High Performance CMOS
 Bus Interface Products

Advanced Micro
Devices
1989 Data Book

Am29C800A

"Increasing integration and performance on the system level now requires corresponding improvements in bus interface. AMD's Am29C800A family meets this challenge, offering the designer innovative solutions to his interface needs. We are confident that you will find these devices suitable for your most demanding applications."

Fred J. Roeder
Vice-President and Managing Director
Logic Products Division

Table of Contents

Numerical Device Index iii
Introduction iv
Switching Test Circuits v
Switching Test Waveforms vi
Physical Dimensions viii
Product Specifications
Am29C821A/Am29C823A High-Performance CMOS Bus Interface Registers 1
Am29C827A/Am29C828A High-Performance CMOS Buffers 9
Am29C833A/Am29C853A/Am29C855A CMOS Parity Bus Transceivers 16
Am29C841A/Am29C843A High-Performance CMOS Bus Interface Latches 27
Am29C861A/Am29C863A High-Performance CMOS Bus Transceivers 35

Numerical Device Index

Am29C821A High-Performance CMOS Bus Interface Registers 1
Am29C823A High-Performance CMOS Bus Interface Registers 1
Am29C827A High-Performance CMOS Buffers 9
Am29C828A High-Performance CMOS Buffers 9
Am29C833A CMOS Parity Bus Transceivers 16
Am29C841A High-Performance CMOS Bus Interface Latches 27
Am29C843A High-Performance CMOS Bus Interface Latches 27
Am29C853A CMOS Parity Bus Transceivers 16
Am29C855A CMOS Parity Bus Transceivers 16
Am29C861A High-Performance CMOS Bus Transceivers 35
Am29C863A High-Performance CMOS Bus Transceivers 35

Introduction

This document contains preliminary product specifications for the Am29C800A HighPerformance Bus interface devices. This newest Am29800 Family provides wide datapath solutions in a variety of functions for use in various system applications.

The Am29C800A High-Performance CMOS Bus Interface Family provides bipolar-comparable performance while consuming much less power. Pin-for-pin compatible with the Am29800A/Am29C800 Families, the Am29C800A Family provides the same functionality and features with 48-mA output drive. The Am29C800A devices offer lower propagation delays and consume less power than their predecessors. Built with AMD's advanced CS-11SA 1.0 micron process, you obtain the necessary output drive for driving heavily loaded buses while achieving the fast switching speeds required for high-performance systems.

The family is available in a variety of packages, including 24-Pin Slim (300-mil) Ceramic and Plastic DIPs, a 28-Pin Ceramic Leadless Chip Carrier (LCC), and a 28 -Pin Plastic Leaded Chip Carrier (PLCC). Physical Dimensions for these packages, as well as a common Switching Test Circuit, with associated waveforms, are provided on the following pages.

For further information, please contact the nearest AMD Sales Office or Representative listed on the back cover.

SWITCHING TEST CIRCUITS

THREE-STATE OUTPUTS

TC002682

OPEN-DRAIN OUTPUTS

SWITCH POSITIONS FOR PARAMETER TESTING

Parameter	s Position
$t_{\text {PLH }}$	OPEN
$t_{\text {PHL }}$	OPEN
t_{HZ}	OPEN
t_{ZH}	OPEN
t_{LZ}	CLOSED
t_{ZL}	CLOSED

SWITCHING TEST WAVEFORMS

Enable and Disable Times

WF001271
Pulse Width

Am29C821A/Am29C823A

High-Performance CMOS Bus Interface Registers
PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- High-speed parallel positive edge-triggered registers with D-type flip-flops
-CP-Y propagation delay $=5$ ns typical
- Low standby power
- JEDEC FCT-compatible specs
- Very high output drive
- $\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$ Commercial, 32 mA Military

BLOCK DIAGRAMS

Am29C821A

BD005471

Am29C823A

LS003330

GENERAL DESCRIPTION

The Am29C821A and Am29C823A CMOS Bus Interface Registers are designed to eliminate the extra devices required to buffer stand alone registers and to provide extra data width for wider address/data paths or buses carrying parity. The Am29C800A registers are produced with AMD's exclusive CS11SA CMOS process, and feature typical propagation delays of 5 ns , as well as an output current drive of 48 mA .

The Am29C821A is a buffered, 10 -bit version of the popular '374/'534 function. The Am29C823A is a 9-bit buffered register with Clock Enable (EN) and Clear (CLR) - ideal for parity bus interfacing in high-performance microprogrammed systems.

The Am29C821A and Am29C823A incorporate AMD's proprietary edge-controlled outputs in order to minimize simultaneous switching noise (ground bounce). By controlling the output transient currents, ground bounce and ouput ringing
have been greatly reduced. A modified AMD output provides a stable, usable voltage level in less time than a non-controlled output.

Additionally, speed degradation due to increasing number of outputs switching is reduced. Together, these benefits of edge-rate control result in significant increase in system performance despite a minor increase in device propagation delay.*

A unique I/O circuitry provices for high-impedance outputs during power-off and power-up/down sequencing, thus providing glitch-free operation for card-edge and other active bus applications.

The Am29C821A and Am29C823A are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks.
*For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \#10181A).

CONNECTION DIAGRAMS

Top View
Am29C821A

LCC**

Am29C823A
DIPs*

CD001230

* Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs.
**Also available in 28 -Pin PLCC; pinout identical to LCC.

FUNCTION TABLES

Am29C821A

Inputs			Internal	Outputs	Function
$\overline{\text { OE }}$	$\mathrm{D}_{\mathbf{i}}$	CP	$\overline{\mathbf{Q}_{i}}$	Y_{1}	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & t \\ & t \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	$\mathrm{Hi}-\mathrm{Z}$
L	L	\dagger	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Load

H $=$ HIGH
L = LOW
X = Don't Care

Am29C823A

| Inputs | | | | | Internal | Outputs | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| \mathbf{O} | $\overline{\text { CLR }}$ | $\overline{\text { EN }}$ | $\mathbf{D}_{\mathbf{I}}$ | CP | $\overline{\mathbf{Q}_{\mathbf{i}}}$ | $\mathbf{Y}_{\mathbf{i}}$ | Function |
| H | H | L | L | t | H | Z | Hi-Z |
| H | H | L | H | i | L | Z | |
| H | L | X | X | X | H | Z | Clear |
| L | L | X | X | X | H | L | |
| H | H | H | X | X | NC | Z | Hold |
| L | H | H | X | X | NC | NC | |
| H | H | L | L | t | H | Z | |
| H | H | L | H | t | L | Z | Load |
| L | H | L | L | t | H | L | |
| L | H | L | H | i | L | H | |

NC = No Change
$\uparrow=$ LOW-to-HIGH Transition
$Z=$ High Impedance

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

b. SPEED OPTION

Not Applicable
a. DEVICE NUMBER/DESCRIPTION Am29C821A CMOS 10-Bit Register Am29C823A CMOS 9-Bit Register

Valid Combinations	
AM29C821A	PC, PCB, SC, JC, LC
AM29C823A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29C821A	/BLA, /BKA, /B3A
AM29C823A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

Am29C821A/Am29C823A

$D_{i} \quad$ Data Input (Input) D_{i} are the register data inputs.
CP Clock Pulse (Input, LOW-to-HIGH Transition) Clock Pulse is the clock input for the registers. Data is entered into the registers on the LOW-to-HIGH transitions.
$Y_{i} \quad$ Data Outputs (Output)
Y_{i} are the three-state outputs.
$\overline{\mathrm{O}} \mathrm{E}$ Output Enable (Input, Active LOW)
When the $\overline{O E}$ input is HIGH, the Y_{i} outputs are in the highimpedance state. When $\overline{O E}$ is LOW, the register data is present at the Y_{i} outputs.

Am29C823A only:

EN Clock Enable (Input, Active LOW)
When $\overline{E N}$ is LOW, data on the D_{i} inputs are transferred to the \bar{Q}_{i} outputs on the LOW-to-HIGH clock transition. When $\overline{E N}$ is HIGH, the \bar{Q}_{i} outputs do not change state, regardless of the data or clock input transitions.

CLR Clear (Input, Active LOW)
When CLR is LOW, the internal register is cleared. When $\overline{C L R}$ is LOW and $\overline{O E}$ is LOW, the \bar{Q}_{i} outputs are HIGH. When $\overline{\mathrm{CLR}}$ is HIGH, data can be entered into the register.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A}) 0 to $+70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Military (M) Devices
Ambient Temperature (T_{A}) $\ldots \ldots-55$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{array}{\|l\|} \hline V_{C C}=4.5 \mathrm{~V} \\ V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \\ \hline \end{array}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
Voì	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	MIL $\mathrm{IOL}=32 \mathrm{~mA}$			0.5	Volts
			$\mathrm{COM}^{\prime} \mathrm{L} \mathrm{IOL}^{\prime}=48 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		Volts
V_{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
IIL.	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-5	
I_{H}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$				5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				10	
IOZH	Output Off-State Current (High Impedance)	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=5.5 \mathrm{~V}$ or 2.7 V (Note 3)				+10	$\mu \mathrm{A}$
lozl		$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ or GND (Note 3)				-10	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 4)			-60		mA
ICCQ	Static Supply Current	$\begin{aligned} & V C C=5.5 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	MIL		1.5	mA
I'cit			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\frac{\overline{\mathrm{OE}}, \overline{\mathrm{CLR}}, \mathrm{CP},}{}$		3.0	
Iccot	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 5)				275	$\begin{gathered} \mu \mathrm{A} / \mathrm{MHz} / \\ \mathrm{Bit} \\ \hline \end{gathered}$

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Off-state currents are only tested at worst-case conditions of $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ or 0.0 V .
4. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
5. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITHCING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description		Test Conditions*	COMMERCIAL		MILITARY		Units	
			Min.	Max.	Min.	Max.			
tplH	Propagation Delay Clock to Y_{i} ($\overline{\mathrm{OE}}=\mathrm{LOW}$) (Note 1)			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		8.5		9.5	ns
tphL					8.5		9.5	ns	
ts	Data to CP Setup		3			3		ns	
t_{H}	Data to CP Hold		1.5			1.5		ns	
ts	Enable (EN L)	ime	3			3		ns	
ts	Enable (EN Γ)	Time	3			3		ns	
th_{H}	Enable (EN) Hold		0			0		ns	
$t_{\text {PHL }}$	Propagation Delay,				10		10.5	ns	
$t_{\text {REC }}$	Clear (CLR ${ }^{\text {c }}$)	ime	6			6		ns	
tpWH	Clock Pulse Width	HIGH	6			6		ns	
tpWL		LOW	6			6		ns	
tpWL	Clear Pulse Width	LOW	6			6		ns	
t_{ZH}	Output Enable Time $\overline{O E} L$ to Y_{i}				8.5		9	ns	
tzL					8.5		9	ns	
$\mathrm{thz}^{\text {L }}$	Output Disable Time				7.5		8	ns	
tlz	Output Disable Tim				7.5		8	ns	

*See Test Circuit and Waveforms.
Notes: 1. For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \#10181A).

Am29C827A/Am29C828A

DISTINCTIVE CHARACTERISTICS

- High-speed CMOS buffers and inverters
- D-Y delay $=4 \mathrm{~ns}$ typical
- Low standby power
- JEDEC FCT-compatible specs
- Very high output drive
- $\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$ Commercial, 32 mA Military
- 200-mV typical hysteresis on data input ports
- Proprietary edge-rate controlled outputs
- Power-up/down disable circuit provides for glitch-free power supply sequencing

BLOCK DIAGRAMS
Am29C827A (Noninverting)

BD001092
Am29C828A (Inverting)

BD001093

GENERAL DESCRIPTION

The Am29C827A and Am29C828A CMOS Bus Buffers provide high-performance bus interface buffering for wide address/ data paths or buses carrying parity. Both devices feature 10-bit wide data paths and NORed output enables for maximum control flexibility. The Am29C827A has non-inverting outputs, while the Am29C828A has inverting outputs. Each device has data inputs with $200-\mathrm{mV}$ typical input hysteresis to provide improved noise immunity. The Am29C827A and Am29C828A are produced with AMD's exclusive CS11SA CMOS process, and feature typical propagation delays of 4 ns , as well as an output current drive of 48 mA .

The Am29C827A and Am29C828A incorporate AMD's proprietary edge-controlled outputs in order to minimize simultaneous switching noise (ground bounce). By controlling the output transient currents, ground bounce and ouput ringing
have been greatly reduced. A modified AMD output provides a stable, usable voltage level in less time than a non-controlled output.
Additionally, speed degradation due to increasing number of outputs switching is reduced. Together, these benefits or edge-rate control result in significant increase in system performance despite a minor increase in device propagation delay.*

A unique I/O circuitry provides for high-impedance outputs during power-off and power-up/down sequencing, thus providing glitch-free operation for card-edge and other active bus applications.

The Am29C827A and Am29C828A are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks.
*For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \# 10181A)

CONNECTION DIAGRAMS

Top View

Am29C827A/Am29C828A

*Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs.
**Also available in 28 -Pin PLCC; pinout identical to LCC.

LOGIC SYMBOLS

Am29C827A

LS000391

Am29C828A

FUNCTION TABLES

Am29C827A				
Inputs			Outputs	Function
OE_{1}	OE_{2}	$\mathrm{D}_{\mathbf{i}}$	Y_{i}	
L	L	H	H	Transparent
L	L	L	L	Transparent
X	H	X	Z	Hi-Z
H	X	X	Z	Hi-Z

Am29C828A				
Inputs Outputs $\overline{\mathrm{OE}}_{\mathbf{1}}$ $\overline{\mathrm{OE}}_{\mathbf{2}}$ $\mathrm{D}_{\mathbf{I}}$ $\mathbf{Y}_{\mathbf{i}}$ Function L L H L L Transparent L L L X H Transparent X H X H X X Z Z $\mathrm{Hi}-\mathrm{Z}$				

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \\
& \mathrm{~L}=\mathrm{LOW} \\
& \mathrm{X}=\text { Don't Care } \\
& \mathrm{Z}=\mathrm{Hi}-\mathrm{Z}
\end{aligned}
$$

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

DEVICE NUMBER/DESCRIPTION
Am29C827A CMOS 10-Bit Noninverting Buffer Am29C828A CMOS 10-Bit Inverting Buffer
b. SPEED OPTION

Not Applicable

Valid Combinations	
AM29C827A	PC, PCB, SC, JC,
AM29C828A	LC

Valid Combinations
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Optlon (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations

Valid Combinations	
AM29C827A	/BLA, /BKA, /B3A
AM29CB28A	

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

$\overline{\mathrm{OE}} \mathrm{O}_{\mathrm{O}} \overline{\text { Output Enables }}$ (Input, Active LOW)
When $\overline{O E}_{1}$ and $\overline{O E}_{2}$ are both LOW, the outputs are enabled. When either one or both are HIGH, the outputs are in the HiZ state.
$D_{1} \quad$ Data Inputs (Input)
D_{i} are the 10-bit data inputs.
$Y_{I_{1}}$ Data Output (Output)
Y_{i} are the 10-bit data outputs.

OPERATING RANGES

Commercial (C) Devices

Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Military (M) Devices
Temperature (T_{A})
-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Unit
$\mathrm{VOH}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C G}=4.5 \mathrm{~V} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		V
VoL	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \quad V \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	MIL. $\mathrm{IOL}=32 \mathrm{~mA}$			0.5	V
			COM'L $\mathrm{OL}=48 \mathrm{~mA}$				
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	V
V_{1}	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=-18 \mathrm{~mA}$				-1.2	V
ILL	Input LOW Current	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-5	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$				5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				10	
lozh	Output Off-State Current (High Impedance)	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=5.5 \mathrm{~V}$ or 2.7 V (Note 3)				+10	$\mu \mathrm{A}$
lozl		$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ or GND (Note 3)				-10	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 4)			-60		mA
ICCO	Static Supply Current	$V_{c c}=5.5 \mathrm{~V}$Outputs Open	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	MIL		1.5	mA
			or GND	COM'L		1.2	mA
ICCT			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{O}}_{2}$		3.0	
ICCD \dagger	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 5)				275	$\underset{\mathrm{Bit}}{\mu \mathrm{~A} / \mathrm{MHz}}$

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Off-state currents are only tested at worst-case conditions of $V_{o u r}=5.5 \mathrm{~V}$ or 0.0 V .
4. Not more than one output should be shorted at a time. Duration should not exceed 100 milliseconds.
5. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tpLH	Data (D_{i}) to Output (Y_{i}) Am29C827A (Noninverting) (Note 1)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		6.5		7.5	ns
tpHL				6.5		7.5	ns
tPLH	Data (D_{i}) to Output (Y_{i}) Am29C828A (Inverting) (Note 1)			6.5		7.5	ns
tpHL				6.5		7.5	ns
tzH	Output Enable Time $\overline{O E}$ to Y_{i}			9		10	ns
tzL				9		10	ns
$\mathrm{thz}^{\text {L }}$	Output Disable Time $\overline{O E}$ to Y_{i}			8		9	ns
tLZ				8		9	ns

*See Test Circuit and Waveforms.
Notes: 1. For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \# 10181A).

Am29C833A/Am29C853A/Am29C855A

High-Performance CMOS Parity Bus Transceivers

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- High-speed CMOS bidirectional bus transceivers
- T-R delay $=5$ ns typical
- R-Parity delay $=8$ ns typical
- Error flag with open-drain output
- Generates odd parity for all-zero protection
- Low standby power
- Am29Ces5A adds new functionality
- $200-\mathrm{mV}$ typical input hysteresis on input data ports
- Very high output drive
- $\mathrm{IOL}=48 \mathrm{~mA}$ Commercial, 32 mA Military
- JEDEC FCT-compatible specs
- Proprietary edge-rate controlled outputs
- Power-up/down disable circuit provides for glitch-free power supply sequencing

GENERAL DESCRIPTION

The Am29C833A, Am29C853A, and Am29C855A are highperformance CMOS parity bus transceivers designed for two-way communications. Each device can be used as an 8 -bit transceiver, as well as a 9-bit parity checker/generator. In the transmit mode, data is read at the R port and output at the T port with a parity bit. In the receive mode, data and parity are read at the Tport, and the data is output at the R port along with the ERR flag showing the results of the parity test. Each of these devices is produced with AMD's exclusive CS11SA CMOS process, and features a typical propagation delay of 5 ns , as well as an output current drive of 48 mA .

In the Am29C833A, the error flag is clocked and stored in a register which is read at the open-drain ERR output. The CLR input is used to clear the error flag register. In the Am29C853A, a latch replaces this register, and the $\overline{\mathrm{EN}}$ and CLR controls are used to pass, store, sample or clear the error flag output. When both output enables are disabled in the Am29C853A and Am29C833A, parity logic defaults to the transmit mode, so that the ERR pin reflects the parity of the R port. The Am29C855A, a variation of the Am29C853A, is designed so that when both output enables are HIGH, the ERR pin retains its current state.

The output enables, $\overline{\mathrm{OER}}$ and $\overline{\mathrm{OET}}$, are used to force the port outputs to the high-impedance state so that other
devices can drive bus lines directly. In addition, the user can force a parity error by enabling both $\overline{O E R}$ and $\overline{O E T}$ simultaneously. This transmission of inverted parity gives the designer more system diagnostic capability.

The Am29C833A, Am29C853A, and Am29C855A incorporate AMD's proprietary edge-controlled outputs in order to minimize simultaneous switching noise (ground bounce). By controlling the output transient currents, ground bounce and ouput ringing have been greatly reduced. A modified AMD output provides a stable, usable voltage level in less time than a non-controlled output.

Additionally, speed degradation due to increasing number of outputs switching is reduced. Together, these benefits of edge-rate control result in significant increase in system performance despite a minor increase in device propagation delay.*

A unique I/O circuitry provices for high-impedance outputs during power-off and power-up/down sequencing, thus providing glitch-free operation for card-edge and other active bus applications.

The Am29C833A, Am29C853A, and Am29C855A are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks.
*For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \# 10181A).

SIMPLIFIED BLOCK DIAGRAM

BD005541

Am29C853A/Am29C855A

*Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs.
${ }^{* *}$ Also available in 28 -Pin PLCC; pinout identical to LCC.

FUNCTION TABLES

Am29C833A (Register Option)

Inputs								Outputs				Function
$\overline{\text { OET }}$	$\overline{\text { OER }}$	$\overline{\text { CLR }}$	CLK	R	Sum of H's of \mathbf{R}_{I}	TI	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Sum of } \\ \text { H's } \\ \left(T_{i}+\text { Parity }\right) \end{array} \\ \hline \end{array}$	R ${ }_{1}$	T	Parity	ERT	
$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	H H H H	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \times \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	ODD OVEN ODD EVEN	$\begin{aligned} & \hline \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$		$\begin{aligned} & L \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & N A \\ & N A \\ & N A \end{aligned}$	Transmit mode: transmits data from R port to T port, generating parity. path is disabled.
H H H		$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$		$\begin{aligned} & \mathrm{NA} \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \hline H \\ & H \\ & L \\ & L \end{aligned}$	ODD EVEN ODD EVEN	$\begin{aligned} & H \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \hline H \\ & \hline \mathbf{L} \\ & H \\ & \hline \end{aligned}$	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled. disabled.
x	x	L	x	x	X	X	X	x	x	x	H	Clear error flag register.
$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \text { H } \\ & H \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & L \\ & H \\ & \hline \end{aligned}$	$\begin{gathered} x \\ \times \\ \text { op } \\ \text { OVEN } \\ \hline \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & z \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \dot{\dot{H}} \stackrel{+}{\mathrm{L}} \\ & \hline \end{aligned}$	Both transmitting and receiving paths are disabled defaults to transmit mode
L		$\begin{aligned} & \hline x \\ & \dot{x} \\ & \times \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & \dot{x} \\ & \dot{x} \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	ODD EVEN ODD EVEN	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	H H H L	$\begin{aligned} & \hline A A \\ & N A \\ & N A \\ & N A \end{aligned}$	Forced-error checking.
									$\begin{aligned} \text { ODD } & =\text { Odd Number } \\ \text { EVEN } & =\text { Even Number } \\ \mathrm{i} & =0,1,2,3,4,5,6,7 \end{aligned}$			

TRUTH TABLE
Error Flag Output
Am29C833A

Inputs		Internal to Device	Outputs Pre-state	Output	
CLR	CLK	Point "P"	$\overline{\text { ERR }}_{\boldsymbol{n}-\mathbf{1}}$	ERR	Function
H	\uparrow	H	H	H	Sample
H	\uparrow	X	L	L	(1's
H	\uparrow	L	X	L	Capture)
L	X	X	X	H	Clear

Note: OET is HIGH and OER is LOW.

FUNCTION TABLES (Cont'd.) Am29C853A (Latch Option)												
Inputs								Outputs				Function
OET	$\overline{O E R}$	$\overline{\text { CLR }}$	EN	$\mathrm{R}_{\mathbf{i}}$	Sum of H's of R_{i}	Ti	Sum of H's ($T_{i}+$ Parity)	RI	T_{1}	Parity	ERR	
L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \hline \end{aligned}$	H H L L	ODD EVEN ODD EVEN	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \hline \end{aligned}$	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathbf{H} \\ & \mathbf{H} \end{aligned}$	L L L	L L L	L L L	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \mathbf{H} \\ & \mathbf{H} \\ & \mathbf{L} \end{aligned}$	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H L L	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \\ & H \end{aligned}$	Receive mode: transmits data from T port to R port, passes parity test resulting in error flag. Transmit path is disabled.
H	L	H	H	NA	NA	X	X	X	NA	NA	*	Store the state of error flag latch.
X	X	L	H	X	X	X	X	X	NA	NA	H	Clear error flag latch.
H H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline H \\ & L \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & L \\ & H \\ & \hline \end{aligned}$	X X X EVD	X x x X		z z z z	z z z z z	z z z z	$$	Both transmitting and receiving paths are disabled. Parity logic defaults to transmit mode.
L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H L L	H L H L	$\begin{aligned} & \hline \text { NA } \\ & \hline \end{aligned}$	Forced-error checking
Am29C855A (Latch Option)												
Inputs								Outputs				
$\overline{\text { OET }}$	OER	$\overline{\text { CLR }}$	EN	$\mathrm{R}_{\mathbf{i}}$	Sum of H's of R_{1}	T_{i}	$\begin{aligned} & \text { Sum of L's } \\ & \text { (Ti+Parity) } \end{aligned}$	RI	Ti	Parity	ERR	Function
L L L	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$:	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L		$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & N A \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H L L	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & L \end{aligned}$	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H L L	ODD EVEN ODD EVEN	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$		Receive mode: transmits data from T port to R port, passes parity test resulting in error flag. Transmit path is disabled.
H	L	H	H	NA	NA	X	X	X	NA	NA	*	Store the state of error flag latch.
X	X	L	H	x	x	x	X	X	NA	NA	H	Clear error flag latch.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{H}{H}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \bar{x} \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \bar{x} \\ & x \end{aligned}$	\bar{z}	\bar{z}	$\begin{aligned} & z \\ & z \end{aligned}$	H	Both transmitting and receiving paths are disabled.
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & \hline x \\ & \times \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	H H L L	ODD EVEN ODD EVEN	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline H \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	*	Forced-error checking.
$\begin{aligned} & H=\text { HIGH } \\ & L=L O W \\ & X=\text { Don't Care or Irrelevant } \end{aligned}$					$Z=$ High Impedance $N A=$ Not Applicable $*$ Store the State of the Last Receive Cycle					$\begin{aligned} \text { ODD } & =\text { Odd Number } \\ \text { EVEN } & =\text { Even Number } \\ & =0,1,2,3,4,5,6,7 \end{aligned}$		

TRUTH TABLE
 Error Flag Output

Am29C853A/Am29C855A

Inputs		Internal to Device	Outputs Pre-state	Output	
EN	CLR	Point 'P'"	$\overline{\text { ERR }}_{\text {n }-1}$	ERR	Function
L	L	L	X	L	Pass
L	L	H	X	H	
L	H	L	X	L	Sample
L	H	X	L	L	(1's
L	H	H	H	H	Capture)
H	L	X	X	H	Clear
H	H	X	L	L	Store
H	H	X	H	H	

Note: $\overline{\text { OET }}$ is HIGH and $\overline{\mathrm{OER}}$ is LOW.

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

b. SPEED OPTION

Not Applicable
a. DEVICE NUMBER/DESCRIPTION

Am29C833A CMOS Parity Bus Transceiver - Register Option
Am29C853A CMOS Parity Bus Transceiver - Latch Option
Am29C855A CMOS Parity Bus Transceiver - Latch Option

Valld Combinations	
AM29C833A	
AM29C853A	PC, PCB, SC, JC, LC
AM29C855A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

b. SPEED OPTION

Not Applicable
a. DEVICE NUMBER/DESCRIPTION

Am29C833A CMOS Parity Bus Transceiver - Register Option
Am29C853A CMOS Parity Bus Transceiver - Latch Option
Am29C855A CMOS Parity Bus Transceiver - Latch Option

Valid Combinations

Valid Combinations	
AM29C833A	/BLA, /BKA, /B3A
AM29C853A	
AM29C855A	

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

Am29C833A/Am29C853A/Am29C855A

OER Output Enable-Receive (Input, Active LOW) When LOW in conjunction with OET HIGH, the devices are in the Receive mode (R_{i} are outputs, T_{i} and Parity are inputs).
OET Output Enable-Transmit (Input, Active LOW) When LOW in conjunction with OER HIGH, the devices are in the Transmit mode (R_{i} are inputs, T_{i} and Parity are outputs).
\mathbf{R}_{I} Receive Port (input/Output, Three-State) R_{i} are the 8 -bit data inputs in the Transmit mode, and the outputs in the Receive mode.
$\mathbf{T}_{\mathbf{i}}$ Transmit Port (Input/Output, Three-State)
T_{i} are the 8 -bit data outputs in the Transmit mode, and the inputs in the Receive mode.
Parity Parity Flag (Input/Output, Three-State) In the Transmit mode, the Parity signal is an active output used to generate odd parity. In the Receive mode, the T_{i} and Parity inputs are combined and checked for odd parity. When both output enables are HIGH, the Parity Flag is in the high impedance state. When both output enables are LOW, the Parity bit forces a parity error.

Am29C833A Only

ERR Error Flag (Output, Open Drain)

In the Receive mode, the parity of the T_{i} bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the register is cleared.
$\overline{\text { CLR }} \overline{\text { Clear }}$ (Input, Active LOW)
When CLR goes LOW, the Error Flag Register is cleared (ERR goes HIGH).
CLK Clock (Input, Positive Edge-Triggered)
This pin is the clock input for the Error Flag register.

Am29C853A/Am29C855A Only

$\overline{\text { ERR }}$ Error Flag (Output, Open Drain)
In the Receive mode, the parity of the T_{i} bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the latch is cleared. In the Am29C855A, the error flag will retain its previous state when $\overline{O E T}$ and $\overline{O E R}$ are HIGH.
$\overline{\text { CLR }} \overline{\text { Clear }}$ (Input, Actlve LOW) When CLR goes LOW and EN is HIGH, the Error Flag latch is cleared (ERR goes HIGH).
EN Latch Enable (Input, Active LOW) This pin is the latch enable for the Error Flag latch.

OPERATING RANGES

> Commercial (C) Devices
> Temperature (T_{A}) 0 to $+70^{\circ} \mathrm{C}$
> Supply Voltage +4.5 V to +5.5 V
> Military (M) Devices
> Temperature (T_{A})............................. -55 to $+125^{\circ} \mathrm{C}$
> Supply Voltage +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{array}{\|l\|} \hline V_{C C}=4.5 \quad \mathrm{~V} \\ V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \\ \hline \end{array}$		$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	2.4		Voits
VoL	Output LOW Voltage	$\begin{aligned} & \begin{array}{l} v_{C C}=4.5 \quad \mathrm{~V} \\ v_{I N}=V_{I H} \text { or } v_{I L} \end{array} \end{aligned}$		MIL IOL $=32 \mathrm{~mA}$		0.5	Volts
			COM'L $10 \mathrm{~L}=48 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage (Note 2)	$\begin{array}{\|l\|} \hline \text { Am29C853A } \\ \text { Am29C855A } \\ \hline \end{array}$	All Inputs	2		Volts
			Am29C833A				
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-1.2	Volts
IL	Input LOW Current	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \text { Input Only } \\ \hline \end{array}$	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=0$			-5	
I'H	Input HIGH Current	$V_{C C}=5.5 \mathrm{~V}$ Input Only		$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		5	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5$			10	
lozH	Output Off-State Current (High Impedance)	$\begin{aligned} & V_{c c}=5.5 \mathrm{v} \\ & 1 / \mathrm{O} \text { Port } \end{aligned}$		$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		15	$\mu \mathrm{A}$
			$V_{\text {OUT }}=$			20	
lozt		$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & 1 / O \text { Port } \end{aligned}$		$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		-15	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$		-20	
loff	Off-State Current (ERR Only)	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & \mathrm{VO}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$				20	$\mu \mathrm{A}$,
Isc	Output Short-Circuit Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 3)			-60		mA
Icca	Static Supply Current	$\begin{array}{\|l} V_{C C}=5.5 \mathrm{~V} \\ \text { Outputs Open } \end{array}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & G N D \end{aligned}$	MIL		1.5	mA
				COM'L		1.2	
Icct			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$, Parity		1.5	mA/Bit
				$\frac{\overline{C L A}, ~ \overline{N N}, \overline{O E T},}{\mathrm{OER}}$		3.0	
ICCD \dagger	Dynamic Supply Current	$\mathrm{VCC}_{\text {c }}=5.5 \vee($ Note 4)				275	$\begin{aligned} & \mu \mathrm{A} / \mathrm{Bit/} / \\ & \mathrm{MHz} \end{aligned}$

Notes: 1. $n=$ number outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
4. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

			COM'L		MIL		
Parameter Symbol	Parameter Description	Test Conditions*	Min.	Max.	Min.	Max.	Units
$t_{\text {PLH }}$	Propagation Delay R_{i} to T_{i}, T_{i} to R_{i} (Note 3)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathbf{R}_{2}=500 \Omega \\ & \mathbf{R}_{3}=360 \Omega \end{aligned}$		10.5		12	ns
$\mathrm{tPHL}^{\text {P }}$				10.5		12	ns
$t_{\text {PLH }}$	Propagation Delay R_{i} to Parity			13		12	ns
$t_{\text {PHL }}$				13		14.5	ns
t ZH	Output Enable Time $\overline{O E R}, \overline{O E T}$ to $\mathrm{R}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$ and			10.5		12	ns
t_{ZL}	Parity			10.5		12	ns
$\mathrm{thz}^{\text {H }}$	Output Disable Time $\overline{O E R}, \overline{O E T}$ to $\mathrm{R}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$ and			10.5		12	ns
$t_{L Z}$	parity			10.5		12	ns
ts	T_{i}, Parity to CLK Setup Time (Note 1)		12		14		ns
t_{H}	T_{i}, Parity to CLK Hold Time (Note 1)		0		2		ns
$t_{\text {REC }}$	Clear ($\overline{\mathrm{CLR}}$ -) to CLK Setup Time (Note 2)		0		2		ns
tpWH	Clock Pulse Width (Note 1) HIGH		6		9		ns
tPWL	Clock Pulse Widm (Note 1) LOW		6		9		ns
tPWL	Clear Pulse Width \quad LOW		6		9		ns
$\mathrm{tPHL}^{\text {chen }}$	Propagation Delay CLK to ERR (Note 1)			10		14	ns
tplH	Propagation Delay CLR to ERR			18		21	ns
tPLH	Propagation-Delay T_{i}, Parity to $\overline{\mathrm{ERR}}$ (PASS Mode Only) Am29C853A/855A			19		21	ns
tPHL				19		21	ns
tPLH	Propagation Delay $\overline{\mathrm{OER}}$ to Parity			13		15	ns
$t_{\text {tPHL }}$				15		17	ns

*See test circuit and waveforms.
Notes: 1. For Am29C853A/Am29C855A, replace CLK with EN
2. Applies only to Am29C833A.
3. *For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \#10181A).

Am29C841A/Am29C843A

High-Performance CMOS Bus Interface Latches

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- High-speed parallel latches
- D-Y propagation delay $=5$ ns typical
- Low standby power
- Very high output drive
- IOL $=48 \mathrm{~mA}$ Commercial, 32 mA Military
- JEDEC FCT-compatible specs
- Extra-wide (9- and 10-bit) data paths
- Proprietary edge-rate controlled outputs
- Power-up/down disable circuit provides for glitch-free power supply sequencing

BLOCK DIAGRAMS

Am29C841A

Am29C843A

GENERAL DESCRIPTION

The Am29C841A and Am29C843A CMOS Bus Interface Latches are designed to eliminate the extra devices required to buffer stand alone latches and to provide extra data width for wider address/data paths or buses carrying parity. The Am29C800A latches are produced with AMD's exclusive CS11SA CMOS process, and feature typical propagation delays of 5 ns , as well as an output current drive of 48 mA .

The Am29C841A is a buffered, 10-bit version of the popular ' 373 function. The Am29C843A is a 9 -bit buffered latch with Preset ($\overline{\mathrm{PRE}}$) and Clear ($\overline{\mathrm{CLR}}$) - ideal for parity bus interfacing in high-performance microprogrammed systems.

The Am29C841A and Am29C843A incorporate AMD's proprietary edge-controlled outputs in order to minimize simultaneous switching noise (ground bounce). By controlling the output transient currents, ground bounce and ouput ringing
have been greatly reduced. A modified AMD output provides a stable, usable voltage level in less time than a non-controlled output.
Additionally, speed degradation due to increasing number of outputs switching is reduced. Together, these benefits of edge-rate control result in significant increase in system performance despite a minor increase in device propagation delay.*

A unique 1/O circuitry provices for high-impedance outputs during power-off and power-up/down sequencing, thus providing glitch-free operation for card-edge and other active bus applications.

The Am29C841A and Am29C843A are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks.
*For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \#10181A).

LOGIC SYMBOLS

Am29C841A

LS000463

Am29C843A

FUNCTION TABLES

Am29C841A

Inputs			Internal	Outputs	
$\mathbf{O E}$	LE	$\mathbf{D}_{\mathbf{i}}$	$\overline{\mathbf{Q}}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}$	
H	X	X	X	\mathbf{Z}	Hi-Z
H	H	L	H	\mathbf{Z}	Hi-Z
H	H	H	L	Z	Hi-Z
H	L	X	NC	Z	Latched (Hi-Z)
L	H	L	H	L	Transparent
L	H	H	L	H	Transparent
L	L	X	NC	NC	Latched

Am29C843A

Inputs					Internal	Outputs	Function
$\overline{C L R}$	$\overline{\text { PRE }}$	$\overline{\mathbf{O E}}$	LE	D_{1}	$\overline{\mathbf{Q}_{i}}$	Y_{i}	
H	H	H	X	X	X	Z	Hi-Z
H	H	H	H	H	L	Z	Hi-Z
H	H	H	H	L	H	Z	Hi-Z
H	H	H	L	X	NC	Z	$\begin{aligned} & \hline \text { Latched } \\ & (\mathrm{Hi}-\mathrm{Z}) \end{aligned}$
H	H	L	H	H	L	H	Transparent
H	H	L	H	L	H	L	Transparent
H	H	L	L	X	NC	NC	Latched
H	L	L	X	X	L	H	Preset
L	H	L	X	X	H	L	Clear
. L	L	L	X	X	H	H	Preset
L	H	H	L	X	L	Z	Latched (Hi-Z)
H	L	H	L	X	L	Z	Latched (Hi-Z)

H = HIGH
$\mathrm{L}=\mathrm{LOW}$
NC = No Change
Z = High Impedance
X = Don't Care

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

Valid Combinations

Valid Combinations

AM29C841A	PC, PCB, SC, JC,
AM $29 C 843 A$	

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29C841A	/BLA, /BKA, /B3A
AM29C843A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Am29C841A/Am29C843A

D_{1} Data Inputs (Input)
D_{i} are the latch data inputs.
Y_{I} Data Outputs (Output)
Y_{i} are the three state data outputs.
LE Latch Enable (Input, Active HIGH)
The latches are transparent when LE is HIGH. Input data is latched on a HIGH-to-LOW transition.
$\overline{O E}$ Output Enable (Input, Active LOW)
When $\overline{O E}$ is LOW, the latch data is passed to the Y_{i} outputs. When $\overline{O E}$ is HIGH, the Y_{i} outputs are in the high impedance state.

Am29C843A Only

$\overline{\text { PRE }} \overline{\text { Preset }}$ (Input, Active LOW)
When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if $\overline{O E}$ is LOW. $\overline{\text { PRE }}$ overrides the $\overline{C L R}$ pin. $\overline{\text { PRE }}$ will set the latch independent of the state of $\overline{O E}$.
$\overline{\text { CLR }} \overline{\text { Clear }}$ (Input, Active LOW) When CLR is LOW, the internal latch is cleared. When CLR is LOW, the outputs are LOW if $\overline{O E}$ is LOW and PRE is HIGH. When CLR is HIGH, data can be entered into the latch.

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Off-state currents are only tested at worst-case conditions of $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ or 0.0 V .
4. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
5. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description		Test Conditions*	COMMERCIAL		MILITARY		Units	
			Min.	Max.	Min.	Max.			
tpLH	Data (D_{i}) to Output $\mathrm{Y}_{\mathrm{i}}(\mathrm{LE}=\mathrm{HIGH})$ (Note 1)			$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		7.5		8.5	ns
${ }_{\text {tPHL }}$					7.5		8.5	ns	
ts	Data to LE Setup Time		2.5			2.5		ns	
t_{H}	Data to LE Hold Time		2.5			2.5		ns	
tPLH	Latch Enable (LE) to Y_{i}				8		9	ns	
tPHL					8		9	ns	
tpLH	Propagation Delay, Preset to Y_{i}				9		11	ns	
${ }_{\text {tPHL }}$					9		11	ns	
thec $^{\text {che }}$	Preset ($\overline{\text { RE - }}$) to LE Setup Time		4			4		ns	
tpLH	Propagation Delay, Clear to Y_{i}				11		12	ns	
$t_{\text {PHL }}$					11		12	ns	
$t_{\text {REC }}$	Clear (CLR _T) to LE Setup Time		3			3		ns	
tpWH	LE Pulse Width	HIGH	4			4		ns	
tPWL	Preset Pulse Width	LOW	4			4		ns	
$t_{\text {PWL }}$	Clear Pulse Width	LOW	4			4		ns	
t_{ZH}	Output Enable Time $\overline{O E} L$ to Y_{i}				9		9.5	ns	
t_{ZL}					9		9.5	ns	
$\mathrm{thz}^{\text {H }}$	Output Disable Time $\overline{O E} \sim$ to Y_{i}				8		8.5	ns	
tz					8		8.5	ns	

*See Test Circuit and Waveforms.
Notes: 1. For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \#10181A)

Am29C861A／Am29C863A

High－Performance CMOS Bus Transceivers

DISTINCTIVE CHARACTERISTICS

－High－speed CMOS bidirectional bus transceivers
－T－R delay $=4 \mathrm{~ns}$ typical
－Low standby power
－JEDEC FCT－compatible specs
－Very high output drive
－IOL＝ 48 mA Commercial， 32 mA Military
－200－mV typical hysteresis on data input ports
－Proprietary edge－rate controlled outputs
－Power－up／down disable circuit provides for glitch－free power supply sequencing

BLOCK DIAGRAMS

Am29C861A

Am29C863A

GENERAL DESCRIPTION

The Am29C861A and Am29C863A CMOS Bus Transceivers provide high-performance bus interface buffering for wide address/data paths or buses carrying parity. The Am29C861A is a 10 -bit bidirectional transceiver; the Am29C863A is a 9-bit transceiver with NORed output enables for maximum control flexibility. Each device features data inputs with $200-\mathrm{mV}$ typical input hysteresis to provide improved noise immunity. The Am29C861A and Am29C863A are produced with AMD's exclusive CS11SA CMOS process, and features a typical propagation delay of 4 ns , as well as an output current drive of 48 mA .

The Am29C861A and Am29C863A incorporate AMD's proprietary edge-controlled outputs in order to minimize simultaneous switching noise (ground bounce). By controlling the output transient currents, ground bounce and ouput ringing
have been greatly reduced. A modified AMD output provides a stable, usable voltage level in less time than a non-controlled output.
Additionally, speed degradation due to increasing number of outputs switching is reduced. Together, these benefits of edge-rate control result in significant increase in system performance despite a minor increase in device propagation delay.*

A unique I/O circuitry provices for high-impedance outputs during power-off and power-up/down sequencing, thus providing glitch-free operation for card-edge and other active bus applications.

The Am29C861A and Am29C863A are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks.
*For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \# 10181A).

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

Am29C861A CMOS 10-Bit Transceiver
Am29C863A CMOS 9-Bit Transceiver

Valid Combinations

Valid Combinations	
AM29C861A	PC, PCB, SC, JC,
AM29C863A	LC

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

$L=24-$ Pin Slim Ceramic DIP (CD3024)
$\mathrm{K}=24$-Pin Rectangular Medium Ceramic Flatpack (CFMO24)
$3=28$-Pin Ceramic Leadless Chip Carrier (CL 028)
c. DEVICE CLASS
$/ B=$ Class B
a. DEVICE NUMBER/DESCRIPTION

Am29C861A CMOS 10-Bit Transeiver Am29C863A CMOS 9-Bit Transceiver

Valid Combinations	
AM29C861A	/BLA, /BKA, /B3A
AM29C863A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

Am29C861A Only

OER Output Enable-Receive (Input, Active LOW) When LOW in conjunction with OET HIGH, the devices are in the Receive mode (R_{i} are outputs, T_{i} are inputs).

OET Output Enable-Transmit (Input, Active LOW) When LOW in conjunction with OER HIGH, the devices are in the Transmit mode (R_{i} are inputs, T_{i} are output).
$R_{l} \quad$ Receive Port (Input/Output)
R_{i} are the 10 -bit data inputs in the Transmit mode, and the outputs in the Receive mode.
T_{i} Transmit Port (Input/Output)
T_{i} are the 10-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

Am29C863A Only

$\overline{O E R}_{1} \overline{\text { Output Enables-Receive }}$ (Input, Active LOW) When both $\overline{\mathrm{OER}}_{1}$ and $\overline{\mathrm{OER}}_{2}$ are LOW while $\overline{\mathrm{OET}}_{1}$ or $\overline{\mathrm{OET}}_{2}$ (or both) are HIGH, the device is in the Receive mode (R_{i} are outputs, T_{i} are inputs).
$\overline{O E T}_{1}$ Output Enables-Transmit (Input, Active LOW) When both $\overline{\mathrm{OET}}_{1}$ and $\overline{\mathrm{OET}}_{2}$ are LOW while $\overline{\mathrm{OEF}}_{1}$ or $\overline{\mathrm{OER}}_{2}$ (or both) are HIGH, the device is in the Transmit mode (R_{i} are inputs, $\mathrm{T}_{\mathbf{i}}$ are outputs).
$\mathbf{R}_{\mathbf{I}}$ Recelve Port (Input/Output)
R_{i} are the 9-bit data inputs in the Transmit mode, and the outputs in the Receive mode.
$T_{\mathbf{i}}$ Transmit Port (Input/Output)
T_{i} are the 9-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

OPERATING RANGES

Commercial (C) Devices

Supply Voltage (VCC) +4.5 V to +5.5 V
Military (M) Devices
Temperature (T_{A})............................. -55 to $+125^{\circ} \mathrm{C}$
Supply Voltage (Vcc) +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbols	Parameter Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \hline \end{array}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	MIL $\mathrm{IOL}^{\text {}}$ 32 mA			0.5	Volts
			COM'L IOL $=48 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		Volts
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IIN}=-18 \mathrm{~mA}$				-1.2	Volts
I/L	Input LOW Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { Input } \\ & \text { Only } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=0.0$			-10	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0.4$			-5	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V} \text { Input } \\ & \text { Only } \end{aligned}$	$\mathrm{V}_{\mathrm{l}} \mathrm{N}=2.7$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5$			10	
lozh	Output Off-State Current (High Impedance)	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & 1 / O \text { Port } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=2$			15	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=5$.			20	
lozl		$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & \text { I/O Port } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			-15	$\mu \mathrm{A}$
						-20	
Isc	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 3)			-60		mA
ICCO	Static Supply Current	$V_{C C}=5.5 \mathrm{~V},$Outputs Open	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	MIL		1.5	mA
				COM'L		1.2	
ICCT			$\mathrm{V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\overline{\overline{\overline{O E R}_{1}}, \overline{\overline{O E R}_{2}}} \overline{\overline{O E T}_{1},}$		3.0	
ICcot \dagger	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 4)				275	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} / \mathrm{Bit} \end{gathered}$

Notes: 1. $\mathrm{n}=$ number of outputs, $\mathrm{m}=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
4. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tpLH	Propagation Delay from (Note 1) R_{i} to T_{i} or T_{i} to R_{i} Am29C861A/Am29C863A (Non-inverting)	$\begin{aligned} C_{L} & =50 \mathrm{pF} \\ \mathrm{R}_{1} & =500 \Omega \\ \mathrm{R}_{2} & =500 \Omega \end{aligned}$		6.5		7.5	ns
$\mathrm{tPHL}^{\text {chen }}$				6.5		7.5	ns
t_{ZH}	Output Enable Time $\overline{\mathrm{OET}}$ to T_{i} or $\overline{\mathrm{OER}}$ to R_{i}			9		10	ns
tzL				9		10	ns
t_{Hz}	Output Disable Time OET to T_{i} or $\overline{\mathrm{O}} \mathrm{ER}$ to R_{i}			8		9	ns
tzz				8		9	ns

*See Test Circuit and Waveforms.
Notes: 1 *For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (PID \#10181A).

Sales Offices

North American

ALABAMA ... (205)	882-9122
ARIZONA .. (602)	242-4400
CALIFORNIA,	
Culver City ... (213)	645-1524
Newport Beach .. 714)	752-6262
San Diego .. 619	560-7030
San Jose ... (408)	452-0500
Woodland Hills ..(818)	992-4155
CANADA, Ontario,	
Kanata..(613)	592-0060
Willowdale ...(416)	224-5193
COLORADO ... (303)	741-2900
CONNECTICUT ..(203)	264-7800
FLORIDA,	
Clearwater .. (813)	530-9971
Ft. Lauderdale .. (305)	776-2001
Oriando ... (407)	830-8100
GEORGIA ... (404)	449-7920
ILLINOIS,	
Chicago ... (312)	
Naperville ... (312)	505-9517
INDIANA ... (317)	244-7207
KANSAS... 913	451-3115
MARYLAND ... 301)	796-9310
MASSACHUSETTS 617)	273-3970
MINNESOTA ... 612	938-0001
MISSOURI ..(913)	451-3115
NEW JERSEY,	
Cherry Hill..(609)	662-2900
Parsippany ..(201)	$299-0002$
NEW YORK,	
Liverpool .. (315)	457-5400
Poughkeepsie ...(914)	471-8180
Woodbury .. (516)	364-8020
NORTH CAROLINA (919)	878-8111
OHIO,	
Columbus ..(614)) 891-6455
Dayton ..(513)	439-0470
OREGON .. (503)	245-0080
PENNSYLVANIA .. 215)	398-8006
SOUTH CAROLINA(803)	772-6760
TEXAS	
Austin ... (512)	346-7830
Dallas ..(214)	934-9099
Houston ...(713)	785-9001
WASHINGTON ... (206)	455-3600
WISCONSIN \qquad (414)	$792-0590$

International

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

© 1989 Advanced Micro	Devices, Inc.
ASS-WCP-13M-1/89-0	Prined in USA

California 94088-3453
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306
TOLL-FREE (800) 538-8450

APPLICATIONS
HOTLINE (800) 222-9323 (408) 749-5703

Printed in USA

