

ExpressROM[™]Memory

1989 Data Book

Advanced Micro Devices

Advanced Micro Devices

ExpressROM[™] Memory

1989 Databook

© 1989 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warranties of merchantability or fitness for a particular application. AMD assumes no responsibility for the use of any circuitry other than the circuitry embodied in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088 (408) 732–2400 TWX: 910–339–9280 TELEX: 34–6306

ExpressROM is a trademark of Advanced Micro Devices, Inc.

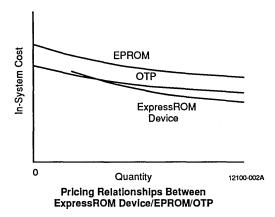
For over ten years Advanced Micro Devices has been an industry leader in EPROM technology. We were the first to introduce the 512K EPROM and the 1 Megabit EPROM, we offer the most complete selection of high speed (<100ns) CMOS EPROMs, and we are the first company to convert our entire commercial product line to advanced CMOS technology. Now, in order to help our customers get more bytes-for-the-buck, AMD has created a new concept — ExpressROM memories. These waferprogrammed EPROMs offer users a low cost alternative for EPROMs without the long time-to-market associated with ROMs.

If you're looking for EPROM cost savings and your codes aren't changing, consider ExpressROM devices, the ROMs without the wait.

Walid Magribi Product Line Director Non-Volatile Memory Division

ih Joste

Rich Forte Division Vice President Non-Volatile Memory Division


TABLE OF CONTENTS

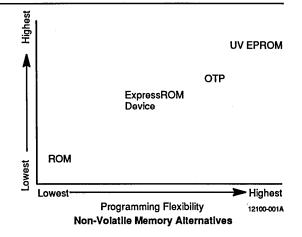
Introduction to ExpressROM Memory	1-1
Am27X64	2-1
Am27X128	3-1
Am27X256	4-1
Am27X512	5-1
Am27X010	6-1
Am27X1024	7-1

Introduction to ExpressROM Memory

ExpressROM memories are an exciting new product family created by Advanced Micro Devices to offer the system manufacturer a cost savings over standard EPROMs while eliminating many of the disadvantages associated with traditional ROMs. These new memory products provide a lower cost alternative for volume production with stable codes.

ExpressROM devices are delivered pre-programmed in a low cost plastic package and are 100% compatible with the EPROMs they replace. They address two critical needs of system manufacturers which are vital in today's marketplace: reduced cost and time-to-market. Typically ExpressROM devices become cost-effective at volumes of 5000 units and offer leadtimes as short as 3-4 weeks.

ExpressROM wafers are manufactured with the same process as standard AMD EPROMs with one important exception. Since the devices will be pre-programmed with a single code they do not need the transparent topside passivation used on OTP (One Time Programmable) EPROMs. Instead the wafers are coated with a cost-effective nitride topside. This passivation is acknowledged industry-wide as the highest quality protection for plastic encapsulated CMOS devices not requiring UV erasure. Since a standard EPROM die is used, you are assured that the ExpressROM family is identical in architecture, density, and pinout to both AMD's current and future generations of high performance CMOS EPROMs.


Prior to receipt of a custom code ExpressROM wafers are inventoried untested and unprogrammed. Upon verification of your code the wafers are sorted, packaged and tested. Since your ExpressROM devices are programmed at wafer sort, every device can be rigorously tested with your code under both AC and DC operating conditions prior to shipment. Also, because ExpressROM memories are shipped board-ready with factory guaranteed quality your ship-to-stock or Just-In-Time programs can be easily implemented. At Advanced Micro Devices, we ship them the way you want them — ready for your system. And, there are none of the delays, costs or risks normally associated with custom ROM masks and wafer production.

	UV EPROM	OTP	ExpressROM Device	ROM
Leadtime	Manufactures Leadtime	Manufactures Leadtime	4 Weeks	8 - 12 Weeks
Set-up Charge	No	No	No	Yes
Minimum Quantity	0	0	5K to 10K	25K
Fully Tested Custom Pattern	No	No	Yes	Yes
User Programming Required	Yes	Yes	No	No
Auto Insertion	No	Yes	Yes	Yes
Flexibility	Total	Can Not Reprogram	Fixed 4 Weeks Prior To Use	Fixed 8 - 12 Weeks Prior to Use

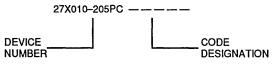
Non-Volatile Memory Alternatives

Plastic packaging inherently provides a cost savings over standard EPROMs packaged in expensive windowed ceramic DIPs. Due to simplified test requirements, ExpressROM devices can even cost less than unprogrammed OTP EPROMs. However component price is only a small part of your true in-system cost. ExpressROM devices allow you to eliminate or reduce costs in several other areas: programming, testing and production. Since ExpressROM memories are delivered with your code, you will reap savings by eliminating programming costs and associated yield losses. Incoming inspection may often be eliminated since your ExpressROM devices have been thoroughly tested and are guaranteed to operate to full specifications with your code! Additional in-house cost savings can be attained by using automatic insertion equipment in lieu of manual placement into sockets.

ExpressROM devices were designed to provide a low cost alternative for EPROM users without the liabilities of other non-volatile memory alternatives. Although ROMs have a lower component cost, they are economically feasible only at high volume and have the risks of long leadtimes and limited manufacturing flexibility. While OTP EPROMs offer the systems manufacturer the ability to respond to varying codes during production, they force the user to incur additional and sometimes hidden costs.

Our mission at AMD is to deliver you the service and products you demand to build the cost competitive systems that are needed to win in your markets. The ExpressROM memory provides this opportunity. As one of the world's five largest IC manufacturers and the first to market with a 1 megabit EPROM, we appreciate the value of efficient manufacturing. Compressing time-tomarket cycles, improving yields and providing high levels of quality are invaluable strategies for today's manufacturer. At Advanced Micro Devices we are proud to offer another tool to give our customers this strategic advantage, the ExpressROM memory: the ROM without the wait!

ORDERING ExpressROM DEVICES


The following are guidelines for ordering an ExpressROM device. For more information, contact your local AMD sales representative.

1) SEND IN THE CODE

Please send your sales representative two EPROMs containing identical copies of the code. To minimize the verification turnaround process, use EPROMs with JEDEC-approved pinouts identical in architecture and density as the ExpressROM device being ordered.

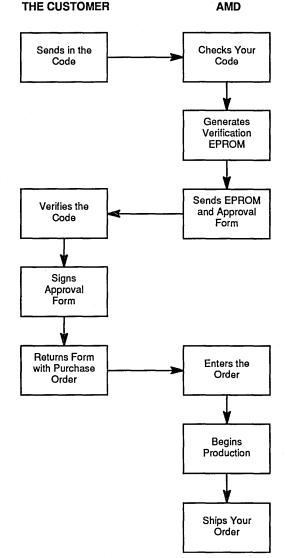
2) AMD CHECKS THE CODE

We check that both EPROMs contain the same code to make certain there was not a mix-up in shipping your codes to the factory as well as ensuring that the integrity of your code has been preserved. After confirming this, a unique 5-digit code designation is assigned. The ordering part number is formed by adding the 5-digit code designation as a suffix to the ExpressROM device number. See below:

3) AMD GENERATES A VERIFICATION EPROM After the check is completed, we duplicate the code and return it to you for verification.

4) CONFIRM THE CODE

The verification EPROM and the code approval form should be back in your hands for final approval before production within 3 days. Sign the approval form and return it to AMD.


5) THE ORDER IS ENTERED

Upon receipt of the authorized code approval form and a purchase order, the order is entered and production is initiated. Delivery is scheduled per the negotiated leadtime.

TERMS AND CONDITIONS

You should be aware of the following guidelines when order ExpressROM devices. Please note that the exact terms and conditions can be found on the code approval form available from your local sales representative.

- 1) AMD will maintain customer code confidentiality.
- 2) AMD will absorb all initial set-up cost.
- 3) All orders are subject to minimum quantities.

- AMD requires 8 weeks notification for code changes. The customer is liable for all work-in-process.
- No schedule chages may be made within 30 days of current schedule date. Otherwise any line item may be rescheduled ±30 days from the original schedule date.
- 6) The customer will accept shipments of line items ± 5 .

Final

Am27X64

8,192 x 8-Bit CMOS ExpressROM[™] Device

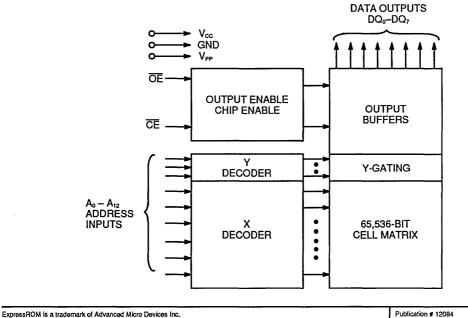
DISTINCTIVE CHARACTERISTICS

OTP EPROM alternative:

- Factory programmed
- Fully tested and guaranteed
- Low cost

- Mask ROM alternative
- Shorter leadtime
- Lower volume per code
- Compatible with JEDEC-approved EPROM pinout

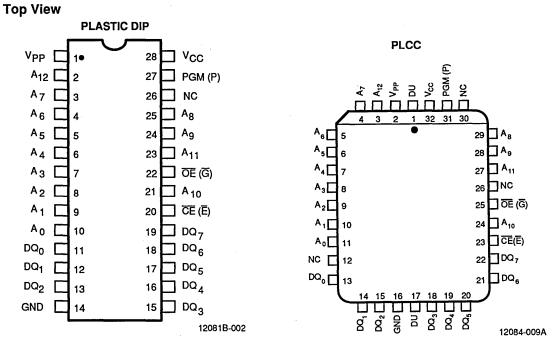
GENERAL DESCRIPTION


The Am27X64 is a wafer-level programmed EPROM with a standard topside for plastic packaging. It is organized as 8,192 by 8 bits and is available in plastic DIP as well as plastic leaded chip carrier (PLCC) packages. ExpressROM[™] devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs. High performance CMOS technology
 – Fast access time — 100 ns

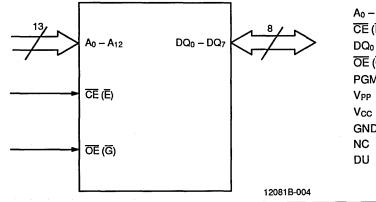
- Low power dissipation
 100 μA maximum standby current
- Available in plastic DIP and plastic leaded chip carrier

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X64 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 μ W in standby mode.

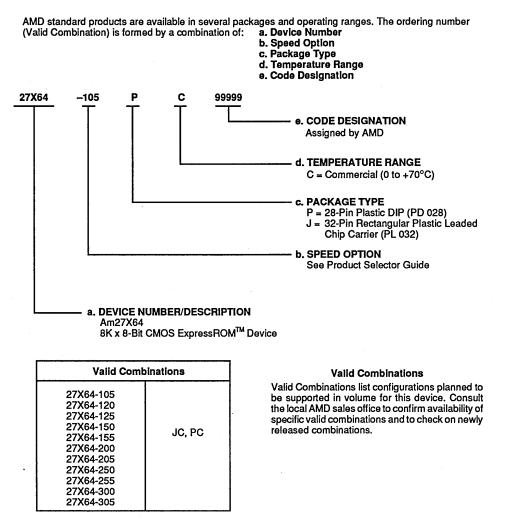

BLOCK DIAGRAM

Advanced Micro Devices


Family Part No.	Am27X64					
Ordering part No: ±5% VCC Tolerance	-105	-125	155	-205	-255	305
±10% VCC Tolerance	—	-120	150	-200	250	-300
Max Access Time (ns)	100	120	150	200	250	300
CE (E) Access (ns)	100	120	150	200	250	300
OE (G) Access (ns)	40	50	65	75	100	120

CONNECTION DIAGRAMS

Note: JEDEC nomenclature is in parentheses.



PIN DESCRIPTION

A0 - A12	= Address Inputs
CE (E)	 Chip Enable Input
DQ0 – DQ7	= Data Outputs
OE (G)	 Output Enable Input
PGM (P)	= Enable Input
Vpp	 VPP Supply Voltage
Vcc	= V _{CC} Supply Voltage
GND	= Ground
NC	= No Internal Connection
DU	 No External Connection (Do Not Use)

Am27X64

ORDERING INFORMATION Standard Products

FUNCTIONAL DESCRIPTION Read Mode

The Am27X64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{OE}.

Standby Mode

The Am27X64 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X64 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins

are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROMTM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be array.

Mode Select Table					
Pins Mode	CE	ŌĒ	PGM	Vpp	Outputs
Read	VIL	VIL	х	Vcc	Dout
Output Disable	VIL	VIH	x	Vcc	High Z
Standby (TTL)	ViH	х	x	Vcc	High Z
Standby (CMOS)	$V_{CC} \pm 0.3 V$	х	х	Vcc	High Z

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65 to 125°C
Ambient Temperature with Power Applied	–55 to +125°C
Voltage with Respect to Ground:	
All pins except V _{CC} and V _{PP}	-0.6 to V _{CC} +0.5 V
V _{CC} and V _{PP}	–0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum DC voltage on input or output is -0.5 V. During transitions, the inputs may undershoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output is V_{CC}+0.5 V which may overshoot to V_{CC}+2.0 V for periods up to 20 ns.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T)	0 to +70°C
Supply Read Voltages:	Y
Vcc /Vpp for Am27X64–XX5	+4.75 to +5.25 V
V _{CC} /V _{PP} for Am27X64–XX0	+4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4, 6 and 8)

-					
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	I _{OH} = - 400 μA	2.4		v
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		2.0	Vcc + 0.5	v
ViL	Input LOW Voltage		- 0.3	+0.8	v
lu	Input Load Current	$V_{IN} = 0 V to V_{CC}$		1.0	μA
llo	Output Leakage Current	V _{OUT} = 0 V to V _{CCPP}		10	μΑ
lcc1	V _{CC} Active Current (Note 4)	CE = V _{IL} , f = 5 MHz, l _{OUT} = 0 mA (Open Outputs)		30	mA
Icc2	Vcc Standby Current	CE = V _{IH}		1	mA
lpp	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA
CMOS Inpu	uts				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Voh	Output HIGH Voltage	I _{OH} = – 400 μA	2.4		V
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		V _{CC} – 0.3	V _{cc} + 0.3	v
VIL	Input LOW Voltage		- 0.3	+0.8	v
lLt	Input Load Current	V _{IN} = 0 V to V _{CC}		1.0	μΑ
ILO	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μΑ
Icc1	V _{CC} Active Current (Note 4)	CE = V _{IL,} f = 5 MHz, l _{OUT} = 0 mA (Open Outputs)		30	mA
Icc2	Vcc Standby Current	$\overline{CE} = V_{CC} \pm 0.3$		100	μA
 Ірр	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA

CAPACITANCE (Notes 1, 2 and 5)

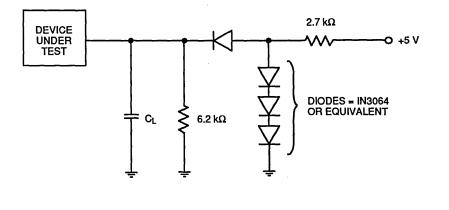
Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
C _{IN1}	Input Capacitance	V _{IN} = 0 V	8	12	pF
C _{IN2}	OE Input Capacitance	V _{IN} = 0 V	12	20	pF
CIN3	CE Input Capacitance	V _{IN} = 0 V	9	12	pF
Солт	Output Capacitance	V _{OUT} = 0 V	8	12	pF

Notes:

- 1. Typical values are for nominal supply voltages.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X64 must not be removed from, or inserted into, a socket or board when VPP or VCC is applied.
- 4. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 5. T_A = 25°C, f = 1 MHz.
- Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns. Maximum DC voltage on output pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.
- 7. Maximum active power usage is the sum of Icc and Ipp.
- 8. V_{cc} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4)

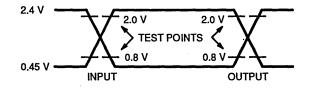
Parame JEDEC	ter Symbol Standard	Parameter Description	Test Conditions		-105	-120 -125				300 305	Unit
tavov	tacc	Address to	$\overline{CE} = \overline{OE} = V_{IL}$	Min.	100	100	150	000	050	200	ns
		Output Delay	<u></u>	Max.	100	120	150	200	250	300	ns
t _{el} qv	tce	Chip Enable to	$\overline{OE} = V_{IL}$	Min.							ns
		Output Delay		Max.	100	120	150	200	250	300	ns
tglav	toe	Output Enable to	$\overline{CE} = V_{IL}$	Min.							ns
		Output Delay		Max.	40	50	65	75	100	120	ns
t _{EHQZ}	tDF	Output Enable		Min.							ns
tgнaz		HIGH to Output Float (Note 1)		Max.	30	35	50	55	60	75	ns
taxax	toн	Output Hold		Min.	0	0	0	0	0	0	ns
		from Addresses, CE or OE whichever occurred first		Max.							ns


Notes:

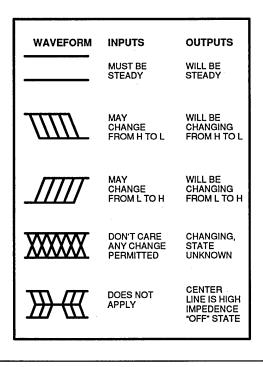
- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X64 must not be removed from, or inserted into, a socket or board when Vpp or Vcc is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 to 2.4 V,

Timing Measurement Reference Level - Inputs: 0.8 V and 2 V

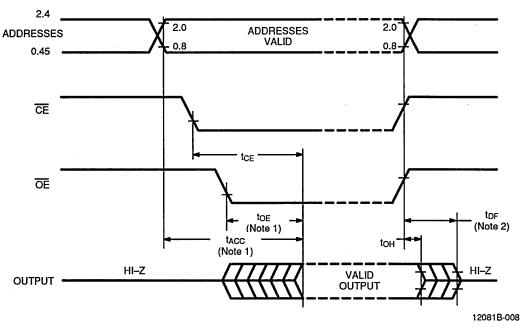
Outputs: 0.8 V and 2 V


SWITCHING TEST CIRCUIT

12081B-005

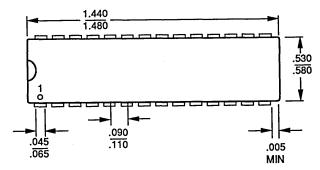

SWITCHING TEST WAVEFORM

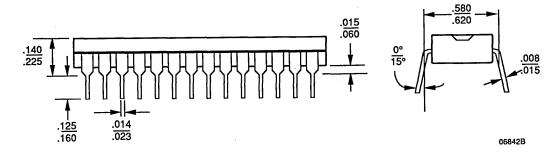
12081B-006


AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20ns.

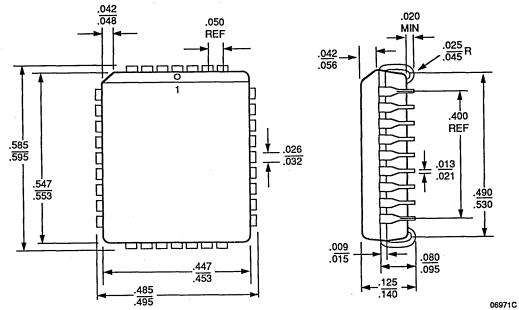
KEY TO SWITCHING WAVEFORMS

KS000010


SWITCHING WAVEFORMS



Note:


1. \overline{OE} may be delayed up to t_{ACC}-t_{OE} after the falling edge of \overline{CE} without impact on t_{ACC}. 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

PHYSICAL DIMENSIONS PD 028

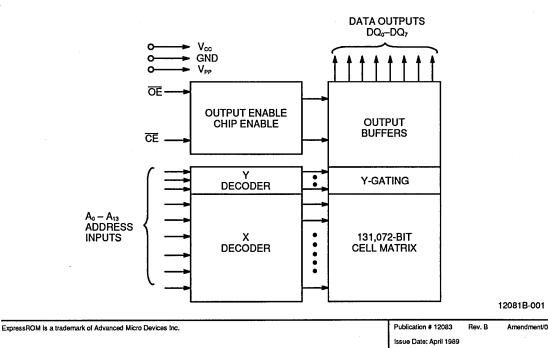
2–10

Am27X128

16,384 x 8-Bit ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

OTP EPROM alternative:


- Factory programmed
- Fully tested and guaranteed
- Low cost
- Mask ROM alternative
 - Shorter leadtime
 - Lower volume per code
- Compatible with JEDEC-approved EPROM pinout

GENERAL DESCRIPTION

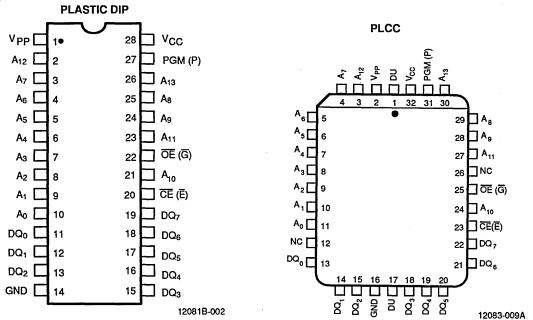
The Am27X128 is a wafer-level programmed EPROM with a standard topside for plastic packaging. It is organized as 16,384 by 8 bits and is available in plastic DIP as well as plastic leaded chip carrier (PLCC) packages. ExpressROM[™] devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs. Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X128 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 μ W in standby mode.

BLOCK DIAGRAM

Advanced Micro Devices

- High performance CMOS technology
 Fast access time 100 ns
 - Low power dissipation
 100 μA maximum standby current
- Available in plastic DIP and plastic leaded chip carrier


2000 - Levy -

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X128					
Ordering part No: ±5% VCC Tolerance	-105	-125	-155	-205	-255	-305
±10% VCC Tolerance		-120	150	-200	-250	-300
Max Access Time (ns)	100	120	150	200	250	300
CE (E) Access (ns)	100	120	150	200	250	300
OE (G) Access (ns)	40	50	65	75	100	120

CONNECTION DIAGRAMS

Top View

Note: JEDEC nomenclature is in parentheses.

LOGIC SYMBOL

PIN DESCRIPTION

A0 - A13	 Address inputs
CE (E)	 Chip Enable Input
DQ0 - DQ7	 Data Outputs
OE (G)	= Output Enable Input
PGM (P)	 Enable Input
Vpp	= V _{PP} Supply Voltage
Vcc	= V _{CC} Supply Voltage
GND	= Ground
NC	= No Internal Connection
DU	 No External Connection (Do Not Use)

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of: a. Device Number b. Speed Option c. Package Type d. Temperature Range e. Code Designation 27X128 -105 P С 99999 e. CODE DESIGNATION Assigned by AMD d. TEMPERATURE RANGE C = Commercial (0 to +70°C) c. PACKAGE TYPE P = 28-Pin Plastic DIP (PD 028) J = 32-Pin Rectangular Plastic Leaded Chip Carrier (PL 032) **b. SPEED OPTION** See Product Selector Guide a. DEVICE NUMBER/DESCRIPTION Am27X128

16K x 8-Bit CMOS ExpressROM[™] Device

Valid Comb	vinations
27X128-105 27X128-120 27X128-125 27X128-155 27X128-155 27X128-200 27X128-205 27X128-250 27X128-255 27X128-255 27X128-300 27X128-305	JC, PC

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – to_E.

Standby Mode

The Am27X128 has a CMOS standby mode which reduces the maximum V_{CC} current to $100 \,\mu$ A. It is placed in CMOS-standby when \overrightarrow{CE} is at $V_{CC} \pm 0.3$ V. The Am27X128 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overrightarrow{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overrightarrow{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins

are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROMTM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode Select Table						
Pins						
Mode	CE	ŌĒ	PGM	Vpp	Outputs	
Read	VIL	VIL	х	Vcc	Dout	
Output Disable	VIL	VIH	x	Vcc	High Z	
Standby (TTL)	ViH	х	x	Vcc	High Z	
Standby (CMOS)	V _{CC} ± 0.3 V	х	x	Vcc	High Z	

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65 to 125°C
Ambient Temperature with Power Applied	–55 to +125°C
Voltage with Respect to Ground:	
All pins except V_{CC} and V_{PP}	-0.6 to V _{CC} +0.5 V
V _{CC} and V _{PP}	–0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum DC voltage on input or output is -0.5 V. During transitions, the inputs may undershoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T)	0 to +70°C
Supply Read Voltages:	
V _{CC} /V _{PP} for Am27X128–XX5	+4.75 to +5.25 V
V _{CC} /V _{PP} for Am27X128–XX0	+4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4, 6 and 8)

Parameter	Parameter	Test Conditions	Min.	Max.	Unit
Symbol	Description				
V _{OH}	Output HIGH Voltage	I _{OH} = – 400 µA	2.4		v
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	ν
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	v
VIL	Input LOW Voltage		- 0.3	+0.8	v
lu	Input Load Current	$V_{IN} = 0 V to V_{CC}$		1.0	μA
lιo	Output Leakage Current	V _{OUT} = 0 V to V _{CCPP}		10	μA
Icc1	V _{CC} Active Current (Note 4)	$\overline{CE} = V_{IL}$,f = 5 MHz, $l_{OUT} = 0$ mA(Open Outputs)		30	mA
Icc2	Vcc Standby Current	CE = V _{IH}		1	mA
lpp	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{1L}, V_{PP} = V_{CC}$		100	μA
CMOS Inpu	uts				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	l _{OH} = – 400 μA	2.4		v
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	v
ViH	Input HIGH Voltage		V _{cc} – 0.3	Vcc+0.3	v
VIL	Input LOW Voltage		- 0.3	+0.8	v
lu	Input Load Current	$V_{IN} = 0 V$ to V_{CC}		1.0	μA
llo	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μA
Icc1	V _{CC} Active Current (Note 4)	CE = V _{IL,} f = 5 MHz, l _{OUT} = 0 mA (Open Outputs)		30	mA
ICC2	Vcc Standby Current	$\overline{CE} = V_{CC} \pm 0.3$		100	μA
lpp	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA

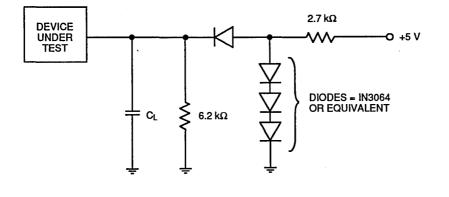
CAPACITANCE (Notes 1, 2 and 5)

Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
CIN1	Input Capacitance	V _{IN} = 0 V	8	12	pF
C _{IN2}	OE Input Capacitance	V _{IN} = 0 V	12	20	pF
CIN3	CE Input Capacitance	V _{IN} = 0 V	9	12	pF
Солт	Output Capacitance	Vour = 0 V	8	12	pF

Notes:

- 1. Typical values are for nominal supply voltages.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X128 must not be removed from, or inserted into, a socket or board when VPP or VCC is applied.
- 4. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 5. T_A = 25°C, f = 1 MHz.
- Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns.
 Maximum DC voltage on output pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.
- 7. Maximum active power usage is the sum of Icc and Ipp.
- 8. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.

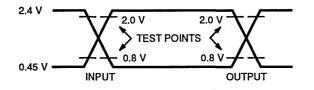
SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4)


Parame	ter Symbol Standard	Parameter Description	Test Conditions		-105	120 125	-150 -155			300 305	
tavav	tacc	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{1L}$	Min. Max.	100	120	150	200	250	300	ns ns
t ELQV	tce	Chip Enable to Output Delay	OE = VIL	Min. Max.	100	120	150	200	250	300	ns
tglav	toe	Output Enable to Output Delay	CE = VIL	Min. Max.	40	50	65	75	100	120	ns ns
tehaz tghaz	tDF	Output Enable HIGH to Output Float (Note 1)		Min. Max.	30	35	50	55	60	75	ns ns
ταχοχ	tон	Output Hold from Addresses, CE or OE whichever occurred first		Min. Max.	0	0	0	0	0	0	ns ns

Notes:

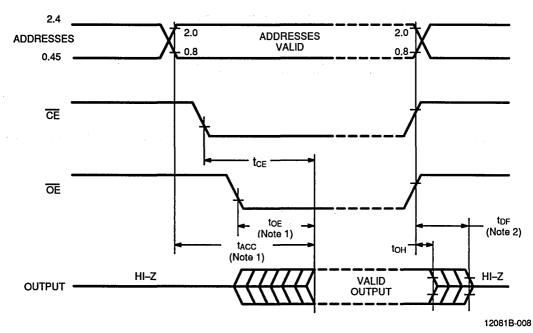
- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X128 must not be removed from, or inserted into, a socket or board when Vpp or V_{CC} is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 to 2.4 V,

Timing Measurement Reference Level — Inputs: 0.8 V and 2 V Outputs: 0.8 V and 2 V


SWITCHING TEST CIRCUIT

12081B-005

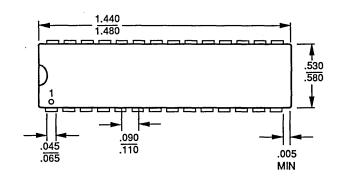
SWITCHING TEST WAVEFORM

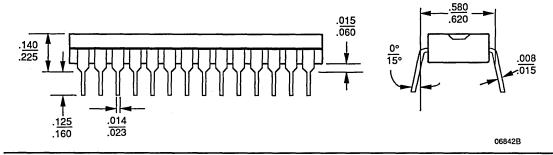

12081B-006

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20ns.

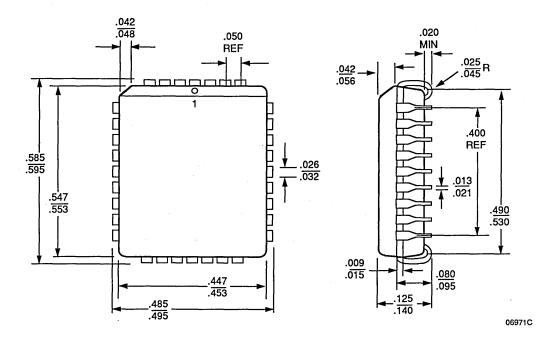
KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGING FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGING FROM L TO H
XXXXXX	DON'T CARE ANY CHANGE PERMITTED	CHANGING, STATE UNKNOWN
≫₩	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDENCE "OFF" STATE


SWITCHING WAVEFORMS



Note:


1. \overline{OE} may be delayed up to t_{ACC} - t_{OE} after the falling edge of \overline{CE} without impact on t_{ACC} . 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first. KS000010

PHYSICAL DIMENSIONS PD 028

ExpressROM is a trademark of Advanced Micro Devices Inc.

Final

Am27X256

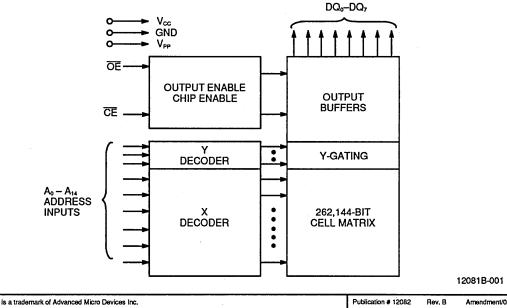
32,768 x 8-Bit CMOS ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

- OTP EPROM alternative:
 - Factory programmed
 - Fully tested and guaranteed
 - Low cost
- Mask ROM alternative
 - Shorter leadtime
 - Lower volume per code
- Compatible with JEDEC-approved EPROM pinout
- High performance CMOS technology - Fast access time - 100 ns
 - Low power dissipation
 - 100 µA maximum standby current
- Available in plastic DIP and plastic leaded chip carrier

GENERAL DESCRIPTION The Am27X256 is a wafer-level programmed EPROM

with a standard topside for plastic packaging. It is organized as 32,768 by 8 bits and is available in plastic DIP as well as plastic leaded chip carrier (PLCC) packages. ExpressROM[™] devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

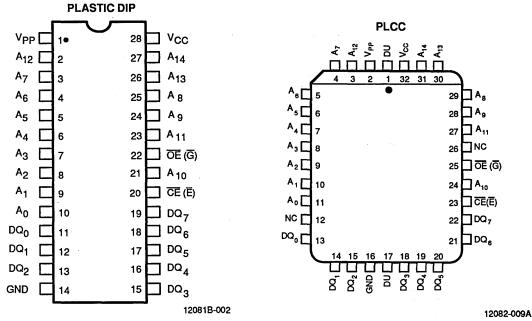

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X256 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 µW in standby mode.

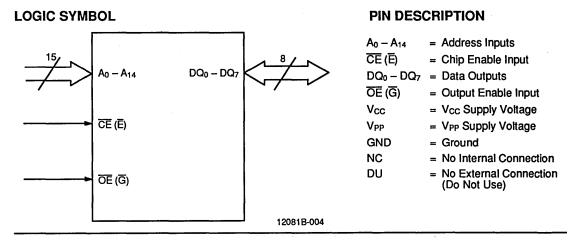
Issue Date: April 1989

DATA OUTPUTS

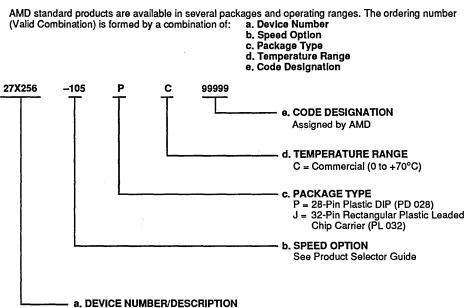
BLOCK DIAGRAM


Advanced Micro **Devices**

PRODUCT SELECTOR GUIDE


Family Part No.	Am27X256						
Ordering part No: ±5% VCC Tolerance	-105	-125	155	-175	-205	-255	-305
±10% VCC Tolerance		-120	-150	-170	-200	-250	-300
Max Access Time (ns)	100	120	150	170	200	250	300
CE (E) Access (ns)	100	120	150	170	200	250	300
OE (G) Access (ns)	40	50	65	70	75	100	120

CONNECTION DIAGRAMS



Note: JEDEC nomenclature is in parentheses.

Am27X256

ORDERING INFORMATION Standard Products

Am27X256

Valid Comb	oinations
27X256-105 27X256-120 27X256-125 27X256-155 27X256-155 27X256-170 27X256-175 27X256-200 27X256-200 27X256-205 27X256-250 27X256-250 27X256-300 27X256-305	JC, PC

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{OE}.

Standby Mode

The Am27X256 has a CMOS standby mode which reduces the maximum V_{CC} current to $100 \,\mu$ A. It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X256 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- 2. Assurance that output bus contention will not occur.

It is recommended that \overrightarrow{CE} be decoded and used as the primary device-selecting function, while \overrightarrow{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins

are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROMTM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode Select Table						
Pins						
Mode	ĈĒ	ŌĒ	Vpp	Outputs		
Read	VIL	ViL	Vcc	Dout		
Output Disable	VIL	ViH	Vcc	High Z		
Standby (TTL)	VIH	x	Vcc	High Z		
Standby (CMOS)	Vcc ± 0.3 V	х	Vcc	High Z		

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	–65 to 125°C
Ambient Temperature with Power Applied	–55 to +125°C
Voltage with Respect to Ground: All pins except V _{CC} and V _{PP}	-0.6 to V _{CC} +0.5 V
Vcc and VPP	–0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum DC voltage on input or output is -0.5 V. During transitions, the inputs may undershoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output is V_{CC}+0.5 V which may overshoot to V_{CC}+2.0 V for periods up to 20 ns.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T)	0 to +70°C	;
Supply Read Voltages:		

V_{CC} /V_{PP} for Am27X256–XX5 +4.75 to +5.25 V V_{CC} /V_{PP} for Am27X256–XX0 +4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4, 6 and 8)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit V	
Vон	Output HIGH Voltage	l _{OH} = – 400 µA	2.4			
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	V	
ViH	Input HIGH Voltage	······································	2.0	V _{CC} + 0.5	v	
VIL	Input LOW Voltage		- 0.3	+0.8	v	
lu	Input Load Current	V _{IN} = 0 V to V _{CC}		1.0	μA	
llo	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μA	
ICC1	V _{CC} Active Current (Note 4)	CE = V _{IL} , f = 5 MHz, lout = 0 mA (Open Outputs)		30	mA	
Icc2	Vcc Standby Current	CE = VIH		1	mA	
IPP	VPP Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA	
CMOS Inpu	uts				L	
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit	
VOH	Output HIGH Voltage	l _{он} = – 400 µА	2.4		v	
VoL	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	v	
VIH	Input HIGH Voltage		V _{CC} – 0.3	V _{CC} + 0.3	v	
VIL	Input LOW Voltage		- 0.3	+0.8	v	
lu	Input Load Current	V _{IN} = 0 V to V _{CC}		1.0	μΑ	
ILO	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μA	
Icc1	V _{CC} Active Current (Note 4)	CE VIL, f = 5 MHz, Iout = 0 mA (Open Outputs) Iouts)		25	mA	
Icc2	V _{CC} Standby Current	$\overline{CE} = V_{CC} \pm 0.3$		100	μΑ	
Ірр	VPP Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA	

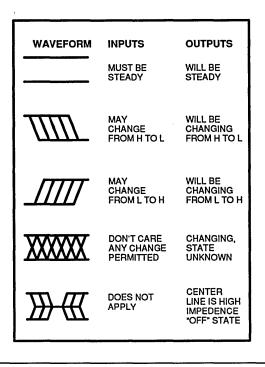
CAPACITANCE (Notes 1, 2 and 5)

Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
C _{IN1}	Input Capacitance	V _{IN} = 0 V	8	12	pF
C _{IN2}	OE Input Capacitance	V _{IN} = 0 V	12	20	pF
Сілз	CE Input Capacitance	V _{IN} = 0 V	9	12	pF
Соит	Output Capacitance	V _{OUT} = 0 V	8	12	pF

Notes:

- 1. Typical values are for nominal supply voltages.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X256 must not be removed from, or inserted into, a socket or board when VPP or VCC is applied.
- 4. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 5. T_A = 25°C, f = 1 MHz.
- Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns.
 Maximum DC voltage on output pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.
- 7. Maximum active power usage is the sum of Icc and Ipp.
- 8. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4)


Parame JEDEC	ter Symbol Standard	Parameter Description	Test Conditions		-105	-120 -125		-170 -175	-200 -205		300 305	Unit
tavov	tacc	Address to Output Delay	CE = OE = V _{IL}	Min. Max.	100	120	150	170	200	250	300	ns ns
t ELQV	tce	Chip Enable to Output Delay	$\overline{OE} = V_{IL}$	Min. Max.	100	120	150	170	200	250	300	ns ns
tglav	toe	Output Enable to Output Delay	CE = VIL	Min. Max.	40	50	65	70	75	100	120	ns ns
t _{ehoz,} t _{ghoz}	tor	Output Enable HIGH to Output Float (Note 1)		Min. Max.	30	35	50	50	55	60	75	ns ns
taxox	tон	Output Hold from Addresses, CE or OE whichever occurred first		Min. Max.	0	0	0	0	0	0	0	ns ns

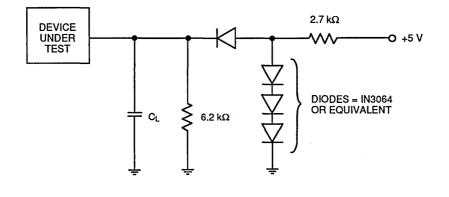
Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X256 must not be removed from, or inserted into, a socket or board when Vpp or V_{CC} is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 to 2.4 V, Timing Measurement Reference Level — Inputs: 0.8 V and 2 V

Outputs: 0.8 V and 2 V

KEY TO SWITCHING WAVEFORMS

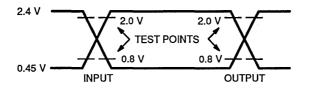
KS000010


SWITCHING WAVEFORMS

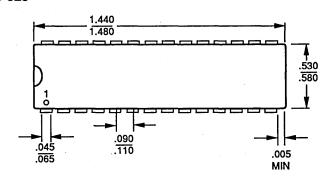
Note:

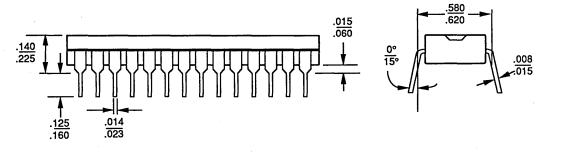
1. OE may be delayed up to tACC-tOE after the falling edge of CE without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

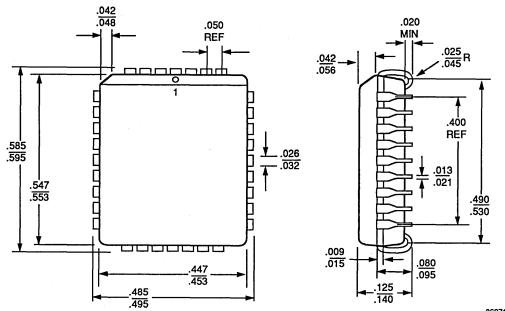

SWITCHING TEST CIRCUIT

12081B-005


SWITCHING TEST WAVEFORM



12081B-006


AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20ns.

PHYSICAL DIMENSIONS PD 028

06971C

4-10

Am27X512

65,536 x 8-Bit CMOS ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

- OTP EPROM alternative:
 - Factory programmed
 - Fully tested and guaranteed
 - Low cost
- Mask ROM alternative
 - Shorter leadtime
 - Lower volume per code
- Compatible with JEDEC-approved EPROM pinout

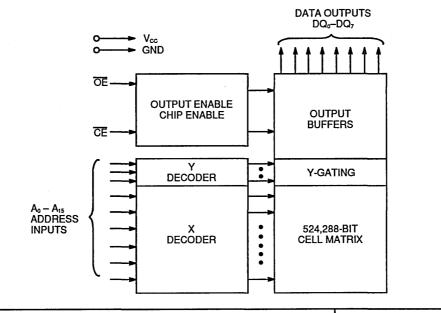
High performance CMOS technology – Fast access time — 150 ns

- Low power dissipation
 100 µA maximum standby current
- Available in plastic DIP and plastic leaded chip carrier

Advanced Micro

Devices

GENERAL DESCRIPTION


The Am27X512 is a wafer-level programmed EPROM with a standard topside for plastic packaging. It is organized as 65,536 by 8 bits and is available in plastic DIP as well as plastic leaded chip carrier (PLCC) packages. ExpressROM[™] devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

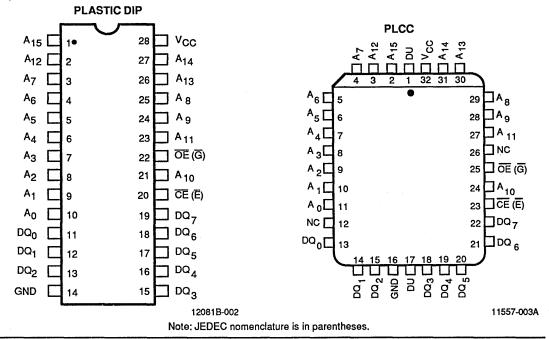
Access times as fast as 150 ns allow operation with

BLOCK DIAGRAM

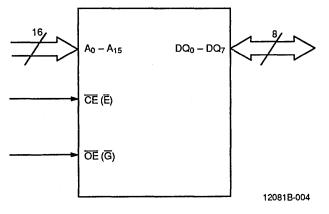
high-performance microprocessors with reduced WAIT states. The Am27X512 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 μW in standby mode.

ExpressROM is a trademark of Advanced Micro Devices Inc.

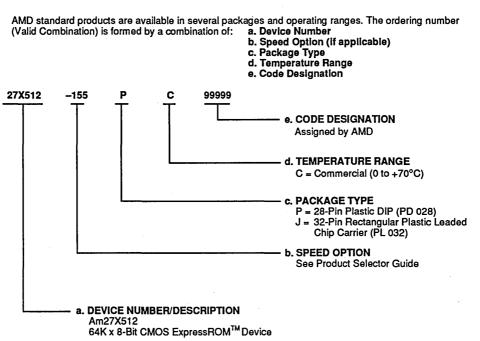

12081B-001

PRODUCT SELECTOR GUIDE


Family Part No.	Am27X512				
Ordering part No: ±5% VCC Tolerance	-155	-175	-205	-255	305
±10% VCC Tolerance	-	-170	-200	-250	-300
Max Access Time (ns)	150	170	200	250	300
CE (E) Access (ns)	150	170	200	250	300
OE (G) Access (ns)	50	50	75	100	100

CONNECTION DIAGRAMS

Top View


LOGIC SYMBOL

PIN DESCRIPTION

A0 - A15	=	Address Inputs
CE (E)	=	Chip Enable Input
DQ ₀ – DQ ₇	=	Data Outputs
OE (G)	=	Output Enable Input
V _{CC}	1	Vcc Supply Voltage
GND	=	Ground
NC	=	No Internal Connection
DU	H	No External Connection (Do Not Use)

ORDERING INFORMATION Standard Products

Valid Comb	inations
27X512-155 27X512-170 27X512-175 27X512-200 27X512-205 27X512-250 27X512-255 27X512-300 27X512-305	JC, PC

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{OE}.

Standby Mode

The Am27X512 has a CMOS standby mode which reduces the maximum V_{CC} current to $100 \,\mu$ A. It is placed in CMOS-standby when \overrightarrow{CE} is at $V_{CC} \pm 0.3$ V. The Am27X512 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overrightarrow{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overrightarrow{OE} input.

Output OR-Tieing

5-4

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1.Low memory power dissipation, and

2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus.

This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROMTM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be array.

Mode Select Table						
Pins						
Mode	CE	ŌĒ	Outputs			
Read	VIL	VıL	Dout			
Output Disable	VIL	VIH	High Z			
Standby (TTL)	ViH	х	High Z			
Standby (CMOS)	$V_{CC} \pm 0.3 V$	х	High Z			

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65 to 125°C
Ambient Temperature with Power Applied	–55 to +125°C
Voltage with Respect to Ground:	
All pins except V _{CC}	-0.6 to Vcc +0.5 V
Vcc	-0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Minimum DC voltage on input or output is -0.5 V. During transitions, the inputs may undershoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T)	0 to +70°C
Cumply Dead Vellegees	

Supply Read Voltages:

V_{cc} for Am27X512–XX5 +4.7 V_{cc} for Am27X512–XX0 +4.5

+4.75 to +5.25 V +4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4, and 6)

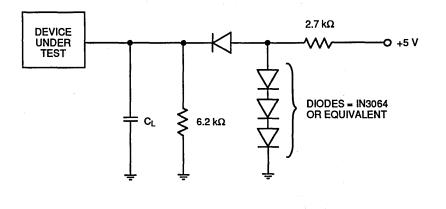
TTL and N	MOS Inputs				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = - 400 μA	2.4		v
VoL	Output LOW Voltage	I _{OL} = 2.1 mA		0.45	v
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	v
VIL	Input LOW Voltage		-0.3	+0.8	v
lu	Input Load Current	$V_{IN} = 0 V to V_{CC}$		1.0	μA
ILO	Output Leakage Current	$V_{OUT} = 0 V to V_{CC}$		10	μA
Icc1	V _{CC} Active Current (Note 4)	CE = VIL, f = 10 MHz, Iout = 0 mA (Open Outputs)		40	mA
I _{CC2}	I_{CC2} V _{CC} Standby Current $\overline{CE} = V_1$ $\overline{OE} = V_1$			1	mA
CMOS Inpu	uts				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	l _{OH} = - 400 μA	2.4		v
Vol	Output LOW Voltage	I _{OL} = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		V _{cc} – 0.3	Vcc+0.3	v
VIL	Input LOW Voltage		-0.3	+0.8	v
lu	Input Load Current	V _{IN} = 0 V to V _{CC}		1.0	μΑ
llo	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μA
I _{CC1}	V _{CC} Active Current (Note 4)	$\overline{CE} = V_{IL},$ f = 10 MHz, lour = 0 mA (Open Outputs)		40	mA
Icc2	Vcc Standby Current	$\overline{CE} = V_{CC \pm} 0.3$		100	μA

CAPACITANCE (Notes 1, 2 and 5)

Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
C _{IN1}	Input Capacitance	V _{IN} = 0 V	8	12	pF
C _{IN2}	OE Input Capacitance	$V_{IN} = 0 V$	12	20	pF
C _{IN3}	CE Input Capacitance	$V_{IN} = 0 V$	9	12	pF
Cour	Output Capacitance	V _{OUT} = 0 V	8	12	pF

Notes:

- 1. Typical values are for nominal supply voltages.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X512 must not be removed from, or inserted into, a socket or board when Vcc is applied.
- 4. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 5. T_A = 25°C, f = 1 MHz.
- Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns.
 Maximum DC voltage on output pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

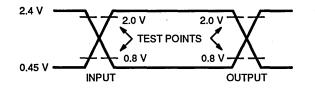

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 2 and 3)

Parame JEDEC	ter Symbol Standard	Parameter Description	Test Conditions		-155	-170 -175		-250 -255	300 305	Unit
tavqv	tacc	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$	Min. Max.	150	170	200	250	300	ns ns
t ELQV	tce	Chip Enable to Output Delay	$\overline{OE} = V_{IL}$	Min. Max.	150	170	200	250	300	ns ns
tglav	toe	Output Enable to Output Delay	$\overline{CE} = V_{IL}$	Min. Max.	50	50	75	100	100	ns ns
tehaz tghaz	tDF	Output Enable HIGH to Output Float (Note 1)		Min. Max.	30	30	60	60	60	ns ns
taxox	tон	Output Hold from Addresses, CE or OE whichever occurred first		Min. Max.	0	0	0	0	0	ns ns

Notes:

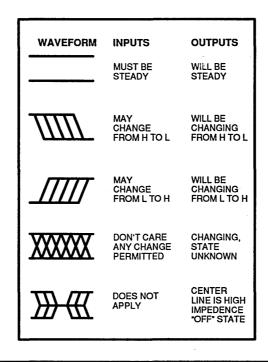
- 1. This parameter is only sampled and not 100% tested.
- 2. Caution: The Am27X512 must not be removed from, or inserted into, a socket or board when V_{CC} is applied.
- Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 to 2.4 V, Timing Measurement Reference Level — Inputs: 0.8 V and 2 V Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

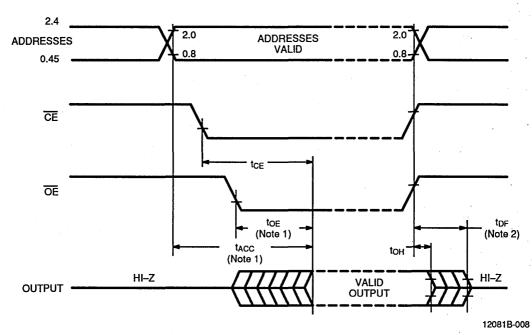


12081B-005

÷.


SWITCHING TEST WAVEFORM

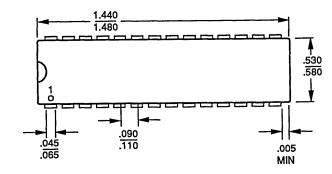
12081B-006

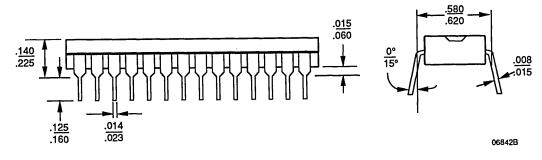

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are < 20ns.

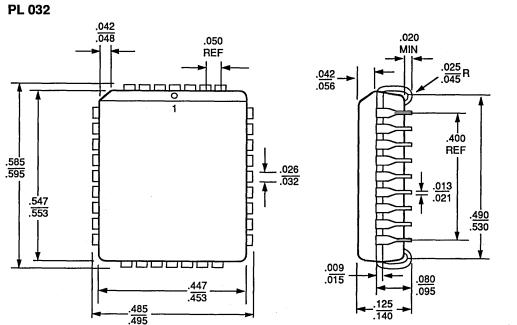
KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS




Note:


1. OE may be delayed up to tACC-tOE after the falling edge of CE without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

PHYSICAL DIMENSIONS PD 028

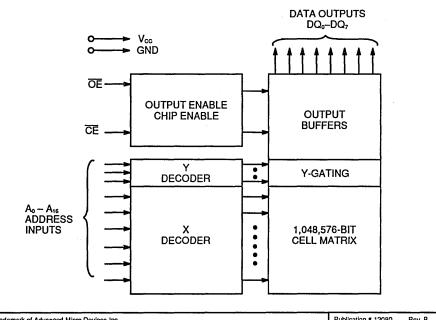
06971C

Am27X010

1 Megabit (131,072 x 8-Bit) CMOS ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

- OTP EPROM alternative:
 - Factory programmed
 - Fully tested and guaranteed
 - Low cost
- Mask ROM alternative
 - Shorter leadtime
 - Lower volume per code
- Compatible with JEDEC-approved EPROM pinout


- High performance CMOS technology
 - Fast access time 200 ns
 Low power dissipation
 100 μA maximum standby current
- Available in plastic DIP and plastic leaded chip carrier

GENERAL DESCRIPTION

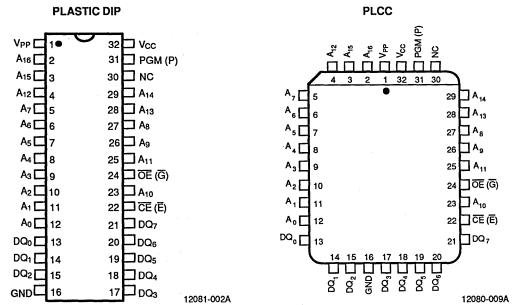
The Am27X010 is a wafer-level programmed EPROM with a standard topside for plastic packaging. It is organized as 131,072 by 8 bits and is available in plastic DIP as well as plastic leaded chip carrier (PLCC) packages. ExpressROM[™] devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs. Access times as fast as 200 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X010 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 μ W in standby mode.

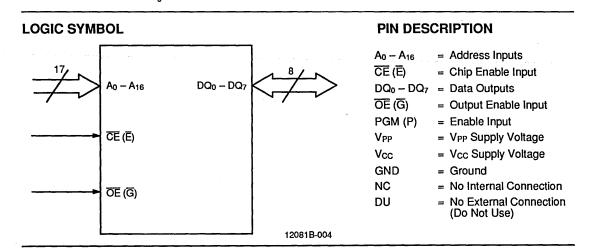
BLOCK DIAGRAM

ExpressROM is a trademark of Advanced Micro Devices Inc.

12081B-001

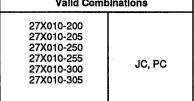

Advanced Micro Devices

PRODUCT SELECTOR GUIDE


Family Part No.	Am27X010			
Ordering part No: ±5% VCC Tolerance	-205	255	-305	
±10% VCC Tolerance	200	-250	-300	
Max Access Time (ns)	200	250	300	
CE (E) Access (ns)	200	250	300	
\overline{OE} (\overline{G}) Access (ns)	75	100	120	

CONNECTION DIAGRAMS

Top View



Note: 1. JEDEC nomenclature is in parentheses. 2. The 32-Pin DIP to 32-Pin PLCC configuration varies from the JEDEC 28-Pin DIP to 32-Pin PLCC configuration.

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of: a. Device Number **b. Speed Option** c. Package Type d. Temperature Range e. Code Designation 99999 27X010 -200 Ρ С e. CODE DESIGNATION Assigned by AMD d. TEMPERATURE RANGE C = Commercial (0 to +70°C) c. PACKAGE TYPE P = 32-Pin Plastic DIP (PD 032) J = 32-Pin Rectangular Plastic Leaded Chip Carrier (PL 032) **b. SPEED OPTION** See Product Selector Guide a. DEVICE NUMBER/DESCRIPTION Am27X010 128K x 8-Bit CMOS ExpressROM[™] Device Valid Combinations **Valid Combinations**

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{OE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least $t_{ACC} - t_{OE}$.

Standby Mode

The Am27X010 has a CMOS standby mode which reduces the maximum V_{CC} current to $100 \,\mu$ A. It is placed in CMOS-standby when \overrightarrow{CE} is at $V_{CC} \pm 0.3$ V. The Am27X010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overrightarrow{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overrightarrow{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in

their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROMTM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode Select Table						
Pins						
Mode	CE	ŌĒ	PGM	V_{PP}	Outputs	
Read	VIL	VIL	х	х	DOUT	
Output Disable	VIL	ViH	X	х	High Z	
Standby (TTL)	VIH	х	x	х	High Z	
Standby (CMOS)	Vcc ± 0.3 V	х	x	х	High Z	

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65 to 125°C
Ambient Temperature with Power Applied	–55 to +125°C
Voltage with Respect to Ground:	
All pins except V_{CC} and V_{PP}	0.6 to V _{cc} +0.5 V
V _{CC} and V _{PP}	-0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum DC voltage on input or output is -0.5 V. During transitions, the inputs may undershoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

OPERATING RANGES

V_{cc} for Am27X010–XX0

Commercial (C) Devices Case Temperature (T)	0 to +70°C
Supply Read Voltages: V _{CC} for Am27X010–XX5	+4.75 to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

+4.50 to +5.50 V

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4, 6 and 8)

TTL and N	MOS Inputs				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	l _{OH} = - 400 μA	2.4		V
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	v
ViL	Input LOW Voltage		- 0.3	+0.8	v
lu	Input Load Current	V _{IN} = 0 V to V _{CC}		1.0	μA
ILO	Output Leakage Current	Vout = 0 V to VCCPP		10	μA
Icc1	V _{CC} Active Current (Note 4)	CE = VIL, f = 5 MHz, lour = 0 mA (Open Outputs)		30	mA
ICC2	Vcc Standby Current	CE = VIH		1	mA
Ірр	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA
CMOS Inpu	uts				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	l _{OH} = – 400 µA	2.4		v
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		V _{CC} – 0.3	V _{CC} + 0.3	v
VIL	Input LOW Voltage		- 0.3	+0.8	v
lu .	Input Load Current	$V_{IN} = 0 V$ to V_{CC}		1.0	μΑ
ILO	Output Leakage Current	Vout = 0 V to Vcc		10	μΑ
lcc1	V _{CC} Active Current (Note 4)	CE = VIL, f = 5 MHz, lour = 0 mA (Open Outputs)		30	mA
Icc2	Vcc Standby Current	$\overline{CE} = V_{CC} \pm 0.3$		100	μA
Ipp	V _{CC} Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA

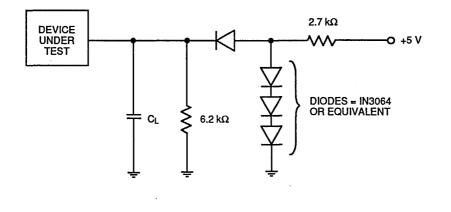
CAPACITANCE (Notes 1, 2 and 5)

Parameter	Parameter	Test	PD	032	PL	Unit	
Symbol	Description	Conditions	Тур.	Max.	Тур.	Max.]
C _{IN1}	Input Capacitance	V _{IN} = 0 V	8	12	6	9	pF
C _{IN2}	OE Input Capacitance	V _{IN} = 0 V	12	20	9	15	pF
CIN3	CE Input Capacitance	V _{IN} = 0 V	9	12	7	9	pF
Cour	Output Capacitance	V _{OUT} = 0 V	8	12	6	9	pF

Notes:

- 1. Typical values are for nominal supply voltages.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X010 must not be removed from, or inserted into, a socket or board when Vpp or VCc is applied.
- 4. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 5. T_A = 25°C, f = 1 MHz.
- Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns.
 Maximum DC voltage on output pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.
- 7. Maximum active power usage is the sum of ICC and IPP.
- 8. V_{cc} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

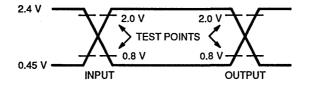
SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4)


Parame JEDEC	ter Symbol Standard	Parameter Description	Test Conditions		-200 -205			Unit
tavav	tacc	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$	Min. Max.	200	250	300	ns ns
tELQV	tce	Chip Enable to Output Delay	OE = V _{IL}	Min. Max.	200	250	300	ns ns
tglav	toe	Output Enable to Output Delay	CE = V _{IL}	Min. Max.	75	100	100	ns ns
t _{ehaz,} t _{ghaz}	tDF	Output Enable HIGH to Output Float (Note 1)	· · · · · · · · · · · · · · · · · · ·	Min. Max.	60	60	60	ns ns
taxox	tон	Output Hold from Addresses, CE or OE whichever occurred first		Min. Max.	0	0	0	ns ns

Notes:

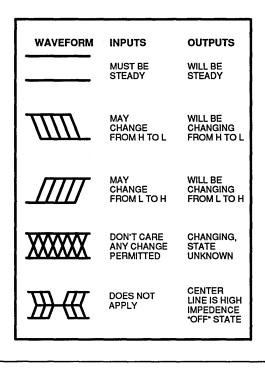
- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X010 must not be removed from, or inserted into, a socket or board when Vpp or V_{CC} is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 to 2.4 V,

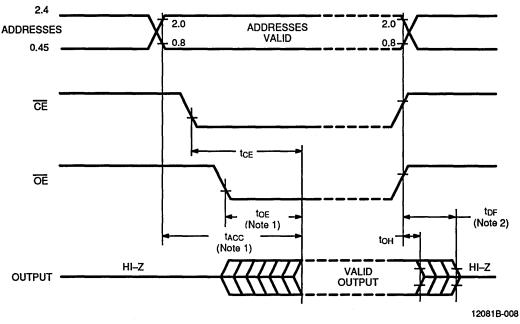
Timing Measurement Reference Level — Inputs: 0.8 V and 2 V Outputs: 0.8 V and 2 V


SWITCHING TEST CIRCUIT

12081B-005

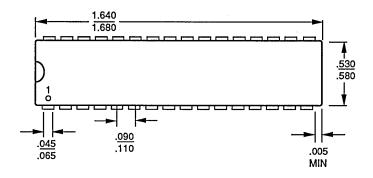
CL = 100 pF including jig capacitance

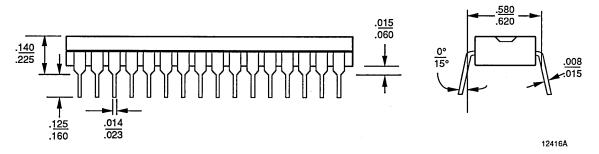

SWITCHING TEST WAVEFORM


12081B-006

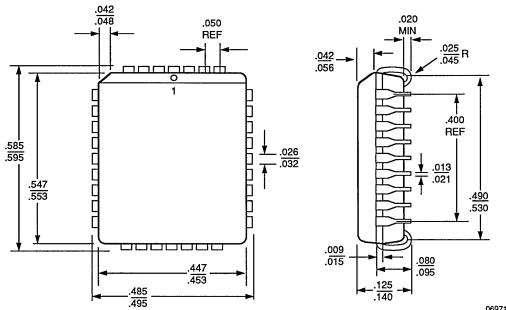
AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20ns.

KEY TO SWITCHING WAVEFORMS


SWITCHING WAVEFORMS



Note:


1. \overline{OE} may be delayed up to t_{ACC}-t_{OE} after the falling edge of \overline{CE} without impact on t_{ACC}. 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first. KS000010

PHYSICAL DIMENSIONS PD 032

PL 032

06971C

A0 - A15 ADDRESS INPUTS

OUTPUT ENABLE

CHIP ENABLE

γ

DECODER

X DECODER

12081B-001

Publication # 12079 Rev. B Issue Date: April 1989

Amendment/0

DATA OUTPUTS DQ₀-DQ₁₅

:

•

. . . OUTPUT

BUFFERS

Y-GATING

1.048.576-BIT

CELL MATRIX

solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask pro-

grammed ROMs.

BLOCK DIAGRAM

Access times as fast as 170 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X1024 offers separate Output Enable (OE) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 350 µW in standby mode.

- Fully tested and guaranteed

- Low cost
- Mask ROM alternative
 - Shorter leadtime
 - Lower volume per code

GENERAL DESCRIPTION

OTP EPROM alternative:

- Factory programmed

Compatible with JEDEC-approved EPROM pinout

The Am27X1024 is a wafer-level programmed EPROM with a standard topside for plastic packaging. It is organ-

ized as 65,536 by 16 bits and is available in plastic DIP

as well as plastic leaded chip carrier (PLCC) packages.

ExpressROM[™] devices provide a board-ready memory

 V_{cc} GND V_{PP}

OF

CE

PGM

High performance CMOS technology - Fast access time - 170 ns

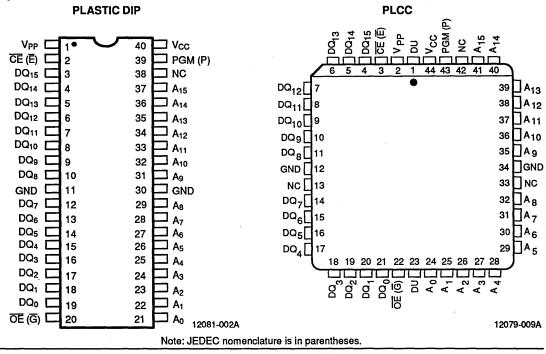
- Low power dissipation 200 µA maximum standby current
- Available in plastic DIP and plastic leaded chip carrier

Final

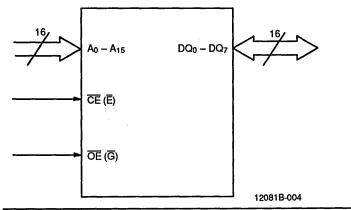
Am27X1024

DISTINCTIVE CHARACTERISTICS

1 Megabit (65,536 x 16-Bit) CMOS ExpressROM[™]Device


Advanced Micro Devices

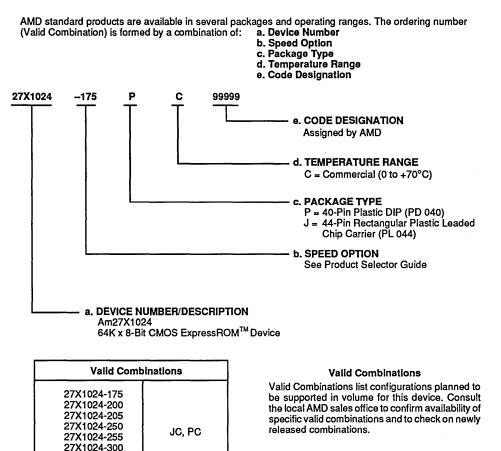
PRODUCT SELECTOR GUIDE


Family Part No.	Am27X1024				
Ordering part No: ±5% VCC Tolerance	-175	-205	-255	-305	
±10% VCC Tolerance	·	-200	-250	-300	
Max Access Time (ns)	170	200	250	300	
CE (E) Access (ns)	170	200	250	300	
OE (G) Access (ns)	65	75	100	120	

CONNECTION DIAGRAMS

Top View

LOGIC SYMBOL


PIN DESCRIPTION

A ₀ – A ₁₅	=	Address Inputs
CE (E)	=	Chip Enable Input
DQ0 - DQ16	=	Data Outputs
OE (G)	=	Output Enable Input
PGM	=	Enable Input
V _{PP}	=	VPP Supply Voltage
Vcc	=	Vcc Supply Voltage
GND	=	Ground
NC	=	No Internal Connection
DU	=	No External Connection (Do Not Use)

Am27X1024

ORDERING INFORMATION Standard Products

27X1024-305

FUNCTIONAL DESCRIPTION Read Mode

The Am27X1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{OE}.

Standby Mode

The Am27X1024 has a CMOS standby mode which reduces the maximum V_{CC} current to 200 μ A. It is placed in CMOS-standby when \overline{CE} is at $V_{CC} \pm 0.3$ V. The Am27X1024 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH} . When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins

are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROMTM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode Select Table								
Pins								
Mode	CE	ŌĒ	PGM	VPP	Outputs			
Read	ViL	VIL	ViH	Vcc	Dout			
Output Disable	VIL	ViH	VIH	Vcc	High Z			
Standby (TTL)	ViH	х	X	Vcc	High Z			
Standby (CMOS)	V _{CC} ± 0.3 V	x	x	х	High Z			

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65 to 125°C
Ambient Temperature with Power Applied	-55 to +125°C
Voltage with Respect to Ground: All pins except V_{CC} and V_{PP}	–0.6 to V _{CC} +0.5 V
Vcc and VPP	–0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum DC voltage on input or output is -0.5 V. During transitions, the inputs may undershoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

OPERATING RANGES

Commercial (C) Devices	
Case Temperature (T)	0 to +70°C

Supply Read Voltages:

V_{CC} /V_{PP} for Am27X1024–XX5 +4.75 to +5.25 V V_{CC} /V_{PP} for Am27X1024–XX0 +4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 3, 4, 6 and 8)

TTL and NI	MOS Inputs				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	l _{OH} = – 400 μA	2.4		. V
Vol	Output LOW Voltage	l _{OL} = 2.1 mA		0.45	v
ViH	Input HIGH Voltage		2.0	V _{CC} + 0.5	v
VIL	Input LOW Voltage		- 0.3	+0.8	v
lu	Input Load Current	$V_{IN} = 0 V to V_{CC}$		1.0	μA
ILO	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μA
Icc1	V _{CC} Active Current (Note 4)	CE = V _{IL} , f = 5 MHz, I _{OUT} = 0 mA (Open Outputs)		50	mA
ICC2	V _{CC} Standby Current	$\overline{CE} = V_{IH},$ $\overline{OE} = V_{IL}$		1	mA
Ірр	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA
CMOS Inpu	uts				
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	l _{OH} = - 400 μA	2.4		v
Vol	Output LOW Voltage	I _{OL} = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		V _{CC} – 0.3	V _{CC} + 0.3	v
ViL	Input LOW Voltage		- 0.3	+0.8	v
և	Input Load Current	$V_{IN} = 0 V$ to V_{CC}		1.0	μA
ILO	Output Leakage Current	V _{OUT} = 0 V to V _{CC}		10	μΑ
Icc1	V _{CC} Active Current (Note 4)	CE = VIL, f = 5 MHz, Iout = 0 mA (Open Outputs)		50	mA
lcc2	V _{CC} Standby Current	$\overline{CE} = V_{CC} \pm 0.3$		200	μA
Ipp	Vcc Supply Current (Note 7)	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$		100	μA

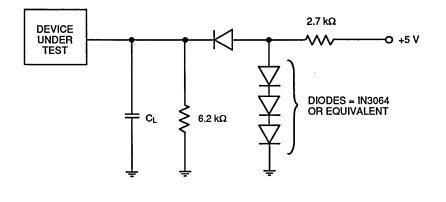
CAPACITANCE (Notes 1, 2 and 5)

Parameter	Parameter	Test Conditions	PD 040		PL	Unit	
Symbol	Description		Тур.	Max.	Тур.	Max.	
C _{IN1}	Input Capacitance	V _{IN} = 0 V	8	12	6	9	pF
CIN2	OE Input Capacitance	$V_{IN} = 0 V$	12	20	9	15	pF
CIN3	CE Input Capacitance	V _{IN} = 0 V	9	12	7	9	pF
Солт	Output Capacitance	V _{OUT} = 0 V	8	12	6	9	pF

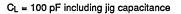
Notes:

- 1. Typical values are for nominal supply voltages.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X1024 must not be removed from, or inserted into, a socket or board when Vpp or V_{CC} is applied.
- 4. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 5. T_A = 25°C, f = 1 MHz.
- Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns.
 Maximum DC voltage on output pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.
- 7. Maximum active power usage is the sum of Icc and Ipp.
- 8. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

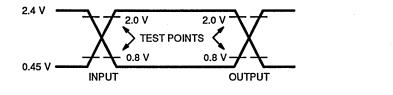
SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4)


Parame JEDEC	ter Symbol Standard	Parameter Description	Test Conditions		-175	200 205			Unit
tavqv	tacc	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$	Min. Max.	170	200	250	300	ns ns
t ELQV	tce	Chip Enable to Output Delay	$\overline{OE} = V_{IL}$	Min. Max.	170	200	250	300	ns ns
tglav	toe	Output Enable to Output Delay	$\overline{CE} = V_{IL}$	Min. Max.	65	75	100	120	ns ns
tehaz tghaz	tDF	Output Enable HIGH to Output Float (Note 1)		Min. Max.	50	60	60	60	ns ns
ταχοχ	tон	Output Hold from Addresses, CE or OE whichever occurred first		Min. Max.	0	0	0	0	ns ns

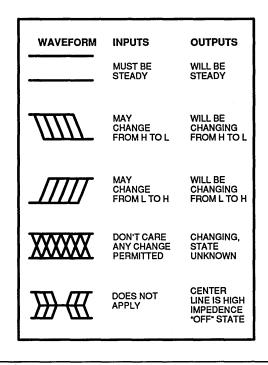
Notes:


- 1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X1024 must not be removed from, or inserted into, a socket or board when Vpp or V_{CC} is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 to 2.4 V, Timing Measurement Reference Level — Inputs: 0.8 V and 2 V

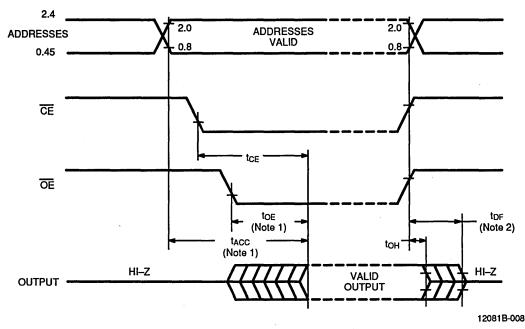
Outputs: 0.8 V and 2 V


SWITCHING TEST CIRCUIT

12081B-005


SWITCHING TEST WAVEFORM

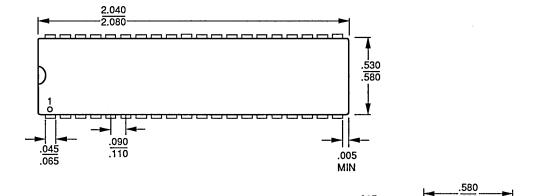
12081B-006

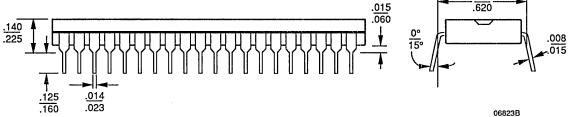

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20ns.

KEY TO SWITCHING WAVEFORMS

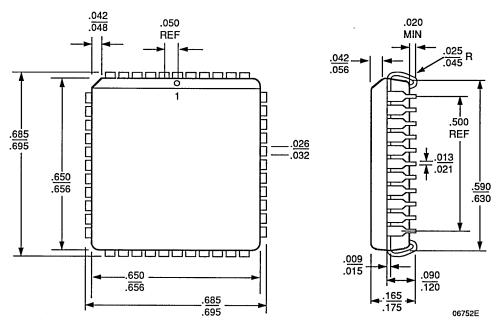
KS000010

SWITCHING WAVEFORMS




Note:

1. \overline{OE} may be delayed up to t_{ACC}-t_{OE} after the falling edge of \overline{CE} without impact on t_{ACC}.


2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

PHYSICAL DIMENSIONS PD 040

Am27X1024

NOTES

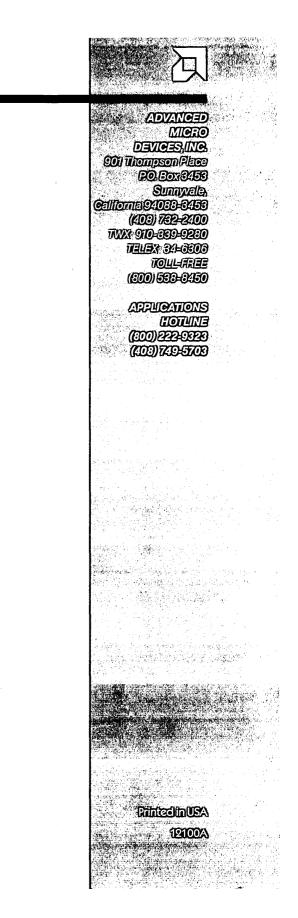
Sales Offices

North American		_
ALABAMA(205)	882-9122	2
ARIZONA	242-4400	0
CALIFORNIA,	A	
Culver City	645-1524	4
Roseville (714)	786-6700	ñ
Newport Beach	560-7030	ŏ
San Jose	452-0500	0
Woodland Hills	992-415	5
CANADA, Ontario,		
Kanata	592-0060	0
Willowdale(416)	224-519	3
COLORADO	741-2900	D
CONNECTICUT	264-7800	0
Clearwater	530-997	1
Ft. Lauderdale	776-200	i
Orlando		
GEORGIA	449-7920	0
ILLINOIS,		
Chicago	773-442	2
Naperville	505-951	7
KANSAS	451-311	5
	272.2070	8
MICHIGAN	347-152	ž
MINNESOTA	938-000	1
NEW JERSEY.		
Cherry Hill	662-290	0
Parsippany	299-0003	2
NEW YORK,		~
Liverpool	457-5400	2
Liverpool	272-9020	ň
NORTH CAROLINA	878-811	ĭ
OHIO		
Columbus	891-645	5
Dayton	439-0470	0
OREGON	245-008	0
PENNSYLVANIA	398-8006	6
TEXAS. (803)	//2-6/60	. 0
Austin	346-7830	0
Dallas	934-9099	9
Houston	785-900	1
Internetional		

International_

BELGIUM, Bruxelles	TEL .	(02) 771-91-42
	FAX.	(02) 762-37-12
	TLX	
FRANCE, Paris	TEL	
	FAX.	(1) 49-75-10-13
WEST GERMANY.		
Hannover area	TEL	
	FAX.	
	TLX.	
München	.TEL	
	FAX.	(089) 406490
	TLX.	
Stuttgart	TEL	
	FAX.	
	TLX.	721882
HONG KONG	TEL	
	FÃX.	
		67955AMDAPHX
ITALY. Milan	TEL	
	FAX	
	TLX.	
JAPAN.		
Kanagawa	TEL	
	FAX	
Tokyo	TEL	(03) 345-8241
	FAX.	(03) 342-5196
	TLX	(03) 342-5196 J24064AMDTKOJ
Osaka	TEL .	
	FAX	

International (Continued)_ KOREA, Seoul TEL 822-784-0030 FAX822-784-8014 LATIN AMERICA, Ft. Lauderdale NORWAY, Hovik TLX......79079 SINGAPORE SWEDEN. Stockholm TAIWAN UNITED KINGDOM. Manchester area TEL(0483) 740440 FAX(0483) 756196 London area


CANADA Burnaby, B.C

Burnaby, B.C.
DAVETEK MARKETING(604) 430-3680
Calgary, Alberta DAVETEK MARKETING(403) 291-4984
DAVETER MARKETING
Kanata, Ontario VITEL ELECTRONICS
Mississauga, Ontario
VITEL ELECTRONICS
Lachine, Quebec
VITEL ELECTRONICS
IDAHO
INTERMOUNTAIN TECH MKTG(208) 888-6071
ILLINOIS
HEARTLAND TECHNICAL MARKETING (312) 577-9222
INDIANA
Huntington - INDIANAPOLIS ELECTRONIC
MARKETING CONSULTANTS, INC
IOWA
LORENZ SALES
KANGAG
Merriam – LORENZ SALES
Wichita - LORENZ SALES
KENTUCKY
ELECTRONIC MARKETING
CONSULTANTS, INC
MICHIGAN
Birmingham - MIKE RAICK ASSOCIATES (313) 644-5040
Holland – COM-TEK SALES, INC
Novi – COM-TEK SALES, INC
MISSOURI
LORENZ SALES
NEBRASKA
LORENZ SALES
NEW MEXICO
THORSON DESERT STATES
NEW YORK
East Syracuse - NYCOM, INC
Woodbury – COMPONENT CONSULTANTS, INC
CONSULTANTS, INC(516) 364-8020
OHIO
Centerville - DOLFUSS ROOT & CO
Columbus - DOLFUSS ROOT & CO
Strongsville – DOLFUSS ROOT & CO (216) 238-0300
PENNSYLVANIA
DOLFUSS ROOT & CO(412) 221-4420
PLIERTO BICO
COMP, REP. ASSOCIATES
UTAH, R ² MARKETING
WASHINGTON
ELECTRA TECHNICAL SALES (206) 821-7442
WISCONSIN
HEARTLAND TECHNICAL MARKETING (414) 792-0920

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA Tel: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450 APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323 • (408) 749-5703

