1FMB AM27LS00-1LM AM27LS00-1LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL

ORDERING INFORMATION

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

- -

Am93412A • Am93422A Am93412 • Am93422 TTL 1024-Bit Bipolar IM0XTM RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256-word x 4-bit RAMs
- High-speed "A" version: Address access time typically 25ns High-Speed Standard version: Address access time typically 30ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with 3-state outputs (Am93422A/422) or with open collector outputs (Am93412A/412)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Plug-in replacement for Fairchild 93412/412A and 93422/422A
- Power dissipation decreases with increasing temperature
- Guaranteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am93412A/412 and Am93422A/422 are 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in high-speed control and buffer memory applications. Each memory is organized as a fully decoded 256-word memory of four bits per word. Easy memory expansion is provided by an active LOW chip select one (\overline{CS}_1) and an active HIGH chip select two (CS_2) as well as open collector OR tieable outputs (Am93412A/412) or 3-state outputs (Am93422A/422).

An active LOW write line (\overline{WE}) controls the writing/reading operation of the memory. When the chip select one (\overline{CS}_1) and write line (\overline{WE}) are LOW and chip select two (CS_2) is HIGH, the information on data inputs (D_0 through D_3) is written into the addressed memory word and preconditions the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select one (\overline{CS}_1) LOW and the chip select two (CS_2) HIGH and the write line (\overline{WE}) HIGH and with the output enable (\overline{OE}) LOW. The information stored in the addressed word is read out on the noninverting outputs (O₀ through O₃).

The outputs of the memory go to an inactive highimpedance state whenever chip select one (\overline{CS}_1) is HIGH, chip select two (CS₂) is LOW, output enable (\overline{OE}) is HIGH, or during the writing operation when write enable (\overline{WE}) is LOW.

LOGIC SYMBOL

GND = Pin 8 (8)

BPM-130

Note: Pin numbers in parentheses "()" indicate pinout for 24-pin flat package.

Am93412A/422A/412/422

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 22 to Pin 8)	-0.5 to +7.0V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	-0.5 to +5.5V
Output Current, Into Outputs (Low)	20mA
DC Input Current	-30 to +5.0mA

. . . .

OPERATING RANGE

		Ambient
Range	Vcc	Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

FUNCTION TABLE

		Inputs			Output	·
CS ₂	\overline{CS}_1	WE	ŌĒ	Dn	0 _n	Mode
L	х	х	х	х	*HIGH Z	Not Select
X	н	х	х	x	*HIGH Z	Not Select
н	L	н	н	X	*HIGH Z	Output Disable
н	L	н	L	X	Selected Data	Read Data
н	L	. L	Х	L	*HIGH Z	Write "0"
н	L	L	х	н	*HIGH Z	Write "1"
H = High Voltage Level			L	= Low V	oltage Level	X = Don't Care

*High Z implies outputs are disabled or off. This condition is defined as a high impedance state for the Am93422A/422 and as an output high level for the Am93412A/412.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	Typ (Note 1)	Max	Units	
V _{OH} (Note 2)	Output HIGH Voltage	$V_{CC} = MIN,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$			2.4	3.6		Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				0.350	0.45	Volts
VIH	Input HIGH Level (Note 3)	Guaranteed input lo	ogical HIGH vol	tage for all inputs	2.1	1.6		Volts
VIL	Input LOW Level (Note 3)	Guaranteed input lo	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
կլ	Input LOW Current	V _{CC} = MAX, V _{IN} =		-100	-300	μA		
ίн	Input HIGH Current	V _{CC} = MAX, V _{IN} =		1	40	μA		
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT}			-90	mA		
				T _A ≥ 75°C		100	130	
lcc	Power Supply Current	All inputs = GND,	/ _{CC} = MAX	$T_A = 0^{\circ}C$			155	mA mA
				$T_A = -55^{\circ}C$			170	1
V _{CL}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -	-10mA			-0.850	-1.5	Volts
		V _{OUT} = 2.4V	Am93422	A/422		0	50	
ICEX	Output Leakage Current	$V_{OUT} = 0.5V,$ $V_{CC} = MAX$	Am93422	A/422	-50	0		μΑ
		V _{OUT} = 4.5V	Am93412/	A/412		0	100	1
CIN	Input Pin Capacitance	See Note 5			1	4		pF
COUT	Output Pin Capacitance	See Note 5				7		pF

Notes: 1. Typical characteristics are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. Applies only to the Am93422A and Am93422 with 3-state outputs.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

5. Input and output capacitance measured on a sample basis @ f = 1.0MHz.

• • • • • • • •

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5 (below)

		A	m9341	2A • An	193422	A		Am934	412 • An	n93422		
		Тур	со	M'L	М	IL	Тур	co	M'L	MIL		
Parameters	Description	(Note 1)	Min	Max	Min	Мах	(Note 1)	Min	Max	Min	Max	Units
t _{PLH} (A) (Note 3)	Delay from Address to Output	25		35		45	30		45		60	
t _{PHL} (A) (Note 3)	(Address Access Time) (See Fig. 2)	25		35		45	30		45		60	ns
$t_{PZH}(\overline{CS}_1, CS_2)$	Delay from Chip Select to Active	15		25		35	15		30		45	ns
$t_{PZL}(\overline{CS}_1, CS_2)$	Output and Correct Data (See Fig. 2)	13		23		- 35	15		30		45	115
t _{PZH} (WE)	Delay from Write Enable to	45		05			15		40		50	
t _{PZL} (WE)	Active Output and Correct Data (Write Recovery) (See Fig. 1)	15		25		40	15		40		50	ns
t _{PZH} (OE)	Delay from Output Enable to Active	40		05		05	10					
t _{PZL} (OE)	Output and Correct Data (See Fig. 2)	10		25		35	10		30		45	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write) (See Fig. 1)	-10	5		5		-10	10		10		ns
t _h (A)	Hold Time Address (After Termination of Write) (See Fig. 1)	-10	5		5		-10	5		5		ns
t _s (DI)	Setup Time Data Input (Prior to Initiation of Write) (See Fig. 1)	-10	5		5		-10	5		5		ns
t _h (DI)	Hold Time Data Input (After Termination of Write) (See Fig. 1)	-10	5		5		-10	5		5		ns
$t_{s}(\overline{CS}_{1}, CS_{2})$	Setup Time Chip Select (Prior to Initiation of Write) (See Fig. 1)	-10	5		5		-10	5		5		ns
$t_{h}(\overline{CS}_{1}, CS_{2})$	Hold Time Chip Select (After Termination of Write) (See Fig. 1)	-10	5		5		-10	5		5		ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write (See Fig. 1)	15	20		35		15	30		40		ns
$t_{PHZ}(\overline{CS}_1, CS_2)$	Delay from Chip Select to Inactive	15		30		35	15		30		45	
$t_{PLZ}(\overline{CS}_1, CS_2)$	Output (HIGH-Z) (See Fig. 2)	15		30		35	15		30		45	ns
t _{PHZ} (WE)	Delay from Write Enable to Inactive	15		30		40	15		35		45	ns
t _{PLZ} (WE)	Output (HIGH-Z) (See Fig. 1)	10		30		40	15		33		40	115
t _{PHZ} (OE)	Delay from Output Enable to	15		30		35	15		30		45	ns
t _{PLZ} (OE)	Inactive Output (HIGH-Z) (See Fig. 2)											

Notes: 1. Typical characteristics are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Input and output capacitance measured on a sample basis @ f = 1.0MHz.

3. $t_{PLH}(A)$ and $t_{PHL}(A)$ are tested with S₁ closed and $C_L = 15pF$ with both input and output timing referenced to 1.5V.

4. For open collector Am93412A/412, all delays from Write Enable (WE) or selects (CS₁, CS₂, OE) inputs to the Data Output (O₀−O₃) (t_{PLZ}(WE), t_{PLZ}(CS₁, CS₂), t_{PLZ}(OE), t_{PZL}(CS₁, CS₂) and t_{PZL} (OE)) are measured with S₁ closed and C_L = 15pF; and with both the input and output timing referenced to 1.5V.

5. For 3-state output Am93422A/422, $t_{PZH}(\overline{WE})$, $t_{PZH}(\overline{CS}_1, CS_2)$ and $t_{PZH}(\overline{OE})$ are measured with S₁ open, C_L = 15pF and with both the input and output timing referenced to 1.5V. $t_{PZL}(\overline{WE})$, $t_{PZL}(\overline{CS}_1, CS_2)$ and $t_{PZL}(\overline{OE})$ are measured with S₁ closed, C_L = 15pF and with both the input and output timing referenced to 1.5V. $t_{PZL}(\overline{WE})$, $t_{PZL}(\overline{CS}_1, CS_2)$ and $t_{PZ}(\overline{OE})$ are measured with S₁ closed, C_L = 15pF and with both the input and output timing referenced to 1.5V. $t_{PZL}(\overline{WE})$, $t_{PLZ}(\overline{CS}_1, CS_2)$ and $t_{PLZ}(\overline{OE})$ are measured with S₁ open and C_L \leq 5pF and are measured between the 1.5V level on the input to the V_{OH} - 500mV level on the output. $t_{PLZ}(\overline{VS}_1, CS_2)$ and $t_{PLZ}(\overline{OE})$ are measured with S₁ closed and C_L \leq 5pF and are measured between the 1.5V level on the input and the V_{OL} + 500mV level on the output.

Am93412A/422A/412/422

Am93412A/422A/412/422

-

- - -

ORDERING INFORMATION

	Orde	er Code	Package	Screening	Operatin Range (Note 3) COM'L MIL COM'L
Speed Selection	Open Collector	Three-State	(Note 1)	Flow Code (Note 2)	Range
	AM93412APC	AM93422APC	P-22-1	C-1	
	AM93412APCB	AM93422APCB	P-22-1	B-1	
05	AM93412ADC	AM93422ADC	D-22-1	C-1	0014
35ns	AM93412ADCB	AM93422ADCB	D-22-1	B-1	COML
	AM93412ALC	AM93422ALC	L-28-2	C-1	
	AM93412ALCB	AM93422ALCB	L-28-2	B-1	
	AM93412ADM	AM93422ADM	D-22-1	C-3	
	AM93412ADMB	AM93422ADMB	D-22-1	B-3	
15	AM93412AFM	AM93422AFM	F-24-1	C-3	
45ns	AM93412AFMB	AM93422AFMB	F-24-1	B-3	MIL
	AM93412ALM	AM93422ALM	L-28-2	C-3	
	AM93412ALMB	AM93422ALMB	L-28-2	B-3	
	AM93412PC	AM93422PC	P-22-1	C-1	
	AM93412PCB	AM93422PCB	P-22-1	B-1	
45ns	AM93412DC	AM93422DC	D-22-1	C-1	001
4505	AM93412DCB	AM93422DCB	D-22-1	B-1	COML
	AM93412LC	AM93422LC	L-28-2	C-1	
~	AM93412LCB	AM93422LCB	L-28-2	B-1	
	AM93412DM	AM93422DM	D-22-1	C-3	
	AM93412DMB	AM93422DMB	D-22-1	B-3	
6077	AM93412FM	AM93422FM	F-24-1	C-3	
60ns	AM93412FMB	AM93422FMB	F-24-1	B-3	MIL
	AM93412LM	AM93422LM	L-28-2	C-3	
	AM93412LMB	AM93422LMB	L-28-2	B-3	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

3-51

3

Am93L412A • Am93L422A Am93L412 • Am93L422 Low Power TTL 1024-Bit Bipolar IM0XTH RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256-word x 4-bit RAMs
- High speed "A" version: Address access time typically 30ns
 Fast Standard version: Address access time typically 45ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with 3-state outputs (Am93L422A/L422) or with open collector outputs (Am93L412A/L412)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Plug-in replacement for Fairchild 93L412A/L412 and 93L422A/L422
- Power dissipation decreases with increasing temperature
- Guaranteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am93L412A/L412 and Am93L422A/L422 are 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in high-speed control and buffer memory applications. Each memory is organized as a fully decoded 256-word memory of four bits per word. Easy memory expansion is provided by an active LOW chip select one (\overline{CS}_1) and an active HIGH chip select two (CS_2) as well as open collector OR tieable outputs (Am93L412A/L412) or 3-state outputs (Am93L422A/L422).

An active LOW write line (\overline{WE}) controls the writing/reading operation of the memory. When the chip select one (\overline{CS}_1) and write line (\overline{WE}) are LOW and chip select two (CS_2) is HIGH, the information on data inputs (D_0 through D_3) is written into the addressed memory word and preconditions the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select one (\overline{CS}_1) LOW and the chip select two (CS_2) HIGH and the write line (\overline{WE}) HIGH and with the output enable (\overline{OE}) LOW. The information stored in the addressed word is read out on the noninverting outputs (O₀ through O₃).

The outputs of the memory go to an inactive highimpedance state whenever chip select one (\overline{CS}_1) is HIGH, chip select two (CS_2) is LOW, output enable (\overline{OE}) is HIGH, or during the writing operation when write enable (\overline{WE}) is LOW.

LOGIC BLOCK DIAGRAM

IMOX is a trademark of Advanced Micro Devices, Inc.

Am93L412A/L422A/L412/L422

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 22 to Pin 8)	-0.5 to +7.0V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	-0.5 to +5.5V
Output Current, Into Outputs (Low)	20mA
DC Input Current	-30 to +5.0mA

- -----

OPERATING RANGE

_		Ambient
Range	V _{CC}	Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

FUNCTION TABLE

		Inputs			Output	
CS ₂	\overline{CS}_1	WE	ŌĒ	Dn	0 _n	Mode
L	X	х	x	X	*HIGH Z	Not Select
Х	н	х	X	X	*HIGH Z	Not Select
н	L	н	н	x	*HIGH Z	Output Disable
н	L	н	L	X	Selected Data	Read Data
н	L	L	Х	Ľ	*HIGH Z	Write "0"
н	L	L	Х	н	*HIGH Z	Write "1"
H = Hig	h Voltage	e Level	Ľ	= Low V	oltage Level	X = Don't Care

*High Z implies outputs are disabled or off. This condition is defined as a high impedance state for the Am93L422A/L422 and as an output high level for the Am93L412A/L412.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	ters Description Test Conditions		Min	Typ (Note 1)	Max	Units		
V _{OH} (Note 2)	Output HIGH Voltage	$V_{CC} = MIN,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -!	5.2mA	2.4	3.6		Volts
V _{OL}	Output LOW Voltage	$V_{CC} = MIN,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 8.0mA			0.350	0.45	Volts
VIH	Input HIGH Level (Note 3)	Guaranteed input I	ogical HIGH vol	tage for all inputs	2.1	1.6		Volts
VIL	Input LOW Level (Note 3)	Guaranteed input I	ogical LOW vol	age for all inputs		1.5	0.8	Volts
l _{IL}	Input LOW Current	V _{CC} = MAX, V _{IN} =		100	-300	μA		
1 _{IH}	Input HIGH Current	V _{CC} = MAX, V _{IN} =		1	40	μA		
I _{SC} (Note 2)	Output Short Circuit Current	V _{CC} = MAX, V _{OUT}			-90	mA		
- Golden	· · · · · · · · · · · · · · · · · · ·			T _A ≥ 75°C		55	75	
lcc	Power Supply Current	All inputs = GND,	V _{CC} = MAX	$T_A = 0^{\circ}C$	-		80	mA
				T _A = -55°C			90	
V _{CL}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} =	-10mA			-0.850	-1.5	Volts
	· · · · · · · · · · · · · · · · · · ·	V _{OUT} = 2.4V	Am93L42	2A/L422		0	50	
ICEX	Output Leakage Current	$V_{OUT} = 0.5V,$ $V_{CC} = MAX$	Am93L42	2A/L422	-50	0		μA
		V _{OUT} = 4.5V	Am93L41	2A/L412		0	100	
C _{IN}	Input Pin Capacitance	See Note 5			-	4		pF
COUT	Output Pin Capacitance	See Note 5				7		pF

Notes: 1. Typical characteristics are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Applies only to the Am93L422A and Am93L422 with 3-state outputs.

Do not attempt to test these values without suitable equipment.

.

5. Input and output capacitance measured on a sample basis @ f = 1.0MHz.

^{3.} These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

^{4.} Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

Am93L412A/L422A/L412/L422

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5 (below)

		An	n93L41	2A • Am	93L422	2A	A	m93L4	12 • An	n93L42	2	
		Тур	со	M'L	М	IL	Тур	COM'L		MIL		
Parameters	Description	(Note 1)	Min	Max	Min	Max	(Note 1)	Min	Max	Min	Max	Units
t _{PLH} (A) (Note 3)	Delay from Address to Output	30		45		55	45		60		75	ns
t _{PHL} (A) (Note 3)	(Address Access Time) (See Fig. 2)						-+0					
$t_{PZH}(\overline{CS}_1, CS_2)$	Delay from Chip Select to Active	15		30		40	20		35		45	ns
$t_{PZL}(\overline{CS}_1, CS_2)$	Output and Correct Data (See Fig. 2)											
t _{PZH} (WE)	Delay from Write Enable to Active Output and Correct Data	25		40		45	25		45		50	ns
t _{PZL} (WE)	(Write Recovery) (See Fig. 1)	23		40		45	25				50	
t _{PZH} (OE)	Delay from Output Enable to Active	15		30		40	20		35		45	ns
t _{PZL} (OE)	Output and Correct Data (See Fig. 2)	15		30		40	20		35		45	115
t _s (A)	Setup Time Address (Prior to Initiation of Write) (See Fig. 1)	-5	5		10		-5	10		10		ns
t _h (A)	Hold Time Address (After Termination of Write) (See Fig. 1)	-5	5		5		-5	5		10		ns
t _s (DI)	Setup Time Data Input (Prior to Initiation of Write) (See Fig. 1)	-5	5		5		-5	5		5		ns
t _h (DI)	Hold Time Data Input (After Termination of Write) (See Fig. 1)	-5	5		5		-5	5		5		ns
$t_s(\overline{CS}_1, CS_2)$	Setup Time Chip Select (Prior to Initiation of Write) (See Fig. 1)	-5	5		5		-5	5		5		ns
$t_{h}(\overline{CS}_{1}, CS_{2})$	Hold Time Chip Select (After Termination of Write) (See Fig. 1)	-5	5		5		-5	5		10		ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write (See Fig. 1)	15	35		40		15	45		55		ns
$\frac{t_{PHZ}(\overline{CS}_1, CS_2)}{t_{PI,7}(\overline{CS}_1, CS_2)}$	Delay from Chip Select to Inactive Output (HIGH-Z) (See Fig. 2)	20		30		40	20		35		45	ns
	Delay from Write Enable to Inactive Output (HIGH-Z) (See Fig. 1)	25		35		40	30		40		45	ns
	Delay from Output Enable to Inactive Output (HIGH-Z) (See Fig. 2)	20		30		40	20		35		45	ns

Notes: 1. Typical characteristics are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

2. Input and output capacitance measured on a sample basis @ f = 1.0 MHz.

3. $t_{PLH}(A)$ and $t_{PHL}(A)$ are tested with S_1 closed and $C_L = 15pF$ with <u>both</u> input and output timing referenced to 1.5V.

4. For open collector Am93L412A/L412, all delays from Write Enable (WE) or selects (CS1, CS2, OE) inputs to the Data Output

 $(O_0 - O_3)$ (t_{PLZ}(WE), t_{PLZ}(CS₁, CS₂), t_{PLZ}(OE), t_{PZL}(WE), t_{PZL}(CS₁, CS₂) and t_{PZL} (OE)) are measured with S₁ closed and C_L = 15pF; and with both the input and output timing referenced to 1.5V._____

5. For 3-state output Am93L422A/L422, $t_{PZH}(\overline{WE})$, $t_{PZH}(\overline{CS}_1, CS_2)$ and $t_{PZH}(\overline{OE})$ are measured with S_1 open, $C_L = 15pF$ and with both the input and output timing referenced to 1.5V. $t_{PZ}(\overline{WE})$, $t_{PZH}(\overline{CS}_1, CS_2)$ and $t_{PZH}(\overline{OE})$ are measured with S_1 closed, $C_L = 15pF$ and with both the input and output timing referenced to 1.5V. $t_{PZ}(\overline{WE})$, $t_{PZ}(\overline{CS}_1, CS_2)$ and $t_{PZ}(\overline{OE})$ are measured with S_1 closed, $C_L = 15pF$ and with both the input and output timing referenced to 1.5V. $t_{PHZ}(\overline{WE})$, $t_{PHZ}(\overline{CS}_1, CS_2)$ and $t_{PHZ}(\overline{OE})$ are measured with S_1 open and $C_L \leq 5pF$ and are measured between the 1.5V level on the output. $t_{PLZ}(\overline{CS}_1, CS_2)$ and $t_{PLZ}(\overline{OE})$ are measured with S_1 closed and $C_L \leq 5pF$ and are measured with S_1 closed and $C_L \leq 5pF$ and are measured with S_1 closed and $C_L \leq 5pF$ and are measured between the 1.5V level on the output. $t_{PLZ}(\overline{CS}_1, CS_2)$ and $t_{PLZ}(\overline{OE})$ are measured with S_1 closed and $C_L \leq 5pF$ and are measured between the 1.5V level on the output.

- - ----

Am93L412A/L422A/L412/L422

	Order	Code	Package	Screening	Operating Range (Note 3)	
Speed Selection	Open Collector	Three-State	Type (Note 1)	Flow Code (Note 2)		
45ns	AM93L412APC AM93L412APCB AM93L412ADC AM93L412ADCB AM93L412ALCB AM93L412ALCB	AM93L422APC AM93L422APCB AM93L422ADC AM93L422ADCB AM93L422ALCB AM93L422ALCB	P-22-1 P-22-1 D-22-1 D-22-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L	
55ns	AM93L412ADM AM93L422ADM AM93L412ADMB AM93L422ADMB AM93L412AFM AM93L422AFMB AM93L412AFMB AM93L422AFMB AM93L412AFMB AM93L422AFMB AM93L412AFMB AM93L422AFMB AM93L412AFMB AM93L422AFMB AM93L412AFMB AM93L422AFMB AM93L412AFMB AM93L422AFMB		D-22-1 D-22-1 F-24-1 F-24-1 L-28-2 L-28-2	C-3 B-3 C-3 B-3 C-3 B-3 B-3	MIL	
60ns	AM93L412PC AM93L412PCB AM93L412DC AM93L412DCB AM93L412DCB AM93L412LC AM93L412LCB	AM93L422PC AM93L422PCB AM93L422DC AM93L422DCB AM93L422DCB AM93L422LC AM93L422LCB	P-22-1 P-22-1 D-22-1 D-22-1 L-28-2 L-28-2	C-1 B-1 C-1 B-1 C-1 B-1	COM'L	
75ns	AM93L412DM AM93L422DM AM93L412DMB AM93L422DMB AM93L412DMB AM93L422DMB AM93L412FM AM93L422FM AM93L412FMB AM93L422FMB AM93L412FMB AM93L422FMB AM93L412FMB AM93L422FMB AM93L412FMB AM93L422FMB AM93L412LM AM93L422LM AM93L412LMB AM93L422LMB		D-22-1 D-22-1 F-24-1 F-24-1 L-28-2 L-28-2	C-3 B-3 C-3 B-3 C-3 B-3	MIL	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

- - - -

Am93415A • Am93425A Am93415 • Am93425 TTL 1024-Bit Bipolar IMOXTM RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 1024-word x 1-bit RAMs
- Ultra-high speed "A" version: Address Access time typically 22ns High Speed Standard version: Address Access time typically 30ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with three-state outputs (Am93425A/425) or with open collector outputs (Am93415A/415)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Plug in replacement for Fairchild 93415A/415 and 93425A/425
- Power dissipation decreases with increasing temperature
- Guaranteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am93415A/415 and Am93425A/425 are 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in high-speed control and buffer memory applications. Each memory is organized as a fully decoded 1024-word memory of 1 bit per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs (Am93415A/415) or three-state outputs (Am93425A/425). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.

An active LOW write line $\overline{(WE)}$ controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the data input (D_{IN}) is written into the addressed memory word and preconditions the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (D_{OUT}).

During the writing operation or when the chip select line is HIGH the output of the memory goes to an inactive high impedance state.

LOGIC BLOCK DIAGRAM

3-57

Am93415A/425A/415/425

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7V
DC Voltage Applied to Outputs for High Output State	-0.5V to V _{CC} max
DC Input Voltage	-0.5 to +5.5V
Output Current, Into Outputs (Low)	20mA
DC Input Current	-30 to +5.0mA

OPERATING RANGE

		Ambient
Range V _{CC}		Temperature
COM'L	4.75 to 5.25V	0 to +75°C
MIL	4.5 to 5.5V	-55 to +125°C

FUNCTION TABLE

Inputs			Output			
CS	S WE DIN DOU		DOUT	Mode		
н	x	X	*HIGH-Z	Not Selected		
L	L	L	*HIGH-Z	Write "0"		
L	L	н	*HIGH-Z	Write "1"		
L	н	х	Selected Data	Read		
H = High Voltage Level			L = Low Voltage Level	X = Don't Care		

*HIGH-Z implies outputs are disabled or off. This condition is defined as a high impedance state for the Am93425A/425 and as an output high level for the Am93415A/415.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Co	Min	Typ (Note 1)	Max	Units		
VOH		V _{CC} = MIN,	I _{OH} = -10.3mA COM'L			2.6		
(Note 2) Output HIGH Voltage		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -5.2mA MIL		2.4	3.6		Volts
V _{OL}	Output LOW Voltage		I _{OL} = 16mA			0.350	0.45	Volts
VIH	Input HIGH Level (Note 3)	Guaranteed input logical HIGH v	Guaranteed input logical HIGH voltage for all inputs					
ViL	Input LOW Level (Note 3)	Guaranteed input logical LOW v	Guaranteed input logical LOW voltage for all inputs					
կլ	Input LOW Current	$V_{CC} = MAX, V_{IN} = 0.40V$		-180	-400	μA		
ıн	Input HIGH Current	$V_{CC} = MAX, V_{IN} = 4.5V$		1	40	μA		
I _{SC} (Note 2)	Output Short Circuit Current	$V_{CC} = MAX, V_{OUT} = 0.0V$			-100	mA		
		All inputs = GND, V _{CC} = MAX	T _A ≥ 75°C		95	110		
lcc	Power Supply Current		$T_A = 0^{\circ}C$			125	mA	
			$T_A = -55^{\circ}C$			145		
V _{CL}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -10mA			-0.850	-1.5	Volts	
ICEX Output Leakage Current		$V_{\overline{CS}} = V_{IH} \text{ or } V_{\overline{WE}} = V_{IL}$ $V_{OUT} = 2.4V$	Am93415A/425A Am93415/425			0	100	μA
-UEA			Am93425A Am93425		- 50	0]
C _{IN}	Input Pin Capacitance	See Note 4	Note 4			4		pF
COUT	Output Pin Capacitance	See Note 4				7		pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. This applies only to the Am93425A/425 with three-state outputs.

3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

4. Input and output capacitance measured on a sample basis using pulse technique.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

st Conditions: See Figures 3 and 4 and Notes 2, 3, and 4 (below)

				Am93415A • Am93425A				Am93415 • Am93425					
Parameters Description		Typ (Note 1)	COM'L Min Max		M Min	IIL Max	Typ ax (Note 1)	COM'L Min Max		MIL. Min Max		Units	
t _{PLH} (A) t _{PHL} (A)	Delay from Address to Output (Address Access Time)	See Fig. 2	22		30		40	30		45		60	ns
t _{PZH} (CS) t _{PZL} (CS)	Delay from Chip Select to Active Output and Correct Data	See Fig. 2	10		20		30	15	-	35		45	ns
t _{PZH} (WE)	Delay from Write Enable to Active Output and Correct Data (Write Recovery)	See Fig. 1	10		25		35	15		40		50	ns
t _s (A)	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	0	5		5		0	10		15		ns
t _h (A)	Hold Time Address (After Termination of Write)	See Fig. 1	0	5		5		0	5		5		ns
t _s (DI)	Setup Time Data Input (Prior to Initiation of Write)	See Fig. 1	0	5		5		0	5		5		ns
t _h (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	0	5		5		0	5		5		ns
t _s (CS)	Setup Time Chip Select (Prior to Initiation of Write)	See Fig. 1	0	5		5		0	5		5		ns
t _h (CS)	Hold Time Chip Select (After Termination of Write)	See Fig. 1	0	5		5		0	5		5		ns
t _{pw} (WE)	Min Write Enable Pulse Width to Insure Write	See Fig. 1	12	20		30		15	30		40		ns
t _{PHZ} (CS) t _{PLZ} (CS)	Delay from Chip Select to Inactive Output (HIGH-Z)	See Fig. 2	10		20		30	15		35		50	ns
t _{PHZ} (WE) t _{PLZ} (WE)	Delay from write Enable to Inactive Output (HIGH-Z)	See Fig. 1	10		20		30	15		35		35	ns

Notes: 1. Typical characteristics are at V_{CC} = 5.0V and T_A = 25°C.
 2. t_{PLH}(A) and t_{PHL}(A) are tested with S₁ closed and C_L = 30pF with both input and output timing referenced to 1.5V.
 3. For open collector Am93415A/415, all delays from Write Enable (WE) or Chip Select (CE) inputs to the Data Output (D_{OUT}), t_{PLZ}(WE),

3. For open collector Am93415A/415, and delays from white Enable (VEC) or Chip Select (CE) inputs to the Data Output (D_{OUT}), tp_{LZ}(WE), tp_{LZ}(\overline{CS}), tp_{ZL}(\overline{CS}) are measured with S₁ closed and C_L = 30pF; and with both the input and output timing referenced to 1.5V. 4. For 3-state output Am93425A/425, tp_{ZL}(\overline{WE}) and tp_{ZL}(\overline{CS}) are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. tp_{ZL}(\overline{WE}) and tp_{ZL}(\overline{CS}) are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. tp_{ZL}(\overline{WE}) and tp_{ZL}(\overline{CS}) are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. tp_{ZH}(\overline{WE}) and tp_{HZ}(\overline{CS}) are measured with S₁ closed, C_L = 30pF and with both the input and output timing referenced to 1.5V. tp_{ZH}(\overline{WE}) and tp_{HZ}(\overline{CS}) are measured with S₁ closed and C_L \leq 5pF and are measured between the 1.5V level on the input to the V_{OH} – 500mV level on the output.

.

Am93415A/425A/415/425

- - -

ORDERING INFORMATION									
Speed Selection	Order Open Collector	Code Three-State	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)				
30ns	AM93415APC AM93415APCB AM93415ADC AM93415ADCB AM93415ADCB AM93415ALC AM93415ALCB	AM93425APC AM93425APCB AM93425ADC AM93425ADCB AM93425ALC AM93425ALCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COML				
40ns	AM93415ADM AM93415ADMB AM93415AFM AM93415AFMB AM93415AFMB AM93415ALM AM93415ALMB	AM93425ADM AM93425ADMB AM93425AFM AM93425AFMB AM93425ALM AM93425ALM AM93425ALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL				
45ns	AM93415PC AM93415PCB AM93415DC AM93415DCB AM93415DCB AM93415LC AM93415LCB	AM93425PC AM93425PCB AM93425DC AM93425DCB AM93425LCB AM93425LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COML				
60ns	AM93415DM AM93415DMB AM93415FM AM93415FMB AM93415FMB AM93415LM AM93415LMB	AM93425DM AM93425DMB AM93425FM AM93425FMB AM93425LM AM93425LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL				

- -----

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.

Pad layout and bonding diagram available upon request.

3

Am10415SA • Am10415A • Am10415 ECL 1024 x 1 IMOXTM Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fast access time (10ns typ.) improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL no board changes required
- Internally voltage compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am10415SA, Am10415A and Am10415 are fully decoded 1024-bit ECL RAMs organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A₀ through A₉. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and an unterminated OR tieable emitter follower output.

An active LOW write line (\overline{WE}) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (D_{OUT}).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

-65 to +150°C
−55 to +125°C
-7.0 to +0.5V
V _{EE} to +0.5V
-30 to +0.1mA

OPERATING RANGE

Range	VEE	Ambient Temperature
COM'L	-5.46 to -4.94V	0 to +75°C
MIL	-5.72 to -4.68V	-55 to +125°C

FUNCTION TABLE

	Inputs		Output	
CS	WE	D _{IN}	DOUT	Mode
н	х	x	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	x	DOUT	Read
H = HIGH	/oltage Level	≃ -0.9V		X = Don't Care

H = HIGH Voltage Level $\simeq -0.9V$

L = LOW Voltage Level $\simeq -1.7V$

DC CHARACTERISTICS (Commercial)

 $V_{EE} = -5.2V$, $V_{CC} = GND$, Output Load = 50 Ω and 30pF to -2.0V, $T_A = 0$ to +75°C (Note 2)

Parameters	Description		Fest Conditions	, 10 1 70 0 (11010 2)	в	Typ (Note 1)	Α	Units
				$T_A = 0^{\circ}C$	- 1000		-840	
V _{OH}	Output Voltage HIGH			$T_A = +25^{\circ}C$	-960		-810	mV
		VIN = VIHA or VILB		$T_A = +75^{\circ}C$	900		-720	1
				$T_A = 0^{\circ}C$	- 1870		- 1665	
V _{OL}	Output Voltage LOW			$T_A = +25^{\circ}C$	- 1850		- 1650	mV
			Loading is	$T_A = +75^{\circ}C$	- 1830		- 1625	1
			50Ω to -2.0V	$T_A = 0^{\circ}C$	-1020			
V _{OHC}	Output Voltage HIGH			$T_A = +25^{\circ}C$	-980			mV
		VIN = VIHB or VILA		$T_A = +75^{\circ}C$	-920			
V _{OLC}	Output Voltage LOW			$T_A = 0^{\circ}C$			- 1645	
		ow		$T_A = +25^{\circ}C$			-1630	mV
				$T_A = +75^{\circ}C$			- 1605]
				$T_A = 0^{\circ}C$	-1145		-840	
VIH	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Inputs (Note 4)		$T_A = +25^{\circ}C$	-1105		-810	mV
					1045		-720	
				$T_A = 0^{\circ}C$	-1870		-1490	
VIL	Input Voltage LOW	Guaranteed Input Vo for All Inputs (Note 4		$T_A = +25^{\circ}C$	- 1850		-1475	mV
			,	$T_A = +75^{\circ}C$	- 1830		- 1450	1
Чн	Input Current HIGH	$V_{IN} = V_{IHA}$		$T_A = 0$ to $+75^{\circ}C$			220	μA
կլ	Input Current LOW Chip Select (CS) All Other Inputs	$V_{IN} = V_{ILB}$	$V_{IN} = V_{ILB}$		0.5 -50		170	μΑ
IEE	Power Supply Current (Pin 8)	All inputs and Outputs Open		$T_{A} = 0^{\circ}C$	- 150	-105		mA
	(Pin 8)			T _A = +75°C		-90		

Notes: 1. Typical values are at V_{EE} = -5.2V, T_A = $25^{\circ}C$ and maximum loading.

2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical thermal resistance values of the package are:

 θ_{JA} (Junction to Ambient) = 90°C/Watt (still air)

 θ_{JA} (Junction to Ambient) = 50°C/Watt (at 400 F.P.M. air flow)

 θ_{JC} (Junction to Case) = 25°C/Watt

3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC CHARACTERISTICS (Military)

 $V_{EE} = -5.2V$, $V_{CC} = GND$, $T_A = -55^{\circ}C$, and $+125^{\circ}C$.

Parameters	Description	т	est Conditions		в	Typ (Note 1)	A	Units	
V				$T_A = -55^{\circ}C$	-1070		-860	mV	
V _{OH}	Output Voltage HIGH			$T_A = +125^{\circ}C$	-860		-650		
Max	Output Voltage LOW	$V_{IN} = V_{IHA} \text{ or } V_{ILB}$		$T_A = -55^{\circ}C$	-1900		-1690	- mV	
VOL			Loading is	$T_A = +125^{\circ}C$	-1800		-1570] ""	
Value			50Ω to −2.0V	$T_A = -55^{\circ}C$	-1090				
VOHC	Output Voltage HIGH				-880			- mV	
Max a		$V_{IN} = V_{IHB} \text{ or } V_{ILA}$		$T_A = -55^{\circ}C$			-1670		
VOLC	Output Voltage LOW			$T_{A} = +125^{\circ}C$			-1550	mV	
N.		Guaranteed Input Vo	ltage HIGH	$T_A = -55^{\circ}C$	-1215		-860		
VIH	Input Voltage HIGH	for All Inputs (Note 4	•)	$T_{A} = +125^{\circ}C$	-1005		-650	- mV	
		Guaranteed Input Vo	ltage LOW	$T_A = -55^{\circ}C$	-1900		-1515		
VIL	Input Voltage LOW	for All Inputs (Note 4)	$T_{A} = +125^{\circ}C$	-1800		- 1395	mV	
Чн	Input Current HIGH	V _{IN} = V _{IHA}		$T_A = -55^{\circ}C$			250	μA	
Ι _{ΙĽ}	Input Current LOW Chip Select (CS) All Other Inputs	V _{IN} = V _{ILB}		T _A = −55°C	0.5 50		170	μΑ	
1	Power Supply Current	All Insuits and Outsu	All Inputs and Outputs Open		-165	-115		mA	
EE	(Pin 8)					-80] "^	

- --

- - - .__

AC CHARACTERISTICS (Commercial) $V_{EE} = -5.46$ to -4.94V, Output Load = 50 Ω , 30pF to -2.0V, T_A = 0 to $+75^{\circ}C$

Parameters	Description	Test Conditions		m104158 Typ (Note 1)			m10415 Typ (Note 1)			Am1041 Typ (Note 1)		Units
READ MC	DE											
tACS	Chip Select Access Time	Figure 2 measured at		6	8		6	8		7	10	ns
t _{RCS}	Chip Select Recovery Time	50% of input to valid output (VII A for VOI		5	8		5	8	<u> </u>	7	10	ns
t _{AA}	Address Access Time	or VIHB for VOH)		10	15		13	20		20	35	ns
WRITE M	ODE											
tw	Write Pulse Width (to Guarantee Writing)	$t_{WSA} = t_{WSA}$ (Min)	10	6		12	9		25	15		ns
twsp	Data Setup Time Prior to Write		2	0		4	0		5	0		ns
t _{WHD}	Data Hold Time After Write		2	0		4	0		5	0		ns
twsa	Address Setup Time Prior to Write	$t_W = t_W$ (Min)	3	0		5	3		8	5		ns
^t wha	Address Hold Time After Write		2	0		3	0		4	1		ns
twscs	Chip Select Setup Time Prior to Write	Figure 1 measured	2	0		4	0		5	0		ns
twHCS	Chip Select Hold Time After Write	at 50% of input to valid output (V _{ILA} for V _{OL} or	2	0		4	0		5	0		ns
tws	Write Disable Time	VIHB for VOH)		5	10		5	10		7	10	ns
twR	Write Recovery Time	1		6	12		10	15		14	20	ns
RISE TIM	E AND FALL TIME											
t _r	Output Rise Time	Measured between		5			5			5		ns
t _f	Output Fall Time	20% and 80% points		5			5			5		ns
CAPACIT	ANCE											
CIN	Input Pin Capacitance	Measure with a Pulse		4	5		4	5		4	5	pF
COUT	Output Pin Capacitance	Technique		7	8		7	8		7	8	pF

AC CHARACTERISTICS (Military) $V_{EE} = -5.72$ to -4.68V, Output Load = 50Ω , 30pF to -2.0V, $T_A = -55$ to $+125^{\circ}C$

Parameters	Description	Test Conditions		m10415S Typ (Note 1)	-	-	m10415 Typ (Note 1)			Am10418 Typ (Note 1)	-	Units
READ MC	DDE	••••										
tACS	Chip Select Access Time	Figure 2 measured at	1	6	10		6	12		7	15	ns
t _{RCS}	Chip Select Recovery Time	50% of input to valid output (V _{ILA} for V _{OL}		5	10		5	12		7	15	ns
t _{AA}	Address Access Time	or VIHB for VOH)		10	20		13	25		20	40	ns
WRITE M	ODE											
tw	Write Pulse Width	t _{WSA} = t _{WSA} (Min)	13	6		16	9		25	15		ns
twsp	Data Setup Time Prior to Write		3	0		4	0		7	0		ns
twhD	Data Hold Time After Write		3	0		4	0		7	0		ns
twsa	Address Setup Time	t _W = t _W (Min)	4	0		5	3		8	5		ns
t _{WHA}	Address Hold Time		3	0		4	0		7	1		ns
twscs	Chip Select Setup Time	Figure 1 measured at	3	0		4	0		7	0		ns
twncs	Chip Select Hold Time	50% of input to valid	3	0		4	0		7	0		ns
tws	Write Disable Time	output (V _{ILA} for V _{OL} or V _{IHB} for V _{OH})		5	10		5	10		7	10	ns
twn	Write Recovery Time	OI VIHBIOI VOH)		6	12		10	15		14	20	ns
RISE TIM	E AND FALL TIME									*****		
tr	Output Rise Time	Measured between		5			5			5		ns
t _f	Output Fall Time	20% and 80% points		5			5			5		ns
CAPACIT	ANCE	· · · · · · · · · · · · · · · · · · ·										
CIN	Input Pin Capacitance	Measure with a Pulse		4	5		4	5		4	5	pF
COUT	Output Pin Capacitance	Technique		7	8		7	8		7	8	pF

- -- -- - - - -- --

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)	
	AM10415SAPC	P-16-1	C-1		
	AM10415SAPCB	P-16-1	B-1		
15ns	AM10415SADC	D-16-1	C-1	COM'L	
10/15	AM10415SADCB	D-16-1	B-1	COME	
	AM10415SALC	Consult Factory	C-1		
	AM10415SALCB	Consult Factory	B-1		
	AM10415SADM	D-16-1	C-3		
	AM10415SADMB	D-16-1	B-3		
20ns	AM10415SAFM	F-16-1	C-3	MIL	
20115	AM10415SAFMB	F-16-1	B-3	I IVIL	
	AM10415SALM	Consult Factory	C-3		
	AM10415SALMB	Consult Factory	B-3		
	AM10415APC	P-16-1	C-1		
	AM10415APCB	P-16-1	B-1		
20ns	AM10415ADC	D-16-1	C-1	COM'L	
20115	AM10415ADCB	D-16-1	B-1		
	AM10415ALC	Consult Factory	C-1		
	AM10415ALCB	Consult Factory	B-1		
	AM10415ADM	D-16-1	C-3		
	AM10415ADMB	D-16-1	B-3		
25ns	AM10415AFM	F-16-1	C-3	MIL	
20113	AM10415AFMB	F-16-1	B-3		
	AM10415ALM	Consult Factory	C-3		
	AM10415ALMB	Consult Factory	B-3		
	AM10415PC	P-16-1	C-1		
	AM10415PCB	P-16-1	B-1		
35ns	AM10415DC	D-16-1	C-1	COM'L	
	AM10415DCB	D-16-1	B-1	00002	
	AM10415LC	Consult Factory	C-1		
	AM10415LCB	Consult Factory	B-1		
	AM10415DM	D-16-1	C-3		
	AM10415DMB	D-16-1	B-3		
40ns	AM10415FM	F-16-1	C-3	MIL	
	AM10415FMB	F-16-1	B-3		
	AM10415LM	Consult Factory	C-3	1	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak, F = Cerpak.

Number following letter is number of leads.
 Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

- - - - - - - - - - - -

Am100415A • Am100415

DISTINCTIVE CHARACTERISTICS

- Fast access time (10ns typ) improves system cycle speeds
- Fully compatible with 100K series ECL logic no board changes required
- Enhanced output voltage level compensation providing 6X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am100415A and Am100415 are fully decoded 1024-bit ECL RAMs organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A₀ through A₉. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and an unterminated OR tieable emitter follower output.

An active LOW write line (\overline{WE}) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (D_{OUT}).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

3

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am100415A/415

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	−55 to +125°C
V _{EE} Pin Potential to GND Pin	-7.0 to +0.5V
Input Voltage (dc)	V _{EE} to +0.5V
Output Current (dc Output HIGH)	-30 to +0.1mA

OPERATING RANGE

Part Number	V _{EE}	Ambient Temperature
Commercial	-5.7 to -4.2V	0 to +85°C

FUNCTION TABLE

	Inputs		Output	
CS	WE	D _{IN}	D _{OUT}	Mode
н	x	х	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	x	DOUT	Read

T./m

H = HIGH Voltage Level = -0.9V

L = LOW Voltage Level = -1.7V

X = Don't Care

DC CHARACTERISTICS

 $V_{EE}=-4.5V,\,V_{CC}=$ GND, Output Load = 50 Ω and 30pF to $-2.0V,\,T_A=0$ to $+85^\circ C$ (Note 2)

Parameters	Description	Test Con	ditions	в	(Note 1)	A	Units
V _{OH}	Output Voltage HIGH	VIN = VIHA or VII B			-955	-880	mV
VOL	Output Voltage LOW		Loading is	1810	-1715	- 1620	mV
VOHC	Output Voltage HIGH	V _{IN} = V _{IHB} or V _{ILA}	50Ω to -2.0V	-1035			mV
VOLC	Output Voltage LOW					-1610	mV
V _{IH}	Input Voltage HIGH	Guaranteed Input Vo for all inputs (Note 4)		-1165		-880	mV
V _{IL}	Input Voltage LOW	Guaranteed Input Vo for all inputs (Note 4)		-1810		- 1475	mV
1 _{IH}	Input Current HIGH	V _{IN} = V _{IHA}				220	μA
۱ _{۱L}	Input Current LOW Chip Select (CS) All Other Inputs	$V_{IN} = V_{ILB}$		0.5 50		170	μΑ
IEE	Power Supply Current (Pin 8)	All Inputs and Outpu	ts Open	-150	- 105		mA

Notes: 1. Typical values are at $V_{EE} = -4.5V$, $T_A = 25^{\circ}C$ and maximum loading.

Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical resistance values of the package are:

 θ_{JA} (Junction to Ambient) = 90°C/Watt (still air)

 θ_{JA} (Junction to Ambient) = 50°C/Watt (at 400 F.P.M. air flow)

 $\theta_{\rm JC}$ (Junction to Case) = 25°C/Watt

3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

____ .

AC CHARACTERISTICS

 $V_{EE} = -4.27V$ to -4.73V, Output Load = 50 Ω , 30pF to -2.0V, T_A = 0 to +85°C

		Am100415A			Am100415			
Description	Test Candilians	Min	Тур	May	Min	Тур	Max	Units
	Test Conditions	MIN	(Note 1)	max	MIN	(Note 1)	max	Units
DE								
Chip Select Access Time	Figure 1 measured at		5	8		5	8	ns
Chip Select Recovery Time			5	8		5	8	ns
Address Access Time	or VIHB for VOH)		10	15		12	20	ns
ODE								
Write Pulse Width (to Guarantee Writing)	t _{WSA} = t _{WSA} (Min)	10	6		12	9		ns
Data Setup Time Prior to Write		2	0		4	0		ns
Data Hold Time After Write		2	0		4	0		ns
Address Setup Time Prior to Write	t _W = t _W (Min)	3	0		5	3		ns
Address Hold Time After Write		2	0		3	0		ns
Chip Select Setup Time Prior to Write	Figure 2 measured	2	0		4	0		ns
Chip Select Hold Time After Write	to valid output	,2	0		4	0	-	ns
Write Disable Time	V _{IHB} for V _{OH})		5	10		5	10	ns
Write Recovery Time	-		6	12		7	15	ns
E AND FALL TIME								•
Output Rise Time	Measured between 20%		5			5		ns
Output Fall Time	and 80% points		5			5		ns
ANCE	1	I				1		
Input Pin Capacitance		1	4	5		4	5	pF
	Technique		7	8		7	8	pF
	Chip Select Recovery Time Address Access Time DDE Write Pulse Width (to Guarantee Writing) Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time Prior to Write Address Hold Time After Write Chip Select Setup Time Prior to Write Chip Select Hold Time After Write Write Disable Time Write Recovery Time EAND FALL TIME Output Rise Time Output Fall Time	DEChip Select Access TimeFigure 1 measured at 50% of input to valid output (V _{ILA} for V _{OL} or V _{IHB} for V _{OH})Address Access TimeFigure 1 measured at 50% of input to valid output (V _{ILA} for V _{OL} or V _{IHB} for V _{OH})DDEWrite Pulse Width (to Guarantee Writing)twSA = twSA (Min)Data Setup Time Prior to WritetwSA = twSA (Min)Data Setup Time Prior to Writetw = tw (Min)Address Setup Time Prior to Writetw = tw (Min)Address Setup Time Prior to WriteFigure 2 measured at 50% of input to valid output (VILA for V _{OL} or VIHB for V _{OH})Chip Select Hold Time After WriteFigure 2 measured at 50% of input to valid output (VILA for V _{OL} or VIHB for V _{OH})Write Disable Time Write Recovery TimeMeasured between 20% and 80% pointsAND FALL TIME Input Pin CapacitanceMeasure with a Pulse	DescriptionTest ConditionsMinDEChip Select Access TimeFigure 1 measured at 50% of input to valid output $(V_{ILA}$ for V_{OL} or V_{IHB} for V_{OH})Address Access Timeor V_{IHB} for V_{OH})DDEWrite Pulse Width (to Guarantee Writing)twSA = twSA (Min)Data Setup Time Prior to Write2Data Hold Time After Write2Address Setup Time Prior to Write2Address Setup Time Prior to Write2Chip Select Setup Time Prior to Write2Chip Select Setup Time Prior to Write2Chip Select Hold Time After Write2Chip Select Hold Time After WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or 	DescriptionTest ConditionsMinTyp (Note 1)DEChip Select Access TimeFigure 1 measured at 50% of input to valid output $(V_{ILA}$ for V_{OL} or V_{IHB} for V_{OH} 5Address Access Timeor V_{IHB} for V_{OH} 10DDEWrite Pulse Width (to Guarantee Writing)twsA = twsA (Min)10Data Setup Time Prior to Write20Data Setup Time Prior to Write20Address Setup Time Prior to Writetw = tw (Min)30Address Setup Time Prior to Writetw = tw (Min)30Address Setup Time Prior to WriteFigure 2 measured at 50% of input to valid output (V_{ILA} for V_{OL} or V_{IHB} for V_{OH})20Chip Select Hold Time After WriteFigure 2 measured at 50% of input to valid output (V_{ILA} for V_{OL} or V_{IHB} for V_{OH})5Write Disable Time Write Recovery TimeMeasured between 20% and 80% points5Output Rise Time Output Fall TimeMeasured with a Pulse4	DescriptionTest ConditionsMinTyp (Note 1)MaxDEChip Select Access TimeFigure 1 measured at 50% of input to valid output $(V_{ILA}$ for V_{OL} 58Address Access Timeor V_{IHB} for V_{OH} 1015Address Access Timeor V_{IHB} for V_{OH} 1015DE V_{VILA} for V_{OH} 106Write Pulse Width (to Guarantee Writing) $t_{WSA} = t_{WSA}$ (Min)106Data Setup Time Prior to Write20Address Setup Time Prior to Write $t_W = t_W$ (Min)30Address Setup Time Prior to Write $t_W = t_W$ (Min)30Address Setup Time Prior to WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)20Chip Select Hold Time Atter WriteFigure 2 measured at 50% of input to valid output to and 80% points510Write Recovery TimeMeasured between 20% and 80% points5Output Fail Time And 80% points5Input Pin CapacitanceMeasure with a Pulse45	DescriptionTest ConditionsMinTyp (Note 1)MaxMinDEChip Select Access TimeFigure 1 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)58Address Access Timeor VIHB for VOH or VIHB for VOH)1015DEWrite Pulse Width (to Guarantee Writing)twsA = twsA (Min)10612Data Setup Time Prior to Write204Address Setup Time Prior to WritetwsA = twsA (Min)305Address Setup Time Prior to Writetw = tw (Min)305Address Setup Time Prior to Writetw = tw (Min)305Address Setup Time Prior to Writetw = tw (Min)304Address Hold Time Atter WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)204Chip Select Hold Time Prior to WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)204Chip Select Hold Time Prior to WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)51010Write Disable Time Output Rise Time Output Rise TimeMeasured between 20% and 80% points5510NCEInput Pin CapacitanceMeasured between 20% and 80% points4510	DescriptionTest ConditionsMinTyp (Note 1)MaxMinTyp (Note 1)DEChip Select Access TimeFigure 1 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)585Address Access Timeor VIHB for VOL or VIHB for VOH)101512DDEWrite Pulse Width (to Guarantee Writing)twSA = twSA (Min)106129Data Setup Time Prior to Write2040Data Hold Time Atter Writetw = tw (Min)3053Address Setup Time Prior to Writetw = tw (Min)3053Address Hold Time Atter WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)2040Chip Select Hold Time Atter WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)2040Write Disable Time Write Recovery TimeMeasured between 20% and 80% points51055ADD FALL TIME Dutput Rise Time Output Fall TimeMeasure between 20% and 80% points5555NCEInput Pin CapacitanceMeasure with a Pulse4544	DescriptionTest ConditionsMinTyp (Note 1)MaxTyp (Note 1)MaxDEChip Select Access TimeFigure 1 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)5858Address Access Timerv Wite Pulse Width (to Guarantee Writing)10151220DEWrite Pulse Width (to Guarantee Writing)twSA = twSA (Min)10612910Data Setup Time Prior to Write2040101010Data Setup Time Prior to WritetwSA = twSA (Min)305310Address Setup Time Prior to Writetw = tw (Min)305310Address Hold Time Atter WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)204010Chip Select Setup Time Prior to WriteFigure 2 measured at 50% of input to valid output (VILA for VOL or VIHB for VOH)204010Mite Disable Time Write Recovery TimeFigure 2 measured at 50% of input to valid output (VILA for VOH)51051010Write Recovery TimeMeasured between 20% and 80% points551051010Mute Rise Time Output Fall TimeMeasured between 20% and 80% points5510510510Mute Rise Time Output Fall TimeMeasured between 20%

_ _ _ _

3

.

- - --

Am100415A/415

-

- - - -

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
15ns	AM100415APC AM100415APCB AM100415ADC AM100415ADCB AM100415ALCB AM100415ALCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COML
20ns	AM100415PC AM100415PCB AM100415DC AM100415DCB AM100415DCB AM100415LC AM100415LCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L

ORDERING INFORMATION

- - - ---

....

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

Levels C-1 and C-3 conform to MIL-STD-123, Class C. Levels B-1 and B-3 conform to MIL-STD-123, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial specifications. Pad layout and bonding diagram available upon request.

..

Am10474SA • Am10474A Am10474 ECL 1024 x 4 IMOX™ Bipolar RAM **ADVANCED INFORMATION**

.

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) improves system cycle speeds
- . Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage and temperature compensated . providing flat AC performance
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am10474SA, Am10474A and Am10474 are fully decoded 4096-bit ECL RAMs organized 1024 words by 4 bits. Word selection is achieved by means of a 10-bit address, A₀ through A₉. Easy memory expansion is provided by an active LOW chip select (CS) input and an unterminated OR tieable emitter follower output.

An active LOW write line (WE) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D1-D4) are written into the addressed memory words.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting outputs D1-D4.

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

3-74

Am100474SA • Am100474A Am100474 ECL 1024 x 4 IMOXTM Bipolar RAM ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) improves system cycle speeds
- Fully compatible with 100K series ECL logic no board changes required
- Enhanced output voltage level compensation providing 6X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat AC performance
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am100474SA, Am100474A and Am100474 are fully decoded 4096-bit ECL RAMs organized 1024 words by 4 bits. Word selection is achieved by means of a 10-bit address, A_0 through A_3 . Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and unterminated OR tieable emitter follower outputs.

An active LOW write line ($\overline{\text{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data inputs (D₁-D₄) are written into the addressed memory words.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed words is read out on the noninverting outputs O_1 - O_4 .

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

......

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am10470SA • Am10470A • Am10470 ECL 4096 x 1 IMOX[™] Bipolar RAM

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL no board changes required
- Internally voltage compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am10470SA, Am10470A and Am10470 are fully decoded 4096-bit ECL RAMs organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A₀ through A₁₁. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and an unterminated OR tieable emitter follower output.

An active LOW write line (\overline{WE}) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the 'write recovery glitch.'

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (D_{OUT}).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
V _{EE} Pin Potential to GND Pin	-7.0 to +0.5V
Input Voltage (dc)	V _{EE} to +0.5V
Output Current (dc Output HIGH)	-30 to +0.1mA

OPERATING RANGE

Range	VEE	Ambient Temperature				
COM'L -5.46 to -4.94V		0 to +75°C				
MIL	-5.72 to -4.68V	-55 to +125°C				

FUNCTION TABLE

	Inputs		Output	
CS	WÊ	D _{IN}	DOUT	Mode
н	х	X	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	x	DOUT	Read
= HIGH Vo	oltage Level =	= -0.9V		X = Don't Ca

L = LOW Voltage Level = -1.7V

DC CHARACTERISTICS (Commercial)

 V_{EE} = -5.2V, V_{CC} = GND, Output Load = 50Ω and 30pF to -2.0V, T_{A} = 0 to $+75^{\circ}C$ (Note 2)

Parameters	Description		Test Conditions		в	Typ (Note 1)	A	Units	
				$T_A = 0^{\circ}C$	-1000		-840		
V _{OH}	Output Voltage HIGH			$T_A = +25^{\circ}C$	-960		-810	mV	
		VIN = VIHA or VII B	ļ	T _A = +75°C	-900		-720		
				$T_A = 0^{\circ}C$	-1870		-1665		
V _{OL}	Output Voltage LOW			$T_A = +25^{\circ}C$	- 1850		- 1650	mV	
			Loading is	T _A = +75°C	-1830		-1625		
	DHC Output Voltage HIGH		50Ω to -2.0V	$T_A = 0^{\circ}C$	-1020				
V _{OHC}		ut Voltage HIGH		$T_A = +25^{\circ}C$	-980			mV	
		VIN = VIHB or VII A		T _A = +75°C	-920				
V _{OLC}	Output Voltage LOW			$T_A = 0^{\circ}C$			-1645	mV	
				$T_A = +25^{\circ}C$			-1630		
				$T_A = +75^{\circ}C$			-1605		
			$T_A = 0$		-1145		-840		
V _{IH}	Input Voltage HIGH		Guaranteed Input Voltage HIGH for All Inputs (Note 4)		-1105		-810	m∨	
_			· ·	$T_A = +75^{\circ}C$	-1045		-720		
				$T_A = 0^{\circ}C$	-1870		-1490		
VIL	Input Voltage LOW	Guaranteed Input V for All Inputs (Note		$T_A = +25^{\circ}C$	-1850		-1475	mV	
			-,	$T_A = +75^{\circ}C$	-1830		- 1450		
IIH	Input Current HIGH	$V_{IN} = V_{IHA}$		$T_A = 0$ to $+75^{\circ}C$			220	μA	
IIL	Input Current LOW Chip Select (CS) All Other Inputs	V _{IN} = V _{ILB}		T _A = +25°C	0.5 -50		170	μΑ	
			Am10470A	$T_A = 0^{\circ}C$	-200	-160			
IEE	Power Supply Current (Pin 9)	All Inputs and Outputs Open	and Am10470	T _A = +75°C		-145		mA	
			Am10470SA	$T_A = 0^{\circ}C$	-230	- 180			

Notes: 1. Typical values are at V_{EE} = -5.2V, T_A = 25° C and maximum loading.

2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical thermal resistance values of the package are:

 θ_{JA} (Junction to Ambient) = 90°C/Watt (still air)

 θ_{JA} (Junction to Ambient) = 50°C/Watt (at 400 F.P.M. air flow)

 $\theta_{\rm JC}$ (Junction to Case) = 25°C/Watt

3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC CHARACTERISTICS (Military) $V_{EE} = -5.2V, V_{CC} = GND, T_A = -55 to + 125^{\circ}C$

Parameters	Description		Test Conditions		в	Typ (Note 1)	A	Units	
V	Output Voltage HIGH			$T_A = -55^{\circ}C$	-1070		-860	mV	
VOH	Output voltage HIGH			T _A = +125°C	-860		-650	mv	
		$V_{IN} = V_{IHA} \text{ or } V_{ILB}$		T _A = −55°C	- 1900		-1690	mV	
V _{OL}	Output Voltage LOW		Loading is	T _A = +125°C	-1800		-1570	mv	
V	0.4.4.4.1/2/14		50Ω to -2.0V	T _A = -55°C	-1090			mV	
VOHC	Output Voltage HIGH			$T_A = +125^{\circ}C$	-880			mv	
	0.4.4.4.1/2/10.0.1/	$V_{\rm IN} = V_{\rm IHB}$ or $V_{\rm ILA}$		$T_A = -55^{\circ}C$			- 1670	mV	
VOLC	Output Voltage LOW			$T_A = +125^{\circ}C$			- 1550		
V		Guaranteed Input Voltage HIGH $T_A = -55^{\circ}C$	T _A = −55°C	- 1215		-860	mV		
VIH	Input Voltage HIGH	for All Inputs (Note 4)	II Inputs (Note 4) $T_{A} = +125^{\circ}C$		-1005		-650		
N		Guaranteed Input Vo	tage LOW	T _A = −55°C	-1900		- 1515	mV	
VIL	Input Voltage LOW	for All Inputs (Note 4)		T _A = +125°C	-1800		- 1395		
ľн	Input Current HIGH	V _{IN} = V _{IHA}		T _A = -55°C			250	μA	
۱ _{IL}	Input Current LOW Chip Select (CS) All Other Inputs	$V_{IN} = V_{ILB}$		T _A = -55°C	0.5 -50		170	μA	
			Am10470A	T _A = -55°C	-220	-175			
IEE	Power Supply Current (Pin 9)	All Inputs and All Outputs Open	and Am10470	$T_A = +125^{\circ}C$		- 160		mA	
	(,		Am10470SA	$T_A = -55^{\circ}C$	-255	-200			

.

AC TEST LOAD

INPUT PULSES

 $R_T=50\Omega$ termination of measurement system $C_L=30 pF$ (including stray jig capacitance)

BPM-206

BPM-207

_ _

AC CHARACTERISTICS (Commercial) $V_{EE} = -5.46$ to -4.94V, Output Load = 50Ω , 30pF to -2.0V, $T_A = 0$ to $+75^{\circ}C$ PRELIMINARY

			Am10470SA Typ		Тур Тур		Am10470 Typ					
Parameters	Description	Test Conditions	Min	(Note 1)	Max	Min	(Note 1)	Max	Min	(Note 1)	Max	Units
READ MO	DE											
tACS	Chip Select Access Time	Figure 2 measured at		6	8		8	10		10	15	ns
t _{RCS}	Chip Select Recovery Time	50% of input to valid output (V _{ILA} for V _{OL}		6	8		8	10		10	15	ns
t _{AA}	Address Access Time	or V _{IHB} for V _{OH})		12	15		18	25		25	35	ns
WRITE MO	ODE											
tw	Write Pulse Width (to Guarantee Writing)	t _{WSA} = t _{WSA} (Min)	15	8		20	10		25	15		ns
twsp	Data Setup Time Prior to Write		2	0		2	0		5	1		ns
twhD	Data Hold Time After Write		2	0		2	0		5	1		ns
twsa	Address Setup Time Prior to Write	t _W = t _W (Min)	2	0		2	0		5	1		ns
^t WHA	Address Hold Time After Write		2	0		2	0		5	1		ns
twscs	Chip Select Setup Time Prior to Write	Figure 1 measured	2	0		2	0		5	1		ns
twhcs	Chip Select Hold Time After Write	at 50% of input to valid output (V _{ILA} for V _{OL} or	2	0		2	0		5	1		ns
tws	Write Disable Time	V _{IHB} for V _{OH})		6	8		8	10		7	15	ns
t _{WR}	Write Recovery Time			6	8		8	10		10	20	ns
RISE TIME	E AND FALL TIME	•					*****			•		
tr	Output Rise Time	Measured between		3			3			3	ns	
t _f	Output Fall Time	20% and 80% points		3			3			3		ns
CAPACIT	ANCE		•				•			•		
C _{IN}	Input Pin Capacitance	Measured with a Pulse Technique on a		4	5		4	5		4	5	рF
C _{OUT}	Output Pin Capacitance	Sample Basis.		7	8		7	8		7	8	pF

- ·

3

.

AC CHARACTERISTICS (Military) $V_{EE} = -5.72$ to -4.68V, Output Load = 50 Ω , 30pF to -2.0V, T_A = -55 to $+125^{\circ}C$ PRELIMINARY

· · · · · · · · · · · · · · · · · · ·			Am10470SA Typ		Am10470A Typ		Am10470 Typ					
Parameters	Description	Test Conditions	Min	(Note 1)	Max	Min	(Note 1)	Max	Min	(Note 1)	Max	Units
READ MO	DE											
tACS	Chip Select Access Time	Figure 2 measured at		8	10		10	15		15	20	ns
tRCS	Chip Select Recovery Time	50% of input to valid output (V _{II A} for V _{OI}		8	10		10	15		15	20	ns
t _{AA}	Address Access Time	or VIHB for VOH)		17	20		20	30		30	40	ns
WRITE M	DDE											
tw	Write Pulse Width	t _{WSA} = t _{WSA} (Min)	18	14		22	17		25	20		ns
twsp	Data Setup Time Prior to Write		3	0		5	0		7	2		ns
twhD	Data Hold Time After Write		3	0		5	0		7	2		ns
twsa	Address Setup Time	t _W = t _W (Min)	3	0		5	0		7	2		ns
twha	Address Hold Time		3	0		5	0		7	2		ns
twscs	Chip Select Setup Time	Figure 1 measured at	3	0		5	0		7	2		ns
twhcs	Chip Select Hold Time	50% of input to valid	3	0		5	0		.7	2		ns
tws	Write Disable Time	output (V _{ILA} for V _{OL} or V _{IHB} for V _{OH})		8	10		10	12		7	15	ns
twn	Write Recovery Time	OL VIABIOL VOH)		8	10		10	12		10	20	ns
RISE TIM	E AND FALL TIME				•	•		•				L
t _r	Output Rise Time	Measured between		3	[3		1	3		ns
t _f	Output Fall Time	20% and 80% points		3			3			3		ns
CAPACIT	ANCE				•		·			• <u> </u>	·	A .,
C _{IN}	Input Pin Capacitance	Measured with a Pulse		4	5		4	5		4	5	pF
COUT	Output Pin Capacitance	Technique on a Sample Basis.		7	8		7	8		7	8	pF

- -

.

- -- -- ----

3

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)	
15ns	AM10470SALC Consult Facto		C-1 B-1 C-1 B-1	COMIL	
20ns	AM10470SALCB AM10470SADM AM10470SADMB AM10470SAFM AM10470SAFMB AM10470SALM AM10470SALMB	Consult Factory D-18-1 D-18-1 Consult Factory Consult Factory Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3 C-3 B-3	MIL	
25ns	AM10470ADC AM10470ADCB AM10470ALC AM10470ALCB	D-18-1 D-18-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1	COM'L	
30ns AM10470AL0D AM10470ADM AM10470ADMB AM10470AFM AM10470AFMB AM10470ALM AM10470ALMB		D-18-1 D-18-1 Consult Factory Consult Factory Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL	
35ns AM10470DC AM10470DCB AM10470DCB AM10470LC AM10470LCB		D-18-1 D-18-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1	COM'L	
40ns	AM10470DM AM10470DMB AM10470FM AM10470FMB AM10470LM AM10470LMB	D-18-1 D-18-1 Consult Factory Consult Factory Consult Factory Consult Factory	C-3 B-3 C-3 B-3 C-3 B-3	MIL	

ORDERING INFORMATION

Notes: 1. D = Hermetic DIP, L = Chip-Pak, F = Cerpak. Number following letter is number of leads.

Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.

Pad layout and bonding diagram available upon request.

Am100470SA • Am100470A Am100470 ECL 4096 x 1 IMOXTM Bipolar RAM PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) improves system cycle speeds
- Fully compatible with 100K series ECL logic no board changes required
- Enhanced output voltage level compensation providing 6X (improvement in) VOL and VOH stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am100470SA, Am100470A and Am100470 are fully decoded 4096-bit ECL RAMs organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A₀ through A₁₁. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and an unterminated OR tieable emitter follower output.

An active LOW write line (WE) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (DIN) is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the 'write recovery glitch.'

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc. Chip-Pak is a trademark of Advanced Micro Devices. Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
VEE Pin Potential to GND Pin	-7.0 to +0.5V
Input Voltage (dc)	V _{EE} to +0.5V
Output Current (dc Output HIGH)	30 to +0.1mA

OPERATING RANGE

		Ambient		
Part Number	VEE	Temperature		
Commercial	-5.7 to -4.2V	0 to +85°C		

FUNCTION TABLE

	Inputs		Output	
CS	WE	DiN	DOUT	Mode
н	х	х	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	x	D _{OUT}	Read

T....

H = HIGH Voltage Level = -0.9V

L = LOW Voltage Level = -1.7VX = Don't Care

DC CHARACTERISTICS

 $V_{EE} = -4.5V$, $V_{CC} = GND$, Output Load = 50 Ω and 30pF to -2.0V, $T_A = 0$ to +85°C (Note 2)

Parameters	Description	Tes	t Conditions	в	Typ (Note 1)	A	Units
V _{OH}	Output Voltage HIGH				-955	-880	mV
V _{OL}	Output Voltage LOW		Loading is	-1810	-1715	-1620	mV
VOHC	Output Voltage HIGH	V _{IN} = V _{IHB} or V	500 to -2 0V	-1035			mV
VOLC	Output Voltage LOW					-1610	mV
VIH	Input Voltage HIGH	Guaranteed Inp for all inputs (No	ut Voltage HIGH ote 4)	-1165		-880	mV
VIL	Input Voltage LOW	Guaranteed Inp for all inputs (No	ut Voltage LOW ote 4)	-1810		- 1475	mV
l _{IH}	Input Current HIGH	V _{IN} = V _{IHA}				220	μΑ
կլ	Input Current LOW Chip Select (CS) All Other Inputs	$V_{IN} = V_{ILB}$		0.5 -50		170	μΑ
•	Power Supply Current	All Inputs and	Am100470A/Am100470	- 195	-160		
IEE	(Pin 9)	Outputs Open	Am100470SA	-230	- 180		mA

 Notes: 1. Typical values are at V_{EE} = -4.5V, T_A = 25°C and maximum loading.
 2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical resistance values of the package are:

 θ_{JA} (Junction to Ambient) = 90°C/Watt (still air)

 θ_{JA} (Junction to Ambient) = 50°C/Watt (at 400 F.P.M. air flow)

 θ_{JC} (Junction to Case) = 25°C/Watt

3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

. _

AC CHARACTERISTICS (Commercial) $V_{EE} = -5.46$ to -4.94V, Output Load = 50Ω , 30pF to -2.0V, T_A = 0 to $+85^{\circ}C$ PRELIMINARY

			An	n100470	SA	Ar	n10047	0A	Α	m10047	0	
	Description	Test Canditions		Тур	Max		Тур	Max	L.L.	Тур		Unite
Parameters	Description	Test Conditions	MIN	(NOTE 1)	max	MIN	(Note 1)	max		(Note 1)	Max	Units
READ MO		· · · · · · · · · · · · · · · · · · ·		r								
tACS	Chip Select Access Time	Figure 2 measured at 50% of input to valid		6	8		8	10	L	10	15	ns
^t RCS	Chip Select Recovery Time	output (VILA for VOL		6	8		8	10		10	15	ns
t _{AA}	Address Access Time	or V _{IHB} for V _{OH})		12	15		18	25		25	35	ns
WRITE MO	DDE											
tw	Write Pulse Width (to Guarantee Writing)	t _{WSA} = t _{WSA} (Min)	15			20			25	18		ns
twsp	Data Setup Time Prior to Write		2			2			5	1		ns
twhD	Data Hold Time After Write		2			2			5	1		ns
twsa	Address Setup Time Prior to Write	t _W = t _W (Min)	3			3		_	10	5		ns
t _{WHA}	Address Hold Time After Write		2			2			5	1		ns
twscs	Chip Select Setup Time Prior to Write	Figure 1 measured	2			2			5	1		ns
^t whcs	Chip Select Hold Time After Write	at 50% of input to valid output (V _{ILA} for V _{OL} or	2			2			5	1		ns
tws	Write Disable Time	V _{IHB} for V _{OH})		6	8		8	10	[7	15	ns
twR	Write Recovery Time			6	8		8	10		10	20	ns
RISE TIME	AND FALL TIME								•			
t _r	Output Rise Time	Measured between		2			2			2		ns
t _f	Output Fall Time	20% and 80% points		2			2			2		ns
CAPACIT	ANCE		- -		L	L	1		L	<u> </u>		L
C _{IN}	Input Pin Capacitance	Measured with a Pulse		4	5		4	5	<u> </u>	4	5	рF
COUT	Output Pin Capacitance	- Technique on a Sample Basis.		7	8		7	8		7	8	рF

- - - - -

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

INPUT PULSES

BPM-190

 $R_T=50\Omega$ termination of measurement system $C_L=30pF$ (including stray jig capacitance)

.

.

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
15ns	AM100470SADC AM100470SADCB AM100470SALC AM100470SALCB	D-18-1 D-18-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1	COMIL
20ns	AM100470ADC AM100470ADCB AM100470ALC AM100470ALCB	D-18-1 D-18-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1	COM'L
35ns	AM100470DC AM100470DCB AM100470LC AM100470LCB	D-18-1 D-18-1 Consult Factory Consult Factory	C-1 B-1 C-1 B-1	COM.T

ORDERING INFORMATION

_ _ _ _

• •

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.

2. Levels C-1 and C-3 conform to MIL-STD-123, Class C.

Levels B-1 and B-3 conform to MiL-STD-123, Class B.

3. See Operating Range Table.

This device is also available in die form selected to commercial specifications. Pad layout and bonding diagram available upon request.

3

.

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY MEMORIES (ROM)

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

6

MOS Random Access Memories (RAM) Index

Am9101/91L01/2101 Am9111/91L11/2111 Am9112/91L12 Am9122/91L22 Am21L41 Am9044/9244 Am9114/9124 Am2147 Am2148/2149 Am9128 Am9167 Am9168/9169 Am9016

256 x 4 Static R/W Random Access Memories 4-1
256 x 4 Static R/W Random Access Memories 4-7
256 x 4 Static R/W Random Access Memories 4-13
256 x 4 Static R/W RAMs4-19
4096 x 1 Static R/W Random Access Memory4-25
4096 x 1 Static R/W Random Access Memory4-31
1024 x 4 Static R/W Random Access Memory4-35
4096 x 1 Static R/W Random Access Memory4-39
1024 x 4 Static R/W Random Access Memory4-45
2048 x 8 Static R/W Random Access Memory4-51
16,384 x 1 Static R/W Random Access Memory 4-57
4096 x 4 Static R/W Random Access Memory4-58
16,384 x 1 Dynamic R/W Random Access Memory4-59

Number	Am2101	Am2101-2	Ams	9101A 91L01A 2101-1	Am9101B Am91L01B	Am9101C Am91L01C	Am9101D
Access Time	1000ns	650ns	50)0ns	400ns	300ns	250ns
 DISTINCTIVE CHARACTERISTICS 256 x 4 organization Low operating power 125mW typ; 290mW maximum – standard power 100mW typ; 175mW maximum – low power DC standby mode reduces power up to 84% Logic voltage levels identical to TTL High output drive – two full TTL loads High noise immunity – full 400mV Single +5 volt power supply – tolerances ±5% commercial, ±10% military Uniform switching characteristics – access times insensitive to supply variations, addressing patterns and data patterns Both military and commercial temperature ranges available Two chip enable inputs Output disable control Zero address setup and hold times for simplified timing 100% MIL-STD-883 reliability assurance testing 					TONAL DESCRIP m9101/Am91L01 hance, low-power access memories. The netuding versions a ented as 256 work permits efficient of hows finer resolution memories may be actions of as much h. Data can be ret volts. The low pow dissipation during wer dissipation in the inp Enable input is lines and they of buffers. The Output t control over the output		ces are high- read/write ran- ange of access Each memory is rd. This organi- emory systems emory depth. e standby mode rmal power dis- r supply as low s offer reduced conditions and t as high order mplifier and the provides inde- oled chips.
	ONNECTION DIA Top View	GRAM		sense a signal I simplifie will driv	amplifiers or clock evels are identica ed interfacing and	ks are required. In I to TTL specifica high noise immuni Is for increased far	put and output tions, providing ity. The outputs
IDDA DOA IDDA DOA DOA GN GN DAT DAT A TA	RESS 2 2 2 RESS 1 3 20 RESS 0 4 19 RESS 6 5 18 RESS 7 7 16 D) VSS 8 15 rA IN 1 9 14 OUT 1 10 13	UVCC (ISV) ADDRESS 4 WRITE ENABLE CHIP ENABLE 1 OUTPUT DISABLE CHIP ENABLE 2 DATA OUT 4 DATA OUT 4 DATA OUT 3 DATA OUT 3 DATA OUT 3 DATA OUT 2 Orientation.	$A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_4 \longrightarrow A_4 \longrightarrow A_5 \longrightarrow A_6 \longrightarrow A_7 \longrightarrow MOS-343$	ER/ TROL	SLOCK DIAGRAM	32 X 8 STORAGE ARRAY	
			OS-344	FORMAT		., 21 21 31-31	

Ambient Temperature	Package	Power Type	Access Times							
Specification	Туре		1000ns	650ns	500ns	400ns	300ns	250ns		
	Molded DIP	Standard	P2101	P2101-2	P2101-1 AM9101APC	AM9101BPC	AM9101CPC	AM9101DPC		
0 to +70°C	ļ	Low			AM91L01APC	AM91L01BPC	AM91L01CPC	1		
010 +70 C	Hermetic DIP	Standard	C2101	C2101-2	C2101-1 AM9101ADC	AM9101BDC	AM9101CDC	AM9101DDC		
		Low			AM91L01ADC	AM91L01BDC	AM91L01CDC			
55 to 1 105%	Hermetic DIP	Standard			AM9101ADM	AM9101BDM	AM9101CDM			
-55 to +125°C	Hermetic DIP	Low			AM91L01ADM	AM91L01BDM	AM91L01CDM			

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	55°C to +125°C
V _{CC} With Respect to V _{SS} , Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs	-0.5V to +7.0V
DC Input Voltage	0.5V to +7.0V
Power Dissipation	1.0W

ELECTRICAL CHARACTERISTICS

Am9101PC, A		0°C to +70°C = +5.0V ±5%			Am9	101/ 1L01 nily	Am2 Fan	2101 nily		
Parameters	Description		Min.	Max.	Min.	Max.	Units			
N				I _{OH} = -200µA	2.4				Volts	
v _{он}	Output HIGH Voltage	VCC = MIN.	V _{CC} = MIN.				2.2		VUILS	
				I _{OL} = 3.2mA		0.4			Volts	
VOL	Output LOW Voltage	$V_{CC} = MIN.$		I _{OL} = 2.0mA				0.45	volts	
VIH	Input HIGH Voltage				2.0	Vcc	2.2	Vcc	Volts	
VIL	Input LOW Voltage				-0.5	0.8	-0.5	0.65	Volts	
LI	Input Load Current	V _{CC} = MAX., 0		10		10	μA			
	0			V _{OUT} = V _{CC}		5.0		15		
ILO	Output Leakage Current	VCE = VIH		V _{OUT} = 0.4V		-10		-50	μA	
				Am9101A/B		50				
1					T _A = 25°C	Am9101C/D/E		55	1	60
ICC1			A - 25 C	Am91L01A/B		31	1	60		
	David Control Overset	Data out open		Am91L01C		34			1 .	
	Power Supply Current	V _{CC} = Max. V _{IN} = V _{CC}		Am9101A/B		55			mA	
loon			T _A = 0°C	Am9101C/D/E		60	- 70	70		
ICC2				Am91L01A/B		33		/0		
				Am91L01C		36		1		

ELECTRICAL CHARACTERISTICS

Am9101DM $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ Am91L01DM $V_{CC} = +5.0V \pm 10\%$

Am9101/ Am91L01

Am91L01DM	$V_{CC} = +5.0V \pm 10\%$				Far	nily	
Parameters	Description		Test Conditions				Units
				V _{CC} = 4.75V	2.4		
Voн	Output HIGH Voltage	¹ OH =200µA		V _{CC} = 4.5V	2.2		Volts
VOL	Output LOW Voltage	V _{CC} = MIN., I _{OL} = 3.2mA			0.4	Volts	
VIH	Input HIGH Voltage				2.0	Vcc	Volts
VIL	Input LOW Voltage				-0.5	0.8	Volts
1LI	Input Load Current	V _{CC} = MAX., 0	V ≤ V _{IN} ≤ 5.5V			10	μA
ILO	Output Leakage Current	VCE = VIH		V _{OUT} = V _{CC}		10	μΑ
			CE - VIH	V _{OUT} = 0.4V	T	-10	<i>#</i> ^
				Am9101A/B		50	
ICC1			T _A = 25°C	Am9101C		55	
			- A	Am91L01A/B		31	
	Power Supply Current	Data out open V _{CC} = Max.		Am91L01C		34	mA
	Fower Supply Current	$V_{IN} = V_{CC}$		Am9101A/B		60	
laan			T _A = -55°C	Am9101C		65	
ICC3				Am91L01A/B		37]
				Am91L01C		40	

CAPACITANCE

Parameters	Description	Test Conditions		Typ.	Max.	Units
CIN	Input Capacitance, V _{IN} = 0V		Am2101	4.0	8.0	۶F
	input Capacitance, VIN - UV	T 05°0 (1111	Am9101/Am91L01	3.0	6.0	p <i>⊢</i>
Course	COUT Output Capacitance, V _{OUT} = 0V	T _A = 25°C, f = 1MHz	Am2101	8.0	12	- 5
COUT			Am9101/Am91L01	6.0	9.0	pF

put 2010/0, 01	utput References = 0.8V and 2.					9101A		9101B		9101C						
		2101		2101-2		2101-1		91L01A		91L01B		91L01C		9101D		
Parameters	Description	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Max	Uni
t _{RC}	Read Cycle Time	1000		650		500		500		400		300		250		ns
t _A	Access Time		1000		650		500		500		400		300		250	n
tco	Chip Enable to Output ON Delay (Note 1)		800		400		350		200		175		150		125	n
tod	Output Disable to Output ON Delay		700		350		300		175		150		125		100	n
^t он	Previous Read Data Valid with Respect to Address Change	0		0		0		40		40		40		30		n
^t DF1	Output Disable to Output OFF Delay	0	200	0	150	0	150	5.0	125	5.0	100	5.0	100	5.0	75	n
t _{DF2}	Chip Enable to Output OFF Delay	0	200	0	150	0	150	10	125	10	125	10	100	10	100	n
twc	Write Cycle Time	1000		650		500		500		400		300		250		n
t _{AW}	Address Set-up Time	150		150		100		0		0		0		0		n
t _{WP}	Write Pulse Width	750		400		300		175		150		125		100		n
tcw	Chip Enable Set-up Time (Note 1)	900		550		400		175		150		125		100		n
t _{WR}	Address Hold Time	50		50		50		0		0		0		0		n
t _{DW}	Input Data Set-up Time	700		400		280		150		125		100		85		n
t _{DH}	Input Data Hold Time	100		100		100		0		0		0		0		n

- -- -

Note: 1. Both CE1 and CE2 must be true to enable the chip.

4-3

.

Am9101/Am91L01/Am2101 Family DEFINITION OF TERMS

FUNCTIONAL TERMS

CE1, **CE2** Chip Enable Signals. Read and Write cycles can be executed only when both $\overline{CE1}$ is low and CE2 is high.

 \overline{WE} Active LOW Write Enable.Data is written into the memory if \overline{WE} is LOW and read from the memory if \overline{WE} is HIGH.

Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.

N-Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

 t_{OD} Output enable time. Delay time from falling edge of OD to output on.

 t_{RC} Read Cycle Time. The minimum time required between successive address changes while reading.

 t_A Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.

 t_{CO} Access Time from Chip Enable. The minimum time during which the chip enable must be LOW prior to reading data on the output.

 t_{OH} Minimum time which will elapse between change of address and any change of the data output.

 $\mathbf{t_{DF1}}$ Time delay between output disable HIGH and output data float.

 $t_{\mbox{DF2}}$ Time delay between chip enable OFF and output data float.

 t_{WC} Write Cycle Time. The minimum time required between successive address changes while writing.

 t_{AW} Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.

 $t_{\mbox{WP}}$ The minimum duration of a LOW level on the write enable guaranteed to write data.

 t_{WR} Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.

 t_{DW} Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.

t_{DH} Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.

 t_{CW} Chip Enable Time during Write. The minimum duration of a LOW level on the Chip Select prior to the rising edge of \overline{WE} to guarantee writing.

POWER DOWN STANDBY OPERATION

The Am9101/Am91L01 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering V_{CC} to around 1.5–2.0 volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a

large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.

To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at V_{IH} or V_{CES} during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test	Min.	Тур.	Max.	Units		
V _{PD}	V _{CC} in Standby Mode				1.5			
IPD	I _{CC} in Standby Mode		VPD = 1.5V	Am91L01		11	25	mA
		T _A = 0°C All Inputs = V _{PD}	VPD - 1.5V	Am9101		13	31	
			V _{PD} = 2.0V	Am91L01		13	31	
				Am9101		17	41	
		T _A = -55°C All Inputs = V _{PD}	V _{PD} = 1.5V	Am91L01		11	28	
				Am9101		13	34	
			VpD = 2.0V	Am91L01		13	34	mA
				Am9101		17	46	1
dv/dt	Rate of Change of V _{CC}		l.				1.0	V/µs
tR	Standby Recovery Time				tRC			ns
tCP	Chip Deselect Time				0			ns
V _{CES}	CE Bias in Standby				VPD			Voits

Typical Output Current Versus Voltage

Access Time Versus V_{CC} Normalized to V_{CC} = +5.0 Volts

Typical Power Supply Current Versus Ambient Temperature

4

Metallization and Pad Layout

DIE SIZE 0.132" X 0.131"

DATA IN 1 9

DATA IN 2 11

DATA OUT 1 10

4-5

14 DATA OUT 3

12 DATA OUT 2

-13 DATA IN 3

~ ~ .

4-6

.

MOS-349

Part Number	Am2111	Am2111-2	Am9111A Am91L11A Am2111-1	Am9111B Am91L11B	Am9111C Am91L11C	Am9111D
Access Time	1000ns	650ns	500ns	400ns	300ns	250ns

DISTINCTIVE CHARACTERISTICS

- · 256 x 4 organization for small memory systems
- Low operating power dissipation 125mW typ; 290mW maximum – standard power 100mW typ; 175mW maximum – low power
- DC standby mode reduces power up to 84%
- Logic voltage levels identical to TTL
- High output drive two full TTL loads
- High noise immunity -- full 400mV
- Single +5 volt power supply tolerances ±5% commercial, ±10% military
- Uniform switching characteristics access times insensitive to supply variations, addressing patterns and data patterns
- Both military and commercial temperature ranges available
- Bussed input and output data on common pins
- Output disable control
- Zero address setup and hold times for simplified timing
- 100% MIL-STD-883 reliability assurance testing

FUNCTIONAL DESCRIPTION

The Am9111/Am91L11 series of devices are highperformance, low-power, 1024-bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 200ns. Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth. The input data and output data signals are bussed together to share common I/O pins. This feature not only decreases the package size, but also helps eliminate external logic in bus-oriented memory systems.

These memories may be operated in a DC standby mode for reductions of as much as 84% of the normal power dissipation. Data can be retained with a power supply as low as 1.5 volts. The low power Am91L11 series offer reduced power dissipation during normal operating conditions and even lower dissipation in the standby mode.

The Chip Enable input control signals act as high order address lines and they control the write amplifier and the output buffers. The Output Disable signal provides independent control over the output state of enabled chips.

These devices are fully static and no refresh operations, sense amplifiers or clocks are required. Input and output signal levels are identical to TTL specifications, providing simplified interfacing and high noise immunity. The outputs will drive two full TTL loads for increased fan-out and better bus interfacing capability.

MAXIMUM RATINGS above which the useful life may be impaired

.

Storage Temperature	65°C to +150°C
Ambient Temperature Under Bias	55°C to +125°C
VCC With Respect to VSS, Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V
Power Dissipation	1.0W

ELECTRICAL CHARACTERISTICS

ELECIAN Am9111PC Am91L11PC Am2111	CAL CHARACTERIS T _A = 0°C to +70°C V _{CC} = +5.0V ±5%	51105		Am9111/ Am91L11 Family		Am2111 Family			
Parameters	Description		Test Cond	litions	Min.	Max.	Min.	Max.	Units
				1 _{OH} = -200µA	2.4			Volts	
Voн	Output HIGH Voltage	V _{CC} = MIN.		I _{OH} =150μA			2.2		VOIts
	· · · · · · · · ·			IOL = 3.2mA		0.4			Volts
VOL	Output LOW Voltage	$V_{CC} = MIN.$		IOL ≈ 2.0mA				0.45	VOIts
VIH	Input HIGH Voltage			2.0	Vcc	2.2	Vcc	Volts	
VIL	Input LOW Voltage				-0.5	0.8	-0.5	0.65	Volts
LI	Input Load Current	V _{CC} = MAX., 0		10		10	μA		
				V _{OUT} = V _{CC}		5.0		15	
1LO	I/O Leakage Current	VCE = VIH		V _{OUT} = 0.4V		-10		-50 ^µ	μA
				Am9111A/B		50		60	
lass			T _A = 25° C	Am9111C/D/E		55	1		
ICC1			1A 23 0	Am91L11A/B		31	1		
		Data out open		Am91L11C		34			0
	Power Supply Current	V _{CC} = Max. V _{IN} = V _{CC}		Am9111A/B		55			mA
lass			T _A ≈ 0° C	Am9111C/D/E		60	1		
·CC2	ICC2 .			Am91L11A/B		33	1	70	
				Am91L11C		36	1		

ELECTRICAL CHARACTERISTICS

Am9111DM Am91L11DM	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V \pm 10\%$				Am91L11 Family				
Parameters	Description		Test Condi	tions	Min.	Max.	Units		
Vau	Output HIGH Voltage	V _{CC} = 4.75V		V _{CC} = 4.75V	2.4		Malta		
VOH	output mon voltage	10H200#A		V _{CC} = 4.5V	2.2		Volts		
V _{OL}	Output LOW Voltage	V _{CC} = MIN., I _O	L = 3.2mA			0.4	Volts		
VIH	Input HIGH Voltage				2.0	Vcc	Volts		
VIL	Input LOW Voltage				-0.5	0.8	Volts		
ILI	Input Load Current	V _{CC} = MAX., 0		10	μA				
ILO	Output Leakage Current	VCE = VIH		V _{OUT} = V _{CC}		10	μA		
				-10	μ., ι				
			τ _Δ = 25°C	Am9111A/Am9111B		50			
ICC1				Am9111C		55			
				Am91L11A/Am91L11B		31			
	Power Supply Current	Data out open V _{CC} = Max.		Am91L11C		34	mA		
	Power Supply Current	$V_{IN} = V_{CC}$		Am9111A/Am9111B		60			
loop			Τ _Δ =55°C	Am9111C		65]		
ICC3			'A	Am91L11A/Am91L11B		37]		
				Am91L11C		40]		

Am9111/

CAPACITANCE

Parameters	Description	Test Conditions		Тур.	Max.	Units	
C _{IN}	Input Capacitance, V _{IN} = 0V		Am2111	4.0	8.0	_	
	mpur capacitance, v IN - 0v	T _Δ = 25°C, f = 1 mHz	Am9111/Am91L11	3.0	6.0	pF	
COUT	Output Capacitance, VOUT = 0V	$1_{A} = 25 C, t = 1 \text{ mHz}$	Am2111	10	15	- 5	
			Am9111/Am91L11	8.0	11	- pF	

.

SWITCHING CHARACTERISTICS over operating temperature and voltage range

Output Load = 1 TTL Gate + 100pF	$T_A = 0$ to 70°C	$V_{CC} = +5V \pm 5\%$
Transition Times = 10ns	$T_A = -55 \text{ to } +125^{\circ}\text{C}$	$V_{CC} = +5V \pm 10\%$
Input Levels, Output References = 0.8V and 2.0	V	

		2111		2111-2		2111-1		9111A 91L11A		9111B 91L11B		9111C 91L11C		9111D		
Parameters	Description	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Мах	Min	Мах	Min	Max	Units
t _{RC}	Read Cycle Time	1000		650		500		500		400		300		250		ns
t _A	Access Time		1000		650		500		500		400		300		250	ns
^t co	Chip Enable to Output ON Delay (Note 1)		800		400		350		200		175		150		125	ns
t _{od}	Output Disable to Output ON Delay		700		350		300		175		150		125		100	ns
^t он	Previous Read Data Valid with Respect to Address Change	0		0		0		40		40		40		30		ns
t _{DF1}	Output Disable to Output OFF Delay	0	200	0	150	0	150	5.0	125	5.0	100	5.0	100	5.0	75	ns
t _{DF2}	Chip Enable to Output OFF Delay	0	200	0	150	0	150	10	150	10	125	10	125	10	100	ns
twc	Write Cycle Time	1000		650		500		500		400		300		250		ns
t _{AW}	Address Set-up Time	150		150		100	ļ	0		0		0		0		ns
t _{WP}	Write Pulse Width	750		400		300		175		150		125		100		ns
^t cw	Chip Enable Set-up Time (Note 1)	900		550		400		175		150		125		100		ns
twn	Address Hold Time	50		50		50		0		0		0		0		ns
t _{DW}	Input Data Set-up Time	700		400		280		150		125		100		85		ns
^t DH	Input Data Hold Time	100		100		100		0		0		0		0		ns

بالتعادية بسلس

Note: 1. Both CE1 and CE2 must be LOW to enable the chip.

SWITCHING WAVEFORMS

WRITE CYCLE

4

4-9

DEFINITION OF TERMS

FUNCTIONAL TERMS

CE1, **CE2** Chip Enable Signals. Read and Write cycles can be executed only when both **CE1** and **CE2** are LOW.

.

WE Active LOW Write Enable. Data is written into the memory if WE is LOW and read from the memory if WE is HIGH.

Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.

N-Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

t_{OD} Output enable time. Delay time from falling edge of OD to output on,

 t_{RC} Read Cycle Time. The minimum time required between successive address changes while reading.

 t_A Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.

 $t_{\mbox{CO}}$ Access Time from Chip Enable. The minimum time during which the chip enable must be LOW prior to reading data on the output.

 t_{OH} Minimum time which will elapse between change of address and any change of the data output.

 $t_{\mbox{DF1}}$ Time delay between output disable HIGH and output data float.

 $t_{\mbox{\rm DF2}}$ Time delay between chip enable OFF and output data float.

 t_{WC} Write Cycle Time. The minimum time required between successive address changes while writing.

 t_{AW} Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.

 t_{WP} The minimum duration of a LOW level on the write enable guaranteed to write data.

 t_{WR} Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.

 t_{DW} Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.

 $t_{\mbox{DH}}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.

 t_{CW} Chip Enable Time during Write. The minimum duration of a LOW level on the Chip Select prior to the rising edge of \overline{WE} to guarantee writing.

POWER DOWN STANDBY OPERATION

- - . .

The Am9111/Am91L11 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering V_{CC} to around 1.5–2.0 volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup pewer supply system, or, in a

large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.

To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at V_{IH} or V_{CES} during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test	Min.	Тур.	Max.	Units		
V _{PD}	V _{CC} in Standby Mode				1.5			
			VPD = 1.5V	Am91L11		11	25	
		T _A ≈ 0°C All Inputs = V _{PD}	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Am9111		13	31	
			V _{PD} = 2.0V	Am91L11		13	31	mA
Inc	IPD ICC in Standby Mode			Am9111		17	41	
	ICC III Standby Mode		V _{PD} = 1.5V V _{PD} = 2.0V	Am91L11		11	28	mA
		T _A = -55°C All Inputs = V _{PD}		Am9111		13	34	
				Am91L11		13	34	
				Am9111		17	46	
dv/dt	Rate of Change of V _{CC}						1.0	V/µs
^t R	Standby Recovery Time				TRC			ns
tCP	Chip Deselect Time				0			ns
VCES	CE Bias in Standby				VPD			Volts

Metallization and Pad Layout

Am9111 FAMILY - APPLICATION INFORMATION

These memory products provide all of the advantages of AMD's other static N-channel memory circuits: +5 only power supply, all TTL interface, no clocks, no sensing, no refreshing, military temperature range available, low power versions available, high speed, high output drive, etc. In addition, the Am9111 series features a 256 x 4 organization with common pins used for both Data In and Data Out signals.

- - - -

This bussed I/O approach cuts down the package pin count allowing the design of higher density memory systems. It also provides a direct interface to bus-oriented systems, eliminating bussing logic that could otherwise be required. Most microprocessor systems, for example, transfer information on a bidirectional data bus. The Am9111 memories can connect directly to such a processor since the common I/O pins act as a bidirectional data bus.

The Output Disable control signal is provided to prevent signal contention for the bus lines, and to simplify tri-state bus control in the external circuitry. If the chip is enabled and the output is enabled and the memory is in the Read state, then the output buffers will be impressing data on the bus lines. At that point, if the external system tries to drive the bus with data, in preparation for a write operation, there will be conflict for domination of the bus lines. The Output Disable signal allows the user direct control over the output buffers, independent of the state of the memory. Although there are alternative ways to resolve the conflict, normally Output Disable will be held high during a write operation.

ORDERING INFORMATION

Ambient Temperature	Package	Power Type	Access Times								
Specification	Туре		1000ns	650ns	500ns	400ns	300ns	250ns			
	Molded DIP	Standard	P2111	P2111-2	P2111-1 AM9111APC	AM9111BPC	AM9111CPC	AM9111DPC			
0 to +70°C		Low			AM91L11APC	AM91L11BPC	AM91L11CPC				
	Hermetic DIP	Standard	C2111	C2111-2	C2111-1 AM9111ADC	AM9111BDC	AM9111CDC	AM9111DDC			
		Low			AM91L11ADC	AM91L11BDC	AM91L11CDC				
-55 to +125°C	Hermetic DIP	Standard			AM9111ADM	AM9111BDM	AM9111CDM				
-5510 + 125 C	riemietic DIP	Low			AM91L11ADM	AM91L11BDM	AM91L11CDM				

Am9112/Am91L12 Family

Part Number	Am2112	Am2112-2	Am9112A Am91L12A	Am9112B Am91L12B	Am9112C Am91L12C	Am9112D
Access Time	1000ns	650ns	500ns	400ns	300ns	250ns

DISTINCTIVE CHARACTERISTICS

- 256 x 4 organization
- 16-pin standard DIP
- Low operating power dissipation 125mW typ; 290mW maximum – standard power 100mW typ; 175mW maximum – low power
- DC standby mode reduces power up to 84% 20mW Typ; 47mW maximum
- Logic voltage levels identical to TTL.
- High output drive two full TTL loads guaranteed
- High noise immunity full 400mV
- Uniform switching characteristics access times insensitive to supply variations, address patterns and data patterns
- Single +5V power supply tolerances ±5% commercial, ±10% military
- Bus-oriented I/O data
- Zero address, setup and hold times guaranteed for simpler timing
- Direct plug-in replacement for 2112 type devices
- 100% MIL-STD-883 reliability assurance testing

Am9112 BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

.

The Am9112/Am91L12 series of products are high performance, low power, 1024-bit, static read/write random access memories. They offer a range of speeds and power dissipations including versions as fast as 200ns and as low as 100mW typical.

Each memory is implemented as 256 words by 4-bits per word. This organization allows efficient design of small memory systems and permits finer resolution of incremental memory word size relative to 1024 by 1 devices. The output and input data signals are internally bussed together and share 4 common I/O pins. This feature keeps the package size small and provides a simplified interface to bus-oriented systems.

The Am9112/Am91L12 memories may be operated in a DC standby mode for reductions of as much as 84% of the normal operating power dissipation. Though the memory cannot be operated, data can be retained in the storage cells with a power supply as low as 1.5 volts. The Am91L12 versions offer reduced power during normal operating conditions as well as even lower dissipation in standby mode.

The eight Address inputs are decoded to select 1-of-256 locations within the memory. The Chip Enable input acts as a high-order address in multiple chip systems. It also controls the write amplifier and the output buffers in conjunction with the Write Enable input. When \overrightarrow{CE} is low and \overrightarrow{WE} is high, the write amplifiers are disabled, the output buffers are enabled and the memory will execute a read cycle. When \overrightarrow{CE} is low and \overrightarrow{WE} is low, the write amplifiers are disabled and the memory will execute a write cycle. When \overrightarrow{CE} is high both the write amplifiers are disabled and the memory will execute a write cycle. When \overrightarrow{CE} is high both the write amplifiers are disabled.

These memories are fully static and require no refresh operations or sense amplifiers or clocks. All input and output voltage levels are identical to standard TTL specifications, including the power supply.

Am9112/Am91L12 Family

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	-55°C to +125°C
VCC With Respect to VSS, Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V
Power Dissipation	1.0W

· · · · - - -

ELECTRICAL CHARACTERISTICS

ELECTRIC	AL CHARACTERISTIC	S			Am9 [.]	112/	
Am9112PC, Ar	~ ~				Am91		
Am91L12PC, A	$V_{CC} = +5V \pm$	5%			Fam	nily	
Parameters	Description		Test Cond	litions	Min.	Max.	Units
V _{OH}	Output HIGH Voltage	V _{CC} = MIN., I _C	H = -200μA		2.4		Volts
VOL	Output LOW Voltage	V _{CC} = MIN., I _C	L = 3.2mA			0.4	Volts
VIH	Input HIGH Voltage				2.0	Vcc	Volts
VIL	Input LOW Voltage			-0.5	0.8	Volts	
ILI I	Input Load Current	V _{CC} = MAX., 0	$V \leq V_{IN} \leq 5.25 V$		10	μA	
1.0	I/O Leakage Current	VCE = VIH	V _{OUT} = V _{CC}			5.0	μA
LO	1/O Leakage Current	VCE - VIH	V _{OUT} ≈ 0.4 V			10	μ
			T _A = 25°C	Am9112A/B		50	
ICC1				Am9112C/D/E		55	
			· A	Am91L12A/B		31	1
	Power Supply Current	Data out open V _{CC} = MAX.		Am91L12C		34	mA
	Tower Suppry Content	$V_{IN} = V_{CC}$		Am9112A/B		55	
I _{CC2}			T _A = 0°C	Am9112C/D/E		60	
-002				Am91L12A/B		33	
				Am91L12C		36	

ELECTRICAL CHARACTERISTICS

Am9112DM Am91L12DM	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0 \text{ V} \pm 10\%$				Am9 Am9 Fan	1L12	
Parameters	Description		Test Con	ditions	Min.	Max.	Units
N	Output HIGH Voltage	I _{ОН} = -200µА	V _{CC} = 4.75 V		2.4		Volts
Voн	Output HIGH Voltage	10H200#A	V _{CC} = 4.50V		2.2		
VOL	Output LOW Voltage	V _{CC} = MIN., IOL	= 3.2mA			0.4	Volts
VIH	Input HIGH Voltage				2.0	Vcc	Volts
VIL	Input LOW Voltage				-0.5	0.8	Volts
1LI	Input Load Current	V _{CC} = MAX., 0\	/ ≤ V _{IN} ≤ 5.5 V			10	μA
	1/0.1	<u> </u>	V _{OUT} = V _{CC}			10	μA
110	I/O Lcakage Current	VCE = VIH	V _{OUT} = 0.4 V			-10] "~
				Am9112A/B		50	
lage			T _A = 25°C	Am9112C		55	1
ICC1			14 - 25 0	Am91L12A/B		31	
	Power Supply Current	Data out open V _{CC} = MAX.		Am91L12C		34	mA
	Fower Suppry Current	$V_{IN} = V_{CC}$		Am9112A/B		60	
laan			T _A =55°C	Am9112C		65]
ICC3				Am91L12A/B		37]
				Am91L12C		40]

CAPACITANCE

Parameters	Description	Test Conditions		Тур.	Max.	Units
Con	Input Capacitance, V _{IN} = 0V		Am2112	4.0	8.0	
CIN	input Capacitance, VIN - UV	T _Δ = 25°C, f = 1 mHz	Am9112/Am91L12	3.0	6.0	pF
Court	Output Capacitance, VOUT = 0V	$T_A = 25 \text{ C}, f = 1 \text{ mHz}$	Am2112	10	18	-5
COUT	Sutput Capacitance, VOUT - UV		Am9112/Am91L12	8.0	11	pF

SWITCHING CHARACTERISTICS over operating temperature and voltage range

Output Load = 1 TTL Gate +100pF

Transition Times = 10ns

Input Levels, Output References = 0.8V and 2.0V

			112A IL12A		112B 1L12B		112C	Am9	0112D	
Parameters	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{RC}	Read Cycle Time	500		400		300		250		ns
t _A	Access Time		500		400		300		250	ns
tco	Output Enabled to Output ON Delay (Note 1)	5.0	175	5.0	150	5.0	125	5.0	100	ns
^t он	Previous Read Data Valid with Respect to Address Change	40		40		40		30		ns
t _{DF}	Output Disabled to Output OFF Delay (Note 2)	5.0	125	5.0	100	5.0	100	5.0	75	ns
twc	Write Cycle Time	500		400		300		250		ns
t _{AW}	Address Set-up Time	0	1	0	1	0		0		ns
t _{WR}	Address Hold Time	0		0		0		0		ns
twp	Write Pulse Width (Note 3)	175		150		125		100		ns
tcw	Chip Enable Set-up Time	175		150		125		100		ns
tow	Input Data Set-up Time	150		125		100		85		ns
t _{DH}	Input Data Hold Time (Note 4)	0		0		0	1	0		ns

Notes: 1. Output is enabled and $t_{\mbox{CO}}$ commences only with both $\overline{\mbox{CE}}$ LOW and $\overline{\mbox{WE}}$ HIGH.

- 2. Output is disabled and t_{DF} defined from either the rising edge of \overline{CE} or the falling edge of \overline{WE} .
- 3. Minimum twp is valid when CE has been HIGH at least top before WE goes LOW. Otherwise twp(min.) = tDW(min.) + tDF(max.)
- 4. When WE goes HIGH at the end of the write cycle, it will be possible to turn on the output buffers if CE is still LOW. The data out will be
- the same as the data just written and so will not conflict with input data that may still be on the I/O bus.
- 5. See "Application Information" section of this specification.

Am9112/Am91L12 Family

DEFINITION OF TERMS

FUNCTIONAL TERMS

 \overline{CE} Active LOW Chip Enable. Data can be read from or written into the memory only if \overline{CE} is LOW.

 \overline{WE} Active LOW Write Enable. Data is written into the memory if \overline{WE} is LOW and read from the memory if \overline{WE} is HIGH.

Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.

N-Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

 t_{RC} Read Cycle Time. The minimum time required between successive address changes while reading.

 t_A Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.

 t_{CO} Output Enable Time. The time during which \overline{CE} must be LOW and \overline{WE} must be HIGH prior to data on the output.

 t_{OH} Minimum time which will elapse between change of address and any change on the data output.

 t_{DF} Time which will elapse between a change on the chip enable or the right enable and on data outputs being driven to a floating status.

t_{WC} Write Cycle Time. The minimum time required between successive address changes while writing.

 t_{AW} Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.

 $t_{\mbox{WP}}$ The minimum duration of a LOW level on the write enable guaranteed to write data.

 t_{WR} Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady. t_{DW} Data Set-up Time. The minimum time that the data input

must be steady prior to the rising edge of the write enable.

 t_{DH} Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.

 t_{CW} Chip Enable Time During Write. The minimum duration of a LOW level on the Chip Select while the write enable is LOW to guarantee writing.

POWER DOWN STANDBY OPERATION

. _ _ _

The Am9112/Am91L12 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering V_{CC} to around 1.5-2.0 volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.

To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at VIH or VCES during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test	t Conditions		Min.	Тур.	Max.	Units
V _{PD}	V _{CC} in Standby Mode				1.5			
			VPD = 1.5V	Am91L12		11	25	
		T _A = 0°C	100	Am9112		13	31	mA
		All Inputs ≃ VPD	VPD = 2.0V	Am91L12		13	31	
lan.	ICC in Standby Mode		100 2.00	Am9112		17	41	
IPD	ICC III STRUDDY MODE		VPD = 1.5V	Am91L12		11	28	
		T _A = -55°C	VPD 1.0V	Am9112		13	34	
		All Inputs = VPD	VPD = 2.0V	Am91L12		13	34	mA
			100 2.00	Am9112		17	46	
dv/dt	Rate of Change of V _{CC}		• · · · · · · · · · · · · · · · · · · ·				1.0	V/µs
t _R	Standby Recovery Time				^t RC			ns
tCP	Chip Deselect Time				0	_		ns
V _{CES}	CE Bias in Standby				VPD			Volts

30

25

20

15

10

5

0

0 1 2 3 4

lcc - mA

τ_A = 25°C

Am9112

INPUTS = 5.0

Typical Power Supply Current Versus Voltage

Typical Output Current Versus Voltage

V_{CC} = 4.75V

Metallization and Pad Layout

Access Time Versus V_{CC} Normalized to V_{CC} = +5.0 Volts

VCC - VOLTS

Typical Power Supply Current Versus Ambient Temperature

MOS-359

APPLICATION INFORMATION

These memory products provide all of the advantages of AMD's other static N-channel memory circuits: +5 only power supply, all TTL interface, no clocks, no sensing, no refreshing, military temperature range available, low power versions available, high speed, high output drive, etc. In addition, the Am9112 series features a 256 x 4 organization with common pins used for both Data In and Data Out signals.

This bussed I/O approach keeps the package pin count low allowing the design of higher density memory systems. It also provides a direct interface to bus-oriented systems, eliminating bussing logic that could otherwise be required. Most microprocessor systems, for example, transfer information on a bidirectional data bus. The Am9112 memories can connect directly to such a processor since the common I/O pins act as a bidirectional data bus.

If the chip is enabled (\overline{CE} low) and the memory is in the Read state (\overline{WE} high), the output buffers will be turned on and will be driving data on the I/O bus lines. If the external system tries to drive the bus with data, there may be contention for control of the data lines and large current surges can result. Since the condition can occur at the beginning of a write cycle, it is important that incoming data to be written not be entered until the output buffers have been turned off. These operational suggestions for write cycles may be of some help for memory system designs:

- 1. For systems where \overline{CE} is always low or is derived directly from addresses and so is low for the whole cycle, make sure twp is at least tDW + tDF and delay the input data until tDF following the falling edge of \overline{WE} . With zero address set-up and hold times it will often be convenient to make \overline{WE} a cycle-width level (twp = twc) so that the only subcycle timing required is the delay of the input data.
- 2. For systems where \overline{CE} is high for at least t_{DF} preceeding the falling edge of \overline{WE} , t_{WP} may assume the minimum specified value. When \overline{CE} is high for t_{DF} before the start of the cycle, then no other subcycle timing is required and \overline{WE} and data-in may be cycle-width levels.
- 3. Notice that because both CE and WE must be low to cause a write to take place, either signal can be used to determine the effective write pulse. Thus, WE could be a level with CE becoming the write timing signal. In such a case, the data set-up and hold times are specified with respect to the rising edge of CE. The value of the data set-up time remains the same and the value of the data hold time should change to a minimum of 25ns.

Ambient Temperature	Package	Power		Access Times							
Specification	Type	Туре	1000ns	650ns	500ns	400ns	300ns	250ns			
	Molded DIP	Standard	P2112	P2112-2	AM9112APC	AM9112BPC	AM9112CPC	AM9112DPC			
0 to +70°C	WOIDED DIF	Low			AM91L12APC	AM91L12BPC	AM91L12CPC				
010 +70 C	Hermetic DIP	Standard	C2112	C2112-2	AM9112ADC	AM9112BDC	AM9112CDC	AM9112DDC			
	Hermenc Dir	Low			AM91L12ADC	AM91L12BDC	AM91L12CDC				
-55 to +125°C	Hermetic DIP	Standard			AM9112ADM	AM9112BDM	AM9112CDM				
-55 10 + 125 C	nemetic DIP	Low			AM91L12ADM	AM91L12BDM	AM91L12CDM				

Am9122/Am91L22 256 x 4 Static R/W RAMS

25 35 Maximum Access Time (ns) 35 45 60 0 to 70°C 120 120 80 80 45 Maximum Operating Current (mA) -55 to 125°C 135 N/A N/A 90 N/A

Am9122/91L22

MAXIMUM RATINGS (Above which the useful life may be impaired)

. . .

Storage Temperature	−65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential (Pin 10 to Pin 9) Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs	-0.5 to +7.0V
DC Input Voltage	-0.5 to +7.0V
Power Dissipation	1.0W
DC Output Current	20mA

OPERATING RANGE

Part Number	Ambient Temperature	Vcc
Am9122 DC/PC Am91L22 DC/PC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	+5.0V ± 10%
Am9122 DM Am91L22 DM	-55°C ≤ T _A ≤ +125°C	+5.0V ± 10%

ELECTRICAL CHARACTERISTICS over the operating temperature range unless otherwise specified (Note 1)

				Am91I	_22-60		-22-35 -22-45		22-25 22-35	
Parameters	Description	Test Condit	ions	Min	Max	Min	Max	Min	Мах	Units
V _{OH}	Output HIGH Voltage	V _{CC} = Min	$I_{OH} = -5.2 \text{mA}$	2.4		2.4		2.4		Volts
V _{OL}	Output LOW Voltage	V _{CC} = Min	l _{OL} = 8.0mA		0.4		0.4		0.4	Volts
VIH	Input HIGH Voltage			2.1	Vcc	2.1	Vcc	2.1	Vcc	Volts
VIL	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	Volts
կլ	Input LOW Current	V _{CC} = Max, V _{IN} = Gnd			10		10		10	μA
Iн	Input HIGH Current	$V_{CC} = Max, V_{IN} = V_{CC}$			10		10		10	μA
V _{CD}	Input Diode Clamp Voltage				Note 4		Note 4		Note 4	Volts
IOFF	Output Current (High-Z)	VoL ≤ VoUT ≤ VoH Output Disabled	T _A = Max	-50	50	-50	50	-50	50	μA
	Output Short Circuit Current	V _{CC} = Max	Commercial		-70		-70		-70	mA
los	Note 3	V _{OUT} = GND	Military		-80		-80		-80	mA
			$T_A = 70^{\circ}C$		40		70		110	mA
lcc	Power Supply Current	V _{CC} = Max, I _{OUT} = 0mA	$T_A = 0^{\circ}C$		45		80		120	mA
			$T_A = -55^{\circ}C$		N/A		90		135	mA

CAPACITANCE

Parameters	Description	Test Conditions	Тур	Max	Units
C _{IN}	Input Capacitance, V _{IN} = 0V	T _A = 25°C, f = 1MHz	3	5	pF
COUT	Output Capacitance, V _{OUT} = 0V	$V_{CC} = 4.5V$	5	8	P.

Notes: 1. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. A two minute warm up period is required for -55°C operation.

2. t_w measured at t_{wsa} = min; t_{wsa} measured at t_w = min. 3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

4. The NMOS process does not provide a clamp diode. However, the Am9122/91L22 is insensitive to -3V DC input levels and -5V undershoot pulses of less than 10ns (measured at 50% point).

5. Test conditions assume signal transition times of 10ns or less, timing reference levels of 1.5V and output loading of the specified IOL/IOH and 30pF load capacitance as in Figure 1a.

6. Transition is measured at V_{OH} -500mV or V_{OL} +500mVlevels on the output from 1.5V level on the input with load shown in Figure 1b.

SWITCHING CHARACTERISTICS over operating and voltage range (Note 5)

Parameters	Description	Test Conditions	Am91 Min	22-25 Max		L22-35 22-35 Max	Am91l Min	.22-45 Max	Am91I Min		.22-60 Max Units	
tACS	Chip Select Time			15	 	25		30	 	35	ns	
t _{ZRCS}	Chip Select to High-Z	(Note 6)		20		30		30		35	ns	
t _{AOS}	Output Enable Time			15		25	1	30		35	ns	
tzROS	Output Enable to High-Z	(Note 6)		20		30		30		35	ns	
t _{AA}	Address Access Time			25		35		45		60	ns	
tzws	Write Disable to High-Z	(Note 6)		20		30		35		40	ns	
t _{WR}	Write Recovery Time			20		25		40		45	ns	
tw	Write Pulse Width	(Note 2)	15		25		30		40		ns	
twsp	Data Setup Time Prior to Write		5		5		5		5		ns	
t _{WHD}	Data Hold Time After Write		5		5		5		5		ns	
twsa	Address Setup Time	(Note 2)	5		5		10		10		ns	
twha	Address Hold Time		5		5		5		5		ns	
twscs	Chip Select Setup Time		5		5		5		5		ns	
twhcs	Chip Select Hold Time		5		5		5		5		ns	

			LC	DGIC TABLE		
Inputs						
ŌE	CS ₁	CS ₂	WE	D ₀ -D ₃	Outputs	Mode
х	н	x	x	x	High Z	Not Selected
х	х	L	x	x	High Z	Not Selected
L	L	н	н	x	O ₀ -O ₃	Read Stored Data
х	L	н	L	L	High Z	Write "0"
х	L	н	L	н	High Z	Write "1"
н	L	н	н	x	High Z	Output Disabled
н	L	н	L	L	High Z	Write "0" (Output Disabled
н	L	н	L	н	High Z	Write "1" (Output Disabled

Notes: H = HIGH Voltage L = LOW Voltage

X = Don't Care (HIGH or LOW) High Z = High Impedance

Address Designators					
External	Internal				
A ₀	Ao				
A ₁	A ₁				
A ₂	A ₂				
A ₃	A ₃				
A ₄	A4				
A ₅	A5				
A ₆	A ₆				
A ₇	A7				

BIT MAP

Am9122/91L22

TYPICAL DC AND AC CHARACTERISTICS

RAM-024

9122-25 Order Code	9122-35 Order Code	91L22-35 Order Code	91L22-45 Order Code	91L22-60 Order Code	Package Type	Screening Level	Operating Range							
Am9122-25PC	Am9122-35PC	Am91L22-35PC	Am91L22-45PC	Am91L22-60PC	P-22	C-1	С							
Am9122-25DC	Am9122-35DC	Am91L22-35DC	Am91L22-45DC	Am91L22-60DC	D-22	C-1	С							
N/A	Am9122-35DM	N/A	Am91L22-45DM	N/A	D-22	C-3	М							

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pack. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B. 3. See Operating Range Table.

Am21L41 4096 x 1 Static R/W Random Access Memory

Am21L41

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	0 to 70°C
VCC with Respect to VSS	-0.5 to +7.0V
All Signal Voltages with Respect to VSS	-1.5 to +7.0V
Power Dissipation (Package Limitation)	1.2W
DC Output Current	20mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VSS	VCC
Am21L41 PC/DC	$0^{\circ}C \leq T_A \leq +70^{\circ}C$	٥V	+5.0V ± 10%

ELECTRICAL CHARACTERISTICS over operating range (Note 1)

				Am21	L41-12	Am21 Am21		
Parameter	Description	Test Con	Min	Max	Min	Max	Units	
IOH	Output High Current	VOH = 2.4V	VCC = 4.5V	-4		-4		mA
IOL	Output Low Current	VOL = 0.4V	T _A = 70°C	8		8		mA
VIH	Input High Voltage			2.0	6.0	2.0	6.0	Volts
VIL	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	VSS ≤ VI ≤ VCC			10		10	μA
IOZ	Output Leakage Current	$GND \le VO \le VCC$ Output Disabled	T _A = 70°C	-10	10	-10	10	μΑ
IOS	Output Short Circuit Current	$GND \le VO \le VCC$ (Note 2)	0 to +70°C	-120	120	-120	120	mA
CI	Input Capacitance (Note 1)	Test Frequency = 1.0	OMHz		5.0		5.0	-F
со	Output Capacitance (Note 1)	$T_A = 25^{\circ}C$, All pins at	VO		6.0		6.0	- pF
ICC	VCC Operating Supply Current	Max VCC, CS ≤ VIL	$T_A = 0^{\circ}C$		55		40	mA
ISB	Automatic CS Power Down Current	$\begin{array}{l} \mbox{Max VCC,} \\ (\overline{CS} \ge \mbox{VIH}) \mbox{ (Note 5)} \end{array}$			10		5.0	mA

Notes:

- 1. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
- 2. Short circuit test duration should not exceed 30 seconds.
- 3. Test conditions assume signal transition times of 10ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.5V and output loading of the specified IOL/IOH and $C_L = 30$ pF load capacitance (reference Figure 1.).
- 4. The internal write time of the memory is defined by the overlap of CS low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- A pull up resistor to VCC on the CS input is required to keep the device deselected during VCC power up otherwise ISB will exceed values given.
- 6. Chip deselected greater than 55ns prior to selection.
- 7. Chip deselected less than 55ns prior to selection.
- At any given temperature and voltage condition, tHZ is less than tLZ for all devices. Transition is measured at VOH --500mV and VOL +500mV levels on the output from 1.5V level on the input with load shown in Figure 1 using CL = 5pF.

9. WE is high for read cycle.

10. Device is continuously selected, $\overline{CS} = VIL$.

11. Address valid prior to or coincident with CS transition low.

Am21L41-15

SWITCHING CHARACTERISTICS over operating range (Note 3)

			Am21	L41-12	Am21	L41-15	Am21	L41-20	Am21	L41-25	
Parameter	Description		Min	Max	Min	Max	Min	Max	Min	Max	Units
Read Cycl	e										
tRC	Address Valid to Address Do Not Care Time (Read Cycle Time)		120		150		200		250		ns
tAA	Address Valid to Data Out Valid Delay (Address Access Time)			120		150		200		250	ns
tASC1	Chip Select Low to Data Out Valid	Note 6		120		150		200		250	ns
tASC2	Chip Select Low to Data Out Valid	Note 7		130		160		200		250	ns
tLZ	Chip Select Low to Data Out On	Note 8	10		10		10		10		ns
tHZ	Chip Select High to Data Out Off	Note 8	0	60	0	60	0	60	0	60	ns
tOH	Address Unknown to Data Out Unknown Time		10		10		10		10		ns
tPD	Chip Select High to Power Low Delay			60		60		60		60	ns
tPU	Chip Select Low to Power High Delay		0		0		0		0		ns
Write Cycl	e					·	•	·			
tWC	Address Valid to Address Do Not Care Time (Write Cycle Time)		120		150		200		250		ns
tWP	Write Enable Low to Write Enable High Time	Note 4	60		60		60		75		ns
tWR	Write Enable High to Address Do Not Care Time		10		15		20		20		ns
tWZ	Write Enable Low to Data Out Off Delay	Note 8	0	70	0	80	0	80	0	80	ns
tDW	Data in Valid to Write Enable High Time		.50		60		60		75		ns
tDH	Write Enable Low to Data In Do Not Care Time		10		10		10		10		ns
tAS	Address Valid to Write Enable Low Time		0		0		0		0		ns
tCW	Chip Select Low to Write Enable High Time	Note 4	110		135		180		230		ns
tOW	Write Enable High to Output Turn On	Note 8	0		0		0		0		ns
tAW	Address Valid to End of Write		110		135		180		230		ns

Am21L41

4-28

TYPICAL DC AND AC CHARACTERISTICS

4-29

.

ORDERING INFORMATION

Am21L41-12 Order Code	Am21L41-15 Order Code	Am21L41-20 Order Code	Am21L41-25 Order Code	Package Type	Screening Level	Operating Range
Am21L41-12PC	Am21L41-15PC	Am21L41-20PC	Am21L41-25PC	P-18-1	C-1	С
Am21L41-12DC	Am21L41-15DC	Am21L41-20DC	Am21L41-25DC	D-18-1	C-1	С

Notes: 1. P = Molded DIP, D = Hermetic DIP. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
3. See Operating Range Table.

Am9044 • Am9244 4096 x 1 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS GENERAL DESCRIPTION The Am9044 and Am9244 are high performance, static, N- LOW OPERATING POWER (MAX) Am9044/Am9244 385mW (70mA) Channel, read/write, random access memories organized as Am90L44/Am92L44 275mW (50mA) 4096 x 1. Operation is from a single 5V supply, and all input/ LOW STANDBY POWER (MAX) output levels are identical to standard TTL specifications. Low Am92L44 110mW (20mA) power versions of both devices are available with power sav- Access times down to 200ns (max) ings of about 30%. The Am9044 and Am9244 are the same · Military temperature range available to 250ns (max) except that the Am9244 offers an automatic CS power down Am9044 is a direct plug-in replacement for 4044 feature. · Am9244 pin and function compatible with Am9044 and The Am9244 remains in a low power standby mode as long 4044 plus CS power down feature as CS remains high, thus reducing its power requirements. Fully static – no clocking The Am9244 power decreases from 385mW to 165mW in the Identical access and cycle time standby mode, and the Am92L44 from 275mW to 110mW. The High output drive – CS input does not affect the power dissipation of the Am9044. 4.0mA sink current @ 0.4V Data readout is not destructive and the same polarity as data TTL identical interface logic levels input. CS provides for easy selection of an individual package 100% MIL-STD-883 reliability assurance testing when the outputs are OR-tied. The outputs of 4.0mA for Am9244 and Am9044 provide increased short circuit current for improved drive. BLOCK DIAGRAM CONNECTION DIAGRAM ¹⁸___ vcc GND ADDRESS 0 18 🗋 VCC ADDRESS 1 17 ADDRESS 6 MEMORY ARRAY 64 ROWS 64 COLUMNS ROW ADDRESS 2 16 ADDRESS 7 ADDRESS 3 15 ADDRESS 8 ADDRESS 4 [5 14 ADDRESS 9 ADDRESS 5 T 6 13 ADDRESS 10 DATA OUT 12 ADDRESS 11 DOUT COLUMN I/O CIRCUITS WRITE ENABLE 11 DATA IN GND (VSS) 10 CHIP SELECT COLUMN SELECT 5 4 14 6 13 A11 A_5 A4 A3 A9 A10 Top View Pin 1 is marked for orientation. MOS-257 MOS-256

Access Times													
Ambient Package Current Am9044 Am9244													
Temperature	Туре	Level	450ns	300ns	250ns	200ns	450ns	300ns	250ns	200ns			
		70mA	AM9044BPC	AM9044CPC	AM9044DPC	AM9044EPC	AM9244BPC	AM9244CPC	AM9244DPC	AM9244EP0			
000 + T 7000	Plastic	Plastic	Plastic	50mA	AM90L44BPC	AM90L44CPC	AM90L44DPC		AM92L44BPC	AM92L44CPC	AM92L44DPC	Í	
$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	Harmatia	70mA	AM9044BDC	AM9044CDC	AM9044DDC	AM9044EDC	AM9244BDC	AM9244CDC	AM9244DDC	AM9244ED			
	Hermetic	50mA	AM90L44BDC	AM90L44CDC	AM90L44DDC		AM92L44BDC	AM92L44CDC	AM92L44DDC				
		90mA	AM9044BDM	AM9044CDM	AM9044DDM		AM9244BDM	AM9244CDM	AM9244DDM				
-55°C ≤ T _A ≤ +125°C	Hermetic	60mA	AM90L44BDM	AM90L44CDM			AM92L44BDM	AM92L44CDM		Í			

Am9044 • Am9244

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	-55°C to +125°C
VCC with Respect to VSS	-0.5V to +7.0V
All Signal Voltages with Respect to VSS	-0.5V to +7.0V
Power Dissipation (Package Limitation)	1.0W
DC Output Current	10mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	vss	VCC	Part Number	Ambient Temperature	VSS	vcc
Am9044DC/PC Am90L44DC/PC Am9244DC/PC Am92L44DC/PC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	οv	+5.0V ±10%	Am9044DM Am90L44DM Am9244DM Am92L44DM	–55°C ≤ T _A ≤ +125°C	ov	+5.0V ±10%

ELECTR	LECTRICAL CHARACTERISTICS over operating range								Ar Ar			
Parameter	Description	Test Conditions				Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		VOH = 2.4V	V	CC = 4.5V	70°C	-1.0			-1.0			
ЮН	Output High Current	VOH = 2.4V	VC	CC = 4.5V	125°C	4			4	-		mA
101	0.4			$T_{A} = +70$	°C	4.0			4.0			
IOL	Output Low Current	VOL = 0.4V		$T_{A} = +12$	5°C	3.2			3.2			mA
УIН	Input High Voltage					2.0		VCC	2.0		VCC	Volts
VIL	Input Low Voltage					-0.5		0.8	-0.5		0.8	Volts
lix	Input Load Current	VSS ≤ VI ≤ VC	С			1		10			10	μA
IOZ	Output Lookage Current	0.4V ≤ VO ≤ V	сс	$T_{A} = +12$	5°C	-50		50	-50		50	
102	Output Leakage Current	Output Disable	d	$T_{A} = +70$	°C	-10		10	-10		10	μA
CI	Input Capacitance (Note 1)	Test Frequency	/ = 1.	0MHz			3.0	5.0		3.0	5.0	- pF
CI/O	I/O Capacitance (Note 1)	$T_A = 25^{\circ}$ C, All pins at 0V					5.0	6.0		5.0	6.0	

ELECTRICAL CHARACTERISTICS over operating range

				Am9	2L44	Am	9244	Am9	0L44	Am	9044	
Parameter	Description	Test Co	nditions	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Units
ICC	VCC Operating	Max. VCC CS ≤ VIL	$T_A = 0^{\circ}C$		50		70		50		70	mA
	Supply Current	for Am9244/92L44	$T_A = -55^{\circ}C$		60		80		60		80	
IPD	Automatic CS Power	Max. V _{CC}	$T_A = 0^{\circ}C$		20		30		-		-	mA
	Down Current	(CS ≥V _{IH})	$T_A = -55^{\circ}C$		22		33		-		-] '''^

Notes:

- 1. Typical values are for $T_A = 25^{\circ}C$, nominal supply voltage and nominal processing parameters.
- 2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
- Test conditions assume signal transition times of 10ns or less, timing reference levels of 1.5V and output loading of one standard TTL gate plus 100pF.
- 4. The internal write time of the memory is defined by the overlap of CS low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 5. Chip Select access time (t_{CO}) is longer for the Am9244 than for the Am9044. The specified address access time will be valid only when Chip Select is low soon enough for t_{CO} to elapse.

Am9044 • Am9244

SWITCHING CHARACTERISTICS over operating range (Note 3)

				044B 244B		044C 244C		044D 244D		044E 0244E	
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Read Cycle				_							
tRC	Address Valid to Address Do Not Care Time (Read Cycle Time)		450		300		250		200		
tA	Address Valid to Data Out Valid Delay (Address Access Time)			450		300		250		200	
tCO	Chip Select Low to Data Out Valid (Note 5)	Am9044		100		100		70		70]
.00		Am9244		450		300		250		200	ns
tCX	Chip Select Low to Data Out On		20		20		20		20]
tOTD	Chip Select High to Data Out Off			100		80		60		60	
tOHA	Address Unknown to Data Out Unknown Tim	ie	20		20		20		20		
Nrite Cycle											
tWC	Address Valid to Address Do Not Care Time (Write Cycle Time)		450		300		250		200		
tW	Write Enable Low to	Am9044	200		150		100		100		1
lvv	Write Enable High Time (Note 4)	Am9244	250	[200		150		150		1
tWR	Write Enable High to Address Do Not Care 1	ime	0		0		0		0		1
tOTW	Write Enable Low to Data Out Off Delay			100		80		60		60	1
tDW	Data In Valid to Write Enable High Time		200	1	150		100		100		1
tDH	Write Enable Low to Data In Do Not Care Ti	me	0		0	<u> </u>	0		0		ns
tAW	Address Valid to Write Enable Low Time		0		0	<u> </u>	0		0	<u> </u>	1
tPD	Chip Select High to Power Low Delay (Am92	44 only)	1	200		150		100		100	1
tPU	Chip Select Low to Power High Delay (Am9244 only)		0		0	<u> </u>	0		0		1
	Chip Select Low to Write Enable High Time Am9044		200		150	<u> </u>	100		100		1
tCW	(Note 4)	Am9244	250		200	<u> </u>	150		150	1	1
tWO	Write Enable High To Output Turn On		1	100		100		70		70	1

- - - - - -

4

MOS-258

ICC

-- -

tPD-

Am9114 • Am9124 1024 x 4 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS

- LOW OPERATING POWER (MAX) Am9124/Am9114 368mW (70mA) 262mW (50mA) Am91L24/Am91L14 LOW STANDBY POWER (MAX)
- 158mW (30mA) Am9124 105mW (20mA) Am91L24
- Access times down to 150ns (max)
- Military temperature range available to 300ns (max)
- Am9114 is a direct plug-in replacement for 2114
- Am9124 pin and function compatible with Am9114 and 2114, plus CS power down feature
- Fully static no clocking
- Identical access and cycle time
- High output drive -4.0mA sink current @ 0.4V - 9124 3.2mA sink current @ 0.4V - 9114
- TTL identical input/output levels
- 100% MIL-STD-883 reliability assurance testing
- Guaranteed 0.1% AQL

A3

A4 A5

A6

A7

48

Δ1

A2

ΔQ

cs

WE vcc vss

BLOCK DIAGRAM ADDRESS BUFFERS STORAGE MATRIX 64 x 16 64 x 16 64 x 16 64 x 16 ROW DECODERS (Am9124 ONLY) A0 -ADDRESS BUFFERS SENSE AMPLIFIERS COLUMN DECODERS (Am9124 ONLY)

1/01

DATA BUFFERS

1/03

1/04

MOS-066

1/02

GENERAL DESCRIPTION

.......

The Am9114 and Am9124 are high performance, static, N-Channel, read/write, random access memories organized as 1024 x 4. Operation is from a single 5V supply, and all input/ output levels are identical to standard TTL specifications. Low power versions of both devices are available with power savings of over 30%. The Am9114 and Am9124 are the same except that the Am9124 offers an automatic CS power down feature.

The Am9124 remains in a low power standby mode as long as CS remains high, thus reducing its power requirements. The Am9124 power decreases from 368mW to 158mW in the standby mode, and the Am91L24 from 262mW to 105mW. The CS input does not affect the power dissipation of the Am9114. (See Figure 1, page 4).

Data readout is not destructive and the same polarity as data input. CS provides for easy selection of an individual package when the outputs are OR-tied. The outputs of 4.0mA for Am9124 and 3.2mA for Am9114 provides increased short circuit current for improved capacitive drive.

Top View Pin 1 is marked for orientation.

MOS-067

ORDERING INFORMATION

			Access Time										
Ambient	Package	ICC Current		Am									
Temperature	Туре	Level	450ns	300ns	200ns	150ns	450ns	Am9124CDM					
	Plastic	Plastic 70mA	Am9114BPC	Am9114CPC	Am9114EPC	Am9114FPC	Am9124BPC	Am9124CPC					
0°C ≤ T _Δ ≤ 70°C	1 10000	50mA	Am91L14BPC	Am91L14CPC	Am91L14EPC		Am91L24BPC	Am9124CPC Am91L24CPC Am9124CDC					
	Hermetic	70mA	Am9114BDC	Am9114CDC	Am9114EDC	Am9114FDC	Am9124BDC	Am9124CDC					
		50mA	Am91L14BDC	Am91L14CDC	Am91L14EDC		Am91L24BDC	Am91L24CDC					
-55°C ≤ T _A ≤	Hermetic	80mA	Am9114BDM	Am9114CDM	Am9114EDM		Am9124BDM	Am9124CDM					
+125°C		60mA	Am91L14BDM	Am91L14CDM			Am91L24BDM	Am91L24CDM					

Am9114/9124

MAXIMUM RATINGS beyond which useful life may be impaired

- ------

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	-55°C to +125°C
V _{CC} with Respect to V _{SS}	-0.5V to +7.0V
All Signal Voltages with Respect to V _{SS}	-3.0 to +7.0V
Power Dissipation (Package Limitation)	1.0W
DC Output Current	10mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	V _{SS}	V _{CC}	Part Number	Ambient Temperature	V _{SS}	V _{CC}
Am9114DC/PC Am91L14DC/PC Am9124DC/PC Am91L24DC/PC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	ov	+5.0V ± 10%	Am9114DM Am91L14DM Am9124DM Am91L24DM	–55°C ≤ T _A ≤ +125°C	ov	+5.0V ± 10%

Am9124XX

Am9114XX

ELECTRICAL CHARACTERISTICS over operating range

				A	n91L24	XX	A	Am91L14XX			
Parameter	Description	Test C	onditions	Min	Тур	Max	Min	Тур	Мах	Units	
ЮН	Output High Current	V _{OH} = 2.4V	$V_{CC} = 4.5V$	-1.4			-1.0			mA	
	Output Low Current	V _{OL} = 0.4V	T _A = +70°C	4.0			3.2			mA	
IOL	Output Low Current	VOL - 0.4V	T _A = +125°C	3.2			2.4] "```	
VIH	Input High Voltage			2.0		V _{CC}	2.0		V _{CC}	Volts	
VIL	Input Low Voltage			-3.0		0.8	-3.0		0.8	Volts	
1 _{IX}	Input Load Current	$V_{SS} \leq V_{I} \leq V_{CC}$				10			10	μA	
1	Output Leakage Current	$V_{SS} \le V_O \le V_{CC}$	T _A = +125°C	-50		50	-50		50		
loz	Output Leakage Current	Output Disabled	$T_A = +70^{\circ}C$	-10		10	-10		10	- μΑ	
1	Output Short Circuit Current	(Nata 2)	0 to +70°C			95			75	mA	
los	Output Short Circuit Current	(Note 2)	-55 to +125°C			115			75		
CI	Input Capacitance (Note 1)	Test frequency = 1.	.0MHz		3.0	5.0		3.0	5.0		
CI/O	I/O Capacitance (Note 1)	$T_A = 25^{\circ}C$, all pins	at OV		5.0	6.0		5.0	6.0	pF	

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Cond	itions	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Units
	V _{CC} Operating Max. V _{CC} , CS ≤V _{IL}	T _A = 25°C	40		60		40		60			
lcc	V _{CC} Operating Supply Current	Max. V _{CC} , CS ≤V _{IL} for Am9124/91L24	$T_A = 0^{\circ}C$		50		70		50		70	mA
	Supply Current	101 Am9124/91L24	$T_A = -55^{\circ}C$		60		80		60		80	
			$T_A = 25^{\circ}C$	15		24			-		_	
IPD	Automatic CS Power Down Current	Max. V _{CC} (CS ≥ V _{IH})	$T_A = 0^{\circ}C$		20		30		-		-	mA
	Down Current	(C2 ≈ VIH)	$T_A = -55^{\circ}C$		22		33		-		-	

Am91L24

Am9124

Notes:

- 1. Typical values are for $T_A = 25^{\circ}C_{1}$ nominal supply voltage and nominal processing parameters.
- 2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
- Test conditions assume signal transition times of 10ns or less, timing reference levels of 1.5V and output loading of one standard TTL gate plus 100pF.
- 4. The internal write time of the memory is defined by the overlap of CS low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Am91L14

Am9114

5. Chip Select access time (t_{CO}) is longer for the Am9124 than for the Am9114. The specified address access time will be valid only when Chip Select is low soon enough for t_{CO} to elapse.

.

SWITCHING CHARACTERISTICS over operating range (Note 3)

				9114B 9124B			Ams	9114E	Am9	0114F	
Parameter	Description		Min	Max	Min	Max	Min	Max	Min	Max	Units
Read Cycl	e										
tRC	Address Valid to Address Do Not Care Time (Read Cycle	Time)	450		300		200		150		ns
tA	Address Valid to Data Out Valid Delay (Address Access T	ïme)		450		300		200		150	ns
tCO	Chip Select Low to Data Out Valid (Note 5)	Am9114		120		100		70		70	ns
		Am9124		420		280		NA		NA	ns
tCX	Chip Select Low to Data Out On		20		20		20		10		ns
tOTD	Chip Select High to Data Out Off			100		80		60		40	ns
tOHA	Address Unknown to Data Out Unknown Time		50	1	50		50		15		ns
Write Cycl	e		-			•					
tWC	Address Valid to Address Do Not Care Time (Write Cycle	Time)	450		300	1	200		150		ns
tW	Write Enable Low to Write Enable High Time (Note 4)	Am9114	200		150		120		90		ns
		Am9124	250	1	200		NA		NA		ns
tWR	Write Enable High to Address Do Not Care Time		0		0		0		0		ns
tOTW	Write Enable Low to Data Out Off Delay			100		80		60		40	ns
tDW	Data in Valid to Write Enable High Time		200		150		120		90		ns
tDH	Write Enable Low to Data In Do Not Care Time	t	0		0	0	0		0		ns
tAW	Address Valid to Write Enable Low Time		0		0		0		0	,	ns
tPD	Chip Select High to Power Low Delay (Am9124 only)			200		150		100		NA	ns
tPU	Chip Select Low to Power High Delay (Am9124 only)		0	ļ	0		0	1	NA		ns
tCW	Chip Select Low to Write Enable High Time (Note 4)	Am9114	200		150		120		90		ns
		Am9124	250		200		NA		NA		ns

POWER DOWN WAVEFORM (Am9124 ONLY)

MOS-069

Am9114/9124

4-38

Am2147 4096 x 1 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS

- High speed access times down to 35ns maximum
- 4K x 1 organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- No clocks or timing signals required
- Equal access and cycle times
- Automatic power-down when deselected
- Low power dissipation
 - Am2147: 990mW active, 165mW power down
- Am21L47: 688mW active, 83mW power down
- Standard 18-pin, .300 inch dual in-line package
- · High output drive
 - Up to seven standard TTL loads or six Schottky TTL loads
- TTL compatible interface levels
- 100% MIL-STD-883 reliability assurance testing
- No power-on current surge

GENERAL DESCRIPTION

The Am2147 is a high performance, 4096-bit, static, read/ write, random access memory. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard TTL loads or up to six Schottky TTL loads.

Only a single +5 volt power supply is required. When deselected ($\overline{CS} \ge V_{IH}$), the Am2147 automatically enters a power-down mode which reduces power dissipation by more than 85%. When selected, the chip powers up again with no access time penalty.

Data In and Data Out use separate pins on the standard 18-pin package. Data Out is the same polarity as Data In. Data Out is a 3-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

Am2147

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	55 to +125°C
V _{CC} with Respect to V _{SS}	-0.5 to +7.0V
All Signal Voltages with Respect to V _{SS}	-3.5 to +7.0V
Power Dissipation (Package Limitation)	1.2W
DC Output Current	20mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	V _{SS}	Vcc
Am2147DC/LC	0°C ≤ T _A ≤ +70°C	οv	+5.0V ± 10%
Am21L47DC/LC		00	+5.0V ± 10%
Am2147DM/LM	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	0٧	+5.0V ± 10%

ELECTRICAL CHARACTERISTICS over operating range (Note 4)

				Am21	47-35 47-45 47-55	Am21	L47-45 L47-55 L47-70	Am21	47-70	
Parameter	Description	Test C	onditions	Min	Max	Min	Max	Min	Max	Units
ЮН	Output High Current	V _{OH} = 2.4V	$V_{CC} = 4.5V$	-4		-4		-4		mA
1	Output I and Current	V=- 0.4V	T _A = 70°C	12		12		12		mA
IOL	Output Low Current	V _{OL} = 0.4V	T _A = 125°C	8		N/A		8		
VIH	Input High Voltage			2.0	6.0	2.0	6.0	2.0	6.0	Volts
VIL	Input Low Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	$V_{SS} \leq V_I \leq V_{CC}$			10		10		10	μA
IOZ	Output Leakage Current	$GND \le V_O \le V_{CC}$ Output Disabled	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$	-50	50	50	50	-50	50	μΑ
CI	Input Capacitance	Test Frequency = -	est Frequency = 1.0MHz		5		5		5	
Co	Output Capacitance	T _A = 25°C, All pins	at 0V, $V_{CC} = 5V$		6		6		6	рF
		_	$T_A = 70^{\circ}C$		155		105		135	
lcc	V _{CC} Operating Supply Current	Max V _{CC} , CS ≤ V _{IL} Output Open	$T_A = 0^{\circ}C$		180		125		160	mA
	oupply ourient	VIL Output Open	$T_A = -55^{\circ}C$		180		N/A		180	1
1	Automatic CS Power	Max V _{CC} , (CS ≥	$T_A = 0$ to 70°C		30		15		20	
ISB	Down Current	VIH) (Note 3)	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$		30		N/A		30	- mA

Notes:

- 1. Test conditions assume signal transition times of 10ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified I_{OL}/I_{OH} and 30pF load capacitance. Output timing reference is 1.5V for 2147-35 and 0.8/2.0V for -45, -55 and -70 parts.
- The internal write time of the memory is defined by the overlap of OS low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 3. A pull up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power up. Otherwise I_{SB} will exceed values given.
- The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
- 5. Chip deselected greater than 55ns prior to selection.
- 6. Chip deselected less than 55ns prior to selection.
- 7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices. Transition is measured \pm 500mV from steady state voltage with specified loading in Figure 2.

8. WE is high for read cycle.

Figure 1. Output Load

9. Device is continuously selected, $\overline{CS} = V_{IL}$

10. Address valid prior to or coincident with CS transition low.

RAM-018

Figure 2. Output Load for t_{HZ}, t_{LZ}, t_{OW}, t_{WZ}

SWITCHING CHARACTERISTICS over operating range (Note 1)

Description Tess Valid to Address Do Not Care Time ad Cycle Time) Tess Valid to Data Out Valid Delay dress Access Time) De Select Low to Data Out Valid De Select Low to Data Out On De Select High to Data Out Unknown Time De Select High to Power Down Delay	Note 5 Note 6 Note 7 Note 7	Min 35 5 0 5	Max 35 35 35 35 30	Min 45 5(10*) 0	Max 45 45 45 30	Min 55	Max 55 55 65	Min 70	Max 70 70 80	Units ns ns ns
ad Cycle Time) ress Valid to Data Out Valid Delay fress Access Time) 9 Select Low to Data Out Valid 9 Select Low to Data Out On 9 Select High to Data Out Off ress Unknown to Data Out Unknown Time 9 Select High to Power Down Delay	Note 6 Note 7	5 0	35	5(10*)	45 45	10	55		70	ns
ad Cycle Time) ress Valid to Data Out Valid Delay fress Access Time) 9 Select Low to Data Out Valid 9 Select Low to Data Out On 9 Select High to Data Out Off ress Unknown to Data Out Unknown Time 9 Select High to Power Down Delay	Note 6 Note 7	5 0	35	5(10*)	45 45	10	55		70	ns
tress Access Time) 9 Select Low to Data Out Valid 9 Select Low to Data Out On 9 Select High to Data Out Off ress Unknown to Data Out Unknown Time 9 Select High to Power Down Delay	Note 6 Note 7	0	35	+ · · · · ·	45 45		55		70	
o Select Low to Data Out On o Select High to Data Out Off ress Unknown to Data Out Unknown Time o Select High to Power Down Delay	Note 6 Note 7	0	35	+ · · · · ·	45					ns
o Select Low to Data Out On o Select High to Data Out Off ress Unknown to Data Out Unknown Time o Select High to Power Down Delay	Note 7	0		+ · · · · ·			65		80	ns
9 Select High to Data Out Off ress Unknown to Data Out Unknown Time 9 Select High to Power Down Delay		0	30	+ · · · · ·	20					
ress Unknown to Data Out Unknown Time Select High to Power Down Delay	Note 7	ļ	30	0	20			10		ns
Select High to Power Down Delay		5			30	0	30	0	40	ns
			1	5		5		5		ns
			20		20		20		30	ns
Select Low to Power Up Delay		0		0		0		0		ns
ress Valid to Address Do Not Care (Write C	ycle Time)	35		45		55		70		ns
e Enable Low to Write Enable High	Note 2	20		25		25		40		ns
e Enable High to Address		0		0		10		15		ns
e Enable Low to Output in High Z	Note 6	0	20	0	25	0	25	0	35	ns
a In Valid to Write Enable High		20		25		25		30		ns
a Hold Time		10		10		10		10		ns
ress Valid to Write Enable Low		0		0		0		0		ns
Select Low to Write Enable High	Note 2	35		45		45		55		ns
e Enable High to Output in Low Z	Note 6	0		0		0		0		ns
ress Valid to End of Write		35		45		45		55		ns
	Enable Low to Write Enable High Enable High to Address Enable Low to Output in High Z In Valid to Write Enable High Hold Time ess Valid to Write Enable Low Select Low to Write Enable High Enable High to Output in Low Z	Enable High to Address Enable Low to Output in High Z Note 6 In Valid to Write Enable High Hold Time ess Valid to Write Enable Low Select Low to Write Enable High Note 2 Enable High to Output in Low Z Note 6 ess Valid to End of Write	Enable Low to Write Enable HighNote 220Enable High to Address0Enable Low to Output in High ZNote 60In Valid to Write Enable High20Hold Time10ess Valid to Write Enable Low0Select Low to Write Enable HighNote 2Select Low to Write Enable High0ses Valid to Enable High to Output in Low ZNote 6Note 60	Enable Low to Write Enable HighNote 220Enable High to Address0Enable Low to Output in High ZNote 60In Valid to Write Enable High20Hold Time10ess Valid to Write Enable Low0Select Low to Write Enable HighNote 2In Valid to Write Enable HighNote 2Select Low to Write Enable HighNote 2Enable High to Output in Low ZNote 6Note 60	Enable Low to Write Enable HighNote 22025Enable High to Address000Enable Low to Output in High ZNote 60200In Valid to Write Enable High202525Hold Time101010ess Valid to Write Enable Low000Select Low to Write Enable HighNote 23545Enable High to Output in Low ZNote 600	Enable Low to Write Enable HighNote 22025Enable High to Address000Enable Low to Output in High ZNote 60200Enable Low to Output in High ZNote 6020025In Valid to Write Enable High20251010Hold Time1010101010Select Low to Write Enable HighNote 2354545Enable High to Output in Low ZNote 6000ses Valid to End of Write35451010	Enable Low to Write Enable HighNote 2202525Enable High to Address0010Enable Low to Output in High ZNote 6020025In Valid to Write Enable High20252525Hold Time10101010ess Valid to Write Enable Low0000Select Low to Write Enable HighNote 2354545Enable High to Output in Low ZNote 6000ess Valid to End of Write354545	Enable Low to Write Enable HighNote 2202525Enable High to Address0010Enable Low to Output in High ZNote 6020025In Valid to Write Enable High20252525Hold Time10101010ess Valid to Write Enable Low0000Select Low to Write Enable HighNote 2354545Enable High to Output in Low ZNote 6000ess Valid to End of Write354545	Enable Low to Write Enable High Note 2 20 25 25 40 Enable High to Address 0 0 0 10 15 Enable Low to Output in High Z Note 6 0 20 25 0 25 0 In Valid to Write Enable High 20 20 25 25 30 Hold Time 10 10 10 10 10 10 ess Valid to Write Enable Low 0 0 0 0 0 0 0 Select Low to Write Enable High Note 2 35 45 45 55 Enable High to Output in Low Z Note 6 0 0 0 0 0	Enable Low to Write Enable High Note 2 20 25 25 40 Enable High to Address 0 0 0 10 15 Enable Low to Output in High Z Note 6 0 20 25 0 25 0 35 In Valid to Write Enable High 20 20 25 25 30 25 Hold Time 10 10 10 10 10 10 10 ess Valid to Write Enable Low 0 0 0 0 0 0 0 0 Select Low to Write Enable High Note 2 35 45 45 55 55 Enable High to Output in Low Z Note 6 0 0 0 0 0

. ____ . _ _ .

READ CYCLE NO. 1 (Notes 8, 9)

. . . .

.

-- - - - -

Am2148 • Am2149 1024 x 4 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS

- High speed access times down to 45ns maximum
- 1K x 4 organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- Automatic power-down when deselected (Am2148)
- Low power dissipation
 - Am2148: 990mW active, 165mW power down
 - Am21L48: 688mW active, 110mW power down
- Standard 18-pin, .300 inch dual in-line package
- High output drive
 - Up to seven standard TTL loads
- Commercial and full military temperature ranges
- TTL compatible interface levels
- 100% MIL-STD-883 reliability assurance testing
- Guaranteed 0.1% AQL

GENERAL DESCRIPTION

The Am2148 and Am2149 are high performance, static, N-Channel, read/write, random access memories organized as 1024 x 4. Operation is from a single 5V supply, and all input/output levels are identical to standard TTL specifications. The Am2148 and Am2149 are the same except that the Am2148 offers an automatic \overline{CS} power down feature.

The Am2148 remains in a low-power standby mode as long as $\overline{\text{CS}}$ remains high, thus reducing its power requirements. The Am2148 power decreases from 990mW to 165mW in the standby mode. The $\overline{\text{CS}}$ input does not affect the power dissipation of the Am2149.

Data readout is not destructive and has the same polarity as data input. \overline{CS} provides for easy selection of an individual package when the outputs are OR-tied.

Am2148/9-45 Am21L48/9-45 Am2148/9-55 Am21L48/9-55 Am2148/9-70 Am21L48/9-70 Maximum Access Time (ns) 45 45 55 55 70 70 Max Active 0 to 70°C 180 180 125 N/A 125 125 Current (mA) Max Standby 0 to 70°C 30 20 30 20 N/A 20 Current (mA)* Max Active -55 to 125°C 180 N/A 180 N/A 180 N/A Current (mA) Max Standby -55 to 125°C 30 N/A 30 N/A 30 N/A Current (mA)*

*Am2148 only

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am2148/49

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	-55 to +125°C
V _{CC} with Respect to V _{SS}	-0.5 to +7.0V
All Signal Voltages with Respect to V _{SS}	-3.5V to +7.0V
Power Dissipation (Package Limitation)	1.2W
DC Output Current	20mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VSS	Vcc		
Am2148/9DC/LC	0°C - T - 170°C	ov	+5.0V ± 10%		
Am21L48/9DC/LC	- O°C ≤ T _A ≤ +70°C		+5.0V ± 10%		
Am2148/9DM/LM	$-55^{\circ}C \le T_A \le +125^{\circ}C$	ov	+5.0V ± 10%		

ELECTRICAL CHARACTERISTICS over operating range (Note 4)

					18/9-55 18/9-70		48/9-55 48/9-70	
arameter	Description	Test C	onditions	Min	Max	Min	Max	Units
ЮН	Output High Current	V _{OH} = 2.4V	$V_{CC} = 4.5 V$	-4		-4		mA
	Output Law Current		$T_A = 70^{\circ}C$	8		8		
IOL	Output Low Current	$V_{OL} = 0.4V$	$T_A = 125^{\circ}C$	8		N/A		mA
VIH	Input High Voltage			2.0	6.0	2.0	6.0	Volts
VIL	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	$V_{SS} \leq V_I \leq V_{CC}$			10		10	μA
loz	Output Leakage Current	$GND \le V_O \le V_{CC}$ Output Disabled	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$	-50	50	-50	50	μA
CI	Input Capacitance	Test Frequency = 1.0M	Hz		5		5	
CI/O	Input/Output Capacitance	$T_A = 25^{\circ}C$, All pins at 0	/, V _{CC} = 5V		7		7	pF
1	Vcc Operating	Max V _{CC} , $\overline{CS} \leq V_{IL}$	$T_A = 0$ to $+70^{\circ}C$		180		125	
ICC	Supply Current	Output Open	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$		180		N/A	mA
1	Automatic CS Power	Max V _{CC} , ($\overline{CS} \ge V_{IH}$)	$T_A = 0$ to $+70^{\circ}C$		30	20		
I _{SB}	Down Current	00.(11.11.11.11.11.11.11.11.11.11.11.11.11	$T_A = -55 \text{ to } + 125^{\circ}\text{C}$		30		N/A	mA
	Output Short Circuit	$GND \le V_O \le V_{CC}$	$T_A = 0 \text{ to } +70^{\circ}\text{C}$		±275		±275	mA
los	Current				±350		±350	mA

Notes:

- 1. Test conditions assume signal transition times of 10ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified IOL/IOH and 30pF load capacitance. Output timing reference is 1.5V.
- 2. The internal write time of the memory is defined by the overlap of CS low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 3. A pull up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power up. Otherwise I_{SB} will exceed values given (Am2148 only).
- 4. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
- 5. Chip deselected greater than 55ns prior to selection.
- 6. Chip deselected less than 55ns prior to selection.
- 7. At any given temperature and voltage condition, tHZ is less than tLZ for all devices. Transition is measured ±500mV from steady state voltage with specified loading in Figure 2.

8. WE is high for read cycle.

- 9. Device is continuously selected, $\overline{CS} = V_{IL}$
- 10. Address valid prior to or coincident with \overline{CS} transition low.
- 11. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Am2148/9-45 Am21L48/9-45

Figure 1. Output Load

Figure 2. Output Load

for tHZ, tLZ, tOW, tWZ

SWITCHING CHARACTERISTICS over operating range (Note 1)

					18/9-45 48/9-45		18/9-55 48/9-55		18/9-70 48/9-70	
Parameter	Description	ı		Min	Max	Min	Max	Min	Max	Units
Read Cy	cle					•				
t _{RC}	Address Valid to Address Do Not Care T (Read Cycle Time)	Time		45		55		70		ns
t _{AA}	Address Valid to Data Out Valid Delay (Address Access Time)				45		55		70	ns
tACS1	Chip Select Low to Data Out Valid		Note 5		45		55		70	
tACS2	(Am2148 only)		Note 6		55		65		80	ns
tACS	Chip Select Low to Data Out Valid (Am2	2149 only)			20		25		30	ns
• -	Chip Salast Law to Data Out On	Am2148	Note 7	20		20		20		
^t LZ	Chip Select Low to Data Out On	Am2149		5		5		5		ns
t _{HZ}	Chip Select High to Data Out Off		Note 7	0	20	0	20	0	20	ns
toh	Address Unknown to Data Out Unknow	n Time		5		5		5		ns
tPD	Chip Select High to Power Down Delay	Am2148			30		30		30	ns
tpu	Chip Select Low to Power Up Delay	Am2148		0		0		0		ns
Write Cy	cle									
twc	Address Valid to Address Do Not Care (Write Cycle T	ïme)	45		55		70		ns
twp	Write Enable Low to Write Enable High		Note 2	35		40		50		ns
twn	Write Enable High to Address			5		5		5		ns
twz	Write Enable Low to Output in High Z		Note 7	0	15	0	20	0	25	ns
tow	Data In Valid to Write Enable High			20		20		25		ns
tDH	Data Hold Time			0		0		0		ns
tAS	Address Valid to Write Enable Low			0		0		0		ns
tcw	Chip Select Low to Write Enable High		Note 2	40		50		65		ns
tow	Write Enable High to Output in Low Z		Note 7	0		0		0		ns
t _{AW}	Address Valid to End of Write			40		50		65		ns

- - - ----

_ ___ _ _ _

	ORDERING INFORMATION											
Am2148-45 Am2149-45 Order Code	Am2148-55 Am2149-55 Order Code	Am2148-70 Am2149-70 Order Code	Am21L48-45 Am21L49-45 Order Code	Am21L48-55 Am21L49-55 Order Code	Am21L48-70 Am21L49-70 Order Code	Package Type	Screening Level	Operating Range				
Am2148-45DC	Am2148-55DC	Am2148-70DC	Am21L48-45DC	Am21L48-55DC	Am21L48-70DC	D-18-1	C-1	С				
Am2148-45DM	Am2148-55DM	Am2148-70DM		-	-	D-18-1	C-3	М				
Am2148-45DMB	Am2148-55DMB	Am2148-70DMB		-	-	D-18-1	B-3	М				
Am2148-45LC	Am2148-55LC	Am2148-70LC	Am21L48-45LC	Am21L48-55LC	Am21L48-70LC	L-18-2	C-1	С				
Am2148-45LM	Am2148-55LM	Am2148-70LM	-	-	-	L-18-2	C-3	м				
Am2148-45LMB	Am2148-55LMB	Am2148-70LMB		-	-	L-18-2	B-3	м				
Am2149-45DC	Am2149-55DC	Am2149-70DC	Am21L49-45DC	Am21L49-55DC	Am21L49-70DC	D-18-1	C-1	С				
Am2149-45DM	Am2149-55DM	Am2149-70DM	-	-	-	D-18-1	C-3	м				
Am2149-45DMB	Am2149-55DMB	Am2149-70DMB	-	-	-	D-18-1	B-3	м				
Am2149-45LC	Am2149-55LC	Am2149-70LC	Am21L49-45LC	Am21L49-55LC	Am21L49-70LC	L-18-2	C-1	С				
Am2149-45LM	Am2149-55LM	Am2149-70LM	-	-	-	L-18-2	C-3	м				
Am2149-45LMB	Am2149-55LMB	Am2149-70LMB			-	L-18-2	B-3	M				

Notes: 1. D = Hermetic DIP, L = Leadless Chip Carrier. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
3. See Operating Range Table.

- - ----

Am9128 2048 x 8 Static R/W Random Access Memory

4

150

30

30

Am9128

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	- 55°C to + 125°C
V _{CC} with Respect to V _{SS}	-0.5V to +7.0V
All Signal Voltages with Respect to VSS	-3.0V to +7.0V
Power Dissipation (Package Limitation)	1.0W
DC Output Current	10mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VSS	Vcc
Am9128-10DC/PC Am9128-15DC/PC Am9128-20DC/PC Am9128-70DC/PC	0°C ≤ T _A ≤ +70°C	ov	+5.0V ± 10%
Am9128-15DM Am9128-20DM	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	٥V	+5V ± 10%

ELECTRICAL CHARACTERISTICS over operating range (Note 3)

Parameter	Description	Test Conditions		Am9128-10 Min Max) Am9128-15 Min Max		Am9128-70 Am9128-20 Min Max		Units	
юн	Output HIGH Current	V _{OH} = 2.4V		-2		-2		-2		mA	
loL	Output LOW Current	V _{OL} = 0.4V	$V_{CC} = 4.5V$	4		4		4		mA	
VIH	Input HIGH Voltage			2.0	V _{CC} + 1.0	2.0	V _{CC} + 1.0	2.0	V _{CC} + 1.0	Volts	
VIL	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	Volts	
IIX	Input Load Current	$V_{SS} \leq V_I \leq V_{CC}$			10		10		10	μA	
l _{oz}	Output Leakage Current	$GND \le V_O \le V_{CC}$ Output Disabled			10		10		10	μA	
CI	Input Capacitance	Test Francisco d'Obilita			6		6		6	pF	
C _{l/O}	Input/Output Capacitance	Test Frequency = 1.0 MHz T _A = 25°C, All pins at 0V			7		7		7		
Icc	V _{CC} Operating	$\max V_{CC}, \overline{CE} \leq V_{IL}$	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$		N/A		150		150 (Note 11)	mA	
	Supply Current	Outputs Open	$T_A = 0^{\circ}C$ to $+70^{\circ}C$		120		100		140		
I _{SB}	Automatic CE Power	$Max V_{CC}, \overline{CE} \ge V_{IH}$	$T_{A} = -55^{\circ}C \text{ to } + 125^{\circ}C$		N/A		30		30 (Note 11)	mA	
	Down Current		$T_A = 0^{\circ}C$ to $70^{\circ}C$		15		15		30		
IPO	Peak Power On $V_{CC} = GND$ to V_{CC} Max		$T_{A} = -55^{\circ}C \text{ to } + 125^{\circ}C$		N/A		30		30 (Note 11)) mA	
	Current	ČE ≥ V _{IH} (Note 2)	$T_A = 0^\circ C$ to $70^\circ C$		15		15		30		

- Notes: 1. The internal write time of the memory is defined by the overlap of CE Low and WE Low. Both signals must be Low to initiate a write and either signal can terminate a write by going High. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
 - A pull up resistor to V_{CC} on the CE input is required during power up to keep the device deselected, otherwise I_{SB} will exceed values given.
 - 3. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
 - 4. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.

5. WE is High for read cycle.

- 6. Device is continuously selected, $\overline{CE} = V_{IL}$.
- 7. Address valid prior to or coincident with \overline{CE} transition Low.

Am0128-70

8. $\overline{OE} = V_{IL}$.

9. $C_L = 100pF$ for Am9128-10/-15/-20. $C_L = 30pF$ for Am9128-70.

10. Transition is measured at V_{OH} - 500mV and V_{OL} + 500mV. Levels on the output from 1.5V level on the input with load shown in Figure 1 using C_L = 5pF.

11. Am9128-20 only.

_ .

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

						Am9128-10		Am9128-15		5 Am9128-20		
arameter	Desc	ription		Min	Max	Min	Max	Min	Max	Min	Max	Units
READ C	/CLE											
t _{RC}	Read Cycle Time			70		100		150		200		ns
tACC	Address Access Time		Note 9		70		100		150		200	ns
tACS	Chip Select Access Time		Note 9		70		100		150		200	ns
•	Output Enable Time	0°C to +70°C	Note 9		40		50		60		70	ns
^t OE		-55°C to +125°C	Note 9		N/A		N/A		70		80	ns
tон	Output Hold Time from Address Change			10		10		10		10		ns
tCLZ	Output in LOW-Z from CE		Notes 4, 10	10		10		10		10		ns
t _{CHZ}	Output in HIGH-Z from CE		Notes 4, 10		35		40		55		55	ns
toLZ	Output in LOW-Z from OE		Notes 4, 10	5		5		5		5		ns
t _{OHZ}	Output in HIGH-Z from OE		Notes 4, 10		30		35		50		50	ns
t _{PU}	Chip Selection to Power Up Time			0		0		0		0		ns
t _{PD}	Chip Deselection to Power Down			40		50		60		60	ns	
WRITE C	YCLE											
twc	Write Cycle Time			70		100		150		200		ns
4		0°C to +70°C	Netsd	60		90		120		150		
tcw	Chip Selection to End of Write	-55°C to +125°C	Note 1	N/A		N/A		130		160		ns
t _{AS}	Address Setup Time			5		10		20		20		ns
t _{WP}	Write Pulse Width	····	Note 1	60		70		100		100		ns
twR	Write Recovery Time			5		5		5		5		ns
t _{DS}	Data Setup Time			30		40		50		60		ns
tDH	Data Hold Time			5		5		5		5		ns
twLZ	Output in LOW-Z from WE		Notes 4, 10	5		5		5		5		ns
twHz	Output in HIGH-Z from WE	· · · · ·	Notes 4, 10		30		35		50		50	ns
tAW				65		80		120		120		ns

- -

AC TEST CONDITIONS

Input Pulse Levels	0 to 3.0V
Input Rise and Fall Times	10ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V

Figure 1. Output Load (Notes 9, 10)

RAM-032

- - - -

Am9128

RAM-031

Am9128-70 Order Code	Am9128-10 Order Code	Am9128-15 Order Code	Am9128-20 Order Code	Package Type	Screening Level	Operating Range
AM9128-70PC	AM9128-10PC	AM9128-15PC	AM9128-20PC	P-24-1	C-1	С
AM9128-70DC	AM9128-10DC	AM9128-15DC	AM9128-20DC	D-24-1	C-1	С
		AM9128-15DM	AM9128-20DM	D-24-1	C-3	м
		AM9128-15DMB	AM9128-20DMB	D-24-1	B-3	M

ORDERING INFORMATION

.

Notes: 1. P = Molded DIP, D = Hermetic DIP. Number following letter is number of leads. 2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B. 3. See operating range table.

Am9167 16,384 x 1 Static R/W Random Access Memory

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High speed access times down to 45ns maximum
- 16K x 1 organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- No clocks or timing signals required
- Equal access and cycle times
- Automatic power down when deselected
- Low power dissipation
 - Am9167: 660mW active, 165mW power down
- Standard 20-pin, .300 inch dual-in-line package
- High output drive
 - Up to seven standard TTL loads or six Schottky TTL loads
- TTL compatible interface levels
- 100% MIL-STD-883 reliability assurance testing
- No power-on current surge
- Guaranteed 0.1% AQL

GENERAL DESCRIPTION

- -- - - -

The Am9167 is a high performance, 16,384-bit, static, read/write, random access memory. It is organized as 16,384 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to six standard Schottky TTL loads or up to seven standard TTL loads.

Only a single +5 volt power supply is required. When deselected ($\overline{\text{CE}} \ge V_{\text{IH}}$), the Am9167 automatically enters a power-down mode which reduces power dissipation by 75%. When selected, the chip powers up again with no access time penalty.

Data In and Data Out use separate pins on the standard 20-pin package. Data Out is the same polarity as Data In. Data Out is a 3-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am9168 • Am9169 4096 x 4 Static R/W Random Access Memory ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High speed access times down to 45ns maximum
- 4K x 4 organization
- Single +5 volt power supply
- · Fully static storage and interface circuitry
- No clocks or timing signals required
- Equal access and cycle times
- Automatic power down when deselected for Am9168
- Power dissipation
 - Am9168: 660mW active 165mW power down Am9169: 660mW
- Standard 20-pin, .300 inch dual-in-line package
- · High output drive
 - Up to seven standard TTL loads or six
 - Schottky TTL loads
- TTL compatible interface levels
- 100% MIL-STD-883 reliability assurance testing
- Guaranteed 0.1% AQL

GENERAL DESCRIPTION

The Am9168 and Am9169 are high performance, static, N-Channel, read/write, random access memories organized as 4096 words of 4 bits. Operation is from a single 5V supply, and all input/output levels are identical to standard TTL specifications. The Am9168 and Am9169 are the same except that the Am9168 offers an automatic \overline{CE} power down feature.

The Am9168 remains in a low-power standby mode as long as $\overline{\text{CE}}$ remains high, thus reducing its power requirements. The Am9168 power decreases from 660mW to 165mW in the standby mode. The $\overline{\text{CE}}$ input does not affect the power dissipation of the Am9169.

Data readout is not destructive and has the same polarity as data input. \overrightarrow{CE} provides for easy selection of an individual package when the outputs are OR-tied.

Note: Pin 1 is marked for orientation.

PRODUCT SELECTIONS

	Am9168-45	Am9169-45	Am9168-55	Am9169-55	Am9168-70	Am9169-70
Maximum Access Time (ns)	45	45	55	55	70	70
Maximum Active Current (mA)	120	120	120	120	120	120
Maximum Standby Current (mA)	30	N/A	30	N/A	30	N/A

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am9016 16,384 x 1 Dynamic R/W Random Access Memory Advanced MOS/LSI

DISTINCTIVE CHARACTERISTICS

- High density 16K x 1 organization
- Replacement for MK4116
- Low maximum power dissipation 462mW active, 20mW standby
- High-speed operation 150ns access, 320ns cycle (COM'L)

200ns access, 375ns cycle (MIL)

- $\pm 10\%$ tolerance on standard +12, +5, -5 voltages
- TTL compatible interface signals
- Three-state output
- RAS only, RMW and Page mode clocking options
- 128 cycle refreshing
- Unlatched data output
- Standard 16-pin, .3 inch wide dual-in-line package
- JEDEC standard 18-pin, Chip-Pak™ leadless chip carrier
- Double poly N-channel silicon gate MOS technology
- 100% MIL-STD-883 reliability assurance testing
- Extended ambient operating temperature (-55 to +85°C) available

GENERAL DESCRIPTION

The Am9016 is a high-speed, 16K-bit, dynamic, read/write random access memory. It is organized as 16,384 words by 1 bit per word and is packaged in a standard 16-pin DIP or 18-pin leadless chip carrier. The basic memory element is a single transistor cell that stores charge on a small capacitor. This mechanism requires periodic refreshing of the memory cells to maintain stored information.

All input signals, including the two clocks, are TTL compatible. The Row Address Strobe (RAS) loads the row address and the Column Address Strobe (CAS) loads the column address. The row and column address signals share seven input lines. Active cycles are initiated when RAS goes low, and standby mode is entered when RAS goes high. In addition to normal read and write cycles, other types of operations are available to improve versatility, performance and power dissipation.

The 3-state output buffer turns on when the column access time has elapsed and turns off after \overline{CAS} goes high. Input and output data are the same polarity.

BLOCK DIAGRAM

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

4

Am9016

Chip-Pak	CONNECTION DIAGRAMS – Top Vi DIP	
	VBB 1 16 VSS Di 2 15 \overline{CAS} WE 3 14 DO RAS 4 Am9016 13 A0 5 12 A3 A2 6 11 A4 A1 7 10 A5 VDD 8 9 VCC	A0 - A6ADDRESS INPUTSCASCOLUMN ADDRESS STROBEDIDATA INDODATA OUTRASROW ADDRESS STROBEVDDPOWER (+12 V)VCCPOWER (+12 V)VSSGROUNDVBBPOWER (-5 V)WEWRITE ENABLE

MAXIMUM RATINGS above which useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	−55 to +85°C
Voltage on Any Pin Relative to VBB	-0.5 to +20V
VDD and VCC Supply Voltages with Respect to VSS	-1.0 to +15.0V
VBB - VSS (VDD - VSS > 0V)	0V
Power Dissipation	1.0W
Short Circuit Output Current	50mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

Am9016

OPERATING RANGE

_	Part Number	Ambient Temperature	V _{DD}	Vcc	VSS	VBB
ſ	Am9016DC/PC/LC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	+12V ±10%	+5V ±10%	0	-5V ±10%
	Am9016DL/LL	$-55^{\circ}C \leq T_A \leq +85^{\circ}C$	+12V ±10%	+5V ±10%	0	−5V ±10%

ELECTRICAL CHARACTERISTICS over operating range (Notes 1, 9)

Desc	ription	Test Conditions	Min	Тур	Max	Units
Output HIGH Voltage		IOH = -5.0mA	2.4		vcc	Volts
Output LOW Voltage		IOL = 4.2mA	VSS		0.40	Volts
Input HIGH Voltage for Ad	dress, Data In		2.4		7.0	Volts
Input HIGH Voltage for CA	S, RAS, WE		2.7		7.0	Volts
Input LOW Voltage			-1.0		0.80	Volts
Input Load Current		VSS ≤ VI ≤ 7V	-10		10	μΑ
Output Leakage Current		$VSS \le VO \le VCC$, Output OFF	-10		10	μA
VCC Supply Current	· · · · · · · · · · · · · · · · · · ·	Output OFF (Note 4)	-10		10	μA
VBB Supply Current, Average	$0^{\circ}C \leq T_A \leq +70^{\circ}C$				100	μΑ
	$-55^{\circ}C \le T_{A} \le +85^{\circ}C$	- Standby, HAS ≥ VIEC			200	
	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	Operating Minimum Quele Time			200	
	-55°C ≤ T _A ≤ +85°C	Operating, Minimum Cycle Time			400	
VDD Supply Current, Average	Operating IDD1	RAS Cycling, CAS Cycling, Minimum Cycle Times			35	
	Page Mode IDD4	RAS ≤ VIL, CAS Cycling, Minimum Cycle Times			27	1
	RAS Only IDD3 Refresh	RAS Cycling, CAS ≥ VIHC, Minimum Cycle Times			27	1 mA
$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	Oten dhu IDDo	RAS ≥ VIHC			1.5	1
$-55^{\circ}C \le T_A \le +85^{\circ}C$	Standby IDD2	RAS ≥ VIHC			2.25	1
Input Conseitence	RAS, CAS, WE	Inputs at 0V, f = 1MHz,	1		10	pF
input Capacitance	Address, Data In	Nominal Supply Voltages			5.0	
Output Capacitance		Output OFF	-		7.0	1
	$\begin{array}{l} \mbox{Output HIGH Voltage} \\ \mbox{Output LOW Voltage} \\ \mbox{Input HIGH Voltage for Ad} \\ \mbox{Input HIGH Voltage for CA} \\ \mbox{Input LOW Voltage} \\ \mbox{Input Load Current} \\ \mbox{Output Leakage Current} \\ \mbox{VCC Supply Current} \\ \mbox{VCC Supply Current}, \\ \mbox{Average} \\ \\ \mbox{VDD Supply Current, } \\ \mbox{Average} \\ \\ \mbox{OD Supply Current, } \\ \mbox{Average} \\ \mbox{O^{\circ}C} \leqslant T_A \leqslant +70^{\circ}C \\ \mbox{-}55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C \\ \\ \mbox{Input Capacitance} \\ \end{array}$	$\begin{array}{c} \mbox{Output LOW Voltage} \\ \mbox{Input HIGH Voltage for Address, Data In} \\ \mbox{Input HIGH Voltage for CAS, RAS, WE} \\ \mbox{Input LOW Voltage} \\ \mbox{Input Load Current} \\ \mbox{Output Leakage Current} \\ \mbox{VCC Supply Current}, \\ \mbox{Average} \\ \mbox{VCC Supply Current}, \\ \mbox{Average} \\ \mbox{O}^{\circ}C \leqslant T_A \leqslant +70^{\circ}C \\ \mbox{-}55^{\circ}C \leqslant T_A \leqslant +85^{\circ}C \\ \mbox{O}^{\circ}C \leqslant T_A \leqslant +85^{\circ}C \\ \mbox{IDD2} \\ \mbox{O}^{\circ}C \leqslant T_A \leqslant +85^{\circ}C \\ \mbox{Input Capacitance} \\ \mbox{Address, Data In} \\ \mbox{O}^{\circ}C \approx T_A \leqslant 100 \\ \mbox{O}^{\circ}C \approx 100 \\ \mbox{O}^{\circ}C \approx$	$\begin{tabular}{ c c c c } \hline Output HIGH Voltage & IOH = -5.0mA \\ \hline Output LOW Voltage & IOL = 4.2mA \\ \hline Input HIGH Voltage for Address, Data In \\ \hline Input HIGH Voltage for CAS, RAS, WE & IOL = 4.2mA \\ \hline Input HIGH Voltage for CAS, RAS, WE & IOL = 4.2mA \\ \hline Input LOW Voltage & VSS < VI < 7V \\ \hline VUD Voltage & VSS < VI < 7V \\ \hline Output Leakage Current & VSS < VI < 7V \\ \hline Output Leakage Current & VSS < VO < VCC, Output OFF \\ \hline VCC Supply Current & Output OFF (Note 4) \\ \hline VCC Supply Current, \\ Average & O^{\circ}C < T_A < +70^{\circ}C \\ \hline -55^{\circ}C < T_A < +85^{\circ}C & Operating Minimum Cycle Time \\ \hline \hline VDD Supply Current, \\ Average & Operating IDD1 & RAS Cycling, CAS Cycling, \\ \hline Ninimum Cycle Times & Operating IDD1 & RAS Cycling, CAS Cycling, \\ \hline Ninimum Cycle Times & IDD3 \\ \hline \hline RAS Only \\ Refresh IDD3 & RAS S VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS > VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS > VIHC \\ \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline \hline RAS = VIHC & RAS = VIHC \\ \hline \hline \hline \hline RAS = VIHC & RAS = VIHC \\ \hline $	$\begin{array}{c c c c c c c } \mbox{Output HIGH Voltage} & IOH = -5.0mA & 2.4 \\ \mbox{Output LOW Voltage} & IOL = 4.2mA & VSS \\ \mbox{Input HIGH Voltage for Address, Data In} & 2.4 \\ \mbox{Input HIGH Voltage for CAS, RAS, WE} & 2.7 \\ \mbox{Input LOW Voltage} & -1.0 \\ \mbox{Input Low Voltage} & -1.0 \\ \mbox{Input Load Current} & VSS < VI < 7V & -10 \\ \mbox{Output Leakage Current} & VSS < VO < VCC, Output OFF & -10 \\ \mbox{VCC Supply Current} & Output OFF (Note 4) & -10 \\ \mbox{VBB Supply Current}, & 0°C < T_A < +70°C \\ \mbox{-}55°C < T_A < +85°C & -55°C < T_A < +85°C \\ \mbox{-}0°C < T_A < +85°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +85°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +85°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +85°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +85°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +85°C \\ \mbox{-}0°c < T_A < +70°C & -55°C < T_A < +70°C & -55°C < T_A < +70°C & -55°C < T_A < +70°C \\ \mbox{-}0c < T_A < +70°C & -55°C < T_$	$\begin{tabular}{ c c c c c } \hline Urder Urd$	$ \begin{array}{c c c c c c c } \hline \text{Output HIGH Voltage} & \text{IOH} = -5.0\text{mA} & 2.4 & VCC \\ \hline \text{Output LOW Voltage} & \text{IOL} = 4.2\text{mA} & VSS & 0.40 \\ \hline \text{Input HIGH Voltage for Address, Data In} & 2.4 & 7.0 \\ \hline \text{Input HIGH Voltage for CAS, RAS, WE} & 2.7 & 7.0 \\ \hline \text{Input LOW Voltage} & 2.7 & 7.0 \\ \hline \text{Input LOW Voltage} & -1.0 & 0.80 \\ \hline \text{Input Load Current} & VSS < VI < 7V & -10 & 10 \\ \hline \text{Output Leakage Current} & VSS < VI < 7V & -10 & 10 \\ \hline \text{Output Leakage Current} & VSS < VO < VCC, Output OFF & -10 & 10 \\ \hline \text{VCC Supply Current} & 0^{\circ}\text{C} < T_A < +70^{\circ}\text{C} \\ \hline -55^{\circ}\text{C} < T_A < +85^{\circ}\text{C} \\ \hline 0^{\circ}\text{C} < T_A < +70^{\circ}\text{C} \\ \hline -55^{\circ}\text{C} < T_A < +85^{\circ}\text{C} \\ \hline \hline 0^{\circ}\text{C} < T_A < +70^{\circ}\text{C} \\ \hline -55^{\circ}\text{C} < T_A < +85^{\circ}\text{C} \\ \hline \hline \text{Page Mode} & \text{IDD4} \\ \hline \hline \text{RAS Only} \\ \text{Refresh} & \text{IDD3} \\ \hline \hline \text{RAS Oveling, CAS Cycling, CAS Cycling, CAS S VIHC, \\ \hline \hline \text{RAS S VIHC} \\ \hline \hline \text{RAS Oveling, CAS Cycling, CAS S VIHC, \\ \hline \hline \text{RAS S VIHC} \\ \hline \hline \text{RAS Oveling, CAS Cycling, CAS S VIHC, \\ \hline \hline \text{RAS Only} \\ \text{Refresh} & \text{IDD3} \\ \hline \hline \hline \text{RAS S VIHC} \\ \hline \hline \ \hline \text{RAS S VIHC} \\ \hline \hline \ \hline \text{RAS S VIHC} \\ \hline \hline \text{RAS S VIHC} \\ \hline \hline \text{RAS S VIHC \\ \hline \hline \text{RAS S VIHC } \\ \hline \hline \text{RAS S VIHC } \\ \hline \hline \text{RAS S VIHC } \\ \hline \ \hline \text{RAS S VIHC } \\ \hline \ \hline \text{RAS S VIHC } \\ \hline \hline \text{RAS S VIHC } \\ \hline \hline \text{RAS S VIHC } \\ \hline \ \hline \text{RAS S VIHC } \\ \hline \ \hline \text{RAS S VIHC } \\ \hline \ \hline \text{RAS S VIHC } \\ \hline \hline \text{RAS S VIHC } \\ \hline \hline \text{RAS S VIHC }$

SWITCHING CHARACTERISTICS over operating range (Notes 2, 3, 5)

			Am	9016C	Am	Am9016D		Am9016E		Am9016F	
Parameters	Description			Мах	Min	Max	Min	Мах	Min	Max	Units
tAR	RAS LOW to Column Add	Iress Hold Time	200		160	1	120		95		ns
	Column Address	$0^{\circ}C \leq T_A \leq +70^{\circ}C$	-10		-10	2	-10		-10		ns
tASC	Setup Time	$-55^{\circ}C \leq T_{A} \leq +85^{\circ}C$	0		0		0		NA		ns
tASR	Row Address Setup Time		0		0		0	1	0		ns
tCAC	Access Time from CAS (I	Note 6)		185		165		135		100	ns
tCAH	CAS LOW to Column Add	Iress Hold Time	85		75		55		45		ns
1010	CAS Pulse Width	$0^{\circ}C \leq T_A \leq +70^{\circ}C$	185	10,000	165	10,000	135	10,000	100	10,000	ns
tCAS	CAS Pulse Width	$-55^{\circ}C \le T_{A} \le +85^{\circ}C$	185	5000	165	5000	135	5000	NA	NA	ns
tCP	Page Mode CAS Prechar	ge Time	100		100		80		60		ns
4000	CAS to RAS	$0^{\circ}C \leq T_A \leq +70^{\circ}C$	20		-20		-20		-20		ns
tCRP	Precharge Time	$-55^{\circ}C \leq T_{A} \leq +85^{\circ}C$	0		0		0		NA		ns
tCSH	CAS Hold Time		300		250		200		150		ns
tCWD	CAS LOW to WE LOW D	elay (Note 9)	145		125		95		70		ns
tCWL	WE LOW to CAS HIGH S	etup Time	100		85		70		50		ns
tDH	CAS LOW or WE LOW to Data In Valid Hold Time (Note 7)		85		75		55		45		ns
tDHR	RAS LOW to Data In Valid	Hold Time	200		160		120		95		ns
tDS	Data In Stable to CAS LOW or WE LOW Setup Time (Note 7)		0		0		0		0		ns
tOFF	CAS HIGH to Output OFF Delay		0	60	0	60	0	50	0	40	ns
tPC	Page Mode Cycle Time		295		275		225		170	1	ns
tRAC	Access Time from RAS (N	lote 6)		300		250		200	<u> </u>	150	ns
tRAH	RAS LOW to Row Addres	s Hold Time	45		35		25		20		ns
		0°C ≤ T₄ ≤ +70°C		10,000	250	10,000	200	10,000	150	10,000	ns
tRAS	RAS Pulse Width	$-55^{\circ}C \le T_{A} \le +85^{\circ}C$	300	5000	250	5000	200	5000	NA	NA	ns
tRC	Random Read or Write C	ycle Time	460		410		375		320		ns
tRCD	RAS LOW to CAS LOW E	elay (Note 6)	35	115	35	85	25	65	20	50	ns
tRCH	Read Hold Time		0		0	1	0		0		ns
tRCS	Read Setup Time		0		0		0		0		ns
tREF	Refresh Interval			2		2		2		2	ms
tRMW	Read Modify Write Cycle	Time	600		500		405		320		ns
tRP	RAS Precharge Time		150		150		120		100	<u> </u>	ns
tRSH	CAS LOW to RAS HIGH I	Delay	185		165		135		100		ns
tRWC	Read/Write Cycle Time	···· ·	525		425		375		320		ns
tRWD	RAS LOW to WE LOW De	elay (Note 9)	260		210		160		120		ns
tRWL	WE LOW to RAS HIGH Setup Time		100		85		70		50		ns
tT	Transition Time		3	50	3	50	3	50	3	35	ns
tWCH	Write Hold Time		85		75		55		45		ns
tWCR	RAS LOW to Write Hold Time		200		160		120	······	95		ns
	WE LOW to CAS LOW	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	-20		-20		-20		-20		
tWCS	Setup Time (Note 9)	-55°C ≤ T _A ≤ +85°C	0		0		0		NA		ns
tWP	Write Pulse Width		85		75		55		45		ns

_ _ _ -

Notes:

- 1. All voltages referenced to VSS.
- 2. Signal transition times are assumed to be 5ns. Transition times are measured between specified high and low logic levels.
- Timing reference levels for both input and output signals are the specified worst-case logic levels.
- 4. VCC is used in the output buffer only. ICC will therefore depend only on leakage current and output loading. When the output is ON and at a logic high level, VCC is connected to the Data Out pin through

an equivalent resistance of approximately 135Ω . In standby mode VCC may be reduced to zero without affecting stored data or refresh operations.

- 5. Output loading is two standard TTL loads plus 100pF capacitance.
- 6. Both RAS and CAS must be low read data. Access timing will depend on the relative positions of their falling edges. When tRCD is less than the maximum value shown, access time depends on RAS and tRAC governs. When tRCD is more than the maximum value shown access time depends on CAS and tCAC governs. The

Am9016

Notes (Cont.)

- maximum value listed for tRCD is shown for reference purposes only and does not restrict operation of the part.
- Timing reference points for data input setup and hold times will depend on what type of write cycle is being performed and will be the later falling edge of CAS or WE.
- 8. At least eight initialization cycles that exercise RAS should be performed after power-up and before valid operations are begun.
- The tWCS, tRWD and tCWD parameters are shown for reference purposes only and do not restrict the operating flexibility of the part.

When the falling edge of $\overline{\text{WE}}$ follows the falling edge of $\overline{\text{CAS}}$ by at most tWCS, the data output buffer will remain off for the whole cycle and an "early write" cycle is defined. When the falling edge of $\overline{\text{WE}}$ follows the falling edges of $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ by at least tRWD and tCWD respectively, the Data Out from the addressed cell will be valid at the access time and a "read/write" cycle is defined. The falling edge of $\overline{\text{WE}}$ may also occur at intermediate positions, but the condition and validity of the Data Out signal will not be known.

APPLICATION INFORMATION

The Am9016 electrical connections are such that if power is applied with the device installed upside down it will be permanently damaged. Precautions should be taken to avoid this mishap.

OPERATING CYCLES

Random read operations from any location hold the $\overline{\text{WE}}$ line high and follow this sequence of events:

- 1) The row address is applied to the address inputs and RAS is switched low.
- After the row address hold time has elapsed, the column address is applied to the address inputs and CAS is switched low.
- Following the access time, the output will turn on and valid read data will be present. The data will remain valid as long as CAS is low.
- 4) CAS and RAS are then switched high to end the operation. A new cycle cannot begin until the precharge period has elapsed.

Random write operations follow the same sequence of events, except that the \overline{WE} line is low for some portion of the cycle. If the data to be written is available early in the cycle, it will usually be convenient to simply have \overline{WE} low for the whole write operation.

Sequential Read and Write operations at the same location can be designed to save time because re-addressing is not necessary. A read/write cycle holds $\overline{\text{WE}}$ high until a valid read is established and then strobes new data in with the falling edge of $\overline{\text{WE}}$.

After the power is first applied to the device, the internal circuit requires execution of at least eight initialization cycles which exercise RAS before valid memory accesses are begun.

ADDRESSING

14 address bits are required to select one location out of the 16,384 cells in the memory. Two groups of 7 bits each are multiplexed onto the 7 address lines and latched into the internal address registers. Two negative-going external clocks are used to control the multiplexing. The Row Address Strobe (\overline{RAS}) enters the row address bits and the Column Address Strobe (\overline{CAS}) enters the column address bits.

When RAS is inactive, the memory enters its low power standby mode. Once the row address has been latched, it need not be changed for successive operations within the same row, allowing high-speed page-mode operations.

Page-mode operations first establish the row address and then maintain \overrightarrow{RAS} low while \overrightarrow{CAS} is repetitively cycled and designated operations are performed. Any column address within the selected row may be accessed in any sequence. The maximum time that \overrightarrow{RAS} can remain low is the factor limiting the number of page-mode operations that can be performed.

Multiplexed addressing does not introduce extra delays in the access path. By inserting the row address first and the column address second, the memory takes advantage of the fact that the delay path through the memory is shorter for column addresses. The column address does not propagate through the cell matrix as the row address does and it can therefore arrive somewhat later than the row address without impacting the access time.

REFRESH

The Am9016 is a dynamic memory and each cell must be refreshed at least once every refresh interval in order to maintain the cell contents. Any operation that accesses a row serves to refresh all 128 cells in the row. Thus the refresh requirement is met by accessing all 128 rows at least once every refresh interval. This may be accomplished, in some applications, in the course of performing normal operations. Alternatively, special refresh operations may be initiated. These special operations could be simply additional conventional accesses or they could be "RAS-only" cycles. Since only the rows need to be addressed, CAS may be held high while RAS is cycled and the appropriate row addresses are input. Power required for refreshing is minimized and simplified control circuitry will often be possible.

DATA INPUT/OUTPUT

Data is written into a selected cell by the combination of \overline{WE} and CAS while RAS is low. The later negative transition of \overline{WE} or CAS strobes the data into the internal register. In a write cycle, if the \overline{WE} input is brought low prior to CAS, the data is strobed by CAS, and the set-up and hold times are referenced to CAS. If the cycle is a read/write cycle then the data set-up and hold times are referenced to the negative edge of \overline{WE} .

In the read cycle the data is read by maintaining \overline{WE} in the high state throughout the portion of the memory cycle in which \overline{CAS} is low. The selected valid data will appear at the output within the specified access time.

DATA OUTPUT CONTROL

Any time \overline{CAS} is high the data output will be off (after tOFF). The output contains either one or zero during read cycle after the access time has elapsed. Data remains valid from the access time until \overline{CAS} is returned to the high state. The output data is the same polarity as the input data.

The user can control the output state during write operations by controlling the placement of the \overline{WE} signal. In the "early write" cycle (see note 9) the output is at a high impedance state throughout the entire cycle.

POWER CONSIDERATIONS

RAS and/or CAS can be decoded and used as a chip select signal for the Am9016 but overall system power is minimized if RAS is used for this purpose. The devices which do not receive RAS will be in low power standby mode regardless of the state of CAS.

At all times the Absolute Maximum Rating Conditions must be observed. During power supply sequencing VBB should never be more positive than VSS when power is applied to VDD.

Am9016

_ - - - -

Am9016

ORDERING INFORMATION									
Ambient Temperature	Package	Access Time							
	Type	300ns	250ns	200ns	150ns				
0°C ≤ T _A ≤ +70°C	Hermetic DIP	AM9016CDC	AM9016DDC	AM9016EDC	AM9016FDC				
	Molded DIP	AM9016CPC	AM9016DPC	AM9016EPC	AM9016FPC				
	Chip-Pak	AM9016CLC	AM9016DLC	AM9016ELC	AM9016FLC				
-55°C ≤ T _A ≤ +85°C	Hermetic DIP	AM9016CDL	AM9016DDL	AM9016EDL	-				
	Chip-Pak	AM9016CLL	AM9016DLL	AM9016ELL	-				

· - · • --

Metallization and Pad Layout

DIE SIZE 0.107" X 0.205"

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE APPLICATION NOTE _ _ - _

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

MEMORIES (RAM)

BIPOLAR RANDOM ACCESS

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY MEMORIES (ROM)

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

3

2

MOS Read Only Memories (ROM) Index

Am9218/8316E Am9232/9233 Am9264 Am9265 Am92128 Am92256

2048 x 8 Read Only Memory 5-	1
4096 x 8 Read Only Memory 5-	4
64K (8192 x 8) Read Only Memory 5-	8
64K (8192 x 8) Read Only Memory5-1	2
128K (16,384 x 8) Read Only Memory 5-1	5
256K (32,768 x 8) Read Only Memory 5-1	8

Am9218/8316E

DISTINCTIVE CHARACTERISTICS

- 2048 x 8 organization
- Plug-in replacement for 8316E
- Access times as fast as 350 ns
- Fully capacitive inputs simplified driving
- 3 fully programmable Chip Selects increased flexibility
- Logic voltage levels compatible with TTL
- Three-state output buffers simplified expansion
- Drives two full TTL loads
- Single supply voltage +5.0V
- Low power dissipation
- N-channel silicon gate MOS technology
- 100% MIL-STD-883 reliability assurance testing
- Am2716 compatible

FUNCTIONAL DESCRIPTION

The Am9218 devices are high performance, 16384-bit, static, mask programmed, read only memories. Each memory is implemented as 2048 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes as small as 2048 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Three programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may be specified by the customer thus allowing the addressing of 8 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9218 devices and other three-state components.

These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by whatever address is present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

	Ambient Temperature	Access Time		
Package Type	Specifications	450ns	350ns	
Molded	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$	AM9218BPC P8316E	AM9218CPC	
Cerdip	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$	AM9218BCC	AM9218CCC	
Side-Brazed	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$	AM9218BDC C8316E	AM9218CDC	
Ceramic	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	AM9218BDM		

5

Am9218/8163E

MAXIMUM RATINGS (Above which the useful life may be impaired)

· • · = •

Storage Temperature	–65°C to +150°C
Ambient Temperature Under Bias	55°C to +125°C
VCC with Respect to VSS	+7.0V
DC Voltage Applied to Outputs	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V
Power Dissipation	1.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS

Am9218BDC	$T_A = 0^\circ C$ to $+70^\circ C$
Am9218CDC	

C8316A	VCC = 5.0V ±5%			Am9	218XDC		8316E	
Parameters	Description	Tes	Test Conditions		Max.	Min.	Max.	Units
voн	Output HIGH Voltage	9218	IOH = -200μA	2.4				Volts
VON		8316E	IOH = -100µA			2.4		Volts
VOL	Output LOW Voltage	9218	IOL = 3.2mA		0.4			Volts
VUL		8316E	IOL = 2.1mA				0.4	Volts
VIH	Input HIGH Voltage			2.0	VCC + 1.0	2.0	VCC + 1.0	Volts
VIL	Input LOW Voltage	······		-0.5	0.8	-0.5	0.8	Volts
ILO	Output Leakage Current	Chip Disabl	ed		10		10	μA
ILI	Input Leakage Current				10		10	μA
ICC	VCC Supply Current	- 1			70		95	mA

ELECTRICAL CHARACTERISTICS

Am9218BDM

 $T_{\Lambda} = -55^{\circ}C \text{ to } +125^{\circ}C$ VCC = 5.0V ±10%

			Am	Am9218B		
arameters	Description	Test Conditions	Min.	Max.	Units	
voн	Output HIGH Voltage	10H = -200µA	2.2		Volts	
VOL	Output LOW Voltage	IOL = 3.2mA		0.45	Volts	
VIH	Input HIGH Voltage		2.0	VCC + 1.0	Volts	
VIL	Input LOW Voltage		-0.5	0.8	Volts	
ILO	Output Leakage Current	Chip Disabled		10	μA	
1LI	Input Leakage Current			10	μA	
ICC	VCC Supply Current			80	mA	

Am0210D

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Am9218XDC Am9218BDM		VCC = 5.0V ± 5% VCC = 5.0V ± 10%	Am9	218B	Am9	218C	831	16E	
arameters	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Units
ta	Address to Output Access Time			450		350		450	ns
tCO	Chip Select to Output ON Delay	tr = tf = 20 ns Output Load:		150		130		250	ns
tOH	Previous Read Data Valid with Respect to Address Change	one standard TTL gate	20		20		-		ns
tDF	Chip Select to Output OFF Delay	plus 100pF (Note 1)		150		130		250	ns
CI	Input Capacitance	T _A = 25°C, f = 1.0MHz		7.0		7.0		7.0	pF
CO Output Capacitance		All pins at OV		7.0	_	7.0		7.0	pF

Notes: 1. Timing reference levels: High = 2.0 V, Low = 0.8 V.

Am9218/8163E

PROGRAMMING INSTRUCTIONS CUSTOM PATTERN ORDERING INFORMATION

The Am9218 is programmed from punched cards, card coding forms or paper tape in card image format as shown below. Logic "1" = a more positive voltage (normally +5.0 V)

Logic "0" = a more negative voltage (normally 0 V)

FIRST CARD

SE

Column Number 10 thru 29 32 thru 37	Description Customer Name Total number of "1's" contained in the data. This is optional and should be left blank if not used.
50 thru 62 65 thru 72	8316E or 9218 Optional information
COND CARD	

Column Number	Description
29	CS3 input required to select chip (0 or 1)
31	CS2 input required to select chip (0 or 1)
33	CS1 input required to select chip (0 or 1)

Two options are provided for entering the data pattern with the remaining cards.

OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 2048 data cards are required.

Column Number

10, 12, 14, 16, 18 20, 22, 24, 26, 28, 30	Address input pattern with the most significant bit (A10) in column 10 and the least significant bit (A0) in column 30.
40, 42, 44, 46, 48, 50, 52, 54	Output pattern with the most significant bit (O8) in column 40 and the least significant bit (O1) in column 54.
73 thru 80	Coding these columns is not essential and may be used for card identification purposes.

OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 128 data cards. Each data card contains the 8-bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31. Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21, 22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through 7F: 128 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF.

	A D D R																		οι	JTP	UT	VAI	LUE	ES F	OF	R A	DDR	+]
	D R		Ì	0		1			2	Τ		3		4		T	5			6		7	Τ		8		9		A			В	- 1		С	Γ	D		t t	E		F	1
2	1 22	23		30 3	1 32	2 33	34	35	36 3	7 38	39	40	41	42 4	3 4	44	5 46	47	48	49	50	515	2 5:	3 54	55	56	57 58	59	60	61	62	63	64 (65 6	66 67	68	69 70	71	72	73	74	75 76	
L	0	0												1																													
6	0 1	0		1					I					1								1			1							1			ł							1	
6	2	0							1			1																							I		1						
						<u> </u>										_		_	·			•									I	<u> </u>		1-						44			1
																						0																					
$\left \right $					Т		Т			Τ			_		Т	Т							Τ			<u> </u>		T-	<u> </u>		<u> </u>			Τ		1		1	Τ				+
4	F	0						_				1				+							+											_		-	┟┈└			\Box	_		-
Ŀ	2 0	0																																									
																						•																					
																						0																					
	F	0		1	Τ				1	Τ		1			T		1					-	Τ		1							1			1				Γ	,			1
F		ت	l			!		[I		1						1	1	I	1	l	0		-	_	L	LL				I						11	-	<u> </u>				1
																						0 0																					
L	,	1	ſ				-r			T					_	-	-	_	_					_				1	-		<u> </u>			<u> </u>		.	·		1		_		
7	F	0		I										I			1								1						·				1							1_	

5

Am9232 • Am9233 4096 x 8 Read Only Memory

DISTINCTIVE CHARACTERISTICS

- 4096 x 8 organization
- No clocks or refresh required
- Access time selected to 300ns
- Fully capacitive inputs simplified driving
- Two mask programmable chip selects increased flexibility
- Logic voltage levels compatible with TTL
- Three-state output buffers simplified expansion
- Drives two TTL loads
- Single +5 volt power supply
- Two different pinouts for universal application
- Low power dissipation
- 100% MIL-STD-883 reliability assurance testing
- Non-connect option on chip selects

FUNCTIONAL DESCRIPTION

The Am9232/33 devices are high performance, 32,768-bit, static, mask programmed, read only memories. Each memory is implemented as 4096 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes of 4096 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Two programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9232/33 devices and other three-state components.

These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

ORDERING INFORMATION

	Ambient Temperature	Access Time						
Package Type	Specifications	450ns	300ns					
Molded	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9232/33BPC	AM9232/33CPC					
Cerdip	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9232/33BCC	AM9232/33CCC					
Side-Brazed	$-55^{\circ}C \le T_A \le +125^{\circ}C$	AM9232/33BDM						
Ceramic	$0^{\circ}C \le T_A \le +70^{\circ}C$	AM9232/33BDC	AM9232/33CDC					

Am9232/9233

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65°C to +150°C				
Ambient Temperature Under Bias	-55°C to +125°C				
VCC with Respect to VSS	+7.0V				
DC Voltage Applied to Outputs	-0.5V to +7.0V				
DC Input Voltage	-0.5V to +7.0V				
Power Dissipation (Package Limitation)	1.0W				

.

Am9232/Am9233

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VCC	VSS
Am9232DC/PC/CC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	+5.0V ±5%	٥V
Am9232/33DM	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	+5.0V ±10%	0V

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Co	onditions	Min.	Max.	Unit	
VOH		1011 000 4	VCC = 4.75	2.4		Volts	
VUH	Output HIGH Voltage	$IOH = -200\mu A$	VCC = 4.50	2.2		Voits	
VOL	Output LOW Voltage	IOL = 3.2mA			0.4	Volts	
VIH	Input HIGH Voltage			2.0	VCC+1.0	Volts	
VIL	Input LOW Voltage			-0.5	0.8	Volts	
ILI	Input Load Current	VSS ≤ VI ≤ VCC			10	μA	
ILO		VSS ≤ VO ≤ VCC	+70°C		10		
	Output Leakage Current	Chip Disabled	+125°C (DM)		50	μA	
	VCC Supply Current		0°C		80	mA	
ICC	voo supply Current		−55°C (DM)		100	mA	
CI	Input Capacitance	$T_A = 25^{\circ}C, f = 1.0M$	Hz		7.0	pF	
со	Output Capacitance	All pins at 0V			7.0	pF	

SWITCHING	G CHARACTERISTICS over operation	Am923	32/33B	Am92			
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
ta	Address to Output Access Time			450		300	ns
tCO	Chip Select to Output ON Delay	tr = tf = 20ns		150		120	ns
tOH	Previous Read Data Valid with Respect to Address Change	Output Load: one standard TTL gate plus 100pF (Note 1)	20		20		ns
tDF	Chip Select to Output OFF Delay			150		120	ns

Note 1. Timing reference levels: High = 2.0V, Low = 0.8V.

PROGRAMMING INTRUCTIONS

CUSTOM PATTERN ORDERING INFORMATION

The Am9232 is programmed from punched cards, card coding forms or paper tape in card image format as shown below.

Logic "1" = a more positive voltage (normally +5.0V) Logic "0" = a more negative voltage (normally 0V)

FIRST CARD

Column Number	Description
10 thru 29	Customer Name
32 thru 37	Total number of "1's" contained in the data.
	This is optional and should be left blank if not used.
50 thru 62	9232 or 9233
65 thru 72	Optional information
SECOND CARD	
Column Number	Description
31	CS2 input required to select chip (0 or 1); If $CS2 = NC$, column $31 = 2$.

CS1 input required to select chip (0 or 1); If CS1 = NC, column 33 = 2.

Two options are provided for entering the data pattern with the remaining cards.

OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 4096 data cards are required.

Column Number

33

oolulliin Mulliber	
8, 10, 12, 14, 16, 18	Address input pattern with the most significant bit (A11) in column 8 and the least significant
20, 22, 24, 26, 28, 30	bit (A0) in column 30.
40, 42, 44, 46, 48	Output pattern with the most significant bit (O8) in column 40 and the least significant bit (O1)
50, 52, 54	in column 54.
73 thru 80	Coding these columns is not essential and may be used for card identification purposes.

OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 256 data cards. Each data card contains the 8-bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31. Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21, 22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through FF:256 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF.

Ĺ																	ουτ	PU	τv	'AL	UE	S FO	R A	DDR	+												
A D D R		ŀ	0	Γ	1	Τ		2		3		4			5		6			7		8	Τ	9	Τ	A	T	В			с		D		Е		F
21 2	2 23		30 31	32	33 34	1 35	5 36	37	38	39 40	41	42	13	44	45 46	47	48 4	95	05	1 52	53	54 5	5 56	575	8 59	60 6	1 62	63 6	54 E	65 E	66 67	68	69 70	71	72 73	74	75 76
0 0	0		1							1												1											1				
0 1	0									1																					1						
0 2	0		I												1		1			1								ľ			I				1		
																			•																		
																			•																		
1 F	0														1																				ł	\square	
2 0	0																			1																	
																			•																		
8 F	0	ſ						1		1												1	T			1					I				1		
																			•																		
																			•)																	
FF	= 0		1							Ι								T	T	1			Τ	1					Τ		I						1
<u> </u>			-		·							·		_							d	LL			_			·		-	•	·				·	

Am9232/9233

.

5

Am9264 64K (8192 x 8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post-metal programming
- Access time 250ns (max)
- Single $+5V \pm 10\%$ power supply
- Fully static operation
- Completely TTL compatible
- Standard 24 pin DIP
- Pin compatible with 16K/32K/64K EPROMs/ROMs
- INT-STD-123 guaranteed to 0.1%AQL
- Military version (-55 to +125°C) Available - 450ns (max) access time

FUNCTIONAL DESCRIPTION

The Am9264 high performance read only memory is organized 8192 words by 8 bits with access times of less than 250ns. This organization simplifies the design of small memory systems and permits incremental memory sizes of 8192 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

The programmable chip select input signal is provided to control the output buffers. Chip Select Polarity may be provided by the customer thus allowing the addressing of 2 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9264 devices and other three state components.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) will result in faster turn around time for new or old patterns. This technique will allow us to test wafers before committing customer patterns to categorize speed and power dissipation requirements.

	Ambient Temperature	Access Time								
Package Type	Specifications	450ns	300ns	250ns						
Molded	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9264BPC	AM9264CPC	AM9264DPC						
Cerdip	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9264BCC	AM9264CCC	AM9264DCC						
Ceramic	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9264BDC	AM9264CDC	AM9264DDC						
Side-Brazed	–55°C ≤ T _A ≤ +125°C	AM9264BDM								

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	−55 to +125°C
V _{CC} with Respect to V _{SS}	+7.0V
DC Voltage Applied to Outputs	-0.5 to +7.0V
DC Input Voltage	-0.5 to +7.0V
Power Dissipation (Package Limitation)	1.0W

.

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	Vcc	VSS
Am9264DC/PC/CC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	+5.0V ±10%	0V
Am9264DM	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	+5.0V ±10%	0V

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Condi	Test Conditions		Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -200\mu A$		2.4		Volts
VOL	Output LOW Voltage	$I_{OL} = 3.2 \text{mA}$			0.4	Volts
V _{IH}	Input HIGH Voltage			2.0	V _{CC} +1.0V	Volts
V _{IL}	Input LOW Voltage			-0.5	0.8	Volts
ILI	Input Leakage Current	$V_{SS} \le V_1 \le V_{CC}$			10	μΑ
1		$V_{SS} \leq V_O \leq \leq V_{CC}$	+70°C		10	
ILO	Output Leakage Current	Chip Disabled +125°C (DM)	+125°C (DM)		50	μΑ
			0°C		80	mA
lcc	V _{CC} Supply Current	-55°C (DM)		100	110 (
CI	Input Capacitance	$T_A = 25^{\circ}C, f = 1.0MHz$			7.0	pF
Co	Output Capacitance	All pins at 0V			7.0	

SWITCHING CHARACTERISTICS over operating range

			Am9	2048	Am92	2640	Am92	2640	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Τ _Α	Address to Output Access time	$t_r = t_f = 20$ ns		450		300		250	ns
t _{co}	Chip Select to Output on Delay	Output Load:		150		120		100	ns
t _{OH}	Previous Read Data Valid with Respect to Address Change	one standard TTL gate plus 100pF	20		20		20		ns
t _{DF}	Chip Select to Output OFF Delay	(Note 1)		120		100		80	ns

A-000640

Note 1: Timing reference levels: High = 2.0V. Low = 0.8V.

ROM CODE DATA

EPROM

AMD's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs programmed with identical data should be submitted. AMD will read the programmed EPROM and generate an Intel Hex paper tape. The second EPROM is compared with Intel Hex paper tape to insure that both EPROMs have identical data. Then AMD generates a PG tape (Pattern Generation) which is used to make masks after customer gives a code approval. One of the EPROMs is erased and then it is programmed from AMD's data base. The AMD programmed EPROM is returned to the customer for code verification of the ROM program. Unless otherwise requested, AMD will not proceed until the customer verifies the program in the returned EPROM. AMD requests a written verification form (supplied by AMD with programmed EPROM) signed by customer before proceeding to any further work.

The following EPROMs should be used for submitting ROM CODE DATA:

ROM		EP	ROM
		Preferred	Optional
Am9208	1K x 8	2708	
Am9217/18	2K x 8	2716	2516/2-2708
Am9232/33	4K x 8	2732	2532/2-2716
Am9264	8K x 8	2764	4-2716/2-2732
Am9265	8K x 8	2764	4-2716/2-2732

If more than one EPROM is used to specify one ROM pattern, (i.e., 4 16K EPROMs or 2 32K EPROMs for one 64K ROM) two complete sets of programmed EPROMs should be submitted. In this instance, the programmed EPROMs must clearly state which of the two or four EPROMs is for lower and upper address locations in the ROM.

CARD FORMAT

If customer prefers to submit punch cards, be sure to provide the industry standard formats, such as:

AMD HEXADECIMAL (PREFERRED) INTEL HEXADECIMAL INTEL BPNF MOTOROLA HEXADECIMAL EA OCTAL G.I. BINARY

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM CODE DATA (EPROM or CARDs), the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Obtain AMD's 5 digit code number from product marketing
- Supply chip select information
- Supply customer part number and appropriate AMD part number
- Supply marking information
- Instruction on whether prototype approval is required prior to production or AMD is allowed to go straight to production (in case of code change or error, customer is liable for all products in line) after customer code approval.

_ . _.

5

5-11

Am9265 64K (8192 x 8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post metal programming
- Access time 250ns (max)
- Fully static operation
- Single +5V ± 10% power supply
- Automatic power down feature controlled by separate CE pin.
 80mA max operating current 20mA max standby current
- Separate OE pin for tri-state output control
- Two programmable chip selects with no-connect option
- Pin compatible with 28 pin 64K and higher density ROMs/EPROMs
- Completly TTL compatible
- Standard 28 pin DIP
- INT-STD-123 guaranteed to 0.1% AQL.
- Military version (-55 to +125°C) Available with 450ns (max) access time

OPERATING RANGE

Part Number	Ambient Temperature	Vcc	VSS
Am9265DC/PC/CC	$0^{\circ}C \le T_{A} \le +70^{\circ}C$	+5.0V ±10%	٥V
Am9265DM	-55°C ≤ T _A ≤ +125°C	+5.0V ±10%	ov

FUNCTIONAL DESCRIPTION

The Am9265 high performance read only memory is organized 8192 words by 8 bits with access times of less than 250ns. This organization simplifies the design of small memory systems and permits incremental memory sizes of 8192 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Two programmable chip select inputs are provided to control the output buffers. Chip select polarity may be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9265 devices and other three state components. No-connect option on chip selects can be provided if desired by the customer.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate \overrightarrow{OE} , output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.

The Am9265 features an automatic stand-by mode. When deselected by \overline{CE} , the maximum supply current is reduced from 80mA to 20mA, a 75% reduction.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

ORDERING INFORMATION

	Ambient Temperature	Access Time		
Package Type	Specifications	450ns	300ns	250ns
Molded	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9265BPC	AM9265CPC	AM9265DPC
Cerdip	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9265BCC	AM9265CCC	AM9265DCC
Ceramic	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM9265BDC	AM9265CDC	AM9265DDC
Side-Brazed	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	AM9265BDM		

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	-55 to +125°C
V _{CC} with Respect to V _{SS}	+7.0V
DC Voltage Applied to Outputs	-0.5 to +7.0V
DC Input Voltage	-0.5 to +7.0V
Power Dissipation (Package Limitation)	1.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Conditions		Min	Max	Unit	
VOH	Output HIGH Voltage	$I_{OH} = -400\mu A$		2.4		Volts	
VOL	Ouput LOW Voltage	$I_{OL} = 3.2 \text{mA}$	<u> </u>		0.4	Volts	
VIH	Input HIGH Voltage	······································		2.0	V _{CC} +1.0V	Volts	
VIL	Input LOW Voltage		·····	-0.5	0.8	Volts	
lu	Input Leakage Current	$V_{SS} \leq V_I \leq V_{CC}$			10	μΑ	
L	Output Leakage Current	$V_{SS} \le V_O \le V_{CC}$	+70°C		10		
ILO	Output Leakage Current	Chip Disabled	Chip Disabled +125°C (DM)	+125°C (DM)		50	μΑ
	V Stondby Current		0°C		20	mA	
ICC1	V _{CC} Standby Current		-55°C (DM)		25	ША	
			0°C		80		
ICC2	V _{CC} Operating Current		-55°C (DM)		100	mA	
CI	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1.0MHz$			7.0	pF	
C ₀	Output Capacitance	All pins at 0V			7.0	pF	

SWITCHING CHARACTERISTICS over operating range (see notes)

			Am9	265B	Am9	265C	Am9	265D	
Parameter	Description	Test Conditions	Min	Max	Min	Max	Min	Max	Unit
t _A	Address to Output Access Time			450		300		250	ns
tco	Chip Select to Output ON Delay	tr = tf = 10ns		150		120	·	100	ns
toe	Output Enable to Output ON Delay	Output Load		150		120		100	ns
^t CE	CE to Output ON Delay	One Standard		450		300		250	ns
^t он	Previous Read Data Valid with Respect to Address Change	TTL Gate Plus 100pF (Note 1)	20		20		20		ns
t _{DF}	Chip Select to Output OFF Delay			120		100		80	ns

Notes: 1. Timing reference levels: High = 2.0V Low = 0.8V.

2. t_{DF} is the worst case OFF delay. If OE occurs before CE and CS/CS are disabled, then t_{DF} is referenced to OE only. If OE, CS/CS and CE are disabled simultaneously, then t_{DF} is referenced to all three.

5

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

ROM		E	PROM
		Preferred	Optional
Am9208	1K x 8	2708	_
Am9217/18	2K x 8	2716	2516/2-2708
Am9232/33	4K x 8	2732	2532/2-2716
Am9264	8K x 8	2764	4-2716/2-2732
Am9265	8K x 8	2764	4-2716/2-2732

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:

AMD HEXADECIMAL (PREFERRED) INTEL HEXADECIMAL INTEL BPNF MOTOROLA HEXADECIMAL EA OCTAL GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- · Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- · Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

Am92128 128K (16,384 x 8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post metal programming
- Access time 250ns (max)
- Fully static operation
- Single $+5V \pm 10\%$ power supply
- Automatic power down feature controlled by separate CE pin 80mA max operating current 25mA max standby current
- Separate OE pin for three-state output control
- Programmable chip select with no-connect option
- Pin compatible with 28-pin and high density ROMs/EPROMs
- TTL compatible
- Standard 28-pin DIP
- INT-STD-123 guaranteed to 0.1% AQL
- Military version (-55 to +125°C) Available with 450ns (max) access time

OPERATING RANGE

	Ambient		
Part Number	Temperature	Vcc	VSS
Am92128 X PC/CC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	+5.0V ±10%	0V
Am92128BDM	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	+5.0V ±10%	٥V

FUNCTIONAL DESCRIPTION

The Am92128 high performance read only memory is organized 16,384 words by 8 bits and has access times of less than 250ns. This organization simplifies the design of memory systems and permits incremental memory sizes of 16,384 bytes. The fast access times provided allow the ROM to service high performance microcomputer applications without inserting wait states.

One programmable chip select input is provided to control the output buffers. Chip select polarity may be specified by the customer thus allowing the addressing of 2 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am92128 devices and other three-state components. No-connect option on chip select can be provided if desired by the customer.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate \overline{OE} , output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.

The Am92128 features an automatic stand-by mode. When deselected by $\overline{\text{CE}}$, the maximum supply current is reduced from 80mA to 25mA, a 70% reduction.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

TRUTH TABLE

CS or CS		CE	ŌĒ	Mode	Outputs	Power
н	L	L	х	Deselected	High-Z	Active
н	L	н	х	Deselected	High-Z	Standby
L	н	L	н	Inhibit	High-Z	Active
L	н	н	х	Deselected	High-Z	Standby
L	н	L	L	Read	DOUT	Active

 $H = HIGH (\ge 2.0V)$ $L = LOW (\le 0.8V)$ X = Don't Care

ORDERING INFORMATION

	Ambient Temperature	Access Time					
Package Type	Specifications	450ns	300ns	250ns			
Molded	$0^{\circ}C \le T_{A} \le +70^{\circ}C$	Am92128BPC	Am92128CPC	Am92128DPC			
Cerdip	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	Am92128BCC	Am92128CCC	Am92128DCC			
Side-Brazed	+55°C ≤ T _A ≤ +125°C	Am92128BDM					

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	55 to +125°C
V _{CC} with Respect to V _{SS}	+7.0V
DC Voltage Applied to Outputs	-0.5 to +7.0V
DC Input Voltage	-0.5 to +7.0V
Power Dissipation (Package Limitation)	1.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS over operating range

Parameter	er Description Test Conditions		Test Conditions			Test Conditions		Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -400μA		2.4		Volts			
VOL	Ouput LOW Voltage	I _{OL} = 3.2mA			0.4	Volts			
VIH	Input HIGH Voltage			2.0	V _{CC} +1.0V	Volts			
VIL	Input LOW Voltage			-0.5	0.8	Volts			
ц	Input Leakage Current	$V_{SS} \leq V_{I} \leq V_{CC}$			10	μA			
1		$V_{SS} \leq V_O \leq V_{CC}$	+70°C		10				
LO	Output Leakage Current	Chip Disabled	+125°C (DM)		50	μΑ			
	V. Chandley Oversent		0°C	11/15	25				
ICC1	V _{CC} Standby Current		-55°C (DM)		30	mA			
	N. 0		0°C		80				
I _{CC2}	V _{CC} Operating Current	A 1	-55°C (DM)		100	mA			
CI	Input Capacitance	$T_A = 25^{\circ}C, I = 1.0MHz$	<u> anno</u>		7.0	pF			
C ₀	Output Capacitance	All pins at 0V	NULLE		7.0	pF			

SWITCHING CHARACTERISTICS over operating range (see notes)

			Am92128B		Am92128C		Am92128D			
Parameter	Description	Test Conditions	Min	Max	Min	Max	Min	Max	Unit	
t _A	Address to Output Access Time			450		300		250	ns	
t _{CO}	Chip Select to Output ON Delay	tr = tf = 10ns		150		120		100	ns	
tOE	Output Enable to Output ON Delay	Output Load		150		120		100	ns	
t _{CE}	CE to Output Delay	One Standard		450		300	· ·	250	ns	
t _{OH}	Previous Read Data Valid with Respect to Address Change	TTL Gate Plus 100pF (Note 1)	20		20		20		ns	
t _{DF}	Chip Select to Output OFF Delay			120		100		80	ns	

Notes: 1, Timing reference levels: High = 2.0V Low = 0.8V.

t_{DF} is the worst case OFF delay. If OE occurs before CE and CS/CS are disabled, then t_{DF} is referenced to OE only. If OE, CS/CS, and CE are disabled simultaneously, then t_{DF} is referenced to all three.

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

ROM		EPROM				
		Preferred	Optional			
Am9208	1K x 8	2708	-			
Am9217/18	2K x 8	2716	2516/2-2708			
Am9232/33	4K x 8	2732	2532/2-2716			
Am9264	8K x 8	2764	4-2716/2-2732			
Am9265	8K x 8	2764	4-2716/2-2732			
Am92128	16K x 8	27128	2-2764			

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:

AMD HEXADECIMAL (PREFERRED) INTEL HEXADECIMAL INTEL BPNF MOTOROLA HEXADECIMAL EA OCTAL GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

Am92256 256K (32,768 x 8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post metal programming
- Access time 250ns (max)
- Fully static operation
- Single $+5V \pm 10\%$ power supply
- Automatic power down feature controlled by separate CE pin 120mA max operating current 30mA max standby current
- Separate OE pin for three-state output control
- Pin compatible with 28-pin high density
- ROMs/EPROMs
- TTL compatible
- Standard 28-pin DIP
- INT-STD-123 guaranteed to 0.1% AQL

OPERATING RANGE

Part Number	Ambient Temperature	Vcc	VSS
Am92256PC/CC	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	+5.0V ±10%	0V

FUNCTIONAL DESCRIPTION

The Am92256 high performance read only memory is organized 32,768 words by 8 bits and has access times of less than 250ns. This organization simplifies the design of memory systems and permits incremental memory sizes of 32,768 bytes. The fast access times provided allow the ROM to service high performance microcomputer applications without inserting wait states.

The Am92256 features an automatic stand-by mode. When deselected by \overline{CE} , the maximum supply current is reduced from 120mA to 30mA, a 75% reduction. The outputs of the deselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am92256 devices and other three-state components.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate \overline{OE} , output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

PIN NAMES

 $\begin{array}{|c|c|c|c|c|c|c|} \hline A_0 - A_{14} & \text{Address} & \hline O\overline{E} & \text{Output Enable} \\ \hline C\overline{E} & \text{Chip Enable} & V_{CC} & +5V \\ \hline NC & \text{No Connection} & \text{GND} & \text{Ground} \\ \hline O_0 - O_7 & \text{Data Outputs} \\ \hline \end{array}$

TRUTH TABLE

ĈĒ	ŌĒ	Mode	Outputs	Power
н	х	Deselect	High-Z	Standby
L	н	Inhibit	High-Z	Active
L	L	Read	D _{OUT}	Active

 $\label{eq:hardware} \begin{array}{l} \mathsf{H} = \mathsf{HIGH} \ (\geq 2.0 \mathsf{V}) \\ \mathsf{L} = \mathsf{LOW} \ (\leq 0.8 \mathsf{V}) \end{array}$

X = Don't Care

ORDERING INFORMATION

	Ambient Temperature	Access Time				
Package Type	Specifications	450ns	300ns	250ns		
Molded	$0^{\circ}C \le T_{A} \le +70^{\circ}C$	Am92256BPC	Am92256CPC	Am92256DPC		
Cerdip	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	Am92256BCC	Am92256CCC	Am92256DCC		

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	-55 to +125°C
V _{CC} with Respect to V _{SS}	+7.0V
DC Voltage Applied to Outputs	-0.5 to +7.0V
DC Input Voltage	-0.5 to +7.0V
Power Dissipation (Package Limitation)	1.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Cor	Min	Max	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -400 \mu A$		2.4		Volts
V _{OL}	Ouput LOW Voltage	I _{OL} = 3.2mA			0.4	Volts
VIH	Input HIGH Voltage			2.0	V _{CC} +1.0V	Volts
V _{IL}	Input LOW Voltage			-0.5	0.8	Volts
۱ _U	Input Leakage Current	$V_{SS} \leq V_I \leq V_{CC}$			10	μA
ILO	Output Leakage Current	$V_{SS} \leq V_O \leq V_{CC}$ Chip Disabled	+70°C	a f	10	μA
I _{CC1}	V _{CC} Standby Current		0°C	B.	30	mA
I _{CC2}	V _{CC} Operating Current		0°C		120	mA
CI	Input Capacitance	T _A = 25°C, f = 1.0MHz	MUD		7.0	pF
C ₀	Output Capacitance	All pins at OV			7.0	pF

SWITCHING CHARACTERISTICS over operating range

			Am92256B		Am92256C		Am92256D			
Parameter	Description	Test Conditions	Min	Max	Min	Max	Min	Max	Unit	
t _A	Address to Output Access Time			450		300		250	ns	
tOE	Output Enable to Output ON Delay	tr = tf = 10ns Output Load		150		120		100	ns	
t _{CE}	CE to Output ON Delay	One Standard		450		300		250	ns	
t _{OH}	Previous Read Data Valid with Respect to Address Change	TTL Gate Plus 100pF (Note 1)	20		20		20		ns	
t _{DF}	Chip Select to Output OFF Delay			120		100		80	ns	

Notes: 1. Timing reference levels: High = 2.0V Low = 0.8V.

2. t_{DF} is the worst case OFF delay. If \overline{OE} occurs before \overline{OE} is disabled, then t_{DF} is referenced to \overline{OE} only. If \overline{OE} , and \overline{CE} are disabled simultaneously, then t_{DF} is referenced to both.

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

ROM		EPROM			
		Preferred	Optional		
Am9208	1K x 8	2708	· _		
Am9217/18	2K x 8	2716	2516/2-2708		
Am9232/33	4K x 8	2732	2532/2-2716		
Am9264	8K x 8	2764	4-2716/2-2732		
Am9265	8K x 8	2764	4-2716/2-2732		
Am92128	16K x 8	27128	2-2764		
Am92256	32K x 8	2-27128	4-2764		

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified. CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:

AMD HEXADECIMAL (PREFERRED) INTEL HEXADECIMAL INTEL BPNF MOTOROLA HEXADECIMAL EA OCTAL GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- · Cover EPROM window with opaque material to prevent bit loss.

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE **APPLICATION NOTE**

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS **MEMORIES (RAM)**

MOS READ ONLY **MEMORIES (ROM)**

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

MOS UV Erasable Programmable ROM (EPROM) Index

Am1702A	256-Word by 8-Bit Programmable Read Only Memory 6-1
Am9708/2708	1024 x 8 Erasable Read Only Memory 6-7
Am2716/9716	2048 x 8-Bit UV Erasable PROM 6-11
Am2732	4096 x 8-Bit UV Erasable PROM6-16
Am2732A	4096 x 8-Bit UV Erasable PROM 6-21
Am2764	8192 x 8-Bit UV Erasable PROM 6-22
Am27128	16,384 x 8-Bit UV Erasable PROM6-27

Am1702A 256-Word by 8-Bit Programmable Read Only Memory

DISTINCTIVE CHARACTERISTICS

- Field programmable 2048 bit ROM
- Access times down to 550 nanoseconds
- 100% tested for programmability
- Inputs and outputs TTL compatible
- Three-state output wired-OR capability
- Typical programming time of less than 2 minutes/device
- Clocked VGG mode for lower power dissipation
- 100% MIL-STD-883 reliability assurance testing

GENERAL DESCRIPTION

The Am1702A is a 2048-bit electrically programmable ultraviolet light erasable Read Only Memory. It is organized as 256 by 8 bits. It is packaged in a 24 pin dual in-line hermetic cerdip package with a foggy lid.

The transparent lid allows the user to erase any previously stored bit pattern by exposing the die to an ultraviolet (UV) light source. Initially, and after each erasure, all 2048 bits are in the zero state (output low). The data is selectively written into specified address locations by writing in ones.

A low power version, the Am1702AL, is available which permits the VGG input to be clocked for lower average power dissipation.

ORDERING INFORMATION

Ambient Temperature	Package	Package Clocked		Access Time (ns)	
Specification	Туре	VGG	1000	650	550
000 10 1 7000	Hermetic DIP	No	AM1702A	AM1702A-2	AM1702A-1
$0^{\circ}C$ to $+70^{\circ}C$	°C to +70°C Transparent Window	Yes	AM1702AL	AM1702AL-2	AM1702AL-1
5700 1 0500	Hermetic DIP	No	AM9702AHDL	AM9702A-2HDL	AM9702A-1HDL
-55°C to +85°C	Transparent Window	Yes	AM9702ALHDL	AM9702AL-2HDL	AM9702AL-1DHL

6

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +85°C
Power Dissipation	1 W
Input and Supply Voltages (Operating)	VCC - 20 V to VCC +0.5 V
Input and Supply Voltages (Programming)	–50 V

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE, Read Mode (Notes 1, 2)

Ambient Temperature	VCC	VDD	VGG	VBB
0°C to +70°C	+5.0V ±5%	-9.0V ±5%	-9.0V ±5%	+5.0V ±5%
-55°C to +85°C	+5.0V ±5%	-9.0V ±5%	-9.0V ±5%	+5.0V ±5%

ELECTRIC	CAL CHARACTERIS	TICS ov	er operating range (4m1702/ 4m9702/			n17024 n97024		
Parameter	Description	Te	st Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
ICF1	Output Clamp Current	T _A = 0°0	C, VO =1.0V		8	14		5.5	8	mA
ICF2	Output Clamp Current	T _A = 25°	C, VO = -1.0V			13		5	7	mA
IDD0			CC, IOL = 0mA CC -2.0, T _A = 25°C					7	10	mA
IDD1	VDD Current (Note 4)	IOL = 0m T _A = 25°	A, $V\overline{CS} = VCC - 2.0$, C		35	50		35	50	mA
IDD2		IOL=0m	A,VCS=0,TA=25°C		32	46		32	46	mA
IDD3		10L = 0m $T_A = 0^{\circ}0$	A, VCS = VCC2.0, C		38	60		38	60	mA
IGG	VGG Current					1.0			1.0	μA
IL1	Input Leakage Current	VI = 0V				1.0			1.0	μA
IL0	Output Leakage Current	CS = VC	C -2.0, VO = 0V			1.0			1.0	μA
юн	Output Source Current	V0 = 0V		-2.0			-2.0			mA
IOL	Output Sink Current	VO = 0.4	5V	1.6	4		2.0			mA
VIH	Input HIGH Level			VCC-2.0		VCC+0.3	VCC-2.0		VCC+0.3	Volts
VIL	Input LOW Level			-1.0		0.65	-1.0		0.65	Volts
VOH	Output HIGH Level	IOH ≈:	200µA	3.5	4.5		3.5	4.5		Volts
		IOL	1.6mA		-3.0	0.45				Volts
VOL	Output LOW Level	101	2.0mA						0.4	voits

SWITCHING CHARACTERISTICS over operating range (Note 5)

		Am1702A-1 Am1702AL-1 Am9702A-1 Am9702AL-1		Am1702A-2 Am1702AL-2 Am9702A-2 Am9702AL-2		Am1702A Am1702AL Am9702A Am9702AL		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tACC	Address to Output Access Time		550		650		1000	ns
tCO	Output Delay from CS		450		350		900	ns
tCS	Chip Select Delay		100		300		100	ns
tDVGG	Set-up Time, VGG	0.3		0.3		0.4		μs
tOD	Output Deselect		300		300		300	ns
tDH	Previous Read Data Valid		100		100		100	ns
tOHC	Data Out Valid from VGG (Note 6)		5.0		5.0		5.0	μs
freq.	Repetition Rate		1.8		1.6		1.0	MHz

CAPACITANCE (Note 7)

Parameter	Description	Conditions	Typ.	Max.	Unit
CI	Input Capacitance	Τ _Δ = 25°C	8	15	pF
со	Output Capacitance	All unused pins are at VCC	10	15	pF
CVGG	VGG Capacitance			30	pF

CLOCKED VGG OPERATION (Note 1)

The VGG input may be clocked between +5V (VCC) and -9Vto save power. To read the data, the chip select (\overline{CS}) must be low (< VIL) and the VGG level must be lowered to -9V at least tDVGG prior to the address selection. Once the data has appeared at the output and the access time has elapsed, VGG

may be raised to +5V. The data output will remain stable for tOHC. To deselect the chip, $\overline{\text{CS}}$ is raised to \ge VIH, and the output will go the high impedance state after tOD. The chip will be deselected when \overline{CS} is raised to VIH whether the VGG is at +5V or at -9V.

PROGRAMMING THE Am1702A

Each storage node in the Am1702A consists of an MOS transistor whose gate is not connected to any circuit element. The transistors are all normally off, making all outputs LOW in an unprogrammed device. A bit is programmed to a HIGH by applying a large negative voltage to the MOS transistor; electrons tunnel through the gate insulation onto the gate itself. When the programming voltage is removed, a charge is left on the gate which holds the transistor on. Since the gate is completely isolated, there is no path by which the charge can escape, except for random high energy electrons which might retunnel through the gate insulation. Under ordinary conditions retunneling is not significant. The application of high energy to the chip through X-rays or UV light (via the quartz window) raises energy levels so that the charge can escape from the gate region, erasing the program and restoring the device to all LOW.

In order to program a specified byte, all 8 address lines must be in the binary complement of the address desired when pulsed VDD and VGG move to their negative level. The complemented address must be stable for at least tACW before VDD and VGG make their negative transitions. The voltage swing of the address lines during programming is between $-47V \pm 1V$ and 0V. The addresses must then make a transition to the true state at least tATW before the program pulse is applied. For good data retention, the addresses should be programmed in sequence from 0 to 255, a minimum of 32 times. DO1 through D08 are used as the data inputs to program the desired pattern. A low level at the data input $(-47V \pm 1V)$ will program the selected bit to 1 and a high level (0V) will program it to a 0. All 8 bits addressed are programmed simultaneously. Programming Boards are available for the Data I/O automatic programmer (part number 1010/1011), for the Spectrum Dynamics programmer (part number 434-549), and for the Pro-Log programmer (part number PM9001).

ERASING THE Am1702A

The Am1702A may be erased (restored to all LOW's) by exposing the die to ultraviolet light from a high intensity source. The recommended dosage is 6 W-sec/cm² at a wavelength of 2537 Å. The Ultraviolet Products, Inc., models UVS-54 or S-52 can erase the Am1702A in about 15 minutes, with the devices held one inch from the lamp. (Caution should be used when Am1702A's are inspected under fluorescent lamps after being programmed, as some fluorescent lamps may emit sufficient UV to erase or "soften" the PROM.)

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.

Ultraviolet lamps can also ionize oxygen and create ozone which is harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
ILI1P	Input Current, Address and Data	VI = -48V			10	mA
ILI2P	Input Current, Program and VGG Inputs	VI = -48V			10	mA
IBB	VBB Current			0.05		mA
IDDP	IDD Current During Programming Pulse	VDD = VProg = -48V, VGG = -35V		200	Note 8	mA
VIHP	Input HIGH Voltage				0.3	Volts
VIL1P	Voltage Applied to Output to Program a HIGH		-46		-48	Volts
VIL2P	Input LOW Level on Address Inputs		-40		-48	Volts
VIL3P	Voltage Applied to VDD and Program Inputs		-46		-48	Volts
VIL4P	Voltage Applied to VGG Input		-35		-40	Volts
tφPW	Programming Pulse Width	VGG = -35V, VDD = VProg = -48V			3.0	ms
tDW	Data Set-up Time		25			μs
tDH	Data Hold Time		10			μs
tVW	VGG and VDD Set-up Time		100			μs
tVD	VGG and VDD Hold Time		10		100	μs
tACW	Address Set-up Time (Complement)		25			μs
tACH	Address Hold Time (Complement)		25			μs
tATW	Address Set-up Time (True)		10	1		μs
tATH	Address Hold Time (True)		10			μs
	Duty Cycle				20	%

PROGRAMMING REQUIREMENTS (Note 2)

. .

6

NOTES:

- During read operations VGG may be clocked high to reduce power consumption. This involves swinging VGG up to VCC. See "Clocked VGG Operation". This mode is possible only with the Am1702AL.
- 2. During Read operations: Pins 12, 13, 15, 22, 23 = +5.0V ±5% Pins 16, 24 = -9.0V ±5%

During Program operations:

- $T_A = 25^{\circ}C$
- Pins 12, 22, 23 = 0V

Pins 13, 24 are pulsed low from 0V to $-47V \pm 1V$

Pin 15 = $+12.0V \pm 10\%$

Pin 16 is pulsed low from 0V to $-37.5V\ \pm 2.5V$

- 3. Typical values are for $T_A = 25^{\circ}$ C, nominal supply voltages and nominal processing parameters.
- 4. IDD may be reduced by pulsing the VGG supply between VCC and -9V. VDD current will be directly proportional to the VGG duty cycle. The data outputs will be unaffected by address or chip select changes while VGG is at VCC. For this option specify AM1702AL.
- 5. VIL = 0V, VIH = 4.0V, tr = tf \leq 50ns, Load = 1 TTL gate.
- 6. The output will remain valid for tOHC after the VGG pin is raised to VCC, even if address change occurs.
- These parameters are guaranteed by design and are not 100% tested.
- 8. Do not allow IDD to exceed 300mA for more than 100μ sec.

Am9708/Am2708

DISTINCTIVE CHARACTERISTICS **GENERAL DESCRIPTION** Direct replacement for Intel 2708/8708 The Am2708 is an 8,192-bit erasable and programmable MOS read-only memory. It is organized as 1024 words by 8 Interchangeable with Am9208, Am9216 masked ROMs · Full military temperature operation bits per word. Erasing the data in the EROM is accomplished by projecting ultraviolet light through a trans- Fast programming time - typically 50sec TTL compatible interface signals parent window for a predetermined time period. Fully static operation – no clocks When the Chip Select/Write Enable input is at the high logic Fast access time - 350ns level, the device is unselected and the data lines are in their Three-state outputs ٠ high impedance state. The device is selected when \overline{CS}/WE Tested for 100% programmability . is at the low logic level. The contents of a particular memory 100% MIL-STD-883 reliability assurance testing location, specified by the 10 address lines, will be available on the data lines after the access time has elapsed. For programming, \overline{CS}/WE is connected to +12V and is used in conjunction with the Program input. The Address and Data lines are TTL compatible for all operating and programming modes. CONNECTION DIAGRAM **BLOCK DIAGRAM Top View** ADDRESS 7 VCC(+5V) 24 ADDRESS 6 ADDRESS 8 2 23 ROW SELECT 128 X 64 MEMORY ARRAY ADDRESS 5 3 22 ADDRESS 9 ADDRESS 4 21 VBB(-5V) CHIP SELECT/ ADDRESS 3 20 ADDRESS 2 VDD (+12 V) 6 19 Am2708/ PROGRAM Am9708 ADDRESS 1 PROGRAM 18 ADDRESS 0 DATA OUT 8 COLUMN SELECT 8 17 DATA OUT 7 DATA OUT 1 9 16 DATA BUFFERS CS/WE DATA OUT 2 10 15 DATA OUT 6 DATA OUT 3 11 Π DATA OUT 5 14 (GND) VSS DATA OUT 4 12 13 DO1 - DO8 Note: Pin 1 is marked for orientation. MOS-053 MOS-052 **ORDERING INFORMATION**

Package Type	Ambient Temperature Specification	Order Number
Hermetic DIP Transparent Window	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	AM2708DC (450ns) AM2708-1DC (350ns)
Hermetic DIP Transparent Window	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	AM9708DM (480ns)

6

Am9708/Am2708

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	-55°C to +125°C
All Signal Voltages, except Program and CS/WE, with Respect to VBB	-0.3V to +15V
Program Input Voltage with Respect to VBB	-0.3V to +35V
CS/WE Input with Respect to VBB	-0.3V to +20V
VCC and VSS with Respect to VBB	-0.3V to +15V
VDD with Respect to VBB	-0.3V to +20V
Power Dissipation	1.5W

The product described by this specification includes internal circuitry designed to protect input devices from excessive accumulation of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to any voltages that exceed the maximum ratings.

OPERATING RANGE

Ambient Temperature	VDD	VCC	VBB	VSS
0°C to +70°C	+12V ±5%	+5V ±5%	-5V ±5%	0٧
-55°C to +125°C	+12V ±10%	+5V ±10%	-5V ±10%	0V

PROGRAMMING CONDITIONS

Ambient Temperature	VDD	VCC	VBB	VSS	CS/WE	VIHP
+25°C	+12V ± 5%	+5V ± 5%	-5V ± 5%	οv	+12V ± 5%	26V ± 1V

READ OPERATION

ELECTRICAL CHARACTERISTICS over operating range (Notes 1, 7)

Parameters	Description	Test Conditions		Min.	Тур.	Max.	Units
VIL	Input LOW Voltage			VSS		0.65	Volts
VIH		$T_A = 0^{\circ}C \text{ to } +70^{\circ}$	C	3.0		VCC+1	Volts
VIN	Input HIGH Voltage	$T_A = -55^{\circ}C \text{ to } +$	125°C	2.4		VCC+1	Volts
VOL	Output LOW Voltage	IOL = 1.6mA				0.45	Volts
VOH		IOH = - 100μA		3.7			Volts
VUH	Output HIGH Voltage	IOH = -1.0mA	<u> </u>	2.4			Volts
- ILI	Address and Chip Select Input Load Current	VSS ≤ VIN ≤ VCC			1.0	10	μΑ
ILO	Output Leakage Current	VOUT = Worst Case CS/WE = + 5.0V			1.0	10	μΑ
IDD			$T_A = 0^{\circ}C$		50	65	
טטו	VDD Supply Current		$T_A = -55^{\circ}C$			80	mA
ICC	VCC Currely Current	All inputs HIGH.	$T_A = 0^{\circ}C$		6.0	10	
	VCC Supply Current	$\overline{\text{CS}}/\text{WE} = +5.0\text{V}$	$T_A = -55^{\circ}C$			15	mA
IBB	VBB Supply Current		$T_A = 0^{\circ}C$		30	45	
100	VBB Supply Current		$T_A = -55^{\circ}C$			60	mA
PD	Power Dissipation	$T_A = 70^{\circ}C$				800	mW
CIN	Input Capacitance	T _A = 25°C f = 1MHz All pins at 0V			4.0	6.0	pF
COUT	Output Capacitance				8.0	12.0	pF

SWITCHIN	G CHARACTERISTICS over open	rating range (Notes 2, 7)	0°C ≤ .	r _A ≤ 70°C	–55°C ≤ T	r _A ≤ +125°C	
Parameters	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
tACC	Address to Output Access Time (Note 3)	tr = tf ≤ 20ns Output Load: One Standard		2708 2708-1 450 350		480	ns
tCO	Chip Select to Output on Delay (Note 4)			120		150	ns
tDF	Chip Select to Output OFF Delay	TTL Gate Plus	0	120	0	150	
tOH	Previous Read Data Valid with Respect to Address Change	100pF	0		0		

Am9708/Am2708

PROGRAMMING CHARACTERISTICS under programming conditions

Parameter	Description	Min.	Max.	Units
tAS	Address Set Up Time	10		μs
tCSS	CS/WE Set Up Time	10		μs
tDS	Data Set Up Time	10		μs
tAH	Address Hold Time (Note 5)	1.0		μs
tCH	CS/WE Hold Time (Note 5)	0.5		μs
tDH	Data Hold Time	1.0		μs
tDF	Chip Select to Output Off Delay	0	120	ns
tDPR	Program to Read Delay		10	μs
tPW	Program Pulse Width	0.1	1.0	ms
tPR, tPF	Program Pulse Transition Times	0.5	2.0	μs
VIHW	CS/WE Input High Level	11.4	12.6	Volts
VIHP	Program Pulse High Level (Note 6)	25	27	Volts
VILP	Program Pulse Low Level (Note 6)	VSS	1.0	Volts

6

PROGRAMMING THE Am2708

All 8192 bits of the Am2708 are in the logic HIGH state after erasure. When any of the output bits are programmed, the output state will change from HIGH to LOW. Programming of the device is initiated by raising the \overline{CS}/WE input to +12V. A memory location is programmed by addressing the device and supplying 8 data bits in parallel to the data out lines. When address and data bits are set up, a programming pulse is applied to the program input. All addresses are programmed sequentially in a similar manner. One pass through all 1024 addresses is considered one program loop. The number of program loops (N) required to complete the programming cycle is a function of the program pulse width (tPW) such that $N \ge 100 \text{ms/tPW}$ requirement is met. Do not apply more than one program pulse per address without sequentially programming all other addresses. There should be N successive loops through all locations. The Program pin will source the IIPL current when it is low (VILP) and CS/WE is high (VIHW). The Program pin should be actively pulled down to maintain its low level.

ERASING THE Am2708

The Am2708 can be erased by exposing the die to highintensity, short-wave, ultra-violet light at a wavelength of 2537 angstroms through the transparent lid. The recommended dosage is ten watt-seconds per square centimeter. This erasing condition can be obtained by exposing the die to model S-52 ultraviolet lamp manufactured by Ultra-Violet Products, Inc. or Product Specialties, Inc. for approximately 20 to 30 minutes from a distance of about 2.5 centimeters above the transparent lid. The light source should not be operated with a short-wave filter installed. All bits will be in a logic HIGH state when erasure is complete.

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.

Ultraviolet lamps can also ionize oxygen and create ozone which can be harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

NOTES:

- 1. Typical values are for $T_A = 25^{\circ}C$, nominal supply voltages and nominal processing parameters.
- Timing reference levels (Read) Inputs: High = 2.8V (DC), 2.2V (DM); Low = 0.8V Outputs: High = 2.4V, Low = 0.8V
- 3. Typical access time is 280ns.
- 4. Typical chip select to output on delay is 60ns.
- 5. tAH must be greater than tCH.
- 6. VIHP VILP \ge 25 Volts.
- 7. V_{BB} must be applied prior to V_{CC} and V_{DD}. V_{BB} must also be the last power supply switched off.

12/16/Am9 2048 x 8-Bit UV Erasable PROM

MILITARY, INDUSTRIAL AND COMMERCIAL

DISTINCTIVE CHARACTERISTICS

- 0.3% AQL guaranteed
- Direct replacement for Intel 2716
- Interchangeable with Am9218 16K ROM
- Single +5V power supply
- Fast access time 450ns standard with 300ns, 350ns and 390ns options
- Low power dissipation
 - 525mW active
 - 132mW standby
- Fully static operation no clocks
- · Three-state outputs
- TTL compatible inputs/outputs
- 100% MIL-STD-883 reliability assurance testing

GENERAL DESCRIPTION

The Am2716/Am9716 is a 16384-bit ultraviolet erasable and programmable read-only memory. It is organized as 2048 words by 8 bits per word, operates from a single +5V supply, has a static standby mode and features fast single address location programming.

Because the Am2716/Am9716 operates from a single +5V supply, it is ideal for use in microprocessor systems. All programming signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 100 seconds.

MODE SELECTION

V_{PP} (21) V_{CC} (24)

> +5 +5

> +5 +5

+25

+25 +5

+25 +5

Ŷ Š

28

27

26 Vpp

24 17 A10

23

22 0 0

õ R Ŷ ő ₫

ŌĒ 25

CE/PGM

+5

Outputs

(9-11, 13-17)

D_{OUT}

High Z

D_{OUT}

High Z

DIN

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

A0-A10:

0₀-0₇:

OE:

MOS-200

13 03

Note: Pin 1 is marked for orientation Addresses

Outputs

CE/PGM: Chip Enable/Program

Output Enable

GND [12

MOS-672

Am2716/9716

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65 to +150°C
Ambient Temperature Under Bias	-65 to +135°C
Voltage on All Inputs/Outputs (except VPP) with Respect to GND	+6V to -0.3V
Voltage on V _{PP} During Program with Respect to GND	+26.5V to -0.3V

DC AND AC READ OPERATIONS CONDITIONS (Notes 1, 2)

	Temperature Range	V _{CC}	VPP
AM2716DC/AM2716-2DC	0 to +70°C	$5V \pm 5\%$	
AM9716DC/AM2716-1DC	0 to +70°C	5V ± 10%	
AM2716DI/AM2716-1DI	-40 to +85°C	5V ± 5%	V _{PP} (Note 2) = V _{CC}
AM2716DL/AM2716-1DL	-55 to +100°C	5V ± 10%	For all device types
AM2716DM	−55 to +125°C	5V ± 10%	

DC CHARACTERISTICS

			Min Values	Maximum Values				
Parameters	Description	Test Conditions	All Types	DL/DM	DI	DC	Units	
I _{L1}	Input Load Current	$V_{IN} = V_{CC}$ (Max) and $V_{IN} = 0$		10	10	10	μΑ	
ILO	Output Leakage Current	$V_{OUT} = V_{CC}$ (Max) and $V_{OUT} = 0$		10	10	10	μA	
I _{PP1} (Note 2)	V _{PP} Current	$V_{PP} = V_{CC}$ (Max)		5	5	5	mA	
I _{CC1} (Note 2)	V _{PP} Current (Standby)	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$		30	30	25	mA	
I _{CC2} (Note 2)	V _{CC} Current (Active)	$\overline{OE} = \overline{CE} = V_{IL}$		115	110	100	mA	
V _{IL}	Input Low Voltage		-0.1	0.8	0.8	0.8	Volts	
V _{IH}	Input High Voltage		2.0	V _{CC} +1	V _{CC} +1	V _{CC} +1	Volts	
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA @ V _{CC} (Min)		0.45	0.45	0.45	Volts	
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A @ V_{CC}$ (Min)	2.4				Volts	

AC CHARACTERISTICS

			Min Values			Maximu	ım Value	es		
Parameters	Description	Test Conditions (Note 3)	All Types	9716 DC	2716-1 DC	2716-2 DC	2716 DC	2716-1 DI/DL	2716 DI/DL/DM	Units
tACC	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$		300	350	390	450	350	450	ns
^t CE	CE to Output Delay	$\overline{OE} = V_{IL}$		300	350	390	450	350	450	ns
t _{OE}	Output Enable to Output Delay	$\overline{CE} = V_{IL}$		120	120	120	120	150	150	ns
^t DF	Output Enable High to Output Float	$\overline{CE} = V_{IL}$	0	100	100	100	100	130	130	ns
^t он	Output Hold from Addresses, CE or OE, Whichever Occurred First	$\overline{CE} = \overline{OE} = V_{IL}$	0	1			1			ns

CAPACITANCE (Note 4)

 $T_A = +25^{\circ}C, f = 1MHz$

Parameters	Description	Test Conditions	Тур	Max	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	4	6	pF
COUT	Output Capacitance	V _{OUT} = 0V	8	12	pF

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.

2. Vpp may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and I_{PP1} . 3. Other Test Conditions: a) Output Load: 1 TTL gate and $C_L = 100 pF$

b) Input Rise and Fall Times: ≤20ns

c) Input Pulse Levels: 0.8 to 2.2V

d) Timing Measurement Reference Level:

Inputs: 1V and 2V

Outputs: 0.8V and 2V

4. This parameter is only sampled and is not 100% tested.

Am2716/9716

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} . 2. \overrightarrow{OE} may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of \overrightarrow{CE} without impact on t_{ACC} . 3. t_{DF} is specified from \overrightarrow{OE} or \overrightarrow{CE} , whichever occurs first.

Ambient Temperature Specification	Order Number	t _{ACC} (ns)	t _{CE} (ns)	t _{OE} (ns)
	AM9716DC	300	300	120
	AM9716LC	300	300	120
0°C ≤ T _A ≤ 70°C	AM2716-1DC	350	350	120
	AM2716-1LC	- 350	350	120
0.0 ≤ 1 <u>A</u> ≤ 70.0	AM2716-2DC	000	390	400
	AM2716-2LC	390	390	120
	AM2716DC	450		100
	AM2716LC	450	450	120
	AM2716-1DI	050	350	450
1090 - T - 0590	AM2716-1LI	- 350		150
$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	AM2716D1	450	450	150
	AM2716LI	450	450	150
	AM2716-1DL	050	050	450
5500 × T	AM2716-1LL	350	350	150
$-55^{\circ}C \le T_A \le +100^{\circ}C$	AM2716DL	450	450	150
	AM2716LL	450	450	150
5500 x T x x 40500	AM2716DM	450	450	450
$-55^{\circ}C \le T_A \le +125^{\circ}C$	AM2716LM	450	450	150

Am2716/9716

PROGRAM OPERATION

DC PROGRAMMING CHARACTERISTICS

 $T_A = +25^{\circ}C \pm 5^{\circ}C$, V_{CC} (Note 1) = 5V ±5%, V_{PP} (Notes 1, 2) = 25V ±1V

Parameters	Description	Test Conditions	Min	Max	Units
l _u	Input Current	V _{IN} = 5.25/0.45V		10	μΑ
l _{PP1}	V _{PP} Supply Current	CE/PGM = V _{IL}		5	mA
I _{PP2}	VPP Supply Current During Programming Pulse	$\overline{\text{CE}}/\text{PGM} = \text{V}_{\text{IH}}$		30	mA
lcc	V _{CC} Supply Current			100	mA
V _{IL}	Input Low Level		-0.1	0.8	Volts
VIH	Input High Level		2.0	V _{CC} +1	Volts

AC PROGRAMMING CHARACTERISTICS

 $T_A = +25^{\circ}C \pm 5^{\circ}C$, V_{CC} (Note 1) = 5V $\pm 5^{\circ}$, V_{PP} (Notes 1, 2) = 25V $\pm 1V$

Parameters	Description	Test Conditions	Min	Max	Units
t _{AS}	Address Set-up Time		2		μs
tOES	Output Enable Set-up Time		2		μs
t _{DS}	Data Set-up Time		2		μs
t _{AH}	Address Hold Time		2		μs
^t OEH	Output Enable Hold Time	Input t _R and t _F (10% to 90%) = 20ns	2		μs
^t DH	Data Hold Time	Input Signal Levels = 0.8 to 2.2V Input Timing Reference Level = 1V and 2V	2		μs
^t DF	Output Disable to Output Float Delay ($\overline{CE}/PGM = V_{IL}$)	Output Timing Reference Level = 0.8V and 2V	0	120	ns
^t OE	Output Enable to Output Delay ($\overline{CE}/PGM = V_{IL}$)		-	120	ns
t _{PW}	Program Pulse Width		45	55	ms
t _{PRT}	Program Pulse Rise Time		5		ns
^t PFT	Program Pulse Fall Time		5	-	ns

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
 2. V_{PP} must not be greater than 26 volts including overshoot. Permanent device damage may occur if the device is taken out of or put into the socket when V_{PP} = 25 volts is applied. Also, during OE = CE/PGM = V_{IH}, V_{PP} must not be switched from 5 volts to 25 volts or vice versa.

ERASING THE Am2716/Am9716

In order to clear all locations of their programmed contents, it is necessary to expose the Am2716/Am9716 to an ultraviolet light source. A dosage of 15 Wseconds/cm² is required to completely erase an Am2716/Am9716. This dosage can be obtained by exposure to an ultraviolet lamp [wavelength of 2537 Angstroms (Å)] with intensity of 12000μ W/cm² for 15 to 20 minutes. The Am2716/Am9716 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am2716/Am9716, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537 Å, nevertheless the exposure to florescent light and sunlight will eventually erase the Am2716/ Am9716, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2716/Am9716

Upon delivery, or after each erasure the Am2716/Am9716 has all 16384 bits in the "1," or high state. "0s" are loaded into the Am2716/Am4716 through the procedure of programming.

The programming mode is entered when +25V is applied to the V_{PP} pin and when \overrightarrow{OE} is at V_{IH}. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50msec, TTL high level pulse is applied to the \overrightarrow{CE}/PGM input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55msec. Therefore, applying a DC level to the CE/PGM input is prohibited when programming.

READ MODE

The Am2716/Am9716 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and

should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) for all devices. Data is available at the outputs 120ns or 150ns (t_{OE}) after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least t_{ACC} – t_{OE} .

STANDBY MODE

The Am2716/Am9716 has a standby mode which reduces the active power dissipation by 75%, from 525mW to 132mW (values for 0 to +70°C). The Am2716/Am9716 is placed in the standby mode by applying a TTL high signal to the $\overline{\text{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2-line control function is provided to allow for:

- 1. Low memory power dissipation
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2716/Am9716s in parallel with different data is also easily accomplished. Except for \overline{CE}/PGM , all like inputs (including \overline{OE}) of the parallel Am2716/Am9716s may be common. A TTL level program pulse applied to an Am2716/Am9716's \overline{CE}/PGM input with \underline{V}_{PP} at 25V will program that Am2716/Am9716. A low level \overline{CE}/PGM input inhibits the other Am2716/Am9716 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed with V_{PP} at 25V. Except during programming and program verify, V_{PP} must be at V_{CC} .

Am2732 4096 x 8-Bit UV Erasable PROM

Military, Industrial and Commercial

DISTINCTIVE CHARACTERISTICS

- 0.3% AQL guaranteed
- Direct replacement for Intel 2732
- Pin compatible with Am9233 32K ROM
- Single +5V power supply
- Fast access time 350ns and 450ns
- Low power dissipation
 - -787mW active
 - -157mW standby
- Fully static operation no clocks
- Three-state outputs
- TTL compatible inputs/outputs
- 100% MIL-STD-883 reliability assurance testing

BLOCK DIAGRAM

GENERAL DESCRIPTION

The Am2732 is a 32768-bit ultraviolet erasable and programmable read-only memory. It is organized as 4096 words by 8 bits per word, operates from a single +5V supply, has a static standby mode, and features fast single address location programming.

Because the Am2732 operates from a single +5V supply, it is ideal for use in microprocessor systems. All programming signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 200 seconds.

MODE SELECTION

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

h

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	−65 to +150°C
Ambient Temperature Under Bias	-65 to +135°C
Voltage on All Inputs/Outputs (Except OE/VPP) with Respect to GND	+6 to -0.3V
OE/VPP with Respect to GND	+26.5 to -0.3V

DC AND AC READ OPERATIONS CONDITIONS

	Temperature Range	V _{CC}
AM2732-1DC	0 to +70°C	5V ±10%
AM2732DC	0 to +70°C	5V ± 5%
AM2732D1	-40 to 85°C	5V ± 5%
AM2732DL	-55 to +100°C	5V ± 10%
AM2732DM	-55 to +125°C	5V ± 10%

DC CHARACTERISTICS

			Min Values	Ma	kimum Va		
Parameters	Description	Test Conditions	All Types	2732 DL/DM	2732DI	2732DC/ -1DC	Units
l _u	Input Load Current	$V_{IN} = V_{CC}$ (Max) and $V_{IN} = 0$		10	10	10	μΑ
LO	Output Leakage Current	$V_{OUT} = V_{CC}$ (Max) and $V_{IN} = 0$		10	10	10	μΑ
I _{CC1}	V _{CC} Current (Standby)	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$		45	40	30	mA
I _{CC2} (Note 2)	V _{CC} Current (Active)	$\overline{OE} = \overline{CE} = V_{IL}$		175	165	150	mA
V _{IL}	Input Low Voltage		-0.1	0.8	0.8	0.8	Volts
V _{IH}	Input High Voltage		2.0	V _{CC} +1	V _{CC} +1	V _{CC} +1	Volts
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.45	0.45	0.45	Volts
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4				Volts

Г

т

AC CHARACTERISTICS

				Min Values	Maximum Values			
Parameters	Description	Test Conditions		All Types	2732-1 DC	2732DC	2732DI/ DL/DM	Units
tACC	Address to Output Delay	1	$\overline{CE} = \overline{OE} = V_{IL}$		350	450	450	ns
^t CE	CE to Output Delay	Output Load: 1 TTL gate and $C_1 = 100 pF$	$\overline{OE} = V_{IL}$		350	450	450	ns
t _{OE}	Output Enable to Output Delay	Input Rise and Fall Times: ≤20ns Input Pulse Levels: 0.8 to 2.2V	$\overline{\text{CE}} = \text{V}_{\text{IL}}$		120	120	150	ns
t _{DF}	Output Enable High to Output Float	Timing Measurement Reference Level: Inputs: 1V and 2V Outputs: 0.8V and 2V	CE = V _{IL}	0	100	100	130	ns
t _{он}	Address to Output Hold		$\overline{CE} = \overline{OE} = V_{IL}$	0				ns

CAPACITANCE (Note 1)

 $T_A = +25^{\circ}C$, f = 1MHz

Parameters	Description	Test Conditions	Тур	Max	Units
C _{IN}	Input Capacitance	V _{IN} = 0V	4	6	pF
C _{IN2}	OE/VPP Input Capacitance	$V_{IN} = 0V$		20	pF
COUT	Output Capacitance	V _{OUT} = 0V		12	pF

Note 1. This parameter is only sampled and is not 100% tested.

PROGRAM OPERATION

DC PROGRAMMING CHARACTERISTICS

 $T_{-A} = +25^{\circ}C \pm 5^{\circ}C$, V_{CC} (Note 1) = 5V ±5%, V_{PP} (Notes 1, 2) = 25V ±1V

Parameters	Description	Test Conditions	Min	Max	Units
ILI	Input Current (All Inputs)	$V_{IN} = V_{IL} \text{ or } V_{IH}$		10	μA
V _{OL}	Output Low Voltage During Verify	I _{OL} = 2.1mA		0.45	Volts
V _{OH}	Output High Voltage During Verify	$I_{OH} = -400\mu A$	2.4		Volts
I _{CC}	V _{CC} Supply Current			150	mA
VIL	Input Low Level (All Inputs)		-0.1	0.8	Volts
VIH	Input High Level (All Inputs Except OE/VPP)		2.0	V _{CC} +1	Volts
IPP	VPP Supply Current	$\overline{CE} = V_{IL}, \overline{OE} = VPP$		30	mA

AC PROGRAMMING CHARACTERISTICS

 $T_A = +25^{\circ}C \pm 5^{\circ}C$, V_{CC} (Note 1) = 5V ±5%, V_{PP} (Notes 1, 2) = 25V ±1V

Parameters	neters Description Test Conditions		Min	Max	Units
t _{AS}	Address Set-up Time		2		μs
tOES	Output Enable Set-up Time		2		μs
t _{DS}	Data Set-up Time		2		μs
t _{AH}	Address Hold Time		2		μs
^t OEH	Output Enable Hold Time	Input tR and tF (10% to 90%) = 20ns Input Signal Levels = 0.8 to 2.2V	2		μs
^t DH	Data Hold Time	Timing Measurement Reference Level:	2		μs
^t DF	Chip Enable to Output Float Delay	Inputs: 1V and 2V Outputs: 0.8V and 2V	0	120	ns
t _{DV}	Data Valid From \overline{CE} (\overline{CE} = V _{IL} , \overline{OE} = V _{IL})		-	1	ns
t _{PW}	Program Pulse Width		45	55	ms
t _{PRT}	Program Pulse Rise Time		50	_	ns
t _{VR}	VPP Recovery Time		2		ns

Note 1. When programming the Am2732, a 0.1µF capacitor is required across OE/VPP and ground to suppress spurious voltage transients which may damage the device.

ERASING THE Am2732

In order to clear all locations of their programmed contents, it is necessary to expose the Am2732 to an ultraviolet light source. A dosage of 15 Wseconds/cm² is required to completely erase an Am2732. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (Å)] with intensity of 12000μ W/cm² for 15 to 20 minutes. The Am2732 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am2732, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am2732, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2732

Upon delivery, or after each erasure the Am2732 has all 32768 bits in the "1", or high state. "0"s are loaded into the Am2732 through the procedure of programming.

The programming mode is entered when +25V is applied to the \overline{OE}/VPP pin. A $0.1\mu F$ capacitor must be placed across \overline{OE}/VPP and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50msec, TTL low level pulse is applied to the \overline{CE}/PGM input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55msec. Therefore, applying a DC low level to the \overline{CE} / PGM input is prohibited when programming.

READ MODE

The Am2732 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip

Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}/VPP) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs 120ns (tOE) after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least tACC – tOE.

STANDBY MODE

The Am2732 has a standby mode which reduces the active power dissipation by 80%, from 787mW to 157mW (values for 0 to +70°C). The Am2732 is placed in the standby mode by applying a TTL high signal to the \overline{CE} input. When in standby mode, the outputs are in a high impedance state, independent of the \overline{OE} input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation

2. Assurance that output bus contention will not occur.

It is recommended that \overline{OE} be decoded and used as the primary device selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2732s in parallel with different data is also easily accomplished. Except for \overline{CE}/PGM , all like inputs (including \overline{OE}) of the parallel Am2732s may be common. A TTL level program pulse applied to an Am2732's \overline{CE}/PGM input with VPP at 25V will program that Am2732. A high level \overline{CE}/PGM input inhibits the other Am2732 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with \overrightarrow{OE} /VPP and \overrightarrow{CE} at VIL. Data should be verified tDV after the falling edge of \overrightarrow{CE} .

Ambient Temperature Specification	Order Number	t _{ACC} (ns)	t _{CE} (ns)	t _{OE} (ns)
	AM2732-1DC	- 350	350	120
$0^{\circ}C \le T_A \le 70^{\circ}C$	AM2732-1LC	- 350	350	120
0 C ≈ IA ≈ 70 C	AM2732DC	- 450	450	120
	AM2732LC	450	450	120
-40°C ≤ T _A ≤ +85°C	AM2732DI	450	450	150
-40 C ≈ 1A ≈ +65 C	AM2732LI	450	450	150
EE%C - T 100%C	AM2732DL	450	450	150
$-55^{\circ}C \leq T_A \leq +100^{\circ}C$	AM2732LL	450	450	150
EE%0 ~ T ~ 105%0	AM2732DM	450	450	150
$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	AM2732LM	450	450 450	

ORDERING INFORMATION

n2732/ 4096 x 8-Bit UV Erasable PROM **ADVANCED INFORMATION**

DISTINCTIVE CHARACTERISTICS

- Fast access times 200ns, 250ns, 300ns
- Low power consumption
 - 785mW active
 - 184mW stand-by
- Single 5V power supply
- ±10% V_{CC} supply tolerance available
- ٠ TTL compatible inputs
- Three-state outputs
- 24-pin JEDEC approved 2732 pin-out
- Pin compatible with Am9233-32K-bit ROM
- Separate chip enable and output enable
- 100% MIL-STD-883 reliability testing

BLOCK DIAGRAM

MOS-490

MODE SELECTION

Pins Mode	CE/PGM (18)	0E/VPP (20)	VCC (24)	Outputs (9-11, 13-17)
Read	VIL	VIL	+5	DOUT
Standby	VIH	X	+5	High Z
Program	VIL	VPP	+5	DIN
Program Verify	VIL	VIL	+5	DOUT
Program Inhibit	VIH	VPP	+5	High Z

Figure 1.

X can be either V_{IL} or V_{IH}

GENERAL DESCRIPTION

The Am2732A is a 32768-bit UV-light erasable and electrically pogrammable read-only memory. It is organized as 4096 words by 8-bits per word. The standard Am2732A offers an access time of 200ns, allowing operation with high-speed (≥8MHz) microprocessors without any WAIT state.

To eliminate bus contention in a multiple-bus microprocessor system, Am2732A offers separate Output Enable (\overline{OE}) and Chip Enable (CE) controls.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random.

CONNECTION DIAGRAM

Top View

MOS-669

Pin 1 is marked for orientation.

A0-A11: Addresses O0-O7: Outputs CE/PGM: Chip Enable/Program OE/VPP: Output Enable

Figure 2.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am2764 8192 x 8-Bit UV Erasable PROM

DISTINCTIVE CHARACTERISTICS

- 0.3% AQL guaranteed
- Fast access time 200ns, 250ns, and 300ns
- Low power dissipation
 - -525mW active
 - -105mW standby
- ±10% power supply tolerance available
- 100% MIL-STD-883 reliability assurance testing
- Single +5V power supply
- 28-pin JEDEC approved 2764 pinout
- Pin compatible with Am9265 64K ROM
- Fully static operation no clocks
- TTL compatible inputs/outputs

GENERAL DESCRIPTION

The Am2764 is a 65536-bit ultraviolet erasable and programmable read-only memory. It is organized as 8192 words by 8 bits per word, operates from a single +5V supply, has a static standby mode, and features fast single address location programming.

Because the Am2764 operates from a single +5V supply, it is ideal for use in microprocessor systems. All programming signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 400 seconds.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am2764

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65 to +125°C
Ambient Temperature Under Bias	-10 to +80°C
Voltage on All Inputs/Outputs with Respect to GND	+7 to -0.6V
VPP Supply Voltage with Respect to Ground During Programming	+22V to -0.6V

READ OPERATION⁵

DC CHARACTERISTICS 0°C \leq T_A \leq +70°C, V_{CC} = V_{PP} = 5V ±5% (Notes 1, 2) (V_{CC} = V_{PP} = 5V ±10% for 2764-20, 2764-25, 2764-30 and 2764-45)

Parameters	Description	Test Conditions	Min	Max	Units
۱ _{L1}	Input Load Current	$V_{IN} = 0V \text{ to } 5.5V$		10	μΑ
LO	Output Leakage Current	V _{OUT} = 0V to 5.5V		10	μΑ
I _{PP1}	V _{PP} Current Read (Note 2)	V _{PP} = 5.5V		1	mA
I _{CC1}	V _{CC} Standby Current (Note 2)	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$		20	mA
I _{CC2}	V _{CC} Active Current (Note 2)	$\overline{OE} = \widetilde{CE} = V_{IL}$		100	mA
VIL	Input Low Voltage		-0.1	+0.8	Volts
V _{IH}	Input High Voltage		2.0	V _{CC} +1	Volts
V _{OL}	Output Low Voltage	l _{OL} = 2.1mA		0.45	Volts
VOH	Output High Voltage	$I_{OH} = -400\mu A$	2.4		Volts

AC CHARACTERISTICS $0^{\circ}C \le T_A \le 70^{\circ}C$, $V_{CC} = V_{PP} = 5V \pm 5\%$ (Notes 1, 2) ($V_{CC} = V_{PP} = 5V \pm 10\%$ for 2764-20, 2764-25, 2764-30 and 2764-45)

				Min Values	Min Values Maximum Values					
Parameters	Description	Test Conditions		All Types	2764-20 2764-2	2764-25 2764	2764-30 2764-3	2764-45 2764-4	Units	
tACC	Address to Output Delay	Output Load: 1 TTL gate	$\overline{CE} = \overline{OE} = V_{IL}$		200	250	300	450	ns	
t _{CE}	CE to Output Delay	and C _L = 100pF	$\overline{OE} = V_{IL}$		200	250	300	450	ns	
^t OE	Output Enable to Output Delay	Input Rise and Fall Times: ≤20ns	•	$\overline{CE} = V_{IL}$		75	100	120	150	ns
^t DF	Output Enable High to Output Float (Note 4)	.45 to 2.4V Timing Measurement	$\overline{CE} = V_{IL}$	0	60	85	105	130	ns	
t _{OH} (Note 4)	Output Hold from Addresses, CE or OE Whichever Occurred First	Reference Level: Inputs: 1V and 2V Outputs: 0.8V and 2V	$\overline{CE} = \overline{OE} = V_{IL}$	0					ns	

CAPACITANCE (Notes 3, 4)

 $T_A = +25^{\circ}C$, f = 1MHz

Parameters	Description	Test Conditions	Тур	Мах	Units
C _{IN}	Input Capacitance	V _{IN} = 0V	4	6	pF
COUT	Output Capacitance	V _{OUT} = 0V	8	12	pF

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.

2. Vpp may be connected directly to V_{CC} except during programming. The supply would then be the sum of I_{CC} and Ipp1.

3. Typical values are for nominal supply voltages.

4. This parameter is only sampled and not 100% tested.

5. Caution: The 2764 must not be removed from or inserted into a socket or board when V_{PP} or V_{CC} is applied.

Am2764

PROGRAM OPERATION

DC PROGRAMMING CHARACTERISTICS

 $T_A = +25^{\circ}C \pm 5^{\circ}C$, V_{CC} (See Note 1) = 5V ±5%, V_{PP} (See Notes 1, 2) = 21V ±0.5V

Parameters	Description	Test Conditions	Min	Max	Units
ı _u	Input Current (All Inputs)	V _{IN} = V _{IL} or V _{IH}		10	μΑ
V _{OL}	Output Low Voltage During Verify	$I_{OL} = 2.1 \text{mA}$		0.45	Volts
VOH	Output High Voltage During Verify	$1_{OH} = -400\mu A$	2.4		Volts
ICC2	V _{CC} Supply Current (Active)			100	mA
VIL	Input Low Level (All Inputs)		-0.1	0.8	Volts
VIH	Input High Level		2.0	V _{CC} +1	Volts
Ірр	Vpp Supply Current	$\overline{CE} = V_{IL} = \overline{PGM}$		30	mA

AC PROGRAMMING CHARACTERISTICS

 T_{A} = +25°C ±5°C, V_{CC} (Note 1) = 5V ±5%, V_{PP} (Notes 1, 2) = 21V ±0.5V

Parameters	Description Test Conditions		Min	Max	Units
t _{AS}	Address Set-up Time		2	ſ	μs
tOES	Output Enable Set-up Time		2		μs
t _{DS}	Data Set-up Time		2		μs
t _{AH}	Address Hold Time		0		μs
t _{OEH}	Output Enable Hold Time	Input tR and tF (10 to 90%) = 20ns Input Pulse Levels = 0.45 to 2.4V	2		μs
^t DH	Data Hold Time	Timing Measurement Reference Level:	2		μs
^t DF	Chip Enable to Output Float Delay	Inputs: 1V and 2V Outputs: 0.8V and 2V	0	130	ns
tvs	VPP Setup Time		2		μs
t _{PW}	PGM Pulse Width		45	55	ms
t _{CES}	CE Setup Time		2		μs
t _{OE}	Data Valid From OE			150	ns

Notes: 1. Caution: If V_{CC} is not applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}, the 2764 could be damaged.
 When programming the Am2764, a 0.1µF capacitor is required across V_{PP} and ground to suppress spurious voltage transients which may

damage the device.

Notes: 1. All times shown in () are minimum and in μ sec unless otherwise specified. 2. The input timing reference level is 1V for a V_{IL} and 2V for a V_{IH}.

3. t_{OE} and t_{DF} are characteristics of the device but must be accomodated by the programmer.

NVM-004

Ambient Temperature Specification	Order Number	t _{ACC} (ns)	t _{CE} (ns)	t _{OE} (ns)	Vcc
	AM2764-2DC	200	200	76	514 × 504
	AM2764-2LC	200	200	75	5V ± 5%
	AM2764-20DC	000		75	514 . 4004
	AM2764-20LC	200	200	75	5V ± 10%
	AM2764DC	250	250	100	5V ± 5%
	AM2764LC	250			
	AM2764-25DC	050	250	100	5V ± 10%
00 · T · 7000	AM2764-25LC	250			
0C ≤ T _A ≤ 70°C	AM2764-3DC		300	120	5V ± 5%
	AM2764-3LC	- 300			
	AM2764-30DC	300	300	120	5V ± 10%
	AM2764-30LC	- 300			
	AM2764-4DC	450	450	150	5V ± 5%
	AM2764-4LC	450	400	150	5V ± 5%
	AM2764-45DC	450	450	150	5V ± 10%
	AM2764-45LC	450	400	150	0V ± 10%

ORDERING INFORMATION

6-25

ERASING THE Am2764

In order to clear all locations of their programmed contents, it is necessary to expose the Am2764 to an ultraviolet light source. A dosage of 15 Wseconds/cm² is required to completely erase an Am2764. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (Å)] with intensity of 12000 μ W/cm² for 15 to 20 minutes. The Am2764 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am2764, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am2764, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

PROGRAMMING THE Am2764

Upon delivery, or after each erasure the Am2764 has all 65536 bits in the "1", or high state. "0"s are loaded into the Am2764 through the procedure of programming.

The programming mode is entered when +21V is applied to the VPP pin. A $0.1\mu F$ capacitor must be placed across VPP and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50msec, TTL low level pulse is applied to the PGM input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55msec. Therefore, applying a DC low level to the PGM input is prohibited when programming.

READ MODE

The Am2764 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{OE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The Am2764 has a standby mode which reduces the active power dissipation by 80%, from 525mW to 105mW (values for 0 to +70°C). The Am2764 is placed in the standby mode by applying a TTL high signal to the \overrightarrow{CE} input. When in standby mode, the outputs are in a high impedance state, independent of the \overrightarrow{OE} input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

- 1. Low memory power dissipation
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2764s in parallel with different data is also easily accomplished. Except for \overrightarrow{PGM} , all like inputs (including \overrightarrow{OE}) of the parallel Am2764s may be common. A TTL level program pulse applied to an Am2764's \overrightarrow{PGM} input with VPP at 21V will program that Am2764. A high level \overrightarrow{PGM} input inhibits the other Am2764s from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with \overrightarrow{OE} and \overrightarrow{CE} at VIL. Data should be verified tOE after the falling edge of \overrightarrow{OE} .

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

n27128 16 384 x 8-Bit UV Erasable PROM

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Fast access time 200ns, 250ns, 300ns, 450ns
- Low power consumption
 - ~ 525mW active
 - 210mW stand-by
- Single 5V power supply
- ±10% V_{CC} supply tolerance available
- Fully static operation no clocks
- Separate chip enable and output enable controls
- TTL compatible inputs/outputs
- 28-pin JEDEC approved 27128 pin-out
- Pin compatible to Am2764 EPROM and Am92128-128K ROM
- 100% MIL-STD-883 reliability testing

GENERAL DESCRIPTION

The Am27128 is a 131,072-bit UV-light erasable and electrically programmable read-only memory. It is organized as 16384 words by 8-bits per word. The standard Am27128 offers access time of 200ns, allowing operation with highspeed (≥8MHz) microprocessors without any WAIT state.

To eliminate bus contention in a multiple-bus microprocessor system, Am27128 offers separate output enable (\overline{OE}) and chip enable (\overline{CE}) controls.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random.

Figure 1.

Pin 1 is marked for orientation.

Figure 2.

OE:

Output Enable PGM: Program

NVM-006

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE **APPLICATION NOTE**

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS **MEMORIES (RAM)**

MOS READ ONLY **MEMORIES (ROM)**

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE **PRODUCT ASSURANCE** PACKAGE OUTLINES SALES OFFICES

General Information Index

Committment to Excellence	7-1
Product Assurance	7-8
Package Outlines	
Sales Offices	7-27

Advanced Micro Devices Commitment to Excellence

Product Assurance Programs for Military and Commercial Integrated Circuits

A COMMITMENT TO EXCELLENCE

Advanced Micro Devices was conceived on the premise that there was a place in the semiconductor community for a manufacturer dedicated to excellence.

In product assurance procedures, Advanced Micro Devices is unique. Only Advanced Micro Devices processes all integrated circuits, commercial as well as military, to the demanding requirements of MIL-STD-883. The Rome Air Development Center (RADC), which is the Air Force's principal authority on component reliability, has issued MIL-HDBK-217B which indicates that parts processed to Military Standard 883, Level C (Advanced Micro Devices' standard processing) yield a product nearly ten times better in failure rates than the industry commercial average.

Our Sunnyvale facility has been certified by the Defense Electronics Supply Center (DESC) to produce parts to JAN Class B and C under Military Specification MIL-M-38510. The National Aeronautics and Space Administration (NASA) has certified this production line for the manufacture of Class A products for programs requiring the highest levels of reliability. Advanced Micro Devices is the only integrated circuit company formed within the last ten years to achieve such line certification.

This brochure outlines Advanced Micro Devices' standard programs for Class B, C and A devices for military and commercial operating range applications. These will cover the majority of system requirements today. Alternative screening flows for specific user needs can be performed on request. Check with your local sales office for further information.

ADVANCED MICRO DEVICES' STANDARD PRODUCTS ARE MANUFACTURED TO MIL-STD-883 REQUIREMENTS

Advanced Micro Devices' product assurance programs are based on two key documents.

MIL-M-38510 - General Specification for Microcircuits

MIL-STD-883 - Test Methods and Procedures for Microelectronics

The screening charts in this brochure show that every integrated circuit shipped by Advanced Micro Devices receives the critical screening procedures defined in MIL-STD-883, Method 5004 for Class C product. This includes molded plastic devices.

In addition, documentation, design, processing and assembly workmanship guidelines are patterned after MIL-M-38510 specifications.

Commercial and industrial users receive the quality and reliability benefits of this aerospace-type screening and documentation at no additional cost.

STANDARD PRODUCT TESTING CATEGORIES

Advanced Micro Devices offers integrated circuits to three standard testing categories.

- 1. Commercial operating range product (typically 0 to 70°C)
- 2. Military operating range product (typically -55 to +125°C)
- 3. JAN qualified product

Categories 1 and 2 are available on most Advanced Micro Devices circuits. Category 3 is offered on a more limited line. Additional testing and screening services are available to special order. Check with your local sales office for details.

STANDARD PRODUCT ASSURANCE CATEGORIES

Devices produced to the above testing categories are available to the three standard classes of product assurance defined by MIL-STD-883. As a minimum, every device shipped by Advanced Micro Devices meets the screening requirements of Class C.

Class C – For commercial and ground-based military systems where replacement can be accomplished without difficulty.

According to MIL-HDBK-217B, this assures relative failure rates 9.4 times better than that of regular industry commercial product.

Class B – For flight applications and commercial systems where maintenance is difficult or expensive and where reliablity is vital.

Devices are upgraded from Class C to Class B by burn-in screening and additional testing.

According to MIL-HDBK-217B, Class B failure rate is improved 30 times over regular industry commercial product. Advanced Micro Devices Class B processing conforms to MIL-STD-883 requirements. MIL-HDBK-217B indicates that this may provide failure rates as much as two times better than some other manufacturers' "equivalent" or "pseudo" Class B programs.

Class S – For space applications where replacement is extremely difficult or impossible and reliability is imperative.

Class S screening includes x-ray and other special inspections tailored to the specific requirements of the user.

The 100% screening and quality conformance testing performed within these Advanced Micro Devices' programs is shown in TABLES I, II and III. A full description of the process flow is provided in Product Assurance Document 15-010, available on request.

CLASS C SCREENING FLOW FOR COMMERCIAL SYSTEMS AND GROUND BASED MILITARY SYSTEMS

ABLE I CLASS C NTEGRATED CIRCUITS		COMMERCIAL OPERATING RANGE	MILITARY OPERATING RANGE HERMETIC PACKAGE ONLY		
		HERMETIC AND MOLDED PACKAGES			
Screening Procedure Method 5004		Flow C1	Flow C3	Flow C4 Jan	
Screen	Test Method	Commercial Product	Military Product	Qualified Product	
VISUAL AND MECHANICAL					
Internal visual	2010, Condition B	100%	100%	100%	
High temperature	1008, Condition C,	100%	1007		
storage	24 hours	100%	100%	100%	
Temperature cycle	1010, Condition C	100%	100%	100%	
Constant acceleration	2001	100% (1)	100%	100%	
Hermeticity, Fine and Gross	1014	100% (1)	100%	100%	
FINAL ELECTRICAL TESTS		AMD Data Sheet	AMD Data Sheet	38510 Slash Sheet	
Static (dc)	a) At 25°C, and power supply extremes	100%	100%	100%	
	 b) At temperature and power supply extremes 	(2)		-	
Functional	 a) At 25°C, and power supply extremes 	100%	100%	100%	
	 b) At temperature and power supply extremes 	(2)	-	-	
Switching (ac) or Dynamic	At 25°C, nominal power supply	(2)	-	-	
QUALITY CONFORMANCE	5005, Group A (See Table II)	Sample	Sample	Sample	
Sample Tests	Group B		-	Sample	
	Group C	_		Sample	
	Group D	_	-	Sample	
EXTERNAL VISUAL	2009 (Note 5)	100%	100%	100%	

TABLE II

GROUP A QUALITY CONFORMANCE LEVELS

Advanced Micro Devices employs the military-recommended LTPD sampling system to assure quality. MIL-STD-883, Method 5005, TABLE I, Group A, subgroups 1 through 9 as appropriate to the device family are performed on every lot. Quality levels defined for Class B product are applied by Advanced Micro Devices to both Class B and Class C orders.

	LTPD	SAMPLE SIZE
Subgroup 1 – Static tests at 25°C	5	45
Subgroup 2 – Static tests at maximum rated operating temperature	7	32
Subgroup 3 - Static tests at minimum rated operating temperature	7	32
Subgroup 4 – Dynamic tests at 25°C – LINEAR devices	5	45
Subgroup 5 - Dynamic tests at maximum rated operating temperature		
- LINEAR devices	7	32
Subgroup 6 – Dynamic tests at minimum rated operating temperature		
- LINEAR devices	7	32
Subgroup 7 – Functional tests at 25°C	5	45
Subgroup 8 - Functional tests at maximum and minimum rated		
operating temperatures	10	22
Subgroup 9 – Switching tests at 25°C – DIGITAL devices	7	32
Subgroup 10 - Switching tests at maximum rated operating		
temperatures – DIGITAL devices	*	
Subgroup 11 - Switching tests at minimum rated operating		
temperatures - DIGITAL devices	*	

*These subgroups, where applicable, are usually performed during initial characterization only for all except JAN Qualified product.

CLASS B SCREENING FLOW FOR HIGH RELIABILITY COMMERCIAL AND MILITARY SYSTEMS

ABLE III CLASS B NTEGRATED CIRCUITS Class C plus burn in screening nd additional testing.) Screening Procedure per MIL-STD-883 Method 5004, Class B		COMMERCIAL OPERATING RANGE	MILITARY OPERATING RANGE HERMETIC PACKAGE ONLY		
		HERMETIC AND MOLDED PACKAGES			
		Flow B1	Flow B3	Flow B4 Jan	
Screen	Test Method	Commercial Product	Military Product	Qualified Product	
VISUAL AND MECHANICAL				1	
Internal visual	2010, Condition B	100%	100%	100%	
High temperature storage	1008, Condition C, 24 hours	100%	100%	100%	
Temperature cycle	1010, Condition C	100%	100%	100%	
Constant acceleration	2001	100% (1)	100%	100%	
Hermeticity, Fine and Gross	1014	100% (1)	100%	100%	
BURN IN Interim (pre burn in) electricals	Per applicable device specification	100%	100%	100%	
Burn in	1015, 160 hours at 125°C or equivalent.*	100% (3)	100%	100%	
FINAL ELECTRICAL TESTS		AMD Data Sheet	AMD Data Sheet	38510 Slash Sheet	
Static (dc)	a) At 25°C, and power supply extremes	100%	100%	100%	
	 b) At temperature and power supply extremes 	(2) (3)	100%	100%	
Functional	 a) At 25°C, and power supply extremes 	100%	100%	100%	
	 b) At temperature and power supply extremes 	(2) (3)	100%	100%	
Switching (ac) or Dynamic	At 25°C, nominal power supply	(2)	100%	100%	
QUALITY CONFORMANCE	5005, Group A (See Table II)	Sample	Sample	Sample	
Sample Tests	Group B		(4)	Sample	
	Group C	- · ·	(4)	Sample	
	Group D	-	(4)	Sample	
EXTERNAL VISUAL	2009 (Note 5)	100%	100%	100%	

Notes: 1. Not applicable to molded packages.

2. All MOS RAMs and many other MOS devices receive a.c. testing and 100% d.c. screening at high temperature and power supply extremes as standard. Other products sampled at Group A (Table II).

- 3. Am2900 LSI products receive a 96 hour burn-in, plus 100% d.c. screening at high temperature and power supply extremes.
- 4. Unless device data sheet specifies different limits.

5. Without optical aid for commercial devices.

*(Unless device data sheet specifies otherwise).

CLASS S FOR AEROSPACE SYSTEMS. (FORMERLY CLASS A)

Advanced Micro Devices offers Class S programs based on screening defined in MIL-STD-883, Method 5004. Contact your local Advanced Micro Devices' sales office for more information.

Table IV – Class S Screening Flow

		MILITARY OPERATING RANGE	MILITARY OPERATING RANGE
		HERMETIC PACKAGE ONLY	HERMETIC PACKAGE ONLY
Screening F	Procedure Class S	Flow S1	Flow S2
Screen	Test Method	Basic S Flow	Extended Class S Processing
SEM			
Scanning Electron Microscope	2018	Wafer Lot Sample	
ASSEMBLY			
Class S Process Monitors	-	Periodic sampling	
VISUAL AND MECHANICAL			1
Internal Visual	2010, Condition A	100%	
High Temperature Storage	1008, Condition C, 24 hours	100%	
Temperature Cycle	1010, Condition C	100%	
Constant Acceleration	2001, Condition E	100%	
PIND			1
Particle Impact Noise Detection	2020, Condition A or B	100% (Note 1)	
Serialization		100%	
X-RAY			1
Radiographic	2012, Two views	100%	
BURN-IN			1
Interim (Pre Burn-in) Electricals	Per applicable device specification	100% (Note 2)	Contact Advanced Micro Devices
Burn-in	1015, 240 hours at 125°C or equivalent	100% (Note 3)	Sales for Details
Interim (Post Burn-in) Electricals	Per applicable device specification	100% (Note 2)	
FINAL ELECTRICAL TESTS		AMD Data Sheet	
Static (dc)	a) At 25°C, and power supply extremes	100%	1
	 b) At temperature and power supply extremes 	100%	
Functional	a) At 25°C and power supply extremes	100%	
	b) At temperature and power supply	100%	
Switzbing (co) or Dunamia	extremes	100%	
Switching (ac) or Dynamic	At 25°C nominal power supply	100%	4
	1014	100%	
Hermeticity, Fine and Gross	1014	100%	-
QUALITY CONFORMANCE	E005 Crown & (See Table II)	Samala	
Comple Tests	5005, Group A (See Table II)	Sample	
Sample Tests	Group B	Sample (Note 4)	
	Group D	Sample (Note 4)	4
EXTERNAL VISUAL	2009	100%	l

Notes: 1. 100% screen, one pass.
2. Read and record requirements to be specified as applicable to particular device type.
3. Consult device data sheet.
4. Available to special order.

STANDARD PRODUCT SCREENING SUMMARY AND ORDERING INFORMATION

1. COMMERCIAL PRODUCT

- Screened per MIL-STD-883, Method 5004.
- Electrically tested per AMD Data Sheet.
- Supplied in hermetic and molded packages.
- Quality conformance testing, Method 5005, Group A, performed to levels specified for Class B on both Class C and Class B options.

Class C

- Order standard AMD part number.
- Marked same as order number. Examples: AM25LS374DC, SN74LS374J

Class B

- Burn in performed in AMD circuit condition.
- Order standard AMD part number, add suffix B (or /883B for 1, 2 and 300 Series Linear devices).
- Marked same as order number. Examples: AM25LS374DC-B, SN74LS374J-B

2. MILITARY PRODUCT

- Screened per MIL-STD-883, Method 5004.
- Electrically tested per AMD Data Sheet.
- Supplied in hermetic package only.
- Quality conformance testing, Method 5005, Group A, performed to levels specified for Class B on both Class B and Class C options.

Class C

- Order standard AMD part number.
- Marked same as order number. Examples: AM25LS374DM, SN54LS374J

Class B

- Burn in performed in AMD circuit condition.
- AC at 25°C, d.c. and functional testing at 25°C as well as temperature and power supply extremes performed on 100% of every lot.
- Quality conformance testing, Method 5005, Groups B, C and D available to special order.
- Order standard AMD part number, add suffix B.
- Marked same as order number.
 Examples: AM25LS374DM-B, SN54LS374J-B

3. JAN QUALIFIED PRODUCT

- Screened per MIL-STD-883, Method 5004.
- Electrically tested to JAN detail specification (slash sheet).
- Manufactured in Defense Logistics Agency certified facility.
- Quality conformance testing, Method 5005, Groups A, B, C and D performed as standard and must be completed prior to shipment.
- It is a product for which AMD has gained QPL listing.*

Class B (Flow B4)

- Burn in performed in circuit condition approved for JAN devices.
- Order per military document.
- Marked per military document. Example: JM38510/30106BEB

*In certain cases where JAN Qualified product is specified but is not available, Advanced Micro Devices can provide devices to the electrical limits and burn-in criteria of the slash sheet. This class of product has been called JAN Equivalent and marked M38510/ by some manufacturers. This identification is no longer permitted by DESC. Check with your local sales office for availability of specific device types.

Product Assurance MIL-M-38510 • MIL-STD-883

The product assurance program at Advanced Micro Devices defines manufacturing flow, establishes standards and controls, and confirms the product quality at critical points. Standardization under this program assures that all products meet military and government agency specifications for reliable ground applications. Further screening for users desiring flight hardware and other higher reliability classes is simplified because starting product meets all initial requirements for high-reliability parts.

The quality standards and screening methods of this program are equally valuable for commercial parts where equipment must perform reliably with minimum field service.

Two military documents provide the foundation for this program. They are:

MIL-M-38510 – General Specification for Microcircuits MIL-STD-883 – Test Methods and Procedures for Microelectronics

MIL-M-38510 describes design, processing and assembly workmanship guidelines for military and space-grade integrated circuits. All circuits manufactured by Advanced Micro Devices for full temperature range (-55°C to +125°C) operation meet these quality requirements of MIL-M-38510.

MIL-STD-883 defines detail testing and inspection methods for integrated circuits. Three of the methods are quality and processing standards directly related to product assurance:

Test Method 2010 defines the visual inspection of integrated circuits before sealing. By confirming fabrication and assembly quality, inspection to this standard assures the user of reliable circuits in long-term field applications. Standard inspection at Advanced Micro Devices includes all the requirements of the latest revision of Method 2010, condition B.

Test Method 5004 defines three reliability classes of parts. All must receive certain basic inspection, preconditioning and screening stresses. The classes are:

Class C – Used where replacement can be readily accomplished. Screening steps are given in the AMD processing flow chart.

Class B – Used where maintenance is difficult or expensive and where reliability is vital. Devices are upgraded from Class C to Class B by 160-hour burn-in at 125°C followed by more extensive electrical measurements. All other screening requirements are the same.

Class S – Used where replacement is extremely difficult and reliability is imperative. Class S screening selects extra reliability parts by expanded visual and X-ray inspection, further burn-in, and tighter sampling inspection.

All hermetically sealed integrated circuits (military and commercial) manufactured by Advanced Micro Devices are screened to MIL-STD-883, Class C. Molded integrated circuits receive Class C screening except that centrifuge and hermeticity steps are omitted.

Optional extended processing to MIL-STD-883, Class B is available for all AMD integrated circuits. Parts procured to this screening are marked with a "-B" following the standard part number, except that linear 100, 200 or 300 series are suffixed "/883B".

Test Method 5005 defines qualification and quality conformance procedures. Subgroups, tests and quality levels are given for Group A (electrical), Group B (mechanical quality related to the user's assembly environment), Group C (die related tests) and Group D (package related tests). Group A tests are always performed; Group B, C and D may be specified by the user.

MANUFACTURING, SCREENING AND INSPECTION FOR INTEGRATED CIRCUITS

All integrated circuits are screened to MIL-STD-883, Method 5004, Class C; quality conformance inspection where required is performed to Class B quality levels on either Class B or Class C product.

All full-temperature-range (-55° C to $+125^{\circ}$ C) circuits are manufactured to the workmanship requirements of MIL-M-38510.

The flow chart identifies processing steps as they relate to MIL-STD-883 and MIL-M-38510.

Product Assurance

Product Assurance

GROUP A ELECTRICAL TESTS From MIL-STD-883, Method 5005, Table I

Subgroups	LTPD (Note 1)	Initial Sample Size
Subgroup 1 - Static tests at 25°C	5	45
Subgroup 2 – Static tests at maximum rated operating temperature	7	32
Subgroup 3 – Static tests at minimum rated operating temperature	7	32
Subgroup 4 – Dynamic tests at 25°C – Linear devices	5	45
Subgroup 5 - Dynamic tests at maximum rated operating temperature - Linear devices	7	32
Subgroup 6 - Dynamic tests at minimum rated operating temperature - Linear devices	7	32
Subgroup 7 - Functional tests at 25°C	5	45
Subgroup 8 – Functional tests at maximum and minimum rated operating temperatures	10	22
Subgroup 9 – Switching tests at 25°C – Digital devices	7	32
Subgroup 10 – Switching tests at maximum rated operating temperature – Digital devices (Note 2)	10	10
Subgroup 11 – Switching tests at minimum rated operating temperature – Digital devices (Note 2)	10	10

 Sampling plans are based on LTPD tables of MIL-M-38510. The smaller initial sample size, based on zero rejects allowed, has been chosen unless otherwise indicated. If necessary, the sample size will be increased once to the quantity corresponding to an acceptance number of 2. The minimum reject number in all cases is 3.

2. These subgroups are usually performed during initial device characterization only.

OTHER OPTIONS

Document 00-003, "Extended Processing Options", further defines Option B as well as other screening or sampling options available or special order. Available options are listed here for reference.

Option	Description	Effect
A	Modified Class A screen (Similar to Class S screening)	Provides space-grade product, fol- lowing most Class S requirements of MIL-STD-883, Method 5004.
В	160-hr operating burn in	Upgrades a part from Class C to Class B.
X	Radiographic inspection (X-ray)	Related to Option A. Provides limited internal inspection of sealed parts.
S	Scanning Electron Microscope (SEM) metal inspection	Sample inspection of metal coverage of die.
V	Preseal visual inspection to MIL-STD-883, Method 2010, Cond. A	More stringent visual inspection of assemblies and die surfaces prior to seal.
Р	Particle impact noise (PIN) screen with ultrasonic detection.	Detects loose particles of approximately 0.5 mil size or larger, which could affect reliability in zero-G or high vibration applications.
Q	Quality conformance inspection (Group B, C and D life and environmental tests)	Samples from the lot are stressed and tested per Method 5005. The customer's order must state which groups are required. Group B destroys 16 devices; Group C, 92 devices; Group D, 60 devices.

Package Outlines

METAL CAN PACKAGES

H-10-1

H-8-1

φD - ¢D1 REFERENCE PLANE ł Ų 1 ,ŏŏ ŏ ŏŏ, ¢b1

G-12-1

AMD Pkg.	н	-8-1	H-	10-1	G-	12-1	
Common Name	M	D-99 letal Can	м	-100 letal Can	TO-8 Metal Can		
38510 Appendix C	А	-1	Å	4-2	_		
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	
А	.165	.185	.165	.185	.155	.180	
e	.185	.215	.215	.245	.390	.410	
e1	.090	.110	.105	.125	.090	.110	
F	.013	.033	.013	.033	.020	.030	
k	.027	.034	.027	.034	.024	.034	
k1	.027	.045	.027	.045	.024	.038	
L	.500	.570	.500	.610	.500	.600	
L1		.050		.050			
L ₂	.250		.250				
α	45°	BSC	36°	BSC	45	0	
φb	.016	.019	.016	.019			
φb 1	.016	.021	.016	.021	.016	.021	
φD	.350	.370	.350	.370	.590	.610	
φD1	.305	.335	.305	.335	.540	.560	
φ D 2	.120	.160	.120	.160	.390	.410	
Q	.015	.045	.015	.045			

Notes: 1. Standard lead finish is bright acid tin plate or gold plate. 2.
\$\phi b applies between L_1 and L_2.
\$\phi b_1 applies between L_1 and 0.500" beyond reference plane.

PACKAGE OUTLINES (Cont.)

MOLDED DUAL IN-LINE PACKAGES

P-10-1

P-16-1

Package Outlines

Notes: 1. Standard lead finish is tin plate or solder dip. 2. Dimension E₂ is an outside measurement.

7-20

PACKAGE OUTLINES (Cont.)

AMD Pkg.	D-	8-1	D-	8-2	D-1	4-1	D-1	14-2		14-3 te 2)	D-16-1		D-16-2	
Common Name	CEF	RDIP		DE- ZED	CEF	RDIP		DE- AZED		TAL IP	CEF	CERDIP		DE- ZED
38510 Appendix C			-	_	D-'	D-1(1) D-1(3)		D-1(3) D-1(1) D-2(1)		2(1)	D-2	2(3)		
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
A	.130	.200	.100	.200	.130	.200	.100	.200	.100	.200	.130	.200	.100	.200
b	.016	.020	.015	.022	.016	.020	.015	.022	.015	.023	.016	.020	.015	.022
b ₁	.050	.070	.040	.065	.050	.070	.040	.065	.030	.070	.050	.070	.040	.065
С	.009	.011	.008	.013	.009	.011	.008	.013	.008	.011	.009	.011	.008	.013
D	.370	.400	.500	.540	.745	.785	.690	.730	.660	.785	.745	.785	.780	.820
E	.240	.285	.260	.310	.240	.285	.260	.310	.230	.265	.240	.310	.260	.310
E ₁	.300	.320	.290	.320	.290	.320	.290	.320	.290	.310	.290	.320	.290	.320
e	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110
L	.125	.150	.125	.160	.125	.150	.125	.160	.100	.150	.125	.150	.125	.160
Q	.015	.060	.020	.060	.015	.060	.020	.060	.020	.080	.015	.060	.020	.060
S ₁	.004		.005		.010		.005		.020		.005		.005	
α	3°	13°			3°	13°			3°	13°	3°	13°		
Standard Lead Finish		b	bo	Dr C		b	be	or c		c		b	bo	or c

AMD Pkg.	D-1	8-1	D-1	8-2	D-2	20-1	D-2	20-2	D-2	2-1	D-2	2-2	D-2	4-1		
Common Name	CEF	RDIP		DE-	CEF	RDIP		DE- ZED	CEF	RDIP		SIDE- BRAZED		RDIP		
38510 Appendix C		_	-	_	-			<u>-</u>	-	_	-	_		- [B(1)
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
A	.130	.200	.100	.200	.140	.220	.100	.200	.140	.220	.100	.200	.150	.225		
b	.016	.020	.015	.022	.016	.020	.015	.022	.016	.020	.015	.022	.016	.020		
b ₁	.050	.070	.040	.065	.050	.070	.040	.065	.045	.065	.030	.060	.045	.065		
C	.009	.011	.008	.013	.009	.011	.008	.013	.009	.011	.008	.013	.009	.011		
D	.870	.920	.850	.930	.935	.970	.950	1.010	1.045	1.110	1.050	1.110	1.230	1.285		
E	.280	.310	.260	.310	.245	.285	.260	.310	.360	.405	.360	.410	.510	.545		
E1	.290	.320	.290	.320	.290	.320	.290	.320	.390	.420	.390	.420	.600	.620		
e	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110		
L	.125	.150	.125	.160	.125	.150	.125	.160	.125	.150	.125	.160	.120	.150		
Q	.015	.060	.020	.060	.015	.060	.020	.060	.015	.060	.020	.060	.015	.060		
S ₁	.005		.005		.005		.005		.005		.005		.010			
α	3°	13°			3°	13°			3°	13°			3°	13°		
Standard Lead Finish	b		b or c		b		b or c		b		b or c		b			

PACKAGE OUTLINES (Cont.)

AMD Pkg.	D-2	24-2	D-24-4/	D-24-4*	D-2	8-1	D-2	28-2	D-4	0-1	D-4	0-2	D-4	8-2						
Common Name		DE-	CER	VIEW	CEF	DIP		DE-	CEF	DIP		SIDE- BRAZED		DE-						
38510 Appendix C	D-3	3(3)				_		-	D	-5	-	_		_		_				-
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.						
Α	.100	.200	.150	.225	.150	.225	.100	.200	.150	.225	.100	.200	.100	.200						
b	.015	.022	.016	.020	.016	.020	.015	.022	.016	.020	.015	.022	.015	.022						
b ₁	.030	.060	.045	.065	.045	.065	.030	.060	.045	.065	.030	.060	.030	.060						
c	.008	.013	.009	.011	.009	.011	.008	.013	.009	.011	.008	.013	.008	.013						
D	1.170	1.200	1.235	1.280	1.440	1.500	1.380	1.420	2.020	2.100	1.960	2.040	2.370	2.430						
E	.550	.610	.510	.550	.510	.550	.560	.600	.510	.550	.550	.610	.570	.610						
E ₁	.590	.620	.600	.630	.600	.630	.590	.620	.600	.630	.590	.620	.590	.620						
e	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110						
L	.120	.160	.120	.150	.120	.150	.120	.160	.120	.150	.120	.160	.125	.160						
Q	.020	.060	.015	.060	.015	.060	.020	.060	.015	.060	.020	.060	.020	.060						
S ₁	.005		.010		.005		.005		.005		.005		.005							
α			3°	13°	3°	13°			3°	13°										
Standard Lead Finish	b or c		b or c		b		b		b		b or c		b or c							

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

Notes: 1. Load finish b is tin plate. Finish c is gold plate.

Used only for LM108/LM108A.
 Dimensions E and D allow for off-center lid, meniscus and glass overrun.

Package Outlines

Package Outlines

PACKAGE OUTLINES (Cont.) FLAT PACKAGES (Cont.) F-28-2 F-42-1 F-48-2 28 Н D Ď 15 2 Е E.10.1 _ 40.0 - ----

AMD Pkg.	F-1	0-1	F-1	0-2	F-1	4-1	F-1	4-2	F-1	6-1	F-1	6-2	F-20-1		F-22-1					
Common NAME	CERI	PACK		TAL PAK	CERI	РАСК		TAL PAK	CER	PACK		TAL PAK	CERI	PACK		TAL PAK				
38510 Appendix C	F	-4	F	-4	.F	-1	F	-1	F	-5	-	-		_		-		-		-
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.				
Α	.045	.080	.045	.080	.045	.080	.045	.085	.045	.085	.045	.085	.045	.085	.045	.090				
b	.015	.019	.012	.019	.015	.019	.012	.019	.015	.019	.015	.019	.015	.019	.015	.019				
C	.004	.006	.003	.006	.004	.006	.003	.006	.004	.006	.003	.006	.004	.006	.003	.006				
D	.230	.255	.235	.275	.230	.255	.230	.270	.370	.425	.370	.400	.490	.520	.380	.420				
D ₁				.275				.280				.410				.440				
Ε	.240	.260	.240	.260	.240	.260	.240	.260	.245	.285	.245	.285	.245	.285	.380	.420				
E ₁		.275		.280		.275		.280		.290		.305		.290		.440				
e	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055				
L	.300	.370	.300	.370	.300	.370	.300	.370	.300	.370	.300	.370	.300	.370	.250	.320				
L ₁	.920	.980	.920	.980	.920	.980	.920	.980	.920	.980	.920	.980	.920	.980	.920	.980				
Q	.010	.040	.010	.040	.010	.040	.010	.040	.020	.040	.010	.040	.020	.040	.010	.040				
s ₁	.005		.005		.005		.005		.005		.005		.005							
Standard Lead Finish	b		c		t		c		b	•	c		b	•	c					

AMD Pkg.	F-	24-1	F- 3	24-2	F-:	24-3	F-	28-1	F-2	8-2	F-4	2-1	F-4	8-2
Common Name	CER	PACK		TAL T PAK		TAL T PAK	METAL FLAT PAK		CERAMIC FLAT PAK		CERAMIC FLAT PAK		CERAMIC FLAT PAK	
38510 Appendix C	F	6	F	8		_		-		-	-		-	
Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Α	.050	.090	.045	.090	.045	.090	.045	.080	.065	.085	.070	.115	.070	.110
b	.015	.019	.015	.019	.015	.019	.015	.019	.016	.025	.017	.023	.018	.022
C	.004	.006	.003	.006	.003	.006	.003	.006	.007	.010	.006	.012	.006	.010
D	.580	.620	.360	.410	.380	.420	.360	.410	.700	.720	1.030	1.090	1.175	1.250
D ₁				.420		.440		.410		.720		1.090		1.250
E	.360	.385	.245	.285	.380	.420	.360	.410	.625	.650	.620	.660	.615	.670
E ₁		.410		.305		.440		.410		.650		.660		.670
e -	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055	.045	.055
L	.265	.320	.300	.370	.250	.320	.270	.320	.415	.435	.320	.370	.320	.370
L1	.920	.980	.920	.980	.920	.980	.955	1.000	1.475	1.500	1.300	1.370	1.310	1.365
Q	.020	.040	.010	.040	.010	.040	.010	.040	.017	.025	.020	.060	.020	.055
s ₁	.005		.005		0		0		.005		.005		.015	
Standard Lead Finish	b		c		с		с		с		C		c	

Notes: 1. Lead finish b is tin plate. Finish c is gold plate. 2. Dimensions E_1 and D_1 allow for off-center lid, meniscus, and glass overrun.

SQUARE CHIP CARRIER FAMILY (L-XX-1)

Limit						Inches					
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
А	.064	.100	.064	.100	.064	.120	.082	.120			
A ₁	.054	.088	.054	.088	.054	.088	.072	.088			
B ₁	.022	.028	.022	.028	.022	.028	.022	.028		\leq	
D	.342	.358	.442	.458	.640	.660	.739	.761		_چ_	
D ₂	.190	.210	.290	.310	.490	.510	.590	.610		<u>u</u>	
E	.342	.358	.442	.458	.640	.660	.739	.761	4	7	
E ₂	.190	.210	.290	.310	.490	.510	.590	.610		1	
е	.045	.055	.045	.055	.045	.055	.045	.055	B		
L	.045	.055	.045	.055	.045	.055	.045	.055	[<u>2</u> _		
L ₂	.077	.093	.077	.093	.077	.093	.077	.093			
N	20 (5	5 x 5)	28 (7	′ x 7)	44 (11	x 11)	52 (13 x 13)		6	8	
R	.007	.011	.007	.011	.007	.011	.007	.011			
Outline	L-2	L-20-1 L-28-1		L-20-1 L-28-1 L-44-1		L-28-1 L-44-1 L-52-1		L-28-1		L-6	8-1

Limit							
Limit			Inc	hes	-		
Symbol	Min	Max	Min	Max	Min	Max	
Α	.060	.120	.060	.120	.060	.120	
A ₁	.050	.088	.050	.088	.050	.088	
B ₁	.022	.028	.022	.028	.022	.028	
D	.280	.305	.342	.358	.442	.458	
D ₂	.140	.160	.190	.210	.290	.310	
E	.345	.365	.540	.560	.540	.560	
E ₂	.190	.210	.390	.410	.390	.410	
е	.045	.055	.045	.055	.045	.055	
L	.045	.055	.045	.055	.045	.055	
L ₂	.077	.093	.077	.093	.077	.093	
N	18 (4	x 5)	28 (5	5 x 9)	32 (7	′ x 9)	
R	.007	.011	.007	.011	.007	.011	
Outline	L-1	8-2	L-2	8-2	L-32-2		

ADVANCED MICRO DEVICES DOMESTIC SALES OFFICES

SOUTHWEST AREA

Advanced Micro Devices 360 N. Sepulveda, Suite 2075 El Segundo, California 90245 Tel: (213) 640-3210

Advanced Micro Devices 10050 N. 25th Drive Suite 235 Phoenix, Arizona 85021 Tel: (602) 242-4400

Advanced Micro Devices 4000 MacArthur Boulevard Suite 5000 Newport Beach, California 92660 Tel: (714) 752-6262

Advanced Micro Devices 5955 Desoto Avenue, Suite 241 Woodland Hills, California 91367 Tel: (213) 992-4155

Advanced Micro Devices 9455 Ridgehaven Court Suite 230 San Diego, California 92123 Tel: (714) 560-7030

NORTHWEST AREA

Advanced Micro Devices 2700 Augustine Drive, Suite 109 Santa Clara, California 95051 Tel: (408) 727-1300

Advanced Micro Devices 7000 Broadway, Suite 401 Denver, Colorado 80221 Tel: (303) 426-7100

NORTHWEST AREA (Cont.)

Advanced Micro Devices One Lincoln Center 10300 S.W. Greenburg Road Suite 230 Portland, Oregon 97223 Tel: (503) 245-0080

Advanced Micro Devices Honeywell Ctr., Suite 1002 600 108th Avenue N.E. Bellevue, Washington 98004 Tel: (206) 455-3600

MID-AMERICA AREA

Advanced Micro Devices 500 Park Boulevard, Suite 940 Itasca, Illinois 60143 Tel: (312) 773-4422 Advanced Micro Devices

3400 West 66th Street Suite 375 Edina, Minnesota 55435 Tel: (612) 929-5400

Advanced Micro Devices 3592 Corporate Drive Suite 108 Columbus, Ohio 43229 Tel: (614) 891-6455

Advanced Micro Devices 8323 Southwest Freeway Suite 850 Houston, Texas 77074 Tel: (713) 771-3113

Advanced Micro Devices 6750 LBJ Freeway, Suite 1160 Dallas, Texas 75240 Tel: (214) 934-9099

MID-ATLANTIC AREA

Advanced Micro Devices 40 Crossways Park Way Woodbury, New York 11797 Tel: (516) 364-8020

Advanced Micro Devices 290 Elwood Davis Road Suite 316 Liverpool, New York 13088 Tel: (315) 457-5400

Advanced Micro Devices

2 Kilmer Road Edison, New Jersey 08817 Tel: (201) 985-6800

Advanced Micro Devices 107 Lakeside Drive Horsham, Pennsylvania 19044 Tel: (215) 441-8210

Advanced Micro Devices 205 South Avenue Poughkeepsie, New York 12601 Tel: (914) 471-8180

NORTHEAST AREA

Advanced Micro Devices 6 New England Executive Park Burlington, Massachusetts 01803 Tel: (617) 273-3970

Advanced Micro Devices (Canada) Ltd. 2 Sheppard Avenue East Suite 1610 Willowdale, Ontario Canada M2N5Y7 Tel: (416) 224-5193

SOUTHEAST AREA

Advanced Micro Devices Parkway Center One Parkway Drive Building 7257 Parkway Drive, Suite 204 Dorsey, Maryland 21076 Tel: (301) 796-9310

Advanced Micro Devices 7850 Ulmerton Road Suite 1A Largo, Florida 33541

Advanced Micro Devices 4740 N. State Road #7 Suite 102 Ft. Lauderdale, Florida 33319 Tel: (305) 484-8600

Advanced Micro Devices 6755 Peachtree Industrial Boulevard N.E. Suite 104 Atlanta, Georgia 30360 Tel: (404) 449-7920

Advanced Micro Devices 8 Woodlawn Green, Suite 220 Woodlawn Road Charlotte, North Carolina 28210 Tel: (704) 525-1875

ADVANCED MICRO DEVICES INTERNATIONAL OFFICES

BELGIUM

Advanced Micro Devices Overseas Corporation Avenue de Tervueren, 412, bte 9 B-1150 Bruxelles Tel: (02) 771 99 93 TELEX: 61028

FRANCE

Advanced Micro Devices, S.A. Silic 314, Immeuble Helsinki 74, rue d'Arcueil

F-94588 Rungis Cedex Tél: (01) 687.36.66 TELEX: 202053

GERMANY Advanced Micro Devices GmbH

Rosenheimer Str. 139 D-8000 Muenchen 80 Tel: (089) 40 19 76 TELEX: 523883 Advanced Micro Devices GmbH Harthaeuser Hauptstrasse 4 D-7024 Filderstadt 3

Tel: (07158) 30 60 TELEX: 721211 HONG KONG

Advanced Micro Devices 1303 World Commerce Centre

Harbor City 11 Canton Road Tsimshatsui, Kowloon Tel: (852) 3 695377

ITALY

Advanced Micro Devices S.R.L. Centro Direzionale Palazzo Vasari, 3º Piano I-20090 MI2 – Segrate (MI) Tel: (02) 215 4913-4-5 TELEX: 315286

IAPAN

Advanced Micro Devices, K.K. Dai 3 Hoya Building 8-17, Kamitakaido 1-chome Suginami-ku, Tokyo 168 Tel: (03) 329-2751 TELEX: 2324064

SWEDEN

Advanced Micro Devices AB Box 7013 S-172 07 Sundbyberg Tel: (08) 98 12 35 TELEX: 11602

UNITED KINGDOM

Advanced Micro Devices (U.K.) Ltd. A.M.D. House, Goldsworth Road, Woking, Surrey GU21 1JT Tel: Woking (04862) 22121 TELEX: 859103

Advanced Micro Devices maintains a network of representatives and distributors in the U.S. and around the world. For a sales agent nearest you, call one of the AMD offices above.

U.S. AND CANADIAN SALES REPRESENTATIVES

CALIFORNIA (Northern)

1² Incorporated 3350 Scott Boulevard Suite 1001, Bldg, 10 Santa Clara, California 95050 Tel: (408) 988-3400 TWX: 910-338-0192

CANADA (Eastern)

Vitel Electronics 3300 Cote Vertu, Suite 203 St. Laurent, Quebec, Canada H4R 2B7 Tel: (514) 331-7393 TWX: 610-421-3124 TELEX: 05-821762

Vitel Electronics 5945 Airport Road, Suite 180 Mississauga, Ontario Canada L4V 1R9 Tel: (416) 676-9720 TWX: 610-492-2528

Vitel Electronics 55 Bayhill Ridge Stitsville, Ontario Canada KOA 3G0 Tel: (613) 836-1776

CANADA (Western) Vitel Electronics 185 Baltic Street

185 Baltic Street Coquitlam, British Columbia Canada V3K 5G9 Tel: (604) 524-6677

CONNECTICUT

Scientific Components 1185 South Main Street Cheshire, Connecticut 06410 Tel: (203) 272-2963 TWX: 710-455-2078

IDAHO

Intermountain Technology 2475 Autumn Way Meridian, Idaho 83642 Tel: (208) 888-5708

ILLINOIS

Oasis Sales, Inc. 1101 Tonne Road Elk Grove Village, Illinois 60007 Tel: (312) 640-1850 TWX: 910-222-1775

INDIANA

S.A.I. Marketing Corp. 5610 Crawfordsville Road, Suite 2304 Indianapolis, Indiana 46224 Tel: (317) 241-9276 TWX: 810-341-3309

IOWA

Lorenz Sales, Inc. 5270 N. Park Place, N.E. Cedar Rapids, Iowa 52402 Tel: (319) 377-4666

KANSAS

Kebco Inc., c/o Doug Phillips 524 Deveron Drive Wichita, Kansas 67230 Tel: (316) 733-2117 (316) 733-1301

MICHIGAN

S.A.I. Marketing Corp. P.O. Box 929 9880 E. Grand River Road Brighton, Michigan 48116 Tel: (313) 227-1786 TWX: 810-242-1518

MISSOURI

Kebco Inc. Route 2, Box 98 70A Lake Tapawingo Blue Springs, Missouri 64015 Tel: (816) 229-3370 Kebco Inc. 75 Worthington, Suite 101 Maryland Heights, Missouri 63043 Tel: (314) 576-4111

NEW JERSEY

T.A.I. Corp. 12 S. Black Horse Pike Bellmawr, New Jersey 08031 Tel: (609) 933-2600 TWX: 710-639-1810

NEW MEXICO Thorson Desert States 9301 India School, Suite 112 Albuquerque, New Mexico 87112 Tel: (505) 293-8555 TWX: 910-989-1174

NEW YORK Nycom, Inc.

To Adler Drive East Syracuse, New York 13057 Tel: (315) 437-8343 TWX: 710-541-1506

OHIO Dolfuss-Root & Co. 13477 Prospect Road Strongsville, Ohio 44136 Tel: (216) 238-0300 TWX: 810-427-9148

Dolfuss-Root & Co. 683 Miamisburg-Centerville Road Suite 202 Centerville, Ohio 45459 Tel: (513) 433-6776

OKLAHOMA

Bonser-Philhower Sales 6644 S. Victor Tulsa, Oklahoma 74136 Tel: (918) 496-3236

PENNSYLVANIA

Dolfuss-Root & Co. United Industrial Park Suite 203A, Building A 98 Vanadium Road Pittsburgh, Pennsylvania 15017 Tel: (412) 221-4420 TWX: 510-697-3233

TEXAS

Bonser-Philhower Sales 13777 N. Central Expressway Suite 212 Dallas, Texas 75243 Tel: (214) 234-8438 TWX: 910-867-4752

Bonser-Philhower Sales 11700 Southwest Fwy., Suite 110 Houston, Texas 77031 Tel: (713) 495-3115 TWX: 910-880-4053

Bonser-Philhower Sales 8330 Burnett Road, Suite 119 Austin, Texas 78758 Tel: (512) 458-3569

UTAH R²

940 North 400 East, Suite B North Salt Lake, Utah 85054 Tel: (801) 298-2631 TWX: 910-925-5607

WISCONSIN

Oasis Sales, Inc. 1305 N. Barker Road Brookfield, Wisconsin 53005 Tel: (414) 782-6660 f . . .

DEVICES, INC. 901 Thompson Place P.O. Box 453 Sunnyvale, California 94086 (408) 732-2400 TWX: 910-339-9280 TWX: 910-339-9280 TWX: 910-339-9280 TWX: 910-339-9280 TWX: 910-339-9280 (800) 538-8450

「「「「「「「「「「「「「」」」」」」 <u>rr</u>i こいししし ししし しんし しんし 5 L L I **F** 555 LIL. 5 555 Б 551 ちにちちちちちちちちちちちちちちちちちちちち 555 Г 55 5 <u>sss</u>i **FFF** Г **SSSS LUZUCE FF** 55 **ババババ ろろろろろろろろろろろろろろ**ろ 「「 **SSSS** 5 SSSI **SS** <u>55</u> Г REGERERERE Г **55 SSI** 55 Г <u>čr</u>y Г **S**S 5G <u>ITTTTTTTTTTTTTTTTTTTTTT</u> 55 **SS** 55 5 S S S S S S **LUZ** 55 55 こちにちちちちちちちちちちちち **SIS L**L