Bipolar/MOS Memories

1

 ANS SFAN SRAIN SRIN SFANINCAM SRIN: SRI

Advanced Micro Devices

Bipolar/MOS Memories Data Book

The International Standard of Quality guarantees the AQL on all electrical parameters, AC and DC , over the entire operating range.

© 1984 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

INDEX SECTION
NUMERICAL DEVICE INDEX
FUNCTIONAL INDEX AND SELECTION GUIDE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS
 MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION
PACKAGE OUTLINES
SALES OFFICES

Index Section

Numerical Device Index 1-1
Functional Index and Selection Guide 1-4
Application Note Testing High-Performance Bipolar Memory 1-12
Am100415 $1024 \times 1 \mathrm{IMOX}^{\text {TM }}$ II ECL Bipolar RAM 3-47
Am100470 4096×1 IMOX ECL Bipolar RAM 3-63
Am100474 ECL 1024×4 IMOX Bipolar RAM 3-54
Am10415 1024×1 IMOX ECL Bipolar RAM 3-40
Am10470 4096×1 IMOX ECL Bipolar RAM 3-56
Am10474 1024×4 IMOX ECL Bipolar RAM 3-52
Am1702A 256×8-Bit Programmable ROM 6-1
Am21L41 4096×1 Static RAM 4-1
Am2101 256×4 Static RAM 4-58
Am2111 256×4 Static RAM 4-67
Am2147 4096×1 Static RAM 4-7
Am2148 1024×4 Static RAM 4-13
Am2149 1024×4 Static RAM 4-13
Am2167 $16,384 \times 1$ Static RAM 4-20
Am27LS00 256-Bit Low-Power Schottky Bipolar RAM 3-29
Am27LS01 256-Bit Low-Power Schottky Bipolar RAM 3-29
Am27LS18 32×8 Bit Generic Series Bipolar PROM 2-24
Am27LS19 32×8 Bit Generic Series Bipolar PROM 2-24
Am27LS184 2048×4 Bit Generic Series Bipolar IMOX PROM. 2-128
Am27LS185 2048×4 Bit Generic Series Bipolar IMOX PROM 2-128
Am27PS181 1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
Am27PS185 2048×4 Bit Generic Series Bipolar IMOX PROM. 2-128
Am27PS191 2048×8 Bit Generic Series Bipolar IMOX PROM 2-134
Am27PS281 1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
Am27PS291 2048×8 Bit Generic Series Bipolar IMOX PROM 2-134
Am27S02 64-Bit Schottky Bipolar RAM 3-23
Am27S03 64-Bit Schottky Bipolar RAM 3-23
Am27S06 64-Bit Noninverting Bipolar RAM 3-17
Am27S07 64-Bit Noninverting Bipolar RAM 3-17
Am27S12 512×4 Bit Generic Series Bipolar PROM 2-13
Am27S13 512×4 Bit Generic Series Bipolar PROM 2-13
Am27S15 4096-Bit Generic Series Bipolar PROM 2-18
Am27S18 32×8 Bit Generic Series Bipolar PROM 2-24
Am27S180 1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
Am27S181 1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
Am27S184 2048×4 Bit Generic Series Bipolar IMOX PROM 2-128
Am27S185 2048×4 Bit Generic Series Bipolar IMOX PROM 2-128
Am27S19 32×8 Bit Generic Series Bipolar PROM 2-24Am27S190
2048×8 Bit Generic Series Bipolar IMOX PROM 2-134
Am27S191 2048×8 Bit Generic Series Bipolar IMOX PROM 2-134
Am27S20 256×4 Bit Generic Series Bipolar PROM 2-29
Am27S21 256×4 Bit Generic Series Bipolar PROM 2-29
Am27S25 512×8 Generic Series Bipolar IMOX 2-34
Am27S27 512×8 Bit Generic Series Bipolar Registered PROM 2-40
Am27S28 512×8 Bit Generic Series Bipolar PROM 2-46
Am27S280 1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
Am27S281 1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
Am27S29 512×8 Bit Generic Series Bipolar PROM 2-46
Am27S290 2048×8 Bit Generic Series Bipolar IMOX PROM 2-134
Am27S291 2048×8 Bit Generic Series Bipolar IMOX PROM 2-134
Am27S30 512×8 Bit Generic Series Bipolar PROM 2-51

NUMERICAL DEVICE INDEX (Cont.)

Am27S31
512×8 Bit Generic Series Bipolar PROM 2-51
Am27S32 1024×4 Bit Generic Series Bipolar PROM 2-56
Am27S33 1024×4 Bit Generic Series Bipolar PROM 2-56
Am27S35 1024×8 Bit Generic Series IMOX Bipolar High 2-61
Am27S37 1024×8 Bit Generic Series IMOX Bipolar High 2-61
Am27S40 4096×4 Bit Generic Series Bipolar IMOX PROM 2-67
Am27S41 4096×4 Bit Generic Series Bipolar IMOX PROM 2-67
Am27S43 4096×8 Bit Generic Series Bipolar IMOX PROM 2-73
Am27S45$2048 \times 8$ Generic Series IMOX Bipolar High.2-78
Am27S47 2048×8 Generic Series IMOX Bipolar High 2-78
Am27S49 8192×8 Generic Series Bipolar IMOX PROM 2-84
Am27S65 (1024 x 4) 4-Wide Bipolar IMOX Registered PROM 2-88
Am27S75
(2048 x 4) 4-Wide Bipolar IMOX 2-99
Am27S85 2-110
Am27128 $16,384 \times 8$-Bit UV Erasable PROM 6-42
Am2716 2048×8-Bit UV Erasable PROM 6-8
Am27256 $32,768 \times 8$-Bit UV Erasable PROM 6-51
Am2732 4096×8-Bit UV Erasable PROM 6-14
Am2732A
4096×8-Bit UV Erasable and one-timeprogrammable EPROMs6-20
Am27512 65,536 x 8-Bit UV Erasable PROM 6-59
Am2764
8192×8-Bit UV Erasable and one-time programmable PROMs 6-27
Am29705A 16-Word by 4-Bit 2-Port RAM 3-1
Am29707 16-Word by 4-Bit 2-Port RAM 3-1
Am31L01 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am3101 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am54S189 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am54S289 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am5489 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am74S189 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am742189 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am7489 64-Bit Write Transparent Schottky Bipolar RAM 3-68
Am9016 16,384 x 1 Dynamic RAM 4-26
Am9044 4096×1 Static RAM 4-38
Am9064 65,536 x 1 Dynamic RAM 4-43
Am91L01 256×4 Static RAM 4-58
Am91L11 256×4 Static RAM 4-67
Am9101 256×4 Static RAM 4.58
Am9111 256×4 Static RAM 4-67
Am9112 256×4 Static RAM 4-75
Am9114 1024×4 Static RAM 4-81
Am9122 256×4 Static RAM 4-87
Am9124 1024×4 Static RAM 4-81
Am9128 2048×8 Static RAM 4-93
Am92128 128K ($16,384 \times 8$) ROM 5-21
Am9218 2048×8 ROM 5-1
Am92256 256K (32,768 x 8) ROM 5-26
Am9232 4096×8 ROM 5-6
Am9233 4096×8 ROM 5-6
Am9244 4096×1 Static RAM 4-38

NUMERICAL DEVICE INDEX (Cont.)

Am9264 64K (8192 x 8) ROM 5-11
Am9265 64K (8192 x 8) ROM 5-16
Am93L412$256 \times 4$-bit TTL Bipolar IMOX RAM3-34
Am93L422
Am93L422
Am93412
256×4-bit TTL Bipolar IMOX RAM 3-34
256×4-bit TTL Bipolar IMOX RAM 3-34
Am93415 1024×1 bit TTL Bipolar IMOX RAM 3-11
Am93422 $256 \times$ 4-bit TTL Bipolar IMOX RAM 3-34
Am93425 1024×1 bit TTL Bipolar IMOX RAM 3-11
Am9716 2048×8-Bit UV Erasable PROM 6-8
Am9864 EEPROM 8192×8-Bit Electrically Erasable PROM 6-36
Testing High-Performance Bipolar Memory 1-13
Guide to the Programming of AMD's Generic Bipolar PROMs 2-1
Guide to the Analysis of Programming Problems 2-4
Reliability Report 2-6

Bipolar PROM

Functional Index and Selection Guide

Listed according to organization and access time.

Part Number	Organization	Access Time COM'L/MIL Max	$\begin{gathered} \text { lCC } \\ \text { COM'L/MIL } \\ \text { Max } \\ \hline \end{gathered}$	Output	Number of Pins	Packages	Page No.
Am27S18A	32×8	25/35	115/115	OC	16	D,P,F,L	2-24
Am27S19A	32×8	25/35	115/115	3 S	16	D,P,F,L	2-24
Am27S18	32×8	40/50	115/115	OC	16	D,P,F,L	2-24
Am27S19	32×8	40/50	115/115	35	16	D,P,F,L	2-24
Am27LS18 ${ }^{1}$	32×8	50/65	80/80	OC	16	D,P,F,L	2-24
Am27LS19 ${ }^{1}$	32×8	50/65	80/80	3 S	16	D,P,F,L	2-24
Am27S20A	256×4	30/40	130/130	OC	16	D,P,F,L	2-29
Am27S21A	256×4	30/40	130/130	35	16	D,P,F,L	2-29
Am27S20	256×4	45/60	130/130	OC	16	D,P,F,L	2-29
Am27S21	256×4	45/60	130/130	35	16	D,P,F,L	2-29
Am27S12A	512×4	30/40	130/130	OC	16	D,P,F,L	2-13
Am27S13A	512×4	30/40	130/130	3 S	16	D,P,F,L	2-13
Am27S12	512×4	50/60	130/130	OC	16	D, P,F,L	$2-13$
Am27S13	512×4	50/60	130/130	3S	16	D,P,F,L	2-13
Am27S25	512×8	N.A. ${ }^{2} /$ N.A. 2	185/185	35	24	D,P,F,L	2.34
Am27S25A	512×8	N/A. ${ }^{4}$ N.A. ${ }^{4}$	185/185	3 S	24	D,P,F,L	2-34
Am27S27	512×8	N.A. ${ }^{2} /$ N.A. ${ }^{2}$	185/185	3 S	22	D,P,L	2.40
Am27S28A	512×8	35/45	160/160	OC	20	D, P, L	2.46
Am27S29A	512×8	35/45	160/160	35	20	D,P,L	2-46
Am27S30A	512×8	35/45	175/175	OC	24	D,P,F,L	2-51
Am27S31A	512×8	35/45	175/175	35	24	D,P,F,L	2-51
Am27S28	512×8	55/70	160/160	OC	20	D,P,L	2.46
Am27S29	512×8	55/70	160/160	35	20	D,P.L	2-46
Am27S30	512×8	55/70	175/175	OC	24	D,P,F,L	$2-51$
Am27S31	512×8	55/70	175/175	3 S	24	D,P,F,L	2-51
Am27S15	' 512×8	60/90	175/185	3 S	24	D,P,F,L	2-18
Am27S32A	1024×4	35/45	140/145	OC	18	D,P,F,L	2-56
Am27S33A	1024×4	35/45	140/145	3 S	18	D,P,F,L	$2-56$
Am27S32	1024×4	55/70	140/145	OC	18	D,P,F,L	2-56
Am27S33	1024×4	55/70	140/145	3 S	18	D,P,F,L	2-56
Am27S65A	1024×4	N.A.	185/185	3 S	24	D,P	2-88
Am27S65	1024×4	N.A.	185/185	3S	24	D,P	2-88
Am27S35A	1024×8	N.A. ${ }^{4}$ N.A. ${ }^{4}$	185	3 S	24	D,P,F,L	2-61
Am27S35	1024×8	N.A. ${ }^{2} /$ N.A. ${ }^{2}$	185	3 S	24	D,P,F,L	2-61
Am27S37A	1024×8	N.A. ${ }^{4}$ N.A. ${ }^{4}$	185	3 S	24	D,P,F,L	2-61
Am27S37	1024×8	N.A. ${ }^{2} /$ N.A. ${ }^{2}$	185	35	24	D,P,F,L	2-61
Am27S180A	1024×8	35/50	185/185	OC	24	D,P,F,L	2-122
Am27S181A	1024×8	35/50	185/185	3 S	24	D,P,F,L	2-122
Am27S280A	1024×8	35/50	185/185	OC	24	D, P, F, L	2-122
Am27S281A	1024×8	35/50	185/185	3 S	24	D,P,F,L	2-122
Am27S180	1024×8	60/80	185/185	OC	24	D,P,F,L	2-122
Am27S181	1024×8	60/80	185/185	3 S	24	D,P,F,L	2-122
Am27S280	1024×8	60/80	185/185	OC	24	D,P,F,L	2-122
Am27S281	1024×8	60/80	185/185	3 S	24	D,P,F,L	2-122
Am27PS181	1024×8			3S	24	D,P,F,L	2-122
Am27PS281	1024×8			3S	24	D,P,F,L	2-122

BIPOLAR PROM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	$\begin{gathered} \text { ICC } \\ \text { COM'L/MIL } \\ \text { Max } \end{gathered}$	Output	Number of Pins	Packages	Page No.
Am27S75A	2048×4	N.A.	185/185	35	24	D,P	$2-99$
Am27S75	2048×4	N.A.	185/185	35	24	D,P	2-99
Am27S184A	2048×4	35/45	150/150	OC	18	D,P,F,L	2-128
Am27S185A	2048×4	35/45	150/150	3 S	18	D,P,F,L	2.128
Am27S184	2048×4	50/55	150/150	OC	18	D,P,F,L	2-128
Am27S185	2048×4	50/55	150/150	3 S	18	D,P,F,L	2-128
Am27LS184	2048×4	60/65	120/125	OC	18	D,P,F,L	2-128
Am27LS185	2048×4	60/65	120/125	35	18	D,P,F,L	2-128
Am27PS185	2048×4	60/65	150/75 ${ }^{5}$	3 S	18	D,P,F,L	2-128
Am27S45A	2048×8	N.A. ${ }^{4}$	185/185	35	24	D,P,L	2.78
Am27S45	2048×8	N.A. ${ }^{2}$	185/185	3 S	24	D,P,L	$2-78$
Am27S47A	2048×8	N.A. ${ }^{4}$	185/185	3S	24	D,P,L	2.78
Am27S47	2048×8	N.A. ${ }^{2}$	185/185	3S	24	D,P,L	2.78
Am27S190A	2048×8	35/50	185/185	OC	24	D,P,F,L	2-134
Am27S191A	2048×8	35/50	185/185	35	24	D,P,F,L	2-134
Am27S290A	2048×8	35/50	185/185	OC	24	D,P,F,L	2-134
Am27S291A	2048×8	35/50	185/185	3 S	24	D,P,F,L	2-134
Am27S190	2048×8	50/65	185/185	OC	24	D,P,F,L	2-134
Am27S191	2048×8	50/65	185/185	3 S	24	D,P,F,L	2-134
Am27S290	2048×8	50/65	185/185	OC	24	D,P,F,L	2-134
Am27S291	2048×8	50/65	185/185	3 S	24	D,P,F,L	2-134
Am27PS191	2048×8	65/75	185/80 ${ }^{5}$	3 S	24	D,P,F,L	2-134
Am27PS291	2048×8	65/75	$185 / 80^{5}$	3 S	24	D,P,F,L	2-134
Am27S85A	4096×4	N.A.	185/185	3 S	24	D,P	2-110
Am27S85	4096×4	N.A.	185/185	35	24	D,P	2-110
Am27S40A	4096×4	35/50	165/170	OC	20	D,P,L	2-67
Am27S41A	4096×4	35/50	165/170	3 S	20	D,P,L	2-67
Am27S40	4096×4	50/65	165/170	OC	20	D,P,L	2-67
Am27S41	4096×4	50/65	165/170	35	20	D,P,L	2-67
Am27PS41	4096×4	50/65	170/85 ${ }^{5}$	35	20	D,P,L	2-67
Am27S43A	4096×8	N.A.	185	3 S	24	D,P,F,L	$2-73$
Am27S43	4096×8	N.A.	185	3 S	24	D,P,F,L	2.73
Am27PS43	4096×8	N.A.	N.A.	3 S	24	D,P,F,L	2.73
Am27S49A	8192×8	40/55	190/190	35	24	D,P,L	2-84
Am27S49	8192×8	55/65	190/190	35	24	D,P,L	2-84

Bipolar Memory RAM

Functional Index and Selection Guide

BIPOLAR ECL RAM

Listed according to organization and access time.

Part Number	Organization	Access Time COM'L/MIL Max	$\underset{\operatorname{Max}}{\operatorname{COME}^{\prime} \mathrm{LE} / \mathrm{MIL}}$	ECL Series	Number of Pins	Packages	Page No.
Am10415SA	1024×1	15/20	-150/-165	10K	16	D,P,F,L	3-40
Am100415A	1024×1	15/-	-150/-	100K	16	D, P,F,L	3-47
Am10415A	1024×1	20/25	-150/-165	10K	16	D,P,F,L	3-40
Am100415	1024×1	20/-	-150/-	100K	16	D,P,F,L	3-47
Am10415	1024×1	35/40	-150/-165	10K	16	D,P,F,L	3-40
Am10474A	1024×4	15/20	-230/-255	10K	24	D,F,L	3-52
Am100474A	1024×4	15/-	-230/-	100 K	24	D,F,L	3-54
Am10474	1024×4	25/30	-230/-220	10K	24	D,F,L	3-52
Am100474	1024×4	25/-	-200/-	100K	24	D,F,L	3-54
Am10470SA	4096×1	15/20	-230/-255	10K	18	D, $\mathrm{F}^{1}, \mathrm{~L}$	3-56
Am100470SA	4096×1	15/-	-230/-	100K	18	D, F ${ }^{1}$, L	3-63
Am10470A	4096×1	25/30	-200/-220	10K	18	D, F ${ }^{1}$, L	3-56
Am100470A	4096×1	25/-	-195/-	100K	18	D, F , L	3-63
Am10470	4096×1	35/40	-200/-220	10 K	18	D, F ${ }^{1}$, L	3.56
Am100470	4096×1	35/-	-195/-	100 K	18	D, F', L	3-63

Note: 1. For flat package consult factory.

BIPOLAR TTL RAM

Listed according to organization and access time.

Part Number	Organization	Access Time COM'L/MIL Max		Output	Number of Pins	Packages (Note 1)	Page No.
Am27S02A	16×4	25/30	100/105	OC	16	D,P,F,L	3-23
Am27S03A	16×4	25/30	100/105	35	16	D,P,F,L	3-23
Am27S06A	16×4	25/30	100/105	OC	16	D,P,F,L	3-17
Am27S07A	16×4	25/30	100/105	3 S	16	D,P,F,L	3-17
Am29705A	16×4	28/30	210/210	3 S	28	D,P,F,L	3-1
Am27S02	16×4	35/50	105/105	OC	16	D,P,F,L	3-23
Am27S03	16×4	35/50	125/125	3 S	16	D,P,F,L	3-23
Am27S06	16×4	35/50	100/105	OC	16	D,P,F,L	3-17
Am27S07	16×4	35/50	100/105	3 S	16	D,P,F,L	3-17
Am3101A	16×4	35/50	100/105	OC	16	D,P,F,L	3-68
Am3101-1	16×4	35/50	100/105	OC	16	D,P,F,L	3-68
Am74/5489-1	16×4	35/50	100/105	OC	16	D,P,F,L	3-68
Am74/54S189	16×4	35/50	125/125	35	16	D, P,F,L	3-68
Am74/54S289	16×4	35/50	105/105	OC	16	D,P,F,L	3-68
Am74/5489	16×4	50/60	100/105	OC	16	D,P,F,L	3-68
Am3101	16×4	50/60	100/105	OC	16	D,P,F,L	3-68
Am27LS02	16×4	55/65	35/38	OC	16	D,P,F,L	3.23
Am27LS03	16×4	55/65	35/38	35	16	D,P.F.L	3-23
Am27LS06	16×4	55/65	35/39	0	16	D, Pr,	3.17
Am27LS07	16×4	55/65	35/38	3 S	16	D,P,F,L	3-17
Am31L01A	16×4	55/65	35/38	OC	16	D, P,F,L	3-68
Am31L01	16×4	80/90	35/38	Oc	16	D,P,F,L	3-68
Am27LS00A	256×1	35/45	115/115	3 S	16	D, P, F, L	3-29

BIPOLAR TTL RAM (Cont.)

Part Number	Organization	Access Time COM'L/MIL Max	$\underset{\text { Max }}{\substack{\text { lcc } \\ \text { COMIL } \\ \hline \\ \text { ch/MIL }}}$	Output	Number of Pins	Packages (Note 1)	Page No.
Am27LSO1A	256×1	35/45	115/115	OC	16	D,P,F,L	3-29
Am27LS00-1A	256×1	35/45	115/115	35	16	D, P, F, L	3-29
Am27LS01-1A	256×1	35/45	115/115	OC	16	D,P,F,L	3-29
Am27LS00	256×1	45/55	70/70	3 S	16	D,P,F,L	3-29
Am27LS01	- 256×1	45/55	70/70	OC	16	D,P,F,L	3-29
Am27LS00-1	256×1	45/55	70/70	3 S	16	D,P,F,L	3-29
Am27LS01-1	256×1	45/55	70/70	OC	16	D, P, F, L	3-29
Am93412A	256×4	35/45	155/170	OC	22^{3}	D,P,F,L	3.34
Am93422A	256×4	35/45	155/170	35	22^{3}	D,P,F,L	3-34
Am93L412A	256×4	45/55	80/90	OC	22^{3}	D, P, F, L	3-34
Am93L422A	256×4	45/55	80/90	3 S	22^{3}	D,P,F,L	3-34
Am93412	256×4	45/60	155/170	OC	22^{3}	D, P, F, L	3-34
Am93422	256×4	45/60	155/170	35	22^{3}	D, P,F,L	3-34
Am93L412	256×4	$60 / 75$	80/90	OC	22^{3}	D, P, F, L	3-34
Am93L422	256×4	$60 / 75$	80/90	35	22^{3}	D, P,F,L	3-34
Am93415A	1024×1	$30 / 40$	155/170	OC	16	D, P, F, L	3-11
Am93425A	1024×1	30/40	155/170	35	16	D,P,F,L	3-11
Am93L425A	1024×1	45/55	65/75	3 S	16	D, P, F, L	3-11
Am93415	1024×1	45/65	155/170	OC	16	D,P,F,L	3-11
Am93425	1024×1	45/65	155/170	35	16	D,P,F,L	3-11

Notes: 1. $\mathrm{D}=$ Hermetic DIP, $\mathrm{P}=$ Molded DIP, $\mathrm{F}=$ Cerpak, $\mathrm{L}=$ Chip-Pak ${ }^{\text {™ }}$.
2. Complement of data in is available on the outputs in the write mode when both $\overline{C S}$ and $\overline{W E}$ are low. 3. Cerpak (F) is 24 pin.

MOS Memory

Functional Index and Selection Guide

1K STATIC RAMs
Listed according to organization and access time.

Part Number	Organization	$\begin{gathered} \text { Access } \\ \text { Time (ns) } \end{gathered}$	Power Dissipation (miW)		Pins	Supply Voltage (V)	Temp Range	Package	Page No.
			Standby	Active					
Am9122-25	256×4	25	N/A	660	22	5	C	D,P	4.87
Am9122-35	256×4	35	N/A	660	22	5	C,M	D,P	4-87
Am91L22-35	256×4	35	N/A	440	22	5	C	D,P	4-87
Am91L22-45	256×4	45	N/A	440	22	5	C,M	D,P	4.87
Am91L22-60	256×4	60	N/A	248	22	5	C	D,P	4-87
Am9101D	256×4	250	47	315	22	5	C	D,P	4.58
Am9111D	256×4	250	47	315	18	5	C	D,P	4.67
Am9112D	256×4	250	47	315	16	5	C	D,P	4.75
Am9101C	256×4	300	47	315	22	5	C,M	D,P	4.58
Am91L01C	256×4	300	38	189	22	5	C,M	D,P	4-58
Am9111C	256×4	300	47	315	18	5	C,M	D,P	4.67
Am91L11C	256×4	300	38	189	18	5	C,M	D,P	4-67
Am9112C	256×4	300	47	315	16	5	C,M	D, P	4.75
Am91L12C	256×4	300	38	189	16	5	C,M	D,P	4.75
Am9101B	256×4	400	47	290	22	5	C,M	D,P	4-58
Am91L01B	256×4	400	38	173	22	5	C,M	D,P	4-58
Am9111B	256×4	400	47	290	18	5	C,M	D,P	4-58
Am91L118	256×4	400	38	173	18	5	C,M	D,P	4-58
Am9112B	256×4	400	47	290	16	5	C,M	D,P	4.75
Am91L12B	256×4	400	38	173	16	5	C,M	D,P	4-75
Am9101A	256×4	500	- 47	290	22	5	C,M	D,P	4-58
Am91L01A	256×4	500	38	173	22	5	C,M	D,P	4-58
Am9111A	256×4	500	47	290	18	5	C,M	D,P	4.58
Am91L11A	256×4	500	38	173	18	5	C,M	D,P	4-58
Am9112A	256×4	500	47	290	16	5	C,M	D,P	4.75
Am91L12A	256×4	500	38	173	16	5	C,M	D, P	4-75

4K STATIC RAMs

Listed according to organization and access time.

Part Number	Organization	$\begin{gathered} \text { Access } \\ \text { Time (ns) } \end{gathered}$	Power Dissipation (mW)		Pins	Supply Voltage (V)	TempRange	Package	Page No.
			Standby	Active					
Am2148-35	1024×4	35	165	990	18	5	C	D,L	A-13
Am2149-35	1024×4	35	N/A	990	18	5	C	D	4-13
Am2148-45	1024×4	45	165	990	18	5	C,M	D,L	4-13
Am21L48-45	1024×4	45	110	688	18	5	C	D,L	4-13
Am2149-45	1024×4	45	N/A	990	18	5	C,M	D	4.13
Am21L49-45	1024×4	45	N/A	688	18	5	C	D,L	4-13
Am2148-55	1024×4	55	165	990	18	5	C,M	D,L	4-13
Am21L48-55	1024×4	55	110	688	18	5	C	D, L	4-13
Am2149-55	1024×4	55	N/A	990	18	5	C,M	D	4-13
Am21L49-55	1024×4	55	N/A	688	18	5	C	D, L	4-13
Am2148-70	1024×4	70	165	990	18	5	C,M	D,L	4-13
Am21L48-70	1024×4	70	110	688	18	5	C	D,L.	4-13
Am2149-70	1024×4	70	N/A	990	18	5	C,M	D	4-13
Am21L49-70	1024×4	70	N/A	688	18	5	C	D,L	4-13
Am9114E	1024×4	200		350	18	5	C,M	D, P	4.81
Am91L14E	1024×4	200		250	18	5	C	D,P	4-81
Am9114C	1024×4	300		350	18	- 5	C,M	D, P,F	4-81
Am91L14C	1024×4	300		250	18	5	C,M	D,P,F	4-81
Am9124C	1024×4	300	150	350	18	5	C,M	D,P,F	4-81
Am91L24C	1024×4	300	100	250	18	5	C,M	D,P,F	4-81
Am9114B	1024×4	450		350	18	5	C,M	D,P,F	4.81
Am91L14B	1024×4	450		250	18	5	C,M	D,P,F	4-81
Am9124B	1024×4	450	150	350	18	5	C,M	D,P,F	4-81
Am91L24B	1024×4	450	100	250	18	5	C,M	D,P,F	4-81
Am21L41-12	4096×1	120	25	200	18	5	C	D,P	4-1
Am21L41-15	4096×1	150	25	200	18	5	C	D,P	$4-1$
Am21L41-20	4096×1	200	25	200	18	5	C	D,P	4-1
Am21L41-25	4096×1	250	25	250	18	5	C	C,	4-1
Am9044B	4096×1	450		350	18	5	C,M	D,P	4.38
Am90L44B	4096×1	450		250	18	5	C,M	D,P	$4-38$
Am9044C	4096×1	300		350	18	5	C,M	D,P	4-38
Am90L44C	4096×1	300		250	18	5	C,M	D,P	$4-38$
Am9044D	4096×1	250		350	18	5	C,M	D,P	4-38

4K STATIC RAMs (Cont.)

Part Number	Organization	$\begin{aligned} & \text { Access } \\ & \text { Time (ns) } \end{aligned}$	Power Dissipation (mW)		Pins	$\begin{gathered} \text { Supply } \\ \text { Voltage (V) } \end{gathered}$	Temp Range	Package	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
			Standby	Active					
Am90L44D	4096×1	250		250	18	5	C,M	D,P	4.38
Am9044E	4096×1	200		350	18	5	C	D,P	4-38
Am90L44E	4096×1	200		250	18	5	C	D,P	4-38
Am9244B	4096×1	450	150	350	18	5	C,M	D,P	4-38
Am92L44B	4096×1	450	100	250	18	5	C,M	D,P	4-38
Am9244C	4096×1	300	150	350	18	5	C,M	D,P	4-38
Am92L44C	4096×1	300	100	250	18	5	C,M	D,P	4-38
Am9244D	4096×1	250	150	350	18	5	C,M	D,P	4-38
Am92L44D	4096×1	250	100	250	18	5	C,M	D,P	4-38
Am9244E	4096×1	200	150	350	18	5	C	D,P	4-38
Am92L44E	4096×1	200	100	250	18	5	C	D,P	4-38
Am2147-35	4096×1	35	165	990	18	5	C	D	4-7
Am2147-45	4096×1	45	165	990	18	5	M	D,L	4-7
Am2147-55	4096×1	55	165	990	18	5	C.M	D,L	4.7
Am2147-70	4096×1	70	110	880	18	5	C,M	D,L	4.7
Am21L.47-45	4096×1	45	83	688	18	5	C	D	4-7
Am21L47-55	4096×1	55	83	688	18	5	C	D	4-7

16K STATIC RAMs
Listed according to organization and access time.

Part Number	Organization	Access Time (ns)	Power Dissipation (mW)		Pins	Supply Voltage (V)	Temp Range	Package	Page No.
			Standby	Active					
Am9128-70	2048×8	70	165	770	24	5	C	D,P	4-93
Am9128-90	2048×8	90	165	990	24	5	M	D	4-93
Am9128-10	2048×8	100	165	660	24	5	c	D, P	4-93
Am9128-12	2048×8	120	165	825	24	5	M	D	4-93
Am9128-15	2048×8	150	83/165	550	24	5	C,M	D, P	4.93
Am9128-20	2048×8	200	165	770/880	24	5	C,M	D, P	4.93
Am2167-35	16384×1	35	165	660	20	5	c	D, P	4-20
Am2167-45	16384×1	45	83	660/880	20	5	C,M	D,P	4-20
Am2167-55	16384×1	55	83	660	20	5	C,M	D, P	4-20
Am2167-70	16384×1	70	165	660	20	5	C, M	D, P	4-20

*Available in 1884
DYNAMIC RAMs
Listed according to organization and access time.

Part Number	Organization	Access Time (ns)	Power Dissipation (mW)		Pins	Supply Voltage (V)	Temp Range	Package	Page No.
			Standby	Active					
Am9016F	16384×1	150	20	420	16	+12 ± 5	c	P, D, L	4-26
Am9016E	16384×1	200	20	420	16	+12 ± 5	C,L	P,D,L	4-26
Am9016D	16384×1	250	20	420	16	+12 ± 5	C,L	P,D,L	4-26
Am9016C	16384×1	300	20	420	16	+12 ± 5	C,L	P, D,L	4-26
Am9064-10	65536×1	100	22	384	16	+ 5 ± 10	${ }^{\text {c }}$	P, D	4-43
Am9064-12	65536×1	120	22	330	16	+5 ± 10	C	P, D	4.43
Am9064-15	65536×1	150	22	300	16	$+5 \pm 10$	c	P, D	4-43

ROMs
Listed according to organization and access time.

$\left.$| Part
 Number | Organization | Access
 Time
 (ns) | Temp
 Range | Supply
 Voltage | Pins | Operating Power
 Max (mW) | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Page |
| :---: |
| No. | \right\rvert\,

ROMs (Cont.)

| Part
 Number | Organization | Access
 Time
 (ns) | Temp
 Range | Supply
 Voltage | Pins | Operating Power
 Max (mW) | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Page |
| :---: |
| No. |

Note: 1. Standby

U.V. ERASABLE PROMs

Listed according to organization and access time.

Part Number	Organization	$\begin{aligned} & \text { Access } \\ & \text { Time (} \mathrm{ns} \text {) } \end{aligned}$	Temp Range	Operating Power Act/Stby Max (mW)	Supply Voltages	Outputs	Number of Pins	Page No.
Am1702A-1	256×8	550	C,L	676	-9,+5	3-State	24	6-1
Am1702AL-1	256×8	550	C,L	N/A	-9,+5	3-State	24	6-1
Am1702A-2	256×8	650	C,L	676	$-9,+5$	3-State	24	6-1
Am1702AL-2	256×8	650	C.L	N/A	-9,+5	3-State	24	6-1
Am1702A	256×8	1000	C,L	676	$-9,+5$	3-State	24	6-1
Am1702AL	256×8	1000	C,L	N/A	-9,+5	3-State	24	6-1
Am9716	2048×8	300	C	525/132	+5	3-State	24	6-8
Am2716-1	2048×8	350	C, 1, L	525/132	+5	3-State	24	6-8
Am2716-2	2048×8	390	C	525/132	+5	3-State	24	6-8
Am2716	2048×8	450	C,I,L,M	525/132	+5	3-State	24	6-8
Am2732A-2	4096×8	200	C,I,L	512/132.	5 V	3-State	24	6-14
Am2732A-20	4096×8	200	C,I,L,M	512/132	5 V	3-State	24	6-14
Am2732A	4096×8	250	C,I,L	512/132	5 V	3-State	24	6-14
Am2732A-25	4096×8	250	C,I,L,M	512/132	5 V	3-State	24	6-14
Am2732A-3	4096×8	300	C,I,L	512/132	5 V	3-State	24	6-14
Am2732A-30	4096×8	300	C,I,L	512/132	5 V	3-State	24	6-14
Am2732-1	4096×8	350	C	787/157	+5	3-State	24	6-14
Am2732-2	4096×8	390	C	787/157	+5	3-State	24	6-14
Am2732	4096×8	450	C,I,L,M	787/157	+5	3-State	24	6-14
Am2732A-4	4096×8	450	C,I,L	512/132	5 V	3-State	24	6-14
Am2732A-45	4096×8	450	C,I,L,M	512/132	5 V	3-State	24	6-14
Am2764-2	8192×8	200	C,I	525/105	+5	3-State	28	6-27
Am2764	8192×8	250	C,I,M	525/105	+5	3-State	28	6-27
Am2764-3	8192×8	300	C,I	525/105	+5	3-State	28	6-27
Am2764-4	8192×8	450	C,I,M	525/105	+5	3-State	28	6-27
Am27128-1	16384×8	150	C,I	512/132	5 V	3-State	28	6-42
Am27128-15	16384×8	150	C, 1	512/132	5 V	3-State	28	6-42
Am27128-2	16384×8	200	C,I,L	512/132	5 V	3-State	28	6-42
Am27128-20	16384×8	200	C,I,L,M	512/132	5 V	3-State	28	6-42
Am27128	16384×8	250	C,I,L	512/132	5 V	3-State	28	6-42
Am27128-25	16384×8	250	C,I,L,M	512/132	5 V	3-State	28	6-42
Am27128-3	16384×8	300	C,I,L	512/132	5 V	3-State	28	6-42
Am27128-30	16384×8	300	C,I,L	512/132	5 V	3-State	28	6-42
Am27128-4	16384×8	450	${ }_{\text {C, }}^{\text {C,L }}$,	512/132	5 V	3-State	28	6-42
Am27128-45	16384×8	450	C,I,L,M	512/132	5 V	3-State	28	6-42
Am27256-1	32768×8	170	C	525/132	+5	3-State	28	6-51
Am27256-2	32768×8	200	C,I,M	525/132	+5	3-State	28	6-51
Am27256	32768×8	250	C	525/132	+5 +5	3-State	28	6-51
Am27256-3	32768×8 32768×8	300	C	525/132	+5 +5	3-State	28	6-51
Am27256-4	32768×8	450	C	525/132	+5	3-State	28	6-51
Am27512	65536×8	250	C,I,M	525/132	$+5$	3-State	28	6-59

ELECTRICALLY ERASABLE PROMs

Listed according to organization and access time.

Part Number	Organization	Access Time (ns)	Temp Range	Operating Power - Act/Stby Max (mW)	Supply Voltages	Outputs	Number of Pins	Page No.
Am9864-2	8192×8	200	C,M	$350 / 100$	+5	$3-$ State	28	
Am9864	8192×8	250	C,M	$350 / 100$	+5	$3-$ State	28	
Am9864-3	8192×8	300	C,M	$350 / 100$	+5	$3-36$		

[^0]Package Types
$\mathrm{D}=$ Cerdip
$\mathrm{P}=$ Plastic
$\mathrm{F}=$ Flat Pack
L = Leadless Chip Carrier

Testing High-Performance Bipolar Memory

by
Bob Lutz
Advanced Micro Devices

INTRODUCTION

During the last several years, the state-of-the art of TTL compatible bipolar memory integrated circuits has advanced very rapidly. Device complexity has increased dramatically not only in terms of the memory storage capacity but also by the addition of new on-chip functions such as the inclusion of output data registers. Simultaneously, advances in bipolar LSI design and manufacturing technology have generated significant improvements in the performance levels of bipolar memory. Similarly, the complexity and performance levels of systems which employ these devices have grown. The concomitant growth of system complexity has placed additional demands on both the device manufacturer and the user's incoming inspection area to assure the performance capabilities of each component before it is assembled into the system.
Several test equipment manufacturers now supply sophisticated, computer controlled testers for these inspection tasks. Most of this equipment is inherently capable of the millivolt and nanosecond accuracies which are required; most memory testers can generate the complex waveforms and test patterns needed. However, the details of applying this equipment to a specific test problem, including the problem of interfacing the tester to the device-under-test, are usually left to the user. The purpose of this application note is to discuss several problems which are frequently encountered when testing high performance bipolar memory devices, and to acquaint the user with how such problems may be identified, measured and corrected.

WHAT MAKES A MEMORY GOOD?

Before discussing the specifics of bipolar memory testing problems, it is important to understand the basic characteristics which these devices should exhibit. Clearly each device must meet all product specification parameters but, first and foremost, a bipolar memory should be fast! Address access time (delay from address input to data output), enable access time and enable recovery time should be as small as possible. High performance is often the primary reason for using bipolar memory. Similarly, the performance of the ideal bipolar memory should remain relatively constant with changes in supply voltage, ambient temperature and output load capacitance. Fast devices, offering stable performance over a broad range of conditions, permit the user to qualify a smaller number of part types; one fast device can accommodate many standard as well as high performance applications. Such devices provide added safety margin for the system design, permit. simplification of system test and debug and assure troublefree system performance in the field. Hence the "best" memory is a fast, stable device which not only meets a given user specification, but also offers the extra performance needed for a broad range of applications.

Advanced Micro Devices offers a family of bipolar Random Access Memories (RAMs) and Programmable Read Only Memories (PROMs) which are designed to meet this idealized definition as closely as possible. First, each AMD device is designed to meet a "military design goal." This means AMD bipolar memories are designed to provide the extra margins and higher output drive capabilities needed to assure proper performance over the extended miliary supply voltage and
operating temperature ranges. This often necessitates the use of more advanced design techniques such as on-chip regulators, temperature and voltages compensation networks and feedback circuits. Second, AMD has conceived and developed an advanced, oxide separated, ion implanted manufacturing process called IMOX ${ }^{\text {™ }}$. Developed specifically for the production of high density bipolar memories, this technology provides both high density and excellent performance in a truly reliable and manufacturable process. This combination of advanced design and fabrication technologies assures the military user of receiving components which are intended for his application while providing the commercial user with the extra margins, performance advantages and procurement benefits mentioned above.

THE SYSTEM ENVIRONMENT

To understand the problems of high-performance memory testing, it is helpful to understand the electrical environment in which the memory devices will actually operate, i.e., the typical system environment. The system designer must address and resolve several critically important questions if the system is to consistently perform to its design specifications. These questions include:

1. What noise voltages can the system's logic and memory devices tolerate?
2. What are the sources of system noise?
3. What can be done to control and minimize this noise?

The first question is answered relatively easily. The magnitude of noise which can be tolerated relates directly to the worst case noise immunity specified for the logic family. Noise immunity is simply the difference between the worst case output levels (V_{OH} and V_{OL}) of the driving circuit and the worst case input voltage requirements (V_{IH} and V_{IL}, respectively) of the receiving circuit. For TTL devices the worst case noise immunity is typically 400 mV for both the high and low logic levels.
If "system noise" is defined as the sum of things which subtract from this noise immunity, several sources can be identified. A few of the most important sources found in a digital, TTL system are listed below:

- Cross-Talk: The desire to pack system components as tightly as possible inevitably causes signal wires or PC board traces to be placed in close proximity. The lead-to-lead capacitance and mutual inductance thus created (see Figure 1) causes "noise" voltages to appear when adjacent signal paths switch.
- Transmission Line Reflections: Like it or not, every signal path in the system has transmission line characteristics. TTL signal paths are usually not designed as transmission lines, with predictable and uniform characteristic impedances. This is partly because of the higher costs implied for multilayer PC boards with internal ground planes, termination resistors, etc. It is also the result of TTL logic's limited ability to drive the low impedance lines provided by current PC board technologies. Hence, TTL signal paths do exhibit the ringing and reflection problems associated with improperly terminated transmission lines. These reflections subtract from the available noise immunity as shown in Figure 2.

Figure 1. An Example of Cross-Talk

Figure 2. Line Reflections

$V_{i}=V_{O-}\left(n \cdot I_{C C}\right) R_{G N D}$
a) DC Ground 'Nolse"

DG000030
When V_{i} goes HIGH, V_{O} goes LOW discharging C_{L}. The discharge current I_{d} flows through the ground inductance $L_{\text {GND }}$. creating a transient voltage V_{t}. The input voltage seen by gate B is actually $V_{i}-V_{t}$.
b) Transient Ground Noise

Figure 3.

- Ground Network Noise: Most high-performance systems employ large numbers of hiah-performance ICs. These devices typically draw large Icc currents from the power supply. Cumulatively, these currents can reach several amperes per board. Such currents, flowing in the ground network, cause non-negligible DC voltage drops to occur; not all device ground pins are at zero volts. Since the output
levels and the input thresholds of each TTL device reference the local ground (Figure 3a), these drepe ales subtract fiom the available noise immunity. Additional noise margin losses occur each time the device outputs switch. This occurs because large currents must flow to rapidly charge and discharge the interconnect and input capacitances which load each output. These charging currents flow in a loop
(Figure 3b) through the ground network which is normally a simple interconnection of wires, each with some value of resistance and inductance per unit length. Some additional resistive drops occur. But, the rapid changes in these currents (large di/dt), occurring as charging starts and stops, mean a transient ground noise voltage is also generated. This voltage obeys the law of $v=L(d i / d t)$ where L is the ground circuit inductance and di/dt is the rate of change of the charging currents. Notice that adding local bypass capacitors can only reduce this voltage by paralleling the
ground inductance with the VCC network inductance. Bypassing cannot eliminate this problem because these capacitors shunt the devices and not the ground and $V_{C C}$ network inductances where the noise is generated.

Controlling and minimizing noise in a digital system becomes more challenging as the system performance requirements increase. These requirements demand devices capable of short propagation delays, e.g., ultra-fast memories with excellent drive characteristics to minimize fully loaded access. times.

Note: Transient ground current flow in four directions from each device ground: right and left on the ground bus; up and down the V_{CC} bus after passing through the local bypass capacitor, C. Equivalent ground inductance is very low.

Figure 4. Example of an AC Ground Mesh

Since noise margin violations result in system malfunctions, the system designer must define a set of rules governing the physical construction techniques to be used within the system. These rules address a host of considerations including power distribution, AC grounding, lead placement, line termination requirements, logic loading (fan in and fan out) and interconnect delays. Specifying these rules is a complex process of making appropriate cost-performance tradeoffs.

For a medium to high performance system, these rules might specify arranging devices in an array with $V_{C C}$ power traces running vertically up the columns while ground metal running horizontally between the rows. Inserting bypass capacitors at each grid intersection forms an AC ground mesh (Figure 4), limiting the amount of ground inductance at each array site. If limits are also placed on the total capacitance each device may drive (cumulative interconnect and input capacitance on
all outputs), the total charging currents may be controlled thus limiting the noise immunity eroded by ground circuit noise. Similarly, the distance between adjacent traces and the maximum length of unterminated lines may be specified to control noise immunity losses caused by cross-talk and termination mismatches. Ultra-high performance systems may require additional measures; e.g., multilayer boards with true
ground planes or increased usage of line drivers and receivers. Though the preceding descriptions have been simplified, it should be clear that distances between driving and receiving devices, the quantity and distribution of load capacitance, as well as the AC ground network integrity are all essential elements of the system design.

Ideally, all test hardware would be located immediately adjacent to the test site to minimize cross-talk, reflections and ground noise. However, this objective must be compromised to address the other objectives and constraints outlined above. Techniques commonly employed in making this compromise are illustrated in Figure 5. Notice that DUT drivers are remote from the test site, driving signal to the DUT through "series terminated" transmission lines. Similarly the receivers are some distance from the test site, receiving signals from the DUT through a series of connectors and wires which can degrade the signal. Most annoying of all, the test site ground connection has been compromised. This signali path must carry heavy transient and DC currents during test and should provide a very solid, low impedance reference against which all AC and DC tests are made. Accumulating resistance and inductance in this path jeopardizes the integrity of all test results.
Hence, the electrical environment provided at the test site is generally inferior to the actual system environment where the memory component will be used.

TEST RELATED PROBLEMS AND SOLUTIONS

Accurately measuring or verifying memory performance in the test system environment requires a recognition of its inherent limitations. Outlined below are five problem areas commonly encountered when testing high-performance bipolar memories. Methods of identifying and alleviating these problems are indicated.

Figure 5. The Test System Environment

- Contending with Ground Noise: Ground noise is one of the most common and troublesome test problems. As defined above, ground noise is caused by switching currents flowing through the ground network impedance. Whereas the sys-
tem environment (Figure 4) may provide multiple low inductance ground paths into a ground mesh or plane, the tester provides one long, higher inductance path back to the test system ground (Figure 5). This path includes handler con-
tacts, connectors and the DUT load board, all of which increase ground inductance and resistance. Transient currents which result when the DUT switches can be enormous. Consider the case of a byte wide (8 output) memory functional test. At some point in the test sequence, all memory outputs will switch from high to low ($\mathrm{VOH}_{\mathrm{OH}}$ to V_{OL}) at the same instant, discharging all eight load capacitances simultaneously. If the input capacitance of the receiver is 40 pF and the interconnect capacitance of the test fixture is 10 pF , the total load capacitance driven by all device outputs would be 400 pF . A fast memory device could discharge this load at a $1 \mathrm{~V} / \mathrm{ns}$ rate. The relationship $\mathrm{i}=\mathrm{C}(\mathrm{dv} / \mathrm{dt})$ implies peak charging currents of 400 mA must flow through ground. As Figure 6 illustrates, this charging current does not build to its full value instantaneously. For a fast device the time required to go from zero to full charging current would approximate $2 n s$. A resultant ground current di/dt of $200 \mathrm{~mA} / \mathrm{ns}$ is implied. If the ground inductance is 1 nanohen-
ry (approximate inductance of 1 inch of straight, small gauge wire), then $v=L(d i / d t)$ predicts $A C$ ground noise of 200 mV . As you have probably guessed, the typical test site ground inductance exceeds 1 nh . The path is longer and it is usually not a straight line connection. Actual tester ground noise of up to 800 mV is common when testing high-performance byte wide memories. This noise can be measured easily with a high bandwidth oscilloscope by attaching the scope ground to the actual test system ground and monitoring the DUT ground pin with one channel.

Excessive ground noise creates several problems: First, this noise is capacitively coupled to the input drive signals through the DUT input capacitances; if large enough, DC coupling through the DUT input clamp diodes can occur (Figure 7). The DUT output levels are, of course, referenced to the DUT ground potential whereas the receiver board is referenced to test system ground, introducing inaccuracy in access time measurements, etc.

For small magnitudes of noise, V_{t}, noise is $A C$ coupled to the inputs through the input capacitance, C_{i}. If V_{i} is low, large

Figure 6. Byte Wide Memory Ground Transients

DG000070
positive values of V_{t} may momentarily forward bias the input clamp diode, creating a DC coupling.

Figure 7. Ground Noise Coupling to the inputs

Worst of all, severe ground noise can make functional testing at or near the guaranteed input levels (V_{IH} and V_{IL}) impossible. To demonstrate, assume the device ground noise reaches a positive 0.8 V with respect to test system ground during output switching. Assume the input driver high level is programmed to 2.0 V , minimum V_{IH} for most TTL devices. The actual voltage between a 'high' DUT input and its ground is only 1.2 V . The typical room temperature threshold voltage of a TTL device is 1.5 V , and the device interprets 1.2 V as a logic "low." This causes the memory to access a new memory location momentarily. The resultant momentary change in output data interferes with access time measurements. In severe cases, this momentary switching of output data creates additional ground noise which also feeds back to the inputs resulting in sustained oscillations. This noise interaction can also be viewed with a dual trace oscilloscope as shown in Figure 8. Channel A of the scope is connected to the address input while channel B monitors the DUT ground pin. The input voltage, as seen by the DUT, can be viewed directly by putting the scope in " $A-B$," algebraic subtract mode. Note the scope ground is connected to test system ground as before. Attaching scope ground to the DUT pin ground should be avoided as this creates a "ground loop." If connected this way, large noise currents flow in the alternate ground path provided by the scope back to earth ground; this interferes with the scope's ability to measure high-speed events and modifies the condition which is to be observed.

Several techniques can be employed to reduce ground noise problems:

- Keep the ground path as short as possible; use large diameter wire and "straight line" wiring techniques.
- Minimize the number of series connections in the DUT ground path; provide as many parallel ground connections as possible through each remaining connector.
- If the system uses a Kelvin (force - sense) ground system, terminate the system by shorting force to sense on the DUT load board. Kelvin systems provide DC accuracy, but their response times are much too slow to aid in the suppression of ground noise at the test site. Terminating Kelvin early sacrifices a little DC accuracy, but the ability to use the previous sense line as second, low impedance ground path usually improves the overall test accuracy.
- Provide multiple high frequency bypass capacitors as close as possible to the DUT, and again on the DUT load board. This allows the VCC wiring to serve as an extra $A C$ ground path for high frequency ground noise.
- Reduce the DUT load capacitance (receiver and interconnect capacitance) as much as possible; avoid using low values of load resistors. Both techniques reduce the transient currents, thus improving test accuracy. When necessary, DUT output drive capability can usually be verified with DC tests.
- If V_{IL} and V_{IH} tests are necessary, measure the maximum amount of ground noise that the specific device type to be tested generates in the actual test site. Set the input drive levels no tighter than ' V_{IH} plus the maximum noise" and " $\mathrm{V}_{\text {IL }}$ minus the maximum noise." Using tighter limits over tests the device!
- Alternatively, use DC bench tests on a sample basis to verify that input margins are acceptable. This is a sound practice as the input thresholds of bipolar devices are extremely insensitive to fabrication process variations. Virtually any process variation or defect which would result in a threshold failure would also result in the catastrophic failure of other tests.

DG000080
Figure 8. Monitoring Ground Noise
-DC verification of V_{IL} and V_{IH} can also be performed on the test system, but care must be exercised to insure that input voltages NEVER cross through the 0.8 V to 2.0 V window; voltages residing in this window can cause the DUT to switch, triggering sustained oscillations.

- The Output 'Tank Circuit': A second common problem encountered is resonance in the circuitry which connects the DUT outputs to the output comparators or receivers. This resonance occurs because the wire connecting the DUT outputs to the receivers is actually an inductor connected in series with the comparator input capacitance, forming a series resonant tank circuit (Figure 9). This load circuit is quite different from the typical loading situation found in a system environment. Notice that the capacitance in the tester tends to be a single large value of capacitance, lumped at the end of the DUT output drive line. The load capacitance in the system is generally smaller and it is distributed along the drive line; this configuration looks much more like a transmission line, with per unit length values of inductance and capacitance, than it does a resonant tank. The resonant frequencies found at the test site vary with wire length and capacitive load, but tend to be in the $100-500 \mathrm{MHz}$ range. The input voltage sensed by the receiver is actually the voltage at the center connection within the tank circuit, which can ring violently when the outputs switch; measurement errors of 5 ns or more can occur. A good evaluation technique for this problem is to compare the waveforms observed at the output of the device with a ''shmoo plot' of the output. Assuming a simple pattern is used, differences in these results may indicate a resonance problem.

Corrective action for this problem includes:

- Use short, low inductance connections from the DUT output to the receiver; minimize comparator and intercon-
nect capacitance. Both techniques raise the resonant frequency of the tank circuit which limits the time measurement error and reduces the DUT's ability to stimulate ringing in the tank.
- Use twisted pair wiring techniques to connect DUT outputs to the receivers. Though this raises the capacitance slightly, it reduces the purely inductive character of the interconnect, usually tending to reduce ringing.
- Minimizing Cross-Talk: Cross-talk between the input and output lines of the DUT is also a common problem. Obviously, the greater the number of paths which must be packed into a given area, the greater the problem. The signal coupling that occurs adds noise to both the input lines, making V_{IH} and V_{IL} testing difficult, and output lines, reducing the accuracy of timing measurements. Techniques which tend to reduce cross-talk include the following:
- Keep wires as short as possible and avoid laying wires on top of each other.
-Reduce output loading to minimize the magnitude of current transients which could be coupled into adjacent lines.
- Use twisted pair or coaxial cable wherever possible; take care to tie all grounds from these transmission lines together at both ends.
- Use ground plane or ground mesh techniques in the load board and the handler interface if possible. A true ground plane permits the use "strip" transmission lines which not only minimize cross-talk, but also reduce ground noise.

Though expensive, ground plane techniques offer the test engineer a consistent reference voltage which can be used to identify and segregate the various components and sources of noise.

DG000090
L_{L}, the interconnect inductance and CCOMPARATOR form a series resonant tank circuit which can cause time measurement errors.

Figure 9. Resonance of the Outputs

Conclusion

Advanced Micro Devices has invested significantly in the development of advanced, high-performance bipolar memory technologies and products. As the preceding discussion demonstrates, the memory tester presents a very different environment to the memory device than does the system. The
additional constraints placed on the tester virtually guarantee that devices which function in this "worst case" environment will perform satisfactorily in the system. However, this worst case environment may also selectively reject the best performing devices; i.e., those with the fastest access times and best drive characteristics. This occurs because high-perfor-
mance devices magnify the problems found in the tester environment. The information presented here should aid the component engineer in recognizing and resolving these special test environment problems. Attention to these details will
reward the bipolar memory user by assuring acceptance of the best and broadest range of bipolar memories currently available.

INDEX SECTION
 NUMERICAL DEVICE INDEX
 FUNCTIONAL INDEX AND SELECTION GUIDE
 APPLICATION NOTE

BIPOLAR PROGRAMMABLE
READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS

MEMORIES (RAM)

MOS RANDOM ACCESS
 MEMORIES (RAM)

4

MOS READ ONLY
MEMORIES (ROM)

5

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION PACKAGE OUTLINES
SALES OFFICES

Bipolar Programmmable Read Only Memory (PROM) Index

Guide to the Programming of AMD's Generic Bipolar PROMs 2-1
Guide to the Analysis of Programming Problems 2-4
Reliability Report 2-6
Am27S12/13
Am27S15
Am27S18/S19 Family
Am27S20/S21
Am27S25
Am27S27
Am27S28/29
Am27S30/31Am27S32/33Am27S35/37
Am27S40/S41Am27S43Am27S45/47Am27S49
Am27S65
Am27S75
Am27S85
Am27S181/281 FamilyAm27S184/185 SeriesAm27S191/291 Family
512×4 Bit Generic Series Bipolar PROM. 2-13
512×8 Bit Generic Series Bipolar PROM 2-18
32×8 Bit Generic Series Bipolar PROM 2-24
256×4 Bit Generic Series Bipolar PROM 2-29
512×8 Generic Series Bipolar IMOX ${ }^{\text {TM }}$ Registered PROM 2-34
512×8 Bit Generic Series Bipolar Registered PROM 2-40
512×8 Bit Generic Series Bipolar PROM 2-46
512×8 Bit Generic Series Bipolar PROM 2-51
1024×4 Bit Generic Series Bipolar PROM 2-56
1024×8 Bit Generic Series IMOX Registered PROM 2-61
4096×4 Bit Generic Series Bipolar IMOX Registered PROM 2-67
4096×8 Bit Generic Series Bipolar IMOX PROM 2-73
2048×8 Generic Series Bipolar IMOX Registered PROM 2-78
8192×8 Generic Series Bipolar IMOX Registered PROM 2-84
1024×4.4-Wide Bipolar IMOX Registered PROM 2-88
2048×4 4-Wide Bipolar IMOX Registered PROM 2-99
1024×4 4-Wide Bipolar IMOX Registered PROM 2-110
1024×8 Bit Generic Series Bipolar IMOX PROM 2-122
2048×4 Bit Generic Series Bipolar IMOX PROM 2-128
2048×8 Bit Generic Series Bipolar IMOX PROM 2-134

Guide to the Programming of AMD's Generic Bipolar PROMs

Application Note
by
\section*{AMD Bipolar Memory Product Engineering}

GENERIC SERIES CHARACTERISTICS

The AMD line of Generic Bipolar PROMs incorporate common electrical characteristics and programming procedures. All parts in this series are produced with a fusible link at each memory location storing a logic LOW and can be selectively programmed to a logic HIGH by applying appropriate voltages to the circuit.

All parts are fabricated with AMD's fast programming highly reliable Platinum-Silicide Fuse technology. Utilizing easily implemented programming (and common programming personality card sets) these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to insure extremely high field programming yields and produce excellent parametric correlation.

Platinum-Silicide was selected as the fuse link material to achieve a well controlled melt rate resulting in large nonconductive gaps that ensure very stable long term reliability. Extensive operating testing has proven that this low-field, large-gap technology offers the best reliability for fusible link PROMs.

Common design features include active loading of all critical AC paths regulated by a built-in temperature and voltage compensated bias network to provide excellent parametric performance over MIL supply and temperature ranges. Selective feedback techniques have been employed to minimize delays through all critical paths producing the fastest speeds possible from Schottky processed PROMs.

PROM Programming Equipment Guide

Source and Location	Data 1/O 10525 Willows Rd. N.E. Redmond, WA 98052		Pro-Log Corporation 2411 Garden Road Monterey, CA 93940	International Microsystems, Inc. 11554 C. Avenue Auburn, CA 93940	Kontron Electronic, Inc. 630 Price Avenue Redwood City. CA 94063	Digelec, Inc. 7335 E. Aco Scottsdale, AZ 85260	ma Dr.	Stag Systems, Inc. 528-5 Weddell Dr. Sunnyvale, CA 94086
Programmer Model(s)	Model 5, 7 and 9 Systems 17, 19, 29 and 100		M900, M9008, M910, M920 and M980	IM1010	MPP-80	UPP-801	UPP-803	PPX
AMD Generic Blpolar PROM Personality Module	$\begin{aligned} & 909-1286-1 \\ & 919-1286-1 \\ & \text { Rev H } \end{aligned}$	Unipak Rev 003 (Family and Pin Code)	PM 9058	IM AMDGEN1	MOD 14	PM 102	FAM-12	$\begin{array}{\|l\|} \hline \text { PM } 2000 \\ \text { Code } 90 \end{array}$
Socket Adapters and Conflgurators								
Am27S18/19 Am27LS18/19	715-1407-1	1602	PA 16-6 and 32×8 (L)	IM 32x8-16-AMD	SA 3-1 B 32x8/16	DIS-156 AM	DA 22	AM 110-2
Am27S20/21	715-1408-1	1601	PA 16-5 and 256×4 (L)	IM 256×4-16-AMD	SA 4-2 B 256x $4 / 16$	DIS-133 AM	DA 21	AM 130-2
Am27S12/13	715-1408-2	1603	PA. 16-5 and 512×4 (L)	IM 512×4-16-AMD	SA 4-1 B 512 4 /16	DIS-134 AM	DA 21	AM 130-3
Am27S 15	715-1411-1		PA 24-14 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8.24- \\ & 27 S 15-A M D \end{aligned}$	SA 17-3 B 512 $\times 8 / 24$	DIS-165 AM	DA 33	
Am27S25	715-1617	6265	PA 24-16 and 512×8 (L)	$\begin{aligned} & \operatorname{lM} 512 \times 8-24- \\ & 27 S 25-A M D \end{aligned}$	SA 31-2 B 512 $\times 8 / 24$	DIS-213 AM	DA 31	AM 190-2
Am27S27	715-1412-2		PA 22-4 and 512×8 (L)	$\begin{aligned} & \text { IM } 512 \times 8-22- \\ & 27 S 27-A M D \end{aligned}$	SA 18 B $512 \times 8 / 22$	DIS-168 AM	DA 28	
Am27S28/29	715-1413	1609	PA 20-4 and 512×8 (L)	IM 512×8-20-AMD	SA 6 B $512 \times 8 / 20$	DIS-158 AM	DA 34	AM 120-3
Am27S30/31	715-1545	1636	PA 24-13 and 512×8 (L)	IM 512×8-24-AMD	SA 22-6 B 512 $\times 8 / 24$	DIS-135 AM	DA 29	
Am27S32/33	715-1414	1638	PA 18-6 and 1024×4 (L)	IM 1024×4-18-AMD	SA 24 B 1024×4/18	DIS-136 AM	DA 38	AM 170-2
$\begin{array}{\|l\|} \hline \text { Am27S35 } \\ \text { Am27S37 } \\ \hline \end{array}$	715-1723	6266	$\begin{aligned} & \hline \text { PA } 24-18 \text { and } \\ & 1025 \times 8(\mathrm{~L}) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IM } 1024 \times 8-27 S 35 / \\ \text { 37-AMD } \\ \hline \end{array}$	SA 31-1 B $1024 \times 8 / 24$	DIS-218 AM	DA 65	AM 190-3
$\begin{array}{\|l\|} \hline \text { Am27S180/181 } \\ \text { Am27PS181 } \\ \hline \end{array}$	715-1545-2	1637	$\begin{array}{\|l\|} \hline \text { PA } 24-13 \text { and } \\ 1024 \times 8(\mathrm{~L}) \\ \hline \end{array}$	IM $1024 \times 8-24-A M D$	SA 22.7 B $1024 \times 8 / 24$	DIS. 137 AM	DA 29	AM 100-6
$\begin{aligned} & \text { Am27S280/281 } \\ & \text { Am27PS281 } \end{aligned}$		1637		$\begin{array}{\|l\|} \hline 1 \mathrm{M} \\ 27 \mathrm{~S} 280 / 281-\mathrm{AMD} \end{array}$		DIS-214 AM	DA 60	
Am27S184/185 Am27LS184/185 Am27PS185	715-1616	1606	PA 18-8 and 2048×4 (L)	IM 2048×4-18-AMD	SA 4-4 B 2048×4/18	DIS-211 AM	DA 23	AM 140-3
$\begin{array}{\|l} \hline \text { Am27S190/191 } \\ \text { Am27PS191 } \end{array}$	715-1688-1	1668	$\begin{aligned} & \text { PA 24-17 and } \\ & 2048 \times 8(\mathrm{~L}) \end{aligned}$	IM 2048×8-24-AMD	SA 22-10 B 2048×8/24	DIS-151 AM	DA 61	AM 100-5
$\begin{aligned} & \text { Am27S290/291 } \\ & \text { Am27PS291 } \end{aligned}$	715-1688-2	1668	$\begin{aligned} & \text { PA } 24-28 \text { and } \\ & 2048 \times 8(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \operatorname{lM} 2048 \times 8-24- \\ & 27 \mathrm{~S} 290 / 291-\mathrm{AMD} \end{aligned}$	SA 29 B $2048 \times 8 / 24$	DIS-215 AM	DA 62	AM 190-7
$\begin{aligned} & \hline \text { Am27S40/41 } \\ & \text { Am27PS41 } \end{aligned}$	715-1282		PA 20-9 and 4096×4 (L)	IM $4096 \times 4-20-A M D$	SA 30 B $4096 \times 4 / 20$	DIS-216 AM	DA 63	AM 120-6
$\begin{aligned} & \text { Am27S45 } \\ & \text { Am27S47 } \end{aligned}$	715-1660			$\begin{array}{\|l\|} \hline \text { IM } 2048 \times 8-24- \\ 27 S 45 / 47-A M D \\ \hline \end{array}$	SA 31 B $2048 \times 8 / 24$		DA 64	AM 170-3
Am27S43	715-1698-00			IM 4096×8-24-AMD				

PROGRAMMING

The entire Generic PROM Series is manufactured with a conductive Platinum-Silicide link at each bit location. The output of the memory with the link in place is LOW. To program the device, the fusible links are selectively opened.

The fusible links are opened one at a time by passing current through them from a 20 volt supply which is applied to one memory output after the CS input is a logic HIGH. Current is gated through the addressed fuse by raising the $\overline{C S}$ input from a logic HIGH to 15 volts. After $50 \mu \mathrm{sec}$, the 20 volt supply is removed, the chip is enabled, and the output level sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{sec}$. Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 msec . If a link has not opened after a total elapsed programming time of 400 msec , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to the HIGH level:

Typical current into an output during programming will be approximately 180 mA until the fuse link is opened, after which
the current drops to approximately 90 mA . Current into the $\overline{\mathrm{CS}}$ pin when it is raised to 15 volts is typically 1.5 mA .

The memories may become hot during programming due to the large currents being passed. Programming cycles should not be applied to one device more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{cc} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed, the data content of the memory should be verified by sequentially reading all words. Occasionally this verification will show that an extra undesired link has been fused. Should this occur, immediately check the programming equipment to make sure that all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All of these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing; fusing extra bits is generally related to programming equipment problems.

PROGRAMMING PARAMETERS

Symbol	Parameters	Min	Max	Units
$V_{\text {CCP }}$	VCC During Programming	5.0	5.5	Volts
$V_{\text {IHP }}$	Input HIGH Level During Programming	2.4	5.5	Volts
$V_{\text {ILP }}$	Input LOW Level During Programming	0.0	0.45	Volts
$V_{\text {CS }}^{1} \mathrm{P}$	$\overline{\mathrm{CS}}$ 1 Voltage During Programming	14.5	15.5	Volts
V_{OP}	Output Voltage During Programming	18.5	20.5	Volts
VonP	Voltage on Outputs Not to be Programmed	0	$V_{C C P}+0.3$	Volts
IONP	Current into Outputs Not to be Programmed		20	mA
d(VOP)/dt	Rate of Output Voltage Change	20	250	$\mathrm{V} / \mu \mathrm{sec}$
d(VCS $) / \mathrm{dt}$	Rate of $\overline{C S}_{1}$ Voltage Change	100	1000	$\mathrm{V} / \mu \mathrm{sec}$
t_{p}	Programming Period - First Attempt	50	100	$\mu \mathrm{sec}$
	Programming Period - Subsequent Attempts	5.0	. 15	msec

Notes: 1. All delays between edges are specified from completion of the first edge to beginning of the second edge; i.e., not to the midpoints.
2. Delays t_{1}, t_{2}, t_{3} and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{sec}$ are recommended to minimize heating during programming.
3. During t_{v}, a user defined period, the output being programmed is switched to the load R and read to determine if additional pulses are required.
4. Outputs not being programmed are connoctod to VONP through resistor R which providos output current limiting.

PROGRAMMING WAVEFORMS
SIMPLIFIED PROGRAMMING DIAGRAM

PF000170

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ASCII BPNF

An example of an ASCII type in the BPNF format is shown below. They can be punched on any Teletype® or on a TWX or Telex machine. The format chosen provides relatively good error detection. Paper tapes must consist of:

1. A leader of at least 25 rubouts.
2. The data patterns for all 2048 words, starting with word 0 , in the following format:
a. Any characters, including carriage return and line feed, except ' B '.
b. The letter " B ', indicating the beginning of the data word.
c. A sequence of eight Ps or Ns, starting with output O_{7}.
d. The letter " F ", indicating the finish of the data word.
e. Any text, including carriage return and line feed, except the letter " B ".
3. A trailer of at least 25 rubouts.

A P is a HIGH logic level $=2.4$ volts.
An N is a LOW logic level $=0.5$, volts.
A convenient pattern to use for the data words is to prefix the word (or every few words) with the word number, then type the data word, then a comment, then carriage return and line feed as shown below. There must be no characters between the B and the F except for the eight Ps and Ns. If an error is made in a word, the entire word must be cancelled with rubouts back to the letter B , then the word re-typed beginning with the B .

When TWXing your tape, be sure the tape is in even parity. Parity is not necessary if the tape is mailed.

RESULTING DEVICE TRUTH TABLE ($\overline{C S}_{1}$ LOW AND CS $2 \mathbf{C S}_{3}$ HIGH)

AF000120

Guide to the Analysis of Programming Problems

Application Note
by

AMD Bipolar Memory Product Engineering

INTRODUCTION

Advanced Micro Devices' Generic Series of Programmable Read Only Memory (PROM) circuits have been designed to provide extremely high programming yields. Available programming currents are over designed by a factor of four and special circuitry accessible only during testing is incorporated into each product to eliminate ordinarily difficult to detect shorts and opens in the array and decoders. As a result, unique decoding and very large fusing currents are virtually assured to the user. AMD PROMs have test fuses programmed prior to shipment as a further guarantee. The results of such extensive testing and design considerations are programming yields consistently in the 98% to 99.5% range.

Key to the achievement of such yields is a programmer properly calibrated to the AMD specification with good contactors, "clean" electrical wave forms and properly functioning subcircuits. In the event that your programming yields fall below 98%, you should investigate the characteristics of the failed devices to find a prominent failure mode, then use the attached information as a guide to resolving the problem. Simple problems can be very costly if not detected and corrected.

Should you continue to have trouble optimizing your programming yield, contact your AMD representative or local programmer manufacturer representative.

Guide to the Analysis of Programming Problems

I) Units fail to program all desired bits

Secondary Symptom
A) Binary blocks of missing data
B) Random bits of missing data
C) All data associated with a single output missing
D) No data change

Possible Causes

1) Address driver output which remains continuously low or continuously high.
2) Address driver with a "low" voltage greater than 0.5 V or a 'high' voltage less than 2.4 V .
3) Poor, intermittent or no electrical contact to one or more address input pins.
Any of the above may result in over programming half the array and not programming the other half.
4) Address driver with a "low" voltage greater than 0.5 V or a 'high' voltage less than 2.4 V .
5) Poor electrical contact to address, chip enable and output pins.
6) Excessive transient noise on $V_{C C}$, output pin ($>20.5 \mathrm{~V}$), or ground pins. Check with a high speed storage oscilloscope for peak values during programming. Use transient suppression networks where appropriate.
7) Programmer does not comply with AMD Programming Specification. (See Programming Parameters.) Examples:

- Output voltage during programming less than 19.5 V
- $V_{C C}$ during programming less than 5.0V
- CS voltage during programming less than 14.5 V

1) Poor or no electrical contact to that output pin.
2) Defective current switch in programmer.
3) Wrong device or programming socket.
4) Programmer does not comply with AMD's Programming Specifications. (See Programming Parameters.) Examples:

- Output voltage during programming less than 19.5 V
- $V_{C C}$ during programming less than 5.0 V
- CS voltage during programming less than 14.5 V

Primary Symptom

II) Over-Programmed Devices

Secondary Symptom
A) One output continuously at a Logic " 1 "
B) All outputs continuously at a Logic " 1 "

Possible Causes

1) Programmer does not comply with AMD's Programming Specifications. (See Programming Parameters.)

Examples:

- Output voltage during programming greater than 20.5 V
- Programmer timing incorrect

2) Open outputs can appear to be programmed to Logic " 1 " with the presence of a pullup resistor even though the device has not actually been programmed.
3) Excessive voltage transients on output lines during programming. Be sure appropriate transient suppression networks are placed on the outputs. (See Figure 1.)
4) No $V_{C C}$ applied to device.
5) No ground applied to device.
6) Incorrect device type.
7) Incorrect programming socket.
8) Excessive voltage transients on output lines. Use transient suppression network shown in Figure 1.

DEFINITIONS

Fuse

- Conductive Platinum-Silicide link used as a memory element in Advanced Micro Devices' PROM circuits.

Unprogrammed Bit

- A conductive fuse.

Programmed Bit

- A nonconductive fuse, that is one which has been opened.

Output Low (Logic ' 0 ')

- An output condition created by an unprogrammed bit.

Output High (Logic "1")

- An output condition created by a programmed bit.

Failure to Program

- A device failure in which a fuse selected to be opened failed to open during the fusing operation.

Over Programmed

- A device failure in which a fuse which was not selected to open nevertheless opened during the fusing operation.

Address Driver

- The voltage source which drives an individual address pin in the PROM. This source is part of the programmer and drives the address pin with " 0 "s (0 V to .45 V) and " 1 "s (2.4 V to 5.5 V) depending on instructions from the programmer control circuitry. There is a separate address driver for every PROM address pin.

Programmer

- A system capable of providing the appropriate array of signals to a PROM circuit to cause certain user controlled bits to be programmed (i.e., fuses opened) in the device. As a minimum it consists of a memory containing the pattern to be programmed, control circuitry to sequence the addressing and fusing control pulses, power supplies, and address drivers.

TRANSIENT SUPPRESSION NETWORK

Notes: 1. Clamp diodes should be connected to each output as close as physically possible to the device pin.
2. V_{CC} should be decoupled at the device pin using $.01 \mu \mathrm{~F} / / .1 \mu \mathrm{~F}$ capacitors.
3. AMD recommends that all address pins be decoupled using $.001 \mu \mathrm{~F}$ capacitors.

Bipolar Generic PROM Series

RELIABIIITY REPORT RELIABILITY REPORT RELIABILITY. REPORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REP ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY ORT RELIABILITY RE RELIABILITY REPORT IABILITY REPORT RE LITY REPORT RELIA REPORT RELIABILITY ORT RELIABILITY RE RELIABILITY REPORT IABILITY REPORT RE

RT RELIABILITY REP ZELIABILITY REPORT BILITY REPORT REL TY REPORT RELIABI REPORT RELIABILITY RT RELIABILITY REP RELIABILITY REPORT Billity REPORT REL TY REPORT RELIABI LITY REPORT RELIABILITY REP ORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY•REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REP ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REP ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REP ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REPORT RELIABILITY- REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REP ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REP ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY fefort reliábility report reliábilitity report reliábility report reliábility rep ORT RELIABILITY REPORT REL IABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABI LITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY REPORT RELIABILITY

The purpose of this report is to present a description of Advanced Micro Devices' Bipolar PROM circuits, their manufacturing process and their reliability. Included is a discussion of the wafer fabrication in which an advanced, highly reliable platinum silicide fuse is utilized, a description of the circuits and their testing, an analysis of the fusing characteristics of platinum silicide and supportive reliability data.

The products evaluated in this report are members of a generic family of field programmable-read-only memories (PROMs) from 256 bits through 16384 bits. Advanced Micro Devices utilizes two manufacturing processes. The first is the platinum-silicide Schottky, washed emitter process described in this report. The second is the IMOX ${ }^{\text {TM }}$ process. IMOX is the trademark name for a selective oxide isolation process which employs ion-implantation of various transistor elements. This improved process incorporates many of the technologies previously developed, such as platinum silicide fuses, dual layer metal, and platinum-silicide Schottkies. IMOX allows further reduction in chip size due to tighter device spacings and device dimensions. All new product developments for the PROM family use the IMOX process. This high density process
allows Advanced Micro Devices to continue to supply very high speed, high performance products while increasing device complexity. The circuit design concepts are similar on each of the PROMs with the result that the products can be programmed using the same hardware. Only the socket adaptor required for the PROM configuration and pin count is different. The same programming algorithm is used for all devices with completely satisfactory results. The PROMs utilize a platinum Schottky diode structure with barrier metal. Dual-layer metallization is also employed to maximize speed and minimize chip size. All Advanced Micro Devices' circuits receive screening per MIL-STD-883, Method 5004 class C or better. Part of the 883 flow involves sample acceptance tests in which all temperature requirements are sampled to Lot Tolerance Percent Defective (LTPD) plans. A 5% LTPD corresponds to about a 0.65% Acceptance Quality Level (AQL). In late 1983, Micro Devices announced a new program that guarantees the highest quality levels for semiconductor devices in the industry. The new program is called INTERNATIONAL STANDARD 1000. Under INT-STD-1000 all Bipolar Memory PROMs are sampled to a 0.1% AQL. This is a statement of AMD's commitment to excellence.

THE PROCESS TECHNOLOGY

Advanced Micro Devices has chosen a platinum silicide Schottky, washed emitter, dual-layer metal process for its bipolar PROMs. Platinum silicide has been chosen as the material to form the fuse for several reasons. First, it has been demonstrated to be an extremely reliable fuse material. It does not have the growback phenomenon common to nichrome technologies; it is not moisture sensitive in freeze-out tests; it is less fragile than nichrome and it does not have mass transport problems associated with moderate current densities. Second, the manufacturing process is easily controlled with regard to reliability factors and fusing currents. Third, the fuses are quite easy to form during the manufacturing process without a substantial number of additional processing steps.

Figure 2 is a cross section of a transistor and a fuse. A heavily doped buried layer diffusion is first performed to allow for the fabrication of NPN transistors with low saturation resistances. A thin epitaxial layer is grown followed by isolation and base diffusions. The isolation and base are effectively self-aligned using a composite masking approach. A short series of steps results in the definition of polycrystalline silicon in the shape of the fuse.

A second composite mask now defines all the emitter, contact, Schottky diode and ohmic contact areas.

Flgure 2. Transistor \& Fuse Structures.

Following the emitter diffusion and the contact mask, platinum is sputtered over the entire wafer. Since all contacts, Schottkies and fuses are exposed at this point, an alloying operation allows platinum silicide to form. The residual platinum is etched off the wafer leaving the silicide contacts, Schottkies, and fuses. After this step, the semiconductor elements of the circuit have been completely formed, and all that remains is the interconnect metallization.

To form the interconnects, aluminum is used as the primary conducting element. Aluminum has a very strong affinity for silicon, including that in platinum silicide. To retain the advantages of the very stable platinum silicide Schottky devices, it is necessary to sputter an inactive metal, tungsten, with a small amount of titanium as a bonding agent over the surface of the wafers to serve as a barrier to the diffusion or microalloying of the aluminum. Aluminum is now evaporated over the surface of the wafers and conventional masking and
etching cycles are used to define the aluminum interconnections. Figure 3 shows the structure of this metal layer.

To complete the dual-layer metallization structure, silicon dioxide is chemically vapor deposited on the wafer and etched with interlayer metal contact openings (vias). A second layer of aluminum is then placed on top of the dielectric. This layer has
a thickness substantially greater than the first one and is especially suited for power busses and output lines.

To complete the circuit, a passivation layer is deposited over the top of the wafers and etched at the appropriate locations to allow for bonding pad contact.

RF000090
Figure 3. 2 Layer Metallization Structure.

PROGRAMMABLE READ-ONLY MEMORY CIRCUITRY

Advanced Micro Devices' bipolar PROM designs have the general configuration shown in Figure 4. Although the figure is
for that of the Am27S20, the circuit techniques are the same for the entire generic family of PROMs.

RF000010
Figure 4. PROM Circultry Block Diagram

Input, Memory \& Output Circultry
Two groups of input buffers and decoders called " X " and " Y "' are used to drive word lines and columns respectively. The X decode addresses ($\mathrm{A}_{3}-\mathrm{A}_{7}$) have Schottky clamp diode protected, PNP inputs for minimum loading. (Figure 5). The X input buffers $\left(A_{3}-A_{7}\right)$ provide A and \bar{A} outputs to a Schottky decode matrix which selects one of 64 word drivers. The word line drivers are very fast high current, high voltage, nonsaturating buffers providing voltage pull down to the selected word line.

The Y -decode address buffers $\left(\mathrm{A}_{0}-\mathrm{A}_{2}\right)$ are also Schottky diode clamped, PNP inputs driving a Schottky diode matrix. However, this diode matrix selects one of eight columns on each of the four output bits. The selected column line drives the sense amplifier input to a high level in the case of a blown fuse, or current is shunted through an unblown fuse through the selected word driver to ground resulting in a "low" input to the sense amplifier.

The sense amplifier is a proprietary fast level shifter-inverter with temperature and voltage threshold sensitivities compensated for the driving circuitry. Each of the four sense amplifiers in this circuit provides active drive to an output buffer.
Each output buffer also contains a disable input, which is driven from the chip-enable buffer. The chip-enable buffer input is a Schottky diode clamped PNP buffered design with an active pull up and pull down to drive the output buffer. Additionally, the chip-enable gate contains circuitry to provide fuse control as described below.

Fusing Circuitry

Platinum silicide fuses as implemented in Advanced Micro Devices' PROMs have extremely high fuse current to sense current ratios. Sensing normally requires that only a few hundred microamps flow through the fuse, whereas absolute minimum requirements for opening the fuse are approximately 100 times that amount. This provides a significant safety margin for transient protection and long-term reliability.

Figure 5. Input Buffer Schematic

High-yield fusing of platinum silicide fuses requires that a substantial current be delivered to each fuse. This current is sourced from the output terminals through darlingtons which can drive the column lines when enabled. These darlingtons are driven directly from the output and are selected by the Y decode column select circuitry. Current during fusing flows from the output through the darlington directly to the fuse through the selected array Schottky and finally through the word-driver output transistor to ground. This path is designed for a very large fusing current safety margin.
The control circuitry works as follows: After V_{CC} is applied, the appropriate address is selected and the CE input is taken to a logic high, the programmer applies 20 volts to the bit output to be programmed. The application of the 20 volts simultaneously deselects the output buffer to prevent destructive current flow, and powers down internal circuitry unneeded during fusing to minimize chip heating.

It also enables the darlington base drive circuitry, makes power available to the darlington from the output and enables
the fusing control circuitry. At this point, the PROM is ready for the control line at the chip-select pin to release the selected word driver to allow current flow through the fuse. This technique is particularly advantageous because the control signal does not supply the large fusing currents. They are supplied through the darlington from the output power supply. Some care must be taken to avoid excessive line inductance on the output line. Reasonable and normal amounts of care will reward the user with high-programming yields.

Special Test CIrcuitry

All Advanced Micro Devices PROMs include high-threshold voltage gates paralleling several address lines to allow the selection of special test words and the deselection of the columns to allow for more complete testing of the devices. Additionally, special test pads accessible prior to assembly allow for testing of some key attributes of the devices. The function of these special circuits will be described in more detail in the section, "Testing", later in this report.

THE PLATINUM SILICIDE FUSE

Fusing Technique

Advanced Micro Devices' PROM circuits have been designed to use a programming algorithm which minimizes the requirements on the programmer yet allows the circuit to fuse the platinum silicide links quickly and reliably. Specifically, the following sequence of events must take place:

1. VCC power is applied to the chip;
2. The appropriate address is selected;
3. The chip is deselected;
4. The programming voltage is applied to one output;
5. The chip enable voltage is raised to enable highthreshold voltage gate. This action gates the current flow through the proper fuse resulting in an open fuse in a few microseconds;
6. The output voltage is lowered; the programming voltage is removed.
7. The device is enabled and the bit is sensed to verify that the fuse is blown. In the unusual event that the fuse does not verify as blown, a sequence of much longer pulses is applied to the fuse at a high duty cycle until the fuse opens; and,
8. The sequence of 2 through 7 is repeated for each bit which must be fused.

There are several advantages to this technique. First, the two high current power sources, $V_{c C}$ and the voltage applied to the output do not have critical timing requirements. The low current chip select pin gates the fusing current into the circuit. Since it is generally desirable to gate the fusing current into the chip at relatively fast rates, the use of the chip select for this purpose avoids the speed trade-off which would exist using the output voltage as the control. The output voltage must not be raised too quickly to avoid breakdown and latchback conditions which might occur with sub-microsecond rise times on the output.

The second major advantage of this technique is that in the event that the fuse does not open during the first attempt to blow it, a near DC condition may be safely applied to it with no

danger of developing a reliability problem such as that which occurs with nichrome fuses. This will be discussed in more detail later. The algorithm can therefore be designed first to minimize the time required to program the PROM, i.e. with a fast first pulse, and second, to maximize the probability that any circuit will program. Most PROMs do, of course, fuse satisfactorily with all short pulses. However, it is impossible for any manufacturer to guarantee absolutely that all fuses in all circuits receive 100 percent of the rated fusing current during programming.

Circuit defects which may be resistant to pre-programming testing prevent such a guarantee. It is, therefore, quite important to have a fuse material insensitive to marginal conditions. Even the application of single, short pulses does not guarantee that no fuse received marginal amounts of current during fusing. The silicide fuse provides this safety margin and allows the programmer to maximize the possibility of fusing by applying near DC condition to the fuses.

Fuse Characteristics

When a fast (less than 500 ns rise time) current pulse is applied to a fuse, the fuse voltage rises abruptly to a value approaching the level anticipated from calculations of the room temperature resistance. However, it quickly falls to a value of approximately two volts. This value is nearly independent of the applied current. During this period of time, typically, the fuse is molten. Very abruptly, the fuse current drops to zero indicating the separation of the platinum silicide into two distinct sections. Scanning Electron Microscope photographs of the resulting fuses (see Figure 6) indicate that the typical case is a sharp, clean separation in excess of a micron. This separation occurs in the center of the fuse because the bowtie structure (see Figure 7) concentrates the energy density in the center away from the aluminum lines. The energy density in the center of the fuse is capable of creating temperatures substantially greater than required to melt the silicide. The very abrupt, high power applied to the fuse melts the fuse center and results in a wicking of material on either side due to surface tension.

Figure 6.

Rellability of Fuses Programmed Under

Non-optimal Conditions

The marginally opened fuse has been studied in some detail even though it rarely occurs in practice. Under conditions where the fuse is purposely blown at much slower rates, it is possible for the fuse to assume a high impedance state which is sensed as an open fuse by the circuit. This occurs because the fuse cools before separation is achieved. Electrical and SEM studies of fuses blown with these characteristics indicate that a small conductive path of silicon remains of sufficiently high resistance to prevent appropriate power transfer required for complete opening on subsequent applications of power. Under these slow-blow conditions, the thermal conductivity of the silicon nitride pedestal on which the fuse rests, the silicon dioxode beneath that and the siticon chip become factors because sufficient time exists for the heat flow to carry a significant amount of energy away from the fuse. This is extremely unusual in practice since it requires a rather narrow set of conditions. However, a number of PROMs have been specially programmed under these unusual conditions which can cause this type of fuse to occur. These devices have been life tested for over two thousand hours. No failures occurred in any of these circuits. It is clear from this study that partially opened platinum silicide fuses are stable. Although it is very rare to see such a fuse in a circuit which has been programmed under normal conditions, Advanced Micro Devices believes that such fuses do not represent a reliability hazard based on this study and the results of the other studies run on
the programmable-read-only memories. It should be noted that most manufacturers carefully specify the conditions under which their devices must be programmed in order to avoid reliability problems. Reliability data available on these devices must be assumed to have been generated using optimally programmed devices. Advanced Micro Devices believes that the study described here and four billion fuse hours of data from many production lots of PROMs demonstrate the capability of the platinum silicide fuse under a wide variety of conditions.

Figure 7. Bowtle Fuse Design

FINAL TESTING OF ADVANCED MICRO DEVICES' MEMORIES

Wafer Level Tests

In addition to all the standard DC tests, Advanced Micro Devices performs a series of special tests to conform to the screening of criteria of MIL-STD-883, Method 50043.3 and the 0.1% AQL INT-STD-1000. Also, AMD performs special tests to increase the confidence level of unique address selection and to demonstrate fusing capability on all columns and word drivers. To accomplish this, diodes are connected from the column lines and the word lines to special test pads which are accessible only during wafer probing. (See Figure 4). Using these diodes, Advanced Micro Devices confirms that each word driver is capable of sinking sufficient current to blow fuses, has appropriate saturation characteristics for AC performance, and has sufficient voltage breakdown to withstand fusing voltages. In addition, using special software, a sequence of tests dramatically increases the confidence of unique address selection on the address decoding. All darlingtons are checked to confirm that sufficient current drive is available to blow fuses from any column. Schottky diode array leakage is also checked to affirm that it is sufficiently low so as not to overload the pull down circuitry, during the high-voltage application of fusing. Finally, high voltages are applied to the inputs and outputs to remove potentially weak devices before the PROM's are assembled.

Test Fusing

Each PROM has two additional word drivers connected to special test fuses. These test words are valuable in demonstrating beyond reasonable doubt that the device is capable of opening fuses in all columns. They also increase the confidence level in unique addressing. Furthermore, the test words
serve as correlatable measures of the access times that the user can expect from his devices after he has placed his own program in the memory. These test words are not visible to the user unless he applies special voltages to certain address pins. Figure 8 is a diagram of this input circuit. One hundred percent of the PROM devices shipped from Advanced Micro Devices have had AC testing for access and enable times at high-and low-power supply voltages to affirm their AC characteristics.

The result of this extensive testing at both the wafer and finished device level is a product with very high-programming yields and virtually guaranteed AC performance after the user places his program in the parts. Additionally, the high voltage tests provide an additional level of confidence that the oxide and junction integrity is excellent in each circuit and that the devices will be relatively insensitive to small transients common to programming equipment.

RF000020

Figure 8. Special Input Circuit Used for Array Deselection and Test Word Check.

RELIABILITY TESTING

Advanced Micro Devices has an ongoing reliability program to evaluate its bipolar memory products. Reliability testing conforms to MIL-STD-883 Method 1005 Condition C. Examples of the test circuits used are shown in Figure 9. Data has now been accumulated on the process described here in excess of ten thousand hours on some devices. Over forty billion fuse hours have been completed with no fuse oriented failures

Advanced Micro Devices selects samples of its product stratified by product type at periodic intervals for this testing. Figure 10 is a tabulation of the results of the lots placed on test during this period of time. The data demonstrates a highly reliable process. The fuse has an immeasurably low contribution to the failure rate at this point in the reliability testing.

Condition C-Static

BIPOLAR MEMORY RELIABILITY SUMMARY								
Product	Production Lots	Units Tested	Total Unit Hours (thousands)	Total Fuse Hours (billions) (billions)	Unit Fallures	Fuse Related Failures	Unit Fallure Rate @ 60\% Confidence \%/1000 hrs at $125^{\circ} \mathrm{C}$	Unt Failure Rate* $@ 60 \%$ Confldence $\% / 1000$ hrs at $70^{\circ} \mathrm{C}$
27S18/19 (256 bit PROM)	5	491.	982	.251B	0	0	0.10	0.0010
$27 S 20 / 21$ (1K bit PROM)	16	1321	2207	2.2608	2**	0	0.01	0.0001
$\begin{aligned} & \hline 27 \mathrm{~S} 12 / 13 \\ & \text { (2K bit PROM) } \\ & \hline \end{aligned}$	11	571	1840	3.768B	0	0	0.05	0.0005
27S15 27527 $27 S 28 / 29$ $2732 / 33$ (4K bit PROM)	24	1870	1408	5.767B	0	0	0.07	0.0007
27S180/181 (8 K bit PROM)	12	463	926	7.586B	0	0	0.11	0.0010
$\begin{aligned} & 27 \mathrm{~S} 184 / 185 \\ & \text { IMOX } \\ & \text { (} 8 \mathrm{~K} \text { bit PROM) } \end{aligned}$	15	556	1112	9.1098	0	0	0.09	0.0008
27S190/191 IMOX (16K bit PROM)	2	69	795	13.025B	0	0	0.12	0.0011
Totals for PROM products	85	5341	9270	41.766B	2**	0	0.02	0.0002

* Assuming on activation energy of 1.0 eV .
** Oxide failure.

Am27S12/13

512×4 Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select

GENERAL DESCRIPTION

The Am27S12A/12 and Am27S13A/13 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×4 configuration, they are available in both open collector Am27S12A/12 and three-state Am27S13A/13 output versions. After pro-
gramming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $A_{0}-A_{8}$ and holding the chip select input, $\overline{C S}$, at a logic LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the off or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Tlme	30 ns	40 ns	50 ns	60 ns
Temperature Range	C	M	C	M
Open Collector	Am27S12A		Am27S12	
Three-State	Am27S13A		Am27S13	

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

ORDERING INFORMATION

Am27S 12

$L_{\text {Burn-in Option }}^{\text {B }}$
B suffix denotes 160 hour burn-in.
Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Valid Combinations	
Am27S12	PC, PCB,
Am27S12A	DC, DCB,
Am27S13	LC, LCB,
Am27S13A	DM, DMB,
	FM, FMB,
	LM, LMB

Package
D - 16-pin ceramic DIP
F - 16-pin flatpak
L - 20-pin leadiess chip carrier
P-16-pin plastic DIP
Speed Select
See Product Selector Guide
Device Type
Am27S12
Am27S12A
Open Collector
Am27S13
Am27S13A Three state

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

APPLYING THE Am27S12A/12 AND Am27S13A/13

The Am27S12A/12 and Am27S13A/13 can be used with a high speed counter to form a pico-controller for microprogrammed systems. A typical application is illustrated below wherein a multiplexer, under control of one of the PROMs, is continuously sensing the CONDITIONAL TEST INPUTS. When the selected condition occurs, a HIGH signal will result at the multiplexer output causing a predetermined branch address to be loaded into the parallel inputs of the counters on the next clock pulse. The counter then accesses the preprogrammed data or control information sequence from the Am27S12A/12 or Am27S13A/13 PROMs.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming)..........-0.5V to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Voltage Applied to Outputs During Programming
Output Current into Outputs During
Programming (Max Duration of 1 sec) \qquad
DC Input Voltage \qquad .-0.5 V to +5.5 V
DC Input Current...............................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ (Note 1)	Max	Units
V_{OH} (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M 1 N, I_{O}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$.	0.45	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
IIL	Input LOW Current	$V_{C C}=M A X, V_{\mathbb{N}}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
liH	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$V_{C C}=$ MAX, $V_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
1 C	Power Supply Current	$\begin{aligned} & \text { All inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$				100	130	mA
V_{1}	Input Clamp Voltage	$V_{C C}=M I N, I_{I N}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V C S=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			e	$V_{O}=2.4 \mathrm{~V}$			40	
			-. (Note 2)	$V_{O}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 5)				8		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING TEST CIRCUIT

KEY TO SWITCHING WAVEFORM

waveform	inputs	outputs
	MUST BE STEADY	WILL BE STEADY
	may Change FROM H TOL	WILLBE CHANGING FROMHTOL
	may change FROML TOH	WILL BE CHANGING FROML TOH
$x \times 0$	DON＇T CARE： ANY CHANGE PERMITTED	CHANGING： STATE UNKNOWN
	dOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE ＂OFF＂STATE

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No．	Symbol	Description		C devices			M devices			Units
				Min	Typ	Max	Min	Typ	Max	
1	$t_{\text {A }}$	Address Access Time	STD		30	50		30	60	ns
			A		20	30		20	40	ns
2	tea	Enable Access Time	STD		15	25		15	30	ns
			A		15	20		15	25	ns
3	ter	Enable Recovery Time	STD		15	25		15	30	ns
			A		15	20		15	25	ns

Notes：

1．$t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$ ．
2．For open collector outputs， EEA 2 and t_{ER} are tested with S_{1} closed to the 1.5 V output level． $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ ．
3．For three state outputs，$t_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level； S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests．tER is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ ．HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ ； LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level．

Am27S15

DISTINCTIVE CHARACTERISTICS

- On-chip data latches
- Latched true and complemented output enables for easy word expansion
- Predetermined OFF outputs on power-up
- Fast access time - 60ns commercial and 90 ns military maximum
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- Member of generic PROM series utilizing standard programming algorithm

1

GENERAL DESCRIPTION

The Am27S15 is an electrically programmable Schottky read only memory incorporating on-chip data and enable latches. The device is organized as 512 words of 8 bits and features three-state outputs with full 16 mA drive capability.

When in the transparent mode, with the strobe (ST) input HIGH, reading stored data is accomplished by enabling the chip (E_{1} LOW and E_{2} HIGH) and applying the binary word address to the address inputs, $A_{0}-A_{8}$. In this mode, changes of the address inputs cause the outputs, $Q_{0}-Q_{7}$, to read a different stored word; changes of either enable input level disable the outputs, causing them to go to the high impedance state.

Dropping the strobe input to the LOW level places the device in the latched mode of operation. The output condition present (reading a word of stored data or disabled) when the strobe goes LOW remains at the outputs, regardless of further address or enable transitions, until a positive (LOW to HIGH) strobe transition occurs. With the strobe $H I G H, Q_{0}-Q_{7}$ again respond to the address and enable input conditions.

If the strobe is LOW (latched mode) when $V_{C C}$ power is first applied, the outputs will be in the disabled state, eliminating the need for special "power-up" design precautions.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	60 ns	90 ns
Temperature Range	C	M
Part Number	Am27S15	

Note: Pin 1 is marked for orientation. NC = No Connection

ORDERING INFORMATION

Am27S15

$L_{\text {Burn-in Option }}^{B}$ B suffix indicates 160 hour burn-in.
Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Package
D-24-pin ceramic DIP
F - 24-pin flatpak
P - 24-pin plastic DIP
Device Type
512×8 PROM

Valid Combinations	
Am27S15	PC, PCB,
	DC, DCB,
	DM, DMB,
	FM, FMB

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASClI BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
-0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming) .-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$
DC Voltage Applied to Outputs During Programming
.21V
Output Current into Outputs During
Programming (Max Duration of 1 sec) \qquad
DC Input Voltage.................................. 0.5 V to +5.5 V
DC Input Current................................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Military (M) Devices
Temperature . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L	2.7			Volts
			MIL	2.4			
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.5	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
VIL	Input Low Level	Guaranteed input logical LOW voltage for all inputs (Note 4)	COM'L			0.85	Volts
			MIL			0.80	Volts
ILL	Input LOW Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{~N}}=0.45 \mathrm{~V}$	COM'L			-0.100	mA
			MIL			-0.150	
I_{H}	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=2.7 V$				25	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{O U T}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	COM'L	-20		-70	mA
			MIL	-15		-65	
Icc	Power Supply Current	All Inputs = GND $V_{C C}=M A X$	COM'L		125	175	mA
			MIL		125	185	
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN, $I_{I N}=-18 \mathrm{~mA}$				1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V E_{1}=2.4 \mathrm{~V} \\ & V E_{2}=0.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
Cl_{I}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5		pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ @ $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)			12		

Notes:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

			Test Conditions	C devices			M devices			Units
No.	Symbols	Description		Min	Typ	Max	Min	Typ	Max	
1	$\begin{aligned} & \operatorname{tpHL}(A) \\ & \operatorname{tpLL}(A) \\ & \hline \end{aligned}$	Transparent Mode Address to Output Access Time	$C_{L}=30 \mathrm{pF}$ S_{1} Closed. (See Switching Test Circuit above)		35	60		35	90	ns
2	tw(S)	Strobe Pulse Width (HIGH)		30	10		40	10		ns
3	$t_{s}(A)$	Address to Strobe (LOW) Set-up Time		60	35		90	35		ns
4	$t_{H}(A)$	Address to Strobe (LOW) Hold Time		0	-10		5	-10		ns
5	$\begin{aligned} & \operatorname{ts}\left(E_{1}\right) \\ & \operatorname{ts}_{5}\left(E_{2}\right) \end{aligned}$	Enable to Strobe (LOW) Set-up Time		40			50			ns
6	$\begin{aligned} & t_{H}\left(E_{1}\right) \\ & t_{H}\left(E_{2}\right) \end{aligned}$	Enable to Strobe (LOW) Hold Time		10	0		10	0		ns
7	$\begin{aligned} & \operatorname{tpZH}\left(E_{1}, E_{2}\right) \\ & \operatorname{tpZL}\left(E_{1}, E_{2}\right) \end{aligned}$	Transparent Mode Enable to Output Enabled (HIGH or LOW) Time	$C_{L}=30 p F$ S_{1} Closed for tpzL. \& Open for tPZH		20	40		20	50	ns
8	$\begin{aligned} & \text { tpZH(S) } \\ & \text { tpLZ(S) } \end{aligned}$	Strobe Detach (HIGH) to Output Disabled (OFF or HIGH impedance) Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~S}_{1} \text { Closed for } t_{P L Z} \\ & \text { \& Open for } \mathrm{tPHZ}^{\text {Ophe }} \\ & \text { (Note } \end{aligned}$			35			45	ns
9	$\begin{aligned} & \operatorname{tphz}\left(E_{1}, E_{2}\right) \\ & \operatorname{tpLZ}\left(E_{1}, E_{2}\right) \end{aligned}$	Transparent Mode Enable to Output Disabled (OFFor high impedance) Time			20	40		20	50	ns

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. $\mathrm{t}_{\mathrm{PHZ}}$ and tpLZ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching
parameters are tested from and to the 1.5 V threshold levels.
3. Tests are performed with input rise and fall times (10% to 90%) of 5 ns or less.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S18/S19 Family

32×8 Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- Ultra High Speed
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select

GENERAL DESCRIPTION

The Am27S18/19 family is composed of high speed electrically programmable Schottky read only memories. Organized in the industry standard 32×8 configuration, they are available in both collector and three-state output versions. After programming, stored information is read on
outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{4}$ and holding the chip select input, $\overline{C S}$, at a logic LOW. If the chip select input goes to logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{7}$ go to the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	15 ns	20 ns	25 ns	35 ns	40 ns	50 ns	$55 n \mathrm{n}$
Temperature Range	C	M	C	M	C	M	C
Open Collector	27 S 18 SA	27 S 18 ns					
Three-State	$27 S 19 S A$	27 S 18	27 LS 18				

*Also available in 16 -pin flatpak. Connections identical to DIPs.
LOGIC SYMBOL

ORDERING INFORMATION

Am27S18

$\left.\left.\right|^{\mathbf{S A}}\right|_{\text {Burn-in Option }} ^{\mathbf{P}}$
B suffix denotes 160 hour burn-in.

- Temperature

C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Package
D-16-pin ceramic DIP
F - 16-pin flatpak
L - 20-pin leadless chip carrier
P - 16-pin plastic DIP
Speed Select
See Product Selector Guide
Device Type
Am27S18
Open Collector
Am27S18A
Am27S19
Am27S19A Three state
Am27LS19A Low Power

Valid Combinations	
Am27S18	PC, PCB,
Am27S19	DC, DCB,
Am27S18A	LC, LCB,
Am27S19A	DM, DMB,
Am27S18SA	FM, FMB,
Am27S19SA	LM, LMB
Am27LS18	
Am27LS19	

APPLICATIONS

the Am27S18SA/18A/18 and Am27S19SA/19A/19 PROMs may be used as code converters. Examples include conversion of hexadecimal, octal of BCD to seven segment display drive format. In many code conversion applications an extra PROM address input is available and may be used as a polarity control, blanking control or code selector input. The
use of a single Am27S18SA/18A/18 or Am27S19SA/19A/19 to convert the outputs of a binary counter to either excess three or gray code format is illustrated below. In this case both codes are generated in true and complemented form simultaneously.

TRUTH TABLE

ADDRESS $A_{4} A_{3} A_{2} A_{1} A_{0}$								ENT	O_{3}		UE O_{1}	0_{0}	
0	0	0	0	0	1	1	0	0	0	0	1	1	
0	0	0	0	1	1	0	1	1	0	1.	0	0	
0	0	0	1	0	1	0	1	0	0	1	0	1	
0	0	0	1	1	1	0	0	1	0	1	1	0	5
0	0	1	0	0	1	0	0	0	0	1	1	1	\bigcirc
0	0	1	0	1	0	1	1	1	1	0	0	0	8
0	0	1	1	0	0	1	1	0	1	0	0	1	0
0	0	1	1	1	0	1	0	1	1	0	1	0	\geq
0	1	0	0	0	0	1	0	0	1	0	1	1	3
0	1	0	0	1	0	0	1	1	1	1	0	0	血
0	1	0	1	0	X	X	X	x	x	X	X	X	8
0	1	0	1	1	X	x	X	x	x	X	X	x	8
0	1	1	0	0	X	X	x	x	\mathbf{x}	X	X	x	\%
0	1	1	0	1	X	X	x	x	\mathbf{x}	X	X	x	
0	1	1	1	0	X	X	x	x	X	X	X	x	
0	1	1	1	1	X	X	X	X	X	x	X	x	
1	0	0	0	0	1	1	1	1	0	0	0	0	
1	0	0	0	1	1	1	1	0	0	0	0	1	
1	0	0	1	0	1	1	0	0	0	0	1	1	
1	0	0	1	1	1	1	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	1	0	1	1	0	
1	0	1	0	1	1	0	0	0	0	1	1	1	0
1	0	1	1	0	1	0	1	0	0	1	0	1	2
1	0	1	1	1	1	0	1	1	0	1	0	0	2
1	1	0	0	0	0	0	1	1	1	1	0	0	8
1	1	0	0	1	0	0	1	0	1	1	0	1	8
1	1	0	1	0	0	0	0	0	1	1	1	1	8
1	1	0	1	1	0	0	0	1	1	1	1	0	
1	1	1	0	0	0	1	0	1	1	0	1	0	
1	1	1	0	1	0	1	0	0	1	0	1	1	
1	1	1	1	0	0	1	1	0	1	0	0	1	
1	1	1	1	1	0	1	1	1	1	0	0	0	

AF000170

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming) -0.5 V to $+\mathrm{V}_{\text {CC }}$ max
DC Voltage Applied to Outputs During Programming
Output Current into Outputs During
Programming (Max Duration of 1 sec) \qquad .250mA
DC Input Voltage..................................-0.5V to +5.5 V
DC Input Current...............................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voitage \qquad +4.75 V to +5.25 V

Military (M) Devices

Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ (Note 1)	Max	Units
$\mathrm{VOH}_{\text {(}}$ (Note 2)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
IL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 V$				-0.010	-0.250	mA
IIH	Input HIGH Current	$V_{C C}=\mathrm{MAX}, V_{1 N}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40.	-90	mA
Icc	Power Supply. Current	All inputs $=G N D, V_{C C}=$ MAX		27S Devices		90	115	mA
				27LS Devices		60	80	
V_{1}	Input Clamp Voltage	$V_{C C}=M I N, ~ \ I N=-18 m A$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V C S=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			Note 2	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
COUT	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

		Description			devic			devic		Units
No.	Symbol			Min	Typ	Max	Min	Typ	Max	
1	$t_{A A}$	Address Access Time	STD		25	40		25	50	ns
			A		18	25		18	35	
			SA		12	15		12	20	
			LS		30	55		30	70	
2	tea	Enable Access Time	STD		15	25		15	30	
			A		13	20		13	25 20 50	
			SA		10	15		10		
			LS		22	40		22		
3	ter	Enable Recovery Time	STD		15	25		15	30	
			A		13	20		13	25	
			SA		10	15		10	20	
			LS		18	35		18	40	

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, tEA is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests. tER is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}$ is HIGH is determined externally.
For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S20/S21

256×4 Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select

GENERAL DESCRIPTION

The Am27S20A/20 and Am27S21A/21 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 256×4 configuration, they are available in both open collector and three-state output versions. After programming, stored information is
read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{7}$ and holding the chip select inputs, $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, at a logic LOW. If either chip select input goes to logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	30 ns	40 ns	45 ns	60 ns
Temperature Range	C	M	C	M
Open Collector	27 S 20 A		27 S 20	
Three-State	27 S 21 A		27 S 21	

CONNECTION DIAGRAM

Top View

CD000570

CD000580

Note: Pin 1 is marked for orientation
LOGIC SYMBOL

ORDERING INFORMATION

Am27S20

B suffix denotes 160 hour burn-in.
Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M-Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
\square Package
D-16-pin ceramic DIP
F-16-pin flatpak
L -20 -pin leadless chip carrier
P-16-pin plastic DIP
\square Speed Select
See Product Selector Guide
Device Type
Am27S20
Am27S20A
Open Collector
Am27S21
Am27S21A Three state

APPLYING THE Am27S20A/20 AND Am27S21A/21

Typical application of the Am27S20A/20 and Am27S21A/21 is shown below. The Am27S20A/20 and the Am27S21A/21 are employed as mapping ROMs in a microprogram computer control unit. The eight-bit macroinstruction from main memory is brought into the $A_{0}-A_{7}$ inputs of the mapping ROM array. The instruction is mapped into a 12-bit address space with each PROM output supplying 4 bits. The 12 bits of address are then supplied to the " D " inputs of the Am2910 as a possible
next address source for microprogram memory. The $\overline{\text { MAP }}$ output of the Am2910 is connected to the $\overline{\mathrm{CS}}_{1}$ input of the Am27S20A/20/21A/21 such that when the $\overline{\mathrm{CS}}_{1}$ input is HIGH, the outputs of the PROMs are either HIGH in the case of the Am27S20A/20 or in the three-state mode in the case of the Am27S21A/21. In both cases the $\overline{\mathrm{CS}}_{2}$ input is grounded; thus data from other sources are free to drive the D inputs of the Am2910 when MAP is HIGH.

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX
machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs (Except During Programming) $-0.5 V$ to $+V_{C C}$ max
DC Voltage Applied to Outputs During Programming .21V
Output Current into Outputs During Programming (Max Duration of 1 sec)................ 250 mA
DC Input Voltage................................... 0.5 V to +5.5 V
DC Input Current -30 mA to +5 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
.+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ (Note 1)	Max	Units
$\mathrm{VOH}_{\text {(}}$ (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4	,		Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, 1 O L=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$1{ }_{1}$	Input HIGH Current	$V_{C C}=M A X, V_{i N}=2.7 V$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$V_{C C}=$ MAX, $V_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
Icc	Power Supply Current	All inputs = GND $V_{C C}=M A X$				100	130	mA
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN, $L_{\text {IN }}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S_{1}}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
CIN	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @\{=1 \mathrm{MHz}$ (Note 5)				8		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

	Symbol	Description		C devices			M devices			Units
No.				Min	Typ	Max	Min	Typ	Max	
1	$t_{\text {A }}$	Address Access Time	STD		25	45		25	60	ns
			A		20	30		20	40	
2	teA	Enable Access Time	STD		15	20		15	30	
			A		15	20		15	25	
3	$t_{\text {ER }}$	Enable Recovery Time	STD		15	20		15	30	
			A		15	20		15	25	

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests. tER is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while either $\overline{\mathrm{CS}}$ is HIGH is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.

Am27S25

512×8 Generic Series Bipolar IMOX ${ }^{\text {TM }}$

Registered PROM with PRESET and CLEAR INPUTS

DISTINCTIVE CHARACTERISTICS

- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Buffered common PRESET and CLEAR inputs
- Slim, 24-pin, 300-mil lateral center package occupies approximately $1 / 3$ the board space required by standard discrete PROM and register
- Consumes approximately $1 / 2$ the power of separate PROM/register combination for improved system reliability
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ > 98\%)

GENERAL DESCRIPTION

The Am27S25A/25 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, masterslave data registers on chip. These devices feature the versatile 512 -word by 8 -bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the
cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S25A/25 also offer maximum flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

BLOCK DIAGRAM

BD000460

PRODUCT SELECTOR GUIDE

Access Time	30ns	35ns	50 ns	55 ns
Temperature Range	C	M	C	M
Part Number	27 S 25 A		27 S 25	

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Am27S25

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

PRODUCT OVERVIEW

When V_{CC} power is first applied, the synchronous enable (\bar{E}_{S}) flip-flop will be in the set condition causing the outputs ($Q_{0}-Q_{7}$) to be in the OFF or high-impedance state. Reading data is accomplished by first applying the binary word address to the address inputs $\left(A_{0}-A_{8}\right)$ and a logic LOW to the synchronous enable (\bar{E}_{S}). During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable ($\overline{\mathrm{E}}$) is also LOW, stored data will appear on the outputs ($Q_{0}-Q_{7}$). If E_{S} is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state regardless of the state of \vec{E}. The outputs may be disabled at any time by switching \bar{E} to a HIGH level. Following the positive clock edge the address and synchronous enable inputs are free to change; changes will not affect the outputs until another
positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.

The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.
The Am27S25 has buffered asynchronous PRESET and CLEAR inputs. These functions are common to all registers and are useful during power up timeout sequences. With outputs enabled the $\overline{P S}$ input asserted LOW will cause all outputs to be set to a logic 1 (HIGH) state. When the CLR input is LOW, the internal flip-flops of the data register are reset and, a logic 0 (LOW) will appear on all outputs. These functions will control the state of the data register, independent of all other inputs but exclusive of each other.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max
(Ex Vopt Dup Aplied to Outputs
During Programming
Output Current into Outputs During
Programming (Max Duration of 1 sec) .-0.5 V to +5.5 V
DC Input Current................................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$		2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			0.38	0.50	Volts
$V_{1 H}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
IL	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.45 V$			-0.020	-0.250	mA
IIH	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$				40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)		-20	-40	-90	mA
Icc	Power Supply Current	All inputs $=G N D, V_{C C}=\mathrm{MAX}$			120	185	mA
V_{1}	Input Clamp Voltage	$V_{C C}=M I N, I_{\mathbb{N}}=-18 \mathrm{~mA}$				-1.2	Volts
ICEX	Output Leakage	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}$			40	$\mu \mathrm{A}$
CEX	Current	$V E=2.4 V$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{ClN}_{\mathrm{N}}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5		pF
Cout	Output Capacitance	$\text { VOUT }=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \text { (Note } 4 \text {) }$			- 12		

Notes:

1. Typical values are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

SWITCHING TEST CIRCUIT

Notes:

1. $C_{L}=50 \mathrm{pF}$ for all switching characteristics except tplZ and tphz.
2. $C_{L}=5 \mathrm{pF}$ for tPLZ and tPHZ.

KEY TO SWITCHING WAVEFORM

KS000010
3. S_{1} is closed for all tests except for tpZH and tphz.
4. All device test loads should be located within $2^{\prime \prime}$ of device outputs.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description			C devices			M devices			Units	
					Min	Typ	Max	Min	Typ	Max		
1	tsA	Address to CP (HIGH) Setup Time		STD	50	35		55	35		ns	
				A	30	35		35	35		ns	
2	$\mathrm{th}_{\mathrm{H}}(\mathrm{A})$	Address to CP (HIGH) Hold Time			0	-10		0	-10		ns	
3	tphi (CP)	Delay from CP (HIGH) to Output (HIGH or LOW)	All Outputs	STD		15	27		15	30	ns	
				A		15	20		15	25	ns	
4	tPLH(CP)		Single Output (Note 3)	STD		13	20		13	26	ns	
				A		13	15		13	23	ns	
5	twh(CP)	CP Width (HIGH or LOW)			20			20			ns	
6	twL (CP)											
7	$\mathrm{ts}_{\text {S }}\left(\mathrm{E}_{\mathrm{S}}\right.$)	Es to CP (HIGH) Setup				10	5		15	5		ns
8	$\mathrm{th}_{\mathrm{H}}\left(\mathrm{E}_{S}\right)$	$\mathrm{E}_{\text {S }}$ to CP (HIGH) Hold Tir			5	-2		5	-2	.	ns	
9	tPHL(CLR)	Delay from PRESET or CLEAR (LOW) to Output (LOW or HIGH)		STD		16	25		16	30	ns	
10	tPLH($\overline{\text { PS }}$)			A		16	20		16	25		
11	$\mathrm{tr}_{\mathrm{R}}(\overline{\mathrm{PS}})$	PRESET or CLEAR Recovery (Inactive) to CP (HIGH)			20	10		25	10	,	ns	
12	$t_{R}(\overline{C L R})$											
13	twL $(\overline{\mathrm{PS}})$	PRESET or CLEAR Pulse			20	10		25	10		ns	
14	twL(CLR)	PRESET or CLEAR Pulse			20	10	-	25	10		ns	
15	tpzl(CP)	Delay from CP (HIGH) to	ve Output	STD		18	35		18	45	ns	
16	tPZH(CP)	(HIGH or LOW)		A		18	25		18	30	ns	
17	tpZL (E)	Delay from E (LOW) to A	Output	STD		15	35		15	45	ns	
18	$\left.\mathrm{tPZH}^{(\mathrm{E}}\right)$	(HIGH or LOW)		A		15	25		15	30	ns	
19	tplz(CP)	Delay from CP (HIGH) to	ive Output	STD		21	35		21	45	ns	
20	tPHZ(CP)	(OFF or High Impedance)	4)	A		21	25		21	30	ns	
21	tplz(E)	Delay from E_{1} (HIGH) to	ve Output	STD		15	35	,	15	45	ns	
22	tphz(E)	(OFF or High Impedance)	4)	A		15	25		15	30	ns	

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.
4. $\mathrm{t}_{\mathrm{PHZ}}$ and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{VOH}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{VOL}_{\mathrm{O}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device VCC and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a $0.01 \mu \mathrm{Farad}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of
power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any test.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.

Am27S27

512×8 Bit Generic Series Bipolar Registered PROM with D-Type Output Data Register

DISTINCTIVE CHARACTERISTICS

- On-chip edge-triggered registers - Ideal for pipelined microprogrammed systems
- Versatile synchronous and asynchronous enables for simplified word expansion
- Predetermined OFF outputs on power-up
- Fast 55 ns address setup and $27 n$ s clock to output times
- Excellent performance over the military range
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)

GENERAL DESCRIPTION

The Am27S27 is a 512 word $\times 8$-bit PROM which incorporates an on-chip D-type, master-slave data register with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost of pipelined microprogrammed system and other designs
wherein accessed PROM data is temporarily stored in a register. The Am27S27 also offers maximal flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

BLOCK DIAGRAM

PRODUCT SELECTTOR GUIDE

Access Time	55 ns	65 ns
Temperature Range	C	M
Part Number	Am27S27	

Note: Pin 1 is marked for orientation
LOGIC SYMBOL

ORDERING INFORMATION

Am27S27
\qquad

${ }^{8}$ Burn-in Option
B suffix denotes 160 hour burn-in.

Valid Combinations	
Am27S27	PC, PCB,
	DC, DCB,
	DM, DMB

Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M - Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Package
D - 22-pin CERDIP
P-22-pin plastic DIP

Device Type
512×8 Registered PROM

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII.BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

PRODUCT OVERVIEW

When V_{CC} power is first applied, the synchronous enable (E_{S}) flip-flop will be in the set condition causing the outputs, $Q_{0}-Q_{7}$, to be in the OFF or high impedance state, eliminating the need for a register clear input. Reading data is accomplished by first applying the binary word address to the address inputs, $A_{0}-A_{8}$, and a logic LOW to the synchronous output enable, \bar{E}_{S}. During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock, CP, data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable, E, is also LOW, stored data will appear on the outputs, $Q_{0}-Q_{7}$. If
$\mathrm{E}_{\text {S }}$ is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state. The outputs may be disabled at any time by switching \bar{E} to a HIGH level. Following the positive clock edge, the address and synchronous enable inputs are free to change; changes do not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.
The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

ABSOLUTE MAXIMUM RATINGS	OPERATING RANGES
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Commercial (C) Devices
Ambient Temperature with	Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Applied........................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Supply Voltage +4.75 V to +5.25 V
Supply Voltage 0.5 V to +7.0 V	Military (M) Devices
DC Voltage Applied to Outputs (Except During Programming)..........-0.5V to $+V_{C C}$ max	Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage +4.5V to +5.5 V
DC Voltage Applied to Outputs During Programming \qquad .21V	Operating ranges define those limits over which the functionality of the device is guaranteed.
Output Current into Outputs During Programming (Max Duration of 1 sec) \qquad	
DC Input Voltage...............................-0.5V to +5.5 V	
DC Input Current............................ 30 mA to +5 mA	

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N .,{ }_{1 O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{H H} \text { or } V_{I L} \\ & \hline \end{aligned}$		2.4			Volts
$V_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=\text { MIN., } I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\text {IL }} \end{aligned}$			0.38	0.50	Voits
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
$1 / 2$	$\begin{aligned} & \text { Input LOW } \\ & \text { Current } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.010	-0.250	mA
1 H	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
4	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
Isc	Output Short Circuit Current	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V} \\ \text { (Note 2) } \end{array} \\ & \hline \end{aligned}$		-20	-40	-90	mA
Icc	$\begin{aligned} & \text { Power Supply } \\ & \text { Current } \end{aligned}$	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=\text { MAX. } \end{aligned}$			130	185	mA
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN., $\mathrm{I}^{(N-18}=-18 \mathrm{~mA}$				-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V C C=M A X \\ & V E=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	μ
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5		
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 3)			12		pF

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

RATINGS may cause permanent device failure. Functionality_ at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Military (M) Devices
Temperature . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V epaing ranges define those limis over which the functionality of the device is guaranteed.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions		devic			devic		Units
				Min	Typ	Max	Min	Typ	Max	
1	$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Address to CP (HIGH) Setup Time	$C_{L}=30 \mathrm{pF}$ S_{1} closed. (See Switching Test Circuit above)	55	40		65	40		ns
2	$\mathrm{th}_{\mathrm{H}}(\mathrm{A})$	Address to CP (HIGH) Hold Time		0	-15		0	-15		ns
3	$\begin{aligned} & \text { tpHL (CP) }^{\text {tPLH(CP) }} \\ & \hline \end{aligned}$	Delay from CP (HIGH) to Output (HIGH or LOW)			15	27		15	30	ns
4	$\begin{aligned} & \text { twh(CP) } \\ & \text { twL(CP) } \end{aligned}$	CP Width (HIGH or LOW)		30	10		40	10		ns
5	$\mathrm{t}_{S}\left(E_{S}\right)$	$\mathrm{E}_{\text {S }}$ to CP (HIGH) Setup Time		25	10		30	10		ns
6	$\mathrm{t}_{\mathrm{H}}\left(\mathrm{E}_{S}\right)$	$\mathrm{E}_{\text {S }}$ to CP (HIGH) Hold Time		0	-10		0	-10		ns
7	$\begin{aligned} & \text { tpZL (CP) } \\ & t_{\text {pZH }}(C P) \\ & \hline \end{aligned}$	Delay from CP (HIGH) to Active Output (HIGH or LOW)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ S_{1} closed for tpzL and open for tpZH		15	35		15	45	ns
8	$\begin{aligned} & \text { tPZL(E) } \\ & \text { tPZH }(\mathbf{E}) \end{aligned}$	Delay from E (LOW) to Active Output (HIGH or LOW)			15	40		15	45	ns
9	$\begin{aligned} & \text { tpLZ }^{\prime}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{PHZ}}(\mathrm{CP}) \\ & \hline \end{aligned}$	Delay from CP (HIGH) to Inactive Output(OFF or High Impedance)	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 1) S_{1} closed for tplz and open for tPHZ		15	35		15	45	ns
10	$\begin{aligned} & \operatorname{tpLZ}(E) \\ & \operatorname{tpHZ}(E) \end{aligned}$	Delay from E (HIGH) to Inactive Output (OFF or High Impedance)			10	30		10	40	ns

Notes:

1. t PHZ and tPLZ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S28/29

512×8 Bit Generic Series Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- High Speed
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select

GENERAL DESCRIPTION

The Am27S28A/28 and Am27S29A/29 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×8 configuration, they are available in both open collector Am27S28A/28 and three-state Am27S29A/29 output versions. After pro-
gramming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{8}$ and holding the chip select input, CS, at a logic LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{7}$ go to the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	40 ns	50 ns	55 ns	70 ns
Temperature Range	C	M	C	M
Open Collector	27 S 28 A		27 S 28	
Three-State	27 S 29 A		27 S 29	

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASClI BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

OPERATING RANGES

Commercial (C) Devices	
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Supply Voltage.......................... +4.75V to +5.25 V	
Military (M) Devices	
Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	+4.5V to +5.5 V
Operating ranges define ity of the device is guar	which the functional-

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ (Note 1)	Max	Units
$\mathrm{VOH}_{\text {(}}$ Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$.	0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 V$				-0.010	-0.250	mA
IIH	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.7 V$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)			-20	-40	-90	mA
ICC	Power Supply Current	All inputs $=$ GND $V_{C C}=M A X$			-	105	160	mA
V_{1}	Input Clamp Voltage	$V_{C C}=M I N, I_{\mathbb{N}}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{ClN}_{\text {I }}$	Input Capacitance	$V_{1 N}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note .5)			\cdot	8		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		C devices			M devices			Units
				Min	Typ	Max	Min	Typ	Max	
1	$t_{A A}$	Address Access Time	STD		35	55		35	70	ns
			A		30	35		30	45	ns
2	${ }^{\text {t }}$ EA	Enable Access Time	STD		15	25		15	30	ns
			A		12	20		12	25	
3	ter	Enable Recovery Time	STD		15	25		15	30	ns
			A		12	20		12	25	ns

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and tER 2 are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, $t_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests. tER is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{C S}$ is HIGH is determined externally.

For programming information, please see 'Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S30/31

DISTINCTIVE CHARACTERISTICS

- High Speed - 35ns max commercial range access time
- Excellent performance over full MIL and commercial ranges
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select

GENERAL DESCRIPTION

The Am27S30A/30 and Am27S31A/31 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×8 configuration, they are available in both open collector Am27S30A/30 and three-state Am27S31A/31 output versions. After pro-
gramming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{8}$ and holding $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$ LOW and CS_{3} and $\mathrm{CS}_{4} \mathrm{HIGH}$. All other valid input conditions on $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Tlme	40 ns	50 ns	55 ns	70 ns
Temperature Range	C	M	C	M
Open Collector	27 S 30 A		27 S 30	
Three-State	27 S 31 A		27 S 31	

Note: Pin 1 is marked for orientation
LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$
(Pin 22 Open)

ORDERING INFORMATION

Am27S30

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Suppiy Voltage..................................... 0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming)
. -0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$
DC Voltage Applied to Outputs
During Programming
.21V
Output Current into Outputs During
Programming (Max Duration of 1 sec)................. 250 mA
DC Input Voltage...................................-0.5V to +5.5 V
DC Input Current - 30 mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure: Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ (Note 1)	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
$V_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, 1 O L=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
$\mathrm{V}_{1} \mathrm{H}$	Input, HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
V_{11}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
IIL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
liH	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$V_{C C}=$ MAX, $V_{\text {OUT }}=0.0 V$ (Note 4)			-20	-40	-90	mA
ICC	Power Supply Current	$\begin{aligned} & \text { All inputs }=G N D \\ & V_{C C}=M A X \end{aligned}$				115	175	mA
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN, IIN $=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S}=2.4 V \end{aligned}$		$V_{O}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$V_{O}=0.4 \mathrm{~V}$			-40	
C_{iN}	Input Capacitance	$V_{I N}=2.0 \mathrm{~V} @ i=1 \mathrm{MHz}$ (Note 5)				4		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				8		

Notes:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		C devices			M devices			Units
				Min	Typ	Max	Min	Typ	Max	
1	${ }^{t} A A$	Address Access Time	STD		35	55		35	70	ns
			A		30	35		30	45	ns
2	$t_{\text {teA }}$	Enable Access Time	STD		15	25		15	30	ns
			A		12	20		12	25	ns
3	ter	Enable Recovery Time	STD		15	25		15	30	ns
			A		12	20		12	25	ns

Notes:

1. ${ }^{t} A A$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests. tER is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}^{-}} 0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while chip is disabled is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.

DISTINCTIVE CHARACTERISTICS

- High Speed
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- High programming yield
- Low current PNP inputs
- High current open collector and three-state outputs
- Fast chip select

GENERAL DESCRIPTION

The Am27S32A/32 and Am27S33A/33 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×4 configuration, they are available in both open collector Am27S32A/32 and three-state Am27S33A/33 output versions. After pro-
gramming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $A_{0}-A_{9}$ and holding the chip select input, CS_{1}, and CS_{2} LOW. If the chip select input goes to a logic $\mathrm{HIGH}, \mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	35 ns	45 ns	55 ns	70 ns
Temperature Range	C	M	C	M
Open Collector	27 S 32 A		27 S 32	
Three-State	27 S 33 A		27 S 33	

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature with
Ambient Temper $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Supply Voltage $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC Voltage Applied to Outputs
(Except During Programming)
)......... -0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$
DC Voltage Applied to Outputs
During Programming
.21V
Output Current into Outputs During
Programming (Max Duration of $1 \mathbf{s e c}$) \qquad
DC Input Voltage..................................-0.5V to +5.5 V
DC Input Current-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Supply Voltage +4.75 V to +5.25 V	
Military (M) Devices	
Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V
Operating ranges define thos ity. of the device is guar	wich the functional-

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ	Max	Units
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4			Volts
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.45	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)			2.0			Volts
$\mathrm{V}_{\text {LL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{\mathbb{N}}=0.45 \mathrm{~V}$				-0.020	-0.250	mA
${ }_{\text {I }}$	Input HIGH Current	$V_{C C}=M A X, V_{I N}=2.7 \mathrm{~V}$					25	$\mu \mathrm{A}$
ISC (Note 2)	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ ((${ }^{\text {dete 4) }}$			-20	-40	-90	mA
Icc	Power Supply Current	All inputs $=$ GND, $V_{C C}=M A X$		COM'L		105	140	mA
				MIL		105	145	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \times}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=\operatorname{MAX} \\ & V_{C S}=2.4 V \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
			(Note 2)	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40	
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{CiN}^{\text {I }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				5		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				12		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		C devices			M devices			Units
				Min	Typ	Max	Min	Typ	Max	
1	taA	Address Access Time	STD		38	55		38	70	ns
			A		25	35		25	45	ns
2	tea	Enable Access Time	STD		20	25		20	30	ns
			A		18	25		18	30	ns
3	ter	Enable Recovery Time	STD		20	25		20	30	ns
			A		18	25		18	30	

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and teR 2 are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, $\mathrm{t}_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests. tER is tested with $C_{L}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{VOH}^{-} 0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while either $\overline{C S}$ is HIGH is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.

Am27S35/37

1024×8 Bit Generic Series IMOX $^{\text {TM }}$ Bipolar High Performance Registered PROM with Programmable INITIALIZE

DISTINCTIVE CHARACTERISTICS

- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- Versatile synchronous or asynchronous enables for simplified word expansion
- Versatile programmable register $\overline{\text { NITIALIZE }}$ either asynchronous (Am27S35A/35) or synchronous (Am27S37A/37)
- Slim, 24-pin, 300-mil lateral center package occupies approximately $1 / 3$ the board space required by standard discrete PROM and register
- Consumes approximately $1 / 2$ the power of separate PROM/register combination for improved system reliability
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ > 98\%)

The Am27S35A/35 and Am27S37A/37 are high speed electrically programmable Schottky read only memories. Organized in the industry standard 512×8 configuration, they are available in both open collector Am27S35A/35 and three-state Am27S37A/37 output versions. After pro-
gramming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $A_{0}-A_{8}$ and holding CS_{1} and CS_{2} LOW and CS_{3} and CS_{4} HIGH. All other valid input conditions on $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	35 ns	40 ns	40 ns	45 ns
Temperature Range	C	M	C	M
Asynchronous Initialize	Am27S35A		Am27S35	
Synchronous Initialize	Am27S37A		Am27S37	

CONNECTION DIAGRAM
 Top View

DIP
Chip-Pak ${ }^{\text {TM }}$
L-32-2

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

ORDERING INFORMATION

Device Type	
$\begin{aligned} & \text { Am27S35 } \\ & \text { Am27S35A } \end{aligned}$	Asynchronous
$\begin{aligned} & \text { Am27S37 } \\ & \text { Am27S37A } \end{aligned}$	Synchronous

DETAILED DESCRIPTION

The Am27S35A/35 and Am27S37A/37 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 1024 -word by 8 -bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S35A/35 and Am27S37A/37 also offer maximum flexibility for memory expansion and data bus control by providing both synchronous and asynchronous output enables.

When $V_{C C}$ power is first applied, the synchronous enable (\bar{E}_{S}) flip-flop will be in the set condition causing the outputs $\left(Q_{0}-Q_{7}\right)$ to be in the OFF or high impedance state. Reading data is accomplished by first applying the binary word address to the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{\mathrm{g}}$) and a logic LOW to the synchronous enable (\bar{E}_{S}). During the address setup time, stored data is accessed and loaded into the master flip-flops of the data register. Since the synchronous enable setup time is less than the address setup requirement, additional decoding delays may occur in the enable path without reducing memory performance. Upon the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops which drive the output buffers. Providing the asynchronous enable ($\overline{\mathrm{E}}$) is also LOW, stored data will appear on the outputs ($Q_{0}-Q_{7}$). If E_{S} is HIGH when the positive clock edge occurs, outputs go to the OFF or high impedance state regardless of the value of \bar{E}. The outputs may be disabled at any time by switching \vec{E} to a HIGH level. Following the positive clock edge the address and synchronous enable inputs are free to change; changes will not affect the outputs until another positive clock edge occurs. This unique feature allows the PROM decoders and sense amplifiers to access the next location while previously addressed data remains stable on
the outputs. For less complex applications either enable may be effectively eliminated by tying it to ground.

These devices also contain a built-in initialize function. When activated, the initialize control input (INIT) causes the contents of an additional (1025th) 8 -bit word to be loaded into the onchip register. This extra word is user programmable. Since each bit is individually programmable, the initialize function can be used to load any desired combination of HIGHs and LOWs into the register. In the unprogrammed state, activating INiT will perform a register CLEAR (all outputs LOW). If all bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).

This ability to tailor the initialize outputs to the system requirements simplifies system design and enhances performance. The initialize function is useful during power up and timeout sequences. This flexible feature can also facilitate implementation of other sophisticated functions such as a built-in 'jump-start" address.

The Am27S35A/35 has an asynchronous initialize input (INIT). Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the slave flip-flops of the register independent of all other inputs (including CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (\bar{E}) LOW.

The Am27S37A/37 has a synchronous $\overline{\text { NITs }}$ input. Applying a LOW to the INITS input causes an immediate load of the programmed initialize word into the master flip-flops of the register only independent of all other inputs (including CP). To bring this data to the device outputs, the synchronous enable (Es) should be held LOW until the next LOW-to-HIGH transition of the clock (CP). Following this, the data will appear on the outputs after the asynchronous enable $(\overline{\mathrm{E}})$ is brought LOW.

OBTAINING PROGRAMMED UNITS

The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can
be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, however, much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied............................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage...................................... 0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming)..........-0.5V to +Vccmax
DC Voltage Applied to Outputs
During Programming
.21V
Output Current into Outputs During
Programming (Max Duration of 1 sec) \qquad
DC Input Voltage.................................. 0.5 V to +5.5 V
DC Input Current -30 mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature............................... $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage 4.75 V to +5.25 V
Military (M) Devices
Temperature................................. $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage....................... 4.5 V to +5.5 V
Operating ranges define those limits over which the functional-
ity of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note } 1 \end{gathered}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{IOH}_{2}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \hline \end{aligned}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N,{ }_{1 O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			0.38	0.50	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
ILI	Input LOW Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
I_{H}	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$				40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)		-20	-40	-90	mA
Icc	$\begin{aligned} & \text { Power Supply } \\ & \text { Current } \end{aligned}$	All inputs $=\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			130	185	mA
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	Volts
IcEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{E_{1}}=2.4 V \end{aligned}$	$V_{0}=V_{C C}$ $V_{0}=0.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{CIN}_{1 \mathrm{~N}}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5		
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			12		pF

Notes:

1. Typical values are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

Notes:

1. $C_{L}=50 p F$ for all switching characteristics except tpLZ and tPhz.
2. $C_{L}=5 \mathrm{pF}$ for $t_{P L Z}$ and $t_{P H Z}$.

KS000010

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol			STD C devices		$\begin{gathered} \text { STD } \\ M \text { devices } \end{gathered}$		$\begin{gathered} \text { A } \\ \text { C devices } \end{gathered}$		A M devices		Units	
		Description		Min	Max	Min	Max	Min	Max	Min	Max		
1	$t_{s}(A)$	Address to CP (HIGH) Setup Time		35		40		40		45			
2	$t_{H}(\mathrm{~A})$	Address to CP (HIGH) Hold Time		0		0		0		0			
3	$t_{\text {PHL }}$ (CP)	Delay from CP (HIGH) to Output (HIGH or LOW)	All Outputs Simultaneous		20		25		25		30		
4	- tPLH(CP)		Single Output (Note 3)		18		21		20		23		
5	twh(CP)	CP Width (HIGH or LOW)		20		20		20		20			
	twL (CP)												
6	$\mathrm{t}_{5}\left(\mathrm{E}_{\text {S }}\right.$)	OSCP to CP (HIGH Setup			15		15		15		15		
7	$\mathrm{t}_{\mathrm{H}}\left(\overline{\mathrm{ESS}_{S}}\right)$	$\overline{E_{S}}$ to CP (HIGH) Hold Tim		5		5		5		5			
8	tPHL (INIT)	Delay from INTT(LOW) to Outputs (LOW or HIGH)	Am27S35 Only		30		35		35		40		
	$\mathrm{t}_{\text {PLH }}$											ns	
9	$t_{R}(\overline{\text { (NTT }}$)	INIT Recovery (Inactive) to CP (HIGH)		20		20		20		20	.		
10	twl (INIT)	INIT Pulse Width		25		30		25		30			
11	ts(([iNITS)	$\overline{\text { NITIS }}_{S}$ to CP (HIGH) Setup Time	Am27S37 Only	25		30		30	35				
12	$\mathrm{t}_{\mathrm{H}}\left(\overline{\mathrm{INTT}}_{S}\right)$	INITs to CP (HIGH) Hold Time		0		0		0		0			
13	tPZL (CP)	Delay from CP (HIGH) to Active Output (HIGH or LOW)			25		30		30		35		
	tPZH $^{\text {(CP) }}$												
14	tpZL (\bar{E})	Delay from E (LOW) to Ac	utput		25		30		30		35		
	$\operatorname{tPZH}^{(\bar{E})}$	(HIGH or LOW)											
15	tplz(CP)	Delay from CP (HIGH) to	Output		25		30		30		35		
	$\mathrm{t}_{\mathrm{HHZ}}(\mathrm{CP})$	(OFF or HIGH Impedance)											
16	tplz($\overline{\mathrm{E}})$	Delay from \bar{E} (HIGH) to In	Output		25		30		30		35		
	$t_{\text {PHZ }}(\overline{\mathrm{E}})$	(OFF or High Impedance)											

Notes:

1. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.
3. Single register performance numbers provided for comparison with discrete register test data.
4. $t_{P H Z}$ and $t_{P L z}$ are measured to the $\mathrm{VOH}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{v}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V old threshold levels.
5. S_{1} is closed for all tests except for $\mathrm{t}_{\mathrm{PZ}} \mathrm{H}$ and $\mathrm{t}_{\mathrm{PHZ}}$.
6. All device test loads should be located within $2^{\prime \prime}$ of device outputs.

SWITCHING WAVEFORMS

(See Notes on Testing)

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device VCC and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a $0.1 \mu \mathrm{Farad}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of
power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any test.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S40/S41

4096×4 Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM

 (with ultra fast access time)
DISTINCTIVE CHARACTERISTICS

- Ultra fast access time ' A " version (35ns max) - Fast access time Standard version (50ns max) - allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat $A C$ performance over military range
- Member of generic PROM series utilizing standard programming algorithm

GENERAL DESCRIPTION

The Am27S40A, Am27S41A, Am27S40, and Am27S41 are high speed electrically programmable Schottky read only memories. Organized in 4096×4 configuration, they are available in both open collector (Am27S40A and Am27S40) and three-state (Am27S41A and Am27S41) output ver-
sions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{11}$ and holding the chip select inputs, $\overline{\mathrm{CS}}_{1}$ and CS_{2}, LOW. If either chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or HIGH impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	$35 n \mathrm{n}$	50 ns		65 ns
Temperature Range	C	M	C	M
Open Collector	27 S 40 A	27 S 40 A	27 S 40	27 S 40
Three-State	27 S 41 A	27 S 41 A	27 S 41 $27 P S 41$	27 S 41 27 PS 41

Chip-Pak ${ }^{\text {TM }}$

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
LSO00040

ORDERING INFORMATION

Am27S40

Device Type

Am27S40
Am27S40A
Open Collector
Am27S41
Am27S41A
Three State
Am27PS41 Power Switched

POWER SWITCHING

The Am27PS41 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ICC is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

1. When the Am27PS41 is selected by a low level on $\overline{\mathrm{CS}}_{1}$, a current surge is placed on the $V_{C C}$ supply due to the power-

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.
up feature. In order to minimize the effects of this current transient, it is recommended that a 0.1μ f ceramic capacitor be connected from pin 20 to pin 10 at each device. (See Figure 1.)
2. Address access time ($t_{A A}$) can be optimized if a chip enable set-up time (tEAS) of greater than 25 ns is observed. Negative set-up times on chip enable (teAs < 0) should be avoided. (For typical and worse case characteristics, see Figures 2A and 2B.)

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
.$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .-0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming).......... -0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$
DC Voltage Applied to Outputs
During Programming
Output Current into Outputs During
Programming (Max Duration of 1 sec). \qquad .250 mA
DC input Voltage................................... 0.5 V to +5.5 V
DC input Current................................-30mA to +5mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
VOH (TS Devices only)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L			0.45	Volts
			MIL			0.50	
$\mathrm{V}_{\mathbf{H}}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)				0.8	Volts
ILL	Input LOW Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
I'H	Input HIGH Current	$V_{C C}=M A X, V_{I N}=V_{C C}$				40	$\mu \mathrm{A}$
Isc (TS Devices only)	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{OUT}}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	COM'L	-20	-40	-90	mA
			MIL	-15	-40	-90	
Icc	Power Supply Current	All inputs = GND, $V_{C C}=M A X$ $\mathrm{CS}_{1}=2.7 \mathrm{~V}$, All other inputs $=$ GND	COM'L		110	165	mA
			MIL		$\begin{aligned} & 110 \\ & 50 \end{aligned}$	$\begin{gathered} 170 \\ 85 \end{gathered}$	
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN, $\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S_{1}}=2.4 V \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{Clin}^{\text {d }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			5.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			8.0		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampied.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC OPERATING CHARACTERISTICS

Typical Icc Current Surge without 0.1 mF (Icc is Current Supplied by Vcc Power Supply)

OP001130

Typical Icc Current Surge with 0.1mF (Icc is Current Supplied by Vcc Power Supply)

Flgure 2A. taA versus teAS

Figure2B. teA versus taEs

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Notes：
1．$t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$ ．tEAS is defined as chip enable setup time．
2．For the three－state output， t_{EA} is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level； S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests．tER is
tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ ． HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ ； LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level．

SWITCHING WAVEFORMS

Note：Level on output while either $\overline{\mathrm{CS}}$ is HIGH is determined externally．

For programming information，please see＇＂Guide to the Programming of AMD＇s Generic Bipolar PROMs＇，page 2－1．

Am27S43

4096×8 Bit Generic Series Bipolar IMOX ${ }^{\text {TM }}$ PROM

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ >98\%)
- Voltage and temperature compensated providing extremely flat $A C$ performance over military range

GENERAL DESCRIPTION

The Am27S43A and Am27S43 are high speed electrically programmable Schottky read only memories. Organized in 4096×8 configuration, they are available in three-state (Am27S43A and Am27S43) output versions. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by
applying unique binary addresses to $A_{0}-A_{11}$ and holding the chip select input, $\overline{\mathrm{CS}}_{1}$, LOW and $\mathrm{CS}_{2}, \mathrm{HIGH}$. If $\overline{\mathrm{CS}}_{1}$ goes to logic HIGH or CS_{2} goes to logic LOW, $\mathrm{O}_{0}-\mathrm{O}_{7}$ go to the OFF or HIGH impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	40 ns	55 ns		65 ns
Temperature Range	C	M	C	M
Three-State	Am27S43A	Am27S43A	Am27S43	Am27S43

LOGIC SYMBOL

$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\operatorname{Pin} 24 \\ \mathrm{GND} & =\operatorname{Pin} 12\end{aligned}$

ORDERING INFORMATION

Am27S43

B suffix denotes 160 hour burn-in.
Temperature
C - Commercial ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) M- Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

- Package

D - 24-pin ceramic DIP
L - 33-pin leadless chip carrier
P - 24-pin plastic DIP
Speed Select
See Product Selector Guide
Device Type
Am27S43
Three state

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad .-0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming)..........-0.5V to $+V_{\text {ccmax }}$
DC Voltage Applied to Outputs
During Programming
21V
Output Current into Outputs During
Programming (Max Duration of 1 sec)................. 250 mA
DC Input Voltage................................... 0.5 V to +5.5 V
DC Input Current............................... -30 mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices.
Temperature . $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ (Note 1)	Max	Units
$\mathrm{VOH}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		. 2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
IL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
IIH	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$.		40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)		-15	-40	-100	mA
Icc	Power Supply Current	All inputs = GND, $V_{C C}=M A X$	COM'L		135	185	mA
			MIL		135	185	
v_{1}	Input Clamp Voltage	$V_{C C}=M I N, I_{I N}=-18 m A$				-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S_{1}}=2.4 V \end{aligned}$	$V_{O}=V_{C C}$			40	$\mu \mathrm{A}$
			$V_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{CiN}_{\mathrm{I}}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5.0		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ 1=1 \mathrm{MHz}$ (Note 4)			8.0		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For three-state outputs, $t_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. tER is
tested with $C_{L}=5 \mathrm{pF}$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{VOH}^{-} 0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}_{1}$ is HIGH or CS_{2} LOW is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S45/47

2048×8 Generic Series IMOX $^{\text {™ }}$ Bipolar High Performance Registered PROM with Programmable INITIALIZE

DISTINCTIVE CHARACTERISTICS

- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- User programmable for synchronous or asynchronous enable for simplified word expansion
- Versatile programmable register INITIALIZE either asynchronous (Am27S45A/45) or synchronous (Am27S47A/47)
- Slim, 24-pin, 300-mil lateral center package occupies approximately $1 / 3$ the board space required by standard discrete PROM and register
- Consumes approximately $1 / 2$ the power of separate PROM/register combination for improved system reliability
- Platinum-Silicide fuses guarantee high reliability, fast programming, and exceptionally high programming yields (typ > 98\%)

GENERAL DESCRIPTION

These 16K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048×8 configuration, they are available in both versions. After programming, stored information is read on
outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding CS_{1} LOW and CS_{2} and CS_{3} HIGH. All other valid input conditions on $\mathrm{CS}_{1}, \mathrm{CS}_{2}$, and CS_{3} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or HIGH impedance state.

BLOCK DIAGRAMS

Am27S47A/47

PRODUCT SELECTOR GUIDE

Access Time	40ns	45ns		50 ns
Temperature Range	C	M	C	M
Synchronous Initialize	Am27S47A	Am27S47A	Am27S47	Am27S47
Asynchronous Initlalize	Am27S45A	Am27S45A	Am27S45	Am27S45

DETAILED DESCRIPTION

The Am27S45A/45 and Am27S47A/47 are Schottky TTL programmable read only memories (PROMs) incorporating true D-type, master-slave data registers on chip. These devices feature the versatile 2048 -word by 8 -bit organization and are available with three-state outputs. Designed to optimize system performance, these devices also substantially reduce the cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register. The Am27S45A/45 and Am27S47A/47 also offer maximum flexibility for system design by providing either synchronous or asynchronous initialize, and synchronous or asynchronous output enable.

When V_{CC} power is first applied, the state of the outputs will depend on whether the enable has been programmed to be a synchronous or asynchronous enable. If the synchronous enable (E_{S}) is being used, the register will be in the set condition causing the outputs (Q_{0} to Q_{7}) to be in the OFF or HIGH impedance state. If the asynchronous enable (\bar{E}) is being used, the outputs will come up in the OFF or HIGH impedance state only if the enable (\bar{E}) input is at a logic HIGH level. Reading data is accomplished by first applying the binary word address to the address inputs (A_{0} through A_{10}) and a logic LOW to the enable input. During the address setup time, the stored data is accessed and loaded into the master flipflops of the data register. Upon the next LOW-to-HIGH transition of the clock input (CP), data is transferred to the slave flip-flops which drive the output buffers, and the accessed data will appear at the outputs (Q_{0} through Q_{7}). If the asynchronous enable (\bar{E}) is being used, the outputs may be disabled at any time by switching the enable to a logic HIGH, and may be returned to the active state by switching the enable back to the logic LOW state. For devices using the synchronous enable (ESS), the outputs will go into the OFF or HIGH impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the next positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change, since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the PROM decoders and sense amplifiers to access the next location

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be
while previously addressed data remains stable on the outputs.

The on-chip edge-triggered register simplifies system timing since the PROM clock may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

These devices also contain a built-in initialize function. When activated, the initialize control input ($\overline{\mathbb{N} I T}$) causes the contents of an additional (2049th) 8 -bit word to be loaded into the onchip register. This extra word is user programmable. Since each bit is individually programmable, the initialize function can be used to load any desired combination of HIGHs and LOWs into the register. In the unprogrammed state, activating INIT will perform a register CLEAR (all outputs LOW). If all bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).

This ability to tailor the initialize outputs to the system requirements simplifies system design and enhances performance. The initialize function is useful during power up and timeout sequences. This flexible feature can also facilitate implementation of other sophisticated functions such as a built-in "jump-start" address.

The Am27S45A/45 has an asynchronous initialize input (INIT). Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flipflops of the register independent of all other inputs (including CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (E) LOW.

The Am27S47A/47 has a synchronous \bar{N} NTT $_{S}$ input. Applying a LOW to the $\mathbb{I N I T}_{S}$ input causes an immediate load of the programmed initialize word into the master flip-flops of the register only independent of all other inputs (including CP). To bring this data to the outputs of a device with a synchronous enable, the synchronous enable (E_{S}) should be held LOW until the next LOW-to-HIGH transition of the clock (CP). For a device with an asynchronous enable, the data will appear at the device outputs after the next LOW-to-HIGH clock transition if the enable (\bar{E}) is held LOW.
accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

OPERATING RANGES

Commercial (C) Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditlons			Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.38	0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)					0.8	Volts
ILL	Input LOW Current	$V_{C C}=M A X, V_{I N}=0.45 \mathrm{~V}$				-0.020	-0.250	mA
liH	input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$V_{C C}=M A X, V_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)			-20	-40	-90	mA
Icc	Power Supply Current	All inputs $=\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				130	185	mA
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{E}=2.4 V \end{aligned}$	(Note 4)	$V_{O}=V_{C C}$			40	$\mu \mathrm{A}$
				$V_{O}=0.4 \mathrm{~V}$			-40	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ t=1 \mathrm{MHz}$ (Note 5)				5		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)				12		

Notes:

1. Typical values are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING TEST CIRCUIT

Notes:

1. $C_{L}=50 \mathrm{pF}$ for all switching characteristics except tplz and tpHz.
2. $C_{L}=5 p F$ for tpLZ and $t_{P H Z}$.
3. S_{1} is closed for all tests except for tphz and tpZH.
4. All device test loads should be located within $2^{\prime \prime}$ of device outputs.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

		Description		$\begin{gathered} \text { STD } \\ \text { C devices } \end{gathered}$		$\begin{aligned} & \text { STD } \\ & \text { M devices } \end{aligned}$				M devices		Units	
No.	Symbol			Min	Max	Min	Max	Min	Max	Min	Max		
1	ts (A)	Address to CP (HIGH) Setup Time		40		45		45		50		ns	
2	$t_{H}(A)$	Address to CP (HIGH) Hold Time		0		0		0		0		ns	
3	$\mathrm{tPHL}^{\text {(CP) }}$	Delay from CP (HIGH) to Output (HIGH or LOW)	All Outputs Simultaneous		- 20		25		25		30	ns	
4	$t_{\text {PLH }}(\mathrm{CP})$		Single Output (Note 3)		18		21		20		23	ns	
5	tWH(CP)	CP Width (HIGH or LOW)		20		20		20		20		ns	
	twL(CP)												
6	$\mathrm{t}_{\mathrm{S}}\left(\mathrm{E}_{S}\right)$	E_{S} to CP (HIGH) Setup Time			15		15		15		15		ns
7	$\mathrm{t}_{\mathrm{H}}\left(\mathrm{E}_{\mathrm{S}}\right)$	E_{S} to CP (HIGH) Hold Time		5		5		5		5		ns	
8	tphL (INIT)	Delay from $\mathbb{N I T}^{(L O W)}$ to Outputs (LOW or HIGH) (Note 5)			30		35		35		40	ns	
	$t_{\text {PLH }}($ (INTT $)$												
9	$t_{R}($ (NITT)	INIT Recovery (Inactive) to CP (HIGH) (Note 5)		20		20		20		20		ns	
10	twL(INIT)	INTT Pulse Width (Note 5)		25		30		25		30		ns	
11	t_{S} ([1NITS)	INIT's to CP (HIGH) Setup Time (Note 6)		25		30		30		35		ns	
12	th_{H} (101T${ }_{\text {S }}$)	INTTs to CP (HIGH) Hold Time (Note 6)		0		0		0		0		ns	
13	tpzl (CP)	Delay from CP (HIGH) to Active Output (HIGH or LOW) (Note 7)			25		30		30		35	ns	
	tPZH(CP)												
14	tplz(CP)	Delay from CP (HIGH) to Inactive Output . (OFF or HIGH Impedance) (Notes 4 and 7)				25		30		30		35	ns
	tphz $^{\text {(}}$ (P)												
15	$\operatorname{tpzL}^{(E)}$	Delay from \bar{E} (LOW) to Active Output (HIGH or LOW) (Note 8)			25		30		30		35	ns	
	$\mathrm{tpZH}^{(E)}$												
16	tplz(${ }_{\text {(E) }}$	Delay from E (HIGH) to inactive Output (OFF or HIGH Impedance) (Notes 4 and 8)			25		30		30		35	ns	
	${ }_{\text {tPHZ }}($ E $)$												

Notes:

1. Typical values at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.
3. Single register periormance numbers provided for comparison with discrete register test data.
4. tphz and tplz are measured to the $\mathrm{VOH}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{VOL}_{\mathrm{O}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
5. Applies only to the Am27S45A/45 (asynchronous $\overline{\mathbb{N} 1-}$ TIALIZE function).

SWITCHING CHARACTERISTICS（Cont．）

6．Applies only to the Am27S47A／47（synchronous INITIAL－ $\overline{I Z E}$ function）．

7．Applies only when synchronous ENABLE function is used．
8．Applies only when asynchronous ENABLE function is used．

SWITCHING WAVEFORMS
（See Notes on Testing）

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned，taking into account the high performance and output drive capabilities of the parts．The following notes may be useful．

1．Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals．Multiple capacitors are recommended，including a 0.1μ Farad or larger capacitor and a $0.1 \mu \mathrm{Farad}$ or smaller capacitor placed as close to the device terminals as possible． Inadequate decoupling may result in large variations of
power supply voltage，creating erroneous function or tran－ sient performance failures．

2．Do not leave any inputs disconnected（floating）during any tests．

3．Do not attempt to perform threshold tests under AC conditions．Large amplitude，fast ground current transients normally occur as the device outputs discharge the load capacitances．These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observ－ able input noise immunity．

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range

GENERAL DESCRIPTION

The Am27S49A and Am27S49 are high speed electrically programmable Schottky read only memories, organized in 8192×8 configuration. Outputs are three-state. After programming, stored information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by
applying unique binary addresses to $A_{0}-A_{12}$ and holding the chip select input, LOW. If CS goes to logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{7}$ goes to the OFF, or HIGH impedance, state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	40 ns	55ns		65 ns
Temperature Range	C	M	C	M
Three-State	Am27S49A	Am27S49A	Am27S49	Am27S49

ORDERING INFORMATION


```
B suffix denotes 160 hour burn-in.
Temperature
C - Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) M-Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
Package
D - 24-pin ceramic DIP
L - 32-pin leadless chip carrier
P-24-pin plastic DIP
Speed Select
See Product Selector Guide
Device Type
\(8192 \times\) Bipolar PROM
```

Am27S49
Am27S49

Valld Combinations	
Am27S49	PC, PCB,
Am27S49A	DC, DCB,
	LC, LCB,
	DM, DMB,
	LM, LMB

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with.
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming).......... -0.5 V to $+\mathrm{V}_{\mathrm{cc}} \max$
DC Voltage Applied to Outputs
During Programming
.21V
Output Current into Outputs During
Programming (Max Duration of 1 sec) \qquad .250 mA
DC Input Voltage..................................-0.5V to +5.5 V
DC Input Current-30mA to +5 mA
Commercial (C) Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

Stresses above those listed under ABSOLUTE MAXIMUM

 RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O H}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	Volts
IIL	Input LOW Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$				40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$V_{C C}=$ MAX, $V_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 3)		-15	-40	-100	mA
lcc	Power Supply Current	All inputs = GND, $V_{C C}=M A X$	COM'L		160	190	mA
			MIL.		160	190	
V_{1}	Input Clamp Voltage	$V_{C C}=M I N, I_{\mathbb{N}}=-18 \mathrm{~mA}$				-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S}=2.4 V \end{aligned}$	$V_{O}=V_{C C}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{CiN}_{\mathrm{N}}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 4)			5.0		pF
COUT	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 4)			8.0		

Notes:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. These parameters are not 100% tested, but are periodically sampled.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		C devices			M devices			Units
				Min	Typ	Max	Min	Typ	Max	
1	$t_{A A}$	Address Access Time	STD		35	55		35	65	ns
			A		30	40		30	55	
2	tea	Enable Access Time	STD		20	35		20	40	
			A		20	30		20	35	
3	ter	Enable Recovery Time	STD		20	35		20	40	
			A		20	30		20	35	

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For three-state outputs, $\mathrm{t}_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. tER is
tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{v}_{\mathrm{OH}}-0.5 \mathrm{~V}$; LOW to high impedance tests are made with S_{1} closed to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level.

SWITCHING WAVEFORMS

Note: Output level while $\overline{\mathrm{CS}}$ is HIGH is determined externally.

For programming information, please see 'Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

(1024 x 4) 4-Wide Bipolar IMOX ${ }^{\text {TM }}$ Registered PROM with SSR ${ }^{\text {TM }}$ Diagnostics Capability

DISTINCTIVE CHARACTERISTICS

- Highest density fastest performance PROM organization
- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register for serial observability and controllability of the output register
- User-programmable synchronous and asynchronous Enables
- User-programmable for synchronous or asynchronous Initialize
- Increased drive capability, 24mA lol

GENERAL DESCRIPTION

The Am27S65A/65 (1024-word by 4-bit)is Schottky TTL Programmable Read-only Memory (PROM) incorporating true D-type master-slave data registers on chip. This device is available with three-state outputs compatible with lowpower Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls. Designed to optimize system performance and provide the systems designer with on-chip SSR diagnostic capability, this device also substantially reduces the cost and size of
pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.
The on-chip edge-triggered register simplifies system timing since the PROM Clock (PCLK) may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

MODE SELECT TABLE

Data transfers into the shadow register occur on the LOW-toHIGH transition of DCLK. MODE and SDI determines what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. MODE selects whether the data source is the data input or the shadow register output.

Because of the independence of the clock inputs, data can be shifted in the shadow register via DCLK and loaded into the pipeline register from the data input via PCLK as long as no set up or hold times are violated.

Inputs					Outputs			Operation
SDI	MODE	DCLK	PCLK	INITS	SDO	Shadow Register	Pipeline Register	
X	L	1	-	X	S_{3}	$\begin{aligned} & S_{n}+S_{n-1} \\ & S_{0}+S_{01} \end{aligned}$	NA	Serial Shitt; SDI $\mathrm{S}^{\text {S }} \rightarrow \mathrm{S}_{1} \rightarrow \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{3} /$ SDO
X	L	-	\dagger	H	S3	NA	$\begin{gathered} \mathrm{a}_{\mathrm{n}}-\text { - ARRAY } \\ \text { DATA } \end{gathered}$	Normal Load Pipeline Register from PROM
X	L	-	1	L	S3	NA	$\begin{aligned} & Q_{n} \text {-INIT } \\ & \text { DATA } \end{aligned}$	Synchronous Initialize Pipeline Register
L	H	1	-	x	SDI	$S_{n}-Q_{n}$	NA	Load Shadow Register from OUTPUTS ($\left.Q_{0}-Q_{3}\right)$
X	H	-	1	X	SDI	NA	$\mathrm{O}_{n}-\mathrm{S}_{n}$	Load Pipeline Register from Shadow Register
H	H	\dagger	-	X	SDI	Hold	NA	No-Op

FUNCTION TABLE DEFINITIONS
 INPUTS

$\mathrm{H}=\mathrm{HIGH}$
$\mathrm{L}=\mathrm{LOW}$
$\mathrm{x}=$ Don't Care

- - Steady State LOW or HIGH or HIGH-to-LOW transition
$t=$ LOW-to-HIGH transition
-Applies only if the architecture word has been programmed for Synchronous Initialize operation.

DETAILED DESCRIPTION

The Am27S65A/65 contains a 4-bit parallel data register in the array-to-output path intended for normal registered data operations. In parallel with the output data registers is another 4-bit register with shifting capability, called a shadow register. As the name implies the shadow register is intended to be a

DIAGNOSTIC PIN DESCRIPTION

In general, the implementation of Serial Shadow Register (SSR) diagnostics requires the addition of four extra device pins. These pins are

Mode Control (MODE)

Controls the source data for both sets of registers. MODE input is LOW in the normal mode of operation. The PROM array is the input source for the output data registers and the shadow register is in the shift mode (SDI $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2 \rightarrow} \mathrm{~S}_{3}$ / SDO). MODE input HIGH allows transfer of data for diagnostic testing. Shadow register data may be loaded into the output registers or output data bus information may be loaded into the shadow registers.

Dlagnostics Clock (DCLK)

The diagnostics clock is used to load or shift the data into the shadow register. Transfer occurs on the LOW-to-HIGH transition of DCLK.

Serial Data Input (SDI)

This pin performs two functions depending on the state of the MODE input. If MODE is LOW, the SDI pin is a data transfer pin for serial data (SDI $\rightarrow \mathrm{S}_{0}$. If the MODE input is HIGH, the SDI pin is operating as a control pin where SDI asserted LOW permits output data to be loaded into the shadow register on the next LOW-to-HIGH transition of DCLK. SDI asserted HIGH represents a NO-OP function on this device.

Serial Data Output (SDO)

This pin operates as a transfer pin for serial data when the MODE input is LOW ($\mathrm{S}_{3} \rightarrow$ SDO). When MODE is HIGH and SDI operates as a control pin, the SDO pin operates as a pass through SDI control. SDO is an active totem-pole output. DESCRIPTION OF REGISTER CONTROL FUNCTIONS

In order to offer the system designer maximum flexibility these devices contain a programmable output enable pin and/or a
copy (shadow) of the normal output data register. The shadow register can be used in a systematic way to control and observe the output data register in order to exercise any desired system function during a diagnostic test mode.
programmable register initialize pin. The unprogrammed state of these pins is asynchronous operation. Should the system design require, either function may be changed to a synchronous mode of operation by programming an architecture word. The functions available are

Asynchronous Enable (\bar{E})
Synchronous Enable (ES)
Asynchronous Initialize (INIT)
Synchronous $\overline{\text { Initialize (}} \overline{\mathrm{INITS}})$
The Asynchronous Enable ($\overline{\mathrm{E}}$) allows direct control of the three-state output drivers.

The Synchronous Enable ($\overline{\mathrm{ES}_{S}}$) is useful where more than one Registered PROM is bussed together for word depth expansion. In this case, the enable becomes the most significant address bit and, as such, must be synchronized with the data.

The initialize function is a programmable word which can be loaded into the output data registers under single pin control. Since each bit is individually programmable, tho initializo function can be used to load any combination of HIGHs or LOWs into the output data register. This feature is a superset of commonly used preset and clear functions.

Asynchronous $\overline{\text { Initialize }}$ (N/T) can be used to generate any arbitrary microinstruction for system interrupt or Reset. This is useful during power-up or timeout sequences.
Synchronous Initialize (INITS) is useful for 'trap jumps" or interrupts where execution on the next LOW-to-HIGH Clock transition is required. During this operation MODE input must be held low.

The Am27S65A/65 contains an additional Asynchronous Enable (\bar{E}) input on Pin 21 which is not programmable (see block diagram for correct logical implementation).

PROGRAMMING

The Am27S65A/65 Registered PROM is manufactured with a conductive Platinum-Silicide link at each bit location. The output of this memory with the link in place is LOW. In addition to the programmable fusible link array these devices contain
two (2) architecture fuses to program the ENABLE and INITIALIZE input functionality. With these links intact both functions will operate asynchronously. The two-bit architecture word will program functionality according to Table 1.

TABLE 1

Architecture Data Word (Hex)	Am27S65A/65 Input Function	
	Pin 20	Pin 19
0	Asynchronous ENABLE (E)	Asynchronous INITIALIZE (INIT)
8	Synchronous ENABLE (ES)	Asynchronous INITIALIZE (INIT)
4	Asynchronous ENABLE (E)	Synchronous INITIALIZE (INITS)
c	Synchronous ENABLE ($\overline{\mathrm{ESS}_{\text {S }}}$)	Synchronous $\overline{\text { IITIALIZE }}$ ($\overline{\text { INITS }}$)

An additional four-bit word is available for programming the initialization word. The unprogrammed state of this word will initialize the data registers with all outputs LOW.

Programming each bit location (e.g. opening the fusible links) is accomplished by the following sequence: 1) Power is first applied to V_{CC} 2) SDI input is raised to V_{HH} (15 volts). This biases internal conditioning and verification circuitry; 3) The appropriate address is selected; 4) a logic HIGH is applied to the MODE input followed by a LOW-to-HIGH transition of PCLK. This will load the output data registers with active HIGH data to protect the outputs during programming; 5) The output to be programmed is then raised to V_{OP} (20 volts). Current from this 20 volt supply is then gated through the addressed fuse by raising the MODE input from a logic HIGH to $\mathrm{V}_{\mathrm{IHH}}$ (15 volts); 6) After $50 \mu \mathrm{~s}$, the 20 volt supply is removed; 7) The MODE input is taken from $\mathrm{V}_{\mathrm{IHH}}$ to a logic LOW. Each data verification must be preceded by a positive going (LOW-toHIGH) transition of PCLK. This will load the array data into the output data registers. The outputs are then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{~s}$.

Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 ms . If a link has not opened after a total elapsed programming time of 400 ms , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to a HIGH level.
When Pin 19 is raised to a logic HIGH level, the programing circuitry for the array is selected and the programming circuitry for the architecture and initialize words is deselected. When Pin 19 is asserted LOW the array programming circuitry is deselected and the programming circuitry for the architecture and initialize words is selected. The architecture and initialize words are then addressed via the A_{0} input. A_{0} input LOW addresses the architecture word while A_{0} input HIGH addresses the initialize word.
An easy implementation would be to invert the next higher address from a PROM programmer and apply this signal to Pin 19. The array, architecture and initialize words would then be programmed according to Table 2.

TABLE 2

Device	Pin 19	Array Programming Address Field (Hex)	Architecture Word Address (Hex)	Initialize Word Address (Hex)
Am27S65A/65	$\overline{A_{10}}$	000 thru 3FF	400	401

Special verification circuitry within the device will permit the architecture word to be presented at the outputs for programming verification.

The unused DCLK pin should be terminated either HIGH or LOW during programming in order to avoid the possibility of oscillation.

When programming the Am27S65, Pins 20 and 21 should be held LOW throughout the programming and verification cycle.

High-yield fusing of the Platinum-Silicide fuses requires that a substantial current be delivered to the decoded and selected fuse. The fusing current path has been designed to provide a large fusing current safety margin. This, however, generates large current transients at the time MODE input goes to $\mathrm{V}_{\mathrm{IHH}}$ and a proportional current decrease at the time the fuse opens. The magnitude of this current change can be between 50 and 150 mA with rise or fall times of 2 to 10 ns . Some care must be taken to avoid excessive line inductance in the output line to maximize; fusing yields.

The PROMs may become hot during programming due to the large currents being passed. Programming cycles should not be continuously applied to one device for more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an undesired link has been fused. Should this occur, immediately check the programming equipment to make sure all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing. Typical programming yields exceed 98%. Fusing extra bits is generally related to programming equipment problems.

PROGRAMMING						
Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IHH }}$	Control Pin Extra High Level	SDI @ 10-40mA	14.5	15	15.5	Volts
		MODE @ 10-40mA	14.5	15	15.5	
VOP	Program Voitage @ 15-200mA		19.5	20	20.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input High Level During Programming and Verify		2.4	5	5.5	Volts
VILP	Input Low Level During Programming and Verity		0.0	0.3	0.5	Volts
$V_{\text {CCP }}$	$V_{\text {CC }}$ During Programming @ $\mathrm{I}_{\text {cC }}=50-200 \mathrm{~mA}$		5	5.2	5.5	Volts
$\mathrm{dV} \mathrm{OP}^{\text {/dt }}$	Rate of Output Voltage Change		20		250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{dV}_{\mathrm{FE}} / \mathrm{dt}$	Rate of Fusing Enable Voltage Change (MODE Rising Edge)		50		1000	$\mathrm{V} / \mu \mathrm{sec}$
tp	Fusing Time First Attempt		40	50	100	$\mu \mathrm{sec}$
	Subsequent Attempts		4	5	10	msec
$t_{1}-t_{6}$	Delays Between Various Level Changes		100	200	1000	ns
IV	Period During which Output is Sensed for V $\mathrm{Blown}^{\text {Level }}$				500	ns
VONP	Pull-Up Voltage On Outputs Not Being Programmed		$V_{C C P}-0.3$	VCCP	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
R	Pull-Up Resistor On Outputs Not Being Programmed		0.2	2	5.1	k Ω
		gogramming wavef SELECTED ADORESS STA				
A_{n} $\underline{\Gamma}$	FIED PROGRAMMING	IAGRAM	GRAMMIN INFOR is minimum	QUIP ION Willow nd, W 17, 100 Rev. 2 Re	N.E. 052 05*	

DIAGNOSTICS

A diagnostics capability provides the necessary functionality as well as a systematic method for detecting and pin-pointing hardware related failures in a system. This capability must be able to both observe intermediate test points and control intermediate signals - address, data, control, and status - to exercise all portions of the system under test. These two capabilities, observability and controllability, provide the ability to establish a desired set of input conditions and state register values, sample the necessary outputs and determine whether the system is functioning correctly.

testing combinational and sequential NETWORKS

The problem of testing a combinational logic network is well understood. Sets of input signals (test vectors) are applied to the network and the network outputs are compared to the set of computed outputs (result vectors). In some cases sets of test vectors and result vectors can be generated in a computer-aided environment, minimizing engineering effort. Additionally, fault coverage analysis can be automated to provide a measure of how efficient a set of test vectors is at pin-pointing hardware failures. For example, a popular measure of fault coverage computes the percentage of stuck-atones (nodes with outputs always HIGH) and stuck-at-zeros (nodes with outputs always LOW) a given set of test vectors will discover.

Figure 1

A sequential network (Figure 1) is much more difficult to test systematically. The outputs of a sequential network depend not only on the present inputs but also on the internal state of the network. Initializing the internal state register to the value necessary to test a given set of inputs is difficult at best and not easily automated. Additionally, observing the internal state of a sequential network can be very difficult and time consuming if the state information is not directly available. For example, consider the problem of determining the value of an internal 16 -bit counter if only a carry-out signal is available. The counter must be clocked until it reaches the carry-out state and the starting value computed. Up to 65,535 clock cycles may be necessary! An easier method must exist. Serial Shadow Register diagnostics provides this method.

SERIAL SHADOW REGISTER DIAGNOSTICS

Serial Shadow Register diagnostics provides sufficient observability and controllability to turn any sequential network into a combinational network. This is accomplished by providing the means to both initialize (control) and sample (observe) the state elements of a sequential network. Figure 2 shows the method by which Serial Shadow Register diagnostics accomplishes these two functions.

Figure 2

AF000190
Serial Shadow Register diagnostics utilizes an extra multiplexer on the input of each state register and a duplicate or shadow of each state flip/flop in an additional register. The shadow register can be loaded serially via the serial data input (thus the name Serial Shadow Register diagnostics) for controllability. Once the desired state information is loaded into the serial register it can be transferred into the internal state register by selecting the multiplexer and clocking the state register with PLCK. This allows any internal state to be set to a desired state in a simple, quick, and systematic manner.

Internal state information can be sampled by loading the serial register from the state register outputs. This state information can then be shifted out via the serial data output to provide observability. Notice that the serial data inputs and outputs can be cascaded to make long chains of state information available on a minimum number of connections.

In effect, Serial Shadow Register diagnostics breaks the normal feedback path of the sequential network and establishes a logical path with which inputs can be defined and outputs sampled. This means that those techniques which have been developed to test combinational networks can be applied to any sequential network in which Serial Shadow Register diagnostics is utilized.
When normal pipeline registers are replaced by SSR diagnostics pipeline registers, system debug and diagnostics are easily implemented. State information which was inaccessible is now both observable and controllable.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .-0.5 V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming) .-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Voltage Applied to Outputs During Programming .21V
Output Current into Outputs During
Programming (Max Duration of 1 sec)................. 250 mA
DC Input Voltage................................... 0.5 V to +5.5 V
DC Input Current...............................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES
Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{IH}	Input HIGH Level	See Note 2		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	See Note 2				0.8	Volts
V_{1}	Input Clamp Voltage	$V_{C C}=$ Min, $I_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	Volts
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOH}\left(Q_{0}-\mathrm{Q}_{3}\right)=-2 \mathrm{~mA}$	2.4	3.7		Volts
			$1 \mathrm{OH}(\mathrm{SDO})=-0.5 \mathrm{~mA}$				
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{\mathbb{L L}} \end{aligned}$	COM'L IOL $\left(Q_{0}-Q_{3}\right)=24 \mathrm{~mA}$		0.35	0.5	Volts
			$\begin{aligned} & \mathrm{MLL} \mathrm{IOL}_{2}=18 \mathrm{~mA} \\ & \left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)=18 \mathrm{~m} \end{aligned}$				
			OLL (SDO) $=4 \mathrm{~mA}$				
ILL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-40	-250	$\mu \mathrm{A}$
$\mathrm{IH}^{\text {H }}$	Input HIGH Current	$V_{C C}=$ Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			25	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			40	
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{\text {OUT }}=0 V(\text { Note 3) } \end{aligned}$	$Q_{0}-Q_{3}$	-20	-40	-90	mA
			SDO	-10		-85	
lcex	Output Leakage Current (Three-State) $\left(Q_{0}-Q_{3}\right)$	$\begin{aligned} & \mathrm{V}_{C C}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{E} / E_{S}}=2.4 \mathrm{~V} \text { (Note 4) } \end{aligned}$	$V_{\text {OUT }}=V_{\text {CC }}$			50	$\mu \mathrm{A}$
			$V_{\text {OUT }}=0.4 \mathrm{~V}$			-0.15	mA
Icc	$\begin{aligned} & \text { Power Supply } \\ & \text { Current } \end{aligned}$	$V_{C C}=$ Max, All Inputs $=2.4 \mathrm{~V}$			135	185	mA
Cin_{1}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			5		pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			12		pF

Notes:

1. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. These parameters are not 100% tested, but are periodically sampled.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	" $\mathrm{A}^{\prime \prime}$ Versions				Standard Versions				Units
			COM'L		MIL		COM'L		MIL		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	ts (A)	Address to PCLK (HIGH) Setup Time	25		30		30		35		ns
2	$\mathrm{t}_{\mathrm{H}}(\mathrm{A})$	Address to PCLK (HIGH) Hold Time	0		0		0		0		ns
3	tPHL(PCLK)	Delay from PCLK (HIGH) to Output (HIGH or LOW)	4	12	4	17	4	15	4	20	ns
4	tPLH(PCLK)										
5	twL (PCLK)	Clock Puise Width for Output Data Registers (LOW or HIGH)	15		20		20		20		ns
6	twh(PCLK)										
7	${ }_{\text {tPZL }}(\bar{E})$	Asynchronous Enable - Delay from E (LOW) to Active Output (HIGH or LOW) (See Note 4)		17		22		20		25	ns
8	$t_{P Z H}(\bar{E})$										
9	tpLZ ($\bar{E})$	Asynchronous Disable - Delay from E (HIGH) to Inactive Output (OFF or HIGH Impedance) (See Notes 3 and 4)		17		22		20		25	ns
10	$\mathrm{t}_{\text {PHZ }}(\overline{\mathrm{E}})$										
11	$\mathrm{ts}^{\text {(}}$ ($\mathrm{ES}_{\text {S }}$)	$\overline{E S S}_{\text {S }}$ to PCLK (HIGH) SetUp Time (See Note 5)	12		12		15		15		ns
12	$\mathrm{t}_{\mathrm{H}}\left(\overline{\mathrm{E}_{S}}\right)$	$\overline{E_{S}}$ to PCLK (HIGH) Hold Time (See Note 5)	0		0		0		0		ns
13	tPzL(PCLK)	Synchronous Enable - Delay from PCLK (HIGH) to Active Output (HIGH or LOW) (See Note 5)		17		22		20		25	ns
14	${ }_{\text {tPZH }}$ (PCLK)										
15	tPLZ(PCLK)	Synchronous Disable - Delay from PCLK (HIGH) to Inactive Output (OFF or HIGH Impedance) (See Notes 3 and 5)		17		22	.	20		25	ns
16	tPhz(PCLK)										
17	tphL ($\overline{\mathrm{NNT}}$)	Delay from Asynchronous INTT (LOW) to Outputs (LOW or HIGH) (See Note 6)		25		30		30		35	ns
18	tpLH(INIT)										
19	$t_{R}(\overline{\text { INIT }}$)	Asynchronous INIT Recovery (INITT 5) to PCLK (HIGH) (See Note 6)	20		25		25		30		ns
- 20	'WL (INIT)	Asynchronous \mathbb{N} ITT Pulse Width (LOW) (See Note 6)	20		20		25		25		ns
21	$\mathrm{ts}_{\mathrm{s}}(\overline{\mathrm{INTT}})$	Synchronous INIT (LOW) to PCLK (HIGH) Set-Up Time (See Note 7)	15		20		20		25		ns
22	${ }^{\text {the }}$ ($\overline{\text { INIT }}$)	Synchronous $\overline{\text { INIT }}$ (LOW) to PCLK (HIGH) Hold Time (See Note 7)	5		5		5		5		ns

See also AC test loads and notes 2, 3, 8, 9, 10.

SWITCHING WAVEFORMS

for Typical Registered PROM applications
(See Notes on Testing)

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	COM'L		MIL		Unlts
			Min	Max	Min	Max	
1	$\mathrm{t}_{\text {S }}$ (SDI)	Serial Data In to DCLK (H\|GH) SetUp Time	25		30		ns
2	$\mathrm{t}_{\mathrm{H}}($ SDI)	Serial Data In to DCLK (HIGH) Hold Time	0		0		
3	ts(MODE)	MODE to PCLK (HIGH) or DLCK(HIGH) SetUp Time	25		30		
4	t_{H} (MODE)	MODE to PCLK (HIGH) or DCLK (HIGH) Hold Time	0		0		
5	$\mathrm{ts}_{\text {s }}(\mathrm{Q})$	Output to DCLK (HIGH) Setup Time	25		30		
6	$\mathrm{tH}_{\mathrm{H}}(\mathrm{Q})$	Output to DCLK (HIGH) Hold Time	10		15		
7	tpHL (DCLK)	Delay from DCLK (HIGH) to Serial Data Output (HIGH or LOW)		30		40	
8	tPLH(DCLK)						
9	$\mathrm{tPHL}^{\text {(SDI) }}$	Delay from Serial Data Input (LOW or HIGH) to Serial Data Output (LOW or HIGH)-MODE Input HIGH		25		30	
10	$\mathrm{t}_{\text {PLH }}$ (SDI)						
11	twL(DCLK)	Clock Pulse Width for Diagnostic Register(LOW or HIGH)	25		25		
12	twh(DCLK)						

Notes:

1. Typical values are taken at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.
3. tpHz and tpLZ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{VOL}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
4. Applies only if the architecture is configured for Asynchronous Enable.
5. Applies only if the architecture word has been programmed for a Synchronous Enable input.
6. Applies only if the architecture is configured for Asynchronous Initialize.
7. Applies only if the architecture word has been programmed for a Synchronous Initialize input.
8. Component values for AC TEST LOAD are: $R_{1}=300$, $R_{2}=600$, and $C_{L}=50 p F$ for $Q_{0}-Q_{3}$ outputs, $R_{1}=1100, R_{2}=2400$, and $C_{L}=15 p F$ for SDO output.
9. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
10. S_{1} is open for $t_{\text {PHZ }}$ and $t_{P Z H}$ tests. S_{1} is closed for all other $A C$ tests.

SWITCHING WAVEFORMS

for Diagnostics applications
(See Notes on Testing)

WF000840

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of
power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S75

(2048 x 4) 4-Wide Bipolar IMOX ${ }^{\text {TM }}$
Registered PROM with SSR ${ }^{\text {TM }}$ Diagnostics Capability

DISTINCTIVE CHARACTERISTICS

- Highest density fastest performance PROM organization
- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register for serial observability and controllability of the output register
- User-programmable synchronous and asynchronous Enables
- User-programmable for synchronous or asynchronous Initialize
- Increased drive capability, 24 mA IOL

The Am27S75A/75 (2048-word by 4-bit) is Schottky TTL Programmable Read-only Memory (PROM) incorporating true D-type master-slave data registers on chip. This device is available with three-state outputs compatible with lowpower Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls. Designed to optimize system performance and provide the systems designer with on-chip SSR diagnostic capability, this device also substantially reduce the cost and size of
pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.
The on-chip edge-triggered register simplifies system timing since the PROM Clock (PCLK) may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	25 ns	30 ns		35 ns
Temperature Range	C	C	M	M
Part Number	27 S 75 A	27 S 75	27 S 75 A	27 S 75

CONNECTION DIAGRAM
 Top View

Am27S75
(2048 x 4)
Chip-Pak ${ }^{\text {TM }}$
Am27S75
(2048 x 4)

CD000550

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Device Type
2048 x Bipolar IMOX Registered PROM
*Chip-pak are rated at maximum case temparature only. This package will be available soon. Consult factory.
This device is also available in die form to commercial and military specifications.
Pad layout and bonding diagram available upon request.

MODE SELECT TABLE

Data transfers into the shadow register occur on the LOW-toHIGH transition of DCLK. MODE and SDI determines what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. MODE selects whether the data source is the data input or the shadow register output.

Because of the independence of the clock inputs, data can be shifted in the shadow register via DCLK and loaded into the pipeline register from the data input via PCLK as long as no set up or hold times are violated.

Inputs					Outputs			Operation
SDI	MODE	DCLK	PCLK	INITs	SDO	Shadow Register	Pipeline Register	
X	L	\dagger	-	X	S_{3}	$\begin{aligned} & S_{n-}-S_{n-1} \\ & S_{0}-S D I \end{aligned}$	NA	Serial Shift; SDI $\mathrm{S}_{0 \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2 \rightarrow} \mathrm{~S}_{3} / \mathrm{SDO}}$
X	L	-	\dagger	H	S_{3}	NA	$\begin{aligned} & Q_{n-}-\text { ARRAY } \\ & \text { DATA } \end{aligned}$	Normal Load Pipeline Register from PROM
X	L	-	\dagger	L	S_{3}	NA	$\begin{aligned} & Q_{n-I N I T} \\ & \text { DATA } \end{aligned}$	Synchronous Initialize Pipeline Register
L	H	\dagger	-	x	SDI	$S_{n}-Q_{n}$	NA	Load Shadow Register from OUTPUTS $\left(Q_{0}-Q_{3}\right)$
X	H	-	\dagger	X	SDI	NA	$\mathrm{Q}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}}$	Load Pipeline Register from Shadow Register
H	H	\dagger	-	x	SDI	Hold	NA	No-Op

mode select table definitions

INPUTS

$\mathrm{H}=\mathrm{HIGH}$
L= LOW
$\mathrm{X}=$ Don't Care

- = Steady State LOW or HIGH or HIGH-to-LOW transition
$\dagger=$ LOW-to-HIGH transition

OUTPUTS

SDO = Serial Data Output
$\mathrm{S}_{3}-\mathrm{S}_{0}=$ Shadow Register Outputs (internal to devices)
$\mathrm{Q}_{3}-\mathrm{Q}_{0}=$ Pipeline Register Outputs
NA $=$ NOT applicable: Output is not a function of the specified input combinations
*Applies only if the architecture word has been programmed for Synchronous Initialize operation.

DETAILED DESCRIPTION

The Am27S75A/75 contains a 4-bit parallel data register in the array-to-output path intended for normal registered data operations. In parallel with the output data registers is another 4-bit register with shifting capability, called a shadow register. As the name implies the shadow register is intended to be a copy (shadow) of the normal output data register. The shadow register can be used in a systematic way to control and observe the output data register in order to exercise any desired system function during a diagnostic test mode.

DIAGNOSTIC PIN DESCRIPTION

In general, the implementation of Serial Shadow Register (SSR) diagnostics requires the addition of four extra device pins. These pins are

Mode Control (MODE)

Controls the source data for both sets of registers. MODE input is LOW in the normal mode of operation. The PROM array is the input source for the output data registers and the shadow register is in the shift mode (SDI $\rightarrow \mathrm{S}_{0 \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2 \rightarrow} \rightarrow \mathrm{~S}_{3} \text { / }}$ SDO). MODE input HIGH allows transfer of data for diagnostic testing. Shadow register data may be loaded into the output registers or output data bus information may be loaded into the shadow registers.

Diagnostics Clock (DCLK)

The diagnostics clock is used to load or shift the data into the shadow register. Transfer occurs on the LOW-to-HIGH transition of DCLK.

Serial Data Input (SDI)

This pin performs two functions depending on the state of the MODE input. If MODE is LOW, the SDI pin is a data transfer pin for serial data (SDI $\rightarrow \mathrm{S}_{0}$. If the MODE input is HIGH, the SDI pin is operating as a control pin where SDI asserted LOW permits output data to be loaded into the shadow register on the next LOW-to-HIGH transition of DCLK. SDI asserted HIGH represents a NO-OP function on this device.

Serlal Data Output (SDO)

This pin operates as a transfer pin for serial data when the MODE input is LOW ($\mathrm{S}_{3} \rightarrow$ SDO). When MODE is HIGH and SDI operates as a control pin, the SDO pin operates as a pass through of SDI control. SDO is an active totem-pole output.

DESCRIPTION OF REGISTER CONTROL FUNCTIONS

In order to offer the system designer maximum flexibility these devices contain a programmable output enable pin and/or a programmable register initialize pin. The unprogrammed state of these pins is asynchronous operation. Should the system design require, either function may be changed to a synchronous mode of operation by programming an architecture word. The functions available are
Asynchronous Enable (\bar{E})
Synchronous Enable ($\overline{\mathrm{ES}_{\mathrm{S}}}$)
Asynchronous Initialize (INIT)
Synchronous Initialize (INITS)
The Asynchronous Enable (\bar{E}) allows direct control of the three-state output drivers.

The Synchronous Enable ($\overline{E_{S}}$) is useful where more than one Registered PROM is bussed together for word depth expansion. In this case, the enable becomes the most significant address bit and, as such, must be synchronized with the data.

The initialize function is a programmable word which can be loaded into the output data registers under single pin control. Since each bit is individually programmable, the initialize function can be used to load any combination of HIGHs or LOWs into the output data register. This feature is a superset of commonly used preset and clear functions.
Asynchronous $\overline{\text { Initialize }}(\overline{\mathrm{N} / \mathrm{T}}$) can be used to generate any arbitrary microinstruction for system interrupt or Reset. This is useful during power-up or timeout sequences.
Synchronous Initialize (ㅈNITS) is useful for "trap jumps" or interrupts where execution on the next LOW-to-HIGH Clock transition is required. During this operation MODE input must be held low.

The Am27S65A/65 contains an additional Asynchronous $\overline{\text { Enable }}(\overline{\mathrm{E}})$ input on Pin 21 which is not programmable (see block diagram for correct logical implementation).
The Am27S85A/85 contains a single programmable multifunctional input on Pin 19. The unprogrammed state of this pin operates as an Asynchronous Enable $(\overline{\mathrm{E}})$ input. The architecture word permits programming the functionality to Synchronous Enable ($\overline{\mathrm{ES}_{S}}$), Asynchronous Initialize ($\overline{\mathrm{INIT}}$), or Synchronous Initialize (INITS).

PROGRAMMING

The Am27S75A/75 Registered PROM is manufactured with a conductive Platinum-Silicide link at each bit location. The output of these memories with the link in place is LOW. In addition to the programmable fusible link array these devices
contain two (2) architecture fuses to program the ENABLE and INITIALIZE input functionality. With these links intact both functions will operate asynchronously. The two-bit architecture word will program functionality according to Table 1.

TABLE 1

Architecture Data Word (Hex)	Am27S75A/75 Input Function	
	Pin 20	Pln 19
0	Asynchronous ENABLE (E)	Asynchronous INITIALIZE (INIT)
8	Synchronous ENABLE (ES)	Asynchronous INITIALIZE (INIT)
4	Asynchronous ENABLE (E)	Synchronous INITIALIZE (INITS)
c	Synchronous ENABLE (ES)	Synchronous $\overline{\text { INTIALIZE }}$ ($\overline{\text { INITS }}$)

An additional four-bit word is available for programming the initialization word. The unprogrammed state of this word will initialize the data registers with all outputs LOW.

Programming each bit location (e.g. opening the fusible links) is accomplished by the following sequence: 1) Power is first applied to V_{CC}; 2) SDI input is raised to $\mathrm{V}_{\mathrm{IHH}}$ (15 volts). This biases internal conditioning and verification circuitry; 3) The appropriate address is selected; 4) a logic HIGH is applied to the MODE input followed by a LOW-to-HIGH transition of PCLK. This will load the output data registers with active HIGH data to protect the outputs during programming; 5) The output to be programmed is then raised to VOP (20 volts). Current from this 20 volt supply is then gated through the addressed fuse by raising the MODE input from a logic HIGH to $\mathrm{V}_{\text {IHH }}$ (15 volts); 6) After $50 \mu \mathrm{~s}$, the 20 volt supply is removed; 7) The MODE input is taken from $\mathrm{V}_{\mathrm{iHH}}$ to a logic LOW. Each data verification must be preceded by a positive going (LOW-toHIGH) transition of PCLK. This will load the array data into the output data registers. The outputs are then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{~s}$.

Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 ms . If a link has not opened after a total elapsed programming time of 400 ms , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to a HIGH level.

When Pin 19 is raised to a logic HIGH level, the programming circuitry for the array is selected and the programming circuitry for the architecture and initialize words is deselected. When Pin 19 is asserted LOW the array programming circuitry is deselected and the programming circuitry for the architecturo and initialize words is selected. The architecture and initializo words are then addressed via the A_{0} input. A_{0} input LOW addresses the architecture word while A_{0} input HIGH addresses the initialize word.

An easy implementation would be to invert the next higher address from a PROM programmer and apply this signal to Pin 19. The array, architecture and initialize words would then be programmed according to Table 2.

TABLE 2

Device	Pln 19	Array Programming Address Fleld (Hex)	Archltecture Word Address (Hex)	Initlalize Word Address (Hex)
Am27S75A/75	$\overline{A_{11}}$	000 thru 7FF	800	801

Special verification circuitry within the device will permit the architecture word to be presented at the outputs for programming verification.
The unused DCLK pin should be terminated either HIGH or LOW during programming in order to avoid the possibility of oscillation.

High-yield fusing of the Platinum-Silicide fuses requires that a substantial current be delivered to the decoded and selected fuse. The fusing current path has been designed to provide a large fusing current safety margin. This, however, generates large current transients at the time MODE input goes to V_{IH} and a proportional current decrease at the time the fuse opens. The magnitude of this current change can be between 50 and 150 mA with rise or fall times of 2 to 10 ns . Some care must be taken to avoid excessive line inductance in the output line to maximize fusing yields.

The PROMs may become hot during programming due to the large currents being passed. Programming cycles should not
be continuously applied to one device for more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including $V_{C C}$ should be removed for a period of 5 seconds after which programming

When all programming has been completed the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an undesired link has been fused. Should this occur, immediately check the programming equipment to make sure all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins and that the programming voltages are within the specified limits. All these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing. Typical programming yields exceed 98%. Fusing extra bits is generally related to programming equipment problems.
may be resumed.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IHH }}$	Control Pin Extra High Level	SDI @ 10-40mA	14.5	15	15.5	Volts
		MODE @ 10-40mA	14.5	15	15.5	
Vop	Program Voltage @ 15-200mA		19.5	20	20.5	Volts
$\mathrm{V}_{\text {IHP }}$	Input High Level During Programming and Verity		2.4	5	5.5	Volts
VILP	Input Low Level During Programming and Verity		0.0	0.3	0.5	Volts
VCCP	$V_{C C}$ During Programming @ $\mathrm{I}_{\text {cC }}=50-200 \mathrm{~mA}$		5	5.2	5.5	Volts
$\mathrm{dV}_{\text {OP }} / \mathrm{dt}$	Rate of Output Voltage Change		20		250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{dV}_{\mathrm{FE}} / \mathrm{dt}$	Rate of Fusing Enable Voltage Change (MODE Rising Edge)		50		1000	$\mathrm{V} / \mu \mathrm{sec}$
tp	Fusing Time First Attempt		40	50	100	$\mu \mathrm{sec}$
	Subsequent Attempts		4	5	10	msec
$t_{1}-t_{6}$	Delays Between Various Level Changes		100	200	1000	ns
tv	Period During which Output is Sensed for $\mathrm{V}_{\text {Blown }}$ Level				500	ns
VONP	Pull-Up Voltage On Outputs Not Being Programmed		$\mathrm{V}_{\text {CCP }}-0.3$	$V_{\text {CCP }}$	$\mathrm{V}_{\mathrm{CCP}}+0.3$	Volts
R	Pull-Up Resistor On Outputs Not Being Programmed		0.2	2	5.1	$\mathrm{k} \Omega$

PROGRAMMING WAVEFORMS

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT

INFORMATION

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052
Programmer Mode(s)	Systems 17, 19, 29, and 100
AMD Personality Module	UNIPAK Rev. 005* UNIPAK 2 Rev. V05*
Socket Adapter	351A-073
"Rev shown is minimum approved revision.	

APPLYING SERIAL SHADOW REGISTER (SSR) DIAGNOSTICS IN BIPOLAR MICROCOMPUTERS

DIAGNOSTICS

A diagnostics capability provides the necessary functionality as well as a systematic method for detecting and pin-pointing hardware related failures in a system. This capability must be able to both observe intermediate test points and control intermediate signals - address, data, control, and status - to exercise all portions of the system under test. These two capabilities, observability and controllability, provide the ability to establish a desired set of input conditions and state register values, sample the necessary outputs and determine whether the system is functioning correctly.

TESTING COMBINATIONAL AND SEQUENTIAL NETWORKS

The problem of testing a combinational logic network is well understood. Sets of input signals (test vectors) are applied to the network and the network outputs are compared to the set of computed outputs (result vectors). In some cases sets of test vectors and result vectors can be generated in a computer-aided environment, minimizing engineering effort. Additionally, fault coverage analysis can be automated to provide a measure of how efficient a set of test vectors is at pin-pointing hardware failures. For example, a popular measure of fault coverage computes the percentage of stuck-atones (nodes with outputs always HIGH) and stuck-at-zeros (nodes with outputs always LOW) a given set of test vectors will discover.

Figure 1

AF000180
A sequential network (Figure 1) is much more difficult to test systematically. The outputs of a sequential network depend not only on the present inputs but also on the internal state of the network. Initializing the internal state register to the value necessary to test a given set of inputs is difficult at best and not easily automated. Additionally, observing the internal state of a sequential network can be very difficult and time consuming if the state information is not directly available. For example, consider the problem of determining the value of an internal 16 -bit counter if only a carry-out signal is available. The counter must be clocked until it reaches the carry-out state and the starting value computed. Up to 65,535 clock cycles may be necessary! An easier method must exist. Serial Shadow Register diagnostics provides this method.

SERIAL SHADOW REGISTER DIAGNOSTICS

Serial Shadow Register diagnostics provides sufficient observability and controllability to turn any sequential network into a combinational network. This is accomplished by providing the means to both initialize (control) and sample (observe) the state elements of a sequential network. Figure 2 shows the method by which Serial Shadow Register diagnostics accomplishes these two functions.

Figure 2

AF000190
Serial Shadow Register diagnostics utilizes an extra multiplexer on the input of each state register and a duplicato or shadow of each state flip/flop in an additional rogistor. Tho shadow register can be loaded serially via tho sorial data input (thus the name Serial Shadow Register diagnostics) for controllability. Once the desired state information is loaded into the serial register it can be transferred into the internal state register by selecting the multiplexer and clocking the state register with PLCK. This allows any internal state to be set to a desired state in a simple, quick, and systematic manner.

Internal state information can be sampled by loading the serial register from the state register outputs. This state information can then be shifted out via the serial data output to provide observability. Notice that the serial data inputs and outputs can be cascaded to make long chains of state information available on a minimum number of connections.

In effect, Serial Shadow Register diagnostics breaks the normal feedback path of the sequential network and establishes a logical path with which inputs can be defined and outputs sampled. This means that those techniques which have been developed to test combinational networks can be applied to any sequential network in which Serial Shadow Register diagnostics is utilized.

When normal pipeline registers are replaced by SSR diagnostics pipeline registers, system debug and diagnostics are easily implemented. State information which was inaccessible is now both observable and controllable.

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ (Note 1)	Max	Units
V_{IH}	Input HIGH Level	See Note 2		2.0			Volts
$V_{\text {IL }}$	Input LOW Level	See Note 2				0.8	Volts
V_{1}	Input Clamp Voltage	$V_{C C}=$ Min, $\operatorname{liN}^{\prime}=-18 \mathrm{~mA}$				-1.2	Volts
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M i n \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{O}_{\mathrm{OH}}\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)=-2 \mathrm{~mA}$	2.4	3.7		Volts
			$1 \mathrm{OH}(\mathrm{SDO})=-0.5 \mathrm{~mA}$				
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	COM'L IOL $\left(Q_{0}-Q_{3}\right)=24 \mathrm{~mA}$		0.35	0.5	Volts
			$\begin{aligned} & \mathrm{MIL} \mathrm{IOL}_{2} \\ & \left(Q_{0}-Q_{3}\right)=18 \mathrm{~mA} \end{aligned}$				
			$\mathrm{IOL}(\mathrm{SDO})=4 \mathrm{~mA}$				
11.	Input LOW Current	$V_{C C}=$ Max, $V_{\text {IN }}=0.4 \mathrm{~V}$			-40	-250	$\mu \mathrm{A}$
I'H	Input HIGH Current	$V_{C C}=$ Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			25	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$.	40	
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{\text {OUT }}=O V \text { (Note 3) } \end{aligned}$	$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	-20	-40	-90	mA
			SDO	-10		-85	
Icex	Output Leakage Current (Threestate) $\left(Q_{0}-Q_{3}\right)$	$V_{C C}=M a x$ $\mathrm{VE} / \mathrm{E}_{\mathrm{S}}=2.4 \mathrm{~V}$ (Note 4)	$V_{\text {OUT }}=V_{\text {CC }}$			50	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			-0.15	mA
Icc	Power Supply Current	$V_{C C}=$ Max, All inputs $=2.4 \mathrm{~V}$			135	185	mA
$\mathrm{Cin}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{\mathbf{N}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			5		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 5)			12		pF

Notes:

1. Typical values are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	"A" Versions				Standard Versions				Units
			COM'L		MIL		COM'L		MIL		
			Min	Max	Mln	Max	Min	Max	Min	Max	
1	$\mathrm{ts}_{s}(\mathrm{~A})$	Address to PCLK (HIGH) Setup Time	25		30		30		35		ns
2	$t_{H}(A)$	Address to PCLK (HIGH) Hold Time	0		0		0		0		ns
3	$\mathrm{t}_{\text {PHL }}(\mathrm{PCLK}$)	Delay from PCLK (HIGH) to Output (HIGH or LOW)	4	12	4	17	4	15	4	20	ns
4	$\mathrm{t}_{\text {PLH }}$ (PCLK)										
5	twL (PCLK)	Clock Pulse Width for Output Data Registers (LOW or HIGH)	15		20		20		20		ns
6	${ }_{\text {WHH }}$ (PCLK)										
7	$\mathrm{t}_{\mathrm{PZL}}(\mathbf{E})$	Asynchronous Enable - Delay from $\overline{\mathrm{E}}$ (LOW) to Active Output (HIGH or LOW) (See Note 4)		17		22		20		25	ns
8	$\operatorname{tpzH}^{(E)}$										
9	$\operatorname{tPLZ}^{(E)}$	Asynchronous Disable - Delay from $\overline{\mathrm{E}}$ (HIGH) to Inactive Output (OFF or HIGH Impedance) (See Notes 3 and 4)		17		22		20		25	ns
10	$\mathrm{t}_{\mathrm{PH} \mathrm{L}}(\overline{\mathrm{E}})$										
11	$\mathrm{ts}_{\mathrm{S}}\left(\overline{\mathrm{ES}_{S}}\right)$	Es to PCLK (HIGH) Set-Up Time (See Note 5)	12		12		15		15		ns
12	$\mathrm{t}_{\mathrm{H}}\left(\overline{\mathrm{ES}_{S}}\right)$	$\overline{E_{S}}$ to PCLK (HIGH) Hold Time (See Note 5)	0		0		0		0		ns
13	$t_{\text {PZL }}(\mathrm{PCLK})$	Synchronous Enable - Delay from PCLK (HIGH) to Active Output (HIGH or LOW) (See Note 5)		17		22		20		25	ns
14	$\mathrm{t}_{\text {PZH }}$ (PCLK)										
15	tplz(PCLK)	Synchronous Disable - Delay from PCLK (HIGH) to Inactive Output (OFF or HIGH Impedance) (See Notes 3 and 5)		17		22		20		25	ns
16	$\mathrm{t}_{\text {PHZ }}$ (PCLK)										
17	$\mathrm{tPHL}^{\text {(INTT) }}$	Delay from Asynchronous INIT (LOW) to Outputs (LOW or HIGH) (See Note 6)		25		30		30		35	ns
18	tPLH(INIT)										
19	$t_{\text {R }}(\overline{\text { (NIT }}$)	Asynchronous INIT Recovery (INIT 5) to PCLK (HIGH) (See Note 6)	20		25		25		30		ns
20	${ }_{\text {twL }}$ (INIT)	Asynchronous INIT Pulse Width (LOW) (See Note 6)	20		20		25		25		ns
21	$\mathrm{ts}_{\mathrm{s}}(\overline{\text { NTIT }}$)	Synchronous $\overline{\text { INIT }}$ (LOW) to PCLK (HIGH) Set-Up Time (See Note 7)	15		20		20		25		ns
22	$\mathrm{t}_{\mathrm{H}}(\overline{\text { INTT }}$)	Synchronous INIT (LOW) to PCLK (HIGH) Hold Time (See Note 7)	5		5		5		5		ns

See also AC test loads and notes 2, 3, 8, 9, 10.

SWITCHING WAVEFORMS

for Typical Registered PROM applications
(See Notes on Testing)

DIAGNOSTIC MODE SWITCHING CHARACTERISTICS

OVER OPERATING RANGE (Unless otherwise noted)

No.	Symbol	Description	COM'L		MIL		Units
			Min	Max	Min	Max	
1	$\mathrm{ts}_{\text {S }}(\mathrm{SDI})$	Serial Data In to DCLK (HIGH) Set-Up Time	25		30		ns
2	${ }^{\text {H }}$ (SDI)	Serial Data in to DCLK (HIGH) Hold Time	0		0		
3	ts(MODE)	MODE to PCLK (HIGH) or DLCK(HIGH) Set-Up Time	25		30		
4	$\mathrm{th}_{\mathrm{H}}(\mathrm{MODE})$	MODE to PCLK (HIGH) or DCLK (HIGH) Hold Time	0		0		
5	$\mathrm{t}_{\mathrm{s}}(\mathrm{Q})$	Output to DCLK (HIGH) Setup Time	25		30		
6	$\mathrm{t}_{\mathrm{H}}(\mathrm{Q})$	Output to DCLK (HIGH) Hold Time	10		15		
7	tPHL $^{\text {(DCLK) }}$	Delay from DCLK (HIGH) to Serial Data Output (HIGH or LOW)		30		40	
8	$\left.\mathrm{tPLH}^{(D C L K}\right)$						
9	tPHL (SDI)	Delay from Serial Data Input (LOW or HIGH) to Serial Data Output (LOW or HIGH)-MODE Input HIGH		25	.	30	
10	tPLH(SDI)				,		
11	twL (DCLK)	Clock Pulse Width for Diagnostic Register(LOW or HIGH)	25		25		
12	tWH(DCLK)						

Notes:

1. Typical values are taken at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.
3. $\mathrm{t}_{\mathrm{PHz}}$ and $\mathrm{t}_{\mathrm{PLZ}}$ are measured to the $\mathrm{VOH}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
4. Applies only if the architecture is configured for Asynchronous Enable.
5. Applies only if the architecture word has been programmed for a Synchronous Enable input.
6. Applies only if the architecture is configured for Asynchronous Initialize.
7. Applies only if the architecture word has been programmed for a Synchronous Initialize input.
8. Component values for AC TEST LOAD are: $\mathrm{R}_{1}=300$, $R_{2}=600$, and $C_{L}=50 p F$ for $Q_{0}-Q_{3}$ outputs, $R_{1}=1100, R_{2}=2400$, and $C_{L}=15 p F$ for SDO output.
9. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
10. S_{1} is open for tPHZ and $t_{\text {PZH }}$ tests. S_{1} is closed for all other $A C$ tests.

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of
power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.

Am27S85

(1024 x 4) 4-Wide Bipolar IMOX ${ }^{\text {™ }}$
Registered PROM with SSR ${ }^{\text {TM }}$ Diagnostics Capability

DISTINCTIVE CHARACTERISTICS

- Highest density fastest performance PROM organization
- On-chip edge-triggered registers - ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register for serial observability and controllability of the output register
- User-programmable synchronous and asynchronous Enables
- User-programmable for synchronous or asynchronous Initialize
- Increased drive capability, 24mA IOL

GENERAL DESCRIPTION

The Am27S85A/85 (4096-word by 4-bit) is Schottky TTL Programmable Read-only Memory (PROM) incorporating true D-type master-slave data registers on chip. This device is available with three-state outputs compatible with lowpower Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls. Designed to optimize system performance and provide the systems designer with on-chip SSR diagnostic capability, these devices also substantially reduce the cost and size of
pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.

The on-chip edge-triggered register simplifies system timing since the PROM Clock (PCLK) may be derived directly from the system clock without introducing dangerous race conditions. Other register timing requirements are similar to those of standard Schottky registers and are easily implemented.

Device Type
1024 x Bipolar IMOX Registered PROM
*Chip-pak are rated at maximum case temperature only. This package will be available soon. Consult Factory.
This device is also available in die form to commercial and military specifications.
Pad layout and bonding diagram available upon request.

MODE SELECT TABLE

Data transfers into the shadow register occur on the LOW-toHIGH transition of DCLK. MODE and SDI determines what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. MODE selects whether the data source is the data input or the shadow register output.

Because of the independence of the clock inputs, data can be shifted in the shadow register via DCLK and loaded into the pipeline register from the data input via PCLK as long as no set up or hold times are violated.

Inputs					Outputs			Operation
SDI	MODE	DCLK	PCLK	INITs	SDO	Shadow Register	Plpeline Register	
X	L	1	-	X	S_{3}	$\begin{gathered} S_{n-} S_{n-1} \\ S_{0}+S D I \\ \hline \end{gathered}$	NA	Serial Shift; SDI $\rightarrow \mathrm{S}_{0 \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{3} / \text { SDO }}$
X	L	-	\dagger	H	S_{3}	NA	$Q_{n}-\text { ARRAY }$	Normal Load Pipeline Register from PROM
X	L	-	1	L	S_{3}	NA	$\underset{\text { DATA }}{\mathrm{Q}_{\mathrm{n}}-\operatorname{INTT}}$	Synchronous Initialize Pipeline Register
L	H	1	-	X	SDI	$S_{n}+Q_{n}$	NA	Load Shadow Register from OUTPUTS ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$)
X	H	-	t	X	SDI	NA	$Q_{n}+S_{n}$	Load Pipeline Register from Shadow Register
H	H	1	-	X	SDI	Hold	NA	No-Op

mode select table definitions

inputs

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
$\mathrm{X}=$ Don't Care

- - Steady State LOW or HIGH or HIGH-to-LOW transition
$\dagger=$ LOW-to-HIGH transition

SDO = Serial Data Output
$\mathrm{S}_{3}-\mathrm{S}_{0}=$ Shadow Register Outputs (internal to devices)
$Q_{3}-Q_{0}=$ Pipeline Register Outputs
NA $=$ NOT applicable: Output is not a function of the specified input combinations
-Applies only if the architecture word has been programmed for Synchronous Initialize operation.

DETAILED DESCRIPTION

The Am27S85A/85 contains a 4-bit parallel data register in the array-to-output path intended for normal registered data operations. In parallel with the output data registers is another 4-bit register with shifting capability, called a shadow register. As the name implies the shadow register is intended to be a copy (shadow) of the normal output data register. The shadow register can be used in a systematic way to control and observe the output data register in order to exercise any desired system function during a diagnostic test mode.

DIAGNOSTIC PIN DESCRIPTION

In general, the implementation of Serial Shadow Register (SSR) diagnostics requires the addition of four extra device pins. These pins are

Mode Control (MODE)

Controls the source data for both sets of registers. MODE input is LOW in the normal mode of operation. The PROM array is the input source for the output data registers and the shadow register is in the shift mode (SDI $\rightarrow \mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{3}$ / SDO). MODE input HIGH allows transfer of data for diagnostic testing. Shadow register data may be loaded into the output registers or output data bus information may be loaded into the shadow registers.

Dlagnostics Clock (DCLK)

The diagnostics clock is used to load or shift the data into the shadow register. Transfer occurs on the LOW-to-HIGH transition of DCLK.

Serial Data Input (SDI)

This pin performs two functions depending on the state of the MODE input. If MODE is LOW, the SDI pin is a data transfer pin for serial data ($\mathrm{SDI}_{\rightarrow \mathrm{S}_{0}}$). If the MODE input is HIGH, the SDI pin is operating as a control pin where SDI asserted LOW permits output data to be loaded into the shadow register on the next LOW-to-HIGH transition of DCLK. SDI asserted HIGH represents a NO-OP function on this device.

Serial Data Output (SDO)

This pin operates as a transfer pin for serial data when the MODE input is LOW ($\mathrm{S}_{3} \rightarrow$ SDO). When MODE is HIGH and SDI operates as a control pin, the SDO pin operates as a pass through of SDI control. SDO is an active totem-pole output.

DESCRIPTION OF REGISTER CONTROL FUNCTIONS

In order to offer the system designer maximum flexibility these devices contain a programmable output enable pin and/or a programmable register initialize pin. The unprogrammed state of these pins is asynchronous operation. Should the system design require, either function may be changed to a synchronous mode of operation by programming an architecture word. The functions available are

Asynchronous Enable (\bar{E})
Synchronous Enable (ES)
Asynchronous $\overline{\text { Initialize }}$ (INIT)
Synchronous $\overline{\text { nitialize (INITS }}$
The Asynchronous Enable (\bar{E}) allows direct control of the three-state output drivers.

The Synchronous Enable ($\overline{\mathrm{ES}^{\prime}}$) is useful where more than one Registered PROM is bussed together for word depth expansion. In this case, the enable becomes the most significant address bit and, as such, must be synchronized with the data.

The initialize function is a programmable word which can be loaded into the output data registers under single pin control. Since each bit is individually programmable, the initialize function can be used to load any combination of HIGHs or LOWs into the output data register. This feature is a superset of commonly used preset and clear functions.

Asynchronous $\overline{\text { Initialize (INIT) can be used to generato any }}$ arbitrary microinstruction for system interrupt or Reset. This is useful during power-up or timeout sequences.

Synchronous Initialize ($\overline{\mathrm{NITS}}$) is useful for "trap jumps" or interrupts where execution on the next LOW-to-HIGH Clock transition is required. During this operation MODE input must be held low.

The Am27S85A/85 contains a single programmable multifunctional input on Pin 19. The unprogrammed state of this pin operates as an Asynchronous Enable ($\overline{\mathrm{E}}$) input. The architecture word permits programming the functionality to Synchronous Enable ($\overline{\mathrm{ES}_{5}}$), Asynchronous Initialize (INIT), or Synchronous Initialize (INITS).

The Am27S85A/85 Registered PROMs is manufactured with a conductive Platinum-Silicide link at each bit location. The output of this memory with the link in place is LOW. In addition to the programmable fusible link array this device contains two
(2) architecture fuses to program the ENABLE and INITIALIZE input functionality. With these links intact both functions will operate asynchronously. The two-bit architecture word will program functionality according to Table 1.

TABLE 1

Architecture Data Word (Hex)	Am27S85A/85 Input Function
	Pin 19
0	Asynchronous ENABLE (E)
8	Synchronous ENABLE (ES)
4	Asynchronous INITIALIZE (INTT)
c	Synchronous INITIALIZE (NNITS)

An additional four-bit word is available for programming the initialization word. The unprogrammed state of this word will initialize the data registers with all outputs LOW.

Programming each bit location (e.g. opening the fusible links) is accomplished by the following sequence: 1) Power is first applied to V_{CC}; 2) SDI input is raised to $\mathrm{V}_{I H H}$ (15 volts). This biases internal conditioning and verification circuitry; 3) The appropriate address is selected; 4) a logic HIGH is applied to the MODE input followed by a LOW-to-HIGH transition of PCLK. This will load the output data registers with active HIGH data to protect the outputs during programming; 5) The output to be programmed is then raised to V_{OP} (20 volts). Current from this 20 volt supply is then gated through the addressed fuse by raising the MODE input from a logic HIGH to $\mathrm{V}_{\mathrm{IHH}}$ (15 volts); 6) After $50 \mu \mathrm{~s}$, the 20 volt supply is removed; 7) The MODE input is taken from $V_{I H H}$ to a logic LOW. Each data verification must be preceded by a positive going (LOW-toHIGH) transition of PCLK. This will load the array data into the output data registers. The outputs are then sensed to determine if the link has opened. Most links will open within $50 \mu \mathrm{~s}$.

Occasionally a link will be stronger and require additional programming cycles. The recommended duration of additional programming periods is 5 ms . If a link has not opened after a total elapsed programming time of 400 ms , further programming of the device should not be attempted. Successive links are programmed in the same manner until all desired bit locations have been programmed to a HIGH level.

When Pin 19 is raised to a logic HIGH level, the programming circuitry for the array is selected and the programming circuitry for the architecture and initialize words is deselected. When Pin 19 is asserted LOW the array programming circuitry is deselected and the programming circuitry for the architecture and initialize words is selected. The architecture and initialize words are then addressed via the A_{0} input. A_{0} input LOW addresses the architecture word while A_{0} input HIGH addresses the initialize word.

An easy implementation would be to invert the next higher address from a PROM programmer and apply this signal to Pin 19. The array, architecture and initialize words would then be programmed according to Table 2.

TABLE 2

Device	Pin 19	Array Programming Address Field (Hex)	Architecture Word Address (Hex)	Initlallze Word Address (Hex)
Am27S85A/85	$\overline{A_{12}}$	000 thru OFFF	1000	1001

Special verification circuitry within the device will permit the architecture word to be presented at the outputs for programming verification.

The unused DCLK pin should be terminated either HIGH or LOW during programming in order to avoid the possibility of oscillation.

High-yield fusing of the Platinum-Silicide fuses requires that a substantial current be delivered to the decoded and selected fuse. The fusing current path has been designed to provide a large fusing current safety margin. This, however, generates large current transients at the time MODE input goes to V_{IH} and a proportional current decrease at the time the fuse opens. The magnitude of this current change can be between 50 and 150 mA with rise or fall times of 2 to 10 ns . Some care must be taken to avoid excessive line inductance in the output line to maximize fusing yields.

The PROMs may become hot during programming due to the large currents being passed. Programming cycles should not
be continuously applied to one device for more than 5 seconds to avoid heat damage. If this programming time is exceeded, all power to the chip including V_{CC} should be removed for a period of 5 seconds after which programming may be resumed.

When all programming has been completed the data content of the memory should be verified by clocking and reading all words. Occasionally this verification will show that an undesired link has been fused. Should this occur, immediately check the programming equipment to make sure all device pins are firmly contacting the programming socket, that the input signal levels exhibit sufficient noise margins, and that the programming voltages are within the specified limits. All these conditions must be maintained during programming. AMD PROMs are thoroughly tested to minimize unwanted fusing. Typical programming yields exceed 98%. Fusing extra bits is generally related to programming equipment problems.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IHH }}$	Control Pin Extra High Level	SDI @ 10-40mA	14.5	15	15.5	Volts
		MODE @ $10-40 \mathrm{~mA}$	14.5	15	15.5	
$V_{\text {OP }}$	Program Voltage @ 15-200mA		19.5	20	20.5	Volts
$V_{\text {IHP }}$	Input High Level During Programming and Verity		2.4	5	5.5	Volts
$V_{\text {ILP }}$	Input Low Level During Programming and Verify		0.0	0.3	0.5	Volts
$V_{C C P}$	VCC During Programming @ ICC $=50-200 \mathrm{~mA}$		5	5.2	5.5	Volts
$d V_{\text {OP }} / \mathrm{dt}$	Rate of Output Voltage Change		20		250	$\mathrm{V} / \mu \mathrm{sec}$
$\mathrm{dV} \mathrm{FE}^{\text {/ }} \mathrm{dt}$	Rate of Fusing Enable Voltage Change (MODE Rising Edge)		50		1000	$\mathrm{V} / \mu \mathrm{sec}$
tp	Fusing Time First Attempt		40	50	100	$\mu \mathrm{sec}$
	Subsequent Attempts		4	5	10	msec
$t_{1}-t_{6}$	Delays Between Various Level Changes		100	200	1000	ns
iv	Period During which Output is Sensed for V $\mathrm{B}_{\text {blown Level }}$				500	ns
VonP	Pull-Up Voltage On Outputs Not Being Programmed		$V_{\text {CCP }}-0.3$	VCCP	$\mathrm{V}_{\text {CCP }}+0.3$	Volts
R	Pull-Up Resistor On Outputs Not Being Programmed		0.2	2	5.1	$\mathrm{k} \Omega$

WF000870

SIMPLIFIED PROGRAMMING DIAGRAM

PROGRAMMING EQUIPMENT INFORMATION

Source and Location	Data I/O 10525 Willows Rd. N.E. Redmond, WA 98052
Programmer Mode(s)	Systems 17, 19, 29, and 100
AMD Personality Module	UNIPAK Rev. 005* UNIPAK 2 Rev. V05*
Socket Adapter	351A-073
*Rev shown is minimum approved revision.	

PROGRAMMING WAVEFORMS

APPLYING SERIAL SHADOW REGISTER (SSR) DIAGNOSTICS IN BIPOLAR MICROCOMPUTERS

DIAGNOSTICS

A diagnostics capability provides the necessary functionality as well as a systematic method for detecting and pin-pointing hardware related failures in a system. This capability must be able to both observe intermediate test points and control intermediate signals - address, data, control, and status - to exercise all portions of the system under test. These two capabilities, observability and controllability, provide the ability to establish a desired set of input conditions and state register values, sample the necessary outputs, and determine whether the system is functioning correctly.

TESTING COMBINATIONAL AND SEQUENTIAL NETWORKS

The problem of testing a combinational logic network is well understood. Sets of input signals (test vectors) are applied to the network and the network outputs are compared to the set of computed outputs (result vectors). In some cases sets of test vectors and result vectors can be generated in a computer-aided environment, minimizing engineering effort. Additionally, fault coverage analysis can be automated to provide a measure of how efficient a set of test vectors is at pin-pointing hardware failures. For example, a popular measure of fault coverage computes the percentage of stuck-atones (nodes with outputs always HIGH) and stuck-at-zeros (nodes with outputs always LOW) a given set of test vectors will discover.

Figure 1

AF000180
A sequential network (Figure 1) is much more difficult to test systematically. The outputs of a sequential network depend not only on the present inputs but also on the internal state of the network. Initializing the internal state register to the value necessary to test a given set of inputs is difficult at best, and not easily automated. Additionally, observing the internal state of a sequential network can be very difficult and time consuming if the state information is not directly available. For example, consider the problem of determining the value of an internal 16 -bit counter if only a carry-out signal is available. The counter must be clocked until it reaches the carry-out state and the starting value computed. Up to 65,535 clock cycles may be necessary! An easier method must exist. Serial Shadow Register diagnostics provides this method.

SERIAL SHADOW REGISTER DIAGNOSTICS

Serial Shadow Register diagnostics provides sufficient observability and controllability to turn any sequential network into a combinational network. This is accomplished by providing the means to both initialize (control) and sample (observe) the state elements of a sequential network. Figure 2 shows the method by which Serial Shadow Register diagnostics accomplishes these two functions.

Figure 2

AF000190
Serial Shadow Register diagnostics utilizes an extra multiplexer on the input of each state register and a duplicate or shadow of each state flip/flop in an additional register. The shadow register can be loaded serially via the serial data input (thus the name Serial Shadow Register diagnostics) for controllability. Once the desired state information is loaded into the serial register it can be transferred into the internal state register by selecting the multiplexer and clocking the state register with PLCK. This allows any internal state to be set to a desired state in a simple, quick, and systematic manner.

Internal state information can be sampled by loading the serial register from the state register outputs. This state information can then be shifted out via the serial data output to provide observability. Notice that the serial data inputs and outputs can be cascaded to make long chains of state information available on a minimum number of connections.
In effect, Serial Shadow Register diagnostics breaks the normal feedback path of the sequential network and establishes a logical path with which inputs can be defined and outputs sampled. This means that those techniques which have been developed to test combinational networks can be applied to any sequential network in which Serial Shadow Register diagnostics is utilized.
When normal pipeline registers are replaced by SSR diagnostics pipeline registers, system debug and diagnostics are easily implemented. State information which was inaccessible is now both observable and controllable. Figure 3 shows a typical computer system using the Am29818's and Am27S85's.
Serial paths have been added to all the important state registers (macro instruction, data, status, address; and micro instruction registers). This extra path will make it easier to diagnose system failures by breaking the feed-back paths and turning sequential state machines into combinatorial logic blocks. For example, the status outputs of the ALU may be checked by loading the micro instruction register with the necessary micro instruction. The desired ALU function is then executed and the status outputs captured in the status register. The status bits can then be serially shifted out and checked for validity.
A single diagnostic loop was shown in Figure 3 for simplicity, but several loops can be employed in more complicated systems to reduce scan time. Additionally, the Am29818s can be used to sample intermediate test points not associated with normal state information. These additional test points can further ease diagnostics, testability and debug.

Figure 3. Typical System Configuration

Typical computer system with Am27S85 registered PROMS implementing SSR diagnostics
AF000200

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied............................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage......................................-0.5V to +7.0 V
DC Voltage Applied to Outputs
(Except During Programming).......... -0.5 V to $+\mathrm{V}_{\mathrm{Cc}} \max$
DC Voltage Applied to Outputs During Programming Output Current into Outputs During Programming (Max Duration of 1 sec)................ 250 mA
DC Input Voltage..................................-0.5V to +5.5 V
DC Input Current................................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Level	See Note 2		2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	See Note 2				0.8	Volts
V_{1}	input Clamp Voltage	$V_{C C}=$ Min, $\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OH}\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)=-2 \mathrm{~mA}$	2.4	3.7		Volts
			1 OH (SDO) $=-0.5 \mathrm{~mA}$				
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & \text { COM'L IOL } \\ & \left(Q_{0}-Q_{3}\right)=24 \mathrm{~mA} \\ & \hline \end{aligned}$		0.35	0.5	Volts
			$\begin{aligned} & \mathrm{MIL} / \mathrm{IOL}_{2} \\ & \left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)=18 \mathrm{~mA} \end{aligned}$				
			$10 \mathrm{~L}(\mathrm{SDO})=4 \mathrm{~mA}$				
ILL	Input LOW Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-40	-250	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$V_{C C}=$ Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			25	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			40	
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{\text {OUT }}=O V(\text { Note } 3) \end{aligned}$	$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	-20	-40	-90	mA
			SDO	-10		-85	
Icex	$\begin{aligned} & \text { Output Leakage } \\ & \text { Current } \\ & \text { (Three-State) } \\ & \left(Q_{0}-Q_{3}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=M a x \\ & \left.V_{E / E S}=2.4 V \text { (Note } 4\right) \end{aligned}$	$V_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			50	$\mu \mathrm{A}$
			$V_{\text {OUT }}=0.4 \mathrm{~V}$			-0.15	mA
lcc	Power Supply Current	$\mathrm{V}_{C C}=$ Max, All inputs $=2.4 \mathrm{~V}$			135	185	mA
$\mathrm{Cln}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			5		pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 5)			12		pF

Notes:

1. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. Only one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. These parameters are not 100% tested, but are periodically sampled.

KS000010

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

See also AC test loads and noises 2, 3, 8, 9, 10.

DIAGNOSTIC MODE SWITCHING CHARACTERISTICS

OVER OPERATING RANGE(Unless otherwise noted)

No.	Symbol	Description	COM'L		MIL		Units
			Min	Max	Min	Max	
1	$\mathrm{ts}_{\text {S }}(\mathrm{SDI})$	Serial Data in to DCLK (HIGH) Set-Up Time	25		30		ns
2	${ }^{\text {the }}$ (SDI)	Serial Data in to DCLK (HIGH) Hold Time	0		0		
3	ts(MODE)	MODE to PCLK (HIGH) or DLCK(HIGH) Set-Up Time	25		30		
4	${ }_{\text {the }}$ (MODE)	MODE to PCLK (HIGH) or DCLK (HIGH) Hold Time	0		0		
5	$\mathrm{t}_{\mathrm{s}}(\mathrm{Q})$	Output to DCLK (HIGH) Setup Time	25		30		
6	${ }_{H} \mathrm{H}^{(Q)}$	Output to DCLK (HIGH) Hold Time	10		15		
7	tPHL (DCLK)	Delay from DCLK (HIGH) to Serial Data Output (HIGH or LOW)		30		40	
8	tPLH(DCLK)						
9	tPHL(SDI)	Delay from Serial Data Input (LOW or HiGH) to Serial Data Output (LOW or HIGH)-MODE input HIGH		25		30	
10	tPLH(SDI)			25		30	
11	${ }^{\text {twL }}$ (DCLK)	Clock Pulse Width for Diagnostic Register(LOW or HiGH)	25		25		
12	${ }_{\text {W }}{ }^{\text {H (DCLK }}$)						

Notes:

1. Typical values are taken at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Tests are performed with input 10% to 90% rise and fall times of 5 ns or less.
3. t_{PHZ} and tpLZ are measured to the $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ output levels respectively. All other switching parameters are tested from and to the 1.5 V threshold levels.
4. Applies only if the architecture is configured for Asynchronous Enable.
5. Applies only if the architecture word has been programmed for a Synchronous Enable input.
6. Applies only if the architecture is configured for Asynchronous Initialize.
7. Applies only if the architecture word has been programmed for a Synchronous Initialize input.
8. Component values for AC TEST LOAD are: $\mathrm{R}_{1}=300$, $R_{2}=600$, and $C_{L}=50 p F$ for $Q_{0}-Q_{3}$ outputs, $R_{1}=1100, R_{2}=2400$, and $C_{L}=15 p F$ for SDO output.
9. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
10. S_{1} is open for $t_{\text {PHZ }}$ and $t_{\text {PZH }}$ tests. S_{1} is closed for all other $A C$ tests.

NOTES ON TESTING

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.
1.Ensure that adequate decoupling capacitance is employed across the device VCC and ground terminals. Multiple capacitors are recommended, including a 0.1μ Farad or larger capacitor and a 0.01μ Farad or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power
supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.

For programming information, please see 'Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S181/281 Family

1024×8 Bit Generic Series Bipolar IMOX $^{\text {TM }}$ PROM

DISTINCTIVE CHARACTERISTICS

- Fast access time allows high system speed
- 50% power savings on deselected parts - enhances reliability through total system heat reduction
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- Rapid recovery from power-down state provides minimum delay

GENERAL DESCRIPTION

These 8K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 1024×8 configuration, they are available in both the standard 600 -mil package and the space-saving THINDIP, 300 -mil package versions. After programming, stored
information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{9}$ and holding CS_{1} and CS_{2} LOW and CS_{3} and $\mathrm{CS}_{4} \mathrm{HIGH}$. All other input combinations on $\mathrm{CS}_{1}, \mathrm{CS}_{2}, \mathrm{CS}_{3}$ and CS_{4} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state and reduce ICC by more than 50%.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	35ns	50ns		60ns	65ns		75ns	80ns
Temperature Range	C	C	M	C	C	M	M	M
Open Coliector	$\begin{aligned} & \hline \text { 27S180A } \\ & \text { 27S280A } \end{aligned}$		$\begin{aligned} & \text { 27S180A } \\ & 27 S 280 A \end{aligned}$	$\begin{aligned} & 27 S 180 \\ & 27 S 280 \end{aligned}$				$\begin{aligned} & 27 \mathrm{~S} 180 \\ & 27 \mathrm{~S} 181 \end{aligned}$
Three-State	$\begin{aligned} & \text { 27S181A } \\ & \text { 27S281A } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 27PS181A } \\ \text { 27PS281A } \end{array}$	$\begin{aligned} & 27 S 181 A \\ & 27 S 281 A \end{aligned}$	$\begin{aligned} & \hline 27 S 181 \\ & 27 S 281 \end{aligned}$	$\begin{aligned} & \hline \text { 27PS181 } \\ & \text { 27PS281 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 27PS181A } \\ \text { 27PS281A } \end{array}$	$\begin{aligned} & \hline \text { 27PS181 } \\ & \text { 27PS281 } \end{aligned}$	$\begin{aligned} & \hline 27 S 280 \\ & 27 S 281 \end{aligned}$

NOTES ON POWER SWITCHING

The Am27PS181A/181 and Am27PS281A/281 are power switched devices. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ICC is reduced to less than half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

1. When the Am27PS181A/181 and Am27PS281A/281 are selected, a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{f}$ ceramic capacitor be connected from pin 24 to pin 12 at each device. (See Figure 1.)
2. Address access time (t_{AA}) can be optimized if a chip enable setup time (tEAS) of greater than 25ns is obseryed. Negative setup times on chip enable ($\mathrm{t}_{\mathrm{EAS}}<0$) should be avoided. (For typical and worse case characteristics, see Figures 2A and 2B.)

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ABSOLUTE MAXIMUM RATINGS Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with Power Applied. \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage-0.5V to +7.0 V DC Voltage Applied to Outputs (Except During Programming)..........-0.5V to $+\mathrm{V}_{\mathrm{CC}} \max$ DC Voltage Applied to Outputs During Programming ... 21 V Output Current into Outputs During Programming (Max Duration of 1 sec)................ 250 mA DC Input Voltage.................................. 0.5 V to +5.5 V DC Input Current-30mA to +5 mA Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.	

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
. +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ (Note 1)	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$					0.50	Volts
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)			2.0			Volts
V_{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)					0.8	Volts
IIL.	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{\text {CC }}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 2)		COM'L	-20	-40	-90	mA
				MIL	-15	-40	-90	
ICC	Power Supply Current	All Inputs = GND				115	185	mA
ICCD	Power Down Supply Current	$\overline{\mathrm{CS}}_{1}=2.7 \mathrm{~V}$	All other inputs = GND			50	80	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.2	Volts
ICEX	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S_{1}}=2.4 V \end{aligned}$		$V_{O}=V_{C C}$			40	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	
$\mathrm{Cin}^{\text {N }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 3)				8.0		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC OPERATING CHARACTERISTICS

Typical Ivce Current Surge without $0.1 \mu \mathrm{~F}$ (Ivcc is Current Supplied by Vcc Power Supply)

Typical lvcc Current Surge with $0.1 \mu \mathrm{~F}$ (Ivcc Is Current Supplled by Vcc Power Supply)

Figure 1. Icc Current

Figure 2A. $\mathbf{t}_{\text {AA }}$ versus teAS

Figure 2B. teA versus $\mathbf{t}_{\text {AES }}$

SWITCHING TEST CIRCUIT

KEY TO SWITCHING WAVEFORMS

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Notes:

1. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
2. For open collector outputs, $t_{E A}$ and $t_{E R}$ are tested with S_{1} closed to the 1.5 V output level. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
3. For three-state outputs, $t_{E A}$ is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH
tests and closed for high impedance to LOW tests. tER is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high impedance tests are made to an output voltage to with S_{1} open to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open; LOW to high impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

SWITCHING WAVEFORMS

WF000730
Note: Level on output while chip is disabled is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs", page 2-1.

Am27S184/185 Series

DISTINCTIVE CHARACTERISTICS

- Ultra fast access time " A " version (35ns max) - Fast access time Standard version (50ns max) - allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm

GENERAL DESCRIPTION

The Am27S184/5 series is comprised of high speed electrically programmable Schottky read only memories. Organized in 2048×4 configuration, they are available in both open collector and three-state output versions. After programming, stored
information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding the chip select input, CS LOW. If the chip select input goes to a logic HIGH, $\mathrm{O}_{0}-\mathrm{O}_{3}$ go to the OFF or high impedance state.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	35 ns	45 ns	50 ns	55 ns	60 ns	65 ns
Temperature Range	C	M	C	M	C	M
Open Collector	27 S 184 A	27 S 184 A	27 S 184	27 S 184	27 LS 184	27 LS 184
Three-State	27S185A	27 S 185 A	27S185 27PS185	27 S 185 27PS185	27 LS 185	27 LS 185

POWER SWITCHING

The Am27PS185 is a power switched device. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, Icc is reduced to half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

1. When the Am27PS185 is selected by a low level on CS, a current surge is placed on the V_{CC} supply due to the power-

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.
up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{f}$ ceramic capacitor be connected from pin 18 to pin 9 at each device. (See Figure 1.)
2. Address access time ($t_{A A}$) can be optimized if a chip enable set-up time (tEAS) of greater than 25 ns is observed. Negative set-up times on chip enable (teas <0) should be avoided. (For typical and worse case characteristics see Figures 2A and 2B.)

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error, and higher cost.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage......................................-0.5V to +7.0V
DC Voltage Applied to Outputs
(Except During Programming)..........-0.5V to $+V_{\text {ccmax }}$
DC Voltage Applied to Outputs
During Programming
21V
Output Current into Outputs During
Programming (Max Duration of 1 sec) \qquad
DC Input Voltage .-0.5 V to +5.5 V
DC Input Current................................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage....................... 4.75 V to +5.25 V
Military (M) Devices
Temperature............................... $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage........................ 4.5 V to +5.5 V
Operating ranges define those limits over which the functional-
ity of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameters	Test Conditions		Min	Typ	Max	Units
$\mathrm{VOH}_{\text {(}}$ (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		2.4			Volts
Vol	$\begin{aligned} & \text { Output LOW } \\ & \text { Voltage } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}_{2}=16 \mathrm{~mA} \\ & \mathrm{VIN}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$				0.50	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 3)		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 3)				0.8	Volts
IL	Input LOW Current	$V_{C C}=M A X, V_{1 N}=0.45 \mathrm{~V}$			-0.020	-0.250	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$V_{C C}=M A X, V_{I N}=V_{C C}$				40	$\mu \mathrm{A}$
Isc (Note 2)	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{MAX} \\ & V_{O U T}=0.0 \mathrm{~V} \text { (Note 4) } \end{aligned}$	STD, LS devices	-20	-45	-90	mA
			PS devices	-15	-40	-90	
Icc	Power Supply Current	All inputs $=$ GND $V_{C C}=M A X$	STD, PS devices		105	150	mA
			LS devices		80	125	
v_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{IIN}^{\text {m }}-18 \mathrm{~mA}$				-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{C S}=2.4 \mathrm{~V} \end{aligned}$	$V_{O}=V_{C C}$			40	$\mu \mathrm{A}$
			$V_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz}$ (Note 5)			5.0		pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			8.0		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

Typical Ivcc Current Surge without $0.1 \mu \mathrm{f}$ (Ivcc is Current Supplied by Vcc Power Supply)

Typical Ivcc Current Surge with $0.1 \mu \mathrm{f}$ (lvec is Current Supplied by VCc Power Supply)

OP001230

Figure 1. Icc Current

Figure 2A. TAA versus TEAS

Figure 2B. TEA versus $T_{\text {AES }}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		C devices			M devices			Units
				Min	Typ	Max	Min	Typ	Max	
	.		STD		30	50		30	55	
1	$t_{\text {A }}$	Address Access Time	A		28	35		28	45	
			PS		28	50		28	55	
			LS		40	60		40	65	
			STD		10	25		10	30	
2	tEA	Enable Access Time	A		10^{-}	25		10	30	
			PS		41	60		41	65	ns
			LS		10	25		10	30	
			STD		10	25		10	30	
3	tER	Enable Recovery Time	A		10	25		10	30	
			PS		41	60		41	65	
			LS		10	25		10	30	
4	$t_{\text {AAPS }}$	Power Switched Addre (27 PS devices only)			10	25		10	30	

SWITCHING WAVEFORMS

Note: Level on output while $\overline{C S}$ is HIGH is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Am27S191/291 Family

2048×8 Bit Generic Series Bipolar IMOX $^{\text {M }}$ PROM

DISTINCTIVE CHARACTERISTICS

- Fast access time allows high system speed
- 50\% power savings on deselected parts - enhances reliability through total system heat reduction (27PS devices)
- Plug in replacement for industry standard product - no board changes required
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Rapid recovery from power-down state provides minimum delay (27PS devices)

GENERAL DESCRIPTION

These 16K PROMs are high speed electrically programmable Schottky read only memories. Organized in the industry standard 2048×8 configuration, they are available in both the standard 600 -mil package and the space-saving THINDIP, 300-mil package versions. After programming, stored
information is read on outputs $\mathrm{O}_{0}-\mathrm{O}_{7}$ by applying unique binary addresses to $\mathrm{A}_{0}-\mathrm{A}_{10}$ and holding $\mathrm{CS}_{1} \mathrm{LOW}$ and CS_{2} and $\mathrm{CS}_{3} \mathrm{HIGH}$. All other input combinations on CS_{1}, CS_{2}, and CS_{3} place $\mathrm{O}_{0}-\mathrm{O}_{7}$ into the OFF or high impedance state and reduce lcc by more than 50%.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time	35ns	50ns		65ns		75ns
Temperature Range	C	C	M	C	M	M
Open Collector	27S190A	27S190	27S190A		27 S 190	
	27S290A	27S290	27S290A		27S290	
	Three-State	27S191A	27S191			
		27S191A	27PS191	27S191	27S291	27PS191
		27PS191A	27S291A	27PS291	27PS191A	27PS291
		27PS291A			27PS291A	

NOTES ON POWER SWITCHING

The Am27PS191A/191 and Am27PS291A/291 are power switched devices. When the chip is selected, important internal currents increase from small idling or standby values to their larger selected values. This transition occurs very rapidly, meaning that access times from the powered-down state are only slightly slower than from the powered-up state. Deselected, ICC is reduced to less than half its full operating amount. Due to this unique feature, there are special considerations which should be followed in order to optimize performance:

OBTAINING PROGRAMMED UNITS

Programmed devices may be purchased from your distributor or Advanced Micro Devices. The program data should be submitted in the form of a punched paper tape and must be accompanied by a written truth table. The punched tape can be delivered with your order or may be transmitted over a TWX machine or a time-sharing terminal. ASCII BPNF is our preferred paper tape format.

1. When the Am27PS191A/191 and Am27PS291A/291 are selected, a current surge is placed on the V_{CC} supply due to the power-up feature. In order to minimize the effects of this current transient, it is recommended that a $0.1 \mu \mathrm{f}$ ceramic capacitor be connected from pin 24 to pin 12 at each device. (See Figure 1.)
2. Address access time (t_{AA}) can be optimized if a chip enable set-up time (tEAS) of greater than 25ns is observed. Negative set-up times on chip enable teAS <0) should be avoided. (For typical and worse case characteristics, see Figures 2A and 2B)

Truth tables are also acceptable, but are much less desirable especially for larger density PROMs. Submission of a truth table requires the generation of a punched paper tape at the distributor or factory resulting in longer lead times, greater possibility of error and higher cost.

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
VOH (27TS Devices only)	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$			2.4			Volts
VOL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$					0.50	Volts
$V_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 4)			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 4)					0.8	Volts
IL	Input LOW Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$				-0.010	-0.250	mA
$\mathrm{IHH}^{\text {H}}$	Input HIGH Current	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$					40	$\mu \mathrm{A}$
Isc	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X, V_{O U T}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		COM'L	-20	-40	-90	mA
				MIL	-15	-40	-90	
ICC	Power Supply Current	All Inputs = GND				115	185	mA
$\begin{aligned} & \text { ICCD } \\ & \text { (27PS Devices only) } \end{aligned}$	Power Down Supply Current	$\mathrm{CS}_{1}=2.7 \mathrm{~V}$	All other inputs $=$ GND			50	80	
V_{1}	Input Clamp Voltage	$V_{C C}=$ MIN, $I_{I N}=-18 \mathrm{~mA}$					-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{CS}}=2.4 \mathrm{~V} \end{aligned}$		$V_{0}=V_{C C}$			40	$\mu \mathrm{A}$
				$V_{0}=0.4 \mathrm{~V}$			-40	
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$ (Note 3)				4.0		pF
Cout	Output Capacitance	$V_{\text {OUT }}=2.0 \mathrm{~V} @ 1=1 \mathrm{MHz}$ (Note 3)				8.0	.	

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. These parameters are not 100% tested, but are periodically sampled.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Typical Ivcc Current Surge without $0.1 \mu \mathrm{~F}$ (Ivce is Current Supplied by Vcc Power Supply)

Typical Ivcc Current Surge without $0.1 \mu \mathrm{~F}$ (Ivce is Current Supplied by Vcc Power Supply)

Figure 1. Icc Current

Figure 2A. $\mathbf{t}_{\text {AA }}$ vs teAS $^{(A m 27 P S 191 A / 291 A)}$

Figure 2B. teA vs taEs

KS000010

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		C devices		$\begin{gathered} 27 S \\ M \text { devices } \end{gathered}$		$\begin{gathered} \text { 27PS } \\ \text { C devices } \end{gathered}$		27S		Units
			,	Min	Max	Min	Max	Min	Max	Min	Max	
1	${ }^{\prime} A A$	Address Access Time	STD		50		65		65		75	ns
			A		35		50		50		65	
2	tea	Enable Access Time	STD		25		30		80		90	
			A		25		30		65		75	
3	$t_{\text {ER }}$	Enable Recovery Time	STD		25		30		35		45	
			A		25		30		25		30	
4	tAAPS	Power Switched Address Access Time (27PS devices only)	STD						80		90	
			A						65		75	

Notes: 5. $t_{A A}$ is tested with switch S_{1} closed and $C_{L}=30 \mathrm{pF}$.
6. tEA is tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ to the 1.5 V level; S_{1} is open for high impedance to HIGH tests and closed for high impedance to LOW tests. tER is tested with $C_{L}=5 p F$. HIGH to high impedance tests are made with S_{1} open to an output voltage of $\mathrm{VOH}^{-} 0.5 \mathrm{~V}$ with S_{1} open; LOW-to-high impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed. $\$ \mathrm{COL}$

SWITCHING WAVEFORMS

Note: Level on output while $\overline{\mathrm{CS}}_{1}$ is HIGH or CS_{2} or CS_{3} are LOW is determined externally.

For programming information, please see "Guide to the Programming of AMD's Generic Bipolar PROMs', page 2-1.

Replacement Referrals

Part Number	Replaced by
Am27S20	Am29760A
Am27S21	Am29761A
Am29770	Am27S12
Am29771	Am27S13
Am29775	Am27S27

```
INDEX SECTION
NUMERICAL DEVICE INDEX
FUNCTIONAL INDEX AND SELECTION GUIDE
APPLICATION NOTE
```

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS

MEMORIES (RAM)

2

```
MOS READ ONLY MEMORIES (ROM)
```


MOS UV ERASABLE
 PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION

 PACKAGE OUTLINES SALES OFFICES
Bipolar Random Access Memories (RAM) Index

Am29705A/707 16-Word by 4-Bit 2-Port RAM 3-1Am93415/425Am27S06/7Am27S02/3Am27LS00/01 SeriesAm93412/422 Family
Am10415
Am100415
Am10474
Am100474
Am10470
Am100470Am3101 Family
1024×1 bit TTL Bipolar IMOX RAM 3-11
64-Bit Noninverting Bipolar RAM 3-17
64-Bit Schottky Bipolar RAM 3-23
256-Bit Low-Power Schottky Bipolar RAM 3-29
256×4-bit TTL Bipolar IMOX RAM 3-34
1024×1 IMOX ECL Bipolar RAM 3-40
1024×1 IMOX II ECL Bipolar RAM 3-47
1024×4 IMOX ECL Bipolar RAM 3-52
ECL 1024×4 IMOX Bipolar RAM 3-54
4096×1 IMOX ECL Bipolar RAM 3-56
4096×1 IMOX ECL Bipolar RAM 3-63
64-Bit Write Transparent Schottky Bipolar RAM 3-68

Am29705A/707

DISTINCTIVE CHARACTERISTICS

- 16-word by 4-bit, 2-port RAM
- Two output ports, each with separate output control
- Separate four-bit latches on each output port (Am29707 has separate output control)
- Data output is noninverting with respect to data input
- Chip select and write enable inputs for ease in cascading
- Am29707 offers 20\% improved cycle time over Am29705A when used with Am29203 in three address architecture
- Am29705A is a pin-for-pin replacement for the Am29705 but is significantly faster on critical paths

GENERAL DESCRIPTION

The Am29705A is a 16 -word by 4 -bit, two-port RAM. This RAM features two separate output ports such that any two 4-bit words can be read from these outputs simultaneously. Each output port has a four-bit Latch but a common Latch Enable (LE) input is used to control all eight latches. The device has two Write Enable ($\overline{\mathrm{WE}}$) inputs and is designed such that the Write Enable $\left.1(\overline{\mathrm{WE}})_{1}\right)$ and Latch Enable (LE) inputs can be wired together to make the operation of the RAM appear edge triggered.

The device has a fully decoded four-bit A-address field to address any of the 16 memory words for the A-output port. Likewise, a four-bit B-address input is used to simultaneously select any of the 16 words for presentation at the B-output port. New incoming data is written into the four-bit RAM word selected by the B-address. The D inputs are used to load new data into the device.

The Am29705A features three-state outputs and several devices can be cascaded to increase the total number of memory words in the system. The A-output port is in the high-impedance state when the $\overline{O E-A}$ input is HIGH.

Likewise, the B-output port is in the high-impedance state when the $\overline{\mathrm{EE}-\mathrm{B}}$ input is HIGH. Four devices can be paralleled using only one Am25LS139 decoder for output control.

The Write Enable inputs control the writing of new data into the RAM. When both Write Enable inputs are LOW, new data is written into the word selected by the B -address field. When either Write Enable input is HIGH, no data is written into the RAM.

The Am29707 is an identical circuit to the Am29705A, except each output port has a separate Latch Enable (LE) input. An extra write enable input ($\overline{W E_{2}}$) may be connected directly to the IEN of the Am29203 for improved cycle times over the Am29705A. The WE/BLE input can then be connected directly to system clock.

The Am29705A is a plug-in replacement for the Am29705, but is significantly faster. The Am29705A and Am29707 feature AMD's advanced ion-implanted micro-oxide (IMOX ${ }^{\text {TM }}$) processing.

Am29751A
Am2921
Am25LS138
Am25LS139
Am25LS157
Am29203
Am2902A

Bipolar PROM
One-of-Eight Decoder One-of-Four Decoder Dual One-of-Four Decoder Quad 2-by-1 MUX
Four Bit Bipolar Microprocessor Slice Carry Look Ahead Generator

BLOCK DIAGRAMS

BD000780

RELATED PRODUCTS

Am2904 Am2910A
Am2914
Am2940
Am2950-54
Am29118

Status and Shift Control Unit Microprogram Controller Vectored Priority Interrupt Controller DMA Address Generator
8 Bit Bidirectional I/O Port
8 Bit Bidirectional //O Port with ACC

Data Inputs
New data is written into the RAM through these inputs.
The A-Address Inputs
The four-bit field presented at the A inputs selects one of the 16 memory words for presentation to the A-Data Latch.
$\mathrm{B}_{0}-\mathrm{B}_{3} \quad$ The B-Address Inputs
The four bit field presented at the B inputs selects one of the 16 memory words for presentation to the B-Data Latch. The B address field also selects the word into which new data is written.

$Y A_{0}-Y A_{3}$	The Four A-Data Latch Outputs
$Y B_{0}-Y B_{3}$	The Four B-Data Latch Outputs
$\overline{W E}_{1}, \overline{W E}_{2}$	Write Enables

When both Write Enables are LOW, new data is written into the word selected by the B-address field. If either Write Enable input is HIGH, no new data can be written into the memory.

When $\overline{O E}-A$ is LOW, data in the A-Data Latch is present at the $Y A_{j}$ outputs. If $\overline{O E-A}$ is HIGH the $Y \mathrm{YB}_{\mathrm{i}}$ outputs are in the high-impedance (off) state.

OE-B \quad B-Port Output Enable

When OE-B is LOW, data in the B-Data Latch is present at the YB_{i} outputs. When OE-B is HIGH the YB_{i} outputs are in the high-impedance (off) state.

LE

WE/ble

Latch Enable

The LE input controls the latches for both the RAM A-output port and RAM B-output port. When the LE input is HIGH, the latches are open (transparent) and data from the RAM, as selected by the A and B address fields, is present at the outputs. When LE is LOW, the latches are closed and they retain the last data read from the RAM independent of the current A and B address field inputs. (Am29705A only.) Force A Zero
This input is used to force the outputs of the Aport latches LOW independent of the Latch Enable input or A-address field select inputs. Thus, the A-output bus can be forced LOW using this control signal. When the $\overline{A-L O}$ input is HIGH, the A latches operate in their normal fashion. Once the A latches are forced LOW, they remain LOW independent of the $\overline{A-L O}$ input if the latches are closed. (Am29705A only.) A-Output Port Latch Enable When ALE is HIGH, the A latch is open (transparent) and data from the RAM, as selected by the A address field, is present at the A output. When ALE is LOW, the A latch is closed and retains the last data read from the RAM independent of the current A address field input. (Am29707 only.)
Write Enable/B-Output Port Latch Enable When $\bar{W} E / B L E$ is LOW together with $\overline{W E} 1$ and $\overline{W E_{2}}$, new data is written into the word selected by the B address field. When WE/BLE or any Write Enable input is HIGH, no data is written into the RAM.
$\overline{W E} / B L E$ also controls the B output port. When $\overline{\text { WE }}$ /BLE is HIGH, the B latch is open (transparent), and when this input is LOW, the B latch is closed (Am29707 only).

Note: Actual current flow direction shown.

FUNCTION TABLES

Am29705A
WRITE CONTROL

$\overline{W E}{ }_{1}$	$\overline{W E}$	Function	RAM Outputs at Latch Inputs	
			A-Port	B-Port
L	L	Write D into B	A data $(A \neq B)$	Input Data
L	L	Write D into B	($A=B)$ Input Data	Input Data
X	H	No Write	A Data	B Data
H	X	No Write	A Data	B Data

$H=H I G H \quad L=L O W \quad X=$ Don't Care

YA READ

Inputs				
סE-A	A-LO	LE	YA Output	Function
H	X	X	Z	High Impedance
L	L	X	L	Force YA LOW
L	H	H	A-Port RAM Data	Latches Transparent
L	H	L	NC	Latches Retain Data

$\mathrm{H}=\mathrm{HIGH} \quad \mathrm{X}=$ Don't Care $\mathrm{NC}=$ No Change
$L=$ LOW $Z=$ High Impedance

YB READ

Inputs		YB Output	Function
$\overline{\mathrm{OE}-\mathrm{B}}$	LE		
H	X	Z	High Impedance
L	H	B-Port RAM Data	Latches Transparent
L	L	NC	Latches Retain Data
$H=H I G H \quad X=$ Don't Care $N C=$ No change $L=$ LOW $\quad Z=$ High Impedance			

Am29707
WRITE CONTROL

				RAM Outputs at Latch Inputs	
				A-Port	B-Port
WE	WE	WE/BLE	Function	Input Data	
L	L	L	Write D into B	A Data (A - B)	In
X	X	H	No Write	A Data	B Data
X	H	X	No Write	A Data	B Data
H	X	X	No Write	A Data	B Data

$$
\mathrm{H}=\mathrm{HIGH} \quad \mathrm{~L}=\mathrm{LOW} \quad \mathrm{X}_{1}=\text { Don't Care }
$$

YA READ

Inputs			
$\overline{\mathrm{OE}-\mathrm{A}}$	ALE	YA Output	Function
H	X	Z	High Impedance
L	H	A-Port RAM Data	Latches Transparent
L	L	NC	Latches Retain Data

$H=$ HIGH $D=$ Don't Care NC $=$ No Change
$L=$ LOW $Z=$ High Impedance

YB READ

Inputs			
$\overline{\text { OE-B }}$	WE/BLE	YB Output	Function
H	X	Z	High Impedance
L	H	B-Port RAM Data	Latches Transparent
L	L	NC	Latches Retain Data

$$
\begin{array}{ll}
H=\text { HIGH } & D=\text { Don't Care } N C=\text { No Change } \\
L=\text { LOW } & Z=\text { High Impedance }
\end{array}
$$

LOADING RULES (In Unit Loads)

Input/Output	Pin No.'s	Input Unit Load	Fan-out Output Output HIGH LOW	
D_{1}	1	1	-	-
D_{0}	2	1	-	-
$\overline{W E}_{1}$	3	1	-	-
B_{0}	4	0.55	-	-
B_{1}	5	0.55	-	-
B_{2}	6	0.55	-	-
B_{3}	7	0.55	-	-
$\frac{\overline{\mathrm{A}-\mathrm{LO}}}{(29705 \mathrm{~A} \text { Only) }}$	8	1	-	-
$\frac{\text { LE }}{(29705 A} \text { Only) }$	9	1	-	-
(29707 Only	8	1	-	-
$\begin{gathered} \text { WE/BLE } \\ \text { (29707 Only) } \end{gathered}$	9	1	-	-
$Y B_{0}$	10	-	100/200	33
YA ${ }_{0}$	11	-	100/200	33

Fan-out Input Output Output Input/Output Pin No.'s Unit Load HIGH LOW

YB ${ }_{1}$	12	-	100/200	33
YA ${ }_{1}$	13	-	100/200	33
GND	14	-	-	-
YB_{2}	15	-	100/200	33
YA2	16	-	100/200	33
YB_{3}	17.	-	100/200	33
YA_{3}	18	-	100/200	33
$\overline{\mathrm{O}} \mathrm{E}-\mathbf{B}$	19	1	-	-
$\overline{\mathrm{O}}$-A	20	1	-	-
A_{3}	21	0.55	-	-
A_{2}	22	0.55	-	-
A_{1}	23	0.55	-	-
A_{0}	24	0.55	-	-
$\overline{W E}_{2}$	25	1	-	-
D_{3}	26	1	-	- -
D_{2}	27	1	-	-
VCC	28	-	-	-

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied \qquad
Supply Voltage to Ground
Potential Continuous \qquad -0.5 V to +7.0 V
DC Voltage Applied to OUtput
for HIGH Output State
-0.5 V to $+\mathrm{V}_{\mathrm{cc}}$ max
DC Input Voitage nt, into
DC Outp \qquad 30 mA
DC Input Current..............................-30mA to +5.0 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions (Note 1)		Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note2) } \\ \hline \end{array}$	Max	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL, $\mathrm{I}^{\mathrm{OH}}=-2.0 \mathrm{~mA}$	2.4			Volts
			COM'L, $\mathrm{IOH}^{\text {a }}=-4.0 \mathrm{~mA}$	2.4			
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{IOL}=16 \mathrm{~mA}$ (MIL)			0.5	Volts
			$1 \mathrm{OL}=20 \mathrm{~mA}$ (COM)			0.5	
V_{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=$ MIN., $\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.5	Volts
ILL	Input LOW Current	$\begin{aligned} & V_{C C}=M A X ., \\ & V_{I N}=0.5 \mathrm{~V} \end{aligned}$	All			-0.36	mA
IIH	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}^{\text {., }} \mathrm{V}_{\text {IN }}=55 \mathrm{~V}$				0.1	mA
10	Off State (High Impedance) Output Current	$\begin{aligned} & V_{C C}=M A X . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{V}_{0}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-20	
Isc	Output Short Circuit Current (Note 3)	$V_{C C}=$ MAX .		-30		-85	mA
lcc	Power Supply Current	$V_{C C}=M A X$. (Worst case Icc is at minimum temperature) (Note 4)	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			210	mA
			$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			170	
			$T_{C}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			210	
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			150	

Notes:

1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. All inputs grounded except $\overline{O E-A}$ and $\overline{O E-B}=2.4 \mathrm{~V}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Parameters	From	To	Test Conditions	COM'L	MIL
Access Time	A Address Stable or B Address Stable	YA Stable or YB Stable	$L E=H I G H$	25	30
Turn-On Time	$\overline{\text { OE.A }}$ or $\overline{\text { OE-B }}$ LOW	YA or YB Stable		20	20
Turn-Off Time	$\overline{\overline{O E}-\bar{A}}$ or $\overline{\mathrm{OE}-\bar{B}} \mathrm{HIGH}$	YA or YB Off	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Note 1	20	20
Reset Time	$\overline{\text { A-LO LOW }}$	YA LOW		20	20
Latch Enable Time	LE HIGH	YA and YB Stable		20	22
Transparency	$\overline{W E_{1}}$ and $\overline{W E_{2}}$ LOW	YA or YB	LE $=$ HIGH	30	35
	D	YA or YB	LE $=\mathrm{HIGH}$	30	35

Note 1. Measured from 1.5 V at the input to 0.5 V change in the output level.
MINIMUM SETUP AND HOLD TIME (in ns)

Parameters	From	To	Test Conditions	COM'L	MIL
Data Setup Time	D Stable	Either WE HIGH		12	15
Data Hold Time	Either $\overline{\text { WE }}$	D Changing		0	0
Address Setup Time	B Stable	Both WE LOW		6	8
Address Hold Time	Either WE HIGH	B Changing		0	0
Latch Close Before Write Begins	LE LOW	$\overline{W_{1}}$ LOW	$\overline{W E}_{2}$ LOW	0	0
	LE LOW	$\overline{W E}$ LOW	$\overline{W E}_{1}$ LOW	0	0
Address Setup Before Latch Closes	A or B Stable	LE LOW		12	15

MINIMUM PULSE WIDTHS

Parameters	Input	Pulse	Test Conditions	COM'L	MIL
Write Pulse Width	$\overline{W_{1}}$	HIGH-LOW-HIGH	$\overline{W_{E}}$ LOW	15	15
	$\overline{W_{2}}$	HIGH-LOW-HIGH	$\overline{W E_{1}}$ LOW	15	15
A Latch Reset Pulse	$\overline{\text { A-LO }}$	HIGH-LOW-HIGH		15	15
Latch Data Capture	LE	LOW-HIGH-LOW		15	18

Note: The Am29705A meets or exceeds all of the specifications of the Am29705.

A. THREE-STATE OUTPUTS

Notes:

1. $C_{L}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitances without device in test fixture.
2. $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are closed during function tests and all A.C. tests except output enable tests.
3. S_{1} and S_{3} are closed while S_{2} is open to tPZH test. S_{1} and S_{2} are closed while S_{3} is open for tpZL test.
4. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

TEST OUTPUT LOADS FOR Am29705A

PIn \# (DIP)	Pin Label	Test Circuit	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$
-	$Y A_{0}-Y A_{3}, Y B_{0}-Y B_{3}$	A	230	1 k

Notes on Testing

Incoming test procedures on this device should be carefully planned, taking into account the high complexity and power levels of the part. The following notes may be useful:

1. Insure the part is adequately decoupled at the test head. Large changes in VCC current as the device switches may cause erroneous function failures due to V_{CC} changes.
2. Do not leave inputs floating during any tests, as they may start to oscillate at high frequency.
3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in $5-8 \mathrm{~ns}$. Inductance in the ground cable may allow the ground pin at the device to rise by 100 s of millivolts momentarily.
4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins and they may not actually reach V_{IL} or $\mathrm{V}_{1 H}$ until the noise has settled. AMD recommends using $\mathrm{V}_{\mathrm{IL}} \leqslant \mathrm{OV}$ and $\mathrm{V}_{\mathrm{IH}} \geqslant 3 \mathrm{~V}$ for AC tests.
5. To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
6. To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide Fairchild Sentry programs, under license.

The Am2903 and Am29203 each contain only 16 scratchpad registers plus the Q register. For applications which require more than 17 registers, the register set of the Am2903 and Am29203 can be easily expanded.

- Use the Am29705A with the Am2903A
- Use the Am29707 with the Am29203

For further applications information on using the Am29705A with the Am2903A, see Chapter III of Bit Slice Microprocessor Design, Mick and Brick, McGraw-Hill Publications.

The Am29705A as a two-way interface buffer. Data may be passed between the main data bus and the peripheral data bus under I/O control. The two-port RAM allows data to be written into buffer storage from a peripheral device, using the B address port and the S counter register, while it is being read into main memory, using the A address port and the Q counter register. This simultaneous read/write capability facilitates DMA transfers because the CPU can ignore write requests
from the peripheral device. Data output from CPU to the peripheral device is handled by sequential write and read operations. Data is written into buffer storage from the CPU, using the B address port and the R counter register. It is read onto the peripheral device using the B address port and either the R register, for single word transfers, or the S register, for block transfers.

APPLICATIONS (Cont.)

LS000350

A 16 -word by 4 -bit two-port RAM with LE and $W E_{1}$ connected to make the device appear edge triggered. WE_{1} and WE_{2} are logically identical but are electrically slightly different. For
synchronous operation without possibility of race, WE_{1} should be connected to LE.

A 64-word by 4-bit three address memory. Data is read from the A address to the YA outputs and from the B address to the YB outputs while the latch enable is HIGH. When the latch enable goes LOW, the YA and YB data is held in the internal
latches, and the RAM B address is switched to the Cdestination address lines. A write pulse will then deposit the input data into the location selected by the C address.
Am29705A/707

Am29203 EXPANDED MEMORY

A 48-word by 4-bit expanded memory for the Am29203 using the Am29707. The Am29751 PROM serves as a constant store.

Am93415／425

1024×1 bit TTL Bipolar IMOX $^{\text {TM }}$ RAM

DISTINCTIVE CHARACTERISTICS

－Fully decoded 1024－word x 1 －bit RAMs
－Ultra－high speed（SA）version： Address Access time typically 17 ns
High Speed（A）version：
Address Access time typically 22ns
Standard version：
Address Action time typically 30ns
－Internal ECL circuitry for optimum speed／power perfor－ mance over voltage and temperature
－Output preconditioned during write to eliminate write recovery glitch
－Available with three－state outputs（Am93425 series）or with open collector outputs（Am93415 series）
－Electrically tested and optically inspected die for the assemblers of hybrid products
－Plug in replacement for Fairchild 93415A／415 and 93425A／425，and Intel 2115／2125 series
－ICC decreases as temperature increases

GENERAL DESCRIPTION

The Am93415 and Am93425 are fully decoded 1024×1 RAMs built with Schottky diode clamped transistors in conjunction with internal ECL circuitry．They are ideal for use in high speed control and buffer memory applications． Easy memory expansion is provided by an active LOW chip select input（CS）and either open collector or three－state outputs．Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138．

An active LOW write line（ $\overline{\mathrm{WE}}$ ）controls the writing／reading operation of the memory．When the chip select and write lines are LOW the information on the data input（ $\mathrm{DiN}_{\mathrm{N}}$ ）is
written into the addressed memory word and the output circuitry preconditioned so that true data is present at the outputs when the write cycle is complete．This precondi－ tioning operation insures minimum write recovery times by eliminating the＇write recovery glitch．＂

Reading is performed with the chip select line LOW and the write line HIGH．The information stored in the addressed word is read out on the noninverting output（DOUT）．

During the writing operation or any time the chip select line is HIGH the output of the memory goes to an inactive high impedance state．

PRODUCT SELECTOR GUIDE

Access Time	20 ns	30 ns		40 ns	45 ns	60 ns
Temperature Range	C	C	M	M	C	M
Open Collector	Am93415SA	Am93415A	Am93415SA	Am93415A	Am93415	Am93415
Three－State	Am93425SA	Am93425A	Am93425SA	Am93425A	Am93425	Am93425

ORDERING INFORMATION

```
Am93425
            SA P
                B suffix denotes }160\mathrm{ hour
                burn-in.
                Temperature
                C - Commercial ( }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
```



```
                        _Package
                            D-16-pin ceramic DIP
                            F - 16-pin flatpak
                            L - 20-pin leadless chip carrier
                        P - 16-pin plastic DIP.
                        Speed Select
                            See Product Selector Guide
Device Type
    Am93415 series - Open Collector
    Am93425 series - Three state
```


ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad
DC Voltage Applied to Outputs．．．．．．．．．．-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ max
DC Input Voltage 50.5 V to +5.5 V

DC Input Current -30 mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure．Functionality at or above these limits is not implied．Exposure to absolute maximum ratings for extended periods may affect device reliability．

OPERATING RANGES

Commercial（C）Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military（M）Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Operating ranges define those limits over which the functional- ity of the device is guaranteed．

DC CHARACTERISTICS over operating range unless otherwise specified

Notes：
1．Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ ．
2．This applies only to devices with three－state outputs． （Am93425 series）
3．These are absolute voltages with respect to device ground pin and include all overshoots due to system
and／or tester noise．Do not attempt to test these values without suitable equipment．
4．Input and output capacitance measured on a sample basis using pulse technique．

KEY TO SWITCHING
WAVEFORMS

KS000010

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am93415A/25A				Am93415/25				Units
			C devices		M devices		C devices		M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	tPLH(A)	Delay from Address to Output		30		40		45		60	ns
2	$t_{\text {PHL }}(\mathrm{A})$										
3	$\mathrm{t}_{\mathrm{ZZH}}$ CS	Delay from Chip Select to Active Output and Correct Data		20		30		35		45	ns
4	tPZLCS			2						4	
5	tpzH($\overline{W E}$)	Delay from Write Enable to Active Output and Correct Data (Write Recovery)		25		35		40		50	ns
6	tpzL($\bar{W} E)$										
7	$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$	Setup Time Address (Prior to Initiation of Write)	5		5		10		15		ns
8	$t_{\text {h }}(\mathrm{A})$	Hold Time Address (After Termination of Write)	5		5		5		5		ns
9	$\mathrm{ts}_{\text {(}}$ (DI)	Setup Time Data Input (Prior to Initiation of Write)	5		5		5		5		ns
10	t_{h} (DI)	Hold Time Data Input (After Termination of Write)	5		5		5		5		ns
11	$\mathrm{t}_{\mathbf{S}}(\overline{\mathrm{CS}})$	Setup Time Chip Select (Prior to Initiation of Write)	5		5		5		5		ns
12	$t_{1}(\overline{C S})$	Hold Time Chip Select (After Termination of Write)	5		5		5		5		ns
13	$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Min Write Enable Pulse Width to Insure Write	20		30	,	30		40		ns
14	$\mathrm{tPHZ}^{\text {(CSS }}$)	Delay from Chip Select to Inactive Output (HIGH-Z)		20		30		35		50	ns
15	tplz(CS)										
16	$\mathrm{tPHz}^{(W)}$	Delay from Write Enable to Inactive Output (HIGH-Z)		20		30		35		35	ns
17	tplz($\overline{\mathrm{WE}})$										

SWITCHING CHARACTERISTICS (Cont.)

No.	Symbol	Description	Am93415SA/25SA				Units
			C devices		M devices		
			Min	Max	Min	Max	
1	$\mathrm{tPLH}^{(A)}$	Delay from Address to Output (Address Access Time)		20			
2	$t_{\text {PHL }}(\mathrm{A})$			20		30	ns
3	$\left.\mathrm{tpZH}^{(\mathrm{CS}}\right)$	Delay from Chip Select to Active Output and Correct Data		15		25	ns
4	tPZL(CS)			15		25	ns
5	${ }_{\text {tPZH }}(\overline{W E})$	Delay from Write Enable to Active Output and Correct Data (Write Recovery)		15		25	ns
6	tpZL($\bar{W} E)$			15		25	
7	$t_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	5		5		ns
8	$t_{n}(A)$	Hold Time Address (After Termination of Write)	0		5		ns
9	$t_{s}(\mathrm{DI})$	Setup Time Data Input (Prior to Initiation of Write)	0		5		ns
10	$t_{h}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write)	0		5		ns
11	$t_{s}(\overline{C S})$	Setup Time Chip Select (Prior to Initiation of Write)	5		5		ns
12	th(CS)	Hold Time Chip Select (After Termination of Write)	0		5		ns
13	$t_{p w}(\overline{W E})$	Min Write Enable Pulse Width to Insure Write	15		25		ns
14	tPHZ(CS)	Delay from Chip Select to Inactive Output (HIGH-Z)		20		30	ns
15	tplz(CS)			20		30	ns
16	$\left.\mathrm{tPHZ}^{(\mathrm{WE}}\right)$	Delay from Write Enable to Inactive Output (HIGH-Z)		15		25	ns
17	tplz($\overline{W E}$)			15		25	ns

Notes:

1. $t_{\text {PLH }}(A)$ and $t_{P H L}(A)$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
2. For open collector devices (Am93415 series), all delays from Write Enable ($\overline{W E}$) or Chip Select ($\overline{C E}$) inputs to the Data Output (DOUT), tplz($\overline{\mathrm{WE}}), t_{\text {PlZ }}(\overline{\mathrm{CS}}), t_{P z L}(\overline{\mathrm{WE}})$ and tpZL $(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
3. For 3-state output devices (Am93425 series), tpZH($\overline{W E}$) and $\mathrm{tPZH}_{\mathrm{P}}(\overline{\mathrm{CS}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{VOH}-500 \mathrm{mV}$ level on the output. tPLZ $(\overline{\mathrm{WE}})$ and tpLz $(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

Am27S06/7

64-Bit Noninverting Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Fully decoded 16 -word x 4-bit low power Schottky RAMs
- High-speed: Address access time typically 40ns
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch
- Available with three-state outputs (Am27LSO7) or with open collector outputs (Am27LS06)
- Electrically tested and optically inspected die for the assemblers of hybrid products

GENERAL DESCRIPTION

The Am27LS06 and Am27LS07 are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (टS) input and open collector OR tieable outputs or three-state outputs. Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74LS189.

An active LOW Write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write
lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four noninverting outputs O_{0} to O_{3}.
During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

PRODUCT SELECTOR GUIDE

Access Time	25 ns	30 ns	35 ns	50 ns	55 ns	65 ns
Temperature Range	C	M	C	M	C	M
Open Collector	27 S 06 A	27 S 06 A	27 S 06	27 S 06	27 LS 06	27 LS 06
Three-State	27 S 07 A	27 S 07 A	27 S 07	27 S 07	27 LS 07	27 LS 07

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

ORDERING INFORMATION

Am27S06

 B suffix denotes 160 hour burn-in.

- Temperature

C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Package
D-16-pin ceramic DIP
F - 16-pin flatpak
L - 20-pin leadless chip carrier
P-16-pin plastic DIP
Speed Select
See Product Selector Guide

Device Type
Output Configuration
See Product Selector Guide

ABSOLUTE MAXIMUM RATINGS	OPERATING RANGES
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Commercial (C) Devices
Ambient Temperature with	Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Applied............................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Supply Voltage +4.75 V to +5.25 V
Supply Voltage...............................-0.5V to +7.0 V	Military (M) Devices
DC Voltage Applied to Outputs.......... 0.5 V to $+\mathrm{V}_{\text {cc }}$ max	Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DC Input Voltage.............................-0.5V to +5.5 V	Supply Voltage...................................... + 4.5V to +5.5 V
DC Input Current 30 mA to +5 mA	Operating ranges define those limits over which the functional-
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.	ity of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameters	Test Conditions			27S06/7			27LS06/7			Units
					Min	Typ	Max	Min	Typ	Max	
VOH (Note 2)	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		-5.2mA	2.4	3.2		2.4	3.6		Volts
				2.0 mA							
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		16 mA		350	450		280	450	mV
			$1 \mathrm{OL}=20 \mathrm{~mA}$			380	500		310	500	
V_{H}	Input High Level	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)			2.0			2.0			Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)					0.8			0.8	
I/i	Input LOW Current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=0.40 V \end{aligned}$	WE, $D_{0}-D_{3}, A_{0}-A_{3}$			-15	-250		-15	-250	$\mu \mathrm{A}$
						-30	-250		-30	-250	
$\mathrm{l}_{\text {i }}$	input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$				0	10		0	10	$\mu \mathrm{A}$
$\begin{aligned} & \hline \mathrm{Isc} \\ & \text { (Note 2) } \end{aligned}$	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{\text {OUT }}=0.0 \mathrm{~V} \text { (Note 4) } \end{aligned}$			-20	-45	-90	-20	-45	-90	mA
Icc	Power Supply Current	All Inputs = GND $V_{C C}=M A X$	COM'L			75	100		30	35	
						75	105		30	38	
V_{CL}	Input Clamp Voltage	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-0.85	-1.2		-0.85	-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{\text {GS }}=V_{\text {IH }} \text { or } v_{W E}=V_{\text {iL }} \\ & v_{\text {OUT }}=2.4 \mathrm{~V} \end{aligned}$				0	40		0	40	$\mu \mathrm{A}$
		$V_{C S}=V_{\text {IH }}$ or $V_{E W}=V_{\text {IL }}$ In $\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{MAX}$		(Note 2)	-40	0		-40	0		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system
and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

SWITCHING TEST
 WAVEFORM

KEY TO SWITCHING
WAVEFORMS

Waveform	InPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	may Change FROM HTOL	WILL BE CHANGING FROM HTOL
NTVIT	MAY CHANGE FROMLTOH	WILL $B E$ CHANGING FROML TOH
xxyx	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	$\begin{aligned} & \text { DOES NOT } \\ & \text { APPLY } \end{aligned}$	CEnter LINE IS HIGH IMPEDANCE "OFF" STATE

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am27S06A/7A				Am27S06/7				Units
			$\begin{gathered} \text { A } \\ C \text { devices } \end{gathered}$		M devices		$\begin{gathered} \text { STD } \\ \text { c devices } \end{gathered}$		STDM devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	$t_{\text {PLIH }}(\mathrm{A})$	Delay from Address to Output		25		30		35		50	ns
2	$t_{\text {PHL }}(\mathrm{A})$			25		30		35		50	ns
3	${ }_{\text {tPZH }}(\overline{\mathrm{CS}})$	Delay from Chip Select (LOW) to Active Output and Correct Data		15		20		17		25	ns
4	tpzL(CS)										
5	${ }_{\text {PPZH }}(\mathrm{WE}$)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery-See Note 1)		20		25		35		40	ns
6	tpzL(WE)										
7	$t_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	0		0	.	0		0		ns
8	$t_{h}(A)$	Hold Time Address (After Termination of Write)	0		0		0		0		ns
9	$\mathrm{t}_{\mathbf{S}}$ (DI)	Setup Time Data Input (Prior to Termination of Write)	20		25		25		25		ns
10	$t_{h}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write)	0		0		0		0		ns
11	$t_{p w}(\overline{W E})$	MIN Write Enable Width Pulse to Insure Write	20		25		25		25		ns
. 12	$\mathrm{tpHz}^{\text {(}} \overline{\mathrm{CS}}$)	Delay from Chip Select (HIGH) to inactive Output (HI-Z)		15		20		17		25	ns
13	tplz(CS)										
14	tplz(WE)	Delay from Write Enable (LOW) to Inactive Output (HI-Z)		20		25		25		35	
15	$\mathrm{tPHZ}^{(\underline{W E})}$			20		25		25		35	ns

SWITCHING CHARACTERISTICS (Cont.)

No.	Symbol	Description	$\frac{\text { Am27LS06A/7A }}{C \text { devices }}$		$\begin{gathered} \hline \text { Am27LS06/7 } \\ \hline \text { M devices } \end{gathered}$		Units
			Min	Max	Min	Max	
1	${ }_{\text {tPLH }}(\mathrm{A})$	Delay from Address to Output		55		65	ns
2	${ }_{\text {tPHL }}$						
3	tPZH(CS)	Delay from Chip Select to Active Output and Correct Data		30		35	ns
4	tpZL $^{\text {(CS }}$)						
5	tPZH($\overline{W E}$)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery-See Note 2)		30		35	ns
6	tpzL($\overline{W E}$)						
7	$\mathrm{ts}_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	0		0		ns
8	$t_{\text {h }}(A)$	Hold Time Address (After Termination of Write)	0		0		ns
9	t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	45		55		ns
10	$\mathrm{th}^{\text {(DI) }}$	Hold Time Data Input (After Termination of Write)	0		0		ns
11	$t_{p w}(\overline{W E})$	Min Write Enable Pulse Width to Insure Write	45		55		ns
12	tPHz(CS)	Delay from Chip Select to Inactive Output (HI-Z)		30		35	ns
13	tplz(CS)						
14	$t_{\text {PLI }}(\bar{W} \bar{W})$	Delay from Write Enable (LOW) to Inactive Output (HI-Z)		30		35	ns
15	$t_{\text {PHZ }}(\overline{\mathrm{WE}})$						

Notes:

1. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
2. $\operatorname{tpLH}^{(A)}$ and $\operatorname{tphL}(A)$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
3. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}}$) or Chip Select ($\overline{C S}$) inputs to the Data Output (DOUT), $t_{P L Z}(\overline{\mathrm{WE}}), t_{P L Z}(\overline{\mathrm{CS}}), t_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{tpzL}^{(\overline{\mathrm{CS}})}$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
4. For 3-state output, tPZH $(\overline{\mathrm{WE}})$ and $\mathrm{tPZH}^{(\overline{C S})}$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . tpzL $(\overline{\mathrm{WE}})$ and $\mathrm{tpzL}^{(\mathrm{CS})}$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{t}_{\mathrm{PHz}}(\overline{\mathrm{WE}})$
 and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. tplZ($\left.\overline{\mathrm{WE}}\right)$ and $t_{P L Z}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{VOL}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

Write Cycle Timing. The cycle in initiated by an address change. After $\mathrm{t}_{\mathbf{s}}(\mathrm{A}) \mathrm{min}$, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27S07A/07) while the write enable is LOW.

READ MODE

Switching delays from address and chip select inputs to the data output. For the Am27S06A/06 disabled output is ''OFF', represented by a single center line. For the Am27S06A/06 disabled output is HIGH.

Am27S02/3

64-Bit Schottky Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Ultra-Fast "A" Version: Address access time 25ns
- Low Power
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with open collector outputs (Am27S02/02A) or with three-state outputs (Am27S03/03A)
- Pin compatible replacements for 3101A, 74S289, 93403, 6560 (use Am27S02A/02); for 74S189, 6561, DM8599 (use Am27S03A/03)

GENERAL DESCRIPTION

The Am27S02/02A and Am27S03/03A are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and open collector OR tieable outputs (Am27S02/02A) or three-state outputs (Am27S03/03A). Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.

An active LOW Write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select and write
lines are LOW the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and preconditions the output circuitry so that correct data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs $\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{3}$.

During the writing operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

BLOCK DIAGRAM

MODE SELECT TABLE

Input		Data Output Status $\overline{\bar{O}_{0}}-\overline{\mathbf{O}_{3}}$	
CS	$\overline{\text { WE }}$	Mode	
L	L	Output Disabled	Write
L	H	Selected Word (Inverted)	Read
H	X	Output Disabled	Deselect

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \\
& \mathrm{~L}=\mathrm{LOW} \\
& \mathrm{X}=\text { Don't Care }
\end{aligned}
$$

PRODUCT SELECTOR GUIDE

Access Time	25 ns	30 ns	35 ns	50 ns	55 ns	65 ns
Temperature Range	C	M	C	M	C	M
Open Collector	Am27S02A	Am27S02A	Am27S02	Am27S02	Am27LS02	Am27LS02
Three-State	Am27S03A	Am27S03A	Am27S03	Am27S03	Am27LS03	Am27LS03

Top View

L-20-2

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

ORDERING INFORMATION

```
Am27S02
```



``` B suffix denotes 160 hour burn-in.
Temperature
C - Commercial ( \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) ) M-Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
Package
D - 16-pin ceramic DIP
F - 16-pin flatpak
L - 20-pin leadless chip carrier
P - 16-pin plastic DIP
Speed Select
See Product Selector Guide
Device Type
Output Configuration
See Product Selector Guide
```

Valld Combinations	
Am27S02	PC, PCB,
Am27LS02	DC, DCB,
Am27S03	LC, LCB,
Am27LS03	DM, DMB,
	FM, FMB,
	LM, LMB
Am27S02A	PC, PCB,
Am27S03A	DC, DCB,
	DM, DMB

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	-0.5 V to +7.0 V
DC Voltage Applied to O	. 5 V to + VCC max
DC Input Voltage	-0.5 V to +5.5 V
Input Curren	30 mA to +5 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $\ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameters	Test Conditions				27S02/3			27LS02/3			Units
						Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { VOH } \\ & \text { (Note 2) } \end{aligned}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{OH}=-5.2 \mathrm{~mA}$		COM'L	2.4	3.2		2.4	3.6		Volts
			$\mathrm{IOH}=-2.0 \mathrm{~mA}$		MIL							
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$10 \mathrm{~L}=16 \mathrm{~mA}$				350	450		280	450	mV
			$1 \mathrm{OL}=20 \mathrm{~mA}$				380	500		310	500	
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 3)				2.0			2.0			Volts
$V_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs (Note 3)						0.8			0.8	
IfL	Input LOW Current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{I N}=0.40 \mathrm{~V} \end{aligned}$	WE, $D_{0}-D_{3}, A_{0}-A_{3}$				-15	-250		-15	-250	$\mu \mathrm{A}$
			CS				-30	-250		-30	-250	
${ }_{1} \mathrm{H}$	Input HIGH Current	$V_{C C}=$ MAX, $V_{\text {IN }}=2.4 \mathrm{~V}$					0	10		0	10	$\mu \mathrm{A}$
$\begin{aligned} & \text { IsC } \\ & \text { (Note 2) } \end{aligned}$	Output Short Circuit Current	$\begin{aligned} & V_{C C}=M A X \\ & V_{\text {OUT }}=0.0 V \text { (Note 4) } \end{aligned}$				-20	-45	-90	-20	-45	-90	mA
Icc	Power Supply Current	All Inputs = GND $V_{C C}=M A X$	COM'L				75	100		30.	35	
			MIL				75	105		30	38	
VCL	Input Clamp Voltage	$V_{C C}=$ MIN, $\mathrm{I}_{1 /}=-18 \mathrm{~mA}$					-0.85	-1.2		-0.85	-1.2	Volts
Icex	Output Leakage Current	$\begin{aligned} & V_{\text {CS }}=V_{I H} \text { or } V_{W E}=V_{I L} \\ & V_{\text {OUT }}=2.4 \mathrm{~V} \end{aligned}$		Am27 Am27	$\begin{aligned} & 4 / 03 \mathrm{~A} \\ & \hline 103 \\ & \hline \end{aligned}$		0	40		0	40	$\mu \mathrm{A}$
		$\begin{aligned} & V_{C S}=V_{I H} \text { or } V_{W E}=V_{1 L} \\ & V_{O U T}=0.4 V, V_{C C}=M A X \end{aligned}$			(e)	-40	0.		-40	0		

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system
and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

SWITCHING TEST
CIRCUIT
SWITCHING TEST
WAVEFORM
KEY TO THE SWITCHING
WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS MUSTBE STEADY

KS000010
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am27S02/3				Am27S02/3				Units
			$\begin{gathered} \text { A } \\ \text { C devices } \end{gathered}$		$\underset{\mathrm{M} \text { devices }}{\mathbf{A}}$		STD C devices		STD M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	$t_{\text {PLL }}(\mathrm{A})$	Delay from Address to Output		25		30		35		50	ns
2	tphl(A)			2		30		3		5	ns
3	tPZH(CS)	Delay from Chip Select (LOW) to Active Output and Correct Data		15		20		17		25	ns
4	tPZL(CS)										
5	tPZH(WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery- See Note 1)		20		25		35		40	ns
6	tPZL($\overline{\mathrm{WE}})$.	20		25		3		40	ns
7	$\mathrm{ts}_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	0		0		0		0		ns
8	$t_{n}(A)$	Hold Time Address (After Termination of Write)	0		0		0		0		ns
9	$\mathrm{t}_{\mathbf{s}}(\mathrm{DI})$	Setup Time Data Input (Prior to Termination of Write)	20		25		25		25		ns
10	th(DI)	Hold Time Data Input (After Termination of Write)	0		0		0		0		ns
11	$t_{p w}(\overline{W E})$	MIN Write Enable Pulse Width to Insure Write	20		25		25		25		ns
12	$\mathrm{tPHz}^{(\overline{C S})}$	Delay from Chip Select (HIGH) to inactive Output (HI-Z)		15		20		17		25	ns
13	tplz(CS)										
14	tPLZ(WE)	Delay from Write Enable (LOW) to Inactive Output ($\mathrm{HI}-\mathrm{Z}$)		20		25		25		35	ns
15	$t_{\text {PHZ }}(\overline{\mathrm{WE}})$										

SWITCHING CHARACTERISTICS (Cont.)

No.	Symbol	Description	$\begin{gathered} \text { Am27LS02/3 } \\ \text { C devices } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Am27LS02/3 } \\ \hline \mathrm{M} \text { devices } \\ \hline \end{array}$		Units
			Min	Max	Min	Max	
1	${ }_{\text {PLPH }}(\mathrm{A})$	Delay from Address to Output		55		65	ns
2	$\mathrm{tPHL}^{(A)}$			55		65	ns
3	$\mathrm{t}_{\mathrm{PZH}}(\overline{C S})$	Delay from Chip Select to Active Output and Correct Data		30		35	ns
4	tPZL(CS)						
5	tPZH($\overline{W E}$)	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery - See Note 2)		30		35	
6	tpzL ('W)			30		35	ns
7	$\mathrm{ts}_{5}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	0		0		ns
8	$t_{h}(A)$	Hold Time Address (After Termination of Write)	0		0		ns
9	t_{s} (DI)	Setup Time Data input (Prior to Termination of Write)	45		55		ns
10	$\mathrm{t}_{\mathrm{h}}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write)	0		0		ns
11	$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Min Write Enable Pulse Width to Insure Write	45		55		ns
12	$\left.\mathrm{tPHZ}^{(\mathrm{CS}}\right)$	Delay from Chip Select to Inactive Output (HI-Z)		30		35	ns
13	tplz($\overline{C S}$)						
14	tplz($\overline{W E}$)	Delay from Write Enable (LOW) to Inactive Output ($\mathrm{Hi}-\mathrm{Z}$)		30		35	ns
15	$\left.\mathrm{tPHz}^{(\mathrm{W} E}\right)$						

Notes:

1. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
2. $\operatorname{tpLH}(A)$ and $\operatorname{tPHL}^{(A)}$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
3. For open collector, all delays from Write Enable ($\overline{\mathrm{WE}}$) or Chip Select ($\overline{\mathrm{CS}}$) inputs to the Data Output (DOUT), $t_{P L Z}(\overline{W E}), t_{P L Z}(\overline{C S}), t_{P Z L}(\overline{W E})$ and $t_{P Z L}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $C_{L}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
4. For 3-state output, $\mathrm{tPZH}(\overline{\mathrm{WE}})$ and $\mathrm{tPZH}^{(\overline{\mathrm{CS}})}$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{tpZL}^{(\overline{W E})}$ and $\mathrm{tpzL}^{(\overline{\mathrm{CS}})}$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $\mathrm{tPHZ}^{(\overline{\mathrm{WE}})}$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}=\mathrm{mNg} 500 \mathrm{mV}$ level on the output. tplz($\left.\overline{\mathrm{WE}}\right)$ and $t_{P L Z}(\overline{C S})$ are measured with S_{1} closed and $C_{L} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A) m i n$, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am27S03A/03) while the write enable is (VE) LOW.

WRITE MODE

WF001110

READ MODE

Switching delays from address and chip select inputs to the data output. For the Am27S03A/03 disabled output is 'OFF', represented by a single center line. For the Am27S02A/02, a disabled output is HIGH.

Am27LS00/01 Series

- High-Speed
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate the write recovery glitch

DISTINCTIVE CHARACTERISTICS

- Available with three-state outputs or with open collector outputs
- Both inverting and non-inverting versions available.

GENERAL DESCRIPTION

The Am27LS00/01 family is comprised of fully decoded bipolar random access memories for use in high-speed buffer memories. The memories are organized 256 -words by 1 -bit with an 8 -bit binary address field and separate data in and data output lines. The memories have three active LOW chip select inputs and a three-state output (Am27LS00 devices) or open collector output (Am27LS01 devices). All inputs are buffered to present an input load of only 0.5 TTL unit loads.

Read/write operation is controlled by an active LOW write enable input. When the write enable is LOW and the chip is selected the data on the data input is written into the location specified by the address inputs. During this operation the output of the -1 device is active and inverts the value of DI (White Transparent Operation). The other devices disable the output during the period $\overline{\mathrm{WE}}$ is low. Reading is accomplished by having the chip selected and the write enable input HIGH. Data stored in the location specified by the address inputs is read out and appears on the data output inverted.

PRODUCT SELECTOR GUIDE

Access Time		35ns	45ns		55ns
Temperature Range		C	C	M	M
Open Collector	STD	Am27LS01A	Am27LS01	Am27LS01A	Am27LS01
	Write Transparent	Am27LS01-1A	Am27LS01-1	Am27LS01-1A	Am27LS01-1A
	STD	Am27LS00A	Am27LS00	Am27LS00A	Am27LS00
	Write Transparent	Am27LS00-1A	Am27LS00-1	Am27LS00-1A	Am27LS00-1

CD000890

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

LS000200

ORDERING INFORMATION

Am27LS00

B suffix denotes 160 hour burn-in.
Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package

Valid Combinations	
Am27LS00	PC,
Am27LS00A	DC, DCB,
Am27LS00-1	LC, LCB,
Am27LS00-1A	DM, DMB,
Am27LS01	FM, FMB,
Am27LS01A	LM, LMB
Am27LS01-1	
Am27LS01-1A	

D - 16-pin ceramic DIP
F - 16-pin flatpak
L - 20-pin leadless chip carrier
P-16-pin plastic DIP
Speed Select
See Product Selector Guide
Device Type
Am27LS00
Am27LS00A
Am27LS00-1
Am27LS00-1A
Am27LS01
Am27LS01A
Am27LS01-1
Open collector
Am27LS01-1A

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Commercial (C) Devices
Temperature
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage
+4.75 V to +5.25 V
Military (M) Devices
Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functional-
ity of the device is guaranteed.

1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and incllude all overshoots due to system
and/or tester noise. Do not attempt to test these values without suitable equipment.

KS000010

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am27LS00A/01A family				Am27S00/01 family				Units
			C devices		M devices		C devices		M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	$\mathrm{tPLH}^{(A)}$	Delay from Address to Output		35		45		45		55	ns
2	tPHL(A)										
3	$\left.\mathrm{tpzH}^{(\mathrm{CS}}\right)$	Delay from Chip Select (LOW) to to Active Output and Correct Data		25		25		25		30	ns
4	tPZL (CSS)										
5	tpzH($(\overline{W E})$	Delay from Write Enable (HIGH) to Active Output and Correct Data	5		5	-	5		5		ns
6	tPZL(WE)										
7	$t_{\text {tec }}(\overline{W E})$	Delay from Write Enable (HiGH) to Correct Output Data		35		45		45		55	ns
8	$t_{s}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)		0		5		0		5	ns
9	$t_{\text {L }}(\mathrm{A})$	Hold Time Address (After Termination of Write)		0		5		0		5	ns
10	$t_{s}(\mathrm{Dl})$	Setup Time Data Input (Prior to Termination of Write)		25		30		30		55	ns
11	$t_{h}(\mathrm{DI})$	Hold Time Data Input (After Tormination of Write)		5		5		0		5	ns
12	$t_{p w}(\overline{W E})$	Min Write Enable Pulse Width to Insure Write	25		30		30		35		ns
13	$\mathrm{tPHz}^{\text {(CS) }}$	Delay from Chip Select (HIGH) to Inactive Output ($\mathrm{HI}-\mathrm{Z}$)		25		25		25		30	ns
14	tplz($\overline{C S}$)										
15	tplz($\bar{W} E)$	Delay from Write Enable (LOW) to Inactive Output (HI-Z) (Note 6)		30		40		30		40	ns
16	$\left.\mathrm{tphz}^{(\bar{W} E}\right)$										

Notes:

1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Output is preconditioned to data in during write to insure correct data is present on all outputs when write is termilneted. (No write recovery glitch.)
3. $\operatorname{tpLH}_{\mathrm{PL}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S closed and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
4. For open collector, all delays from write Enable($\overline{\mathrm{WE}})$ or Chip Select(CS) inputs to the Data Output(DOUT), $\operatorname{tpLZ}(\overline{\mathrm{WE}}), \operatorname{tpzL}(\overline{\mathrm{CS}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\operatorname{tpzL}(\overline{\mathrm{CS}})$ are mea-
sured with S closed and $C_{L}=50 \mathrm{pF}$ and with both the input and output timimg referenced to 1.5 V .
5. For 3 -state output, $\mathrm{tPZH}(\overline{\mathrm{WE}})$ and $\mathrm{tPZH}(\overline{\mathrm{CS}})$ are measured with S open, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . tpzL($\overline{\mathrm{WE}})$ and tpzL(CS) are measured with S closed, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . tpHz($\overline{\mathrm{WE}})$ and $\mathrm{tpHz}^{(\overline{\mathrm{CS}})}$ are measured with S open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $V_{0 L}+500 \mathrm{mV}$ level on the output.
6. Does not apply to -1 devices.

Write Cycle Timing. The cycle is initiated by an address change. After $\mathrm{t}_{\mathrm{s}}(\mathrm{A})$ max, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ max must be allowed before the address may be changed again. The output will be inactive (floating for the Am27LS00-1A/00-1) while the write enable is LOW. Ordinarily, the chip select should be LOW during the entire write pulse.

Switching delays from address and chip select inputs to the data output. For the Am27LS00-1A/00-1 disabled output is "OFF," represented by a single center line. For the Am27LS01-1A/01-1, a disabled output is HIGH.

Am93412/422 Family

DISTINCTIVE CHARACTERISTICS

- High-speed
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Output preconditioned during write to eliminate write recovery glitch
- Available with 3 -state outputs or with open collector outputs
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am93412/22 family is comprised of 1024-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in highspeed control and buffer memory applications. Each memory is organized as a fully decoded 256 -word memory of four bits per word. Easy memory expansion is provided by an active LOW chip select one ($\overline{\mathrm{CS}}_{1}$) and active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ as well as open collector OR tieable outputs (Am93412) or 3-state outputs (Am93422).

An active LOW write line ($\overline{\text { WE }}$) controls the writing/reading operation of the memory. When the chip select one ($\overline{\mathrm{CS}}_{1}$) and write line ($\overline{W E}$) are LOW and chip select two $\left(\mathrm{CS}_{2}\right)$ is HIGH, the information on data inputs (D_{0} through D_{3}) is written into the addressed memory word and preconditions
the output circuitry so that true data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select one ($\overline{C S}_{1}$) LOW and the chip select two (CS2) HIGH and the write line ($\overline{\mathrm{WE}}$) HIGH and with the output enable ($\overline{\mathrm{OE}}$) LOW. The information stored in the addressed word is read out on the noninverting outputs (O_{0} through O_{3}).

The outputs of the memory go to an inactive highimpedance state whenever chip select one ($\overline{\mathrm{CS}})_{1}$) is HIGH, chip select two (CS_{2}) is LOW, output enable ($\overline{\mathrm{OE}}$) is HIGH, or during the writing operation when write enable (WE) is LOW.

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature \qquad Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs.......... 0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$
DC Input Voltage -0.5 V to +5.5 V
DC Input Current................................-30mA to +5 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Commercial (C) Devices

Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
$\begin{gathered} \mathrm{VOH} \\ \text { (Note 2) } \end{gathered}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M_{I N} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \hline \end{aligned}$	$1 \mathrm{OH}=-5.2 \mathrm{~mA}$		2.4	3.6		Volts
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M_{I N} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$1 \mathrm{loL}=8.0 \mathrm{~mA}$			0.350	0.45	Volts
V_{iH}	Input HIGH Level (Note 3)	Guaranteed input logical HIGH voltage for all inputs			2.1	1.6		Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Level (Note 3)	Guaranteed input logical LOW voltage for all inputs				1.5	0.8	Volts
ILL	Input LOW Current	$V_{C C}=$ MAX, $V_{\text {IN }}=0.40 \mathrm{~V}$				-100	-300	$\mu \mathrm{A}$
I_{iH}	Input HIGH Current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$				1	40	$\mu \mathrm{A}$
$\begin{gathered} \mathrm{ISC} \\ \text { (Note 2) } \end{gathered}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ (Note 4)					-90	mA
Icc	Power Supply Current	ALL inputs $=$ GND$V_{C C}=M A X$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	STD devices		100	130	mA
				L devices		55	75	
				STD devices			155	
			$T_{A}=0^{\circ} \mathrm{C}$	L devices			80	
			$T_{A}=-55^{\circ} \mathrm{C}$	STD devices			170	
				L devices			90	
V_{CL}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \times}=-10 \mathrm{~mA}$				-0.850	-1.5	Volts
ICEX	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$	Am 93422A/422			0	50	$\mu \mathrm{A}$
		$\begin{aligned} & V_{O U T}=0.5 \mathrm{~V}, \\ & V_{C C}=\mathrm{MAX} \end{aligned}$	Am93422A/422		-50	0		
		$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	Am 93412A/412			0	100	
CIN_{1}	Input Pin Capacitance	See Note 5				4		pF
Cout	Output Pin Capacitance	See Note 5				7		pF

Notes:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. Applies only to devices with three-state outputs (Am93422 family)
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
5. Input and output capacitance measured on a sample basis © $f=1.0 \mathrm{MHz}$.
SWITCHING TEST

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am93412A/422A				Am93412/422				Units
			C devices		M devices		C devices		M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	tPLH(A)(Note 1)	Delay from Address to Output (Address Access Time)		35		45		45		60	ns
2	tphL $^{\text {(A)(Note 1) }}$)										
3	$\mathrm{tPZH}^{\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)}$	Delay from Chip Select to Active Output and Correct Data		25		35		30		45	ns
4	$\mathrm{t}_{\mathrm{PLL}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$										
5	${ }_{\text {tPZH }}(\overline{W E})$	Delay from Write Enable to Active Output and Correct Data (Write Recovery)		25		40		40	:	50	ns
6	tpzL($\overline{\mathrm{WE}})$										
7	${ }_{\text {tPZH }}(\overline{O E})$	Delay from Output Enable to Active Output and Correct Data		25		35		30		45	ns
8	$\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{OE}})$.							
9	$\mathrm{t}_{3}(\mathrm{~A})$	Setup Time Address (Prior to Initiation of Write)	5		5		10		10		ns
10	$t_{\text {L }}(\mathrm{A})$	Hold Time Address (After Termination of Write)	5		5		5		5		ns
11	$t_{s}(\mathrm{DI})$	Setup Time Data Input (Prior to Initiation of Write)	5		5		5		5		ns
12	$t_{h}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write)	5		5		5		5		ns
13	$\mathrm{t}_{\mathbf{s}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Setup Time Chip Select (Prior to Initiation of Write)	- 5		5		5		5		ns
14	$t_{n}\left(\overline{C S}_{1}, \mathrm{CS}_{2}\right)$	Hold Time Chip Select (After Termination of Write)	5		5		5		5		ns
15	${ }_{t}{ }_{\text {pw }}(\overline{W E})$	Min Write Enable Pulse Width to Insure Write	20		35		30		40		ns
16	$\mathrm{t}_{\mathrm{PHZ}}\left(\overline{C S}_{1}, \mathrm{CS}_{2}\right)$	Delay from Chip Select to Inactive Output (HIGH-Z)		30		35		30		45	ns
17	$\mathrm{tpLz}^{\left(\overline{C S}_{1}, \mathrm{CS}_{2}\right)}$										
18	tPHz($\overline{\text { WE }}$)	Delay from Write Enable to Inactive Output (HIGH-Z)		30		40		35		45	ns
19	tplz($\overline{\mathrm{WE}})$										
20	$\mathrm{t}_{\mathrm{PHz}}(\overline{\mathrm{OE}})$	Delay from Output Enable to Inactive Output (HIGH-Z)		30		35		30		45	ns
21	tplz($\overline{O E}$)										

No.	Symbol	Description	Am93L412A/422A				Am93L412/422				Units
			C devices		M devices		C devices		M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	tplH(A)(Note 1)	Delay from Address to Output (Address Access Time)		45		55		60		75	ns
2	${ }_{\text {tPHL }}(\mathrm{A})$ (Note 1)										
3	$\mathrm{tPZH}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$	Delay from Chip Select to Active Output and Correct Data	,	30		40		35		45	ns
4	$\mathrm{t}_{\text {PLL }}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$										
5	${ }^{\text {tPZH }}$ ($\overline{\text { WE }}$)	Delay from Write Enable to Active Output and Correct Data (Write Recovery)		40		45		45		50	ns
6	tpzL($\overline{\mathrm{WE}}$)										
7	$t_{\text {pzh }}(\overline{O E})$	Delay from Output Enable to Active Output and Correct Data		30		40		35		45	ns
8	tpzl.(OE)										
9	$\mathrm{t}_{\mathrm{s}}(\mathrm{A})$.	Setup Time Address (Prior to Initiation of Write)	5		10		10		10		ns
10	$t_{h}(A)$	Hold Time Address (After Termination of Write)	5		5		5		10		ns
11	$t_{s}(\mathrm{DI})$	Setup Time Data Input (Prior to Initiation of Write)	5		5		5		5		ns
12	$t_{\text {l }}$ (DI)	Hold Time Data input (After Termination of Write)	5		5		5		5		ns
13	$\mathrm{ts}_{s}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$	Setup Time Chip Select (Prior to Initiation of Write)	5		5		5		5		ns
14	$t_{n}\left(\right.$ CS $\left._{1}, C S_{2}\right)$	Hold Time Chip Select (After Termination of Write)	5	,	5		5		10		ns
15	$\mathrm{t}_{\mathrm{pw}}(\overline{W E})$	Min Write Enable Pulse Width to insure Write	35		40	.	45		55		ns
16	${ }^{1} \mathrm{PHZ}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Delay from Chip Select to Inactive		30		40		35		45	ns
17	$t_{\text {PLZ }}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$	Output (HIGH-Z)						35			
18	tphz($\overline{\mathrm{WE}})$	Delay from Write Enable to Inactive		35		40		40		45	ns
19	$t_{\text {PLI }}(\overline{W E})$	Output (HIGH-Z)									
20	$t_{\text {PHZ }}(\overline{O E})$	Delay from Output Enable to		30		40		35		45	ns
21	tplz($\overline{O E}$)	Inactive Output (HIGH-Z)									

Notes:

1. $\operatorname{tpLH}^{(A)}$ and $\mathrm{tpHL}^{(A)}$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
2. For open collector devices, all delays from Write Enable (WE) or selects ($\overline{C S}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}}$) inputs to the Data Output
 $t_{P Z L}(\overline{W E}), t_{P Z L}\left(\overline{C S}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PLL}}(\overline{\mathrm{OE}})$) are measured with S_{1} closed and $C_{L}=15 p F$; and with both the input and output timing referenced to 1.5 V .
3. For 3 -state output devices, $\operatorname{tPZH}^{(\overline{W E})}, \mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$ and ${ }^{\text {tPZH }}(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with
both the input and output timing referenced to 1.5 V . $t_{P Z L}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PLL}}\left(\overline{\mathrm{CS}}_{1} \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{OE}})$ are measured with S_{1} closed, $C_{L}=15 p F$ and with both the input and output timing referenced to 1.5 V . $\operatorname{tpHZ}(\overline{\mathrm{WE}}), \operatorname{tPHZ}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$ and $\operatorname{tPHZ}^{(\overline{\mathrm{OE}})}$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. tplz($(\overline{\mathrm{WE}})$, tpLZ $\left(\overline{C S}_{1}, \mathrm{CS}_{2}\right)$ and $t_{P L Z}(\overline{O E})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $V_{O L}+500 \mathrm{mV}$. level on the output.

WF001130
Switching delays form address input, output enable input and the chip select inputs to the data output. For the Am93422A/422 disabled output is "OFF', represented by a single center line. For the Am93412A/412, a disabled output is HIGH.

DISTINCTIVE CHARACTERISTICS

- Fast access time (10ns typ.) - improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am10415SA, Am10415A and Am10415 are fully decoded 1024-bit ECL RAMs organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through A_{g}. Easy memory expansion is provided by an active LOW chip select (CS) input and an unterminated OR tieable emitter follower output.

An active L.OW write line (WE) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning
the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch."

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

MODE SELECT TABLE

Input			Output	
$\overline{\mathbf{C}}$	$\overline{\text { WE }}$	DIN $^{\prime \prime}$	DOUT	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	DOUT	Read

$$
\begin{aligned}
& H=\text { HIGH } \\
& L=\text { LOW } \\
& X=\text { Don't Care }
\end{aligned}
$$

PRODUCT SELECTOR GUIDE

Access Time	15 ns	20 ns	20 ns	25 ns	35 ns	40 ns
Temperature Range	C	M	C	M	C	M
Part Number	Am10415SA	Am10415SA	Am10415A	Am10415A	Am10415	Am10415

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied................................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to GND Pin \qquad -7.0 V to +0.5 V
Input Voltage (DC) \qquad
HIGH) \qquad . V_{EE} to +0.5 V Output Current (DC Output HIGH)-30mA to +0.1 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage -5.46 V to -4.94 V

Military (M) Devices
Temperature .
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -5.72 V to -4.68 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS (Commercial)

Symbol	Parameter	Test Conditions		$\begin{gathered} \mathbf{B} \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathbf{A} \\ \text { (Note 3) } \end{gathered}$	Units
V OH	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$	-1000		-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960		-810	
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900		-720	
Vol	Output Voltage LOW		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850		-1650	
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1625	
VOHC	Output Voltage HIGH	$V_{I N}=V_{\text {IHB }}$ or $V_{I L A}{ }^{50 \Omega}$ to -2.0V	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-980			
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-920			
VOLC	Output Voltage LOW		$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$			-1645	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-1630	
			$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$			-1605	
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Inputs (Note 4)	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1145		-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1105		-810	
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1045		-720	
$V_{\text {IL }}$	Input Voltage LOW	Guaranteed Input Voltage LOW for All Inputs (Note 4)	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1490	mV
			$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	-1850		-1475	
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830		-1450	
IIH	Input Current HIGH	$\mathrm{V}_{1 N}=\mathrm{V}_{\text {IHA }}$	$T_{A}=0$ to $+75^{\circ} \mathrm{C}$			220	$\mu \mathrm{A}$
ILL	input Current LOW Chip Select (CS) All Other Inputs	$V_{\text {IN }}=V_{\text {ILB }}$	$T_{A}=+25^{\circ} \mathrm{C}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	mA
IEE	Power Supply Current (Pin 8)	All Inputs and Outputs Open	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-150	-105		mA
			$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$		-90		

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2 -minute warm-up period. Typical thermal resistance values of the package are:
θ_{JA} (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
θ_{JA} (Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
$\theta_{\mathrm{JC}}($ Junction to Case $)=25^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols 'and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: " A " the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC CHARACTERISTICS (Military)

Symbol	Parameter	Test Conditions			$\begin{array}{\|c\|} \hline \text { B } \\ \text { (Note 3) } \end{array}$	$\begin{gathered} \mathbf{T y p} \\ \left(\operatorname{Notet}_{1}\right) \end{gathered}$	$\begin{gathered} \mathbf{A} \\ \text { (Note 3) } \end{gathered}$	Units
Voh	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$	Loading is 50Ω to -2.0 V	$T_{A}=-55^{\circ} \mathrm{C}$	-1070		-860	mV
				$T_{A}=+125^{\circ} \mathrm{C}$	-860		-650	
Vol	Output Voltage LOW			$T_{A}=-55^{\circ} \mathrm{C}$	-1900		-1690	
				$T_{A}=+125^{\circ} \mathrm{C}$	-1800		-1570	
VOHC	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHE }}$ or $\mathrm{V}_{\text {ILA }}$		$T_{A}=-55^{\circ} \mathrm{C}$	-1090			mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-880			
VoLC	Output Voltage LOW			$T_{A}=-55^{\circ} \mathrm{C}$			-1670	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			-1550	
V_{IH}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1215		-860	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1005		-650	
VIL	Input Voltage LOW	Guaranteed Input Voltage LOW for All Inputs (Note 4)		$T_{A}=-55^{\circ} \mathrm{C}$	-1900		-1515	mV
				$\mathrm{T}_{A}=+125^{\circ} \mathrm{C}$	-1800		-1395	
$\mathrm{IIH}^{\text {H }}$	Input Current HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
IL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	$\mu \mathrm{A}$
lee	Power Supply Current (Pin 8)	All inputs and Outputs Open		$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$	-165	-115		mA
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		-80		

Note: See DC CHARACTERISTICS table (Commercial).

KS000010
$R_{T}=50 \Omega$ temination of measurement system
$C_{L}=30 \mathrm{pF}$ (including stray jig capacitance)

SWITCHING CHARACTERISTICS (Commercial)

No.	Symbol	Parameters	Test Conditions	Am10515SA			Am10415A			Am10415			Units
				Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	
READ MODE													
1	$t_{\text {ACS }}$	Chip Select Access Time	Measured at 50% of input to valid output ($V_{\text {ILA }}$ for $V_{\text {OL }}$ or $V_{\text {IHB }}$ for $V_{O H}$)		6	8		6	8		7	10	ns
2	trcs	Chip Select Recovery Time			5	8		5	8		7	10	ns
3	$t_{A A}$	Address Access Time			10	15		13	20		20	35	ns
WRITE MODE													
4	tw	Write Pulse Width (to Guarantee Writing)	${ }_{\text {W }}$ WSA $=$ twSA(Min)	10	6		12	9		25	15		ns
5	twSD	Data Setup Time Prior to Write		2	0		4	0		5	0		ns
6	twho	Data Hold Time After Write		2	0		4	0		5	0		ns
7	tWSA	Address Setup Time Prior to Write	$t w=t w(M i n)$	3	0		5	3		8	5		ns
8	tWHA	Address Hold Time After Write		2	0		3	0		4	1		ns
9	twscs	Chip Select Setup Time Prior to Write	Measured at 50% of input to valid output (VILA for VOL or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	2	0		4	0		5	0		ns
10	twHCS	Chip Select Hold Time After Write		2	0		4	0		5	0		ns
11	tws	Write Disable Time			5	10		5	10		7	10	ns
12	twR	Write Recovery Time			6	12		10	15		14	20	ns

RISE TIME AND FALL TIME

13	t_{r}	Output Rise Time	Measured between 20\% and 80% points	5		5		5		ns
14	t_{1}	Output Fall Time		5		5		5		
CAPACITANCE										
15	C_{IN}	Input Pin Capacitance	Measure with a Pulse Technique	4	5	4	5	4	5	pF
16	COUT	Output Pin Capacitance		7	8	7	8	7	8	

SWITCHING CHARACTERISTICS (Military)

			Test Conditions	Am10415SA			Am10415A			Am10415			Units
No.	Symbol	Parameters		Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	Min	$\operatorname{Typ}_{\text {Note } 1}$	Max	

READ MODE

1	$t_{\text {ACS }}$	Chip Select Access Time	Measured at 50% of input to valid output $V_{\text {ILA }}$ for $V_{\text {OL }}$ or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	6	10	6	12	7	15	ns
2	$t_{\text {RCS }}$	Chip Select Recovery Time		5	10	5	12	7	15	ns
3	$t_{\text {A }}$	Address Access Time		10	20	13	25	20	40	ns

WRITE MODE

4	tw	Write Pulse Width (to Guarantee Writing)	${ }^{\text {t }}$ WSA $=$ IWSA (Min)	13	6		16	9		25	15		ns
5	twSD	Data Setup Time Prior to Write		3	0		4	0		7	0		ns
6	TWHD	Data Hold Time After Write		3	0		4	0		7	0		ns
7	tWSA	Address Setup Time	$t_{w}=t_{w}(M i n)$	4	0		5	3		8	5		ns
8	tWHA	Address Hold Time After Write		3	0		4	0		7	1		ns
9	twSCS	Chip Select Setup Time Prior to Write	Measured at 50% of input to valid output VILA for VOL or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	3	0		4	0		7	0		ns
10	twhics	Chip Select Hold Time After Write		3	0		4	0		7	0		ns
11	tws	Write Disable Time			5	10		5	10		7	10	ns
12	twR	Write Recovery Time			6	12		10	15		14	20	ns

RISE TIME AND FALL TIME

13	t_{r}	Output Rise Time	Measured between 20\% and 80% points	5	5	5	ns
14	t_{f}	Output Fall Time		5	5	5	ns

CAPACITANCE

15	$\mathrm{Cin}^{\text {in }}$	Input Pin Capacitance	Measure with a Pulse Technique	4	5	4	5	4	5	pF
16	COUT	Output Pin Capacitance		7	8	7	8	7	8	

Note: See DC CHARACTERISTICS table (Commercial).

sWitching waveforms

WRITE MODE

WF001160

SWITCHING WAVEFORMS (Cont.)
READ MODE

WF001170

Am100415

DISTINCTIVE CHARACTERISTICS

- Fast access time (10ns typ.) - improves system cycle speeds
- Enhanced output voltage level compensation providing 6 X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat $A C$ performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am100415A and Am100415 are fully decoded 1024-bit ECL RAMs organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through Ag_{g}. Easy memory expansion is provided by an active LOW chip select (ट्C) input and an unterminated OR tieable emitter follower output.

An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input ($\mathrm{D}_{\mathrm{I}} \mathrm{N}$) is written into the addressed memory word simultaneously preconditioning
the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the "write recovery glitch.'

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

PRODUCT SELECTOR GUIDE

Access Time	15ns	20ns
Part Number	Am100415A	Am100415

LOGIC SYMBOL

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS	OPERATING RANGES
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Commercial (C) Devices
Ambient Temperature with	Temperature $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Applied............................ $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Supply Voltage -5.7V to -4.2V
V_{EE} Pin Potential to	Operating ranges define those limits over which the function-
GND Pin.......................................-7.0V to +0.5V	ality of the device is guaranteed.
Input Voltage (DC) V_{EE} to +0.5 V	
Output Current (DC Output HIGH)-30mA to +0.1 mA	
Stresses above those listed under ABSOLUTE MAXIMUM	
RATINGS may cause permanent device failure. Functionality	
at or above these limits is not implied. Exposure to absolute	
maximum ratings for extended periods may affect device	
reliability.	

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathbf{B} \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} \text { Typ } \\ \text { (Note } 1 \text {) } \end{gathered}$	$\begin{gathered} \mathbf{A} \\ \text { (Note 3) } \end{gathered}$	Units
VOH	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILB }}$	-1025	-955	-880	mV
VOL	Output Voltage LOW		-1810	-1715	-1620	mV
VOHC	Output Voltage HIGH	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{1 H B}$ or $\mathrm{V}_{\text {ILA }}$	-1035			mV
VOLC	Output Voltage LOW				-1610	mV
V_{IH}	Input Voitage HIGH	Guaranteed Input Voltage HIGH for all inputs (Note 4)	-1165		-880	mV
V_{IL}	Input Voltage LOW	Guaranteed Input Voltage LOW for all inputs (Note 4)	-1810		-1475	mV
${ }_{1 / \mathrm{H}}$	Input Current HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$			220	mA
ILL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ILB }}$	$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	mA
IEE	Power Supply Current (Pin 8)	All Inputs and Outputs Open	-150	-105		mA

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2 -minute warm-up period. Typical resistance values of the package are:
θ_{JA} (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
$\theta_{\mathrm{JA}}\left(\right.$ Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
θ_{Jc} (Junction to Case) $=25^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overs̀hoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING TEST
WAVEFORM
KEY TO SWITCHING
WAVEFORMS

$R_{T}=50 \Omega$ termination of measurement system
$C P_{\mathrm{L}}=30 \mathrm{pF}$ (including stray jig capacitance)

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Parameters	Test Conditions	Am100415A			Am100415			Units
				Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	
READ MODE										
1	$t_{\text {ACS }}$	Chip Select Access Time	Measured at 50% of input to valid output (VILA for VOL or VIHB for V_{OH})		5	8		5	8	ns
2	$t_{\text {RCS }}$	Chip Select Recovery Time			5	8		5	8	
3	$t_{\text {AA }}$	Address Access Time			10	15		12	20	
WRITE MODE										
4	${ }^{\text {tw }}$ W	Write Pulse Width (to Guarantee Writing)	${ }^{\prime}$ WSA $={ }^{\text {t }}$ WSA(Min)	10	6		12	9		ns
5	tWSD	Data Setup Time Prior to Write		2	0		4	0		ns
6	tWHD	Data Hold Time After Write		2	0		4	0		ns
7	tWSA	Address Setup Time Prior to Write	$t_{W}=t_{W}(\mathrm{Min})$	3	0		5	3		ns
8	tWHA	Address Hold Time After Write		2	0		3	0		ns
9	twscs	Chip Select Setup Time Prior to Write	Measured at 50% of input to valid output $V_{\text {ILA }}$ for $V_{\text {OL }}$ or $V_{\text {IHB }}$ for V_{OH})	2	0		4	0		ns
10	tWHCS	Chip Select Hold Time After Write		2	0		4	0		ns
11	tws	Write Disable Time			5	10		5	10	ns
12	twr	Write Recovery Time			6	12		7	15	ns

RISE TIME AND FALL TIME

13	t_{r}	Output Rise Time	Measured between 20% and 80% points	5		5		ns
14	t_{f}	Output Fall Time		5		5		
CAPACITANCE								
15	$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	Measure with a Pulse Technique	4	5	4	5	pF
16	COUT	Output Pin Capacitance		7	8	7	8	

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage and temperature compensated providing flat $A C$ performance
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am10474SA, Am10474A and Am10474 are fully decoded 4096 -bit ECL RAMs organized 1024 words by 4 bits. Word selection is achieved by means of a 10-bit address, A_{0} through A_{g}. Easy memory expansion is provided by an active LOW chip select (टS) input and an unterminated OR tieable emitter follower output.

An active LOW write line ($\overline{W E}$) controls the write/read operation of the memory. When the chip select and write
lines are LOW, the data input $\left(D_{1}-D_{4}\right)$ are written into the addressed memory words.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting outputs $D_{1}-D_{4}$.

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

BLOCK DIAGRAM

DIP
Chip-Pak ${ }^{\text {TM }}$

Note: Pin 1 is marked for orientation
LOGIC SYMBOL

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

Fast access time (12ns typ) - improves system cycle speeds

- Fully compatible with 100 K series ECL logic - no board changes required
- Enhanced output voltage level compensation providing 6 X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat AC performance
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am100474SA, Am100474A and Am100474 are fully decoded 4096-bit ECL RAMs organized 1024 words by 4 bits. Word selection is achieved by means of a 10 -bit address, A_{0} through A_{9}. Easy memory expansion is provided by an active LOW chip select (CS) input and unterminated OR tieable emitter follower outputs.

An active LOW write line (\bar{W}) controls the write/read operation of the memory. When the chip select and write
lines are LOW, the data inputs ($D_{1}-D_{4}$) are written into the addressed memory words.

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed words is read out on the noninverting outputs $\mathrm{O}_{1}-\mathrm{O}_{4}$.

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

BLOCK DIAGRAM

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

Am10470

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Fully compatible with standard voltage compensated 10K series ECL - no board changes required
- Internally voltage compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am10470SA, Am10470A and Am10470 are fully decoded 4096-bit ECL RAMs organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A_{0} through A_{11}. Easy memory expansion is provided by an active LOW chip select (टS) input and an unterminated OR tieable emitter follower output.

An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{I}) is written into the addressed memory word simultaneously preconditioning
the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the 'write recovery glitch.'

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

PRODUCT SELECTOR GUIDE

Access Time	15ns	20 ns	25 ns	30 ns	35 ns	40 ns
Temperature Range	C	M	C	M	C	M
Part Number	Am10470SA	Am10470SA	Am10470A	Am10470A	Am10470	Am10470

ORDERING INFORMATION

Am10470
Am10470
|
|
B suffix denotes }160\mathrm{ hour
B suffix denotes }160\mathrm{ hour
burn-in.
burn-in.
Temperature
Temperature
C - Commercial (}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
C - Commercial (}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
M-Military (-55'⿳ \ to +125
M-Military (-55'⿳ \ to +125
Package
Package
D - 16-pin ceramic DIP
D - 16-pin ceramic DIP
F - 16-pin flatpak
F - 16-pin flatpak
L - 20-pin leadless chip carrier
L - 20-pin leadless chip carrier
P - 16-pin plastic DIP
P - 16-pin plastic DIP
Speed Select
Speed Select
See Product Selector Guide
See Product Selector Guide
Device Type
Device Type
4096 x ECL Bipolar RAM
4096 x ECL Bipolar RAM

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to GND Pin in. -7.0 V to +0.5 V
Input Voltage (DC) \qquad V_{EE} to +0.5 V
Output Current (DC Output HIGH) \qquad 30 mA to +0.1 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage5.46V to -4.94 V	
Military (M) Devices	
Temperature	
Supply Voltage -5.72V to -4.68V	
Operating ranges define those limits over which the functionality of the device is guaranteed.	

DC CHARACTERISTICS (Commercial)

Symbol	Parameter	Test Conditions			$\begin{array}{\|c\|} \hline \mathbf{B} \\ \text { (Note 3) } \\ \hline \end{array}$	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathbf{A} \\ (\text { Note } 3) \end{gathered}$	Units
VOH	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {IL }}$	Loading is 50Ω to -2.0V	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000		-840	mV
				$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	-960		-810	
				$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$	-900		-720	
VOL	Output Voltage LOW			$\mathrm{T}^{\prime}=0^{\circ} \mathrm{C}$	-1870		-1665	mV
				$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	-1850		-1650	
				$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$	-1830		-1625	
Vohc	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {IIA }}$		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1020			mV
				$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	-980			
				$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$	-920			
VoLC	Output Voltage LOW			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			-1645	mV
				$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$			-1630	
				$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$			-1605	
$\mathrm{V}_{\text {IH }}$	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Input (Note 4)		$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$	-1145		-840	mV
				$T_{A}=+25^{\circ} \mathrm{C}$	-1105		-810	
				$\mathrm{T}_{A}=+75^{\circ} \mathrm{C}$	-1045		-720	
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	Guaranteed input Voltage Low for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870		-1490	mV
				$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	-1850		-1475	
				$T_{A}=+75^{\circ} \mathrm{C}$	-1830		-1450	
I_{H}	Input Current HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IHA }}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$			220	$\mu \mathrm{A}$
IIL	Input Current LOW Chip Select (CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	$\mu \mathrm{A}$
$\mathrm{IEE}^{\text {e }}$	Power Supply Current (Pin 9)	All Inputs and Outputs Open	Am10470A and Am10470	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-200	-160		mA
				$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$		-145		
			Am10470SA	$T_{A}=0^{\circ} \mathrm{C}$	-230	-180		

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2 -minute warm-up period. Typical thermal resistance values of the package are: $\theta_{J A}$ (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air) $\theta_{J A}$ (Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
θ_{JC} (Junction to Case) $=\mathbf{2 5}{ }^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: " A " the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and incilude all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

DC CHARACTERISTICS (Military)

Symbol	Parameter	Test Conditions			$\begin{gathered} \mathrm{B} \\ \text { (Note 3) } \end{gathered}$	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { (Note 3) } \end{gathered}$	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHA}}$ or V_{IL}	Loading is 50Ω to -2.0 V	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1070		-860	mV
				$\mathrm{T}_{A}=+125^{\circ} \mathrm{C}$	-860		-650	
V_{OL}	Output Voltage Low			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1900		-1690	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1800		-1570	
VOHC	Output Voltage HIGH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHB}}$ or V^{\prime}		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1090			mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-880			
Volc	Output Voltage LOW			$\mathrm{T}_{\mathrm{H}}=-55^{\circ} \mathrm{C}$			-1670	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			-1550	
V_{H}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1215		-860	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1005		-650	
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	Guaranteed Input Voltage LOW for All Inputs (Note 4)		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-1900		-1515	mV
				$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-1800		-1395	
$\mathrm{IIH}^{\text {H }}$	Input Current HIGH	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IHA }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
ILL	Input Current LOW Chip Select(CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\begin{gathered} 0.5 \\ -50 \end{gathered}$		170	$\mu \mathrm{A}$
IEE	Power Supply Current (Pin 9)	All Inputs and Outputs Open	Am10470A and Am10470	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-220	-175		mA
				$T_{A}=+125^{\circ} \mathrm{C}$		-160		
			Am 10470SA	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$	-255	-200		

Note: See DC CHARACTERISTICS table (Commercial)

SWITCHING TEST
WAVEFORM
CIRCUIT

TC000230

KEY TO SWITCHING
WAVEFORMS

KS000010
$R_{T}=50 \Omega$ termination of measurement system
$C_{L}=30 p F$ (including stray jig capacitance)

SWITCHING CHARACTERISTICS (Commercial)

			Test Conditions	Am100470SA			Am100470A			Am100470			Units
No.	Symbol	Parameters		Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	

READ MODE

1	$t_{\text {ACS }}$	Chip Select Access Time	Measured at 50\% of input to valid output $V_{\text {ILA }}$ for $V_{\text {OL }}$ or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	6	8	8	10	10	15	ns
2	${ }^{\text {tras }}$	Chip Select Recovery Time		6	8	8	10	10	15	ns
3	$t_{\text {A }}$	Address Access Time		12	15	18	25	25	35	ns

WRITE MODE

4	tw	Write Pulse Width (to Guarantee Writing)	${ }^{\text {t }}$ WSA $={ }^{\text {tw }}$ WSA(Min)	15	8		20	10		25	15		ns
5	tWSD	Data Setup Time Prior to Write		2	0		2	0		5	1		ns
6	tWHD	Data Hold Time After Write		2	0		2	0		5	1		ns
7	tWSA	Address Setup Time Prior to Write	$t w=t w(M i n)$	2	0		2	0		5	1		ns
8	tWHA	Address Hold Time After Write		2	0		2	0		5	1		ns
9	twscs	Chip Select Setup Time Prior to. Write	Measured at 50\% of input to valid output (VILA for VOL or V_{HB} for V_{OH})	2			2	0		5	1		ns
10	twhCs	Chip Select Hold Time After Write		2	0		2	0		5	1		ns
11	tws	Write Disable Time			6	8		8	10		7	15	ns
12	twR	Write Recovery Time			6	8		8	10		10	20	ns

RISE TIME AND FALL TIME

13	t_{4}	Output Rise Time	Measured between 20\% and 80% points	3	3	3	ns
14	t_{1}	Output Fall Time		3	3	3	ns

CAPACITANCE

15	$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	Measure with a Pulse Technique on a Sample Basis.	4	5	4	5	4	5	pF
16	Cout	Output Pin Capacitance		7	8	7	8	7	8	

SWITCHING CHARACTERISTICS (Miljtary)													
No.	Symbol	Parameters	Test Conditions	Am100470SA			Am100470A			Am100470			Units
				Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	
READ MODE													
1	$t_{\text {ACS }}$	Chip Select Access Time	Measured at 50% of input to valid output (VILA for $V_{O L}$ or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})		8	10		10	15		15	20	ns
2	$t_{\text {RCS }}$	Chip Select Recovery Time			8	10		10	15		15	20	ns
3	$t_{\text {AA }}$	Address Access Time			17	20		20	30		30	40	ns
WRITE MODE													
4	tw	Write Pulse Width	tWSA $=$ twSA(Min)	18	14		22	17		25	20		ns
5	tWSD	Data Setup Time Prior to Write		3	0		5	0		7	2		ns
6	tWHD	Data Hold Time After Write		3	0		5	0		7	2		ns
7	tWSA	Address Setup Time Prior to Write		3	0		5	0		7	2		ns
8	tWHA	Address Hold Time		3	0		5	0		7	2		ns
9	twscs	Chip Select Setup Time Prior to Write	Measured at 50% of input to valid output (VILA for VOL or $\mathrm{V}_{\mathrm{IHB}}$ fo $\mathrm{VOH}_{\mathrm{OH}}$	3	0		5	0		7	2		ns
10	twhCs	Chip Select Hold Time After Write		3	0		5	0		7	2		ns
11	tws	Write Disable Time			8	10		10	12		7	15	ns
12	twr	Write Recovery Time			8	10		10	12		10	20	ns
RISE TIME AND FALL TIME													
13	t_{r}	Output Rise Time	Measured between 20\% and 80% points		3			3			3		ns
14	t_{1}	Output Fall Time			3			3			3		ns
CAPACITANCE													
15	$\mathrm{CIN}_{\text {IN }}$	Input Pin Capacitance	Measure with a Pulse Technique on a Sample Basis.		4	5		4	5		4	5	pF
16	COUT	Output Pin Capacitance			7	8		7	8		7	8	
Note	See DC	HARACTERISTICS tab	e (Commercial) SWITCH W \qquad \qquad \qquad	NG RITE	WAVE MOD \qquad \qquad	E \qquad \qquad - ${ }^{\text {WWR }}$	S					WF00	180

RISE TIME AND FALL TIME

Note: See DC CHARACTERISTICS table (Commercial)

SWITCHING WAVEFORMS

WRITE MODE

READ MODE

WF001190

Am100470

DISTINCTIVE CHARACTERISTICS

- Fast access time (12ns typ) - improves system cycle speeds
- Enhanced output voltage level compensation providing 6 X (improvement in) V_{OL} and V_{OH} stability over supply and temperature ranges
- Internally voltage and temperature compensated providing flat AC performance
- Outputs preconditioned during write cycle eliminating write recovery glitch
- Emitter follower outputs - easy wire-ORing
- Power dissipation decreases with increasing temperature

GENERAL DESCRIPTION

The Am100470SA, Am100470A and Am100470 are fully decoded 4096 -bit ECL RAMs organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A_{0} through A_{11}. Easy memory expansion is provided by an active LOW chip select (टS) input and an unterminated OR tieable emitter follower output.

An active LOW write line ($\overline{\mathrm{WE}}$) controls the write/read operation of the memory. When the chip select and write lines are LOW, the data input (D_{IN}) is written into the addressed memory word simultaneously preconditioning
the output so true data is present when the write cycle is complete. This preconditioning operation insures minimum write recovery times by eliminating the 'write recovery glitch.'

Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the noninverting output (DOUT).

During the writing operation or when the chip select line is HIGH the output of the memory goes to a LOW state.

PRODUCT SELECTOR GUIDE

Access Time	15ns	20 ns	35ns
Part Number	Am100470SA	Am100470A	Am100470

Note: Pin 1 is marked for orientation

LOGIC SYMBOL

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS
OPERATING RANGES
Commercial (C) Devices
Temperature \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage
...
-5.7 V to -4.2 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

VEE Pin Potential to GND Pin................................ V to +0.5 V
Input Voltage (DC) V_{EE} to +0.5 V
Output Current (DC Output HIGH) -30 mA to +0.1 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		$\begin{gathered} \mathbf{B} \\ \text { (Note 3) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note } 1) \end{array}$	$\begin{gathered} A \\ \text { (Note 3) } \end{gathered}$	Units
V_{OH}	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$ or $\mathrm{V}_{\text {ILE }}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$	-1025	-955	-880	mV
V_{OL}	Output Voitage LOW			-1810	-1715	-1620	mV
$\mathrm{V}_{\mathrm{OHC}}$	Output Voltage HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHB }}$ or $\mathrm{V}_{\text {ILA }}$		-1035			mV
Volc	Output Voltage LOW					-1610	mV
V_{IH}	Input Voltage HIGH	Guaranteed Input Voltage HIGH for all inputs (Note 4)		-1165		-880	mV
V_{IL}	Input Voltage LOW	Guaranteed Input Voltage LOW for all inputs (Note 4)		-1810		-1475	mV
IIH	Input Current HIGH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$				220	$\mu \mathrm{A}$
ILL	Input Current LOW Chip Select(CS) All Other Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$		0.5		170	$\mu \mathrm{A}$
lee	Power Supply Current (Pin 9)	All inputs and Outputs Open	Am100470A/Am100470	-195	-160		mA
			Am100470SA	-230	-180		

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2 -minute warm-up period. Typical resistance values of the package are:
θ_{JA} (Junction to Ambient) $=90^{\circ} \mathrm{C} /$ Watt (still air)
$\theta_{J A}\left(\right.$ Junction to Ambient) $=50^{\circ} \mathrm{C} /$ Watt (at 400 F.P.M. air flow)
θ_{JC} (Junction to Case) $=25^{\circ} \mathrm{C} /$ Watt
3. Definition of symbols and terms used in this product specification: The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: " A " the value closest to positive infinity, " B " the value closest to negative infinity.
4. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

SWITCHING TEST
WAVEFORMS
KEY TO SWITCHING
WAVEFORMS

K 5000010
$R_{T}=50 \Omega$ termination of measurement system
$C_{L}=30 \mathrm{pF}$ (including stray jig capacitance)

SWITCHING CHARACTERISTICS (Commercial)

No.	Symbol	Parameters	Test Conditions	Am100470SA			Am100470A			Am100470			Units
				Min	$\begin{gathered} \text { Typ } \\ \text { Note } 1) \end{gathered}$	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Min	Typ (Note 1)	Max	

READ MODE

1	$t_{\text {ACS }}$	Chip Select Access Time	Measured at 50% of input to valid output VILA for VOL or $\mathrm{V}_{\text {IHB }}$ for V_{OH})	6	8	8	10	10	15	ns
2	trcs	Chip Select Recovery Time		6	8	8	10	10	15	ns
3	$t_{\text {AA }}$	Address Access Time		12	15	18	25	25	35	ns

WRITE MODE

4	tw	Write Pulse Width (to Guarantee Writing)	TWSA $=$ TWSA(Min)	15			20			25	18		ns
5	twso	Data Setup Time Prior to Write		2			2			5	1		ns
6	tWHD	Data Hold Time After Write		2			2			5	1		ns
7	tWSA	Address Setup Time Prior to Write	$t_{W}=t_{W}($ Min $)$	3			3			10	5		ns
8	tWHA	Address Hold Time After Write		2			2			5	1		ns
9	twscs	Chip Select Setup Time Prior to Write	Measured at 50% of input to valid output $V_{\text {ILA }}$ for $V_{\text {OL }}$ or $\mathrm{V}_{\mathrm{IHB}}$ for V_{OH})	2			2			5	1		ns
10	twhcs	Chip Select Hold Time After Write		2			2			5	1		ns
11	tws	Write Disable Time			6	8		8	10		7	15	ns
12	twn	Write Recovery Time			6	8		8	10		10	20	ns

RISE TIME AND FALL TIME

13	tr_{r}	Output Rise Time	Measured between 20\% and 80% points	2		2		2		ns
14	t_{f}	Output Fall Time		2		2		2		
CAPACITANCE										
15	CIN_{1}	Input Pin Capacitance	Measure with a Pulse Technique on a Sample Basis.	4	5	4	5	4	5	pF
16	COUT	Output Pin Capacitance		7	8	7	8	7	8	

WRITE MODE

Am3101 Family

64-Bit Write Transparent Schottky Bipolar RAM

DISTINCTIVE CHARACTERISTICS

- Standard Version: Address access time 50ns
- Low Power: Icc typically 75 mA
- Internal ECL circuitry for optimum speed/power performance over voltage and temperature
- Available with open collector outputs or with three-state outputs (Am74S189 and Am54S189)
- High Speed
- Fully decoded 16 -word $\times 4$ bit Schottky RAMs

GENERAL DESCRIPTION

The Am3101 family is comprised of 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16 -word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (CS) input and open collector OR tieable outputs. Chip selection for large memory systems can be controlled by active LOW output decoders such as the Am74S138.

An active LOW Write line ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. Reading is performed with the chip select line LOW and the write line HIGH. The information stored in the addressed word is read out on the four inverting outputs \bar{O}_{0} to \bar{O}_{3}.

When the chip select line is HIGH, the four outputs of the memory go to an inactive high impedance state.

PRODUCT SELECTOR GUIDE

Access Time	35ns	50 ns		55 ns	60 ns	65 ns	80ns	90ns
Temperature Range	C	C	M	C	M	M	C	M
Open Collector	Am3101A Am74S289		Am3101A Am54S289					
Three State	Am74S189		Am54S189					
Open Collector (Write Transparent)	Am3101-1 Am7489-1	Am3101 Am7489	Am3101-1 Am5489-1	Am31L01A	Am3101 Am5489	Am31L01A	Am31L01	Am31L01

ORDERING INFORMATION

Am31L01

$\stackrel{B}{4}$
Burn-in Option
B suffix denotes 160 hour burn-in.
Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)
Package

Valid Combinations	
Am3101	PC,
Am3101A	DC, DCB,
Am31L01	LC, LCB,
Am31L01A	DM, DMB,
Am3101-1	FM, FMB,
	LM, LMB

D-16-pin ceramic DIP
F - 16-pin flatpak
L - 20-pin leadless chip carrier
P - 16-pin plastic DIP

Device Type

See Product Selector Guide.
For $\mathbf{7 4 8 9}$ family devices
Am54S 189

ABSOLUTE MAXIMUM RATINGS
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 18 to Pin 8) \qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State \qquad -0.5 V to V_{cc} max
DC input voltage .-0.5 V to +5.5 V
Output Current, into Outputs 20 mA
DC input Current-30mA to +5.0mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage . +4.75 V to +5.25 V
Military (M) Devices
Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameters	Test Conditions				All Other Part No:			31L01A/31L01			Units
						Min	Typ	Max	Min	Typ	Max	
$\begin{gathered} \mathrm{VOH} \\ (\text { Note 2) } \end{gathered}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } \\ & V_{I L} \end{aligned}$	$\mathrm{IOH}=-5.2 \mathrm{~mA}$		COM'L.	2.4	3.2					Volts
			$1 \mathrm{OH}=-2.0 \mathrm{~mA}$		MIL							
Vol	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I N}=V_{I H} \text { or } \\ & V_{I L} \end{aligned}$	$\mathrm{IOL}^{2}=16 \mathrm{~mA}(\mathrm{STD}) \mathrm{IOL}^{2}=8 \mathrm{~mA}(\mathrm{~L})$				350	450		280	450	
			$\mathrm{IOL}^{\mathrm{OL}}=20 \mathrm{~mA}(\mathrm{STD}) \mathrm{IOL}^{2}=\mathrm{mA} \mathrm{(L)}$				380	500		310	500	
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)				2.0			2.0			
VIL	Input LOW Level	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)									0.8	
IL	Input LOW Current	$V_{C C}=M A X, V_{\text {IN }}=0.40 \mathrm{~V}$		WE, $D_{0}-D_{3}, A_{0}-A_{3}$			-15	-250		-30	-250	$\mu \mathrm{A}$
				CS			-30	-250		-30	-250	
1 l	Input HIGH Current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$					0	10		0	10	$\mu \mathrm{A}$
$\begin{gathered} \text { IsC } \\ \text { (Nole 2) } \end{gathered}$	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{MAX} \\ & V_{\text {OUT }}=0.0 \mathrm{~V}(\text { Note 4) } \end{aligned}$				-20	-45	-90				mA
Icc	Power Supply Current	All Inputs = GND $V_{C C}=M A X$		COM'			75	100		25	35	
				MIL			75	105		25	38	
VCL	Input Clamp Voltage	$V_{C C}=$ MIN, $\mathrm{I}_{1}=-18 \mathrm{~mA}$					-0.85	-1.2		-0.85	-1.2	Volts
ICEX	Output Leakage Current	$V_{C S}=V_{I H}$ or $V_{W E}=V_{I L}$ $V_{\text {OUT }}=2.4 \mathrm{~V}$					0	40		0	40	4
		$\begin{aligned} & V_{C S E}=V_{I H} \text { or } V_{W E}=V_{1 L} \\ & V_{O U T}=0.4 \mathrm{~V}, V_{C C}=M A X \end{aligned}$			- 2)	-40	0					

Notes:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system
and/or tester noise. Do not attempt to test these values without suitable equipment.
4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

Figure 3

SWITCHING CHARACTERISTICS over operating range unless otherwise specified
Standard Power Deives

No.	Symbol	Description	Am3101-1.Am54/7489-1				Am3101•Am54/7489				Units
			C devices		M devices		C devices		M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	${ }_{\text {tPLH }}(\mathrm{A})$	Delay from Address to Output		35		50		50		60	ns
2	$t_{\text {PHE }}(\mathrm{A})$										
3	${ }^{\text {t }}$ PZL $(\overline{C S})$	Delay from Chip Select (LOW) to Active Output and Correct Data		17		25		30		40	ns
4	$t_{\text {PzL }}(\overline{W E})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery - See Note 2)		35		50		50		60	ns
5	$t_{s}(\mathrm{~A})$	Setup Time Address (Prior to Termination of Write)	0		0		0		0		ns
6	$t_{\text {L }}(A)$	Hold Time Address (After Termination of Write)	0		0		0		0		ns
7	$t_{s}(\mathrm{Dl})$	Setup Time Data Input (Prior to initiation of Write)	25		25		30		30		ns
8	$t_{n}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write)	0		0		0		0		ns
9	$t_{\text {pw }}(\overline{W E})$	MIN Write Enable Pulse Width to Insure Write	25		25		30		30		ns
10	$t_{\text {PLZ }}(\overline{C S})$	Delay from Chip Select (HIGH) to Inactive Output ($\mathrm{Hi}-\mathrm{Z}$)		17		25		30		40	ns
11	$\left.\mathrm{tPLH}^{(\mathrm{DI}}\right)$	Delay from Data Input to Correct Data Output ($\overline{W E}=\overline{C S}=V_{\mid L}$)		35		50		50		60	ns
12	tpHL $^{\text {(DI) }}$										

Notes:

1. Output is conditioned to data in (inverted) during write to insure correct data is present on all outputs during write and after write is terminated.
2. $\mathrm{t}_{\mathrm{pLH}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{pHL}}(\mathrm{A})$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
3. For open collector, all delays from Write Enable (VE) or Chip Select (CS) inputs to the Data Output (DOUT), tplz ($\overline{W E}$), tplz $^{(\overline{C S}), ~ t P Z L}(\overline{\mathrm{WE}})$ and tpZL $(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Aṁ3101A.Am54S/74S189				Units
			C devices		M devices		
			Min	Max	Min	Max	
1	$t_{\text {PLH }}(\mathrm{A})$	Delay from Address to Output		35		50	ns
2	$\mathrm{tPHL}^{\text {(}}$ ($)$						
3	tPZH(CS)	Delay from Chip Select (LOW) to Active Output and Correct Data		17		25	ns
4	tpzl(CS)			17		25	ns
5	tpZH($\overline{\mathrm{WE}})$	Delay from Write Enable (HIGH) to Active Output and Correct Data (Write Recovery-See Note 2)		35	\cdot	40	ns
6	tpzL(WEE)			35		40	ns
7	$t_{s}(A)$	Setup Time Address (Prior to Initiation of Write)	0		0		ns
8	$t_{\text {L }}(\mathrm{A})$	Hold Time Address (After Termination of Write)	0		0		ns
9	t_{s} (DI)	Setup Time Data Input (Prior to Termination of Write)	25		25		
10	$t_{n}(\mathrm{Dl})$	Hold Time Data Input (After Termination of Write)	0		0		ns
11	$t_{p w}(\overline{W E})$	MIN Write Enable Pulse Width to Insure Write	25		25		ns
12	$\left.\mathrm{tPHZ}^{(\mathrm{CS}}\right)$	Delay from Chip Select (HIGH) to Inactive Output (Hi-Z)		17		25	ns
13	tplz(CS)			17		25	ns
14	tplz(WE)	Delay from Write Enable (LOW) to Inactive Output ($\mathrm{Hi}-\mathrm{Z}$)		35		50	
15	tphz(WE)						

Notes:

1. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs during write and after write is terminated. (No recovery glitch.)
2. $t_{p L H}(A)$ and $t_{p H L}(A)$ are tested with S_{ρ} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
3. For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (DOUT), $t_{P L Z}(\overline{W E}), t_{P L Z}(\overline{C S}), t_{P Z L}(\overline{W E})$ and $t_{P Z L}(\overline{C S})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
4. For three-state output,tpZH $(\overline{\mathrm{WE}})$ and $\mathrm{tpZH}^{(\overline{\mathrm{CS}})}$ are measured with S_{1} open. $C_{L}=30 \mathrm{pF}$ and with both the input and output timeing referenced to 1.5 V . tpZL $(\overline{\mathrm{WE}})$ and $t_{p Z L}(\overline{C S})$ are measured with S_{1} closed. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $t_{P H Z}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PHZ}}(\overline{\mathrm{CS}})$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $t_{P L Z}(\overline{W E})$ and tpLZ $(\overline{C S})$ are measured with S_{1} closed and $C_{L} \leqslant 5 p F$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am31L01A				31L01				Units
			C devices		M devices		C devices		M devices		
			Min	Max	Min	Max	Min	Max	Min	Max	
1	$\mathrm{tPLH}^{(A)}$	Delay from Address to Output		55		65		80		90	ns
2	$\mathrm{tPHL}^{(A)}$										
3	tPZL(CS)	Delay from Chip Select to Active Output and Correct Data		30		35		60		70	ns
4	tpzL ($\overline{\mathrm{WE}})$	Delay from Write Enable (H1GH) to Active Output and Correct Data (Write Recovery) (Note 2)		30		35		80		100	ns
5	$t_{s}(A)$	Setup Time Address (Prior to Initiation of Write)	0		0		0		0		ns
6	$t_{h}(A)$	Hold Time Address (After Termination of Write)	0		0		0		0		ns
7	$t_{\text {s }}$ (DI)	Setup Time Data Input (Prior to Initiation of Write)	45		55		60		80		ns
8	$t_{\text {b }}$ (DI)	Hold Time Data Input (After Termination of Write)	0		0		0		0		ns
9	$t_{p w}(\overline{W E})$	Min Write Enable Pulse Width to Insure Write	45		55		60		80		ns
10	tplz(CS)	Delay from Chip Select to Inactive Output (HIGH-Z)		30		35		50		60	ns
11	$\left.\mathrm{tPLH}^{(\mathrm{DI}}\right)$	Delay from Data Input to Correct Data Output ($\overline{W E}=\overline{C S}=V_{1 L}$		55		65		80		90	ns
12	tPHL (DI)										

SWITCHING CHARACTERISTICS (Cont.)

Notes:

1. Output is preconditioned to data in (inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
2. $\operatorname{tpLh}(A)$ and $t_{\text {PHL }}(A)$ are tested with S_{1} closed and $C_{L}=30 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
3. For open collector, all delays from Write Enable (WE) or Chip Select ($\overline{C S}$) inputs to the Data Output (Dout, $t_{p L Z}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PL}}(\overline{\mathrm{CS}}), \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{CS}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; and with both the input and output timing referenced to 1.5 V .
4. For three-state output, $t_{P Z H}(\overline{\mathrm{WE}})$ and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{CS}})$ are measured with S_{1} open, $C_{L}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . tPZL $(\overline{\mathrm{WE}})$ and ${ }^{\text {tPZL }}(\overline{C S})$ are measured with S_{1} closed, $C_{L}=30 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . $t_{\mathrm{PHZ}}(\overline{\mathrm{WE}})$ and $\mathrm{tPHZ}^{(\overline{C S})}$ are measured with S_{1} open and $\mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{VOH}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. $t_{P L Z}(\overline{W E})$ and $t_{P L Z}(\overline{C S})$ are measured with S_{1} closed and $C_{L} \leqslant 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SWITCHING WAVEFORMS

WRITE MODE

WF001080

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am54S/74S189) while the write enable is (WE) LOW.

Am3101-1/54/7489-1/3101/54/7489

Write Cycle Timing. The cycle is initiated by an address change. After $t_{s}(A)$ min, the write enable may begin. The chip select must also be LOW for writing. Following the write pulse, $t_{h}(A)$ min must be allowed before the address may be changed again. The output will be inactive (floating for the Am54S/74S189) while the write enable is ($\overline{W E}$) LOW.

Switching delays from address and chip select inputs to the data output. For the Am54S/74S189 disabled output is 'OFF', represented by a single center line. For the Am3101A/Am54S/74S289, a disabled output is HIGH.

Am3101A/54S/74S289/54S/74S189

READ MODE

Switching delays from address and chinp select inputs to the data output. For the Am31L01, a disabled output is HIGH.

Am31L01A/31L01

Replacement Referrals

Part Number	Replaced by
Am29702	Am27S02
Am29703	Am27S03
Am29700	Am27S06A
Am29701	Am27S07A
Am29720	Am27LS01
Am29721	Am27LS00

INDEX SECTION

NUMERICAL DEVICE INDEX
FUNCTIONAL INDEX AND SELECTION GUIDE APPLICATION NOTE

BIPOLAR PROGRAMMABLE

 READ ONLY MEMORY (PROM)
BIPOLAR RANDOM ACCESS

MEMORIES (RAM)

MOS RANDOM ACCESS MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

MOS Random Access Memories (RAM) Index

Am21L41 4096×1 Static RAM 4-1
Am2147
Am2148/49
Am2167
Am9016
Am9044/9244
Am9064
Am9101 Family
Am9111 Family
Am9112
Am9114/24
4096×1 Static RAM 4-7
1024×4 Static RAM 4-13
$16,384 \times 1$ Static RAM 4-20
$16,384 \times 1$ Dynamic RAM 4-26
4096×1 Static RAM 4-38
65,536 x 1 Dynamic RAM 4-43
256×4 Static RAM 4-58
256×4 Static RAM 4-67
256×4 Static RAM 4-75
1024×4 Static RAM 4-81
Am9122 256×4 Static RAM 4-87
Am9128 2048×8 Static RAM 4-93

DISTINCTIVE CHARACTERISTICS

- Fully static storage and interface circuitry
- Automatic power-down when deselected
- High output drive
- TTL compatible interface levels
- No power-on current surge
- Am21L41; 220mW active, 27.5 mW power down

GENERAL DESCRIPTION

The Am21L41 is a high performance, 4096-bit, static, read/ write, random access memory. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard Schottky TTL loads or up to six standard TTL loads.

Only a single +5 volt power supply is required. When deselected ($\overline{\mathrm{CS}} \geqslant \mathrm{VIH}$), the Am21L41 automatically enters
a power-down mode which reduces power dissipation by as much as 85%. When selected, the chip powers up again with no access time penalty.

Data In and Data Out use separate pins on the standard 18pin package. Data Out is the same polarity as Data In. Data Out is a 3-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number	Am21L41-12	Am21L41-15	Am21L41-20	Am21L41-25
Maximum Access Time (ns)	120	150	200	250
Maximum Active Current (mA)	55	40	40	40
Maximum Standby Current (mA)	10	5	5	5

Note: Pin 1 is marked for orientation

BIT MAP

Address Designators	
External	Internal
A_{0}	A_{2}
A_{1}	A_{5}
A_{2}	A_{4}
A_{3}	A_{3}
A_{4}	A_{8}
A_{5}	A_{7}
A_{6}	A_{1}
A_{7}	A_{0}
A_{8}	A_{11}
A_{9}	A_{9}
A_{10}	A_{10}
A_{11}	A_{6}

DIE SIZE: 0.130×0.106

Figure 2. Bit Mapping Information

ORDERING INFORMATION

Am21L41-12

C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Package

Valid Combinations		
Am21141-12	DC,PC	
Am21141-15		
Am2141-20		
Am21141-25		

D-18-pin CERDIP
P-18-pin plastic DIP
Speed Select
12-120ns
15-150ns
20-200ns
25-250ns
Device Type
$4 k \times 1$ SRAM

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad Ambient Temperature with

Power Applied $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
All Signal Voltage with
respect to ground.................................-1.5V to +7.0 V
Power Description... 1.2W
DC Output Current.. 20mA
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage \qquad +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

				Am2	1-12	Am2	$\begin{aligned} & 11-15 \\ & 11-20 \\ & 1-25 \end{aligned}$	
Symbol	Parameter	Test Conditions		Min	Max	MIn	Max	Units
${ }^{1} \mathrm{OH}$	Output High Current	$\mathrm{VOH}^{2}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-4		-4		mA
l L	Output Low Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8		8		mA
V_{IH}	Input High Voltage			2.0	6.0	2.0	6.0	Volts
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\text {cC }}$			10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	$\begin{aligned} & \text { GND } \leqslant V_{O} \leqslant V_{c c} \\ & \text { Output Disabled } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	-10	10	-10	10	$\mu \mathrm{A}$
los	Output Short Circuit Current	$\begin{aligned} & \text { GND } \leqslant \mathrm{V}_{\mathrm{O}} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ & \text { (Note 2) } \end{aligned}$	0 to $+70^{\circ} \mathrm{C}$	-120	120	-120	120	mA
C_{1}	Input Capacitance (Note 1)	Test Frequency $=1.0 \mathrm{MHz}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All pins at OV			5.0		5.0	pF
C_{0}	Output Capacitance (Note 1)				6.0		6.0	
Icc	VCC Operating Supply Current	Max $\mathrm{V}_{\text {CC }}$, CS $\leqslant \mathrm{V}_{\text {IL }}$	$T_{A}=0^{\circ} \mathrm{C}$		55		40	mA
IsB	Automatic CS Power Down Current	$\begin{aligned} & \text { Max } V_{c c},\left(C S \leqslant V_{I H}\right) \\ & (\text { Note } 5) \end{aligned}$			10		5.0	mA

Notes:

1. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
2. Short circuit test duration should not exceed 30 seconds.
3. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.5 V and output loading of the specified IOL/IOH and $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ load capacitance (reference Figure 1.).
4. The internal write time of the memory is defined by the overlap of $\overline{C S}$ low and $\overline{W E}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. A pull up resistor to VCC on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during VCC power up otherwise ISB will exceed values given.
6. Chip deselected greater than 55 ns prior to selection.
7. Chip deselected less than 55 ns prior to selection.
8. At any given temperature and voltage condition, tHZ is less than tLZ for all devices. Transition is measured at $\mathrm{VOH}-500 \mathrm{mV}$ and VOL +500 mV levels on the output from 1.5 V level on the input with load shown in Figure 1 using $\mathrm{CL}=5 \mathrm{pF}$.
9. $\overline{W E}$ is high for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{VIL}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

Supply Current Versus Supply Voltage

Normallzed Access Time Versus Supply Voltage

Typical Power-On Current Versus Power Supply

Supply Current Versus Amblent Temperature

Normallzed Access Time Versus Ambient Temperature

Access Time Change Versus Input Voltage

Output Source Current Versus Output Voltage

Output Sink Current Versus Output Voltage

Access Time Change

 Versus Output Loading

SWITCHING TEST CIRCUIT

Figure I. Output Load

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am21L41-12		Am21L41-15		Am21L41-20		Am21L41-25		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle											
1	$t_{\text {R }}$	Address Valid to Address Do Not Care Time (Read Cycle Time)	120		150		200		250		ns
2	$t_{\text {AA }}$	Address Valid to Data Out Valid Delay (Address Access Time)		120		150		200		250	ns
3	$t_{\text {ASC1 }}$	Chip Select Low to Data Out ${ }^{\text {a }}$ Note 6		120		150		200		250	ns
4	$t_{\text {ASC2 }}$	Valid \quad Note 7		130		160		200		250	ns
5	tlz	Chip Select Low to Data Out On (Note 8)	10		10		10		10		ns
6	t_{Hz}	Chip Select High to Data Out Off (Note 8)	0	60	0	60	0	60	0	60	ns
7	${ }^{\text {LOH}}$	Address Unknown to Data Out Unknown Time	10		10		10		10		ns
8	tPD	Chip Select High to Power Low Delay		60		60		60		60	ns
9	tpu	Chip Select Low to Power High Delay	0		0		0		0		ns
Write Cycle											
10	twc	Address Valid to Address Do Not Care Time (Write Cycle Time)	120		150		200		250		ns
11	twp	Write Enable Low to Write Enable High Time (Note 4)	60		60		60		75		ns
12	tWR	Write Enable High to Address Do Not Care Time	10		15		20		20		ns
13	twz	Write Enable Low to Data Out Off Delay (Note 8)	0	70	0	80	0	80	0	80	ns
14	tow	Data in Valid to Write Enable High Time	50		60		60		75		ns
15	${ }^{\text {t }} \mathrm{DH}$	Write Enable Low to Data In Do Not Care Time	10		10	.	10		10		ns
16	$t_{\text {AS }}$	Address Valid to Write Enable Low Time	0		0		0		0		ns
17	tcw	Chip Select Low to Write Enable High Time (Note 4)	110		135		180		230		ns
18	tow	Write Enable High to Output Turn On (Note 8)	0		0		0		0		ns
19	$t_{\text {AW }}$	Address Valid to End of Write	110		135		180		230		ns

SWITCHING WAVEFORMS

READ CYCLE NO. 1 (Notes 9, 10)

SWITCHING WAVEFORMS（Cont．）

READ CYCLE NO． 2 （Notes 9，11）

WRITE CYCLE NO． 1 （WE CONTROLLED）

WRITE CYCLE NO． 2 （ $\overline{C S}$ CONTROLLED）

WF000220
Note：If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high，the output remains in a high impedance state．
4096×1 Static RAM

DISTINCTIVE CHARACTERISTICS

- High speed - access times down to 35ns maximum
- Automatic power-down when deselected
- Low power dissipation
- High output drive
- TTL compatible interface levels
- No power-on current surge

GENERAL DESCRIPTION

The Am2147 is a high performance, 4096-bit, static, read/ write, random access memory. It is organized as 4096 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to seven standard TTL loads or up to six Schottky TTL loads.

Only a single +5 volt power supply is required. When deselected ($\overline{\mathrm{CS}} \geqslant \mathrm{V}_{\mathrm{IH}}$), the Am2147 automatically enters a
power-down mode which reduces power dissipation by more than 85%. When selected, the chip powers up again with no access time penalty.

Data In and Data Out use separate pins on the standard 18pin package. Data Out is the same polarity as Data In. Data Out is a 3-state signal allowing wired-or operation of several chips. Data In and Data Out may be connected together for operation in a common data bus environment.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number	Am2147- $\mathbf{3 5}$	Am2147- $\mathbf{4 5}$	Am21L47- $\mathbf{4 5}$	Am2147- 55	Am21L47- 55	Am2147- 70	Am21L47- 70
Maximum Access time (ns)	35	45	45	55	55	70	70
Maximum Active Current (mA)	180	180	125	180	125	160 $(180$ mil)	125
Maximum Standby Current (mA)	30	30	15	30	15	20 $(30$ mil)	15
Full Military Operating Range Version		Yes		Yes		Yes	

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation
BIT MAP

Address Designators	
External	Internal
A_{0}	A_{2}
A_{1}	A_{5}
A_{2}	A_{4}
A_{3}	A_{3}
A_{4}	A_{8}
A_{5}	A_{7}
A_{6}	A_{1}
A_{7}	A_{0}
A_{8}	A_{11}
A_{9}	A_{9}
A_{10}	A_{10}
A_{11}	A_{6}

DIE SIZE: 0.130×0.106

Figure 2. Bit Mapping Information

ORDERING INFORMATION

Valid Combinations		
Am2147-35 (2147 only)		DC, DCB, LC
-45	Am2147	DC, DCB, DM DMB LC, LM, LMB
	Am21L47	DC, DCB, LC
-55	Am2147	DC, DM, FM LC, LM, DCB DMB, FMB LCB, LMB
	Am2147	Am, DCB, DM DMB, LC, LCB LM, LMB
	Am21L47	DC, DCB, LC

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge．It is suggested nevertheless， that conventional precautions be observed during storage， handling and use in order to avoid exposure to excessive voltages．

OPERATING RANGES

Commercial（C）Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．+4.5 V to +5.5 V
Military（M）Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functional－ ity of the device is guaranteed．

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		$\begin{aligned} & \text { Am2147-35 } \\ & \text { Am2147-45 } \\ & \text { Am2147-55 } \end{aligned}$		$\begin{aligned} & \text { Am21L47-45 } \\ & \text { Am21L47-55 } \\ & \text { Am21L47-70 } \\ & \hline \end{aligned}$		Am2147－70		Units
				Min	Max	Min	Max	Min	Max	
IOH	Output High Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	－4		－4		－4		mA
lo	Output Low Current	$V_{O L}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	12		12		12		mA
Iol．	Outpur Low Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	8		N／A		8		mA
V_{IH}	Input High Voltage			2.0	6.0	2.0	6.0	2.0	6.0	Volts
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			－3．0	0.8	－3．0	0.8	－3．0	0.8	Volts
IIX	Input Load Current	$V_{\text {SS }} \leqslant V_{1} \leqslant V_{\text {CC }}$			10		10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	$\begin{aligned} & \text { GND } \leqslant V_{0} \leqslant V_{C C} \\ & \text { Output Disables } \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	－50	50	－50	50	－50	50	$\mu \mathrm{A}$
C_{1}	Input Capacitance	$\begin{aligned} & \text { Test Frequency }=1.0 \mathrm{MHZ} \\ & T_{A}=25^{\circ} \mathrm{C} \text {, All pins at } O \mathrm{~V}, \mathrm{~V}_{C C}=5 \mathrm{~V} \end{aligned}$			5		5		5	pF
Co_{0}	Output Capacitance				6		6		6	
Icc	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \text { Max VCC } \\ & \mathrm{CS} \leqslant V_{1 L} \\ & \text { Output Open } \end{aligned}$	$T_{A}=70^{\circ} \mathrm{C}$		155		105		135	mA
			$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$		180		125		160	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		180		N／A		180	
ISB	Automatic CS Power Down Current	Max $V_{c c}$（CS \geqslant $V_{(H)}$（Note 3）	$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$		30		15		20	mA
			$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$		30		N／A		30	

Notes：
1．Test conditions assume signal transition times of 10 ns or less，timing reference levels of 1.5 V ，input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{OH}$ and 30 pF load capacitance．Output timing reference is 1.5 V for 2147－35 and 0．8／2．0V for－45，-55 and－70 parts．
2．The internal write time of the memory is defined by the overlap of CS low and WE low．Both signals must be low to initiate a write and either signal can terminate a write by going high．The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write．
3．A pull up resistor to $V_{C C}$ on the $\overline{C S}$ input is required to keep the device deselected during $V_{C C}$ power up． Otherwise ISB will exceed values given．

4．The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute．
5．Chip deselected greater than 55 ns prior to selection．
6．chip deselected less than 55 ns prior to selection．
7．At any given temperature and voltage condition， t_{HZ} is less than thz for all devices．Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2.
8．$\overline{W E}$ is high for read cycle．
9．Device is continuously selected，$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ ．
10．Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low．

DC OPERATING CHARACTERISTICS

Supply Current Versus Supply Voltage

Normalized Access Time
Versus Supply Voltage

Typical Power-On Current Versus Power Supply

Supply Current Versus Amblent Temperature

Normalized Access Time Versus Amblent Temperature

Access Time Change Versus Input Voltage

Output Source Current Versus Output Voltage

Output Sink Current Versus Output Voltage

Access Time Change Versus Output Loading

OP000270

SWITCHING TEST CIRCUITS

Figure 1. Output Load

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{0 W}, t_{w Z}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am2147-35		$\begin{gathered} \text { Am2147-45 } \\ \text { Am21L47-45 } \end{gathered}$		$\begin{gathered} \text { Am2147-55 } \\ \text { Am21L47-55 } \end{gathered}$		$\begin{gathered} \text { Am2147-70 } \\ \text { Am21L47-70 } \end{gathered}$		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle											
1	$t_{\text {RC }}$	Address Valid to Address Do Not Care Time (Read Cycle Time)	35		45		55		70		ns
2	$t_{\text {AA }}$	Address Valid to Data Out Valid Delay (Address Access Time)		35		45		55		70	ns
3	$t_{\text {ACS1 }}$	Chip Select Low to Data Out Valid		35		45		55		70	
4	$t_{\text {ACS } 2}$			35		45		65		80	
5	tLZ	Chip Select Low to Data Out On (Note 7)	5		5(10*)		10		10		ns
6	$\mathrm{thz}^{\text {H }}$	Chip Select High to Data Out Off (Note 7)	0	30	0	30	0	30	0	40	ns
7	tor	Address Unknown to Data Out Unknown Time	5		5		5		5		ns
8	tpD	Chip Select High Power Down Delay		20		20		20		30	ns
9	tpu	Chip Select Low to Power Up Delay	0		0		0		0		ns
Write Cycle											
10	tw	Address Valid to Address Do Not Care (Write Cycle Time)	35		45		55		70		ns
11	twp	Write Enable Low to Write Enable High (Note 2)	20		25		25		40		ns
12	twR	Write Enable High to Address	0		0		10		15		ns
13	twz	Write Enable Low to Output in High Z (Note 6)	0	20	0	25	0	25	0	35	ns
14	tow	Data In Valid to Write Enable High	20		25		25		30		ns
15	${ }_{\text {t }}$ H	Data Hold Time	10		10		10		10		ns
16	$t_{\text {AS }}$	Address Valid to Write Enable Low	0		0		0		0		ns
17	tow	Chip Select Low to Write Enable High (Note 2)	35		45		45		55		ns
18	tow	Write Enable High to Output in Low Z (Note 6)	0		0		0		0		ns
19	taw	Address Valid to End of Write	35		45		45		55		ns

"Military version only.

SWITCHING WAVEFORMS

READ CYCLE NO. 1 (Notes 8, 9)

WF000460

READ CYCLE NO. 2 (Notes 8, 10)

WRITE CYCLE NO. 1 (WE CONTROLLED)

WRITE CYCLE NO. 2 ($\overline{C S}$ CONTROLLED)

Note: If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.

Am2148／49

1024×4 Static RAM

DISTINCTIVE CHARACTERISTICS

－High speed－access times as fast as 35 ns
－Fully static storage and interface circuitry
－Automatic power－down when deselected（Am2148）
－TTL compatible interface levels
－Low power dissipation
－Am2148： 990 mW active， 165 mW power down
－Am21L48：688mW active， 110 mW power down
－High output drive
－Up to seven standard TLL loads

GENERAL DESCRIPTION

The Am2148 and Am2149 are high performance，static，N－ Channel，read／write，random access memories，organized as 1024×4 ．Operation is from a single 5 V supply，and all input／output levels are identical to standard TTL specifica－ tions．The Am2148 and Am2149 are the same except that the Am2148 offers an automatic $\overline{C S}$ power down feature．
The Am2148 remains in a low－power standby mode as long as $\overline{C S}$ remains high，thus reducing its power requirements．

The Am2148 power decreases from 990 mW to 165 mW in the standby mode．The $\overline{\mathrm{CS}}$ input does not affect the power dissipation of the Am2149．

Data readout is not destructive and has the same polarity as data input．$\overline{\mathrm{C}}$ provides for easy selection of an individual package when the outputs are OR－tied．

PRODUCT SELECTOR GUIDE

Part Number		$\begin{gathered} \text { Am2 148/9 } \\ -35 \end{gathered}$	$\begin{gathered} \text { Am2 } 248 / 9 \\ -45 \end{gathered}$	$\underset{-45}{\substack{\text { Am2 } \\-48 \\ \hline}}$	$\begin{gathered} \text { Am2148/9 } \\ -55 \end{gathered}$	$\begin{gathered} \text { Am21L48/9 } \\ -55 \end{gathered}$	$\begin{gathered} \text { Am2148/9 } \\ -70 \end{gathered}$	$\begin{gathered} \text { Am2 1L48/9 } \\ -70 \end{gathered}$
Maximum Access Time（ ns ）		35	45	45	55	55	70	70
ICC Max（mA）	$\begin{array}{r} 0 \text { to } \\ +70^{\circ} \mathrm{C} \end{array}$	180	180	125	180	125	180	125
ISB＊Max（mA）		30	30	20	30	20	30	20
Icc Max（mA）	$\begin{aligned} & -55 \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	N／A	180	N／A	180	N／A	180	N／A
ISB＊Max（mA）		N／A	30	N／A	30	N／A	30	N／A

＊Am2148 and Am21L48 only．

```
CONNECTION DIAGRAM Top View
```

D-18

L-18-2

Note: Pin 1 is marked for orientation
BIT MAP

Address Designators	
External	Internal
A_{0}	A_{7}
A_{1}	A_{8}
A_{2}	A_{9}
A_{3}	A_{6}
A_{4}	A_{5}
A_{5}	A_{4}
A_{6}	A_{3}
A_{7}	A_{2}
A_{8}	A_{1}
A_{9}	A_{0}

DIE SIZE: 0.107×0.145

Figure 2. Bit Mapping Information
ORDERING INFORMATION

Valid Comblnations		
-35 (Am2148/9 only)	DC, LC	
-45	Am2148/9	DC, DM, DMB LC, LM, LMB
	L devices	DC, LC
-55	Am2148/9	DC, DM, DMB LC, LM, LMB
	L devices	DC, LC
	Am2148/9	DC, DM, DMB LC, LM, LMB
	L devices	DC, LC

Am2148 - $1 \mathrm{k} \times 4$ SRAM with power down failure
Am21L48 - Same, Low Power
Am21L49 - Same, Low Power

Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	
Signal Voltages with	
respect to ground	-3.5 V to +7.0 V
Power Descriptio	W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

				Sta	ard	Low	wer	
Symbol	Parameter	Test Conditions		Min	Max	Min	Max	Units
IOH	Output High Current	$\mathrm{VOH}^{2}=2.4 \mathrm{~V}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-4		-4		mA
10 L	Output Low Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8		8		mA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	8		N/A		
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage			2.0	6.0	2.0	6.0	Volts
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IX	Input Load Current	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\text {cc }}$			10		10	$\mu \mathrm{A}$
102	Output Leakage Current	$\mathrm{GND} \leqslant \mathrm{~V}_{0} \leqslant \mathrm{~V}_{\mathrm{CC}}$ Output Disabled	$T_{A}=-55$ to $+125^{\circ} \mathrm{C}$	-50	50	-50	50	$\mu \mathrm{A}$
C_{1}	Input Capacitance	```Test Frequency = 1.0 MHz T```			5		5	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Input/Output Capacitance				7		7	
Icc	$V_{C C}$ Operating Supply Current	$\operatorname{Max} v_{\mathrm{Cc},} \overline{\mathrm{cs}} \leqslant \mathrm{~V}_{\mathrm{IL}}$ Output Open	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$		180		125	mA
			$\mathrm{T}_{A}=-55$ to $+125^{\circ} \mathrm{C}$		180		N/A	
ISB	Automatic CS Power Down Current	Max $V_{\text {cc }},\left(C S \geqslant V_{1 H}\right)$	$\mathrm{T}_{A}=0$ to $+70^{\circ} \mathrm{C}$		30		20	mA
			$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$		30		N/A	
Ipo	Peak Power-On Current	Max $V_{C C}$ ($C S \geqslant V_{1 H}$) (Note 3)	$T_{A}=0$ to $+70^{\circ} \mathrm{C}$		50		30	mA
			$\mathrm{T}_{A}=-55$ to $+125^{\circ} \mathrm{C}$		50		N/A	
los	Output Short Circuit Current	$\begin{aligned} & \text { GND } \leqslant V_{0} \leqslant V_{C C} \\ & \text { (Note 11) } \end{aligned}$	$\mathrm{T}_{A}=0$ to $+70^{\circ} \mathrm{C}$		± 275		± 275	mA
			$T_{A}=-55$ to $+125^{\circ} \mathrm{C}$		± 350		± 350	

Notes:

1. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0V and output loading of the specified $\mathrm{IOL} / \mathrm{IOH}_{\mathrm{OH}}$ and 30 pF load capacitance. Output timing reference is 1.5 V .
2. The internal write time of the memory is defined by the overlap of $\overline{C S}$ low and $\overline{W E}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
3. A pull up resistor to $V_{C C}$ on the $\overline{C S}$ input is required to keep the device deselected during $V_{C C}$ power up. Otherwise IpO will exceed values given (Am2148 only).
4. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
5. Chip deselected greater than 55ns prior to selection.
6. Chip deselected less than $55 n \mathrm{~ns}$ prior to selection.
7. At any given temperature and voltage condition, t_{H} is less than tLz for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2. These parameters are sampled and not 100\% tested.
8. $\overline{W E}$ is high for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
10. Address valid prior to or coincident with $\overline{C S}$ transition low.
11. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
12. This parameter is sampled and not 100% tested.

Normallzed Access Time Versus Supply Voltage

vec - v
OP000760

Typlcal Power-On Current Versus Power Supply

OP000790

Supply Current Versus Amblent Temperature

Normalized Access Time Versus Amblent Temperature

Access Time Change Versus Input Voltage

Output Source Current Versus Output Voltage

Output Sink Current Versus Output Voltage

OP001090

Access Time Change Versus Output Loading

SWITCHING TEST CIRCUITS

Figure 1. Output Load

Figue 2. Output Load for $t_{H Z}, t_{L Z}, t_{0 W}, t_{w z}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am2 148/9-35		$\begin{aligned} & \text { Am2148/9-45 } \\ & \text { Am21L48/9-45 } \end{aligned}$		$\begin{aligned} & \text { Am2148/9-55 } \\ & \text { Am21L48/9-55 } \end{aligned}$		$\begin{array}{r} \text { Am2148/9-70 } \\ \text { Am21L48/9-70 } \end{array}$		Units
			Min	Max	Min	Max	Min	Max	Min	Max	

Read Cycle												
1	$t_{\text {RC }}$	Address Valid to Address Do Not Care Timé (Read Cycle Time)		35		45		55		70		ns
2	$t_{A A}$	Address Valid to Data Out Valid Delay (Address Access Time)			35		45		55		70	ns
3	$t_{\text {ACS }}$	Chip Select Low to Data Out Valid (Am2148 only)	Note 5		35		45		55		70	ns
4	$t_{\text {ACS }}$		Note 6		45		55		65		80	
5	$t_{\text {ACS }}$	Chip Select Low to Data Out Valid (Am2149 only)			15		20		25		30	ns
6		Chip Select Low to Data Out On (Note 7)	Am2148	10		10		10		10		ns
6	LT		Am2149	5		5		5		5		
7	t_{Hz}	Chip Select High to Data Out Off (Note 7)		0	20	0	20	0	20	0	20	ns
8	toh	Address Unknown to Data Out Unknown Time		0		5		5		5		ns
9	tPD	Chip Select High to Power Down Delay	Am2148		30		30		30		30	ns
10	tpu	Chip Select Low to Power Up Delay	Am2148	0		0		0		0		ns

Write Cycle											
11	twC	Address Valid to Address Do Not Care (Write Cycle Time)	35		45		55		70		ns
12	twp	Write Enable Low to Write Enable High (Note 2)	30		35		40		50		ns
13	twh	Write Enable High to Address	5		5		5		5		ns
14	twz	Write Enable Low to Output in High Z (Note 7)	0	10	0	15	0	20	0	25	ns
15	tDW	Data In Valid to Write Enable High	20		20		20		25		ns
16	tDH	Data Hold Time	0		0		0		0		ns
17	$t_{\text {AS }}$	Address Valid to Write Enable Low	0		0		0		0		ns
18	tcw	Chip Select Low to Write Enable High (Note 2)	30		40		50		65		ns
19	tow	Write Enable High to Output in Low Z (Note 7)	0		0		0		0		ns
20	$t_{\text {AW }}$	Address Valid to End of Write	30		40		50		65		ns

\qquad

READ CYCLE NO. 2 (Notes 8, 10)

WRITE CYCLE NO. 1 (WE CONTROLLED)

WRITE CYCLE NO. 2 ($\overline{\mathrm{CS}}$ CONTROLLED)

Note: If CS goes high simultaneously with WE high, the output remains in a high impedance state.

DISTINCTIVE CHARACTERISTICS

- High speed - access times as fast as 35 ns maximum
- Automatic power down when deselected
- Low power dissipation
- Am2167: 660 mW active, 110 mW power down
- High output drive
- Up to seven standard TTL loads or six Schottky TTL loads
- TTL compatible interface levels
- No power-on current surge

GENERAL DESCRIPTION

The Am2167 is a high performance, 16,384 -bit, static, read/write, random access memory. It is organized as 16,384 words by one bit per word. All interface signal levels are identical to TTL specifications, providing good noise immunity and simplified system design. All inputs are purely capacitive MOS loads. The outputs will drive up to six standard Schottky TTL loads or up to seven standard TTL loads.

Only a single +5 volt power supply is required. When deselected ($\overline{\mathrm{CE}} \geqslant \mathrm{V}_{\mathrm{IH}}$), the Am2167 automatically enters a power-down mode which reduces power dissipation by 80\%.

Data In and Data Out use separate pins and are the same polarity allowing them to be connected together for operation in a common data bus environment. Data Out is a three-state output allowing similar devices to be wire-OR'd together.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number	Am2167-35	Am2167-45	Am2167-55	Am2167-70
Maximum Access Time (ns)	35	45	55	70
Maximum Active Current (mA)	120	$120(160 \mathrm{mil})$	$120(160 \mathrm{mil})$	$120(160 \mathrm{mil})$
Maximum Standby Current (mA)	20	$20(30 \mathrm{mil})$	$20(30 \mathrm{mil})$	$20(30 \mathrm{mil})$
Full Military Operating Range Version	No	Yes	Yes	Yes

BIT MAP

Address Designators	
External	Internal
A_{0}	A_{1}
A_{1}	A_{6}
A_{2}	A_{2}
A_{3}	A_{5}
A_{4}	A_{3}
A_{5}	A_{0}
A_{6}	A_{4}
A_{7}	A_{13}
A_{8}	A_{10}
A_{9}	A_{6}
A_{10}	A_{11}
A_{11}	A_{9}
A_{12}	A_{12}
A_{13}	A_{7}

Figure 3. Bit Mapping Information

ORDERING INFORMATION

Am2167-45

LBurn-in Option B suffix denotes 160 hour burn-in.
Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
M - Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Package

Valid Combinations	
Am2167-35	PC, DC
Am2167-45	PC, DC DM, DMB
Am2167-55	PC, DC, DM, DMB
Am2167-70	PC, DC DM, DMB

- 20-pin CERDIP
P. - 20-pin plastic DIP
Speed Select

$35-35 n s$	$55-55 n s$
$45-45 n s$	$70-70 n s$

Device Type
$16 \mathrm{k} \times 1$ SRAM

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
Signal Voltages with
respect to ground-3.0V to +7.0V
Power Description ... 1.0W
DC Output Current.. 10mA
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices

> Temperature
\qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Am2167-35		$\begin{aligned} & \text { Am2167-45 } \\ & \text { Am2167-55 } \\ & \text { Am2167-70 } \end{aligned}$		Units
				Min	Max	Min	Max	
${ }^{10 H}$	Output High Current	$\mathrm{VOH}^{2} \mathbf{2 . 4 V}$	$V_{C C}=4.5 \mathrm{~V}$	-4		-4		mA
10 L	Output Low Current	$\mathrm{VOL}=0.4 \mathrm{~V}$	COM'L	16		16		mA
			MIL	12		12		
V_{IH}	Input High Voltage			2.0	6.0	2.0	6.0	Volts
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	Volts
IIX	Input Load Current	$v_{S S} \leqslant v_{1} \leqslant v_{C C}$			10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	$\begin{aligned} & \text { GND } \leqslant V_{O} \leqslant V_{C C} \\ & \text { Output Disabled } \end{aligned}$		-50	50	-50	50	$\mu \mathrm{A}$
C_{1}	Input Capacitance	Test Frequency $=1.0 \mathrm{MHz}$ $T_{A}=25^{\circ} \mathrm{C}$, All pins at $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			5		5	pF
C_{0}	Output Capacitance				6		6	
Icc	$V_{C C}$ Operating	Max $\mathrm{V}_{\text {cc, }}$, $C E \leqslant \mathrm{~V}_{\text {IL }}$	COM'L		120		120	mA
	Supply Current	Output Open	MIL		N/A		160	
IsB	Automatic CE Power	MAX $\mathrm{V}_{\text {cc }}$, ($C E \geqslant \mathrm{~V}_{\text {IH }}$)	COM'L		20		20	mA
	Down Current	(Note 3)	MIL		N/A		30	

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0V and output loading of the specified $\mathrm{IOL} / \mathrm{OH}$ and 30 pF load capacitance. Output timing reference is 1.5 V .
2. The internal write time of the memory is defined by the overlap of CE low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
3. A pull-up resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected during $V_{C C}$ power up. Otherwise ISB will exceed values given.
4. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
5. The device must be selected during the previous cycle. Otherwise $t_{A A}$ and $t_{R C}$ are equivalent to $t_{A C S}$.
6. At any given temperature and voltage condition, t_{HZ} is less than tLZ for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with load specified in Figure 2 for thz, tLZ, tow and twz.
7. WE is high for read cycle.
8. Address valid prior to or coincident with $\overline{C E}$ transition low.

Normallzed Access Time versus Supply Voltage

Supply Current versus Ambient Temperature

Normalized Access Time versus Ambient Temperature

Access Time Change versus Input Voltage

Output Source Current versus Output Voltage

Output Sink Current versus Output Voltage
 versus Output Loading

SWITCHING TEST CIRCUITS

Figure 1. Output Load

Figure 2. Output Load for $\mathbf{t}_{\mathrm{HZ}}, \mathrm{t}_{L Z}$, tow 2, $\mathbf{w Z}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am2167-35		Am2167-45		Am2167-55		Am2167-70		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle											
1	trc	Address Valid to Address Do Not Care Time (Read Cycle Time) (Note 5)	30		40		50		70		ns
2	$t_{A A}$	Address Valid to Data Out Valid Delay (Address Access Time) (Note 5)		30		40		50		70	ns
3	tacs	Chip Enable Low to Data Out Valid (Chip Enable Access Time)		35		45		55		70	ns
4	tiz	Chip Enable Low to Data Out On (Note 6)	5		5		5		5		ns
5	t_{Hz}	Chip Enable High to Data Out Off (Note 6)	0	20	0	25	0	30	0	40	ns
6	tOH	Address Unknown to Data Out Unknown Time	5		5		5		5		ns
7	tPD	Chip Enable High to Power Down Delay		25		30		30		55	ns
8	tpu	Chip Enable Low to Power Up Delay	0		0		0		0		ns
Write Cycle											
9	twc	Address Valid to Address Do Not Care (Write Cycle Time)	30		40		50		70		ns
10	twp	Write Enable Low to Write Enable High (Note 2)	20		20		25 -		40		ns
11	twr	Write Enable High to Address	0		0		0		0		ns
12	twz	Write Enable Low to Output in High Z (Note 6)	0	20	0	20	0	25	0	35	ns
13	tow	Data In Valid to Write Enable High	15		15		20		30		ns
14	t_{DH}	Data Hold Time	5		5		5		5		ns
15	$t_{\text {AS }}$	Address Valid to Write Enable Low	5		5		5		5		ns
16	tcw	Chip Enable Low to Write Enable High (Note 2)	30		40		50		55		ns
17	tow	Write Enable High to Output in Low Z (Note 6)	0		0		0		0		ns
18	taw	Address Valid to End of Write	30		40		50		70		ns

SWITCHING WAVEFORMS

READ CYCLE NO. 1 (Notes 5, 7)

READ CYCLE NO. 2 (Notes 7, 8)

WRITE CYCLE NO. 1 ($\bar{W} E$ CONTROLLED)

WRITE CYCLE NO. 2 (드 CONTROLLED)

Note: If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.

DISTINCTIVE CHARACTERISTICS

- Replacement for MK4116
- High-speed operation - 150ns access, 320ns cycle (COM'L); 200 ns access, 375 ns cycle (MIL)
- Three-state output
- $\overline{\text { RAS }}$ only, RMW and Page mode clocking options
- 128 cycle refreshing
- Unlatched data output

GENERAL DESCRIPTION

The Am9016 is a high-speed, 16 K -bit, dynamic, read/write random access memory. It is organized as 16,384 words by 1 bit per word and is packaged in a standard 16-pin DIP or 18 -pin leadless chip carrier. The basic memory element is a single transistor cell that stores charge on a small capacitor. This mechanism requires periodic refreshing of the memory cells to maintain stored information.

All input signals, including the two clocks, are TTL compatible. The Row Address Strobe ($\overline{\mathrm{RAS}}$) loads the row address and the Column Address Strobe (CAS) loads the column
address. The row and column address signals share seven input lines. Active cycles are initiated when $\overline{\text { RAS }}$ goes low, and standby mode is entered when $\overline{\text { RAS }}$ goes high. In addition to normal read and write cycles, other types of operations are available to improve versatility, performance and power dissipation.

The 3-state output buffer turns on when the column access time has elapsed and turns off after $\overline{\mathrm{CAS}}$ goes high. Input and output data are the same polarity.

BLOCK DIAGRAM

Am9016

Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
L - Extended $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Valid Combinations	
C, D, E	$D C, P C, D L$
F	$D C, P C$

Package
D - 16-pin CERDIP
P-16-pin plastic
Speed Select
F - 150ns
E - 200ns
D - 250ns
C - 300ns
Device Type
$16 \mathrm{k} \times 1$ DRAM

APPLICATION INFORMATION

The Am9016 electrical connections are such that if power is applied with the device installed upside down it will be permanently damaged. Precautions should be taken to avoid this mishap.

OPERATING CYCLES

Random read operations from any location hold the $\overline{W E}$ line high and follow this sequence of events:

1. The row address is applied to the address inputs and $\overline{R A S}$ is switched low.
2. After the row address hold time has elapsed, the column address is applied to the address inputs and $\overline{\mathrm{CAS}}$ is switched low.
3. Following the access time, the output will turn on and valid read data will be present. The data will remain valid as long as $\overline{C A S}$ is low.
4. टAS and $\overline{\text { RAS }}$ are then switched high to end the operation. A new cycle cannot begin until the precharge period has elapsed.
Random write operations follow the same sequence of events, except that the $\bar{W} E$ line is low for some portion of the cycle. If the data to be written is available early in the cycle, it will usually be convenient to simply have $\overline{W E}$ low for the whole write operation.
Sequential Read and Write operations at the same location can be designed to save time because re-addressing is not necessary. A read/write cycle holds WE high until a valid read is established and then strobes new data in with the falling edge of $\overline{W E}$.
After the power is first applied to the device, the internal circuit requires execution of at least eight initialization cycles which exercise $\overline{\mathrm{RAS}}$ before valid memory accesses are begun.

ADDRESSING

14 address bits are required to select one location out of the 16,384 cells in the memory. Two groups of 7 bits each are multiplexed onto the 7 address lines and latched into the internal address registers. Two negative-going external clocks are used to control the multiplexing. The Row Address Strobe ($\overline{\mathrm{RAS}}$) enters the row address bits and the Column Address Strobe ($\overline{\mathrm{CAS}}$) enters the column address bits.
When $\overline{R A S}$ is inactive, the memory enters its low power standby mode. Once the row address has been latched, it need not be changed for successive operations within the same row, allowing high-speed page-mode operations.

Page-mode operations first establish the row address and then maintain $\overline{\mathrm{RAS}}$ low while $\overline{\mathrm{CAS}}$ is repetitively cycled and designated operations are performed. Any column address within the selected row may be accessed in any sequence. The maximum time that $\overline{\operatorname{RAS}}$ can remain low is the factor limiting the number of page-mode operations that can be performed.

Multiplexed addressing does not introduce extra delays in the access path. By inserting the row address first and the column
address second, the memory takes advantage of the fact that the delay path through the memory is shorter for column addresses. The column address does not propagate through the cell matrix as the row address does and it can therefore arrive somewhat later than the row address without impacting the access time.

REFRESH

The Am9016 is a dynamic memory and each cell must be refreshed at least once every refresh interval in order to maintain the cell contents. Any operation that accesses a row serves to refresh all 128 cells in the row. Thus the refresh requirement is met by accessing all 128 rows at least once every refresh interval. This may be accomplished, in some applications, in the course of performing normal operations. Alternatively, special refresh operations may be initiated. These special operations could be simply additional conventional accesses or they could be " $\overline{\mathrm{RAS}}$-only" cycles. Since only the rows need to be addressed, ट्CAS may be held high while $\overline{\mathrm{RAS}}$ is cycled and the appropriate row addresses are input. Power required for refreshing is minimized and simplified control circuitry will often be possible.

DATA INPUT/OUTPUT

Data is written into a selected cell by the combination of $\overline{W E}$ and $\overline{C A S}$ while $\overline{R A S}$ is low. The later negative transition of $\overline{W E}$ or CAS strobes the data into the internal register. In a write cycle, if the $\overline{W E}$ input is brought low prior to CAS, the data is strobed by $\overline{\mathrm{CAS}}$, and the set-up and hold times are referenced to $\overline{\mathrm{CAS}}$. If the cycle is a read/write cycle then the data set-up and hold times are referenced to the negative edge of $\bar{W} E$.
In the read cycle the data is read by maintaining $\overline{W E}$ in the high state throughout the portion of the memory cycle in which $\overline{\mathrm{CAS}}$ is low. The selected valid data will appear at the output within the specified access time.

DATA OUTPUT CONTROL

Any time $\overline{\mathrm{CAS}}$ is high the data output will be off (after tOFF). The output contains either one or zero during read cycle after the access time has elapsed. Data remains valid from the access time until $\overline{\mathrm{CAS}}$ is returned to the high state. The output data is the same polarity as the input data.

The user can control the output state during write operations by controlling the placement of the $\overline{W E}$ signal. In the "early write" cycle (see note 9) the output is at a high impedance state throughout the entire cycle.

POWER CONSIDERATIONS

$\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ can be decoded and used as a chip select signal for the Am9016 but overall system power is minimized if $\overline{\text { AAS }}$ is used for this purpose. The devices which do not receive $\overline{\mathrm{RAS}}$ will be in low power standby mode regardless of the state of $\overline{\mathrm{CAS}}$.

At all times the Absolute Maximum Rating Conditions must be observed. During power supply sequencing VBB should never be more positive than VSS when power is applied to VDD.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Voltage on any pin with respect to $V_{B B}$ \qquad Positive Supply Voltages with respect to ground 1.0 V to +15.0 V

DC Layout Voltage................................-0.5V to +7.0V
$V_{B B}-V_{S S}$ Differentials given $V_{D D}-V_{S S}>0 V$ ow
Power Dissipation .. 1.0W
Short Circuit Output Current 50mA
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices	
Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Positive Supply Voltage	$V_{D D} \ldots \ldots \ldots . .+10.8 \mathrm{~V}$ to +
	$V_{\text {CC }} \ldots \ldots \ldots \ldots . .4 .4 .5 \mathrm{~V}$ to +5.5 V
Negative Supply Voltage VBB............ -4.5 V to -5.5 V	
Extended (L) Devices	
Temperature	
Positive Supply Voltage	$V_{D D} \ldots \ldots \ldots .+10.8 \mathrm{~V}$ to +13.2 V
	$V_{C C} \ldots \ldots \ldots \ldots . .+4.5 \mathrm{~V}$ to +5.5 V
Negative Supply Voltage VBB............ -4.5 V to -5.5 V	
Operating ranges define those limits over which the functionality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

Typical Access Time (Normalized)
$\mathbf{t}_{\text {rac }}$ Versus
Case Temperature

T_{C}, CASE TEMPERATURE - ${ }^{\circ} \mathrm{C}$
OP000360

Typlcal Refresh Current IDD3 Versus VDD

Typical Access Time (Normalized) $t_{\text {RAC }}$ Versus $V_{B B}$

OP000050

Typical Operating current IDD1 Versus VDD

OP000070

Typical Page Mode Current IDD4 Versus VDD

Typical Access Time (Normalized) $t_{\text {RaC }}$ Versus VCC

OP000060

Typical Standby Current IDD2 Versus VDD

OP000400

Input Voltage Levels Versus VDD

Input Voltage Levels
Versus VB

OP000500

Typical Refresh Current IDD3 Versus Case Temperature

OP000410

Input Voltage Levels Versus VDD

OP000480

Input Voltage Levels
Versus
Case Temperature

Typical Page Mode Current IDDd Versus Case Temperature

OP000420
' Input Voltage Levels Versus V_{BB}

OP000490

Input Voltage Levels Versus

Case Temperature

T_{C}, Case temperature - ${ }^{\circ} \mathrm{C}$
OP000520

SWITCHING CHARACTERISTICS over operating range uniess otherwise specified

No.	Symbol	Description		Am9016C		Am9016D		Am9016E		Am9016F		Units
				Min	Max	Min	Max	Min	Max	Min	Max	
1	$t_{\text {AR }}$	$\overline{\text { RAS }}$ LOW to Column Address Hold Time		200		160		120		95		ns
2	${ }^{\text {ASC }}$	Column Address Setup Time	$0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$	-10		-10		-10		-10		ns
			$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$	0		0		0		NA		ns
3	$t_{\text {ASA }}$	Row Address Setup Time		0		0		0		0		ns
4	tcac	Access Time from CAS (Note 6)			185		165		135		100	ns
5	tCAH	CAS LOW to Column Address Hold Time		85		75		55		45		ns
6	tcas	CAS Pulse Width	$0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$	185	10,000	165	10,000	135	10,000	100	10,000	ns
			$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$	185	5000	165	5000	135	5000	NA	NA	ns
7	tcP	Page Mode CAS Precharge Time		100		100		80		60		ns
8	tCRP	$\overline{C A S}$ to $\overline{\operatorname{AAS}}$ Precharge Time	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+70^{\circ} \mathrm{C}$	-20		-20		-20		-20		ns
			$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}$	0		0		0		NA		ns
9	tesh	$\overline{\text { CAS Hold Time }}$		300		250		200		150		ns
10	tcWD	$\overline{\text { CAS LOW }}$ to WE LOW Delay (Note 9)		145		125		95		70		ns
11	tcWL	WE LOW to CAS HIGH Setup Time		100		85		70		50		ns
12	toh	CAS LOW or WE LOW to Data In Valid Hold Time (Note 7)		85		75		55		45		ns
13	tDHR	RAS LOW to Data In Valid Hold Time		200		160		120		95		ns
14	tos	Data in Stable to CAS LOW or WE LOW Setup Time (Note 7)		0		0		0		0		ns
15	toff	$\overline{\text { CAS HIGH to Output OFF Delay }}$		0	60	0	60	0	50	0	40	ns
16	tPC	Page Mode Cycle Time		295		275		225		170		ns
17	$t_{\text {ta }}$	Access Time from $\overline{\mathrm{RAS}}$ (Note 6)			300		250		200		150	ns
18	$t_{\text {RAH }}$	RAS LOW to Row Address Hold Time		45		35		25		20		ns
19	$t_{\text {RAS }}$	$\overline{\mathrm{RAS}}$ Pulse Width	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	300	10,000	250	10,000	200	10,000	150	10,000	ns
			$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}$	300	5000	250	5000	200	5000	NA	NA	ns
20	$t_{\text {R }}$	Random Read or Write Cycle Time		460		410		375		320		ns
21	$t_{\text {RCD }}$	RAS LOW to CAS LOW Delay (Note 6)		35	115	35	85	25	65	20	50	ns
22	$\mathrm{t}_{\mathrm{RCH}}$	Read Hold Time		0		0		0		0		ns
23	$t_{\text {tres }}$	Read Setup Time		0		0		0		0		ns
24	$t_{\text {REF }}$	Refresh Interval			2		2		2		2	ms
25	tRMW	Read Modify Write Cycle Time		600		500		405		320		ns

No.	Symbol	Description		Am9016C		Am9016D		Am9016E		Am9016F		Units
				Min	Max	Min	Max	Min	Max	Min	Max	
26	$t_{\text {RP }}$	RAS Precharge Time		150		150		120		100		ns
27	trsh	CAS LOW to $\overline{\text { RAS }}$ HIGH Delay		185		165		135		100		ns
28	trwC	Read/Write Cycle Time		525		425		375		320		ns
29	trwD	$\overline{\text { RAS LOW to WE LOW Delay (Note 9) }}$		260		210		160		120		ns
30	$t_{\text {trwL }}$	WE LOW to $\overline{\mathrm{RAS}}$ HIGH Setup Time		100		85		70		50		ns
31	tT	Transition Time		3	50	3	50	3	50	3	35	ns
32	twCH	Write Hold Time		85		75		55		45		ns
33	twCR	RAS LOW to Write Hold Time		200		160		120		95		ns
34	twCS	WE LOW to CAS LOW Setup Time (Note 9)	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	-20		-20		-20		-20		ns
			$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C}$	0		0		0		NA		
35	twp	Write Pulse Width		85		75		55		45		ns

Notes:

1. All voltages referenced to $V_{S S}$.
2. Signal transition times are assumed to be 5 ns . Transition times are measured between specified high and low logic levels.
3. Timing reference levels for both input and output signals are the specified worst-case logic levels.
4. V_{CC} is used in the output buffer only. ICC will therefore depend only on leakage current and output loading. When the output is ON and at a logic high level, V_{CC} is connected to the Data Out pin through an equivalent resistance of approximately 135Ω. In standby mode $V_{C C}$
may be reduced to zero without affecting stored data or refresh operations.
5. Output loading is two standard TL loads plus 100 pF capacitance.
6. Both $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$ must be low read data. Access timing will depend on the relative positions of their falling edges. When $t_{R C D}$ is less than the maximum value shown, access time depends on $\overline{\text { RAS }}$ and tRAC governs. When $t_{R C D}$ is more than the maximum value shown access time depends on $\overline{\mathrm{CAS}}$ and ICAC governs. The maximum value listed for $t_{\text {RCD }}$ is shown for reference purposes only and does not restrict operation of the part.

SWITCHING CHARACTERISTICS (Cont.)

7. Timing reference points for data input setup and hold times will depend on what type of write cycle is being performed and will be the later falling edge of CAS or WE.
8. At least eight initialization cycles that exercise $\overline{\text { RAS }}$ should be performed after power-up and before valid operations are begun.
9. The tWCS; trwD and tCWD parameters are shown for reference purposes only and do not restrict the operating
flexibility of the part. When the falling edge of WE follows the falling edge of CAS by at most twCS, the data output buffer will remain off for the whole cycle and an "early write" cycle is defined. When the falling edge of WE follows the falling edges of $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ by at least trwo and tcwd respectively, the Data Out from the addressed cell will be valid at the access time and a "read/write" cycle is defined. The falling edge of WE may also occur at intermediate positions, but the condition and validity of the Data Out signal will not be known.

SWITCHING WAVEFORMS

READ CYCLE

WF000320

RAS ONLY REFRESH CYCLE

Am9044/9244

4096×1 Static RAM

DISTINCTIVE CHARACTERISTICS

- LOW OPERATING AND STANDBY POWER
- Access times down to 200 ns
- Am9044 is a direct plug-in replacement for 4044
- Am9244 pin and function compatible with Am9044 and 4044 plus CS power down feature
- High output drive - 4.0mA sink current © 0.4 V
- TTL identical interface logic levels

GENERAL DESCRIPTION

The Am9044 and Am9244 are high performance, static, N Channel, read/write, random access memories organized as 4096×1. Operation is from a single 5 V supply, and all input/output levels are identical to standard TTL specifications. Low power versions of both devices are available with power savings of about 30%. The Am9044 and Am9244 are the same except that the Am9244 offers an automatic $\overline{C S}$ power down feature.

The Am9244 remains in a low power standby mode as long as CS remains high, thus reducing its power requirements.

The Am9244 power decreases from 385 mW to 165 mW in the standby mode, and the Am92L44 from 275 mW to 110 mW . The CS input does not affect the power dissipation of the Am9044.

Data readout is not destructive and the same polarity as data input. CS provides for easy selection of an individual package when the outputs are OR-tied. The outputs of 4.0 mA for Am9244 and Am9044 provide increased short circuit current for improved drive.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Times	450ns	300ns	250 ns	200ns
Standard Device	Am9044B Am9244B	Am9044C Am9244C	Am9044D Am9244D	Am9044E Am9244E
Low Power	Am90L44B Am92L44B	Am90L44C Am92L44C	Am90L44D	

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with

Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage ．-0.5 V to +7.0 V
All Signal Voltage with
respect to ground .-0.5 V to +7.0 V
Power Description ． 1.0 W
DC Output Current 10 mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge．It is suggested nevertheless， that conventional precautions be observed during storage， handling and use in order to avoid exposure to excessive voltages．

OPERATING RANGES

Commercial（C）Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage +4.5 V to +5.5 V
Military（M）Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Operating ranges define those limits over which the functional－ ity of the device is guaranteed．

DC CHARACTERISTICS over operating range unless otherwise specified

DC OPERATING CHARACTERISTICS

Typical ICC Versus VCC Characteristics

Typical tace Versus VCC Characteristics

Typlcal C Load Versus Normalized tacc Characteristics

DC OPERATING CHARACTERISTICS (Cont.)

Normalized tacc Versus Amblent Temperature

TA $^{\prime}$ - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$
OP000920

Normalized ICC Versus Ambient Temperature

OP000930

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

	Symbol	Description		B devices		C devices		D devices		E devices		Units
No.				Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle												
1	trC	Address Valid to Address Do Not Care Time (Read Cycle Time)		450		300		250		200		
2	t_{A}	Address Valid to Data Out Valid Delay (Address Access Time)			450		300		250		200	
		Chip Select Low to Data	Am9044		100		100		70		70	ns
3	co	Out Valid (Note 5)	Am9244		450		300		250		200	
4	tcx	Chip Select Low to Data Out On		20		20		20		20		
5	totD	Chip Select High to Data Out Off			100		80		60		60	
6	toha	Address Unknown to Data Out Unknown Time		20		20		20		20		
Write Cycle												
7	twc	Address Valid to Address Do Not Care Time (Write Cycle Time)		450		300		250		200		
8		Write Enable Low to Write Enable High Time (Note 4)	Am9044	200		150		100		100		
8	W		Am9244	250		200		150		150		
9	tWR	Write Enable High to Address Do Not Care Time		0	.	0		0		0		
10	totw	Write Enable Low to Data Out Off Delay			100		80		60		60	
11	tow	Data In Valid to Write Enable High Time		200		150		100		100		
12	$t_{\text {DH }}$	Write Enable Low to Data In Do Not Care Time		0		0		0		0		ns
13	$t_{\text {AW }}$	Address Valid to Write Enable Low Time		0		0		0		0		
14	tPD	Chip Select High to Power Low Delay (Am9244 only)			200	-	150		100		100	
15	tpu	Chip Select Low to Power High Delay (Am9244 only)		0		0		0		0		
16	tow	Chip Select Low to Write Enable High Time (Note 4)	Am9044	200		150		100		100		
			Am9244	250		200		150		150		
17	two	Write Enable High To Output Turn On			100		100		70		70	

Power Down Waveform（Am 9244 only）

Am9064

DISTINCTIVE CHARACTERISTICS

- High speed RAS access of 100 and 120 ns
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power 22 mW standby
- 330mW active - 220ns cycle time
- 385mW active - 190ns cycle time
- Read, Write, Read-Modify-Write, Page-Mode and RASOnly refresh capability
- CAS controlled three-state output
- Fast cycle times of 190 and 220ns

GENERAL DESCRIPTION

The Am9064 is a high speed, high-performance dynamic RAM, organized $65,536 \times 1$ and manufactured using advanced NMOS silicon-gate technology. The design is optimized for both high speed and low power dissipation, and only a single +5 V supply is needed because the onchip substrate-bias generator (compensated for temperature and supply variations) provides the necessary back bias.

The Am9064 features multiplexed addressing, and all input signals, including clocks, are TTL-compatible; input and output signals are the same polarity, and the three-state output buffer is CAS controlled. The Hi-C single-transistor memory cell is used to enhance signal margin and reduce the a-particle-induced soft-error rate.

BLOCK DIAGRAM

BD000150

PRODUCT SELECTOR GUIDE

Part Number	Am9064-10	Am9064-12	Am9064-15
RAS Access Time	100	120	150
CAS Access Time	55	65	75

CONNECTION DIAGRAM TOP VIEW

Note: Pin 1 is marked for orientation
Metallization and Pad Layout

Die Size
(Incl. Strip-Chip) 145 Mils $\times 313$ Mils

ORDERING INFORMATION

```
Am9064-10
    |
                                C
                                L Temperature
                            C-Commercial (0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
    Package
                                    D - 16-pin CERDIP
                                    P-16-pin plastic
                            Speed Select
                            10-100ns
                            12-120ns
                            15-150ns
Device Type
\(64 \mathrm{k} \times 1\) DRAM
```

 Am9064-12
 Am9064-15

PIN DESCRIPTION

$\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{7}$ Eight multiplexed inputs, first provide eight row address inputs and then eight column address inputs, all within one normal memory cycle. The eight row address inputs (meeting the setup and hold times $t_{\text {ASR }}$ and $t_{\text {RAH }}$) are latched in by $\overline{\text { RAS }}$ l. The eight column address inputs, (meeting the setup and hold times $t_{\text {ASC }}$. $t_{\text {CAH }}$ and $t_{\text {AR }}$ are latched in by CAS !. The combined row and column address inputs (16 total) will select one of 65,536 memory bits for Read, Write, or Read-Modify-Write operation. In addition, the memory refresh function is also performed in any memory cycle (including RAS only refresh cycle), on two of 256 rows specified by $A_{0}-A_{6}$, while A_{7} is not used. Page-mode cycles excluded.)
DIN The Data Input. The data input, (meeting setup and hold times $t_{D S}, t_{D H}$ and $t_{D H R}$) is latched in by either $\overline{W E} \downarrow$ or $\overline{C A S} \downarrow$ whichever comes later, while $\overline{\text { RAS }}$ is LOW.
$\overline{\text { RAS }}$ The Row-Address-Strobe control clock. $\overline{\text { RAS }} \downarrow$ latches the row address on $A_{0}-A_{7}$ and activates a memory cycle. $\overline{\mathrm{RAS}}$; ends the active memory cycle and precharges the memory's dynamic circuits. Memory cycle time, as defined by the $\overline{\text { RAS clock, has }}$ a very large operating range; however RAS LOW pulse width (tras) and RAS HIGH pulse width (trp must satisfy the specified minimum and maximum values in order to maintain continuous memory operation and data retention. $\overline{R A S}$ alone controls memory refresh function.

APPLICATION INFORMATION

DEVICE DESCRIPTION

The Am9064 is a state-of-the-art high performance 64 K DRAM combining the fastest DRAM speed available (100ns access time) with low power (standby current $<4 \mathrm{~mA}$). It is designed to operate with a single +5 V power supply, and all inputs/output voltage levels are TTL compatit'e, making the Am9064 easy to integrate into a wide range of systems. The Am9064 is offered in two grades of operating ambient temperature range, the commercial grade (Am9064-12DC) covers from 0 to $+70^{\circ} \mathrm{C}$ and the extended grade (Am906412 CDC) covers from -55 to $+110^{\circ} \mathrm{C}$ military applications. Where the memory system reliability is of primary importance, the Am9064 design provides the solution with the following safety features:

The Am9064:

- Allows VCC power-up with floating input levels without causing excess ICC current surges (see Initialization).

Can tolerate real time V_{CC} fluctuation between 4.5 and 5.5 V while memory chip is in operation.

- Accepts input voltage transition overshoot ($\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$) and undershoot (-2 V).
- Is fabricated with an NMOS technology that is optimized to provide very high 64K DRAM device latch-up voltage, typically in excess of 10 V ; (however, it is not recommended to operate Am9064 with V_{CC} over +7 V ; see Maximum Ratings).

The fast switching characteristics of the Am9064 are designed to fit into memory system constraints. For a fast Read Cycle, Am9064 offers fast tcac (about 50 to 55% of $t_{\text {RAC }}$), thus

The Column-Address-Strobe control clock. With $\overline{R A S}$ LOW, CAS \downarrow latches the column address and activates the memory input and output operations. With $\overline{W E}$ LOW, $\overline{\text { CAS }}$ controls the input timing; with WE HIGH, CAS controls the timing of valid output. CAS HIGH turns off DOUT (DOUT = high impedance). In page-mode, CAS cycle time defines the page-mode cycle time.
$\overline{W E} \quad$ The Write Enable Control Clock. WE timing relative to CAS and $\overline{\text { RAS }}$ will define one of three memory cycles. 1) $\overline{R A S}$ and CAS both LOW, and WE HIGH will define a read cycle; 2) WE LOW (meeting the setup and hold times twCs, twCH and tWCR) will define an Early Write Cycle; 3) WE first HIGH and then LOW (meeting tcwD and trWD delay times) will define a Read-Write/Read-Modity-Write Cycle.
Dout The three-state output. The DOUT is controlled mainly by CAS. Valid output appears on DOUT in a Read Cycle after access time has elapsed (tcac or $t_{\text {trac }}$ whichever applies). Last valid DOUT remains valid as long as $\overline{\mathrm{CAS}}$ is LOW. DOUT can be turned off only with CAS \uparrow.
providing 45 to 50% of $t_{\text {RAC }}$ access time for address multiplexing on a memory board. For a Write operation, fast $t_{\text {RWL }}$ and tCWL $^{\text {allow fast Read-Write or Read-Modify-Write }}$ cycles, useful for memory systems which include Error Detection/Correction (EDC) schemes to boost memory reliability. (For a detailed reference on EDC, see "Am2960 Series Dynamic Memory Support Handbook,": AMD Application.)

The Am9064 includes all standard 64K DRAM memory cycles: Read, Early Write (for the case of common I/O), Read-Write or Read-Modify-Write, $\overline{\text { PAS-Only Refresh, and Page-Mode cy- }}$ cles. Two clock inputs ($\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$) are needed to latch the multiplexed row and column addresses on the eight address inputs, $A_{0}-A_{7}$, and a third clock input ($\overline{W E}$) distinguishes between Read and Write cycles. Proper input or output operation on each memory bit requires all three timing control clocks ($\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{WE}}$). Memory refresh operation is most efficient through the $\overline{\text { RAS }}$-Only Refresh Cycle when using a dynamic RAM controller like Am2964B. The Am9064 accomplishes 128 refresh cycles ($A_{0}-A_{6}$) in 2 ms and 256 refresh cycles $\left(A_{0}-A_{7}\right)$ in 4 ms . Multiplexed address inputs allow the Am9064 to be packaged in a standard 16 -pin DIP with pin 1 not connected. With pin 1 uncommitted, the Am9064 is compatible with the JEDEC standards for the 64 K DRAM and allows for future expansion to 256 K DRAM.

DEVICE INITIALIZATION

An initial pause of 100μ s is required after VCC power-up. This time delay is needed for the on-chip substrate-bias generator to pump enough negative charge into the substrate to establish the operating back bias voltage. This is followed by a wake-up sequence of eight (8) $\overline{\mathrm{RAS}}$ cycles to initialize the internal dynamic circuits. If the device remains in standby
mode for more than 2 ms while V_{CC} is on, the wake-up sequence of any eight RAS cycles will be necessary prior to normal operation. A power-up safety feature has been designed into the Am9064; special circuits within the chip prevent current surges during initial system power-up. These circuits allow the Am9064 to be powered up to a standby mode (where current is low and output is in high impedance) independent of the initial $\overline{\text { RAS }}$ input logic level. (See Figures 1 and 2). The power-up circuit is completely transparent to normal circuit operation.

Figure I. VCC Supply Current Waveform during VCc Power up, $\overline{\text { RAS }}=\overline{\mathbf{C A S}}=\mathrm{VCC}$

Figure 2. VCC Supply Current Waveform during VCC Power Up, $\overline{\text { RAS }}=\mathbf{C A S}=V_{\mathbf{S S}}$

ADDRESSING

Eight address inputs are multiplexed to provide 16 address bits. The first set of eight address inputs (Row address) is latched by $\overline{\operatorname{RAS}}$, and the second set (Column address) is latched by CAS. Together, the 16 address bits will decode one of 65,536 cell locations.

Proper address multiplexing requires that CAS follow $\overline{R A S}$ by a specified delay time ($t_{R C D}$). Minimum $t_{R C D}$ is determined by the following equation:
$t_{\text {RCD }}(\mathrm{min})=t_{\text {RAH }}+2 t_{T}+t_{\text {ASC }}$ where $t_{\text {RAH }}$ and $t_{\text {ASC }}$ are specified DRAM characteristics, and 2t are the address and CAS transition times, dependent on the memory board design. The maximum $t_{R C D}$ is derived from the access time limits.
$t_{R C D}(\max)=t_{R A C}-t_{C A C}$. If $t_{R C D}($ max $)$ is exceeded, the access time will be determined by tcac. The multiplex timing window of interest for system design is $t_{R C D}(\max)-t_{R A H}$ (see Figure 3).

OPERATING CYCLES

READ CYCLE

The Memory Read cycle begins with the row addresses valid and the $\overline{\mathrm{RAS}}$ clock transitioning from HIGH to LOW. The CAS clock must also make a transition from HIGH to LOW at the specified thCD timing limits when the column addresses are latched. These clocks are linked in such a manner that the access time of the device is independent of the address multiplex window, however the CAS clock must be active before or at the trCD maximum for an access (data valid) from the $\overline{R A S}$ clock edge to be valid (t $t_{R A C}$). If the $t_{R C D}$ maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal $\overline{R A S}$ signal is available, as shown in the functional block diagram. This gating feature on the CAS clock allows the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and thus defines the thCD minimum specification. The time difference between tRCD minimum and $t_{\text {R }}$ CD maximum can be used to absorb skew delays in switching the address bus from row to column addresses to generate the CAS clock.

Once the clocks have become active, they must stay active for certain minimums (t $t_{\text {RAS }}$ for the RAS clock; tCAS for the CAS clock) and the RAS clock must stay inactive for a minimum time (trp). The former is for the completion of the cycle in progress and the latter allows the device internal circuitry to be precharged for the next active cycle.
DOUT is not latched and is valid as long as the CAS clock is active; the output will switch to the high impedance mode when the CAS clock goes inactive. The CAS clock can remain active for a maximum of 10 ns (tCRP) into the next cycle. To perform a Read Cycle, the Write Enable ($\overline{\mathrm{WE}}$) input must be held HIGH from the time the CAS clock makes its active transition (tRCS) to the time when it transitions into the inactive mode ($\mathrm{t}_{\mathrm{RCH}}$).

WRITE CYCLE

A Write Cycle is similar to a Read Cycle except that the Write Enable (WE) clock must go active LOW at or before the time that the CAS clock goes active. In this case the cycle in progress is referred to as an early Write Cycle. In an early Write Cycle, the Write Clock and DIN are referenced to the active transition of the CAS clock edge. There are two important parameters with respect to the Write Cycle: the
column-strobe-to-write lead time (tCWL) and the row-strobe-towrite lead time (triwL). These are the minimum times that the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ clocks need to be active after the write operation has started (WE clock LOW).

It is also possible to perform a late Write Cycle. For this cycle, the Write Clock is activated after CAS goes LOW, which is beyond twCS minimum time so the parameters tCWL and trWL must be satisfied before terminating this cycle. The difference between an early Write Cycle and a late Write Cycle is that in a late Write Cycle the Write Enable clock can occur much later in time with respect to the active transition of the CAS clock. This time could be as long as 10 microseconds - ($t_{R W L}+t_{R P}$ $+2 \mathrm{t}_{\mathrm{T}}$).

At the start of a Write Cycle. Dout is in a Hi-Z condition and remains so throughout the cycle. It remains $\mathrm{Hi}-\mathrm{Z}$ because the active transition of the Write Enable clock prevents the CAS clock from enabling the output buffers, as shown in the Functional Block Diagram. This characteristic can be effectively utilized in a system that has a common input/output bus, with the only stipulation being the system must use only the early write mode.

READ-MODIFY-WRITE AND READ-WRITE CYCLES

As the name implies, both a Read and a Write Cycle are accomplished at the same cell location during a single access. The Read-Modify-Write Cycle is similar to the late Write Cycle discussed above.

For the Read-Modify-Write Cycle, a normal Read Cycle is initiated with the WE clock HIGH. After the data is read, WE is transitioned to LOW and D_{IN} is setup and held with respect to the active edge of WE. This cycle assumes a zero modify time between read and write.
Another variation of the Read-Modify-Write Cycle is the ReadWrite Cycle, in which the two parameters, $t_{\text {RWD }}$ and $t_{C W D}$ play an important role. A Read-Write Cycle starts as a normal Read Cycle with the WE clock being transitioned at minimum $t_{R W D}$ or minimum t twD time, depending upon the application. This results in starting a write operation to the selected cell even before Dout occurs. In this case, $\mathrm{D}_{\text {IN }}$ is set up with respect to the WE clock active edge.

PAGE-MODE CYCLES

Page-mode operation allows faster successive data operations at the 256 column locations. Page access (tCAC) on the Am9064 is typically half the regular $\overline{R A S}$ clock access (tRAC). Page-mode operation consists of holding the $\overline{\text { RAS }}$ clock active while cycling the CAS clock to access the column locations determined by the 8 -bit address field. There are two controlling factors which serve to limit the access to all 256 column locations in one $\overline{\mathrm{RAS}}$ clock active operation. These are the refresh interval of the device ($2 \mathrm{~ms} / 128=15.6$ microseconds) and the maximum active time specification for the RAS clock (10 microseconds). Since 10 microseconds is the smaller value, the maximum specification of the $\overline{\mathrm{RAS}}$ clock on-time limits the number of sequential page accesses possible. Ten microseconds will provide approximately 50 successive page accesses for every row address selected before the RAS clock is reset.

The page cycle is always initiated with a row address being provided and latched by the $\overline{R A S}$ clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal Read or Write cycle, followed by the shorter CAS cycles (tpC). The CAS cycle time (tpC) consists of the CAS clock active time, (tCAS) the CAS clock precharge time (tCP) and two transitions. In addition to Read and Write cycles, a Read-Modity-Write Cycle can also be performed in a page-mode operation. For a Read-Modify-Write or Read-Write type cycle, the conditions normal to that mode
of operation will apply in the page-mode also. Any combination of Read, Write and Read-Modify-Write cycles can be performed to suit any particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature; therefore, to retain the correct information, the bits need to be refreshed at least once every 2 ms . This is accomplished by sequentially cycling through the 128 row address locations every 2 ms , or at least one row every 15.6 microseconds. A normal read or write operation to the RAM will serve to refresh all the bits (256) associated with the particular row decoded.

$\overline{\mathrm{AAS}}$-Only Refresh

When the memory component is in standby, the $\overline{R A S}-$ Only Refresh scheme is employed. This refresh method performs a RAS-Only cycle on all 128 row addresses every 2 ms ; the row addresses are latched with the RAS clock, and the associated internal row locations are refreshed. The CAS clock is not required and should be inactive, or HIGH, to conserve power.

DATA OUTPUT OPERATION

The Am9064 has a $\overline{C A S}$ controlled three-state data output (Dout) which remains valid from the access time as long as CAS is LOW. dOUT can be turned off to the high impedance state only when CAS is HIGH, and remains in $\mathrm{Hi}-\mathrm{Z}$ as long as CAS stays HIGH. The output data is the same polarity as the input data. The following table summarizes the DOUT state for various cycles.

Type of Cycle	DouT
Read Cycle	Data from Addressed Memory Cell
Early Write Cycle	Hi-Z
Delayed Write Cycle	Indeterminate, until after trAC and tcAC
RAS Refresh Cycles	CAS HIGH
	HAS LOW
CAS-Only Cycle RAS HIGH	Data from Last Read Cycle
Read-Modify-Write Cycle	Di-Z Memory Cell Memesed

ON-CHIP SUBSTRATE-BIAS GENERATOR

The Am9064 has an on-chip substrate-bias ($V_{B B}$) generator integrated into the DRAM peripheral circuitry. This accomplishes three purposes:

1. It allows the use of single +5 V supply (V_{CC}), so it does away with the need for an external V_{BB} supply. This has become the standard for all NMOS DRAMs 64 K and higher.
2. It maintains the high performance of the N -channel MOSFET by providing a stable negative voltage bias $(-3 V)$ on the p-type substrate, reducing the parasitic PN junction capacitance and the body effect of the MOSFET threshold voltage.
3. It avoids minority charge injection from a node voltage undershoot to $\mathbf{- 2 V}$ on all inputs.

In addition to the above design features, the fact that the bias generator* is incorporated on-chip makes it possible to shield the V_{BB} bias level from any fluctuations of the external V_{CC} power supply. This on-chip generator has the following characteristics:

1. $V_{B B}$ level is independent of $V_{C C}$, for $V_{C C} \geqslant 3 V$. 2. $V_{B B}$ level is compensated for temperature variation.
2. Upper and lower levels of $V_{B B}$ are regulated.

In summary, the $V_{B B}$ bias-generator can tolerate a $V_{C C}$ range of 3 to 8 V , temperature range of -55 to $+110^{\circ} \mathrm{C}$, and cycle dependent capacitive coupling.

ALPHA-PARTICLE-INDUCED SOFT ERRORS

One of the primary causes of soft errors in DRAMs is due to the presence of alpha-particles emitted from the decay of uranium and thorium in the IC packaging materials. When an alpha-particle enters the silicon chip substrate, approximately one million electron-hole pairs are created in the bulk silicon. These generated carriers diffuse and the electrons are collected by depletion layers resulting in the partial or total filling of initially empty potential wells. If the "collection efficiency" times the number of generated carriers exceeds the critical
charge in the memory cell a "soft error" will result. A recently published study ("Drift Collection of Alpha Generated Carriers and Design Implications," C. Hu, ISSCC 82) shows that the "collection efficiency" is directly proportional to the width of the depletion layers. Solutions to the alpha problem are implemented in the Am9064 in the following ways:

1. Incorporation of new process technology for the Hi-C* capacitor memory cell.
2. Using low-alpha-source packaging materials.

The Hi-C* capacitor memory cell helps solve the alpha problem in two significant ways. First, it increases the memory charge storage by $\sim 30 \%$, thus boosting up the "critical charge." Second, it reduces the memory cell junction depletion width by a factor of ~ 5 to 10 , thus reducing the collection efficiency significantly.
*Patent pending.

Y-Address

ROW TOPOLOGICAL DESCRAMBLE

$\hat{a}_{n}=$ EXTERNAL OR PIN ADORESS An = INTERNAL ADDRESS

COLUMN TOPOLOGICAL DESCRAMBLE

Typical Access Time (Normalized)
$t_{\text {thac }}$ versus
Case Temperature

Typical Operating Current IcCi versus VCC

Typical Standby Current ICC2 versus VCC

Typical Refresh Current lcc3 versus Vcc

Typical Operating Current ICC1 versus
Case Temperature

OP000600

Typical Standby Current ICC2 versus Case Temperature

Typical Refresh Current Icc3 versus
Case Temperature

OP000620

Input Voltage Levels versus VCC

Long $\overline{\operatorname{RAS}} / \overline{\mathbf{C A S}}$ Cycle

Page-Mode Only

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am9064-10		Am9064-12		Am9064-15		Units
			Min	Max	Min	Max	Min	Max	
1	trac	Access Time from AAS (Notes 6 and 7)		100		120		150	ns
2	tcac	Access Time from CAS (Notes 6 and 7)		55		65		75	ns
3	$t_{\text {REF }}$	Time Between Refresh		2		2		2	ms
4	trip	RAS Precharge Time	80		90		100		ns
5	tCPN	CAS Precharge Time (Non-Page Cycles)	30	-	30		30		ns
6	terp	CAS to RASS Precharge Time	-10		-10		-10		ns
7	$t_{\text {RCD }}$	RAS to CAS Delay Time (Notes 6 and 8)	25	45	30	55	30	75	ns
8	trsh	RAS Hold Time	55		65		75		ns
9	tesh	CAS Hold Time	100		120		150		ns
10	tasR	Row Address Setup Time	0	.	0	1	0		ns
11	trah	Row Address Hold Time	15		20		20		ns
12	${ }_{\text {t }}$	Column Address Setup Time	0		0		0		ns
13	tCAM	Column Address Hold Time	25		25		30		ns
14	$t_{\text {AR }}$	Column Address Hold Time to RAS	70		80		105		ns
15	tT	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns
16	toff	Output Buffer Turn Off Delay (Note 9)	0	35	0	40	0	40	ns
Read and Rofresh Cycles									
17	$t_{\text {RC }}$	Random Read Cycle Time	190		220		260		ns
18	$t_{\text {RAS }}$	BAS Pulse Width	100	10,000	120	10,000	150	10,000	ns
18	tcas	CAS Pulse Width	55	10,000	65	10,000	75	10,000	ns
20	trics	Read Command Setup Time	0		0		0		ns
21	$t_{\text {RCH }}$	Read Command Hold Time to CAS (Note 10)	0		0		0		ns
22	trah $^{\text {r }}$	Read Command Hold Time to AAS (Note 10)	0		0		0		ns
Write Cycle									
23	$t_{\text {RC }}$	Random Write Cycle Time	190		220		260		ns
24	tras	RAS Pulse Width	100	10,000	120	10,000	150	10,000	ns
25	tcas	$\overline{\text { CAS Pulse Width }}$	55	10,000	65	10,000	75	10,000	ns
26	twes	Write Command Setup Time (Note 11)	0		-10		-10		ns
27	TWCH	Write Command Hold Time	20		25		35		ns
28	twCR	Write Command Hold Time to RAS	65		80		110		ns
29	twp	Write Command Pulse Width	20		25		35		ns
30	trwL	Write Command to RAS Lead Time	30		40		45		ns
31	tCWL	Write Command to CAS Lead Time	30		40		45		ns
32	tos	Data in Setup Time (Note 12)	0		0		0		ns
33	${ }_{\text {toh }}$	Data In Hold Time (Note 12)	20		25		35		ns
34	tohR	Data In Hold Time to RAS	65		80		110		ns
Read-Modify-Write Cycle			-						
35	tRWC	Read-Modity-Write Cycle Time	205		240		280		ns
36	tRWD	RAS to WE Delay (Note 11)	80		95		120		ns
37	tcwo	CAS to WE Delay (Note 11)	35		40		45		ns
Page-Mode Cycle									
38	tpc	Page-Mode Read or Write Cycle	105		120		145		ns
39	tCP	CAS Precharge Time, Page-Mode	40		45		60		ns
40	tcas	CAS Pulse Width	55	10,000	65	10,000	75	10,000	ns

Notes:

1. ICC is dependent on output loading and cycle time. Specified values are measured with output open.
2. Capacitance measured with a Boonton Meter or calculated from the equation: $C=1 \Delta t / \Delta V$.
3. An initial pause of $100 \mu \mathrm{sec}$ is required after power-up, followed by any eight RAS cycles before proper device operation is guaranteed.
4. $A C$ characteristics assume $\boldsymbol{t}_{\boldsymbol{T}}=5 \mathrm{~ns}$.
5. $\mathrm{V}_{\mathrm{IH}}(\min)$ and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between these two levels.
6. Maximum $t_{R C D}$ is specified as a reference point only. If $t_{R C D} \leqslant$ maximum allowed, access time is trac. If
$t_{R C D}>t_{R C D}$ (max), either access time is controlled exclusively by tcAc, or trac will increase by the amount that $t_{R C D}$ exceeds the specified maximum.
7. Output load is equivalent to two standard TTL loads and 100pF.
8. $t_{\text {RCD }}(\mathrm{min})=t_{\text {RAH }}+t_{A S C}+2 t_{T}$.
9. tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
10. Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a Read Cycle.
11. twCS, tCWD and trwD are specified as reference points and are not restrictive operating parameters. If twCs \geqslant ${ }^{\text {tw }}$ WCS (min) the cycle is an early Write Cycle and the

SWITCHING CHARACTERISTICS (Cont.)

the selected cell; if neither of the above sets of conditions is satisfied, the condition of DOUT (at access time) is indeterminate.
DOUT pin will remain Hi-Z throughout the entire cycle; if $\mathrm{t}_{\mathrm{CWD}} \geqslant \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\text {RWD }} \geqslant \mathrm{t}_{\text {RWD }}(\mathrm{min})$ the cycle is Read-Write Cycle and DOUT will contain data read from

SWITCHING WAVEFORMS

READ CYCLE

WRITE CYCLE

RAS-ONLY REFRESH CYCLE

$T_{\text {OUT }} \quad$ (OFF)
WF000370

DISTINCTIVE CHARACTERISTICS

- Low operating power

125mW typ; 290 mW maximum - standard power
100 mW typ; 175 mW maximum - low power

- Logic voltage levels identical to TTL
- High output drive - two full TTL loads
- High noise immunity - full 400 mV
- Two chip enable inputs
- Output disable control

GENERAL DESCRIPTION

The Am9101/AM91L01 series of devices are high-performance, low-power, 1024-bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 200 ns . Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth.

These memories may be operated in a DC standby mode for reductions of as much as 84% of the normal power dissipation. Data can be retained with a power supply as low as 1.5 volts. The low power Am91L01 series offer
reduced power dissipation during normal operating conditions and even lower dissipation in the standby mode.
The Chip Enable input control signals act as high order address lines and they control the write amplifier and the output buffers. The Output Disable signal provides independent control over the output state of enabled chips.
These devices are fully static and no refresh operations, sense amplifiers or clocks are required. Input and output signal levels are identical to TTL specifications, providing simplified interfacing and high noise immunity. The outputs will drive two full TTL loads for increased fan-out and better bus interfacing capability.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number	Am2101	Am2101-2	Am9101A Am91L01A Am2101-1	Am9101B Am91L01B	Am9101C Am91L01C	Am9101D
Access Time	1000 ns	650 ns	500 ns	400 ns	300 ns	250 ns

Note: Pin 1 is marked for orientation
Metallization and Pad Layout

Ambient Temperature Specification	Package Type	$\begin{aligned} & \text { Power } \\ & \text { Type } \\ & \hline \end{aligned}$	Access Times					
			1000ns	650ns	500 ns	400ns	300ns	250ns
0 to $+70^{\circ} \mathrm{C}$	Molded DIP	Standard	P2101	P2101-2	P2101-1 AM9101APC	AM9101BPC	AM9101CPC	AM9101DPC
		Low			AM91L01APC	AM91L01BPC	AM91L01CPC	
	Hermetic DIP	Standard	C2101	C2101-2	C2101-1 AM9101ADC	AM91018DC	AM9101CDC	AM9101DDC
		Low			AM91L01ADC	AM91LO1BDC	AM91LO1CDC	
-55 to $+125^{\circ} \mathrm{C}$	Hermetic DIP	Standard			AM9101ADM	AM9101BDM	AM9101CDM	
		Low			AM91L01ADM	AM91L01BDM	AM91L01CDM	

DEFINITION OF TERMS

FUNCTIONAL TERMS

$\overline{\text { CE1 }}, \mathbf{C E 2}$ Chip Enable Signals. Read and Write cycles can be executed only when both CE1 is low and CE2 is high.
$\overline{W E}$ Active LOW Write Enable. Data is written into the memory if WE is LOW and read from the memory if $\overline{W E}$ is HIGH.
Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.

N -Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

toD Output enable time. Delay time from falling edge of OD to output on.
$t_{\text {f }}$ C Read Cycle Time. The minimum time required between successive address changes while reading.
t_{A} Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.
tco Access Time from Chip Enable. The minimum time during which the chip enable must be LOW prior to reading data on the output.
tor Minimum time which will elapse between change of address and any change of the data output.
tDF1 Time delay between output disable HIGH and output data float.
tDF2 Time delay between chip enable OFF and output data float.
twc Write Cycle Time. The minimum time required between successive address changes while writing.
${ }^{t}$ aw Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.
twp The minimum duration of a LOW level on the write enable guaranteed to write data.
twr Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.
tow Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.
$t_{\text {th }}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.
tcw Chip Enable Time during Write. The minimum duration of a LOW level on the Chip Select prior to the rising edge of WE to guarantee writing.

ABSOLUTE MAXIMUM RATINGS

DC Output Current... 20mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V

Military (M) Devices
Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voitage $\ldots+4.5 \mathrm{~V}$ to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

DC CHARACTERISTICS (Cont.)

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

Symbol	Parameter	Test Conditions			Min	Typ	Max	Units
VPD	$V_{\text {cc }}$ in Standby Mode				1.5			
IPD	Icc in Standby Mode	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { All Inputs }=V_{P D} \end{aligned}$	$V_{P D}=1.5 \mathrm{~V}$	Am91L01		11	25	mA
				Am9101		13	31	
			$V_{P D}=2.0 \mathrm{~V}$	Am91L01		13	31	
				Am9101		17	41	
		$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & \text { All Inputs }=V_{P D} \end{aligned}$	$V_{P D}=1.5 V$	Am91L01		11	28	mA
				Am9101		13	34	
			$V_{P D}=2.0 \mathrm{~V}$	Am91L01		13	34	
				Am9101		17	46	
dv/dt	Rate of Change of VCC						1.0	$\mathrm{V} / \mu \mathrm{s}$
t_{R}	Standby Recovery Time				$t_{\text {RC }}$			ns
tcp	Chip Deselect Time				0			ns
$V_{\text {CES }}$	CE Bias in Standby				$V_{P D}$			Volts

POWER DOWN STANDBY OPERATION

The Am9101/AM91L01 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering VCC to around 1.5-2.0 volts (see table and graph). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a large system, memory
pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.

To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at $\mathrm{V}_{I H}$ or $\mathrm{V}_{\text {CES }}$ during the entire standby cycie.

DC OPERATING CHARACTERISTICS

Typical Power Supply Current Versus Voltage

Typical Output Current Versus Voltage

Access Time Versus Vcc Normallized to $\mathrm{V}_{\mathrm{CC}}=+5.0$ Volts

Typical Power Supply Current Versus Amblent Temperature

Typical $\mathrm{V}_{\mathbf{I N}}$ Limits Versus Amblent Temperature

Typlcal t_{A} Versus Amblent Temperature

Typical $\mathbf{t}_{\mathbf{A}}$ Versus C_{L}

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am2101		Am2101-2		Am2101-1		Units
			Min	Max	Min	Max	Min	Max	
1	$t_{\text {RC }}$	Read Cycle Time	1000		650		500		ns
2	$t_{\text {A }}$	Access Time		1000		650		500	ns
3	tco	Chip Enable to Output ON Delay (Note 1)		800		400		350	ns
4	too	Output Disable to Output ON Delay		700		350		300	ns
5	tor	Previous Read Data Valid with Respect to Address Change	0		0		0		ns
6	tDF1	Output Disable to Output OFF Delay	0	200	0	150	0	150	ns
7	tDF2	Chip Enable to Output OFF Delay	0	200	0	150	0	150	ns
8	twc	Write Cycle Time	1000		650		500		ns
9	taw	Address Set-up Time	150		150		100		ns
10	twP	Write Pulse Width	750		400		300		ns
11	tcw	Chip Enable Set-up Time (Note 1)	900		550		400		ns
12	tWR	Address Hold Time	50		50		50		ns
13	tDW	Input Data Set-up Time	700		400		280		ns
14	$t_{\text {DH }}$	Input Data Hold Time	100		100		100		ns

Note: 1. Both CE1 and CE2 must be true to enable the chip.

No.	Symbol	Description	$\begin{aligned} & \text { Am9101A } \\ & \text { Am91L01A } \end{aligned}$		$\begin{gathered} \text { Am9101B } \\ \text { Am91L01B } \end{gathered}$		$\begin{gathered} \text { Am9101C } \\ \text { Am91L01C } \end{gathered}$		Am9101D		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
1	thC	Read Cycle Time	500		400		300		250		ns
2	t_{A}	Access Time		500		400		300		250	ns
3	tco	Chip Enable to Output ON Delay (Note 1)		200		175		150		125	ns
4	tod	Output Disable to Output ON Delay		175		150		125		100	ns
5	tOH	Previous Read Data Valid with Respect to Address Change	40		40		40		30		ns
6	tDF1	Output Disable to Output OFF Delay	5.0	125	5.0	100	5.0	100	5.0	75	ns
7	tDF2	Chip Enable to Output OFF Delay	10	125	10	125	10	100	10	100	ns
8	twe	Write Cycle Time	500		400		300		250		ns
9	$t_{\text {AW }}$	Address Set-up Time	0		0		0		0		ns
10	twp	Write Pulse Width	175		150		125		100		ns
11	tow	Chip Enable Set-up Time (Note 1)	175		150		125		100		ns
12	twr	Address Hold Time	0		0		0		0		ns
13	tow	Input Data Set-up Time	150		125		100		85		ns
14	tD	Input Data Hold Time	0		0		0		0		ns

Note: 1. Both CE1 and CE2 must be true to enable the chip.

READ CYCle

WF000200

Am9111 Family

DISTINCTIVE CHARACTERISTICS

- Low operating power dissipation

125 mW typ; 290 mW maximum - standard power
100 mW typ; 175 mW maximum - low power

- DC standby mode reduces power up to 84%
- High noise immunity - full 400 mV
- Uniform switching characteristics - access times insensitive to supply variations, addressing patterns and data patterns
- Output disable control
- Zero address setup and hold times for simplified timing

GENERAL DESCRIPTION

The Am9111/Am91L11 series of devices are high-performance, low-power, 1024-bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 200 ns . Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth. The input data and output data signals are bussed together to share common I/O pins. This feature not only decreases the package size, but also helps eliminate external logic in bus-oriented memory systems

These memories may be operated in a DC standby mode for reductions of as much as 84% of the normal power dissipation. Data can be retained with a power supply as
low as 1.5 volts. The low power Am91L11 series offer reduced power dissipation during normal operating conditions and even lower dissipation in the standby mode.

The Chip Enable input control signals act as high order address lines and they control the write amplifier and the output buffers. The Output Disable signal provides independent control over the output state of enabled chips.

These devices are fully static and no refresh operations, sense amplifiers or clocks are required. Input and output signal levels are identical to TTL specifications, providing simplified interfacing and high noise immunity. The outputs will drive two full TTL loads for increased fan-out and better bus interfacing capability.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number	Am2111	Am2111-2	Am9111A Am91L11A Am2111-1	Am9111B Am91L11B	Am9111C Am91L11C	Am9111D
Access Time	1000 ns	650 ns	500 ns	400 ns	300 ns	250 ns

CD000320

Metallization and Pad Layout

DIE SIZE: $0.132^{\prime \prime} \times 0.131^{\prime \prime}$
ORDERING INFORMATION

Ambient Temperature Specification	Package Type	Power Type	Access Times					
			1000ns	650ns	500ns	400ns	300ns	250ns
0 to $+70^{\circ} \mathrm{C}$	Molded DIP	Standard	P2111	P2111-2	P2111-1 AM9111APC	AM9111-BPC	AM9111CPC	AM111DPC
		Low			AM91L11APC	AM91L11BPC	AM91L11CPC	
	Hermetic DIP	Standard	C2111	C2111-2	C2111-1 AM9111ADC	AM9111BDC	AM9111CDC	AM9111DDC
		Low			AM91L11ADC	AM91L11BDC	AM91L11CDC	
-55 to $+125^{\circ} \mathrm{C}$	Hermetic DIP	Standard			AM9111ADM	AM9111BDM	AM9111CDM	
		Low			AM91L11ADM	AM91L11BDM	AM91L11CDM	

DEFINITION OF TERMS

FUNCTIONAL TERMS

CE1, CE2 Chip Enable Signals. Read and Write cycles can be executed only when both CE1 and CE2 are LOW.

WE Active LOW Write Enable. Data is written into the memory if WE is LOW and read from the memory if WE is HIGH.

Static RAM A random access memory in which data is stored in bistable latch circuits. A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations.
N-Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N-type material, and electrons serve as the carriers between the two regions. N-Channel transistors exhibit lower thresholds and faster switching speeds than P-Channel transistors.

SWITCHING TERMS

toD Output enable time. Delay time from falling edge of OD to output on.
$t_{\text {RC }}$ Read Cycle Time. The minimum time required between successive address changes while reading.
$\mathbf{t}_{\mathbf{A}}$ Access Time. The time delay between application of an address and stable data on the output when the chip is enabled.
tco Access Time from Chip Enable. The minimum time during which the chip enable must be LOW prior to reading data on the output.

APPLICATION INFORMATION

These memory products provide all of the advantages of AMD's other static N -channel memory circuits: +5 only power supply, all TTL interface, no clocks, no sensing, no refreshing, military temperature range available, low power versions available, high speed, high output drive, etc. In addition, the Am9111 series features a 256×4 organization with common pins used for both Data in and Data Out signals.

This bussed I/O approach cuts down the package pin count allowing the design of higher density memory systems. It also provides a direct interface to bus-oriented systems, eliminating bussing logic that could otherwise be required. Most microprocessor systems, for example, transfer information on a bidirectional data bus. The Am9111 memories can connect directly to
toH Minimum time which will elapse between change of address and any change of the data output.
tDF1 Time delay between output disable HIGH and output data float.
tDF2 Time delay between chip enable OFF and output data float.
twc Write Cycle Time. The minimum time required between successive address changes while writing.
taw Address Set-up Time. The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable.
twp The minimum duration of a LOW level on the write enable guaranteed to write data.
twr Address Hold Time. The minimum time after the rising edge of the write enable during which the address must remain steady.
tDw Data Set-up Time. The minimum time that the data input must be steady prior to the rising edge of the write enable.
$t_{D H}$ Data Hold Time. The minimum time that the data input must remain steady after the rising edge of the write enable.
tcw Chip Enable Time during Write. The minimum duration of a LOW level on the Chip Select prior to the rising edge of $\overline{W E}$ to guarantee writing.
such a processor since the common I/O pins act as a bidirectional data bus.

The Output Disable control signal is provided to prevent signal contention for the bus lines, and to simplify tri-state bus control in the external circuitry. If the chip is enabled and the output is enabled and the memory is in the Read state, then the output buffers will be impressing data on the bus lines. At that point, if the external system tries to drive the bus with data, in preparation for a write operation, there will be conflict for domination of the bus lines. The Output Disable signal allows the user direct control over the output buffers, independent of the state of the memory. Although there are alternative ways to resolve the conflict, normally Output Disable will be held high during a write operation.

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

DC CHARACTERISTICS（Cont．）

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

POWER DOWN STANDBY OPERATION

The Am9111／Am91L11 Family is designed to maintain stor－ age in a standby mode．The standby mode is entered by lowering VCC to around 1．5－2．0 volts（see table and graph below）．When the voltage to the device is reduced，the storage cells are isolated from the data lines，so their contents will not change．The standby mode may be used by a battery operated backup power supply system，or，in a large system，memory
pages not being accessed can be placed in standby to save power．A standby recovery time must elapse following restora－ tion of normal power before the memory may be accessed．

To ensure that the output of the device is in a high impedance OFF state during standby，the chip select should be held at V_{IH} or $\mathrm{V}_{\mathrm{CES}}$ during the entire standby cycle．

DC OPERATING CHARACTERISTICS

DC OPERATING CHARACTERISTICS (Cont.)

Typlcal Power Supply Current Versus Amblent Temperature

Typical $V_{\text {IN }}$ Limits Versus Amblent Temperature

Typlcal t_{A} Versus Ambient Temperature

OP001040

Typical $\mathbf{t}_{\mathbf{A}}$ Versus $\mathbf{C}_{\mathbf{L}}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am2111		Am2111-2		Am2111-1		Units
			Min	Max	Min	Max	Min	Max	
1	$t_{R C}$	Read Cycle Time	1000		650		500	ns	
2	$t_{\text {A }}$	Access Time		1000		650		500	ns
3	tco	Chip Enable to Output ON Delay (Note 1)		800		400		350	ns
4	toD	Output Disable to Output ON Delay.		700		350		300	ns
5	tOH	Previous Read Data Valid with Respect to Address Change	0		0		0		ns
6	tDF1	Output Disable to Output OFF Delay	0	200	0	150	0	150	ns
7	tDF2	Chip Enable to Output OFF Delay	0	200	0	150	0	150	ns
8	twc	Write Cycle Time	1000		650		500		ns
9	taw	Address Set-up Time	150		150		100		ns
10	twP	Write Pulse Width	750		400		300		ns
11	tow	Chip Enable Set-up Time (Note 1)	900		550		400		ns
12	twR	Address Hold Time	50		50		50		ns
13	tow	Input Data Set-up Time	700		400		280		ns
14	$t_{\text {DH }}$	Input Data Hold Time	100		100		100		ns

Note: 1. Both CE1 and CE2 must be LOW to enable the chip.

No.	Symbol	Description	$\begin{gathered} \hline \text { Am9111A } \\ \text { Am91L11A } \end{gathered}$		$\begin{aligned} & \text { Am9111B } \\ & \text { Am91L11B } \end{aligned}$		$\begin{gathered} \text { Am9111C } \\ \text { Am91L11C } \end{gathered}$		Am9111D		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
1	$t_{\text {R }}$	Read Cycle Time	500		400		300		250		ns
2	$t_{\text {A }}$	Access Time		500		400		300		250	ns
3	tco	Chip Enable to Output ON Delay (Note 1)		200		175		150		125	ns
4	tod	Output Disable to Output ON Delay		175		150		125		100	ns
5	$\mathrm{tOH}^{\text {H}}$	Previous Read Data Valid with Respect to Address Change	40		40		40		30		ns
6	tDF1	Output Disable to Output OFF Delay	5.0	125	5.0	100	5.0	100	5.0	75	ns
7	tDF2	Chip Enable to Output OFF Delay	10	150	10	125	10	125	10	100	ns
8	twc	Write Cycle Time	500		400		300		250		ns
9	$t_{\text {AW }}$	Address Set-up Time	0		0		0		0		ns
10	twp	Write Pulse Width	175		150		125		100		ns
11	tow	Chip Enable Set-up Time (Note 1)	175		150		125		100		ns
12	tWR	Address Hold Time	0		0		0		0		ns
13	tow	Input Data Set-up Time	150		125		100		85		ns
14	${ }_{\text {t }}$ H	Input Data Hold Time	0		0		0		0		ns

Note: 1. Both CE1 and CE2 must be LOW to enable the chip.

WF000590

DISTINCTIVE CHARACTERISTICS

- Low operating power dissipation

125mW typ; 290 mW maximum - standard power
100 mW typ; 175 mW maximum - low power

- High noise immunity - full 400 mV
- Uniform switching characteristics - access times insensitive to supply variations, address patterns and data patterns
- Bus-oriented I/O data
- Zero address, setup and hold times guaranteed for simpler timing
- Direct plug-in replacement for 2112 type devices

GENERAL DESCRIPTION

The Am9112/Am91L12 series of products are high performance, low power, 1024-bit, static read/write random access memories. They offer a range of speeds and power dissipations including versions as fast as 200ns and as low as 100 mW typical.
Each memory is implemented as 256 words by 4-bits per word. This organization allows efficient design of small memory systems and permits finer resolution of incremental memory word size relative to 1024 by 1 devices. The output and input data signals are internally bussed together and share 4 common $1 / 0$ pins. This feature keeps the package size small and provides a simplified interface to bus-oriented systems.
The Am9112/Am91L12 memories may be operated in a DC standby mode for reductions of as much as 84% of the normal operating power dissipation. Thought the memory cannot be operated, data can be retained in the storage cells with a power supply as low as 1.5 volts. The Am91L12
versions offer reduced power during normal operating conditions as well as even lower dissipation in standby mode.
The eight Address inputs are decoded to select 1-of-256 locations within the memory. The Chip Enable input acts as a high-order address in multiple chip systems. It also controls the write amplifier and the output buffers in conjunction with the Write Enable input. When CE is low and $\overline{W E}$ is high, the write amplifiers are disabled, the output buffers are enabled and the memory will execute a read cycle. When $\overline{C E}$ is low and $\overline{W E}$ is low, the write amplifiers are enabled, the output buffers are disabled and the memory will execute a write cycle. When CE is high both the write amplifiers and the output buffers are disabled.
These memories are fully static. and require no refresh operations or sense amplifiers or clocks. All input and output voltage levels are identical to standard TTL specifications, including the power supply.

PRODUCT SELECTOR GUIDE

Part Number	Am2112	Am2112-2	Am9112A Am91L12A	Am9112B Am91L12B	Am9112C Am91L12C	Am9112D
Access Time	1000 ns	650 ns	500 ns	400 ns	300 ns	250 ns

Note: Pin 1 is marked for orientation

Metallization and Pad Layout

ORDERING INFORMATION

Amblent Temperature Specification	Package Type	Power Type	Access Times					
			1000ns	650ns	500ns	400ns	300ns	250ns
0 to $+70^{\circ} \mathrm{C}$	Molded DIP	Standard	P2112	P2112-2	AM9112APC	AM9112BPC	AM9112CPC	AM9112DPC
		Low			AM91L12APC	AM91L12BPC	AM91L12CPC	
	Hermetic DIP	Standard	C2112	C2112-2	AM9112ADC	AM9112BDC	AM9112CDC	AM9112DDC
		Low			AM91L12ADC	AM91L12BDC	AM91L12CDC	
-55 to $+125^{\circ} \mathrm{C}$	Hermetic DIP	Standard			AM9112ADM	AM9112BDM	AM9112CDM	
		Low			AM91L12ADM	AM91L12BDM	AM91L12CDM	

DEFINITION OF TERMS

FUNCTIONAL TERMS

CE Active LOW Chip Enable．Data can be read from or written into the memory only if $\overline{C E}$ is LOW．

WE Active LOW Write Enable．Data is written into the memory if $\overline{W E}$ is LOW and read from the memory if $\overline{\text { WE }}$ is HIGH．

Static RAM A random access memory in which data is stored in bistable latch circuits．A static memory will store data as long as power is supplied to the chip without requiring any special clocking or refreshing operations．
N－Channel An insulated gate field effect transistor technology in which the transistor source and drain are made of N －type material，and electrons serve as the carriers between the two regions．N－Channel transistors exhibit lower thresholds and faster switching speeds than P－Channel transistors．

SWITCHING TERMS

$\mathbf{t}_{\mathbf{R}} \mathbf{C}$ Read Cycle Time．The minimum time required between successive address changes while reading．
$t_{\text {A }}$ Access Time．The time delay between application of an address and stable data on the output when the chip is enabled．
tco Output Enable Time．The time during which CE must be LOW and $\overline{W E}$ must be HIGH prior to data on the output．

APPLICATION INFORMATION

These memory products provide all of the advantages of AMD＇s other static N －channel memory circuits：+5 only power supply，all TTL interface，no clocks，no sensing，no refreshing， military temperature range available，low power versions available，high speed，high output drive，etc．In addition，the Am9112 series features a 256×4 organization with common pins used for both Data In and Data Out signals．
This bussed I／O approach keeps the package pin count low allowing the design of higher density memory systems．It also provides a direct interface to bus－oriented systems，eliminating bussing logic that could otherwise be required．Most micropro－ cessor systems，for example，transfer information on a bidirec－ tional data bus．The Am9112 memories can connect directly to such a processor since the common I／O pins act as a bidirectional data bus．

If the chip is enabled（ $\overline{C E}$ low）and the memory is in the Read state（WE high），the output buffers will be turned on and will be driving data on the I／O bus lines．If the external system tries to drive the bus with data，there may be contention for control of the data lines and large current surges can result．Since the condition can occur at the beginning of a write cycle，it is important that incoming data to be written not be entered until the output buffers have been turned off．

These operational suggestions for write cycles may be of some help for memory system designs：
toH Minimum time which will elapse between change of address and any change of the data output．
tDF Time which will elapse between a change on the chip enable or the right enable and on data outputs being driven to a floating status．
twc Write Cycle Time．The minimum time required between successive address changes while writing．
$t_{\text {aw }}$ Address Set－up Time．The minimum time prior to the falling edge of the write enable during which the address inputs must be correct and stable．
twp The minimum duration of a LOW level on the write enable guaranteed to write data．
twr Address Hold Time．The minimum time after the rising edge of the write enable during which the address must remain steady．
tow Data Set－up Time．The minimum time that the data input must be steady prior to the rising edge of the write enable．
$t_{\text {DH }}$ Data Hold Time．The minimum time that the data input must remain steady after the rising edge of the write enable．
${ }^{\text {tcw }}$ Chip Enable Time During Write．The minimum duration of a LOW level on the Chip Select while the write enable is LOW to guarantee writing．

1．For systems where $\overline{\mathrm{CE}}$ is always low or is derived di－ rectly from addresses and so is low for the whole cy－ cle，make sure twP is at least tDW $+t_{D F}$ and delay the input data until $t_{D F}$ following the falling edge of $\overline{\text { WE．With zero address set－up and hold times it will }}$ often be convenient to make $\overline{W E}$ a cycle－width level （twp＝twc）so that the only subcycle timing required is the delay of the input data．

2．For systems where $\overline{C E}$ is high for at least $t_{D F}$ pre－ ceeding the falling edge of WE，twp may assume the minimum specified value．When $\overline{C E}$ is high for tDF be－ fore the start of the cycle，then no other subcycle tim－ ing is required and WE and data－in may be cycle－width levels．

3．Notice that because both $\overline{C E}$ and $\overline{W E}$ must be low to cause a write to take place，either signal can be used to determine the effective write pulse．Thus，WE could be a level with $\overline{C E}$ becoming the write timing signal．In such a case，the data set－up and hold times are spec－ ified with respect to the rising edge of $\overline{C E}$ ．The value of the data set－up time remains the same and the val－ ue of the data hold time should change to a minimum of 25 ns ．

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad .$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs................-0.5V to +7.0 V
DC Layout Voltage................................-0.5V to +7.0V
Power Description.. 1.0W
DC Output Current.. 20mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			C devices		M devices		Units
					Min	Max	Mln	Max	
V OH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{IOH}=-200 \mu \mathrm{~A}$			2.4		2.4		V
VOL	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=3.2 \mathrm{~mA}$				0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.0	$\mathrm{V}_{\text {cc }}$	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-0.5	0.8	-0.5	0.8	v
Lu	Input Load Current	$V_{C C}=$ Max, $0 V \leqslant V_{\text {IN }} \leqslant V_{C C}$ Max				10		10	$\mu \mathrm{A}$
10	I/O Leakage Current	$V_{C E}=V_{I H}$	$V_{0}=V_{C C}$			5		10	$\mu \mathrm{A}$.
			$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-10		-10	
lc	Power Supply Current	Data Out Open VCC $=$ Max $V_{\text {IN }}=V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9112A/B		50		50	mA
				9112C/D/E		55		55	
				91L12A/B		31		31	
				91L12C/D/E		34		34	
			$T_{A}=0^{\circ} \mathrm{C}$	9112A/B		55			
				9112C/D/E		60			
				91L12A/B		33			
				91L12C/D/E		36			
			$T_{A}=-55^{\circ} \mathrm{C}$	9112A/B				60	
				9112C/D/E				65	
				91L12A/B				37	
				91L12C/D/E				40	
Cin	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 V_{1} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$				6		6	pF
Co	Output Capacitance	$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$				11		11	

STANDBY OPERATING CONDITIONS OVER TEMPERATURE RANGE

DC CHARACTERISTICS (Cont.)

POWER DOWN STANDBY OPERATION

The Am9112/Am91L12 Family is designed to maintain storage in a standby mode. The standby mode is entered by lowering $V_{C C}$ to around 1.5-2.0 volts (see table and graph). When the voltage to the device is reduced, the storage cells are isolated from the data lines, so their contents will not change. The standby mode may be used by a battery operated backup power supply system, or, in a large system, memory
pages not being accessed can be placed in standby to save power. A standby recovery time must elapse following restoration of normal power before the memory may be accessed.

To ensure that the output of the device is in a high impedance OFF state during standby, the chip select should be held at V_{IH} or $\mathrm{V}_{\mathrm{CES}}$ during the entire standby cycle.

DC OPERATING CHARACTERISTICS

Typical Power Supply Current Versus Voltage

Typical Output Current Versus Voltage

Access Time

Versus VCC Normalized to Vcc $=+5.0$ Volts

Typlcal Power Supply Current Versus Ambient Temperature

OP001070

Typical Vin Limits Versus Ambient Temperature

OP001030

Typical t_{A} Versus Amblent Temperature

Typical $\mathbf{t}_{\mathbf{A}}$ Versus $\mathbf{C}_{\mathbf{L}}$

OP001050

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	$\begin{aligned} & \text { Am9112A } \\ & \text { Am91L12A } \end{aligned}$		$\begin{gathered} \text { Am9112B } \\ \text { Am91L12B } \end{gathered}$		$\begin{gathered} \text { Am9112C } \\ \text { Am91L12C } \end{gathered}$		Am9112D		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
1	$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	500		400		300		250		ns
2	$t_{\text {A }}$	Access Time		500		400		300		250	ns
3	tco	Output Enabled to Output ON Delay (Note 1)	5.0	175	5.0	150	5.0	125	5.0	100	ns
4	tOH	Previous Read Data Valid with Respect to Address Change	40		40		40		30		ns
5	$t_{\text {DF }}$	Output Disabled to Output OFF Delay (Note 2)	5.0	125	5.0	100	5.0	100	5.0	75	ns
6	twe	Write Cycle Time	500		400		300		250		ns
7	taw	Address Set-up Time	0		0		0		0		ns
8	tWR	Address Hold Time	0		0		0		0		ns
9	twp	Write Pulse Width (Note 3)	175		150		. 125		100		ns
10	tew	Chip Enable Set-up Time	175		150		125		100		ns
11	tDW	Input Data Set-up Time	150		125		100		85		ns
12	${ }_{\text {t }}$	Input Data Hold Time (Note 4)	0		0		0		0		ns

Notes:

1. Output is enabled and tco commences only with both CE LOW and WE HIGH.
2. Output is disabled and tDF defined from either the rising edge of $\overline{C E}$ or the falling edge of $\overline{W E}$.
3. Minimum twp is valid when CE has been HIGH at least $t_{D F}$ before $\overline{W E}$ goes LOW. Otherwise tWP(min). $=$ $t_{D W}($ min. $)+t_{D F}$ (max.).
4. When WE goes HIGH at the end of the write cycle, it will be possible to turn on the output buffers if CE is still LOW. The data out will be the same as the data just written and so will not conflict with input data that may still be on the I/O bus.

SWITCHING WAVEFORMS (Note 5)

WF000610
5. See "Application Information" section of this specification.

Am9114／24

1024×4 Static RAM

DISTINCTIVE CHARACTERISTICS

－Low operating and standby power
－Access times down to 200ns
－Am9114 is a direct plug－in replacement for 2114
－Am9124 pin and function compatible with Am9114 and 2114，plus CS power down feature
－High output drive－4．0mA sink current © 0.4 V － 9124 3.2 mA sink current © 0．4V－ 9114
－TLL identical input／output levels

GENERAL DESCRIPTION

The Am9114 and Am9124 are high performance，static， N － Channel，read／write，random access memories organized as 1024×4 ．Operation is from a single 5 V supply，and all input／output levels are identical to standard TTL specifica－ tions．Low power versions of both devices are available with power savings of over 30\％．The Am9114 and Am9124 are the same except that the Am9124 offers an automatic CS power down feature．

The Am9124 remains in a low power standby mode as long as $\overline{C S}$ remains high，thus reducing its power requirements．

The Am9124 power decreases from 368 mW to 158 mW in the standby mode，and the Am91L24 from 262 mW to 105 mW ．The $\overline{\mathrm{CS}}$ input does not affect the power dissipation of the Am9114．（See Figure 1，page 4）．
Data readout is not destructive and the same polarity as data input．CS provides for easy selection of an individual package when the outputs are OR－tied．The outputs of 4.0 mA for Am9124 and 3.2 mA for Am9114 provides increased short circuit current for improved capacitive drive．

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Times	450ns	300ns	200ns
Standard Device	Am9114B Am9124B	Am9114C Am9124C	Am9114E
Low Power	Am91L14B Am91L24B	Am91L14C Am91L24C	Am91L14E

CONNECTION DIAGRAM
 Top View

CD000130

Note: Pin 1 is marked for orientation

Address Designators	
External	Internal
A_{0}	A_{9}
A_{1}	A_{8}
A_{2}	A_{7}
A_{3}	A_{0}
A_{4}	A_{1}
A_{5}	A_{2}
A_{6}	A_{3}
A_{7}	A_{4}
A_{8}	A_{5}
A_{9}	A_{6}

BIT MAP

Figure 2. Bit Mapping Information

ORDERING INFORMATION

C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
M-Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Package
D-18-pin CERDIP
P-18-pin plastic DIP

Valid Combinations	
B	PC, DC, DM
C	PC, DC, DM
E	PC, DC
Am9114/ 91L14 only	DM (9114 only)

Speed Select
B - 450ns
C - 300ns
E - 200ns
Device Type
AM9114 - $1 \mathrm{k} \times 4$ SRAM
AM91L14 - Same, Low Power
AM9124 - 1kx4 SRAM with power down feature
AM91L24 - Same, Low Power

Application Table

		Worst Case Current (mA at $0^{\circ} \mathrm{C}$)	
Configuration	Part Number	$\begin{gathered} 100 \% \\ \text { Duty Cycle } \end{gathered}$	$\begin{gathered} 50 \% \\ \text { Duty Cycle } \end{gathered}$
$2 \mathrm{~K} \times 8$	$\begin{gathered} 9114 \\ 91 \mathrm{~L} 14 \end{gathered}$	$\begin{aligned} & 280 \\ & 200 \end{aligned}$	$\begin{aligned} & 280 \\ & 200 \end{aligned}$
	$\begin{gathered} 9124 \\ 91 L 24 \end{gathered}$	$\begin{aligned} & 200 \\ & 140 \end{aligned}$	$\begin{aligned} & 160 \\ & 110 \end{aligned}$
$4 \mathrm{~K} \times 12$	$\begin{gathered} 9114 \\ 91 \mathrm{~L} 14 \end{gathered}$	$\begin{aligned} & 840 \\ & 600 \end{aligned}$	$\begin{aligned} & 840 \\ & 600 \end{aligned}$
	$\begin{gathered} 9124 \\ 91 \mathrm{~L} 24 \end{gathered}$	$\begin{aligned} & 480 \\ & 330 \end{aligned}$	$\begin{array}{r} 420 \\ 285 \\ \hline \end{array}$
$8 \mathrm{~K} \times 16$	$\begin{gathered} 9114 \\ 91 \mathrm{~L} 14 \end{gathered}$	$\begin{aligned} & 2240 \\ & 1600 \end{aligned}$	$\begin{aligned} & 2240 \\ & 1600 \end{aligned}$
	$\begin{gathered} 9124 \\ 91 \mathrm{~L} 24 \end{gathered}$	$\begin{gathered} 1120 \\ 760 \end{gathered}$	$\begin{gathered} 1040 \\ 700 \end{gathered}$

Figure 1. Supply Current Advantage of Am9124.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V
Signal Voltages with
respect to ground -3.0 V to +7.0 V
Power Description .1.0W
DC Output Current.. 10mA
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage......................... 4.5 V to +5.5 V
Military (M) Devices
Temperature................................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage....................... +4.5 V to +5.5 V
Operating ranges define those limits over which the functional-
ity of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ	Max	Units
IOH	Output HIGH Current	$\begin{aligned} & V_{C C}=+4.5 \mathrm{~V} \\ & V_{\mathrm{OH}}=2.4 \mathrm{~V} \end{aligned}$	91(L)14		-1.0			mA
			$91(\mathrm{~L}) 24$		-1.4			
IOL	Output LOW Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	91(L)14	3.2			
				91(L)24	4.0			
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$91(\mathrm{~L}) 14$	2.4			
				91(L)24	3.2			
V_{IH}	Input HIGH Voltage				2.0		VCC	V
V_{IL}	Input LOW Voltage				-3.0		0.8	
1 IX	Input Load Current	GND $\leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$					10	$\mu \mathrm{A}$
loz	Output Leakage Current	$G N D \leqslant V_{0} \leqslant V_{C C},$ Output Disabled	$T_{A}=+70^{\circ} \mathrm{C}$		-10		10	
			$\mathrm{T}_{A}=+125^{\circ} \mathrm{C}$		-50		50	
los	Output Short Circuit Current	Note 2	91(L)14C				75	mA
			91(L)24C				95	
			91(L)14M				75	
			91(L)24M				115	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Note 1	$\begin{aligned} & \mathrm{f}=1.0 \mathrm{MHz}, \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { All pins at oV } \\ & \hline \end{aligned}$			3	5	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	1/O Capacitance					5	6	
Icc	Operating Supply Current	$\begin{aligned} & V_{C C}=M a x \\ & C S \leqslant V_{1 L} \\ & \text { for } 9124 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Standard devices		60		mA
				L devices		40		
			$T_{A}=0^{\circ} \mathrm{C}$	Standard devices		70		
				L devices		50		
			$T_{A}=-55^{\circ} \mathrm{C}$	Standard devices		80		
			$T_{A}=-55^{\circ} \mathrm{C}$	L devices		60		
IPD	Automatic CS Power Down Current (9124/L24 only)	$\begin{aligned} & V_{C C}=M a x \\ & C S \geqslant V_{I H} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9124		24		
				91L24.		15		
			$T_{A}=0^{\circ} \mathrm{C}$	9124			30	
				91L24			20	
			$T_{A}=-55^{\circ} \mathrm{C}$	9124			33	
				91 L 24			22	

Notes:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$, rominal supply voltage and nominal processing parameters.
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V and output loading of one standard TTL gate plus 100 pF .
4. The internal write time of the memory is defined by the overlap of $\overline{C S}$ low and $\overline{W E}$ low. Both signals must be low
to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. Chip Select access time (tco) is longer for the Am9124 than for the Am9114. The specified address access time will be valid only when Chip Select is low soon enough for tco to elapse.

DC OPERATING CHARACTERISTICS

Typical Icc Versus VCC Characteristics

Typical tace
Versus VCC Characteristics

Typical C Load Versus Normalized $\mathrm{tacc}_{\text {ach }}$ Characteristics

Normalized tacc Versus Amblent Temperature

Normalized Icc Versus Amblent Temperature

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

		Description		B d	ices	C d	Ices	E d	ices	Units
No.	Symbol			Min	Max	Min	Max	Min	Max	
Read Cycle										
1	t_{RC}	Address Valid to Address Do Not Care Time (Read Cycle Time)		450		300		200		ns
2	t^{\prime}	Address Valid to Data Out Valid Delay (Address Access Time)			450		300		200	ns
3	tco	Chip Select Low to Data Out Valid (Note 5)	Am9114		120		100		70	ns
			Am9124		420		280		NA	ns
4	tcx	Chip Select Low to Data Out On		10		10		10		ns
5	totd	Chip Select High to Data Out Off			100		80		60	ns
6	toha	Address Unknown to Data Out Unknown Time		50		50		50		ns
Write Cycle										
7	twc	Address Valid to Address Do Not Care Time (Write Cycle Time)		450		300		200		ns
8	*W	Write Enable Low to Write Enable High Time (Note 4)	Am9114	200		150		120		ns
			Am9124	250		200		NA		ns
9	twh	Write Enable High to Address Do Not Care Time		0		0		0		ns
10	torw	Write Enable Low to Data Out Off Delay			100		80		60	ns
11	tow	Data in Valid to Write Enable High Time		200		150		120		ns
12	${ }_{\text {t }} \mathrm{H}$	Write Enable Low to Data In Do Not Care Time		0		0	0	0		ns
13	taw	Address Valid to Write Enable Low Time		0		0		0		ns
14	tpD	Chip Select High to Power Low Delay (Am9124 only)			200		150		100	ns
15	tpu	Chip Select Low to Power High Delay (Am9124 only)		0		0		0		ns
16	tow	Chip Select Low to Write Enable High Time (Note 4)	Am9114	200		150		120		90
			Am9124	250		200		NA		ns

SWITCHING WAVEFORMS

WF000170
POWER DOWN WAVEFORM (Am9124 ONLY)

DISTINCTIVE CHARACTERISTICS

- High performance replacement for 93422/93L422
- Fast access times - as low as $25 n \mathrm{~ns}$
- Low power dissipation
- Low power: 248/440mW (Commercial) 495 mW (Military)
- Single 5 volt power supply - $\pm 10 \%$ tolerance both commercial and military

GENERAL DESCRIPTION

The Am9122/Am91L22 series is a MOS pin-for-pin and functional replacement for the 93422/93L422 bipolar memories. These devices are high-performance, low-power, 1024 -bit, static, read/write random access memories. They offer a wide range of access times including versions as fast as 25 ns. Each memory is implemented as 256 words by 4 bits per word. This organization permits efficient design of small memory systems and allows finer resolution of incremental memory depth.

The Am9122/91L22 employs an output enable and two chip enable inputs to give the user better data control. High noise immunity, high output drive (4 TTL loads) and TTL logic voltage levels allow easy conversion from bipolar to MOS. 10% power supply tolerances give better margins in the memory system. As with all AMD MOS RAMs, the Am9122/91L22 is guaranteed to 0.1% AQL.

PRODUCT SELECTOR GUIDE

Part Number		Am9122-25	Am9122-35	Am91L22-35	Am9122-45	Am91L22-60
Maximum Access Time (ns)	25	35	35	45	60	
Maximum Operating Current (mA)	0° to $70^{\circ} \mathrm{C}$	120	120	80	80	45
	-55° to $125^{\circ} \mathrm{C}$	N / A	135	$\mathrm{~N} / \mathrm{A}$	90	$\mathrm{~N} / \mathrm{A}$

Note: Pin 1 is marked for orientation

BIT MAP

Address Designators	
External	Internal
A_{0}	A_{0}
A_{1}	A_{1}
A_{2}	A_{2}
A_{3}	A_{3}
A_{4}	A_{4}
A_{5}	A_{5}
A_{6}	A_{6}
A_{7}	A_{7}

ORDERING INFORMATION

```
Am9122-25
```



```
C - Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) M-Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\) )
Package
P - 22-pin plastic DIP
D - 22-pin CERDIP
Speed Select
\[
25-25 n s
\]
\[
35-35 n s
\]
\[
45-45 n s
\]
\[
60-60 \mathrm{~ns}
\]
Device Type
AM9122 - \(256 \times 4\) SRAM
AM91L22 - Same, Low Power
```

Valid Combinations	
Am9122-25 (9122 only)	PC, DC
Am9122-35	PC, DC DM (9122 only)
Am9122-45 (91L22 only)	PC, DC, DM
Am9122-60 (91L22 only)	PC, DC

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditlons		Am91L22-60			$\begin{aligned} & \text { Am91L22-35 } \\ & \text { Am91L22-45 } \end{aligned}$			$\begin{aligned} & \text { Am9122-25 } \\ & \text { Am9122-35 } \end{aligned}$			Units
				MIn	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	$1 \mathrm{OH}=-5.2 \mathrm{~mA}$	2.4			2.4			2.4			Volts
V_{OL}	Output LOW Voltage	$V_{C C}=$ Min	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4			0.4			0.4	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.1		$V_{\text {CC }}$	2.1		V_{CC}	2.1		$\mathrm{V}_{\text {CC }}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0		0.8	-3.0		0.8	-3.0		0.8	Volts
ILL	Input LOW Current	$V_{C C}=$ Max, $V_{\text {IN }}=$ Gnd				10			10			10	$\mu \mathrm{A}$
IIH	Input HIGH Current	$V_{C C}=M_{\text {Max }}, V_{\mathbb{N}}=V_{C C}$				10			10			10	$\mu \mathrm{A}$
$V_{C D}$	Input Diode Clamp Voltage					Note 4			Note 4			Note 4	Volts
loff	Output Current (High-Z)	$\begin{aligned} & \mathrm{VOL}_{\mathrm{OL}} \leqslant \mathrm{~V}_{\mathrm{OUT}} \leqslant \mathrm{~V}_{\mathrm{OH}} \\ & \text { Output Disabled } \end{aligned}$	$T_{\text {A }}=$ Max	-50		50	-50		50	-50		50	$\mu \mathrm{A}$
los	Output Short Circuit Current (Note 3)	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{O U T}=G N D \end{aligned}$	Commercial			-70			-70			-70	mA
			Military			-80			-80			-80	
Icc	Power Supply Current	$\begin{aligned} & \mathrm{VCC}=\operatorname{Max}, \\ & \text { IOUT }=0 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			40			70			110	mA
			$T_{A}=0^{\circ} \mathrm{C}$			45			80			120	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			N/A			90			135	
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, f=1 \mathrm{MHZ} \\ & V_{C C}=4.5 \mathrm{v} \end{aligned}$			3	5		3	5		3	5	pF
Cout	Output Capacitance $V_{\text {OUT }}=O V$				5	8		5	8		5	8	

Notes:

1. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. A two minute warm up period is required for $-55^{\circ} \mathrm{C}$ operation.
2. T_{w} measured at $t_{w s a}=m i n ; t_{w s a}$ measured at $t_{w}=\min$.
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. The NMOS process does not provide a clamp diode. However, the Am9122/91L22 is insensitive to -3V DC
input levels and -5V undershoot pulses of less than 10ns (measured at 50% point).
5. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{H}}$ and 30 pF load capacitance as in Figure 1 a .
6. Transition is measured at $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ or $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ levels on the output from 1.5 V level on the input with load shown in Figure 1b.

Normalized IcC versus Supply Voltage

Normalized Access Time versus Supply Voltage

Normalized IcC versus Ambient Temperature

Normalized Access Time versus Amblent Temperature

Output Source Current versus Output Voltage

Output Sink Current versus Output Voltage

Access Time Change versus Input Voltage

Access Time Change versus Output Loading

Figure $1 \mathbf{1 a}$.

Figure 1 b .

TW000020
FIgure 2.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Am9122-25		$\begin{gathered} \text { Am91L22-35 } \\ \text { Am9122-35 } \end{gathered}$		Am91L22-45		Am91L22-60		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
1	tACS	Chip Select Time		15		25		30		35	ns
2	tzRCS	Chip Select to High-Z (Note 6)		20		30		30		35	ns
3	taos	Output Enable Time		15		25		30		35	ns
4	tzROS	Output Enable to High-2 (Note 6)		20		30		30		35	ns
5	$t_{\text {AA }}$	Address Access Time		25		35		45		60	ns
6	tzws	Write Disable to High-Z (Note 6)		20		30		35		40	ns
7	tWR	Write Recovery Time		20		25		40		45	ns
8	tw	Write Pulse Width (Note 2)	15		25		30		40		ns
9	tWSD	Data Setup Time Prior to Write	5		5		5		5		ns
10	tWHD	Data Hold Time After Write	5		5		5		5		ns
11	twSA	Address Setup Time (Note 2)	5	-	5		10		10		ns
12	twha	Address Hold Time	5		5		5		5		ns
13	twSCS	Chip Select Setup Time	5		5		5		5		ns
14	twhes	Chip Select Hold Time	5		5		5		5		ns

SWITCHING WAVEFORMS
READ MODE

WRITE MODE

WF000670
(All above measurements implemented to 1.5 V unless otherwise stated.)
Note: Timing diagram represents one solution which results in an optimum cycle time. Timing may be changed to in various applications as long as the worst case limits are not violated.

Am9128

DISTINCTIVE CHARACTERISTICS

- Logic voltage levels compatible with TTL
- Three-state output buffers-common. I/O
- Icc max as low as 100 mA
- $T_{A A} / T_{A C S}$ as low as to $70 n s$
- Power down mode (ISB as low as 15mA)

GENERAL DESCRIPTION

The Am9128 is a 16,384 -bit static Random Access Readwrite Memory organized as 2048 words of 8 bits. It uses fully static circuitry, requiring no clocks or refresh to operate. Directly TTL-compatible inputs and outputs and operation from a single +5 V supply simplify system de-
signs. Common data I/O pins using three-state outputs are provided. The Am9128 is available in an industry-standard 24 -pin DIP package with 0.6 -inch pin row spacing. The Am9128 uses the JEDEC standard pinout for byte-wide memories (compatible to 16K EPROM's).

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Part Number		Am9128-70	Am9128-90	Am9128-10	Am9128-12	Am9128-15	Am9128-20
Maximum Access Time (ns)	70	90	100	120	150	200	
Maximum Operating Current (mA)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	140	$\mathrm{~N} / \mathrm{A}$	120	$\mathrm{~N} / \mathrm{A}$	100	140
	-55° to $125^{\circ} \mathrm{C}$	N / A	180	$\mathrm{~N} / \mathrm{A}$	150	150	150
Maximum Standby Current (mA)	0° to $70^{\circ} \mathrm{C}$	30	$\mathrm{~N} / \mathrm{A}$	15	$\mathrm{~N} / \mathrm{A}$	15	30
	-55° to $125^{\circ} \mathrm{C}$	N / A	30	$\mathrm{~N} / \mathrm{A}$	30	30	30

CONNECTION DIAGRAM
 Top View

Note: Pin 1 is marked for orientation

BIT MAP

Address Designators	
External	Internal
A_{3}	$A X_{0}$
A_{4}	$A X_{1}$
A_{5}	$A X_{2}$
A_{6}	$A X_{3}$
A_{7}	$A X_{4}$
A_{8}	$A X_{5}$
A_{10}	$A X_{6}$
A_{0}	$A Y_{0}$
A_{1}	$A Y_{1}$
A_{2}	$A Y_{2}$
A_{9}	$A Y_{3}$

Figure 2. Bit Mapping information
ORDERING INFORMATION

```
Am9128-90
    |
        L_Burn-in Option
        Blank = Not Burned In
        B=160 Hr Burn-In
        Temperature
        C - Commercial (0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C}
        M - Military (-55'`}\mathrm{ to +125}\mp@subsup{}{}{\circ}\textrm{C}
    Package
D-24-pin CERDIP
P - 24-pin plastic
Speed Select
\begin{tabular}{ll}
\(70-70 \mathrm{~ns}\) & \(20-200 \mathrm{~ns}\) \\
\(10-100 \mathrm{~ns}\) & \(90-90 \mathrm{~ns}\)
\end{tabular}
Device Type
\(2 k \times 8\) Static SRM
```

Valid Combinations		
Am9128-70	DC, DCB	
Am9128-10	PC,PCB	
Am9128-90	DM, DMB	
Am9128-12		
Am9128-15	DC, DCB	
Am9128-20	PC,PCB	
	DM,DMB	

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied................................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage...................................... 0.5 V to +7.0 V
Signal Voltages with
respect to ground.................................-3.0V to +7.0 V
Power Description . 1.0 W
DC Output Current.. 10mA
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voitage +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		$\begin{aligned} & \text { Am9128-90 } \\ & \text { Am9128-10 } \end{aligned}$		Am9128-15		$\begin{aligned} & \text { Am9128-70 } \\ & \text { Am9128-12 } \\ & \text { Am9128-20 } \end{aligned}$		Units
				Min	Max	Min	Max	Min	Max	
IOH	Output HIGH Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	$V_{C C}=4.5 \mathrm{~V}$	-2		-2		-2		mA
10 L	Output LOW Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		4		4		4		mA
V_{IH}	Input HIGH Voltage			2.0	$\begin{array}{r} V_{c \mathrm{CC}} \\ +1.0 \\ \hline \end{array}$	2.0	$\begin{array}{r} v_{\mathrm{cc}} \\ +1.0 \\ \hline \end{array}$	2.0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & +1.0 \\ & \hline \end{aligned}$	Volts
V_{12}	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	Volts
Ix	Input Load Current	$\mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\mathrm{CC}}$			10		10		10	$\mu \mathrm{A}$
loz	Output Leakage Current	GND $\leqslant V_{O} \leqslant V_{C C}$ Output Disabled			10		10		10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Test Frequency $=$ $1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All pins at $0 V$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		6		6		6	pF
$\mathrm{C}_{1 / 0}$	Input/Output Capacitaance				7		7		7	
Icc	$V_{C C}$ Operating Supply Current	Max $V_{C C}, \overline{C E} \leqslant V_{\text {IL }}$ Outputs Open	COM'L		120		100		140	mA
			MIL		180		150		150	
ISB	Automatic CE Power Down Current	Max $V_{C C}, \overline{C E} \geqslant V_{1 H}$	COM'L		15		15		30	mA
			MIL		30		30		30	
Ipo	Peak Power On Current	$\begin{aligned} & V_{C C}=G N D \text { to } V_{C C} \operatorname{Max} \\ & C E \geqslant V_{I H} \text { (Note 2) } \end{aligned}$	COM'L		15		15		30	mA
			MIL.		30		30		30	

Notes:

1. The internal write time of the memory is defined by the overlap of CE Low and WE Low. Both signals must be Low to initiate a write and either signal can terminate a write by going High. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
2. A pull up resistor to $V_{C C}$ on the $\overline{C E}$ input is required during power up to keep the device deselected, otherwise IpO will exceed values given.
3. The operating ambient temperature range is guaranteed with transverse air flow of 400 linear feet per minute.
4. At any given temperature and voltage condition, t_{HZ} is less than tlz for all devices.
5. $\overline{W E}$ is High for read cycle.
6. Device is continuously solected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition Low.
8. $\overline{O E}=V_{I L}$.
9. $C_{L}=100 \mathrm{pF}$ for Am9128-10/-12/-15/-20. $C_{L}=30 \mathrm{pF}$ for Am9128-70/90.
10. Transition is measured at 1.5 V on the input to $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ on the outputs using the load shown in Figure 1. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
11. Am9128-20 only.

Normalized Access Time Versus Amblent Temperature

$T_{A}{ }^{-9} C$
OP000670

Output Sink Current Versus Output Voltage

Supply Current Versus Supply Voltage

Access Time Change Versus Output Loading

Typical Power-On Current Versus Power Supply

Normalized Access Time Versus Supply Voltage

Output Source Current
Versus Output Voltage

Access Time Change Versus Inpuit Voltage

OP000720

SWITCHING TEST
CONDITIONS

Input Pulse Levels	0 to 3.0 V
Input Rise and Fall Times	10 ns
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V

SWITCHING TEST CIRCUIT

KEY TO SWITCHING WAVEFORMS

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

SWITCHING CHARACTERISTICS (Cont.)

No.	Symbol	Description		Am9128-12		Am9128-15		Am9128-20		Units
				Min	Max	Min	Max	Min	Max	
Read Cycle										
1	$t_{\text {RC }}$	Read Cycle Time		120		150		200		ns
2	$t_{\text {ACC }}$	Address Access Time (Note 9)			120		150		200	ns
3	tacs	Chip Select Access Time (Note 9)			120		150		200	ns
4	toe	Output Enable Tim (Note 9)	COM'L		N/A		60		70	
			MIL		70		70		80	ns
5	tOH	Output Hold Time from Address Change		5		5		5		ns
6	${ }_{\text {telz }}$	Output in LOW-Z from CE (Notes 4, 10)		5		5		5		ns
7	t⿳Hz	Output in HIGH-Z from CĖ (Notes 4, 10)			50		55		55	ns
8	tolz	Output in LOW-Z from OE (Notes 4, 10)		5		5		5		ns
9	tohz	Output in HIGH-Z from $\overline{\mathrm{OE}}$ (Notes 4, 10)			45		50		50	ns
10	tpu	Chip Selection to Power Up Time		0		0		0		ns
11	tPD	Chip Deselection to Power Down Time			55		60		60	ns
Write Cycle										
12	twc	Write Cycle Time		120		150		200		ns
13	tcw	Chip Selection to End of Write (Note 1)	COM'L	N/A		120		150		ns
			MIL	105		130		160		ns
14	$t_{\text {AS }}$	Address Setup Time		10		20		20		ns
15	twp	Write Pulse Width (Note 1)		70		85		100		ns
16	tWR	Write Recovery Time		5		5		5		ns
17	tos	Data Setup Time		45		50		60		ns
18	t_{DH}	Data Hold Time		5		5		5		ns
19	tWLZ	Output in LOW-Z from WE (Notes 4, 10)		5		5		5		ns
20	twhz	Output in HIGH-Z from WE (Notes 4, 10)			50		50		50	ns
21	taw			105		120		120		ns

SWITCHING WAVEFORMS

READ CYCLE NO. 1 (Notes 5, 6)

READ CYCLE 2 (Notes 5, 7, 8)

INDEX SECTION
 NUMERICAL DEVICE INDEX
 FUNCTIONAL INDEX AND SELECTION GUIDE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS

MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION PACKAGE OUTLINES SALES OFFICES

MOS Read Only Memories (ROM) Index

Am9218 2048×8 ROM 5-1
Am9232/33$4096 \times 8$ ROM5-6
Am9264Am9265Am92128
64K (8192 x 8) ROM 5-11
64K (8192 x 8) ROM 5-16
128K ($16,384 \times 8$) ROM 5-21
Am92256

DISTINCTIVE CHARACTERISTICS

- Plug-in replacement for 8316E; 2716 compatible
- Access times as fast as 350 ns
- 3 fully programmable Chip Selects - increased flexibility
- Logic voltage levels compatible with TTL
- Three-state output buffers - simplified expansion
- Low power dissipation

GENERAL DESCRIPTION

The Am9218 devices are high performance, 16384-bit, static, mask programmed, read only memories. Each memory is implemented as 2048 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes as small as 2048 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Three programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may
be specified by the customer thus allowing the addressing of 8 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9218 devices and other three-state components.

These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by whatever address is present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Times	450ns	350ns
Part Number	Am9218B	Am9218C

CONNECTION DIAGRAM

Top View

CD000210

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

```
Am9218 B
```



```
C - Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) M-Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
Package
C - 24-pin CERDIP
D-24-pin ceramic
P-24-pin plastic
Speed Select
B - 450ns
C -350 ns
Device Type
\(2 k \times 8\) ROM
```

Valid Combinations	
9218 B	$\mathrm{PC}, \mathrm{CC}, \mathrm{DC}$, DM
9218 C	PC, CC, DC

PROGRAMMING INSTRUCTIONS

CUSTOM PATTERN ORDERING INFORMATION

The Am9218 is programmed from punched cards, card coding forms or paper tape in card image format as shown below.
Logic " 1 " = a more positive voltage (normally +5.0 V)
Logic " 0 " = a more negative voltage (normally OV)

FIRST CARD

Column Number

10 thru 29
32 thru 37

50 thru 62
65 thru 72

Description
Customer Name
Total number of " 1 's" contained in the data.
This is optional and should be left blank if not used.
9218
Optional Information

SECOND CARD

Column Number 29

Description

CS3 input required to select chip (0 or 1)
31 CS2 input required to select chip (0 or 1)
CS1 input required to select chip (0 or 1)

Two options are provided for entering the data pattern with the remaining cards.

OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 2048 data cards are required.

Column Number

10, 12, 14, 16, 18 Address input pattern with the $20,22,24,26,28$, most significant bit (A10) in col30

40, 42, 44, 46, 48
50, 52, 54

73 thru 80 umn 10 and the least significant bit (AO) in column 30.

Output pattern with the most significant bit (O8) in column 40 and the least significant bit (O1) in column 54.

Coding these columns is not essential and may be used for card identification purposes.

OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 128 data cards. Each data card contains the 8 -bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31. Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21, 22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through 7F: 128 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF .

ABSOLUTE MAXIMUM RATINGS

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature \qquad Ambient Temperature with
Power Applied.............................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .. + 7.0 V
DC Signal Voltage applied to outputs....... -0.5 V to +7.0 V
DC Input Voltage.................................. 0.5 V to +7.0 V
Power Dissipation .. 1.0W
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage \qquad +4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	C devices	2.4		0.4 0.45 $V_{C C}$	v
			M devices	2.2			
V_{OL}	Output Low Voltage	$\mathrm{I}^{\prime} \mathrm{OL}=3.2 \mathrm{~mA}$	C devices				
			M devices				
V_{iH}	Input High Voltage			2.0		$\begin{gathered} v_{C C} \\ +1.0 \mathrm{c} \end{gathered}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.5		+0.8	
LiO	Output Leakage Current	Chip Disabled				10	$\mu \mathrm{A}$
1 LI	Input Leakage Current					10	
Icc	Power Supply Current		C devices			70	mA
			M devices			80	
C_{IN}	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { All pins at } \mathrm{OV} \end{aligned}$				7	pF
COUT	Output Capacitance					7	

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions	Am9218B		Am9218C		Units
				Min	Max	Min	Max	
1	t_{A}	Address to Output Access Time	```tr= tf=20ns Output load: One Standard TTL Gate plus 100pF (Note 1)```		450		350	ns .
2	tco	Chip Select to Output ON Delay			150		130	ns
3	tOH	Previous Read Data Valid with Respect to Address Change		20		20		ns
4	tDF	Chip Select to Output OFF Delay			150	,	130	ns

Note: 1. Timing reference levels: High $=2.0 \mathrm{~V}$, Low $=0.8 \mathrm{~V}$.

SWITCHING WAVEFORMS

Am9232/33

DISTINCTIVE CHARACTERISTICS

- Access time selected to 300 ns
- Fully capacitive inputs - simplified driving
- Two mask programmable chip selects - increased flexibility
- Three-state output buffers - simplified expansion
- Two different pinouts for universal application
- Non-connect option on chip selects

GENERAL DESCRIPTION

The Am9232/33 devices are high performance, 32,768-bit, static, mask programmed, read only memories. Each memory is implemented as 4096 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes of 4096 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Two programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may
be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional AM9232/33 devices and other three-state components.

These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Times	450ns	300ns
Part Number	Am9232B Am9233B	Am9232C Am9233C

Note：Pin 1 is marked for orientation
ORDERING INFORMATION

Am9232

C －Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
M－Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ）
Package

Valid Combinations	
Am9232B	PC，CC
Am9233B	DM，DC
Am9232C	PC，CC
Am9233C	DC

D－24－pin ceramic DIP
C－24－pin CERDIP
P－24－pin plastic DIP
Speed Select
B－450ns
C－300ns
Device Type
Am9232－pinout \＃1
Am9233－pinout \＃2

PROGRAMMING INSTRUCTIONS

CUSTOM PATTERN ORDERING INFORMATION

The Am9232 is programmed from punched cards, card coding forms or paper tape in card image format as shown below.
Logic " 1 " = a more positive voltage (normally +5.0 V)
Logic " 0 " = a more negative voltage (normally 0 V)

FIRST CARD

Column Number
10 thru 29
32 thru 37

50 thru 62
65 thru 72

Description

Customer Name
Total number of " y 's" contained in the data.
This is optional and should be left blank if not used.
9232 or 9233
Optional Information

SECOND CARD

Column Number 31

33

Description

CS2 input required to select chip (0 or 1); If CS2 $=\mathrm{NC}$, column $31=2$.
CS1 input required to select chip (0 or 1); If CS1 = NC, column $33=2$.

Two options are provided for entering the data pattern with the remaining cards.

OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 4096 data cards are required.

Column Number

$8,10,12,14,16$, Address input pattern with the $18,20,22,24,26$, most significant bit (A11) in col28, 30 umn 8 and the least significant bit (AO) in column 30.

40, 42, 44, 46, 48 Output pattern with the most sig$50,52,54$

73 thru 80

OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 256 data cards. Each data card contains the 8-bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31. Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21, 22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through FF:256 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF .

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied.	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage.	
DC Signal Voltage applied to outputs.......-0.5V to +7.0 V	
DC Input Voltage...............................-0.5V to +7.0V	
Power Dissipat	1.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.75 V to +5.25 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage .+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
VOH	Output HIGH Voltage	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}=4.75$	2.4			Volts
			$\mathrm{V}_{\mathrm{CC}}=4.50$	2.2			
Vol	Output LOW Voltage	$1 \mathrm{OL}=3.2 \mathrm{~mA}$				0.4	Volts
V_{IH}	Input HIGH Voltage			2.0		$\begin{array}{r} \\ V C C \\ +1.0 \mathrm{~V} \\ \hline \end{array}$	Volts
$\mathrm{V}_{1 \mathrm{~L}}$	Input Low Voltage			-0.5		0.8	Volts
IL	Input Load Current	$\begin{array}{\|l} G N D \leqslant V_{1} \leqslant V_{C C} \\ \hline \text { GND } \leqslant V_{0} \leqslant V_{C C} \\ \text { Chip Disabled } \\ \hline \end{array}$				10	$\mu \mathrm{A}$
ILO	Output Leakage Current		$+70^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
			$+125^{\circ} \mathrm{C}$ (DM)				
Icc	VCC Supply Current		$0^{\circ} \mathrm{C}$			80	mA
			$-55^{\circ} \mathrm{C}$ (DM)			100	
C_{1}	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz} \\ & \text { All pins at oV } \end{aligned}$				7.0	pF
Co_{0}	Output Capacitance					7.0	pF

عモ／Zとて6யヲ
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No．	Symbol	Description	Test Conditions	Am9232／33B		Am9232／33C		Units
				Min	Max	Min	Max	
1	t_{A}	Address to Output Access Time	$\begin{gathered} \operatorname{tr}=\mathrm{tf}=20 \mathrm{~ns} \\ \text { Output load: } \\ \text { One Standard TTL Gate } \\ \text { plus 100pF (Note 1) } \end{gathered}$		450		300	ns
2	tco	Chip Select to Output ON Delay			150		120	ns
3	tor	Previous Read Data Valid with Respect to Address Change		20		20		ns
4	tDF	Chip Select to Output OFF Delay			150		120	ns

Note：1．Timing reference levels：High $=2.0 \mathrm{~V}$ ，Low $=0.8 \mathrm{~V}$ ．

SWITCHING WAVEFORMS

WF000030

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Enhanced manufacturability with post-metal programming
- Access time - 250ns (max)
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Fully static operation
- Completely TTL compatible
- Pin compatible with $16 \mathrm{~K} / 32 \mathrm{~K} / 64 \mathrm{~K}$ EPROMs/ROMs

GENERAL DESCRIPTION

The Am9264 high performance read only memory is organized 8192 words by 8 bits with access time of less than 250 ns . This organization simplifies the design of small memory systems and permits incremental memory sizes of 8192 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

The programmable chip select input signal is provided to control the output buffers. Chip Select Polarity may be provided by the customer thus allowing the addressing of 2 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high imped-
ance state. This permits wire-ORing with additional Am9264 devices and other three state components.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) will result in faster turn around time for new or old patterns. This technique will allow us to test wafers before committing customer patterns to categorize speed and power dissipation requirements.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Times	450ns	300ns	250ns
Part Number	Am9264B	Am9264C	Am9264D

CONNECTION DIAGRAM
 Top View

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

```
Am9264 B
    B
```



```
C - Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) M - Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
Package
C - 24-pin CERDIP
D - 24-pin ceramic DIP
P - 24-pin plastic DIP
Speed Select
B - 450ns
C -300 ns
D - 250ns
```


Device Type

```
8kx 8 ROM
```

Valld Combinations	
Am9264B	PC, CC DC, DM
Am9264C	PC, CC DC
Am9264D	PC, CC DC

ROM CODE DATA

EPROM

AMD's preferred method of receiving ROM CODE DATA is in EPROM. Two EPROMs programmed with identical data should be submitted. AMD will read the programmed EPROM and generate an Intel Hex paper tape. The second EPROM is compared with Intel Hex paper tape to insure that both EPROMs have identical data. Then AMD generates a PG tape (Pattern Generation) which is used to make masks after customer gives a code approval. One of the EPROMs is
erased and then it is programmed from AMD's data base. The AMD programmed EPROM is returned to the customer for code verification of the ROM program. Unless otherwise requested, AMD will not proceed until the customer verifies the program in the returned EPROM. AMD requests a written verification form (supplied by AMD with programmed EPROM) signed by customer before proceeding to any further work.
The following EPROMs should be used for submitting ROM CODE DATA:

ROM		EPROM	
		Preferred	Optlonal
Am9218	$2 \mathrm{~K} \times 8$	2716	$2516 / 2-2708$
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{k} \times 8$	2764	$4-2176 / 2-2732$

If more than one EPROM is used to specify one ROM pattern, (i.e., 4 16K EPROMs or 2 32K EPROMs for one 64K ROM) two complete sets of programmed EPROMs should be submitted. In this instance, the programmed EPROMs must clearly state which of the two or four EPROMs is for lower and upper address locations in the ROM.

CARD FORMAT

If customer prefers to submit punch cards, be sure to provide the industry standard formats, such as:

AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
G.I. BINARY

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM CODE DATA (EPROM or CARDs), the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Obtain AMD's 5 digit code number from product marketing
- Supply chip select information
- Supply customer part number and appropriate AMD part number
- Supply marking information
- Instruction on whether prototype approval is required prior to production or AMD is allowed to go straight to production (in case of code change or error, customer is liable for all products in line) after customer code approval.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied................................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage .. + 7.0 V
DC Signal Voltage applied to outputs.......-0.5V to +7.0 V
DC Input Voltage..................................-0.5V to +7.0 V
Power Dissipation ... 1.0W
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

Commercial (C) Devices
Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage \qquad 4.5 V to +5.5 V

Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$		2.4			Volts
V_{OL}	Output LOW Voltage	$1 \mathrm{OL}=3.2 \mathrm{~mA}$				0.4	Volts
V_{IH}	Input HIGH Voltage			2.0		$\begin{array}{r} v_{c c} \\ +1.0 \mathrm{~V} \\ \hline \end{array}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5		0.8	Volts
ILI	Input Leakage Current	$\mathrm{GND} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\text {c }}$				10	$\mu \mathrm{A}$
Lo	Output Leakage Current	GND $\leqslant V_{O} \leqslant V_{C C}$	$+70^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
		Chip Di	$+125^{\circ} \mathrm{C}$ (DM)			50	
Icc	VCC Supply Current		$0^{\circ} \mathrm{C}$			80	mA
			$-55^{\circ} \mathrm{C}$ (DM)			100	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$				7.0	pF
Co_{0}	Output Capacitance	All pins at OV				7.0	pF

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description		Am9264B		Am9264C		Am9264D		Units
			Test Conditions	Min	Max	Min	Max	Min	Max	
1	t_{A}	Address to Output Access Time	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=20 \mathrm{~ns}$		450		300		250	ns
2	tco	Chip Select to Output ON Delay	Output Load: One Standard TTL Gate Plus 100pF (Note 1)		150		120		100	ns
3	OH	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
4	tof	Chip Select to Output OFF Delay			120		100		80	ns

SWITCHING WAVEFORMS

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Access time - 250ns (max)

Automatic power down feature controlled by separate CE pin.
Separate $O E$ pin for tri-state output control

- Two programmable chip selects with no-connect option
- Pin compatible with 28 pin 64 K and higher density ROMs/EPROMs
- Completely TLL compatible

GENERAL DESCRIPTION

The Am9265 high performance read only memory is organized 8192 words by 8 bits with access times of less than 250 ns . This organization simplifies the design of small memory systems and permits incremental memory sizes of 8192 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Two programmable chip select inputs are provided to control the output buffers. Chip select polarity may be specified by the customer thus allowing the addressing of 4 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9265 devices and other three state components. Noconnect option on chip selects can be provided if desired by the customer.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate $\overline{O E}$, output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.

The Am9265 features an automatic stand-by mode. When deselected by $\overline{C E}$, the maximum supply current is reduced from 80 mA to 20 mA , a 75% reduction.
The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Times	450ns	300ns	250ns
Part Number	Am9265B	Am9265C	Am9265D

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

```
Am9265 B
```



```
C - Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\) M-Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
Package
C - 24-pin CERDIP
D-24-pin ceramic DIP P - 24-pin plastic DIP
- Speed Select
B - 450ns
C - 300ns
D - 250ns
Device Type
8kx 8 ROM
```

Valld Combinations	
Am9265B	PC, CC DC, DM
Am9265C	PC, CC DC
Am9265D	PC, CC DC

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the

ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

ROM		EPROM	
		Preferred	Optional
Am9218	$2 \mathrm{~K} \times 8$	2716	2716
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{k} \times 8$	2764	$4-2176 / 2-2732$

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:

AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
G.I. BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature with
Ambient Tempera $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage... + 7.0 V DC Signal Voltage applied to outputs.......-0.5V to +7.0 V DC Input Voltage................................... 0.5 V to +7.0 V Power Dissipation .. 1.0W
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES
Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	,	Min	Typ	Max	Units
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}^{2}=-400 \mu \mathrm{~A}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\mathrm{IOL}=3.2 \mathrm{~mA}$				0.4	Volts
V_{iH}	Input HIGH Voltage			2.0		$\begin{gathered} V_{c c} \\ +1.0 \mathrm{~V} \end{gathered}$	Voits
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5		0.8	Volts
L	Input Leakage Current	GND $\leqslant V_{1} \leqslant V_{C C}$				10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\begin{aligned} & \text { GND } \leqslant V_{O} \leqslant V_{C C} \\ & \text { Chip Disabled } \end{aligned}$	$+70^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
			$+125^{\circ} \mathrm{C}$ (DM)			50	
1 CCO	VCC Standby Current		$0^{\circ} \mathrm{C}$			20	mA
			$-55^{\circ} \mathrm{C}$ (DM)			25	
1002	Vcc Operating Current		$0^{\circ} \mathrm{C}$			80	mA
			$-55^{\circ} \mathrm{C}$ (DM)			100	
C_{1}	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \text { All pins at } \mathrm{OV} \end{aligned}$				7.0	pF
C_{0}	Output Capacitance					7.0	pF

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

			Test Conditions	Am9265B		Am9265C		Am9265D		Units
No.	Symbol	Description		Min	Max	Min	Max	Min	Max	
1	t_{A}	Address to Output Access Time	$\mathrm{tr}=\mathrm{tt}=10 \mathrm{~ns}$ Output Load One Standard TTL Gate Plus 100pF (Note 1)		450		300		250	ns
2	tco	Chip Select to Output ON Delay			150		120		100	ns
3	toe	Output Enable to Output ON Delay			150		120		100	ns
4	tCE	CE to Output ON Delay			450		300		250	ns
5	tor	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
6	tDF	Chip Select to Output OFF Delay			120		100		80	ns

Notes: 1. Timing reference levels: High $=2.0 \mathrm{~V}$, Low $=0.8 \mathrm{~V}$.
2. tDF is the worst case OFF delay. If $\overline{O E}$ occurs before $\overline{C E}$ and CS/CS are disabled, then tDF is referenced to $\overline{O E}$ only. If $\overline{O E}$, CS/CS and CE are disabled simultaneously, then tDF is referenced to all three.

SWITCHING WAVEFORMS

128K ($16,384 \times 8$) ROM
PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Access time - 250ns (max)
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Automatic power down feature controlled by separate CE pin
- Separate $\overline{O E}$ pin for three-state output control
- Programmable chip select with no-connect option
- Pin compatible with 28 -pin and high density ROMs/ EPROMs

GENERAL DESCRIPTION

The Am92128 high performance read only memory is organized 16,384 words by 8 bits and has access times of less than 250ns. This organization simplifies the design of memory systems and permits incremental memory sizes of 16,384 bytes. The fast access times provided allow the ROM to service high performance microcomputer applications without inserting wait states.

One programmable chip select input is provided to control the output buffers. Chip select polarity may be specified by the customer thus allowing the addressing of 2 memory chips without external gating. The outputs of the unselected chips are turned off and assume a high impedance state.

This permits wire-ORing with additional Am92128 devices and other three-state components.
This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications.
The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

BLOCK DIAGRAM

MODE SELECT TABLE

$\overline{\text { CS }}$ or CS		$\overline{\text { CE }}$	$\overline{\mathrm{OE}}$	Mode	Outputs	Power
H	L	L	X	Deselected	High-Z	Active
H	L	H	X	Deselected	High-Z	Standby
L	H	L	H	Inhibit	High-Z	Active
L	H	H	X	Deselected	High-Z	Standby
L	H	L	L	Read	DouT	Active

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
$X=$ Don't Care

PRODUCT SELECTOR GUIDE

Access Times	450ns	300ns	250ns
Part Number	Am92128B	Am92128C	Am92128D

CONNECTION DIAGRAM
 Top View

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Valid Combinations	
Am92128B	PC, CC, DM
Am92128C	PC, CC
Am92128D	PC, CC

C-28-pin CERDIP
P-28-pin plastic DIP
Speed Select
B - 450ns
C - 300ns
$-250 n s$
Device Type
16kx 8 ROM

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code veritication purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the

ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

	ROM		EPROM	
		Preferred	Optional	
Am9217/18	$2 \mathrm{~K} \times 8$	2716	$2516 / 2-2708$	
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$	
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$	
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$	
Am9128	$16 \mathrm{~K} \times 8$	2128	$2-2764$	

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:
AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
MOTOROLA HEXADECIMAL
EA OCTAL
G.I. BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage... +7.0 V
DC Signal Voltage applied to outputs....... -0.5 V to +7.0 V
DC Input Voltage..................................-0.5V to +7.0 V
Power Dissipation .. 1.0W
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage + 4.5 V to +5.5 V
Military (M) Devices
Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
V_{OH}	Output HIGH Voltage	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$		2.4			Volts
VOL	Output LOW Voltage	$1 \mathrm{OL}=3.2 \mathrm{~mA}$				0.4	Volts
V_{IH}	Input HIGH Voltage			2.0		$\begin{array}{r} V C c \\ +1.0 \mathrm{~V} \end{array}$	Volts
V_{IL}	Input Low Voltage			-0.5		0.8	Volts
IL	Input Leakage Current	$\begin{array}{\|l} \mathrm{GND} \leqslant \mathrm{~V}_{1} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ \hline \begin{array}{l} \mathrm{GND} \leqslant \mathrm{~V}_{0} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ \mathrm{C} \text { Cip Disabled } \end{array} \\ \hline \end{array}$				10	$\mu \mathrm{A}$
ILO	Output Leakage Current		$+70^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
			$+125^{\circ} \mathrm{C}$ (DM)			50	
1001	Vcc Standby Current		$0^{\circ} \mathrm{C}$			25	mA
			$-55^{\circ} \mathrm{C}$ (DM)			30	
ICC2	VCC Operating Current		$0^{\circ} \mathrm{C}$			80	mA
			$-55^{\circ} \mathrm{C}$ (DM)			100	
C_{1}	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \text { All pins at OV } \end{aligned}$				7.0	pF
C_{0}	Output Capacitance					7.0	pF

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditlons	Am92128B		Am92128C		Am92128D		Units
				Min	Max	Min	Max	Min	Max	
1	t_{A}	Address to Output Access Time	$\mathrm{tr}=\mathrm{tf}=10 \mathrm{~ns}$ Output Load: One Standard TTL Gate Plus 100pF (Note 1)		450		300		250	ns
2	t_{CO}	Chip Select to Output ON Delay			150		120		100	ns
3	toe	Output Enable to Output ON Delay			150		120		100	ns
4	${ }^{\text {t }}$ CE	CE to Output ON Delay			450		300		250	ns
5	$\mathrm{tOH}^{\text {r }}$	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
6	tDF	Chip Select to Output OFF Delay			120		100		80	ns

SWITCHING WAVEFORMS

DISTINCTIVE CHARACTERISTICS

- Access time - 250ns (max)
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Automatic power down feature controlled by separate $\overline{C E}$ pin
- Separate $\overrightarrow{O E}$ pin for three-state output control
- Pin compatible with 28 -pin high density ROMs/EPROMs
- TTL compatible

GENERAL DESCRIPTION

The Am92256 high performance read only memory is organized 32,768 words by 8 bits and has access times of less than 250ns. This organization simplifies the design of memory systems and permits incremental memory sizes of 32,768 bytes. The fast access times provided allow the ROM to service high performance microcomputer applications without inserting wait states.

The Am92256 features an automatic stand-by mode. When deselected by $\overline{C E}$, the maximum supply current is reduced from 120 mA to 30 mA , a 75% reduction. The outputs of the deselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am92256 devices and other three-state components.

This memory is fully static and requires no clock signals of any kind. A selected chip will output data from a location specified by the address present on the address input lines. Input and output levels are compatible with TTL specifications. A separate $\overline{O E}$, output enable pin, controls outputs providing greater system flexibility and eliminating bus contention.

The ability to program customer code at the last step of fabrication (Post Metal Programming Technique) results in faster turn around time for new or old patterns. This technique also allows testing of wafers to categorize speed and power dissipation before committing customer patterns.

BLOCK DIAGRAM

MODE SELECT TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	Mode	Outputs	Power
H	X	Deselect	High-Z	Standby
L	H	Inhibit	High-Z	Active
L	L	Read	DOUT	Active

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
X $=$ Don't Care

PRODUCT SELECTOR GUIDE

Access Times	450 ns	300 ns	250 ns
Part Number	Am92256B	Am92256C	Am92256D

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

ROM CODE DATA

AMD's preferred method of receiving ROM code data is in EPROM. Two identically programmed EPROMs should be submitted for code verification purposes. AMD will read one of the EPROMs and store contents in a floppy disk. The contents of the second EPROM are compared with the stored data for consistency. The second EPROM is erased and then reprogrammed and submitted to the customer for verification of the

ROM code, along with code listing. Unless otherwise requested, AMD will not proceed until production is authorized by means of a signed MOS ROM verification form (submitted with code verification data).

The following EPROMs should be used for submitting ROM code data:

ROM		EPROM	
		Preferred	Optional
Am9218	$2 \mathrm{~K} \times 8$	2716	2716
Am9232/33	$4 \mathrm{~K} \times 8$	2732	$2532 / 2-2716$
Am9264	$8 \mathrm{~K} \times 8$	2764	$4-2716 / 2-2732$
Am9265	$8 \mathrm{k} \times 8$	2764	$4-2176 / 2-2732$
Am9128	$16 \mathrm{~K} \times 8$	27128	$2-2764$
Am92256	$32 \mathrm{~K} \times 8$	$2-27128$	42764

If more than one EPROM is used to specify a ROM pattern, the upper and lower address locations must be clearly specified.

CARD FORMAT

If card decks are preferred as code inputs, the following industry standard formats are acceptable:

AMD HEXADECIMAL (PREFERRED)
INTEL HEXADECIMAL
INTEL BPNF
OTOROLA HEXADECIMAL
EA OCTAL
GI BINARY

PAPER TAPE FORMAT

If punched paper tape is preferred as code input, most industry standard formats are acceptable. Verify with factory before submittal.

CHIP SELECT INFORMATION

Regardless of the method of submitting ROM code data, the chip select information must be specified at the time of customer input data. EPROMs do not have programmable chip selects and, therefore, cannot provide the required chip select information.

KEY POINTS

- Supply 2 sets of identically programmed EPROMs.
- Specify customer part number and appropriate AMD part number.
- Supply marking information.
- Identify upper and lower address location when more than one EPROM is used.
- Cover EPROM window with opaque material to prevent bit loss.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage ... +7.0 V
DC Signal Voltage applied to outputs....... -0.5 V to +7.0 V
DC Input Voltage...................................-0.5V to +7.0 V
Power Dissipation ... 1.0W
The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
V_{OH}	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4			Volts
V_{OL}	Output LOW Voltage	$\mathrm{OL}=3.2 \mathrm{~mA}$				0.4	Volts
V_{IH}	Input HIGH Voltage			2.0		$\begin{array}{r} \\ V_{C C} \\ +1.0 \mathrm{~V} \\ \hline \end{array}$	Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5		0.8	Volts
ll	Input Leakage Current	GND $\leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\text {cC }}$				10	$\mu \mathrm{A}$
Lo	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ & \text { Chip Disabled } \end{aligned}$	$+70^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
$\mathrm{IcC1}$	VCC Standby Current		$0^{\circ} \mathrm{C}$			30	mA
Icc2	Vcc Operating Current		$0^{\circ} \mathrm{C}$			120	mA
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ All pins at oV				7.0	pF
Co_{0}	Output Capacitance					7.0	pF

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

			Test Conditions	Am92256B		Am92256C		Am92256D		Units
No.	Symbol	Description		Min	Max	Min	Max	Min	Max	
1	${ }_{\text {t }}$ A	Address to Output Access Time	$t r=t f=10 \mathrm{~ns}$ Output Load: One Standard TTL Gate Plus 100pF (Note 1)		450		300		250	ns
2	toe	Output Enable to Output ON Delay			150		120		100	ns
3	tCE	CE to Output ON Delay			450		300		250	ns
4	OH	Previous Read Data Valid with Respect to Address Change		20		20		20		ns
5	$t_{\text {DF }}$	Chip Select to Output OFF Delay.			120		100		80	ns

Notes: 1. Timing reference levels: High $=2.0 \mathrm{~V}$ Low $=0.8 \mathrm{~V}$.
2. $t_{D F}$ is the worst case OFF delay. If $\overline{O E}$ occurs before $\overline{C E}$ is disabled, then tDF is referenced to $\overline{O E}$ only. If $O E$, and $C E$ are disabled simultaneously, then tof is referenced to both.

SWITCHING WAVEFORMS


```
INDEX SECTION
    NUMERICAL DEVICE INDEX
    FUNCTIONAL INDEX AND SELECTION GUIDE
    APPLICATION NOTE
```


BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
PROGRAMMABLE ROM (EPROM)

GENERAL INFORMATION
 PACKAGE OUTLINES SALES OFFICES

MOS UV Erasable Programmable ROM (EPROM) Index

Am1702A
Am2716/Am9716
Am2732
Am2732A
Am2764
Am9864
Am27128
Am27256
Am27512
256×8-Bit Programmable ROM ...6-1
2048×8-Bit UV Erasable PROM ...6-8
4096×8-Bit UV Erasable PROM6-14
4096×8-Bit UV Erasable and one-time \quad programmable EPROMs ..6-20
8192×8-Bit UV Erasable and one-time
programmable PROMs..6-27
EEPROM 8192×8-Bit Electrically Erasable PROM...............6-36
$16,384 \times 8$-Bit UV Erasable PROM6-42
$32,768 \times 8$-Bit UV Erasable PROM6-51
$65,536 \times 8$-Bit UV Erasable PROM......................................6-59
256×8-Bit Programmable ROM

DISTINCTIVE CHARACTERISTICS

- Access times down to 550 nanoseconds
- 100% tested for programmability
- Inputs and outputs TTL compatible
- Three-state output - wired-OR capability
- Typical programming time of less than 2 minutes/device
- Clocked VGG mode for lower power dissipation

GENERAL DESCRIPTION

The Am1702A is a 2048 -bit electrically programmable ultraviolet light erasable Read Only Memory. It is organized as 256 by 8 bits. It is packaged in a 24 pin dual in-line hermetic cerdip package with a foggy lid.

The transparent lid allows the user to erase any previously stored bit pattern by exposing the die to an ultraviolet (UV)
light source. Initially, and after each erasure, all 2048 bits are in the zero state (output low). The data is selectively written into specified address locations by writing in ones.
A low power version, the Am1702AL, is available which permits the VGG input to be clocked for lower average power dissipation.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Access Time (ns)			Clocked VGG
$\mathbf{1 0 0 0}$	650	550	
Am1702A	Am1702A-2	Am1702A-1	Yes
Am1702AL	Am1702AL-2	Am1702AL-1	No
Am9702AHDL	Am9702A-2HDL	Am9702A-1HDL	No
Am90702ALHDL	Am9702AL-2HDL	Am9702AL-1HDL	Yes

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Am1702A	
$\begin{gathered} \text { Device Typ } \\ 256 \times 8 \end{gathered}$	

Valid Combinations		
		Clocked VGG
Am1702A	DC,	
Am1702A-2	DC,	NO
Am1702A-1	DC	
Am1702AL	DL,	
Am1702AL-2	DL,	YES
Am1702AL-1	DL	
Am9702AHDL	DL,	NO
Am9702A-2HDL	DL,	
Am9702AL-1HDL	DL	
Am90702AL-HDL		
Am90702AL-2HDL	DL	YES
Am90702AL-1HDL		

PROGRAMMING THE Am1702A

Each storage node in the Am1702A consists of an MOS transistor whose gate is not connected to any circuit element. The transistors are all normally off, making all outputs LOW in an unprogrammed device. A bit is programmed to a HIGH by applying a large negative voltage to the MOS transistor; electrons tunnel through the gate insulation onto the gate itself. When the programming voltage is removed, a charge is left on the gate which holds the transistor on. Since the gate is completely isolated, there is no path by which the charge can escape, except for random high energy electrons which might retunnel through the gate insulation. Under ordinary conditions retunneling is not significant. The application of high energy to the chip through X-rays or UV light (via the quartz window) raises energy levels so that the charge can escape from the gate region, erasing the program and restoring the device to all LOW.

In order to program a specified byte, all 8 address lines must be In the binary complement of the address desired when pulsed VDD and VGG move to their negative level. The complemented address must be stable for at least tACW before VDD and VGG make their negative transitions. The voltage swing of the address lines during programming is between $-47 \mathrm{~V} \pm 1 \mathrm{~V}$ and VV . The addresses must then make a transition to the true state at least tATW before the program pulse is applied. For good data retention, the addresses should be programmed in sequence from 0 to 255 , a minimum of 32 times. DO1 through DO8 are used as the data inputs to program the desired pattern. A low level at the data input
$(-47 \mathrm{~V} \pm 1 \mathrm{~V})$ will program the selected bit to 1 and a high level (OV) will program it to a 0 . All 8 bits addressed are programmed simultaneously.

Programming Boards are available for the Data I/O automatic programmer (part number 1010/1011), for the Spectrum Dynamics programmer (part number 434-549), and for the Pro-Log programmer (part number PM9001).

ERASING THE Am1702A

The Am1702A may be erased (restored to all LOW's) by exposing the die to ultraviolet light from a high intensity source. The recommended dosage is $6 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ at a wavelength of 2537 Å. The Ultraviolet Products, Inc., models UVS-54 or S-52 can erase the Am1702A in about 15 minutes; with the devices held one inch from the lamp. (Caution should be used when Am1702A's are inspected under fluorescent lamps after being programmed, as some fluorescent lamps may emit sufficient UV to erase or "soften" the PROM.)

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.
Ultraviolet lamps can also ionize oxygen and create ozone which is harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
LIIP	Input Current, Address and Data	$V_{1}=-48 \mathrm{~V}$			10	mA
ILI2P	Input Current, Program and V_{GG} Inputs	$V_{1}=-48 \mathrm{~V}$			10	mA
IBB	$V_{B B}$ Current			0.05		mA
IDDP	IDD Current During Programming Pulse	$V_{D D}=V_{\text {Prog }}=-48 \mathrm{~V}, \mathrm{~V}_{G G}=-35 \mathrm{~V}$		200	Note 8	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Voltage				0.3	Volts
$V_{\text {ILIP }}$	Voltage Applied to Output to Program a HIGH		-46		-48	Volts
$V_{\text {IL2P }}$	Input LOW Level on Address Inputs	.	-40		-48	Volts
VIL3P	Voltage Applied to VDD and Program Inputs		-46		-48	Volts
$\mathrm{V}_{\text {IL4 }} \mathrm{P}$	Voltage Applied to VGG Input		-35		-40	Volts
$t_{\phi \text { PW }}$	Programming Pulse Width	$V_{G G}=-35 \mathrm{~V}, V_{D D}=V_{\text {Prog }}=-48 \mathrm{~V}$			3.0	ms
tow	Data Set-up Time		25			$\mu \mathrm{s}$
tDH	Data Hold Time		10			$\mu \mathrm{s}$
tVw	$V_{G G}$ and $V_{\text {DD }}$ Set-up Time		100			$\mu \mathrm{s}$
tvo	V_{GG} and V_{DD} Hold Time		10		100	$\mu \mathrm{s}$
$t_{\text {ACW }}$	Address Set-up Time (Complement)		25			$\mu \mathrm{s}$
$\mathrm{taCH}^{\text {A }}$	Address Hold Time (Complement)		25			$\mu \mathrm{s}$
$\mathrm{tatw}^{\text {at }}$	Address Set-up Time (True)		10			$\mu \mathrm{s}$
$t_{\text {ATH }}$	Address Hold Time (True)		10			$\mu \mathrm{s}$
	Duty Cycle				20	\%

PROGRAMMING WAVEFORMS

WF000270

ABSOLUTE MAXIMUM RATINGS	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied......	$.55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input and Supply Voltages	
Operating $\mathrm{V}_{\mathrm{CC}}-20 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Programming.	-50V
Power Dissipation	.1.0W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES

Temperature
1702 Devices
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
9702 Devices
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Voltages
$V_{C C} V_{B B} \ldots \ldots .+4.75 \mathrm{~V}$ to +5.25 V

Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Notes:

1. During read operations VGG may be clocked high to reduce power consumption. This involves swinging VGG up to VCC. See "Clocked VGG Operation". This mode is possible only with the Am1702AL.
2. During Read operations:

Pins 12, 13, 15, 22, $23=+5.0 \mathrm{~V} \pm 5 \%$
Pins 16, $24=-9.0 \mathrm{~V} \pm 5 \%$
During Program operations:

$t_{A}=25^{\circ} \mathrm{C}$

Pins 12, 22, $23=0 \mathrm{~V}$
Pins 13, 24 are pulsed low from $0 V$ to $-47 \mathrm{~V} \pm 1 \mathrm{~V}$
Pin $15=+12.0 \mathrm{~V} \pm 10 \%$
Pin 16 is pulsed low from OV to $-37.5 \mathrm{~V} \pm 2.5 \mathrm{~V}$
3. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$, nominal supply voltages and nominal processing parameters.
4. IDD may be reduced by pulsing the VGG supply between VCC and -9V. VDD current will be directly proportional to the VGG duty cycle. The data outputs will be unaffected by address or chip select changes while VGG is at VCC. For this option specify AM1702AL.
5. $\mathrm{VIL}=0 \mathrm{~V}, \mathrm{VIH}=4.0 \mathrm{~V}, \mathrm{tr}=\mathrm{tf} \leqslant 50 \mathrm{~ns}$, Load $=1 \mathrm{TTL}$ gate.
6. The output will remain valid for tOHC after the VGG pin is raised to VCC, even if address change occurs.
7. These parameters are guaranteed by design and are not 100% tested.
8. Do not allow IDD to exceed 300 mA for more than $100 \mu \mathrm{sec}$.

Access Time Versus Load Capacitance

Access Time Versus Temperature

Average Current Versus Duty Cycle for Clocked VGG

IDD Current Versus Temperature

Output Current Versus Temperature

OP000330

Output Current Versus VDD Supply Voltage

Output Sink Current Versus Output Voltage

OP000340

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	$\begin{aligned} & \text { Am1702A-1 } \\ & \text { Am1702AL-1 } \\ & \text { Am9702A-1 } \\ & \text { Am9702AL-1 } \end{aligned}$		$\begin{aligned} & \text { Am1702A-2 } \\ & \text { Am1702AL-2 } \\ & \text { Am9702A-2 } \\ & \text { Am9702AL-2 } \end{aligned}$		$\begin{gathered} \text { Am1702A } \\ \text { Am1702AL } \\ \text { Am9702A } \\ \text { Am9702AL } \end{gathered}$		Unit
			Min	Max	Min	Max	Min	Max	
1	$t_{\text {ACC }}$	Address to Output Access Time		550		650		1000	ns
2	t_{CO}	Output Delay from CS		450		350		900	ns
3	tCS	Chip Select Delay		100		300		- 100	ns
4	tovgG	Set-up Time, VGG	0.3		0.3		0.4		$\mu \mathrm{s}$
5	tod	Output Deselect		300		300		300	ns
6	${ }_{\text {t }}$ D	Previous Read Data Valid		100		100		100	ns
7	torc	Data Out Valid from VGG (Note 6)		5.0		5.0		5.0	$\mu \mathrm{s}$
8	freq.	Repetition Rate		1.8		1.6		1.0	MHz

SWITCHING WAVEFORMS

READ OPERATION (Note 2)

WF000450

Note 1: CLOCKED VGG OPERATION

The VGG input may be clocked between +5 V (VCC) and -9V to save power. To read the data, the chip select (CS) must be low ($\leqslant \mathrm{VIL}$) and the VGG level must be lowered to -9 V at least tDVGG prior to the address selection. Once the data has appeared at the output and the access time has elapsed, VGG
may be raised to +5 V . The data output will remain stable for tOHC. To deselect the chip, $\overline{\mathrm{CS}}$ is raised to $\geqslant \mathrm{VIH}$, and the output will go the high impedance state after tOD. The chip will be deselected when $\overline{\mathrm{CS}}$ is raised to VIH whether the VGG is at +5 V or at -9 V .

Am2716/Am9716

2048×8-Bit UV Erasable PROM

DISTINCTIVE CHARACTERISTICS

- Direct replacement for Intel 2716
- Interchangeable with Am9218 - 16K ROM
- Single +5 V power supply
- Low power dissipation
-525 mW active
- 132mW standby
- Fully static operation - no clocks
- Three-state outputs

GENERAL DESCRIPTION

The Am2716/Am9716 is a 16384-bit ultraviolet erasable and programmable read-only memory. It is organized as 2048 words by 8 bits per word, operates from a single +5 V supply, has a static standby mode and features fast single address location programming.

Because the Am2716/Am9716 operates from a single +5V supply, it is ideal for use in microprocessor systems. All programming signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 100 seconds.

BLOCK DIAGRAM

MODE SELECT TABLE

$\overline{\text { CE/PGM }}$ (18)	$\begin{aligned} & \overline{\mathrm{OE}} \\ & (20) \end{aligned}$	$V_{\text {PP }}$ (21)	Outputs $(9-11,13-17)$	Mode
L	L	$V_{\text {cc }}$	DOUT	Read
H	X	$V_{C C}$	High Z	Standby
Pulsed L to H	H	$V_{\text {PP }}$	DIN	Program
L	L	VPP	DOUT	Program Verify
L	H	VPP	High Z	Program Inhibit

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
X = Don't Care

PRODUCT SELECTOR GUIDE

Access Tlme	300ns	350ns	390 ns	450 ns
Part Numbers	Am9716	Am2716-1	Am2716-2	Am2716

ERASING THE Am2716/Am9716

In order to clear all locations of their programmed contents, it is necessary to expose the Am2716/Am9716 to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required to completely erase an Am2716/Am9716. This dosage can be obtained by exposure to an ultraviolet lamp [wavelength of 2537 Angstroms (\AA)] with intensity of $12000 \mathrm{uW} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2716/Am9716 should be about one inch from the sourse and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am2716/Am9716, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537 \AA, nevertheless the exposure to florescent light and sunlight will eventually erase the Am2716/Am9716, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2716/Am9716

Upon delivery, or after each erasure the Am2716/Am9716 has all 16384 bits in the "1," or high state. " 0 "' are loaded into the Am2716/Am4716 through the procedure of programming.
The programming mode is entered when +25 V is applied to the VPP pin and when $\overline{O E}$ is at $V_{I H}$. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL high level pulse is applied to the CE/PGM input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC level to the CE/PGM input is prohibited when programming.

READ MODE

The Am2716/Am9716 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be
used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (t CE) for all devices. Data is available at the outputs 120 ns or 150 ns ($\mathrm{t} O \mathrm{E}$) after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least tacc-toe.

STANDBY MODE

The Am2716/Am9716 has a standby mode which reduces the active power dissipation by 75%, from 525 mW to 132 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am2716/Am9716 is placed in the standby mode by applying a TTL high signal to the CE input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 -line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2716/Am9716s in parallel with different data is also easily accomplished. Except for CE/ PGM, all like inputs (including OE) of the parallel Am2716/ Am9716s may be common. A TTL level program pulse applied to an Am2716/Am9716's CE/PGM input with VPP at 25 V will program that Am2716/Am9716. A low level CE/PGM input inhibits the other Am2716/Am9716 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed with V_{PP} at 25 V . Except during programming and program verify, $V_{P P}$ must be at $V_{C C}$.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Max	Units
ILI	Input Current	$V_{1 N}=5.25 / 0.45 \mathrm{~V}$		10	$\mu \mathrm{A}$
IPP1	VPP Supply Current	$\overline{C E} /$ PGM $=V_{\text {IL }}$		5	mA
IPP2	VPP Supply Current During Programming Pulse	$\overline{C E} / P G M=V_{1 H}$		30	mA
ICC	VCC Supply Current			100	mA
V_{IL}	Input Low Level		-0.1	0.8	Volts
V_{H}	Input High Level		2.0	$\begin{aligned} & v_{C C} \\ & +1 \end{aligned}$	Volts
$t_{\text {AS }}$	Address Set-up time	Input $t_{\text {R }}$ and $t_{F}(10 \%$ to $90 \%)=20 \mathrm{~ns}$ Input Signal Levels $=0.8$ to 2.2 V Input Timing Reference Level $=1 \mathrm{~V}$ and 2 V Output Timing Reference Level $=0.8 \mathrm{~V}$ and 2 V	2		$\mu \mathrm{s}$
toes	Output Enable Set-up Time		2		$\mu \mathrm{s}$
${ }_{\text {t }}$ S	Data Set-up Time		2		$\mu \mathrm{s}$
$t_{\text {AH }}$	Address Hold Time		2		$\mu \mathrm{s}$
tOEH	Output Enable Hold Time		2		$\mu \mathrm{s}$
${ }_{\text {t }}$	Data Hold Time		2		$\mu \mathrm{s}$
$t_{D F}$	Output Disable to Output Float Delay(CE/ PGM $=\mathrm{V}_{\mathrm{IL}}$)		0	120	ns
toe	Output Enable to Output Delay (CE/PGM $=V_{I L}$)			120	ns
tPW	Program Pulse Width		45	55	ms
tPRT	Program Pulse Rise Time		5		ns
tpFT	Program Pulse Fall Time		5		ns

Notes:

1. VCC must be applied simultaneously or before V_{PP} and removed simultaneously or after Vpp.
2. VPP must not be greater than 26 volts including overshoot. Permanent device damage may occur if the device
is taken out of or put into the socket when $V_{P P}=25$ volts is applied. Also, during $\overline{\mathrm{OE}}=\overline{\mathrm{CE}} / \mathrm{PGM}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{PP}}$ must not be switched from 5 volts to 25 volts or vice versa.

PROGRAMMING WAVEFORMS

WF000520

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Voltage on All Inputs/
Outputs (except Vpp............................. +6 V to -0.3 V
Voltage on VPP during programming
+26.5 V to -0.3 V
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltages (2716, 2716-2)+4.75V to +5.25 V
(9716, 2716-1) $\ldots \ldots . . .+4.5 \mathrm{~V}$ to +5.5 V
Industrial (i) Devices
Temperature $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage
+4.75 V to +5.25 V
Military (M) Devices
Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage
.+4.5 V to +5.5 V
Operating ranges define those limits over which the functional-
ity of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
L1	Input Load Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ Max				10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$				10	
ILO	Output Leakage Current	$V_{\text {OUT }}=V_{\text {CC }}$ Max				10	
		$V_{\text {OUT }}=0 \mathrm{~V}$				10	
Ipp	Programming Current	$\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {CC }}$ Max				5	mA
Iccss	Standby Supply Current	$\overline{C E}=V_{I H}, \overline{O E}=V_{\text {IL }}$	C devices			25	
			All others			30	
IcCOP	Operating Supply Current		C.devices			100	
		$\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.	1 devices			110	
			L, M devices			115	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.1		0.8	v
V_{IH}	Input High Voltage			2.0		$\begin{array}{r} \hline V_{c c} \\ +1.0 \mathrm{~V} \end{array}$	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{IOL}^{\text {a }}$ 2.1 mA, $\mathrm{V}_{\text {CC }}=\mathrm{Min}$				0.45	
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		2.4			
$\mathrm{CiN}^{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			4	6	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			8	12	

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions (Note 3)	Min Values	Maximum Values						Units
				All Types	9716 DC	$\begin{gathered} 2716-1 \\ \text { DC } \end{gathered}$	$\begin{gathered} 2716-2 \\ \text { DC } \end{gathered}$	2716 DC	$\begin{aligned} & \text { 2716-1 } \\ & \text { DI/DL } \end{aligned}$	$\begin{gathered} 2716 \\ \text { DI/DL/DM } \end{gathered}$	
1	$t_{\text {ACC }}$	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		300	350	390	450	350	450	ns
2	tce	$\overline{\mathrm{CE}}$ to Output Delay	$\overline{O E}=V_{\text {IL }}$		300	350	390	450	350	450	ns
3	toe	Output Enable to Output Delay	$\overline{C E}=V_{\text {IL }}$		120	120	120	120	150	150	ns
4	tDF	Output Enable High to Output Float	$\overline{C E}=V_{\text {IL }}$	0	100	100	100	100	130	130	ns
5	${ }^{\text {toh }}$	Output Hold from Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurred First	$\overline{C E}=\overline{O E}=V_{\text {IL }}$	0							ns

Notes:

1. $V_{C C}$ must be applied simultaneously or before $V_{P P}$ and removed simultaneously or after Vpp.
2. VPP may be connected directly to $V_{C C}$ except during programming. The supply current would then be the sum of ICC and IPP1.
3. Other Test Conditions:
a) Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
b) Input Rise and Fall Times: $\leqslant 20 \mathrm{~ns}$
c) Input Pulse Levels: 0.8 to 2.2 V
d) Timing Measurement Reference Level: Inputs: 1 V and 2 V
Outputs: 0.8 V and 2 V
4. This parameter is only sampled and is not 100% tested.

SWITCHING WAVEFORMS

Notes: 1. $V_{C C}$ must be applied simultaneously or before $V_{P P}$ and removed simultaneously or after $V_{P P}$.
2. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$.
3. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am2732

DISTINCTIVE CHARACTERISTICS

- Direct replacement for Intel 2732
- Pin compatible with Am9233 - 32 K ROM
- Fast access time - 350 ns and 450 ns
- Low power dissipation
- Three-state outputs
- TTL compatible inputs/outputs

GENERAL DESCRIPTION

The Am2732 is a 32768 -bit ultraviolet erasable and programmable read-only memory. It is organized as 4096 words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming.

Because the Am2732 operates from a single +5 V supply, it is ideal for use in microprocessor systems. All programming signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 200 seconds.

PRODUCT SELECTOR GUIDE

Access Time	450 ns	350 ns
Part Numbers	Am2732	Am2732-1

ORDERING INFORMATION

Am2732-1

$\stackrel{C}{L}$ Temperature
C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
I - Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
L - Extended $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$
M- Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
Package
D - 24-pin CERDIP
L - 32-pin leadless chip carrier
Speed Select

- 1 option indicates access time of 350 ns

Device Type
$4 \mathrm{k} \times 8$ EPROM

ERASING THE Am2732

In order to clear all locations of their programmed contents, it is necessary to expose the Am2732 to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required to completely erase an Am2732. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (\AA)] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2732 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am2732, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am2732, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2732

Upon delivery, or after each erasure the Am2732 has all 32768 bits in the " 1 ", or high state. ' 0 " s are loaded into the Am2732 through the procedure of programming.

The programming mode is entered when +25 V is applied to the $\overline{O E} / V P P$ pin. A $0.1 \mu \mathrm{~F}$ capacitor must be placed across $\overline{O E / V P P}$ and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8 -bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL high level pulse is applied to the $\overline{C E} / P G M$ input to accomplish the programming.
The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC low level to the $\overline{C E} / P G M$ input is prohibited when programming.

READ MODE

The Am2732 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip

Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable (\bar{E} / VPP) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs 120 ns (tOE) after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $\mathrm{t}_{\mathrm{ACC}}-$ toes. $^{\text {. }}$

STANDBY MODE

The Am2732 has a standby mode which reduces the active power dissipation by 80%, from 787 mW to 157 mW (values for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$). The Am2732 is placed in the standby mode by applying a TTL high signal to the $\overline{C E}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2732s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}} / \mathrm{PGM}$, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel Am2732s may be common. A TTL level program pulse applied to an Am2732's $\overline{C E} /$ PGM input with VPP at 25 V will program that Am2732. A high level $\overline{C E} / P G M$ input inhibits the other Am2732 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{\text { OE/VPP }}$ and $\overline{C E}$ at VIL. Data should be verified tDV after the falling edge of $\overline{C E}$.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Lis	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
VoL	Output Low Voltage During Verify	$\mathrm{IOL}=2.1 \mathrm{~mA}$			0.45	Volts
VOH	Output High Voltage During Verify	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4			Voits
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current				150	mA
V_{IL}	Input Low Level (All Inputs)		-0.1		0.8	Volts
V_{H}	Input High Level (All Inputs Except $\left.\overline{O E} / V_{P P}\right)$		2.0		$V_{C C+1}$	Volts
Ipp	VPp Supply Current	$\overline{C E}=V_{1 L}, \overline{O E}=V_{P P}$			30	mA
$\mathrm{t}_{\text {AS }}$	Address Set-up Time	Input t_{R} and $t_{F}(10 \%$ to $90 \%)=20$ ns Input Signal Levels $=0.8$ to 2.2 V Timing Measurement Reference Level: Inputs: iV and 2 V Outputs: 0.8 V and 2 V	2			$\mu \mathrm{s}$
toes	Output Enable Set-up Time		2			$\mu \mathrm{s}$
tos	Data Set-up Time		2			$\mu \mathrm{s}$
t_{AH}	Address Hoid Time		2			$\mu \mathrm{s}$
toEr	Output Enable Hold Time		2			$\mu \mathrm{s}$
t_{DH}	Data Hold Time		2			$\mu \mathrm{s}$
tDF	Chip Enable to Output Float Delay		0		120	ns
tov	Data Valid from $\overline{C E}\left(\overline{C E}=V_{l L}\right.$, $\overline{O E}=V_{(L)}$		-		1	ns
tpw	Program Pulse Width		45		55	ms
tPRT	Program Pulse Rise Time		50		-	ns
tvR	Vpp Recovery Time		2		-	ns

Note: 1. When programming the Am2732, a $0.1 \mu \mathrm{~F}$ capacitor is required across $\overline{\mathrm{OE}} / \mathrm{VPP}$ and ground to suppress spurious voltage transients which may damage the device.

PROGRAMMING WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied \qquad $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ Voltage on All Inputs/ Outputs (except VPP) \qquad +6 V to -0.3 V
Voltage on VPP during programming +26.5 V to -0.3 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
ll	Input Load Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ Max				10	$\mu \mathrm{A}$
						10	
lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ Max				10	
		$V_{\text {OUT }}=0 \mathrm{~V}$				10	
ICCSB	Standby Supply Current	$\overline{C E}=V_{\text {IH }}, \mathrm{OE}=\mathrm{V}_{\mathrm{IL}}$	C devices	.		30	mA
			1 devices			40	
			L, M devices			45	
			C devices			150	
ICCOP	Operating Supply Current	$\overline{O E}=\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$	1 devices			165	
			L, M devices			175	
V_{IL}	Input Low Voltage			-0.1		0.8	
$\mathrm{V}_{\mathbf{H}}$	Input High Voltage			2.0		$\begin{array}{r} \mathrm{VCC} \\ +1.0 \mathrm{~V} \\ \hline \end{array}$	v
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$				0.45	
VOH	Output High Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4			
CIN_{1}	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (Note 1)			4	6	
$\mathrm{C}_{\text {IN } 2}$	$\overline{O E} / V_{\text {PP }}$ Input capacitance	$\mathrm{V}_{1 N}=0 \mathrm{~V}$ (Note 1)				20	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 1)				12	

Note 1. This parameter is only sampled and is not 100% tested.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions		2732-1 DC		2732-2 DC		$\begin{aligned} & 2732 \mathrm{DI} \\ & 2732 \mathrm{DL} \\ & 2732 \mathrm{DM} \end{aligned}$		Units
					Min	Max	Min	Max	Min	Max	
1	$t_{\text {ACC }}$	Address to Output Delay	Output load $=1 \mathrm{TTL}$ gate $C_{L}=100 \mathrm{pF}$ t_{R} and $t_{F} \leqslant 20$ ns Input pulse level: 0.8 V to 2.2 V Timing measurement and reference level: Inputs: 1 V and 2 V Outputs 0.8 V and 2 V	$\begin{gathered} C E=\overline{O E}= \\ V_{\text {IL }} \end{gathered}$		350		450		450	ns
2	${ }^{\text {t Ce }}$	CE to Output Delay		$\overline{O E}=\mathrm{V}_{\mathrm{IL}}$		350		450		450	ns
3	toe	Output Enable to Output Delay		$\overline{C E}=\mathrm{V}_{\text {IL }}$		120		120		150	ns
4	tDF	Output Enable High to Output float		$\overline{C E}=\mathrm{V}_{\mathrm{IL}}$	0	100	0	100	0	130	ns
5	tol	Address to Output hold		$\overline{\mathrm{CE}}-\mathrm{OE}=$	0		0		0		ns

SWITCHING WAVEFORMS (Note 1)

WF000290
Notes: 1. OE may be delayed up to 330 ns after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$
2. $t_{D F}$ is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

DISTINCTIVE CHARACTERISTICS

- Fast access times - 200ns, $250 \mathrm{~ns}, 300 \mathrm{~ns}, 450 \mathrm{~ns}$
- New low-cost plastic package for applications not requiring reprogramming
- Low power dissipation
- Three-state outputs
- Pin compatible with Am9233 - 32K-bit ROM
- Separate chip enable and output enable
- 525 mW active, 130 mW standby

GENERAL DESCRIPTION

The Am2732A is a 32768-bit UV-light erasable and electrically programmable read-only memory, organized as 4096 words by 8 -bits. The standard Am2732A offers an access time of 250 ns , allowing operation with high-speed microprocessors without any WAIT state.

To eliminate bus contention in a multiple-bus microprocessor system, Am2732A offers separate Output Enable (OE) and Chip Enable ($\overline{C E}$) controls.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random.

The part is available in an economical plastic package for applications which do not require reprogramming.

PRODUCT SELECTOR GUIDE

Access Times	200ns		250 ns		300 ns		450ns	
Power Supply Tolerance	$\pm 5 \%$	$\pm 10 \%$						
Part Number	Am2732A-2	Am2732A-20	Am2732A-2	Am2732A-25	Am2732A-3	Am2732A-30	Am2732A-4 Am2732A-45	

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Am2732A-20 \quad| Temperature |
| :---: |
| C - Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ |
| I - Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ |
| L - Extended $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$ |
| M - Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ |

Package
$\mathrm{D}-24$-pin CERDIP w/window
$\mathrm{P}-24$-pin plastic DIP

Valid Combinations	
Am2732A	$\mathrm{PC}, \mathrm{DC}, \mathrm{DI}$, DL
Am2732A-2	$\mathrm{DC}, \mathrm{DI}, \mathrm{DL}$
Am2732A-3	
Am2732A-4	
Am2732A-30	
Am2732A-20	$\mathrm{DC}, \mathrm{DI}, \mathrm{DL}$,
Am2732A-25	DM
Am2732A-45	

See Product Select Guide

ERASING THE Am2732A (Does Not Apply to Am2732APC)

In order to erase the Am2732A, it is necessary to expose it to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required for complete erasing. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of $2537 \AA$) with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2732A should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am2732A, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer the exposure to fluorescent light and sunlight will eventually erase the Am2732A, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2732A

Upon delivery, or after each erasure the Am2732A has all 32768 bits in the " 1 ", or high state. " 0 " s are loaded into the Am2732A through the procedure of programming.
The programming mode is entered when +21 V is applied to the $\overline{O E} / V P P$ pin. A $0.1 \mu \mathrm{~F}$ capacitor must be placed across $\overline{O E} /$ VPP and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins; 8 -bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL low level puise is applied to the $\overline{C E} / P G M$ input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. The only requirement is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55msec. Therefore, applying a DC low level to the $\overline{C E} / P G M$ input is prohibited when programming.

READ MODE

The Am2732A has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{O E} / V P P$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{C E}$ to output (t_{CE}). Data is available at the outputs 100 ns (tOE) after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{\text {ACC }}-$ toE.

STANDBY MODE

The Am2732A has a standby mode which reduces the active power dissipation by 75%, from 525 to 130 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am2732A is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2732As in parallel with different data is also easily accomplished. Except for CE/PGM, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel Am2732A's may be common. A TTL level program pulse applied to an Am2732A's $\overline{\mathrm{CE}} / \mathrm{PGM}$ input with VPP at 21V will program that Am2732A. A high-level $\overline{\mathrm{CE}} / \mathrm{PGM}$ input inhibits the other Am2732A's from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{O E} / V P P$ and $\overline{C E}$ at $V_{I L}$. Data should be verified tDV after the falling edge of $\overline{C E}$.

SYSTEM APPLICATION FOR Am2732A

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on Am2732A arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{C C}$ and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Max	Units
l l	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Input Low Voltage During Verify	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	Volts
V OH	Output High Voltage During Verity	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4		Volts
ICC	VCC Supply Current			100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Level (All Inputs)		-0.1	0.8	Volts
$\mathrm{V}_{\text {IH }}$	Input High Level (All Inputs Except $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$)		2.0	$\begin{gathered} V_{C C} \\ +1 \end{gathered}$	Volts
IPP	VPP Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{PP}}$		30	mA
tas	Address Set-up time	Input t_{R} and $t_{F}(10 \%$ to $90 \%)=20 n s$ Input Signal Levels $=0.8$ to 2.2 V Input Timing Reference Level $=1 \mathrm{~V}$ and 2 V Output Timing Reference Level $=0.8 \mathrm{~V}$ and 2 V	2		$\mu \mathrm{s}$
toes	Output Enable Set-up Time		2		$\mu \mathrm{S}$
tos	Data Set-up Time		2		$\mu \mathrm{S}$
$t_{\text {AH }}$	Address Hold Time		0		$\mu \mathrm{s}$
TOEH	Output Enable Hold Time		2		$\mu \mathrm{S}$
${ }_{\text {t }}$	Data Hold Time.		2		$\mu \mathrm{s}$
$t_{\text {DF }}$	Chip Enable to Output Fioat Delay		0	130	ns
tov	Data Valid From $\overline{C E}\left(\overline{C E}=V_{1 L}, \overline{O E}=V_{1 L}\right)$			1	$\mu \mathrm{s}$
tpw	Program Pulse Width		45	55	ms
tPRT	Program Pulse Rise Time		50		ns
tVR	VPP Recovery Time		2		ns

Note: 1. When programming the Am2732A, it is advisable to connect a $0.1 \mu \mathrm{~F}$ capacitor between $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ and ground to suppress spurious voltage transients which may damage the device.

PROGRAMMING WAVEFORMS

WF000630

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with Power Applied $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Voltage on All Inputs/

$$
\text { Outputs (except VPP) }+6 \mathrm{~V} \text { to }-0.3 \mathrm{~V}
$$

Voltage on VPP during programming \qquad +22 to -0.3 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Temperature
Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial...................................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended $55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages
Am2732A, -2, -3, -4 \qquad +4.75 V to +5.25 V
Am2732A-20, -25, -30, -40. .+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
1 L	Input Load Current	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V			10	$\mu \mathrm{A}$
Lo	Output Leakage Current	$V_{\text {OUT }}=0$ to 5.5 V			10	$\mu \mathrm{A}$
1 pp 1	$V_{\text {PP }}$ Current Read (Note 2)	$\mathrm{V}_{\mathrm{PP}}=5.5 \mathrm{~V}$			1	mA
${ }^{1} \mathrm{CO} 1$	$V_{C C}$ Standby Current (Notes 2, 7)	$\overline{C E}=V_{\text {IH }}, \overline{O E}=V_{\text {IL }}$			25	mA
$\mathrm{l}_{\mathrm{C} 2}$	$\mathrm{V}_{\text {CC }}$ Active Current (Note 2)	$\overline{C E}=\overline{C E}=V_{\text {IL }}$			100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	0 to $70^{\circ} \mathrm{C}$	-0.1		+0.8	Volts
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\left(-40\right.$ to $+85^{\circ} \mathrm{C},-55$ to $+100^{\circ} \mathrm{C},-55$ to $\left.+125^{\circ} \mathrm{C}\right)$	-0.1		+0.6	Volts
V_{IH}	Input High Voltage		2.0		$\mathrm{V}_{\mathrm{CC}}+1$	Volts
V_{OL}	Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	Volts
VOH	Output High Voltage	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4			Volts
$\mathrm{CiN}^{\text {I }}$	Input Capacitance	$\mathrm{V}_{1 \mathrm{I}}=0 \mathrm{~V}$		4	6	pF
$\mathrm{CiN2}^{\text {a }}$	$\overline{O E} / V_{\text {PP }}$ Input Capacitance	$V_{\text {IN }}=0 \mathrm{~V}$			20	pF
Cout	Output Capacitance	$V_{\text {OUT }}=0 \mathrm{~V}$			12	pF

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$ and removed simultaneously or after VPP.
2. VPP may be connected directly to $V_{C C}$ except during programming. The supply would then be the sum of ICC and IPP1.
3. Typical values are for nominal supply voltages.
4. This parameter is only sampled and not 100% tested.
5. Caution: The 2732A must not be removed from or inserted into a socket or board when VPP or $V_{C C}$ is applied.
6. Unless otherwise specified under Test Conditions, all values apply to the appropriate temperature ranges as defined in Ordering Information of this specification.
7. ICC1 limit is 35 mA for Am2732APC.

Notes: 1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$.
2. $t_{D F}$ is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

Am2764

DISTINCTIVE CHARACTERISTICS

- Fast access time - $200 \mathrm{~ns}, 250 \mathrm{~ns}$, and 300 ns
- New low-cost plastic package for applications not requiring reprogramming
- Low power dissipation
-525 mW active, 105 mW standby

GENERAL DESCRIPTION

The Am2764 is a 65536-bit ultraviolet erasable and programmable read-only memory. It is organized as 8192 words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming.

Because the Am2764 operates from a single +5 V supply, it is ideal for use in microprocessor systems. All programming
signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random.

The part is available in an economical plastic package for applications which do not require reprogramming.

PRODUCT SELECTOR GUIDE

Access Times	200ns		250ns		300 ns		450 ns	
Power Supply Tolerance	$\pm 5 \%$	$\pm 10 \%$						
Part Number	Am2764-2	Am2764-20	Am2764	Am2764-25	Am2764-3	Am2764-30	Am2764-4	Am2764-45

CONNECTION DIAGRAM
 Top View

D-28-1
P-28-1

L-32-2

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

```
Am2764-20
            L L_Temperature
                            C - Commercial ( }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70}\mp@subsup{}{}{\circ}\textrm{C}
                            - Industrial (-40 % to +85 C)
                            L - Extended ( }-5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to +100 % C)
                            M-Military (-55'⿳ \o +125 %)
                            Package
                            D-28-pin CERDIP
                        P - 28-pin plastic DIP
                        L - 32-pin leadless chip carrier
Speed Select
See Product Select Guide
Device Type
\(8 \mathrm{k} \times 8\) EPROM
```

Valid Combinations			
Am2764	PC, DC, OI, DL, LC, LI, LL		
Am2764-2	DC, DI, LC, LI		
Am2764-20		\quad	Am2764-25
:---			
Am2764-45		DC, DI, DL,	
:---			
DM, LC, LI,			
LL, LM	,	Am2764-3	DC, DI, DL,
:---	:---		
Am2764-30			
Am2764-4			

ERASING THE Am2764 (Does Not Apply to Am2764PC)

In order to clear all locations of their programmed contents, it is necessary to expose the Am2764 to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required to completely erase an Am2764. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (\AA))] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am2764 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am2764, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537A, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am2764, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

PROGRAMMING THE Am2764

Upon delivery, or after each erasure the Am2764 has all 65536 bits in the " 1 ", or high state. ' 0 "'s are loaded into the Am2764 through the procedure of programming.
The programming mode is entered when +21 V is applied to the VPP pin. A $0.1 \mu \mathrm{~F}$ capacitor must be placed across VPP and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL low level pulse is applied to the $\overline{\text { PGM }}$ input to accomplish the programming.
The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC low level to the $\overline{\text { PGM }}$ input is prohibited when programming.

REDUCING PROGRAMMING TIME OF Am2764

Since the introduction of the 5V 16K-bit EPROM (Am2716), the program pulse width ($T_{P W}$) of EPROMs has been specified at 50 ms per address. Thus the total programming time for the Am2764 would be almost seven minutes
($50 \mathrm{~ms} \times 8192=410 \mathrm{sec}$). It is clearly desirable to reduce this programming time. By using interactive programming techniques, it is possible to reduce programming time for the Am2764 to a minimum of about 45 sec and typically in the range of 90 sec . The flow chart on Page 6-32 shows the Interactive Programming Algorithm. When using the standard programming technique, each address is given a 50 ms program pulse sequentially and then the entire EPROM memory is verified. Interactive algorithms reduce programming time by using shorter (1ms) program pulse and giving each address only as many pulses as necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, an additional pulse is applied for a maximum of 15 pulses. When the data is correctly verified, the address is given an additional 4 X ms "overprogram" pulse; where X is a count of the number of 1 ms pulse interactions that are required (thus the "overprogram" pulse can vary from a minimum of 4 ms to a maximum of 60 ms). This whole process is repeated while sequencing through each áddress of the Am2764. The algorithm is done at
$V_{C C}=V_{P P}=6 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5 \mathrm{~V} \pm 5 \%$.

READ MODE

The Am2764 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}})$ is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs (tOE) after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The Am2764 has a standby mode which reduces the active power dissipation by 80%, from 525 mW to 105 mW (values for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$). The Am2764 is placed in the standby mode by applying a TTL high signal to the $\overline{C E}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device selecting function, while $\overline{\mathrm{OE}}$ be mado a common connection to all devices in the array and connectod to the READ line from the system control bus. This assuros that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2764s in parallel with different data is also easily accomplished. Except for $\overline{C E}$ or $\overline{P G M}$, all like inputs (including $\overline{\mathrm{OE}}$) of the parallel Am2764s may be common. A TTL low-level program pulse applied to an Am2764's $\overline{\text { PGM }}$ input with VPP at 21 V and $\overline{\mathrm{CE}}$ low will program that Am2764. A high-level $\overline{C E}$ or $\overline{\text { PGM }}$ input inhibits the other Am2764s from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{O E}$ and $\overline{C E}$ at $V_{I L}$. Data should be verified toE after the falling edge of $\overline{O E}$. $\overline{P G M}$ must be at V_{IH}.

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Max	Units
ill	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10	$\mu \mathrm{A}$
VOL	Output Low Voltage During Verity	$1 \mathrm{OL}=2.1 \mathrm{~mA}$		0.45	Volts
VOH	Output High Voltage During Verity	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		Volts
ICC2	VCC Supply Current (Active)			100	mA
VIL	Input Low Level (All Inputs)		-0.1	0.8	Volts
$V_{\text {IH }}$	Input High Level		2.0	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ +1 \end{gathered}$	Volts
lpp	VPP Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}=\overline{\mathrm{PGM}}$		30	mA
tas	Address Set-up time	Input t_{R} and $t_{F}(10 \%$ to $90 \%)=20 \mathrm{~ns}$ Input Pulse Levels $=0.45$ to 2.4 V Input Timing Reference Level $=1 \mathrm{~V}$ and 2 V Output Timing Reference Level $=0.8 \mathrm{~V}$ and 2 V	2		$\mu \mathrm{s}$
toes	Output Enable Set-up Time		2		$\mu \mathrm{s}$
tDS	Data Set-up Time		2		$\mu \mathrm{S}$
$t_{\text {AH }}$	Address Hold Time		0		$\mu \mathrm{S}$
toen	Output Enable Hold Time		2		$\mu \mathrm{s}$
t_{DH}	Data Hold Time		2		$\mu \mathrm{s}$
tDF	Chip Enable to Output Float Delay		0	130	ns
tvs	Vpp Setup Time		2		$\mu \mathrm{s}$
tpW	PGM Pulse Width		45	55	ms
tCES	CE Set-up Time		2		$\mu \mathrm{S}$
toe	Data Valid From $\overline{O E}$			150	ns

Notes:

1. Caution: If $V_{C C}$ is not applied simultaneously or before $V_{P p}$ and removed simultaneously or after $V_{P P}$, the 2764 could be damaged.
2. When programming the Am2764, a $0.1 \mu \mathrm{~F}$ capacitor is required across $V_{P P}$ and ground to suppress spurious voltage transients which may damage the device.

STANDARD PROGRAMMING WAVEFORMS (Notes 1, 2 and 3)

WF000410
Notes:

1. All times shown in () are minimum and in μ sec unless otherwise specified.
2. The input timing reference level is 1 V for a V_{IL} and 2 V for a V_{IH}.
3. $t_{O E}$ and $t_{D F}$ are characteristics of the device but must be accommodated by the programmer.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
ILI	Input Current（All Inputs）	$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$			10	$\mu \mathrm{A}$
V_{IL}	Input Low Level（All Inputs）		－0．1		0.8	Volts
V_{IH}	Input High Level		2.0		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +1 \end{gathered}$	Volts
V_{OL}	Output Low Voltage During Verify	$\mathrm{IOL}=2.1 \mathrm{~mA}$			0.45	Volts
V_{OH}	Output High Voltage During Verity	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			Volts
ICC2	VCC Supply Current （Program and Verify）				100	mA
IPP2	VPP Supply Current（Program）	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}=\overline{\mathrm{PGM}}$			30	mA
${ }_{\text {t }}$ S	Address Setup Time		2			$\mu \mathrm{s}$
toes	$\overline{\text { OE Setup Time }}$		2			$\mu \mathrm{s}$
tos	Data Setup Time		2			$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {A }}$	Address Hold Time		0			$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {d }}$	Data Hold Time		2			$\mu \mathrm{s}$
tDF	Chip Enable to Output Float Delay		0		130	ns
tVPS	VPP Setup Time		2			$\mu \mathrm{s}$
tves	VCC Setup Time		2			$\mu \mathrm{s}$
tpw	$\overline{\text { PGM Initial Program Pulse Width }}$		0.95	1.0	1.05	ms
topw	$\overline{\text { PGM Overprogram Pulse Width }}$	（see Note 2）	3.8		63	ms
${ }^{\text {t CeS }}$	$\overline{\mathrm{CE}}$ Setup Time		2			$\mu \mathrm{s}$
toe	Data Valid from $\overline{O E}$				150	ns

Notes：

1．Caution：If $V_{C C}$ is not applied simultaneously or before $V_{P P}$ and removed simultaneously or after $V_{P P}$ ，the 2764 could be damaged．

2．When programming the Am2764，a $0.1 \mu \mathrm{~F}$ capacitor is required across $V_{P P}$ and ground to suppress spurious voltage transients which may damage the device．

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS（Notes 1， 2 and 3）

WF000390
Notes：
1．All times shown in［］are minimum and in $\mu \mathrm{sec}$ unless otherwise specified．
2．The input timing reference level is 8 V for a V_{IL} and 2 V for a V_{IH} ．
3．TOE and $t_{D F}$ are characteristics of the device but must be accommodated by the programmer．

PF000010

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature withPower Applied........................ $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Supply Voltage...........................+22V to -0.6 VDC Voltage Applied to All Inputs/Outputs................................... +7.0 V to -0.6 VDC Layout Voltage...................... 0.5 V to +7.0 VPower Dissipation 1.0

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

SWITCHING TEST CIRCUIT

$C_{L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions		Min Values	Maximum Values				Units
					$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$	$\begin{gathered} 2764-20 \\ 2764-2 \end{gathered}$	$\begin{gathered} 2764-25 \\ 2764 \\ 2764 \mathrm{PC} \end{gathered}$	$\begin{gathered} 2764-30 \\ 2764-3 \end{gathered}$	$\begin{gathered} 2764-45 \\ 2764-4 \end{gathered}$	
1	taCC	Address to Output Delay	Output load: I TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times $\leqslant 20 \mathrm{~ns}$ Input Puise levels: 0.45 V to 2.4 V Timing measurement reference level: Inputs: 1V and 2V Outputs: 0.8 V and 2 V	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=$		200	250	300	450	ns
2	tce	CE to Output Delay		$\overline{O E}=V_{1 L}$		200	250	300	450	ns
3	toe	Output Enable to Output Delay		$\overline{C E}=V_{\text {IL }}$		75	100	120	150	ns
4	$t_{D F}$ (Note 4)	Output Enable High to Output float		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	0	60	85	105	130	ns
5	$\left\lvert\, \begin{aligned} & \text { toh } \\ & \text { (Note 4) } \end{aligned}\right.$	Output Hold from Addresses, $\overline{C E}$ or $\overline{O E}$ whichever Occured First		$\left\|\begin{array}{c} \overline{C E}=\overline{O E}= \\ V_{I L} \end{array}\right\|$	0			,		ns

Notes:

1. $V_{C C}$ must be applied simultaneously or before $V_{P P}$ and removed simultaneously or after Vpp.
2. $V_{P P}$ may be connected directly to V_{CC} except during programming. The supply would then be the sum of ICC and IPP1.
3. Typical values are for nominal supply voltages.
4. This parameter is only sampled and not 100% tested.
5. Caution: The 2764 must not be removed from or inserted into a socket or board when VPP or VCC is applied.
6. Unless otherwise specified under Test Conditions, all values apply to the appropriate temperature ranges as defined in Ordering Information of this specification.
7. $\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$ for Am2764-4 and Am2764-45, and the Am2764PC.

SWITCHING WAVEFORMS

Notes: 1. OE may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$.
2. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am9864

8192×8-Bit Electrically Erasable PROM

DISTINCTIVE CHARACTERISTICS

- 5V only operation
- Ready/Busy Pin for end of write indication
- Fast Read Access Time

Am9864-2 - 200ns
Am9864 - 250ns
Am9864-3 - 350ns

- Data Protection Features to prevent writes from occurring during V_{CC} power up/down
- Minimum endurance of 10,000 write cycles per byte with a 10 year data retention

GENERAL DESCRIPTION

The Am9864 is a 65,536 bit Electrically Erasable Programmable Read Only Memory (EEPROM), organized as 8192 words by 8 bits per word. It operates from a single 5 volt supply and has a fully self timed write cycle with address, data and control lines latched during the write operation. The Am9864 is fabricated on AMD's highly manufacturable N-Channel Silicon gate process, and uses AMD's proprietary EEPROM technology to achieve the Electrically

Alterable Nonvolatile Storage. This technology employs the industry accepted Fowler-Nordheim tunneling across a thin oxide.
The Am9864 provides on chip the logic necessary to interface with most microprocessors. The latched inputs and self timed write cycle free the microprocessor to perform other tasks during a write. A transparent automatic erase before write enhances system performance.

BLOCK DIAGRAM

MODE SELECT TABLE

$\begin{aligned} & \overline{C E} \\ & \text { (20) } \end{aligned}$	$\begin{gathered} \overline{\mathrm{OE}} \\ \text { (22) } \end{gathered}$	$\begin{aligned} & \overline{W E} \\ & \text { (27) } \end{aligned}$	R/ \bar{B} (1)	$\begin{gathered} 1 / 0 \\ (11-13, \\ 15-19) \end{gathered}$	Mode
L	L	H	H	Data Out	Read
L	H	二	L	Data in	Write
H	X	X	H	Hi Z	Standby
L	H	H	H	Hi Z	Read Inhibit
L	L	L	H	Hi Z	Write Inhibit

$$
\mathrm{H}=\mathrm{HIGH}
$$

$\mathrm{L}=\mathrm{LOW}$
$\mathrm{X}=$ Don't Care

PRODUCT SELECTOR GUIDE

Part Number	Am9864-2	Am9864-20	Am9864	Am9864-25	Am9864-3
Supply Voltage	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 5 \%$
Temperature Range	0 to $70^{\circ} \mathrm{C}$		0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	
Access Time	200 ns		250 ns	350 ns	
Chip Select	200 ns	250 ns	350 ns		
Output Enable	75 ns		100 ns	120 ns	

Read Mode

The Am9864 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{C E}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from CE to output ($\mathrm{t} C \mathrm{E}$). Data is available at the outputs toE after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{\text {OE }}$.

Standby Mode

The Am9864 has a standby mode which reduces the active power dissipation by 60%, from 525 mW to 210 mW (values for 0 to $70^{\circ} \mathrm{C}$). The Am9864 is placed in the standby mode by applying a TTL high signal to the $\overline{C E}$ input. When in the standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

Data Protection

The Am9864 incorporates several features that prevent unwanted write cycles during $V_{C C}$ power up and power down. These features protect the integrity of the stored data.
To avoid the initiation of a write cycle during $V_{C C}$ power up and power down, a write cycle is locked out for $V_{C C}$ less than 3.8 volts. It is the user's responsibility to insure that the control levels are logically correct when V_{CC} is above 3.8 volts.
There is a $\overline{W E}$ lockout circuit that prevents WE pulses of less than 20 ns duration from initiating a write cycle.

When the $\overline{O E}$ control is in logic zero condition, a write cycle cannot be initiated.

Write Mode

The Am9864 has a write cycle that is similar to that of a Static RAM. The write cycle is completely self timed, and initiated by a low going pulse on the $\overline{W E}$ pin. On the falling edge of $\overline{W E}$ the address information is latched. On the rising edge, the data and the control pins ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$) are latched. The Ready/ Busy pin (pin 1) goes to a logic low level indicating that the

Am9864 is in a write cycle which signals the microprocessor host that the system bus is free for other activity. When Ready/Busy goes back to a high the Am9864 has completed writing, and is ready to accept another cycle.

Output Or-Tieing

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

Ready/Busy Pin

The Ready/Busy output (pin 1) when tied to a system interrupt allows a writing operation to be defined by one microprocessor cycle time. The state of this output is determined by the Am9864 and must not be externally forced. When not used this pin must be kept floating.

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EEPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{C C}$ and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied.................................. $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Voltage on All Inputs/with
Respect to GND............................. +6.25 V to -0.6 V
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Supply Voltage +4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	Mln	Typ ${ }^{1}$	Max	Units
IL	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V			10	$\mu \mathrm{A}$
lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0$ to 5.5 V			10	$\mu \mathrm{A}$
ICC1	$\mathrm{V}_{\text {CC }}$ Current (Standby)	$\overline{C E}=V_{I H}, \overline{O E}=V_{\text {IL }}$			40	mA
ICC2	$V_{C C}$ Current (Active)	$\bar{O} E=\overline{C E}=V_{I L}$			100	mA
Icc	$V_{C C}$ Current (Write)	$\overline{W E}=乙, ~ \overline{C E}=V_{\text {IL }}, \overline{O E}=V_{\text {IH }}$			120	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.1		. 8	V
V_{IH}	Input High Voltage		2.0		$\mathrm{V}_{\mathrm{CC}}+1$	V
V_{OL}	Output Low Voltage	$\mathrm{IOL}=2.1 \mathrm{~mA}$. 45	V
VOH	Output High Voltage	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4			V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		4	10	pF
Cout	Output Capacitance	$\overline{\mathrm{OE}}=\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}$		8	12	pF

Note 1. This parameter is only sampled and not 100% tested.

SWITCHING TEST CIRCUIT

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

				Am9864-2, 20				Am9864, -25	Am9864-3		
No.	Symbol	Parameter	Test Conditions	Min	Max	Min	Max	Min.	Max	Units	

READ

1	$t_{\text {ACC }}$	Address to Output Delay	$\overline{W E}=V_{I H}$ Output Load: 1 TTLgate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: $\leqslant 20 \mathrm{~ns}$ Input Pulse Levels: 0.45 to 2.4 V Timing Measurement Reference Level: Inputs: 1V and 2V Outputs: 0.8 V and 2 V
2	tCE	CE to Output Delay	
3	toe	Output Enable to Output Delay	
4	$\begin{aligned} & \text { tDF } \\ & \text { (Note 1) } \end{aligned}$	Output Enable High to Output Float	
5	$\begin{aligned} & \text { tor } \\ & \text { (Note 1) } \end{aligned}$	Output Hold from Addresses, CE or $\overline{O E}$ WhicheverOccurred First	

$\overline{C E}=\overline{O E}=V_{I L}$		200		250		350
$\overline{O E}=V_{I L}$		200		250		350
$\overline{C E}=V_{I L}$		75		100		120
$\overline{C E}=V_{I L}$	0	60	0	60	0	80
$\overline{C E}=\overline{O E}=V_{I L}$	0		0		0	

WRITE

1	$t_{\text {AS }}$	Address to Write Setup Time		20		20		60		ns
2	tcs	CE to Write Setup Time		20		20		20		
3	twP	Write Pulse Width		100		100		150		
4	${ }_{\text {t }}{ }_{\text {A }}$	Address Hold Time		80		80		100		
5	tos	Data Setup Time		50		50		70		
6	${ }_{\text {t }}^{\text {DH }}$	Data Hold Time		20		20		20		
7	t_{CH}	CE Hold Time		50		50		50		
8	toes	OE Setup Time		20		20		20		
9	TOEH	OE Hold Time		35		35		35		
10	tDB	Time to Device Busy	, .		100		100		100	
11	tWR	Bytes Write Cycle			10		10		20	ms
12	$t_{\text {RE }}$	Write Recovery Time		0		0		0		ns
13	$\begin{aligned} & \text { tRBO } \\ & \text { (Note 2) } \end{aligned}$	R/B ${ }^{\text {B }}$ to Output Time			50		50		50	
14		Number of Writes per Byte		10		10		10		$\times 1000$

Notes:

1. This parameter is sampled and is not 100% tested.
2. If $\overline{C E}$ and $\overline{O E}=V_{I L}$ when $R B$ is going to $V_{O H}$, then DOUT becomes valid after $t_{\text {RBO }} n$ ns.

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$.
2. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27128

DISTINCTIVE CHARACTERISTICS

－Fast access time－as low as 150ns
－Low power consumption
－Separate chip enable and output enable controls
－TTL compatible inputs／outputs
－Pin compatible to Am2764 EPROM and Am92128－128K ROM
－Fast programming time（3 min typical）

GENERAL DESCRIPTION

The Am27128 is a 131，072－bit UV－light erasable and electrically programmable read－only memory．It is orga－ nized as 16384 words by 8 －bits per word．The standard Am27128 offers access time of 250 ns ，allowing operation with high－speed microprocessors without any WAIT state．

To eliminate bus contention in a multiple－bus microproces－ sor system，the Am27128 offers separate output enable （ $\overline{\mathrm{OE}}$ ）and chip enable（ $\overline{\mathrm{CE}}$ ）controls．

All signals are TTL levels，including programming signals． Bit locations may be programmed singly，in blocks or at random．To reduce programming time，the Am27128 may be programmed using 1 ms pulses．Typically，Am27128 can be programmed in three minutes．See Flow Chart on page $6-41$ for details．

PRODUCT SELECTOR GUIDE

Access Times	150 ns		200 ns		250 ns		300 ns		450 ns	
Supply Tolerance	$\pm 5 \%$	$\pm 10 \%$								
Part Number	Am27128－1	Am27128－15	Am27128－2	Am27128－20	Am27128	Am27128－25	Am27128－3	Am27128－30	Am27128－4	Am27128－45

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

```
Am27128-30
```



```
C - Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
I - Industrial ( \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
L - Extended ( \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) )
M- Military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
Package
D-28-pin CERDIP
—Speed Select
See Product Selector Guide
Device Type
\(16 \mathrm{k} \times 8\) EPROM
```

Valid Combinations	
Am27128-1	DC, DI
Am27128-15	
Am27128-2	DC, DI, DL
Am27128-3	
Am27128-30	
Am27128-4	
Am27128-20	DC, DI, DL,
Am27128-25	DM
Am27128-45	

ERASING THE Am27128

In order to clear all locations of their programmed contents, it is necessary to expose the Am27128 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27128. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (\AA)] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27128 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27128, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537A, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27128, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

PROGRAMMING THE Am27128

Upon delivery, or after each erasure the Am27128 has all 131,072 bits in the " 1 ", or high state. ' 0 ''s are loaded into the Am27128 through the procedure of programming.

The programming mode is entered when +21V is applied to the VPP pin. A $0.1 \mu \mathrm{~F}$ capacitor must be placed across V_{PP} and ground to suppress spurious voltage transients which may damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec , TTL low level pulse is applied to the PGM input to accomplish the programming.
The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec . Therefore, applying a DC low level to the PGM input is prohibited when programming.

REDUCING PROGRAMMING TIME OF THE Am27128

Since the introduction of the 5V 16K-bit EPROM (Am2716), the program pulse width ($T_{P W}$) of EPROMs has been specified at 50 ms per address. Thus the total programming time for the Am27128 would be almost fourteen minutes ($50 \mathrm{~ms} \times 16,384=820 \mathrm{sec}$). It is clearly desirable to reduce this programming time. By using interactive programming techniques, it is possible to reduce programming time for the Am27128 to a minimum of about 90 sec and typically in the range of 180 sec . The flow chart on Page 6-47 shows the Interactive Programming Algorithm. When using the standard programming technique, each address is given a 50 ms program pulse sequentially and then the entire EPROM memory is verified. Interactive algorithms reduce programming time by using a shorter (1ms) program pulse and giving each address only as many pulses as necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, an additional pulse is applied for a maximum of 15 pulses. When the data is correctly verified, the address is given an additional $4 \mathrm{X} \mathrm{ms} \mathrm{"overprogram"} \mathrm{pulse;} \mathrm{where} X$ is a count of the number of 1 ms pulse interactions that are required (thus the "overprogram" pulse can vary from a minimum of 4 ms to a maximum of 60 ms). This whole process is repeated while sequencing through each address of the Am27128. The algorithm is done
at $V_{C C}=V_{P P}=6 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5 \mathrm{~V} \pm 5 \%$.

READ MODE

The Am27128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection: Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from CE to output (t_{CE}). Data is available at the outputs (toE) after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{0 E}$.

STANDBY MODE

The Am27128 has a standby mode which reduces the active power dissipation by 80%, from 525 mW to 130 mW (values for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$). The Am27128 is placed in the standby mode by applying a $T T L$ high signal to the $\overline{C E}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am27128s in parallel with different data is also easily accomplished. Except for $\overline{C E}$ or $\overline{\text { PGM, all }}$ like inputs (including $\overline{O E}$) of the paraliel Am27128s may be common. A TTL low-level program pulse applied to an Am27128's $\overline{\text { PGM }}$ input with $V_{P P}$ at 21V and $\overline{C E}$ low will program that Am27128. A high-level $\overline{C E}$ or $\overline{P G M}$ input inhibits the other Am27128s from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{O E}$ and $\overline{C E}$ at V_{IL}. Data should be verified tOE after the falling edge of $\overline{O E}$. $\overline{P G M}$ must be at $V_{I H}$.

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{C C}$ and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Max	Units
ILI	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage During Verify	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	Volts
V OH	Output High Voltage During Verify	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4		Volts
${ }^{\text {ICC2 }}$	$\mathrm{V}_{\text {CC }}$ Supply Current (Active)			100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Level (All Inputs)		-0.1	0.8	Volts
V_{IH}	Input High Level		2.0	$\begin{gathered} V_{C C} \\ +1 \end{gathered}$	Volts
IPP	VPP Supply Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}=\overline{\mathrm{PGM}}$		30	mA
$t_{\text {AS }}$	Address Setup time	Input t_{R} and $t_{F}(10 \%$ to $90 \%)=20 \mathrm{~ns}$ Input Pulse Levels $=0.45 \mathrm{~V}$ to 2.4 V Input Timing Reference Level $=1 \mathrm{~V}$ and 2 V Output Timing Reference Level $=0.8 \mathrm{~V}$ and 2 V	2		$\mu \mathrm{S}$
toes	Output Enable Setup Time		2		$\mu \mathrm{s}$
$t_{\text {d }}$	Data Setup Time		2		$\mu \mathrm{s}$
t_{AH}	Address Hold Time		0		$\mu \mathrm{S}$
${ }_{\text {t }}$	Data Hold Time		2		$\mu \mathrm{s}$
$t_{\text {DF }}$	Chip Enable to Output Float Delay		0	130	ns
tvs	Vpp Setup Time		2		$\mu \mathrm{S}$
tpW	PGM Pulse Width		45	55	ms
tCES	$\overline{\mathrm{CE}}$ Setup Time		2		$\mu \mathrm{S}$
toe	Data Valid From $\overline{\mathrm{OE}}$			150	ns

Notes:

1. Caution: If $V_{C C}$ is not applied simultaneously or before VPP and removed simultaneously or after VPP, the 27128 could be damaged.
2. When programming the Am27128, a $0.1 \mu \mathrm{~F}$ capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

PROGRAMMING WAVEFORM (Notes 1, 2 and 3)

Notes:

1. All times shown in () are minimum and in $\mu \mathrm{sec}$ unless otherwise specified.
2. The input timing reference level is 1 V for $\mathrm{a} \mathrm{V}_{\mathrm{IL}}$ and 2 V for a $V_{I H}$.
3. tOE and tDF are characteristics of the device but must be accommodated by the programmer.

INTERACTIVE PROGRAMMING ALGORITHM

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
ILI	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input Low Level (All Inputs)		-0.1		0.8	Volts
$\mathrm{V}_{\text {IH }}$	Input High Level		2.0		$\begin{gathered} v_{C c} \\ +1 \end{gathered}$	Volts
VOL	Input Low Voltage During Verity	$\mathrm{IOL}=2.1 \mathrm{~mA}$			0.45	Volts
V_{OH}	Output High Voltage During Verify	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			Volts
ICC2	VCC Supply Current (Program and Verify)				100	mA
IPP2	VPP Supply Current (Program)	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}=\overline{\mathrm{PGM}}$			30	mA
$t_{\text {AS }}$	Address Setup Time		2			$\mu \mathrm{s}$
toes	$\overline{\text { OE Setup Time }}$		2			$\mu \mathrm{s}$
tos	Data Setup Time		2			$\mu \mathrm{s}$
${ }_{\text {taH }}$	Address Hold Time		0			$\mu \mathrm{s}$
${ }_{\text {t }}$	Data Hold Time		2			$\mu \mathrm{s}$
tDF	Chip Enable to Output Float Delay		0		130	ns
tvPS	Vpp Setup Time		2			$\mu \mathrm{s}$
tves	$V_{\text {CC }}$ Setup Time		2			$\mu \mathrm{s}$
tpw	PGM Initial Program Pulse Width		0.95	1.0	1.05	ms
topw	PGM Overprogram Pulse Width	(see Note 2)	3.8		63	ms
tces	$\overline{\text { CE Setup Time }}$		2			$\mu \mathrm{s}$
toe	Data Valid from $\overline{O E}$				150	ns

Notes:

1. Caution: If $V_{C C}$ is not applied simultaneously or before $V_{P P}$ and removed simultaneously or after $V_{P P}$, the Am27128 could be damaged.
2. When programming the Am27128, a $0.1 \mu \mathrm{~F}$ capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS (Notes 1, 2 and 3)

WF000550
Notes:

1. All times shown in [] are minimum and in $\mu \mathrm{sec}$ unless otherwise specified.
2. The input timing reference level is .8 V for a V_{IL} and 2 V for a V_{IH}.
3. $t_{\text {OE }}$ and $t_{D F}$ are characteristics of the device but must be accommodated by the programmer.

PF000020

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Voltage on All Inputs/Outputs (except $V_{P P}$) \qquad +7 V to -0.6 V
Voltage on $V_{P P}$ during programming
$+22 v$ to -0.6 v
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Temperature
Commercial $0^{\circ} \mathrm{C}$ to ${ }^{\circ}+70^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages

$$
\text { Am2732A, }-2,-3,-4 \ldots \ldots \ldots \ldots \ldots \ldots+4.75 \mathrm{~V} \text { to }+5.25 \mathrm{~V}
$$

Am2732A-20, -25, -30, -40
+4.5 V to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
14	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.5 V			10	$\mu \mathrm{A}$
Lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 5.5 V			10	$\mu \mathrm{A}$
IPP_{1}	Vpp Current Read (Note 2)	$\mathrm{V}_{\mathrm{PP}}=5.5 \mathrm{~V}$			5	mA
${ }^{1} \mathrm{CO} 1$	V_{CC} Standby Current (Notes 2, 6)	$\overline{C E}=V_{1 H}, \overline{O E}=V_{\text {IL }}$			25	mA
$1 \mathrm{CC2}$	$V_{\text {CC }}$ Active Current (Note 2)	$\overline{O E}=\overline{C E}=V_{I L}$			100	mA
$\mathrm{V}_{\text {l }}$	Input Low Voltage		-0.1		+0.8	Volts
$V_{\text {IL }}$	Input Low Voltage (Am27128200M, Am27128-25DM and Am27128-45DM Only)		-0.1		+0.6	Volts
V_{H}	Input High Voltage		2.0		$\mathrm{V}_{\mathrm{CC}}+1$	Volts
V_{OL}	Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	Volts
V_{OH}	Output High Voltage	$\mathrm{IOH}^{2}=-400 \mu \mathrm{~A}$	2.4			Volts
$\mathrm{Cl}_{1 \mathrm{~N}}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Cout	Output Capacitance	$V_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

TC000130
$C_{L}=100 \mathrm{pF}$, including jig capacitance

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

Notes:

1. VCC must be applied simultaneously or before V_{PP} and removed simultaneously or after Vpp.
2. VPP may be connected directly to $V_{C C}$ except during programming. The supply would then be the sum of ICC and IPP1.
3. Typical values are for nominal supply voltages.
4. This parameter is only sampled and not 100% tested.
5. Caution: The 27128 must not be removed from or inserted into a socket or board when $V_{P P}$ or $V_{C C}$ is applied.
6. ICC1, Max for Am27128-4 and Am27128-45 is 40 mA .

Notes: 1 . $O E$ may be delayed up to $t_{A C C}$-toE after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$. 2. $\mathrm{IDF}_{\mathrm{DF}}$ is specified from $\overline{\mathrm{OE}}$ or $\overline{C E}$, whichever occurs first.

Am27256

DISTINCTIVE CHARACTERISTICS

- Fast access time - as low as 170 ns
- Low power consumption
- Separate chip enable and output enable controls
- Pin compatible to Am2764 EPROM, Am27128 EPROM and and Am92256-256K ROM
- Fast programming time (5 min typical)
- Auto select mode for automated programming

GENERAL DESCRIPTION

The Am27256 is a 262,144 bit UV-light erasable and electrically programmable read-only memory. It is organized as 32,768 words by 8 -bits per word. The standard Am27256 offers access time of 250 ns , allowing operation with high-speed microprocessors without any WAIT state.

To eliminate bus contention on a multiple-bus microprocessor system, the Am27256 offers separate output enable ($\overline{\mathrm{OE}}$) and chip enable ($\overline{\mathrm{CE}}$) controls.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random. To reduce programming time, the Am27256 may be programmed using 1 ms pulses. Typically, the Am27256 can be programmed in five minutes.

BLOCK DIAGRAM

MODE SELECT TABLE

$\begin{aligned} & \overline{C E} \\ & \text { (20) } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{O E} \\ & \text { (22) } \end{aligned}$	$\begin{gathered} \mathrm{Ag} \\ \text { (24) } \end{gathered}$	$\begin{aligned} & \text { Vpp } \\ & \text { (24) } \end{aligned}$	Outputs (11-13, 15-19)	Mode
L	L	X	$V_{\text {cc }}$	Dout	Read
L	H	X	$V_{\text {cc }}$	High Z	Output Disable
H	X	X	$V_{\text {CC }}$	High Z	Standby
L	H	X	VPP	DIN	Program
H	L	X	VPP	DOUT	Program Verify
H	H	X	VPP	High Z	Program Inhibit
L	L	H	VCC	Code	Auto Select

$$
\mathrm{H}=\mathrm{HIGH}
$$

L = LOW
$\mathrm{X}=$ Don't Care
Note: X can be either L or H
$\mathrm{V}_{\mathrm{H}}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

PRODUCT SELECTOR GUIDE

Access Time	170 ns	200 ns		250 ns		300 ns		450 ns	
Supply Tolerance	$\pm 5 \%$	$\pm 5 \%$	$\pm 10 \%$						
Part Number	Am27256-1	Am27256-2	Am27256-20	Am27256	Am27256-25	Am27256-3	Am27256-30	Am27256-4	Am27256-45

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Valid Combinations	
Am27256-1	DC
Am27256-15	
Am27256-2	DC, DI, DL
Am27256-20	
Am27256	
Am27256-3	
Am27256-30	
Am27256-4	
Am27256-25	DC, DI, DL,
Am27256-40	DM

ERASING THE Am27256

In order to clear all locations of their programmed contents, it is necessary to expose the Am27256 to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required to completely erase an Am27256. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms $(\AA \AA)$] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27256 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am27256, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27256, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

PROGRAMMING THE Am27256

Upon delivery, or after each erasure the Am27256 has all 262,144 bits in the " 1 ", or high state. ' 0 's are loaded into the Am27256 through the procedure of programming.

The programming mode is entered when 13.0 V is applied to the VPP pin, $\overline{O E}$ is at TTL-high and CE is at TTL-low. The data to be programmed is applied 8 bits in parallel to the data output pins.
The flow chart of Page 4 shows the Interactive Programming Algorithm. Interactive algorithms reduce programming time by using short (1 ms) program pulses and giving each address only as many pulses as necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, an additional pulse is applied for a maximum of 25 pulses. When the data is correctly verified, the address is given an additional $3 \mathrm{X} \mathrm{ms} \mathrm{"overprogram"} \mathrm{pulse;} \mathrm{where} \mathrm{X}$ is a count of the number of 1 ms pulse interactions that are required (thus the "over program" pulse can vary from a minimum of 3 ms to a maximum of 75 ms). This whole process is repeated while sequencing through each address of the Am27256. The algorithm is done at $V_{C C}=V_{P P}=6 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V} \pm 5 \%$.

AUTO SELECT MODE

The Auto Select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27256.
To activate this mode, the programming equipment must force 11.5 V to 12.5 V on address line A9 (pin 24) of the Am27256. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 (pin 10) from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during Auto Select Mode.
Byte $0\left(A_{0}=V_{L L}\right)$ represents the manufacturer code and byte $1\left(A_{0}=V_{I H}\right)$ the device identifier code. For the Am27256 these two identifier bytes are given in the table on the next
page. All identifiers for manufacturer and device codes will possess odd parity, with the MSB $\left(0_{7}\right)$ defined as the parity bit.

READ MODE

The Am27256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output ($\mathrm{t} C E$). Data is available at the outputs (tOE) after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{0 E}$.

STANDBY MODE

The Am27256 has a standby mode which reduces the active power dissipation by 80%, from 525 mW to 130 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am27256 is placed in the standby mode by applying a TTL high signal to the CE input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connoctod to the READ line from the system control bus. This assuros that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am27256s in parallel with different data is also easily accomplished. Except for $\overline{C E}$ or $\overline{O E}$, all like inputs of the parallel Am27256s may be common. A TTL lowlevel program pulse applied to an Am27256's $\overline{C E}$ input with $V_{P P}$ at 12.5 V and $\overline{O E}$ high will program that Am27256. A highlevel $\overline{\mathrm{CE}}$ input inhibits the other Am27256s from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{O E}$ at $V_{I L}, \overline{C E}$ at $V_{I H}$ and $V_{P P}$ at 12.5 V to 13.3 V .

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

IDENTIFIER BYTES

Identifier	$\mathbf{A}_{\mathbf{0}}$ (10)	\mathbf{O}_{7} (19)	\mathbf{O}_{6} (18)	$\mathbf{O}_{\mathbf{5}}$ (17)	$\mathbf{O}_{\mathbf{4}}$ (16)	$\mathbf{O}_{\mathbf{3}}$ (15)	$\mathbf{O}_{\mathbf{2}}$ (13)	\mathbf{O}_{1} (12)	$\mathbf{O}_{\mathbf{0}}$ (11)	Hex Data
Manufacturer Code	V_{IL}	0	0	0	0	0	0	0	1	01
Device Code	V_{IH}	0	0	0	0	0	1	0	0	04

Notes: 1. $\mathrm{Ag}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $A_{1}-A_{6}, A_{10}-A_{14}, \overline{C E}, \overline{O E}=V_{I L}$.

INTERACTIVE PROGRAMMING FLOW CHART

PF000030

PROGRAMMING

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
LIL	Input Current (All inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
V_{IL}	Input Low Level (All Inputs)		-0.1		0.8	Volts
V_{IH}	Input High Level		2.0		$\mathrm{V}_{\mathrm{CC}}+1$	Volts
VOL	Output Low Voltage During Verify	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	Volts
V OH	Output High Voltage During Verity	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			Volts
ICC2	$\mathrm{V}_{\text {CC }}$ Supply Current (Program and Verify)				100	mA
IPP2	Vpp Supply Current (Program)	$C E=V_{\text {IL }}$			30	mA
$V_{\text {ID }}$	A_{9} Auto Select Voltage		11.5		12.5	Volts
tAS	Address Setup Time		2			$\mu \mathrm{s}$
toes	OE Setup Time		2			$\mu \mathrm{s}$
tos	Data Setup Time		2			$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {AH }}$	Address Hold Time		0			$\mu \mathrm{s}$
t_{OH}	Data Hold Time		2			$\mu \mathrm{s}$
tDFP (Note 3)	Output Enable to Output Float Delay		0		130	ns
tvps	$V_{\text {PP }}$ Setup Time		2			$\mu \mathrm{s}$
tvcs	$\mathrm{V}_{\text {CC }}$ Setup Time		2			$\mu \mathrm{s}$
tPW	CE// $\overline{\text { GM }}$ Initial Program Pulse Width		0.95	1.0	1.05	ms
topw	CE/PGM Overprogram Puise Width	(see Note 2)	1.95		78.85	ms
toe	Data Valid from $\overline{\mathrm{O}}$				150	ns

Notes: 1. Caution: If $V_{C C}$ is not applied simultaneously or before $V_{P P}$ and removed simultaneously or after $V_{P P}$, the Am27256 could be damaged.
2. When programming the Am27256, a $0.1 \mu \mathrm{~F}$ capacitor is required across V_{PP} and ground to suppress spurious voltage transients which may damage the device.
3. This parameter is only sampled and not 100% tested.

INTERACTIVE PROGRAMMING ALGORITHM WAVEFORMS (Notes 1, 2 and 3)

Notes: 1. All times shown in [] are minimum and in $\mu \mathrm{sec}$ unless otherwise specified.
2. The input timing reference level is 8 V for a V_{IL} and 2 V for a V_{IH}.
3. TOE and TDFP are characteristics of the device but must be accommodated by the programmer.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied................................ $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Voltage on all inputs +6.25 V to -0.6 V
VPP Supply Voltage with Respect to
Ground During Programming \qquad +13.5 V to -0.6 V
Voltage on pin 24 \qquad +13.5 V to -0.6 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage
+4.5 V to +5.5 V Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
ILI	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.5V			10	$\mu \mathrm{A}$
1 LO	Output Leakage Current	$V_{\text {OUT }}=0 \mathrm{~V}$ to 5.5 V			10	$\mu \mathrm{A}$
Ipp1	$\mathrm{V}_{\text {PP }}$ Current Read (Note 2)	$\mathrm{V}_{\mathrm{PP}}=5.5 \mathrm{~V}$			5	mA
Icci	VCC Standby Current (Notes 2, 6)	CE $=\mathrm{V}_{\text {IH }}$, $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$			25	mA
ICC2	VCC Active Current (Note 2)	$\overline{O E}=\overline{C E}=\mathrm{V}_{\text {IL }}$			100	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.1		+0.8	Volts
V_{IH}	Input High Voltage		2.0		$\mathrm{V}_{\mathrm{cc}}+1$	Volts
V_{OL}	Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	Volts
VOH	Output High Voltage	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4			Volts
CIN	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions		$\begin{array}{\|c} \text { Min } \\ \text { Values } \end{array}$	Maximum Values			Units
					$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$	$\begin{array}{\|c\|} \hline 27256-15 \\ 27256-1 \\ \hline \end{array}$	$\begin{array}{r} 27256-20 \\ 27256-2 \end{array}$	$\begin{gathered} 27256-25 \\ 27256 \\ \hline \end{gathered}$	
1	${ }_{\text {tacc }}$	Address to Output Delay	Output load: 1TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times $\leqslant 20 \mathrm{~ns}$ Input Pulse levels: 0.45 to 2.4 V Timing Measurement Reference Level: Inputs: 1V and 2V Outputs: 0.8 V and 2 V	$\overline{C E}=\overline{O E}=V_{\text {IL }}$		170	200	250	ns
2	tce	Chip Enable to Output Delay		$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$		170	200	250	ns
3	toe	Output Enable to Output Delay		$\overline{C E}=V_{\text {IL }}$		75	75	100	ns
4	tDF (Note 4)	Output Enable High to Output float		$\overline{C E}=V_{\text {IL }}$	0	60	60	60	ns
5	$\begin{aligned} & \text { tor } \\ & \text { (Note 4) } \end{aligned}$	Output Hold from Addresses, CE or OE Whichever Occured First		$\overline{C E}=\overline{C E}=V_{\text {IL }}$	0				ns
			Test Conditions		Min Va	lues	Maximum Values		
No.	Symbol	Description			All Ty	es27	$\begin{aligned} & 256-30 \\ & 7256-3 \\ & \hline \end{aligned}$	$\begin{gathered} 27256-45 \\ 27256-4 \\ \hline \end{gathered}$	Units
1	$t_{\text {ACC }}$	Address to Output Delay	Output load: 1TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times $\leqslant 20 \mathrm{~ns}$ Input Pulse levels: 0.45 to 2.4 V Timing Measurement Reference Level: Inputs: IV and 2 V Outputs: 0.8 V and 2 V	$\overline{C E}=\overline{O E}=V_{\text {IL }}$			300	450	ns
2	${ }^{\text {t }}$ CE	Chip Enable to Output Delay		$\overline{\mathrm{O}}=\mathrm{V}_{\text {IL }}$			300	450	ns
3	toe	Output Enable to Output Delay		$\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$			120	150	ns
4	tDF (Note 4)	Output Enable High to Output float		$\overline{C E}=V_{\text {IL }}$	0		105	130	ns
5	$\begin{aligned} & \text { toH } \\ & \text { (Note 4) } \end{aligned}$	Output Hold from Addresses, $\overline{C E}$ or $\overline{O E}$ whichever Occured First		$\overline{C E}=\overline{O E}=V_{\text {IL }}$	0				ns

Notes:

1. VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.
2. $V_{P P}$ may be connected directly to $V_{C C}$ except during programming. The supply would then be the sum of ICC and IPP1.
3. Typical values are for nominal supply voltages.
4. This parameter is only sampled and not 100% tested.
5. Caution: The Am27256 must not be removed from or inserted into a socket or board when VPP or VCC is applied.
6. ICC1 max is 40mA for 27256-4.

Notes: 1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{A C C}$. 2. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.
$65,536 \times 8$-Bit UV Erasable PROM

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- Fast access time - as low as 250 ns
- Programming voltage: 12.5 V
- low Power consumption
- Active: 525 mW
- Standby: 132 mW
- Single 5V power supply
- $\pm 10 \% V_{C C}$ supply tolerance available
- Fully static operation-no clocks
- Separate chip enable and output enable controls
- TTL compatible inputs/outputs
- 28-pin JEDEC approved Am27512 pin-out
- Pin compatible to Am2764, Am27256, Am27128 EPROMS and Am92256-256K ROM
- Fast programming time
- Auto select mode for automated programming

GENERAL DESCRIPTION

The Am27512 is a 524,288 bit UV-light erasable and electrically programmable read-only memory. It is organized as 65,536 words by 8 -bits per word. The standard Am27512 offers a fast 250ns access time allowing operation with high-speed microprocessors without any WAIT state.

To eliminate bus contention in a multi-bus microprocessor system, the Am27512 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks or at random. To reduce programming time, the Am27512 may be programmed using 1 ms pulses. The Am27512 can be programmed in as little as six minutes.

BLOCK DIAGRAM

MODE SELECT TABLE

Inputs			Output	Mode
$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$	$\overline{O E} / V_{P P}$	A_{9}		
L	L	X	Dout	Read
L	H	X	HIGH Z	Output Disable
H	X	x	HIGH Z	Standby
L	VPP	X	DIN	Program
L	L	X	Dout	Program Verify
H	$V_{\text {PP }}$	X	HIGH Z	Program Inhibit
L	L	H	CODE	Auto Select

PRODUCT SELECTOR GUIDE

Part Number	Am27512	Am27512-25	Am27512-3	Am27512-30	Am27512-45
Supply Voltage	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$
Access Time	250 ns		300 ns	450 ns	
Chip Enable Delay	250 ns		300 ns	450 ns	
Output Enable Delay	100 ns		120 ns	150 ns	

CONNECTION DIAGRAM

Top View

Note: Pin 1 is marked for orientation

$$
\begin{array}{ll}
A_{0}-A_{15}: \text { Address } & \overline{ठ E} / V_{P P}: \text { Output Enable/VPP } \\
O_{0}-O_{7}: \text { Outputs } & \overline{C E} / \text { PGM: }
\end{array}
$$

ORDERING INFORMATION

```
Am27512-25
        | L
                            C - Commercial (0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70}\mp@subsup{}{}{\circ}\textrm{C}
                        l - Industrial ( }-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ )
                        L - Extended ( }-5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to }+10\mp@subsup{0}{}{\circ}\textrm{C}
                            M-Military (-55'⿳ to +125
Package
D - 28-pin CERDIP
Speed Select
No code
Am27512-25 \({ }^{\text {250ns }}\)
Am27512-3
Am27512-30 \({ }^{3} 300 \mathrm{~ns}\)
Am27512-45 450ns
Device Type
8-bit UV erasable PROM
```

Valid Comblnations	
Am27512-3	DC, DI, DL
Am27512-30	
No Code	DC, DI,
Am27512-25	DL, DM
Am27512-45	

ERASING THE Am27512

In order to clear all locations of their programmed contents, it is necessary to expose the Am27512 to an ultraviolet light source. A dosage of $15 \mathrm{Wseconds} / \mathrm{cm}^{2}$ is required to completely erase an Am27512. This dosage can be obtained by exposure to an ultraviolet lamp [(wavelength of 2537 Angstroms (\AA)] with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27512 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27512, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27512 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

PROGRAMMING THE Am27512

Upon delivery, or after each erasure, the Am27512 has all 65,536 bytes in the " 1, " or high state. " 0 ' s are loaded into the Am27512 through the procedure of programming.

The programming mode is entered when 12.5 V is applied to the $\overline{O E} / V_{P P}$ pin, and $\overline{C E} / \overline{P G M}$ is at TTL-low. The data to be programmed is applied 8 bits in parallel to the data output pins.
The flow chart on Page 6 shows the Interactive Programming Algorithm. Interactive algorithms reduce programming time by using short (1 ms) program pulses and giving each address only as many pulses as necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the Am27512. This part of the algorithm is done at $V_{C C}=6.0 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the entire memory has been programmed with the 1 ms program pulse, the entire memory is given an additional "overprogram" by cycling through each address and applying an additional 2 ms program pulse. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$.

AUTO SELECT MODE

The Auto Select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27512.

To activate this mode, the programming equipment must force 11.5 to 12.5 V on address line APP(pin 24) of the Am27512. Two identifier bytes may then be sequenced from the device outputs by toggling address line A_{0} (pin 10) from V_{IL} to V_{IH}. All other address lines must be held at $V_{I L}$ during Auto Select Mode.

Byte $0\left(A_{0}=V_{I L}\right)$ represents the manufacturer code and byte 1 ($A_{0}=V_{I H}$) the device identifier code. For the Am27512 these two identifier bytes are given in the table on the next page. All identifiers for manufacturer and device codes will possess odd parity, with the MSB $\left(0_{7}\right)$ defined as the parity bit.

READ MODE

The Am27512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output ($\mathrm{C} C E$). Data is available at the outputs tOE after the falling edge of $O E$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{0 E}$.

STANDBY MODE

The Am27512 has a standby mode which reduces the active power dissipation by 75% from 525 mW to 132 mW (values for 0 to $+70^{\circ} \mathrm{C}$). The Am27512 is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\mathrm{O}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2 line control function is provided to allow for:

1. Low memory power dissipation
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{C E}$ be decoded and used as the primary device selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am27512s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$, all like inputs including $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{pp}}$ of the parallel Am27512s may be common. A TTL low-level program pulse applied to an Am27512s $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ input with $\overline{\mathrm{OE} / \mathrm{VPP}^{2}}$ at 12.5 V will program that Am27512. A high-level $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ inputs inhibits the other Am27512s from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify must be performed with $\overline{O E} / V_{P P}$ and $\overline{C E} / \overline{P G M}$ at $V_{I L}$. Data should be verified tDV after the falling edge of $\overline{C E}$.

SYSTEM APPLICATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of chip enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. A $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and GND to minimize transient effects. In addition, to overcome the voltage droop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{C C}$ and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied............................... $-10^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Voltage on All Inputs and VCC with Respect to GND. \qquad +6.25 V to -0.6 V
Vpp Supply Voltage with Respect
to Ground During Programming
.+13.5 V to -0.6 V
Voltage on Pin 24 with Respect
to Ground

$$
.+13.5 \mathrm{~V} \text { to }-0.6 \mathrm{~V}
$$

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Temperature
Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial....................................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages
Am27512, $-3,-4 \ldots \ldots+4.75 \mathrm{~V}$ to +5.25 V
Am27512, -25, $-30,-45 \ldots \ldots \ldots \ldots \ldots \ldots+4.5 \mathrm{~V}$ to +5.5 V
Operating ranges define those limits over which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions			Min	Typ	Max	Units
l 1	Input Load Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.5 V					10	$\mu \mathrm{A}$
'LO	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 5.5 V					10	$\mu \mathrm{A}$
lcc1	VCC Standby Current (Note 5)	$\overline{C E}=V_{I H}, \overline{O E}=V_{\text {IL }}$		C devices			25	mA
				M devices			40	
lCC2	Vcc Active Current (Note 5)	$\overline{O E}=\overline{C E}=V_{I L}$		C devices			100	mA
				M devices			120	
$V_{\text {IL }}$	Input Low Voltage				-0.1		+ 0.8	Volts
$\mathrm{V}_{\text {IH }}$	Input High Voltage				2.0	1	$\mathrm{V}_{\mathrm{CC}}+1$	Volts
VOL	Output Low Voltage	$\mathrm{IOL}=2.1 \mathrm{~mA}$					0.45	Volts
VOH	Output High Voltage	${ }^{\mathrm{OH}}=-400 \mu \mathrm{~A}$			2.4			Volts
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \quad$ (Note 3)	(Note 3)			5	7	pF
COUT	Output Capacitance	$V_{\text {OUT }}=0 \mathrm{~V} \quad$ (Note 3)				8	12	pF
$\mathrm{C}_{\text {IN2 }}$	OE/V ${ }_{\text {PP }}$ Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \quad$ (Note 3)				12	20	pF
Cin3	CE/PGM Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \quad$ (Note 3)				9	12	pF

Notes:

1. VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.
2. Typical values are for nominal supply voltages.
3. This parameter is only sampled and not 100% tested.
4. Caution: The Am27512 must not be removed from or inserted into a socket or board when Vpp or VPP is applied.
5. ICC1 max is 40 mA and Ic . max is 120 mA for Am2751245.

IDENTIFIER BYTES

Identifier	$\mathbf{A}_{\mathbf{0}}$ (10)	$\mathbf{O}_{\mathbf{7}}$ (19)	\mathbf{O}_{6} (18)	\mathbf{O}_{5} (17)	$\mathbf{O}_{\mathbf{4}}$ (16)	$\mathbf{O}_{\mathbf{3}}$ (15)	$\mathbf{O}_{\mathbf{2}}$ (13)	\mathbf{O}_{1} (12)	$\mathbf{O}_{\mathbf{0}}$ (11)	Hex $\mathbf{D a t a}$
Manufacturer Code	L	0	0	0	0	0	0	0	1	01
Device Code	H	1	0	0	0	0	1	0	1	85

Notes: 1. $A_{9}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
2. $A_{1}-A_{6}, A_{10}-A_{15}, \overline{C E}, \overline{O E}=V_{I L}$.
3. $A_{14}=$ Don't Care.

INTERACTIVE PROGRAMMING ALGORITHM DC PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Max	Units
ILI	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage During Verify	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	Volts
V_{OH}	Output High Voltage During Verify	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4		Volts
ICC	$V_{\text {CC }}$ Supply Current (Program and Verify)			150	mA
$\mathrm{V}_{\text {IL }}$	Input Low Level (All Inputs)		-0.1	0.8	Volts
$\mathrm{V}_{1 \mathrm{H}}$	Input High Level (All Inputs Except $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$)		2.0	$\mathrm{V}_{\mathrm{CC}}+1$	Volts
IPP	Vpp Supply Current (Program)	$\overline{C E}=V_{I L}, \bar{O} \bar{E} / V_{P P}=12.5 \mathrm{~V}$		30	mA
$\mathrm{V}_{\text {ID }}$	Ag Auto Select Voltage		11.5	12.5	Volts

SWITCHING PROGRAMMING CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Max	Units
$t_{\text {AS }}$	Address Setup Time	Input tR and tF (10% to 90%) $=20 \mathrm{~ns}$ Input Signal Levels $=0.8$ to 2.2 V Timing Measurement Reference Level: Inputs: 1 V and 2 V Outputs: 0.8 V and 2 V	2		$\mu \mathrm{S}$
toes	Output Enable Setup Time		2		$\mu \mathrm{S}$
t_{DS}	Data Setup Time		2		$\mu \mathrm{S}$
${ }^{\text {t }}$ H	Address Hold Time		2		$\mu \mathrm{S}$
toen	Output Enable Hold Time		2		$\mu \mathrm{S}$
t_{DH}	Data Hold Time		2		$\mu \mathrm{S}$
t_{DF} (Note 2)	Chip Enable to Output Float Delay		0	150	ns
tov (Note 2)	Data Valid from $\overline{C E}$ ($\overline{C E}=V_{\text {IL }}, \overline{O E}=V_{\text {IL }}$)			450	ns
$t_{\text {PW }}$	Program Pulse Width		. 95	3.15	ms
tPRT	Program Pulse Rise Time		50		ns
$\mathrm{t}_{\mathrm{V} R}$	Vpp Recovery Time		2		$\mu \mathrm{S}$
tves	$V_{\text {CC }}$ Setup Time		2		$\mu \mathrm{S}$

Notes:

1. When programming the Am27512, a $0.1 \mu \mathrm{~F}$ capacitor is required across $\overline{\mathrm{OE}} / V_{\mathrm{PP}}$ and ground to suppress spurious voltage transients which may damage the device.
2. This parameter is only sampled and is not 100% tested.

Notes: 1. All times shown in () are minimum in $\mu \mathrm{sec}$ unless otherwise specified.
2. $t_{D V}$ and $t_{D F}$ are characteristics at the device but must be accommodated by the programmer.

SWITCHING TEST CIRCUIT

TC00025R
$C_{L}=100 \mathrm{pF}$, including jig capacitance.
SWITCHING CHARACTERISTICS over operating range unless otherwise specified

No.	Symbol	Description	Test Conditions		$\underset{\text { Values }}{\text { Min }}$	Maximum Values			Units
					All Types	$\begin{gathered} 27512-25 \\ 27512 \\ \hline \end{gathered}$	$\begin{gathered} 27512-30 \\ 27512-3 \\ \hline \end{gathered}$	27512-45	
1	t^{\prime} CC	Address to Output Delay	Output load: 1TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times $\leqslant 20 \mathrm{~ns}$ Input Pulse Levels: 0.45 to 2.4 V Timing Measurement Reference Level: Inputs: 1 V and 2 V Outputs: 0.8 V and 2 V	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$		250	300	450	ns
2	${ }^{\text {t CE }}$	Chip Enable to Output Delay		$\overline{O E}=V_{\text {IL }}$		250	300	450	ns
3	toe	Output Enable to Output Delay		$\overline{C E}=V_{\text {IL }}$		100	120	150	ns
4	$\begin{gathered} \text { tof } \\ \text { (Note 3) } \end{gathered}$	Output Enable High to Output float		$\overline{C E}=V_{\text {IL }}$	0	60	105	130	ns
5	$\begin{gathered} \text { toh } \\ \text { (Note 3) } \end{gathered}$	Output Hold from Addresses,CE orOE Whichever Occured First		$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	0		-		ns

SWITCHING WAVEFORMS

Notes: 1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{O E}$ without impact on $t_{A C C}$.
2. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

INDEX SECTION NUMERICAL DEVICE INDEX FUNCTIONAL INDEX AND SELECTION GUIDE APPLICATION NOTE

BIPOLAR PROGRAMMABLE READ ONLY MEMORY (PROM)

BIPOLAR RANDOM ACCESS
MEMORIES (RAM)

MOS RANDOM ACCESS
MEMORIES (RAM)

MOS READ ONLY
MEMORIES (ROM)

MOS UV ERASABLE
PROGRAMMABLE ROM (EPROM)

General Information Index

Package Outlines 7-1
Sales Offices 7-14

Package Outlines

METAL CAN PACKAGES

H-10-1

G-12-1

Note. Standard lead finish is bright acid tin plate or gold plate.

molded dual in-line packages

P-8-1

P-14-1

P.10-1

P-16-1
(20

PO000070

Package Outlines (Cont.)

HERMETIC DUAL IN-LINE PACKAGES

D-14-1

D-14-3

Package Outlines (Cont.)

hermetic dual in-line packages (Cont.)

D-16-1

D-16-2

D-20-1

D-20-1

D-20-2
 P0000230

Package Outlines (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

D-22-1

D-24-SLIM

D-24-4

D-22-2

D-24-1 and D-24-4

PO000280

D-24-2

Package Outlines (Cont.)

HERMETIC DUAL IN-LINE PACKAGES (Cont.)

Package Outlines (Cont.)

hermetic dual in-line packages (Cont.)
D-48-2

D-50-2

D-52-3

Package Outlines (Cont.)

hermetic dual in-line packages (Cont.)

D-64-3

FLAT PACKAGES

F-10-2

F-14-1

F-14-2

Package Outlines (Cont.)

FLAT PACKAGES (Cont.)

Note: Notch is pin 1 index on cerpack.

F-16-3

F-18-3

PO000450

F-20-1L

flat packages (Cont.)

F-22-1

F-24-2

F-24-1

F-24-3

F-24-2S

F-28-1

sQuare chip carrier family

L-20-1

L-28-1

L-44-1

L-52-1

Package Outlines (Cont.)

RECTANGULAR CHIP CARRIER FAMILY

L-32-2

Advanced Micro Devices maintains a network of representatives and distributors in the U.S. and around the world. Consult the listing below for an address nearest you.

U.S. AND CANADIAN SALES OFFICES

SOUTHWEST AREA

Advanced Micro Devices 360 N. Sepulveda, Suite 2075 El Segundo, California 90245 Tel: (213)640-3210

Advanced Micro Devices

10050 N. 25th Drive, Suite 235
Phoenix, Arizona 85021
Tel: (602) 242-4400
Advanced Micro Devices
4000 MacArthur Boulevard
Suite 5000
Newport Beach, California 92660 Tel: (714) 752-6262

Advanced Micro Devices

21600 Oxnard Street, Suite 675
Woodland Hills, California 91367
Tel: (213) 992-4155

Advanced Micro Devices

9619 Chesapeake Drive \#210
San Diego, California 92123
Tel: (619) 560-7030

NORTHWEST AREA

Advanced Micro Devices
1245 Oakmead Parkway
Suite 2900
Sunnyvale, California 94086
Tel: (408) 720-8811
Advanced Micro Devices
1873 South Bellaire Street
Suite 920
Denver, Colorado 80222
Tel: (303)691-5100

NORTHWEST AREA (Con't.)
Advanced Micro Devices
One Lincoln Center, Suite 230
10300 Southwest Greenburg Road
Portland, Oregon 97223
Tel: (503) 245-0080
Advanced Micro Devices
Honeywell Ctr., Suite 1002
600 108th Avenue N.E.
Bellevue, Washington 98004
Tel: (206) 455-3600
MID-AMERICA AREA
Advanced Micro Devices
500 Park Boulevard, Suite 940
Itasca, Illinois 60143
Tel: (312) 773-4422
Advanced Micro Devices
9900 Bren Road East, Suite 601
Minnetonka, Minnesota 55343
Tel: (612) 938-0001
Advanced Micro Devices
3592 Corporate Drive, Suite 108
Columbus, Ohio 43229
Tel: (614) 891-6455
Advanced Micro Devices
8240 MoPac Expressway
Two Park North, Suite 385
Austin, Texas 78759
Tel: (512) 346-7830
Advanced Micro Devices
6750 LBJ Freeway, Suite 1160
Dallas, Texas 75240
Tel: (214) 934-9099

MID-ATLANTIC AREA

Advanced Micro Devices
40 Crossways Park Way
Woodbury, New York 11797
Tel: (516) 364-8020
Advanced Micro Devices
290 Elwood Davis Road
Suite 316
Liverpool, New York 13088
Tel: (315) 457-5400
Advanced Micro Devices
Waterview Plaza Suite 303
2001 U.S. Route \#46
Parsippany, New Jersey 07054
Tel: (201) 299-0002
Advanced Micro Devices
110 Gibralter Road \#110
Horsham, Pennsylvania 19044
Tel: (215) 441-8210
TWX: 510-665-7572
Advanced Micro Devices
Commerce Plaza
5100 Tilghmant Street, Suite 320
Allentown, Pennsylvania 18104
Tel: (215) 398-8006
FAX: 215-398-8090
Advanced Micro Devices
205 South Avenue
Poughkeepsie, New York 12601
Tel: (914) 471-8180
TWX: 510-248-4219

NORTHEAST AREA

Advanced Micro Devices
6 New England Executive Park
Burlington, Massachusetts 01803 Tel: (617) 273-3970

NORTHEAST AREA (Con't.)
Advanced Micro Devices
(Canada) Ltd.
2 Sheppard Avenue East
Suite 1610
Willowdale, Ontario
Canada M2N5Y7
Tel: (416) 224-5193
SOUTHEAST AREA
Advanced Mlcro Devices
7223 Parkway Drive \#203
Dorsey, Maryland 21076
Tel: (301) 796-9310
FAX: 796-2040
Advanced Micro Devices
7850 Ulmerton Road, Suite 1A
Largo, Florida 33541
Tel: (813) 535-9811
Advanced Micro Devices
4740 North State Road \#7
Suite 102
Ft. Lauderdale, Florida 33319
Tel: (305) 484-8600
Advanced Micro Devices
6755 Peachtree Industrial Boulevard Suite 104
Atlanta, Georgia 30360
Tel: (404) 449-7920
Advanced Micro Devices
8 Woodlawn Green, Suite 220
Woodlawn Road
Charlotte, North Carolina 28210
Tel: (704) 525-1875
Advanced Micro Devices
303 Williams Avenue Southwest
Suite 118
Huntsville, Alabama 35801
Tel: (205) 536-5505

INTERNATIONAL SALES OFFICES

belgium

Advanced Micro Devices
Belgium N.V.-S.A.
Avenue de Tervueren 412
B-1150 Bruxelles
Tel: 32-2-771-9993
TELEX: 61028
FAX: 32-2-762-3712

FRANCE

Advanced Micro Devices, S.A.
Silic 314, Immeuble Helsinki
74, rue d'Arcueil
F-94588 Rungis Cedex
Tel: (01) 687.36.66
TELEX: 202053

GERMANY

Advanced Micro Devices GmbH
Rosenheimer Str. 139
D-8000 Muenchen 80
Tel: (089) 401976
TELEX: 05-23883
Advanced Micro Devices GmbH
Feuerseeplatz 4/5
D-7000 Stuttgart 1
Tel: (0711)62 3377
TELEX: 07-21882
Advanced Micro Devices GmbH
Zur Worth 6
D-3108 Winsen/Aller
Tel: (05143)5362
TELEX: 925287

HONG KONG

Advanced Micro Devices
1303 World Commerce Centre
Harbour City
11 Canton Road
Tsimshatsui, Kowloon
Tel: (852) 3695377
TELEX: 50426
FAX: (852) 1234276

ITALY

Advanced Micro Devices S.r.L.
Centro Direzionale
Palazzo Vasari, 3° Piano
1-20090 M12-Segrate (MI)
Tel: (02) 215 4913-4-5
TELEX: 315286

JAPAN

Advanced Micro Devices, K.K.
Dai 3 Hoya Building
8-17, Kamitakaido 1 chome
Suginami-ku, Tokyo 168
Tel: (03) 329-2751
TELEX: 2324064
FAX: (03)326 0262

SWEDEN

Advanced Micro Devices AB
Box 7013
S-172 07 Sundbyberg
Tel: (08) 981235
TELEX: 11602

UNITED KINGDOM

Advanced Micro Devices (U.K.)

Ltd.
A.M.D. House,

Goldsworth Road,
Woking,
Surrey GU21 1JT
Tel: Working (04862) 22121
TELEX: 859103
advanced MICRO DEVICES, INC.
901 Thompson Place P.O. Box 3453

Sunnyvale,
California 94088
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE
(800) 533-8450

[^0]: Temperature Ranges
 $\mathrm{C}=$ Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
 $\mathrm{M}=$ Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 $\mathrm{L}=$ Extended $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $+100^{\circ} \mathrm{C}$
 $\mid=$ Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

