7

Advanced Micro Devices

Bipolar/MOS Memories Data Book

© 1982 Advanced Micro Devices, Inc.
Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 453, Sunnyvale, California 94086
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

INDEX SECTION
 NUMERICAL DEVICEINDEX
 FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE APPLICATION NOTE

BIPOLAR PROGRAMMABLE

 READ ONLY MEMORY (PROM)BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
 PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION
COMMITTMENT TO EXCELLENCE
PRODUCT ASSURANCE
PACKAGE OUTLINES
SALES OFFICES

Index Section

Numerical Device Index 1-1
Functional Index and Selection Guide 1-5
Industry Cross Reference 1-13
Application Note Testing High-Performance Bipolar Memory 1-19

NUMERICAL DEVICE INDEX

Am100415 ECL 1024×1 IMOX™ II Bipolar RAM 3-69
Am100415A ECL 1024×1 IMOX II Bipolar RAM 3-69
Am100470 ECL 4096×1 IMOX Bipolar RAM 3-83
Am100470A ECL 4096×1 IMOX Bipolar RAM 3-83
Am100470SA ECL 4096×1 IMOX Bipolar RAM 3-83
Am100474 ECL 1024×4 IMOX Bipolar RAM 3-75
Am100474A ECL 1024×4 IMOX Bipolar RAM 3-75
Am100474SA ECL 1024×4 IMOX Bipolar RAM 3-75
Am10415Am10415AAm10415SAAm10470Am10470AAm10470SA
ECL 1024×1 IMOX Bipolar RAM 3-62
ECL 1024×1 IMOX Bipolar RAM 3-62
ECL 1024×1 IMOX Bipolar RAM 3-62
ECL 4096×1 IMOX Bipolar RAM 3-76
ECL 4096×1 IMOX Bipolar RAM 3-76
ECL 4096×1 IMOX Bipolar RAM 3-76
ECL 1024×4 IMOX Bipolar RAM 3-74
ECL 1024×4 IMOX Bipolar RAM 3-74
ECL 1024×4 IMOX Bipolar RAM 3-74
256-Word by 8-Bit Programmable Read Only Memory 6-1
256×4 Static R/W Random Access Memories 4-1
256×4 Static R/W Random Access Memories 4-7
4096×1 Static R/W Random Access Memory 4-39
1024×4 Static R/W Random Access Memory 4-45
1024×4 Static R/W Random Access Memory 4-45
4096×1 Static R/W Random Access Memory 4-25
1024×8 Erasable Read Only Memory 6-7
$16,384 \times 8$-Bit UV Erasable PROM 6-27
2048×8-Bit UV Erasable PROM 6-11
4096×8-Bit UV Erasable PROM 6-16
4096×8-Bit UV Erasable PROM 6-21
8192×8-Bit UV Erasable PROM 6-22
Low-Power Schottky 256-Bit Bipolar RAM 3-36
Low-Power Schottky 256-Bit Bipolar RAM 3-36
Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM 3-42
Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM 3-42
Low-Power Schottky 256-Bit Bipolar RAM 3-36
Low-Power Schottky 256-Bit Bipolar RAM 3-36
Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM 3-42
Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM 3-42
Low-Power Schottky 64-Bit Bipolar RAM 3-7
Low-Power Schottky 64-Bit Bipolar RAM 3-7
Low-Power, Noninverting 64-Bit Bipolar RAM 3-32
Low-Power, Noninverting 64-Bit Bipolar RAM 3-32
Low-Power Schottky 256-Bit Generic Series Bipolar PROM 2-8
8192-Bit Generic Series Bipolar IMOX PROM 2-92
8192-Bit Generic Series Bipolar IMOX PROM 2-92
Low-Power Schottky 256-Bit Generic Series Bipolar PROM 2-8
8,192-Bit Generic Series IMOX Bipolar PROM 2-80
8,192-Bit Generic Series IMOX Bipolar PROM 2-80
8192-Bit Generic Series Bipolar IMOX PROM 2-97
16,384-Bit Generic Series IMOX Bipolar PROM 2-109
16,384-Bit Generic Series IMOX Bipolar PROM 2-109
8,192-Bit Generic Series IMOX Bipolar PROM 2-80

NUMERICAL DEVICE INDEX (Cont.)

Am27PS281A 8,192-Bit Generic Series IMOX Bipolar PROM 2-80
Am27PS291 16,384-Bit Generic Series IMOX Bipolar PROM 2-109
Am27PS291A 16,384-Bit Generic Series IMOX Bipolar PROM 2-109
Am27PS41
Am27PS4 16,384-Bit Generic Series Bipolar IMOX PROM 2-131
Am27S02Am27S02A
Schottky 64-Bit Bipolar RAM 3-1
Schottky 64-Bit Bipolar RAM 3-1
Am27S03
Am27S03A
Schottky 64-Bit Bipolar RAM 3-1
Schottky 64-Bit Bipolar RAM 3-1
Am27S06Noninverting Schottky 64-Bit Bipolar RAM3-26
Am27S06A Noninverting Schottky 64-Bit Bipolar RĀM 3-26
Am27S07Am27S07ANoninverting Schottky 64-Bit Bipolar RAM3-26
Noninverting Schottky 64-Bit Bipolar RAM 3-26
Am27S122048-Bit Generic Series Bipolar PROM2-22
Am27S12A 2048-Bit Generic Series Bipolar PROM 2-22
Am27S13 2048-Bit Generic Series Bipolar PROM 2-22Am27S13A
2048-Bit Generic Series Bipolar PROM 2-22
Am27S15 4096-Bit Generic Series Bipolar PROM 2-29Am27S18Am27S18A
Am27S180
256-Bit Generic Series Bipolar PROM 2-1
256-Bit Generic Series Bipolar PROM 2-1Am27S180A1024×8-Bit Generic Series Bipolar IMOX PROM2-73
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
Am27S181 1024×8-Bit Generic Series Bipolar IMOX PROM 2-73Am27S181A
1024×8-Bit Generic Series Bipolar. IMOX PROM 2-73
Am27S184 8192-Bit Generic Series Bipolar IMOX PROM 2-87Am27S184A
8192-Bit Generic Series Bipolar IMOX PROM 2-87
Am27S185 8192-Bit Generic Series Bipolar IMOX PROM 2-87Am27S185A
8192-Bit Generic Series Bipolar IMOX PROM 2-87
256-Bit Generic Series Bipolar PROM 2-1
Am27S19Am27S19A256-Bit Generic Series Bipolar PROM2-1
Am27S190 16,384-Bit Generic Series Bipolar IMOX PROM 2-102
Am27S190A 16,384-Bit Generic Series Bipolar IMOX PROM 2-102
16,384-Bit Generic Series Bipolar IMOX PROM
16,384-Bit Generic Series Bipolar IMOX PROM 2-102 2-102
16,384-Bit Generic Series Bipolar IMOX PROM 2-102
Am27S191
Am27S191A
1024-Bit Generic Series Bipolar PROM 2-15
Am27S20
Am27S20A 1024-Bit Generic Series Bipolar PROM 2-15
Am27S21
Am27S21A
Am27S25
Am27S25A
Am27S27
1024-Bit Generic Series Bipolar PROM 2-15
1024-Bit Generic Series Bipolar PROM 2-15
4K-Bit (512 x 8) Generic Series Bipolar IMOX Registered PROM 2-34
4K-Bit (512×8) Generic Series Bipolar IMOX Registered PROM 2-34
4096-Bit Generic Series Bipolar Registered PROM 2-41
Am27S28Am27S28AAm27S280Am27S280A
Am27S281
Am27S281A
Am27S29
Am27S29A
Am27S290
Am27S290A4096-Bit Generic Series Bipolar PROM2-47
4096-Bit Generic Series Bipolar PROM 2-47
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
4096-Bit Generic Series Bipolar PROM 2-47
4096-Bit Generic Series Bipolar PROM 2-47
16,384-Bit Generic Series Bipolar IMOX PROM 2-102
16,384-Bit Generic Series Bipolar IMOX PROM 2-102
Am27S291 16,384-Bit Generic Series Bipolar IMOX PROM 2-102
Am27S291A Am27S291 16,384-Bit Generic Series Bipolar IMOX PROM 2-102
Am27S30 4096-Bit Generic Series Bipolar PROM 2-52
Am27S30A 4096-Bit Generic Series Bipolar PROM 2-52

NUMERICAL DEVICE INDEX (Cont.)

Am27S31 4096-Bit Generic Series Bipolar PROM 2-52
Am27S31A 4096-Bit Generic Series Bipolar PROM 2-52
Am27S324096 -Bit Generic Series Bipolar PROM2-57
Am27S32A4096-Bit Generic Series Bipolar PROM2-57
Am27S334096-Bit Generic Series Bipolar PROM2-57
Am27S33AAm27S35
4096-Bit Generic Series Bipolar PROM 2-57
8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM 2-64
Am27S35A 8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM 2-64
Am27S37 8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM 2-64
Am27S37A 8K.-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM 2-64
Am27S4016,384-Bit Generic Series Bipolar IMOX PROM2-125
Am27S40A 16,384-Bit Generic Series Bipolar IMOX PROM 2-125
Am27S41Am27S41A16,384-Bit Generic Series Bipolar IMOX PROM2-125
16,384-Bit Generic Series Bipolar IMOX PROM 2-125
Am27S4332,768-Bit Generic Series Bipolar IMOX PROM2-137
Am27S43A 32,768-Bit Generic Series Bipolar IMOX PROM 2-137
Am27S4516K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM2-116
Am27S45A
16K-Bit (2048 x 8) Generic Series Bipolar IMCX Registered PROM 2-116
Am27S47
16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM 2-116
Am27S47A 16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM 2-116
Am27S65
Am27S75
Generic Series 4-Wide Bipolar IMOX Registered PROMs with SSR Diagnostics Capability 2-62
Generic Series 4-Wide Bipolar IMOX Registered PROMs with SSR Diagnostics Capability 2-62
Am27S85 Generic Series 4-Wide Bipolar IMOX Registered PROMs with SSR Diagnostics Capability 2-62
Am29700 Noninverting Schottky 64-Bit RAM 3-31
Am29701 Noninverting Schottky 64-Bit RAM 3-31
Am29702 Schottky 64-Bit RAM 3-6
Am29703 Schottky 64-Bit RAM 3-6
Am29720 Low-Power Schottky 256-Bit Random Access Memories 3-41
Am29721 Low-Power Schottky 256-Bit Random Access Memories 3-41Am29750A
256-Bit Generic Series Bipolar PROM 2-7
Am29751A 256-Bit Generic Series Bipolar PROM 2-7
Am29760A 1024-Bit Generic Series Bipolar PROM 2-21
Am29761A 1024-Bit Generic Series Bipolar PROM 2-21
Am29770 2048-Bit Generic Series Bipolar PROM 2-28
Am29771 2048-Bit Generic Series Bipolar PROM 2-28
Am29775 4096-Bit Generic Series Bipolar PROM with Register 2-46
Am3101 Schottky 64-Bit Write Transparent Bipolar RAM 3-11Am3101A
Schottky 64-Bit Bipolar RAM 3-16
Am3101-1 Schottky 64-Bit Write Transparent Bipolar RAM 3-11
Am31L01 64-Bit Write Transparent Bipolar RAM 3-21
Am31L01A 64-Bit Write Transparent Bipolar RAM 3-21
Am5489
Am5489-1Schottky 64-Bit Write Transparent Bipolar RAM3-11
Schottky 64-Bit Write Transparent Bipolar RAM 3-11Am54S189
3-16Am54S289Schottky 64-Bit Bipolar RAM
Am7489
Am7489-1
Am74S189Schottky 64-Bit Bipolar RAM3-16
Schottky 64-Bit Write Transparent Bipolar RAM 3-11
Schottky 64-Bit Write Transparent Bipolar RAM 3-11
Am74S289 Schottky 64-Bit Bipolar RAM 3-16Schottky 64-Bit Bipolar RAM3-16
8316E
Am9016 16,384 x 1 Dynamic R/W Random Access Memory Advanced MOS/LSI 4-59$2048 \times 8$ Read Only Memory5-1

NUMERICAL DEVICE INDEX (Cont.)

Am9044 4096×1 Static R/W Random Access Memory 4-31
Am9101 256×4 Static R/W Random Access Memories 4-1
Am9111 256×4 Static R/W Random Access Memories 4-7
Am9112 256×4 Static R/W Random Access Memories 4-13
Am9114 1024×4 Static R/W Random Access Memory 4-35
Am9122 256×4 Static R/W RAMs 4-19
Am9124 1024×4 Static R/W Random Access Memory 4-35
Am9128 2048×8 Static R/W Random Access Memory 4-51
Am9167 16,384 x 1 Static R/W Random Access Memory 4-57
Am9168 4096×4 Static R/W Random Access Memory 4-58
Am9169 4096×4 Static R/W Random Access Memory 4-58
Am91L01 256×4 Static R/W Random Access Memories 4-1
Am91L.11 256×4 Static R/W Random Access Memories 4-7
Am91L12 256×4 Static R/W Random Access Memories 4-13
Am91L22 256×4 Static R/W RAMs 4-19
Am92128 128K (16,384 x 8) Read Only Memory 5-15
Am9218 2048×8 Read Only Memory 5-1
Am92256 256K (32,768 x 8) Read Only Memory 5-18
Am9232 4096 x 8 Read Only Memory 5-4
Am9233 4096×8 Read Only Memory 5-4
Am9244 4096×1 Static R/W Random Access Memory 4-31
Am9264 $64 \mathrm{~K}(8192 \times 8)$ Read Only Memory 5-8
Am9265 $64 \mathrm{~K}(8192 \times 8)$ Read Only Memory 5-12
Am93412 TTL 1024-Bit Bipolar IMOX RAM 3-47
Am93412A TTL 1024-Bit Bipolar IMOX RAM 3-47
Am93415 TTL 1024-Bit Bipolar IMOX RAM 3-57
Am93415A TTL 1024-Bit Bipolar IMOX RAM 3-57
Am93422 TTL 1024-Bit Bipolar IMOX RAM 3-47
Am93422A TTL 1024-Bit Bipolar IMOX RAM 3-47
Am93425 TTL 1024-Bit Bipolar IMOX RAM 3-57
Am93425A TTL 1024-Bit Bipolar IMOX RAM 3-57
Am93L412 Low-Power TTL 1024-Bit Bipolar IMOX RAM 3-52
Am93L412A Low-Power TTL 1024-Bit Bipolar IMOX RAM 3-52
Am93L422 Low-Power TTL 1024-Bit Bipolar IMOX RAM 3-52
Am93L422A Low-Power TTL 1024-Bit Bipolar IMOX RAM 3-52
Am9708 1024 x 8 Erasable Read Only Memory 6-7
Am9716 2048×8-Bit UV Erasable PROM 6-11
Testing High-Performance Bipolar Memory 1-19
Technical Report 2-142
Guide to the Analysis of Programming Problems 2-151
PROM Programming Equipment Guide 2-154

Bipolar PROM
 Functional Index and Selection Guide

Part Number	Organization	Access Time COM'L/MIL Max	$\begin{gathered} \text { ICC } \\ \text { COM'L/MIL } \\ \text { Max } \end{gathered}$	Output	Number of Pins	Packages	Comments	Page No.
Am27LS18 ${ }^{1}$	32×8	50/65	80/80	OC	16	D, P, F, L		2-8
Am27LS19 ${ }^{1}$	32×8	50/65	80/80	3 S	16	D, P, F, L	Low power	2-8
Am27S18	32×8	40/50	115/115	OC	16	D, P, F, L		2-1
Am27S18A	32×8	25/35	115/115	OC	16	D, P, F, L		2-1
Am27S19	32×8	40/50	115/115	35	16	D, P, F, L		2-1
Am27S19A	32×8	25/35	115/115	3 S	16	D, P, F, L		2-1
Am27S20	256×4	45/60	130/130	OC	16	D, P, F, L		2-15
Am27S20A	256×4	30/40	130/130	OC	16	D, P, F, L		2-15
Am27S21	256×4	45/60	130/130	3 S	16	D, P, F, L		2-15
Am27S21A	256×4	30/40	130/130	3 S	16	D, P, F, L		2-15
Am27S12	512×4	50/60	130/130	OC	16	D, P, F, L		2-22
Am27S12A	512×4	30/40	130/130	OC	16	D, P, F, L		2-22
Am27S13	512×4	50/60	130/130	3 S	16	D, P, F, L		2-22
Am27S13A	512×4	30/40	130/130	3 S	16	D, P, F, L		2-22
Am27S15	512×8	60/90	175/185	3 S	24	D, P, F, L		2-29
Am27S25	512×8	N.A. ${ }^{2}$ N.A. ${ }^{2}$	185/185	3S	24	D, P, F, L	Output registers, THINDIP Pkg ${ }^{3}$	2-34
Am27S25A	512×8	N.A. ${ }^{4}$ N.A. ${ }^{4}$	185/185	35	24	D, P, F, L	Output registers, THINDIP Pkg^{3}	2-34
Am27S27	512×8	N.A. ${ }^{2}$ N.A. ${ }^{2}$	185/185	3 S	22	D, P, L	Output registers	2-41
Am27S28	512×8	55/70	160/160	OC	20	D, P, L		2-47
Am27S28A	512×8	35/45	160/160	OC	20	D, P, L		2-47
Am27S29	512×8	55/70	160/160	3 S	20	D, P, L		2-47
Am27S29A	512×8	35/45	160/160	3 S	20	D, P, L		2-47
Am27S30	512×8	55/70	175/175	OC	24	D, P, F, L		2-52
Am27S30A	512×8	35/45	175/175	OC	24	D, P, F, L		2-52
Am27S31	512×8	55/70	175/175	3 S	24	D, P, F, L		2-52
Am27S31A	512×8	35/45	175/175	3 S	24	D, P, F, L		2-52
Am27S32	1024×4	55/70	140/145	OC	18	D, P, F, L		2-57
Am27S32A	1024×4	35/45	140/145	OC	18	D, P, F, L	Ultra fast	2-57
Am27S33	1024×4	55/70	140/145	3 S	18	D, P, F, L		2-57
Am27S33A	1024×4	35/45	140/145	3S	18	D, P, F, L	Ultra fast	2-57
Am27S35	1024×8	N.A. ${ }^{2}$ / ${ }^{\text {A A. }}{ }^{2}$	185	$3 S$	24	D, P, F, L	Output registers, asynchronous initialize, THINDIP Pkg ${ }^{3}$	2-64
Am27S35A	1024×8	N.A. ${ }^{4}$ / ${ }^{\text {. A }}{ }^{4}$	185	35	24	D, P, F, L	Ultra fast, output registers, asynchronous initialize, THINDIP Pkg ${ }^{3}$	2-64
Am27S37	1024×8	N.A. ${ }^{2}$ N.A. ${ }^{2}$	185	35	24	D, P, F, L	Output registers, synchronous initialize, THINDIP Pkg ${ }^{3}$	2-64

BIPOLAR PROM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	$\begin{gathered} \text { ICc } \\ \text { COM'L/MIL } \\ \text { Max } \end{gathered}$	Output	Number of Pins	Packages	Comments	Page No.
Am27S37A	1024×8	N.A. $/$ / ${ }^{\text {d }}$. ${ }^{4}$	185	3S	24	D, P, F, L	Ultra fast, output registers, synchronous initialize, THINDIP Pkg^{3}	2-64
Am27S180	1024×8	60/80	185/185	OC	24	D, P, F, L		2-73
Am27S180A	1024×8	35/50	185/185	OC	24	D, P, F, L	Ultra fast	2-73
Am27S181	1024×8	60/80	185/185	35	24	D, P, F, L		2-73
Am27S181A	1024×8	35/50	185/185	3 S	24	D, P, F, L	Ultra fast	2.73
Am27PS181	1024×8			3 S	24	D, P, F, L	Power switched	2-80
Am27PS181A	1024×8			3 S	24	D, P, F, L	Power switched	2-80
Am27S280	1024×8	60/80	185/185	OC	24	D, P, F, L	THINDIP Pkg^{3}	2-73
Am27S280A	1024×8	35/50	185/185	OC	24	D, P, F, L	Ultra fast, THINDIP Pkg^{3}	2-73
Am27S281	1024×8	60/80	185/185	3 S	24	D, P, F, L	THINDIP Pkg ${ }^{3}$	2-73
Am27S281A	1024×8	35/50	185/185	3 S	24	D, P, F, L	Ultra fast, THINDIP Pkg ${ }^{3}$	2-73
Am27PS281	1024×8			35	24	D, P, F, L	Power switched, THINDIP Pkg^{3}	2-80
Am27PS281A	1024×8			35	24	D, P, F, L	Ultra fast, power switched, THINDIP Pkg^{3}	2-80
Am27S184	2048×4	50/55	150/150	OC	18	D, P, F, L		2-87
Am27S184A	2048×4	35/45	150/150	OC	18	D, P, F, L	Ultra fast	2.87
Am27S185	2048×4	50/55	150/150	35	18	D, P, F, L		2-87
Am27S185A	2048×4	35/45	150/150	3 S	18	D, P, F, L	Ulitra fast	2-87
Am27LS184	2048×4	60/65	120/125	OC	18	D, P, F, L	Low power	2-92
Am27LS185	2048×4	60/65	120/125	3 S	18	D, P, F, L	Low power	2-92
Am27PS185	2048×4	60/65	150/75 ${ }^{5}$	3 S	18	D, P, F, L	Power switched	2-97
Am27S190	2048×8	50/65	185/185	OC	24	D, P, F, L		2-102
Am27S190A	2048×8	35/50	185/185	OC	24	D, P, F, L	Ultra fast	2-102
Am27S191	2048×8	50/65	185/185	3 S	24	D, P, F, L		2-102
Am27S191A	2048×8	35/50	185/185	3 S	24	D, P, F, L	Ulitra fast	2-102
Am27PS191	2048×8	65/75	$185 / 80^{5}$	35	24	D, P, F, L	Power switched	2-109
Am27PS191A	2048×8	50/65	185/80 ${ }^{5}$	3 S	24	D, P, F, L	Ulitra fast, power switched	2-109
Am27S290	2048×8	50/65	185/185	OC	24	D, P, F, L	THINDIP Pkg ${ }^{3}$	2-102
Am27S290A	2048×8	35/50	185/185	OC	24	D, P, F, L	Ultra fast, THINDIP Pkg ${ }^{3}$	2-102
Am27S291	2048×8	50/65	185/185	3 S	24	D, P, F, L	THINDIP Pkg^{3}	2-102
Am27S291A	2048×8	35/50	185/185	35	24	D, P, F, L	Ultra fast, THINDIP Pkg ${ }^{3}$	2-102
Am27PS291	2048×8	65/75	$185 / 80^{5}$	35	24	D, P, F, L	Power switched, THINDIP Pkg ${ }^{3}$	2-109
Am27PS291A	2048×8	50/65	185/80 ${ }^{5}$	3 S	24	D, P, F, L	Ultra fast, power switched, THINDIP Pkg^{3}	2-109
Am27S40	4096×4	50/65	165/170	OC	20	D, P, L		2-125
Am27S40A	4096×4	35/50	165/170	OC	20	D, P, L	Ulitra fast	2-125
Am27S41	4096×4	50/65	165/170	3 S	20	D, P, L		2-125
Am27S41A	4096×4	35/50	165/170	3 S	20	D, P, L	Ultra fast	2-125
Am27PS41	4096×4	50/65	170/85 ${ }^{5}$	3 S	20	D, P, L	Power switched	2-131

BIPOLAR PROM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	$\begin{gathered} \text { ICC } \\ \text { COM'L/MIL } \\ \text { Max } \end{gathered}$	Output	Number of Pins	Packages	Comments	Page No.
Am27S43	4096×8	N.A.	185	3 S	24	D, P, F, L		2-137
Am27S43A	4096×8	N.A.	185	3 S	24	D, P, F, L	Ulitra fast	2-137
Am27PS43	4096×8	N.A.	N.A.	3 S	24	D, P, F, L	Power switched	-
Am27S45	2048×8	N.A. ${ }^{2}$	185/185	3 S	24	D, P, L	Output registers, asynchronous initialize, THINDIP Pkg ${ }^{3}$	2-116
Am27S45A	2048×8	N.A. ${ }^{4}$	185/185	3 S	24	D, P, L	Ultra fast, output registers, asynchronous initialize, THINDIP Pkg ${ }^{3}$	2-116
Am27S47	2048×8	N.A. ${ }^{2}$	185/185	3 S	24	D, P, L	Output registers, synchronous initialize, THINDIP Pkg ${ }^{3}$	2-116
Am27S47A	2048×8	N.A. ${ }^{4}$	185/185	3 3	24	D, P, L	Ultra fast, output registers, synchronous initialize, THINDIP Pkg ${ }^{3}$	2-116

Notes: 1. Replaces Am27LS08/09
2. Contains built-in pipeline registers: nominal address to clock setup time $=35 \mathrm{~ns}$ (typ), clock to output $=20 \mathrm{~ns}$ (typ).
3. $300-\mathrm{mil}$ lateral pin spacing.
4. Contains built-in pipeline registers: nominal address to clock setup time $=25 \mathrm{~ns}$ (typ), clock to output $=15 \mathrm{~ns}$ (typ).
5. ICC are power up and power down current limits respectively.

Bipolar Memory RAM

Functional Index and Selection Guide

BIPOLAR ECL RAM

Part Number	Organization	Access Time COML/MIL Max		ECL Series	Number of Pins	Packages	Comments	Page No.
Am10415SA	1024×1	15/20	-150/-165	10K	16	D, P, F, L		3-62
Am10415A	1024×1	20/25	-150/-165	10K	16	D, P, F, L		3-62
^m10415	1024×1	35/40	-150/-165	10K	16	D, P, F, L		3-62
Am100415A	1024×1	15/-	-150/-	100K	16	D, P, F, L		3-69
Am100415	1024×1	20/-	-150/-	100K	16	D, P, F, L		3-69
Am10470SA	4096×1	15/20	-230/-255	10K	18	D, $\mathrm{F}^{1}, \mathrm{~L}$		3-76
Am10470A	4096×1	25/30	-200/-220	10K	18	D, F ${ }^{1}$, L		3-76
Am10470	4096×1	35/40	-200/-220	10K	18	D, $\mathrm{F}^{1}, \mathrm{~L}$		3-76
Am100470SA	4096×1	15/-	-230/-	100K	18	D, $\mathrm{F}^{1}, \mathrm{~L}$		3-83
Am100470A	4096×1	25/-	-195/-	100K	18	D, $\mathrm{F}^{1}, \mathrm{~L}$		3-83
Am100470	4096×1	35/-	-195/-	100K	18	D, $\mathrm{F}^{1}, \mathrm{~L}$		3-83
Am10474A	1024×4	15/20	-230/-255	10K	24	D, F, L		3.74
Am10474	1024×4	25/30	-230/-220	10K	24	D, F, L		3-74
Am100474A	1024×4	15/-	-230/-	100K	24	D, F, L		3-75
Am100474	1024×4	25/-	-200/-	100K	24	D, F, L		3-75

Note: 1. For flat package consult factory.

BIPOLAR TTL RAM

Part Number	Organization	Access Time COML/MIL Max	$\begin{gathered} \text { ICC } \\ \text { COML/MIL } \\ \text { Max } \\ \hline \end{gathered}$	Output	Number of Pins	Packages (Note 1)	Comments	Page No.
Am27S02A	16×4	25/30	100/105	OC	16	D, P, F, L	Ultra Fast	3-1
Am27S03A	16×4	25/30	100/105	35	16	D, P, F, L		3-1
Am27S02	16×4	35/50	105/105	OC	16	D, P, F, L		3-1
Am27S03	16×4	35/50	125/125	3 S	16	D, P, F, L		3-1
Am27LS02	16×4	55/65	35/38	OC	16	D, P, F, L	Low Power	3-7
Am27LS03	16×4	55/65	35/38	35	16	D, P, F, L		3-7
Am74/54S289	16×4	35/50	105/105	OC	16	D, P, F, L		3-16
Am74/54S189	16×4	35/50	125/125	3 S	16	D, P, F, L		3-16
Am27S06A	16×4	25/30	100/105	OC	16	D, P, F, L	Noninverting Outputs	3-26
Am27S07A	16×4	25/30	100/105	3 S	16	D, P, F, L		3-26
Am27S06	16×4	35/50	100/105	OC	16	D, P, F, L		3-26
Am27S07	16×4	35/50	100/105	3S	16	D, P, F, L		3-26
Am27LS06	16×4	55/65	35/38	OC	16	D, P, F, L	Noninverting Outputs, Low Power	3-32
Am27LS07	16×4	55/65	35/38	35	16	D, P, F, L		3-32
Am3101A	16×4	35/50	100/105	OC	16	D, P, F, L		3-16
Am3101-1	16×4	35/50	100/105	OC	16	D, P, F, L	Write Transparent ${ }^{2}$	3-11
Am3101	16×4	50/60	100/105	OC	16	D, P, F, L		3-11

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

BIPOLAR TTL RAM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	$\begin{gathered} \text { ICC } \\ \text { COM'L/MIL } \\ \text { Max } \end{gathered}$	Output	Number of Pins	Packages (Note 1)	Comments	Page No.
Am31L01A	16×4	55/65	35/38	OC	16	D, P, F, L	Low Power, Write Transparent ${ }^{2}$	3-21
Am31L01	16×4	80/90	35/38	OC	16	D, P, F, L		3-21
Am74/5489-1	16×4	35/50	100/105	OC	16	D, P, F, L	Write Transparent ${ }^{2}$	3-11
Am74/5489	16×4	50/60	100/105	OC	16	D, P, F, L		3-11
Am27LS00A	256×1	35/45	115/115	3S	16	D, P, F, L	Ultra Fast	3-36
Am27LS01A	256×1	35/45	115/115	OC	16	D, P, F, L		3-36
Am27LS00	256×1	45/55	70/70	3 S	16	D, P, F, L	Fast, Low Power	3-36
Am27LS01	256×1	45/55	70/70	OC	16	D, P, F, L		3-36
Am27LS00-1A	256×1	35/45	115/115	3 S	16	D, P, F, L	Noninverting Outputs	3-42
Am27LS01-1A	256×1	35/45	115/115	OC	16	D, P, F, L		3-42
Am27LS00-1	256×1	45/55	70/70	3S	16	D, P, F, L		3-42
Am27LS01-1	256×1	45/55	70/70	OC	16	D, P, F, L		3-42
Am93415A	1024×1	30/40	155/170	OC	16	D, P, F, L	Ultra Fast	3-57
Am93425A	1024×1	30/40	155/170	3 S	16	D, P, F, L		3-57
Am93415	1024×1	45/65	155/170	OC	16	D, P, F, L		3-57
Am93425	1024×1	45/65	155/170	3 S	16	D, P, F, L		3-57
Am93412A	256×4	35/45	155/170	OC	22^{3}	D, P, F, L	Ultra Fast	3-47
Am93422A	256×4	35/45	155/170	3 S	22^{3}	D, P, F, L		3-47
Am93412	256×4	45/60	155/170	OC	22^{3}	D, P, F, L		3-47
Am93422	256×4	45/60	155/170	3 S	22^{3}	D, P, F, L		3-47
Am93L412A	256×4	45/55	80/90	OC	22^{3}	D, P, F, L	Low Power	3-52
Am93L422A	256×4	45/55	80/90	3 S	22^{3}	D, P, F, L		3-52
Am93L412	256×4	60/75	80/90	OC	22^{3}	D, P, F, L		3-52
Am93L422	256×4	60/75	80/90	3 S	22^{3}	D, P, F, L		3-52

Notes: 1. $D=$ Hermetic DIP, $P=$ Molded DIP, $F=$ Cerpak, $L=$ Chip-Pak ${ }^{\text {M }}$.
2. Complement of data in is available on the outputs in the write mode when both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WE}}$ are low.
3. Cerpak (F) is 24 pin.

1K STATIC RAMs
Functional Index and Selection Guide

Part Number	Organization	Access Time (ns)	Power Dissipation (mW)		Pins	Supply Voltage (V)	Temp Range	Package	Page No.
			Standby	Active					
Am9101A	256×4	500	47	290	22	5	C, M	D, P	4-1
Am91L01A	256×4	500	38	173	22	5	C, M	D, P	4-1
Am9101B	256×4	400	47	290	22	5	C, M	D, P	4-1
Am91L01B	256×4	400	38	173	22	5	C, M	D, P	4-1
Am9101C	256×4	300	47	315	22	5	C, M	D, P	4-1
Am91L01C	256×4	300	38	169	22	5	C, ivi	D, P	4-1
Am9101D	256×4	250	47	315	22	5	C	D, P	4-1
Am9111A	256×4	500	47	290	18	5	C, M	D, P	4-7
Am91L11A	256×4	500	38	173	18	5	C, M	D, P	4-7
Am9111B	256×4	400	47	290	18	5	C, M	D, P	4-7
Am91L11B	256×4	400	38	173	18	5	C, M	D, P	4-7
Am9111C	256×4	300	47	315	18	5	C, M	D, P	4-7
Am91L11C	256×4	300	38	189	18	5	C, M	D, P	4-7
Am9111D	256×4	250	47	315	18	5	C	D, P	4-7
Am9112A	256×4	500	47	290	16	5	C, M	D, P	4-13
Am91L12A	256×4	500	38	173	16	5	C, M	D, P	4-13
Am9112B	256×4	400	47	290	16	5	C, M	D, P	4-13
Am91L12B	256×4	400	38	173	16	5	C, M	D, P	4-13
Am9112C	256×4	300	47	315	16	5	C, M	D, P	4-13
Am91L12C	256×4	300	38	189	16	5	C, M	D, P	4-13
Am9112D	256×4	250	47	315	16	5	C	D, P	4-13
Am9122-25	256×4	25	-	660	22	5	C	D, P	4-19
Am9122-35	256×4	35	-	660	22	5	C, M	D, P	4-19
Am91L22-35	256×4	35	-	440	22	5	C	D, P	4-19
Am91L22-45	256×4	45	-	440	22	5	C, M	D, P	4-19
Am91L22-60	256×4	60	-	248	22	5	C	D, P	4-19

4K STATIC RAMs

Am21L41-12	4096×1	120	25	200	18	5	C	D, P	$4-25$
Am21L41-15	4096×1	150	25	200	18	5	C	D, P	$4-25$
Am21L41-20	4096×1	200	25	200	18	5	C	D, P	$4-25$
Am21L41-25	4096×1	250	25	250	18	5	C	D, P	$4-25$
Am9044B	4096×1	450		350	18	5	C, M	D, P	$4-31$
Am90L44B	4096×1	450		250	18	5	C, M	D, P	$4-31$
Am9044C	4096×1	300		350	18	5	C, M	D, P	$4-31$
Am90L44C	4096×1	300		250	18	5	C, M	D, P	$4-31$
Am9044D	4096×1	250		350	18	5	C, M	D, P	$4-31$
Am90L44D	4096×1	250		250	18	5	C, M	D, P	$4-31$
Am9044E	4096×1	200		350	18	5	C	D, P	$4-31$
Am90L44E	4096×1	200		250	18	5	C	D, P	$4-31$
Am9244B	4096×1	450	150	350	18	5	C, M	D, P	$4-31$
Am92L44B	4096×1	450	100	250	18	5	C, M	D, P	$4-31$
Am9244C	4096×1	300	150	350	18	5	C, M	D, P	$4-31$
Am92L44C	4096×1	300	100	250	18	5	C, M	D, P	$4-31$
Am9244D	4096×1	250	150	350	18	5	C, M	D, P	$4-31$
Am92L44D	4096×1	250	100	250	18	5	C, M	D, P	$4-31$
Am9244E	4096×1	200	150	350	18	5	C	D, P	$4-31$
Am92L44E	4096×1	200	100	250	18	5	C	D, P	$4-31$
Am9114B	1024×4	450		350	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am91L14B	1024×4	450		250	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am9114C	1024×4	300		350	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am91L14C	1024×4	300		250	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am9114E	1024×4	200		350	18	5	C, M	D, P	$4-35$
Am91L14E	1024×4	200		250	18	5	C	D, P	$4-35$
Am9124B	1024×4	450	150	350	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am91L24B	1024×4	450	100	250	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am9124C	1024×4	300	150	350	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$
Am91L24C	1024×4	300	100	250	18	5	C, M	$\mathrm{D}, \mathrm{P}, \mathrm{F}$	$4-35$

4K STATIC RAMs (Cont.)

Part Number	Organization	Access Time (ns)	Power Dis Standby	tion (mW) Active	Pins	Supply Voltage (V)	Temp. Range	Package	Page No.
Am2147-35	4096×1	35	165	990	18	5	C	D	4-39
Am2147-45	4096×1	45	165	990	18	5	M	D, L	4-39
Am2147-55	4096×1	55	165	990	18	5	C, M	D, L	4-39
Am2147-70	4096×1	70	110	880	18	5	C, M	D, L	4-39
Am21L47-45	4096×1	45	83	688	18	5	C	D	4-39
Am21L47-55	4096×1	55	83	688	18	5	C	D	4-39
Am2148-55	1024×4	55	165	990	18	5	C, M	D, L	4-45
Am2148-70	1024×4	70	165	990	18	5	C, M	D, L	4-45
Am2149-55	1024×4	55	-	990	18	5	C, M	D, L	4-45
Am2149-70	1024×4	70	-	990	18	5	C, M	D, L	4-45

16K STATIC RAMs

Part Number	Organization	Access Time (ns)	Power Dissipation (mW)		Pins	Supply Voltage (V)	Temp Range	Package	Page No.
			Standby	Active					
Am9128-10	2048×8	100	83	660	24	5	C	D, P	4-51
Am9128-15	2048×8	150	83	550	24	5	C, M	D, P	4-51
Am9128-20	2048×8	200	165	660	24	5	C, M	D, P	4-51
Am9128-70*	2048×8	70	165	770	24	5	C	D, P	4-51
Am9167-45*	16384×1	45	165	660	20	5	C	D	4-57
Am9167-55*	16384×1	55	165	660	20	5	C, M	D	4-57
Am9168-45*	4096×4	45	165	660	20	5	C	D	4-58
Am9168-55*	4096×4	55	165	660	20	5	C, M	D	4-58

*Available in 1983

DYNAMIC RAMs

| $\begin{array}{c}\text { Part } \\ \text { Number }\end{array}$ | Organization | $\begin{array}{c}\text { Access } \\ \text { Time (ns) }\end{array}$ | $\begin{array}{c}\text { Power Dissipation (mW) } \\ \text { Standby }\end{array}$ | | Active |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$)$ Pins \(\left.\begin{array}{c}Supply

Voltage (V)\end{array} \begin{array}{c}Temp

Range\end{array}\right)\) Package | Page |
| :---: |
| No. |

ROMs

Part Number	Organization	Access Time (ns)	Temp Range	Supply Voltage	Pins	Operating Power Max (mW)	Outputs	Page No.
8316E	2048×8	450	C, M	+5	24	499	3-State	$5-1$
Am9218B	2048×8	450	C, M	+5	24	368	3-State	$5-1$
Am9218C	2048×8	350	C	+5	24	368	3-State	$5-1$
Am9232B	4096×8	450	C, M	+5	24	420	3-State	$5-4$
Am9232C	4096×8	300	C	+5	24	420	3-State	$5-4$
Am9232D	4096×8	250	C	+5	24	420	3-State	$5-4$
Am9233B	4096×8	450	C, M	+5	24	420	3-State	$5-4$
Am9233C	4096×8	300	C	+5	24	420	3-State	$5-4$
Am9233D	4096×8	250	C	+5	24	420	3-State	$5-4$
Am9264B	8192×8	450	C, M	+5	24	440	3-State	$5-8$
Am9264C	8192×8	300	C	+5	24	440	3-State	$5-8$
Am9264D	8192×8	250	C	+5	24	440	3-State	$5-8$
Am9265B	8192×8	450	C, M	+5	28	$440,110^{1}$	3-State	$5-12$
Am9265C	8192×8	300	C	+5	28	$440,110^{1}$	3-State	$5-12$
Am9265D	8192×8	250	C	+5	28	$440,110^{1}$	3-State	$5-12$
Am92128B	16384×8	450	C, M	+5	28	$440,137^{1}$	3-State	$5-15$
Am92128C	16384×8	300	C	+5	28	$440,137^{1}$	3-State	$5-15$
Am92128D	16384×8	250	C	+5	28	440,1371	3-State	$5-15$
Am92256B	32768×8	450	C	+5	28	$660,165{ }^{1}$	3-State	$5-18$
Am92256C	32768×8	300	C	+5	28	$660,165{ }^{1}$	3-State	$5-18$
Am92256D	32768×8	250	C	+5	28	$660,165^{1}$	3-State	$5-18$

Note: 1. Standby

U.V. ERASABLE PROMs

Part Number	Organization	Access Time (ns)	Temp Range	Operating Power Act/Stby Max (mW)	Supply Voltages	Outputs	Number of Pins	Page No.
Am1702A	256×8	1000	C, L	676	-9, +5	3-State	24	6-1
Am1702AL	256×8	1000	C, L	-	$-9,+5$	3-State	24	6-1
Am1702A-1	256×8	550	C, L	676	$-9,+5$	3-State	24	6-1
Am1702AL-1	256×8	550	C, L	-	-9, +5	3-State	24	6-1
Am1702A-2	256×8	650	C, L	676	-9, +5	3-State	24	6-1
Am1702AL-2	256×8	650	C, L	-	$-9,+5$	3-State	24	6-1
Am2708/9708	1024×8	450/480	C, M	800	+5, +12, -5	3-State	24	6-7
Am2708-1	1024×8	350	c	800	$+5,+12,-5$	3-State	24	6.7
Am2716	2048×8	450	C, I, L, M	525/132	+5	3-State	24	6-11
Am9716	2048×8	300	C	525/132	+5	3-State	24	6-11
Am2716-1	2048×8	350	C, I, L	525/132	+5	3-State	24	6-11
Am2716-2	2048×8	390	C	525/132	+5	3-State	24	6-11
Am2732	4096×8	450	C, I, L, M	787/157	+5	3-State	24	6-16
Am2732-1	4096×8	350	C	787/157	+5	3-State	24	6-16
Am2732-2	4096×8	390	C	787/157	+5	3-State	24	6-16
Am2732A*	4096×8	250	C	787/184	+5	3-State	24	6-21
Am2764-2	8192×8	200	C, 1	525/105	+5	3-State	28	6-22
Am2764	8192×8	250	C, I, M	525/105	+5	3-State	28	6-22
Am2764-3	8192×8	300	C, I	525/105	+5	3-State	28	6-22
Am2764-4	8192×8	450	C, I, M	525/105	+5	3-State	28	6-22
Am27128*	16384×8	250	C	525/210	+5	3-State	28	6-27

*Available first quarter 1983
Temperature Ranges
Package Types
$\mathrm{C}=$ Commercial 0 to $70^{\circ} \mathrm{C}$
D = Cerdip
$\mathrm{M}=$ Military -55 to $+125^{\circ} \mathrm{C}$
$\mathrm{P}=$ Plastic
$\mathrm{L}=$ Extended -55 to $+85^{\circ} \mathrm{C}$ or $+100^{\circ} \mathrm{C}$
$\mathrm{F}=$ Flat Pack
$1=$ Industrial -40 to $+85^{\circ} \mathrm{C}$
$\mathrm{L}=$ Leadless Chip Carrier

Bipolar PROM

 Cross Reference Guide

 Cross Reference Guide}

									$\stackrel{\otimes}{\stackrel{3}{5}}$				$\dot{\delta}^{\delta^{8}}$	人
Am27LS18 ${ }^{1}$	256	32×8	OC	16	50/65					53/63LS080			N/S82S23	TBP18SA030
Am27LS19 ${ }^{1}$	256	32×8	35	16	50/65					53/63LS081			N/S82S123	TBP18S030
Am27S18	256	32×8	OC	16	40/50			HM7602		53/6330-1	$\begin{gathered} \text { DM75/8577 } \\ \text { DM54/74S188 } \end{gathered}$		N/S82S23	TBP18SA030
Am27S18A	256	32×8	OC	16	25/35					53/6330-1				
Am27S19	256	32×8	35	16	40/50			HM7603		53/6331-1	$\begin{gathered} \text { DM75/8578 } \\ \text { DM54/74S288 } \end{gathered}$		N/S82S123	TBP18S030
Am27S19A	256	32×8	35	16	25/35					53/6331-1				
Am27S20	1024	256×4	0 C	16	45/60	93417		HM7610A	M3601	53/6300-1	DM54/74S387	29660	N/S82S126	TBP24SA10
Am27S20A	1024	256×4	0 C	16	30/40					53/6300-1				
Am27S21	1024	256×4	35	16	45/60	93427		HM7611A	M3621	53/6301-1	DM54/74S287	29661	N/S82S129	TBP24S10
Am27S21A	1024	256×4	35	16	30/40					53/6301-1				
Am27S12	2048	512×4	0 C	16	50/60	93436		HM7620A	M3602	53/6305-1	DM54/74S570	29610	N/S82S 130	
Am27S12A	2048	512×4	OC	16	30/40				3602					
Am27S13	2048	512×4	3 S	16	50/60	93446		HM7621A	M3622	53/6306-1	DM54/74S571	29611	N/S82S131	
Am27S13A	2048	512×4	35	16	30/40									
Am27S15	4096	512×8	3 S	24	60/90			HM7647R					N/S82S115	
Am27S25	4096	512×8	3S	24	N.A. ${ }^{2}$.
Am27S25A	4096	512×8	35	24	N.A. ${ }^{4}$									
Am27S27	4096	512×8	35	22	N.A. ${ }^{2}$									
Am27S28	4096	512×8	0 C	20	55/70		MB7123	HM7648		53/6348	DM54/74S473	29620	N/S82S 146	TBP28SA42
Am27S28A	4096	512×8	OC	20	35/45									
Am27S29	4096	512×8	35	20	55/70		MB7124	HM7649		53/6349	DM54/74S472	29621	N/S82S147	TBP28S42
Am27S29A	4096	512×8	3 S	20	35/45									
Am27S30	4096	512×8	0 C	24	55/70	93438		HM7640A	M3604	53/6340	DM77/87S475	29624	N/S82S140	TBP28SA46
Am27S30A	4096	512×8	0 C	24	35/45									
Am27S31	4096	512×8	35	24	55/70	93448		HM7641A	M3624	53/6341	DM77/87S474	29625	N/S82S141	TBP28S46
Am27S31A	4096	512×8	3 S	24	35/45									
Am27S32	4096	1024×4	0 C	18	55/70	93452	MB7121E	HM7642A	M3605	53/6352	DM54/74S572	29640	N/S82S136	TBP24SA41
Am27S32A	4096	1024×4	0 C	18	35/45		M87121H							
Am27S33	4096	1024×4	35	18	55/70	93453	MB7122E	HM7643A	M3625	53/6353	DM54/74S573	29641	N/S82S137	TBP24S41
Am27S33A	4096	1024×4	35	18	35/45		MB7122H			53/63S441A				
Am27535	8192	1024×8	35	24	N.A. ${ }^{2}$									
Am27S35A	8192	1024×8	35	24	N.A. ${ }^{4}$									
Am27S37	8192	1024×8	3 S	24	N.A. ${ }^{2}$						DM87SR81			
Am27S37A	8192	1024×8	3 S	24	N.A. ${ }^{4}$									
Am27S180	8192	1024×8	OC	24	60/80	93450	MB7131	HM7680		53/6380	DM77/87S180	29630	N/S82S180	TBP28SA86
Am27S180A	8192	1024×8	0 C	24	35/50									
Am27S181	8192	1024×8	3 S	24	60/80	93451	MB7132	HM7681	M3628	53/6381	DM77/87S181	29631	N/S82S181	TBP28S86
Am27S181A	8192	1024×8	35	24	$35 / 50$									
Am27PS181	8192	1024×8	35	24								29633		
Am27PS181A	8192	1024×8	3 S	24										
Am27S280 ${ }^{3}$	8192	1024×8	OC	24	60/80					53/6380JS				
Am27S280A ${ }^{3}$	8192	1024×8	OC	24	35/50									
Am27S2813	8192	1024×8	3 S	24	60/80					53/6381JS				
Am27S281A ${ }^{3}$	8192	1024×8	3 S	24	35/50									

BIPOLAR PROM CROSS REFERENCE GUIDE

	$\stackrel{\star ゙}{*}^{\circ}$				8^{6}		4	${\underset{5}{*}}_{\substack{s}}$	※					人
Am27PS281	8192	1024×8	3 S	24	35/50									
Am27PS281A 3	8192	1024×8	35	24										
Am27S184	8192	2048×4	0 C	18	50/55		MB7127	HM7684		53/63100	DM77/87S184	29650	N/S82S184	TBP24SA81
Am27S184A	8192	2048×4	OC	18	35/45		M87127H							
Am27S185	8192	2048×4	3 S	18	50/55		MB7128	HM7685		53/63101	DM77/87S185	29651	N/S82S185	TBP24S81
Am27Si85A	8192	2048×4	35	18	35/45		M87128H			53/635841A				
Am27LS184	8192	2048×4	oc	18	60/65									
Am27LS 185	8192	2048×4	35	18	60/65									
Am27PS 185	8192	2048×4	35	18	60/65							29653		
Am27S190	16384	2048×8	OC	24	50/65	93510	MB7137	HM76160			DM77/87S190	29680	N/S82S190	
Am27S190A	16384	2048×8	oc	24	35/50									
Am27S191	16384	2048×8	3 S	24	50/65	93511	MB7138	HM76161	M3636B		DM77/87S191	29681	N/S82S191	TBP28S166
Am27S191A	16384	2048×8	35	24	35/50				M3636B-1					
Am27PS 191	16384	2048×8	3 S	24	65/75							29683		
Am27PS191A	16384	2048×8	3 S	24	50/65									
Am27S290 ${ }^{\text {a }}$	16384	2048×8	oc	24	50/65									
Am27S290A 3	16384	2048×8	OC	24	35/50									
Am27S291 3	16384	2048×8	35	24	50/65							29681 S		.
Am27S291A ${ }^{3}$	16384	2048×8	35	24	35/50									
Am27PS291 ${ }^{3}$	16384	2048×8	3 S	24	65/75							29683 S		
Am27PS291A 3	16384	2048×8	3 S	24	50/65									
Am27S40	16384	4096×4	OC	20	50/65			HM76164						
Am27S40A	16384	4096×4	OC	20	35/50									
Am27S41	16384	4096×4	3 S	20	50/65		MB7134	HM76165		53/63S1641		29641	N/S82S195	
Am27S41A	16384	4096×4	3 S	20	35/50					53/63S1641A				
Am27PS41	16384	4096×4	3 S	20	50/65							29643		
Am27S43	32768	4096×8	3 S	24	N.A.		MB7142		3632				N/S82S321	
Am27S43A	32768	4096×8	3 S	24	N.A.									
Am27PS43	32768	4096×8	3 S	24	N.A.									
Am27S45	16384	2048×8	3 S	24	N.A. ${ }^{2}$									
Am27S45A	16384	2048×8	3 S	24	N.A. ${ }^{4}$									
Am27S47	16384	2048×8	3 S	24	N.A. ${ }^{2}$									
Am27S47A	16384	2048×8	3 S	24	N.A. ${ }^{4}$									

Notes: 1. Replaces Am27LS08/LS09.
2. Contains built-in pipeline registers: nominal address to clock setup time $=35 \mathrm{~ns}$ (typ), clock to output $=20 \mathrm{~ns}$ (typ).
3. 300-mil lateral pin spacing.
4. Contains built-in pipeline registers: nominal address to clock setup time $=25 \mathrm{~ns}$ (typ), clock to output $=15 \mathrm{~ns}$ (typ).

Bipolar Memory RAM

TTL and ECL Cross Reference Guide

BIPOLAR ECL RAM CROSS REFERENCE GUIDE

			$\stackrel{c}{8}$	芷	$\text { 公 } 0^{\circ}$		4^{3}	Nos				$\dot{ふ}^{\overbrace{0}^{6}}$
Am10415SA	1024×1	16	10K	15／20	－150／－165			HM2110－2 HM2110－1			10415A	
Am10415A	1024×1	16	10K	20／25	－150／－165	F10415A	MBM10415AN	HM2110－2 HM2110－1	MCM10146	DM10415	10415	GXB10415
Am10415	1024×1	16	10K	35／40	－150／－165	F10415	MBM10415A	HM2110		DM10415A		
Am100415A	1024×1	16	100K	15／－	－150／－						100415A	
Am100415	1024×1	16	100k	20\％－	－150／－	F100415A					100415	
Am10470SA	4096×1	18	10K	15／20	－230／－255		MBM10470A	HM10470－1				
Am10470A	4096×1	18	10K	25／30	－200／－220	F10470A		HM10470	MCM10470A		10470A	
Am10470	4096×1	18	10K	35／40	－200／－220	F10470	MBM10470			DM10470		
Am100470SA	4096×1	18	100K	15／－	－230／－		MBM100470A	HM100470－1				
Am100470A	4096×1	18	100K	25／－	－195／－			HM100470			100470A	
Am100470	4096×1	18	100K	35／－	－195／－	F100470	MBM100470					
Am10474A	1024×1	24	10K	15／－	－230／－			HM10474－1				
Am10474	1024×1	24	10K	25／－	－230／－	F10474	MBM10474	HM10474				
Am100474A	1024×1	24	100K	15／－	－230／－			HM100474－1				
Am100474	1024×1	24	100 K	25／－	－230／－	F100474		HM100474				GXB100474

BIPOLAR TTL RAM CROSS REFERENCE GUIDE

									$\stackrel{5}{5}$				人	
Am27S02A	16×4	16	OC	25／30	100／105				6560A		DM74／54S289A			
Am27S03A	16×4	16	35	25／30	100／105				6561		DM74／54S189A			
Am27S02	16×4	16	OC	35／50	105／105	$\begin{aligned} & 93403 \\ & 74 \mathrm{~S} 289 \end{aligned}$					DM74／54S289	N／S82S25		
Am74／54S289	16×4	16	OC	35／50	105／105		3101A	5501	65／5560	4064		N／S74／54S289	SN74／54S289	
Am3101A	16×4	16	OC	35／50	105／105							N3101A		
Am27S03	16×4	16	35	35／50	125／125	$\begin{aligned} & 93405 \\ & 74 \mathrm{~S} 189 \end{aligned}$			65／5561		DM74／54S189	N／S74／54S189	SN74／54S189	
Am74／54S189	16×4	16	3 S	35／50	125／125						DM85／7599			
Am27LS02	16×4	16	OC	55／65	35／38				L65／5560		DM74／54LS289			
Am27LS03	16×4	16	3 S	55／65	35／38				L65／5561		DM74／54LS189			
Am27S06A（1）	16×4	16	OC	25／30	100／105									Proprietary
Am27S07A ${ }^{(1)}$	16×4	16	35	25／30	100／105									Proprietary
Am27S06（1）	16×4	16	OC	35／50	100／105									Proprietary
Am27S07（1）	16×4	16	3 S	35／50	100／105									Proprietary
Am27LS06 ${ }^{(1)}$	16×4	16	OC	55／65	35／38									Proprietary
Am27LSo7（1）	16×4	16	3 S	55／65	35／38									Proprietary
Am3101－1 ${ }^{(2)}$	16×4	16	OC	35／50	100／105	7489	3101				DM74／5489		SN74／5489	
Am74／5489－1 ${ }^{(2)}$	16×4	16	OC	35／50	100／105									
Am3101 ${ }^{(2)}$	16×4	16	OC	50／60	100／105									
Am74／5489 ${ }^{(2)}$	16×4	16	OC	50／60	100／105									
Am31L01A ${ }^{(2)}$	16×4	16	Oc	55／65	35／38									Proprietary
Am31101 ${ }^{(2)}$	16×4	16	OC	80／90	35／38									Proprietary
Am27LSOOA	256×1	16	3 S	$35 / 45$	115／115									Proprietary
Am27LS01A	256×1	16	OC	35／45	115／115									Proprietary
Am27LS00	256×1	16	35	45／55	70／70	93L420 93421 931421	3106		65／5531	4256	DM74／54S200	N／S82S116 N／S82S16	SN74／54S201 SN74／54S200 SN74／54LS200	

BIPOLAR TTL RAM CROSS REFERENCE GUIDE (Cont.)

Notes: 1. Noninverting outputs.
2. Write transparent; complement of data-in is available on the outputs in the Write Mode when both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WE}}$ are low.
3. Cerpak is 24 pin.

Competitive MOS Memory Cross Reference

AMI	AMD	INTEL (Cont.)	AMD	NATIONAL (Cont.)	AMD
S2333	Am9233	1506	Am1506	MM2147	Am2147
S2364	Am9265	1507	Am1507	MM2708	Am2708
S4216B	Am9218	1702A	Am1702A	MM2716	Am2716
S4264	Am9264	1702AL	Am1702AL	MM4006	Am1406
S68A364	Am92642	2114A	Am9114	MM4007	Am1407
S6831B	Am9218	2114AL	Am91L14	MM4025	Am2825
S68332	Am9232	2117	Am9016	MM4026	Am2826
EA	AMD	2128	Am9128	MM4027	Am2827
EA-2316E/8316E	Am9218	2141	Am21L41	MM4055	Am2855
EA-2316E/8316E	Am9218	2147	Am2147	MM4056	Am2856
EA-2364	Am9264	2148	Am9148	MM4057	Am2857
EA-23128	Am92128	2149	Am9149	MM5025	Am2855
EA-8333	Am9233	2332	Am9218 Am9233	MM5026	Am2826
FAIRCHILD	AMD	2364	Am9265	MM5055	Am2855
falkchild	AMD	2401	Am2401	MM5057	Am2857
F16K	Am9016	2405	Am2405	MM5058	Am2833
F2114	Am9114	2708	Am2708	Mm5202AQ	Am1702A
F2114L	Am9114	2716	Am2716	MM52116	Am9218
F2533	Am2833	2732	Am2732	MM52132	Am9232
F2708	Am2708	2732A	Am2732	MM52164	Am9264
F3341	Am2841	2764	Am2764	MM5235	Am9265
F3341A	Am2841A	27128	Am27128	MM5257	Am9044
F3347	Am2847			MM5258	Am9218
F3357-2	Am2847	MOSTEK	AMD	MM5290	Am9016
F4116	Am9016	MK1002P	Am2810		
F93422	Am9122	MK1007	Am2847		
F93L422	Am91L22	MK2147	Am2147	NEC	AMD
FUJITSU	AMD	MK2716	Am2716	μ PD2114L	Am9114
		MK2764	Am2764	μ PD2147	Am2147
$\begin{aligned} & \text { MBM2147 } \\ & \text { MBM2148 } \end{aligned}$	Am2147 Am9148	MK32000	Am9232	μ PD2149	Am9149
MBM2149	Am9149	MK346000	Am9264	${ }_{\mu \text { PPD2332 }}$	Am9218
MBM2716	Am2716	MK37000	Am9265	${ }_{\mu \text { PD23128 }}$	Am92128 ${ }^{2}$
MBM2732	Am2732	MK3702	Am1702A	$\mu \mathrm{PD} 2364$	Am9264
MBM2764	Am2764	MK3708	Am2708	μ PD2708	Am2708
MBM4044	Am9044	MK38000	Am92256 ${ }^{3}$	μ PD2716	Am2716
MBM8114	Am9114	MK4104	Am9244 ${ }^{2}$	μ PD4104	Am92L44 ${ }^{2}$
MB8116	Am9016	MK4104	Am21L41	μ PD4104	Am21L41 ${ }^{2}$
MB8128 MB8216	Am9128	MK4116	Am9016	μ PD416	Am9016
MB8414 (CMOS)	Am91L14 ${ }^{\text {a }}$	MK4802	Am9128	${ }_{\mu \text { PPD444 }}$ (CMOS)	Am91L142 ${ }_{\text {Am9128 }}$
MB8416 (CMOS)	Am9128 ${ }^{2}$	MOTOROLA	AMD	$\mu \mathrm{PD6514}$ (CMOS)	Am91L14 ${ }^{2}$
G.I.	AMD	MCM2114 MCM2147	Am9114 Am2147	μ PD2732	Am2732
RO3-9322	Am9232	MCM2708	Am2708		
HITACHI	AMD	MCM2716	Am2716	SIGNETICS	AMD
		MCM2532	Am2732 ${ }^{3}$	1702A	Am1702A
HM4334 (CMOS)	Am91L14 ${ }^{2}$	MCM4016	Am9128	2332	Am9233
HN462532	Am2732 ${ }^{\text {a }}$	MCM4116	Am9016	2364	Am9265 ${ }^{2}$
HN462716	Am2716 Am2732	MCM58366 MCM68A364	${ }_{\text {Am9264 }}{ }_{\text {Am9264 }}$	23128 2502	Am92128 Am2802
HM4716A	Am9016	MCM68B364	Am9264 ${ }^{2}$	2503	Am2803
HM472114	Am9114	MCM68308	Am9208	2504	Am2804
HM4847	Am2147	MCM68332	Am9232	2505	Am2805
HM6116 (CMOS)	Am9128 ${ }^{2}$	MCM68365	Am9264 ${ }^{2}$	2506	Am1406/1506
HM6147 (CMOS)	Am2147 ${ }^{2}$	MCM8316E	Am9218	2507	Am1407/1507
HM6148 (CMOS)	Am9148 ${ }^{2}$	NATIONAL	AMD	2512	Am2806
INTEL	AMD	MM1402A	Am2802	2521	Am2809 Am2807
1402A	Am2802	MM1403A	Am2803	2525	Am2808
1403A	Am2803	MM1404A	Am2804	2532	Am2847
1404A	Am2804	MM1702A	Am1702A	2533	Am2833
1405A	Am2805	MM2114	Am9114	2616	Am9218
1406	Am1406	MM2114L	Am9114	2632	Am9232
1407	Am1407	MM2116	Am9128	2664	Am9264

COMPETITIVE

 MOS MEMORY CROSS REFERENCE (Cont.)

Testing High-Performance Bipolar Memory

By Bob Lutz Advanced Micro Devices

INTRODUCTION

During the last several years, the state-of-the-art of TTL compatible bipolar memory integrated circuits has advanced very rapidly. Device complexity has increased dramatically not only in terms of the memory storage capacity but also by the addition of new on-chip functions such as the inclusion of output data registers. Simultaneously, advances in bipolar LSI design and manufacturing technology have generated significant improvements in the performance levels of bipolar memory. Similarly, the complexity and performance levels of systems which employ these devices have grown. The concomitant growth of system complexity has placed additional demands on both the device manufacturer and the user's incoming inspection area to assure the performance capabilities of each component before it is assembled into the system.
Several test equipment manufacturers now supply sophisticated, computer controlled testers for these inspection tasks. Most of this equipment is inherently capable of the millivolt and nanosecond accuracies which are required; most memory testers can generate the complex waveforms and test patterns needed. However, the details of applying this equipment to a specific test problem, including the problem of interfacing the tester to the device-under-test, are usually left to the user. The purpose of this application note is to discuss several problems which are frequently encountered when testing high performance bipolar memory devices, and to aquaint the user with how such problems may be identified, measured and corrected.

WHAT MAKES A MEMORY GOOD?

Before discussing the specifics of bipolar memory testing problems, it is important to understand the basic characteristics which these devices should exhibit. Clearly each device must meet all product specification parameters but, first and foremost, a bipolar memory should be fast! Address access time (delay from address input to data output), enable access time, and enable recovery time should be as small as possible. High performance is often the primary reason for using bipolar memory. Similarly, the performance of the ideal bipolar memory should remain relatively constant with changes in supply voltage, ambient temperature and output load capacitance. Fast devices, offering stable performance over a broad range of conditions, permit the user to qualify a smaller number of part types; one fast device can accommodate many standard as well as high performance applications. Such devices provide added safety margin for the system design, permit simplification of system test and debug, and assure trouble-free system performance in the field. Hence the "best" memory is a fast, stable device which not only meets a given user specification, but also offers the extra performance needed for a broad range of applications.
Advanced Micro Devices offers a family of bipolar Random Access Memories (RAMs) and Programmable Read Only Memories (PROMs) which are designed to meet this idealized definition as closely as possible. First, each AMD device is designed to meet a "military design goal." This means AMD bipolar memories are designed to provide the extra margins and higher output drive capabilities needed to assure proper performance over the extended military supply voltage and operating temperature ranges. This often necessitates the use of more advanced design techniques such as on-chip regulators, temperature and voltages compensation networks, and feedback circuits. Second, AMD has concejved and developed an advanced, oxide separated, ion implanted manufacturing process called IMOX ${ }^{\text {M }}$. Developed specifically for the production of high density bipolar memories, this technology provides both high density and excellent performance in a truly reliable and manufacturable pro-
cess. This combination of advanced design and fabrication technologies assures the military user of receiving components which are intended for his application while providing the commercial user with the extra margins, performance advantages and procurement benefits mentioned above.

THE SYSTEM ENVIRONMENT

To understand the problems of high-performance memory testing, it is helpful to understand the electrical environment in which the memory devices will actually operate, i.e., the typical system environment. The system designer must address and resolve several critically important questions if the system is to consistently perform to its design specifications. These questions include:

1. What noise voltages can the system's logic and memory devices tolerate?
2. What are the sources of system noise?
3. What can be done to control and minimize this noise?

The first question is answered relatively easily. The magnitude of noise which can be tolerated relates directly to the worst case noise immunity specified for the logic family. Noise immunity is simply the difference between the worst case output levels (V_{OH} and $V_{O L}$) of the driving circuit and the worst case input voltage requirements (V_{IH} and V_{IL}, respectively) of the receiving circuit. For TTL devices the worst case noise immunity is typically 400 mV for both the high and low logic levels.
If "system noise" is defined as the sum of things which subtract from this noise immunity, several sources can be identified. A few of the most important sources found in a digital, TTL system are listed below:

- Cross-Talk: The desire to pack system components as tightly as possible inevitably causes signal wires or PC board traces to be placed in close proximity. The lead-to-lead capacitance and mutual inductance thus created (see Figure 1) causes "noise" voltages to appear when adjacent signal paths switch.
- Transmission Line Reflections: Like it or not, every signal path in the system has transmission line characteristics. TTL signal paths are usually not designed as transmission lines, with predictable and uniform characteristic impedances. This is partly because of the higher costs implied for multilayer PC boards with internal ground planes, termination resistors, etc. It is also the result of TTL logic's limited ability to drive the low impedance lines provided by current PC board technologies. Hence, TTL signal paths do exhibit the ringing and reflection problems associated with improperly terminated transmission lines. These reflections subtract from the available noise immunity as shown in Figure 2.
- Ground Network Noise: Most high-performance systems employ large numbers of high-performance ICs. These devices typically draw large ICC currents from the power supply. Cumulatively, these currents can reach several amperes per board. Such currents, flowing in the ground network, cause non-negligible DC voltage drops to occur; not all device ground pins are at zero volts. Since the output levels and the input thresholds of each TTL device reference the local ground (Figure 3a), these drops also subtract from the available noise immunity. Additional noise margin losses occur each time the device outputs switch. This occurs because large currents must flow to rapidly charge and discharge the interconnect and input capacitances which load each output. These charging currents flow in a loop (Figure 3b) through the ground network which is normally a simple interconnection of

Figure 1. An Example of Cross-Talk

Figure 2. Line Reflections

$V_{i}=V_{O}-\left(n \cdot I_{C C}\right) R_{G N D}$
a) DC Ground "Noise"

When V_{i} goes HIGH, V_{O} goes LOW discharging C_{L}. The discharge current l_{d} flows through the ground inductance $L_{G N D}$, creating a transient voltage V_{t}. The input voltage seen by gate B is actually $V_{i}-V_{t}$.
b) Transient Ground Noise

Figure 3.

Testing High-Performance Bipolar Memory

wires, each with some value of resistance and inductance per unit length. Some additional resistive drops occur. But, the rapid changes in these currents (large di/dt), occurring as charging starts and stops, mean a transient ground noise voltage is also generated. This voltage obeys the law of $v=$ $\mathrm{L}(\mathrm{di} / \mathrm{dt})$ where L is the ground circuit inductance and di/dt is the rate of change of the charging currents. Notice that adding local bypass capacitors can only reduce this voltage by paralleling the ground inductance with the $V_{C C}$ network inductance. Bypassing cannot eliminate this problem because these capacitors shunt the devices and not the ground and $V_{C C}$ network inductances where the noise is generated.
Controlling and minimizing noise in a digital system becomes more challenging as the system performance requirements increase. These requirements demand devices capable of short propagation delays, e.g., ultra-fast memories with excellent diive characteristics to minimize fully loaded access times.

Since noise margin violations result in system malfunctions, the system designer must define a set of rules governing the physical construction techniques to be used within the system. These rules address a host of considerations including power distribution, $A C$ grounding, lead placement, line termination requirements, logic loading (fan in and fan out), and interconnect delays. Specifying these rules is a complex process of making appropriate cost-performance tradeoffs.

For a medium to high performance system, these rules might specify arranging devices in an array with $V_{C C}$ power traces running vertically up the columns while ground metal running horizontally between the rows. Inserting bypass capacitors at each grid intersection forms an AC ground mesh (Figure 4), limiting the amount of ground inductance at each array site. If limits are also placed on the total capacitance each device may drive (cumulative interconnect and input capacitance on all outputs), the total charging currents may be controlled thus limiting

Figure 4. Example of an AC Ground Mesh
the noise immunity eroded by ground circuit noise. Similarly, the distance between adjacent traces and the maximum length of unterminated lines may be specified to control noise immunity losses caused by cross-talk and termination mismatches. Ultra-high performance systems may require additional measures; e.g., multilayer boards with true ground planes or increased usage of line drivers and receivers. Though the preceding descriptions have been simplified, it should be clear that distances between driving and receiving devices, the quantity and distribution of load capacitance, as well as the AC ground network integrity are all essential elements of the system design.

THE MEMORY TEST ENVIRONMENT

Ideally the test system hardware and fixtures would be designed to even more stringent rules than those used for the system. This is reasonable as the tester is the standard employed for accepting or rejecting components used in the system. Because a collection of additional objectives constrain the test environment, designing test hardware to equally or more stringent rules is usually impractical.
Memory testers must test many types of components under a variety of conditions. Tests performed include DC parametric tests, functional and AC tests with complex test patterns, and margin tests to assure device operation at the extremes of applied conditions and supply voltage. To accomplish this, connections to sets of programmable input drivers and output receivers (comparators), multiple device bias and power supplies, relays to permit connection of the DC parametric test unit, and special load circuits must all converge at the test site.
To provide flexibility and facilitate repair, test hardware must be modular. This requirement dictates placing the hardware (drivers, receivers, etc.) on many small PC boards which then must talk to the DUT (device under test) through additional wiring and connectors.
Frequently the quantity of parts tested necessitates mating an automatic device handler to the tester. Handlers also provide capabilities for testing at temperature extremes when needed.

The DUT must be tested inside this equipment, requiring still more wiring between the test head and the actual test site.
Ideally, all test hardware would be located immediately adjacent to the test site to minimize cross-talk, reflections and ground noise. However, this objective must be compromised to address the other objectives and constraints outlined above. Techniques commonly employed in making this compromise are illustrated in Figure 5. Notice that DUT drivers are remote from the test site, driving signal to the DUT through "series terminated" transmission lines. Similarly the receivers are some distance from the test site, receiving signals from the DUT through a series of connectors and wires which can degrade the signal. Most annoying of all, the test site ground connection has been compromised. This single path must carry heavy transient and DC currents during test and should provide a very solid, low impedance reference against which all AC and DC tests are made. Accumulating resistance and inductance in this path jeopardizes the integrity of all test results.
Hence, the electrical environment provided at the test site is generally inferior to the actual system environment where the memory component will be used.

TEST RELATED PROBLEMS AND SOLUTIONS

Accurately measuring or verifying memory performance in the test system environment requires a recognition of its inherent limitations. Outlined below are five problem areas commonly encountered when testing high-performance bipolar memories. Methods of identifying and alleviating these problems are indicated.

- Contending with Ground Noise: Ground noise is one of the most common and troublesome test problems. As defined above, ground noise is caused by switching currents flowing through the ground network impedance. Whereas the system environment (Figure 4) may provide multiple low inductance ground paths into a ground mesh or plane, the tester provides one long, higher inductance path back to the test system ground (Figure 5). This path includes handler contacts, connectors and the DUT load board, all of which increase ground

Figure 5. The Test System Environment

Testing High-Performance Bipolar Memory

inductance and resistance. Transient currents which result when the DUT switches can be enormous. Consider the case of a byte wide (8 output) memory functional test. At some point in the test sequence, all memory outputs will switch from high to low (V_{OH} to V_{OL}) at the same instant, discharging all eight load capacitances simultaneously. If the input capacitance of the receiver is 40 pF and the interconnect capacitance of the test fixture is 10 pF , the total load capacitance driven by all device outputs would be 400pF. A fast memory device could discharge this load at a $1 \mathrm{~V} / \mathrm{ns}$ rate. The relationship $\mathrm{i}=\mathrm{C}(\mathrm{dv} / \mathrm{dt})$ implies peak charging currents of 400mA must flow through ground. As Figure 6 illustrates, this charging current does not build to its full value instantaneously. For a fast device the time required to go from zero to full charging current would approximate 2 ns A resultant ground current di/dt of $200 \mathrm{~mA} / \mathrm{ns}$ is implied. If the ground inductance is 1 nanohenry (approximate inductance of 1 inch of straight, small guage wire), then $\mathrm{v}=\mathrm{L}(\mathrm{di} / \mathrm{dt})$ predicts AC
ground noise of 200 mV . As you have probably guessed, the typical test site ground inductance exceeds 1 nh . The path is longer and it is usually not a straight line connection. Actual tester ground noise of up to 800 mV is common when testing high-performance byte wide memories. This noise can be measured easily with a high bandwidth oscilloscope by attaching the scope ground to the actual test system ground and monitoring the DUT ground pin with one channel.

Excessive ground noise creates several problems. First, this noise is capacitively coupled to the input drive signals through the DUT input capacitances; if large enough, DC coupling through the DUT input clamp diodes can occur (Figure 7). The DUT output levels are, of course, referenced to the DUT ground potential whereas the receiver board is referenced to test system ground, introducing inaccuracy in access time measurements, etc.

Figure 6. Byte Wide Memory Ground Transients

For small magnitudes of noise, V_{t}, noise is AC coupled to the inputs through the input capacitance, C_{i}. If V_{i} is low, large positive values of V_{t} may momentarily forward bias the input clamp diode, creating a DC coupling.

Figure 7. Ground Noise Coupling to the Inputs

Worst of all severe ground noise can make functional testing at or near the guaranteed input levels (V_{IH} and V_{IL}) impossible. To demonstrate, assume the device ground noise reaches a positive 0.8 V with respect to test system ground during output switching. Assume the input driver high level is programmed to 2.0 V , minimum V_{IH} for most TTL devices. The actual voltage between a "high" DUT input and its ground is only 1.2 V . The typical room temperature threshold voltage of a TTL device is 1.5 V , and the device interprets 1.2 V as a logic "low." This causes the memory to access a new memory location momentarily. The resultant momentary change in output data interferes with access time measurements. In severe cases, this momentary switching of output data creates additional ground noise which also feeds back to the inputs resulting in sustained oscillations. This noise interaction can also be viewed with a dual trace oscilloscope as shown in Figure 8. Channel A of the scope is connected to the address input while channel B monitors the DUT ground pin. The input voltage, as seen by the DUT, can be viewed directly by putting the scope in "A - B," algebraic subtract mode. Note the scope ground is connected to test system ground as before. Attaching scope ground to the DUT pin ground should be avoided as this creates a "ground loop." If connected this way, large noise currents flow in the alternate ground path provided by the scope back to earth ground; this interferes with the scope's ability to measure high-speed events and modifies the condition which is to be observed.
Several techniques can be employed to reduce ground noise problems:

- Keep the ground path as short as possible; use large diameter wire and "straight line" wiring techniques.
- Minimize the number of series connections in the DUT ground path; provide as many parallel ground connections as possible through each remaining connector.
- If the system uses a Kelvin (force - sense) ground system, terminate the system by shorting force to sense on the DUT load board. Kelvin systems provide DC accuracy, but their response times are much too slow to aid in the suppression of ground noise at the test site. Terminating Kelvin early sacrifices a little DC accuracy, but the ability to use the previous sense line as second, low impedance ground path usually improves the overall test accuracy.
- Provide multiple high frequency bypass capacitors as close as possible to the DUT, and again on the DUT load board. This allows the $V_{C C}$ wiring to serve as an extra $A C$ ground path for high frequency ground noise.
- Reduce the DUT load capacitance (receiver and interconnect capacitance) as much as possible; avoid using low values of load resistors. Both techniques reduce the transient currents, thus improving test accuracy. When necessary, DUT output drive capability can usually be verified with DC tests.
- If V_{IL} and V_{IH} tests are necessary, measure the maximum amount of ground noise that the specific device type to be tested generates in the actual test site. Set the input drive levels no tighter than " V_{IH} plus the maximum noise" and " $\mathrm{V}_{\text {IL }}$ minus the maximum noise." Using tighter limits over tests the device!
- Alternatively, use DC bench tests on a sample basis to verify that input margins are acceptable. This is a sound practice as the input thresholds of bipolar devices are ex-

Figure 8. Monitoring Ground Noise

Testing High-Performance Bipolar Memory

tremely insensitive to fabrication process variations. Virtually any process variation or defect which would result in a threshold failure would also result in the catastrophic failure of other tests.

- DC verification of $V_{I L}$ and $V_{I H}$ can also be performed on the test system, but care must be exercised to insure that input voltages NEVER cross through the 0.8 to 2.0 V window; voltages residing in this window can cause the DUT to switch, triggering sustained oscillations.
- The Output "Tank Circuit": A second common problem encountered is resonance in the circuitry which connects the DUT outputs to the output comparators or receivers. This resonance occurs because the wire connecting the DUT outputs to the receivers is actually an inductor connected in series with the comparator input capacitance, forming a series resonant tank circuit (Figure 9). This load circuit is quite different from the typical loading situation found in a system environment. Notice that the capacitance in the tester tends to be a single large value of capacitance, lumped at the end of the DUT output drive line. The load capacitance in the system is generally smaller and it is distributed along the drive line; this configuration looks much more like a transmission line, with per unit length values of inductance and capacitance, than it does a resonant tank. The resonant frequencies found at the test site vary with wire length and capacitive load, but tend to be in the $100-500 \mathrm{MHz}$ range. The input voltage sensed by the receiver is actually the voltage at the center connection within the tank circuit, which can ring violently when the outputs switch; measurement errors of 5 ns or more can occur. A good evaluation technique for this problem is to compare the waveforms observed at the output of the device with a "shmoo plot" of the output. Assuming a simple pattern is used, differences in these results may indicate a resonance problem.

Corrective action for this problem includes:

- Use short, low inductance connections from the DUT output to the receiver; minimize comparator and interconnect capacitance. Both techniques raise the resonant frequency of the tank circuit which limits the time measurement error and reduces the DUT's ability to stimulate ringing in the tank.
- Use twisted pair wiring techniques to connect DUT outputs to the receivers. Though this raises the capacitance slightly, it reduces the purely inductive character of the interconnect, usually tending to reduce ringing.
- Minimizing Cross-Talk: Cross-talk between the input and output lines of the DUT is also a common problem. Obviously, the greater the number of paths which must be packed into a given area, the greater the problem. The signal coupling that occurs adds noise to both the input lines, making V_{IH} and V_{IL} testing difficult, and output lines, reducing the accuracy of timing measurements. Techniques which tend to reduce cross-talk include the following:
- Keep wires as short as possible and avoid laying wires on top of each other.
- Reduce output loading to minimize the magnitude of current transients which could be coupled into adjacent lines.
- Use twisted pair or coaxial cable wherever possible; take care to tie all grounds from these transmission lines together at both ends.
- Use ground plane or ground mesh techniques in the load board and the handler interface if possible. A true ground plane permits the use "strip" transmission lines which not only minimize cross-talk, but also reduce ground noise.
Though expensive, ground plane techniques offer the test engineer a consistent reference voltage which can be used to identify and segregate the various components and sources of noise.

L_{L}, the interconnect inductance and $C_{C O M P A R A T O R ~ f o r m ~ a ~ s e r i e s ~ r e s o n a n t ~ t a n k ~ c i r c u i t ~ w h i c h ~ c a n ~ c a u s e ~ t i m e ~ m e a s u r e m e n t ~ e r r o r s . ~}^{\text {con }}$.
Figure 9. Resonance at the Outputs

CONCLUSION

Advanced Micro Devices has invested significantly in the development of advanced, high-performance bipolar memory technologies and products. As the preceding discussion demonstrates, the memory tester presents a very different environment to the memory device than does the system. The additional constraints placed on the tester virtually guarantee that devices which function in this "worst case" environment will perform satisfactorily in the system. However, this worst case
environment may also selectively reject the best performing devices; i.e., those with the fastest access times and best drive characteristics. This occurs because high-performance devices magnify the problems found in the tester environment. The information presented here should aid the component engineer in recognizing and resolving these special test environment problems. Attention to these details will reward the bipolar memory user by assuring acceptance of the best and broadest range of bipolar memories currently available.

INDEX SECTION
 NUMERICAL DEVICE INDEX
 FUNCTIONAL INDEX AND SELECTION GUIDE
 INDUSTRY CROSS REFERENCE
 APPLICATION NOTE

BIPOLAR PROGRAMMABLE
READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS
 MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
 PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION
COMMITTMENT TO EXCELLENCE
PRODUCT ASSURANCE
PACKAGE OUTLINES
SALES OFFICES

Bipolar Programmable Read Only Memory (PROM) Index

Am27S18A/19A Series
Am29750A/Am29751A
Am27LS18/19
Am27S20A/21A Series
Am29760A/Am29761A
Am27S12A/13A Series
Am29770/Am29771
Am27S15
Am27S25A/25
Am27S27
Am29775
Am27S28A/29A Series
Am27S30A/31A Series
Am27S32A/33A Series
Am27S65
Am27S35A/37A Series
Am27S180A/181A Series
Am27S280A/281A Series
Am27PS181A/281A Series
Am27S184A/185A Series
Am27LS184/185
Am27PS185
Am27S75
Am27S190A/191A Series
Am27S290A/291A Series
Am27PS191A/291A Series
Am27S45A/47A Series
Am27S40A/41A Series
Am27PS41
Am27S85
Am27S43A/43

256-Bit Generic Series Bipolar PROM 2-1
256-Bit Generic Series Bipolar PROM 2-7
Low-Power Schottky 256-Bit Generic Series Bipolar PROM 2-8
1024-Bit Generic Series Bipolar PROM 2-15
1024-Bit Generic Series Bipolar PROM 2-21
2048-Bit Generic Series Bipolar PROM 2-22
2048-Bit Generic Series Bipolar PROM 2-28
4096-Bit Generic Series Bipolar PROM 2-29
4K-Bit (512 x 8) Generic Series Bipolar IMOX Registered PROM 2-34
4096-Bit Generic Series Bipolar Registered PROM 2-41
4096-Bit Generic Series Bipolar PROM with Register 2-46
4096-Bit Generic Series Bipolar PROM 2-47
4096-Bit Generic Series Bipolar PROM 2-52
4096-Bit Generic Series Bipolar PROM 2-57
Generic Series 4-Wide Bipolar IMOX Registered PROMs 2-62
8K-Bit (1024 x 8) Generic Series Bipolar IMOX Registered PROM 2-64
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
1024×8-Bit Generic Series Bipolar IMOX PROM 2-73
8192-Bit Generic Series IMOX Bipolar PROM 2-80
8192-Bit Generic Series Bipolar IMOX PROM 2-87
8192-Bit Generic Series Bipolar IMOX PROM 2-92
8192-Bit Generic Series Bipolar IMOX PROM 2-97
Generic Series 4-Wide Bipolar IMOX Registered PROMs 2-62
16,384-Bit Generic Series Bipolar IMOX PROM 2-102
16,384-Bit Generic Series Bipolar IMOX PROM 2-102
16,384-Bit Generic Series Bipolar IMOX PROM 2-109
16K-Bit (2048 x 8) Generic Series Bipolar IMOX Registered PROM 2-116
16,384-Bit Generic Series Bipolar IMOX PROM 2-125
16,384-Bit Generic Series Bipolar IMOX PROM 2-131
Generic Series 4-Wide Bipolar IMOX Registered PROMs 2-62
32,768-Bit Generic Series Bipolar IMOX PROM 2-137
Technical Report 2-142
Guide to the Analysis of Programming Problems 2-151
PROM Programming Equipment Guide 2-154

Am27S18A •Am27S19A Am27S18•Am27S19

256-Bit Generic Series Bipolar PROM (32×8 bits with ultra fast access time) "A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed - 25ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S18A/18 and Am27S19A/19 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 32×8 configuration, they are available in both open collector Am27S18A/18 and three-state Am27S19A/19 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{4}$ and holding the chip select input, $\overline{\mathrm{CS}}$, at a logic LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{7}$ go to the off or high impedance state.

GENERIC SERIES CHARACTERISTICS

This Am27S18A/18 and Am27S19A/19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

BLOCK DIAGRAM

BPM-018

CONNECTION DIAGRAMS
 Top Views

BPM-020

Chip-Pak ${ }^{\text {TM }}$ L-20-1

BPM-276

Note: Pin 1 is marked for orientation.

Am27S18A/S19A/S18/S19
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$\mathrm{V}_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
BPM-019

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	Typ(Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}_{2}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
I_{IH}	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
ICC	Power Supply Current	All inputs $=$ GND, $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				90	115	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Note 2	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

"A" VERSION ADVANCED INFORMATION

Parameter	Description	Test Conditions	Typ		Max				Units
			$5 \mathrm{~V} 25^{\circ}$		COM'L		MIL		
			A	STD	A	STD	A	STD	
${ }^{\text {t }}$ A	Address Access Time	AC Test Load (See Notes 1-3)	18	25	25	40	35	50	ns
${ }_{\text {teA }}$	Enable Access Time		13	15	20	25	25	30	ns
$t_{\text {ER }}$	Enable Recovery Time		13	15	20	25	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.
(

PROGRAMMING

The Am27S18A/18 and Am27S19A/19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min	Max	Units
$V_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {CSP }}$	$\overline{\mathrm{CS}}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
IoNP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CS}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}$ Voltage Change	100	1000	V/ μ sec
	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
ip	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

APPLYING THE Am27S18A/18 AND Am27S19A/19

The Am27S18A/18 and Am27S19A/19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal of BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking control
or code selector input. The use of a single Am27S18A/18 or Am27S19A/19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

TRUTH TABLE

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Datal/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80S	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{array}{\|l\|} \hline 909-1286-1 \text { Rev H* } \\ \text { 919-1286-1 Rev H} \end{array}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S18A/18 Am27S19A/19	715-1407-1	PA 16-6 and $32 \times 8 \mathrm{~L}$	IM 32×8-16 AMD	SA 3-1	DIS-156 AM	DA 22	AM 110-2

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
25ns	AM27S18APC AM27S18APCB	AM27S19APC AM27S19APCB	$\begin{aligned} & \hline \text { P-16-1 } \\ & \text { P-16-1 } \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	
	AM27S18ADC AM27S18ADCB	AM27S19ADC AM27S19ADCB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \end{aligned}$	C-1	COM'L
	AM27S18ALC	AM27S19ALC	L-20-1	C-1	
	AM27S18ALCB	AM27S19ALCB	L-20-1	B-1	
35ns	AM27S18ADM AM27S18ADMB	AM27S19ADM AM27S19ADMB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	
	AM27S18AFM	AM27S19AFM	F-16-1	C-3	
	AM27S18AFMB	AM27S19AFMB	F-16-1	B-3	MIL
	AM27S18ALM	AM27S19ALM	L-20-1	C-3	
	AM27S18ALMB	AM27S19ALMB	L-20-1	B-3	
40ns	AM27S18PC	AM27S19PC	P-16-1	C-1	
	AM27S18PCB	AM27S19PCB	P-16-1	B-1	
	AM27S18DC	AM27S19DC	D-16-1	C-1	COM'L
	AM27S18DCB	AM27S19DCB	D-16-1	B-1	
	AM27S18LC	AM27S19LC	L-20-1	C-1	
	AM27S18LCB	AM27S19LCB	L-20-1	B-1	
50ns	AM27S18DM	AM27S19DM	D-16-1	C-3	MIL
	AM27S18DMB	AM27S19DMB	D-16-1	B-3	
	AM27S18FM	AM27S19FM	F-16-1	C-3	
	AM27S18FMB	AM27S19FMB	F-16-1	B-3	
	AM27S18LM	AM27S19LM	L-20-1	C-3	
	AM27S18LMB	AM27S19LMB	L-20-1	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29750A • Am29751A
 256-Bit Generic Series Bipolar PROM

Refer to
 Am27S18•Am27S19
 Bipolar Memory PROM Product Specification

The Am29750A is replaced by the Am27S18 (open collector).
The Am29751A is replaced by the Am27S19 (three-state).

Am27LS18•Am27LS19
 Low-Power Schottky 256-Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed - 55ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27LS18 and Am27LS19 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 32×8 configuration, they are available in both open collector Am27LS18 and three-state Am27LS19 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{4}$ and holding chip select input, $\overline{C S}$, at a logic LOW. If either chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{7}$ go to the OFF or high impedance state.

GENERIC SERIES CHARACTERISTICS

The Am27LS18 and Am27LS19 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

BLOCK DIAGRAM

BPM-018

CONNECTION DIAGRAMS

Top Views

BPM-020

Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8 \quad$ BPM-019

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	Typ (Note 1)	Max	Units
VOH (Am27LS19 only)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
I_{H}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
Isc (Am27LS19 only)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}($ Note 3$)$			-20	-40	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$				60	80	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Am27LS19 Only	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)				4		pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

Am27LS18/LS19

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	30	55	75	ns
$t_{\text {EA }}$	Enable Access Time		22	40	50	ns
$\mathrm{t}_{\text {ER }}$	Enable Recovery Time		18	35	40	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $\mathrm{t}_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

PROGRAMMING

The Am27LS18 and Am27LS19 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{c c}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{C S}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CS}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{\text {tp }}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT

Generic programming boards and device adapters are available from the sources listed below. In each case, the programming boards are used in these manufacturer's automatic
programmers to program all AMD generic series bipolar PROMs; individual adapters are required for each basic part type in the series.

SOURCE AND LOCATION	Data I/O Corp.	Pro-Log Corp.
	P.O. Box 308	2411 Garden Road
	Issaquah, Wash. 98027	Monterey, Ca. 93940
PROGRAMMER MODEL(S)	Model 5, 7 and 9	M900 and M920
AMD GENERIC BIPOLAR	$909-1286-1$	PM9058
PROM PERSONALITY BOARD		
Am27LS18 • Am27LS19	$715-1407-1$	PA16-6 and 32×8 (L)
ADAPTERS AND CONFIGURATORS		

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{*}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 32 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.4$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

RESULTING DEVICE TRUTH TABLE ($\overline{\mathbf{C S}}=$ LOW)

A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	07	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	0_{1}	O_{0}
L	L	L	L	L	H	L	H	H	L	L	L	H
L	L	L	L	H	H	H	H	H	H	H	L	L
L	L	L	H	L	L	L	L	H	H	H	H	L
L	L	L	H	H	L	L	L	L.	L	L	L	L
L	L	H	L	L	H	L	L	1.	L	L	L.	H
L	L	H	L	H	L	H	H	L	H	H	L	L
L	L	H	H	L	H	L	1	H	H	H	L	L
H	H	H	H	H	L	L	L	L	H	H	H	L

APPLYING THE Am27LS18 AND Am27LS19

The Am27LS18 and Am27LS19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal or BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking con-
trol or code selector input. The use of a single Am27LS18 or Am27LS19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

TRUTH TABLE

ADDRESS					COMPLEMENT$\mathrm{O}_{7} \mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{4}$			true$O_{3} O_{2} O_{1} O_{0}$				
0	0	0	0	0	11	0	0	0	0	1	1	
0	0	0	0	1	10	1	1	0	1	0	0	
0	0	0	1	0	10	1	0	0	1	0	1	
0	0	0	1	1	10	0	1	0	1	,	0	囟
0	0	1	0	0	10	0	0	0	1	1	1	¢
0	0	1	0	1	01	1	1	1	0	0	0	\%
0	0	1	1	0	0	1	0	1	0	0	1	0
0	0	1	1	1	0 1,	0	1	1	0	1	0	조
0	1	0	0	0	01.	0	0	1	0	1	1	
0	1	0	0	1	00	1	1	1	1	0	0	m
0	1	0	1	0	$\mathrm{X} \times$	X	X	X	X	X	x	\bigcirc
0	1	0	1	1	X X	X	X	X	X	X	X	8
0	1	1	0	0	X X	X	X	X	X	X	X	m
0	1	1	0	1	$\times \mathrm{x}$	X	X	X	X	X	X	
0	1	1	1	0	$\mathrm{x} \times$	X	X	X	X	X	X	
0	1	1	1	1	$\times \mathrm{x}$	\times	X	X	X	X	X	
1	0	0	0	0	11	1	1	0	0	0	0	
1	0	0	0	1	11	1	0	0	0	0	1	
1	0	0	1	0	11	0	0	0	0	1	1	
1	0	0	1	1	11	0	1	0	0	1	0	
1	0	1	0	0	10	0	1	0	1	1	0	
1	0	1	0	1	10	0	0	0	1	1	1	
1	0	1	1	0	10		0	0	1	0	1	T
1	0	1	1	1	10	1	1	0	1	0	0	2
1	1	0	0	0	00	1	1	1	1	0	0	
1	1	0	0	1	00	1	0	1	1	0		O
1	1	0		0	00	0	0	1	1	,	,	ס
1	1	0	1	1	00	0	1	1	1	1	0	
1	1	1	0	0	01	0	1	1	0	1	0	
1	1	1	0	1	01	0	0	1	0	1	,	
1	1	1	1	0	01	1	0	1	0	0	1	
1	1	1	1	1	01	1	1	1	0	0	0	

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	Stag Systems, Inc. $528-5 ~ W e d d e l l ~ D r . ~$ Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module $909-1286-1 ~ R e v ~ H * ~$ $919-1286-1 ~ R e v ~ H * ~$ Unipak Rev H* (Code 16 02) PM 9058	IM AMDGEN1	MOD 14		PM 102	FAM-12	PM 2000	
Code 90							

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
55ns	AM27LS18PC	AM27LS19PC	P-16-1	C-1	
	AM27LS18PCB	AM27LS19PCB	P-16-1	B-1	
	AM27LS18DC AM27LS18DCB	AM27LS19DC AM27LS19DCB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \end{aligned}$	C-1 $\mathrm{B}-1$	COM'L
	AM27LS18LC	AM27LS19LC	L-20-1	C-1	
	AM27LS18LCB	AM27LS19LCB	L-20-1	B-1	
75ns	AM27LS18DM	AM27LS19DM	D-16-1	C-3	MIL
	AM27LS18DMB	AM27LS19DMB	D-16-1	B-3	
	AM27LS18FM	AM27LS19FM	F-16-1	C-3	
	AM27LS18FMB	AM27LS19FMB	F-16-1	B-3	
	AM27LS18LM	AM27LS19LM	L-20-1	C-3	
	AM27LS18LMB	AM27LS19LMB	L-20-1	B-3	

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $\mathrm{F}=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S20A • Am27S21A Am27S20•Am27S21

 1024-Bit Generic Series Bipolar PROM (256×4 bits with ultra fast access time)"A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed - 30ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N2 patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S20A/20 and Am27S21A/21 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S20A/20 and Am27S21A/21 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 256×4 configuration, they are available in both open collector Am27S20A/20 and three-state Am27S21A/21 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $A_{0}-A_{7}$ and holding chip select inputs, $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, at a logic LOW. If either chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or high impedance state.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am27S20A/S21A/S20/S21

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COM'	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
I/L	Input LOW Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
I_{I}	Input HIGH Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$				100	130	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN, ${ }^{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S_{1}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			-	8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

Parameter	Description	Test Conditions			Max				Units
			$\begin{aligned} & 5 \mathrm{~V} 25^{\circ} \mathrm{C} \\ & \mathrm{~A} \quad \text { STD } \end{aligned}$		COM'L		MIL		
					A	STD	A	STD	
$t_{A A}$	Address Access Time	AC Test Load (See Notes 1-3)	20	25	30	45	40	60	ns
teA	Enable Access Time		15	15	20	20	25	30	ns
ter	Enable Recovery Time		15	15	20	20	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

Am27S20A/S21A/S20/S21

PROGRAMMING

The Am27S20A/20 and Am27S21A/21 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled, and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occassionlly a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {HPP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$\mathrm{V}_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
lonp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$d\left(V_{C S}\right) / d t$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$ and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

APPLYING THE Am27S20A/20 AND Am27S21A/21

Typical application of the Am27S20A/20 and Am27S21A/21 is shown below. The Am27S20A/20 and the Am27S21A/21 are employed as mapping ROMs in a microprogram computer control unit. The eight-bit macroinstruction from main memory is brought into the $A_{0}-A_{7}$ inputs of the mapping ROM array. The instruction is mapped into a 12 -bit address space with each PROM output supplying 4 bits. The 12 bits of address are then supplied to the "D" inputs of the Am2910 as a possible next
address source for microprogram memory. The $\overline{\text { MAP }}$ output of the Am2910 is connected to the $\overline{\mathrm{CS}}_{1}$ input of the Am27S20A/ 20/21A/21 such that when the $\overline{\mathrm{CS}}_{1}$ input is HIGH, the outputs of the PROMs are either HIGH in the case of the Am27S20A/20 or in the three-state mode in the case of the Am27S21A/21. In both cases the $\overline{\mathrm{CS}}_{2}$ input is grounded; thus data from other sources are free to drive the D inputs of the Am2910 when MAP is HIGH:

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \mathrm{Rev} \mathrm{H}^{*} \\ & 919-1286-1 \text { Rev H* } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S20A/21A Am27S20/21	715-1408-1	PA 16-5 and $256 \times 4(\mathrm{~L})$	IM 256×4-16 AMD	SA 4-2	DIS-133 AM	DA 21	AM130-2

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
30ns	AM27S20APC AM27S20APCB AM27S20ADC AM27S20ADCB AM27S20ALC AM27S20ALCB	AM27S21APC AM27S21APCB AM27S21ADC AM27S21ADCB AM27S21ALC AM27S21ALCB	$\begin{aligned} & \hline \text { P-16-1 } \\ & \text { P-16-1 } \\ & \text { D-16-1 } \\ & \text { D-16-1 } \\ & \text { L-20-1 } \\ & \text { L-20-1 } \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
40ns	AM27S20ADM AM27S20ADMB AM27S20AFM AM27S20AFMB AM27S20ALM AM27S20ALMB	AM27S21ADM AM27S21ADMB AM27S21AFM AM27S21AFMB AM27S21ALM AM27S21ALMB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \hline \end{aligned}$	MIL
45ns	AM27S20PC AM27S20PCB AM27S20DC AM27S20DCB AM27S20LC AM27S20LCB	AM27S21PC AM27S21PCB AM27S21DC AM27S21DCB AM27S21LC AM27S21LCB	$\begin{aligned} & \hline \mathrm{P}-16-1 \\ & \mathrm{P}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
60ns	AM27S20DM AM27S20DMB AM27S20FM AM27S20FM8 AM27S20LM AM27S20LMB	AM27S21DM AM27S21DMB AM27S21FM AM27S21FMB AM27S21LM AM27S21LMB	$\begin{aligned} & \hline \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29760A • Am29761A
 1024-Bit Generic Series Bipolar PROM

Refer to
 Am27S20•Am27S21
 Bipolar Memory PROM Product Specification

The Am29760A is replaced by the Am27S20 (open collector).
The Am29761A is replaced by the Am27S21 (three-state).

Am27S12A • Am27S13A Am27S12•Am27S13 2048-Bit Generic Series Bipolar PROM (512×4 bits with ultra fast access time)

 "A" VERSION ADVANCED INFORMATION

 "A" VERSION ADVANCED INFORMATION}

DISTINCTIVE CHARACTERISTICS

- High Speed - 30ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S12A/12 and Am27S13A/13 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S12A/12 and Am27S13A/13 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×4 configuration, they are available in both open collector Am27S12A/12 and three-state Am27S13A/13 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $A_{0}-A_{8}$ and holding the chip select input, $\overline{\mathrm{CS}}$, at a logic LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or high impedance state.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 seC$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	VCC	Temperature
COML $^{\prime}$	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
IIL	Input LOW Current	$V_{C C}=$ MAX, $\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
ICC	Power Supply Current	$\begin{aligned} & \text { All inputs }=\text { GND } \\ & V_{C C}=M A X \end{aligned}$				100	130	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
${ }^{\text {ICEX }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{0}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 "A" VERSION ADVANCED INFORMATION| | Description | Test Conditions | TypAV $25^{\circ} \mathrm{C}$STD | | Max | | | | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | COM'L | | MIL | | |
| Parameter | | | | | A | STD | A | STD | |
| $t_{A A}$ | Address Access Time | AC Test Load (See Notes 1-3) | 20 | 30 | 30 | 50 | 40 | 60 | ns |
| ${ }_{\text {teA }}$ | Enable Access Time | | 15 | 15 | 20 | 25 | 25 | 30 | ns |
| ter | Enable Recovery Time | | 15 | 15 | 20 | 25 | 25 | 30 | ns |

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}$ is HIGH is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM H TOL		DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROM LTO H	WILL BE CHANGING FROM LTOH			

AC TEST LOAD

PROGRAMMING

The Am27S12A/12 and Am27S13A/13 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$\mathrm{V}_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{v}_{\text {CSP }}$	$\overline{\text { CS }}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CS}}\right) / \mathrm{dt}$	Rate of $\overline{C S}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

Am27S12A/S13A/S12/S13

PROM PROGRAMMING EQUIPMENT INFORMATION
The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	Stag Systems, Inc. $528-5$ Weddell Dr. Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$909-1286-1 ~ R e v H^{*}$ $919-1286-1 ~ R e v ~ H * ~$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000
Code 90							

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

APPLYING THE Am27S12A/12 AND Am27S13A/13

The Am27S12A/12 and Am27S13A/13 can be used with a high speed counter to form a pico-controller for microprogrammed systems. A typical application is illustrated below wherein a multiplexer, under control of one of the PROMs, is continuously sensing the CONDITIONAL TEST INPUTS. When the selected condition occurs, a HIGH signal will result at the multiplexer
output causing a predetermined branch address to be loaded into the parallel inputs of the counters on the next clock pulse. The counter then accesses the preprogrammed data or control information sequence from the Am27S12A/12 or Am27S13A/13 PROMs.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
30ns	AM27S12APC AM27S12APCB AM27S12ADC AM27S12ADCB AM27S12ALC AM27S12ALCB	AM27S13APC AM27S13APCB AM27S13ADC AM27S13ADCB AM27S13ALC AM27S13ALCB	$\begin{aligned} & \mathrm{P}-16-1 \\ & \mathrm{P}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
40 ns	AM27S12ADM AM27S12ADMB AM27S12AFM AM27S12AFMB AM27S12ALM AM27S12ALMB	AM27S13ADM AM27S13ADMB AM27S13AFM AM27S13AFMB AM27S13ALM AM27S13ALMB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
50ns	AM27S12PC AM27S12PCB AM27S12DC AM27S12DCB AM27S12LC AM27S12LCB	AM27S13PC AM27S13PCB AM27S13DC AM27S13DCB AM27S13LC AM27S13LCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \\ & L-20-1 \\ & L-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
60 ns	AM27S12DM AM27S12DMB AM27S12FM AM27S12FMB AM27S12LM AM27S12LMB	AM27S13DM AM27S13DMB AM27S13FM AM27S13FMB AM27S13LM AM27S13LMB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C . Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am299770 • Amp 29771

Refer to
 Am27S12•Am27S13
 Bipolar Memory PROM Product Specification

The Am29770 is replaced by the Am27S12 (open collector).
The Am29771 is replaced by the Am27S13 (three-state).

Am27S15

4096-Bit Generic Series Bipolar PROM (512 x 8 Bits with Output Data Latches)

DISTINCTIVE CHARACTERISTICS

- On-chip data latches
- Latched true and complemented output enables for easy word expansion
- Predetermined OFF outputs on power-up
- Plug-in replacement for the 82 S 115
- Fast access time - 60ns commercial and 90ns military maximum
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S15 is an electrically programmable Schottky read only memory incorporating on-chip data and enable latches. The device is organized as 512 words of 8 bits and features three-state outputs with full 16 mA drive capability.
When in the transparent mode, with the strobe (ST) input HIGH , reading stored data is accomplished by enabling the chip (\bar{E}_{1} LOW and E_{2} HIGH) and applying the binary word address to the address inputs, $\mathrm{A}_{0}-\mathrm{A}_{8}$. In this mode, changes of the address inputs cause the outputs, $\mathrm{Q}_{0}-\mathrm{Q}_{7}$, to read a different stored word; changes of either enable input level disable the outputs, causing them to go to the high impedance state.
Dropping the strobe input to the LOW level places the device in the latched mode of operation. The output condition present (reading a word of stored data or disabled) when the strobe goes LOW remains at the outputs, regardless of further address or enable transitions, until a positive (LOW to HIGH) strobe transition occurs. With the strobe $\mathrm{HIGH}, \mathrm{Q}_{0}-\mathrm{Q}_{7}$ again respond to the address and enable input conditions.
If the strobe is LOW (latched mode) when $V_{C C}$ power is first applied, the outputs will be in the disabled state, eliminating the need for special "power-up" design precautions.

GENERIC SERIES CHARACTERISTICS

This 4K PROM is a member of an Advanced PROM series incorporating common electrical characteristics and programing procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

CONNECTION DIAGRAM - Top View

Note: Pin 1 is marked for orientation. NC = No connection.

Am27S15
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	VCC	Temperature
COM'L	4.75 to 5.25 V	$T_{A}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Param	Description	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L	2.7			Volts
			MIL	2.4			
VOL	Output LOW Voltage	$\begin{array}{\|l} \hline V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \hline \end{array}$				0.5	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)	COM'L			0.85	Volts
			MIL			0.80	
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$	COM'L			-0.100	mA
			MIL			-0.150	
${ }_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	COM'L	-20		-70	mA
			MIL	-15		-65	
Icc	Power Supply Current	All Inputs $=$ GND$V_{C C}=M A X$	COM'L		125	175	mA
			MIL		125	185	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{VE}_{1}=2.4 \mathrm{~V} \\ & \mathrm{VE}_{2}=0.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5		pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			12		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter	Description	Test Conditions	Typ. (Note 1)	COM'L		MIL		Units
				Min.	Max.	Min.	Max.	
$t_{\text {PHL }}(A)$ $t_{\text {PLH }}(A)$	Transparent Mode Address to Output Access Time	$C_{L}=30 p F$ S_{1} Closed (See AC Test Load Below)	35		60		90	ns
$t_{W}(S)$	Strobe Pulse Width (HIGH)		10	30		40		ns
$t_{S}(\mathrm{~A})$	Address to Strobe (LOW) Set-up Time		35	60		90		ns
$t_{H}(A)$	Address to Strobe (LOW) Hold Time		-10	0		5		ns
$\begin{aligned} & \mathbf{t}_{\mathrm{s}}\left(\bar{E}_{1}\right) \\ & \mathrm{t}_{\mathrm{S}}\left(\mathrm{E}_{2}\right) \end{aligned}$	Enable to Strobe (LOW) Set-up Time			40		50		ns
$\begin{aligned} & t_{H}\left(\bar{E}_{1}\right) \\ & t_{H}\left(E_{2}\right) \end{aligned}$	Enable to Strobe (LOW) Hold Time		0	10		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}\left(\bar{E}_{1}, \mathrm{E}_{2}\right) \\ & \mathrm{t}_{\mathrm{PZL}}\left(\bar{E}_{1}, \mathrm{E}_{2}\right) \end{aligned}$	Transparent Mode Enable to Output Enabled (HIGH or LOW) Time	$\begin{gathered} C_{L}=30 \mathrm{pF} \\ \mathrm{~s}_{1} \text { Closed for } t_{\mathrm{PZL}}, \\ \text { \& Open for } \mathrm{t}_{\mathrm{PZH}} \\ \hline \end{gathered}$	20		40		50	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}}(\mathrm{~S}) \\ & \mathrm{t}_{\mathrm{PLZ}}(\mathrm{~S}) \end{aligned}$	Strobe Delatch (HIGH) to Output Disabled (OFF or HIGH impedance) Time	$\begin{gathered} C_{L}=5 p F(\text { Note } 2) \\ S_{1} \text { closed for } t_{P L Z} \\ \text { \& Open for } t_{P H Z} \end{gathered}$			35		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}\left(\bar{E}_{1}, \mathrm{E}_{2}\right) \\ & \mathrm{t}_{\mathrm{PLZ}}\left(\bar{E}_{1}, \mathrm{E}_{2}\right) \end{aligned}$	Transparent Mode Enable to Output Disabled (OFF or high impedance) Time		20		40		50	ns

2

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. $t_{P H Z}$ and $t_{P L Z}$ are measured to the $V_{O H}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
3. Tests are performed with input rise and fall times (10% to 90%) of 5 ns or less.

PROGRAMMING

The Am27S15 is manufactured with a conductive PlatinumSilicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \bar{E}_{1} input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{E}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{E}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{Cc} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\text {CCP }}$	$V_{\text {Cc }}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {ENP }}$	$\overline{\mathrm{E}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0.0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$d\left(V_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{E}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
$t_{\text {p }}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{\text {ONP }}$ through resistor R which provides output current limiting.

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M9008, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \text { Rev G* } \\ & 919-1286-1 \text { Rev G* } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12
Am27S15	715-1411-1	PA 24-14 and $512 \times 8($ L $)$	$\begin{aligned} & \text { IM } 512 \times 8-24- \\ & 27 S 15-A M D \end{aligned}$	SA 17-3B 512x 8 /24	DIS-165 AMD	DA 33

*Rev shown is minimum approved revision.

OBTANING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
60 ns	AM27S15PC	P-24-1	C-1	
	AM27S15PCB	P-24-1	B-1	COM'L
	AM27S15DC	D-24-1	C-1	
	D-24-1	B-1		
	AM27S15DM	D-24-1	C-3	
	AM27S15DMB	D-24-1	B-3	MIL
	AM27S15FM	F-24-1	C-3	
	AM27S15FMB	F-24-1	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S25A •Am27S25
 $4 K$-Bit (512 x 8) Generic Series IMOX ${ }^{\text {M }}$ Bipolar High Performance Registered PROM with PRESET and CLEAR INPUTS "A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Member of AMD's Generic Family of 8-bit wide registered PROMs
- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Buffered common PRESET and CLEAR inputs
- Slim, 24-pin, 300-mil lateral center package occupies approximately $1 / 3$ the board space required by standard discrete PROM and register
- Consumes approximately $1 / 2$ the power of separate PROM/register combination for improved system reliability
- Standard version - 50 ns max setup and 27 ns max clock-to-output allows system speed improvements
- "A" version offers improved AC performance in critical paths (30ns max setup and 20ns max clock-to-output)
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ>98\%)
- AC performance is factory tested utilizing programmed test words and columns
- 100\% MIL-STD-883C processing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S25A/25 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 512 -word by 8 -bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S25A/25 also offer maximum flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.
When $V_{C C}$ power is first applied, the synchronous enable ($\bar{E}_{\text {S }}$) flip-flop will be in the set condition causing the outputs $\left(Q_{0}-Q_{7}\right)$ to be in the OFF or high-impedance state. Reading data is accomplished by first applying the binary word address to the address inputs ($A_{0}-A_{8}$) and a logic LOW to the synchronous enable ($\overline{\mathrm{E}}_{\mathrm{S}}$). During the address setup time, stored data is accessed and loaded into the master flipflops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable ($\overline{\mathrm{E}}$) is also LOW, stored data will appear on the outputs $\left(Q_{0}-Q_{7}\right)$. If \bar{E}_{S} is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state regardless of the state of $\overline{\bar{E}}$. The outputs may be disabled at any time by switching \bar{E} to a HIGH level. Following the positive clock edge the address and synchronous enable inputs are free to change; changes will not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively elimated by tying it to ground.
The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.
The Am27S25 has buffered asynchronous $\overline{\text { PRESET }}$ and CLEAR inputs. These functions are common to all registers and are useful during power up timeout sequences. With outputs enabled the $\overline{\text { PS }}$ input asserted LOW will cause all outputs to be set to a logic 1 (HIGH) state. When the CLR input is LOW, the internal flip-flops of the data register are reset and, a logic 0 (LOW) will appear on all outputs. These functions will control the state of the data register, independent of all other inputs but exclusive of each other.

[^0]This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

GENERIC SERIES CHARACTERISTICS

The Am27S25A/25 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure long-term reliability. Extensive operating testing has shown that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltagecompensated bias network to provide excellent parametric performance over the full military power supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

AMD's GENERIC FAMILY OF 8-WIDE REGISTERED PROMs

BPM-334

BPM-335

BPM-336

Note: Pin 1 is marked for orientation.

Am27S25A/S25
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	V $_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\text {IL }} \end{aligned}$			0.38	0.50	Volts
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
112	Input LOW Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
IIH	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$				40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)		-20	-40	-90	mA
${ }^{\text {ICC }}$	Power Supply Current	All inputs $=G N D, V_{C C}=$ MAX			120	185	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{E}=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			12		

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (See Notes on Testing) 'A' VERSION ADVANCE INFORMATION

Parameters			Typ (Note 1)	Am27S25A				Am27S25				Units	
				COM'L		MIL		COM'L		MIL			
	Description			Min	Max	Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{S}}(\mathrm{A})$	Address to CP (HIGH) Setup Time		35	30		35		50		55		ns	
$\mathrm{t}_{\mathrm{H}}(\mathrm{A})$	Address to CP (HIGH) Hold Time		-10	0		0		0		0		ns	
$\mathrm{t}_{\text {PHL }}(\mathrm{CP}$)	Delay from CP (HIGH) to Output (HIGH or LOW)	All Outputs Simultaneous	15		20		25		27		30	ns	
$\mathrm{t}_{\text {PLH }}(\mathrm{CP})$		Single Output (Note 3)	13		15		20		23		26		
${ }^{\text {t }}$ WH ${ }^{\text {(CP) }}$	CP Width (HIGH or LOW)			20		20		20		20		ns	
${ }^{\text {wLL }}$ (CP)													
$\mathrm{t}_{\mathrm{s}}\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$	$\bar{E}_{\text {S }}$ to CP (HIGH) Setup T		5	10		15		10		15		ns	
$\mathrm{t}_{\mathrm{H}}\left(\bar{E}_{\text {S }}\right)$	$\bar{E}_{\text {S }}$ to CP (HIGH) Hold Tim		-2	5		5		5		5		ns	
$\mathrm{t}_{\text {PHL }}(\overline{\mathrm{CLR}})$	Delay from PRESET or CLEAR (LOW) to Outputs (LOW or HIGH)		16		20		25		25		30	ns	
$\mathrm{t}_{\mathrm{PLH}}(\overline{\mathrm{PS}})$													
$\mathrm{t}_{\mathrm{R}}(\overline{\mathrm{PS}})$	$\overline{\text { PRESET }}$ or $\overline{\text { CLEAR }}$ Recovery (Inactive) to CP (HIGH)			10	20		25		20		25		ns
$\mathrm{t}_{\mathrm{R}}(\overline{\text { CLR }}$)													
$\mathrm{t}_{\mathrm{WL}}(\overline{\text { PS }}$)	$\overline{\text { PRESET or CLEAR }}$ Pulse Width		10	20		25		30		25		ns	
$\mathrm{t}_{\mathrm{WL}}(\overline{\mathrm{CLR}})$													
$\mathrm{t}_{\text {PZL }}$ (CP)	Delay from CP (HIGH) to Active Output (HIGH or LOW)		18		25		30		35		45	ns	
$\mathrm{t}_{\text {PZH }}(\mathrm{CP})$													
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{E}})$	Delay from $\overline{\mathrm{E}}$ (LOW) to Active Output (HIGH or LOW)		15		25		30		35		45	ns	
$\mathrm{t}_{\text {PZH }}(\overline{\mathrm{E}})$													
$t_{\text {PLZ }}(\mathrm{CP})$	Delay from CP (HIGH) to Inactive Output (OFF or High Impedance) (Note 4)		21		25		30		35		45	ns	
$\mathrm{t}_{\mathrm{PHZ}}(\mathrm{CP})$													
$\mathrm{t}_{\text {PLZ }}(\overline{\mathrm{E}})$	Delay from E_{1} (HIGH) to Inactive Output (OFF or High Impedance) (Note 4)		15		25		30		35		45	ns	
$\mathrm{t}_{\text {PHZ }}(\overline{\mathrm{E}})$													

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10 to 90% rise and fall times of 5 ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.
4. t_{PHZ} and t_{PLZ} are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.

SWITCHING WAVEFORMS

(See Notes on Testing)

BPM-337

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any test.
3. Do not attempt to perform threshold tests under $A C$ conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
(AC TEST LOAD

PROGRAMMING

The Am27S25A/25 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \bar{E} input is at a logic HIGH. Current is gated through the addressed fuse by raising the \bar{E} input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the
current drops to approximately 40 mA . Current into the $\overline{\mathrm{E}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
V_{HP}	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {ENP }}$	\bar{E} Voltage During Programming	14.5	15.5	Volts
$V_{O P}$	Output Voltage During Programming	19.5	20.5	Volts
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voitage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\overline{\mathrm{EN}}}\right) / \mathrm{dt}$	Rate of E Voltage Change	50	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{7} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

BPM-340

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 735 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev G* 919-1286-1 Rev G* Unipak Rev H 003 (Code 62 65)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Socket Adapters Am27S25	715-1617	PA 24-16 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8-27 \mathrm{~S} 25 \\ & \text { AMD } \end{aligned}$	$\begin{aligned} & \text { SA } 31-2 \text { B } \\ & 512 \times 8 / 24 \end{aligned}$	DIS-213 AM	DA 31-5	AM 190-2

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection (Setup Time)	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
30ns	AM27S25APC AM27S25APCB AM27S25ADC AM27S25ADCB AM27S25ALC AM27S25ALCB	$\begin{gathered} \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
35ns	AM27S25ADM AM27S25ADMB AM27S25AFM AM27S25AFMB AM27S25ALM AM27S25ALMB	$\begin{gathered} \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
50ns	AM27S25PC AM27S25PCB AM27S25DC AM27S25DCB AM27S25LC AM27S25LCB	$\begin{gathered} \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
55ns	AM27S25DM AM27S25DMB AM27S25FM AM27S25FMB AM27S25LM AM27S25LMB	$\begin{gathered} \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP,$D=$ Hermetic $D I P, L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C . Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult Factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S27

4096-Bit Generic Series Bipolar Registered PROM (512 x 8 Bits with D-Type Output Data Register)

DISTINCTIVE CHARACTERISTICS

- On-chip edge triggered registers - Ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Predetermined OFF outputs on power-up
- Fast 55 ns address setup and 27 ns clock to output times
- Excellent performance over the military range
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S27 is a 512 word $x 8$-bit PROM which incorporates an on-chip D-type, master-slave data register with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost of pipelined microprogrammed system and other designs wherein accessed PROM data is temporarily stored in a register. The Am27S27 also offers maximal flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.
When $V_{C C}$ power is first applied, the synchronous enable (E_{S}) flip-flop will be in the set condition causing the outputs, $\mathrm{Q}_{0}-\mathrm{Q}_{7}$, to be in the OFF or high impedance state, eliminating the need for a register clear input. Reading data is accomplished by first applying the binary word address to the address inputs, $\mathrm{A}_{0}-\mathrm{A}_{8}$, and a logic LOW to the synchronous output enable, E_{S}. During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock, CP, data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable, \bar{E}, is also LOW, stored data will appear on the outputs, $Q_{0}-Q_{7}$. If E_{S} is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state. The outputs may be disabled at any time by switching \bar{E} to a HIGH level. Following the positive clock edge, the address and synchronous enable inputs are free to change; changes do not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.

The on-chip, edge triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

GENERIC SERIES CHARACTERISTICS

The Am27S27 is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, largegap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 22 to Pin 11) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.$)$	250 mA
DC Input Voltage	-0.5 V to +5.5 V
DC Input Current	-30 mA to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COML	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless otherwise noted)

Parameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
Vol	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.38	0.50	Volts
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\text {CC }}=M A X ., \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.010	-0.250	mA
IIH^{1}	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=2.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
1	Input HIGH Current	$V_{C C}=M A X ., V_{I N}=5.5 \mathrm{~V}$				1.0	mA
Isc	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		-20	-40	-90	mA
$I_{\text {cc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs = GND } \\ & V_{C C}=M A X . \end{aligned}$			130	185	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=$ MIN., $\mathrm{I}_{\text {I }}=-18 \mathrm{~mA}$				-1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X . \\ & V E=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 3)			12		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

	Description	Test Conditions	Typ 5V					
Parameter			$25^{\circ} \mathrm{C}$	Min	Max	Min	Max	Units
$t_{s}(A)$	Address to CP (HIGH) Setup Time	$C_{L}=30 \mathrm{pF}$ S_{1} closed. (See AC Test Load below)	40	55		65		ns
$t_{H}(A)$	Address to CP (HIGH) Hold Time		-15	0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PLH}}(\mathrm{CP}) \end{aligned}$	Delay from CP (HIGH) to Output (HIGH or LOW)		15		27		30	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{WH}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{WL}}(\mathrm{CP}) \end{aligned}$	CP Width (HIGH or LOW)		10	30		40		ns
$\mathrm{t}_{S}\left(\bar{E}_{S}\right)$	\bar{E}_{S} to CP (HIGH) Setup Time		10	25		30		ns
$\mathrm{t}_{\mathrm{H}}\left(\bar{E}_{S}\right)$	\bar{E}_{S} to CP (HIGH) Hold Time		-10	0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}}(C P) \\ & \mathrm{t}_{\mathrm{PZH}}(\mathrm{CP}) \end{aligned}$	Delay from CP (HIGH) to Active Output (HIGH or LOW)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ S_{1} closed for $\mathrm{t}_{\mathrm{PZL}}$ and open for $\mathrm{t}_{\mathrm{PZH}}$	15		35		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{E}}) \\ & \mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{E}}) \end{aligned}$	Delay from \bar{E} (LOW) to Active Output (HIGH or LOW)		15		40		45	ns
$\begin{aligned} & { }^{t_{\mathrm{PLZ}}(\mathrm{CP})} \\ & \mathrm{t}_{\mathrm{PHZ}}(\mathrm{CP}) \end{aligned}$	Delay from CP (HIGH) to Inactive Output (OFF or High Impedance)	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 1) S_{1} closed for tpLZ and open for $\mathrm{t}_{\mathrm{PHZ}}$	15		35		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{E}}) \\ & \mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{E}}) \end{aligned}$	Delay from $\overline{\mathrm{E}}$ (HIGH) to Inactive Output (OFF or High Impedance)		10		30		40	ns

Notes: 1. t_{PHZ} and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
2. Tests are perfomed with input 10% to 90% rise and fall times of 5 ns or less.

AC TEST LOAD

WAVEFORM	INPUTS	OUTPUTS
	MUSTBE STEADY	WILL BE STEADY

PROGRAMMING

The Am27S27 is manufactured with a conductive PlatinumSilicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \bar{E} input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{E}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the
current drops to approximately 40 mA . Current into the \bar{E} pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min.	Max.	Units
$V_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5.0	5.5	V
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	V
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	V
$V_{\text {ENP }}$	\bar{E} Voltage During Programming	14.5	15.5	V
$\mathrm{V}_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	V
$V_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	V
IONP	Current into Outputs Not to be Programmed		20	mA
$d\left(V_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$d\left(V_{E N}\right) / d t$	Rate of \bar{E} Voltage Change	50	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{\prime} \mathrm{P}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{6} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{\text {ONP }}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

BPM-041

SIMPLIFIED PROGRAMMING DIAGRAM

BPM-042

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \text { Rev G* } \\ & 919-1286-1 \text { Rev G* } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12
Am27S27	715-1412-2	PA 22.4 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8-22- \\ & 27 S 27-A M D \end{aligned}$	SA 18 B $512 \times 8 / 22$	DIS-168 AMD	DA 28

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection $\left(\mathbf{t s}_{\mathbf{S}}(\mathrm{A})\right)$	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
$55 n \mathrm{~ns}$	AM27S27PC	$\mathrm{P}-22-1$	$\mathrm{C}-1$	
	AM27S27PCB	$\mathrm{P}-22-1$	$\mathrm{~B}-1$	COM'
	AM27S27DC	$\mathrm{D}-22-1$	$\mathrm{C}-1$	
	AM27S27DCB	$\mathrm{D}-22-1$	$\mathrm{~B}-1$	
	AM27S27DM	$\mathrm{D}-22-1$	$\mathrm{C}-3$	MIL

Notes: 1. $\mathbf{P}=$ Molded DIP, $\mathbf{D}=$ Hermetic DIP. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C . Leveis B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29775

4096-Bit Generic Series Bipolar PROM with Register

Refer to
 Am27S27
 Bipolar Memory PROM Product Specification

The Am29775 is replaced by the Am27S27 (three-state).

Am27S28A • Am27S29A Am27S28 • Am27S29

4096-Bit Generic Series Bipolar PROM (512×8 bits with ultra fast access time) "A" VERSION - ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed - 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N2 patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S28A/28 and Am27S29A/29 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test rows are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S28A/28 and Am27S29A/29 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×8 configuration, they are available in both open collector Am27S28A/28 and three-state Am27S29A/29 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{8}$ and holding the chip select input, $\overline{C S}$, at a logic LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{7}$ go to the off or high impedance state.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.
This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am27S28A/S29A/S28/S29
MAXIMUM RATINGS
(Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	VCC	Temperature
COM'L	4.75 to 5.25 V	$T_{A}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
${ }^{\text {cc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$				105	160	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

"A" VERSION ADVANCED INFORMATION

Parameter	Description	Test Conditions			Max				Units
			$5 \mathrm{~V} 25^{\circ} \mathrm{C}$		COM'L		MIL		
			A	STD	A	STD	A	STD	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	30	35	35	55	45	70	ns
$\mathrm{t}_{\text {EA }}$	Enable Access Time		12	15	20	25	25	30	ns
t_{E}	Enable Recovery Time		12	15	20	25	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three-state outputs, $t_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}$ is HIGH is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	MUST BE STEADY
OUTPUTS					

AC TEST LOAD

PROGRAMMING

The Am27S28A/28 and Am27S29A/29 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the
current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$V_{C C}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{\text { CS Voltage During Programming }}$	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0.0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of $\overline{C S}$ Voltage Change	100	1000	$\mathrm{v} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	Stag Systems, Inc. $528-5 ~ W e d d e l l ~ D r . ~$ Sunnyvale, CA 94086	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$909-1286-1$ Rev H* $919-1286-1 ~ R e v ~ H * ~$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000
Code 90							

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
40ns	AM27S28APC AM27S28APCB AM27S28ADC AM27S28ADCB AM27S28ALC AM27S28ALCB	AM27S29APC AM27S29APCB AM27S29ADC AM27S29ADCB AM27S29ALC AM27S29ALCB	$\begin{aligned} & \hline \mathrm{P}-20-1 \\ & \mathrm{P}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
50ns	AM27S28ADM AM27S28ADMB AM27S28ALM AM27S28ALMB	AM27S29ADM AM27S29ADMB AM27S29ALM AM27S29ALMB	$\begin{aligned} & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
55ns	AM27S28PC AM27S28PCB AM27S28DC AM27S28DCB AM27S28LC AM27S28LCB	AM27S29PC AM27S29PCB AM27S29DC AM27S29DCB AM27S29LC AM27S29LCB	$\begin{aligned} & \mathrm{P}-20-1 \\ & \mathrm{P}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \hline \end{aligned}$	COM'L
70ns	AM27S28DM AM27S28DMB AM27S28LM AM27S28LMB	AM27S29DM AM27S29DMB AM27S29LM AM27S29LMB	$\begin{aligned} & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C .

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S30A •Am27S31A Am27S30 • Am27S31
 4096-Bit Generic Series Bipolar PROM (512×8 bits with ultra fast access time)
 "A" VERSION ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High Speed - 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S30A/30 and Am27S31A/31 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test rows are preprogrammed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S30A/30 and Am27S31A/31 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×8 configuration, they are available in both open collector Am27S30A/30 and three-state Am27S31A/31 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{8}$ and holding $\overline{\mathrm{CS}}_{1}$ and CS_{2} LOW and CS_{3} and CS_{4} HIGH. All other valid input conditions on $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state.

CONNECTION DIAGRAMS - TOp Views
DIP
Chip-Pak ${ }^{T M}$
L-32-2

BPM-116
Note: Pin 1 is marked for orientation.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.
Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$\mathrm{V}_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$T_{A}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$
(Pin 22 Open)
BPM-115

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Typ Min (Note 1)		Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$			2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
Icc	Power Supply Current	$\text { All inputs }=\text { GND }$$V_{C C}=M A X$				115	175	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$					-1.2	Volts
${ }^{1} \mathrm{Cex}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}}^{1} \end{aligned}=2.4 \mathrm{~V} .$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE "A" VERSION ADVANCED INFORMATION

Parameter	Description	Test Conditions			Max				Units
			$5 \mathrm{~V} 25^{\circ} \mathrm{C}$		COM'L		MIL		
			A	STD	A	STD	A	STD	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	30	35	35	55	45	70	ns
$t_{\text {EA }}$	Enable Access Time		12	15	20	25	25	30	ns
${ }^{\text {teR }}$	Enable Recovery Time		12	15	20	25	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $\mathrm{t}_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM HTOL	WILL BE CHANGING FROM H TOL		DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROM LTOH	WILL BE CHANGING FROMLTOH			

AC TEST LOAD

PROGRAMMING

The Am27S30A/30 and Am27S31A/31 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {CSP }}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0.0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of $\overrightarrow{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required. 4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \operatorname{Rev} \mathrm{H}^{*} \\ & 919-1286-1 \operatorname{Rev} \mathrm{H}^{*} \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12
$\begin{aligned} & \text { Am27S30A/31A } \\ & \text { Am27S30/31 } \end{aligned}$	715-1545	PA 24-13 and $512 \times 8(\mathrm{~L})$	IM 512×8-24-AMD	SA 22-6	DIS-135 AM	DA 29

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
40ns	AM27S30APC	AM27S31APC	P-24-1AC	C-1	COM'L
	AM27S30APCB	AM27S31APCB	P-24-1AC	B-1	
	AM27S30ADC AM27S30ADCB	AM27S31ADC AM27S31ADCB	$\begin{aligned} & D-24-1 A C \\ & D-24-1 A C \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	
	AM27S30ALC	AM27S31ALC	L-32-2	C-1	
	AM27S30ALCB	AM27S31ALCB	L-32-2	B-1	
50ns	AM27S30ADM	AM27S31ADM	D-24-1AC	C-3	MIL
	AM27S30ADMB	AM27S31ADMB	D-24-1AC	B-3	
	AM27S30AFM AM27S30AFMB	AM27S31AFM	$\begin{aligned} & \mathrm{F}-24-1 \\ & \mathrm{~F}-21-1 \end{aligned}$	$\mathrm{C}-3$	
	AM27S30ALM	AM27S31ALM	L-32-2	C-3	
	AM27S30ALMB	AM27S31ALMB	L-32-2	B-3	
55ns	AM27S30PC	AM27S31PC	P-24-1AC	C-1	COM'L
	AM27S30PCB	AM27S31PCB	P-24-1AC	B-1	
	AM27S30DC	AM27S31DC	D-24-1AC	C-1	
	AM27S30DCB	AM27S31DCB	D-24-1AC	B-1	
	AM27S30LC	AM27S31LC	L-32-2	C-1	
	AM27S30LCB	AM27S31LCB	L-32-2	B-1	
70ns	AM27S30DM	AM27S31DM	D-24-1AC	C-3	MIL
	AM27S30DMB	AM27S31DMB	D-24-1AC	B-3	
	AM27S30FM	AM27S31FM	F-24-1	C-3	
	AM27S30FMB	AM27S31FMB	F-24-1	B-3	
	AM27S30LM	AM27S31LM	L-32-2	C-3	
	AM27S30LMB	AM27S31LMB	L-32-2	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S32A •Am27S33A Am27S32•Am27S33
 4096-Bit Generic Series Bipolar PROM (1024 x 4 bits with ultra fast access time)

DISTINCTIVE CHARACTERISTICS

- High Speed - 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming PlatinumSilicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select
- Access time tested with N^{2} patterns
- Pin for pin replacements for industry standard products
- Common Generic PROM series electrical characteristics and simple programming procedures.
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S32A/32 and Am27S33A/33 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

FUNCTIONAL DESCRIPTION

The Am27S32A/32 and Am27S33A/33 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×4 configuration, they are available in both open collector Am27S32A/32 and three-state Am27S33A/33 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{Ag}_{9}$ and holding the chip select input, $\overline{\mathrm{CS}_{1}}$, and $\overline{\mathrm{CS}} \mathrm{L}_{2}$ LOW. If either chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or high impedance state.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

Am27S32A/S33A/S32/S33
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to +VCC max.
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec.)	250 mA
DC Input Voltage	-0.5 V to +5.5 V
DC mput Current	-30 to +5 mA

OPERATING RANGE

Range	V $_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I O L=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$				-0.020	-0.250	mA
$\mathrm{I}_{1 / \mathrm{H}}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D, \\ & V_{C C}=\mathrm{MAX} \end{aligned}$		COM'L		105	140	mA
				MIL		105	145	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S_{1}}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=.0 .4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				5		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				12		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter	Description	Test Conditions							Units
			$5 \mathrm{~V} 25^{\circ} \mathrm{C}$		COM'L		MIL		
			A	STD	A	STD	A	STD	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	25	38	35	55	45	70	ns
teA	Enable Access Time		18	20	25	25	30	30	ns
$t_{\text {ER }}$	Enable Recovery Time		18	20	25	25	30	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

AC TEST LOAD

PROGRAMMING

The Am27S32A/32 and Am27S33A/33 are manufactured with conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which
the current drops to approximately 40 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including VCC should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameter	Description	Min	Max	Units
VCCP	VCC During Programming	5.0	5.5	Volts
VIHP	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
VCSP	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
VOP	Output Voltage During Programming	19.5	20.5	Volts
VONP	Voltage on Outputs. Not to be Programmed	0	$\mathrm{VCCP}+0.3$	Volts
IONP	Current into Outputs. Not to be Programmed		20	mA
d(VOP)/dt	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
d(VCS)/dt	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
tP	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e. not to the midpoints.
2. Delays $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3$ and t 4 must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During tv, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to VONP through resistor R which provides output current limiting.

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	Internationa! Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{array}{\|l\|} \text { 909-1286-1 RevH } \\ \text { 919-1286-1 Rev H } \end{array}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{aligned} & \text { PM } 2000 \\ & \text { Code } 90 \end{aligned}$
$\begin{aligned} & \text { Am27S32A/33A } \\ & \text { Am27S32/33 } \end{aligned}$	715-1414	PA 18-6 and 1024×4 (L)	IM 1024×4-18-AMD	SA 24	DIS 136 AM	DA 38	AM170-2

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27S32APC AM27S32APCB AM27S32ADC AM27S32ADCB AM27S32ALC AM27S32ALCB	AM27S33APC AM27S33APCB AM27S33ADC AM27S33ADCB AM27S33ALC AM27S33ALCB	$\begin{aligned} & P-18-1 \\ & P-18-1 \\ & D-18-1 \\ & D-18-1 \\ & L-20-1 \\ & L-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
45ns	AM27S32ADM AM27S32ADMB AM27S32ALM AM27S32ALMB	AM27S33ADM AM27S33ADMB AM27S33ALM AM27S33ALMB	$\begin{aligned} & \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
55ns	AM27S32PC AM27S32PCB AM27S32DC AM27S32DCB AM27S32LC AM27S32LCB	AM27S33PC AM27S33PCB AM27S33DC AM27S33DCB AM27S33LC AM27S33LCB	$\begin{aligned} & \mathrm{P}-18-1 \\ & \mathrm{P}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
70ns	AM27S32DM AM27S32DMB AM27S32LM AM27S32LMB	AM27S33DM AM27S33DMB AM27S33LM AM27S33LMB	$\begin{aligned} & \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{~L}-20-1 \\ & \mathrm{~L}-20-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Flat packages are available upon special request. Consult factory.

Am27S65•Am27S75•Am27S85 Generic Series 4-Wide Bipolar IMOX ${ }^{\text {M }}$ Registered PROMs with SSR ${ }^{\text {M }}$ Diagnostics Capability ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register for serial observability and controllability of the output register
- High speed -25 ns address setup and 15 ns clock to output delay
- Programmable synchronous and asynchronous enables
- Optional synchronous or asynchronous INITIALIZE
- Increased drive capability, $24 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ COM'L
- THINDIP, 24-pin, 300-mil lateral center package increases overall board density
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ >98\%)
- AC performance is factory tested utilizing programmed test words and columns
- 100\% MIL-STD-883C processing
- Guaranteed to INT-STD-123

SERIAL SHADOW REGISTER (SSR) DIAGNOSTICS CAPABILITIES

- Serial access to output register to allow input of diagnostic control information
- Serial access of output register allows observation of register data
- Eliminates the need for diagnostics code internal to the PROM, allowing increased applications code density
- Simplified diagnostics increases system reliability
- Separate diagnostic register allows real time "snap shot" of machine state

4-WIDE REGISTERED PROMs WITH SSR DIAGNOSTICS CONNECTION DIAGRAMS

Am27S35A •Am27S35 Am27S37A • Am27S37
 8K-Bit (1024 x 8) Generic Series IMOX™ Bipolar High Performance Registered PROM with Programmable INITIALIZE

DISTINCTIVE CHARACTERISTICS

- Member of AMD's Generic Family of 8-bit wide registered PROMs
- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Versatile programmable register INITIALIZE either asynchronous (Am27S35A/35) or synchronous (Am27S37A/37)
- Slim, 24-pin, 300-mil lateral center package occupies approximately $1 / 3$ the board space required by standard discrete PROM and register
- Consumes approximately $1 / 2$ the power of separate PROM/register combination for improved system reliability
- Fast standard version - 40ns max setup and 25 ns max clock-to-output allows system speed improvements
- "A" version offers improved AC performance in critical paths (35ns max setup and 20ns max clock-to-output)
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ>98\%)
- AC performance is factory tested utilizing programmed test words and columns
- 100% MIL-STD-883C processing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27S35A/35 and Am27S37A/37 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are preprogrammed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure long-term reliability. Extensive operating testing has shown that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltagecompensated bias network to provide excellent parametric performance over the full military power supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

IMOX is a trademark of Advanced Micro Devices, Inc.

FUNCTIONAL DESCRIPTION

The Am27S35A/35 and Am27S37A/37 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 1024-word by 8 -bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S35A/35 and Am27S37A/37 also offer maximum flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.
When $V_{C C}$ power is first applied, the synchronous enable ($\overline{E_{S}}$) flip-flop will be in the set condition causing the outputs $\left(Q_{0}-Q_{7}\right)$ to be in the OFF or high impedance state. Reading data is accomplished by first applying the binary word address to the address inputs ($A_{0}-A_{9}$) and a logic LOW to the synchronous enable (E_{S}). During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable ($\overline{\mathrm{E}}$) is also LOW, stored data will appear on the outputs ($Q_{0}-Q_{7}$). If $\overline{E_{S}}$ is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state regardless of the value of \bar{E}. The outputs may be disabled at any time by switching \bar{E} to a HIGH level. Following the positive clock edge the address and synchronous enable inputs are free to change; changes will not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively elimated by tying it to ground.
The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from system clock
without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.
These devices also contain a built-in initialize function. When activated, the initialize control input ($\overline{(\mathbb{N I T})}$) causes the contents of an additional (1025 th) 8 -bit word to be loaded into the on-chip register.This extra word is user programmable. Since each bit is individually programmable, the initialize function can be used to load any desired combination of HIGHs and LOWs into the register. In the unprogrammed state, activating INIT will perform a register CLEAR (all outputs LOW). If all bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
This ability to tailor the initialize outputs to the system requirements simplifies system design and enhances performance. The initialize function is useful during power up and timeout sequences. This flexible feature can also facilitate implementation of other sophisticated functions such as a built-in "jump-start" address.
The Am27S35A/35 has an asynchronous initialize input (INIT). Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the slave flip-flops of the register independent of all other inputs(including CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
The Am27S37A/37 has a synchronous INITS input. Applying a LOW to the $\overline{\text { NNITS }}$ input causes an immediate load of the programmed initialize word into the master flip-flops of the register only independent of all other inputs (including CP). To bring this data to the device outputs, the synchronous enable ($\overline{\mathrm{E}_{\mathrm{S}}}$) should be held LOW until the next LOW-to-HIGH transition of the clock (CP). Following this, the data will appear on the outputs after the asynchronous enable ($\overline{\mathrm{E}}$) is brought LOW.

AMD's GENERIC FAMILY OF 8-WIDE REGISTERED PROMs

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Typ Min (Note 1)		Max	Units
$\mathrm{VOH}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\text { MIN, } I \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I N}=V_{I H} \text { or } \end{aligned}$			0.38	0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed voltage for al		2.0			Volts
VIL	Input LOW Level	Guaranteed voltage for all				0.8	Volts
I/L	Input LOW Current	$V_{C C}=M A X$,			-0.020	-0.250	mA
${ }_{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X$,				40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,		-20	-40	-90	mA
Icc	Power Supply Current	All inputs $=\mathrm{G}$			130	185	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}$				-1.2	Volts
${ }^{\text {I Cex }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{E_{1}}=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}$			40	$\mu \mathrm{A}$
			$V_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{Cin}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{iN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			12		

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

Am27S35A/S35/S37A/S37
SWITCHING CHARACTERISTICS OVER OPERATING RANGE (See Notes on Testing)

Parameters Description			$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Am27S35A - Am27S37A				Am27S35 - Am27S37				Units	
			COM'L	MIL		COM'L		MIL					
			Min	Max	Min	Max	Min	Max	Min	Max			
$\mathrm{ts}_{5}(\mathrm{~A})$	Address to CP (HIGH) Setup Time			25	35		40		40		45		ns
$t_{H}(\mathrm{~A})$	Address to CP (HIGH) Hold Time			-4	0		0		0		0		ns
$\mathrm{t}_{\text {PHL }}(\mathrm{CP})$	Delay from CP (HIGH) to Output (HIGH or LOW)	All Outputs Simultaneous	13		20		25		25		30	ns	
$\mathrm{t}_{\mathrm{PLH}}(\mathrm{CP})$		Single Output (Note 3)	11		18		21		20		23		
${ }^{\text {W }}$ WH(CP)	CP Width (HIGH or LOW)			20		20		20		20		ns	
$\mathrm{t}_{\text {WL }}(\mathrm{CP}$)													
$\mathrm{t}_{\mathrm{S}}\left(\overline{\mathrm{E}_{S}}\right)$	$\overline{\mathrm{E}_{S}}$ to CP (HIGH) Setup Time		5	15		15		15		15		ns	
$t_{H}\left(\overline{\overline{E S}_{S}}\right)$	$\bar{E}_{\text {S }}$ to CP (HIGH) Hold Time		-2	5		5		5		5		ns	
$\mathrm{t}_{\text {PHL }}(\overline{\mathrm{NIT}}$)	Delay from $\overline{\text { NIT }}$ (LOW) to Outputs (LOW or HIGH)	Am27S35 Only	20		30		35		35		40	ns	
${ }_{\text {truh }}(\overline{\text { INIT }}$)													
$t_{R}(\overline{\text { (NIT }}$)	$\overline{\text { INIT }}$ Recovery (Inactive) to CP (HIGH)		8	20		20		20		20		ns	
$\mathrm{t}_{\mathrm{WL}}(\overline{\text { INIT }}$)	INIT Pulse Width		10	25		30		25		30		ns	
$\mathrm{t}_{\mathbf{S}}\left({\overline{\mathrm{NIT}} \mathrm{T}_{\mathrm{S}}}^{\text {c }}\right.$	$\overline{\mathrm{INIT}}_{\mathrm{S}}$ to CP (HIGH) Setup Time	Am27S37 Only	18	25		30		30		35		ns	
$\mathrm{t}_{\mathrm{H}}\left(\overline{\mathrm{NIT}}_{\mathrm{S}}\right)$	$\overline{\mathrm{INIT}}_{S}$ to CP (HIGH) Hold Time		-5	0		0		0		0		ns	
$t_{\text {PzL }}$ (CP)	Delay from CP (HIGH) to Active Output (HIGH or LOW)		15		25		30		30		35	ns	
${ }^{\text {P }}{ }^{\text {PZH }}$ (CP)													
${ }^{\text {t }}$ PZL $(\overline{\text { E }}$)	Delay from \bar{E} (LOW) to Active		15		25		30		30		35	ns	
$\mathrm{t}_{\text {PZH }}(\overline{\text { E }}$)	(HIGH or LOW)												
$t_{\text {PLZ }}(\mathrm{CP})$	Delay from CP (HIGH) to Inac	e Output	15		25		30		30		35	ns	
$\mathrm{t}_{\mathrm{PHZ}}(\mathrm{CP})$	(OFF or High Impedance) (N												
$t_{\text {PLZ }}(\overline{\mathrm{E}})$	Delay from $\overline{\mathrm{E}}$ (HIGH) to Inac	e Output	10		25		30		30		35	ns	
$\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{E}})$	(OFF or High Impedance) (N	4)											

Notes: 1. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10 to 90% rise and fall times of 5 ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.
4. $\mathrm{t}_{\mathrm{PHZ}}$ and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.

SWITCHING WAVEFORMS

(See Notes on Testing)

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device $V_{C C}$ and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any test.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

AC TEST LOAD

BPM-040

Notes: 1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for all switching characteristics except tpLz and $\mathrm{t}_{\mathrm{PHZ}}$ -
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{P}} \mathrm{Z}$ and $\mathrm{t}_{\mathrm{PHZ}}$.
3. S_{1} is closed for all tests except for $\mathrm{t}_{\mathrm{PZH}}$ and $\mathrm{t}_{\mathrm{PHZ}}$.
4. All device test loads should be located within $2^{\prime \prime}$ of device outputs.

KEY TO TIMING DIAGRAM

PROGRAMMING

The Am27S35A/35 and Am27S37A/37 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the \bar{E} and INIT/INITS inputs are at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{E}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the CP input is clocked. Each data verification attempt must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
The initialize word is programmed by setting the $\overline{\mathrm{NIT} / / \mathrm{INIT}_{S}}$ input to a logic LOW and programming the desired initialize word, output by output, in the same manner as any other address location. This is easily implemented by inverting the A_{10} address input from a PROM programmer and applying this signal to the INIT/INITS input. Using this method the initialize word would be programmed as address 1024.

When $\overline{\mathrm{INIT} / / \overline{\mathrm{NITS}}}$ is asserted LOW the internal programming circuitry for all other addresses is deselected.
Typical current into an output during programming will be approximately 140 mA until the fuse link is opened, after which the current drops to approximately 40 mA . Current into the $\overline{\mathrm{E}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionaliy this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$V_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {ENP }}$	$\overline{\bar{E}}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of \bar{E} Voltage Change	50	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{6} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

BPM-318

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION
The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data //O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260	Stag Systems, Inc. $528-5 ~ W e d d e l l ~ D r . ~$ Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection (Setup Time)	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	$\begin{aligned} & \text { Asynchronous } \\ & \text { INITIALIZE } \end{aligned}$	Synchronous			
35ns	AM27S35APC AM27S35APCB AM27S35ADC AM27S35ADCB AM27S35ALC AM27S35ALCB	AM27S37APC AM27S37APCB AM27S37ADC AM27S37ADCB AM27S37ALC AM27S37ALCB	$\begin{gathered} \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
40ns	AM27S35ADM AM27S35ADMB AM27S35AFM AM27S35AFMB AM27S35ALM AM27S35ALMB	AM27S37ADM AM27S37ADMB AM27S37AFM AM27S37AFMB AM27S37ALM AM27S37ALMB	$\begin{gathered} \hline \mathrm{D}-24-1 \mathrm{AA} \\ \mathrm{D}-24-1 \mathrm{AA} \\ \mathrm{~F}-24-1 \\ \mathrm{~F}-24-1 \\ \mathrm{~L}-32-2 \\ \mathrm{~L}-32-2 \end{gathered}$	$\begin{aligned} & \text { C-3 } \\ & \text { B-3 } \\ & \text { C-3 } \\ & \text { B-3 } \\ & \text { C-3 } \\ & \text { B-3 } \end{aligned}$	MIL
40ns	AM27S35PC AM27S35PCB AM27S35DC AM27S35DCB AM27S35LC AM27S35LCB	AM27S37PC AM27S37PCB AM27S37DC AM27S37DCB AM27S37LC AM27S37LCB	$\begin{gathered} \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
45ns	AM27S35DM AM27S35DMB AM27S35FM AM27S35FMB AM27S35LM AM27S35LMB	AM27S37DM AM27S37DMB AM27S37FM AM27S37FMB AM27S37LM AM27S37LMB	D-24-1AA D-24-1AA F-24-1 F-24-1 L-32-2 L-32-2	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult Factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S180A • Am27S181A Am27S280A • Am27S281A
 Ultra Fast Access Time

Am27S180 • Am27S181 Am27S280 • Am27S281

Fast Access Time 1024 x 8 Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features
Am27S180A	24-Pin, Plug in Replacement for Industry Standard 600 -mil Configuration No Board Changes Required	Ultra fast - 35ns max
Am27S181A		
Am27S180		Fast - 60ns max
Am27S181		
Am27S280A	New Space-Saving 24-Pin, THINDIP, $300-\mathrm{mil}$ Configuration Increases Overall Board Density	Ultra fast - 35 ns max
Am27S281A		
Am27S280		Fast - 60ns max
Am27S281		

DISTINCTIVE CHARACTERISTICS

- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat $A C$ performance over military range
- Members of Generic PROM series utilizing standard programming algorithm
- 100% processed to MIL-STD-883C
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

These 8K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×8 configuration, they are available in both open collector (Am27S180A/180 and Am27S280A/280) and threestate (Am27S181A/181 and Am27S281/281) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{9}$ and holding $\overline{\mathrm{CS}}_{1}$ and CS_{2} LOW and CS_{3} and CS_{4} HIGH. All other valid input conditions on $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state.

BLOCK DIAGRAM

LOGIC DIAGRAM

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

CONNECTION DIAGRAMS - Top Views

Note: Pin 1 is marked for orientation.

Am27S180A/S181A/S280A/S281A/S180/S181/S28O/S281
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\text {IL }} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=$ MAX, $\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$					40	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{O U T}=0.0 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$		COML	-20	-40	-90	mA
				MIL	-15	-40	-90	
ICC	Power Supply Current	All inputs = GND, $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				115	185	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.2	Volts
${ }^{1} \mathrm{CEX}$	Output Leakage Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\overline{\mathrm{CS}}_{1}}=2.4 \mathrm{~V} \end{aligned}$	$V_{O}=V_{C C}$				40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-40	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

Am27S180A/S181A/S280A/S281A/S180/S181/S28O/S281
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, t_{EA} and t_{ER} are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to $L O W$ tests. $t_{E R}$ is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made to an output voltage to with S_{t} open to $V_{O H}$ -0.5 V with S_{1} open; LOW to high impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

SWITCHING WAVEFORMS

Note: Level on output while chip is disabled is determined externally.

KEY TO TIMING DIAGRAM

AC TEST LOAD

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which
the current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$\mathrm{V}_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\overline{C s}{ }_{1} P}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\overline{\mathrm{CS}}}^{1} \mathrm{t}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

BPM-209

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION
The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data l/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920 and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H* 919-1286-1 Rev H* Unipak Rev K* (Code 16 37)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{aligned} & \text { PM } 2000 \\ & \text { Code } 90 \end{aligned}$
Am27S180A/181A Am27S180/181	715-1545-2	$\begin{aligned} & \text { PA } 24-13 \text { and } \\ & 1024 \times 8(\mathrm{~L}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IM } 1024 \times 8-24- \\ \text { AMD } \end{array}$	SA 22-7 B $1024 \times 8 / 24$	DIS-137 AM	DA 29	AM100-6
Am27S280A/281A Am27S280/281	715-1545-3	PA 24-28 and 1024×8 (L)	$\begin{aligned} & \text { IM } 1024 \times 8 \text { 8-24- } \\ & \text { 27S280/281-AMD } \end{aligned}$	SA 29B1024 $\times 1 / 24$	DIS-214 AM	DA 60	AM190-6

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27S180APC AM27S180APCB AM27S280APC AM27S280APCB AM27S180ADC AM27S180ADCB AM27S280ADC AM27S280ADCB AM27S180ALC AM27S180ALCB	AM27S181APC AM27S181APCB AM27S281APC AM27S281APCB AM27S181ADC AM27S181ADCB AM27S281ADC AM27S281ADCB AM27S181ALC AM27S181ALCB	$\begin{gathered} \text { P-24-1AC } \\ \text { P-24-1AC } \\ \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AC } \\ \text { D-24-1AC } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S180ADM AM27S180ADMB AM27S280ADM AM27S280ADMB AM27S180AFM AM27S180AFMB AM27S180ALM AM27S180ALMB	AM27S181ADM AM27S181ADMB AM27S281ADM AM27S281ADMB AM27S181AFM AM27S181AFMB AM27S181ALM AM27S181ALMB	$\begin{gathered} \text { D-24-1AC } \\ \text { D-24-1AC } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	C-3 B-3 C-3 B-3 C-3 B-3 C-3 B-3	MIL
60ns	AM27S180PC AM27S180PCB AM27S280PC AM27S280PCB AM27S180DC AM27S180DCB AM27S280DC AM27S280DCB AM27S180LC AM27S180LCB	AM27S181PC AM27S181PCB AM27S281PC AM27S281PCB AM27S181DC AM27S181DCB AM27S281DC AM27S281DCB AM27S181LC AM27S181LCB	$\begin{gathered} P-24-1 A C \\ P-24-1 A C \\ P-24-1 A A(\text { Note 4) } \\ P-24-1 A A(\text { Note 4) } \\ D-24-1 A C \\ D-24-1 A C \\ D-24-1 A A \\ D-24-1 A A \\ L-32-2 \\ L-32-2 \end{gathered}$	C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1	COM'L
80ns	AM27S180DM AM27S180DMB AM27S280DM AM27S280DMB AM27S180FM AM27S180FMB AM27S180LM AM27S180LMB	AM27S181DM AM27S181DMB AM27S281DM AM27S281DMB AM27S181FM AM27S181FMB AM27S181LM AM27S181LMB	$\begin{gathered} \text { D-24-1AC } \\ \text { D-24-1AC } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP,$L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads. $A C=600$ mil center package. $A A=300$ mil center package.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS181A•Am27PS281A
 Ultra Fast Access Time
 Am27PS181•Am27PS281
 Fast Access Time
 8,192-Bit Generic Series IMOX ${ }^{\text {™ }}$ Bipolar PROM 1024×8 Bits with Power-Down Via $\overline{C S}_{1}$ PRELIMINARY DATA

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features
Am27PS181A	24-Pin, Plug in Replacement for Industry Standard	Ultra fast -50 ns max
Am27PS181	600 -mil Configuration No Board Changes Required	Fast -65 ns max
Am27PS281A	New Space-Saving 24-Pin, THINDIP, 300-mil Configuration Increases Overall Board Density	Ultra fast -50 ns max
Am27PS281		Fast -65 ns max

DISTINCTIVE CHARACTERISTICS

- Fast access time allows high system speed
- 50% power savings on deselected parts - enhances reliability through total system heat reduction
- Plug in replacement for industry standard product no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Rapid recovery from power-down state provides minimum delay
- Members of generic PROM series utilizing standard programming algorithm
- 100% processed to MIL-STD-883C
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

LOGIC SYMBOL

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

FUNCTIONAL DESCRIPTION

These 8K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×8 configuration, they are available in both the standard 600-mil package (Am27PS181A/181) and the spacesaving THINDIP, 300-mil package (Am27PS281A/281) versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{9}$ and holding $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$ LOW and CS_{3} and $\mathrm{CS}_{4} \mathrm{HIGH}$. All other input combinations on $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state and reduce ICC by more than 50%.

BLOCK DIAGRAM

BPM-303

Am27PS181A/PS281A/PS181/PS281
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)					0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
I_{H}	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		COM'L	-20	-40	-90	mA
				MIL	-15	-40	-90	
ICC	Power Supply Current	All inputs = GND				115	185	mA
$\mathrm{I}_{\text {CCD }}$	Power Down Supply Current	$\overline{\mathrm{CS}}_{1}=2.7 \mathrm{~V}$	All other inputs = GND			50	80	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IN}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\overline{\mathrm{CS}}}^{1} \end{aligned}=2.4 \mathrm{~V} .$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				40	$\mu \mathrm{A}$
							-40	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4.0		pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ @ $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

PRELIMINARY			Typ	Max				Units
			5V $25^{\circ} \mathrm{C}$		OMIL			
Parameters	Description	Test Conditions	STD	, A	STD	A	STD	
$t_{\text {AA1 }}$	Address Access Time	AC Test Load Fig. 1-3,5 (Notes 1, 5 \& 6)	\% 30	- 50	65	65	75	ns
$t_{\text {AA2 }}$	Power Switched Address Access Time		${ }^{3} 50$	65	80	75	90	ns
$t_{\text {EA }}$	Enable Access Time		50	65	80	75	90	ns
$t_{E R}$	Enable Recovery Time		15	25	35	30	45	ns

Notes: 5. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}{ }^{3} 30 p F$.
6. $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to $L O W$ tests. $t_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open; LOW-to-high impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

Note: Level on output while chip is disabled is determined externally.

Figure 1.
BPM-305

Figure 2.

KEY TO SWITCHING WAVEFORMS

Figure 3.

NOTES ON POWER SWITCHING

The Am27PS181A/181 and Am27PS281A/281 are power switched devices. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ICC is reduced to less than half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

1. When the Am27PS181A/181 and Am27PS281A/281 are selected, a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{f}$ ceramic capacitor be connected from pin 24 to pin 12 at each device. (See Figure 4.)
2. Address access time (t_{AA}) can be optimized if a chip enable setup time (tEAS) of greater than 25 ns is observed. Negative setup times on chip enable ($\mathrm{t}_{\text {EAS }}<0$) should be avoided. (For typical and worse case characteristics, see Figure 5.)

Typical Ivcc Current Surge without $0.1 \mu \mathrm{~F}$ (Ivcc is Current Supplied by VCC Power Supply)

Typical Ivcc Current Surge with $0.1 \mu \mathrm{~F}$ (lvcc is Current Supplied by VCC Power Supply)

Figure 4. Icc Current

Figure 5B. $t_{E A}$ versus $t_{A E S}$

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which
the current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\mathrm{IHP}}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\overline{C S}_{1} P}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
VonP	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
IoNP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\left.\overline{\mathrm{CS}_{1}}\right)}\right) \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{\text {tp }}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints:
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19 and 29	M900, M900B, M910, M920 and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & \text { 909-1286-1 Rev H* } \\ & \text { 919-1286-1 Rev H* } \\ & \text { Unipak Rev H* } \\ & \text { (Code 16 37) } \\ & \hline \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\text { PM } 2000$ $\text { Code } 90$
Am27PS181A 181	715-1545-2	PA 24-13 and 1024×8 (L)	$\begin{aligned} & \text { IM } 1024 \times 8-24- \\ & \text { AMD } \end{aligned}$	SA 22-7 B $1024 \times 8 / 24$	DIS-137 AM	DA 61	AM100-6
Am27PS281A 281			$\begin{aligned} & \text { IM } 1024 \times 8-24- \\ & 27 S 280 / 281-A M D \end{aligned}$		DIS-214 AM	DA 60	

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Three-State			
50ns	AM27PS181APC AM27PS181APCB AM27PS281APC AM27PS281APCB AM27PS181ADC AM27PS181ADCB AM27PS281ADC AM27PS281ADCB AM27PS181ALC AM27PS181ALCB	$\begin{aligned} & \text { P-24-1AC } \\ & \text { P-24-1AC } \\ & \text { P-24-1AA (Note 4) } \\ & \text { P-24-1AA (Note 4) } \\ & \text { D-24-1AC } \\ & \text { D-24-1AC } \\ & \text { D-24-1AA } \\ & \text { D-24-1AA } \\ & \text { L-32-2 } \\ & \text { L-32-2 } \end{aligned}$	C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1	COM'L
65ns	AM27PS181ADM AM27PS181ADMB AM27PS281ADM AM27PS281ADMB AM27PS181AFM AM27PS181AFMB AM27PS181ALM AM27PS181ALMB	$\begin{aligned} & \text { D-24-1AC } \\ & \text { D-24-1AC } \\ & \text { D-24-1AA } \\ & \text { D-24-1AA } \\ & F-24-1 \\ & F-24-1 \\ & \mathrm{~L}-32-2 \\ & \mathrm{~L}-32-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
65ns	AM27PS181PC AM27PS181PCB AM27PS281PC AM27PS281PCB AM27PS181DC AM27PS181DCB AM27PS281DC AM27PS281DCB AM27PS181LC AM27PS181LCB	$\begin{aligned} & \hline \text { P-24-1AC } \\ & \text { P-24-1AC } \\ & \text { P-24-1AA (Note 4) } \\ & \text { P-24-1AA (Note 4) } \\ & \text { D-24-1AC } \\ & \text { D-24-1AC } \\ & \text { D-24-1AA } \\ & \text { D-24-1AA } \\ & \text { L-32-2 } \\ & \text { L-32-2 } \end{aligned}$	C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1 C-1 B-1	COM'L
75ns	AM27PS181DM AM27PS181DMB AM27PS281DM AM27PS281DMB AM27PS181FM AM27PS181FMB AM27PS181LM AM27PS181LMB	$\begin{aligned} & \mathrm{D}-24-1 A C \\ & \mathrm{D}-24-1 A C \\ & \mathrm{D}-24-1 \mathrm{AA} \\ & \mathrm{D}-24-1 \mathrm{AA} \\ & \mathrm{~F}-24-1 \\ & \mathrm{~F}-24-1 \\ & \mathrm{~L}-32-2 \\ & \mathrm{~L}-32-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads. $A C=600$ mil center package. $A A=300$ mil center package.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S184A •Am27S185A Am27S184•Am27S185

 8192-Bit Generic Series Bipolar IMOX ${ }^{\text {™ }}$ PROM

 8192-Bit Generic Series Bipolar IMOX ${ }^{\text {™ }}$ PROM (2048 x 4 bits with ultra fast access time)

 (2048 x 4 bits with ultra fast access time)}

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time " A " version (35ns max) Fast access time Standard version (50ns max) allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX ${ }^{\text {TM }}$. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27S184A and Am27S185A, Am27S184 and Am27S185 are high speed electrically programmable Schottky read only memories. Organized in 2048×4 configuration, they are available in both open collector (Am27S184A and Am27S184) and three-state (Am27S185A and Am27S185) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding the chip select input, $\overline{\mathrm{CS}}$ LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or high impedance state.

CONNECTION DIAGRAMS - Top Views
DIP

BPM-108

Am27S184A/S185A/S184/S185
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	VCC	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
$\mathrm{VOH}_{\text {(}}$ (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{V}_{\mathrm{LL}} \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
I_{H}	Input HIGH Current	$V_{C C}=M A X, V_{I N}=V_{C C}$				40	$\mu \mathrm{A}$
IsC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)		-20	-45	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$			105	150	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
${ }^{\text {ICEX }}$	Output Leakage Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\overline{\mathrm{CS}}}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			5.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 5)			8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS

OVER OPERATING RANGE

Parameters	Description	Test Conditions		p					Units
			5V $25^{\circ} \mathrm{C}$		COM'L		MIL		
			A	STD	A	STD	A	STD	
${ }^{\text {A }}$ A	Address Access Time	AC Test Load (See Notes 1,2,3)	28	30	35	50	45	55	ns
${ }_{\text {EA }}$	Enable Access Time		10	10	25	25	30	30	ns
${ }^{\text {ter }}$	Enable Recovery Time		10	10	25	25	30	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three-state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}$ is HIGH is determined externally.

KEY TO TIMING DIAGRAM

AC TEST LOAD

PROGRAMMING

This entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which the
current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$V_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{\mathrm{CS}}$ Voltage During Programming	14.5	15.5	Volts
$\mathrm{V}_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CSP}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
tp	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

BPM-259

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 \& 100	M900, M960B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & \text { 909-1286-1 Rev H* } \\ & \text { 919-1286-1 Rev H* } \\ & \text { Unipak Rev H* } \\ & \text { (Code 1606) } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S184A/185A Am27S184/185	715-1616	PA $18-8$ and $2048 \times 4(\mathrm{~L})$	IM 2048×4-18-AMD	SA 4-4 B $2048 \times 4 / 18$	DIS-211 AM	DA 23	AM 140-3

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27S184APC AM27S184APCB AM27S184ADC AM27S184ADCB AM27S184ALC AM27S184ALCB	AM27S185APC AM27S185APCB AM27S185ADC AM27S185ADCB AM27S185ALC AM27S185ALCB	$\begin{aligned} & \hline \mathrm{P}-18-1 \\ & \mathrm{P}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
45ns	AM27S184ADM AM27S184ADMB AM27S184ALM AM27S184ALMB AM27S184AFM AM27S184AFMB	AM27S185ADM AM27S185ADMB AM27S185ALM AM27S185ALMB AM27S185AFM AM27S185AFMB	D-18-1 D-18-1 L-28-2 L-28-2 (Note 4) (Note 4)	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
50ns	AM27S184PC AM27S184PCB AM27S184DC AM27S184DCB AM27S184LC AM27S184LCB	AM27S185PC AM27S185PCB AM27S185DC AM27S185DCB AM27S185LC AM27S185LCB	$\begin{aligned} & \hline \mathrm{P}-18-1 \\ & \mathrm{P}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \end{aligned}$	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
55ns	AM27S184DM AM27S184DMB AM27S184LM AM27S184LMB AM27S184FM AM27S184FMB	AM27S185DM AM27S185DMB AM27S185LM AM27S185LMB AM27S185FM AM27S185FMB	$\begin{aligned} & \hline \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \\ & \text { (Note 4) } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. Consult factory for flat package outline drawings.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27LS184•Am27LS185

8192-Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM (2048 $\times 4$ bits with low power dissipation)

DISTINCTIVE CHARACTERISTICS

- Excellent performance over the full military and commercial ranges
- Low power dissipation
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 8K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX ${ }^{\text {M }}$. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27LS184 and Am27LS185 are high speed electrically programmable Low-Power Schottky read only memories. Organized in the industry standard 2048×4 configuration, they are available in both open collector Am27LS184 and three-state Am27LS185 output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding the chip select input $\overline{\mathrm{CS}}$ LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or highimpedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to +VCC max
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	V $V_{C C}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

$$
V_{C C}=\operatorname{Pin} 18
$$

BPM-139

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\text {LL }} \end{aligned}$				0.50	Volts
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$				40	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)		-20	-45	-90	mA
I_{Cc}	Power Supply Current	All inputs $=$ GND, $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			80	125	mA
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}}=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

Am27LS184/LS185

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter	Description	Test Conditions	Typ	Max		Units
			$\begin{gathered} 5 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$	COM'L	MIL	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1-3)	40	60	65	ns
$t_{\text {EA }}$	Enable Access Time		10	25	30	ns
$t_{\text {ER }}$	Enable Recovery Time		10	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING CHARACTERISTICS

Note: Level on output while $\overline{\mathrm{CS}}$ is HIGH is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM H TOL		DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROM LTOH	$\begin{aligned} & \text { WILL BE } \\ & \text { CHANGING } \\ & \text { FROML TO H } \end{aligned}$			

AC TEST LOAD

PROGRAMMING

The Am27LS184 and Am27LS185 are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{C S}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which the
current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{Cc} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$V_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\mathrm{HPP}}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{\text { CS }}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\text {CSP }}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}$, Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7 and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & \text { 909-1286-1 Rev H* } \\ & 919-1286-1 \text { Rev H* } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27LS184 Am27LS185	715-1616	PA 18-8 and 2048×4 (L)	IM 2048×4-18-AMD	SA 4-4 B 2048x 4/18	DIS-211 AM	DA 23	AM 140-3

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
60ns	AM27LS184PC	AM27LS185PC	P-18-1	C-1	
	AM27LS184PCB	AM27LS185PCB	P-18-1	B-1	
	AM27LS184DC	AM27LS185DC	D-18-1	C-1	
	AM27LS184DCB	AM27LS185DCB	D-18-1	B-1	COML
	AM27LS184LC	AM27LS185LC	L-28-2	C-1	
	AM27LS184LCB	AM27LS185LCB	L-28-2	B-1	
65ns	AM27LS184DM	AM27LS185DM	D-18-1	C-3	MIL
	AM27LS184DMB	AM27LS185DMB	D-18-1	B-3	
	AM27LS184LM	AM27LS185LM	L-28-2	C-3	
	AM27LS184LMB	AM27LS185LMB	L-28-2	B-3	
	AM27LS184FM	AM27LS185FM	(Note 4)	C-3	
	AM27LS184FMB	AM27LS185FMB	(Note 4)	B-3	

Notes: 1. $P=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C .

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. Consult factory for flat package outline drawings.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS185

8192-Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM (2048 x 4 bits with power-down via $\overline{C S}$)

DISTINCTIVE CHARACTERISTICS

- Fast access time (60 ns max) allows system speed improvements
- 50% power savings on deselected parts - enhances reliability through total system heat reduction
- Plug in replacement for industry standard product - no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test rows and columns
- Voltage and temperature compensated providing extremely flat $A C$ performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

The Am27PS185 is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX ${ }^{\text {M }}$. This advanced process permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27PS185 is a high speed electrically programmable Schottky read only memory. Organized in the industry standard 2048×4 configuration, it is available in the threestate (Am27PS185) output version. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding the chip select input $\overline{\mathrm{CS}}$ LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or high-impedance state, and Icc is reduced by 50%.

Note: Pin 1 is marked for orientation.

Am27PS185
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to +V CC max
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	V CC	Temperature
COML	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{\text {IN }}=V_{I H} \text { or } V_{\text {IL }} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
IL	Input LOW Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.020	-. 250	mA
${ }_{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)			-15	-40	-90	mA
${ }^{\text {ICC }}$	Power Supply Current	All inputs = GND				105	150	mA
		$\overline{\bar{C}} \overline{\bar{S}}=2.7 \mathrm{~V}$	All other inputs = GND			50	75	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
${ }^{\prime}$ cex	Output Leakage Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{\overline{C S}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}$			40	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{Cln}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ @ $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)				5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameter	Description	Test Conditions		$5 \mathrm{~V} 25^{\circ} \mathrm{C}$	COM'L	MIL	Units
$\mathrm{t}_{\text {AA1 }}$	Address Access Time	$\mathrm{t}_{\text {EAS }} \geqslant 25 \mathrm{~ns}$	AC Test Load Fig. 1-3, 5 (Notes 1, 4 and 5)	28	50	55	ns
$\mathrm{t}_{\text {AA } 2}$	Power Switched Address Access Time	$\mathrm{t}_{\text {EAS }}=0 \mathrm{~ns}$		41	60	65	ns
${ }_{\text {teA }}$	Enable Access Time	$t_{\text {AES }} \geqslant 0 \mathrm{~ns}$		41	60	65	ns
$t_{\text {ER }}$	Enable Recovery Time			10	25	30	ns

Notes: 4. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
5. teA is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. tER is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open; LOW-to-HIGH impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}$ is HIGH
is determined externally.

Figure 1.

Figure 3.

POWER SWITCHING

The Am27PS185 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, I_{CC} is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

1. When the Am27PS185 is selected by a low level on $\overline{\mathrm{CS}}, \mathrm{a}$ current surge is placed on the $V_{C C}$ supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{f}$ ceramic capacitor be connected from pin 18 to pin 9 at each device. (See Figure 4.)
2. Address access time (t_{AA}) can be optimized if a chip enable set-up time (${ }_{\text {EAS }}$) of greater than 25 ns is observed. Negative set-up times on chip enable (${ }_{\text {EAS }}<0$) should be avoided. (For typical and worse case characteristics see Figure 5.)

Typical Ivcc Current Surge without $0.1 \mu \mathrm{f}$ (lvcc is Current Supplied by VCc Power Supply)

Figure 4. Icc Current

Typical Ivce Current Surge with $0.1 \mu \mathrm{f}$ (lvce is Current Supplied by VCC Power Supply)

TIME - ns -

Figure 5A. T_{AA} versus $\mathrm{T}_{\mathrm{EAS}}$

Figure 5B. T_{EA} versus $\mathrm{T}_{\text {AES }}$

Am27PS185

PROGRAMMING

The Am27PS185 is manufactured with conductive PlatinumSilicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip enabled, and the output level sensed to determine if the link has opened. Most links will open within 50 $\mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which the
current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {IhP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$\mathrm{V}_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\text {CSP }}$	$\overline{\text { CS }}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CSP}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}$, Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAAin

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Datal/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17 and 19	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & \text { 909-1286-1 Rev H* } \\ & \text { 919-1286-1 Rev H* } \\ & \text { Unipak (Code 1606) } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27PS185	715-1616	PA 18-8 and $2048 \times 4($ L $)$	IM 2048 \times 4-18-AMD	SA 4-4 B $2048 \times 4 / 18$	DIS-211 AM	DA 23	AM 140-3

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
$\begin{aligned} & \mathrm{t}_{\mathrm{AA} 1}=50 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{AA} 2}=60 \mathrm{~ns} \end{aligned}$	AM27PS185PC	P-18-1	C-1	COM'L
	AM27PS185PCB	P-18-1	B-1	
	AM27PS185DC	D-18-1	C-1	
	AM27PS185DCB	D-18-1	B-1	
	AM27PS185LC	L-28-2	C-1	
	AM27PS185LCB	L-28-2	B-1	
$\begin{aligned} & \mathrm{t}_{\mathrm{AA} 1}=55 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{AA} 2}=65 \mathrm{~ns} \end{aligned}$	AM27PS185DM	D-18-1	C-3	MIL
	AM27PS185DMB	D-18-1	B-3	
	AM27PS185LM	L-28-2	C-3	
	AM27PS185LMB	L-28-2	B-3	
	AM27PS185FM	(Note 4)	C-3	
	AM27PS185FMB	(Note 4)	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. Consult factory for flat package outline drawing.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S190A • Am27S191A Am27S290A • Am27S291A
 Ultra Fast Access Time

Am27S190 • Am27S191 Am27S290 • Am27S291

Fast Access Time
16,384-Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features
Am27S190A	24-Pin, Plug in Replacement for Industry Standard 600 -mil Configuration No Board Changes Required	Ulitra fast - 35 ns max
Am27S191A		
Am27S190		Fast - 50 ns max
Am27S191		
Am27S290A	New Space-Saving 24-Pin, THINDIP, 300-mil Configuration Increases Overall Board Density	Ultra fast - 35ns max
Am27S291A		
Am27S290		Fast - 50ns max
Am27S291		

DISTINCTIVE CHARACTERISTICS

- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Members of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 16K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide exceilent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.

These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

These 16K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048×8 configuration, they are available in both open collector (Am27S190A/190 and Am27S290A/290) and three-state (Am27S191A/191 and Am27S291A/291) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{10}$ and holding $\overline{C S}_{1}$ LOW and CS_{2} and CS_{3} HIGH. All other valid input conditions on $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$, and CS_{3} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or HIGH impedance state.

BLOCK DIAGRAM

LOGIC SYMBOL

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	V $_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$T_{A}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{OH} (TS Devices only)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbb{I}}=0.45 \mathrm{~V}$			-0.010	-0.250	mA
${ }_{\text {IH }}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$				40	$\mu \mathrm{A}$
Isc (TS Devices only)	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{O U T}=0.0 \mathrm{~V} \\ & (\text { Note 2 }) \end{aligned}$	COML	-20	-40	-90	mA
			MIL	-15	-40	-90	
$I_{\text {cc }}$	Power Supply Current	All inputs $=$ GND, $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			115	185	mA
V_{1}	Input Clamp Voltage	$V_{C C}=M I N, I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
${ }^{\text {ceex }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{CS}_{1}}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{CiN}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			4.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions		yp					Units
				25 ${ }^{\circ} \mathrm{C}$		M'L		IL	
			A	STD	A	STD	A	STD	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1, 2, 3)	25	30	35	50	50	65	ns
${ }^{\text {t }}$ EA	Enable Access Time		10	10	25	25	30	30	ns
$\mathrm{t}_{\text {ER }}$	Enable Recovery Time		10	10	25	25	30	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested to the 1.5 V output level with S_{1} closed; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made to an output voltage to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open; LOW to high impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

SWITCHING WAVEFORMS

Note: Level on output while chip is disabled is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY	$5 x>y$	DON'T CARE; ANY CHANGE PERMITTED	$\begin{aligned} & \text { CHANGING; } \\ & \text { STATE } \\ & \text { UNKNOWN } \end{aligned}$
	MAY Change FROM H TOL	$\begin{gathered} \text { WILL BE } \\ \text { CHANGING } \\ \text { FROM H TOL } \end{gathered}$		DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROMLTOH	$\begin{aligned} & \text { WILL BE } \\ & \text { CHANGING } \\ & \text { FROMLTOH } \end{aligned}$			

AC TEST LOAD

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}_{1}$ input is at a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which the
current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\mathrm{CCP}}$	V_{CC} During Programming	5.0	5.5	Volts
$\mathrm{V}_{\mathrm{IHP}}$	Input HIGH Level During Programming	2.4	5.5	Volts
$\mathrm{V}_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\overline{\mathrm{CS}}_{1} \mathrm{P}}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
Ionp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\overline{\mathrm{CS}} 1}\right) \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	50	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $\mathrm{V}_{\mathrm{ONP}}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

BPM-210

PROM PROGRAMMING EQUIPMENT INFORMATION
The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 3 Tevuot Haaretz St. Tel-Aviv, Israe!		Stag Systems, Inc. 1120 San Antonio Rd. Palo Alto, CA 94303
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19 and 29	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	909-1286-1 Rev H${ }^{+}$ 919-1286-1 Rev H* Unipak Rev H* (Code 16 68)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S190A/191A Am27S190/191	715-1688-1	PA 24-17 and 2048×8 (L)	$\begin{aligned} & \text { IM } 2048 \times 8-24- \\ & \text { AMD } \end{aligned}$	SA 22-10 B $2048 \times 8 / 24$	DIS-151 AM	DA 61	AM100-5
Am27S290A/291A Am27S290/291	715-1688-2	PA 24-28 and 2048×8 (L)	$\begin{aligned} & \text { IM } 2048 \times 8-24- \\ & 27 S 290 / 291-A M D \end{aligned}$	SA 29 B $2048 \times 8 / 24$	DIS-215 AM	DA 62	AM190-7

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a timesharing terminal. ASCIIBPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 2048 words, starting with word 0, in the following format:
a. Any characters, including carriage return and line feed, except "B".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of eight Ps or Ns , starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".

3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.5$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.
When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

$\phi \varnothing \phi$	BPNPPNNMPF	WORD ZERO (B
	BPPPPPPINF	COMMENT FIELd (($^{\text {(L) }}$
¢¢2	BNNNPPPPNF	ANY ($\mathrm{I}_{\text {(L) }}$
	bnnNunnome	TEXT (R) (D)
$\phi \not ¢ 4$	BPNN:NNINFF	CAN (R) (L)
	BNPPNPPNNF	GO (B) (L)
$\phi \phi 6$	BPNNPPPNNF	HERE (R) (L)
2047	::::::::::	: (B)
$\begin{aligned} & (B)= \\ & (L)= \end{aligned}$	ARRIAGE RET NE feed	

RESULTING DEVICE TRUTH TABLE ($\overline{C S}_{1}$ LOW AND $\mathrm{CS}_{2} \mathrm{CS}_{3} \mathrm{HIGH}$)

L	H	L	H	H	L	L	L	H										
L	H	L	L															
L	H	L	L	L	L	H	H	H	H	L								
	L	H	H	L														
L	H	L	L	H	L	L	L	L	L	L	H							
L	H	L	H	L	H	H	L	H	H	L	L							
	L	H	H	L	H	L	L	H	H	H	L	L						
						\vdots								$:$				
H		L	L	L	L	H	H	H										

ASCII PAPER TAPE

BPM-211

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27S190APC	AM27S191APC	P-24-1AC	C-1	
	AM27S190APCB	AM27S191APCB	P-24-1AC	B-1	
	AM27S290APC	AM27S291APC	P-24-1AA (Note 4)	C-1	
	AM27S290APCB	AM27S291APCB	P-24-1AA (Note 4)	B-1	
	AM27S190ADC	AM27S191ADC	D-24-1AC	C-1	COM'L
	AM27S190ADCB	AM27S191ADCB	D-24-1AC	B-1	COML
	AM27S290ADC	AM27S291ADC	D-24-1AA	C-1	
	AM27S290ADCB	AM27S291ADCB	D-24-1AA	B-1	
	AM27S190ALC	AM27S191ALC	L-32-2	C-1	
	AM27S190ALCB	AM27S191ALCB	L-32-2	B-1	
50ns	AM27S190ADM	AM27S191ADM	D-24-1AC	C-3	
	AM27S190ADMB	AM27S191ADMB	D-24-1AC	B-3	
	AM27S290ADM	AM27S291ADM	D-24-1AA	C-3	
	AM27S290ADMB	AM27S291ADMB	D-24-1AA	B-3	
	AM27S190AFM	AM27S191AFM	F-24-1	C-3	MIL
	AM27S190AFMB	AM27S191AFMB	F-24-1	B-3	
	AM27S190ALM	AM27S191ALM	L-32-2	C-3	
	AM27S190ALMB	AM27S191ALMB	L-32-2	B-3	
50ns	AM27S190PC	AM27S191PC	P-24-1AC	C-1	
	AM27S190PCB	AM27S191PCB	P-24-1AC	B-1	
	AM27S290PC	AM27S291PC	P-24-1AA (Note 4)	C-1	
	AM27S290PCB	AM27S291PCB	P-24-1AA (Note 4)	B-1	
	AM27S190DC	AM27S191DC	D-24-1AC	C-1	
	AM27S190DCB	AM27S191DCB	D-24-1AC	B-1	COM'L
	AM27S290DC	AM27S291DC	D-24-1AA	C-1	
	AM27S290DCB	AM27S291DCB	D-24-1AA	B-1	
	AM27S190LC	AM27S191LC	L-32-2	C-1	
	AM27S190LCB	AM27S191LCB	L-32-2	B-1	
65ns	AM27S190DM	AM27S191DM	D-24-1AC	C-3	
	AM27S190DMB	AM27S191DMB	D-24-1AC	B-3	
	AM27S2900,	AM27S291DM	D-24-1AA	C-3	
	AM27S290DMB	AM27S291DMB	D-24-1AA	B-3	
	AM27S190FM	AM27S191FM	F-24-1	C-3	MIL
	AM27S190FMB	AM27S191FMB	F-24-1	B-3	
	AM27S190LM	AM27S191LM	L-32-2	C-3	
	AM27S190LMB	AM27S191LMB	L-32-2	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads. $A C=600$ mil center package. $A A=300$ mil center package.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27PS191A •Am27PS291A Ultra Fast Access Time

Am27PS191 • Am27PS291
 Fast Access Time
 16,384-Bit Generic Series IMOX ${ }^{\text {TM }}$ Bipolar PROM 2048×8 Bits with Power-Down Via CS

DISTINCTIVE CHARACTERISTICS

Part Number	Package Width	Other Features
Am27PS191A	24-Pin, Plug in Replacement for Industry Standard 600-mil Configuration No Board Changes Required	Ultra fast - 50ns max
Am27PS191		Fast - 65ns max
Am27PS291A	New Space-Saving 24-Pin, THINDIP, 300-mil Configuration Increases Overall Board Density	Ultra fast - 50ns max
Am27PS291		Fast - 65ns max

DISTINCTIVE CHARACTERISTICS

- Fast access time allows high system speed
- 50% power savings on deselected parts - enhances reliability through total system heat reduction
- Plug in replacement for industry standard product no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Rapid recovery from power-down state provides minimum delay
- Members of generic PROM series utilizing standard programming algorithm
- 100\% processed to MIL-STD-883C
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 16K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

LOGIC SYMBOL

BPM-204

FUNCTIONAL DESCRIPTION

These 16K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048×8 configuration, they are available in both the standard 600-mil package (Am27PS191A/191) and the spacesaving THINDIP, 300-mil package (Am27PS291A/291) versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding CS_{1} LOW and CS_{2} and $\mathrm{CS}_{3} \mathrm{HIGH}$. All other input combinations on $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$, and CS_{3} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state and reduce ICC by more than 50%.

BLOCK DIAGRAM

CONNECTION DIAGRAMS - Top Views
DIP
$\begin{array}{llllllllllll}\mathrm{V}_{\mathrm{CC}} & \mathrm{Ag}_{\mathrm{g}} & \mathrm{A}_{9} & \mathrm{~A}_{10} & \overline{\mathrm{CS}} & \mathrm{CS}_{2} & \mathrm{CS}_{3} & \mathrm{O}_{7} & \mathrm{O}_{6} & \mathrm{O}_{5} & \mathrm{O}_{\mathbf{4}} & \mathrm{O}_{3}\end{array}$

Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}^{\mathrm{max}}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	V VC	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$V_{C C}=M A X, V_{I N}=V_{C C}$					40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{OUT}}=0.0 \mathrm{~V}$ (Note 2)		COM'L	-20	-40	-90	mA
				MIL	-15	-40	-90	
ICC	Power Supply Current	All inputs = GND				115	185	mA
$\mathrm{I}_{\text {CCD }}$	Power Down Supply Current	$\overline{\mathrm{CS}}_{1}=2.7 \mathrm{~V}$	All other inputs = GND			50	80	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.2	Volts
$I_{\text {CEX }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{CS}_{1}}=2.4 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$			40	$\mu \mathrm{A}$
							-40	
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions		Typ	Max				Units
				5V $25^{\circ} \mathrm{C}$	COM'L		MIL		
				STD	A	STD	A	STD	
$t_{\text {AA1 }}$	Address Access Time	$\mathrm{t}_{\text {EAS }} \geqslant 25 \mathrm{~ns}$	AC Test Load Fig. 1-3, 5 (Notes 5 and 6)	30	50	65	65	75	ns
${ }^{\text {taA2 }}$	Power Switched Address Access Time	$\mathrm{t}_{\text {EAS }}=0 \mathrm{~ns}$		50	65	80	75	90	ns
${ }^{\text {t }}$ A	Enable Access Time	$\mathrm{t}_{\text {AES }}>0 \mathrm{Ons}$		50	65	80	75	90	ns
$t_{\text {ER }}$	Enable Recovery Time			15	25	35	30	45	ns

Notes: 5. t_{AA} is tested with switch S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
6. ${ }^{t} E A$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to $L O W$ tests. $t_{E R}$ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open; LOW-to-high impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

Note: Level on output while $\overline{\mathrm{CS}}_{1}$ is HIGH or CS_{2}
or CS_{3} are LOW is determined externally.

Figure 1.
BPM-230

KEY TO SWITCHING WAVEFORMS

Figure 3.

1. When the Am27PS191A/191 and Am27PS291A/291 are selected, a current surge is placed on the $V_{C C}$ supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{f}$ ceramic capacitor be connected from pin 24 to pin 12 at each device. (See Figure 4.)
2. Address access time (t_{AA}) can be optimized if a chip enable set-up time (tEAS) of greater than 25 ns is observed. Negative set-up times on chip enable (tEAS <0) should be avoided. (For typical and worse case characteristics, see Figure 5.)

NOTES ON POWER SWITCHING

The Am27PS191A/191 and Am27PS291A/291 are power switched devices. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ${ }^{\mathrm{I} C \mathrm{C}}$ is reduced to less than half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

Typical IVcc Current Surge with $0.1 \mu \mathrm{~F}$ (lvcc is Current Supplied by Vcc Power Supply)

Figure 4. Icc Current

Figure 5A. t $_{\text {AA }}$ vs teAS (Am27PS191A/291A)

Figure 5B. teA $^{\text {vs }} \mathrm{t}_{\text {AES }}$

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the devices, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to the memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the output level is sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which
the current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{C C}$ During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\overline{C S}_{1} \mathrm{P}}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
IoNP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CS}_{1}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \text { Rev H* } \\ & 919-1286-1 \text { Rev H } \\ & \text { Unipak Rev H* } \\ & \text { (Code } 16 \text { 68) } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{aligned} & \text { PM } 2000 \\ & \text { Code } 90 \end{aligned}$
Am27PS191A/ 191	715-1688-1	PA 24-17 and 2048×8 (L)	$\begin{aligned} & \text { IM } 2048 \times 8-24- \\ & \text { AMD } \end{aligned}$	SA 22-10 B 2048x 8/24	DIS-151 AM	DA 61	AM100-5
$\begin{aligned} & \text { Am27PS291A } \\ & 291 \end{aligned}$	715-1688-2	PA 24-28 and $2048 \times 8(\mathrm{~L})$	$\begin{aligned} & \text { IM } 2048 \times 8-24- \\ & 27 S 290 / 291-A M D \end{aligned}$	SA 29 B $2048 \times 8 / 24$	DIS-215 AM	DA 62	AM190-7

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Three-State			
$\begin{aligned} & \mathrm{T}_{\mathrm{AA} 1}=50 \mathrm{~ns} \\ & \mathrm{~T}_{\mathrm{AA} 2}=65 \mathrm{~ns} \end{aligned}$	AM27PS191APC AM27PS191APCB AM27PS291APC AM27PS291APCB AM27PS191ADC AM27PS191ADCB AM27PS291ADC AM27PS291ADCB AM27PS191ALC AM27PS191ALCB	$\begin{gathered} \text { P-24-1AC } \\ \text { P-24-1AC } \\ \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AC } \\ \text { D-24-1AC } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \hline \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
$\begin{aligned} & \mathrm{T}_{\mathrm{AA} 1}=65 \mathrm{~ns} \\ & \mathrm{~T}_{\mathrm{AA} 2}=75 \mathrm{~ns} \end{aligned}$	AM27PS191ADM AM27PS191ADMB AM27PS291ADM AM27PS291ADMB AM27PS191AFM AM27PS191AFMB AM27PS191ALM AM27PS191ALMB	$\begin{gathered} \mathrm{D}-24-1 \mathrm{AC} \\ \mathrm{D}-24-1 \mathrm{AC} \\ \mathrm{D}-24-1 \mathrm{AA} \\ \mathrm{D}-24-1 \mathrm{AA} \\ \mathrm{~F}-24-1 \\ \mathrm{~F}-24-1 \\ \mathrm{~L}-32-2 \\ \mathrm{~L}-32-2 \end{gathered}$	C-3 B-3 C-3 B-3 C-3 B-3 C-3 B-3	MIL
$\begin{aligned} & \mathrm{T}_{\mathrm{AA} 1}=65 \mathrm{~ns} \\ & \mathrm{~T}_{\mathrm{AA} 2}=80 \mathrm{~ns} \end{aligned}$	AM27PS191PC AM27PS191PCB AM27PS291PC AM27PS291PCB AM27PS191DC AM27PS191DCB AM27PS291DC AM27PS291DCB AM27PS191LC AM27PS191LCB	$\begin{gathered} \mathrm{P}-24-1 \mathrm{AC} \\ \mathrm{P}-24-1 \mathrm{AC} \\ \mathrm{P}-24-1 \mathrm{AA} \text { (Note 4) } \\ \mathrm{P}-24-1 \mathrm{AA} \text { (Note 4) } \\ \mathrm{D}-24-1 \mathrm{AC} \\ \mathrm{D}-24-1 \mathrm{AC} \\ \mathrm{D}-24-1 \mathrm{AA} \\ \mathrm{D}-24-1 \mathrm{AA} \\ \mathrm{~L}-32-2 \\ \mathrm{~L}-32-2 \end{gathered}$	$\begin{aligned} & \hline \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
$\begin{aligned} & T_{\mathrm{AA} 1}=75 \mathrm{~ns} \\ & T_{\mathrm{AA} 2}=90 \mathrm{~ns} \end{aligned}$	AM27PS191DM AM27PS191DMB AM27PS291DM AM27PS291DMB AM27PS191FM AM27PS191FMB AM27PS191LM AM27PS191LMB	$\begin{gathered} \text { D-24-1AC } \\ \text { D-24-1AC } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads. $A C=600$ mil center package. $A A=300$ mil center package.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C .

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S45A •Am27S45 Am27S47A • Am27S47
 16K-Bit (2048 x 8) Generic Series IMOX ${ }^{\text {™ }}$
 Bipolar High Performance Registered PROM with
 Programmable INITIALIZE
 PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Member of AMD's Generic Family of 8 -bit wide registered PROMs
- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- User programmable for synchronous or asynchronous enable for simplified word expansion
- Versatile programmable register INITIALIZE either asynchronous (Am27S45A/45) or synchronous (Am27S47A/47)
- Slim, 24-pin, 300-mil lateral center package occupies approximately $1 / 3$ the board space required by standard discrete PROM and register
- Consumes approximately $1 / 2$ the power of separate PROM/register combination for improved system reliability
- Fast standard version - 45ns max setup and 25 ns max clock-to-output allows system speed improvements
- "A" version offers improved AC performance in critical paths (40 ns max setup and 20 ns max clock-to-output)
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ>98\%)
- AC performance is factory tested utilizing programmed test words and columns
- 100% MIL-STD-883C processing
- Guaranteed to INT-STD-123

generic series characteristics

The Am27S45A/45 and Am27S47A/47 are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this scries are produced with a fusible link at each momory location storing a logic LOW which can be selectively programmed to a logic HIGH by applying appropriate programming voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming algorithms (and common programming equipment) these products can be rapidly programmed to any customized pattern. Extra test words are preprogrammed during manufacturing to insure extremely high field programming yields and produce excellent AC and DC parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths, which are regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over the full military power supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

IMOX is a trademark of Advanced Micro Devices, Inc.

FUNCTIONAL DESCRIPTION

The Am27S45A/45 and Am27S47A/47 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 2048 -word by 8 -bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S45A/45 and Am27S47A/47 also offer maximum flexibility for system design by providing either synchronous or asynchronous initialize, and sychronous or asynchronous output enable.

When $V_{C C}$ power is first applied, the state of the ouputs will depend on whether the enable has been programmed to be a synchronous or asynchronous enable. If the synchronous enable (E_{S}) is being used, the register will be in the set condition causing the outputs (Q_{0} to Q_{7}) to be in the OFF or HIGH impedance state. If the asynchronous enable ($\overline{\mathrm{E}}$) is being used, the outputs will come up in the OFF or HIGH impedance state only if the enable ($\overline{\mathrm{E}}$) input is at a logic HIGH level. Reading data is accomplished by first applying the binary word address to the address inputs (A_{0} through A_{10}) and a logic LOW to the enable input. During the address setup time, the stored data is accessed and loaded into the master flip-flops of the data register. Upon the next LOW-toHIGH transition of the clock input (CP), data is transferred to the slave flip-flops which drive the output buffers, and the accessed data will appear at the outputs (Q_{0} through Q_{7}). If the asynchronous enable ($\overline{\mathrm{E}}$) is being used, the outputs may be disabled at any time by switching the enable to a logic HIGH , and may be returned to the active state by switching the enable back to the logic LOW state. For devices using the synchronous enable ($\overline{\mathrm{E}}_{\mathrm{S}}$), the outputs will go into the OFF or HIGH impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the next positive clock edge willl return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change, since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the PROM
decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.
These devices also contain a built-in initialize function. When activated, the initialize control input (INIT) causes the contents of an additional (2049th) 8 -bit word to be loaded into the on-chip register. This extra word is user programmable. Since each bit is individually programmable, the initialize function can be used to load any desired combination of HIGHs and LOWs into the register. In the unprogrammed state, activating INIT will perform a register CLEAR (all outputs LOW). If all bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
This ability to tailor the initialize outputs to the system requirements simplifies system design and enhances performance. The initialize function is useful during power up and timeout sequences. This flexible feature can also facilitate implementation of other sophisticated functions such as a built-in "jump-start" address.
The Am27S45A/45 has an asynchronous initialize input (INIT). Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register independent of all other inputs (including CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (\bar{E} LOW.
The Am27S47A/47 has a synchronous $\overline{\text { NIT }}_{S}$ input. Applying a LOW to the $\overline{\mathrm{NIT}}_{\mathrm{S}}$ input causes an immediate load of the programmed initialize word into the master flip-flops of the register only independent of all other inputs (including CP). To bring this data to the outputs of a device with a synchronous enable, the synchronous enable (\bar{E}_{S}) should be held LOW until the next LOW-to-HIGH transition of the clock (CP). For a device with an asynchronous enable, the data will appear at the device outputs after the next LOW-to-HIGH clock transition if the enable ($\overline{\mathrm{E}}$) is held LOW.

AMD's GENERIC FAMILY OF 8-WIDE REGISTERED PROMs

PRELIMINARY

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+V_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	VCC	Temperature
COM'L	4.75 to 5.25 V	$T_{A}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) PRELIMINARY

Parameters	Description	Test Conditions			Min Typ (Note 1)		Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.38	0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$				-0.020	-0.250	mA
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)			-20	-40	-90	mA
${ }^{\text {ICC }}$	Power Supply Current	All inputs $=$ GND, $\mathrm{V}_{C C}=\mathrm{MAX}$				130	185	mA
V_{1}	Input Clamp Voitage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
${ }^{\text {I Cex }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{E}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$			40	$\mu \mathrm{A}$
				$V_{\text {O }}=0.4 \mathrm{~V}$			-40	
$\mathrm{CiN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				5		pF
$\mathrm{C}_{\text {OUt }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				12		

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. These parameters are not 100% tested, but are periodically sampled.

Am27S45A/S45/S47A/S47
SWITCHING CHARACTERISTICS OVER OPERATING RANGE (See Notes on Testing) PRELIMINARY

Parameters	Description		Typ (Note 1)	Am27S45A Am27S47A				Am27S45 Am27S47				Units	
			COM'L	MIL		COM'L		MIL					
			Min	Max	Min	Max	Min	Max	Min	Max			
$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Address to CP (HIGH) Se			25	40		45		45		50		ns
$t_{H}(\mathrm{~A})$	Address to CP (HIGH) Ho			-4	0		0		0		0		ns
$\mathrm{t}_{\text {PHL }}(\mathrm{CP})$	Delay from CP (HIGH) to Output (HIGH or LOW)	All Outputs Simlutaneous	13		20		25		25		30	ns	
$\mathrm{t}_{\text {PLH }}(\mathrm{CP})$		Single Output (Note 3)	11		18		21		${ }^{20}$		23		
$\mathrm{t}_{\text {WH }}(\mathrm{CP})$ $\mathrm{t}_{\text {WL }}(\mathrm{CP})$ ${ }^{\text {d }}$ (CP Width (HIGH or LOW)		10	20		20		20	4	420		ns	
$\mathrm{t}_{\mathrm{S}}\left(\bar{E}_{S}\right)$	$\overline{\mathrm{E}}_{S}$ to CP (HIGH) Setup Time		5	15		15		15	\%	15		ns	
$\mathrm{t}_{\mathrm{H}}\left(\bar{E}_{\mathrm{S}}\right)$	$\bar{E}_{\text {S }}$ to CP (HIGH) Hold Time		-2	5		5		5		5		ns	
$\mathrm{t}_{\text {PHL }}(\overline{\text { (INIT }}$)	Delay from INIT (LOW) to Outputs (LOW or HIGH) (Note 5)		20		30		35		35		40	ns	
$\mathrm{t}_{\text {PLH }}(\overline{\text { (INIT }})$													
$\mathrm{t}_{\mathrm{g}}(\overline{\text { (INTT }}$)	INIT Recovery (Inactive) to CP (HIGH) (Note 5)			8.	20	Y	20		20		20		ns
$\mathrm{t}_{\text {WL }}$ (INIT)	INIT Pulse Width (Note 5)		10	25		30		25		30		ns	
$\mathrm{t}_{\mathrm{S}}\left({\left.\overline{\mathrm{N} I T_{S}}\right)}^{\text {d }}\right.$	$\overline{\mathrm{INIT}}_{\text {S }}$ to CP (HIGH) Setup Time (Note 6)		18	25		30		30		35		ns	
$\mathrm{t}_{H}\left(\overline{(N I T}^{\text {d }}\right.$)	$\overline{\text { INIT }}_{\text {S }}$ to CP (HIGH) Hold Time (Note 6) ,		-5	0		0		0		0		ns	
$t_{\text {PzL }}$ (CP)	Delay from CP (HIGH) to Active Output (HIGH or LOW) (Note 7)		15		25		30		30		35	ns	
$\mathrm{t}_{\mathrm{PZH}}(\mathrm{CP})$													
$\mathrm{t}_{\text {PLZ }}(\mathrm{CP})$	Delay from CP (HIGH) to Inactive Output (OFF or High Impedance) (Notes 4 and 7)			15		25		30		30		35	ns
$\mathrm{t}_{\mathrm{PHZ}}(\mathrm{CP})$													
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{E}})$	Delay from $\bar{E}($ LOW) to Active Output (HIGH or LOW) (Note 8)		15		25		30		30		35	ns	
$\mathrm{t}_{\text {PZH }}(\overline{\mathrm{E}})$													
${ }_{\text {t }}{ }_{\text {PLZ }}(\overline{\mathrm{E}})$	Delay from \bar{E} (HIGH) to Inactive Output (OFF or High Impedance) (Notes 4 and 8)			10		25		30		30		35	ns
$\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{E}})$													

Notes: 1. Typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10 to 90% rise and fall times of 5 ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.
4. t_{PHZ} and t_{PLZ} are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
5. Applies only to the Am27S45A/45 (asynchronous INITIALIZE function).
6. Applies only to the Am27S47A/47 (synchronous INITIALIZE function).
7. Applies only when synchronous ENABLE function is used.
8. Applies only when asynchronous ENABLE function is used.

SWITCHING WAVEFORMS

(See Notes on Testing)

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

AC TEST LOAD

BPM-040

Notes: 1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for all switching characteristics except $\mathrm{t}_{\mathrm{PLZ}}$ and t_{PHZ}.
2. $C_{L}=5 p F$ for $t_{P L Z}$ and $t_{P H Z}$.
3. S_{1} is closed for all tests except for $t_{P H Z}$ and $t_{P Z H}$.
4. All device test loads should be located within $2^{\prime \prime}$ of device outputs.

KEY TO TIMING DIAGRAM

PROGRAMMING

These 16 K registered PROMs are manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. Programming each bit location (i.e. opening the fusible links) is accomplished by first applying a logic HIGH to the \bar{E} / \bar{E}_{S} and $\overline{\text { INIT }} /{ }_{\text {INIT }}^{S}$ inputs, followed by a LOW-to-HIGH clock transition in order to disable the outputs (although devices with an asynchronous ENABLE input do not require this clock pulse, it nevertheless may be included in the programming algorithm without affecting the programmability of the devices. This feature allows the use of a common generic programming algorithm for use on all registered PROMs). The output is then raised to 20 volts, and current from this 20 volt supply is then gated through the addressed fuse by raising the E / E_{S} input from a logic H IGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled and the CP input is clocked. Each data verification must be preceded by a positive going (LOW-to-HIGH) clock edge to load the array data into the on-chip register. The output level is then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.

The initialize word is programmed by setting the $\overline{\mathrm{INIT} / \mathrm{INIT}_{S}}$ input to a logic LOW and programming the desired initialize word, output by output, in the same manner as any other address location. The address inputs may assume either logic state, but should not be left open, in order to avoid the possibility of oscillation. This is easily implemented by inverting the A_{11} address input from a PROM programmer and applying this signal to the $\overline{\mathrm{INIT}} / \overline{\mathrm{INIT}}_{S}$ input. Using this method the initialize word would be programmed as address 2048. When $\mathbb{I N I T} / \mathbb{N I T}_{S}$ is asserted LOW the internal programming circuitry for all other addresses is deselected. Address A_{0} must be LOW.

The enable input for these devices is shipped from the factory as an asynchronous enable ($\overline{\mathrm{E}}$) and may be programmed to a synchronous enable (E_{S}) by using the following programming procedure. To program the enable function to a synchronous enable the $\overline{\mathrm{INIT} / / \overline{\mathrm{NIT}} \mathrm{S}}$ input must be set to a logic LOW, with address A_{0} in a logic HIGH state. A standard programming pulse should then be applied to output Q_{0}. The remaining address inputs may assume either logic state, but should not be left open
in order to avoid possibility of oscillation. This is easily implemented by inverting the A_{11} address from a PROM programmer and applying this signal to the $\overline{\mathrm{INIT} / \mathrm{NIT}_{S}}$ input. Using this method the synchronous enable word would be treated as address 2049.
Typical current into an output during programming will be approximately 190 mA until the fuse link is opened, after which the current drops to approximately 110 mA . Current into the $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{S}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.
It should be noted that when programming \bar{E}_{S}, the enable pin is changing from an asynchronous enable (\bar{E}) to a synchronous enable (\bar{E}_{S}). This is a functional change rather than a data change to the part. Therefore, verification that the programming event has taken place must be performed in a different manner.
The Am27S45/47 contains on-chip circuitry which when enabled will cause the $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{S}}$ fuse to appear as data on all outputs simultaneously; i.e. fuse intact $=$ asynchronous enable $=00{ }_{16}$ and fuse programmed $=$ synchronous enable $=\mathrm{FF}_{16}$. This verification circuitry is enabled by taking the A_{0} input to a "zener high level" (14V. to 15V.). This "zener high level" should be used for read and verification cycles only (not programming) and preferably for the explicit address used for $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{S}}$ data only.
An alternative to using the on-chip verification circuitry would be for the programming equipment to utilize decision making capability in conjuction with clock and enable to determine in which functional mode the enable is operating.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	$\mathrm{V}_{\text {CC }}$ During Programming	5:0	5.5	Volts
$\mathrm{V}_{\text {HP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$\mathrm{V}_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\mathrm{ENP}}$	$\bar{E} / \bar{E}_{\text {S }}$ Voltage During Programming	14.5	15.5	Volts
$V_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	VCCP +0.3	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\text {OP }}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{EN}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{S}}$, Voltage Change	50	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1} through t_{7} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

BPM-328

SIMPLIFIED PROGRAMMING DIAGRAM

BPM-329

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{array}{\|l\|} \hline 909-1286-1 \text { Rev J* } \\ 919-1286-1 \text { Rev J* } \end{array}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{aligned} & \text { PM } 2000 \\ & \text { Code } 90 \end{aligned}$
Socket Adapte Am27S45 Am27S47	nd Configurators $715-1660$	PA 24 and 2049×8 (L)	$\begin{aligned} & \text { IM } 2048 \times 8-27 S 45 / \\ & 47 \text { AMD } \end{aligned}$	$\begin{aligned} & \text { SA } 31 \text { B } \\ & 2048 \times 8 / 24 \end{aligned}$	DIS-217 AM	DA 64	

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be
delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

ORDERING INFORMATION

Speed Selection (Setup Time)	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Asynchronous INITIALIZE	Synchronous INITIALIZE			
40ns	AM27S45APC AM27S45APCB AM27S45ADC AM27S45ADCB AM27S45ALC AM27S45ALCB	AM27S47APC AM27S47APCB AM27S47ADC AM27S47ADCB AM27S47ALC AM27S47ALCB	$\begin{gathered} \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
45ns	AM27S45ADM AM27S45ADMB AM27S45AFM AM27S45AFMB AM27S45ALM AM27S45ALMB	AM27S47ADM AM27S47ADMB AM27S47AFM AM27S47AFMB AM27S47ALM AM27S47ALMB	$\begin{gathered} \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
45ns	AM27S45PC AM27S45PCB AM27S45DC AM27S45DCB AM27S45LC AM27S45LCB	AM27S47PC AM27S47PCB AM27S47DC AM27S47DCB AM27S47LC AM27S47LCB	$\begin{gathered} \text { P-24-1AA (Note 4) } \\ \text { P-24-1AA (Note 4) } \\ \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
50ns	AM27S45DM AM27S45DMB AM27S45FM AM27S45FMB AM27S45LM AM27S45LMB	AM27S47DM AM27S47DMB AM27S47FM AM27S47FMB AM27S47LM AM27S47LMB	$\begin{gathered} \text { D-24-1AA } \\ \text { D-24-1AA } \\ \text { F-24-1 } \\ \text { F-24-1 } \\ \text { L-32-2 } \\ \text { L-32-2 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP,$D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.
4. This package will be available soon. Consult Factory.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am27S40A • Am27S41A Am27S40 • Am27S41

16,384-Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM (4096 x 4 bits with ultra fast access time)

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time "A" version (35ns max) Fast access time Standard version (50ns max) allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat $A C$ performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 16K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, $\mathrm{IMOX}^{\top M}$. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27S40A, Am27S41A, Am27S40, and Am27S41 are high speed electrically programmable Schottky read only memories. Organized in 4096×4 configuration, they are available in both open collector (Am27S40A and Am27S40) and three-state (Am27S41A and Am27S41) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{11}$ and holding the chip select inputs, $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, LOW. If either chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or HIGH impedance state.

Am27S40A/S41A/S40/S41
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec$)$	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	VCC	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions		Min	Type (Note 1)	Max	Units
V_{OH} (TS Devices only)	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4			Volts
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L			0.45	Volts
			MIL			0.50	
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
${ }_{1}+1$	Input HIGH Current	$V_{C C}=M A X, V_{I N}=V_{C C}$				40	$\mu \mathrm{A}$
Isc (TS Devices only)	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	COM'L	-20	-40	-90	mA
			MIL	-15	-40	-90	
${ }^{\text {l C C }}$	Power Supply Current	All inputs = GND,$V_{C C}=\operatorname{MAX}$	COM'L		110	165	mA
			MIL		110	170	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
$\mathrm{I}_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S S_{1}}}=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{v}_{\mathrm{CC}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5.0		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	VOUT $=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS

OVER OPERATING RANGE

Parameters	Description	Test Conditions							Units
				$5^{\circ} \mathrm{C}$		M'L			
			A	STD	A	STD	A	STD	
$t_{\text {AA }}$	Address Access Time	AC Test Load (See Notes 1, 2, 3)	25	30	35	50	50	65	ns
$t_{\text {EA }}$	Enable Access Time		10	10	25	25	30	30	ns
$\mathrm{t}_{\text {ER }}$	Enable Recovery Time		10	10	25	25	30	30	ns

Notes: 1. t_{AA} is tested with switch S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $C_{L}=30 \mathrm{pF}$.
3. For three-state outputs, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{FF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING CHARACTERISTICS

Note: Level on output while either $\overline{\mathrm{CS}}$ is HIGH is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM				
	INPUTS MUSTGE STEADY	WILL BE STEADY	WAVEFORM	INPUTS

AC TEST LOAD

PROGRAMMING

This entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated throuigh the addressed fuse by raising the $\overline{C S}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which the
current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}_{1}}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$\mathrm{V}_{\mathrm{IHP}}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\overline{C S}_{1} \mathrm{P}}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
IoNP	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\left.\overline{\mathrm{CS}} \overline{1}^{1}\right) / \mathrm{dt}}\right.$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	50	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{P}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of 1μ sec are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 3 Tevuot Haaretz St. Tel-Aviv, Israel		Stag Systems, Inc. 1120 San Antonio Rd. Palo Alto, CA 94303
Programmer Model(s)	Model 5, 7, and 9 Systems 17 and 19	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \text { RevH**** } \\ & 919-1286-1 \text { Rev } \mathrm{H}^{*} \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{aligned} & \text { PM } 2000 \\ & \text { Code } 90 \end{aligned}$
Am27S40A/41A Am27S40/41	715-1282	PA 20-9 and $4096 \times 4(\mathrm{~L})$	IM 4096×4-20-AMD	SA 30 B $4096 \times 4 / 20$	DIS-216 AM	DA 63	AM 120-6

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII tape in the BPNF format is shown below. They can be punched on any Teletype ${ }^{\circledR}$ or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 4096 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except " B ".
b. The letter " B ", indicating the beginning of the data word.
c. A sequence of four Ps or Ns , starting with output O_{3}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.5$ volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the four Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B, then the word re-typed beginning with the B.
When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

TYPICAL PAPER TAPE FORMAT

$\phi \varnothing \varnothing$	BINNMPF	WORD ZERO (${ }^{\text {(}}$ (
	BPPNNF	COMMENT FIELD (R) (L)
$\not \chi^{\prime \prime}$	BPPPNF	ANY (R) (L)
	BNWNNF	TEXI (R) L
$\phi \phi_{4}$	BNNNPF	CAN (R) (L)
	BPPNNF	GO (R) (L)
$\phi \varnothing 6$	BPPNNF	HERE (R) (L)
	$\because:::$:	
4095	BPPPNF	END (R) (L)

RESULTING DEVICE TRUTH TABLE

(CS_{1} AND $\left.\overline{\mathrm{CS}_{2}}=\mathrm{LOW}\right)$

A_{11}	A_{10}										A_{0}	O_{3}	O_{2}	O_{1}	O_{0}
L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H
L	L	L	L	L	L	L	L	L	L	L	H	H	H	L	L
L	L	L	L	L	L	L	L	L	L	H	L	H	H	H	L
L	L	L	L	L	L	L	L	L	L	H	H	L	L	L	L
L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	H
L	L	L	L	L	L	L	L	L	H	L	H	H	H	L	L
L	L	L	L	L	L	L	L	L	H	H	L	H	H	L	L
H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

ASCII PAPER TAPE

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27S40APC AM27S40APCB AM27S40ADC AM27S40ADCB AM27S40ALC AM27S40ALCB	AM27S41APC AM27S41APCB AM27S41ADC AM27S41ADCB AM27S41ALC AM27S41ALCB	$\begin{aligned} & \mathrm{P}-20-1 \\ & \mathrm{P}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
50ns	AM27S40ADM AM27S40ADMB AM27S40ALM AM27S40ALMB	AM27S41ADM AM27S41ADMB AM27S41ALM AM27S41ALMB	$\begin{aligned} & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
50ns	AM27S40PC AM27S40PCB AM27S40DC AM27S40DCB AM27S40LC AM27S40LCB	AM27S41PC AM27S41PCB AM27S41DC AM27S41DCB AM27S41LC AM27S41LCB	$\begin{aligned} & \hline \text { P-20-1 } \\ & \text { P-20-1 } \\ & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
65ns	AM27S40DM AM27S40DMB AM27S40LM AM27S40LMB	AM27S41DM AM27S41DMB AM27S41LM AM27S41LMB	$\begin{aligned} & \mathrm{D}-20-1 \\ & \mathrm{D}-20-1 \\ & \mathrm{~L}-28-2 \\ & \mathrm{~L}-28-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

DISTINCTIVE CHARACTERISTICS

- Fast access time Standard version (50ns max) allows tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat $A C$ performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100\% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

This 16 K PROM is a member of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, IMOX. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27PS41 is a high speed electrically programmable Schottky read only memory. Organized in 4096×4 configuration, it is available in the three-state (Am27PS41) output version. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{11}$ and holding the chip select inputs, $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, LOW. If either chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or HIGH impedance state.

BPM-194
CONNECTION DIAGRAMS - Top Views

Note: Pin 1 is marked for orientation.

Am27PS41
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	V_{CC}	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		COM'L			0.45	Volts
				MIL			0.50	
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)					0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.020	-0.250	mA
IH	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{O U T}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		COM'L	-20	-40	-90	mA
				MIL	-15	-40	-90	
Icc	Power Supply Current	All inputs = GND				110	170	mA
		$\overline{\mathrm{CS}}_{1}=2.7 \mathrm{~V}$	All other inputs = GND			50	85	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\overline{C S}_{1}}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}$			40	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{CIN}_{1 /}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				5.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	Test Conditions		Typ	Max		Units
				5V $25^{\circ} \mathrm{C}$	COM'L	MIL	
$\mathrm{t}_{\text {AA } 1}$	Address Access Time	$t_{\text {EAS }} \geqslant 25 \mathrm{~ns}$	$\begin{gathered} \text { AC } \\ \text { Test Load } 2 \text { (Notes } 1 \text { and 2) } \end{gathered}$	30	50	65	ns
${ }_{\text {taA2 }}$	Power Switched Address Access Time	$t_{\text {EAS }}=0 \mathrm{~ns}$		50	70	85	ns
${ }^{\text {t }}$ EA	Enable Access Time	$\mathrm{t}_{\text {AES }} \geqslant 0 \mathrm{~ns}$		50	70	85	ns
$t_{\text {ER }}$	Enable Recovery Time			10	25	30	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$. $t_{E A S}$ is defined as chip enable setup time.
2. For the three-state output, $t_{E A}$ is tested with $C_{L}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. $t_{E R}$ is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while either $\overline{\mathrm{CS}}$ is HIGH is determined externally

KEY TO SWITCHING WAVEFORMS

AC TEST LOAD

POWER SWITCHING

The Am27PS41 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ICC is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

1. When the Am27PS41 is selected by a low level on $\overline{\mathrm{CS}}_{1}$, a current surge is placed on the $V_{C C}$ supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{~F}$ ceramic capacitor be connected from pin 20 to pin 10 at each device. (See Figure 1.)
2. Address access time ($t_{A A}$) can be optimized if a chip enable set-up time (tEAS) of greater than 25 ns is observed. Negative set-up times on chip enable (tEAS <0) should be avoided. (For typical and worse case characteristics, see Figure 2.)

Typical Icc Current Surge without $0.1 \mu \mathrm{~F}$ (Icc is Current Supplied by Vcc Power Supply)

Typical ${ }_{\text {CC }}$ Current Surge with $0.1 \mu \mathrm{~F}$ (Icc is Current Supplied by Vcc Power Supply)

BPM-146
BPM-147
Figure 1. Icc Current

BPM-221

BPM-222
Figure 2B. $t_{E A}$ versus $t_{A E S}$

PROGRAMMING

This entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which the
current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
VILP	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\overline{\mathrm{CS}_{1} \mathrm{P}}}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
$\mathrm{V}_{\text {OP }}$	Output Voltage During Programming	19.5	20.5	Volts
$\mathrm{V}_{\text {ONP }}$	Voltage on Outputs Not to be Programmed	0	$V_{\text {CCP }}+0.3$	Volts
${ }^{\prime}$ ONP	Current into Outputs Not to be Programmed		20	mA
$d\left(V_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V}_{\mathrm{CS}_{1}}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
tp	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & \text { 909-1286-1 Rev H* } \\ & 919-1286-1 \text { Rev H } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27PS41	715-1282	PA 20-9 and 4096×4(L)	IM 4096 x 4-20-AMD	SA 30 B $4096 \times 4 / 20$	DIS-216 AM	DA 63	AM 120-6

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Three-State			
$\begin{aligned} & \mathrm{t}_{\mathrm{AA1}}=50 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{AA} 2}=70 \mathrm{~ns} \end{aligned}$	AM27PS41PC	P-20-1	C-1	
	AM27PS41PCB	P-20-1	B-1	
	AM27PS41DC	D-20-1	C-1	COM'L
	AM27PS41DCB	D-20-1	B-1	COML
	AM27PS41LC	L-28-2	C-1	
	AM27PS41LCB	L-28-2	B-1	
$\begin{aligned} & t_{\text {AA } 1}=65 \mathrm{~ns} \\ & t_{\text {AA } 2}=85 \mathrm{~ns} \end{aligned}$	AM27PS41DM	D-20-1	C-3	
	AM27PS41DMB	D-20-1	B-3	MIL
	AM27PS41LM	L-28-2	C-3	
	AM27PS41LMB	L-28-2	B-3	

Notes: 1. P = Molded DIP, D = Hermetic DIP, L = Chip-Pak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.
Pad layout and bonding diagram available upon request.

Am27S43A •Am27S43

32,768-Bit Generic Series Bipolar IMOX ${ }^{\text {M }}$ PROM (4096×8 bits with ultra fast access time) ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time " A " version (40ns max) Fast access time Standard version (55ns max) allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm
- 100% MIL-STD-883C assurance testing
- Guaranteed to INT-STD-123

GENERIC SERIES CHARACTERISTICS

These 32K PROMs are members of an Advanced PROM series incorporating common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.
All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields, and produce excellent parametric correlation.
Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large non-conductive gaps that ensure very stable long-term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.
Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths.
These PROMs are manufactured using Advanced Micro Devices' selective oxidation process, $\mathrm{IMOX}^{\text {™ }}$. This advanced process combined with a merged fuse array permits an increase in density and a decrease in internal capacitance resulting in the fastest possible PROMs.

FUNCTIONAL DESCRIPTION

The Am27S43A and Am27S43 are high speed electrically programmable Schottky read only memories. Organized in 4096×8 configuration, they are available in three-state (Am27S43A and Am27S43) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{11}$ and holding the chip select inputs, $\overline{\mathrm{CS}}_{1}$, LOW and $\mathrm{CS}_{2}, \mathrm{HIGH}$. If $\overline{\mathrm{CS}}_{1}$ goes to logic HIGH or CS_{2} goes to a logic LOW, $\mathrm{O}_{0}-\mathrm{O}_{7}$ go to the OFF or HIGH impedance state.

CONNECTION DIAGRAMS - Top Views

BPM-266
BPM-267

Am27S43A/S43
MAXIMUM RATINGS
(Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 20 to Pin 10) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs (Except During Programming)	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}^{\mathrm{max}}$
DC Voltage Applied to Outputs During Programming	21 V
Output Current into Outputs During Programming (Max Duration of 1 sec)	250 mA
DC Input Voltage	-0.5 to +5.5 V
DC Input Current	-30 to +5 mA

OPERATING RANGE

Range	$V_{\text {CC }}$	Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{\mathrm{C}}=-55$ to $+125^{\circ} \mathrm{C}$

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$
BPM-268

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) ADVANCEDINFORMATION

Parameters	Description	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$				0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
$\mathrm{I}_{\mathrm{I}} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)		-15	-40	-100	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	COM'L		135	185	mA
			MIL		135	185	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{\overline{C S}_{1}}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			8.0		

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE ADVANCEDINFORMATION

Parameters	Description	Test Conditions	$\frac{\text { Typ }}{5 \mathrm{~V} 25^{\circ} \mathrm{C}}$		Max				
					COM'L		MIL		
			A	STD	A	STD	A	STD	Units
$t_{A A}$	Address Access Time	AC Test Load (See Notes 1 and 2)	30	35	40	55	55	65	ns
${ }_{\text {teA }}$	Enable Access Time		20	20	30	35	35	40	ns
$t_{\text {ER }}$	Enable Recovery Time		20	20	30	35	35	40	ns

Notes: 1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For three-state outputs, $\mathrm{t}_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. t_{ER} is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING CHARACTERISTICS

Note: Level on output while $\overline{\mathrm{CS}}_{1}$ is HIGH or CS_{2} is LOW is determined externally.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY ChANGE FROM H TOL	WILL BE CHANGING FROM HTOL		doEs not APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROM LTO H	$\begin{gathered} \text { WILL BE } \\ \text { CHANGING } \\ \text { FROM LTO H } \end{gathered}$			

AC TEST LOAD

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.
The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the $\overline{\mathrm{CS}}_{1}$ input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{\mathrm{CS}}_{1}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level.
Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which
the current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}_{1}$ pin when it is raised to 15 volts is typically 1.5 mA .
The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.
When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Parameters	Description	Min	Max	Units
$\mathrm{V}_{\text {CCP }}$	V_{CC} During Programming	5.0	5.5	Volts
$\mathrm{V}_{\text {HPP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$\mathrm{V}_{\mathrm{CS}_{1} \mathrm{P}}$	$\overline{\mathrm{CS}}_{1}$ Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	19.5	20.5	Volts
Vonp	Voltage on Outputs Not to be Programmed	0	$\mathrm{V}_{\text {CCP }}+0.3$	Voits
lonp	Current into Outputs Not to be Programmed		20	mA
$\mathrm{d}\left(\mathrm{V}_{\mathrm{OP}}\right) / \mathrm{dt}$	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{d}\left(\mathrm{V} \overline{\mathrm{CS}}_{1}\right) / \mathrm{dt}$	Rate of $\overline{\mathrm{CS}}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
${ }^{\text {tp }}$	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connected to $V_{O N P}$ through resistor R which provides output current limiting.

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROM PROGRAMMING EQUIPMENT INFORMATION

The PROM Programming Equipment from the following manufacturers has been evaluated and approved by AMD:

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 95603	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7, and 9 Systems 17, 19, 29 and 100	M900, M900B, M910, M920, and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & \text { 909-1286-1 RevH** } \\ & \text { 919-1286-1 RevH } \end{aligned}$	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	PM 2000 Code 90
Am27S43A/43	715-1698-002		IM 4096×8-24-AMD				

*Rev shown is minimum approved revision.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ORDERING INFORMATION

Speed Selection	Order Code	Package Type	Screening Flow Code	Operating Range
	Three-State	(Note 1)	(Note 2)	(Note 3)
40ns	AM27S43APC	P-24-1AC	C-1	
	AM27S43APCB	P-24-1AC	B-1	
	AM27S43ADC	D-24-1AC	C-1	
	AM27S43ADCB	D-24-1AC	B-1	COML
	AM27S43ALC	L-32-2	C-1	
	AM27S43ALCB	L-32-2	B-1	
55ns	AM27S43ADM	D-24-1AC	C-3	
	AM27S43ADMB	D-24-1AC	B-3	MIL
	AM27S43ALM	L-32-2	C-3	MLL
	AM27S43ALMB	L-32-2	B-3	
55ns	AM27S43PC	P-24-1AC	C-1	
	AM27S43PCB	P-24-1AC	B-1	
	AM27S43DC	D-24-1AC	C-1	
	AM27S43DCB	D-24-1AC	B-1	COML
	AM27S43LC	L-32-2	C-1	
	AM27S43LCB	L-32-2	B-1	
65ns	AM27S43DM	D-24-1AC	C-3	MIL
	AM27S43DMB	D-24-1AC	B-3	
	AM27S43LM	L-32-2	C-3	
	AM27S43LMB	L-32-2	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MLL-STD-883, Class C . Levels $\mathrm{B}-1$ and $\mathrm{B}-3$ conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.
Flat packages are available upon special request. Consult factory.

Technical Report
 Reliability Report Bipolar Generic PROM Series

Abstract

This report is a review of the manufacturing process, the circuit design techniques, the testing, the fuse element, and the reliability of Advanced Micro Devices' Generic Bipolar PROM Series. Results indicate that platinum silicide forms a fuse with excellent reliability characteristics.

The purpose of this report is to present a description of Advanced Micro Devices' Bipolar PROM circuits, their manufacturing process and their reliability. Included is a discussion of the wafer fabrication in which an advanced, highly reliable platinum silicide fuse is utilized, a description of the circuits and their testing, an analysis of the fusing characteristics of platinum silicide and supportive reliability data.

The products evaluated in this report are members of a generic family of field programmable-read-only memories (PROMs) from 256 bits through 16384 bits. Advanced Micro Devices utilizes two manufacturing processes. The first is the platinum-silicide Schottky, washed emitter process described in this report. The second is the $\mathrm{IMOX}^{\text {™ }}$ process. IMOX is the trademark name for a selective oxide isolation process which employs ion-implantation of various transistor elements. This improved process incorporates many of the technologies previously developed, such as platinum silicide fuses, dual layer metal, and platinum-silicide Schottkies. IMOX allows further reduction in chip size due to tighter device spacings and device dimensions. All new product developments for the PROM family use the IMOX process. This high density process allows Advanced Micro Devices to con-
tinue to supply very high speed, high performance products while increasing device complexity. The circuit design concepts are similar on each of the PROMs with the result that the products can be programmed using the same hardware. Only the socket adaptor required for the PROM configuration and pin count is different. The same programming algorithm is used for all devices with completely satisfactory results. The PROMs utilize a platinum Schottky diode structure with barrier metal. Dual-layer metallization is also employed to maximize speed and minimize chip size. All Advanced Micro Devices' circuits receive screening per MIL-STD-883, Method 5004 class C or better. Part of the 883 flow involves sample acceptance tests in which all temperature requirements are sampled to Lot Tolerance Percent Defective (LTPD) plans. A 5\% LTPD corresponds to about a 0.65\% Acceptance Quality Level (AQL). In early 1981 Advanced Micro Devices announced a new program that guarantees the highest quality levels for semiconductor devices in the industry. The new program is called INTERNATIONAL STANDARD 123. Under INT-STD-123 all Bipolar Memory PROMs are sampled to a 0.3% AQL. This is a direct statement of AMD's commitment to excellence.

Prepared by: Advanced Micro Devices Quality and Reliability Department in Conjunction with Bipolar Memory Engineering.

[^1]
THE PROCESS TECHNOLOGY

Advanced Micro Devices has chosen a platinum silicide Schottky, washed emitter, dual-layer metal process for its bipolar PROMs. Platinum silicide has been chosen as the material to form the fuse for several reasons. First, it has been demonstrated to be an extremely reliable fuse material. It does not have the growback phenomenon common to nichrome technologies; it is not moisture sensitive in freeze-out tests; it is less fragile than nichrome, and it does not have mass transport problems associated with moderate current densities. Second, the manufacturing process is easily controlled with regard to reliability factors and fusing currents. Third, the fuses are quite easy to form during the manufacturing process without a substantial number of additional processing steps.
Figure 2 is a cross section of a transistor and a fuse. A heavily doped buried layer diffusion is first performed to allow for the fabrication of NPN transistors with low saturation resistances. A thin epitaxial layer is grown followed by isolation and base diffusions. The isolation and base are effectively self-aligned using a composite masking approach. A short series of steps results in the definition of polycrystalline silicon in the shape of the fuse.
A second composite mask now defines all the emitter, contact, Schottky diode and ohmic contact areas.

Following the emitter diffusion and the contact mask, platinum is sputtered over the entire wafer. Since all contacts, Schottkies, and fuses are exposed at this point, an alloying op-
eration allows platinum silicide to form. The residual platinum is etched off the wafer leaving the silicide contacts, Schottkies, and fuses. After this step, the semiconductor elements of the circuit have been completely formed, and all that remains is the interconnect metallization.

To form the interconnects, aluminum is used as the primary conducting element. Aluminum has a very strong affinity for silicon, including that in platinum silicide. To retain the advantages of the very stable platinum silicide Schottky devices, it is necessary to sputter an inactive metal, tungsten, with a small amount of titanium as a bonding agent over the surface of the wafers to serve as a barrier to the diffusion or microalloying of the aluminum. Aluminum is now evaporated over the surface of the wafers and conventional masking and etching cycles are used to define the aluminum interconnections. Figure 3 shows the structure of this metal layer.

To complete the dual-layer metallization structure, silicon dioxide is chemically vapor deposited on the wafer and etched with interlayer metal contact openings (vias). A second layer of aluminum is then placed on top of the dielectric. This layer has a thickness substantially greater than the first one and is especially suited for power busses and output lines.

To complete the circuit, a passivation layer is deposited over the top of the wafers and etched at the appropriate locations to allow for bonding pad contact.

Figure 2. Transistor \& Fuse Structures.

Figure 3. 2 Layer Metallization Structure.

PROGRAMMABLE READ-ONLY MEMORY CIRCUITRY

Advanced Micro Devices' bipolar PROM designs have the general configuration shown in Figure 4. Although the figure is for that of the Am27S20, the circuit techniques are the same for the entire generic family of PROMs.

Input, Memory \& Output Circuitry

Two groups of input buffers and decoders called " X " and " Y " are used to drive word lines and columns respectively. The X-decode addresses ($\mathrm{A}_{3}-\mathrm{A}_{7}$) have Schottky clamp diode protected, PNP inputs for minimum loading. (Figure 5). The X -input buffers ($A_{3}-A_{7}$) provide A and \bar{A} outputs to a Schottky decode matrix which selects one of 64 word drivers. The word line drivers are very fast high current, high voltage, non-saturating buffers providing voltage pull down to the selected word line.

The Y-decode address buffers ($\mathrm{A}_{0}-\mathrm{A}_{2}$) are also Schottky diode clamped, PNP inputs driving a Schottky diode matrix. However, this diode matrix selects one of eight columns on each of the four output bits. The selected column line drives the sense amplifier input to a high level in the case of a blown fuse, or current is shunted through an unblown fuse through the selected word driver to ground resulting in a "low" input to the sense amplifier.

The sense amplifier is a proprietary fast level shifter-inverter with temperature and voltage threshold sensitivities compensated for the driving circuitry. Each of the four sense amplifiers in this circuit provides active drive to an output buffer.
Each output buffer also contains a disable input, which is driven from the chip-enable buffer. The chip-enable buffer input is a Schottky diode clamped PNP buffered design with an active pull up and pull down to drive the output buffer. Additionally, the chip-enable gate contains circuitry to provide fuse control as described below.

Fusing Circuitry

Platinum silicide fuses as implemented in Advanced Micro Devices' PROMs have extremely high fuse current to sense current ratios. Sensing normally requires that only a few hundred microamps flow through the fuse, whereas absolute minimum requirements for opening the fuse are approximately 100 times that amount. This provides a significant safety margin for transient protection and long-term reliability.
High-yield fusing of platinum silicide fuses requires that a substantial current be delivered to each fuse. This current is sourced from the output terminals through darlingtons which can drive the column lines when enabled. These darlingtons are driven directly from the output and are selected by the Y decode column select circuitry. Current during fusing flows from the output through the darlington directly to the fuse

Figure 4. PROM Circuitry Block Diagram.

Figure 5. Input Buffer Schematic.
through the selected array Schottky and finally through the word-driver output transistor to ground. This path is designed for a very large fusing current safety margin.
The control circuitry works as follows: After $\mathrm{V}_{C C}$ is applied, the appropriate address is selected and the $\overline{C E}$ input is taken to a logic high, the programmer applies 20 volts to the bit output to be programmed. The application of the 20 volts simultaneously deselects the output buffer to prevent destructive current flow, and powers down internal circuitry unneeded during fusing to minimize chip heating.
It also enables the darlington base drive circuitry, makes power available to the darlington from the output and enables the fusing control circuitry. At this point, the PROM is ready for the control line at the chip-select pin to release the selected word driver to allow current flow through the fuse. This technique is particularly advantageous because the control signal does not
supply the large fusing currents. They are supplied through the darlington from the output power supply. Some care must be taken to avoid excessive line inductance on the output line. Reasonable and normal amounts of care will reward the user with high-programming yields.

Special Test Circuitry

All Advanced Micro Devices PROMs include high-threshold voltage gates paralleling several address lines to allow the selection of special test words and the deselection of the columns to allow for more complete testing of the devices. Additionally, special test pads accessible prior to assembly allow for testing of some key attributes of the devices. The function of these special circuits will be described in more detail in the section, "Testing", later in this report.

THE PLATINUM SILICIDE FUSE

Fusing Technique

Advanced Micro Devices' PROM circuits have been designed to use a programming algorithm which minimizes the requirements on the programmer yet allows the circuit to fuse the platinum silicide links quickly and reliably. Specifically, the following sequence of events must take place:

1. V_{CC} power is applied to the chip;
2. The appropriate address is selected;
3. The chip is deselected;
4. The programming voltage is applied to one output;
5. The chip enable voltage is raised to enable high-threshold voltage gate. This action gates the current flow through the proper fuse resulting in an open fuse in a few microseconds;
6. The output voltage is lowered; the programming voltage is removed.
7. The device is enabled and the bit is sensed to verify that the fuse is blown. In the unusual event that the fuse does not verify as blown, a sequence of much longer pulses is applied to the fuse at a high duty cycle until the fuse opens; and,
8. The sequence of 2 through 7 is repeated for each bit which must be fused.
There are several advantages to this technique. First, the two high current power sources, V_{CC} and the voltage applied to the output do not have critical timing requirements. The low current chip select pin gates the fusing current into the circuit. Since it is generally desirable to gate the fusing current into the chip at relatively fast rates, the use of the chip select for this purpose avoids the speed trade-off which would exist using the output voltage as the control. The output voltage must not be raised too quickly to avoid breakdown and latchback conditions which might occur with sub-microsecond rise times on the output.
The second major advantage of this technique is that in the event that the fuse does not open during the first attempt to
blow it, a near DC condition may be safely applied to it with no danger of developing a reliability problem such as that which occurs with nichrome fuses. This will be discussed in more detail later. The algorithm can therefore be designed first to minimize the time required to program the PROM, i.e. with a fast first pulse, and second, to maximize the probability that any circuit will program. Most PROMs do, of course, fuse satisfactorily with all short pulses. However, it is impossible for any manufacturer to guarantee absolutely that all fuses in all circuits receive 100 percent of the rated fusing current during programming.
Circuit defects which may be resistant to pre-programming testing prevent such a guarantee. It is, therefore, quite important to have a fuse material insensitive to marginal conditions. Even the application of single, short pulses does not guarantee that no fuse received marginal amounts of current during fusing. The silicide fuse provides this safety margin and allows the programmer to maximize the possibility of fusing by applying near DC condition to the fuses.

Fuse Characteristics

When a fast (less than 500 ns rise time) current pulse is applied to a fuse, the fuse voltage rises abruptly to a value approaching the level anticipated from calculations of the room temperature resistance. However, it quickly falls to a value of approximately two volts. This value is nearly independent of the applied current. During this period of time, typically, the fuse is molten. Very abruptly, the fuse current drops to zero indicating the separation of the platinum silicide into two distinct sections. Scanning Electron Microscope photographs of the resulting fuses (see Figure 6) indicate that the typical case is a sharp, clean separation in excess of a micron. This separation occurs in the center of the fuse because the bow-tie structure (see Figure 7) concentrates the energy density in the center away from the aluminum lines. The energy density in the center of the fuse is capable of creating temperatures substantially greater than required to melt the silicide. The very abrupt, high

Unprogrammed Fuse

Programmed Fuse

Figure 6.
power applied to the fuse melts the fuse center and results in a wicking of material on either side due to surface tension.

Reliability of Fuses Programmed Under Non-optimal Conditions

The marginally opened fuse has been studied in some detail even though it rarely occurs in practice. Under conditions where the fuse is purposely blown at much slower rates, it is possible for the fuse to assume a high impedance state which is sensed as an open fuse by the circuit. This occurs because the fuse cools before separation is achieved. Electrical and SEM studies of fuses blown with these characteristics indicate that a small conductive path of silicon remains of sufficiently high resistance to prevent appropriate power transfer required for complete opening on subsequent applications of power. Under these slow-blow conditions, the thermal conductivity of the silicon nitride pedestal on which the fuse rests, the silicon dioxode beneath that, and the silicon chip become factors because sufficient time exists for the heat flow to carry a significant amount of energy away from the fuse. This is extremely unusual in practice since it requires a rather narrow set of conditions. However, a number of PROMs have been specially programmed under these unusual conditions which can cause this type of fuse to occur. These devices have been life tested for over two thousand hours. No failures occurred in any of these circuits. It is clear from this study that partially opened platinum silicide fuses are stable. Although it is very rare to see such a fuse in a circuit which has been programmed under normal conditions, Advanced Micro Devices believes that such fuses do not represent a reliability hazard based on this study and the results of the other studies run on the programmable-
read-only memories. It should be noted that most manufacturers carefully specify the conditions under which their devices must be programmed in order to avoid reliability problems. Reliability data available on these devices must be assumed to have been generated using optimally programmed devices. Advanced Micro Devices believes that the study described here and four billion fuse hours of data from many production lots of PROMs demonstrate the capability of the platinum slicide fuse under a wide variety of conditions.

Figure 7. Bowtie Fuse Design.

FINAL TESTING OF ADVANCED MICRO DEVICES' MEMORIES

Wafer Level Tests

In addition to all the standard DC tests, Advanced Micro Devices performs a series of special tests to conform to the screening criteria of MIL-STD-883, Method 50043.3 and the 0.3\% AQL INT-STD-123. Also, AMD performs special tests to increase the confidence level of unique address selection and to demonstrate fusing capability on all columns and word drivers. To accomplish this, diodes are connected from the column lines and the word lines to special test pads which are accessible only during wafer probing. (See Figure 4). Using these diodes, Advanced Micro Devices confirms that each word driver is capable of sinking sufficient current to blow fuses, has appropriate saturation characteristics for AC performance, and has sufficient voltage breakdown to withstand fusing voltages. In addition, using special software, a sequence of tests dramatically increases the confidence of unique address selection on the address decoding. All darlingtons are checked to confirm that sufficient current drive is available to blow fuses from any column. Schottky diode array leakage is also checked to affirm that it is sufficiently low so as not to overload the pull down circuitry during the highvoltage application of fusing. Finally, high voltages are applied to the inputs and outputs to remove potentially weak devices before the PROM's are assembled.

Test Fusing

Each PROM has two additional word drivers connected to special test fuses. These test words are valuable in demonstrating beyond reasonable doubt that the device is capable of opening fuses in all columns. They also increase the confidence level in unique addressing. Furthermore, the test words serve as cor-
relatable measures of the access times that the user can expect from his devices after he has placed his own program in the memory. These test words are not visible to the user unless he applies special voltages to certain address pins. Figure 8 is a diagram of this input circuit. One hundred percent of the PROM devices shipped from Advanced Micro Devices have had $A C$ testing for access and enable times at high-and lowpower supply voltages to affirm their AC characteristics.
The result of this extensive testing at both the wafer and finished device level is a product with very high-programming yields and virtually guaranteed AC performance after the user places his program in the parts. Additionally, the high voltage tests provide an additional level of confidence that the oxide and junction integrity is excellent in each circuit and that the devices will be relatively insensitive to small transients common to programming equipment.

Figure 8. Special Input Circuit Used for Array Deselection and Test Word Check.

THE MANUFACTURING PROCESS

All products bearing the Advanced Micro Devices' logo will have screening meeting the requirements of the MIL-STD-883 Method 5004, for Class C microcircuits and INT-STD-123 Quality Levels. A summary of the standard processing is shown below. The presence of the Advanced Micro Devices' logo on
the package is confirmation that the screening has been completed. The only exceptions to this procedure are special products revised by contract for a customer's lesser requirements and distinctly marked for that customer alone. Standard burn-in option B is available on standard product which allows the customer to upgrade to Class B microcircuits.

Assembly and Environmental Standard Processing

1. Die Visual Inspection Method 2010 Condition B 2. Wire Bond Method 2010 Condition B rebonds less than 10 percent	
3. Internal Visual Method 2010 Condition B 4. Seal 5. High Temperature Storage Method 1008 Condition C 6. Temperature Cycle Method 1010 Condition C 7. Constant Acceleration Method 2001 Condition E 8. Visual Inspection Method 5004 9. Fine Leak Method 1014 Condition A or B 10. Gross Leak Method 1014 Condition C	Step 2

Electrical Test through Shipping Standard Processing

1. Initial Electrical Test	Method 5004 to device specifications.
2. Group A Electrical	INT-STD-123 quality levels.
3. Mark	Per customer order or Advanced Micro Devices catalog identification.
4. External Visual	Method 2009
5. Sample Quality Inspection	Physical or electrical verification of product identity.

Note: Steps 7-10 not required for solid packages.

RELIABILITY TESTING

Advanced Micro Devices has an ongoing reliability program to evaluate its bipolar memory products. Reliability testing conforms to MIL-STD-883 Method 1005 Conditions C or D. Examples of the test circuits used are shown in Figure 9. Data has. now been accumulated on the process described here in excess of ten thousand hours on some devices. Over forty billion fuse hours have been completed with no fuse oriented failures.

Advanced Micro Devices selects samples of its product stratified by product type at periodic intervals for this testing. Figure 10 is a tabulation of the results of the lots placed on test during this period of time. The data demonstrates a highly reliable process. The fuse has an immeasurably low contribution to the failure rate at this point in the reliability testing.

Condition C - Static
BPM-127

Condition D - Dynamic

Figure 9. Burn-In Circuits For Conditions C \& D-27S20.

BIPOLAR MEMORY RELIABILITY SUMMARY

Product	Production Lots	Units Tested	Total Unit Hours (thousands)	Total Fuse Hours (billions)	Unit Failures	Fuse Related Failures	Unit Failure Rate @ 60\% Confidence \%/1000 hrs at $125^{\circ} \mathrm{C}$	Unit Failure Rate* @ 60\% Confidence \%/1000 hrs at $70^{\circ} \mathrm{C}$
$\begin{aligned} & 27 \mathrm{~S} 18 / 19 \\ & \text { (256 bitPROM) } \end{aligned}$	5	491	982	.251B	0	0	0.10	0.0010
$\begin{aligned} & 27 \mathrm{~S} 20 / 21 \\ & (1 \mathrm{~K} \text { bit PROM) } \end{aligned}$	16	1321	2207	2.260B	2**	0	0.01	0.0001
$\begin{aligned} & 27 \mathrm{~S} 12 / 13 \\ & \text { (2K bit PROM) } \end{aligned}$	11	571	1840	3.768B	0	0	0.05	0.0005
$\begin{array}{\|l\|} 27 S 15 \\ 27 S 27 \\ 27 S 28 / 29 \\ 27 S 32 / 33 \\ \text { (4K bit PROM) } \end{array}$	24	1870	1408	5.767B	0	0	0.07	0.0007
27S180/181 (8K bit PROM)	12	463	926	7.586B	0	0	0.11	0.0010
$\begin{aligned} & 27 S 184 / 185 \\ & \text { IMOX } \\ & \text { (8K bit PROM) } \end{aligned}$	15	556	1112	9.109B	0	0	0.09	0.0008
$\begin{aligned} & \begin{array}{l} 27 S 190 / 191 \\ \text { IMOX } \\ \text { (16K bit PROM) } \end{array} \end{aligned}$	2	69	795	13.025B	0	0	0.12	0.0011
Totals for PROM products	85	5341	9270	41.766B	2**	0	0.02	0.0002

*Assuming on activation energy of 1.0 eV .
${ }^{* *}$ Oxide failure.
Figure 10.

SUMMARY

The Advanced Micro Devices' bipolar memory process has been described with particular emphasis on programmable-read-only memories. An advanced form of the low-power Schottky process is used in conjunction with a highly reliable
and stable platinum silicide fuse. Extensive testing and screening have been used to assure that the products will meet all specification after the user has placed his program into the device and that the circuit reliability will be outstanding.

Guide to the Analysis of Programming Problems

Advanced Micro Devices Bipolar Memory Product Engineering

INTRODUCTION

Advanced Micro Devices' Generic Series of Programmable Read Only Memory (PROM) circuits have been designed to provide extremely high programming yields. Available programming currents are over designed by a factor of four and special circuitry accessible only during testing is incorporated into each product to eliminate ordinarily difficult to detect shorts and opens in the array and decoders. As a result, unique decoding and very large fusing currents are virtually assured to the user. AMD PROMs have test fuses programmed prior to shipment as a further guarantee. The results of such extensive testing and design considerations are programming yields consistently in the 98% to 99.5% range.

Key to the achievement of such yields is a programmer properly calibrated to the AMD specification with good contactors, "clean" electrical wave forms and properly functioning subcircuits. In the event that your programming yields fall below 98%, you should investigate the characteristics of the failed devices to find a prominent failure mode, then use the attached information as a guide to resolving the problem. Simple problems can be very costly if not detected and corrected.
Should you continue to have trouble optimizing your programming yield, contact your AMD representative or local programmer manufacturer representative.

Primary Symptom

I) Units fail to program all desired bits
II) Over-Programmed Devices

Secondary Symptom

A) Binary blocks of missing data
B) Random bits of missing data
C) All data associated with a single output missing
D) No data change
A) One output continuously at a Logic "1"
B) All outputs continuously at a Logic " 1 "

Possible Causes

1) Address driver output which remains continuously low or continuously high.
2) Address driver with a "low" voltage greater than 0.5 V or a "high" voltage less than 2.4 V .
3) Poor, intermittent or no electrical contact to one or more address input pins.

Any of the above may result in over programming half the array and not programming the other half.

1) Address driver with a "low" voltage greater than 0.5 V or a "high" voltage less than 2.4 V .
2) Poor electrical contact to adaress, chip enable and output pins.
3) Excessive transient noise on V_{CC}, output pin ($>20.5 \mathrm{~V}$), or ground pins. Check with a high speed storage oscilloscope for peak values during programming. Use transient suppression networks where appropriate.
4) Programmer does not comply with AMD Programming Specification. (See Programming Parameters.)
Examples: - Output voltage during programming less than 19.5 V

- V_{CC} during programming less than 5.0 V
- CS voltage during programming less than 14.5 V

1) Poor or no electrical contact to that output pin.
2) Defective current switch in programmer.
3) Wrong device or programming socket.
4) Programmer does not comply with AMD's Programming Specifications. (See Programming Parameters.)
Examples: - Output voltage during programming less than 19.5 V

- $V_{C C}$ during programming less than 5.0 V
- CS voltage during programming less than 14.5 V

1) Programmer does not comply with AMD's Programming Specifications. (See Programming Parameters.)
Examples: - Output voltage during programming greater than 20.5 V

- Programmer timing incorrect

2) Open outputs can appear to be programmed to Logic "1" with the presence of a pullup resistor even though the device has not actually been programmed.
3) Excessive voltage transients on output lines during programming. Be sure appropriate transient suppression networks are placed on the outputs. (See Figure 1.)
4) $\mathrm{No} \mathrm{V}_{\mathrm{CC}}$ applied to device.
5) No ground applied to device.
6) Incorrect device type.
7) Incorrect programming socket.
8) Excessive voltage transients on output lines. Use transient suppression network shown in Figure 1.

DEFINITIONS

Fuse

- Conductive Platinum-Silicide link used as a memory element in Advanced Micro Devices' PROM circuits.
Unprogrammed Bit
- A conductive fuse.

Programmed Bit

- A nonconductive fuse, that is one which has been opened.

Output Low (Logic " 0 ")

- An output condition created by an unprogrammed bit.

Output High (Logic " 1 ")

- An output condition created by a programmed bit.

Failure to Program

- A device failure in which a fuse selected to be opened failed to open during the fusing operation.

Over Programmed

- A device failure in which a fuse which was not selected to open nevertheless opened during the fusing operation.

Address Driver

- The voltage source which drives an individual address pin in the PROM. This source is part of the programmer and drives the address pin with " 0 "s (0 to .45 V) and " 1 "s (2.4 to 5.5 V) depending on instructions from the programmer control circuitry. There is a separate address driver for every PROM address pin.

Programmer

- A system capable of providing the appropriate array of signals to a PROM circuit to cause certain user controlled bits to be programmed (i.e., fuses opened) in the device. As a minimum it consists of a memory containing the pattern to be programmed, control circuitry to sequence the addressing and fusing control pulses, power supplies, and address drivers.

TRANSIENT SUPPRESSION NETWORK

Notes: 1. Clamp diodes should be connected to each output as close as physically possible to the device pin.
2. $V_{C C}$ should be decoupled at the device pin using $.01 \mu \mathrm{~F} / / .1 \mu \mathrm{~F}$ capacitors.
3. AMD recommends that all address pins be decoupled using $.001 \mu \mathrm{~F}$ capacitors.

Figure 1.

PROM Programming Equipment Guide

Source and Location	Data I/O 10525 Willows Redmond, WA	Rd. N.E. 98052	Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 93940	Kontron Electronic, Inc. 630 Price Avenue Redwood City, CA 94063	Digelec, Inc. 7335 E. Acoma Dr. Scottsdale, AZ 85260		Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7 and 9 Systems 17, 19, 29 and 100		M900, M900B, M910, M920 and M980	IM1010	MPP-80	UPP.801	UPP-803	PPX
AMD Generic Bipolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \\ & 919-1286-1 \\ & \text { RevH } \end{aligned}$	Unipak Rev 003 (Family and Pin Code)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{aligned} & \text { PM } 2000 \\ & \text { Code } 90 \end{aligned}$
Socket Adapters Am27S18/19 Am27LS18/19	and Configura $715-1407-1$	1602	PA 16-6 and 32×8 (L)	IM 32×8-16-AMD	SA 3-1832 x $8 / 16$	DIS-156 AM	DA 22	AM 110-2
Am27S20/21	715-1408-1	1601	PA 16-5 and 256×4 (L)	IM 256×4-16-AMD	SA 4-2 B $256 \times 4 / 16$	DIS-133 AM	DA 21	AM. 130-2
Am27S12/13	715-1408-2	1603	PA 16-5 and 512×4 (L)	IM 512×4-16-AMD	SA 4-1 B $512 \times 4 / 16$	DIS-134 AM	DA 21	AM 130-3
Am27S 15	715-1411-1	-	PA 24-14 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8 \text { - } 24- \\ & \text { 27S } 15-A M D \end{aligned}$	SA 17-3 B $512 \times 8 / 24$	DIS-165 AM	DA 33	-
Am27S25	715-1617	6265	PA 24-16 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8-24- \\ & 27 \text { S25-AMD } \end{aligned}$	SA 31-2B512x8/24	DIS-213 AM	DA 31	AM 190-2
Am27S27	715-1412-2	-	PA 22-4 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8-22- \\ & 27 S 27-A M D \end{aligned}$	SA 18 B $512 \times 8 / 22$	DIS-168 AM	DA 28	-
Am27S28/29	715-1413	1609	PA 20-4 and 512×8 (L)	IM 512×8-20-AMD	SA6B512×8/20	DIS-158 AM	DA 34	AM 120-3
Am27S30/31	715-1545	1636	PA 24-13 and 512×8 (L)	IM 512×8-24-AMD	SA 22-6 B 512 x 8/24	DIS-135 AM	DA 29	-
Am27S32/33	715-1414	1638	PA 18-6 and 1024×4 (L)	IM 1024×4-18-AMD	SA 24 B $1024 \times 4 / 18$	DIS-136 AM	DA 38	AM 170-2
$\begin{aligned} & \text { Am27S35 } \\ & \text { Am27S37 } \end{aligned}$	715-1723	6266	PA 24-18 and 1025×8 (L)	$\begin{aligned} & \text { IM } 1024 \times 8-27 S 35 / \\ & 37-A M D \end{aligned}$	$\begin{aligned} & \text { SA 31-1 B } \\ & 1024 \times 8 / 24 \end{aligned}$	DIS-218 AM	DA 65	AM 190-3
Am27S180/181 Am27PS181	715-1545-2	1637	PA 24-13 and 1024×8 (L)	IM $1024 \times 8.24-A M D$	$\begin{array}{\|l\|} \hline \text { SA } 22-7 \text { B } \\ 1024 \times 8 / 24 \end{array}$	DIS-137 AM	DA 29	AM 100-6
Am27S280/281 Am27PS281		1637	-	$\begin{array}{\|l\|} \hline \text { IM } 1024 \times 8-24- \\ \text { 27S280/281-AMD } \\ \hline \end{array}$	-	DIS-214 AM	DA 60	-
Am27S184/185 Am27LS184/185 Am27PS185	715-1616	1606	$\begin{aligned} & \text { PA } 18-8 \text { and } \\ & 2048 \times 4(\mathrm{~L}) \end{aligned}$	IM 2048×4-18-AMD	$\begin{aligned} & \text { SA 4-4 B } \\ & 2048 \times 4 / 18 \end{aligned}$	DIS-211 AM	DA 23	AM 140-3
Am27S190/191 Am27PS191	715-1688-1	1668	$\begin{aligned} & \text { PA } 24-17 \text { and } \\ & 2048 \times 8(\mathrm{~L}) \end{aligned}$	IM 2048×8-24-AMD	$\begin{aligned} & \text { SA } 22-10 B \\ & 2048 \times 8 / 24 \end{aligned}$	DIS-151 AM	DA 61	AM 100-5
Am27S290/291 Am27PS291	715-1688-2	1668	$\begin{aligned} & \text { PA } 24-28 \text { and } \\ & 2048 \times 8(\mathrm{~L}) \end{aligned}$	$\begin{array}{\|l\|} \text { IM } 2048 \times 8-24- \\ 27 S 290 / 291-A M D \end{array}$	SA 29 B $2048 \times 8 / 24$	DIS-215 AM	DA 62	AM 190-7
Am27S40/41 Am27PS41	715-1282	-	$\begin{aligned} & \text { PA } 20-9 \text { and } \\ & 4096 \times 4(\mathrm{~L}) \end{aligned}$	IM 4096×4-20-AMD	SA 30 B $4096 \times 4 / 20$	DIS-216 AM	DA 63	AM 120-6
Am27S45 Am27S47	715-1660	-	-	$\begin{array}{\|l\|} \text { IM } 2048 \times 8-24- \\ 27 S 45 / 47-A M D \end{array}$	$\begin{aligned} & \text { SA } 31 \text { B } \\ & 2048 \times 8 / 24 \end{aligned}$	-	DA 64	AM 170-3
Am27S43	715-1698-002	-	-	IM 4096×8-24-AMD	-	-	-	-

```
INDEX SECTION
    NUMERICAL DEVICE INDEX
    FUNCTIONAL INDEX AND SELECTION GUIDE
    INDUSTRY CROSS REFERENCE
    APPLICATION NOTE
```

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
 PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE
PRODUCT ASSURANCE
PACKAGE OUTLINES
SALES OFFICES

Bipolar Random Access Memories (RAM) Index

TTLAm27S02A/03A SeriesAm29702/Am29703
Am27LS02/03Am3101-1/54/7489-1 Series
Am3101A/54S/74S289 Series
Am31L01A/31L01Am27S06A/07A SeriesAm29700/Am29701
Am27LS06/07
Am27LS00A/01A SeriesAm29720/Am29721
Am27LS00-1A/01-1A Series
Am93412A/422A Series
Am93L412A/L422A Series
Am93415A/425A Series
ECL
Am10415SA Series
Am100415A/415
Am10474SA Series
Am100474SA Series
Am10470SA Series
Schottky 64-Bit Bipolar RAM 3-1
Schottky 64-Bit RAM 3-6
Low-Power Schottky 64-Bit Bipolar RAM 3-7
Schottky 64-Bit Write Transparent Bipolar RAM 3-11
Schottky 64-Bit Bipolar RAM 3-16
64-Bit Write Transparent Bipolar RAM 3-21
Noninverting Schottky 64-Bit Bipolar RAM 3-26
Noninverting Schottky 64-Bit RAM 3-31
Low-Power, Noninverting 64-Bit Bipolar RAM 3-32
Low-Power Schottky 256-Bit Bipolar RAM 3-36
Low-Power Schottky 256-Bit Random Access Memories 3-41
Low-Power Schottky (Noninverting) 256-Bit Bipolar RAM 3-42
TTL 1024-Bit Bipolar IMOX RAM 3-47
Low-Power TTL 1024-Bit Bipolar IMOX RAM 3-52
TTL 1024-Bit Bipolar IMOX RAM 3-57
ECL 1024×1 IMOX Bipolar RAM 3-62
ECL 1024×1 IMOX II Bipolar RAM 3-69
ECL 1024×4 IMOX Bipolar RAM 3-74
ECL 1024×4 IMOX Bipolar RAM 3-75
ECL 4096×1 IMOX Bipolar RAM 3-76
ECL 4096×1 IMOX Bipolar RAM 3-83

Am27S02A • Am27S03A Am27S02 • Am27S03

 Schottky 64-Bit Bipolar RAM

 Schottky 64-Bit Bipolar RAM}

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low-power Schottky RAMs
- Ultra-Fast "A" Version: Address access time 25ns
- Standard Version: Address access time 35ns
- Low Power: ICc typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with open collector outputs (Am27S02/02A) or with three-state outputs (Am27S03/03A)
- Pin compatible replacements for 3101A, 74S289, 93403, 6560 (use Am27S02A/02); for 74S189, 6561, DM8599 (use Am27S03A/03)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27S02/02A and Am27S03/03A are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and open collector OR tieable outputs (Am27S02/02A) or three-state outputs (Am27S03/03A). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.
An active LOW Write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$.

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

BPM-238

Am27S02A/S03A/S02/S03
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $\mathrm{VCC}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	VCC	Ambient Temperature
COM L	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Input			Data Output Status	
$\overline{\mathbf{C S}}$	$\overline{\mathrm{WE}}$	Function	$\overline{\overline{\mathrm{O}}_{\mathbf{3}}}$	

DC CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions				Min	Typ (Note 1)	Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$		COM'L	2.4	3.2		Volts
			$1 \mathrm{IOH}=-2.0 \mathrm{~mA}$		MIL				
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$				0.350	0.45	Volts
			$\mathrm{IOL}=20 \mathrm{~mA}$				0.380	0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 3)				2.0			Volts
VIL	Input LOW Level	Guaranteed Input Logical LOW Voltage for All input (Note 3)						0.8	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=\mathrm{MAX}, \\ & V_{\mathrm{IN}}=0.40 \mathrm{~V} \end{aligned}$	$\overline{W E}, D_{0}-D_{3}, A_{0}-A_{3}$				-0.015	-0.25	mA
			$\overline{\mathrm{CS}}$				-0.030	-0.25	
${ }^{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=$ MAX, $V_{\text {IN }}=2.4 \mathrm{~V}$					0.0	10	$\mu \mathrm{A}$
IsC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)				-20	-45	-90	mA
${ }^{\text {I Cc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs }=\text { GND } \\ & V_{C C}=\text { MAX } \end{aligned}$		COM'L			75	100	mA
				MIL			75	105	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$					-0.850	-1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{I L} \\ & V_{O U T}=2.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { Am27S } \\ & \text { Am27S } \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} / 03 \mathrm{~A} \\ & \hline 2 / 03 \end{aligned}$		0	40	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{\mathrm{IH}} \text { or } V_{\overline{W E}}=V_{\mathrm{IL}} \\ & V_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		(Note 2)		-40	0		$\mu \mathrm{A}$.

Note 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3, 4, and 5

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
3. $\operatorname{tPLH}^{(A)}$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable $(\overline{\mathrm{WE}})$ or Chip Select $(\overline{\mathrm{CS}})$ inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}$), tPLZ $(\overline{\mathrm{WE}})$, tPLZ $(\overline{\mathrm{CS}})$ ${ }^{\text {PPZL }}(\overline{W E})$ and $t_{P Z L}(\overline{C S})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
5. For 3 -state output, $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$ and $\mathrm{tPZH}^{(\overline{\mathrm{CS}})}$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{tpzL}^{(\overline{\mathrm{CS}})}$) are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $t_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{P L Z}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

CONNECTION DIAGRAMS

Top Views

DIP
Chip-Pak ${ }^{\text {TM }}$

Note: Pin 1 is marked for orientation.

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27S03A/03) while the write enable is ($\overline{\mathrm{WE}}$) LOW.

Figure 1

Switching delays from address and chip select inputs to the data output. For the Am27S03N03 disabled output is "OFF", represented by a single center line. For the Am27S02A/02, a disabled output is HIGH.

Figure 2

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 3
Figure 4

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	3-State			
25ns	AM27S02APC AM27S02APCB AM27S02ADC AM27S02ADCB AM27SO2ALC AM27S02ALCB	AM27S03APC AM27S03APCB AM27S03ADC AM27S03ADCB AM27S03ALC AM27S03ALCB	$\begin{aligned} & \hline P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
30 ns	AM27S02ADM AM27S02ADMB AM27S02AFM AM27S02AFMB AM27S02ALM AM27S02ALMB	AM27S03ADM AM27S03ADMB AM27S03AFM AM27S03AFMB AM27S03ALM AM27S03ALMB	$\mathrm{D}-16-1$ $\mathrm{D}-16-1$ $\mathrm{~F}-16-1$ $\mathrm{~F}-16-1$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
35ns	AM27S02PC AM27S02PCB AM27S02DC AM27S02DCB AM27S02LC AM27S02LCB	AM27S03PC AM27S03PCB AM27S03DC AM27S03DCB AM27S03LC AM27S03LCB	$\begin{aligned} & \text { P-16-1 } \\ & \text { P-16-1 } \\ & \text { D-16-1 } \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S02DM AM27S02DMB AM27S02FM AM27S02FMB AM27S02LM AM27S02LMB	AM27S03DM AM27S03DMB AM27S03FM AM27S03FMB AM27S03LM AM27S03LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See operating range table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29702•Am29703
 Schottky 64-Bit RAM

Refer to
 Am27S02•Am27S03

Bipolar Memory RAM Product Specification

The Am29702 is replaced by the Am27S02 (open collector).
The Am29703 is replaced by the Am27S03 (three-state).

Am27LS02•Am27LS03

Low-Power Schottky 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low-power Schottky RAMs
- Ultra-low power: Icc typically 30 mA
- High speed: Address access time typically 40ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS03) or with open collector outputs (Am27LS02)
- Pin compatible replacements for DM74L89A, DM74LS289, L6560, 7489 (use Am27LS02), for DM86L99, DM74LS189, (use Am27LS03).
- 100\% MIL-STD-883C assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27LS02 and Am27LS03 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications where power is at a premium. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (CS) input and open collector OR tieable outputs (Am27LS02) or three-state outputs (Am27LSO3). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74LS138.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write lines are LOW, the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$.
During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

Note: Pin 1 is marked for orientation.

Am27LS02/LS03
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	VCC	Ambient Temperature
COM'	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	$\begin{gathered} \text { DC } \\ \text { Test Conditions } \end{gathered}$			Min	Typ (Note 1)	Max	Units
V_{OH} (Am27LS03 only)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}=-5.2 \mathrm{~mA}$	COM'L	2.4	3.6		Volts
			$\mathrm{IOH}=-2.0 \mathrm{~mA}$	MIL				
$\mathrm{VOL}_{\text {L }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{OL}=8.0 \mathrm{~mA}$			0.280	0.45	Volts
			$\mathrm{IOL}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.310	0.5	
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=0.40 \mathrm{~V} \end{aligned}$	$\overline{W E}, D_{0}-\mathrm{D}_{3}, A_{0}-\mathrm{A}_{3}$			-0.015	-0.250	mA
			$\overline{\bar{C} S}$			-0.030	-0.250	
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$				0	10	$\mu \mathrm{A}$
Isc (Am27LS03 only)	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			-20	-45	-90	mA
ICC	Power Supply Current	All inputs = GND		COM'L		30	35	mA
		$V_{C C}=$ MAX		MIL		30	38	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-0.850	-1.2	Volts
EX	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{I L} \\ & V_{\text {OUT }}=2.4 \mathrm{~V} \end{aligned}$	Am27LS02/03			0	40	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{I L} \\ & V_{O U T}=0.4 V, V_{C C}=M A X \end{aligned}$	Am27LS03		-40	0		$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots and undershoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

FUNCTION TABLE

Input		Function	Data Output Status $\overline{\mathrm{O}}_{0-3}$
$\overline{\mathrm{CS}}$	WE		
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output Disabled

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters			AC Test Conditions	Typ (Note 1)	COM'L		MIL		Units
	Description				Min	Max	Min	Max	
${ }^{\text {PLH }}$ (A)	Delay from Address to Output	See Fig. 2	Figure 3 Test Load and Figure 4 for Input Waveform Characteristics See Notes 3 and 4	40		55		65	ns
$t_{\text {PHL }}(\mathrm{A})$				0		S		6	ns
${ }^{\text {t }}{ }^{\text {PZH }}(\overline{\mathrm{CS}})$	Delay from Chip Select to Active Output and Correct Data	See Fig. 2		18		30		35	ns
${ }^{1} \mathrm{PZL}(\overline{\mathrm{CS}})$				18		30		3	ns
$t_{\text {PZH }}(\overline{W E})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery - See Note 2)	See Fig. 1		18		30		35	ns
$t_{\text {PZL }}(\overline{W E})$									
$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Setup Time Address (Prior to Initiation of Write)	See Fig. 1		-17	0		0		ns
$t_{h}(A)$	Hold Time Address (After Termination of Write)	See Fig. 1		-6	0		0		ns
t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1		16	45		55		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write)	See Fig. 1		-8	0		0		ns
$t_{\text {pw }}(\overline{W E})$	Min Write Enable Pulse Width to Insure Write	See Fig. 1		25	45		55		ns
$t^{\text {PHZ }}(\overline{\mathrm{CS}})$	Delay from Chip Select to Inactive Output (HI-Z)	See Fig. 2		18		30		35	ns
$t_{\text {PLZ }}(\overline{\mathrm{CS}})$									
$t_{\text {PLZ }}(\overline{W E})$	Delay from Write Enable (LOW) to Inactive Output (HI-Z)	See Fig. 1		18		30		35	ns
$t_{\text {PHZ }}(\overline{W E})$									

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch)
3. For open collector Am27LS02, all delays from Write Enable ($\overline{\mathrm{WE}}$) or Chip Select ($\overline{\mathrm{CE}}$) inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}$), $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}})$, $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}})$, $t_{P Z L}(\overline{W E})$ and $t_{P Z L}(\overline{C S})$) are measured with S_{1} closed and $C_{L}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
4. For 3-state output Am27LS03, $\mathrm{t}_{\mathrm{PZH}}(\mathrm{WE})$ and $\mathrm{t}_{\mathrm{PZH}}(\mathrm{CS})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PLL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $V_{O H}-500 \mathrm{mV}$ level on the output. $t_{P L Z}(\overline{W E})$ and $t_{P L Z}(\overline{C S})$ are measured with S_{1} closed $C_{L} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

Write Cycle Timing. The cycle is initiated by an address change. After $\mathrm{t}_{\mathrm{s}}(\mathrm{A}) \mathrm{min}$, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27LSO3) while the write enable is LOW or the chip select is HIGH.

Figure 1.

Switching delays from address and chip select inputs to the data output. For the Am27LS03, disabled output is "OFF", represented by a single center line. For the Am27LS02, a disabled output is HIGH.

Figure 2.

AC TEST LOAD AND WAVEFORM

Figure 4.

See Notes 2, 3 and 4 of Switching Characteristics.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
55ns	AM27LS02PC	AM27LS03PC	P-16-1	C-1	
	AM27LS02PCB	AM27LS03PCB	P-16-1	B-1	
	AM27LS02DC	AM27LS03DC	D-16-1	C-1	COM'L
	AM27LS02DCB	AM27LS03DCB	D-16-1	B-1	
	AM27LS02LC	AM27LS03LC	Consult Factory	C-1	
	AM27LS02LCB	AM27LS03LCB	Consult Factory	B-1	
65 ns	AM27LS02DM	AM27LS03DM	D-16-1	C-3	MIL
	AM27LS02DMB	AM27LS03DMB	D-16-1	B-3	
	AM27LS02FM	AM27LS03FM	F-16-1	C-3	
	AM27LS02FMB	AM27LS03FMB	F-16-1	B-3	
	AM27LS02LM	AM27LS03LM	Consult Factory	C-1	
	AM27LS02LMB	AM27LS03LMB	Consult Factory	B-1	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

Am3101-1 • Am54/7489-1 Am3101•Am54/7489

Schottky 64-Bit Write Transparent Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low-power write transparent Schottky RAMs
- Fast "-1" Version: Address access time 35ns
- Standard Version: Address access time 50ns
- Low Power: Icc typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Available with open collector outputs
- Pin compatible replacements for 6560,93403
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am3101-1/3101 and Am54/7489-1/Am54/7489 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.
An active LOW Write line (WE) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word. During the write cycle, the outputs are active and invert the four data inputs, D_{0} to D_{3}.
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$.
When the chip select line is HIGH, the four outputs of the memory go to an inactive high impedance state.

Am3101-1/54/7489-1/3101/54/7489
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V CC max
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	VCC	Ambient Temperature
COML	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Input		Function	Data Output Status$\bar{O}_{0}-\bar{O}_{3}$
$\overline{\text { CS }}$	WE		
Low	Low	Write	$\mathrm{D}_{0}-\mathrm{D}_{3}$ (Inverted)
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output and Write Disabled

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Param	Description	Test Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} . \end{aligned}$	$\mathrm{l} \mathrm{OL}=16 \mathrm{~mA}$		0.350	0.45	Volts
			$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.380	0.5	
V_{IH}	Input HIGH Level	Guaranteed input Logical HIGH Voltage for All Inputs (Note 2)		2.0			Volts
VIL	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
IIL.	Input LOW Current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=0.40 \mathrm{~V} \end{aligned}$	$\overline{W E}, D_{0}-D_{3}, A_{0}-A_{3}$		-0.015	-0.25	mA
			$\overline{\overline{C S}}$		-0.030	-0.25	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			0.0	10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=M A X \end{aligned}$	COM'L		75	100	mA
			MIL		75	105	
V_{CL}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-0.850	-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{\mathrm{IH}} \\ & V_{\mathrm{OUT}}=2.4 \mathrm{~V} \\ & V_{\overline{\mathrm{CS}}}=V_{\mathrm{IH}} \text { or } V_{\overline{W E}}=V_{\mathrm{IL}} \end{aligned}$			0	40	$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

Am3101-1/54/7489-1/3101/54/7489
SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3 and 4

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is conditioned to data in (inverted) during write to insure correct data is present on all outputs during write and after write is terminated.
3. $\mathrm{t}_{\mathrm{PLH}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}})$ or Chip Select ($\overline{\mathrm{CS}}$) inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}$), $\mathrm{t}_{\text {PLZ }}(\overline{\mathrm{WE}}), \mathrm{t}_{\text {PLZ }}(\overline{\mathrm{CS}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $t_{\text {PZL }}(\overline{C S})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .

CONNECTION DIAGRAMS

Top Views

Chip-Pak ${ }^{\text {TM }}$

BPM-245

Note: Pin 1 is marked for orientation.

SWITCHING WAVEFORMS

Write Cycle Timing. The cycle is initiated by an address change. After $t_{S}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive while the write enable is (WE) LOW.

Figure 1

BPM-247
Switching delays from address and chip select inputs to the data output. A disabled output is HIGH.
Figure 2

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

INPUT PULSES

BPM-249
Figure 4

ORDERING INFORMATION

	Order Code	Package	Screening	Operating
Speed Selection	Open Collector	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
35ns	AM3101-1PC	$\mathrm{P}-16 \mathrm{l}$	$\mathrm{C}-1$	
	AM7489-1N	P-16-1	C-1	
	AM3101-1PCB	P-16-1	B-1	
	AM7489-1NB	P-16-1	B-1	
	AM3101-1DC	D-16-1	C-1	
	AM7489-1J	D-16-1	C-1	COM'L
	AM3101-1DCB	D-16-1	B-1	COML
	AM7489-1JB	D-16-1	B-1	
	AM3101-1LC	Consult Factory	C-1	
	AM7489-1LC	Consult Factory	C-1	
	AM3101-1LCB	Consult Factory	B-1	
	AM7489-1LCB	Consult Factory	B-1	
50 ns	AM3101-1DM	D-16-1	C-3	
	AM5489-1J	D-16-1	C-3	
	AM3101-1DMB	D-16-1	B-3	
	AM5489-1JB	D-16-1	B-3	
	AM3101-1FM	F-16-1	C-3	
	AM5489-1W	F-16-1	C-3	MIL
	AM3101-1FMB	F-16-1	B-3	MIL
	AM5489-1WB	F-16-1	B-3	
	AM3101-1LM	Consult Factory	C-3	
	AM5489-1LM	Consult Factory	C-3	
	AM3101-1LMB	Consult Factory	B-3	
	AM5489-1LMB	Consult Factory	B-3	
50ns	AM3101PC	P-16-1	C-1	
	AM7489N	P-16-1	C-1	
	AM3101PCB	P-16-1	B-1	
	AM7489NB	P-16-1	B-1	
	AM3101DC	D-16-1	C-1	
	AM7489J	D-16-1	C-1	COM'L
	AM3101DCB	D-16-1	B-1	COML
	AM7489JB	D-16-1	B-1	
	AM3101LC	Consult Factory	C-1	
	AM7489LC	Consult Factory	C-1	
	AM3101LCB	Consult Factory	B-1	
	AM7489LCB	Consult Factory	B-1	
60 ns	AM3101DM	D-16-1	C-3	MIL
	AM5489J	D-16-1	C-3	
	AM3101DMB	D-16-1	B-3	
	AM5489JB	D-16-1	B-3	
	AM3101FM	F-16-1	C-3	
	Am5489W	F-16-1	C-3	
	AM3101FMB	F-16-1	B-3	
	AM5489WB	F-16-1	B-3	
	AM3101LM	Consult Factory	C-3	
	AM5489LM	Consult Factory	C-3	
	AM3101LMB	Consult Factory	B-3	
	AM5489LMB	Consult Factory	B-3	

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.
Pad layout and bonding diagram available upon request.

Am3101A • Am54S/74S289/ Am54S/74S189

Schottky 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit Low power Schottky RAMs
- Ultra-High speed: Address Access time 35ns
- Low Power: Icc typically 75mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with open collector outputs (Am54S/74S289/Am3101A) or with three-state outputs (Am54S/74S189)
- Pin compatible replacements for Am27S02,93403, 6560 (use Am54S/74S289/Am3101A); for Am27S03, 6561, DM8599 (use Am54S/74S189)
- 100% MIL-STD-883C assurance testing
- Guararteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am3101A/Am54S/74S289 and Am54S/74S189 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and open collector OR tieable outputs (Am3101A/Am54S/74S289) or three-state outputs (Am54S/74S189). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.
An active LOW Write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$.
During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to VCC max
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	VCC	Ambient Temperature
COML	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Input		Function	Data Output Status$\bar{o}_{0}-\bar{o}_{3}$
CS	WE		
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Inverted)
High	Don't Care	Deselect	Output Disabled

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameter	Description	Test Conditions			$\begin{array}{cc} & \text { Typ } \\ \text { (Note 1) } \end{array}$		Max	Units
$\mathrm{VOH}_{\mathrm{OH}}$ (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$	COM'L	2.4	3.2		Volts
			$\mathrm{IOH}=-2.0 \mathrm{~mA}$	MIL				
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}^{\mathrm{OL}}=16 \mathrm{~mA}$			0.350	0.45	Volts
			$\mathrm{IOL}^{2}=20 \mathrm{~mA}$			0.380	0.5	
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=0.40 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{WE}}, \mathrm{D}_{0}-\mathrm{D}_{3}, A_{0}-A_{3}$			-0.015	-0.250	mA
			$\overline{\mathrm{CS}}$			-0.030	-0.250	
I_{IH}	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.4 \mathrm{~V}$				0.0	10	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$			-20	-45	-90	mA
$I_{\text {cc }}$	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=M A X \end{aligned}$	COM'L			75	100	mA
			MIL			75	105	
V_{CL}	Input Clamp Voitage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=-18 \mathrm{~mA}$				-0.850	-1.2	Volts
${ }^{\text {I Cex }}$	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{\mathrm{IH}} \text { or } V_{\overline{\mathrm{WE}}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=2.4 \mathrm{~V} \end{aligned}$				0	40	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{\mathrm{IH}} \text { or } V_{\overline{W E}}=V_{\mathrm{IL}} \\ & V_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	(Note 2)		-40	0		$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

Am3101A/54S/74S289/54S/74S189
SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 1 and 2 and Notes 3, 4, 5

Parameters	Description		Typ	COM'L		MIL		Units
			(Note 1)	Min	Max	Min	Max	
$\mathrm{tPLH}^{(A)}$	Delay from Address to Output	See Fig. 2	22		35		50	ns
${ }_{\text {tPHL }}(\mathrm{A})$								
$\mathrm{t}_{\text {PZH }}(\overline{\mathrm{CS}})$	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 2	14		17		25	ns
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{CS}})$								
$t_{\text {PZH }}(\overline{\mathrm{WE}})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery See Note 2)	See Fig. 1	19		35		40	ns
$t_{\text {pzL }}(\overline{W E})$								
$t_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	See. Fig. 1	-6.0	0		0		ns
$t_{n}(\mathrm{~A})$	Hold Time Address (After Termination of Write)	See Fig. 1	-2.5	0		0		ns
t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	18	25		25		ns
t_{h} (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-4.0	0		0		ns
${ }^{\text {pw }}$ ($\overline{\text { WE }}$)	MIN Write Enable Pulse Width to Insure Write	See Fig. 1	18	25		25		ns
$\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$	Delay from Chip Select (HIGH) to Inactive Output (HI-Z)	See Fig. 2	13		17		25	ns
$t_{\text {PLZ }}(\overline{C S})$								
$t_{\text {PLZ }}(\overline{\mathrm{WE} E})$	Delay from Write Enable (LOW) to Inactive Output (HI-Z)	See Fig. 1	15.		25		35	ns
$\mathrm{t}_{\mathrm{PHz}}(\overline{\mathrm{WE}})$								

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
3. $t_{P L H}(A)$ and $t_{P H L}(A)$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable $(\overline{\mathrm{WE}})$ or Chip Select $(\overline{\mathrm{CS}})$ inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}, \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $t_{P Z L}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
5. For three-state output, $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{CS}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $V_{O H}-500 \mathrm{mV}$ level on the output. $t_{P L Z}(\overline{W E})$ and $t_{P L Z}(\overline{C S})$ are measured with S_{1} closed and $C_{L} \leqslant 5 p F$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

CONNECTION DIAGRAMS

Top Views

BPM-252
Note: Pin 1 is marked for orientation.

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am54S/74S189) while the write enable is ($\overline{\mathrm{WE}}$) LOW.

Figure 1

Switching delays from address and chip select inputs to the data output. For the Am54S/74S189 disabled output is "OFF", represented by a single center line. For the Am3101A/Am54S/74S289, a disabled output is HIGH.

BPM-254

Figure 2

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 3

INPUT PULSES

BPM-256
Figure 4

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM74S289N	AM74S189N	P-16-1	C-1	
	AM3101APC		P-16-1	C-1	
	AM74S289NB	AM74S189NB	P-16-1	B-1	
	AM3101APCB		P-16-1	B-1	
	AM74S289J	AM74S189J	D-16-1	C-1	
	AM3101ADC		D-16-1	C-1	
	AM74S289JB	AM74S189JB	D-16-1	B-1	COML
	AM3101ADCB		D-16-1	B-1	
	AM74S289LC	AM74S189LC	Consult Factory	C-1	
	AM3101ALC		Consult Factory	C-1	
	AM74S289LCB	AM74S189LCB	Consult Factory	B-1	
	AM3101ALCB		Consult Factory	B-1	
50ns	AM54S289J	AM54S189J	D-16-1	C-3	MIL
	AM3101ADM		D-16-1	C-3	
	AM54S289JB	AM54S189JB	D-16-1	B-3	
	AM3101ADMB		D-16-1	B-3	
	AM54S289W	AM54S189W	F-16-1	C-3	
	AM3101AFM		F-16-1	C-3	
	AM54S289WB	AM54S189WB	F-16-1	B-3	
	AM3101AFMB		F-16-1	B-3	
	AM54S289LM	AM54S189LM	Consult Factory	C-3	
	AM3101ALM		Consult Factory	C-3	
	AM54S289LMB	AM54S189LMB	Consult Factory	B-3	
	AM3101ALMB		Consult Factory	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am31L01A•Am31L01

64-Bit Write Transparent Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16 word x 4-bit ultra low-power write transparent Schottky RAM
- High-Speed "A" version: Address access time typically 40ns Fast Standard version: Address access time typically 50ns
- Ultra Low Power: Icc typically 30 mA
- Internal ECL circuitry for optimum speed power performance over voltage and temperature
- Output reflects inverted input data during write cycle
- Electrically tested and optically inspected die are available for the assemblers of hybrid products
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am31L01A and Am31L01 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoders, such as the Am74LS 138.
An active LOW Write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word. During the write cycle, the outputs are active and invert the four data inputs, D_{0} to D_{3}.
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$.
When the chip select line is HIGH, the four outputs of the memory go to an inactive high impedance state.

BPM-243

LOGIC SYMBOL

$\mathrm{GND}=\operatorname{Pin} 8$

CONNECTION DIAGRAMS

Top Views
DIP
Chip-Pak ${ }^{\text {TM }}$

BPM-245

Note: Pin 1 is marked for orientation.

Am31L01A/31L01
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V CC max
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	V	Ambient Temperature
COM'L	4.75 to 5.25 V	$\mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{~T}_{A}=-55$ to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Input			Data Output Status					
$\overline{\mathbf{O}_{\mathbf{0}}}-\overline{\mathrm{O}_{\mathbf{3}}}$				$	$	$\overline{\mathbf{C S}}$	$\overline{\mathrm{WE}}$	Function
:---:	:---:	:---						

DC CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Param	Description	Test Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=8 \mathrm{~mA}$		0.280	0.45	Volts
			$\mathrm{lOL}=10 \mathrm{~mA}$		0.310	0.50	
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
ILL	Input LOW Current	$V_{C C}=$ MAX, $\mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$			-0.030	-0.25	mA
${ }_{1} \mathrm{H}$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			0.0	10	$\mu \mathrm{A}$
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	COM'L		25	35	mA
			MIL		25	38	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-0.850	-1.2	Volts
ICEX	Output Leakage Current	$\mathrm{V}_{\overline{\mathrm{CS}}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			0	40	$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3 and 4

Parameters	Description		Am31L01A					Am31L01					Units	
			Typ (Note 1)	COM'L		MIL		Typ (Note 1)	COM'L		MIL			
			Min	Max	Min	Max	Min		Max	Min	Max			
$t_{\text {PLH }}(A)$	Delay from Address to Output	See Fig. 2		40		55		65	50		80		90	ns
$\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$														
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{CS}})$	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 2	18		30		35	18		60		70	ns	
$t_{\text {PZL }}(\overline{\mathrm{WE}})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery - See Note 2)	See Fig. 1	18		30		35	18		80		100	ns	
$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-17	0		0		-17	0		0		ns	
$t_{h}(A)$	Hold Time Address (After Termination of Write)	See Fig. 1	-6	0		0		-6	0		0		ns	
$\mathrm{t}_{\mathrm{s}}(\mathrm{DI})$	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	16	45		55		16	60		80		ns	
$t_{h}(\mathrm{Dl})$	Hold Time Data Input (After Termination of Write)	See Fig. 1	-8	0		0		-8	0		0		ns	
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	MIN Write Enable Pulse Width to Insure Write	See Fig. 1	25	45		55		25	60		80		ns	
${ }^{\text {t }}$ PLZ $(\overline{\mathrm{CS}})$	Delay from Chip Select (HIGH) to Inactive Output (HIGH-Z)	See Fig. 2	18		30		35	18		50		60	ns	
${ }^{\text {PLH }}$ (DI)	Delay from Data Input to Correct	See Fig. 1	40		55		65	50		80		90	ns	
$t_{\text {PHL }}(\mathrm{DI})$	Data Output ($\overline{\mathrm{WE}}=\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$)													

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs during write and when write is terminated.
3. $t_{P L H}(A)$ and $t_{P H L}(A)$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}})$ or Chip Select ($\overline{\mathrm{CS}}$) inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}$), tpl $(\overline{\mathrm{WE}})$, $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .

SWITCHING WAVEFORMS

WRITE MODE

BPM-246

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROMH TOL	WILL $8 E$ CHANGING FROM HTOL
	MAY CHANGE FROML TO H	WILL BE CHANGING FROM L.TOH
$x 0 x$	DON'T CARE: ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

[^2]Figure 1.

Switching delays from address and chip select inputs to the data output. For the Am31L01A and Am31L01, a disabled output is HIGH.

Figure 2.

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 3.

INPUT PULSES

Figure 4.

See Notes 3 and 4 of Switching Characteristics.

ORDERING INFORMATION

	Order Code	Package	Screening	Operating
Speed Selection	Open Collector	Type (Note 1)	Flow Code (Note 2)	Range (Note 3)
55ns	AM31L01APC	P-16-1	C-1	
	AM31L01APCB	P-16-1	B-1	
	AM31L01ADC	D-16-1	C-1	COM'L
	AM31L01ADCB	D-16-1	B-1	
	AM31L01ALC	Consult Factory	C-1	
	AM31L01ALCB	Consult Factory	B-1	
65ns	AM31L01ADM	D-16-1	C-3	
	AM31L01ADMB	D-16-1	B-3	
	AM31L01AFM	F-16-1	C-3	
	AM31L01AFMB	F-16-1	B-3	MIL
	AM31L01ALM	Consult Factory	C-3	
	AM31L01ALMB	Consult Factory	B-3	
80ns	AM31L01PC	P-16-1	C-1	
	AM31L01PCB	P-16-1	B-1	
	AM31L01DC	D-16-1	C-1	
	AM31L01DCB	D-16-1	B-1	COML
	AM31L01LC	Consult Factory	C-1	
	AM31L01LCB	Consult Factory	B-1	
90ns	AM31L01DM	D-16-1	C-3	MIL
	AM31L01DMB	D-16-1	B-3	
	AM31L01FM	F-16-1	C-3	
	AM31L01FMB	F-16-1	B-3	
	AM31L01LM	Consult Factory	C-3	
	AM31L01LMB	Consult Factory	B-3	

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, L = Chip-Pak, F = Cerpak.
Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MLL-STD-883, Class C .

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upor' request.

Am27S06A • Am27S07A Am27S06 • Am27S07

Noninverting Schottky 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit low-power, noninverting Schottky RAMs
- Ultra-high speed " A " version: Address access time typically 15 ns High speed standard version: Address access time typically 22ns
- Low power: ICc typically 75 mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with three-state outputs (Am27S07A/07) or with open collector inputs (Am27S06A/06)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Guaranteed to INT-STD-123 quality levels
- Electrically tested and optically inspected die are available for the assemblers of hybrid products

FUNCTIONAL DESCRIPTION

The Am27S06A/06 and Am27S07A/07 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select ($\overline{C S}$) input and open collector OR tieable outputs (Am27S06A/06) or three-state outputs (Am27S07A/07). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.
An active LOW write line $\overline{W E}$ controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four noninverting outputs O_{0} to O_{3}.
During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V CC max
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	V	
CC	Ambient Temperature	
COM'L	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameter	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}=-5.2 \mathrm{~mA}$	COM'L	2.4	3.2		Volts
			$\mathrm{IOH}=-2.0 \mathrm{~mA}$	MIL				
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.350	0.45	Volts
			$1 \mathrm{OL}=20 \mathrm{~mA}$			0.380	0.5	
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0	.		Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=0.40 \mathrm{~V} \end{aligned}$	$\overline{W E}, D_{0}-D_{3}, A_{0}-A_{3}$			-0.015	-0.250	mA
			$\overline{\mathrm{CS}}$			-0.030	-0.250	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$				0.0	10	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 4) } \\ & \hline \end{aligned}$			-20	-45	-90	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=\mathrm{MAX} \end{aligned}$	COM'L			75	100	mA
			MIL			75	105	
V_{CL}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{liN}=-18 \mathrm{~mA}$				-0.850	-1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\overline{\mathrm{CS}}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\overline{\mathrm{WE}}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{OUTT}=2.4 \mathrm{~V} \end{aligned}$				0	40	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{\mathrm{IL}} \\ & V_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \hline \end{aligned}$	(Note 2)		-40	0		$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

FUNCTION TABLE

Input			Data Output
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	Function	Status $\mathbf{O}_{\mathbf{0 - 3}}$
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word
High	Don't Care	Deselect	Output Disabled

Am27S06A/07A/06/07

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3, 4, 5

Parameters	Description		Am27S06A - Am27S07A					Am27S06. Am27S07					Units	
			$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	COM'L		MIL		Typ (Note 1)	COM'L		MIL			
			Min	Max	Min	Max	Min		Max	Min	Max			
${ }^{\text {PLHH }}$ (A$)$	Delay from Address to Output	See Fig. 2		15		25		30	22		35		50	ns
$\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$														
${ }^{\text {P }}{ }^{\text {PZH }}(\overline{\mathrm{CS}})$	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 2	10		15		20	14		17		25	ns	
$t_{\text {PZL }}(\overline{\mathrm{CS}})$														
$t_{\text {PZH }}(\overline{\text { WE }})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery - See Note 2)	See Fig. 1	12		20		25	19		35		40	ns	
$t_{\text {PZL }}(\overline{\mathrm{WE}})$														
$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	-6.0	0		0		-6.0	0		0		ns	
$t_{\text {h }}(\mathrm{A})$	Hold Time Address (After Termination of Write)	See Fig. 1	-2.5	0		0		-2.5	0		0		ns	
t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1	9.0	20		25		18	25		25		ns	
$t_{\text {h }}$ (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	-4.0	0		0		-4.0	0		0		ns	
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Min Write Enable Pulse Width to Insure Write	See Fig. 1	10	20		25		18	25		25		ns	
${ }^{\text {P }}{ }_{\text {HZ }}(\overline{\mathrm{CS}})$	Delay from Chip Select (HIGH) to Inactive Output (Hi-Z)	See Fig. 2	10		15		20	13		17		25	ns	
$t^{\text {PLZ }}$ ($\overline{C S}$)														
$t_{\text {PLZ }}(\overline{\mathrm{WE}})$	Delay from Write Enable (LOW) to Inactive Output ($\mathrm{Hi}-\mathrm{Z}$)	See Fig. 1	12		20		25	15		25		35	ns	
$\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$														

Notes: 1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (noninverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
3. $t_{P L H}(A)$ and $t_{P H L}(A)$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}}$) or Chip Select ($\overline{\mathrm{CS}}$) inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}$), $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $t_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V .
5. For 3-state output, $t_{P Z H}(\overline{\mathrm{WE}})$ and $t_{P Z H}(\overline{\mathrm{CS}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $t_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . ${ }^{t_{P H Z}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

KEY TO TIMING DIAGRAM

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27S07A/07) while the write enable is LOW.

Figure 1.
BPM-355

Switching delays from address and chip select inputs to the data output. For the Am27S07A/07 disabled output is "OFF", represented by a single center line. For the Am27S06A/06 disabled output is HIGH.

Figure 2.

AC TEST LOAD

See Notes 3, 4, and 5 of Switching Characteristics.
Figure 3.

INPUT PULSES

Figure 4

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
25ns	AM27S06APC AM27S06APCB AM27S06ADC AM27S06ADCB AM27S06ALC AM27S06ALCB	AM27S07APC AM27S07APCB AM27S07ADC AM27S07ADCB AM27S07ALC AM27S07ALCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \hline \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
30ns	AM27S06ADM AM27S06ADMB AM27S06AFM AM27S06AFMB AM27S06ALM AM27S06ALMB	AM27S07ADM AM27S07ADMB AM27S07AFM AM27S07AFMB AM27S07ALM AM27S07ALMB	$\begin{aligned} & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{~F}-16-1 \\ & \mathrm{~F}-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \text { C-3 } \\ & \text { B-3 } \\ & \text { C-3 } \\ & \text { B-3 } \\ & \text { C-3 } \\ & \text { B-3 } \end{aligned}$	MIL
35ns	AM27S06PC AM27S06PCB AM27S06DC AM27S06DCB AM27S06LC AM27S06LCB	AM27S07PC AM27S07PCB AM27S07DC AM27S07DCB AM27S07LC AM27S07LCB	$\begin{gathered} \hline \mathrm{P}-16-1 \\ \mathrm{P}-16-1 \\ \mathrm{D}-16-1 \\ \mathrm{D}-16-1 \\ \text { Consult Factory } \\ \text { Consult Factory } \\ \hline \end{gathered}$	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
50ns	AM27S06DM AM27S06DMB AM27S06FM AM27S06FMB AM27S06LM AM27S06LMB	AM27S07DM AM27S07DMB AM27S07FM AM27S07FMB AM27S07LM AM27S07LMB	$\begin{aligned} & D-16-1 \\ & D-16-1 \\ & F-16-1 \\ & F-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C . Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29700 • Am29701 Noninverting Schottky 64-Bit RAM

Refer to Am27S06 • Am27S07

Bipolar Memory RAM Product Specification

The Am29700 is replaced by the Am27S06 (open collector).
The Am29701 is replaced by the Am27S07 (three-state).

Am27LS06•Am27LS07

Low Power, Noninverting 64-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16-word x 4-bit low power Schottky RAMs
- Ultra-low power: ICC typically 30 mA
- High-speed: Address access time typically 40ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS07) or with open collector outputs (Am27LS06)
- 100% MIL-STD-883 assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to INT-STD-123

FUNCTIONAL DESCRIPTION

The Am27LS06 and Am27LS07 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (CS) input and open collector OR tieable outputs (Am27LS06) or three-state outputs (Am27LS07). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74LS189.
An active LOW Write line $\overline{\text { WE }}$ controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four noninverting outputs O_{0} to O_{3}.
During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

BPM-223
Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V CC max
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	V CC	Ambient Temperature
COM'L	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Input		Function	Data Output Status O_{0-3}
$\overline{\mathbf{C S}}$	WE		
Low	Low	Write	Output Disabled
Low	High	Read	Selected Word (Not Inverted)
High	Don't Care	Deselect	Output Disabled

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameter	Description	DC Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{OH}} \\ \text { (Am27LS07 } \\ \text { only) } \end{array}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}=-5.2 \mathrm{~mA}$	COM'L	2.4	3.6		Volts
			$\mathrm{IOH}^{\prime}=-2.0 \mathrm{~mA}$	MIL				
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{l}^{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.280	0.45	Volts
			$\mathrm{lOL}=10 \mathrm{~mA}$			0.310	0.5	
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
IL	Input LOW Current	$\begin{aligned} & V_{C C}=\mathrm{MAX}, \\ & V_{I N}=0.40 \mathrm{~V} \end{aligned}$	$\overline{W E}, D_{0}-D_{3}, A_{0}-A_{3}$			-0.015	-0.250	mA
			$\overline{\overline{C S}}$			-0.030	-0.250	
${ }_{1 / H}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$				0	10	$\mu \mathrm{A}$
$\begin{array}{\|l\|} \hline \text { ISC } \\ \text { (Am27LS07 } \\ \text { only) } \\ \hline \end{array}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			-20	-45	-90	mA
'cc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		COM'L		30	35	mA
				MiL		30	38	
V_{CL}	Input Clamp Voltage	$V_{C C}=M I N, I_{\text {I }}=-18 \mathrm{~mA}$				-0.850	-1.2	Volts
${ }^{\text {Icex }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\overline{\mathrm{CS}}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\overline{\mathrm{WE}}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{4} \end{aligned}$	Am27LS06/07			0	40	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{\mathrm{CS}}}=V_{I H} \text { or } V_{\overline{\mathrm{WE}}}=\mathrm{V}_{\mathrm{IL}} \\ & V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	Am27LS07		-40	0		$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots and undershoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Am27LS06/LS07

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

			AC	Typ					
Parameters	Description		Test Conditions	(Note 1)	Min	Max	Min	Max	Units
$\mathrm{t}_{\text {PLH }}(\mathrm{A})$	Delay from Address to Output	See Fig. 2	Figure 3 Test Load and Figure 4 for Input Waveform Characteristics See Notes 3 and 4	40		55		65	ns
${ }^{\text {t }}$ PHL (A)									
$\mathrm{t}_{\text {PZH }}(\overline{\mathrm{CS}})$	Delay from Chip Select to Active Output and Correct Data	See Fig. 2		18		30		35	ns
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{CS}})$									
$t_{\text {PZH }}(\overline{W E})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery - See Note 2)	See Fig. 1		18		30		35	ns
$t_{\text {PZL }}(\overline{\mathrm{WE}})$									
$t_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	See Fig. 1		-17	0		0		ns
$t_{\text {h }}(\mathrm{A})$	Hold Time Address (After Termination of Write)	See Fig. 1		-6	0		0		ns
t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 1		16	45		55		ns
$t_{\text {h }}$ (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1		-8	0		0		ns
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Min Write Enable Pulse Width to Insure Write	See Fig. 1		25	45		55		ns
${ }^{\text {PrHz }}$ (CSS)	Delay from Chip Select to Inactive Output (HI-Z)	See Fig. 2		18		30		35	ns
${ }^{\text {t }}$ PLZ $(\overline{C S})$									
$t_{\text {PLZ }}(\overline{\mathrm{WE}})$	Delay from Write Enable (LOW) to Inactive Output (H I-Z)	See Fig. 1		18		30		35	ns
$\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$									

Notes: 1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (noninverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
3. For open collector Am27LS06, all delays from Write Enable ($\overline{\mathrm{WE}}$) or Chip Select ($\overline{\mathrm{CS}}$) inputs to the Data Output $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$, $\mathrm{t}_{\mathrm{PLz}}(\overline{\mathrm{WE}})$, $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}})$, $t_{P Z L}(\overline{W E})$ and $t_{P Z L}(\overline{C S})$ are measured with S_{1} closed and $C_{L}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V .
4. For 3-state output Am27LS07, $t_{P Z H}(\overline{W E})$ and $t_{P Z H}(\overline{\mathrm{CS}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to $1.5 \mathrm{~V} . \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $t_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $t_{P L Z}(\overline{W E})$ and $t_{P L Z}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $C_{L} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SWITCHING WAVEFORMS

WRITE MODE

($\overline{C S}=$ LOW unless otherwise noted)
KEY TO TIMING DIAGRAM

BPM-226

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27LS07) while the write enable is LOW or the chip select is HIGH.

Figure 1.

SWITCHING WAVEFORMS (Cont.)
READ MODE

BPM-227

Switching delays from address and chip select inputs to the data output. For the Am27LS07, disabled output is "OFF", represented by a single center line. For the Am27LS06, a disabled output is HIGH.

Figure 2.

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

BPM-228

Figure 3.

INPUT PULSES

BPM-229

Figure 4.

See notes 2, 3 and 4 of Switching Characteristics.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
55ns	AM27LS06PC	AM27LS07PC	P-16-1	C-1	
	AM27LS06PCB	AM27LS07PCB	P-16-1	B-1	
	AM27LS06DC	AM27LS07DC	D-16-1	C-1	COM'L
	AM27LS06DCB	AM27LS07DCB	D-16-1	B-1	COML
	AM27LS06LC	AM27LS07LC	Consult Factory	C-1	
	AM27LS06LCB	AM27LS07LCB	Consult Factory	B-1	
65 ns	AM27LS06DM	AM27LS07DM	D-16-1	C-3	MIL
	AM27LS06DMB	AM27LS07DMB	D-16-1	B-3	
	AM27LS06FM	AM27LS07FM	F-16-1	C-3	
	AM27LS06FMB	AM27LS07FMB	F-16-1	B-3	
	AM27LS06LM	AM27LS07LM	Consult Factory	C-3	
	AM27LS06LMB	AM27LS07LMB	Consult Factory	B-3	

Notes: 1. P = Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, F = Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

Am27LS00A •Am27LS01A Am27LS00•Am27LS01
 Low-Power Schottky 256-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256-word x 1 -bit low-power Schottky RAMs
- Low power dissipation:
"A" version typically 80 mA
Standard version typically 55 mA
- High-speed " A " version:

Address access time typically 25 ns
Fast standard version:
Address access time typically 35 ns

- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS00A/00) or with open collector outputs (Am27LS01A/01)
- 100% MIL-STD-883C quality assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to INT-STD-123

CONNECTION DIAGRAMS

 Top Views

FUNCTIONAL DESCRIPTION

The Am27LS00A/00 and Am27LS01A/01 are fully decoded bipolar random access memories for use in high-speed buffer memories. The memories are organized 256 -words by 1 -bit with an 8 -bit binary address field and separate data in and data output lines. The memories have three active LOW chip select inputs and a three-state output (Am27LSO0A/00) or open-collector output (Am27LS01A/ 01). All inputs are buffered to present an input load of only 0.5 TTL unit loads.

Read/write operation is controlled by an active LOW write enable input. When the write enable is LOW and the chip is selected the data on the data input is written into the location specified by the address inputs. During this operation the output floats allowing the data bus to be used by other memories or open-collector logic elements that are tied to the inverting data output. Reading is accomplished by having the chip selected and the write enable input HIGH. Data stored in the location specified by the address inputs is read out and appears on the data output inverted.
The chip is selected by three active LOW inputs all of which must be LOW in order for the data output to be active during the read operation and for data to be written into or read from the memory. These three active LOW chip select inputs permit MSI decoders to select memories in either a linear select, two or three dimensional mode of operation when large memory systems are being built. The delay from the chip select to the output is considerably faster than from the address inputs and extra delay can be tolerated in the chip select path without affecting system performance.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$
Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5 mA

OPERATING RANGE

	Ambient Range	Vemperature

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}=$	A ${ }^{\text {Com }}$	2.4	3.2		Volts
			$\mathrm{IOH}^{\prime}=-5.2 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	A MIL				
$V_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.3	0.45	Volts
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$				0.030	0.25	mA
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$				<1	20	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			-20	-30	-60	mA
I_{cc}	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=M A X \end{aligned}$		"A" version		80	115	mA
				Standard		55	70	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-0.850	-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}} \\ & V_{\mathrm{OUT}}=2.4 \mathrm{~V} \end{aligned}$				0	30	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{\mathrm{VH}} \text { or } V_{\overline{\mathrm{WE}}}=V_{\mathrm{IL}} \\ & V_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		(Note 2)	-30	0		$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

FUNCTION TABLE

Input			Function	$\begin{aligned} & \text { Data Output } \\ & \text { Status } \\ & \overline{D O}\left(t_{n+1}\right) \end{aligned}$
$\overline{\text { CS }}$	$\overline{W E}$	DI		
High	Don't Care	Don't Care	No Selection	Output Disabled
Low	Low	Low	Write '0'	Output Disabled
Low	Low	High	Write '1'	Output Disabled
Low	High	Don't Care	Read	Selected Bit (Inverted)

LOGIC SYMBOL

Am27LS00A/LS01A/LS00/LS01

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5

Parameters	Description		Am27LS00A - Am27LS01A					Am27LS00 Am27LS01					Units	
			$\begin{array}{\|c} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{array}$	COM'L		MIL		Typ (Note 1)	COM'L		MIL			
				Max	Min	Max	Min		Max	Min	Max			
${ }_{\text {PLHH }}(\mathrm{A})$	Delay from Address to Output	See Fig. 4		25		35		45	35		45		55	ns
$\mathrm{t}_{\text {PHL }}(\mathrm{A})$														
$\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{CS}})$	Delay from Chip Select (LOW) to Active Output and Correct Data	See Fig. 4	15		25		25	15		25		30	ns	
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{CS}})$														
${ }^{\text {t }}{ }^{\text {PZH }}(\overline{\mathrm{WE}})$	Delay from Write Enable (HIGH) to Active Output and Correct Data	See Fig. 3		5		5			5		5		ns	
$\mathrm{t}_{\text {PZL }}(\overline{\mathrm{WE}})$														
$\mathrm{t}_{\text {rec }}(\overline{\mathrm{WE}})$	Delay from Write Enable (HIGH) to Correct Output Data	See Fig. 3	25		35		45	35		45		55	ns	
$\mathrm{t}_{\text {s }}(\mathrm{A})$	Setup Time Address (Prior to Initiation of Write)	See Fig. 3	0		0		5	-5		0		5	ns	
$t_{h}(\mathrm{~A})$	Hold Time Address (After Termination of Write)	See Fig. 3	0		0		5	-5		0		5	ns	
t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	See Fig. 3	25		25		30	25		30		55	ns	
$t_{\text {h }}$ (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 3	0		5		5	-5		0		5	ns	
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	MIN Write Enable Pulse Width to Insure Write	See Fig. 3	20	25		30		20	30		35		ns	
$\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$	Delay from Chip Select (HIGH) to Inactive Output (HI-Z)	See Fig. 4	15		25		25	15		25		30	ns	
$t_{\text {PLZ }}(\overline{C S})$														
${ }^{\text {t }}$ PLZ $(\overline{W E})$	Delay from Write Enable (LOW) to Inactive Output ($\mathrm{H}-\mathrm{Z}$)	See Fig. 3	20		30		40	20		30		40	ns	
${ }^{\text {t }}{ }_{\text {PHZ }}(\overline{\mathrm{WE}})$														

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
3. $\mathrm{t}_{\mathrm{PLH}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S closed and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}})$ or Chip Select ($\overline{\mathrm{CS}}$) inputs to the Data Output ($\mathrm{DOUT}^{\text {O }}$), $\mathrm{t}_{\text {PLZ }}(\overline{\mathrm{WE}}), \mathrm{t}_{\text {PLZ }}(\overline{\mathrm{CS}}), \mathrm{t}_{\text {PLL }}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PLL}}(\overline{\mathrm{CS}})$ are measured with S closed and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
5. For 3 -state output, $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{CS}})$ are measured with S open, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PLL}}(\overline{\mathrm{CS}})$ are measured with S closed, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V .
 $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}})$ are measured with S closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

AC TEST LOAD AND WAVEFORRF

Figure 2.
See notes 3, 4 and 5 of Switching Characteristics.

SWITCHING WAVEFORMS

WRITE MODE

Write Cycle Timing. The cycle is initiated by an address change. After $\mathrm{t}_{\mathrm{s}}(\mathrm{A})$ max, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ max must be allowed before the address may be changed again. The output will be inactive (floating for the Am27LSOOA/OO) while the write enable is LOW. Ordinarily, the chip select should be LOW during the entire write pulse.

Figure 3.

BPM-298

Switching delays from address and chip select inputs to the data output. For the Am27LS00A/00 disabled output is "OFF", represented by a single center line. For the Am27LS01A/01, a disabled output is HIGH.

Figure 4.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27LS01APC AM27LS01APCB AM27LS01ADC AM27LS01ADCB AM27LS01ALC AM27LS01ALCB	AM27LS00APC AM27LS00APCB AM27LSOOADC AM27LS00ADCB AM27LS00ALC AM27LS00ALCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
45ns	AM27LS01ADM AM27LS01ADMB AM27LS01AFM AM27LS01AFMB AM27LS01ALM AM27LS01ALMB	AM27LS00ADM AM27LS00ADMB AM27LS00AFM AM27LS00AFMB AM27LS00ALM AM27LSOOALMB	$\begin{aligned} & D-16-1 \\ & D-16-1 \\ & F-16-1 \\ & F-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
45ns	AM27LS01PC AM27LS01PCB AM27LS01DC AM27LS01DCB AM27LS01LC AM27LS01LCB	AM27LS00PC AM27LS00PCB AM27LS00DC AM27LS00DCB AM27LS00LC AM27LS00LCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
55ns	AM27LS01DM AM27LS01DMB AM27LS01FM AM27LS01FMB AM27LS01LM AM27LS01LMB	AM27LS00DM AM27LS00DMB AM27LS00FM AM27LS00FMB AM27LS00LM AM27LS00LMB	$\begin{aligned} & D-16-1 \\ & D-16-1 \\ & F-16-1 \\ & F-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, F = Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am29720 • Am29721

Refer to
 Am27LS00 • Am27LS01 Bipolar Memory RAM Product Specification

The Am29720 is replaced by the Am27LS01 (open collector).
The Am29721 is replaced by the Am27LS00 (three-state).

Am27LS00-1A • Am27LS01-1A Am27LSO0-1 •Am27LSO1-1

Low- Power Schottky (Noninverting) 256-Bit Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256 -word x 1 -bit low-power Schottky RAMs
- Low-power dissipation:
" A " version typically 80 mA
Standard version typically 55 mA
- High-speed "A" version:
address access time typically 25 ns
Fast standard version:
address access time typically 35 ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LS00-1A/00-1) or with open collector outputs (Am27LS01-1A/01-1)
- 100% MIL-STD-883C quality assurance testing
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Guaranteed to IND-STD-123

FUNCTIONAL DESCRIPTION

The Am27LS00-1A/00-1 and Am27LS01-1A/01-1 are fully decoded bipolar random access memories for use in highspeed buffer memories. The memories are organized 256 -words by 1 -bit with an 8 -bit binary address field and separate data in and data output lines. The memories have three active LOW chip select inputs and a three-state output (Am27LS00-1A/00-1) or open collector output (Am27LS01-1A/01-1). All inputs are buffered to present an input load of only 0.5 TTL unit loads.
Read/write operation is controlled by an active LOW write enable input. When the write enable is LOW and the chip is selected the data on the data input is written into the location specified by the address inputs. During this operation the output floats allowing the data bus to be used by other memories or open-collector logic elements that are tied to the inverting data output. Reading is accomplished by having the chip selected and the write enable input HIGH. Data stored in the location specified by the address inputs is read out and appears on the data output noninverted.
The chip is selected by three active LOW inputs all of which must be LOW in order for the data output to be active during the read operation and for data to be written into or read from the memory. These three active LOW chip select inputs permit MSI decoders to select memories in either a linear select, two or three dimensional mode of operation when large memory systems are being built. The delay from the chip select to the output is considerably faster than from the address inputs and extra delay can be tolerated in the chip select path without affecting system performance.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Input Voltage	-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$
Output Current, Into Outputs	30 mA
DC Input Current	-30 to +5 mA

OPERATING RANGE		Ambient
Range	$V_{\text {cc }}$	Temperature
COM'	4.75 to 5.25 V	$\mathrm{T}_{\mathrm{A}}=0.10+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	$\mathrm{T}_{\mathrm{A}}=-55 \mathrm{to}+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \hline \end{aligned}$	COM'L	2.4	3.2		Volts
				MIL				
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.310	0.45	Volts
V_{H}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.40 \mathrm{~V}$				0.030	0.25	mA
${ }_{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$				<1	20	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			-20	-30	-60	mA
Icc	Power Supply Current	$\begin{aligned} & \text { All inputs }=\text { GND } \\ & V_{C C}=\text { MAX } \end{aligned}$		" A " version		80	115	mA
				Standard		55	70	
V_{CL}	Input Clamp Voltage	$V_{C C}=M I N, l_{\text {IN }}=-18 \mathrm{~mA}$				-0.850	-1.2	Volts
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{\text {IL }} \\ & V_{\text {OUT }}=2.4 \mathrm{~V} \end{aligned}$				0	30	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{\text {IH }} \text { or } V_{\overline{W E}}=V_{\mathrm{VL}} \\ & V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$		(Note 2)	-30	0		$\mu \mathrm{A}$

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

FUNCTION TABLE

Input				Data Output Status DO
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DI	Function	No
High	Don't Care	Don't Care	No Selection	Output Disabled
Low	Low	Low	Write "0"	Output Disabled
Low	Low	High	Write "1"	Output Disabled
Low	High	Don't Care	Read	Selected Word

Am27LS00-1A/LS01-1A/LS00-1/LS01-1
SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
3. $t_{P L H}(A)$ and $t_{P H L}(A)$ are tested with S closed and $C_{L}=50 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}})$ or Chip Select $(\overline{\mathrm{CS}})$ inputs to the Data Output ($\mathrm{D}_{\mathrm{OUT}}$), tpLZ $\overline{(W E)}$, tpLZ $\overline{(\mathrm{CS})}$ $t_{P Z L}(\overline{W E})$ and $t_{P Z L}(\overline{C S})$ are measured with S closed and $C_{L}=50 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V .
5. For 3 -state output, $t_{P Z H}(\overline{W E})$ and $t_{P Z H}(\overline{\mathrm{CS}})$ are measured with S open, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with both the input and output timing referenced to $1.5 \mathrm{~V} . \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S closed, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $t_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $V_{O H}-500 \mathrm{mV}$ level on the output. $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}})$ are measured with S closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 1.

BPM-296

SWITCHING WAVEFORMS

WRITE MODE

Write Cycle Timing. The cycle is initiated by an address change. After $\mathrm{t}_{\mathrm{s}}(\mathrm{A})$ max, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ max must be allowed before the address may be changed again. The output will be inactive (floating for the Am27LS00-1A/00-1) while the write enable is LOW. Ordinarily, the chip select should be LOW during the entire write pulse.

Figure 3.
BPM-362

BPM-298

Switching delays from address and chip select inputs to the data output. For the Am27LS00-1A/00-1 disabled output is "OFF," represented by a single center line. For the Am27LS01-1A/01-1, a disabled output is HIGH.

Figure 4.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM27LS01-1APC AM27LS01-1APCB AM27LS01-1ADC AM27LS01-1ADCB AM27LS01-1ALC AM27LS01-1ALCB	AM27LS00-1APC AM27LS00-1APCB AM27LS00-1ADC AM27LS00-1ADCB AM27LS00-1ALC AM27LS00-1ALCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
45ns	AM27LS01-1ADM AM27LS01-1ADMB AM27LS01-1AFM AM27LS01-1AFMB AM27LS01-1ALM AM27LS01-1ALMB	AM27LS00-1ADM AM27LS00-1ADMB AM27LS00-1AFM AM27LS00-1AFMB AM27LS00-1ALM AM27LS00-1ALMB	$\begin{aligned} & \text { D-16-1 } \\ & D-16-1 \\ & F-16-1 \\ & F-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
45ns	AM27LS01-1PC AM27LS01-1PCB AM27LS01-1DC AM27LS01-1DCB AM27LS01-1LC AM27LS01-1LCB	AM27LS00-1PC AM27LS00-1PCB AM27LS00-1DC AM27LS00-1DCB AM27LS00-1LC AM27LS00-1LCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
55ns	AM27LS01-1DM AM27LS01-1DMB AM27LS01-1FM AM27LS01-1FMB AM27LS01-1LM AM27LS01-1LMB	AM27LS00-1DM AM27LS00-1DMB AM27LS00-1FM AM27LS00-1FMB AM27LS00-1LM AM27LS00-1LMB	$\begin{aligned} & D-16-1 \\ & D-16-1 \\ & F-16-1 \\ & F-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am93412A•Am93422A Am93412 • Am93422

TTL 1024-Bit Bipolar IMOX ${ }^{\text {TM }}$ RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256-word x 4-bit RAMs
- High-speed " A " version:

Address access time typically 25ns
High-Speed Standard version:
Address access time typically 30 ns

- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with 3-state outputs (Am93422A/422) or with open collector outputs (Am93412A/412)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Plug-in replacement for Fairchild 93412/412A and 93422/422A
- Power dissipation decreases with increasing temperature
- Guaranteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am93412A/412 and Am93422A/422 are 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in high-speed control and buffer memory applications. Each memory is organized as a fully decoded 256 -word memory of four bits per word. Easy memory expansion is provided by an active LOW chip select one ($\overline{\mathrm{CS}}_{1}$) and an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ as well as open collector OR tieable outputs (Am93412A/412) or 3-state outputs (Am93422A/422).
An active LOW write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ and write line ($\overline{\mathrm{WE}}$) are LOW and chip select two $\left(\mathrm{CS}_{2}\right)$ is HIGH, the information on data inputs (D_{0} through D_{3}) is written into the addressed memory word and preconditions the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading is performed with the chip select one ($\overline{\mathrm{CS}}_{1}$) LOW and the chip select two $\left(\mathrm{CS}_{2}\right)$ HIGH and the write line ($\overline{\mathrm{WE}}$) HIGH and with the output enable ($\overline{\mathrm{OE}}$) LOW. The information stored in the addressed word is read out on the noninverting outputs $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$.
The outputs of the memory go to an inactive highimpedance state whenever chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable ($\left.\overline{\mathrm{OE}}\right)$ is HIGH, or during the writing operation when write enable ($\overline{W E}$) is LOW.

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 22(24)$ GND $=\operatorname{Pin} 8(8)$

Note: Pin numbers in parentheses "()" indicate pinout for 24-pin flat package.

Am93412A/422A/412/422
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 22 to Pin 8)	-0.5 to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V CC
max	
Output Current, Into Outputs (Low)	-0.5 to +5.5 V
DC Input Current	20 mA

OPERATING RANGE

Range	VCC	Ambient Temperature
COML	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Inputs					Output	Mode
CS_{2}	$\overline{\mathbf{C S}}_{1}$	WE	$\overline{O E}$	D_{n}	O_{n}	
L	X	X	X	x	*HIGH Z	Not Select
X	H	X	X	x	*HIGH Z	Not Select
H	L	H	H	X	*HIGH Z	Output Disable
H	L	H	L	X	Selected Data	Read Data
H	L	L	x	L	*HIGH Z	Write "0"
H	L	L	X	H	*HIGH Z	Write "1"

$H=$ High Voltage Level $L=$ Low Voltage Level $X=$ Don't Care
*High Z implies outputs are disabled or off. This condition is defined as a high impedance state for the Am93422A/422 and as an output high level for the Am93412A/412.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-5.2 \mathrm{~mA}$		2.4	3.6		Volts
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$			0.350	0.45	Volts
V_{IH}	Input HIGH Level (Note 3)	Guaranteed input logical HIGH voltage for all inputs			2.1	1.6		Volts
V_{IL}	Input LOW Level (Note 3)	Guaranteed input logical LOW voltage for all inputs				1.5	0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$				-100	-300	$\mu \mathrm{A}$
I_{H}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$				1	40	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)					-90	mA
Icc	Power Supply Current	All inputs $=\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		$\mathrm{T}_{\mathrm{A}} \geqslant 75^{\circ} \mathrm{C}$		100	130	mA
				$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			155	
				$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			170	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{\text {IN }}=$				-0.850	-1.5	Volts
$I_{\text {cex }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	Am93422A/422			0	50	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\text {OUT }}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	Am93422A/422		-50	0		
		$V_{\text {OUT }}=4.5 \mathrm{~V}$	Am93412A/412			0	100	
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	See Note 5				4		pF
Cout	Output Pin Capacitance	See Note 5				7		pF

Notes: 1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Applies only to the Am93422A and Am93422 with 3-state outputs.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. Input and output capacitance measured on a sample basis @ $f=1.0 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5 (below)

Notes: 1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Input and output capacitance measured on a sample basis $@ f=1.0 \mathrm{MHz}$.
3. $\operatorname{tPLH}(\mathrm{A})$ and $\mathrm{tPHL}(\mathrm{A})$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector Am93412A/412, all delays from Write Enable ($\overline{\mathrm{WE}}$) or selects ($\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}}$) inputs to the Data Output
 with both the input and output timing referenced to 1.5 V .
 and output timing referenced to 1.5 V . $\mathrm{tPZL}(\overline{\mathrm{WE}})$, $\mathrm{tPLL}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)$ and tPZL $(\overline{\mathrm{OE}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PHZ}}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{OE}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured
 closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SWITCHING WAVEFORMS

Figure 1.

Switching delays from address input, output enable input and the chip select inputs to the data output.
For the Am93422A/422 disabled output is "OFF", represented by a single center line. For the Am93412A/412, a disabled output is HIGH.

Figure 2.

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 3.

INPUT PULSES

Figure 4.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
35ns	AM93412APC	AM93422APC	P-22-1	C-1	
	AM93412APCB	AM93422APCB	P-22-1	B-1	
	AM93412ADC	AM93422ADC	D-22-1	C-1	COM'L
	AM93412ADCB	AM93422ADCB	D-22-1	B-1	COML
	AM93412ALC	AM93422ALC	L-28-2	C-1	
	AM93412ALCB	AM93422ALCB	L-28-2	B-1	
45ns	AM93412ADM	AM93422ADM	D-22-1	C-3	
	AM93412ADMB	AM93422ADMB	D-22-1	B-3	
	AM93412AFM	AM93422AFM	F-24-1	C-3	MIL
	AM93412AFMB	AM93422AFMB	F-24-1	B-3	MIL
	AM93412ALM	AM93422ALM	L-28-2	C-3	
	AM93412ALMB	AM93422ALMB	L-28-2	B-3	
45ns	AM93412PC	AM93422PC	P-22-1	C-1	
	AM93412PCB	AM93422PCB	P-22-1	B-1	
	AM93412DC	AM93422DC	D-22-1	C-1	COM'L
	AM93412DCB	AM93422DCB	D-22-1	B-1	COML
	AM93412LC	AM93422LC	L-28-2	C-1	
	AM93412LCB	AM93422LCB	L-28-2	B-1	
60 ns	AM93412DM	AM93422DM	D-22-1	C-3	MIL
	AM93412DMB	AM93422DMB	D-22-1	B-3	
	AM93412FM	AM93422FM	F-24-1	C-3	
	AM93412FMB	AM93422FMB	F-24-1	B-3	
	AM93412LM	AM93422LM	L-28-2	C-3	
	AM93412LMB	AM93422LMB	L-28-2	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am93L412A •Am93L422A Am93L412•Am93L422

Low Power TTL 1024-Bit Bipolar IMOX ${ }^{\text {TM }}$ RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 256 -word x 4-bit RAMs
- High speed " A " version: Address access time typically 30 ns
Fast Standard version: Address access time typically 45ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with 3-state outputs (Am93L422A/L422) or with open collector outputs (Am93L412A/L412)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Plug-in replacement for Fairchild 93L412A/L412 and 93L422A/L422
- Power dissipation decreases with increasing temperature
- Guaranteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am93L412A/L412 and Am93L422A/L422 are 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in high-speed control and buffer memory applications. Each memory is organized as a fully decoded 256 -word memory of four bits per word. Easy memory expansion is provided by an active LOW chip select one ($\overline{\mathrm{CS}}_{1}$) and an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ as well as open collector OR tieable outputs (Am93L412A/L412) or 3-state outputs (Am93L422A/L422).
An active LOW write line ($\overline{\mathrm{WE} \text {) controls the writing/reading }}$ operation of the memory. When the chip select one ($\overline{\mathrm{CS}}_{1}$) and write line ($\overline{\mathrm{WE}}$) are LOW and chip select two $\left(\mathrm{CS}_{2}\right)$ is HIGH, the information on data inputs (D_{0} through D_{3}) is written into the addressed memory word and preconditions the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading is performed with the chip select one ($\overline{\mathrm{CS}}_{1}$) LOW and the chip select two $\left(\mathrm{CS}_{2}\right) \mathrm{HIGH}$ and the write line ($\overline{\mathrm{WE}}$) HIGH and with the output enable ($\overline{\mathrm{OE}}$) LOW. The information stored in the addressed word is read out on the noninverting outputs $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$.
The outputs of the memory go to an inactive highimpedance state whenever chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable ($\left.\overline{\mathrm{OE}}\right)$ is HIGH, or during the writing operation when write enable ($\overline{\mathrm{WE}}$) is LOW.

BPM-129

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 22(24)$
$G N D=\operatorname{Pin} 8(8)$
BPM-137
Note: Pin numbers in parentheses "()" indicate pinout for 24-pin flat package.

MAXIMUM RATINGS (Above which the useful life may be impaired)	-65 to $+150^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+125^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-0.5 to +7.0 V
Supply Voltage to Ground Potential (Pin 22 to Pin 8)	-0.5 V to $\mathrm{V}_{\mathrm{CC}} \mathrm{max}$
DC Voltage Applied to Outputs for High Output State	-0.5 to +5.5 V
DC Input Voltage	20 mA
Output Current, Into Outputs (Low)	-30 to +5.0 mA

OPERATING RANGE

Range	V $_{\text {CC }}$	Ambient Temperature
COML	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Inputs					Output	Mode
CS_{2}	$\overline{\mathrm{CS}} 1$	$\overline{\text { WE }}$	$\overline{O E}$	D_{n}	O_{n}	
L	X	X	X	X	*HIGH Z	Not Select
X	H	X	X	X	*HIGH Z	Not Select
H	L	H	H	x	*HIGH Z	Output Disable
H	L	H	L	X	Selected Data	Read Data
H	L	L	X	L	*HIGH Z	Write "0"
H	L	L	X	H	*HIGH Z	Write "1"

$H=$ High Voltage Level $L=$ Low Voltage Level $X=$ Don't Care
*High Z implies outputs are disabled or off. This condition is defined as a high impedance state for the Am93L422A/L422 and as an output high level for the Am93L412A/L412.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}^{\mathrm{OH}}=-5.2 \mathrm{~mA}$		2.4	3.6		Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	${ }^{1} \mathrm{OL}=8.0 \mathrm{~mA}$			0.350	0.45	Volts
V_{IH}	Input HIGH Level (Note 3)	Guaranteed input logical HIGH voltage for all inputs			2.1	1.6		Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Note 3)	Guaranteed input logical LOW voltage for all inputs				1.5	0.8	Volts
IfL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$				-100	-300	$\mu \mathrm{A}$
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$				1	40	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}($ Note 4)					-90	mA
${ }^{\text {ICC }}$	Power Supply Current	All inputs $=G N D, V_{C C}=$ MAX		$\mathrm{T}_{\mathrm{A}} \geqslant 75^{\circ} \mathrm{C}$		55	75	mA
				$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			80	
				$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			90	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-10 \mathrm{~mA}$				-0.850	-1.5	Volts
Icex	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	Am93L422A/L422			0	50	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	Am93L422A/L422		-50	0		
		$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	Am93L412A/L412			0	100	
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	See Note 5				4		pF
Cout	Output Pin Capacitance	See Note 5				7		pF

Notes: 1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Applies only to the Am93L422A and Am93L. 422 with 3-state outputs.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. Input and output capacitance measured on a sample basis @ $f=1.0 \mathrm{MHz}$.

Am93L412A/L422A/L412/L422

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Test Conditions: See Figures 3 and 4 and Notes 3, 4 and 5 (below)

Notes: 1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Input and output capacitance measured on a sample basis $@ f=1.0 \mathrm{MHz}$.
3. $\mathrm{t}_{\mathrm{PLH}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector Am93L412A/L412, all delays from Write Enable (WE) or selects ($\mathrm{CS}_{1}, \mathrm{CS}_{2}, \mathrm{OE}$) inputs to the Data Output $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)\left(\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PLZ}}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right), \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{OE}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PLL}}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)\right.$ and $\left.\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{OE}})\right)$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
5. For 3 -state output Am93L422A/L422, $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PLL}}(\overline{\mathrm{WE}}), \mathrm{t}_{\text {pLL }}\left(\overline{C S}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PzL}}(\overline{\mathrm{OE}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PHZ}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{OE}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $\mathrm{tp}_{\mathrm{P}}(\overline{\mathrm{WE}}), \operatorname{tplz}\left(\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}\right)$ and $\mathrm{tplz}^{(\mathrm{OE})}$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SWITCHING WAVEFORMS

WRITE MODE (WITH $\overline{O E}=$ LOW $)$

KEY TO TIMING DIAGRAM

Figure 1.

Switching delays from address input, output enable input and the chip select inputs to the data output. For the Am93L422ALL422 disabled output is "OFF", represented by a single center line. For the Am93L412A/L412, a disabled output is HIGH.

Figure 2.

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 3.

INPUT PULSES

Figure 4.

Am93L412A/L422A/L412/L422

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
45ns	AM93L412APC	AM93L422APC	P-22-1	C-1	COM'L
	AM93L412APCB	AM93L422APCB	P-22-1	B-1	
	AM93L412ADC	AM93L422ADC	D-22-1	C-1	
	AM93L412ADCB	AM93L422ADCB	D-22-1	B-1	
	AM93L412ALC	AM93L422ALC	L-28-2	C-1	
	AM93L412ALCB	AM93L422ALCB	L-28-2	B-1	
55ns	AM93L412ADM	AM93L422ADM	D-22-1	C-3	MIL
	AM93L412ADMB	AM93L422ADMB	D-22-1	B-3	
	AM93L412AFM	AM93L422AFM	F-24-1	C-3	
	AM93L412AFMB	AM93L422AFMB	F-24-1	B-3	
	AM93L412ALM	AM93L422ALM	L-28-2	C-3	
	AM93L412ALMB	AM93L422ALMB	L-28-2	B-3	
60 ns	AM93L412PC	AM93L422PC	P-22-1	C-1	COM'L
	AM93L412PCB	AM93L.422PCB	P-22-1	B-1	
	AM93L412DC	AM93L422DC	D-22-1	C-1	
	AM93L412DCB	AM93L422DCB	D-22-1	B-1	
	AM93L412LC	AM93L422LC	L-28-2	C-1	
	AM93L412LCB	AM93L422LCB	L-28-2	B-1	
75ns	AM93L412DM	AM93L422DM	D-22-1	C-3	MIL
	AM93L412DMB	AM93L422DMB	D-22-1	B-3	
	AM93L412FM	AM93L422FM	F-24-1	C-3	
	AM93L412FMB	AM93L422FMB	F-24-1	B-3	
	AM93L412LM	AM93L422LM	L-28-2	C-3	
	AM93L412LMB	AM93L422LMB	L-28-2	B-3	

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications. Pad layout and bonding diagram available upon request.

Am93415A • Am93425A Am93415 • Am93425
 TTL 1024-Bit Bipolar IMOX ${ }^{\text {TM }}$ RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 1024-word $\times 1$-bit RAMs
- Ultra-high speed " A " version:

Address Access time typically 22ns High Speed Standard version:

Address Access time typically 30ns

- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with three-state outputs (Am93425A/425) or with open collector outputs (Am93415A/415)
- 100% reliability assurance testing in compliance with MIL-STD-883
- Electrically tested and optically inspected die for the assemblers of hybrid products
- Plug in replacement for Fairchild 93415A/415 and 93425A/425
- Power dissipation decreases with increasing temperature
- Guaranteed to INT-STD-123 quality levels

FUNCTIONAL DESCRIPTION

The Am93415A/415 and Am93425A/425 are 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in high-speed control and buffer memory applications. Each memory is organized as a fully decoded 1024-word memory of 1 bit per word. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and open collector OR tieable outputs (Am93415A/415) or three-state outputs (Am93425A/425). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write lines are LOW the information on the data input (D_{IN}) is written into the addressed memory word and preconditions the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to an inactive high impedance state.

Am93415A/425A/415/425
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 16 to Pin 8)	-0.5 to +7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to VCC max
DC Input Voltage	-0.5 to +5.5 V
Output Current, Into Outputs (Low)	20 mA
DC Input Current	-30 to +5.0 mA

OPERATING RANGE

Range	VCC	Ambient Temperature
COM'L	4.75 to 5.25 V	0 to $+75^{\circ} \mathrm{C}$
MIL	4.5 to 5.5 V	-55 to $+125^{\circ} \mathrm{C}$

FUNCTION TABLE

Inputs			Output	Mode
$\overline{\mathrm{CS}}$	$\overline{W E}$	DIN	DOUT	
H	X	X	*HIGH-Z	Not Selected
L	L	L	*HIGH-Z	Write "0"
L	L	H	*HIGH-Z	Write "1"
L	H	X	Selected Data	Read

$H=$ High Voltage Level $L=$ Low Voltage Level $X=$ Don't Care
*HIGH-Z implies outputs are disabled or off. This condition is defined as a high impedance state for the Am93425A/425 and as an output high level for the Am93415A/415.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Parameters	Description	Test Conditions			Min $\begin{gathered}\text { Typ } \\ \text { (Note 1) }\end{gathered}$		Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}^{2}=-10.3 \mathrm{~mA}$	COM'L	2.4	3.6		Volts
			$\mathrm{IOH}=-5.2 \mathrm{~mA}$	MIL				
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{l}^{\mathrm{OL}}=16 \mathrm{~mA}$			0.350	0.45	Volts
V_{IH}	Input HIGH Level (Note 3)	Guaranteed input logical HIGH voltage for all inputs			2.1	1.6		Volts
V_{IL}	Input LOW Level (Note 3)	Guaranteed input logical LOW voltage for all inputs				1.5	0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$				-180	-400	$\mu \mathrm{A}$
I_{H}	Input HIGH Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$				1	40	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=M A X, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V}$					-100	mA
ICC	Power Supply Current	All inputs $=G N D, V_{C C}=$ MAX	$\mathrm{T}_{\mathrm{A}} \geqslant 75^{\circ} \mathrm{C}$			95	110	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$				125	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$				145	
V_{CL}	Input Clamp Voltage	$V_{C C}=M 1 N_{1}, \mathrm{I}_{1}=-10 \mathrm{~mA}$				-0.850	-1.5	Volts
${ }^{\text {ICex }}$	Output Leakage Current	$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{\mathrm{IL}} \\ & V_{\text {OUT }}=2.4 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} \hline \text { Am93415A/425A } \\ \text { Am93415/425 } \\ \hline \end{array}$			0	100	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\overline{C S}}=V_{I H} \text { or } V_{\overline{W E}}=V_{I L} \\ & V_{O U T}=0.5 \mathrm{~V}, V_{C C}=M A X \end{aligned}$	$\begin{aligned} & \text { Am93425A } \\ & \text { Am93425 } \end{aligned}$		-50	0		
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	See Note 4				4		pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance	See Note 4				7		pF

Notes: 1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies only to the Am93425A/425 with three-state outputs.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Input and output capacitance measured on a sample basis using pulse technique.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)
Test Conditions: See Figures 3 and 4 and Notes 2, 3, and 4 (below)

Parameters	Description		Am93415A - Am93425A					Am93415 - Am93425					Units	
			$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 1) } \end{array}$	COM'L		MIL		Typ (Note 1)	COM'L		MIL			
			Min	Max	Min	Max	Min		Max	Min	Max			
${ }^{\text {PLLH }}$ (A)	Delay from Address to Output (Address Access Time)	See Fig. 2		22		30		40	30		45		60	ns
${ }^{\text {PHLL }}$ (A)														
$t^{\text {PZH }}(\overline{C S})$	Delay from Chip Select to Active Output and Correct Data	See Fig. 2	10		20		30	15		35		45	ns	
$\mathrm{t}_{\text {PZL }}(\mathrm{CS})$														
${ }^{\text {tPZH }}$ (WE)	Delay from Write Enable to Active Output and Correct Data (Write Recovery)	See Fig. 1	10		25		35	15		40		50	ns	
${ }^{\text {P PZL }}$ (WE)														
$\mathrm{t}_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	See Fig. 1	0	5		5		0	10		15		ns	
$t_{\text {h }}(\mathrm{A})$	Hold Time Address (After Termination of Write)	See Fig. 1	0	5		5		0	5		5		ns	
t_{s} (DI)	Setup Time Data Input (Prior to Initiation of Write)	See Fig. 1	0	5		5		0	5		5		ns	
$t_{\text {h }}$ (DI)	Hold Time Data Input (After Termination of Write)	See Fig. 1	0	5		5		0	5		5		ns	
$\mathrm{t}_{\mathrm{s}}(\overline{\mathrm{CS}})$	Setup Time Chip Select (Prior to Initiation of Write)	See Fig. 1	0	5		5		0	5		5		ns	
$t_{h} \overline{(\overline{C S})}$	Hold Time Chip Select (After Termination of Write)	See Fig. 1	0	5		5		0	5		5		ns	
$\mathrm{t}_{\mathrm{pw}}(\overline{\text { WE }}$)	Min Write Enable Pulse Width to Insure Write	See Fig. 1	12	20		30		15	30		40		ns	
${ }^{\mathrm{P}_{\mathrm{HZ}}(\overline{\mathrm{CS}})}$	Delay from Chip Select to Inactive Output (HIGH-Z)	See Fig. 2	10		20		30	15		35		50	ns	
$t_{\text {PLZ }}(\overline{C S})$														
$t_{\text {PHZ }}(\overline{\mathrm{WE}})$	Delay from write Enable to Inactive Output (HIGH-Z)	See Fig. 1	10		20		30	15		35		35	ns	
tPLZ $\bar{W} \overline{\text { W }}$)														

Notes: 1. Typical characteristics are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. $\mathrm{t}_{\mathrm{PLH}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
3. For open collector Am93415A/415, all delays from Write Enable ($\overline{\mathrm{WE}}$) or Chip Select ($\overline{\mathrm{CE}}$) inputs to the Data Output (Dout), tplz($\overline{\mathrm{WE}}$), $t_{P L Z}(\overline{C S}), t_{P Z L}(\overline{W E})$ and $t_{P Z L}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
4. For 3-state output $A m 93425 \mathrm{~A} / 425, \mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{CS}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\text {PLL }}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to $1.5 \mathrm{~V} . \mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the V_{OH} -500 mV level on the output. $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SWITCHING WAVEFORMS

WRITE MODE

KEY TO TIMING DIAGRAM

Figure 1.

Switching delays from address and chip select inputs to the data output. For the Am93425A/425 disabled output is "OFF", represented by a single center line. For the Am93415A/415 a disabled output is HIGH.

Figure 2.
BPM-053

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

Figure 3.

INPUT PULSES

BPM-055

Figure 4.

See Notes 2, 3, and 4 of Switching Characteristics.

ORDERING INFORMATION

Speed Selection	Order Code		Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
	Open Collector	Three-State			
30ns	AM93415APC AM93415APCB AM93415ADC AM93415ADCB AM93415ALC AM93415ALCB	AM93425APC AM93425APCB AM93425ADC AM93425ADCB AM93425ALC AM93425ALCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
40ns	AM93415ADM AM93415ADMB AM93415AFM AM93415AFMB AM93415ALM AM93415ALMB	AM93425ADM AM93425ADMB AM93425AFM AM93425AFMB AM93425ALM AM93425ALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
45ns	AM93415PC AM93415PCB AM93415DC AM93415DCB AM93415LC AM93415LCB	AM93425PC AM93425PCB AM93425DC AM93425DCB AM93425LC AM93425LCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
60ns	AM93415DM AM93415DMB AM93415FM AM93415FMB AM93415LM AM93415LMB	AM93425DM AM93425DMB AM93425FM AM93425FMB AM93425LM AM93425LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C. Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.
Pad layout and bonding diagram available upon request.

Am10415SA Am10415A • Am10415

ECL 1024×1 IMOX ${ }^{\text {TM }}$ Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fast access time (10ns typ.) - improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am10415SA, Am10415A and Am10415 are fully decoded 1024-bit ECL RAMs organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through Ag_{g}. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and an unterminated OR tieable emitter follower output.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).
During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc.
Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
V_{EE} Pin Potential to GND Pin	-7.0 to +0.5 V
Input Voltage (dc)	V_{EE} to +0.5 V
Output Current (dc Output HIGH)	-30 to +0.1 mA

OPERATING RANGE

FUNCTION TABLE

Range	V_{EE}	Ambient Temperature
COM'L	-5.46 to -4.94 V	0 to $+75^{\circ} \mathrm{C}$
MIL	-5.72 to -4.68 V	-55 to $+125^{\circ} \mathrm{C}$

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DIN $^{\text {I }}$	Dout	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	DOUT	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level $\simeq-0.9 \mathrm{~V}$
X = Don't Care
$\mathrm{L}=$ LOW Voltage Level $\simeq-1.7 \mathrm{~V}$
DC CHARACTERISTICS (Commercial)
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$ (Note 2)

Parameters	Description	Test Conditions			B	(Note 1)	A	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	
$\mathrm{V}_{\text {OL }}$	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {ILA }}$		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			
$\mathrm{V}_{\text {OLC }}$	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	
				$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1145		-840	
V_{IH}	Input Voltage HIGH		HIGH	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1105		-810	mV
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1045		-720	
				$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1490	
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	for All Inputs (Note		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1475	mV
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1450	
${ }_{1} \mathrm{H}$	Input Current HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$		$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$			220	$\mu \mathrm{A}$
ILL	Input Current LOW Chip Select ($\overline{\mathrm{CS}}$) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$
IEE	Power Supply Current	All Inputs and Outp	Open	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-150	-105		mA
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$		-90		

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2 -minute warm-up period. Typical thermal resistance values of the package are:
θ_{JA} (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
$\theta_{\mathrm{JA}}\left(\right.$ Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
θ_{JC} (Junction to Case) $=25^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols and terms used in this product specification:

The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Am10415SA/415A/415

DC CHARACTERISTICS (Military)
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$.

Parame	Description	Test Conditions			B	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	A	Units
$\mathrm{VOH}_{\mathrm{O}}$	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$	Loading is 50Ω to -2.0 V	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1070		-860	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-860		-650	
Vol	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1900		-1690	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1800		-1570	
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {ILA }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1090			
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-880			
VoLC	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			-1670	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			-1550	
V_{IH}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1215		-860	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1005		-650	
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	Guaranteed Input Voltage LOW for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1900		-1515	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1800		-1395	
IIH	Input Current HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
ILL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ILB }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	$\mu \mathrm{A}$
I_{e}	Power Supply Current (Pin 8)	All Inputs and Outputs Open		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-165	-115		mA
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		-80		

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

$R_{T}=50 \Omega$ TERMINATION OF MEASUREMENT SYSTEM
$C_{L}=30 \mathrm{pF}$ (INCLUDING STRAY JIG CAPACITANCE)

INPUT PULSES

AC CHARACTERISTICS (Commercial)

$\mathrm{V}_{\mathrm{EE}}=-5.46$ to -4.94 V , Output Load $=50 \Omega, 30 \mathrm{pF}$ to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions		m10415 Typ (Note 1)	A Max			A Max				Units
READ MODE												
$t_{\text {ACS }}$	Chip Select Access Time	Figure 2 measured at 50% of input to valid output (VILA for V_{OL} or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})		6	8		6	8		7	10	ns
$t_{\text {tres }}$	Chip Select Recovery Time			5	8		5	8		7	10	ns
$t_{\text {AA }}$	Address Access Time			10	15		13	20		20	35	ns
WRITE MODE												
${ }^{\text {tw }}$	Write Pulse Width (to Guarantee Writing)	${ }^{\text {W WSA }}$ = ${ }^{\text {W WSA }}$ (Min)	10	6		12	9		25	15		ns
${ }^{\text {twS }}$	Data Setup Time Prior to Write		2	0		4	0		5	0		ns
${ }^{\text {twh }}$	Data Hold Time After Write		2	0		4	0		5	0		ns
twSA	Address Setup Time Prior to Write	${ }^{\prime} W=t_{W}(\mathrm{Min})$	3	0		5	3		8	5		ns
${ }^{\text {twha }}$	Address Hold Time After Write		2	0		3	0		4	1		ns
twscs	Chip Select Setup Time Prior to Write	Figure 1 measured at 50% of input to valid output ($V_{\text {ILA }}$ for $\mathrm{V}_{\text {OL }}$ or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	2	0		4	0		5	0		ns
${ }^{\text {twhes }}$	Chip Select Hold Time After Write		2	0		4	0		5	0		ns
tws	Write Disable Time			5	10		5	10		7	10	ns
$t_{\text {WR }}$	Write Recovery Time			6	12		10	15		14	20	ns
RISE TIME AND FALL TIME												
t_{r}	Output Rise Time	Measured between 20% and 80% points		5			5			5		ns
t_{f}	Output Fall Time			5			5			5		ns
CAPACITANCE												
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	Measure with a Pulse Technique		4	5		4	5		4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance			7	8		7	8		7	8	pF

Am10415SA/415A/415

AC CHARACTERISTICS (Military)

$\mathrm{V}_{\mathrm{EE}}=-5.72$ to -4.68 V , Output Load $=50 \Omega, 30 \mathrm{pF}$ to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions						A Max	Min	Am10415 Typ (Note 1)	Max	Units
READ MODE												
$t_{\text {ACS }}$	Chip Select Access Time	Figure 2 measured at 50% of input to valid output ($\mathrm{V}_{\text {ILA }}$ for V_{OL} or $\mathrm{V}_{\text {IHB }}$ for V_{OH})		6	10		6	12		7	15	ns
$t_{\text {tres }}$	Chip Select Recovery Time			5	10		5	12		7	15	ns
$t_{\text {A }}$	Address Access Time			10	20		13	25		20	40	ns
WRITE MODE												
tw	Write Pulse Width	$t_{\text {WSA }}=$ t $_{\text {WSA }}$ (Min)	13	6		16	9		25	15		ns
twSD	Data Setup Time Prior to Write		3	0		4	0		7	0		ns
twho	Data Hold Time After Write		3	0		4	0		7	0		ns
twSA	Address Setup Time	$t_{W}=t_{W}(\mathrm{Min})$	4	0		5	3		8	5		ns
${ }^{\text {t WHA }}$	Address Hold Time		3	0		4	0		7	1		ns
twscs	Chip Select Setup Time	Figure 1 measured at 50% of input to valid output ($V_{\text {ILA }}$ for $V_{\text {OL }}$ or V_{IHB} for V_{OH})	3	0		4	0		7	0		ns
twhes	Chip Select Hold Time		3	0		4	0		7	0		ns
tws	Write Disable Time			5	10		5	10		7	10	ns
$t_{\text {WR }}$	Write Recovery Time			6	12		10	15		14	20	ns
RISE TIME AND FALL TIME												
t_{r}	Output Rise Time	Measured between 20% and 80% points		5			5			5		ns
t_{4}	Output Fall Time			5			5			5		ns
CAPACITANCE												
$\mathrm{CIN}_{\mathrm{I}}$	Input Pin Capacitance	Measure with a Pulse Technique		4	5		4	5		4	5	pF
Cout	Output Pin Capacitance			7	8		7	8		7	8	pF

SWITCHING WAVEFORMS
WRITE MODE

READ MODE

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY	x	DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TOL	WILL BE Changing FROM H TOL			
	MAY CHANGE FROMLTOH	WILL BE CHANGING FROM LTOH			

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
15ns	AM10415SAPC AM10415SAPCB AM10415SADC AM10415SADCB AM10415SALC AM10415SALCB	P-16-1 P-16-1 D-16-1 D-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
20 ns	AM10415SADM AM10415SADMB AM10415SAFM AM10415SAFMB AM10415SALM AM10415SALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
20ns	AM10415APC AM10415APCB AM10415ADC AM10415ADCB AM10415ALC AM10415ALCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
25ns	AM10415ADM AM10415ADMB AM10415AFM AM10415AFMB AM10415ALM AM10415ALMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
35ns	AM10415PC AM10415PCB AM10415DC AM10415DCB AM10415LC AM10415LCB	$\begin{aligned} & \mathrm{P}-16-1 \\ & \mathrm{P}-16-1 \\ & \mathrm{D}-16-1 \\ & \mathrm{D}-16-1 \end{aligned}$ Consult Factory Consult Factory	C-1 B-1 C-1 B-1 C-1 B-1	COM'L
40ns	AM10415DM AM10415DMB AM10415FM AM10415FMB AM10415LM AM10415LMB	D-16-1 D-16-1 F-16-1 F-16-1 Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $\mathrm{P}=$ Molded DIP, $\mathrm{D}=$ Hermetic DIP, $\mathrm{L}=$ Chip-Pak, $\mathrm{F}=$ Cerpak.
Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C . Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.
Pad layout and bonding diagram available upon request.

Am100415A • Am100415

ECL 1024×1 IMOX ${ }^{\text {M }}$ II Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fast access time (10ns typ) - improves system cycle speeds
- Fully compatible with 100 K series ECL logic - no board changes required
- Enhanced output voltage level compensation providing 6 X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat $A C$ performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am100415A and Am100415 are fully decoded 1024-bit ECL RAMs organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through A_{g}. Easy memory expansion is provided by an active LOW chip select $(\overline{\mathrm{CS}})$ input and an unterminated OR tieable emitter follower output.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to GND Pin	-7.0 to +0.5 V
Input Voltage (dc)	V_{EE} to +0.5 V
Output Current (dc Output HIGH)	-30 to +0.1 mA

OPERATING RANGE

Part Number	VEE	Ambient Temperature
Commercial	-5.7 to -4.2 V	0 to $+85^{\circ} \mathrm{C}$

FUNCTION TABLE

Inputs			Output	Mode
$\overline{\text { CS }}$	$\overline{W E}$	$\mathrm{D}_{\text {IN }}$	DOUT	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	\times	Dout	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level $=-0.9 \mathrm{~V}$
$\mathrm{L}=$ LOW Voltage Level $=-1.7 \mathrm{~V}$
X = Don't Care

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C}$ (Note 2)

Parameters	Description	Test Conditions		B	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	A	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$	-1025	-955	-880	mV
V_{OL}	Output Voltage LOW			-1810	-1715	-1620	mV
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {ILA }}$		-1035			mV
VOLC	Output Voltage LOW					-1610	mV
V_{IH}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for all inputs (Note 4)		-1165		-880	mV
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	Guaranteed Input Voltage LOW for all inputs (Note 4)		-1810		-1475	mV
${ }_{1}$	Input Current HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$				220	$\mu \mathrm{A}$
ILL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	$\mu \mathrm{A}$
IeE	Power Supply Current (Pin 8)	All Inputs and Outputs Open		-150	-105		mA

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical resistance values of the package are:
θ_{JA} (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
θ_{JA} (Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
θ_{JC} (Junction to Case) $=25^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols and terms used in this product specification:

The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are:
" A " the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=-4.27 \mathrm{~V}$ to -4.73 V , Output Load $=50 \Omega, 30 \mathrm{pF}$ to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions	Min		Max	Min		Max	Units
READ MODE									
$t_{\text {ACS }}$	Chip Select Access Time	Figure 1 measured at 50% of input to valid output ($\mathrm{V}_{\text {ILA }}$ for V_{OL} or V_{HB} for V_{OH})		5	8		5	8	ns
$\mathrm{t}_{\text {RCS }}$	Chip Select Recovery Time			5	8		5	8	ns
${ }^{\text {t }}$ A	Address Access Time			10	15		12	20	ns
WRITE MODE									
${ }^{\text {tw }}$	Write Pulse Width (to Guarantee Writing)	${ }^{\text {WWSA }}$ = ${ }_{\text {W }}^{\text {WSA }}$ (Min)	10	6		12	9		ns
${ }^{\text {twSD }}$	Data Setup Time Prior to Write		2	0		4	0		ns
${ }^{\text {twh }}$	Data Hold Time After Write		2	0		4	0		ns
$t_{\text {w }}$ SA	Address Setup Time Prior to Write	${ }^{\text {w }}$ W $=t_{W}(\mathrm{Min})$	3	0		5	3		ns
${ }^{\text {t WHA }}$	Address Hold Time After Write		2	0		3	0		ns
twscs	Chip Select Setup Time Prior to Write	Figure 2 measured	2	0		4	0		ns
twhes	Chip Select Hold Time After Write	at 50% of input to valid output ($\mathrm{V}_{\text {IL }}$ for $\mathrm{V}_{\text {OL }}$ or	2	0		4	0		ns
tws	Write Disable Time	$\mathrm{V}_{\text {IHB }}$ for V_{OH})		5	10		5	10	ns
$t_{\text {WR }}$	Write Recovery Time			6	12		7	15	ns
RISE TIME AND FALL TIME									
t_{r}	Output Rise Time	Measured between 20% and 80% points		5			5		ns
t_{f}	Output Fall Time			5			5		ns
CAPACITANCE									
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	Measure with a Pulse Technique		4	5		4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance			7	8		7	8	pF

AC TEST LOAD AND WAVEFORM

AC TEST LOAD
 BPM-189
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ TERMINATION OF MEASUREMENT SYSTEM
$C_{L}=30 \mathrm{pF}$ (INCLUDING STRAY JIG CAPACITANCE)
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (INCLUDING STRAY JIG CAPACITANCE)

INPUT PULSES

BPM-190

SWITCHING WAVEFORMS
 read mode

Figure 1.
BPM-191

WRITE MODE

Figure 2.
BPM-192

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY	$W W$	DON'T CARE; ANYCHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TO L	WILL BE CHANGING FROM HTOL			
17175	MAY ChANGE FROMLTOH	WILL BE CHANGING FROMLTOH			

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
15ns	AM100415APC AM100415APCB AM100415ADC AM100415ADCB AM100415ALC AM100415ALCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
20ns	AM100415PC AM100415PCB AM100415DC AM100415DCB AM100415LC AM100415LCB	$\begin{aligned} & P-16-1 \\ & P-16-1 \\ & D-16-1 \\ & D-16-1 \end{aligned}$ Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MiL-STD-123, Class C .

Levels B-1 and B-3 conform to MIL-STD-123, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial specifications. Pad layout and bonding diagram available upon request.

Am10474SA•Am10474A Am10474

ECL 1024×4 IMOX ${ }^{\text {T }}$ Bipolar RAM ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage and temperature compensated providing flat $A C$ performance
- 100\% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am10474SA, Am10474A and Am10474 are fully decoded 4096-bit ECL RAMs organized 1024 words by 4 bits. Word selection is achieved by means of a 10-bit address, A_{0} through A_{g}. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and an unterminated OR tieable emitter follower output.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input ($D_{1}-D_{4}$) are written into the addressed memory words.
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting outputs $\mathrm{D}_{1}-\mathrm{D}_{4}$.
During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

LOGIC SYMBOL

BPM-368

$$
V_{\mathrm{CC} 2}=\operatorname{Pin} 24
$$

$V_{E E}=\operatorname{Pin} 12$

Am100474SA •Am100474A Am100474

ECL 1024×4 IMOX ${ }^{\text {™ }}$ Bipolar RAM
ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Fully compatible with 100 K series ECL logic - no board changes required
- Enhanced output voltage level compensation providing 6 X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat $A C$ performance
- 100\% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

LOGIC BLOCK DIAGRAM

BPM-364

FUNCTIONAL DESCRIPTION

The Am100474SA, Am100474A and Am100474 are fully decoded 4096-bit ECL RAMs organized 1024 words by 4 bits. Word selection is achieved by means of a 10 -bit address, A_{0} through A_{g}. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and unterminated OR tieable emitter follower outputs.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data inputs $\left(D_{1}-D_{4}\right)$ are written into the addressed memory words.
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed words is read out on the noninverting outputs $\mathrm{O}_{1}-\mathrm{O}_{4}$.
During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

LOGIC SYMBOL

Note: Pin 1 is marked for orientation.

Am10470SA
 Am10470A • Am10470

ECL 4096×1 IMOX ${ }^{\text {TM }}$ Bipolar RAM

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am10470SA, Am10470A and Am10470 are fully decoded 4096 -bit ECL RAMs organized 4096 words by one bit. Bit selection is achieved by means of a 12 -bit address, A_{0} through A_{11}. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and an unterminated OR tieable emitter follower output.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input $\left(\mathrm{D}_{\mathrm{IN}}\right)$ is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the 'write recovery glitch.'

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).
During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

IMOX is a trademark of Advanced Micro Devices, Inc.
Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE Pin Potential to GND Pin }}$	-7.0 to +0.5 V
Input Voltage (dc)	V_{EE} to +0.5 V
Output Current (dc Output HIGH)	-30 to +0.1 mA

OPERATING RANGE

Range	V_{EE}	Ambient Temperature
COML	-5.46 to -4.94 V	0 to $+75^{\circ} \mathrm{C}$
MIL	-5.72 to -4.68 V	-55 to $+125^{\circ} \mathrm{C}$

DC CHARACTERISTICS (Commercial)

FUNCTION TABLE

Inputs			Output	Mode
$\overline{\mathrm{CS}}$	WE	$\mathrm{D}_{\text {IN }}$	Dout	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	x	Dout	Read

$H=$ HIGH Voltage Level $=-0.9 \mathrm{~V} \quad X=$ Don't Care
$L=$ LOW Voltage Level $=-1.7 \mathrm{~V}$
$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$ (Note 2)

Parameters	Description	Test Conditions			B	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	A	Units
VOH	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {I }}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	
$V_{O L}$	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{1 H B}$ or $\mathrm{V}_{\text {IIA }}$		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			mV
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			
Volc	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$			-1605	
V_{H}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1145		-840	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1105		-810	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1045		-720	
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	Guaranteed Input Voltage LOW for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1490	mV
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1475	
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1450	
$\mathrm{IIH}^{\text {H}}$	Input Current HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$		$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$			220	$\mu \mathrm{A}$
IIL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{array}{r} 0.5 \\ -50 \\ \hline \end{array}$		170	$\mu \mathrm{A}$
lee	Power Supply Current (Pin 9)	All Inputs and Outputs Open	Am10470A and Am10470	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-200	-160		mA
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$		-145		
			Am10470SA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-230	-180		

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical thermal resistance values of the package are:
$\theta_{J A}$ (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
$\theta_{\text {JA }}$ (Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
θ_{JC} (Junction to Case) $=25^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols and terms used in this product specification:

The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.

Do not attempt to test these values without suitable equipment.

Am10470SA/470A/470

DC CHARACTERISTICS (Military)

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$

Parameters	Description	Test Conditions			B	Typ (Note 1)	A	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHA}}$ or V_{1}	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1070		-860	
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-860		-650	
$\mathrm{V}_{\text {OL }}$	Output Voltage LOW			$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$	-1900		-1690	mV
				$T_{A}=+125^{\circ} \mathrm{C}$	-1800		-1570	
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {IIA }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1090			mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-880			
$\mathrm{V}_{\text {OLC }}$	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			-1670	mV
				$T_{A}=+125^{\circ} \mathrm{C}$			-1550	
V_{H}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1215		-860	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1005		-650	
VIL	Input Voltage LOW	Guaranteed Input Voltage LOW for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1900		-1515	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1800		-1395	
I_{IH}	Input Current HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHA}}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
IIL	Input Current LOW Chip Select ($\overline{\mathrm{CS}}$) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$T_{A}=-55^{\circ} \mathrm{C}$	$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	$\mu \mathrm{A}$
$l_{\text {eE }}$	Power Supply Current (Pin 9)	All Inputs and Outputs Open	Am10470A and Am10470	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-220	-175		mA
				$\mathrm{T}_{A}=+125^{\circ} \mathrm{C}$		-160		
			Am10470SA	$T_{A}=-55^{\circ} \mathrm{C}$	-255	-200		

AC TEST LOAD AND WAVEFORM

AC TEST LOAD

$\mathrm{R}_{\mathbf{T}}=50 \Omega$ termination of measurement system $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (including stray jig capacitance)

$t_{r}=t_{f}=2.5 n s$ TYP

AC CHARACTERISTICS (Commercial)
$\mathrm{V}_{\mathrm{EE}}=-5.46$ to -4.94 V , Output Load $=50 \Omega, 30 \mathrm{pF}$ to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$ PRELIMINARY

Parameters	Description	Test Conditions			Max			A Max	Min		Max	Units
READ MODE												
$t_{\text {ACS }}$	Chip Select Access Time	Figure 2 measured at 50% of input to valid output ($\mathrm{V}_{\text {ILA }}$ for V_{OL} or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})		6	8		8	10		10	15	ns
$t_{\text {RCS }}$	Chip Select Recovery Time			6	8		8	10		10	15	ns
$t_{\text {AA }}$	Address Access Time			12	15		18	25		25	35	ns
WRITE MODE												
tw	Write Pulse Width (to Guarantee Writing)	${ }^{\text {W }}$ WSA $={ }^{\text {W }}$ WSA $($ Min $)$	15	8		20	10		25	15		ns
${ }^{\text {twS }}$	Data Setup Time Prior to Write		2	0		2	0		5	1		ns
${ }^{\text {tWHD }}$	Data Hold Time After Write		2	0		2	0		5	1		ns
${ }^{\text {twSA }}$	Address Setup Time Prior to Write	${ }^{\prime}{ }_{W}=t_{W}(\mathrm{Min})$	2	0		2	0		5	1		ns
${ }^{\text {twha }}$	Address Hold Time After Write		2	0		2	0		5	1		ns
twscs	Chip Select Setup Time Prior to Write	Figure 1 measured at 50% of input to valid output ($V_{\text {ILA }}$ for $V_{\text {OL }}$ or $\mathrm{V}_{\mathrm{HBB}}$ for V_{OH})	2	0		2	0		5	1		ns
twhes	Chip Select Hold Time After Write		2	0		2	0		5	1		ns
tws	Write Disable Time			6	8		8	10		7	15	ns
${ }^{\text {twR }}$	Write Recovery Time			6	8		8	10		10	20	ns
RISE TIME AND FALL TIME												
t_{r}	Output Rise Time	Measured between 20% and 80% points		3			3			3		ns
t_{f}	Output Fall Time			3			3			3		ns
CAPACITANCE												
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	Measured with a Pulse Technique on a Sample Basis.		4	5		4	5		4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance			7	8		7	8		7	8	pF

AC CHARACTERISTICS (Military)

$\mathrm{V}_{\mathrm{EE}}=-5.72$ to -4.68 V , Output Load $=50 \Omega, 30 \mathrm{pF}$ to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$
PRELIMINARY

		Test Conditions	$\begin{gathered} \text { Am10470SA } \\ \text { Typ } \end{gathered}$			Am10470A Typ			$\begin{gathered} \text { Am10470 } \\ \text { Typ } \end{gathered}$			Units
Parameters	Description		Min	(Note 1)	Max	Min	(Note 1)	Max	Min	(Note 1)	Max	
READ MODE												
$t_{\text {ACS }}$	Chip Select Access Time	Figure 2 measured at 50% of input to valid output ($\mathrm{V}_{\text {ILA }}$ for V_{OL} or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})		8	10		10	15		15	20	ns
$t_{\text {RCS }}$	Chip Select Recovery Time			8	10		10	15		15	20	ns
$t_{\text {AA }}$	Address Access Time			17	20		20	30		30	40	ns
WRITE MODE												
tw	Write Pulse Width	${ }_{\text {W }}$ WSA $=t_{\text {WSA }}$ (Min)	18	14		22	17		25	20		ns
twSD	Data Setup Time Prior to Write		3	0		5	0		7	2		ns
${ }^{\text {W WHD }}$	Data Hold Time After Write		3	0		5	0		7	2		ns
twSA	Address Setup Time	$t_{W}=t_{W}($ Min $)$	3	0		5	0		7	2		ns
${ }^{\text {W WHA }}$	Address Hold Time		3	0		5	0		7	2		ns
twscs	Chip Select Setup Time	Figure 1 measured at 50% of input to valid output ($\mathrm{V}_{\text {ILA }}$ for V_{OL} or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	3	0		5	0		7	2		ns
twHCS	Chip Select Hold Time		3	0		5	0		7	2		ns
tws	Write Disable Time			8	10		10	12		7	15	ns
twr	Write Recovery Time			8	10		10	12		10	20	ns
RISE TIME AND FALL TIME												
t_{t}	Output Rise Time	Measured between 20% and 80% points		3			3			3		ns
t_{f}	Output Fall Time			3			3			3		ns
CAPACITANCE												
$\mathrm{CIN}_{\text {IN }}$	Input Pin Capacitance	Measured with a Pulse Technique on a Sample Basis.		4	5		4	5		4	5	pF
$\mathrm{Cout}^{\text {O }}$	Output Pin Capacitance			7	8		7	8		7	8	pF

SWITCHING WAVEFORMS
 WRITE MODE

BPM-300

READ MODE

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
	MAY CHANGE FROM H TO L	WILL BE CHANGING FROM H TOL			
	may change FROM LTO H	WILL BE CHANGING FROM L TO H			

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
15ns	AM10470SADC AM10470SADCB AM10470SALC AM10470SALCB	$\begin{gathered} \hline \mathrm{D}-18-1 \\ \mathrm{D}-18-1 \\ \text { Consult Factory } \\ \text { Consult Factory } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
20ns	AM10470SADM AM10470SADMB AM10470SAFM AM10470SAFMB AM10470SALM AM10470SALMB	$\begin{gathered} \hline \text { D-18-1 } \\ \text { D-18-1 } \\ \text { Consult Factory } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
25ns	AM10470ADC AM10470ADCB AM10470ALC AM10470ALCB	$\begin{gathered} \hline \mathrm{D}-18-1 \\ \mathrm{D}-18-1 \\ \text { Consult Factory } \\ \text { Consult Factory } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
30ns	AM10470ADM AM10470ADMB AM10470AFM AM10470AFMB AM10470ALM AM10470ALMB	$\begin{aligned} & D-18-1 \\ & D-18-1 \end{aligned}$ Consult Factory Consult Factory Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL
35ns	AM10470DC AM10470DCB AM10470LC AM10470LCB	$\begin{gathered} \hline \mathrm{D}-18-1 \\ \mathrm{D}-18-1 \\ \text { Consult Factory } \\ \text { Consult Factory } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
40ns	AM10470DM AM10470DMB AM10470FM AM10470FMB AM10470LM AM10470LMB	$\begin{aligned} & \hline \mathrm{D}-18-1 \\ & \mathrm{D}-18-1 \end{aligned}$ Consult Factory Consult Factory Consult Factory Consult Factory	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \\ & \mathrm{C}-3 \\ & \mathrm{~B}-3 \end{aligned}$	MIL

Notes: 1. $D=$ Hermetic DIP,$L=$ Chip-Pak, $F=$ Cerpak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Levels B-1 and B-3 conform to MIL-STD-883, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial and military specifications.
Pad layout and bonding diagram available upon request.

Am100470SA•Am100470A Am100470

ECL 4096×1 IMOX ${ }^{\text {TM }}$ Bipolar RAM
 PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Fully compatible with 100 K series ECL logic - no board changes required
- Enhanced output voltage level compensation providing 6 X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat $A C$ performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- 100\% MIL-STD-883C screening and guaranteed to INT-STD-123 insures the highest reliability
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

FUNCTIONAL DESCRIPTION

The Am100470SA, Am100470A and Am100470 are fully decoded 4096-bit ECL RAMs organized 4096 words by one bit. Bit selection is achieved by means of a 12 -bit address, A_{0} through A_{11}. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and an unterminated OR tieable emitter follower output.
An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input $\left(\mathrm{D}_{\text {IN }}\right)$ is written into the addressed memory word simultaneously preconditioning the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the 'write recovery glitch.'
Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.
Note: Pin 1 is marked for orientation.

Am100470SA/470A/470
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
V_{EE} Pin Potential to GND Pin	-7.0 to +0.5 V
Input Voltage (dc)	V_{EE} to +0.5 V
Output Current (dc Output HIGH)	-30 to +0.1 mA

OPERATING RANGE

Part Number	VEE	Ambient Temperature
Commercial	-5.7 to -4.2 V	0 to $+85^{\circ} \mathrm{C}$

FUNCTION TABLE

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DIN $^{\text {IN }}$	Dout	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write " 1 "
L	H	X	DOUT	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level $=-0.9 \mathrm{~V}$
$\mathrm{L}=\mathrm{LOW}$ Voltage Level $=-1.7 \mathrm{~V}$
X = Don't Care

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C}$ (Note 2)

Parameters	Description	Tes	Con	itions	B	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	A	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$		Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$	-1025	-955	-880	mV
V_{OL}	Output Voltage LOW			-1810	-1715	-1620	mV	
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {ILA }}$			-1035			mV
$\mathrm{V}_{\text {OLC }}$	Output Voltage LOW					-1610	mV	
V_{IH}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for all inputs (Note 4)			-1165		-880	mV
VIL	Input Voltage LOW	Guaranteed Input Voltage LOW for all inputs (Note 4)			-1810		-1475	mV
$\mathrm{IIH}^{\text {H}}$	Input Current HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$					220	$\mu \mathrm{A}$
IIL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$			$\begin{array}{r} 0.5 \\ -50 \\ \hline \end{array}$		170	$\mu \mathrm{A}$
Iee	Power Supply Current (Pin 9)	All Inputs and Outputs Open	Am100470A/Am100470		-195	-160		mA
			Am100470SA		-230	-180		

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical resistance values of the package are:
θ_{JA} (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
$\theta_{\text {JA }}$ (Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow) θ_{JC} (Junction to Case) $=25^{\circ} \mathrm{C} / \mathrm{Watt}$
3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: " A " the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

AC CHARACTERISTICS (Commercial)
$\mathrm{V}_{E E}=-5.46$ to -4.94 V , Output $\mathrm{Load}=50 \Omega, 30 \mathrm{pF}$ to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C}$
PRELIMINARY

			Am100470SA			Am100470A			Am100470			
Parameters	Description	Test Conditions		Typ (Note 1)	Max		Typ (Note 1)	Max		Typ (Note 1)	Max	Units
READ MODE												
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time	Figure 2 measured at		6	8		8	10		10	15	ns
$t_{\text {RCS }}$	Chip Select Recovery Time	output ($\mathrm{V}_{\text {ILA }}$ for V_{OL}		6	8		8	10		10	15	ns
${ }^{\text {t }}$ A	Address Access Time	or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})		12	15		18	25		25	35	ns
WRITE MODE												
tw	Write Pulse Width (to Guarantee Writing)	$t_{W S A}=t_{W S A}(\mathrm{Min})$	15			20			25	18		ns
twSD	Data Setup Time Prior to Write		2			2			5	1		ns
${ }^{\text {t WHD }}$	Data Hold Time After Write		2			2			5	1		ns
tWSA	Address Setup Time Prior to Write	$t_{W}=t_{W}($ Min $)$	3			3			10	5		ns
${ }^{\text {t WHA }}$	Address Hold Time After Write		2			2			5	1		ns
twSCs	Chip Select Setup Time Prior to Write	Figure 1 measured	2			2			5	1		ns
${ }^{\text {twHCS }}$	Chip Select Hold Time After Write	at 50\% of input to valid output (Visa for $V_{0 \text { or }}$	2			2			5	1		ns
tws	Write Disable Time	$\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})		6	8		8	10		7	15	ns
twR	Write Recovery Time			6	8		8	10		10	20	ns
RISE TIME AND FALL TIME												
t_{r}	Output Rise Time	Measured between		2			2			2		ns
t_{f}	Output Fall Time	20\% and 80\% points		2			2			2		ns
CAPACITANCE												
C_{IN}	Input Pin Capacitance	Measured with a Pulse		4	5		4	5		4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance	Sample Basis.		7	8		7	8		7	8	pF

AC TEST LOAD AND WAVEFORM

$R_{T}=50 \Omega$ termination of measurement system $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (including stray jig capacitance)

SWITCHING WAVEFORMS

READ MODE

Figure 1.
BPM-284

WRITE MODE

Figure 2.

KEY TO TIMING DIAGRAM

WAVEFORM	INPUTS	OUTPUTS	WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
$\square \square$	MAY CHANGE FROM H TOL	WILL BE CHANGING FROM HTOL		does not APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE
	MAY CHANGE FROM LTO H	$\begin{aligned} & \text { WILL BE } \\ & \text { CHANGING } \\ & \text { FROM L TOH } \end{aligned}$			

ORDERING INFORMATION

Speed Selection	Order Code	Package Type (Note 1)	Screening Flow Code (Note 2)	Operating Range (Note 3)
15ns	AM100470SADC AM100470SADCB AM100470SALC AMT00470SALCB	$\begin{gathered} \hline \text { D-18-1 } \\ \text { D-18-1 } \\ \text { Consult Factory } \\ \text { Consult Factory } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
20ns	AM100470ADC AM100470ADCB AM100470ALC AM100470ALCB	$\begin{gathered} \hline \mathrm{D}-18-1 \\ \mathrm{D}-18-1 \\ \text { Consult Factory } \\ \text { Consult Factory } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L
35ns	AM100470DC AM100470DCB AM100470LC AM100470LCB	$\begin{gathered} \hline \mathrm{D}-18-1 \\ \mathrm{D}-18-1 \\ \text { Consult Factory } \\ \text { Consult Factory } \end{gathered}$	$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{C}-1 \\ & \mathrm{~B}-1 \end{aligned}$	COM'L

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $L=$ Chip-Pak. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-123, Class C.

Levels B-1 and B-3 conform to MIL-STD-123, Class B.
3. See Operating Range Table.

This device is also available in die form selected to commercial specifications. Pad layout and bonding diagram available upon request.

INDEX SECTION NUMERICAL DEVICEINDEX FUNCTIONAL INDEX AND SELECTION GUIDE INDUSTRY CROSS REFERENCE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS
 MEMORIES (RAM)

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY MEMORIES (ROM)

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

MOS Random Access Memories (RAM) Index

Am9101/91L01/2101
Am9111/91L11/2111
Am9112/91L12
Am9122/91L22
Am21L41
Am9044/9244
Am9114/9124
Am2147
Am2148/2149
Am9128
Am9167
Am9168/9169
Am9016
256×4 Static R/W Random Access Memories . 4-1
256×4 Static R/W Random Access Memories
4-7
256×4 Static R/W Random Access Memories . 4-13
256×4 Static R/W RAMs 4-19
4096×1 Static R/W Random Access Memory . 4-25
4096×1 Static R/W Random Access Memory . 4-31
1024×4 Static R/W Random Access Memory . 4-35
4096×1 Static R/W Random Access Memory . 4-39
1024×4 Static R/W Random Access Memory 4-45
2048×8 Static R/W Random Access Memory . 4-51
$16,384 \times 1$ Static R/W Random Access Memory 4-57
4096×4 Static R/W Random Access Memory . 4-58
16,384 x 1 Dynamic R/W Random Access Memory 4-59

Am9101/Am91L01/Am2101 Family
 256 x 4 Static R/W Random Access Memories

Part Number	Am2101	Am2101-2	Am9101A Am91L01A Am2101-1	Am9101B Am91L01B	Am9101C Am91L01C	Am9101D
Access Time	1000 ns	650 ns	500 ns	400 ns	300 ns	250ns

DISTINCTIVE CHARACTERISTICS

- 256×4 organization
- Low operating power

125mW typ; 290 mW maximum - standard power
100mW typ; 175mW maximum - low power

- DC standby mode reduces power up to 84%
- Logic voltage levels identical to TTL
- High output drive - two full TTL loads
- High noise immunity - full 400 mV
- Single +5 volt power supply - tolerances $\pm 5 \%$ commercial, $\pm 10 \%$ military
- Uniform switching characteristics - access times insensitive to supply variations, addressing patterns and data patterns
- Both military and commercial temperature ranges available
- Two chip enable inputs
- Output disable control
- Zero address setup and hold times for simplified timing
- 100% MIL-STD- 883 reliability assurance testing

CONNECTION DIAGRAM
 Top View

Note: Pin 1 is marked for orientation.

FUNCTIONAL DESCRIPTION

The Am9101/Am91L01 series of devices are highperformance, low-power, 1024-bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 200 ns . Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth.

These memories may be operated in a DC standby mode for reductions of as much as 84% of the normal power dissipation. Data can be retained with a power supply as low as 1.5 volts. The low power Am91L01 series offer reduced power dissipation during normal operating conditions and even lower dissipation in the standby mode.
The Chip Enable input control signals act as high order address lines and they control the write amplifier and the output buffers. The Output Disable signal provides independent control over the output state of enabled chips.
These devices are fully static and no refresh operations, sense amplifiers or clocks are required. Input and output signal levels are identical to TTL specifications, providing simplified interfacing and high noise immunity. The outputs will drive two full TTL loads for increased fan-out and better bus interfacing capability.

Am9101 BLOCK DIAGRAM

ORDERING INFORMATION

Ambient Temperature Specification	Package Type	Power Type	Access Times					
			1000ns	650ns	500ns	400ns	300ns	250ns
0 to $+70^{\circ} \mathrm{C}$	Molded DIP	Standard	P2101	P2101-2	$\begin{aligned} & \text { P2101-1 } \\ & \text { AM9101APC } \end{aligned}$	AM9101BPC	AM9101CPC	AM9101DPC
		Low			AM91L01APC	AM91L01BPC	AM91L01CPC	
	Hermetic DIP	Standard	C2101	C2101-2	$\begin{aligned} & \text { C2101-1 } \\ & \text { AM9101ADC } \end{aligned}$	AM9101BDC	AM9101CDC	AM9101DDC
		Low			AM91L01ADC	AM91L0tBDC	AM91L01CDC	
-55 to $+125^{\circ} \mathrm{C}$	Hermetic DIP	Standard			AM9101ADM	AM9101BDM	AM9101CDM	
		Low			AM91L01ADM	AM91L01BDM	AM91L01CDM	

Am9101/Am91L01/Am2101 Family

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
V_{CC} With Respect to $\mathrm{V}_{\text {SS }}$, Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation	1.0 W

ELECTRICAL CHARACTERISTICS

$\begin{array}{ll}\text { Am9101PC, Am9101DC } & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { Am91L01PC, Am91L01DC } & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%\end{array}$
Am9101/
Am91L01 Am2101 Family
Test Conditions

Parameters	Description	Test Conditions			Min. Max.		Min. Max.		Units
V_{OH}	Output HIGH Voltage	$V_{C C}=$ MIN.		$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4				Volts
				$\mathrm{I}^{\mathrm{OH}}=-150 \mu \mathrm{~A}$			2.2		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$V_{C C}=$ MIN		${ }^{1} \mathrm{OL}=3.2 \mathrm{~mA}$		0.4			Volts
				$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$				0.45	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage				2.0	V_{CC}	2.2	V_{CC}	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-0.5	0.8	-0.5	0.65	Volts
${ }_{\text {ILI }}$	Input Load Current	$\mathrm{V}_{\text {CC }}=$ MAX., $0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 5.25 \mathrm{~V}$				10		10	$\mu \mathrm{A}$
'LO	Output Leakage Current	$V_{\overline{C E}}=V_{1 H}$		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$		5.0		15	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		-10		-50	
${ }^{1} \mathrm{CC} 1$	Power Supply Current	Data out open $V_{C C}=$ Max. $V_{I N}=V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Am9101A/B		50		60	mA
				Am9101C/D/E		55			
				Am91L01A/B		31			
				Am91L01C		34			
${ }^{1} \mathrm{CC} 2$			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	Am9101A/B		55		70	
				Am9101C/D/E		60			
				Am91 Lo1A/B		33			
				Am91L01C		36			

Am9101/
 Am91 L01 Family

Am91010M $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am91L01DM $\quad V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$
Parameters Description Test Conditions

Parameter	Description	Test Conditions			Min.	Max	Units
V_{OH}	Cutput HIGH Voltage	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	2.4		Volts
				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.2		
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN., ${ }^{\text {IOL }}$	$=3.2 \mathrm{~mA}$			0.4	Volts
V_{IH}	Input HIGH Voltage				2.0	V_{cc}	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-0.5	0.8	Volts
${ }^{\prime} \mathrm{LI}$	Input Load Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., 0 \mathrm{l}$	$\leqslant \mathrm{v}_{\text {IN }} \leqslant 5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\mathrm{V}_{\overline{\mathrm{CE}}}=\mathrm{V}_{1 \mathrm{H}}$		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$		10	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		-10	
				Am9101A/B		50	
${ }^{\text {ICCI }}$			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Am9101C		55	
				Am91L01A/B		31	
	Power Supply Cur	$V_{C C}=M a x .$		Am91L01C		34	mA
	Pow	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$		Am9101A/B		60	
			$5^{\circ} \mathrm{C}$	Am9101C		65	
ICC3			A	Am91L01A/B		37	
				Am91L01C		40	

CAPACITANCE

Parameters	Description	Test Conditions		Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	Am2101	4.0	8.0	pF
			Am9101/Am91L01	3.0	6.0	
COUT	Output Capacitance, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		Am2101	8.0	12	pF
			Am9101/Am91L01	6.0	9.0	

SWITCHING CHARACTERISTICS over operating temperature and voltage range

Output Load $=1$ TTL Gate +100 pF
Transition Times $=10 \mathrm{~ns}$
Input Levels, Output References $=0.8 \mathrm{~V}$ and 2.0 V

$$
\begin{array}{ll}
T_{A}=0 \text { to } 70^{\circ} \mathrm{C} & V_{C C}=+5 \mathrm{~V} \pm 5 \% \\
T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} & V_{C C}=+5 \mathrm{~V} \pm 10 \%
\end{array}
$$

$$
9101 \mathrm{~A} \quad 9101 \mathrm{~B} \quad 9101 \mathrm{C}
$$

$$
2101 \text { 2101-2 2101-1 91L01A 91L01B 91L01C 9101D }
$$

Parameters Description Min Max Units

t_{RC}	Read Cycle Time	1000		650		500		500		400		300		250		ns
${ }^{\text {t }}$	Access Time		1000		650		500		500		400		300		250	ns
${ }^{\text {coo }}$	Chip Enable to Output ON Delay (Note 1)		800		400		350		200		175		150		125	ns
tod	Output Disable to Output ON Delay		700		350		300		175		150		125		100	ns
O_{OH}	Previous Read Data Valid with Respect to Address Change	0		0		0		40		40		40		30		ns
tDF1	Output Disable to Output OFF Delay	0	200	0	150	0	150	5.0	125	5.0	100	5.0	100	5.0	75	ns
${ }^{\text {t }}$ DF2	Chip Enable to Output OFF Delay	0	200	0	150	0	150	10	125	10	125	10	100	10	100	ns
${ }_{\text {twC }}$	Write Cycle Time	1000		650		500		500		400		300		250		ns
$t_{\text {AW }}$	Address Set-up Time	150		150		100		0		0		0		0		ns
$t_{W P}$	Write Pulse Width	750		400		300		175		150		125		100		ns
${ }^{\text {t }} \mathrm{CW}$	Chip Enable Set-up Time (Note 1)	900		550		400		175		150		125		100		ns
$t_{\text {WR }}$	Address Hold Time	50		50		50		0		0		0		0		ns
$t_{\text {DW }}$	Input Data Set-up Time	700		400		280		150		125		100		85		ns
${ }^{\text {t }}$ D	Input Data Hold Time	100		100		100		0		0		0		0		ns

Note: 1. Both CE1 and CE2 must be true to enable the chip.

SWITCHING WAVEFORMS
READ CyCLE
write cycle

Am9101/Am91L01/Am2101 Family

DEFINITION OF TERMS

FUNCTIONAL TERMS

$\overline{\text { CE1 }}, \mathbf{C E 2}$ Chip Enable Signals. Read and Write cycles can be executed only when both $\overline{\mathrm{CE} 1}$ is low and CE2 is high.
$\overline{W E}$ Active LOW Write Enable. Data is written into the memory if $\overline{W E}$ is LOW and read from the memory if $\overline{W E}$ is HIGH.
Static RAM A random access memory in which data is stored in bistable latch circuits. A. static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.
N-Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N -type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

tod Output enable time. Delay time from falling edge of $O D$ to output on.
$\mathbf{t}_{\mathbf{R} \mathbf{C}}$ Read Cycle Time. The minimum time required between successive address changes while reading.
t_{A} Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.
${ }^{\mathrm{t}}$ co Access Time from Chip Enable. The minimum time during which the chip enable must be LOW prior to reading data on the output.
$t_{0 H}$ Minimum time which will elapse between change of address and any change of the data output.
${ }^{\text {t DF1 }}$ Time delay between output disable HIGH and output data float.
tDF2 Time delay between chip enable OFF and output data float.
twc Write Cycle Time. The minimum time required between successive address changes while writing.
$t_{\text {AW }}$ Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.
$t_{W P}$ The minimum duration of a LOW level on the write enable guaranteed to write data.
twr Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.
$t_{\text {DW }}$ Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.
$t_{D H}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.
$\mathbf{t}_{\mathrm{C} W}$ Chip Enable Time during Write. The minimum duration of a LOW level on the Chip Select prior to the rising edge of $\overline{W E}$ to guarantee writing.

POWER DOWN STANDBY OPERATION

The Am9101/Am91L01 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering V_{CC} to around $1.5-2.0$ volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a
large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.
To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at V_{IH} or $\mathrm{V}_{\mathrm{CES}}$ during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test Conditions			Min.	Typ.	Max.	Units
V_{PD}	$\mathrm{V}_{\text {CC }}$ in Standby Mode				1.5			
$I_{\text {PD }}$	${ }^{\text {I C }}$ in Standby Mode	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \\ & \text { All Inputs }=\mathrm{V}_{\mathrm{PD}} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91 L01		11	25	mA
			$v_{P D}=1.5 v$	Am9101		13	31	
			$\mathrm{V}_{\mathrm{PD}}=2.0 \mathrm{~V}$	Am91L01		13	31	
				Am9101		17	41	
		$\begin{aligned} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \\ & \text { All Inputs }=V_{P D} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91L01		11	28	mA
				Am9101		13	34	
			$V_{P D}=2.0 \mathrm{~V}$	Am91L01		13	34	
				Am9101		17	46	
$\mathrm{dv} / \mathrm{dt}$	Rate of Change of V_{CC}						1.0	$\mathrm{V} / \mu \mathrm{s}$
$t_{\text {R }}$	Standby Recovery Time				$\mathrm{t}_{\text {RC }}$			ns
${ }^{\text {t }}$ CP	Chip Deselect Time				0			ns
$\mathrm{V}_{\text {CES }}$	$\overline{\mathrm{CE}}$ Bias in Standby				$\mathrm{V}_{P D}$			Volts

Metallization and Pad Layout

Typical Power Supply Current Versus Voltage

Access Time Versus V_{CC} Normalized to $\mathrm{V}_{\mathrm{CC}}=+5.0$ Volts

Am9111/Am91L11/Am2111 Family
 256×4 Static R/W Random Access Memories

Part Number	Am2111	Am2111-2	Am9111A Am91L11A Am2111-1	Am9111B Am91L11B	Am9111C Am91L11C	Am9111D
Access Time	1000 ns	650 ns	500 ns	400 ns	300 ns	250 ns

DISTINCTIVE CHARACTERISTICS

- 256×4 organization for small memory systems
- Low operating power dissipation

125mW typ; 290mW maximum - standard power
100 mW typ; 175 mW maximum - low power

- DC standby mode reduces power up to 84%
- Logic voltage levels identical to TTL
- High output drive - two full TTL loads
- High noise immunity - full 400 mV
- Single +5 volt power supply - tolerances $\pm 5 \%$ commercial, $\pm 10 \%$ military
- Uniform switching characteristics - access times insensitive to supply variations, addressing patterns and data patterns
- Both military and commercial temperature ranges available
- Bussed input and output data on common pins
- Output disable control
- Zero address setup and hold times for simplified timing
- 100\% MIL-STD-883 reliability assurance testing

FUNCTIONAL DESCRIPTION

The Am9111/Am91L11 series of devices are highperformance, low-power, 1024-bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 200ns. Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth. The input data and output data signals are bussed together to share common I/O pins. This feature not only decreases the package size, but also helps eliminate external logic in bus-oriented memory systems.

These memories may be operated in a DC standby mode for reductions of as much as 84% of the normal power dissipation. Data can be retained with a power supply as low as 1.5 volts. The low power Am91L11 series offer reduced power dissipation during normal operating conditions and even lower dissipation in the standby mode.
The Chip Enable input control signals act as high order address lines and they control the write amplifier and the output buffers. The Output Disable signal provides independent control over the output state of enabled chips.
These devices are fully static and no refresh operations, sense amplifiers or clocks are required. Input and output signal levels are identical to TTL specifications, providing simplified interfacing and high noise immunity. The outputs will drive two full TTL loads for increased fan-out and better bus interfacing capability.

Am9111/Am91L11/Am2111 Family

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
V_{CC} With Respect to VSS, Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation	1.0 W

ELECTRICAL CHARACTERISTICS

Min. Max. Min. Max. Units

2.4				Volts
		2.2		
	0.4			Volts
			0.45	
2.0	V_{Cc}	2.2	V_{CC}	Volts
-0.5	0.8	-0.5	0.65	Volts
	10		10	$\mu \mathrm{A}$
	5.0		15	
	-10		-50	
	50		60	mA
	55			
	31			
	34			
	55		70	
	60			
	33			
	36			

Am9111/ Family
Am9111DM $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Am91L11DM $\quad V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

CAPACITANCE

Parameters	Description	Test Conditions		Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{mHz}$	Am2111	4.0	8.0	pF
			Am9111/Am91L11	3.0	6.0	
Cout	Output Capacitance, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		Am2111	10	15	pF
			Am9111/Am91L11	8.0	11	

SWITCHING CHARACTERISTICS over operating temperature and voltage range
Output Load $=1$ TTL Gate +100 pF

$$
T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \quad V_{C C}=+5 \mathrm{~V} \pm 5 \%
$$

$T_{A}=-55$ to $+125^{\circ} \mathrm{C} \quad V_{C C}=+5 \mathrm{~V} \pm 10 \%$
Input Levels, Output References $=0.8 \mathrm{~V}$ and 2.0 V

		2111		2111-2		2111-1		$\begin{aligned} & \text { 9111A } \\ & 91 \mathrm{~L} 11 \mathrm{~A} \end{aligned}$		$\begin{gathered} \text { 9111B } \\ 91 \mathrm{~L} 11 \mathrm{~B} \end{gathered}$		$\begin{aligned} & \text { 9111C } \\ & 91 \mathrm{~L} 11 \mathrm{C} \end{aligned}$		9111D		
Parameters	Description	Min	Max	Units												
t_{RC}	Read Cycle Time	1000		650		500		500		400		300		250		ns
t_{A}	Access Time		1000		650		500		500		400		300		250	ns
${ }^{\text {t }} \mathrm{CO}$	Chip Enable to Output ON Delay (Note 1)		800		400		350		200		175		150		125	ns
${ }^{\text {tob }}$	Output Disable to Output ON Delay		700		350		300		175		150		125		100	ns
${ }^{\mathrm{O}} \mathrm{OH}$	Previous Read Data Valid with Respect to Address Change	0		0		0		40		40		40		30		ns
${ }^{\text {t }}$ D 1	Output Disable to Output OFF Delay	0	200	0	150	0	150	5.0	125	5.0	100	5.0	100	5.0	75	ns
${ }^{\text {t }}$ F2	Chip Enable to Output OFF Delay	0	200	0	150	0	150	10	150	10	125	10	125	10	100	ns
${ }^{\text {w }}$ WC	Write Cycle Time	1000		650		500		500		400		300		250		ns
$t_{\text {AW }}$	Address Set-up Time	150		150		100		0		0		0		0		ns
$t_{\text {WP }}$	Write Pulse Width	750		400		300		175		150		125		100		ns
${ }^{\text {t }}$ CW	Chip Enable Set-up Time (Note 1)	900		550		400		175		150		125		100		ns
${ }^{\text {t }}$ WR	Address Hold Time	50		50		50		0		0		0		0		ns
${ }^{\text {t }}$ DW	Input Data Set-up Time	700		400		280		150		125		100		85		ns
t_{DH}	Input Data Hold Time	100		100		100		0		0		0		0		ns

Note: 1. Both CE1 and CE2 must be LOW to enable the chip.

SWITCHING WAVEFORMS

READ CYCLE
WRITE CYCLE

Am9111/Am91L11/Am2111 Family

DEFINITION OF TERMS

FUNCTIONAL TERMS

$\overline{\mathrm{CE}}, \overline{\mathrm{CE}}$ Chip Enable Signals. Read and Write cycles can be executed only when both $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE} 2}$ are LOW.
$\overline{\text { WE }}$ Active LOW Write Enable. Data is written into the memory if $\overline{W E}$ is LOW and read from the memory if WE is HIGH.
Static RAM A random access memory in which data is stored in bistable latch circuits. A. static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.
N -Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N -type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

$t_{O D}$ Output enable time. Delay time from falling edge of $O D$ to output on.
$t_{\text {RC }}$ Read Cycle Time. The minimum time required between successive address changes while reading.
$\boldsymbol{t}_{\mathbf{A}}$ Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.
${ }^{\text {t }} \mathbf{c o}$ Access Time from Chip Enable. The minimum time during which the chip enable must be LOW prior to reading data on the output.
tor Minimum time which will elapse between change of address and any change of the data output.
tDF1 $^{\text {D }}$ Time delay between output disable HIGH and output data float.
tDF2 Time delay between chip enable OFF and output data float.
$t_{\text {wh }}$ Write Cycle Time. The minimum time required between successive address changes while writing.
$\mathbf{t}_{\text {AW }}$ Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.
$t_{\text {WP }}$ The minimum duration of a LOW level on the write enable guaranteed to write data.
$t_{\text {WR }}$ Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.
$t_{\text {DW }}$ Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.
$t_{\text {DH }}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.
${ }^{\mathrm{t}}{ }^{\mathrm{CW}}$ Chip Enable Time during Write. The minimum duration of a LOW level on the Chip Select prior to the rising edge of $\overline{W E}$ to guarantee writing.

POWER DOWN STANDBY OPERATION

The Am9111/Am91L11 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering $V_{C C}$ to around $1.5-2.0$ volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a
large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.
To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at V_{IH} or $\mathrm{V}_{\mathrm{CES}}$ during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test Conditions			Min.	Typ.	Max.	Units
V_{PD}	$\mathrm{V}_{\text {cc }}$ in Standby Mode				1.5			
IPD	ICC in Standby Mode	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \\ & \text { All Inputs }=V_{P D} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91L.11		11	25	mA
				Am9111		13	31	
			$V_{P D}=2.0 \mathrm{~V}$	Am91L. 11		13	31	
				Am9111		17	41	
		$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { All Inputs }=V_{P D} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91L11		11	28	mA
				Am9111		13	34	
			$\mathrm{V}_{\mathrm{PD}}=2.0 \mathrm{~V}$	Am91L11		13	34	
				Am9111		17	46	
$\mathrm{dv} / \mathrm{dt}$	Rate of Change of V_{CC}						1.0	V / s
$t_{\text {R }}$	Standby Recovery Time				${ }^{\text {t } R C}$			ns
${ }^{\text {t }}$ CP	Chip Deselect Time				0			ns
$\mathrm{V}_{\text {CES }}$	$\overline{\text { CE Bias in Standby }}$				VPD			Volts

Am9111 FAMILY - APPLICATION INFORMATION

These memory products provide all of the advantages of AMD's other static N -channel memory circuits: +5 only power supply, all TTL interface, no clocks, no sensing, no refreshing, military temperature range available, low power versions available, high speed, high output drive, etc. In addition, the Am9111 series features a 256×4 organization with common pins used for both Data In and Data Out signals.
This bussed I/O approach cuts down the package pin count allowing the design of higher density memory systems. It also provides a direct interface to bus-oriented systems, eliminating bussing logic that could otherwise be required. Most microprocessor systems, for example, transfer information on a bidirectional data bus. The Am9111 memories can connect
directly to such a processor since the common I/O pins act as a bidirectional data bus.

The Output Disable control signal is provided to prevent signal contention for the bus lines, and to simplify tri-state bus control in the external circuitry. If the chip is enabled and the output is enabled and the memory is in the Read state, then the output buffers will be impressing data on the bus lines. At that point, if the external system tries to drive the bus with data, in preparation for a write operation, there will be conflict for domination of the bus lines. The Output Disable signal allows the user direct control over the output buffers, independent of the state of the memory. Although there are alternative ways to resolve the conflict, normally Output Disable will be held high during a write operation.

Am9112/Am91L12 Family
 256×4 Static R/W Random Access Memories

Part Number	Am2112	Am2112-2	Am9112A Am91L12A	Am9112B Am91L12B	Am9112C Am91L12C	Am9112D
Access Time	1000 ns	650 ns	500 ns	400 ns	300 ns	250 ns

DISTINCTIVE CHARACTERISTICS

- 256×4 organization
- 16-pin standard DIP
- Low operating power dissipation

125mW typ; 290mW maximum - standard power
100mW typ; 175mW maximum - low power

- DC standby mode reduces power up to 84% 20 mW Typ; 47 mW maximum
- Logic voltage levels identical to TTL
- High output drive - two full TTL loads guaranteed
- High noise immunity - full 400 mV
- Uniform switching characteristics - access times insensitive to supply variations, address patterns and data patterns
- Single +5 V power supply - tolerances $\pm 5 \%$ commercial, $\pm 10 \%$ military
- Bus-oriented I/O data
- Zero address, setup and hold times guaranteed for simpler timing
- Direct plug-in replacement for 2112 type devices
- 100% MIL-STD-883 reliability assurance testing

Am9112 BLOCK DIAGRAM

MOS-356

FUNCTIONAL DESCRIPTION

The Am9112/Am91L12 series of products are high performance, low power, 1024-bit, static read/write random access memories. They offer a range of speeds and power dissipations including versions as fast as 200ns and as low as 100 mW typical.
Each memory is implemented as 256 words by 4 -bits per word. This organization allows efficient design of small memory systems and permits finer resolution of incremental memory word size relative to 1024 by 1 devices. The output and input data signals are internally bussed together and share 4 common I/O pins. This feature keeps the package size small and provides a simplified interface to bus-oriented systems.
The Am9112/Am91L12 memories may be operated in a DC standby mode for reductions of as much as 84% of the normal operating power dissipation. Though the memory cannot be operated, data can be retained in the storage cells with a power supply as low as 1.5 volts. The Am91L12 versions offer reduced power during normal operating conditions as well as even lower dissipation in standby mode.
The eight Address inputs are decoded to select 1-of-256 locations within the memory. The Chip Enable input acts as a high-order address in multiple chip systems. It also controls the write amplifier and the output buffers in conjunction with the Write Enable input. When $\overline{\mathrm{CE}}$ is low and $\overline{\mathrm{WE}}$ is high, the write amplifiers are disabled, the output buffers are enabled and the memory will execute a read cycle. When $\overline{\mathrm{CE}}$ is low and $\overline{\mathrm{WE}}$ is low, the write amplifiers are enabled, the output buffers are disabled and the memory will execute a write cycle. When $\overline{C E}$ is high both the write amplifiers and the output buffers are disabled.
These memories are fully static and require no refresh operations or sense amplifiers or clocks. All input and output voltage levels are identical to standard TTL specifications, including the power supply.

Am9112/Am91L12 Family

MAXIMUM RATINGS above which the useful life may bo impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{VCC}^{\mathrm{CC}}$ With Respect to VSS, Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation	1.0 W

ELECTRICAL CHARACTERISTICS

Am9112PC, Am9112DC $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am91L12PC, Am91L12DC $\quad V_{C C}=+5 \mathrm{~V} \pm 5 \%$
Parameters Description

v_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$			2.4		Volts
v_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ., \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$				0.4	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0	V_{CC}	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-0.5	0.8	Volts
I_{LI}	Input Load Current	$\mathrm{V}_{\text {CC }}=$ MAX., $0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 5.25 \mathrm{~V}$				10	$\mu \mathrm{A}$
'LO	1/O Leakage Current	$v_{\overline{C E}}=v_{I H}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V} \end{aligned}$			5.0	$\mu \mathrm{A}$
						-10	
${ }^{\text {ICC1 }}$	Power Supply Current	Data out open $V_{C C}=M A X$. $V_{I N}=V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Am9112A/B		50	mA
				Am9112C/D/E		55	
				Am91L12A/B		31	
				Am91L12C		34	
${ }^{1} \mathrm{CC} 2$			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	Am9112A/B		55	
				Am9112C/D/E		60	
				Am91L12A/B		33	
				Am91L12C		36	

ELECTRICAL CHARACTERISTICS

CAPACITANCE

Parameters	Description	Test Conditions		Typ.	Max.	Units
CIN	Input Capacitance, $\mathrm{V}_{1 N}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{mHz}$	Am2112	4.0	8.0	pF
			Am9112/Am91L12	3.0	6.0	
COUT	Output Capacitance, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		Am2112	10	18	pF
			Am9112/Am91L12	8.0	11	

SWITCHING CHARACTERISTICS over operating temperature and voltage range
Output Load = 1 TTL Gate +100 pF
Transition Times $=10 \mathrm{~ns}$
Input Levels, Output References $=0.8 \mathrm{~V}$ and 2.0 V

Am9112A	Am9112B	Am9112C
Am91L12A	Am91L12B	Am91L12C

Am9112D

Parameters	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
$t_{\text {RC }}$	Read Cycle Time	500		400		300		250		ns
$t_{\text {A }}$	Access Time		500		400		300		250	ns
${ }^{\text {t }} \mathrm{CO}$	Output Enabled to Output ON Delay (Note 1)	5.0	175	5.0	150	5.0	125	5.0	100	ns
t_{OH}	Previous Read Data Valid with Respect to Address Change	40		40		40		30		ns
${ }^{\text {t }}$ DF	Output Disabled to Output OFF Delay (Note 2)	5.0	125	5.0	100	5.0	100	5.0	75	ns
$t_{\text {wc }}$	Write Cycle Time	500		400		300		250		ns
$t_{\text {AW }}$	Address Set-up Time	0		0		0		0		ns
${ }^{\text {twR }}$	Address Hold Time	0		0		0		0		ns
$t_{\text {WP }}$	Write Pulse Width (Note 3)	175		150		125		100		ns
${ }_{\text {t }} \mathrm{W}$	Chip Enable Set-up Time	175		150		125		100		ns
${ }^{\text {t }}$ W ${ }^{\text {b }}$	Input Data Set-up Time	150		125		100		85		ns
$\mathrm{t}_{\text {DH }}$	Input Data Hold Time (Note 4)	0		0		0		0		ns

SWITCHING WAVEFORMS (Note 5)

READ CYCLE

WRITE CYCLE

Notes: 1. Output is enabled and t_{CO} commences only with both $\overline{\mathrm{CE}}$ LOW and $\overline{\mathrm{WE}} \mathrm{HIGH}$.
2. Output is disabled and tDF defined from either the rising edge of $\overline{C E}$ or the falling edge of $\overline{W E}$.

4. When $\overline{W E}$ goes HIGH at the end of the write cycle, it will be possible to turn on the output buffers if $\overline{\mathrm{CE}}$ is still LOW. The data out will be the same as the data just written and so will not conflict with input data that may still be on the I/O bus.
5. See "Application Information" section of this specification.

Am9112/Am91L12 Family

DEFINITION OF TERMS

FUNCTIONAL TERMS

$\overline{\mathbf{C E}}$ Active LOW Chip Enable. Data can be read from or written into the memory only if $\overline{\mathrm{CE}}$ is LOW.
$\overline{\text { WE }}$ Active LOW Write Enable. Data is written into the memory if $\overline{W E}$ is LOW and read from the memory if $\overline{W E}$ is HIGH.
Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.
N -Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

$t_{\text {RC }}$ Read Cycle Time. The minimum time required between successive address changes while reading.
t_{A} Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.
$t_{\text {CO }}$ Output Enable Time. The time during which $\overline{\mathrm{CE}}$ must be LOW and $\overline{W E}$ must be HIGH prior to data on the output.
\mathbf{t}_{OH} Minimum time which will elapse between change of address and any change on the data output.
$t_{D F}$ Time which will elapse between a change on the chip enable or the right enable and on data outputs being driven to a floating status.
twe Write Cycle Time. The minimum time required between successive address changes while writing.
$t_{\text {AW }}$ Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.
twp The minimum duration of a LOW level on the write enable guaranteed to write data.
twr Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady. ${ }^{\text {t }}$ WW Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.
$t_{\text {DH }}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.
${ }^{\mathbf{t}}{ }^{\text {CW }}$ Chip Enable Time During Write. The minimum duration of a LOW level on the Chip Select while the write enable is LOW to guarantee writing.

POWER DOWN STANDBY OPERATION

The Am9112/Am91L12 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering $V_{C C}$ to around $1.5-2.0$ volts (see table and graph below). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a
large system, memory pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.
To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at $V_{I H}$ or $V_{\text {CES }}$ during the entire standby cycle.

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Parameters	Description	Test Conditions			Min.	Typ.	Max.	Units
VPD	$\mathrm{V}_{\text {CC }}$ in Standby Mode				1.5			
$I_{P D}$	${ }^{\text {I C }}$ C in Standby Mode	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ & \text { All Inputs }=\mathrm{V}_{\mathrm{PD}} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91L12		11	25	mA
				Am9112		13	31	
			$V_{P D}=2.0 \mathrm{~V}$	Am91L12		13	31	
				Am9112		17	41	
		$\begin{aligned} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \\ & \text { All Inputs }=V_{P D} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91L12		11	28	mA
				Am9112		13	34	
			$V_{P D}=2.0 \mathrm{~V}$	Am91L12		13	34	
				Am9112		17	46	
dv/dt	Rate of Change of V_{CC}						1.0	$\mathrm{V} / \mu \mathrm{s}$
t_{R}	Standby Recovery Time				${ }^{\text {t } R C}$			ns
${ }^{\text {t }} \mathrm{CP}$	Chip Deselect Time				0			ns
$\mathrm{V}_{\text {CES }}$	$\overline{\mathrm{CE}}$ Bias in Standby				VPD			Volts

APPLICATION INFORMATION

These memory products provide all of the advantages of AMD's other static N -channel memory circuits: +5 only power supply, all TTL interface, no clocks, no sensing, no refreshing, military temperature range available, low power versions available, high speed, high output drive, etc. In addition, the Am9112 series features a 256×4 organization with common pins used for both Data In and Data Out signals.

This bussed I/O approach keeps the package pin count low allowing the design of higher density memory systems. It also provides a direct interface to bus-oriented systems, eliminating bussing logic that could otherwise be required. Most microprocessor systems, for example, transfer information on a bidirectional data bus. The Am9112 memories can connect directly to such a processor since the common I/O pins act as a bidirectional data bus.
If the chip is enabled ($\overline{\mathrm{CE}}$ low) and the memory is in the Read state ($\overline{W E}$ high), the output buffers will be turned on and will be driving data on the I/O bus lines. If the external system tries to drive the bus with data, there may be contention for control of the data lines and large current surges can result. Since the condition can occur at the beginning of a write cycle, it is important that incoming data to be written not be entered until the output buffers have been turned off.

These operational suggestions for write cycles may be of some help for memory system designs:

1. For systems where $\overline{\mathrm{CE}}$ is always low or is derived directly from addresses and so is low for the whole cycle, make sure tWP is at least tDW + tDF and delay the input data until tDF following the falling edge of $\overline{W E}$. With zero address set-up and hold times it will often be convenient to make $\overline{W E}$ a cycle-width level ($\mathrm{t}_{\mathrm{wP}}=\mathrm{t}_{\mathrm{Wc}}$) so that the only subcycle timing required is the delay of the input data.
2. For systems where $\overline{\mathrm{CE}}$ is high for at least t_{DF} preceeding the falling edge of $\overline{W E}$, twP may assume the minimum specified value. When $\overline{C E}$ is high for $t_{D F}$ before the start of the cycle, then no other subcycle timing is required and $\overline{W E}$ and data-in may be cycle-width levels.
3. Notice that because both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be low to cause a write to take place, either signal can be used to determine the effective write pulse. Thus, $\overline{W E}$ could be a level with $\overline{\mathrm{CE}}$ becoming the write timing signal. In such a case, the data set-up and hold times are specified with respect to the rising edge of $\overline{\mathrm{CE}}$. The value of the data set-up time remains the same and the value of the data hold time should change to a minimum of 25 ns .

ORDERING INFORMATION

Ambient Temperature Specification	Package Type	Power Type	Access Times					
			1000ns	650ns	500 ns	400ns	300ns	250ns
0 to $+70^{\circ} \mathrm{C}$	Molded DIP	Standard	P2112	P2112-2	AM9112APC	AM9112BPC	AM9112CPC	AM9112DPC
		Low			AM91L12APC	AM91L12BPC	AM91L12CPC	
	Hermetic DIP	Standard	C2112	C2112-2	AM9112ADC	AM9112BDC	AM9112CDC	AM9112DDC
		Low			AM91L12ADC	AM91L12BDC	AM91L12CDC	
-55 to $+125^{\circ} \mathrm{C}$	Hermetic DIP	Standard			AM9112ADM	AM9112BDM	AM9112CDM	
		Low			AM91L12ADM	AM91L12BDM	AM91L12CDM	

Am9122/Am91L22

256×4 Static R/W RAMs

DISTINCTIVE CHARACTERISTICS

- High performance replacement for 93422/93L422
- 256×4 organization for small memory systems
- Fast access times - down to 25ns (Commercial)

> - down to 35ns (Military)

- Low operating power dissipation
- Standard power: 660 mW (Commercial)

$$
745 \mathrm{~mW} \text { (Military) }
$$

- Low power: 248/440mW (Commercial) 495mW (Military)
- Single 5 volt power supply $- \pm 10 \%$ tolerance both commercial and military
- 100% MIL-STD-883 reliability assurance testing
- Guaranteed 0.1\% AQL

FUNCTIONAL DESCRIPTION

The Am9122/Am91L22 series is a MOS pin-for-pin and functional replacement for the 93422/93L422 bipolar memories. These devices are high-performance, lowpower, 1024-bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 25 ns . Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth.
The Am9122/91L22 employs an output enable and two chip enable inputs to give the user better data control. High noise immunity, high output drive (4 TTL loads) and TTL logic voltage levels allow easy conversion from bipolar to MOS. 10\% power supply tolerances give better margins in the memory system. As with all AMD MOS RAMs, the Am9122/91L22 is guaranteed to 0.1\% AQL.

CONNECTION DIAGRAM
Top View

Note: Pin 1 is marked for orientation. RAM-020

SELECTION GUIDE

		Am9122-25	Am9122-35	Am91L22-35	Am91L22-45	Am91L22-60
Maximum Access Time (ns)		25	35	35	45	60
Maximum Operating Current (mA)	0 to $70^{\circ} \mathrm{C}$	120	120	80	80	45
	-55 to $125^{\circ} \mathrm{C}$	N / A	135	$\mathrm{~N} / \mathrm{A}$	90	N/A

Am9122/91L22
MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 10 to Pin 9) Continuous	-0.5 to +7.0 V
DC Voltage Applied to Outputs	-0.5 to +7.0 V
DC Input Voltage	-0.5 to +7.0 V
Power Dissipation	1.0 W
DC Output Current	20 mA

OPERATING RANGE

Part Number	Ambient Temperature	$V_{\text {CC }}$
Am9122 DC/PC Am91L22 DC/PC	$0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$
Am9122 DM Am91L22 DM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS over the operating temperature range unless otherwise specified (Note 1)

Parameters Description		Test Conditions		Am91L22-60		Am91L22-35 Am91L22-45		$\begin{aligned} & \text { Am9122-25 } \\ & \text { Am9122-35 } \end{aligned}$		Units		
		Min	Max	Min	Max	Min	Max					
V_{OH}	Output HIGH Voltage			$\mathrm{V}_{C C}=\mathrm{Min}$	$\mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$	2.4		2.4		2.4		Volts
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	$\mathrm{lOL}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	Volts		
V_{IH}	Input HIGH Voltage			2.1	V_{Cc}	2.1	V_{Cc}	2.1	V_{CC}	Volts		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	Volts		
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {IN }}=$ Gnd			10		10		10	$\mu \mathrm{A}$		
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			10		10		10	$\mu \mathrm{A}$		
V_{CD}	Input Diode Clamp Voltage				Note 4		Note 4		Note 4	Volts		
loff	Output Current (High-Z)	$V_{O L} \leqslant V_{O U T} \leqslant V_{O H}$ Output Disabled	$T_{A}=$ Max	-50	50	-50	50	-50	50	$\mu \mathrm{A}$		
Ios	Output Short Circuit Current Note 3	$\begin{aligned} & V_{\text {CC }}=\mathrm{Max} \\ & V_{\text {OUT }}=\mathrm{GND} \end{aligned}$	Commercial		-70		-70		-70	mA		
			Military		-80		-80		-80	mA		
$I_{\text {cc }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ Max,, lout $=0 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		40		70		110	mA		
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		45		80		120	mA		
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		N/A		90		135	mA		

CAPACITANCE

Parameters	Description	Test Conditions	Typ	Max	Units
$\mathrm{C}_{\text {l }}$	Input Capacitance, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$	3	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		5	8	

Notes: 1. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. A two minute warm up period is required for $-55^{\circ} \mathrm{C}$ operation.
2. t_{w} measured at $t_{w s a}=\min ; t_{w s a}$ measured at $t_{w}=\min$.
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. The NMOS process does not provide a clamp diode. However, the Am9122/91L22 is insensitive to -3V DC input
levels and -5 V undershoot pulses of less than 10ns (measured at 50\% point).
5. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance as in Figure 1a.
6. Transition is measured at $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ or $\mathrm{VOL}_{\mathrm{OL}}+500 \mathrm{mV}$ levels on the output from 1.5 V level on the input with load shown in Figure 1b.

SWITCHING CHARACTERISTICS over operating and voltage range (Note 5)
Am91L22-35
Am9122-25 Am9122-35 Am91L22-45 Am91L22-60

Parameters Description		Test Conditions	Am9122-25		Am9122-35		Am91L22-45		Am91L22-60			
		Min	Max	Min	Max	Min	Max	Min	Max	Units		
$t_{\text {ACS }}$	Chip Select Time				15		25		30		35	ns
$\mathrm{t}_{\mathrm{ZRCS}}$	Chip Select to High-Z	(Note 6)		20		30		30		35	ns	
$\mathrm{t}_{\text {AOS }}$	Output Enable Time			15		25		30		35	ns	
$\mathrm{t}_{\mathrm{zROS}}$	Output Enable to High-Z	(Note 6)		20		30		30		35	ns	
$t_{\text {AA }}$	Address Access Time			25		35		45		60	ns	
tzws	Write Disable to High-Z	(Note 6)		20		30		35		40	ns	
$t_{\text {WR }}$	Write Recovery Time			20		25		40		45	ns	
tw	Write Pulse Width	(Note 2)	15		25		30		40		ns	
${ }^{\text {twSD }}$	Data Setup Time Prior to Write		5		5		5		5		ns	
$t_{\text {WHD }}$	Data Hold Time Atter Write		5		5		5		5		ns	
${ }^{\text {t WSA }}$	Address Setup Time	(Note 2)	5		5		10		10		ns	
${ }^{\text {t WHA }}$	Address Hold Time		5		5		5		5		ns	
twscs	Chip Select Setup Time		5		5		5		5		ns	
$\mathrm{t}^{\text {WHCS }}$	Chip Select Hold Time		5		5		5		5		ns	

LOGIC TABLE

Inputs					Outputs	Mode
$\overline{\mathrm{OE}}$	$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{W E}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$		
X	H	X	X	x	High \mathbf{Z}	Not Selected
X	X	L	X	X	High Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
X	L	H	L	L	High Z	Write "0"
X	L	H	L	H	High Z	Write "1"
H	L	H	H	X	High Z	Output Disabled
H	L	H	L	L	High Z	Write "0" (Output Disabled)
H	L	H	L	H	High Z	Write "1" (Output Disabled)

Notes: $\mathrm{H}=\mathrm{HIGH}$ Voltage
L = LOW Voltage
X = Don't Care (HIGH or LOW)
High Z $=$ High Impedance

BIT MAP

Address Designators	
External	Internal
A_{0}	A_{0}
A_{1}	A_{1}
A_{2}	A_{2}
A_{3}	A_{3}
A_{4}	A_{4}
A_{5}	A_{5}
A_{6}	A_{6}
A_{7}	A_{7}

AC TEST LOADS AND WAVEFORMS

AC TEST LOADS

Figure 1 a.

Figure 1b.

INPUT PULSES

Figure 2.
RAM-021

READ MODE

RAM-022

WRITE MODE

(All above measurements implemented to 1.5 V unless otherwise stated.)
Note: Timing diagram represents one solution which results in an optimum cycle time. Timing may be changed to in various applications as long as the worst case limits are not violated.

TYPICAL DC AND AC CHARACTERISTICS

 versus Output Loading

ORDERING INFORMATION

9122-25 Order Code	9122-35 Order Code	91L22-35 Order Code	91L22-45 Order Code	91L22-60 Order Code	Package Type	Screening Level	Operating Range
Am9122-25PC	Am9122-35PC	Am91L22-35PC	Am91L22-45PC	Am91L22-60PC	P-22	C-1	C
Am9122-25DC	Am9122-35DC	Am91L22-35DC	Am91L22-45DC	Am91L22-60DC	D-22	C-1	C
N/A	Am9122-35DM	N/A	Am91L22-45DM	N/A	D-22	C-3	M

Notes: 1. P = Molded DIP, $\mathrm{D}=$ Hermetic DIP, F = Flat Pack. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
3. See Operating Range Table.

Am21L41
 4096×1 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS

- 4K $\times 1$ organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- No clocks or timing signals required
- Equal access and cycle times
- Automatic power-down when deselected
- Low power dissipation
- Am21L41; 220mW active, 27.5mW power down
- Standard 18 -pin, .300 inch dual in-line package
- High output drive
- Up to seven standard TTL loads or six Schottky TTL loads
- TTL compatible interface levels
- 100% MIL-STD-883 reliability assurance testing
- No power-on current surge
- Guaranteed 0.1% AQL

GENERAL DESCRIPTION

The Am21L41 is a high performance, 4096-bit, static, read/write, random access memory. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard Schottky TTL loads or up to six standard TTL loads.
Only a single +5 volt power supply is required. When deselected ($\overline{\mathrm{CS}} \geqslant \mathrm{VIH}$), the Am21L41 automatically enters a power-down mode which reduces power dissipation by as much as 85%. When selected, the chip powers up again with no access time penalty.
Data In and Data Out use separate pins on the standard 18 -pin package. Data Out is the same polarity as Data In. Data Out is a 3 -state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

BLOCK DIAGRAM

CONNECTION DIAGRAM
Top View

PRODUCT SELECTIONS

	Am21L41-12	Am21L41-15	Am21L41-20	Am21L41-25
Max Access Time (ns)	120	150	200	250
Max Active Current (mA)	55	40	40	40
Max Standby Current (mA)	10	5	5	5

Am21L41
MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	0 to $70^{\circ} \mathrm{C}$
VCC with Respect to VSS	-0.5 to +7.0 V
All Signal Voltages with Respect to VSS	-1.5 to +7.0 V
Power Dissipation (Package Limitation)	1.2 W
DC Output Current	20 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VSS	VCC
Am21L41 PC/DC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	0 V	$+5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS over operating range (Note 1)

Am21L41-15

Am21L41-20

Parameter	Description			Am21L41-12		Am21L41-25		
		Test Conditions		Min	Max	Min	Max	Units
IOH	Output High Current	$\mathrm{VOH}=2.4 \mathrm{~V}$	$\mathrm{VCC}=4.5 \mathrm{~V}$	-4		-4		mA
IOL	Output Low Current	$\mathrm{VOL}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8		8		mA
VIH	Input High Voltage			2.0	6.0	2.0	6.0	Volts
VIL	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	VSS $\leqslant \mathrm{VI} \leqslant \mathrm{VCC}$			10		10	$\mu \mathrm{A}$
IOZ	Output Leakage Current	$G N D \leqslant V O \leqslant V C C$ Output Disabled	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	-10	10	-10	10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\begin{aligned} & G N D \leqslant V O \leqslant V C C \\ & \text { (Note 2) } \end{aligned}$	0 to $+70^{\circ} \mathrm{C}$	-120	120	-120	120	mA
Cl	Input Capacitance (Note 1)	Test Frequency $=1.0 \mathrm{MHz}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All pins at 0 V			5.0		5.0	pF
CO	Output Capacitance (Note 1)				6.0		6.0	
ICC	VCC Operating Supply Current	Max VCC, $\overline{\text { CS }} \leqslant$ VIL	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		55		40	mA
ISB	Automatic $\overline{\text { CS }}$ Power Down Current	Max VCC, ($\overline{\mathrm{CS}} \geqslant \mathrm{VIH}$) (Note 5)			10		5.0	mA

Notes:

1. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
2. Short circuit test duration should not exceed 30 seconds.
3. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.5 V and output loading of the specified $10 L / I O H$ and $C_{L}=30 \mathrm{pF}$ load capacitance (reference Figure 1.).
4. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. A pull up resistor to VCC on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during VCC power up otherwise ISB will exceed values given.
6. Chip deselected greater than 55 ns prior to selection
7. Chip deselected less than 55 ns prior to selection.
8. At any given temperature and voltage condition, tHZ is less than tLZ for all devices. Transition is measured at $\mathrm{VOH}-500 \mathrm{mV}$ and VOL +500 mV levels on the output from 1.5 V level on the input with load shown in Figure 1 using CL $=5 \mathrm{pF}$.
9. WE is high for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{VIL}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

RAM-039

Figure 1. Output Load

SWITCHING CHARACTERISTICS over operating range (Note 3)

			Am21L41-12		Am21L41-15		Am21L41-20		Am21L41-25		
Parameter	Description		Min	Max	Min	Max	Min	Max	Min	Max	Units
Read Cycle											
tRC	Address Valid to Address Do Not Care Time (Read Cycle Time)		120		150		200		250		ns
tAA	Address Valid to Data Out Valid Delay (Address Access Time)			120		150		200		250	ns
tASC1	Chip Select Low to Data Out Valid	Note 6		120		150		200		250	ns
tASC2		Note 7		130		160		200		250	ns
tLZ	Chip Select Low to Data Out On	Note 8	10		10		10		10		ns
tHZ	Chip Select High to Data Out Off	Note 8	0	60	0	60	0	60	0	60	ns
tOH	Address Unknown to Data Out Unknown Time		10		10		10		10		ns
tPD	Chip Select High to Power Low Delay			60		60		60		60	ns
tPU	Chip Select Low to Power High Delay		0		0		0		0		ns
Write Cycle											
tWC	Address Valid to Address Do Not Care Time (Write Cycle Time)		120		150		200		250		ns
tWP	Write Enable Low to Write Enable High Time	Note 4	60		60		60		75		ns
tWR	Write Enable High to Address Do Not Care Time		10		15		20		20		ns
tWZ	Write Enable Low to Data Out Off Delay	Note 8	0	70	0	80	0	80	0	80	ns
tDW	Data in Valid to Write Enable High Time		50		60		60		75		ns
tDH	Write Enable Low to Data In Do Not Care Time		10		10		10		10		ns
tAS	Address Valid to Write Enable Low Time		0		0		0		0		ns
tCW	Chip Select Low to Write Enable High Time	Note 4	110		135		180		230		ns
tow	Write Enable High to Output Turn On	Note 8	0		0		0		0		ns
tAW	Address Valid to End of Write		110		135		180		230		ns

SWITCHING WAVEFORMS

READ CYCLE NO. 1 (Notes 9, 10)

RAM-040
READ CYCLE NO. 2 (Notes 9, 11)

Am21L41

SWITCHING WAVEFORMS (Cont.)

WRITE CYCLE NO. 1 ($\overline{\text { WE }}$ CONTROLLED)

RAM-042
WRITE CYCLE NO. 2 ($\overline{C S}$ CONTROLLED)

Note: If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in a high impedance state.

Address Designators	
External	Internal
A0	A2
A1	A5
A2	A4
A3.	A3
A4	A8
A5	A7
A6	A1
A7	A0
A8	A11
A9	A9
A10	A10
A11	A6

DIE SIZE:
0.130×0.106
Figure 2. Bit Mapping Information

TYPICAL DC AND AC CHARACTERISTICS

Normalized Access Time Versus Supply Voltage

Supply Current Versus Ambient Temperature

Normalized Access Time Versus Ambient Temperature

Access Time Change Versus Input Voltage

Output Source Current Versus Output Voltage

ORDERING INFORMATION

Am21L41-12 Order Code	Am21L41-15 Order Code	Am21L41-20 Order Code	Am21L41-25 Order Code	Package Type	Screening Level	Operating Range
Am21L41-12PC	Am21L41-15PC	Am21L41-20PC	Am21L41-25PC	P-18-1	C-1	C
Am21L41-12DC	Am21L41-15DC	Am21L41-20DC	Am21L41-25DC	D-18-1	C-1	C

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
3. See Operating Range Table.

Am9044•Am9244

4096×1 Static R/W Random Access Memory

Am9044 • Am9244
MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC with Respect to VSS	-0.5 V to +7.0 V
All Signal Voltages with Respect to VSS	-0.5 V to +7.0 V
Power Dissipation (Package Limitation)	1.0 W
DC Output Current	10 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	Vss	vcc	Part Number	Ambient Temperature	VSs	vcc
Am9044DC/PC Am90L44DC/PC Am9244DC/PC Am92L44DC/PC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	OV	$+5.0 \mathrm{~V} \pm 10 \%$	Am9044DM Am90L44DM Am9244DM Am92L44DM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	OV	+5.0V $\pm 10 \%$

ELEC	AL CHARACTERI	S overoperating	ge			$\begin{gathered} 19244 X \\ 192 L 44 \end{gathered}$			$\begin{aligned} & \text { 19044X } \\ & 190 L 44 \end{aligned}$		
Param	Description	Test Conditions			Min.	Typ.	Max.	Min.	Typ.	Max.	Units
IOH	Output High Current	$\mathrm{VOH}=2.4 \mathrm{~V}$	$\mathrm{VCC}=4.5 \mathrm{~V}$$\mathrm{VCC}=4.5 \mathrm{~V}$	$70^{\circ} \mathrm{C}$	-1.0			-1.0			mA
		$\mathrm{VOH}=2.4 \mathrm{~V}$		$125^{\circ} \mathrm{C}$	-. 4			-. 4			
IOL	Output Low Current	$\mathrm{VOL}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$		4.0			4.0			mA
			$\mathrm{T}_{\text {A }}=+1$		3.2			3.2			
VIH	Input High Voltage				2.0		VCC	2.0		VCC	Volts
VIL	Input Low Voltage				-0.5		0.8	-0.5		0.8	Volts
IIX	Input Load Current	$\mathrm{VSS} \leqslant \mathrm{Vi} \leqslant \mathrm{VCC}$					10			10	$\mu \mathrm{A}$
107	Output Leakage Current	$0.4 \mathrm{~V} \leqslant \mathrm{VO} \leqslant \mathrm{VCC}$ Output Disabled	$\mathrm{T}_{\mathrm{A}}=+1$		-50		50	-50		50	$\mu \mathrm{A}$
IOZ	OutpuLeakage Current		$\mathrm{T}_{\mathrm{A}}=+7$		-10		10	-10		10	
Cl	Input Capacitance (Note 1)	$\begin{aligned} & \text { Test Frequency }=1.0 \mathrm{MHz} \\ & T_{A}=25^{\circ} \mathrm{C} \text {, All pins at } 0 \mathrm{~V} \end{aligned}$				3.0	5.0		3.0	5.0	pF
Cl/O	I/O Capacitance (Note 1)					5.0	6.0		5.0	6.0	

ELECTRICAL CHARACTERISTICS over operating range

Am92L44 Am9244 Am90L44 Am9044

Parameter Description
Typ. Max. Typ. Max. Typ. Max. Typ. Max. Units

ICC	VCC Operating	Max. VCC $\overline{\mathrm{CS}} \leqslant \mathrm{VIL}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	50	70	50	70	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	60	80	60	80	
IPD	Automatic $\overline{\mathrm{CS}}$ Power Down Current	$\begin{aligned} & \operatorname{Max} . V_{C C} \\ & \left(\overline{C S} \geqslant V_{I H}\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	20	30	-	-	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	22	33	-	-	

Notes:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$, nominal supply voltage and nominal processing parameters.
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V and output loading of one standard TTL gate plus 100 pF .
4. The internal write time of the memory is defined by the overlap of $\overline{C S}$ low and $\overline{W E}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. Chip Select access time (t_{co}) is longer for the Am9244 than for the Am9044. The specified address access time will be valid only when Chip Select is low soon enough for t_{co} to elapse.

SWITCHING CHARACTERISTICS over operating range (Note 3)

Am9044B	Am9044C	Am9044D	Am9044E
Am9244B	Am9244C	Am9244D	Am9244E

Parameter
Description
Min. Max. Min. Max. Min. Max. Min. Max. Units
Read Cycle

| tRC | Address Valid to Address Do Not Care Time
 (Read Cycle Time) | 450 | | 300 | | 250 | | 200 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $t A$ | Address Valid to Data Out Valid Delay
 (Address Access Time) | | 450 | | 300 | | 250 | | 200 | |
| tCO | Chip Select Low to Data Out Valid (Note 5) | Am9044 | | 100 | | 100 | | 70 | | 70 |
| | Am9244 | | 450 | | 300 | | 250 | | 200 | |
| tCX | Chip Select Low to Data Out On | 20 | | 20 | | 20 | | 20 | | |
| tOTD | Chip Select High to Data Out Off | | 100 | | 80 | | 60 | | 60 | |
| tOHA | Address Unknown to Data Out Unknown Time | 20 | | 20 | | 20 | | 20 | | |

Write Cycle

tWC	Address Valid to Address Do Not Care Time (Write Cycle Time)		450		300		250		200		ns
tW	Write Enable Low to	Am9044	200		150		100		100		
	Write Enable High Time (Note 4)	Am9244	250		200		150		150		
tWR	Write Enable High to Address Do Not Care Time		0		0		0		0		
toTw	Write Enable Low to Data Out Off Delay			100		80		60		60	
tDW	Data In Valid to Write Enable High Time		200		150		100		100		
tDH	Write Enable Low to Data In Do Not Care Time		0		0		0		0		
taw	Address Valid to Write Enable Low Time		0		0		0		0		
tPD	Chip Select High to Power Low Delay (Am9244 only)			200		150		100		100	
tPU	Chip Select Low to Power High Delay (Am9244 only)		0		0		0		0		
tCW	Chip Select Low to Write Enable High Time (Note 4)	Am9044	200		150		100		100		
		Am9244	250		200		150		150		
two	Write Enable High To Output Turn On			100		100		70		70	

TYPICAL CHARACTERISTICS

Typical ICC
Versus VCC Characteristics

Typical tace
Versus VCC Characteristics

Typical C Load Versus Normalized tacc Characteristics

Normalized tacc
Versus Ambient Temperature

Normalized ICC Versus Ambient Temperature

BIT MAP

Address Designators	
External	Internal
A0	A2
A1	A1
A2	A0
A3	A8
A4	A9
A5	A10
A6	A3
A7	A4
A8	A5
A9	A7
A10	A6
A11	A11

Figure 1. Bit Mapping Information.

Am9114 • Am9124
 1024×4 Static R/W Random Access Memory

distinctive characteristics

- LOW OPERATING POWER (MAX) Am9124/Am9114 368mW (70mA)
Am91L24/Am91L14 262 mW (50 mA)
- LOW STANDBY POWER (MAX) Am9124
$158 \mathrm{~mW}(30 \mathrm{~mA})$
Am91L24
105 mW (20 mA)
- Access times down to 150 ris (max)
- Military temperature range available to 300 ns (max)
- Am9114 is a direct plug-in replacement for 2114
- Am9124 pin and function compatible with Am9114 and 2114, plus $\overline{\mathrm{CS}}$ power down feature
- Fully static - no clocking
- Identical access and cycle time
- High output drive -
4.0mA sink current @ 0.4V - 9124
3.2mA sink current @ 0.4V - 9114
- TTL identical input/output levels
- 100% MIL-STD-883 reliability assurance testing
- Guaranteed 0.1\% AQL

GENERAL DESCRIPTION

The Am9114 and Am9124 are high performance, static, N Channel, read/write, random access memories organized as 1024×4. Operation is from a single 5V supply, and all input/ output levels are identical to standard TTL specifications. Low power versions of both devices are available with power savings of over 30%. The Am9114 and Am9124 are the same except that the Am9124 offers an automatic $\overline{\mathrm{CS}}$ power down feature.
The Am9124 remains in a low power standby mode as long as $\overline{\mathrm{CS}}$ remains high, thus reducing its power requirements. The Am9124 power decreases from 368 mW to 158 mW in the standby mode, and the Am91L24 from 262 mW to 105 mW . The $\overline{\mathrm{CS}}$ input does not affect the power dissipation of the Am9114. (See Figure 1, page 4).
Data readout is not destructive and the same polarity as data input. $\overline{C S}$ provides for easy selection of an individual package when the outputs are OR-tied. The outputs of 4.0 mA for Am9124 and 3.2mA for Am9114 provides increased short circuit current for improved capacitive drive.

CONNECTION DIAGRAM

Top View
Pin 1 is marked for orientation.
MOS-067
ORDERING INFORMATION

Ambient Temperature	Package Type	$\begin{aligned} & \text { ICC } \\ & \text { Current } \\ & \text { Level } \end{aligned}$Level	Access Time					
			Am9114				Am9124(Power Down Option)	
			450ns	300ns	200ns	150ns	450ns	300ns
$0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$	Plastic	70 mA	Am9114BPC	Am9114CPC	Am9114EPC	Am9114FPC	Am9124BPC	Am9124CPC
		50 mA	Am91L14BPC	Am91L.14CPC	Am91L14EPC		Am91L24BPC	Am91L24CPC
	Hermetic	70 mA	Am9114BDC	Am9114CDC	Am9114EDC	Am9114FDC	Am9124BDC	Am9124CDC
		50 mA	Am91L14BDC	Am91L14CDC	Am91L14EDC		Am91L24BDC	Am91L24CDC
$\begin{aligned} & -55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Hermetic	80 mA	Am9114BDM	Am9114CDM	Am9114EDM		Am9124BDM	Am9124CDM
		60 mA	Am91L14BDM	Am91L14CDM			Am91L24BDM	Am91L24CDM

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
V_{CC} with Respect to V_{SS}	-0.5 V to +7.0 V
All Signal Voltages with Respect to V_{SS}	-3.0 to +7.0 V
Power Dissipation (Package Limitation)	1.0 W
DC Output Current	10 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	V_{SS}	V_{CC}	Part Number	Ambient Temperature	$\mathrm{V}_{\text {SS }}$	V_{CC}
Am9114DC/PC Am91L14DC/PC Am9124DC/PC Am91L24DC/PC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	OV	+5.0V $\pm 10 \%$	Am9114DM Am91L14DM Am9124DM Am91L24DM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	OV	$+5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS over operating range

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Con	ions	Typ.	Max.	Typ.	Max.	Typ.	Max.	Typ.	Max.	Units
${ }^{\text {I Cc }}$	V_{CC} Operating Supply Current	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \leqslant \mathrm{V}_{\mathrm{IL}}$ for Am9124/91L24	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40		60		40		60		mA
			$T_{A}=0^{\circ} \mathrm{C}$		50		70		50		70	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		60		80		60		80	
$I_{P D}$	Automatic $\overline{\text { CS }}$ Power Down Current	$\begin{aligned} & \operatorname{Max} . V_{C C} \\ & \left(\overline{C S} \geqslant V_{I H}\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15		24			-		-	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		20		30		-		-	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		22		33		-		-	

Notes:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$, nominal supply voltage and nominal processing parameters.
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V and output loading of one standard TTL gate plus 100pF.
4. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. Chip Select access time (t_{c}) is longer for the Am9124 than for the Am9114. The specified address access time will be valid only when Chip Select is low soon enough for t_{co} to elapse.

SWITCHING CHARACTERISTICS over operating range (Note 3)

			$\begin{aligned} & \text { Am9114B } \\ & \text { Am9124B } \end{aligned}$		$\begin{aligned} & \text { Am9114C } \\ & \text { Am9124C } \end{aligned}$		Am9114E		Am9114F		
Parameter	Description		Min	Max	Min	Max	Min	Max	Min	Max	Units
Read Cycle											
tRC	Address Valid to Address Do Not Care Time (Read Cycle Time)		450		300		200		150		ns
tA	Address Valid to Data Out Valid Delay (Address Access Time)			450		300		200		150	ns
tCO	Chip Select Low to Data Out Valid (Note 5)	Am9114		120		100		70		70	ns
		Am9124		420		280		NA		NA	ns
tCX	Chip Select Low to Data Out On		20		20		20		10		ns
tOTD	Chip Select High to Data Out Off			100		80		60		40	ns
tOHA	Address Unknown to Data Out Unknown Time		50		50		50		15		ns
Write Cycle											
tWC	Address Valid to Address Do Not Care Time (Write Cycle Time)		450		300		200		150		ns
tW	Write Enable Low to Write Enable High Time (Note 4)	Am9114	200		150		120		90		ns
		Am9124	250		200		NA		NA		ns
tWR	Write Enable High to Address Do Not Care Time		0		0		0		0		ns
tOTW	Write Enable Low to Data Out Off Delay			100		80		60		40	ns
tDW	Data in Valid to Write Enable High Time		200		150		120		90		ns
tDH	Write Enable Low to Data In Do Not Care Time		0		0	0	0		0		ns
tAW	Address Valid to Write Enable Low Time		0		0		0		0		ns
tPD	Chip Select High to Power Low Delay (Am9124 only)			200		150		100		NA	ns
tPU	Chip Select Low to Power High Delay (Am9124 only)		0		0		0		NA		ns
tCW	Chip Select Low to Write Enable High Time (Note 4)	Am9114	200		150		120		90		ns
		Am9124	250		200		NA		NA		ns

SWITCHING WAVEFORMS

POWER DOWN WAVEFORM (Am9124 ONLY)

TYPICAL CHARACTERISTICS

Typical ICC
Versus VCC Characteristics

Typical tace
Versus VCC Characteristics

Typical C Load Versus Normalized tacc Characteristics

Normalized ICC Versus Ambient Temperature

		Worst Case Current (mA at $0^{\circ} \mathrm{C}$)	
Configuration	Part Number	100% Duty Cycle	$\begin{gathered} 50 \% \\ \text { Duty Cycle } \end{gathered}$
2K x 8	$\begin{aligned} & 9114 \\ & 91 L 14 \end{aligned}$	$\begin{aligned} & 280 \\ & 200 \end{aligned}$	$\begin{aligned} & 280 \\ & 200 \end{aligned}$
	$\begin{aligned} & 9124 \\ & 91 \mathrm{~L} 24 \end{aligned}$	$\begin{aligned} & 200 \\ & 140 \end{aligned}$	$\begin{aligned} & 160 \\ & 110 \end{aligned}$
$4 \mathrm{~K} \times 12$	$\begin{aligned} & 9114 \\ & 91 L 14 \end{aligned}$	$\begin{aligned} & 840 \\ & 600 \end{aligned}$	$\begin{aligned} & 840 \\ & 600 \end{aligned}$
	$\begin{aligned} & 9124 \\ & 91 L 24 \end{aligned}$	$\begin{aligned} & 480 \\ & 330 \end{aligned}$	$\begin{aligned} & 420 \\ & 285 \end{aligned}$
$8 \mathrm{~K} \times 16$	$\begin{aligned} & 9114 \\ & 91 \mathrm{~L} 14 \end{aligned}$	$\begin{aligned} & 2240 \\ & 1600 \end{aligned}$	$\begin{aligned} & 2240 \\ & 1600 \end{aligned}$
	$\begin{aligned} & 9124 \\ & 91 L 24 \end{aligned}$	$\begin{array}{r} 1120 \\ 760 \end{array}$	$\begin{array}{r} 1040 \\ 700 \end{array}$

Figure 1. Supply Current Advantages of Am9124.

Figure 2. Bit Mapping Information.

DISTINCTIVE CHARACTERISTICS

- High speed - access times down to $35 n$ n maximum
- $4 \mathrm{~K} \times 1$ organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- No clocks or timing signals required
- Equal access and cycle times
- Automatic power-down when deselected
- Low power dissipation
- Am2147: 990mW active, 165 mW power down
- Am21L47: 688mW active, 83 mW power down
- Standard 18-pin, 300 inch dual in-line package
- High output drive
- Up to seven standard TTL loads or six Schottky TTL loads
- TTL compatible interface levels
- 100% MIL-STD-883 reliability assurance testing
- No power-on current surge

GENERAL DESCRIPTION

The Am2147 is a high performance, 4096-bit, static, read/ write, random access memory. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard TTL loads or up to six Schottky TTL loads.
Only a single +5 volt power supply is required. When deselected ($\overline{\mathrm{CS}} \geqslant \mathrm{V}_{\mathrm{IH}}$), the Am2147 automatically enters a power-down mode which reduces power dissipation by more than 85%. When selected, the chip powers up again with no access time penalty.
Data In and Data Out use separate pins on the standard 18-pin package. Data Out is the same polarity as Data In. Data Out is a 3-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.
(

PRODUCT SELECTIONS

	Am2147-35	Am2147-45	Am21L47-45	Am2147-55	Am21L47-55	Am2147-70	Am21L47-70
Maximum Access Time (ns)	35	45	45	55	55	70	70
Maximum Active Current (mA)	180	180	125	180	125	$160(180 \mathrm{mil})$	125
Maximum Standby Current (mA)	30	30	15	30	15	$20(30 \mathrm{mil})$	15
Full Military Operating Range Version		Yes		Yes		Yes	

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ with Respect to $V_{S S}$	-0.5 to +7.0 V
All Signal Voltages with Respect to $V_{S S}$	-3.5 to +7.0 V
Power Dissipation (Package Limitation)	1.2 W
DC Output Current	20 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	V	VS
Am2147DC/LC $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ 0 V Am21L47DC/LC $+5.0 \mathrm{~V} \pm 10 \%$ Am2147DM/LM $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$ 0 V	$+5.0 \mathrm{~V} \pm 10 \%$		

ELECTRICAL CHARACTERISTICS over operating range (Note 4)

				Am Am Am	$\begin{aligned} & 7-35 \\ & 7-45 \\ & 7-55 \end{aligned}$	Am2 Am2 Am2	$\begin{aligned} & 17-45 \\ & 17-55 \\ & 17-70 \end{aligned}$	Am	7-70	
Parameter	Description	Test	nditions	Min	Max	Min	Max	Min	Max	Units
I_{O}	Output High Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-4		-4		-4		mA
	Output Low Current	$\mathrm{VOL}=0.4 \mathrm{~V}$	$T_{\text {A }}=70^{\circ} \mathrm{C}$	12		12		12		
	Ouputhow Cure		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	8		N/A		8		
$\mathrm{V}_{\text {IH }}$	Input High Voltage			2.0	6.0	2.0	6.0	2.0	6.0	Volts
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	$\mathrm{V}_{\text {ss }} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\text {cc }}$			10		10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	$\mathrm{GND} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{~V}_{\mathrm{CC}}$ Output Disabled	$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	-50	50	-50	50	-50	50	$\mu \mathrm{A}$
Cl_{1}	Input Capacitance	$\begin{aligned} & \text { Test Frequency }=1.0 \mathrm{MHz} \\ & T_{A}=25^{\circ} \mathrm{C}, \text { All pins at } 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$			5		5		5	pF
Co	Output Capacitance				6		6		6	
Icc	Vcc Operating Supply Current	Max $V_{c c}, \overline{\mathrm{CS}} \leqslant$ $V_{\text {IL }}$ Output Open	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		155		105		135	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		180		125		160	
			$T_{A}=-55^{\circ} \mathrm{C}$		180		N/A		180	
ISB	Automatic $\overline{C S}$ Power Down Current	$\begin{aligned} & \text { Max } V_{c c,}(\overline{C S} \geqslant \\ & \left.V_{I H}\right)(\text { Note } 3) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$		30		15		20	mA
			$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$		30		N/A		30	

Notes:

1. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{IOH}$ and 30 pF load capacitance. Output timing reference is 1.5 V for $2147-35$ and $0.8 / 2.0 \mathrm{~V}$ for $-45,-55$ and -70 parts.
2. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ low and $\bar{W} E$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
3. A pull up resistor to V_{C} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power up. Otherwise ISB will exceed values given.
4. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
5. Chip deselected greater than 55 ns prior to selection.
6. Chip deselected less than 55 ns prior to selection.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2.
8. $\overline{W E}$ is high for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{C S}$ transition low.

RAM-003

Figure 1. Output Load

Figure 2. Output Load for $\mathbf{t}_{\mathbf{H Z}}, \mathbf{t}_{\mathrm{LZ}}, \mathrm{t}_{\mathrm{OW}}, \mathbf{t}_{\mathrm{wz}}$

Parameter	Description		Am2147-35		Am21L47-45		Am21L47-55		Am21L47-70		
			Min	Max	Min	Max	Min	Max	Min	Max	Units
Read Cycle											
t_{BC}	Address Valid to Address Do Not Care Time (Read Cycle Time)		35		45		55		70		ns
$t_{\text {AA }}$	Address Valid to Data Out Valid Delay (Address Access Time)			35		45		55		70	ns
tacs1	Chip Select Low to Data Out Valid	Note 5		35		45		55		70	ns
$\mathrm{t}_{\text {ACS2 }}$		Note 6		35		45		65		80	
tLz	Chip Select Low to Data Out On	Note 7	5		5(10*)		10		10		ns
$\mathrm{thz}^{\text {H }}$	Chip Select High to Data Out Off	Note 7	0	30	0	30	0	30	0	40	ns
tor	Address Unknown to Data Out Unknown Time		5		5		5		5		ns
tPD	Chip Select High to Power Down Delay			20		20		20		30	ns
tpu	Chip Select Low to Power Up Delay		0		0		0		0		ns
Write Cycle											
twc	Address Valid to Address Do Not Care (Write Cycle Time)		35		45		55		70		ns
twp	Write Enable Low to Write Enable High	Note 2	20		25		25		40		ns
twr	Write Enable High to Address		0		0		10		15		ns
twz	Write Enable Low to Output in High Z	Note 6	0	20	0	25	0	25	0	35	ns
tow	Data In Valid to Write Enable High		20		25		25		30		ns
t_{DH}	Data Hold Time		10		10		10		10		ns
$t_{\text {AS }}$	Address Valid to Write Enable Low		0		0		0		0		ns
${ }_{\text {tcw }}$	Chip Select Low to Write Enable High	Note 2	35		45		45		55		ns
tow	Write Enable High to Output in Low Z	Note 6	0		0		0		0		ns
t_{AW}	Address Valid to End of Write		35		45		45		55		ns

*Military version only.
SWITCHING WAVEFORMS
READ CYCLE NO. 1 (Notes 8, 9)

READ CYCLE NO. 2 (Notes 8, 10)

RAM-005

Am2147

Note: If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in a high impedance state.

BIT MAP

Address Designators	
External	Internal
A_{0}	A_{2}
A_{1}	A_{5}
A_{2}	A_{4}
A_{3}	A_{3}
A_{4}	A_{8}
A_{5}	A_{7}
A_{6}	A_{1}
A_{7}	A_{0}
A_{8}	A_{11}
A_{9}	A_{9}
A_{10}	A_{10}
A_{11}	A_{6}

DIE SIZE:

Figure 2. Bit Mapping Information

TYPICAL DC AND AC CHARACTERISTICS

Output Source Current Versus Output Voltage

ORDERING INFORMATION

Ordering part numbers consist of the device, package, and operating range codes as shown.
Device

Package Code
$\mathrm{D}=$ Cerdip
Leadless carrier

Am2148• Am2149
 1024 x 4 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS

- High speed - access times down to $45 n$ s maximum
- $1 \mathrm{~K} \times 4$ organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- Automatic power-down when deselected (Am2148)
- Low power dissipation
- Am2148: 990mW active, 165 mW power down
- Am21L48: 688mW active, 110 mW power down
- Standard 18-pin, 300 inch dual in-line package
- High output drive
- Up to seven standard TTL loads
- Commercial and full military temperature ranges
- TTL compatible interface levels
- 100\% MIL-STD-883 reliability assurance testing
- Guaranteed 0.1\% AQL

GENERAL DESCRIPTION

The Am2148 and Am2149 are high performance, static, N -Channel, read/write, random access memories organized as 1024×4. Operation is from a single 5V supply, and all input/output levels are identical to standard TTL specifications. The Am2148 and Am2149 are the same except that the Am2148 offers an automatic CS power down feature.
The Am2148 remains in a low-power standby mode as long as $\overline{\mathrm{CS}}$ remains high, thus reducing its power requirements. The Am2148 power decreases from 990 mW to 165 mW in the standby mode. The $\overline{\mathrm{CS}}$ input does not affect the power dissipation of the Am2149.
Data readout is not destructive and has the same polarity as data input. $\overline{\mathrm{CS}}$ provides for easy selection of an individual package when the outputs are OR-tied.

CONNECTION DIAGRAMS

 Top ViewsDIP
Chip-Pak ${ }^{\text {TM }}$ L-18-2

Note: Pin 1 is marked for orientation. RAM-034

PRODUCTSELECTIONS

	Am2148/9-45	Am21L48/9-45	Am2148/9-55	Am21L48/9-55	Am2148/9-70	Am21L48/9-70	
Maximum Access Time (ns)	45	45	55	55	70	70	
Max Active Current (mA)	0 to $70^{\circ} \mathrm{C}$	180	125	180	125	$\mathrm{~N} / \mathrm{A}$	125
Max Standby Current (mA)*	0 to $70^{\circ} \mathrm{C}$	30	20	30	20	$\mathrm{~N} / \mathrm{A}$	20
Max Active Current (mA)	-55 to $125^{\circ} \mathrm{C}$	180	$\mathrm{~N} / \mathrm{A}$	180	$\mathrm{~N} / \mathrm{A}$	180	$\mathrm{~N} / \mathrm{A}$
Max Standby Current (mA)*	-55 to $125^{\circ} \mathrm{C}$	30	$\mathrm{~N} / \mathrm{A}$	30	$\mathrm{~N} / \mathrm{A}$	30	$\mathrm{~N} / \mathrm{A}$

*Am2148 only

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$V_{C C}$ with Respect to $V_{S S}$	-0.5 to +7.0 V
All Signal Voltages with Respect to $V_{S S}$	-3.5 V to +7.0 V
Power Dissipation (Package Limitation)	1.2 W
DC Output Current	20 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VSS	VCC
Am2148/9DC/LC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	0 V	$+5.0 \mathrm{~V} \pm 10 \%$
Am21L48/9DC/LC			
Am2148/9DM/LM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	0 V	$+5.0 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS over operating range (Note 4)

				Am21 Am2 Am2	$\begin{aligned} & \text { /9-45 } \\ & \text { /9-55 } \\ & / 9-70 \end{aligned}$	Am21 Am21 Am21	$\begin{aligned} & 8 / 9-45 \\ & 8 / 9-55 \\ & 8 / 9-70 \end{aligned}$	
Parameter	Description	Test	ditions	Min	Max	Min	Max	Units
IOH	Output High Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-4		-4		mA
			$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8		8		
IOL	Output Low Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	8		N/A		mA
V_{IH}	Input High Voltage			2.0	6.0	2.0	6.0	Votts
V_{IL}	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	$\mathrm{V}_{S S} \leqslant \mathrm{~V}_{1} \leqslant \mathrm{~V}_{\mathrm{CC}}$			10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	$\mathrm{GND} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{~V}_{\mathrm{CC}}$ Output Disabled	$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	-50	50	-50	50	$\mu \mathrm{A}$
C_{1}	Input Capacitance	$\begin{aligned} & \text { Test Frequency }=1.0 \mathrm{MHz} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, All pins at } 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$			5		5	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Input/Output Capacitance				7		7	
Icc	$V_{C C}$ Operating Supply Current	$\operatorname{Max} V_{C c}, \overline{C S} \leqslant V_{I L}$ Output Open	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$		180		125	mA
			$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$		180		N/A	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CS}}$ Power Down Current	$\begin{aligned} & \operatorname{Max} V_{C c},\left(\overline{C S} \geqslant V_{\mathbb{I H}}\right) \\ & (\text { Note } 3) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$		30		20	mA
			$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$		30		N/A	
los	Output Short Circuit Current	$\begin{aligned} & \text { GND } \leqslant V_{O} \leqslant V_{C C} \\ & \text { (Note 11) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$		± 275		± 275	mA
			$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$		± 350		± 350	

Notes:

1. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{l}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}$ and 30 pF load capacitance. Output timing reference is 1.5 V .
2. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
3. A pull up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during V_{CC} power up. Otherwise ISB will exceed values given (Am2148 only).
4. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
5. Chip deselected greater than 55 ns prior to selection.
6. Chip deselected less than 55 ns prior to selection.
7. At any given temperature and voltage condition, t_{Hz} is less than t_{LZ} for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2.
8. WE is high for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
11. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

RAM-003

RAM-018
Figure 2. Output Load for $t_{H Z}, t_{L Z}$, tow $^{\prime} \mathbf{t}_{W Z}$

SWITCHING CHARACTERISTICS over operating range (Note 1)

Parameter	Description			$\begin{gathered} \text { Am2148/9-45 } \\ \text { Am21L48/9-45 } \end{gathered}$		$\begin{gathered} \text { Am2148/9-55 } \\ \text { Am21L48/9-55 } \end{gathered}$		$\begin{gathered} \text { Am2148/9-70 } \\ \text { Am21L48/9-70 } \end{gathered}$		
				Min	Max	Min	Max	Min	Max	Units
Read Cycle						\cdot				
t_{RC}	Address Valid to Address Do Not Care Time (Read Cycle Time)			45		55		70		ns
${ }^{\prime}{ }_{\text {AA }}$	Address Valid to Data Out Valid Delay (Address Access Time)				45		55		70	ns
$t_{\text {acs } 1}$	Chip Select Low to Data Out Valid (Am2148 only)		Note 5		45		55		70	
$\mathrm{t}_{\text {ACS2 }}$			Note 6		55		65		80	ns
$t_{\text {ACS }}$	Chip Select Low to Data Out Valid (Am2149 only)				20		25		30	ns
tLz	Chip Select Low to Data Out On	Am2148	Note 7	20		20		20		ns
		Am2149		5		5		5		
${ }_{1} \mathrm{HZ}$	Chip Select High to Data Out Off		Note 7	0	20	0	20	0	20	ns
${ }^{\text {toh }}$	Address Unknown to Data Out Unknown Time			5		5		5		ns
${ }_{\text {tPD }}$	Chip Select High to Power Down Delay	Am2148			30		30		30	ns
tpu	Chip Select Low to Power Up Delay	Am2148		0		0		0		ns
Write Cycle										
twc	Address Valid to Address Do Not Care (Write Cycle Time)			45		55		70		ns
twP	Write Enable Low to Write Enable High		Note 2	35		40		50		ns
twr	Write Enable High to Address			5		5		5		ns
twz	Write Enable Low to Output in High Z		Note 7	0	15	0	20	0	25	ns
tow	Data In Valid to Write Enable High			20		20		25		ns
$t_{\text {DH }}$	Data Hold Time			0		0		0		ns
${ }_{\text {t }}$ S	Address Valid to Write Enable Low			0		0		0		ns
tcw	Chip Select Low to Write Enable High		Note 2	40		50		65		ns
tow	Write Enable High to Output in Low Z		Note 7	0		0		0		ns
${ }^{\text {taw }}$	Address Valid to End of Write			40		50		65		ns

SWITCHING WAVEFORMS

READ CYCLE NO. 1 (Notes 8,9)

READ CYCLE NO. 2 (Notes 8,10)

Note: If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{W}}$ high, the output remains in a high impedance state.

Address Designators	
External	Internal
A_{0}	A_{7}
A_{1}	A_{8}
A_{2}	A_{9}
A_{3}	A_{6}
A_{4}	A_{5}
A_{5}	A_{4}
A_{6}	A_{3}
A_{7}	A_{2}
A_{8}	A_{1}
A_{9}	A_{0}

BIT MAP

DIE SIZE: 0.107×0.145

Figure 2. Bit Mapping Information.

TYPICAL DC AND AC CHARACTERISTICS

Typical Power-On Current Versus Power Supply Am2148

Vcc-v

Supply Current Versus Ambient Temperature

Normalized Access Time Versus Ambient Temperature

Access Time Change

 Versus Input Voltage

ORDERING INFORMATION

Am2148-45 Am2149-45 Order Code	Am2148-55 Am2149-55 Order Code	Am2148-70 Am2149-70 Order Code	Am21L48-45 Am21L49-45 Order Code	Am21L48-55 Am21L49-55 Order Code	Am21L48-70 Am21L49-70 Order Code	Package Type	Screening Level	Operating Range
Am2148-45DC	Am2148-55DC	Am2148-70DC	Am21L48-45DC	Am21L48-55DC	Am21L48-70DC	D-18-1	C-1	C
Am2148-45DM	Am2148-55DM	Am2148-70DM	-	-	-	D-18-1	C-3	M
Am2148-45nMB	Am2148-55DMB	Am2148-70DMB	\cdots -	-	-	D-18-1	B-3	M
Am2148-45LC	Am2148-55LC	Am2148-70LC	Am21L48-45LC	Am21L48-55LC	Am21L48-70LC	L-18-2	C. 1	C
Am2148-45LM	Am2148-55LM	Am2148-70LM	-	-	-	L-18-2	C-3	M
Am2148-45LMB	Am2148-55LMB	Am2148-70LMB	-	-	-	L-18-2	B-3	M
Am2149-45DC	Am2149-55DC	Am2149-70DC	Am21L49-45DC	Am21L49-55DC	Am21L49-70DC	D-18-1	C-1	C
Am2149-45DM	Am2149-55DM	Am2149-70DM	-	-	-	D.18-1	C-3	M
Am2149-45DMB	Am2149-55DMB	Am2149-700MB	-	-	-	D-18-1	B-3	M
Am2149-45LC	Am2149-55LC	Am2149-70LC	Am21L49-45LC	Am21L49-55LC	Am21L49-70LC	L-18-2	C-1	C
Am2149-45LM	Am2149-55LM	Am2149-70LM	-	-	-	L-18-2	C-3	M
Am2149-45LMB	Am2149-55LMB	Am2149-70LMB	-	-	-	L-18-2	B-3	M

Notes: 1. $D=$ Hermetic DIP, $L=$ Leadless Chip Carrier. Number following letter is number of leads.
2. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD-883, Class C.

Level B-3 conforms to MIL-STD-883, Class B.
3. See Operating Range Table.

Am9128

2048 x 8 Static R/W Random Access Memory

DISTINCTIVE CHARACTERISTICS

- $2,048 \times 8$-bit organization
- Standard 24 -pin, $0.6^{\prime \prime}$ wide DIP package
- Logic voltage levels compatible with TTL
- Three-state output buffers-common I/O
- Fully static; no clocks or refresh required
- Single +5 V power supply $\pm 10 \%$ tolerance
- MIL-STD-883 reliability assurance testing
- ICC max down to 100 mA
- $\mathrm{T}_{A A} / T_{A C S}$ down to 70ns
- Power down mode (Icc standby max down to 15 mA)
- Commercial and full military temperature ranges
- Guaranteed 0.1\% AQL

GENERAL DESCRIPTION

The Am9128 is a 16,384-bit static Random Access Readwrite Memory organized as 2048 words of 8 bits. It uses fully static circuitry, requiring no clocks or refresh to operate. Directly TTL-compatible inputs and outputs and operation from a single +5 V supply simplify system designs. Common data I/O pins using three-state outputs are provided. The Am9128 is available in an industry-standard 24-pin DIP package with 0.6 -inch pin row spacing. The Am9128 uses the JEDEC standard pinout for byte-wide memories (compatible to 16 K EPROM's).

BLOCK DIAGRAM

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation.

PRODUCT SELECTIONS

Part Number		Am9128-70	Am9128-10	Am9128-15	Am9128-20
Maximum Access Time (ns)	70	100	150	200	
Maximum Operating Current (mA)	0° to $70^{\circ} \mathrm{C}$	140	120	100	140
	-55° to $125^{\circ} \mathrm{C}$	N / A	N / A	150	150
Maximum Standby Current (mA)	0° to $70^{\circ} \mathrm{C}$	30	15	15	30
	-55° to $125^{\circ} \mathrm{C}$	N / A	N / A	30	30

MAXIMUM RATINGS beyond which useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ with Respect to $V_{S S}$	-0.5 V to +7.0 V
All Signal Voltages with Respect to $V_{S S}$	-3.0 V to +7.0 V
Power Dissipation (Package Limitation)	1.0 W
DC Output Current	10 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	V SS	VCC
Am9128-10DC/PC Am9128-15DC/PC Am9128-20DC/PC Am9128-70DC/PC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	0 V	$+5.0 \mathrm{~V} \pm 10 \%$
Am9128-15DM Am9128-20DM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	0 V	$+5 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS over operating range (Note 3)

Parameter	Description	Test Conditions		Am9128-10		Am9128-15		$\begin{aligned} & \text { Am9128-70 } \\ & \text { Am9128-20 } \end{aligned}$		Units
				Min	Max	Min	Max	Min	Max	
${ }^{\text {IOH}}$	Output HIGH Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-2		-2		-2		mA
loL	Output LOW Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		4		4		4		mA
V_{IH}	Input HIGH Voltage			2.0	$\begin{gathered} V_{C C} \\ +1.0 \end{gathered}$	2.0	$\begin{aligned} & \hline V_{C C} \\ & +1.0 \end{aligned}$	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +1.0 \end{aligned}$	Volts
V_{1}	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	Volts
$\mathrm{I}_{1 \times}$	Input Load Current	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\mathrm{CC}}$			10		10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	$\text { GND } \leqslant V_{O} \leqslant V_{C C}$ Output Disabled			10		10		10	$\mu \mathrm{A}$
C_{1}	Input Capacitance	Test Frequency $=1.0 \mathrm{MHz}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All pins at 0 V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		6		6		6	pF
$\mathrm{C}_{1 / 0}$	Input/Output Capacitance				7		7		7	
Icc	V_{CC} Operating Supply Current	$\begin{aligned} & \text { Max } V_{C C}, \overline{\mathrm{CE}} \leqslant \mathrm{~V}_{\mathrm{IL}} \\ & \text { Outputs Open } \end{aligned}$	$T_{\text {A }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		N/A		150		150 (Note 11)	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		120		100		140	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$ Power Down Current	Max $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geqslant \mathrm{V}_{\mathrm{IH}}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		N/A		30		$\begin{array}{\|c\|} \hline 30 \\ \text { (Note 11) } \\ \hline \end{array}$	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		15		15		30	
Ipo	Peak Power On Current	$\begin{aligned} & V_{C C}=G N D \text { to } V_{C C} M a x \\ & C E \geqslant V_{I H}(\text { Note 2) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		N/A		30		$\begin{array}{\|c\|} \hline 30 \\ \text { (Note 11) } \\ \hline \end{array}$	mA
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		15		15		30	

Notes: 1. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ Low and $\overline{W E}$ Low. Both signals must be Low to initiate a write and either signal can terminate a write by going High. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
2. A pull up resistor to $V_{C C}$ on the $\overline{C E}$ input is required during power up to keep the device deselected, otherwise ISB will exceed values given.
3. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
4. At any given temperature and voltage condition, t_{HZ} is less than $t_{L Z}$ for all devices.
5. WE is High for read cycle.
6. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition Low.
8. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for $\mathrm{Am} 9128-10 /-15 /-20 . \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for Am9128-70.
10. Transition is measured at $\mathrm{VOH}_{\mathrm{OH}}-500 \mathrm{mV}$ and $\mathrm{VOL}+$ 500 mV . Levels on the output from 1.5 V level on the input with load shown in Figure 1 using $C_{L}=5 \mathrm{pF}$.
11. Am9128-20 only.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Parameter	Description	Am9128-70		Am9128-10		Am9128-15		Am9128-20		
		Min	Max	Min	Max	Min	Max	Min	Max	Units

READ CYCLE												
t_{RC}	Read Cycle Time			70		100		150		200		ns
$t_{\text {ACC }}$	Address Access Time		Note 9		70		100		150		200	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time		Note 9		70		100		150		200	ns
toe	Output Enable Time	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Note 9		40		50		60		70	ns
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			N/A		N/A		70		80	S
${ }^{\text {OH }}$	Output Hold Time from Address Change			10		10		10		10		ns
${ }^{\text {t CLZ }}$	Output in LOW-Z from $\overline{\mathrm{CE}}$		Notes 4, 10	10		10		10		10		ns
${ }^{\text {t }} \mathrm{CHZ}$	Output in HIGH-Z from CEE		Notes 4, 10		35		40		55		55	ns
tolz	Output in LOW-Z from $\overline{\mathrm{OE}}$		Notes 4, 10	5		5		5		5		ns
${ }^{\text {O }} \mathrm{OHz}$	Output in HIGH-Z from $\overline{\mathrm{OE}}$		Notes 4, 10		30		35		50		50	ns
t_{PU}	Chip Selection to Power Up Time			0		0		0		0		ns
tPD	Chip Deselection to Power Down Time				40		50		60		60	ns

WRITE CYCLE

$t_{\text {w }}$	Write Cycle Time			70		100		150		200		ns
${ }^{\mathrm{t}} \mathrm{CW}$	Chip Selection to End of Write	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Note 1	60		90		120		150		
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		N/A		N/A		130		160		
$t_{\text {AS }}$	Address Setup Time			5		10		20		20		ns
$\mathrm{t}_{\text {WP }}$	Write Pulse Width		Note 1	60		70		100		100		ns
$t_{\text {WR }}$	Write Recovery Time			5		5		5		5		ns
${ }^{\text {t }}$ S	Data Setup Time			30		40		50		60		ns
$t_{\text {DH }}$	Data Hold Time			5		5		5		5		ns
$t_{\text {WLZ }}$	Output in LOW-Z from $\overline{\text { WE }}$		Notes 4, 10	5		5		5		5		ns
${ }^{\text {twhz }}$	Output in HIGH-Z from $\overline{\text { WE }}$		Notes 4, 10		30		35		50		50	ns
${ }^{\text {taw }}$				65		80		120		120		ns

AC TEST CONDITIONS

Input Pulse Levels	0 to 3.0 V
Input Rise and Fall Times	10 ns
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V

Figure 1. Output Load (Notes 9, 10)

TIMING WAVEFORMS
READ CYCLE 1 (Notes 5, 6)

RAM-027
READ CYCLE 2 (Notes 5, 7, 8)

TIMING WAVEFORMS (Cont.)
WRITE CYCLE 1

RAM-029
WRITE CYCLE 2 (Notes 7, 8)

RAM-030

BIT MAP

Address Designators	
External	Internal
A_{3}	$A X_{0}$
A_{4}	$A X_{1}$
A_{5}	$A X_{2}$
A_{6}	$A X_{3}$
A_{7}	$A X_{4}$
A_{8}	$A X_{5}$
A_{10}	$A X_{6}$
A_{0}	$A Y_{0}$
A_{1}	$A Y_{1}$
A_{2}	$A Y_{2}$
A_{9}	$A Y_{3}$

Figure 2. Bit Mapping Information

TYPICAL DC AND AC CHARACTERISTICS

Normalized Access Time Versus Ambient Temperature

Supply Current Versus Supply Voltage

Access Time Change Versus Output Loading

Typical Power-On Current Versus Power Supply

Normalized Access Time Versus Supply Voltage

Output Source Current Versus Output Voltage

ORDERING INFORMATION

Am9128-70 Order Code	Am9128-10 Order Code	Am9128-15 Order Code	Am9128-20 Order Code	Package Type	Screening Level	Operating Range
AM9128-70PC	AM9128-10PC	AM9128-15PC	AM9128-20PC	P-24-1	C-1	C
AM9128-70DC	AM9128-10DC	AM9128-15DC	AM9128-20DC	$\mathrm{D}-24-1$	$\mathrm{C}-1$	C
		AM9128-15DM	AM9128-20DM	$\mathrm{D}-24-1$	$\mathrm{C}-3$	M
		AM9128-15DMB	AM9128-20DMB	$\mathrm{D}-24-1$	B-3	M

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP. Number following letter is number of leads.
2. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.
3. See operating range table.

Am9167
 16,384 x 1 Static R/W Random Access Memory

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- High speed - access times down to 45 ns maximum
- $16 \mathrm{~K} \times 1$ organization
- Single +5 volt power supply
- Fully static storage and interface circuitry
- No clocks or timing signals required
- Equal access and cycle times
- Automatic power down when deselected
- Low power dissipation
- Am9167: 660mW active, 165 mW power down
- Standard $20-\mathrm{pin}, .300$ inch dual-in-line package
- High output drive
- Up to seven standard TTL loads or six Schottky TTL loads
- TTL compatible interface levels
- 100\% MIL-STD-883 reliability assurance testing
- No power-on current surge
- Guaranteed 0.1\% AQL

GENERAL DESCRIPTION

The Am9167 is a high performance, 16,384 -bit, static, read/write, random access memory. It is organized as 16,384 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to six standard Schottky TTL loads or up to seven standard TTL loads.
Only a single +5 volt power supply is required. When deselected ($\overline{\mathrm{CE}} \geqslant \mathrm{V}_{\mathrm{IH}}$), the Am9167 automatically enters a power-down mode which reduces power dissipation by 75%. When selected, the chip powers up again with no access time penalty.
Data In and Data Out use separate pins on the standard 20-pin package. Data Out is the same polarity as Data In. Data Out is a 3-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

BLOCK DIAGRAM

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation.

PRODUCT SELECTIONS

	Am9167-45	Am9167-55	Am9167-70
Maximum Access Time (ns)	45	55	70
Maximum Active Current (mA)	120	120	120
Maximum Standby Current (mA)	30	30	30

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am9168 • Am9169
 4096×4 Static R/W Random Access Memory ADVANCED INFORMATION

PRODUCT SELECTIONS

	Am9168-45	Am9169-45	Am9168-55	Am9169-55	Am9168-70	Am9169-70
Maximum Access Time (ns)	45	45	55	55	70	70
Maximum Active Current (mA)	120	120	120	120	120	120
Maximum Standby Current (mA)	30	N/A	30	N/A	30	N/A

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Am9016
 16,384 x 1 Dynamic R/W Random Access Memory Advanced MOS/LSI

DISTINCTIVE CHARACTERISTICS

- High density $16 \mathrm{~K} \times 1$ organization
- Replacement for MK4116
- Low maximum power dissipation 462 mW active, 20 mW standby
- High-speed operation - 150ns access, 320ns cycle (COM'L) 200ns access, 375 ns cycle (MIL)
- $\pm 10 \%$ tolerance on standard $+12,+5,-5$ voltages
- TTL compatible interface signals
- Three-state output
- $\overline{\text { RAS }}$ only, RMW and Page mode clocking options
- 128 cycle refreshing
- Unlatched data output
- Standard 16-pin, . 3 inch wide dual-in-line package
- JEDEC standard 18-pin, Chip-PakTM leadless chip carrier
- Double poly N-channel silicon gate MOS technology
- 100\% MIL-STD-883 reliability assurance testing
- Extended ambient operating temperature (-55 to $+85^{\circ} \mathrm{C}$) available

GENERAL DESCRIPTION

The Am9016 is a high-speed, 16K-bit, dynamic, read/write random access memory. It is organized as 16,384 words by 1 bit per word and is packaged in a standard 16-pin DIP or 18 -pin leadless chip carrier. The basic memory element is a single transistor cell that stores charge on a small capacitor. This mechanism requires periodic refreshing of the memory cells to maintain stored information.

All input signals, including the two clocks, are TTL compatible. The Row Address Strobe ($\overline{\mathrm{RAS}}$) loads the row address and the Column Address Strobe ($\overline{\mathrm{CAS}}$) loads the column address. The row and column address signals share seven input lines. Active cycles are initiated when $\overline{\text { RAS }}$ goes low, and standby mode is entered when $\overline{\text { RAS }}$ goes high. In addition to normal read and write cycles, other types of operations are available to improve versatility, performance and power dissipation.
The 3-state output buffer turns on when the column access time has elapsed and turns off after $\overline{\mathrm{CAS}}$ goes high. Input and output data are the same polarity.

BLOCK DIAGRAM

Am9016

MAXIMUM RATINGS above which useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-55 to $+85^{\circ} \mathrm{C}$
Voltage on Any Pin Relative to VBB	-0.5 to +20 V
VDD and VCC Supply Voltages with Respect to VSS	-1.0 to +15.0 V
VBB - VSS (VDD - VSS $>0 \mathrm{~V})$	0 V
Power Dissipation	1.0 W
Short Circuit Output Current	50 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VDD	VCC	VSS	VBB
Am9016DC/PC/LC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	$+12 \mathrm{~V} \pm 10 \%$	$+5 \mathrm{~V} \pm 10 \%$	0	$-5 \mathrm{~V} \pm 10 \%$
Am9016DL/LL	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	$+12 \mathrm{~V} \pm 10 \%$	$+5 \mathrm{~V} \pm 10 \%$	0	$-5 \mathrm{~V} \pm 10 \%$

ELECTRICAL CHARACTERISTICS over operating range (Notes 1,9)

Am9016

SWITCHING CHARACTERISTICS over operating range (Notes 2, 3, 5)

	Description		Am9016C		Am9016D		Am9016E		Am9016F		Units
Parameters			Min	Max	Min	Max	Min	Max	Min	Max	
tAR	$\overline{\mathrm{RAS}}$ LOW to Column Address Hold Time		200		160		120		95		ns
tASC	Column Address Setup Time	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	-10		-10		-10		-10		ns
		$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$	0		0		0		NA		ns
tASR	Row Address Setup Time		0		0		0		0		ns
tCAC	Access Time from $\overline{\mathrm{CAS}}$ (Note 6)			185		165		135		100	ns
tCAH	$\overline{\text { CAS }}$ LOW to Column Address Hold Time		85		75		55		45		ns
tCAS	$\overline{\text { CAS Pulse Width }}$	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	185	10,000	165	10,000	135	10,000	100	10,000	ns
		$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$	185	5000	165	5000	135	5000	NA	NA	ns
tCP	Page Mode $\overline{\overline{\text { CAS }}}$ Precharge Time		100		100		80		60		ns
tCRP	$\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ Precharge Time	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	-20		-20		-20		-20		ns
		$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	0		0		0		NA		ns
tCSH	$\overline{\text { CAS }}$ Hold Time		300		250		200		150		ns
tCWD	$\overline{\mathrm{CAS}}$ LOW to $\overline{\mathrm{WE}}$ LOW Delay (Note 9)		145		125		95		70		ns
tCWL	$\overline{\text { WE }}$ LOW to $\overline{\mathrm{CAS}}$ HIGH Setup Time		100		85		70		50		ns
tDH	$\overline{\mathrm{CAS}}$ LOW or $\overline{W E}$ LOW to Data In Valid Hold Time (Note 7)		85		75		55		45		ns
tDHR	$\overline{\text { RAS }}$ LOW to Data In Valid Hold Time		200		160		120		95		ns
tDS	Data In Stable to $\overline{\text { CAS }}$ LOW or WE LOW Setup Time (Note 7)		0		0		0		0		ns
tOFF	$\overline{\mathrm{CAS}} \mathrm{HIGH}$ to Output OFF Delay		0	60	0	60	0	50	0	40	ns
tPC	Page Mode Cycle Time		295		275		225		170		ns
tRAC	Access Time from $\overline{\mathrm{RAS}}$ (Note 6)			300		250		200		150	ns
tRAH	$\overline{\text { RAS LOW }}$ to Row Address Hold Time		45		35		25		20		ns
tRAS	$\overline{\text { RAS Pulse Width }}$	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	300	10,000	250	10,000	200	10,000	150	10,000	ns
		$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	300	5000	250	5000	200	5000	NA	NA	ns
tRC	Random Read or Write Cycle Time		460		410		375		320		ns
tRCD	$\overline{\mathrm{RAS}}$ LOW to $\overline{\mathrm{CAS}}$ LOW Delay (Note 6)		35	115	35	85	25	65	20	50	ns
tRCH	Read Hold Time		0		0		0		0		ns
tRCS	Read Setup Time		0		0		0		0		ns
tREF	Refresh Interval			2		2		2		2	ms
tRMW	Read Modify Write Cycle Time		600		500		405		320		ns
tRP	$\overline{\text { RAS Precharge Time }}$		150		150		120		100		ns
tRSH	$\overline{\text { CAS }}$ LOW to $\overline{\mathrm{RAS}}$ HIGH Delay		185		165		135		100		ns
tRWC	Read/Write Cycle Time		525		425		375		320		ns
tRWD	$\overline{\text { RAS }}$ LOW to $\bar{W} E$ LOW Delay (Note 9)		260		210		160		120		ns
tRWL	$\overline{\text { WE LOW }}$ to $\overline{\mathrm{RAS}}$ HIGH Setup Time		100		85		70		50		ns
t T	Transition Time		3	50	3	50	3	50	3	35	ns
tWCH	Write Hold Time		85		75		55		45		ns
tWCR	$\overline{\text { RAS LOW to Write Hold Time }}$		200		160		120		95		ns
tWCS	$\overline{W E}$ LOW to CAS LOW Setup Time (Note 9)	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	-20		-20		-20		-20		ns
		$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$	0		0		0		NA		
tWP	Write Pulse Width		85		75		55		45		ns

Notes:

1. All voltages referenced to VSS.
2. Signal transition times are assumed to be 5ns. Transition times are measured between specified high and low logic levels.
3. Timing reference levels for both input and output signals are the specified worst-case logic levels.
4. VCC is used in the output buffer only. ICC will therefore depend only on leakage current and output loading. When the output is ON and at a logic high level, VCC is connected to the Data Out pin through
an equivalent resistance of approximately 135Ω. In standby mode VCC may be reduced to zero without affecting stored data or refresh operations.
5. Output loading is two standard TTL loads plus 100 pF capacitance.
6. Both $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ must be low read data. Access timing will depend on the relative positions of their falling edges. When tRCD is less than the maximum value shown, access time depends on $\overline{R A S}$ and tRAC governs. When tRCD is more than the maximum value shown access time depends on $\overline{\mathrm{CAS}}$ and tCAC governs. The

Notes (Cont.)

maximum value listed for tRCD is shown for reference purposes only and does not restrict operation of the part.
7. Timing reference points for data input setup and hold times will depend on what type of write cycle is being performed and will be the later falling edge of CAS or WE.
8. At least eight initialization cycles that exercise $\overline{\text { RAS }}$ should be performed after power-up and before valid operations are begun.
9. The tWCS, tRWD and tCWD parameters are shown for reference purposes only and do not restrict the operating flexibility of the part.

When the falling edge of $\overline{\mathrm{WE}}$ follows the falling edge of $\overline{\mathrm{CAS}}$ by at most tWCS, the data output buffer will remain off for the whole cycle and an "early write" cycle is defined. When the falling edge of WE follows the falling edges of RAS and CAS by at least tRWD and tCWD respectively, the Data Out from the addressed cell will be valid at the access time and a "read/write" cycle is defined. The falling edge of WE may also occur at intermediate positions, but the condition and validity of the Data Out signal will not be known.

SWITCHING WAVEFORMS

READ CYCLE

WRITE CYCLE (EARLY WRITE)

Am9016

APPLICATION INFORMATION

The Am9016 electrical connections are such that if power is applied with the device installed upside down it will be permanently damaged. Precautions should be taken to avoid this mishap.

OPERATING CYCLES

Random read operations from any location hold the $\overline{W E}$ line high and follow this sequence of events:

1) The row address is applied to the address inputs and $\overline{\mathrm{RAS}}$ is switched low.
2) After the row address hold time has elapsed, the column address is applied to the address inputs and $\overline{\mathrm{CAS}}$ is switched low.
3) Following the access time, the output will turn on and valid read data will be present. The data will remain valid as long as $\overline{\text { CAS }}$ is low.
4) $\overline{C A S}$ and $\overline{R A S}$ are then switched high to end the operation. A new cycle cannot begin until the precharge period has elapsed.
Random write operations follow the same sequence of events, except that the WE line is low for some portion of the cycle. If the data to be written is available early in the cycle, it will usually be convenient to simply have $\overline{W E}$ low for the whole write operation.
Sequential Read and Write operations at the same location can be designed to save time because re-addressing is not necessary. A read/write cycle holds $\overline{W E}$ high until a valid read is established and then strobes new data in with the falling edge of $\overline{W E}$.

After the power is first applied to the device, the internal circuit requires execution of at least eight initialization cycles which exercise $\overline{\mathrm{RAS}}$ before valid memory accesses are begun.

ADDRESSING

14 address bits are required to select one location out of the 16,384 cells in the memory. Two groups of 7 bits each are multiplexed onto the 7 address lines and latched into the internal address registers. Two negative-going external clocks are used to control the multiplexing. The Row Address Strobe ($\overline{\mathrm{RAS}}$) enters the row address bits and the Column Address Strobe ($\overline{\mathrm{CAS}}$) enters the column address bits.

When $\overline{\text { RAS }}$ is inactive, the memory enters its low power standby mode. Once the row address has been latched, it need not be changed for successive operations within the same row, allowing high-speed page-mode operations.

Page-mode operations first establish the row address and then maintain $\overline{\mathrm{RAS}}$ low while $\overline{\mathrm{CAS}}$ is repetitively cycled and designated operations are performed. Any column address within the selected row may be accessed in any sequence. The maximum time that RAS can remain low is the factor limiting the number of page-mode operations that can be performed.

Multiplexed addressing does not introduce extra delays in the access path. By inserting the row address first and the column address second, the memory takes advantage of the fact that the delay path through the memory is shorter for column addresses. The column address does not propagate through the cell matrix as the row address does and it can therefore arrive somewhat later than the row address without impacting the access time.

REFRESH

The Am9016 is a dynamic memory and each cell must be refreshed at least once every refresh interval in order to maintain the cell contents. Any operation that accesses a row serves to refresh all 128 cells in the row. Thus the refresh requirement is met by accessing all 128 rows at least once every refresh interval. This may be accomplished, in some applications, in the course of performing normal operations. Alternatively, special refresh operations may be initiated. These special operations could be simply additional conventional accesses or they could be "RAS-only" cycles. Since only the rows need to be addressed, $\overline{\mathrm{CAS}}$ may be held high while $\overline{\mathrm{RAS}}$ is cycled and the appropriate row addresses are input. Power required for refreshing is minimized and simplified control circuitry will often be possible.

DATA INPUT/OUTPUT

Data is written into a selected cell by the combination of $\overline{W E}$ and $\overline{C A S}$ while $\overline{R A S}$ is low. The later negative transition of WE or $\overline{\mathrm{CAS}}$ strobes the data into the internal register. In a write cycle, if the $\overline{W E}$ input is brought low prior to $\overline{\mathrm{CAS}}$, the data is strobed by $\overline{\mathrm{CAS}}$, and the set-up and hold times are referenced to $\overline{\text { CAS. }}$. If the cycle is a read/write cycle then the data set-up and hold times are referenced to the negative edge of $\overline{W E}$.
in the read cycle the data is read by maintaining $\overline{W E}$ in the high state throughout the portion of the memory cycle in which $\overline{\text { CAS }}$ is low. The selected valid data will appear at the output within the specified access time.

DATA OUTPUT CONTROL

Any time $\overline{\mathrm{CAS}}$ is high the data output will be off (after tOFF). The output contains either one or zero during read cycle after the access time has elapsed. Data remains valid from the access time until $\overline{\mathrm{CAS}}$ is returned to the high state. The output data is the same polarity as the input data.

The user can control theroutput state during write operations by controlling the placement of the $\overline{W E}$ signal. In the "early write" cycle (see note 9) the output is at a high impedance state throughout the entire cycle.

POWER CONSIDERATIONS

$\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ can be decoded and used as a chip select signal for the Am9016 but overall system power is minimized if $\overline{\mathrm{RAS}}$ is used for this purpose. The devices which do not receive $\overline{R A S}$ will be in low power standby mode regardless of the state of CAS.

At all times the Absolute Maximum Rating Conditions must be observed. During power supply sequencing VBB should never be more positive than VSS when power is applied to VDD.

TYPICAL CHARACTERISTICS (Cont.)

Input Voltage Levels Versus VDD

Input Voltages Levels Versus VBB

Input Voltage Levels Versus VDD

Input Voltage Levels
Versus
Case Temperature

Input Voltage Levels Versus VBB

> Input Voltage Levels
> Versus
> Case Temperature

TYPICAL CURRENT WAVEFORMS

ORDERING INFORMATION

Ambient Temperature	Package Type	Access Time			
		250ns	200ns	150ns	
	Hermetic DIP	AM9016CDC	AM9016DDC	AM9016EDC	AM9016FDC
	Molded DIP	AM9016CPC	AM9016DPC	AM9016EPC	AM9016FPC
	Chip-Pak	AM9016CLC	AM9016DLC	AM9016ELC	AM9016FLC
$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	Hermetic DIP	AM9016CDL	AM9016DDL	AM9016EDL	-
	Chip-Pak	AM9016CLL	AM9016DLL	AM9016ELL	-

Metallization and Pad Layout


```
INDEX SECTION
NUMERICAL DEVICEINDEX
FUNCTIONAL INDEX AND SELECTION GUIDE
INDUSTRY CROSS REFERENCE
APPLICATION NOTE
```

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS
MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
 PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION
 COMMITTMENT TO EXCELLENCE
 PRODUCT ASSURANCE
 PACKAGE OUTLINES
 SALES OFFICES

MOS Read Only Memories (ROM) Index

Am9218/8316E Am9232/9233
Am9264
Am9265
Am92128
Am92256
2048×8 Read Only Memory 5-1
4096×8 Read Only Memory 5-4
64K (8192 x 8) Read Only Memory 5-8
$64 \mathrm{~K}(8192 \times 8)$ Read Only Memory 5-12
128K ($16,384 \times 8$) Read Only Memory 5-15
$256 \mathrm{~K}(32,768 \times 8)$ Read Only Memory 5-18

Am9218/8316E

2048 x 8 Read Only Memory

DISTINCTIVE CHARACTERISTICS

- 2048×8 organization
- Plug-in replacement for 8316E
- Access times as fast as 350 ns
- Fully capacitive inputs - simplified driving
- 3 fully programmable Chip Selects - increased flexibility
- Logic voltage levels compatible with TTL
- Three-state output buffers - simplified expansion
- Drives two full TTL loads
- Single supply voltage -+5.0 V
- Low power dissipation
- N-channel silicon gate MOS technology
- 100\% MIL-STD-883 reliability assurance testing
- Am2716 compatible

FUNCTIONAL DESCRIPTION

The Am9218 devices are high performance, 16384-bit, static, mask programmed, read only memories. Each memory is implemented as 2048 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes as small as 2048 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Three programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may be specified by the customer thus allowing the addressing of 8 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9218 devices and other three-state components.

These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by whatever address is present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

ORDERING INFORMATION

Package Type	Ambient Temperature Specifications	Access Time	
		350ns	
	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$	AM9218BPC P8316E	AM9218CPC
Cerdip	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$	AM9218BCC	AM9218CCC
Side-Brazed Ceramic	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$	AM9218BDC C8316E	AM9218CDC
	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	AM9218BDM	

Am9218/8163E

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC with Respect to VSS	+7.0 V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation	1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS

Am9218BDC
Am9218CDC
C8316A VCC $=5.0 \mathrm{~V} \pm 5 \%$

Parameters

VOH	Output HIGH Voltage	9218	$10 \mathrm{H}=-200 \mu \mathrm{~A}$	2.4				Volts
		8316E	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$			2.4		
VOL	Output LOW Voltage	9218	$1 \mathrm{OL}=3.2 \mathrm{~mA}$		0.4			Volts
		8316E	$1 \mathrm{OL}=2.1 \mathrm{~mA}$				0.4	
ViH	Input HIGH Voltage			2.0	VCC + 1.0	2.0	VCC + 1.0	Volts
VIL	Input LOW Voltage			-0.5	0.8	-0.5	0.8	Volts
ILO	Output Leakage Current	Chip Disabled			10		10	$\mu \mathrm{A}$
ILI	Input Leakage Current				10		10	$\mu \mathrm{A}$
ICC	VCC Supply Current				70		95	mA

ELECTRICAL CHARACTERISTICS
Am9218BDM
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V C C=5.0 V \pm 10 \%$

	$V C \mathrm{c}=5.0 \mathrm{~V}$				
Parameters	Description	Test Conditions	Min.	Max.	Units
VOH	Output HIGH Voltage	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$	2.2		Volts
VOL	Output LOW Voltage	$1 \mathrm{OL}=3.2 \mathrm{~mA}$		0.45	Volts
VIH	Input HIGH Voltage		2.0	VCC + 1.0	Volts
VIL	Input LOW Voltage		-0.5	0.8	Volts
ILO	Output Leakage Current	Chip Disabled		10	$\mu \mathrm{A}$
ILI	Input Leakage Current			10	$\mu \mathrm{A}$
ICC	VCC Supply Current			80	mA

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Am9218×DC Am9218BDN	$\text { C8316E } \quad \begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~T}_{A} & =-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V C C=5.0 V \pm 5 \% \\ & V C C=5.0 V \pm 10 \% \end{aligned}$	Am9218B		Am9218C		8316E		Units
Parameters	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	
ta	Address to Output Access Time			450		350		450	ns
tCO	Chip Select to Output ON Delay			150		130		250	ns
tOH	Previous Read Data Valid with Respect to Address Change	one standard TTL gate	20		20		-		ns
tDF	Chip Select to Output OFF Delay			150		130		250	ns
CI	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$		7.0		7.0		7.0	pF
CO	Output Capacitance	All pins at 0 V		7.0		7.0		7.0	pF

Notes: 1. Timing reference levels: $\mathrm{High}=2.0 \mathrm{~V}$, Low $=0.8 \mathrm{~V}$.

PROGRAMMING INSTRUCTIONS

CUSTOM PATTERN ORDERING INFORMATION

The Am9218 is programmed from punched cards, card coding forms or paper tape in card image format as shown below.
Logic " 1 " = a more positive voltage (normally +5.0 V)
Logic " 0 " = a more negative voltage (normally 0 V)
FIRST CARD

Column Number
10 thru 29
32 thru 37

50 thru 62
65 thru 72
SECOND CARD

Column Number

29
31
33

Description

Customer Name
Total number of " 1 ' s " contained in the data.
This is optional and should be left blank if not used.
8316E or 9218
Optional information

Description

CS3 input required to select chip (0 or 1)
CS2 input required to select chip (0 or 1)
CS1 input required to select chip (0 or 1)

Two options are provided for entering the data pattern with the remaining cards.
OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 2048 data cards are required.

Column Number

$10,12,14,16,18$
20, 22, 24, 26, 28, 30
$40,42,44,46,48$,
50, 52, 54
73 thru 80
OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 128 data cards. Each data card contains the 8 -bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31 . Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21,22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through 7F: 128 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF.

Am9232•Am9233

4096 x 8 Read Only Memory

DISTINCTIVE CHARACTERISTICS

- 4096×8 organization
- No clocks or refresh required
- Access time selected to 300ns
- Fully capacitive inputs - simplified driving
- Two mask programmable chip selects increased flexibility
- Logic voltage levels compatible with TTL
- Three-state output buffers - simplified expansion
- Drives two TTL loads
- Single +5 volt power supply
- Two different pinouts for universal application
- Low power dissipation
- 100\% MIL-STD-883 reliability assurance testing
- Non-connect option on chip selects

FUNCTIONAL DESCRIPTION

The Am9232/33 devices are high performance, 32,768-bit, static, mask programmed, read only memories. Each memory is implemented as 4096 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes of 4096 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.
Two programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9232/33 devices and other three-state components.
These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

CONNECTION DIAGRAMS

Top Views

MOS-103 Note: Pin 1 is marked for orientation. MOS-104

ORDERING INFORMATION

	Access Time		
Package Type		Act	
	450 ns	300 ns	
Molded	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9232/33BPC	AM9232/33CPC
Cerdip	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9232/33BCC	AM9232/33CCC
Side-Brazed			
Ceramic	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	AM9232/33BDM	
	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9232/33BDC	AM9232/33CDC

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC with Respect to VSS	+7.0 V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation (Package Limitation)	1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number
Ambient Temperature
Am9232DC/PC/CC $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ $+5.0 \mathrm{~V} \pm 5 \%$ 0 V Am9232/33DM $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$ $+5.0 \mathrm{~V} \pm 10 \%$ 0 V

ELECTRICAL CHARACTERISTICS over operating range
Am9232/Am9233

Parameter	Description	Test	ditions	Min.	Max.	Unit
VOH	Output HIGH Voltage	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$	$\mathrm{VCC}=4.75$	2.4		Volts
			$\mathrm{VCC}=4.50$	2.2		
VOL	Output LOW Voltage	$1 \mathrm{OL}=3.2 \mathrm{~mA}$			0.4	Volts
VIH	Input HIGH Voltage			2.0	VCC+1.0	Volts
VIL	Input LOW Voltage			-0.5	0.8	Volts
ILI	Input Load Current	VSS $\leqslant \mathrm{VI} \leqslant \mathrm{VCC}$			10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\begin{aligned} & \text { VSS } \leqslant \text { VO } \leqslant \text { VCC } \\ & \text { Chip Disabled } \end{aligned}$	$+70^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
			$+125^{\circ} \mathrm{C}$ (DM)		50	
ICC	VCC Supply Current		$0^{\circ} \mathrm{C}$		80	mA
			$-55^{\circ} \mathrm{C}$ (DM)		100	
C	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ All pins at 0 V			7.0	pF
CO	Output Capacitance				7.0	pF

SWITCHING CHARACTERISTICS over operating range

Parameter	Description
ta	Address to Output Access Time
tCO	Chip Select to Output ON Delay
tOH	Previous Read Data Valid with Respect to Address Change
tDF	Chip Select to Output OFF Delay

Test Conditions

$$
\mathrm{tr}=\mathrm{tt}=20 \mathrm{~ns}
$$

Output Load: one standard TTL gate plus 100pF (Note 1)

Am9232/33B Am9232/33C

Min.				Max.
Min.	Max.		Unit	
	450		300	ns
	150		120	ns
20		20		ns
	150		120	ns

PROGRAMMING INTRUCTIONS

CUSTOM PATTERN ORDERING INFORMATION

The Am9232 is programmed from punched cards, card coding forms or paper tape in card image format as shown below.
Logic " 1 " = a more positive voltage (normally +5.0 V)
Logic " 0 " = a more negative voltage (normally OV)

FIRST CARD

Column Number

10 thru 29
32 thru 37
50 thru 62
65 thru 72

SECOND CARD

 Column Number 31 33
Description

Customer Name
Total number of " 1 's" contained in the data.
This is optional and should be left blank if not used.
9232 or 9233
Optional information

Description

CS2 input required to select chip (0 or 1); If CS2 = NC, column 31 $=2$.
CS1 input required to select chip (0 or 1); If CS1 $=\mathrm{NC}$, column $33=2$.

Two options are provided for entering the data pattern with the remaining cards.
OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 4096 data cards are required.

Column Number

8, 10, 12, 14, 16, 18
$20,22,24,26,28,30$
40, 42, 44, 46, 48
50, 52, 54
73 thru 80

Address input pattern with the most significant bit (A11) in column 8 and the least significant bit (AO) in column 30.
Output pattern with the most significant bit (O8) in column 40 and the least significant bit (O1) in column 54.
Coding these columns is not essential and may be used for card identification purposes.

OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 256 data cards. Each data card contains the 8 -bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31. Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21, 22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through $\mathrm{FF}: 256$ cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF.

Am9232/Am9233
BLOCK DIAGRAM

MOS-106

5

Am9264
 $64 K$ (8192 x 8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post-metal programming
- Access time - 250ns (max)
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Fully static operation
- Completely TTL compatible
- Standard 24 pin DIP
- Pin compatible with $16 \mathrm{~K} / 32 \mathrm{~K} / 64 \mathrm{~K}$ EPROMs/ROMs
- INT-STD-123 - guaranteed to 0.1\%AQL
- Military version (-55 to $+125^{\circ} \mathrm{C}$) - Available - 450ns (max) access time

FUNCTIONAL DESCRIPTION

The Am9264 high performance read only memory is organized 8192 words by 8 bits with access times of less than 250 ns . This organization simplifies the design of small memory systems and permits incremental memory sizes of 8192 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.
The programmable chip select input signal is provided to control the output buffers. Chip Select Polarity may be provided by the customer thus allowing the addressing of 2 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9264 devices and other three state components.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) will result in faster turn around time for new or old patterns. This technique will allow us to test wafers before committing customer patterns to categorize speed and power dissipation requirements.

ROM-010

ORDERING INFORMATION

Package Type	Ambient Temperature Specifications	Access Time		
		450ns	300ns	250ns
Molded	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9264BPC	AM9264CPC	AM9264DPC
Cerdip	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9264BCC	AM9264CCC	AM9264DCC
Ceramic Side-Brazed	$\begin{gathered} 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C} \end{gathered}$	AM9264BDC AM9264BDM	AM9264CDC	AM9264DDC

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ with Respect to VSS	+7.0 V
DC Voltage Applied to Outputs	-0.5 to +7.0 V
DC Input Voltage	-0.5 to +7.0 V
Power Dissipation (Package Limitation)	1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE

Part Number	Ambient Temperature	VCC	VSS
Am9264DC/PC/CC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	0 V
Am9264DM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	0 V

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$		2.4		Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{IOL}=3.2 \mathrm{~mA}$			0.4	Volts
V_{IH}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	Volts
I_{LI}	Input Leakage Current	$V_{S S} \leqslant V_{1} \leqslant V_{C C}$			10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$v_{S S} \leqslant V_{O} \leqslant \leqslant V_{C C}$	$+70^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
	Ouput Leakage Curren	hip Disabled	$+125^{\circ} \mathrm{C}$ (DM)		50	
			$0^{\circ} \mathrm{C}$		80	mA
ICC	VCC Supply Current		$-55^{\circ} \mathrm{C}$ (DM)		100	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$			7.0	pF
C_{0}	Output Capacitance	All pins at 0 V			7.0	

SWITCHING CHARACTERISTICS over operating range

			Am9264B		Am9264C		Am9264D		Unit
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	
T_{A}	Address to Output Access time	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$		450		300		250	ns
t_{CO}	Chip Select to Output on Delay	Output Load: one standard TTL gate plus 100pF (Note 1)		150		120		100	ns
t_{OH}	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
t_{DF}	Chip Select to Output OFF Delay			120		100		80	ns

Note 1: Timing reference levels: High $=2.0 \mathrm{~V}$. Low $=0.8 \mathrm{~V}$.

ROM CODE DATA

EPROM
AMD's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs programmed with identical data should be submitted. AMD will read the programmed EPROM and generate an Intel Hex paper tape. The second EPROM is compared with Intel Hex paper tape to insure that both EPROMs have identical data. Then AMD generates a PG tape (Pattern Generation) which is used to make masks after customer gives a code approval. One of the EPROMs is erased and then it is programmed from AMD's data base. The AMD programmed EPROM is returned to the customer for code verification of the ROM program. Unless otherwise requested, AMD will not proceed until the customer verifies the program in the returned EPROM. AMD requests a written verification form (supplied by AMD with programmed EPROM) signed by customer before proceeding to any further work.
The following EPROMs should be used for submitting ROM CODE DATA:

ROM		EPROM	
		Preferred	Optional
Am9208	1K $\times 8$	2708	-
Am9217/18	$2 \mathrm{~K} \times 8$	2716	$2516 / 2-2708$
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$

If more than one EPROM is used to specify one ROM pattern, (i.e., 416 K EPROMs or 232 K EPROMs for one 64 K ROM) two complete sets of programmed EPROMs should be submitted. In this instance, the programmed EPROMs must clearly state which of the two or four EPROMs is for lower and upper address locations in the ROM.

CARD FORMAT

If customer prefers to submit punch cards, be sure to provide the industry standard formats, such as:
AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
G.I. BINARY

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM CODE DATA (EPROM or CARDs), the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Obtain AMD's 5 digit code number from product marketing
- Supply chip select information
- Supply customer part number and appropriate AMD part number
- Supply marking information
- Instruction on whether prototype approval is required prior to production or AMD is allowed to go straight to production (in case of code change or error, customer is liable for all products in line) after customer code approval.

ROM-012

Am9265
 $64 K$ (8192×8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post metal programming
- Access time - 250ns (max)
- Fully static operation
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Automatic power down feature controlled by separate $\overline{\mathrm{CE}}$ pin.

80 mA max operating current
20 mA max standby current

- Separate $\overline{O E}$ pin for tri-state output control
- Two programmable chip selects with no-connect option
- Pin compatible with 28 pin 64 K and higher density ROMs/EPROMs
- Completly TTL compatible
- Standard 28 pin DIP
- INT-STD-123 - guaranteed to 0.1\% AQL.
- Military version $\left(-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ - Available with 450ns (max) access time

OPERATING RANGE
Part Number

	Ambient Temperature				V $_{\text {CC }}$	V
Am9265DC/PC/CC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	OV			
Am9265DM	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	OV			

FUNCTIONAL DESCRIPTION

The Am9265 high performance read only memory is organized 8192 words by 8 bits with access times of less than 250 ns . This organization simplifies the design of small memory systems and permits incremental memory sizes of 8192 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.
Two programmable chip select inputs are provided to control the output buffers. Chip select polarity may be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9265 devices and other three state components. No-connect option on chip selects can be provided if desired by the customer.
This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate $\overline{O E}$, output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.
The Am9265 features an automatic stand-by mode. When deselected by $\overline{C E}$, the maximum supply current is reduced from 80 mA to 20 mA , a 75% reduction.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

ORDERING INFORMATION

	Access Time			
Package Type		350ns		
		AM9265BPC	AM9265CPC	AM9265DPC
Molded	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9265BCC	AM9265CCC	AM9265DCC
Cerdip	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM9265BDC	AM9265CDC	AM9265DDC
Ceramic Side-Brazed	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	AM9265BDM		

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ with Respect to $V_{S S}$	+7.0 V
DC Voltage Applied to Outputs	-0.5 to +7.0 V
DC Input Voltage	-0.5 to +7.0 V
Power Dissipation (Package Limitation)	1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test	tions	Min	Max	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		Volts
V_{OL}	Ouput LOW Voltage	$\mathrm{IOL}=3.2 \mathrm{~mA}$			0.4	Volts
V_{H}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	Volts
ILI	Input Leakage Current	$V_{\text {SS }} \leqslant V_{1} \leqslant V_{\text {CC }}$			10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$V_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{~V}_{\mathrm{CC}}$ Chip Disabled	$+70^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
			$+125^{\circ} \mathrm{C}$ (DM)		50	
Icc1	V CC Standby Current		$0^{\circ} \mathrm{C}$		20	mA
			$-55^{\circ} \mathrm{C}$ (DM)		25	
ICC2	V Cc Operating Current		$0^{\circ} \mathrm{C}$		80	mA
			$-55^{\circ} \mathrm{C}$ (DM)		100	
C_{1}	Input Capacitance	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \text { All pins at } 0 \mathrm{~V} \end{aligned}$			7.0	pF
C_{0}	Output Capacitance				7.0	pF

SWITCHING CHARACTERISTICS over operating range (see notes)

		Test Conditions	Am9265B		Am9265C		Am9265D		Unit
Parameter	Description		Min	Max	Min	Max	Min	Max	
t_{A}	Address to Output Access Time			450		300		250	ns
${ }^{\text {t }} \mathrm{CO}$	Chip Select to Output ON Delay			150		120		100	ns
t_{OE}	Output Enable to Output ON Delay	Output Load		150		120		100	ns
${ }^{\text {t }}$ CE	$\overline{\mathrm{CE}}$ to Output ON Delay	One Standard		450		300		250	ns
${ }^{\text {tor }}$	Previous Read Data Valid with Respect to Address Change	TTL Gate Plus 100pF (Note 1)	20		20		20		ns
$t_{\text {DF }}$	Chip Select to Output OFF Delay			120		100		80	ns

Notes: 1. Timing reference levels: High $=2.0 \mathrm{~V}$ Low $=0.8 \mathrm{~V}$.
2. $t_{D F}$ is the worst case OFF delay. If $\overline{O E}$ occurs before $\overline{C E}$ and $C S / \overline{C S}$ are disabled, then $t_{D F}$ is referenced to $\overline{O E}$ only. If $\overline{O E}, \overline{C S} / \overline{C S}$ and $\overline{C E}$ are disabled simultaneously, then $t_{D F}$ is referenced to all three.

SWITCHING WAVEFORMS

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).
The following EPROMs should be used for submitting ROM code data:

ROM		EPROM	
		Preferred	Optional
Am9208	1K $\times 8$	2708	-
Am9217/18	2K $\times 8$	2716	$2516 / 2-2708$
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:
AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used
- Cover EPROM window with opaque material to prevent bit loss.

Am92128
 128K (16,384 x 8) Read Only Memory

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post metal programming
- Access time - 250ns (max)
- Fully static operation
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Automatic power down feature controlled by separate $\overline{\mathrm{CE}}$ pin
80 mA max operating current
25 mA max standby current
- Separate $\overline{\mathrm{OE}}$ pin for three-state output control
- Programmable chip select with no-connect option
- Pin compatible with 28-pin and high density ROMs/EPROMs
- TTL compatible
- Standard 28-pin DIP
- INT-STD-123 - guaranteed to 0.1\% AQL
- Military version (-55 to $+125^{\circ} \mathrm{C}$) - Available with 450ns (max) access time

CONNECTION DIAGRAM

 Top View

Note: Pin 1 is marked for orientation. PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address	$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{CE}}$	Chip Enable	V_{CC}	+5 V
NC	No Connection	GND	Ground
$\mathrm{CS} / \overline{\mathrm{CS}}$	Chip Select	$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs

OPERATING RANGE

Ambient

| | Temperature | Vart Number | VC |
| :--- | :---: | :---: | :---: |\quad VSS

FUNCTIONAL DESCRIPTION

The Am92128 high performance read only memory is organized 16,384 words by 8 bits and has access times of less than 250ns. This organization simplifies the design of memory systems and permits incremental memory sizes of 16,384 bytes. The fast access times provided allow the ROM to service high performance microcomputer applications without inserting wait states.
One programmable chip select input is provided to control the output buffers. Chip select polarity may be specified by the customer thus allowing the addressing of 2 memory chips without external gating.The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am92128 devices and other three-state components. No-connect option on chip select can be provided if desired by the customer.
This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate $\overline{O E}$, output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.
The Am92128 features an automatic stand-by mode. When deselected by $\overline{C E}$, the maximum supply current is reduced from 80 mA to 25 mA, a 70% reduction.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

TRUTH TABLE

$\overline{\mathbf{C S}}$ or $\mathbf{C S}$		$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	Mode	Outputs	Power
H	L	L	X	Deselected	High-Z	Active
H	L	H	X	Deselected	High-Z	Standby
L	H	L	H	Inhibit	High-Z	Active
L	H	H	X	Deselected	High-Z	Standby
L	H	L	L	Read	DOUT	Active

ORDERING INFORMATION

\left.| | Access Time |
| :---: | :---: | :---: | :---: | :---: |
| Package Type | |
| Specifications | |$\right)$

Am92128

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	$-\mathbf{6 5}$ to $\mathbf{+ 1 5 0 ^ { \circ } \mathrm { C }}$
Ambient Temperature Under Bias	-55 to $+\mathbf{1 2 5} \mathrm{C}$
V_{CC} with Respect to V_{SS}	$+\mathbf{7 . 0 \mathrm { V }}$
DC Voltage Applied to Outputs	-0.5 to $+\mathbf{7 . 0 \mathrm { V }}$
DC Input Voltage	-0.5 to $+\mathbf{7 . 0 \mathrm { V }}$
Power Dissipation (Package Limitation)	1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.
ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Tes	tions	Min	Max	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		Volts
$\mathrm{V}_{\text {OL }}$	Ouput LOW Voltage	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$			0.4	Volts
V_{IH}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	Volts
ILI	Input Leakage Current	$\mathrm{V}_{S S} \leqslant \mathrm{~V}_{1} \leqslant \mathrm{~V}_{\text {CC }}$			${ }^{10}$	$\mu \mathrm{A}$
'Lo	Output Leakage Current	$V_{S S} \leqslant V_{O} \leqslant V_{C C}$ Chip Disabled	$+70^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
			$+125^{\circ} \mathrm{C}$ (DM)		L 50 \%	
${ }^{\text {I CC1 }}$	V ${ }_{\text {cc }}$ Standby Current		$0^{\circ} \mathrm{C}$		25	mA
			$-55^{\circ} \mathrm{C}$ (RM'		30	
${ }^{\text {ICC2 }}$	V_{CC} Operating Current				80	mA
ICC2	CC Operaing Curren				100	
Cl_{1}	Input Capacitance	$T_{A}=25^{\circ} \mathrm{C}, 1=1 \mathrm{OMHz}$ Allpins at OV			7.0	pF
C_{0}	Output Capacitance				7.0	pF

SWITCHING CHARACTERISTICS over operating range (see notes)

			Am92128B		Am92128C		Am92128D		
Parameter	Wh. Description	Test Conditions	Min	Max	Min	Max	Min	Max	Unit
${ }^{\text {t }}$	Address to Output Access Time	$t r=t f=10 n s$ Output Load One Standard TTL Gate Plus 100pF (Note 1)		450		300		250	ns
${ }^{\text {c }} \mathrm{CO}$	Chip Select to Output ON Delay			150		120		100	ns
${ }^{\text {t OE }}$	Output Enable to Output ON Delay			150		120		100	ns
${ }^{\text {t }}$ CE	$\overline{\mathrm{CE}}$ to Output Delay			450		300		250	ns
${ }^{\text {t }} \mathrm{OH}$	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
${ }^{\text {t }}$ DF	Chip Select to Output OFF Delay			120		100		80	ns

Notes: 1. Timing reference levels: High $=2.0 \mathrm{~V}$ Low $=0.8 \mathrm{~V}$.
2. $t_{D F}$ is the worst case OFF delay. If $\overline{O E}$ occurs before $\overline{C E}$ and $C S / \overline{C S}$ are disabled, then tDF is referenced to $\overline{O E}$ only. If $\overline{O E}, C S / \overline{C S}$, and $\overline{C E}$ are disabled simultaneously, then t_{DF} is referenced to all three.

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).
The following EPROMs should be used for submitting ROM code data:

ROM		EPROM	
		Preferred	Optional
Am9208	$1 \mathrm{~K} \times 8$	2708	-
Am9217/18	$2 \mathrm{~K} \times 8$	2716	$2516 / 2-2708$
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am92128	$16 \mathrm{~K} \times 8$	27128	$2-2764$

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:
AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

Am92256
 256K (32,768 x 8) Read Only Memory

 PRELIMINARY

 PRELIMINARY}

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post metal programming
- Access time - 250ns (max)
- Fully static operation
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Automatic power down feature controlled by separate $\overline{\mathrm{CE}}$ pin
120 mA max operating current
30 mA max standby current
- Separate $\overline{O E}$ pin for three-state output control
- Pin compatible with 28 -pin high density ROMs/EPROMs
- TTL compatible
- Standard 28-pin DIP
- INT-STD-123 - guaranteed to 0.1\% AQL

Note: Pin 1 is marked for orientation. ROM-005

OPERATING RANGE

Part Number	Ambient Temperature	$V_{C C}$	$V_{S S}$
Am92256PC/CC	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	+5.0V $\pm 10 \%$	OV

FUNCTIONAL DESCRIPTION

The Am92256 high performance read only memory is organized 32,768 words by 8 bits and has access times of less than 250 ns . This organization simplifies the design of memory systems and permits incremental memory sizes of 32,768 bytes. The fast access times provided allow the ROM to service high performance microcomputer applications without inserting wait states.

The Am92256 features an automatic stand-by mode. When deselected by $\overline{\mathrm{CE}}$, the maximum supply current is reduced from 120 mA to 30 mA , a 75% reduction. The outputs of the deselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am92256 devices and other three-state components.
This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate $\overline{\mathrm{OE}}$, output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.
The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address	$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{CE}}$	Chip Enable	V_{CC}	+5 V
NC	No Connection	GND	Ground
		$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs

TRUTH TABLE

$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	Mode	Outputs	Power
H	X	Deselect	High-Z	Standby
L	H	Inhibit	High-Z	Active
L	L	Read	Dout	Active

$\mathrm{H}=\mathrm{HIGH}(\geqslant 2.0 \mathrm{~V})$
$\mathrm{L}=\mathrm{LOW}(\leqslant 0.8 \mathrm{~V})$
X $=$ Don't Care

ORDERING INFORMATION

	Access Time			
Package Type				
Specifications		300ns	250ns	
Molded	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	Am92256BPC	Am92256CPC	Am92256DPC
Cerdip	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	Am922568CC	Am92256CCC	Am92256DCC

MAXIMUM RATINGS beyond which the useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-55 to $+125^{\circ} \mathrm{C}$
$V_{\text {CC }}$ with Respect to $V_{S S}$	+7.0 V
DC Voltage Applied to Outputs	-0.5 to +7.0 V
DC Input Voltage	-0.5 to +7.0 V
Power Dissipation (Package Limitation)	1.0 W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.
ELECTRICAL CHARACTERISTICS over operating range

Parameter	Description	Test Conditions		Min	Max	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		2.4		Volts
V_{OL}	Ouput LOW Voltage	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$			0.4	Volts
V_{IH}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	Volts
I_{LI}	Input Leakage Current	$V_{S S} \leqslant V_{1} \leqslant V_{C C}$			10.	$\mu \mathrm{A}$
ILO	Output Leakage Current	$V_{S S} \leqslant V_{O} \leqslant V_{C C}$ Chip Disabled	$+70^{\circ} \mathrm{C}$		10^{2}	$\mu \mathrm{A}$
${ }^{\text {c }} 1$	V_{CC} Standby Current		$0^{\circ} \mathrm{C}$		30	mA
${ }^{\text {ICC2 }}$	V_{CC} Operating Current		$0^{\circ} \mathrm{C}$		120	mA
Cl_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}$ Alpins at OV			7.0	pF
C_{0}	Output Capacitance				7.0	pF

SWITCHING CHARACTERISTICS over operating range

		Test Conditions	Am92256B		Am92256C		Am92256D		Unit
Parameter	Description		Min	Max	Min	Max	Min	Max	
$t_{\text {A }}$	Address to Output Access Time	$\mathrm{tr}=\mathrm{tf}=10 \mathrm{~ns}$ Output Load One Standard TTL Gate Plus 100pF (Note 1)		450		300		250	ns
t_{OE}	Output Enable to Output ON Delay			150		120		100	ns
${ }^{\text {t CE }}$	$\overline{\mathrm{CE}}$ to Output ON Delay			450		300		250	ns
t_{OH}	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
t_{DF}	Chip Select to Output OFF Delay			120		100		80	ns

Notes: 1. Timing reference levels: High $=2.0 \mathrm{~V}$ Low $=0.8 \mathrm{~V}$.
2. $t_{D F}$ is the worst case OFF delay. If $\overline{O E}$ occurs before $\overline{C E}$ is disabled, then $t_{D F}$ is referenced to $\overline{O E}$ only. If $\overline{O E}$, and $\overline{C E}$ are disabled simultaneously, then $t_{D F}$ is referenced to both.

SWITCHING WAVEFORMS

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

ROM		EPROM	
		Preferred	Optional
Am9208	$1 \mathrm{~K} \times 8$	2708	-
Am9217/18	$2 \mathrm{~K} \times 8$	2716	$2516 / 2-2708$
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am92128	$16 \mathrm{~K} \times 8$	27128	$2-2764$
Am92256	32K $\times 8$	$2-27128$	$4-2764$

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.
CARD FORMAT
If card decks are preferred as code inputs, the following industry standard formats are acceptable:
AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

BLOCK DIAGRAM


```
INDEX SECTION
    NUMERICAL DEVICE INDEX
    FUNCTIONAL INDEX AND SELECTION GUIDE
    INDUSTRY CROSS REFERENCE
    APPLICATION NOTE
```

BIPOLAR PROGRAMMABLE
READ ONLY MEMORY (PROM)
BIPOLAR RANDOM ACCESS
MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION COMMITTMENT TO EXCELLENCE PRODUCT ASSURANCE PACKAGE OUTLINES SALES OFFICES

MOS UV Erasable Programmable ROM (EPROM) Index

Am1702A

Am9708/2708
Am2716/9716
Am2732
Am2732A
Am2764
Am27128
256-Word by 8-Bit Programmable Read Only Memory 6-1
1024×8 Erasable Read Only Memory 6-7
2048×8-Bit UV Erasable PROM 6-11
4096×8-Bit UV Erasable PROM 6-16
4096×8-Bit UV Erasable PROM 6-21
8192×8-Bit UV Erasable PROM 6-22
$16,384 \times 8$-Bit UV Erasable PROM 6-27

Am1702A

256-Word by 8-Bit Programmable Read Only Memory

DISTINCTIVE CHARACTERISTICS

- Field programmable 2048 bit ROM
- Access times down to 550 nanoseconds
- 100% tested for programmability
- Inputs and outputs TTL compatible
- Three-state output - wired-OR capability
- Typical programming time of less than 2 minutes/device
- Clocked VGG mode for lower power dissipation
- 100% MIL-STD-883 reliability assurance testing

GENERAL DESCRIPTION

The Am1702A is a 2048 -bit electrically programmable ultraviolet light erasable Read Only Memory. It is organized as 256 by 8 bits. It is packaged in a 24 pin dual in-line hermetic cerdip package with a foggy lid.

The transparent lid allows the user to erase any previously stored bit pattern by exposing the die to an ultraviolet (UV) light source. Initially, and after each erasure, all 2048 bits are in the zero state (output low). The data is selectively written into specified address locations by writing in ones.
A low power version, the Am1702AL, is available which permits the VGG input to be clocked for lower average power dissipation.

CONNECTION DIAGRAM
Top View

ORDERING INFORMATION

Ambient Temperature Specification	Package Type	Clocked VGG	Access Time (ns)		
			1000	650	550
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Hermetic DIP Transparent Window	No	AM1702A	AM1702A-2	AM1702A-1
		Yes	AM1702AL	AM1702AL-2	AM1702AL-1
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP Transparent Window	No	AM9702AHDL	AM9702A-2HDL	AM9702A-1HDL
		Yes	AM9702ALHDL	AM9702AL-2HDL	AM9702AL-1DHL

Am1702

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation	1 W
Input and Supply Voltages (Operating)	$\mathrm{VCC}-20 \mathrm{~V}$ to $\mathrm{VCC}+0.5 \mathrm{~V}$
Input and Supply Voltages (Programming)	-50 V

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGE, Read Mode (Notes 1, 2)

Ambient Temperature	VCC	VDD	VGG	VBB
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 5 \%$	$-9.0 \mathrm{~V} \pm 5 \%$	$-9.0 \mathrm{~V} \pm 5 \%$	$+5.0 \mathrm{~V} \pm 5 \%$
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 5 \%$	$-9.0 \mathrm{~V} \pm 5 \%$	$-9.0 \mathrm{~V} \pm 5 \%$	$+5.0 \mathrm{~V} \pm 5 \%$

ELECTR	L CHARACTERIS		ting range	te 3)	$\begin{aligned} & \text { n1702، } \\ & \text { n9702 } \end{aligned}$			$\begin{aligned} & 1702 \\ & 19702 \end{aligned}$		
Parameter	Description		ditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
ICF1	Output Clamp Current	$T_{A}=$	$=-1.0 \mathrm{~V}$		8	14		5.5	8	mA
ICF2	Output Clamp Current	$\mathrm{T}_{\text {A }}=$	$=-1.0 \mathrm{~V}$			13		5	7	mA
IDDO		$\begin{aligned} & \mathrm{VGG} \\ & \mathrm{VGS} \end{aligned}$	$\begin{aligned} & \mathrm{OL}=0 \mathrm{~mA} \\ & 0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$					7	10	mA
IDD1	VDD Current (Note 4)	$\begin{aligned} & 10 \mathrm{~L}= \\ & \mathrm{T}_{\mathrm{A}}= \end{aligned}$	$\overline{\bar{s}}=\mathrm{VCC}-2.0,$		35	50		35	50	mA
IDD2		IOL=	S $=0, T_{A}=25^{\circ} \mathrm{C}$		32	46		32	46	mA
IDD3		$\begin{aligned} & 10 \mathrm{I}= \\ & \mathrm{T}_{\mathrm{A}}=1 \end{aligned}$	$\bar{S}=\mathrm{VCC}-2.0,$		38	60		38	60	mA
IGG	VGG Current					1.0			1.0	$\mu \mathrm{A}$
IL1	Input Leakage Current	$\mathrm{VI}=0 \mathrm{~V}$				1.0			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\overline{\mathrm{CS}}=$, $\mathrm{VO}=0 \mathrm{~V}$			1.0			1.0	$\mu \mathrm{A}$
IOH	Output Source Current	$\mathrm{VO}=$		-2.0			-2.0			mA
IOL	Output Sink Current	$\mathrm{VO}=$		1.6	4		2.0			mA
VIH	Input HIGH Level			VCC-2.0		$\mathrm{VCC}+0.3$	Vcc-2.0		$\mathrm{VCC}+0.3$	Voits
VIL	Input LOW Level			-1.0		0.65	-1.0		0.65	Volts
VOH	Output HIGH Level	$\mathrm{IOH}=$		3.5	4.5		3.5	4.5		Volts
VOL	Output LOW Level	IOL	1.6 mA		-3.0	0.45				Volts
			2.0 mA						0.4	

SWITCHING CHARACTERISTICS over operating range (Note 5)

Parameter	Description	$\begin{gathered} \text { Am1702A-1 } \\ \text { Am1702AL-1 } \\ \text { Am9702A-1 } \\ \text { Am9702AL-1 } \end{gathered}$		Am1702A-2 Am1702AL-2 Am9702A-2 Am9702AL-2		$\begin{aligned} & \text { Am1702A } \\ & \text { Am1702AL } \\ & \text { Am9702A } \\ & \text { Am9702AL } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tACC	Address to Output Access Time		550		650		1000	ns
tCO	Output Delay from $\overline{\mathrm{CS}}$		450		350		900	ns
t $\overline{\mathrm{C}}$	Chip Select Delay		100		300		100	ns
tDVGG	Set-up Time, VGG	0.3		0.3		0.4		$\mu \mathrm{s}$
toD	Output Deselect		300		300		300	ns
tDH	Previous Read Data Valid		100		100		100	ns
tohc	Data Out Valid from VGG (Note 6)		5.0		5.0		5.0	$\mu \mathrm{S}$
freq.	Repetition Rate		1.8		1.6		1.0	MHz

CAPACITANCE (Note 7)

Parameter	Description	Conditions	Typ.	Max.	Unit
Cl	Input Capacitance	$T_{A}=25^{\circ} \mathrm{C}$ All unused pins are at VCC	8	15	pF
CO	Output Capacitance		10	15	pF
cVGG	VGG Capacitance			30	pF

SWITCHING WAVEFORMS

READ OPERATION (Note 2)

DESELECTION

CLOCKED VGG OPERATION (Note 1)

The VGG input may be clocked between +5 V (VCC) and -9 V to save power. To read the data, the chip select ($\overline{\mathrm{CS}}$) must be low ($\leqslant \mathrm{VIL}$) and the VGG level must be lowered to -9 V at least tDVGG prior to the address selection. Once the data has appeared at the output and the access time has elapsed, VGG
may be raised to +5 V . The data output will remain stable for tOHC. To deselect the chip, $\overline{\mathrm{CS}}$ is raised to $\geqslant \mathrm{VIH}$, and the output will go the high impedance state after tOD. The chip will be deselected when $\overline{\mathrm{CS}}$ is raised to VIH whether the VGG is at +5 V or at -9 V .

PROGRAMMING THE Am1702A

Each storage node in the Am1702A consists of an MOS transistor whose gate is not connected to any circuit element. The transistors are all normally off, making all outputs LOW in an unprogrammed device. A bit is programmed to a HIGH by applying a large negative voltage to the MOS transistor; electrons tunnel through the gate insulation onto the gate itself. When the programming voltage is removed, a charge is left on the gate which holds the transistor on. Since the gate is completely isolated, there is no path by which the charge can escape, except for random high energy electrons which might retunnel through the gate insulation. Under ordinary conditions retunneling is not significant. The application of high energy to the chip through X-rays or UV light (via the quartz window) raises energy levels so that the charge can escape from the gate region, erasing the program and restoring the device to all LOW.

In order to program a specified byte, all 8 address lines must be in the binary complement of the address desired when pulsed VDD and VGG move to their negative level. The complemented address must be stable for at least tACW before VDD and VGG make their negative transitions. The voltage swing of the address lines during programming is between $-47 \mathrm{~V} \pm 1 \mathrm{~V}$ and 0 V . The addresses must then make a transition to the true state at least tATW before the program pulse is applied. For good data retention, the addresses should be programmed in sequence from 0 to 255 , a minimum of 32 times. DO1 through DO8 are used as the data inputs to program the desired pattern. A low level at the data input $(-47 \mathrm{~V} \pm 1 \mathrm{~V})$ will program the selected bit to 1 and a high level (0 V) will program it to a 0 . All 8 bits addressed are programmed simultaneously.

Programming Boards are available for the Data l/O automatic programmer (part number 1010/1011), for the Spectrum Dynamics programmer (part number 434-549), and for the Pro-Log programmer (part number PM9001).

ERASING THE Am1702A

The Am1702A may be erased (restored to all LOW's) by exposing the die to ultraviolet light from a high intensity source. The recommended dosage is 6 W -sec/cm ${ }^{2}$ at a wavelength of $2537 \AA$. The Ultraviolet Products, Inc., models UVS-54 or S-52 can erase the Am1702A in about 15 minutes, with the devices held one inch from the lamp. (Caution should be used when Am1702A's are inspected under fluorescent lamps after being programmed, as some fluorescent lamps may emit sufficient UV to erase or "soften" the PROM.)

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.
Ultraviolet lamps can also ionize oxygen and create ozone which is harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

PROGRAMMING REQUIREMENTS (Note 2)

Parameter	Description	Condition	Min.	Typ.	Max.	Unit
ILIIP	Input Current, Address and Data	$V I=-48 V$			10	mA
ILI2P	Input Current, Program and VGG Inputs	$\mathrm{VI}=-48 \mathrm{~V}$			10	mA
IBB	VBB Current			0.05		mA
IDDP	IDD Current During Programming Pulse	$\mathrm{VDD}=\mathrm{VProg}=-48 \mathrm{~V}, \mathrm{VGG}=-35 \mathrm{~V}$		200	Note 8	mA
VIHP	Input HIGH Voltage				0.3	Volts
VILTP	Voltage Applied to Output to Program a HIGH		-46		-48	Volts
VIL2P	Input LOW Level on Address Inputs		-40		-48	Volts
VIL3P	Voltage Applied to VDD and Program Inputs		-46		-48	Volts
VIL4P	Voltage Applied to VGG Input		-35		-40	Volts
$t \phi$ PW	Programming Pulse Width	VGG $=-35 \mathrm{~V}, \mathrm{VDD}=\mathrm{VProg}=-48 \mathrm{~V}$			3.0	ms
tDW	Data Set-up Time		25			$\mu \mathrm{s}$
tDH	Data Hold Time		10			$\mu \mathrm{s}$
tVW	VGG and VDD Set-up Time		100			$\mu \mathrm{s}$
tVD	VGG and VDD Hold Time		10		100	μs
tACW	Address Set-up Time (Complement)		25			$\mu \mathrm{s}$
tACH	Address Hold Time (Complement)		25			$\mu \mathrm{s}$
tATW	Address Set-up Time (True)		10			$\mu \mathrm{s}$
tATH	Address Hold Time (True)		10			$\mu \mathrm{s}$
	Duty Cycle				20	\%

NOTES:

1. During read operations VGG may be clocked high to reduce power consumption. This involves swinging VGG up to VCC. See "Clocked VGG Operation". This mode is possible only with the Am1702AL.
2. During Read operations:

Pins 12, 13, 15, 22, $23=+5.0 \mathrm{~V} \pm 5 \%$
Pins 16, $24=-9.0 \mathrm{~V} \pm 5 \%$
During Program operations:
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Pins 12, 22, $23=0 \mathrm{~V}$
Pins 13, 24 are pulsed low from 0 V to $-47 \mathrm{~V} \pm 1 \mathrm{~V}$
Pin $15=+12.0 \mathrm{~V} \pm 10 \%$
Pin 16 is pulsed low from 0 V to $-37.5 \mathrm{~V} \pm 2.5 \mathrm{~V}$
3. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$, nominal supply voltages and nominal processing parameters.
4. IDD may be reduced by pulsing the VGG supply between VCC and -9V. VDD current will be directly proportional to the VGG duty cycle. The data outputs will be unaffected by address or chip select changes while VGG is at VCC. For this option specify AM1702AL.
5. $\mathrm{VIL}=0 \mathrm{~V}, \mathrm{VIH}=4.0 \mathrm{~V}, \mathrm{tr}=\mathrm{tf} \leqslant 50 \mathrm{~ns}$, Load $=1 \mathrm{TLL}$ gate.
6. The output will remain valid for tOHC after the VGG pin is raised to VCC, even if address change occurs.
7. These parameters are guaranteed by design and are not 100% tested.
8. Do not allow IDD to exceed 300 mA for more than $100 \mu \mathrm{sec}$.

Am9708/Am2708
 1024 x 8 Erasable Read Only Memory

DISTINCTIVE CHARACTERISTICS - Direct replacement for Intel 2708/8708 - Interchangeable with Am9208, Am9216 masked ROMs - Full military temperature operation - Fast programming time - typically 50 sec - TTL compatible interface signals - Fully static operation - no clocks - Fast access time - 350ns - Three-state outputs - Tested for 100% programmability - 100% MIL-STD- 883 reliability assurance testing	GENERAL DESCRIPTION The Am2708 is an 8,192-bit erasable and programmable MOS read-only memory. It is organized as 1024 words by 8 bits per word. Erasing the data in the EROM is accomplished by projecting ultraviolet light through a transparent window for a predetermined time period. When the Chip Select/Write Enable input is at the high logic level, the device is unselected and the data lines are in their high impedance state. The device is selected when CS/WE is at the low logic level. The contents of a particular memory location, specified by the 10 address lines, will be available on the data lines after the access time has elapsed. For programming, $\overline{\mathrm{CS}} / \mathrm{WE}$ is connected to +12 V and is used in conjunction with the Program input. The Address and Data lines are TTL compatible for all operating and programming modes.
block diagram	CONNECTION DIAGRAM Top View
mos	Note: Pin 1 is marked for orientation. M0s-053

ORDERING INFORMATION

Package Type	Ambient Temperature Specification	Order Number
Hermetic DIP Transparent Window	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	AM2708DC (450ns) AM2708-1DC (350ns)
Hermetic DIP Transparent Window	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	AM9708DM (480ns)

Am9708/Am2708

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Signal Voltages, except Program and $\overline{\mathrm{CS}} / \mathrm{WE}$, with Respect to VBB	-0.3 V to +15 V
Program Input Voltage with Respect to VBB	-0.3 V to +35 V
$\overline{\mathrm{CS}} / \mathrm{WE}$ Input with Respect to VBB	-0.3 V to +20 V
VCC and VSS with Respect to VBB	-0.3 V to +15 V
VDD with Respect to VBB	-0.3 V to +20 V
Power Dissipation	1.5 W

The product described by this specification includes internal circuitry designed to protect input devices from excessive accumulation of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to any voltages that exceed the maximum ratings.
OPERATING RANGE
Ambient Temperature

	VDD	VCC	VBB	VSS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$+12 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$-5 \mathrm{~V} \pm 5 \%$	0 V
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$+12 \mathrm{~V} \pm 10 \%$	$+5 \mathrm{~V} \pm 10 \%$	$-5 \mathrm{~V} \pm 10 \%$	0 V

PROGRAMMING CONDITIONS

Ambient Temperature	VDD	VCC	VBB	VSS		$\bar{c} \overline{C S} /$ WE
$+25^{\circ} \mathrm{C}$	$+12 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$-5 \mathrm{~V} \pm 5 \%$	0 V	$+12 \mathrm{~V} \pm 5 \%$	$26 \mathrm{~V} \pm 1 \mathrm{~V}$

READ OPERATION

ㄷLㄷCTPICAL CHAPACTERISTICS over operating range (Notes 1, 7)

Parameters	Description	Test Conditions		Min.	Typ.	Max.	Units
VIL	Input Low Voltage			vSS		0.65	Volts
VIH	Input HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		3.0		VCC+1	Volts
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		2.4		VCC+1	Volts
VOL	Output LOW Voltage	$1 \mathrm{OL}=1.6 \mathrm{~mA}$				0.45	Volts
VOH	Output HIGH Voltage	$10 \mathrm{H}=-100 \mu \mathrm{~A}$		3.7			Volts
		$1 \mathrm{OH}=-1.0 \mathrm{~mA}$		2.4			Volts
ILI	Address and Chip Select Input Load Current	VSS \leqslant VIN \leqslant VCC			1.0	10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\begin{aligned} & \text { VOUT }=\text { Worst Case } \\ & \text { CSTWE }=+5.0 \mathrm{~V} \end{aligned}$			1.0	10	$\mu \mathrm{A}$
IDD	VDD Supply Current	All inputs HIGH. $\overline{\mathrm{CS}} / \mathrm{WE}=+5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		50	65	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			80	
ICC	VCC Supply Current		$T_{A}=0^{\circ} \mathrm{C}$		6.0	10	mA
			$T_{A}=-55^{\circ} \mathrm{C}$			15	
IBB	VBB Supply Current		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		30	45	mA
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			60	
PD	Power Dissipation	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$				800	mW
CIN	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ All pins at 0 V			4.0	6.0	pF
COUT	Output Capacitance				8.0	12.0	pF

READ OPERATION

SWITCHING CHARACTERISTICS over operating range (Notes 2, 7)

SWITCH	Ov	2,	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$		Units
Parameters	Description	Test Conditions	Min.		ax.	Min.	Max.	
tACC	Address to Output Access Time (Note 3)	$\mathrm{tr}=\mathrm{tf} \leqslant 20 \mathrm{~ns}$ Output Load: One Standard TTL Gate Plus 100pF		2708	2708-1		480	ns
				450	350			
tCO	Chip Select to Output on Delay (Note 4)				20		150	ns
tDF	Chip Select to Output OFF Delay		0		20	0	150	
tOH	Previous Read Data Valid with Respect to Address Change		0			0		

PROGRAMMING CHARACTERISTICS under programming conditions

Parameter	Description	Min.	Max.	Units
tAS	Address Set Up Time	10		$\mu \mathrm{s}$
tCSS	$\overline{\text { CS/WE Set Up Time }}$	10		$\mu \mathrm{s}$
tDS	Data Set Up Time	10		$\mu \mathrm{s}$
tAH	Address Hold Time (Note 5)	1.0		$\mu \mathrm{s}$
tCH	$\overline{\mathrm{CS}} / \mathrm{WE}$ Hold Time (Note 5)	0.5		$\mu \mathrm{s}$
tDH	Data Hold Time	1.0		$\mu \mathrm{s}$
tDF	Chip Select to Output Off Delay	0	120	ns
tDPR	Program to Read Delay		10	$\mu \mathrm{s}$
tPW	Program Pulse Width	0.1	1.0	ms
tPR, tPF	Program Pulse Transition Times	0.5	2.0	$\mu \mathrm{s}$
VIHW	$\overline{\mathrm{CS}} / \mathrm{WE}$ Input High Level	11.4	12.6	Volts
VIHP	Program Pulse High Level (Note 6)	25	27	Volts
VILP	Program Pulse Low Level (Note 6)	VSS	1.0	Volts

SWITCHING WAVEFORMS

READ CYCLE

MOS-054

PROGRAM MODE (Note 5)

PROGRAMMING THE Am2708

All 8192 bits of the Am2708 are in the logic HIGH state after erasure. When any of the output bits are programmed, the output state will change from HIGH to LOW. Programming of the device is initiated by raising the $\overline{\mathrm{CS}} / \mathrm{WE}$ input to +12 V . A memory location is programmed by addressing the device and supplying 8 data bits in parallel to the data out lines. When address and data bits are set up, a programming pulse is applied to the program input. All addresses are programmed sequentially in a similar manner. One pass through all 1024 addresses is considered one program loop. The number of program loops (N) required to complete the programming cycle is a function of the program pulse width (tPW) such that $N \geqslant 100 \mathrm{~ms} / \mathrm{tPW}$ requirement is met. Do not apply more than one program pulse per address without sequentially programming all other addresses. There should be N successive loops through all locations. The Program pin will source the IIPL current when it is low (VILP) and $\overline{\mathrm{CS}} / \mathrm{WE}$ is high (VIHW). The Program pin should be actively pulled down to maintain its low level.

ERASING THE Am2708

The Am2708 can be erased by exposing the die to highintensity, short-wave, ultra-violet light at a wavelength of 2537 angstroms through the transparent lid. The recommended dosage is ten watt-seconds per square centimeter. This erasing condition can be obtained by exposing the die to model S-52 ultraviolet Iamp manufactured by Ultra-Violet Products, Inc. or Product Specialties, Inc. for approximately 20 to 30 minutes from a distance of about 2.5 centimeters above the transparent
lid. The light source should not be operated with a short-wave filter installed. All bits will be in a logic HIGH state when erasure is complete.

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.
Ultraviolet lamps can also ionize oxygen and create ozone which can be harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

NOTES:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$, nominal supply voltages and nominal processing parameters.
2. Timing reference levels (Read) -

$$
\text { Inputs: } \text { High }=2.8 \mathrm{~V}(\mathrm{DC}), 2.2 \mathrm{~V}(\mathrm{DM}) ; \text { Low }=0.8 \mathrm{~V}
$$

$$
\text { Outputs: High }=2.4 \mathrm{~V}, \text { Low }=0.8 \mathrm{~V}
$$

3. Typical access time is 280 ns .
4. Typical chip select to output on delay is 60 ns .
5. tAH must be greater than tCH .
6. VIHP - VILP $\geqslant 25$ Volts.
7. $V_{B B}$ must be applied prior to $V_{C C}$ and $V_{D D}$. $V_{B B}$ must also be the last power supply switched off.

Am2716/Am9716
 2048×8-Bit UV Erasable PROM

MILITARY, INDUSTRIAL AND COMMERCIAL

Am2716/9716

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-65 to $+135^{\circ} \mathrm{C}$
Voltage on All Inputs/Outputs (except $\mathrm{V}_{\text {PP }}$) with Respect to GND	+6 V to -0.3 V
Voltage on $V_{\text {PP }}$ During Program with Respect to GND	+26.5 V to -0.3 V

DC AND AC READ OPERATIONS CONDITIONS (Notes 1, 2)

	Temperature Range	V_{Cc}	VPP
AM2716DC/AM2716-2DC	0 to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	V_{PP} (Note 2) $=\mathrm{V}_{\mathrm{CC}}$ For all device types
AM9716DC/AM2716-1DC	0 to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	
AM2716DI/AM2716-1DI	-40 to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	
AM2716DL/AM2716-1DL	-55 to $+100^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	
AM2716DM	-55 to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	

DC CHARACTERISTICS

Parameters	Description	Test Conditions	Values	Maximum Values			Units
			All Types	DL/DM	DI	DC	
$\mathrm{I}_{\text {LI }}$	Input Load Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ (Max) and $\mathrm{V}_{\mathrm{IN}}=0$		10	10	10	$\mu \mathrm{A}$
lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}($ Max $)$ and $\mathrm{V}_{\text {OUT }}=0$		10	10	10	$\mu \mathrm{A}$
$\mathrm{IPP1}^{\text {(Note 2) }}$	VPP Current	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}(\mathrm{Max})$		5	5	5	mA
${ }^{1} \mathrm{CC1}$ (Note 2)	V_{PP} Current (Standby)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		30	30	25	mA
${ }^{\text {CC2 }}$ ((Note 2)	V_{CC} Current (Active)	$\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$		115	110	100	mA
V_{IL}	Input Low Voltage		-0.1	0.8	0.8	0.8	Volts
V_{IH}	Input High Voltage		2.0	$\mathrm{V}_{\mathrm{CC}}+1$	$\mathrm{V}_{\mathrm{CC}}+1$	$\mathrm{V}_{C C}+1$	Volts
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}(\mathrm{Min})$		0.45	0.45	0.45	Volts
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{CC}}(\mathrm{Min})$	2.4				Volts

AC CHARACTERISTICS

Parameters	Description	Test Conditions (Note 3)	Min Values	Maximum Values						Units
			All Types	$\begin{gathered} 9716 \\ \text { DC } \end{gathered}$	$\begin{gathered} 2716-1 \\ \text { DC } \end{gathered}$	$\begin{gathered} 2716-2 \\ \text { DC } \end{gathered}$	$\begin{gathered} 2716 \\ \text { DC } \end{gathered}$	$\begin{array}{\|c\|} \hline 2716-1 \\ \mathrm{DI} / \mathrm{DL} \end{array}$	$\begin{gathered} 2716 \\ \text { DI/DL/DM } \end{gathered}$	
${ }^{\text {ACC }}$	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		300	350	390	450	350	450	ns
${ }^{\text {t }}$ CE	$\overline{\mathrm{CE}}$ to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		300	350	390	450	350	450	ns
${ }^{\text {toe }}$	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$		120	120	120	120	150	150	ns
${ }^{\text {t }} \mathrm{FF}$	Output Enable High to Output Float	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	0	100	100	100	100	130	130	ns
${ }^{\text {tor }}$	Output Hold from Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurred First	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\mathrm{IL}}$	0							ns

CAPACITANCE (Note 4)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Parameters	Description	Test Conditions	Typ	Max	Units
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$	4	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	12	pF

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
2. V_{PP} may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and $\mathrm{I}_{\mathrm{PP} 1}$.
3. Other Test Conditions: a) Output Load: 1 TL gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
b) Input Rise and Fall Times: $\leqslant 20 \mathrm{~ns}$
c) Input Pulse Levels: 0.8 to 2.2 V
d) Timing Measurement Reference Level:

Inputs: 1 V and 2 V
Outputs: 0.8 V and 2 V
4. This parameter is only sampled and is not 100% tested.

AC WAVEFORMS (Note 1)

MOS-201
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
2. $O E$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$.
3. t_{DF} is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

ORDERING INFORMATION

Aınbient Temperature Specification	Order Number	$\mathrm{t}_{\mathrm{ACC}}(\mathrm{ns})$	${ }_{\text {tce }}(\mathrm{ns}$)	toe (ns)
$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$	AM9716DC	300	300	120
	AM9716LC			
	AM2716-1DC	350	350	120
	AM2716-1LC			
	AM2716-2DC	390	390	120
	AM2716-2LC			
	AM2716DC	450	450	120
	AM2716LC			
$-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	AM2716-1Dt	350	350	150
	AM2716-1LI			
	AM2716DI	450	450	150
	AM2716LI			
$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+100^{\circ} \mathrm{C}$	AM2716-1DL	350	350	150
	AM2716-1LL			
	AM2716DL	450	450	150
	AM2716LL			
$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	AM2716DM	450	450	150
	AM2716LM			

Am2716/9716

PROGRAM OPERATION

DC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}($ Note 1$)=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{P P}($ Notes 1,2$)=25 \mathrm{~V} \pm 1 \mathrm{~V}$

Parameters	Description	Test Conditions	Min	Max	Units
ILI^{\prime}	Input Current	$\mathrm{V}_{\text {IN }}=5.25 / 0.45 \mathrm{~V}$		10	$\mu \mathrm{A}$
IPP 1	$\mathrm{V}_{\text {PP }}$ Supply Current	$\overline{\mathrm{CE} / P G M}=\mathrm{V}_{\mathrm{IL}}$		5	mA
IPP2	$V_{\text {PP }}$ Supply Current During Programming Pulse	$\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{V}_{\mathrm{IH}}$		30	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current			100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Level		-0.1	0.8	Volts
V_{IH}	Input High Level		2.0	$\mathrm{V}_{\mathrm{CC}}+1$	Volts

AC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}($ Note 1$)=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}($ Notes 1,2$)=25 \mathrm{~V} \pm 1 \mathrm{~V}$

Param	Description	Test Conditions	Min	Max	Units
$t_{\text {AS }}$	Address Set-up Time	Input t_{R} and $t_{F}(10 \%$ to $90 \%)=20$ ns Input Signal Levels $=0.8$ to 2.2 V Input Timing Reference Level $=1 \mathrm{~V}$ and 2 V Output Timing Reference Level $=0.8 \mathrm{~V}$ and 2 V	2		$\mu \mathrm{S}$
${ }^{\text {toes }}$	Output Enable Set-up Time		2		$\mu \mathrm{s}$
$t_{\text {DS }}$	Data Set-up Time		2		$\mu \mathrm{S}$
${ }^{\text {AH }}$	Address Hold Time		2		$\mu \mathrm{S}$
toen	Output Enable Hold Time		2		$\mu \mathrm{s}$
${ }^{\text {t }}{ }_{\text {DH }}$	Data Hold Time		2		$\mu \mathrm{s}$
${ }^{\text {t }} \mathrm{DF}$	Output Disable to Output Float Delay ($\overline{\mathrm{CE} / \mathrm{/PGM}}=\mathrm{V}_{\mathrm{IL}}$)		0	120	ns
toe	Output Enabie to Output Deiay ($\overline{\mathrm{CE} / \mathrm{FGM}}$ ($=\mathrm{V}_{\text {IL }}$)		-	120	ns
$t_{\text {PW }}$	Program Pulse Width		45	55	ms
$t_{\text {PRT }}$	Program Pulse Rise Time		5	-	ns
${ }_{\text {t }}$ PFT	Program Pulse Fall Time		5	-	ns

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
2. $V_{P P}$ must not be greater than 26 volts including overshoot. Permanent device damage may occur if the device is taken out of or put into the socket when $\mathrm{V}_{\mathrm{PP}}=25$ volts is applied. Also, during $\overline{\mathrm{OE}}=\overline{\mathrm{CE} / P G M}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{PP}}$ must not be switched from 5 volts to 25 volts or vice versa.

PROGRAMMING WAVEFORMS

ERASING THE Am2716/Am9716

In order to clear all locations of their programmed contents, it is necessary to expose the Am2716/Am9716 to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required to completely erase an Am2716/Am9716. This dosage can be obtained by exposure to an ultraviolet lamp [wavelength of 2537 Angstroms (A)] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2716/Am9716 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am2716/Am9716, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to florescent light and sunlight will eventually erase the Am2716/ Am9716, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2716/Am9716

Upon delivery, or after each erasure the Am2716/Am9716 has all 16384 bits in the " 1 ," or high state. " 0 s" are loaded into the Am2716/Am4716 through the procedure of programming.
The programming mode is entered when +25 V is applied to the $V_{P P}$ pin and when $\overline{O E}$ is at $V_{I H}$. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL high level pulse is applied to the $\overline{C E} / P G M$ input to accomplish the programming.
The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC level to the $\overline{C E} / P G M$ input is prohibited when programming.

READ MODE

The Am2716/Am9716 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}})$ is the output control and
should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (t_{CE}) for all devices. Data is available at the outputs 120 ns or 150 ns (t_{OE}) after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The Am2716/Am9716 has a standby mode which reduces the active power dissipation by 75%, from 525 mW to 132 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am2716/Am9716 is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}}$.input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2-line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2716/Am9716s in parallel with different data is also easily accomplished. Except for $\overline{C E} / P G M$, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel $\mathrm{Am} 2716 / \mathrm{Am} 9716 \mathrm{~s}$ may be common. A TTL level program pulse applied to an Am2716/ Am9716's $\overline{C E} / P G M$ input with $V_{P P}$ at 25 V will program that Am2716/Am9716. A low level $\overline{C E} / P G M$ input inhibits the other Am2716/Am9716 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed with $V_{P P}$ at 25 V . Except during programming and program verify, V_{PP} must be at V_{CC}.

Military, Industrial and Commercial

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-65 to $+135^{\circ} \mathrm{C}$
Voltage on All Inputs/Outputs (Except $\overline{\mathrm{OE} / \text { VPP) with Respect to GND }}$	+6 to -0.3 V
$\overline{\mathrm{OE} / \text { VPP with Respect to GND }}$	+26.5 to -0.3 V

DC AND AC READ OPERATIONS CONDITIONS

	Temperature Range	V $_{\text {CC }}$
AM2732-1DC	0 to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
AM2732DC	0 to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
AM2732DI	-40 to $85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
AM2732DL	-55 to $+100^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
AM2732DM	-55 to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC CHARACTERISTICS

Parameters	Description	Test Conditions	All Types	$\begin{gathered} \hline 2732 \\ \text { DL/DM } \end{gathered}$	2732DI	$\begin{array}{\|c\|} \hline 2732 \mathrm{DC} / \\ \text {-1DC } \\ \hline \end{array}$	Units
$\mathrm{I}_{\text {LI }}$	Input Load Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}(\mathrm{Max})$ and $\mathrm{V}_{\mathrm{IN}}=0$		10	10	10	$\mu \mathrm{A}$
Lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}($ Max $)$ and $\mathrm{V}_{\text {IN }}=0$		10	10	10	$\mu \mathrm{A}$
${ }^{\text {CCC1 }}$	$V_{\text {CC }}$ Current (Standby)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		45	40	30	mA
$\mathrm{I}_{\mathrm{CC2}}$ (Note 2)	$\mathrm{V}_{C C}$ Current (Active)	$\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$		175	165	150	mA
V_{IL}	Input Low Voltage		-0.1	0.8	0.8	0.8	Volts
V_{IH}	Input High Voltage		2.0	$\mathrm{V}_{\mathrm{CC}}+1$	$\mathrm{V}_{C C+1}$	$\mathrm{V}_{\mathrm{CC}}+1$	Volts
V_{OL}	Output Low Voltage	$\mathrm{I} \mathrm{OL}=2.1 \mathrm{~mA}$		0.45	0.45	0.45	Volts
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4				Volts

AC CHARACTERISTICS

Parameters	Description	Test Conditions		$\begin{gathered} \text { Min } \\ \text { Values } \end{gathered}$	Maximum Values			Units
				$\begin{aligned} & \text { All } \\ & \text { Types } \end{aligned}$	$\begin{array}{\|c} 2732-1 \\ \text { DC } \end{array}$	2732DC	$\begin{aligned} & \hline 2732 \mathrm{DI/} / \\ & \mathrm{DL} / \mathrm{DM} \end{aligned}$	
$t_{A C C}$	Address to Output Delay	Output Load: 1 TTL gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Input Rise and Fall Times: $\leqslant 20$ ns Input Pulse Levels: 0.8 to 2.2 V Timing Measurement Reference Level: Inputs: 1 V and 2 V Outputs: 0.8 V and 2 V	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$		350	450	450	ns
${ }^{\text {t CE }}$	$\overline{\mathrm{CE}}$ to Output Delay		$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		350	450	450	ns
toe	Output Enable to Output Delay		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$		120	120	150	ns
${ }^{\text {d }}$ D	Output Enable High to Output Float		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	0	100	100	130	ns
${ }^{\text {tor }}$	Address to Output Hold		$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	0				ns

CAPACITANCE (Note 1)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Parameters	Description	Test Conditions	Typ	Max	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	4	6	pF
$\mathrm{C}_{\mathrm{IN} 2}$	$\overline{\text { OE/VPP Input Capacitance }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		20	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		12	pF

Note 1. This parameter is only sampled and is not 100% tested.

AC WAVEFORMS (Note 1)

Notes: 1. OE may be delayed up to 330ns after the falling edge of $\overline{\mathrm{CE}}$ without impact on $\mathrm{t}_{\mathrm{ACC}}$
2. I_{DF} is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

PROGRAM OPERATION

DC PROGRAMMING CHARACTERISTICS

$T_{-A}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}($ Note 1$)=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}($ Notes 1,2$)=25 \mathrm{~V} \pm 1 \mathrm{~V}$

Parameters	Description	Test Conditions	Min	Max	Units
$l_{L I}$	Input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage During Verify	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	Volts
V_{OH}	Output High Voltage During Verify	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4		Volts
${ }^{\text {c C }}$	$\mathrm{V}_{\text {CC }}$ Supply Current			150	mA
V_{IL}	Input Low Level (All Inputs)		-0.1	0.8	Volts
V_{IH}	Input High Level (All Inputs Except $\overline{\text { OE/VPP) }}$		2.0	$\mathrm{V}_{C C}+1$	Volts
${ }^{\text {l }}$ PP	VPP Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{VPP}$		30	mA

AC PROGRAMMING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}($ Note 1$)=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}($ Notes 1,2$)=25 \mathrm{~V} \pm 1 \mathrm{~V}$

Param	Description	Test Conditions	Min	Max	Units
${ }^{\text {A }}$ S	Address Set-up Time	Input tR and $\mathrm{tF}(10 \%$ to $90 \%)=20 \mathrm{~ns}$ Input Signal Levels $=0.8$ to 2.2 V Timing Measurement Reference Level: Inputs: 1 V and 2 V Outputs: 0.8 V and 2 V	2		$\mu \mathrm{S}$
toes	Output Enable Set-up Time		2		$\mu \mathrm{s}$
t_{DS}	Data Set-up Time		2		$\mu \mathrm{S}$
$t_{\text {AH }}$	Address Hold Time		2		$\mu \mathrm{s}$
${ }^{\text {toEH }}$	Output Enable Hold Time		2		$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {d }}$	Data Hold Time		2		$\mu \mathrm{S}$
${ }^{\text {t }}$ DF	Chip Enable to Output Float Delay		0	120	ns
${ }_{\text {t }}$ D	Data Valid From $\overline{\mathrm{CE}}$ ($\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$)		-	1	ns
$t_{\text {PW }}$	Program Pulse Width		45	55	ms
$t_{\text {PRT }}$	Program Pulse Rise Time		50	-	ns
${ }_{\text {tVR }}$	VPP Recovery Time		2	-	ns

Note 1. When programming the Am2732, a $0.1 \mu \mathrm{~F}$ capacitor is required across $\overline{\mathrm{OE} / \mathrm{VPP} \text { and ground to suppress spurious voltage transients which may }}$ damage the device.

PROGRAMMING WAVEFORMS

MOS-493

ERASING THE Am2732

In order to clear all locations of their programmed contents, it is necessary to expose the Am2732 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am2732. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (\mathcal{K})] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2732 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am2732, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am2732, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2732

Upon delivery, or after each erasure the Am2732 has all 32768 bits in the " 1 ", or high state. " 0 "s are loaded into the Am2732 through the procedure of programming.

The programming mode is entered when +25 V is applied to the $\overline{\mathrm{OE}} / \mathrm{VPP}$ pin. A $0.1 \mu \mathrm{~F}$ capacitor must be placed across $\overline{\mathrm{OE}} / \mathrm{VPP}$ and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8 -bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL low level pulse is applied to the $\overline{\mathrm{CE}} / \mathrm{PGM}$ input to accomplish the programming.
The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC low level to the $\overline{\mathrm{CE}}$ PGM input is prohibited when programming.

READ MODE

The Am2732 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip

Enable (CE) is the power control and should be used for device selection. Output Enable ($\overline{O E} / V P P$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A C C$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs 120 ns (tOE) after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The Am2732 has a standby mode which reduces the active power dissipation by 80%, from 787 mW to 157 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am2732 is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2732s in parallel with different data is also easily accomplished. Except for CE/PGM, all like inputs (including OE) of the parallel Am2732s may be common. A TTL level program pulse applied to an Am2732's $\overline{\mathrm{CE}} / \mathrm{PGM}$ input with VPP at 25 V will program that Am2732. A high level $\overline{\mathrm{CE}} / \mathrm{PGM}$ input inhibits the other Am2732 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{\mathrm{OE}} / \mathrm{VPP}$ and $\overline{\mathrm{CE}}$ at VIL. Data should be verified tDV after the falling edge of $\overline{C E}$.

ORDERING INFORMATION

Ambient Temperature Specification	Order Number	$t_{\text {ACC }}(\mathrm{ns})$	$t_{\text {ce }}(\mathrm{ns})$	$t^{\text {OE }}$ (ns)
$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 70^{\circ} \mathrm{C}$	AM2732-1DC	350	350	120
	AM2732-1LC			
	AM2732DC	450	450	120
	AM2732LC			
$-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$	AM2732DI	450	450	150
	AM2732LI			
$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+100^{\circ} \mathrm{C}$	AM2732DL	450	450	150
	AM2732LL			
$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$	AM2732DM	450	450	150
	AM2732LM			

Am2732A
 4096×8-Bit UV Erasable PROM ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS
- Fast access times - 200ns, 250ns, 300 ns
- Low power consumption
-785 mW active
-184 mW stand-by
- Single 5 V power supply
- $\pm 10 \%$ VCC supply tolerance available
- TTL compatible inputs
- Three-state outputs
- 24-pin JEDEC approved 2732 pin-out
- Pin compatible with Am9233-32K-bit ROM
- Separate chip enable and output enable
- 100% MIL-STD- 883 reliability testing

MODE SELECTION

Pins	$\overline{\text { CE/PGM }}$ (18)	$\overline{\text { OE/VPP }}$ (20)	VCC (24)	Outputs $(9-11,13-17)$
Read	VIL	VIL	+5	DOUT
Standby	VIH	X	+5	High Z
Program	VIL	VPP	+5	DIN
Program Verify	VIL	VIL	+5	DOUT
Program Inhibit	VIH	VPP	+5	High Z

X can be either $V_{I L}$ or $V_{I H}$

GENERAL DESCRIPTION

The Am2732A is a 32768 -bit UV-light erasable and electrically pogrammable read-only memory. It is organized as 4096 words by 8 -bits per word. The standard Am2732A offers an access time of 200 ns , allowing operation with high-speed ($\geqslant 8 \mathrm{MHz}$) microprocessors without any WAIT state.

To eliminate bus contention in a multiple-bus microprocessor system, Am2732A offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random.

A0-A11: Addresses
O0-07: Outputs
$\overline{\mathrm{CE}} / \mathrm{PGM}:$ Chip Enable/Program
OE/VPP: Output Enable

Figure 1.
Figure 2.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65 to $+125^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-10 to $+80^{\circ} \mathrm{C}$
Voltage on All Inputs/Outputs with Respect to GND	+7 to -0.6 V
VPp Supply Voltage with Respect to Ground During Programming	+22 V to -0.6 V

READ OPERATION ${ }^{5}$

DC CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V} \pm 5 \%$ (Notes 1, 2) $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V} \pm 10 \%\right.$
for 2764-20, 2764-25, 2764-30 and 2764-45)

Parameters	Description	Test Conditions	Min	Max	Units
'LI	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.5 V		10	$\mu \mathrm{A}$
LO	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 5.5 V		10	$\mu \mathrm{A}$
${ }_{\text {PP1 }}$	$\mathrm{V}_{\text {PP }}$ Current Read (Note 2)	$\mathrm{V}_{\mathrm{PP}}=5.5 \mathrm{~V}$		1	mA
$\mathrm{I}_{\mathrm{CC1}}$	V_{CC} Standby Current (Note 2)	$\overline{C E}=V_{\text {IH }}, \overline{O E}=V_{\text {IL }}$		20	mA
${ }^{\text {I CC2 }}$	$\mathrm{V}_{\text {CC }}$ Active Current (Note 2)	$\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$		100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.1	+0.8	Volts
V_{IH}	Input High Voltage		2.0	$\mathrm{V}_{\mathrm{CC}}+1$	Volts
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	Volts
V_{OH}	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4		Volts

AC CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V} \pm 5 \%$ (Notes 1, 2)
$\left(V_{C C}=V_{P P}=5 \mathrm{~V} \pm 10 \%\right.$ for 2764-20, 2764-25, 2764-30 and 2764-45)

Parameters	Description	Test Conditions		$\begin{array}{\|c} \text { Min } \\ \text { Values } \end{array}$	Maximum Values				Units
				$\begin{array}{c\|} \hline \text { All } \\ \text { Types } \end{array}$	$\begin{array}{\|r\|} \hline 2764-20 \\ 2764-2 \end{array}$	$\begin{array}{\|c\|} \hline 2764-25 \\ 2764 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2764-30 \\ 2764-3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2764-45 \\ 2764-4 \\ \hline \end{array}$	
$t_{\text {ACC }}$	Address to Output Delay	Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: $\leqslant 20 n s$ Input Pulse Levels: .45 to 2.4 V Timing Measurement Reference Level: Inputs: 1 V and 2 V Outputs: 0.8 V and 2 V	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		200	250	300	450	ns
${ }^{\text {t }}$ CE	$\overline{\mathrm{CE}}$ to Output Delay		$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		200	250	300	450	ns
toe	Output Enable to Output Delay		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.		75	100	120	150	ns
${ }^{\text {t }}$ F	Output Enable High to Output Float (Note 4)		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	0	60	85	105	130	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{OH}} \\ & \text { (Note 4) } \end{aligned}$	Output Hold from Addresses, CE or $\overline{O E}$ Whichever Occurred First		$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	0					ns

CAPACITANCE (Notes 3, 4)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

| Parameters | Description | Test Conditions | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ | 4 | 6 | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ | 8 | 12 | pF |

Notes: 1. $V_{C C}$ must be applied simultaneously or before $V_{P P}$ and removed simultaneously or after $V_{P P}$.
2. VPP may be connected directly to $V_{C C}$ except during programming. The supply would then be the sum of ICC and IpP1.
3. Typical values are for nominal supply voltages.
4. This parameter is only sampled and not 100% tested.
5. Caution: The 2764 must not be removed from or inserted into a socket or board when $V_{P p}$ or $V_{C C}$ is applied.

AC WAVEFORMS

Notes: 1. OE may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$.
2. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

NVM-003

PROGRAM OPERATION

DC PROGRAMMING CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ (See Note 1) $=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}^{(\text {See Notes } 1,2)}=21 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Parameters	Description	Test Conditions	Min	Max	Units
l_{L}	Input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage During Verify	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	Volts
V_{OH}	Output High Voltage During Verify	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4		Volts
${ }^{\text {c CC2 }}$	$\mathrm{V}_{\text {CC }}$ Supply Current (Active)			100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Level (All Inputs)		-0.1	0.8	Volts
V_{IH}	Input High Level		2.0	$\mathrm{V}_{C C}+1$	Volts
lpp	VPp Supply Current	$\overline{C E}=V_{\text {IL }}=\overline{\text { PGM }}$		30	mA

AC PROGRAMMING CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}($ Note 1$)=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}($ Notes 1,2$)=21 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Parameters	Description	Test Conditions	Min	Max	Units
${ }^{\text {AS }}$	Address Set-up Time	Input tR and tF (10 to 90%) $=20 \mathrm{~ns}$ Input Pulse Levels $=0.45$ to 2.4 V Timing Measurement Reference Level: Inputs: 1 V and 2 V Outputs: 0.8 V and 2 V	2		$\mu \mathrm{s}$
toes	Output Enable Set-up Time		2		$\mu \mathrm{s}$
${ }^{1}{ }^{\text {dS }}$	Data Set-up Time		2		$\mu \mathrm{s}$
$t_{\text {AH }}$	Address Hold Time		0		$\mu \mathrm{s}$
${ }^{\text {toEH }}$	Output Enable Hold Time		2		$\mu \mathrm{s}$
${ }^{\text {t }}$ DH	Data Hold Time		2		$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {dF }}$	Chip Enable to Output Float Delay		0	130	ns
${ }^{\text {tvs }}$	$V_{\text {PP }}$ Setup Time		2		$\mu \mathrm{s}$
${ }^{\text {tPW }}$	$\overline{\text { PGM Pulse Width }}$		45	55	ms
$\mathrm{t}_{\text {CES }}$	$\overline{C E}$ Setup Time		2		$\mu \mathrm{s}$
t_{OE}	Data Valid From $\overline{O E}$			150	ns

Notes: 1. Caution: If $V_{C C}$ is not applied simultaneously or before $V_{P p}$ and removed simultaneously or after $V_{P p}$, the 2764 could be damaged.
2. When programming the $A m 2764$, a $0.1 \mu \mathrm{~F}$ capacitor is required across V_{PP} and ground to suppress spurious voltage transients which may damage the device.

PROGRAMMING WAVEFORMS (Notes 1,2 and 3)

Notes: 1. All times shown in () are minimum and in μ sec unless otherwise specified.
2. The input timing reference level is 1 V for a V_{IL} and 2 V for a V_{IH}.
3. $t_{O E}$ and $t_{D F}$ are characteristics of the device but must be accomodated by the programmer.

ORDERING INFORMATION

Ambient Temperature Specification	Order Number	$t_{\text {ACC }}(\mathrm{ns})$	tce (ns)	toE (ns)	Vcc
$0 C \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$	AM2764-2DC	200	200	75	$5 \mathrm{~V} \pm 5 \%$
	AM2764-2LC				
	AM2764-20DC	200	200	75	$5 \mathrm{~V} \pm 10 \%$
	AM2764-20LC				
	AM2764DC	250	250	100	$5 \mathrm{~V} \pm 5 \%$
	AM2764LC				
	AM2764-25DC	250	250	100	$5 \mathrm{~V} \pm 10 \%$
	AM2764-25LC				
	AM2764-3DC	300	300	120	$5 \mathrm{~V} \pm 5 \%$
	AM2764-3LC				
	AM2764-30DC	300	300	120	$5 \mathrm{~V} \pm 10 \%$
	AM2764-30LC				
	AM2764-4DC	450	450	150	$5 \mathrm{~V} \pm 5 \%$
	AM2764-4LC				
	AM2764-45DC	450	450	150	$5 \mathrm{~V} \pm 10 \%$
	AM2764-45LC				

ERASING THE Am2764

In order to clear all locations of their programmed contents, it is necessary to expose the Am2764 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am2764. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (\AA)] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2764 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am2764, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am2764, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

PROGRAMMING THE Am2764

Upon delivery, or after each erasure the Am2764 has all 65536 bits in the " 1 ", or high state. " 0 "s are loaded into the Am2764 through the procedure of programming.
The programming mode is entered when +21 V is applied to the VPP pin. A $0.1 \mu \mathrm{~F}$ capacitor must be placed across VPP and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8 -bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL low level pulse is applied to the $\overline{\mathrm{PGM}}$ input to accomplish the programming.
The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC low level to the PGM input is prohibited when programming.

READ MODE

The Am2764 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (t_{CE}). Data is available at the outputs toE after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The Am2764 has a standby mode which reduces the active power dissipation by 80%, from 525 mW to 105 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am2764 is placed in the standby mode by applying a TTL high signal to the $\overline{C E}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2764s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{PGM}}$, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel Am2764s may be common. A TTL level program pulse applied to an Am2764's $\overline{\mathrm{PGM}}$ input with VPP at 21V will program that Am2764. A high level $\overline{\mathrm{PGM}}$ input inhibits the other Am2764s from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{O E}$ and $\overline{C E}$ at VIL. Data should be verified tOE after the falling edge of $\overline{\mathrm{OE}}$.

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{C C}$ and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Am27128
 16384×8-Bit UV Erasable PROM ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Fast access time - 200ns, 250ns, $300 \mathrm{~ns}, 450 \mathrm{~ns}$
- Low power consumption
- 525 mW active
- 210 mW stand-by
- Single 5V power supply
- $\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$ supply tolerance available
- Fully static operation - no clocks
- Separate chip enable and output enable controls
- TTL compatible inputs/outputs
- 28-pin JEDEC approved 27128 pin-out
- Pin compatible to Am2764 EPROM and Am92128-128K ROM
- 100% MIL-STD-883 reliability testing

GENERAL DESCRIPTION

The Am27128 is a 131,072 -bit UV-light erasable and electrically programmable read-only memory. It is organized as 16384 words by 8 -bits per word. The standard Am27128 offers access time of 200 ns , allowing operation with highspeed ($\geqslant 8 \mathrm{MHz}$) microprocessors without any WAIT state.
To eliminate bus contention in a multiple-bus microprocessor system, Am27128 offers separate output enable ($\overline{\mathrm{OE}}$) and chip enable ($\overline{\mathrm{CE}}$) controls.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random.

MODE SELECTION

	$\begin{gathered} \overline{C E} \\ (20) \end{gathered}$	$\begin{aligned} & \overline{O E} \\ & \text { (22) } \end{aligned}$	$\overline{\mathrm{PGM}}$ (27)	$\begin{aligned} & v_{p p} \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & v_{c c} \\ & \text { (28) } \end{aligned}$	$\begin{aligned} & \text { Outputs } \\ & (11-13,15-19) \end{aligned}$
Read	$\mathrm{V}_{\text {IL }}$	V_{IL}	V_{IH}	V_{cc}	V_{cc}	Dout
Standby	V_{HH}	x	X	$v_{\text {cc }}$	$v_{c c}$	High 2
Program	$\mathrm{V}_{\text {IL }}$	V_{IH}	V_{LL}	V_{PP}	v_{cc}	Din
Program Verify	V_{LL}	$\mathrm{V}_{1 \mathrm{LL}}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {PP }}$	v_{CC}	Dout
Program Inhibit	V_{IH}	x	\times	V_{pp}	$v_{C C}$	High 2

X can be either $V_{I L}$ or $V_{I H}$

Figure 1.

```
INDEX SECTION
    NUMERICAL DEVICEINDEX
    FUNCTIONAL INDEX AND SELECTION GUIDE
    INDUSTRY CROSS REFERENCE
    APPLICATION NOTE
```

BIPOLAR PROGRAMMABLE
READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS

 MEMORIES (RAM)
MOS RANDOM ACCESS

MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION
COMMITTMENT TO EXCELLENCE
PRODUCT ASSURANCE
PACKAGE OUTLINES
SALES OFFICES

General Information Index

Committment to Excellence 7-1
Product Assurance 7-8
Package Outlines 7-15
Sales Offices 7-27

Advanced Micro Devices Commitment to Excellence

Product Assurance Programs for Military and Commercial Integrated Circuits

A COMMITMENT TO EXCELLENCE

Advanced Micro Devices was conceived on the premise that there was a place in the semiconductor community for a manufacturer dedicated to excellence.
In product assurance procedures, Advanced Micro Devices is unique. Only Advanced Micro Devices processes all integrated circuits, commercial as well as military, to the demanding requirements of MIL-STD-883. The Rome Air Development Center (RADC), which is the Air Force's principal authority on component reliability, has issued MIL-HDBK-217B which indicates that parts processed to Military Standard 883, Level C (Advanced Micro Devices' standard processing) yield a product nearly ten times better in failure rates than the industry commercial average.
Our Sunnyvale facility has been certified by the Defense Electronics Supply Center (DESC) to produce parts to JAN Class B and C under Military Specification MIL-M-38510. The National Aeronautics and Space Administration (NASA) has certified this production line for the manufacture of Class A products for programs requiring the highest levels of reliability. Advanced Micro Devices is the only integrated circuit company formed within the last ten years to achieve such line certification.
This brochure outlines Advanced Micro Devices' standard programs for Class B, C and A devices for military and commercial operating range applications. These will cover the majority of system requirements today. Alternative screening flows for specific user needs can be performed on request. Check with your local sales office for further information.

ADVANCED MICRO DEVICES' STANDARD PRODUCTS ARE MANUFACTURED TO MIL-STD-883 REQUIREMENTS

Advanced Micro Devices' product assurance programs are based on two key documents.
MIL-M-38510 - General Specification for Microcircuits
MIL-STD-883 - Test Methods and Procedures for Microelectronics
The screening charts in this brochure show that every integrated circuit shipped by Advanced Micro Devices receives the critical screening procedures defined in MIL-STD-883, Method 5004 for Class C product. This includes molded plastic devices.
In addition, documentation, design, processing and assembly workmanship guidelines are patterned after MIL-M38510 specifications.
Commercial and industrial users receive the quality and reliability benefits of this aerospace-type screening and documentation at no additional cost.

STANDARD PRODUCT TESTING CATEGORIES

Advanced Micro Devices offers integrated circuits to three standard testing categories.

1. Commercial operating range product (typically 0 to $70^{\circ} \mathrm{C}$)
2. Military operating range product (typically -55 to $+125^{\circ} \mathrm{C}$)
3. JAN qualified product

Categories 1 and 2 are available on most Advanced Micro Devices circuits. Category 3 is offered on a more limited line. Additional testing and screening services are available to special order. Check with your local sales office for details.

STANDARD PRODUCT ASSURANCE CATEGORIES

Devices produced to the above testing categories are available to the three standard classes of product assurance defined by MIL-STD-883. As a minimum, every device shipped by Advanced Micro Devices meets the screening requirements of Class C .

Class C - For commercial and ground-based military systems where replacement can be accomplished without difficulty.
According to MIL-HDBK-217B, this assures relative failure rates 9.4 times better than that of regular industry commercial product.

Class B - For flight applications and commercial systems where maintenance is difficult or expensive and where reliablity is vital.
Devices are upgraded from Class C to Class B by burn-in screening and additional testing.
According to MIL-HDBK-217B, Class B failure rate is improved 30 times over regular industry commercial product. Advanced Micro Devices Class B processing conforms to MIL-STD-883 requirements. MIL-HDBK-217B indicates that this may provide failure rates as much as two times better than some other manufacturers' "equivalent" or "pseudo" Class B programs.

Class S - For space applications where replacement is extremely difficult or impossible and reliability is imperative.
Class S screening includes x-ray and other special inspections tailored to the specific requirements of the user.

The 100% screening and quality conformance testing performed within these Advanced Micro Devices' programs is shown in TABLES I, II and III. A full description of the process flow is provided in Product Assurance Document 15-010, available on request.

CLASS C SCREENING FLOW FOR COMMERCIAL SYSTEMS AND GROUND BASED MILITARY SYSTEMS

TABLE I CLASS C INTEGRATED CIRCUITS

COMMERCIAL OPERATING RANGE	MILITARY OPERATING RANGE	
HERMETIC AND MOLDED PACKAGES	HERMETIC PACKAGE ONLY	
Flow C1 Commercial Product	Flow C3 Military Product	Flow C4 Jan Cualified Product
$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 100 \%(1) \\ 100 \%(1) \end{gathered}$	100% 100% 1009 100% 100%	
AMD Data Sheet	AMD Data Sheet	38510 Slash Sheet
100% (2) 100% (2) (2)	100% 100%	100% 100%
Sample	Sample	
100\%	100%	W【 100% \%

TABLE II
GROUP A QUALITY CONFORMANCE LEVELS
Advanced Micro Devices employs the military-recommended LTPD sampling system to assure quality. MIL-STD-883, Method 5005, TABLE I, Group A, subgroups 1 through 9 as appropriate to the device family are performed on every lot. Quality levels defined for Class B product are applied by Advanced Micro Devices to both Class B and Class C orders.

	LTPD	SAMPLE SIZE
Subgroup 1 - Static tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 2 - Static tests at maximum rated operating temperature	7	32
Subgroup 3-Static tests at minimum rated operating temperature	7	32
Subgroup 4 - Dynamic tests at $25^{\circ} \mathrm{C}$ - LINEAR devices	5	45
Subgroup 5 - Dynamic tests at maximum rated operating temperature - LINEAR devices	7	32
Subgroup 6 - Dynamic tests at minimum rated operating temperature - LINEAR devices	7	32
Subgroup 7 - Functional tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 8 - Functional tests at maximum and minimum rated operating temperatures	10	22
Subgroup 9 - Switching tests at $25^{\circ} \mathrm{C}$ - DIGITAL devices Subgroup 10 - Switching tests at maximum rated operating temperatures - DIGITAL devices	7	32
Subgroup 11 - Switching tests at minimum rated operating temperatures - DIGITAL devices	*	

[^3]
CLASS B SCREENING FLOW FOR HIGH RELIABILITY COMMERCIAL AND MILITARY SYSTEMS

TABLE III CLASS B INTEGRATED CIRCUITS (Class C plus burn in screening and additional testing.)

Notes: 1. Not applicable to molded packages.
2. All MOS RAMs and many other MOS devices receive a.c. testing and 100% d.c. screening at high temperature and power supply extremes as standard. Other products sampled at Group A (Table II).
3. Am2900 LSI products receive a 96 hour burn-in, plus 100% d.c. screening at high temperature and power supply extremes.
4. Unless device data sheet specifies different limits.
5. Without optical aid for commercial devices.
*(Unless device data sheet specifies otherwise).

CLASS S

FOR AEROSPACE SYSTEMS. (FORMERLY CLASS A)
Advanced Micro Devices offers Class S programs based on screening defined in MIL-STD-883, Method 5004. Contact your local Advanced Micro Devices' sales office for more information.

Commitment to Excellence

Table IV - Class S Screening Flow

Notes: 1. 100% screen, one pass.
2. Read and record requirements to be specified as applicable to particular device type.
3. Consult device data sheet.
4. Available to special order.

STANDARD PRODUCT SCREENING SUMMARY AND ORDERING INFORMATION

1. COMMERCIAL PRODUCT

- Screened per MIL-STD-883, Method 5004.
- Electrically tested per AMD Data Sheet.
- Supplied in hermetic and molded packages.
- Quality conformance testing, Method 5005, Group A, performed to levels specified for Class B on both Class C and Class B options.

Class C

- Order standard AMD part number.
- Marked same as order number.

Examples: AM25LS374DC, SN74LS374J

Class B

- Burn in performed in AMD circuit condition.
- Order standard AMD part number, add suffix B (or /883B for 1, 2 and 300 Series Linear devices).
- Marked same as order number.

Examples: AM25LS374DC-B, SN74LS374J-B

2. MILITARY PRODUCT

- Screened per MIL-STD-883, Method 5004.
- Electrically tested per AMD Data Sheet.
- Supplied in hermetic package only.
- Quality conformance testing, Method 5005, Group A, performed to levels specified for Class B on both Class B and Class C options.

Class C

- Order standard AMD part number.
- Marked same as order number.

Examples: AM25LS374DM, SN54LS374J

Class B

- Burn in performed in AMD circuit condition.
- AC at $25^{\circ} \mathrm{C}$, d.c. and functional testing at $25^{\circ} \mathrm{C}$ as well as temperature and power supply extremes performed on 100% of every lot.
- Quality conformance testing, Method 5005, Groups B, C and D available to special order.
- Order standard AMD part number, add suffix B.
- Marked same as order number.

Examples: AM25LS374DM-B, SN54LS374J-B

3. JAN QUALIFIED PRODUCT

- Screened per MIL-STD-883, Method 5004.
- Electrically tested to JAN detail specification (slash sheet).
- Manufactured in Defense Logistics Agency certified facility.
- Quality conformance testing, Method 5005, Groups A, B, C and D performed as standard and must be completed prior to shipment.
- It is a product for which AMD has gained QPL listing.*

Class B (Flow B4)

- Burn in performed in circuit condition approved for JAN devices.
- Order per military document.
- Marked per military document.

Example: JM38510/30106BEB

Product Assurance
 MIL-M-38510•MIL-STD-883

The product assurance program at Advanced Micro Devices defines manufacturing flow, establishes standards and controls, and confirms the product quality at critical points. Standardization under this program assures that all products meet military and government agency specifications for reliable ground applications. Further screening for users desiring flight hardware and other higher reliability classes is simplified because starting product meets all initial requirements for high-reliability parts.

The quality standards and screening methods of this program are equally valuable for commercial parts where equipment must perform reliably with minimum field service.

Two military documents provide the foundation for this program. They are:

MIL-M-38510 - General Specification for Microcircuits
MIL-STD-883 - Test Methods and Procedures for Microelectronics

MIL-M-38510 describes design, processing and assembly workmanship guidelines for military and space-grade integrated circuits. All circuits manufactured by Advanced Micro Devices for full temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operation meet these quality requirements of MIL-M-38510.

MIL-STD-883 defines detail testing and inspection methods for integrated circuits. Three of the methods are quality and processing standards directly related to product assurance:

Test Method 2010 defines the visual inspection of integrated circuits before sealing. By confirming fabrication and assembly quality, inspection to this standard assures the user of reliable circuits in long-term field applications. Standard inspection at Advanced Micro Devices includes all the requirements of the latest revision of Method 2010, condition B.

Test Method 5004 defines three reliability classes of parts. All must receive certain basic inspection, preconditioning and screening stresses. The classes are:

Class C - Used where replacement can be readily accomplished. Screening steps are given in the AMD processing flow chart.

Class B - Used where maintenance is difficult or expensive and where reliability is vital. Devices are upgraded from Class C to Class B by 160 -hour burn-in at $125^{\circ} \mathrm{C}$ followed by more extensive electrical measurements. All other screening requirements are the same.

Class S - Used where replacement is extremely difficult and reliability is imperative. Class \mathbf{S} screening selects extra reliability parts by expanded visual and X-ray inspection, further burn-in, and tighter sampling inspection.

All hermetically sealed integrated circuits (military and commercial) manufactured by Advanced Micro Devices are screened to MIL-STD-883, Class C. Molded integrated circuits receive Class C screening except that centrifuge and hermeticity steps are omitted.

Optional extended processing to MIL-STD-883, Class B is available for all AMD integrated circuits. Parts procured to this screening are marked with a "- B " following the standard part number, except that linear 100,200 or 300 series are suffixed " $883 B^{\prime \prime}$.

Test Method 5005 defines qualification and quality conformance procedures. Subgroups, tests and quality levels are given for Group A (electrical), Group B (mechanical quality related to the user's assembly environment), Group C (die related tests) and Group D (package related tests). Group A tests are always performed; Group B, C and D may be specified by the user.

MANUFACTURING, SCREENING AND INSPECTION
FOR
INTEGRATED CIRCUITS

All integrated circuits are screened to MIL-STD-883, Method 5004, Class C; quality conformance inspection where required is performed to Class B quality levels on either Class B or Class C product.

All full-temperature-range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ circuits are manufactured to the workmanship requirements of MIL-M38510.

The flow chart identifies processing steps as they relate to MIL-STD-883 and MIL-M-38510.

GROUP A ELECTRICAL TESTS

From MIL-STD-883, Method 5005, Table I

Subgroups	LTPD (Note 1)	Initial Sample Size
Subgroup 1 - Static tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 2 - Static tests at maximum rated operating temperature	7	32
Subgroup 3 - Static tests at minimum rated operating temperature	7	32
Subgroup 4 - Dynamic tests at $25^{\circ} \mathrm{C}$ - Linear devices	5	45
Subgroup 5 - Dynamic tests at maximum rated operating temperature - Linear devices	7	32
Subgroup 6 - Dynamic tests at minimum rated operating temperature - Linear devices	7	32
Subgroup 7 - Functional tests at $25^{\circ} \mathrm{C}$	5	45
Subgroup 8 - Functional tests at maximum and minimum rated operating temperatures	10	22
Subgroup 9 - Switching tests at $25^{\circ} \mathrm{C}$ - Digital devices	7	32
Subgroup 10 - Switching tests at maximum rated operating temperature - Digital devices (Note 2)	10	10
Subgroup 11 - Switching tests at minimum rated operating temperature - Digital devices (Note 2)	10	10

1. Sampling plans are based on LTPD tables of MIL-M-38510. The smaller initial sample size, based on zero rejects allowed, has been chosen unless otherwise indicated. If necessary, the sample size will be increased once to the quantity corresponding to an acceptance number of 2 . The minimum reject number in all cases is 3 .
2. These subgroups are usually performed during initial device characterization only.

OPTIONAL EXTENDED PROCESSING
 CLASS B
 Steps 101 Through 110

Advanced Micro Devices offers several extended processing options to meet customer high-reliability requirements. These are defined in AMD document 00-003. The flow chart below outlines Option B, a $160-\mathrm{hr}$ burn in. Military temperature range devices processed to this flow (in the left column) meet the screening requirements of MIL-STD-883, Class B.

BEGINNING MATERIAL

Standard product taken after completion of step 20 (electrical test).
BURN IN
MIL-STD-883, Method 1015: $160 \mathrm{hr}, \mathbf{1 2 5}^{\circ} \mathrm{C}$, or time-temperature equivalents as allowed by Method 1015.

FINAL ELEGTRICAI TEST
MIL-STD-883, Method 5004.
Military: Testing subgroups as defined for Class B. Static and functional at 3 temperatures, dynamic or switching at room temperature. Commercial: Repeat step 20.

QUALITY GROUP A ELECTRICAL SAMPLE (TABLE I)
MIL-STD-883, Method 5005 and Table I. Quality levels as defined for Class B. Temperature correlations may be used on commercial products.

QUALITY CONFORMANCE TESTS, GROUPS B, C, AND D
MIL-STD-883, Method 5005. Sample life and environmental tests if required by purchase order. Further information on specifying this is given in AMD document 00-003.

DATA PREPARATION AND REVIEW

MARK, INSPECT, PACK FOR SHIPMENT
Standard AMD parts with this burn-in option are marked with " $-B^{\prime \prime}$ after the part number, except that linear 100, 200 or 300 series are suffixed " $883 \mathrm{~B}^{\prime \prime}$.

QUALITY INSPECTION, PRE-SHIPMENT
Confirmation of marking, physical quality, and product identity.
QUALITY INSPECTION FOR SHIPMENT RELEASE
Final review of shipment against order.
SHIP TO CUSTOMER

OTHER OPTIONS

Document 00-003, "Extended Processing Options", further defines Option B as well as other screening or sampling options available or special order. Available options are listed here for reference.

Option	Description	Effect
A	Modified Class A screen (Similar to Class S screening)	Provides space-grade product, following most Class S requirements of MIL-STD-883, Method 5004.
B	160-hr operating burn in	Upgrades a part from Class C to Class B.
X	Radiographic inspection (X-ray)	Related to Option A. Provides limited internal inspection of sealed parts.
S	Scanning Electron Microscope (SEM) metal inspection	Sample inspection of metal coverage of die.
V	Preseal visual inspection to MIL-STD-883, Method 2010, Cond. A	More stringent visual inspection of assemblies and die surfaces prior to seal.
P	Particle impact noise (PIN) screen with ultrasonic detection.	Detects loose particles of approximately 0.5 mil size or larger, which could affect reliability in zero-G or high vibration applications.
Q	Quality conformance inspection (Group B, C and D life and environmental tests)	Samples from the lot are stressed and tested per Method 5005. The customer's order must state which groups are required. Group B destroys 16 devices; Group C, 92 devices; Group D, 60 devices.

Package Outlines

METAL CAN PACKAGES

H-8-1

H-10-1

G-12-1

AMD Pkg.	H-8-1		H-10-1		G-12-1	
Common Name	TO-99 Metal Can		TO-100 Metal Can		TO-8 Metal Can	
38510 Appendix C	A-1		A-2		-	
Parameters	Min.	Max.	Min.	Max.	Min.	Max.
A	. 165	. 185	. 165	. 185	. 155	. 180
e	. 185	. 215	. 215	. 245	. 390	. 410
e_{1}	. 090	. 110	. 105	. 125	. 090	. 110
F	. 013	. 033	. 013	. 033	. 020	. 030
k	. 027	. 034	. 027	. 034	. 024	. 034
k_{1}	. 027	. 045	. 027	. 045	. 024	. 038
L	. 500	. 570	. 500	. 610	. 500	. 600
L1		. 050		. 050		
L_{2}	. 250		. 250			
α	$45^{\circ} \mathrm{BSC}$		$36^{\circ} \mathrm{BSC}$		45°	
ϕ b	. 016	. 019	. 016	. 019		
$\phi \mathrm{b}_{1}$. 016	. 021	. 016	. 021	. 016	. 021
ϕ D	. 350	. 370	. 350	. 370	. 590	. 610
$\phi \mathrm{D}_{1}$. 305	. 335	. 305	. 335	. 540	. 560
$\phi \mathrm{D}_{2}$. 120	. 160	. 120	. 160	. 390	. 410
Q	. 015	. 045	. 015	. 045		

Notes: 1. Standard lead finish is bright acid tin plate or gold plate.
2. $\phi \mathrm{b}$ applies between L_{1} and $\mathrm{L}_{2} . \phi \mathrm{b}_{1}$ applies between L_{1} and 0.500 " beyond reference plane.

Package Outlines

PACKAGE OUTLINES (Cont.)

MOLDED DUAL IN-LINE PACKAGES

P-8.1

P-14-1

P-18-1

P-16-1

P-20-1

P-22-1

PACKAGE OUTLINES (Cont.)

MOLDED DUAL IN-LINE PACKAGES (Cont.)

P-24-1

P-28-1

P-40-1

AMD Pkg.	P-8-1		P-10-1		P-14-1		P-16-1		P-18-1		P-20-1		P-22-1		P-24-1		P-28-1		P-40-1	
Parameters	Min.	Max.																		
A	. 150	. 200	. 150	. 200	. 150	. 200	. 150	. 200	. 150	. 200	. 150	. 200	. 150	. 200	. 170	. 215	. 150	. 200	. 150	. 200
b	. 015	. 022	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020	. 015	. 020
b1	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065	. 055	. 065
c	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011	. 009	. 011
D	. 375	. 395	. 505	. 550	. 745	. 775	. 745	. 775	. 895	. 925	1.010	1.050	1.080	1.120	1.240	1.270	1.450	1.480	2.050	2.080
E	. 240	. 260	. 240	. 260	. 240	. 260	. 240	. 260	. 240	. 260	. 250	. 290	. 330	. 370	. 515	. 540	. 530	. 550	. 530	. 550
E_{2}	. 310	. 385	. 310	. 385	. 310	. 385	. 310	. 385	. 310	. 385	. 310	. 385	. 410	. 480	. 585	. 700	. 585	. 700	. 585	. 700
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 150	. 125	. 160	. 125	. 160	. 125	. 160	. 125	. 160
Q	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060	. 015	. 060
S1	. 010	. 030	. 040	. 070	. 040	. 065	. 010	. 040	. 030	. 040	. 025	. 055	. 015	. 045	. 035	. 065	. 040	. 070	. 040	. 070

Notes: 1. Standard lead finish is tin plate or solder dip.
2. Dimension E_{2} is an outside measurement.

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES

D-8-1

D-14-1

D-8-2

D-14-2

D.14-3

D-16-1
D-16-2

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

D-18-1

D-22-1

D-22-2

D-24-1 and D-24-4

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

D-24-4*

D-28-1

D-40-1

D-24-2

D-28-2

D-40-2

D-48-2

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

AMD Pkg.	D-8-1		D-8-2		D-14-1		D-14-2		$\begin{gathered} \text { D-14-3 } \\ \text { (Note 2) } \end{gathered}$		D-16-1		D-16-2	
Common Name	CERDIP		SIDEBRAZED		CERDIP		$\begin{gathered} \text { SIDE- } \\ \text { BRAZED } \end{gathered}$		METAL DIP		CERDIP		SIDEBRAZED	
$\begin{aligned} & 38510 \\ & \text { Appendix C } \end{aligned}$	-		-		D-1(1)		D-1(3)		D-1(1)		D-2(1)		D-2(3)	
Parameters	Min.	Max.												
A	. 130	. 200	. 100	. 200	. 130	. 200	. 100	. 200	. 100	. 200	. 130	. 200	. 100	. 200
b	. 016	. 020	. 015	. 022	. 016	. 020	. 015	. 022	. 015	. 023	. 016	. 020	. 015	. 022
b_{1}	. 050	. 070	. 040	. 065	. 050	. 070	. 040	. 065	. 030	. 070	. 050	. 070	. 040	. 065
c	. 009	. 011	. 008	. 013	. 009	. 011	. 008	. 013	. 008	. 011	. 009	. 011	. 008	. 013
D	. 370	. 400	. 500	. 540	. 745	. 785	. 690	. 730	. 660	. 785	. 745	. 785	. 780	. 820
E	. 240	. 285	. 260	. 310	. 240	. 285	. 260	. 310	. 230	. 265	. 240	. 310	. 260	. 310
E_{1}	. 300	. 320	. 290	. 320	. 290	. 320	. 290	. 320	. 290	. 310	. 290	. 320	. 290	. 320
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 125	. 150	. 125	. 160	. 125	. 150	. 125	. 160	. 100	. 150	. 125	. 150	. 125	. 160
Q	. 015	. 060	. 020	. 060	. 015	. 060	. 020	. 060	. 020	. 080	. 015	. 060	. 020	. 060
s_{1}	. 004		. 005		. 010		. 005		. 020		. 005		. 005	
α	3°	13°			3°	13°			3°	13°	3°	13°		
Standard Lead Finish														

AMD Pkg.	D-18-1		D-18-2		D-20-1		D-20-2		D-22-1		D-22-2		D-24-1	
Common Name	CERDIP		SIDEBRAZED		CERDIP		SIDEBRAZED		CERDIP		SIDEBRAZED		CERDIP	
$\begin{aligned} & 38510 \\ & \text { Appendix C } \end{aligned}$	-		-		-		-		-		-		D-3(1)	
Parameters	Min.	Max.												
A	. 130	. 200	. 100	. 200	. 140	. 220	. 100	. 200	. 140	. 220	. 100	. 200	. 150	. 225
b	. 016	. 020	. 015	. 022	. 016	. 020	. 015	. 022	. 016	. 020	. 015	. 022	. 016	. 020
b_{1}	. 050	. 070	. 040	. 065	. 050	. 070	. 040	. 065	. 045	. 065	. 030	. 060	. 045	. 065
c	. 009	. 011	. 008	. 013	. 009	. 011	. 008	. 013	. 009	. 011	. 008	. 013	. 009	. 011
D	. 870	. 920	. 850	. 930	. 935	. 970	. 950	1.010	1.045	1.110	1.050	1.110	1.230	1.285
E	. 280	. 310	. 260	. 310	. 245	. 285	. 260	. 310	. 360	. 405	. 360	. 410	. 510	. 545
E_{1}	. 290	. 320	. 290	. 320	. 290	. 320	. 290	. 320	. 390	. 420	. 390	. 420	. 600	. 620
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 125	. 150	. 125	. 160	. 125	. 150	. 125	. 160	. 125	. 150	. 125	. 160	. 120	. 150
Q	. 015	. 060	. 020	. 060	. 015	. 060	. 020	. 060	. 015	. 060	. 020	. 060	. 015	. 060
S_{1}	. 005		. 005		. 005		. 005		. 005		. 005		. 010	
α	3°	13°			3°	13°			3°	13°			3°	13°
Standard Lead Finish	b		borc		b		borc		b		bor c		b	

PACKAGE OUTLINES (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

AMD Pkg.	D-24-2		D-24-4/D-24-4*		D-28-1		D-28-2		D-40-1		D-40-2		D-48-2	
Common Name	$\begin{gathered} \text { SIDE- } \\ \text { BRAZED } \end{gathered}$		CERVIEW		CERDIP		$\begin{aligned} & \text { SIDE- } \\ & \text { BRAZED } \end{aligned}$		CERDIP		$\begin{gathered} \text { SIDE- } \\ \text { BRAZED } \end{gathered}$		$\begin{aligned} & \text { SIDE- } \\ & \text { BRAZED } \end{aligned}$	
$\begin{aligned} & 38510 \\ & \text { Appendix C } \end{aligned}$	D-3(3)		-		-		-		D-5		-		-	
Parameters	Min.	Max.												
A	. 100	. 200	. 150	. 225	. 150	. 225	. 100	. 200	. 150	. 225	. 100	. 200	. 100	. 200
b	. 015	. 022	. 016	. 020	. 016	. 020	. 015	. 022	. 016	. 020	. 015	. 022	. 015	. 022
b_{1}	. 030	. 060	. 045	. 065	. 045	. 065	. 030	. 060	. 045	. 065	. 030	. 060	. 030	. 060
c	. 008	. 013	. 009	. 011	. 009	. 011	. 008	. 013	. 009	. 011	. 008	. 013	. 008	. 013
D	1.170	1.200	1.235	1.280	1.440	1.500	1.380	1.420	2.020	2.100	1.960	2.040	2.370	2.430
E	. 550	. 610	. 510	. 550	. 510	. 550	. 560	. 600	. 510	. 550	. 550	. 610	. 570	. 610
E_{1}	. 590	. 620	. 600	. 630	. 600	. 630	. 590	. 620	. 600	. 630	. 590	. 620	. 590	. 620
e	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110	. 090	. 110
L	. 120	. 160	. 120	. 150	. 120	. 150	. 120	. 160	. 120	. 150	. 120	. 160	. 125	. 160
Q	. 020	. 060	. 015	. 060	. 015	. 060	. 020	. 060	. 015	. 060	. 020	. 060	. 020	. 060
S_{1}	. 005		. 010		. 005		. 005		. 005		. 005		. 005	
α			3°	13°	3°	13°			3°	13°				
Standard Lead Finish	b or c				b		b		b		b or c		bor c	

Notes: 1. Load finish b is tin plate. Finish c is gold plate.
2. Used only for LM108/LM108A.
3. Dimensions E and D allow for off-center lid, meniscus and glass overrun.

PACKAGE OUTLINES (Cont.)

F-14-1 and F-14-2

FLAT PACKAGES

F-10-2

F-16-1 and F-16-2

Note: Notch is pin 1 index on cerpack.

F-20-1

F-24-2

F-22-1

F-24-3

F-24-1

F-28-1

PACKAGE OUTLINES (Cont.)

F-28-2

FLAT PACKAGES (Cont.)
F-42-1

F-48-2

AMD Pkg.																
Common NAME	CERP	ACK	$\begin{aligned} & \text { ME } \\ & \text { FLAT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AL } \\ & \text { PAK } \\ & \hline \end{aligned}$	CER	ACK	$\begin{array}{r} \mathrm{ME} \\ \text { FLAT } \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{AL} \\ & \mathrm{PAK} \\ & \hline \end{aligned}$	CER	ACK	$\begin{array}{r} \mathrm{ME} \\ \mathrm{FLAT} \\ \hline \end{array}$	$\begin{aligned} & \hline \overline{\mathrm{AL}} \\ & \mathrm{PAK} \\ & \hline \end{aligned}$	CER	ACK	$\begin{gathered} \text { ME } \\ \text { FLAI } \end{gathered}$	$\begin{aligned} & \hline \text { AL } \\ & \text { PAK } \end{aligned}$
38510 Appendix \mathbf{C}																
Parameters	Min.	Max.	inin.	inax.	Min.	Max.										
A	. 045	. 080	. 045	. 080	. 045	. 080	. 045	085	. 045	. 085	. 045	. 085	. 045	. 085	. 045	. 090
b	. 015	. 019	. 012	. 019	. 015	019	. 012	019	. 015	. 019	. 015	. 019	. 015	. 019	. 015	. 019
c	. 004	. 006	. 003	. 006	. 004	. 006	. 003	006	. 004	. 006	. 003	. 006	. 004	. 006	. 003	. 006
D	. 230	. 255	. 235	. 275	. 230	. 255	. 230	270	. 370	. 425	. 370	. 400	. 490	. 520	. 380	. 420
D_{1}				. 275				280				. 410				440
E	. 240	. 260	. 240	. 260	. 240	260	. 240	260	. 245	. 285	. 245	. 285	. 245	. 285	. 380	. 420
E_{1}		. 275		. 280		. 275		280		. 290		. 305		. 290		440
e	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055
L	. 300	. 370	. 300	. 370	. 300	. 370	. 300	. 370	. 300	. 370	. 300	. 370	. 300	. 370	. 250	. 320
L_{1}	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980	. 920	. 980
0	. 010	. 040	. 010	. 040	. 010	. 040	. 010	040	. 020	. 040	. 010	. 040	. 020	. 040	. 010	. 040
S_{1}	. 005		. 005		. 005		. 005		. 005		. 005		. 005			
Standard Lead Finish	b		c		b		c		b		c		b		c	

AMD Pkg.	F-24-1		F-24-2		F-24-3		F-28-1		F-28-2		F-42-1		F-48-2	
Common Name	CERPACK		$\begin{aligned} & \text { METAL } \\ & \text { FLAT PAK } \end{aligned}$		$\begin{aligned} & \text { METAL } \\ & \text { FLAT PAK } \end{aligned}$		$\begin{aligned} & \text { METAL } \\ & \text { FLAT PAK } \end{aligned}$		CERAMIC FLAT PAK		CERAMIC FLAT PAK		CERAMIC FLAT PAK	
$\begin{aligned} & 38510 \\ & \text { Appendix C } \end{aligned}$	F-6		F-8		-		-		-		-			
Parameters	Min.	Max.												
A	. 050	. 090	. 045	. 090	. 045	. 090	. 045	. 080	. 065	. 085	. 070	. 115	. 070	. 110
b	. 015	. 019	. 015	. 019	. 015	. 019	. 015	. 019	. 016	. 025	. 017	. 023	. 018	. 022
c	. 004	. 006	. 003	. 006	. 003	. 006	. 003	. 006	. 007	. 010	. 006	. 012	. 006	. 010
D	. 580	. 620	. 360	. 410	. 380	. 420	. 360	. 410	. 700	. 720	1.030	1.090	1.175	1.250
D_{1}				. 420		. 440		. 410		720		1.090		1.250
E	. 360	. 385	. 245	. 285	. 380	. 420	. 360	. 410	. 625	. 650	. 620	. 660	615	. 670
E_{1}		. 410		. 305		. 440		. 410		. 650		. 660		. 670
e	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055
L	. 265	. 320	. 300	. 370	. 250	. 320	. 270	. 320	. 415	. 435	. 320	. 370	. 320	. 370
L_{1}	. 920	. 980	. 920	. 980	. 920	. 980	. 955	1.000	1.475	1.500	1.300	1.370	1.310	1.365
Q	. 020	. 040	. 010	. 040	. 010	. 040	. 010	. 040	. 017	. 025	. 020	. 060	. 020	. 055
S_{1}	. 005		. 005		0		0		. 005		. 005		. 015	
Standard Lead Finish	b		c		c		c		c		c		c	

Notes: 1. Lead finish b is tin plate. Finish c is gold plate.
2. Dimensions E_{1} and D_{1} allow for off-center lid, meniscus, and glass overrun.

SQUARE CHIP CARRIER FAMILY (L-XX-1)

Limit Symbol	Inches									
	Min	Max								
A	. 064	. 100	. 064	. 100	. 064	. 120	. 082	. 120		
A_{1}	. 054	. 088	. 054	. 088	. 054	. 088	. 072	. 088		4
B_{1}	. 022	. 028	. 022	. 028	. 022	. 028	. 022	. 028		\leqslant
D	. 342	. 358	. 442	. 458	. 640	. 660	. 739	. 761		
D_{2}	. 190	. 210	. 290	. 310	. 490	. 510	. 590	. 610		
E	. 342	. 358	. 442	. 458	. 640	. 660	. 739	. 761		
E_{2}	. 190	. 210	. 290	. 310	. 490	. 510	. 590	. 610		
e	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055	∞	
L	. 045	. 055	. 045	. 055	. 045	. 055	. 045	. 055		
L_{2}	. 077	. 093	. 077	. 093	. 077	. 093	. 077	. 093		
N	$20(5 \times 5)$		$28(7 \times 7)$		44 (11 x 11)		$52(13 \times 13)$		68	
R	. 007	. 011	. 007	. 011	. 007	. 011	. 007	. 011		
Outline	L-20-1		L-28-1		L-44-1		L-52-1		L-68-1	

RECTANGULAR CHIP CARRIER FAMILY (L-XX-2)

Limit Symbol	Inches					
	Min	Max	Min	Max	Min	Max
A	. 060	. 120	. 060	. 120	. 060	. 120
A_{1}	. 050	. 088	. 050	. 088	. 050	. 088
B_{1}	. 022	. 028	. 022	. 028	. 022	. 028
D	. 280	. 305	. 342	. 358	. 442	. 458
D_{2}	. 140	. 160	. 190	. 210	. 290	. 310
E	. 345	. 365	. 540	. 560	. 540	. 560
E_{2}	. 190	. 210	. 390	. 410	. 390	. 410
e	. 045	. 055	. 045	. 055	. 045	. 055
L	. 045	. 055	. 045	. 055	. 045	. 055
L_{2}	. 077	. 093	. 077	. 093	. 077	. 093
N	$18(4 \times 5)$		28 (5 x 9)		$32(7 \times 9)$	
R	. 007	. 011	. 007	. 011	. 007	. 011
Outline	L-18-2		L-28-2		L-32-2	

ADVANCED MICRO DEVICES DOMESTIC SALES OFFICES

SOUTHWEST AREA
Advanced Micro Devices
360 N. Sepulveda, Suite 2075
El Segundo, California 90245
Tel: (213) 640-3210
Advanced Micro Devices
10050 N. 25th Drive
Suite 235
Phoenix, Arizona 85021
Tel: (602) 242-4400
Advanced Micro Devices
4000 MacArthur Boulevard
Suite 5000
Newport Beach, California 92660
Tel: (714) 752-6262
Advanced Micro Devices
5955 Desoto Avenue, Suite 241
Woodland Hills, California 91367
Tel: (213) 992-4155
Advanced Micro Devices
9455 Ridgehaven Court
Suite 230
San Diego, California 92123
Tel: (714) 560-7030

NORTHWEST AREA

Advanced Micro Devices 2700 Augustine Drive, Suite 109 Santa Clara, California 95051 Tel: (408) 727-1300
Advanced Micro Devices
7000 Broadway, Suite 401
Denver, Colorado 80221
Tel: (303) 426-7100

NORTHWEST AREA (Cont.)
Advanced Micro Devices
One Lincoln Center
10300 S.W. Greenburg Road
Suite 230
Portland, Oregon 97223
Tel: (503) 245-0080
Advanced Micro Devices
Honeywell Ctr. Suite 1002
600 108th Avenue N.E.
Bellevue, Washington 98004
Tel: (206) 455-3600
MID-AMERICA AREA
Advanced Micro Devices
500 Park Boulevard, Suite 940
Itasca, Illinois 60143
Tel: (312) 773-4422
Advanced Micro Devices
3400 West 66 th Street
Suite 375
Edina, Minnesota 55435
Tel: (612) 929-5400
Advanced Micro Devices
3592 Corporate Drive
Suite 108
Columbus, Ohio 43229
Tel: (614) 89t-6455
Advanced Micro Devices
8323 Southwest Freeway
Suite 850
Houston, Texas 77074
Tel: (713) 771-3113
Advanced Micro Devices
6750 LBJ Freeway, Suite 1160
Dallas, Texas 75240
Tel: (214) 934-9099

MID-ATLANTIC AREA
Advanced Micro Devices
40 Crossways Park Way
Woodbury, New York 11797
Tel: (516) 364-8020
Advanced Micro Devices
290 Elwood Davis Road
Suite 316
Liverpool, New York 13088
Tel: (315) 457-5400
Advanced Micro Devices
2 Kilmer Road
Edison, New Jersey 08817
Tel: (201) 985-6800
Advanced Micro Devices
107 Lakeside Drive
Horsham, Pennsylvania 19044
Tel: (215) 441-8210
Advanced Micro Devices
205 South Avenue
Poughkeepsie, New York 12601
Tel: (914) 471-8180

NORTHEAST AREA

Advanced Micro Devices
6 New England Executive Park
Burlington, Massachusetts 01803
Tel: (617) 273-3970
Advanced Micro Devices (Canada) Ltd.
2 Sheppard Avenue East
Suite 1610
Willowdale, Ontario
Canada M2N5Y7
Tel: (416) 224-5193

SOUTHEAST AREA

Advanced Micro Devices
Parkway Center
One Parkway Drive Building
7257 Parkway Drive, Suite 204
Dorsey, Maryland 21076
Tel: (301) 796-9310
Advanced Micro Devices
7850 Ulmerton Road
Suite 1A
Largo, Florida 33541
Advanced Micro Devices
4740 N. State Road \#7
Suite 102
Ft. Lauderdale, Florida 33319
Tel: (305) 484-8600
Advanced Micro Devices
6755 Peachtree Industrial Boulevard N.E.
Suite 104
Atlanta, Georgia 30360
Tel: (404) 449-7920
Advanced Micro Devices
8 Woodlawn Green, Suite 220
Woodlawn Road
Charlotte, North Carolina 28210
Tel: (704) 525-1875

ADVANCED MICRO DEVICES INTERNATIONAL OFFICES

BELGIUM

Advanced Micro Devices
Overseas Corporation
Avenue de Tervueren, 412, bte 9
B-1150 Bruxelles
Tel: (02) 7719993
TELEX: 61028
FRANCE
Advanced Micro Devices, S.A.
Silic 314, Immeuble Helsinki
74, rue d'Arcueil
F-94588 Rungis Cedex
Tél: (01) 687.36.66
TELEX: 202053

GERMANY
Advanced Micro Devices GmbH
Rosenheimer Str. 139
D-8000 Muenchen 80
Tel: (089) 401976
TELEX: 523883
Advanced Micro Devices GmbH
Harthaeuser Hauptstrasse 4
D-7024 Filderstadt 3
Tel: (07158) 3060
TELEX: 721211
HONG KONG
Advanced Micro Devices
1303 World Commerce Centre
Harbor City
11 Canton Road
Tsimshatsui, Kowloon
Tel: (852) 3695377

ITALY
Advanced Micro Devices S.r.L.
Centro Direzionale
Palazzo Vasari, 3° Piano
I-20090 MI2 - Segrate (MI)
Tel: (02) 215 4913-4-5
TELEX: 315286
JAPAN
Advanced Micro Devices, K.K.
Dai 3 Hoya Building
8-17, Kamitakaido 1-chome
Suginami-ku, Tokyo 168
Tel: (03) 329-2751
TELEX: 2324064

SWEDEN

Advanced Micro Devices AB
Box 7013
S-172 07 Sundbyberg
Tel: (08) 981235
TELEX: 11602

UNITED KINGDOM

Advanced Micro Devices (U.K.) Ltd.
A.M.D. House,

Goldsworth Road,
Woking,
Surrey GU21 1JT
Tel: Woking (04862) 22121
TELEX: 859103

Advanced Micro Devices maintains a network of representatives and distributors in the U.S. and around the world. For a sales agent nearest you, call one of the AMD offices above.

U.S. AND CANADIAN SALES REPRESENTATIVES

CALIFORNIA (Northern)
1^{2} Incorporated
3350 Scott Boulevard
Suite 1001, Bldg. 10
Santa Clara, California 95050
Tel: (408) 988-3400
TWX: 910-338-0192

CANADA (Eastern)
Vitel Electronics
3300 Cote Vertu, Suite 203
St. Laurent, Quebec,
Canada H4R 2B7
Tel: (514) 331-7393
TWX: 610-421-3124
TELEX: 05-821762
Vitel Electronics
5945 Airport Road, Suite 180
Mississauga, Ontario
Canada L4V 1R9
Tel: (416) 676-9720
TWX: 610-492-2528
Vitel Electronics
55 Bayhill Ridge
Stitsville, Ontario
Canada KOA 3GO
Tel: (613) 836-1776
CANADA (Western)
Vitel Electronics
185 Baltic Street
Coquitlam, British Columbia
Canada V3K 5G9
Tel: (604) 524-6677

CONNECTICUT
Scientific Components
1185 South Main Street
Cheshire, Connecticut 06410
Tel: (203) 272-2963
TWX: 710-455-2078

IDAHO
Intermountain Technology
2475 Autumn Way
Meridian, Idaho 83642
Tel: (208) 888-5708

ILLINOIS

Oasis Sales, Inc.
1101 Tonne Road
Elk Grove Village, Illinois 60007
Tel: (312) $640-1850$
TWX: 910-222-1775

INDIANA

S.A.I. Marketing Corp.

5610 Crawfordsville Road, Suite 2304
Indianapolis, Indiana 46224
Tel: (317) 241-9276
TWX: 810-341-3309

IOWA

Lorenz Sales, Inc.
5270 N. Park Place, N.E.
Cedar Rapids, lowa 52402
Tel: (319) 377-4666

KANSAS

Kebco Inc., c/o Doug Phillips
524 Deveron Drive
Wichita, Kansas 67230
Tel: (316) 733-2117
(316) 733-1301

MICHIGAN

S.A.I. Marketing Corp.
P.O. Box 929

9880 E. Grand River Road
Brighton, Michigan 48116
Tel: (313) 227-1786
TWX: 810-242-1518

MISSOURI

Kebco Inc.
Route 2, Box 98
70A Lake Tapawingo
Blue Springs, Missouri 64015
Tel: (816) 229-3370
Kebco Inc.
75 Worthington, Suite 101
Maryland Heights, Missouri 63043
Tel: (314) 576-4111
NEW JERSEY
T.A.I. Corp.

12 S. Black Horse Pike
Bellmawr, New Jersey 08031
Tel: (609) 933-2600
TWX: 710-639-1810

NEW MEXICO

Thorson Desert States
9301 Indian School, Suite 112
Albuquerque, New Mexico 87112
Tel: (505) 293-8555
TWX: 910-989-1174

NEW YORK

Nycom, Inc.
10 Adler Drive
East Syracuse, New York 13057
Tel: (315) 437-8343
TWX: 710-541-1506

OHIO

Dolfuss-Root \& Co.
13477 Prospect Road
Strongsville, Ohio 44136
Tel: (216) 238-0300
TWX: 810-427-9148
Dolfuss-Root \& Co.
683 Miamisburg-Centerville Road
Suite 202
Centerville, Ohio 45459
Tel: (513) 433-6776

OKLAHOMA

Bonser-Philhower Sales
6644 S. Victor
Tulsa, Oklahoma 74136
Tel: (918) 496-3236

PENNSYLVANIA

Dolfuss-Root \& Co.
United Industrial Park
Suite 203A, Building A
98 Vanadium Road
Pittsburgh, Pennsylvania 15017
Tel: (412) 221-4420
TWX: 510-697-3233

TEXAS

Bonser-Philhower Sales
13777 N. Central Expressway
Suite 212
Dallas, Texas 75243
Tel: (214) 234-8438
TWX: 910-867-4752
Bonser-Philhower Sales
11700 Southwest Fwy., Suite 110
Houston, Texas 77031
Tel: (713) 495-3115
TWX: 910-880-4053
Bonser-Philhower Sales
8330 Burnett Road, Suite 119
Austin, Texas 78758
Tel: (512) 458-3569
UTAH
R^{2}
940 North 400 East, Suite B
North Salt Lake, Utah 85054
Tel: (801) 298-2631
TWX: 910-925-5607

WISCONSIN

Oasis Sales, Inc
1305 N. Barker Road
Brookfield, Wisconsin 53005
Tel: (414) 782-6660

$$
1
$$

[^0]: IMOX is a trademark of Advanced Micro Devices, Inc.

[^1]: Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Advanced Micro Devices' product.

[^2]: Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be the complement of the Data Input while the write enable is LOW.

[^3]: *These subgroups, where applicable, are usually performed during initial characterization only for all except JAN Qualified product.

