EPROM Products

1993/1994 Data Book/Handbook

Advanced Micro Devices

AMD's Marketing Communications Department specifies environmentally sound agricultural inks and recycled papers, making this book highly recyclable.

EPROM Products
 Data Book/Handbook

1993/1994

© 1993 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for a particular application. AMD ${ }^{\text {® }}$ assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and the AMD logo are registered trademarks of Advanced Micro Devices, Inc.
ExpressROM, Flasherase and Flashrite are trademarks of Advanced Micro Devices, Inc.
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Advanced Micro Devices continues to be at the forefront of non-volatile memory technology. Our technology leadership is evidenced by the world's fastest and highest density EPROMs.

Our CMOS EPROM product portfolio is the broadest available. Today we offer EPROM densities ranging from 64 K to 4 Megabit in both ceramic windowed and plastic one-time-programmable packages. Our superior EPROM process technology yields access times as fast as 35 ns enabling you to maximize system performance based on today's high speed microprocessors. Furthermore, we have expanded our product service by providing ExpressROM ${ }^{\text {TM }}$ memories. These preprogrammed and fully tested devices provide users with a cost-effective alternative to EPROMs without the long lead-time associated with ROMs.

We are now proud to announce a family of true Low Voltage EPROMs to complement our product offering. Our low voltage product family consists of 1 Megabit and 2 Megabit devices with speeds of 120 ns and 150 ns respectively. The voltage range has been extended to make them suitable for systems that have regulated power supplies (3.0 V to 3.6 V) and those that are battery powered (2.7 V to 3.6 V). We have also expanded our package portfolio to include Thin Small Outline Packages (TSOP).

There has never been a better time to take advantage of AMD's family of non-volatile memories.

Vice President and General Manager
Non-Volatile Memory Division
\qquad

TABLE OF CONTENTS

Introduction
Section 1 Product Selector Guides 1-1
Non-Volatile EPROM Memory Products 1-3
UV \& OTP EPROMs 1-4
ExpressROM ${ }^{\text {TM }}$ Memories 1-7
Section 2 CMOS Erasable Programmable Read Only Memories (EPROMs) 2-1
Inside AMD's CMOS EPROM Technology 2-3
Am27C64 64K (8,192 x 8-Bit) CMOS EPROM 2-10
Am27C128 128K ($16,384 \times 8$-Bit) CMOS EPROM 2-22
Am27C256 256K (32,768 x 8-Bit) CMOS EPROM 2-34
Am27C512 $512 \mathrm{~K}(65,536 \times 8$-Bit) CMOS EPROM 2-47
Am27C010 1 Mbit ($131,072 \times 8$-Bit) CMOS EPROM 2-59
Am27C1024 1 Mbit $(65,536 \times 16$-Bit) CMOS EPROM 2-72
Am27C020 2 Mbit (262,144 x 8-Bit) CMOS EPROM 2-84
Am27C2048 2 Mbit ($131,072 \times 16$-Bit) CMOS EPROM 2-96
Am27C040 4 Mbit $(524,288 \times 8$-Bit) CMOS EPROM 2-109
Am27C400 4 Mbit ($524,288 \times 8$-Bit/262,144 $\times 16$-Bit) ROM Compatible CMOS EPROM 2-121
Am27C4096 4 Mbit $(262,144 \times 16$-Bit) CMOS EPROM 2-133
Am27C080 8 Mbit $(1,048,576 \times 8$-Bit) CMOS EPROM 2-145
Am27C800 8 Mbit ($1,048,576 \times 8$-Bit/ $524,288 \times 16$-Bit) ROM Compatible CMOS EPROM 2-157
Section 3 High-Speed CMOS Erasable Programmable Read Only Memories (EPROMs) 3-1
An Introduction to High-Speed EPROMs 3-3
Am27H256 High-Speed 256K (32,768 x 8-Bit) CMOS EPROM 3-9
Am27H010 High-Speed 1 Mbit $(131,072 \times 8$-Bit) CMOS EPROM 3-21
Section 4 Low Voltage CMOS Erasable Programmable Read Only Memories (EPROMs) 4-1
An Introduction to Low Voltage EPROMs 4-3
Am27LV010/ 1 Mbit (131,072 $\times 8$-Bit) Low Voltage Am27LV010B CMOS EPROM 4-4
Am27LV020/ 2 Mbit (262,144 x 8-Bit) Low Voltage Am27LV020B CMOS EPROM 4-21
Section 5 ExpressROM ${ }^{\text {TM }}$ Memories 5-1
An Introduction to ExpressROM Memories 5-3
Am27X64 64K (8,192 x 8-Bit) CMOS ExpressROM Device 5-8
Am27X128 128K (16,384 x 8-Bit) CMOS ExpressROM Device 5-17
Am27X256 256K (32,768 x 8-Bit) CMOS ExpressROM Device 5-26
Am27X512 $512 \mathrm{~K}(65,536 \times 8$-Bit) CMOS ExpressROM Device 5-36
Am27X010 " 1 Mbit (131,072 x 8-Bit) CMOS ExpressROM Device 5-45
Section 5 ExpressROM ${ }^{\text {TM }}$ Memories (continued)
Am27X1024 1 Mbit ($65,536 \times 16$-Bit) CMOS ExpressROM Device 5-55
Am27X020 2 Mbit ($262,144 \times 8$-Bit) CMOS ExpressROM Device 5-64
Am27X2048 2 Mbit ($131,072 \times 16$-Bit) CMOS ExpressROM Device 5-73
Am27X040 4 Mbit ($524,288 \times 8$-Bit) CMOS ExpressROM Device 5-82
Am27X400 4 Mbit ($524,288 \times 8$-Bit/262,144 $\times 16$-Bit) ROM Compatible ExpressROM Device 5-91
Am27X4096 4 Mbit ($262,144 \times 16$-Bit) CMOS ExpressROM Device 5-100
Am27X080 8 Mbit ($1,048,576 \times 8$-Bit) CMOS ExpressROM Device 5-109
Am27X800 8 Mbit ($1,048,576 \times 8$-Bit $/ 524,288 \times 16$-Bit) ROM Compatible ExpressROM Device 5-118
Section 6 Programming 6-1
Programming Methodology 6-3
Flashrite Programming Flowchart 6-4
DC Programming Characteristics 6-5
Switching Charcteristics and Waveforms 6-5
Third-Party Programming Support 6-9
Section 7 Article Reprint 7-1
"Making EPROM/Flash Trade-Offs" Article Reprint 7-3
Section 8 Physical Dimensions 8-1
CDV028 28-Pin Ceramic DIP 8-3
CDV032 32-Pin Ceramic DIP 8-3
CDV040 40-Pin Ceramic DIP 8-4
CDV042 42-Pin Ceramic DIP 8-4
CLV044 44-Pin Square Leadless Chip Carrier 8-5
PD 028 28-Pin Plastic Dual In-Line Package 8-6
PD 032 32-Pin Plastic Dual In-Line Package 8-6
PD 040 40-Pin Plastic Dual In-Line Package 8-7
PD 048 48-Pin Plastic Dual In-Line Package 8-7
PL 032 32-Pin Rectangular Plastic Leaded Chip Carrier 8-8
PL 044 44-Pin Rectangular Plastic Leaded Chip Carrier 8-8
TS 032 32-Pin Thin Small Outline 8-9

SECTION

4 PRODUCT SELECTOR GUIDES

Section 1 Product Selector Guides 1-1
Non-Volatile EPROM Memory Products 1-3
UV \& OTP EPROMs 1-4
ExpressROM ${ }^{\text {TM }}$ Memories 1-7

Non-Volatile EPROM Memory Products

Introduction

The Non-Volatile Memory Division manufactures a broad range of high performance memory products. These products include traditional windowed EPROMs, plastic OTP EPROMs, and ExpressROM devices. They offer the system designer an extensive choice of economical alternatives for program storage.

AMD's EPROM offerings are manufactured using advanced CMOS process technology yielding access times as fast as 35 ns . Product densities range from 64 K to 4 megabits. Designers challenged with extending useful battery life in portable applications will appreciate the 3 Volt EPROM product family. All EPROM products are offered in windowed ceramic and One-Time Programmable (OTP) plastic packages.

A new concept from AMD is the ExpressROM device. These are quick-turn ROMs produced from EPROM wafers. Lead times of these devices are typically half that of ROMs.

AMD is committed to leadership in high-performance CMOS non-volatile memories. These products offer industry-leading speeds and densities that will contribute to the competitive advantages of your design.

UV EPROMs \& OTP EPROMs

Part Number	Organization	Access Time (ns)	Temp Range ${ }^{1}$	Package Type ${ }^{2}$	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C64-55	$8 \mathrm{~K} \times 8$	55	C	D, L	28/32	5 V 士 5\%
Am27C64-70	$8 \mathrm{~K} \times 8$	70	C	D, L	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C64-90	$8 \mathrm{~K} \times 8$	90	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C64-120	$8 \mathrm{~K} \times 8$	120	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C64-150	$8 \mathrm{~K} \times 8$	150	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C64-200	$8 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C64-255	$8 \mathrm{~K} \times 8$	250	C, I	D, L, P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27C128-55	$16 \mathrm{~K} \times 8$	55	C	D, L	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27C128-70	$16 \mathrm{~K} \times 8$	70	C	D, L	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C128-90	$16 \mathrm{~K} \times 8$	90	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C128-120	$16 \mathrm{~K} \times 8$	120	C, 1, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C128-150	16K $\times 8$	150	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C128-200	16K $\times 8$	200	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C128-255	16K x 8	250	C, I	D, L, P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27H256-35	$32 \mathrm{~K} \times 8$	35	C	D, L	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27H256-35V05	$32 \mathrm{~K} \times 8$	35	C	D, L	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27H256-45	$32 \mathrm{~K} \times 8$	45	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27H256-55	$32 \mathrm{~K} \times 8$	55	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27H256-70	$32 \mathrm{~K} \times 8$	70	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C256-55	$32 \mathrm{~K} \times 8$	55	C	D, L	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27C256-70	$32 \mathrm{~K} \times 8$	70	C	D, L	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C256-90	$32 \mathrm{~K} \times 8$	90	C, I, E, M	D, L, P, J, E	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C256-120	$32 \mathrm{~K} \times 8$	120	C, I, E, M	D, L, P, J, E	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C256-150	$32 \mathrm{~K} \times 8$	150	C, I, E, M	E	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C256-200	$32 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, P, J, E	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C256-255	32K x 8	250	C, I	D, L, P, J	28/32	$5 \mathrm{~V} \pm 5 \%$

Notes: see page 1-8

UV EPROMs \& OTP EPROMs (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range'	Package Type ${ }^{2}$	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C512-75	$64 \mathrm{~K} \times 8$	70	C	D, L	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27C512-90	$64 \mathrm{~K} \times 8$	90	C, I, E, M	D, L	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C512-120	$64 \mathrm{~K} \times 8$	120	C, I, E, M	D, L	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C512-150	$64 \mathrm{~K} \times 8$	150	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C512-200	$64 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27C512-255	$64 \mathrm{~K} \times 8$	250	C, I, E, M	D, L, P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27H010-45	$128 \mathrm{~K} \times 8$	45	C	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27H010-45V05	$128 \mathrm{~K} \times 8$	45	C	D, L	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27H010-55	$128 \mathrm{~K} \times 8$	55	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27H010-70	$128 \mathrm{~K} \times 8$	70	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27H010-90	$128 \mathrm{~K} \times 8$	90	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27H010-90V05	$128 \mathrm{~K} \times 8$	90	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27C010-105	$128 \mathrm{~K} \times 8$	100	C	D, L	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27C010-120	$128 \mathrm{~K} \times 8$	120	C, I	D, L, P, J, E	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C010-150	$128 \mathrm{~K} \times 8$	150	C, I, E, M	D, L, P, J, E	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C010-200	$128 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, P, J, E	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C010-255	$128 \mathrm{~K} \times 8$	250	C, 1	D, L, P, J, E	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27LV010-120	$128 \mathrm{~K} \times 8$	120	C, I, E	D, L	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV010-150	$128 \mathrm{~K} \times 8$	150	C, I, E, M	D, L, J, E	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV010-200	$128 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, J, E	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV010-250	$128 \mathrm{~K} \times 8$	250	C, I, E, M	D, L, J, E	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV010-300	$128 \mathrm{~K} \times 8$	300	C, I, E, M	D, L, J, E	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV010B-150	$128 \mathrm{~K} \times 8$	150	C, I, E	D, L, J, E	32	2.7V-3.6V
Am27LV010B-200	$128 \mathrm{~K} \times 8$	200	C, I, E	D, L, J, E	32	$2.7 \mathrm{~V}-3.6 \mathrm{~V}$
Am27LV010B-250	128K $\times 8$	250	C, I, E, M	D, L, J, E	32	$2.7 \mathrm{~V}-3.6 \mathrm{~V}$
Am27LV010B-300	128K x 8	300	C, I, E, M	D, L, J, E	32	$2.7 \mathrm{~V}-3.6 \mathrm{~V}$
Am27C1024-85	$64 \mathrm{~K} \times 16$	85	C	D	40	$5 \mathrm{~V} \pm 5 \%$
Am27C1024-90	$64 \mathrm{~K} \times 16$	90	C, 1	D, L	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C1024-120	$64 \mathrm{~K} \times 16$	120	C, I, E, M	D, L	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C1024-150	$64 \mathrm{~K} \times 16$	150	C, I, E, M	D, L	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C1024-200	$64 \mathrm{~K} \times 16$	200	C, I, E, M	D, L, P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C1024-255	$64 \mathrm{~K} \times 16$	250	C. 1	D, L, P, J	40/44	$5 \mathrm{~V} \pm 5 \%$
Am27C020-120	256K x 8	120	C, I	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C020-150	256K x 8	150	C, I, E, M	D, L, P, J*	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C020-200	$256 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, P, J*	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C020-250	$256 \mathrm{~K} \times 8$	250	M	D, L*	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C020-255	256K $\times 8$	250	C, 1	D, L, P, J*	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27LV020-150	$256 \mathrm{~K} \times 8$	150	C, I, E	D, L, J	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV020-200	256K $\times 8$	200	C, I, E, M	D, L, J	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV020-250	256K $\times 8$	250	C, I, E, M	D, L, J	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV020-300	256K x 8	300	C, I, E, M	D, L, J	32	$3.3 \mathrm{~V} \pm 10 \%$
Am27LV020B-200	$128 \mathrm{~K} \times 8$	200	C, I, E	D, L, J	32	2.7V-3.6V
Am27LV020B-250	$128 \mathrm{~K} \times 8$	250	C, I, E, M	D, L, J	32	2.7V-3.6V
Am27LV020B-300	$128 \mathrm{~K} \times 8$	300	C, I, E, M	D, L, J	32	2.7V-3.6 V
Am27C2048-105*	$128 \mathrm{~K} \times 16$	100	C	D, L	40/44	$5 \mathrm{~V} \pm 5 \%$
Am27C2048-120	$128 \mathrm{~K} \times 16$	120	C, I	D, L	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C2048-150	$128 \mathrm{~K} \times 16$	150	C, I, E, M	D, L, P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C2048-200	$128 \mathrm{~K} \times 16$	200	C. I, E, M	D, L, P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C2048-250	$128 \mathrm{~K} \times 16$	250	M	D, L	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C2048-255	$128 \mathrm{~K} \times 8$	250	C, I	D, L, P, J	40/44	$5 \mathrm{~V} \pm 5 \%$

Notes: see page 1-8

UV EPROMs \& OTP EPROMs (Cont.)

Part Number	Organizatlon	Access Time (ns)	Temp Range'	Package Type ${ }^{2}$	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C040-120	$512 \mathrm{~K} \times 8$	120	C, I	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C040-125	$512 \mathrm{~K} \times 8$	120	C, I	D, L	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27C040-150	$512 \mathrm{~K} \times 8$	150	C, I, E, M	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C040-200	$512 \mathrm{~K} \times 8$	200	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C040-250	$512 \mathrm{~K} \times 8$	250	M	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C040-255	512K x 8	250	C, 1	D, L, P, J	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27C400-125	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	120	C, I	D	40	$5 \mathrm{~V} \pm 5 \%$
Am27C400-120	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	120	C, I	D	40	$5 \mathrm{~V} \pm 10 \%$
Am27C400-150	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	150	C, I	D	40	$5 \mathrm{~V} \pm 10 \%$
Am27C400-200	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	200	C, 1	D	40	$5 \mathrm{~V} \pm 10 \%$
Am27C400-255	512K x 8/256K $\times 16$	250	C, 1	D	40	$5 \mathrm{~V} \pm 5 \%$
Am27C4096-125	$256 \mathrm{~K} \times 16$	120	C, 1	D, L	40/44	$5 \mathrm{~V} \pm 5 \%$
Am27C4096-120	256K $\times 16$	120	C, 1	D, L	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C4096-150	$256 \mathrm{~K} \times 16$	150	C, I, E, M	D, L, P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C4096-200	256K $\times 16$	200	C, I, E, M	D, L, P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C4096-250	$256 \mathrm{~K} \times 16$	250	M	D, L.	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27C4096-255	256K $\times 16$	250	C, 1	D, L, P, J	40/44	$5 \mathrm{~V} \pm 5 \%$
Am27C080-105*	1 Megabit x 8	100	C, 1	D, L	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27C080-120*	1 Megabit $\times 8$	120	C, I	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C080-150*	1 Megabit $\times 8$	150	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C080-200*	1 Megabit $\times 8$	200	C, I, E, M	D, L, P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C080-250*	1 Megabit $\times 8$	250	M	D, L	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27C080-255*	1 Megabit $\times 8$	250	C, 1	D, L, P, J	32/32	$5 V \pm 5 \%$
Am27C800-125*******	1 Megabit $\times 8 / 512 \mathrm{~K} \times 16$	120	C, 1	D, L	42/44	$5 \mathrm{~V} \pm 5 \%$
Am27C800-120*	1 Megabit $\times 8 / 512 \mathrm{~K} \times 16$	120	C, I	D, L	42/44	$5 \mathrm{~V} \pm 10 \%$
Am27C800-150*	1 Megabit $\times 8 / 512 \mathrm{~K} \times 16$	150	C, I, E, M	D, L, P, J	42/44	$5 \mathrm{~V} \pm 10 \%$
Am27C800-200*	1 Megabit $\times 8 / 512 \mathrm{~K} \times 16$	200	C, I, E, M	D, L, P, J	42/44	$5 \mathrm{~V} \pm 10 \%$
Am27C800-250*	1 Megabit $\times 8 / 512 \mathrm{~K} \times 16$	250	- M	D, L	42/44	$5 \mathrm{~V} \pm 10 \%$
Am27C800-255*	1 Megabit $\times 8 / 512 \mathrm{~K} \times 16$	250	C, 1	D, L, P, J	42/44	$5 \mathrm{~V} \pm 5 \%$

*Contact the local AMD sales office for the availability of this device.
Notes: see page 1-8

ExpressROM Devices

Part Number	Organization	Access Time (ns)	Temp Range'	Package Type ${ }^{2}$	Pin Count (PDIP/PLCC)	Supply Voltage
Am27X64-90	- 8K x 8	90	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X64-120	$8 \mathrm{~K} \times 8$	120	C, I	P.J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X64-150	$8 \mathrm{~K} \times 8$	150	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X64-200	$8 \mathrm{~K} \times 8$	200	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X64-255	$8 \mathrm{~K} \times 8$	250	C, I	P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27X128-90	16K x 8	90	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X128-120	$16 \mathrm{~K} \times 8$	120	C. 1	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X128-150	$16 \mathrm{~K} \times 8$	150	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X128-200	$16 \mathrm{~K} \times 8$	200	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X128-255	$16 \mathrm{~K} \times 8$	250	C, 1	P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27X256-90	32K $\times 8$	90	C, 1	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X256-120	$32 \mathrm{~K} \times 8$	120	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X256-150	32K $\times 8$	150	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X256-200	32K x 8	200	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X256-255	32K $\times 8$	250	C, I	P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27XH256-45	32K x 8	45	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27XH256-55	$32 \mathrm{~K} \times 8$	55	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27XH256-70	32K $\times 8$	70	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X512-90	$64 \mathrm{~K} \times 8$	90	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X512-120	$64 \mathrm{~K} \times 8$	120	C, 1	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X512-150	$64 \mathrm{~K} \times 8$	150	C. 1	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X512-200	$64 \mathrm{~K} \times 8$	200	C, I	P, J	28/32	$5 \mathrm{~V} \pm 10 \%$
Am27X512-255	$64 \mathrm{~K} \times 8$	250	C, 1	P, J	28/32	$5 \mathrm{~V} \pm 5 \%$
Am27X010-105	$128 \mathrm{~K} \times 8$	105	C, I	P, J	32/32	$5 \mathrm{~V} \pm \mathbf{5 \%}$
Am27X010-120	$128 \mathrm{~K} \times 8$	120	C, 1	P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27X010-150	$128 \mathrm{~K} \times 8$	150	C, 1	P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27X010-200	$128 \mathrm{~K} \times 8$	200	C, I	P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27X010-255	$128 \mathrm{~K} \times 8$	250	C, 1	P, J	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27XH010-55	$128 \mathrm{~K} \times 8$	55	C, 1	P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27XH010-70	128K x 8	70	C, I	P, J	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27XH010-90	$128 \mathrm{~K} \times 8$	90	C, I	P, J	32/32	$5 \mathrm{~V} \pm 10 \%$

[^0]ExpressROM Devices (Cont.)

Part Number	Organization	Access Time (ns)	Tomp Range ${ }^{1}$	Package Type ${ }^{2}$	Pin Count (PDIP/PLCC)	Supply Voltage
Am27X1024-120	$64 \mathrm{~K} \times 16$	120	C, I	P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27X1024-150	$64 \mathrm{~K} \times 16$	150	C, I	P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27X1024-200	$64 \mathrm{~K} \times 16$	200	C, I	P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27X1024-255	$64 \mathrm{~K} \times 16$	250	C, I	P, J	40/44	$5 \mathrm{~V} \pm 5 \%$
Am27X020-125	256K $\times 8$	125	C, I	P	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27X020-150	256K x 8	150	C, I	P	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27X020-200	256K x 8	200	C, I	P	32/32	$5 \mathrm{~V} \pm 10 \%$
Am27X020-255	256K x 8	250	C, I	P	32/32	$5 \mathrm{~V} \pm 5 \%$
Am27X2048-125	$128 \mathrm{~K} \times 16$	120	C, I	P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27X2048-150	$128 \mathrm{~K} \times 16$	150	C, I	P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27X2048-200	$128 \mathrm{~K} \times 16$	200	C. 1	P, J	40/44	$5 \mathrm{~V} \pm 10 \%$
Am27X2048-255	$128 \mathrm{~K} \times 16$	250	C, I	P, J	40/44	$5 \mathrm{~V} \pm .5 \%$
$\begin{aligned} & \text { Am27X040-150 } \\ & \text { Am27X040-200 } \end{aligned}$	$\begin{aligned} & 512 \mathrm{~K} \times 8 \\ & 512 \mathrm{~K} \times 8 \end{aligned}$	150	$\begin{aligned} & c, 1 \\ & c, 1 \end{aligned}$	P, J P, J	$\begin{aligned} & 32 / 32 \\ & 32 / 32 \end{aligned}$	$\begin{aligned} & 5 V \pm 10 \% \\ & 5 \mathrm{~V} \pm 10 \% \end{aligned}$

Notes:

1. Temperature Range
$\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
$1=$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
$\mathrm{E}=$ Extended Commercial $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)
$M=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ most products available in both APL and DESC versions.
2. Package Type

D = Ceramic DIP
$\mathrm{L}=$ Rectangular Ceramic Leadless Chip Carrier
$\mathrm{P}=$ Plastic DIP
$J=$ Rectangular Plastic Leaded Chip Carrier
$\mathrm{E}=$ Thin Small Outine Package - standard pin-out
$F=$ Thin Small Outline Package - reverse pin-out

- CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMs)

Section 2 CMOS Erasable Programmable Read Only Memories (EPROMs) 2-1
Inside AMD's CMOS EPROM Technology 2-3
Am27C64 64K (8,192 x 8-Bit) CMOS EPROM 2-10
Am27C128 128 K ($16,384 \times 8$-Bit) CMOS EPROM 2-22
Am27C256 $256 \mathrm{~K}(32,768 \times 8$-Bit) CMOS EPROM 2-34
Am27C512 512 K ($65,536 \times 8$-Bit) CMOS EPROM 2-47
Am27C010 1 Mbit ($131,072 \times 8$-Bit) CMOS EPROM 2-59
Am27C1024 1 Mbit ($65,536 \times 16$-Bit) CMOS EPROM 2-72
Am27C020 2 Mbit ($262,144 \times 8$-Bit) CMOS EPROM 2-84
Am27C2048 2 Mbit ($131,072 \times 16$-Bit) CMOS EPROM 2-96
Am27C040 4 Mbit ($524,288 \times 8$-Bit) CMOS EPROM 2-109
Am27C400 4 Mbit ($524,288 \times 8$-Bit/262, 144×16-Bit) ROM Compatible CMOS EPROM 2-121
Am27C4096 4 Mbit ($262,144 \times 16$-Bit) CMOS EPROM 2-133
Am27C080 8 Mbit $(1,048,576 \times 8$-Bit) CMOS EPROM 2-145
Am27C800 8 Mbit (1,048,576x8-Bit/524,288 x 16-Bit)
ROM Compatible CMOS EPROM 2-157

INSIDE AMD'S CMOS EPROM TECHNOLOGY

π

TECHNOLOGY DESCRIPTION

AMD's CMOS EPROM memories use standard CMOS periphery with an n-channel floating-gate memory array. The output buffers of the devices are designed to be compatible with both TTL and CMOS circuits. An n-channel pull-down and a p-channel pull-up provide full rail-to-rail switching of the outputs. The CMOS technology also allows very low standby power dissipation: 1.0 mA maximum TTL standby and $100 \mu \mathrm{~A}$ maximum CMOS standby currents.

Figure 1 shows a cross-section of a basic inverter. The gates consist of polysilicon; the other connections are made with metal. The technology used for the periphery transistors is CMOS (Complementary MOS) technology which combines n and p channel devices on the same silicon. In this case, a non-epitaxial p-type substrate is used for the n-channel transistors and a deep diffused n-well is used for the p-channel transistors.

The fabrication of CMOS EPROM memories is a complex process where every step must be rigorously monitored and controlled. This complex processing is heavily dependent on the following underlying technologies:

Photolithography

The photo or masking technology is key to the manufacturing of integrated circuits (ICs). It allows the same circuits to be printed hundreds of times on the same wafer. It is also inherent to the patterning of the various structures on the wafer necessary to the fabrication of the ICs. Today, with the improved capability of wafer steppers, AMD's EPROM products are manufactured on geometries of one micron and below.

Figure 2-1 CMOS Inverter Cross-Section

p-substrate

Ion Implantation

Ion implantation provides precision dopant control that is so critical for the manufacturing of AMD's EPROM products on sub-micron technology. Ion implantation equipment is a combination of mass spectrometry, linear acceleration, high resolution, current integration, ion beam scanning and high vacuum technologies. This process uses charged dopant atoms that are accelerated by an electric field and are implanted into the silicon wafer at a depth determined by the acceleration energy.

Diffusion

The furnace operations are required for silicon oxidation and driving in dopants. Oxidation cycles are used to grow the gate and isolation oxides inherent to the fabrication and operation of the MOS transistors. Drive cycles are used to diffuse the dopant material into the silicon to give the desired profile and depth.

Thin Films

Thin films deposited on the silicon include: polysilicon for gate electrodes and interconnection, interlayer dielectrics, metal layers for interconnection and passivation layers to seal the topside.

AMD EPROM Technology

The manufacturing technology for AMD's EPROM products involves a complex combination and blending of the previously mentioned processes. Each processing step requires a tremendous level of development, optimization and control. Before any new product is put into manufacturing, it must satisfy AMD's commitment to customer satisfaction, quality and reliability. To meet these standards, every new process and new product must pass many rigorous requirements. These requirements are outlined in greater depth in the reliability section.

The AMD EPROM products are being built on the CS19/19A family of technologies. These technologies are all based on a double-poly, single-metal n-well CMOS process. This process has been optimized for high density as well as high performance non-volatile memory devices. The basic features of this family of technologies are:

- n-well CMOS
- non-epitaxial, grounded substrate
- double-poly, single-metal
- minimum feature (microns)

CS19
1.0
0.9

190
1.0
3.0

CS19A
0.85
0.7
gate length (Leif) (microns)

- gate oxide (Angstrom)
- contacts (microns)
- metal pitch (microns)

CS19

This is a $1.0 \mu \mathrm{~m}$ minimum feature conventional technology and is used to manufacture the low density and high speed EPROM products offered by AMD.

CS19A

This is an $0.85 \mu \mathrm{~m}$ minimum feature conventional technology and is used to manufacture the medium to high density EPROM products and the family of low voltage EPROM products offered by AMD.

UV-ERASABLE TECHNOLOGY

AMD's CMOS EPROM technology is based upon the concept of stored charge. The charge is stored on a floating gate, that is a gate that has no connection to the rest of the circuit. The storage transistor actually has two gates: one that floats, and the other that acts as a control gate. The control gate is used to establish the field across the floating gate (see Figure2).

Figure 2-2 Floating-Gate MOS Transistor

17061A-2
Hot electron injection is used for programming EPROM devices. With this scheme, a bias is set up between the source and drain of the transistor, and between the control gate and the substrate (see Figure 3). The channel is pinched off, and a strong current flows. Because of the high fields, the electrons are hot. The two fields (source-to-drain, and substrate-to-control-gate) combine to form a field in a diagonal direction, but because of the oxide barrier, electrons cannot flow in that direction. Occasionally, electrons acquire enough energy to cross the barrier in the shortest direction-from the channel to the floating gate. This is referred to as hot electron injection.

Once an electron is on the other side of the oxide, it is on the floating gate, with no conductive path to get off. It is therefore effectively trapped and remains there. During programming, large fields are set up so that a significant number of electrons are injected.

Erasing these devices requires exposure to ultraviolet light. The energy from the ultraviolet light causes the electrons to cross back over the oxide barrier thereby erasing the device. For this to happen, the device package must have a window that lets the ultraviolet light pass through.

The program and erase mechanisms of all of AMD's EPROM products are fundamentally identical irrespective of the type of technology (CS19 or CS19A) used.

Figure 2-3 Programming by Hot-Electron Injection

p-substrate

17061A-3

Erasing AMD EPROMs

In order to clear all locations of their programmed contents, it is necessary to expose the EPROM to an ultraviolet light source. A dosage of $15 \mathrm{~W} \mathrm{sec} / \mathrm{cm}^{2}$ is required to completely erase an EPROM. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The EPROM should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the EPROM, and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$, although erasure times will be much longer than with UV sources at $2537 \AA$. Nevertheless, the exposure to fluorescent light and sunlight will eventually erase the EPROM and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming AMD EPROMs

Upon delivery, or after each erasure, the EPROM has all bits in the "ONE," or HIGH state. "Zeros" are loaded into the EPROM through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$ is applied to the $\mathrm{V}_{\mathrm{PP}} \mathrm{pin}, \overline{\mathrm{CE}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{H}. For programming, the data to be programmed is applied in parallel to the data input-output pins.

The Flashrite ${ }^{\text {TM }}$ programming algorithm reduces programming time by using an initial $100 \mu \mathrm{~s}$ pulse followed by a byte verification operation to determine whether the byte has been successfully programmed. If the data does not verify, an additional pulse is applied' for up to a maximum of 25 pulses. This process is repeated while sequencing through each address of the EPROM.

The Flashrite programming algorithm programs and verifies at $\mathrm{V}_{\mathrm{C}}=6.25 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PP}}=$ 12.75 V . After the final address is completed, all bytes are compared to the original data with $V_{C C}=V_{P P}=5.25 \mathrm{~V}$.

ESD

Every pin on the device is protected against electrostatic discharge (ESD), a formal name for static electricity shocks. Output pins rely on the large output drivers as protection. Inputs normally do not have large drivers, so a circuit must be added for input protection. In addition to ESD protection, these input protection circuits also help provide clamping against negative overshoot.

AMD CMOS EPROMs make use of ESD protection circuits as shown in Figures 4 a through $4 c$. Most input pins use the circuit in Figure 4b. On output pins the ESD protection circuit has been modified as shown in Figure 4c.

Figure 2-4 ESD Protection: a. New Version; b. Standard; c. Output Pins

a.

b.

c.

17061A-4

Latch-Up

All of AMD's CMOS devices are guaranteed to endure a current pulse of 100 mA into or out of the pin without inducing latch-up; most devices can actually withstand over 200 mA . Since AMD's CMOS EPROMs have true CMOS outputs, hot insertion is not recommended.

Latch-up may occur as a result of parasitic bipolar transistors between the n-channel and p-channel devices (see Figure 5a). These transistors form a parasitic Silicon Control Rectifier (SCR) (see Figure 5b), which turns ON when triggered, conducting large amounts of current. It is usually impossible to shut OFF without removing all the power from the device. The amount of current drain is so high that it can either overload
a power supply or, if the power supply can supply huge amounts of current, destroy the device.

Latch-up is normally triggered by an input or output at a voltage significantly above V_{cc} or below ground, with enough current drawn to cause the SCR to turn on. This condition usually occurs when hot-socketing a part; i.e., plugging a part into a powered-up board or inserting a board into a powered-up system. When this happens, the inputs and Vcc power up uncontrolled, and there is a risk of latch-up.

For CMOS outputs, the SCR is an intrinsic part of the CMOS structure and cannot be eliminated. The SCR must be made as difficult as possible to turn ON by using guard rings and very carefully laying out input and output circuits.

Figure 2-5 Latch-Up Mechanism: a. Cross-Section; b. Equivalent Schematic

a.

b.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V Vc and GND for every eight devices. The location of the capacitor should be as close to where the power supply is connected to the array.

SUMMARY

By concentrating on the needs of CMOS users, AMD has developed industry-leading CMOS technology that can provide cost-effective EPROMs of unsurpassed quality, reliability and performance. AMD provides value through:

- Robust technology and circuit design which
- Does not generate high current transients, and
- Has high immunity to system noise
- An extremely broad offering of products:
- 64K through 4 Mbit commodity EPROM densities
- High-speed family with access times as fast as 35 ns
- Low-voltage products
- Regulated (3.0 V-3.6 V)
- Unregulated (2.7 V-3.6 V)

This note has detailed many of the aspects of the technology that make it superior to other alternatives. This, together with the information in the individual data sheets, qualification books, and a crew of applications engineers, should provide answers to your questions as you make use of AMD's CMOS EPROM technology.

Am27C64
64 Kilobit ($8,192 \times 8$-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 45 ns
- Low power consumption
- $20 \mu \mathrm{~A}$ typical CMOS standby current
- JEDEC-approved pinout

■ Single +5 V power supply

- $\pm 10 \%$ power supply tolerance available
- 100% Flashrite ${ }^{T M}$ programming
- Typical programming time of 1 second
- Latch-up protected to 100 mA from -1 V to
$\mathrm{Vcc}+1 \mathrm{~V}$
- High noise immunity
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages

GENERAL DESCRIPTION

The Am27C64 is a 64-Kbit ultraviolet erasable programmable read-only memory. It is organized as 8 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, and PLCC packages.
Typically, any byte can be accessed in less than 45 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C64 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C64 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in a typical programming time of 1 second.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C64							
Ordering Part No: Vcc $\pm 5 \%$								-255
Vcc $\pm 10 \%$	-45	-55	-70	-90	-120	-150	-200	-250
Max Access Time (ns)	45	55	70	90	120	150	200	250
$\overline{\mathrm{CE}}$ (E) Access Time (ns)	45	55	70	90	120	150	200	250
$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}}$) Access Time (ns)	30	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

Notes:

1. JEDEC nomenclature is in parentheses.
2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A12 } & =\text { Address Inputs } \\ \overline{C E}(\overline{\mathrm{E}}) & =\text { Chip Enable } \\ \mathrm{DQ} 0-\mathrm{DQ} 7 & =\text { Data Inputs/Outputs } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ \overline{\mathrm{PGM}}(\overline{\mathrm{P}}) & =\text { Program Enable Input } \\ \mathrm{V}_{\mathrm{CC}} & =\text { VCc Supply Voltage }^{V_{\mathrm{PP}}} \\ \mathrm{V}_{\mathrm{SS}} & =\text { Program Supply Voltage } \\ & =\text { Ground }\end{array}$

LOGIC SYMBOL

11419C-4

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:
AM27C64

Valid Combinations	
AM27C64-45	DC, DCB, DI, DIB,
AM27C64-55	LC, LCB, LI, LIB
AM27C64-70	DC, DCB, DI, DIB, DE, DEB, LC, LCB, LI, LIB, LE, LEB
AM27C64-90	
AM27C64-120	
AM27C64-150	
AM27C64-200	
AM27C64-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C64-55	
$y n n$	
$y n n$	
$y n n$	AM27C64-70
y AM27C64-90	
y AM27C64-120	JI, PI,
AM27C64-150	
AM27C64-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combination.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C64-70	
AM27C64-90	/BXA, /BUA
AM27C64-120	
AM27C64-150	
AM27C64-200	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C64

in order to clear all locations of their programmed contents, it is necessary to expose the Am27C64 to an ultraviolet light source. A dosage of $15 \mathrm{~W} \mathrm{~seconds} / \mathrm{cm}^{2}$ is required to completely erase an Am27C64. This dosage can be obtained by exposure to an ultraviolet lampwavelength of $2537 \AA$-with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C64 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am27C64 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C64 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C64

Upon delivery or atter each erasure the Am27C64 has all 65,536 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C64 through the procedure of programming.
The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the V_{PP} pin, $\overline{\mathrm{CE}}$ is at V_{IL} and $\overline{\mathrm{PGM}}$ is at V_{IL}.
For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C64. This part of the algorithm is done at $\mathrm{V}_{\mathrm{cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.
Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C64 in parallel with different data is also easily accomplished. Except for $\overline{C E}$, all like inputs of the paralleI Am27C64 may be common. A TTL low-level program pulse applied to an Am27C64
$\overline{\text { PGM }}$ input with $\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\overline{\mathrm{CE}}$ Low will program that Am27C64. A high-level $\overline{\mathrm{CE}}$ input inhibits the other Am27C64 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ and $\overline{C E}$ at $V_{I L}, \overline{\text { PGM }}$ at V_{IH}, and V_{PP} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C64.
To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C64. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.
Byte $0\left(A 0=V_{\text {IL }}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{1 H}\right)$, the device code. For the Am27C64, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A C C}-$ toe.

Standby Mode

The Am27C64 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27C64 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTLstandby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between Vcc and $V_{s s}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	AO	A9	VPp	Outputs
Read		VIL	VIL	X	X	X	Vcc	Dout
Output Disable		X	VIH	X	X	X	Vcc	Hi-Z
Standby (TTL)		V_{IH}	X	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	x	X	X	X	Vcc	Hi-Z
Program		VIL	X	VIL	X	X	VPP	DiN
Program Verify		VIL	ViL	VIH	x	X	Vpp	Dour
Program Inhibit		VIH	X	X	X	X	VPP	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	Vh	Vcc	01H
	Device Code	VIL	VIL.	X	ViH	V_{H}	Vcc	15H

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 12=V_{I L}$
4. See DC Programming Characteristics for Vpp voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products ．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products ．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied ．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To Vss
All pins except $\mathrm{A} 9, \mathrm{~V}_{\mathrm{Pp}}, \mathrm{V}$ cc.-0.6 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
A9 and $\mathrm{V}_{\mathrm{PP}} \ldots$.
Vcc ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．-0.6 V to +7.0 V

Notes：

1．Minimum DC voltage on input or $/ / O$ pins is -0.5 V ．During transitions，the inputs may overshoot $V_{S S}$ to -2.0 V forpe－ riods of up to 20 ns ．Maximum DC voltage on input and I / O pins is $\mathrm{Vcc}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns．
2．For $A 9$ and $V_{P P}$ the minimum DC input is -0.5 V ．During transitions，A9 and VPP may overshoot VSs to -2.0 V for periods of up to 20 ns ．A9 and $V_{P P}$ must not exceed 13.5 V for any period of time．
Stresses above those listed under＂Absolute Maximum Rat－ ings＂may cause permanent damage to the device．This is a stress rating only；functional operation of the device at these or any other conditions above those indicated in the opera－ tional sections of this specification is not implied．Exposure of the device to absolute maximum rating conditions for ex－ tended periods may affect device reliability．

OPERATING RANGES

```
Commercial (C) Devices
```

Commercial (C) Devices
Case Temperature (TC) ···....... 0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
Case Temperature (TC) ···....... 0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
Industrial (I) Devices
Industrial (I) Devices
Case Temperature (Tc) -40 C to +85'⿳
Case Temperature (Tc) -40 C to +85'⿳
Extended Commercial (E) Devices
Extended Commercial (E) Devices
Case Temperature (Tc) -55'C to +125'⿳
Case Temperature (Tc) -55'C to +125'⿳
Military (M) Devices
Military (M) Devices
Case Temperature (TC)-55' 旃 +125'` Case Temperature (TC)-55' 旃 +125'`
Supply Read Voltages
Supply Read Voltages
VCC for Am27C64-XX5 +4.75 V to +5.25 V
VCC for Am27C64-XX5 +4.75 V to +5.25 V
Vcc for Am27C64-XX0 +4.50 V to +5.50 V
Vcc for Am27C64-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func-
Operating ranges define those limits between which the func-
tionality of the device is guaranteed.

```
tionality of the device is guaranteed.
```

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	V IN $=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc	C/I Devices		1.0	
			E/M Devices		5.0	
IcC1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$			25	mA
Icc2	Vcc TTL Standby Current	$\overline{C E}=\mathrm{V}_{\mathrm{IH}}$			1	mA
Icc3	Vcc CMOS Standby Current	$\overline{C E}=V c c \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	Vpp Current During Read	$\overline{C E}=\overline{O E}=V_{\text {IL }}, ~ V P P=V C C$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C64 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.
3. ICCI is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc + 0.5 V, which may overshoot to Vcc +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency $\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature

$$
V c c=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}
$$

11419C-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CLV032		CDV028		PL 032		PD 028		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
Cin	Input Capacitance	V IN $=0$	7	10	8	10	6	10	5	10	pF
Cout	Output Capacitance	VOUT $=0$	8	12	1.1	14	8	12	8	10	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

 (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)| Parameter Symbols | | Parameter Description | Test Conditions | | Am27C64 | | | | | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | -255 | |
| JEDEC | Standard | | | | -45 | -55 | -70 | -90 | -120 | -150 | -200 | -250 | |
| tavav | tacc | | Address to Output Delay | $\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | Min | - | - | - | - | - | - | - | - | |
| | | Max | | | 45 | 55 | 70 | 90 | 120 | 150 | 200 | 250 | ns |
| telov | tce | Chip Enable to Output Delay | $\overline{O E}=\mathrm{V}_{\text {IL }}$ | Min | - | - | - | - | - | - | - | - | |
| | | | | Max | 45 | 55 | 70 | 90 | 120 | 150 | 200 | 250 | ns |
| tglav | toe | Output Enable to Output Delay | $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ | Min | - | - | - | - | - | - | - | - | |
| | | | | Max | 30 | 35 | 40 | 40 | 50 | 50 | 50 | 50 | ns |
| $\begin{aligned} & \text { tEHOZ } \\ & \text { tGHQZ } \end{aligned}$ | $\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$ | Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float | | Min | - | - | - | - | - | - | - | - | |
| | | | | Max | 25 | 25 | 25 | 25 | 30 | 30 | 30 | 30 | ns |
| taxax | toh | Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first | | Min | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | | | Max | - | - | - | - | - | - | - | - | ns |

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C64 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. For the $-45,-55$ and -70 :

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0 V to 3 V
Timing Measurement Reference Level: 1.5 V for inputs and outputs
For all other versions:
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

$C L=100 \mathrm{pF}$ including jig capacitance (30 pF for $-45,-55,-70$)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

11419C-8
AC Testing: Inputs are driven at 3.0 V for a logic "1" and $0 V$ for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$ for $-45,-55$ and -70 .

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	OUTPUTS Will Be Steady
	May Change from H to L	Will Be Changing from H to L
May Change from L to H	Will Be Changing from L to H	
Don't Care, Any Change Permitted	Changing State Unknown	
Does Not Apply	Center Line is High Impedence "Off" State	

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t O E$ after the falling edge of the addresses without impact on tacc .
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C128

Advanced Micro
128 Kilobit ($16,384 \times 8$-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
$-45 \mathrm{~ns}$
■ Low power consumption
- $20 \mu \mathrm{~A}$ typical CMOS standby current
- JEDEC-approved pinout

■ Single +5 V power supply

- $\pm 10 \%$ power supply tolerance avallable
- 100% Flashrite ${ }^{T M}$ programming
- Typical programming time of 2 seconds

Latch-up protected to $\mathbf{1 0 0} \mathbf{~ m A}$ from - $\mathbf{1} \mathrm{V}$ to
$\mathrm{Vcc}+1 \mathrm{~V}$

- High noise immunity
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages
I DESC SMD No. 5962-87661

GENERAL DESCRIPTION

The Am27C128 is a 128 K -bit ultraviolet erasable programmable read-only memory. It is organized as 16 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.
Typically, any byte can be accessed in less than 45 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C128 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C128 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in a typical programming time of 2 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C128								
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$									
	-45	-55	-70	-90	-120	-150	-200	-250	
Max Access Time (ns)	45	55	70	90	120	150	200	250	
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access Time (ns)	45	55	70	90	120	150	200	250	
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access Time (ns)	30	35	40	40	50	65	75	100	

CONNECTION DIAGRAMS

Top View

DIP

Notes:

1. JEDEC nomenclature is in parentheses.

PLCC/LCC

2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A13 = Address Inputs
$\overline{C E}(\bar{E}) \quad=\quad$ Chip Enable
DQ0-DQ7 = Data Inputs/Outputs
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \quad=$ Output Enable Input
$\overline{\text { PGM }}(\bar{P}) \quad=$ Program Enable Input
Vcc $\quad=V_{c c}$ Supply Voltage
VPP $\quad=$ Program Supply Voltage
VSS $\quad=$ Ground

LOGIC SYMBOL

11420C-4

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations

AM27C128-45	DC, DCB, DI, DIB
AM27C128-55	
AM27C128-70	
AM27C128-90	
AM27C128-120 DCB, DI,	
AM27C128-150, DE, DEB,	
AM27C128-200 LCB, LI,	
AM27C128-255 LE, LEB	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C128-55	$\begin{aligned} & \mathrm{JC}, \mathrm{PC}, \\ & \mathrm{JI}, \mathrm{PI} \end{aligned}$
AM27C128-70	
AM27C128-90	
AM27C128-120	
AM27C128-150	
AM27C128-200	
AM27C128-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C128-70	
AM27C128-90	
AM27C128-120	/BXA, /BUA
AM27C128-150	
AM27C128-200	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C128

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C128 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C128. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of 12,000 $\mu \mathrm{W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C128 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am27C128 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C128 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C128

Upon delivery or after each erasure the Am27C128 has all 131,072 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C128 through the procedure of programming.
The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the $V_{\text {PP }}$ pin, $\overline{C E}$ is at $V_{\text {IL }}$, and $\overline{P G M}$ is at V_{IL}.
For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using $100 \mu \mathrm{~s}$ programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C128. This part of the algorithm is done at $\mathrm{V}_{c c}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5.25 \mathrm{~V}$.
Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C128 in parallel with different data is also easily accomplished. Except for $\overline{C E}$, all like inputs of the parallel Am27C128 may be common. A TTL low-level program pulse applied to an Am27C128 $\overline{\text { PGM }}$ input with $V_{P P}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and
$\overline{\mathrm{CE}}$ Low will program that Am27C128. A high-level $\overline{\mathrm{CE}}$ input inhibits the other Am27C128 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{PGM}}$ at $V_{I H}$, and $V_{P P}$ between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C128.
To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C128. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{\text {IL }}$ to $V_{I H}$. All other address lines must be held at $V_{\text {IL }}$ during auto select mode.
Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device code. For the Am27C128, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C c}$-toe.

Standby Mode

The Am27C128 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27C128 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathbb{I H}}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{c c}$ and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{\text { CE }}$	$\overline{\text { OE }}$	$\overline{\text { PGM }}$	A0	A9	$V_{\text {PP }}$	Outputs
Read		VIL	VIL	X	X	X	Vcc	Dout
Output Disable		X	V_{H}	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		$\mathrm{VIH}^{\text {H }}$	X	X	x	x	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Program		VIL	X	VIL	X	X	VPP	Din
Program Verify		VIL	VIL	V_{IH}	x	x	Vpp	Dout
Program Inhibit		VIH	X	X	X	X	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	V_{H}	Vcc	01H
	Device Code	VIL.	VIL	X	VIH	V_{H}	Vcc	16H

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 12=V_{I L}, A 13=X$
4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To Vss
All pins except A9, $\mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{cc}} .-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.5 \mathrm{~V}$
A9 and $V_{p p} . \ldots$.
Vcc -0.6 V to +7.0 V

Notes:

1. Minimum DC voltage on input or //O pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to-2.0 V forperiods of up to 20 ns. Maximum DC voltage on input and $1 / O$ pins is $V C C+0.5 V$ which may overshoot to $V C C+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V_{P P}$ the minimum $D C$ input is -0.5 V . During transitions, A9 and VPP may overshoot VSs to -2.0 V for periods of up to 20 ns . $A 9$ and $V_{P P}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (Tc) $\ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27C128-XX5 +4.75 V to +5.25 V
VCC for Am27C128-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

AMD
DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{OH}=-400 \mu \mathrm{~A}$		2.4		V
VoL	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +VCC			1.0	$\mu \mathrm{A}$
lio	Output Leakage Current	VOUT $=0 \mathrm{~V}$ to +Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		5.0	
Icc1	Vcc Active Current (Note 3)	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}, \mathrm{f}=10 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$			25	mA
Icc2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}, \mathrm{VPP}=\mathrm{Vcc}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C128 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
3. ICCI is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to VCC +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$
11420C-5

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=\mathbf{1 0} \mathbf{~ M H z}$
11420C-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CLV032		CDV028		PL 032		PD 028		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	V IN $=0$	7	10	8	10	6	10	5	10	pF
Cout	Output Capacitance	VOUT $=0$	8	12	11	14	8	12	8	10	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C128								Unit
		-45			-55	-70	-90	-120	-150	-200	$\begin{aligned} & -255 \\ & -250 \end{aligned}$		
JEDEC	Standard												
tavav	tacc	Address to Output Delay	$\overline{C E}=\overline{O E}=$	Min	-	-	-	-	-	-	-	-	
			VIL	Max	45	55	70	90	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=\mathrm{VIL}$.	Min	-	-	-	-	-	-	-	-	
				Max	45	55	70	90	120	150	200	250	ns
tglav	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}$ IL	Min	-	-	-	-	-	-	-	-	
				Max	30	35	40	40	50	50	50	50	ns
$\begin{aligned} & \text { tEHQZ } \\ & \text { tGHQZ } \end{aligned}$	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	-	-	-	
				Max	25	25	25	25	30	30	30	30	ns
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	0	0	0	
				Max	-	-	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C128 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. For the -45, -55 and -70:

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$ Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0 V to 3 V
Timing Measurement Reference Level: 1.5 V for inputs and outputs
For all other versions:
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

$C \mathrm{~L}=100 \mathrm{pF}$ including jig capacitance (30 pF for $-45,-55,-70$)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

11420C-8
AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are ≤ 20 ns for $-45,-55$, and -70 .

KEY TO SWITCHING TEST WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	Will Be Steady
May Change from H to L	Will Be Changing from H to L	
May Change from L to H	Will Be Changing from L to H	
Don't Care Any Change Permitted	Changing State Unknown	
Does Not Apply	Center Line is High Impedence	
"Off" State		

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of the addresses without impact on $t_{A C C}$.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C256

256 Kilobit (32,768 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 55 ns

■ Low power consumption

- $20 \mu \mathrm{~A}$ typical CMOS standby current
- JEDEC-approved pinout
- Single +5 V power supply

■ $\pm 10 \%$ power supply tolerance available

- 100% Flashrite ${ }^{T M}$ programming
- Typical programming time of 4 seconds
- Latch-up protected to 100 mA from $\mathbf{- 1} \mathrm{V}$ to
$\mathrm{Vcc}+1 \mathrm{~V}$
- High noise immunity
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin TSOP, LCC and LCC packages
■ DESC SMD No. 5962-86063

GENERAL DESCRIPTION

The Am27C256 is a 256 K -bit ultraviolet erasable programmable read-only memory. It is organized as 32 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP, and PLCC packages.
Typically, any byte can be accessed in less than 55 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C256 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C256 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming time of 4 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C256						
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$							
	-55	-70	-90	-120	-150	$\mathbf{- 2 0 0}$	$\mathbf{- 2 5 0}$
Max Access Time (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access Time (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access Time (ns)	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

Notes:

1. JEDEC nomenclature is in parentheses.
2. Don't use (DU) for PLCC.

08007G-3

TSOP*

$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	1 -		32	\square	NC
A11	2		31	\square	A10
A9	3		30	\square	$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}}$)
A8	4		29]	DQ7
A13	5		28	\square	DQ6
NC	6		27	卫	DQ5
A14	7		26	ص	DQ4
Vcc	8	Am27C256	25	\square	DQ3
Vpp	9	Standard Pinout	24		Vss
NC	10		23	\square	DQ2
A12	11		22	\square	DQ1
A7	12		21	\square	DQ0
A6	13		20	\square	NC
A5	14		19		AO
A4	15		18		A1
A3	16		17		A2

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A14 } & =\text { Address Inputs } \\ \overline{C E}(\overline{\mathrm{E}}) & =\text { Chip Enable } \\ \mathrm{DQ0-DQ7} & =\text { Data Inputs/Outputs } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ V_{\mathrm{CC}} & =V_{\mathrm{CC}} \text { Supply Voltage } \\ \mathrm{V}_{\mathrm{PP}} & =\text { Program Supply Voltage } \\ \mathrm{V}_{\mathrm{SS}} & =\text { Ground }\end{array}$

LOGIC SYMBOL

08007G-5

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
y AM27C256-55	DC, DCB, DI, DIB
AM27C256-70 LCB, LI, LIB	
AM27C256-90	DC, DCB, DI,
AM27C256-120	
AM27C256-150	LC, LCB, LI,
AM27C256-200	LIB, LE, LEB
AM27C256-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to contirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valld Combinations	
AM27C256-55	$\mathrm{JC}, \mathrm{PC}, \mathrm{EC},$ $\mathrm{JI}, \mathrm{PI}, \mathrm{El}$
AM27C256-70	
AM27C256-90	
AM27C256-120	
AM27C256-150	
AM27C256-200	
AM27C256-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
$y n$	
AM27C256-70	
AM27C256-90	
AM27C256-120	/BXA, /BUA
AM27C256-150-200	
AM27C256-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C256

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C256 to an ultraviolet light source. A dosage of $15 \mathrm{~W} \mathrm{sec} / \mathrm{cm}^{2}$ is required to completely erase an Am27C256. This dosage can be obtained by exposure to an ultraviolet lampwavelength of $2537 \AA$-with intensity of $12,000 \mu W / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am27C256 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C256

Upon delivery or after each erasure the Am27C256 has all 262,144 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C256 through the procedure of programming.
The programming mode is entered when 12.75 V $\pm 0.25 \mathrm{~V}$ is applied to the $\mathrm{V}_{\mathrm{PP}} \mathrm{pin}, \overline{\mathrm{OE}}$ is at V_{IH}, and $\overline{\mathrm{CE}}$ is at V_{IL}.
For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C256. This part of the algorithm is done at $\mathrm{V}_{\mathrm{CC}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5.25 \mathrm{~V}$.
Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C256 in parallel with different data is also easily accomplished. Except for $\overline{C E}$, all like inputs of the parallel Am27C256 may be common. A TTL low-level program pulse applied to an Am27C256 $\overline{\mathrm{CE}}$ input with $\mathrm{VPP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$, and
$\overline{\mathrm{OE}}$ High will program that Am27C256. A high-level $\overline{\mathrm{CE}}$ input inhibits the other Am27C256 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}$ at V_{IH}, and $V_{\text {PP }}$ between 12.5 V to 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C256.
To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address like $A 9$ of the Am27C256. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at $V_{\text {IL }}$ during auto select mode.
Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(\mathrm{AO}=\mathrm{V}_{1 H}\right)$, the device code. For the Am27C256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A C C}-t o E$.

Standby Mode

The Am27C256 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{C c} \pm 0.3 \mathrm{~V}$. The Am27C256 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCc and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode		$\overline{\mathrm{CE}}$	$\overline{O E}$	A0	A9	$V_{\text {PP }}$	Outputs
Read		VIL	VII	X	X	$V_{C C}$	Dout
Output Disable		X	V_{IH}	X	x	$V_{C C}$	Hi-Z
Standby (TTL)		V_{IH}	X	X	X	$V_{C C}$	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	V cc	Hi-Z
Program		VIL.	VIH	X	X	$V_{\text {PP }}$	Din
Program Verify		$\mathrm{VIH}^{\text {H}}$	V_{IL}	X	X	$V_{P P}$	Dout
Program Inhibit		V_{H}	V IH	X	X	$V_{\text {PP }}$	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	V_{H}	Vcc	01H
	Device Code	VIL	VIL	V_{IH}	V_{H}	V cc	10 H

Notes:

1. $V_{H}=12.0 V_{ \pm} 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 14=V_{L L}$
4. See DC Programming Characteristics for $V_{P P}$ voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To Vss
All pins except A9, Vpp, Vcc
(Note 1) $\ldots \ldots . \ldots$.
A9 and V_{PP} (Note 2) \ldots.
VCC . -0.6 V to +7.0 V

Notes:

1. Minimum DC voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{S S}$ to-2.0 V forperiods of up to 20 ns . Maximum DC voltage on input andl/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V P P$ the minimum $D C$ input is $-0.5 V$. During transitions, A9 and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . A9 and $V_{P P}$ must notexceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (1) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (TC) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Millitary (M) Devices
Case Temperature (TC) $\ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

$V_{C C}$ for Am27C256-XX5 +4.75 V to +5.25 V
Vcc for Am27C256-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
1 LI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to + Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	V OUT $=0 \mathrm{~V}$ to +Vcc	C/L Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		5.0	
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{C E}=V \mathrm{VL}, f=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$			25	mA
Icc2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}, \mathrm{V}$ PP $=V_{c c}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C256 must not be removed from (or inserted into) a socket when VCc or VPP is applied.
3. ICCI is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is Vcc + 0.5 V , which may overshoot to Vcc +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency $\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

08007G-6

Figure 2. Typical Supply Current vs. Temperature

$$
V_{c c}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}
$$

08007G-7

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CLV032		CDV028		PL 032		PD 028		TS 032		Unit
			Typ	Max									
$\mathrm{ClN}^{\text {N }}$	Input Capacitance	VIN $=0$	11	14	8	12	8	12	6	10	10	12	pF
Cout	Output Capacitance	Vout $=0$	10	14	8	12	8	12	8	10	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

 (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)| Parameter Symbols | | Parameter Description | Test Conditions | | Am27C256 | | | | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | -55 | | | -70 | -90 | -120 | -150 | -200 | $\begin{aligned} & -255 \\ & -250 \end{aligned}$ | |
| JEDEC | Standard | | | | | | | | | | |
| tavav | tacc | Address to Output Delay | $\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=$ | Min | - | - | - | - | - | - | - | |
| | | | | Max | 55 | 70 | 90 | 120 | 150 | 200 | 250 | ns |
| telqv | tce | Chip Enable to Output Delay | $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ | Min | - | - | - | - | - | - | - | |
| | | | | Max | 55 | 70 | 90 | 120 | 150 | 200 | 250 | ns |
| tglav | toe | Output Enable to Output Delay | $\overline{\mathrm{CE}}=\mathrm{VIL}$ | Min | - | - | - | - | - | - | - | |
| | | | | Max | 35 | 40 | 40 | 50 | 50 | 50 | 50 | ns |
| tehoz, tGHaZ | $\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$ | Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float | | Min | - | - | - | - | - | - | - | |
| | | | | Max | 25 | 25 | 25 | 30 | 30 | 30 | 30 | ns |
| taxax | tor | Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{O E}$, whichever occurred first | | Min | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | | | Max | - | - | - | - | - | - | - | ns |

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C256 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. For the -55 and -70 :

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$
Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs
For all other versions:
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

$C_{L}=100 \mathrm{pF}$ including jig capacitance (30 pF for $-55,-70$)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

08007G-9
AC Testing: Inputs are driven at 3.0 V for a logic " 1 " and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$ for -55 and -70 .

KEY TO SWITCHING TEST WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS		
Must Be Steady	Will Be Steady			
May				
Change				
from H to L			\quad	Will Be
:---				
Changing				
from H to L				

SWITCHING WAVEFORMS

2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C512

512 Kilobit ($65,536 \times 8$-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 70 ns
- Low power consumption
- $20 \mu \mathrm{~A}$ typical CMOS standby current
- JEDEC-approved pinout
- Single +5 V power supply
m $\pm 10 \%$ power supply tolerance available
- 100\% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 8 seconds

図 Latch-up protected to 100 mA from -1 V to Vcc + 1 V

- High noise immunity
. Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin TSOP, LCC and PLCC packages
ㅊ DESC SMD No. 5962-87648

GENERAL DESCRIPTION

The Am27C512 is a 512 K -bit ultraviolet erasable programmable read-only memory. It is organized as 64 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP and PLCC packages.
Typically, any byte can be accessed in less than 70 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C512 offers separate Output Enable ($\overline{\mathrm{OE}})$ and Chip Enable ($\overline{\mathrm{CE}})$
controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C512 supports AMD's Flashrite ${ }^{T M}$ programming algorithm (100μ s pulses) resulting in a typical programming time of 8 seconds.

BLOCK DIAGRAM

AMD
PRODUCT SELECTOR GUIDE

Family Part No.	Am27C512					
Ordering Part No: $V_{c c} \pm 5 \%$ Vcc $\pm 10 \%$	-75					
		-90	-120	-150	-200	-250
Max Access Time (ns)	70	90	120	150	200	250
$\overline{\mathrm{CE}(\overline{\mathrm{E}}) \text { Access Time (ns) }}$	70	90	120	150	200	250
$\overline{\mathrm{OE}(\overline{\mathrm{G}}) \text { Access Time (ns) }}$	40	40	50	50	75	100

CONNECTION DIAGRAMS

Top View

DIP

Notes:

1. JEDEC nomenclature is in parentheses.

2. Don't use ($D U$) for PLCC.

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A15 } & =\text { Address Inputs } \\ \overline{\mathrm{CE}}(\overline{\mathrm{E}}) & =\text { Chip Enable Input } \\ \mathrm{DQ0}-\mathrm{DQ7} & =\text { Data Inputs/Outputs } \\ \mathrm{DU} & =\text { No External Connection } \\ & \text { (Do Not Use) } \\ \mathrm{NC} & =\text { No Internal Connection } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) / \mathrm{V}_{\mathrm{PP}} & =\text { Output Enable Input/ } \\ & \text { Program Supply Voltage } \\ V_{\mathrm{CC}} & = \\ V_{\mathrm{SS}} & =\end{array}$

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C512-75	DC, DCB, LC, LCB
AM27C512-90	
AM27C512-120	
AM27C512-150	
AM27C512-200	DC, DCB, DI, DIB,
AM27C512-250, LIB, LE, LEB	
AM27C512-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C512-90	
AM27C512-120	PC, JC, EC
AM27C512-150	
AM27C512-200	
AM27C512-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

DEVICE NUMBER
Am27C512
512 Kilobit ($65,536 \times 8$-Bit) CMOS EPROM

Valid Combinations	
AM27C512-90	
AM27C512-120	
y AM27C512-150	/BXA, /BUA
AM27C512-200	
AM27C512-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C512

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C512 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C512. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of 12,000 $\mu \mathrm{W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C512 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am27C512 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C512 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C512

Upon delivery or after each erasure the Am27C512 has all 524,288 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C512 through the procedure of programming.
The programming mode is entered when $12.75 \mathrm{~V} \pm 0.25$ V is applied to the $\overline{O E} / V_{P P}$ and $\overline{C E}$ is at $V_{\text {IL }}$.
For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C512. This part of the algorithm is done at $\mathrm{V}_{\mathrm{CC}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=5.25 \mathrm{~V}$.
Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C512 in parallel with different data is also easily accomplished. Except for $\overline{C E}$, all like inputs of the parallel Am27C512 may be common. A TTL low-level program pulse applied to an Am27C512 $\overline{\mathrm{CE}}$ input and $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$, will program that Am27C512. A high-level $\overline{\mathrm{CE}}$ input
inhibits the other Am27C512 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{CE}}$ at V_{IL} and $\overline{\mathrm{OE}} / V_{\text {PP }}$ at $V_{\text {IL }}$. Data should be verified $t_{D V}$ after the falling edge of $\overline{C E}$.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C512.
To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C512. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at $V_{\text {IL }}$ during auto select mode.
Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device code. For the Am27C512, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE} /}$ $V_{P p}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs toe after the falling edge of $\overline{O E} / V_{P P}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C C}-t_{\text {toe }}$.

Standby Mode

The Am27C512 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{C C} \pm 0.3 \mathrm{~V}$. The Am27C512 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathbb{H}}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E} / V_{P P}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between Vcc and $\mathrm{V} s \mathrm{f}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{\mathbf{C E}}$	$\overline{O E} / V \mathrm{Pp}$	AO	A9	Outputs
Read		VIL	VIL	X	X	Dout
Output Disable		X	VIH	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TLL)		V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc}+0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Program		VIL	Vpp	X	X	Din
Program Verify		$\mathrm{V}_{\text {IL }}$	VIL	X	X	Dout
Program Inhibit		V_{H}	VPP	X	X	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	VH	01H
	Device Code	VIL	VIL	V_{IH}	V_{H}	91H

Notes:

1. $V H=12.0 \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 15=V / L$
4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To Vss
All pins except A9,

Vcc . -0.6 V to +7.0 V

Notes:

1. Minimum DC voltage on input or I/O pins is -0.5 V . During transitions, the inputs may overshoot Vss to-2.0 V forperiods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V c c+0.5 V$ which may overshoot to $V c c+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V_{\text {PP }}$ the minimum $D C$ input is -0.5 V . During transitions, A9 and VPP may overshoot VSS to -2.0 V for periods of up to 20 ns . $A 9$ and $V_{\text {PP }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extendedperiods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (TC) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (Tc) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (TC) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

Vcc for Am27C512-XX5 +4.75 V to +5.25 V
Vcc for Am27C512-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$		2.4		V
Vol.	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$			0.45	V
$\mathrm{VIH}^{\text {l }}$	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL.	Input LOW Voltage			-0.5	+0.8	V
lıI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		5.0	
Icc1	Vcc Active Current (Note 3)	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=10 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$,			30	mA
IcC2	Vcc TTL Standby Current	$\overline{\overline{C E}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C512 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
3. ICC1 is tested with $\overline{\mathrm{OE}} / V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is VCc + 0.5 V , which may overshoot to Vcc +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$
08140G-5

Figure 2. Typical Supply Current vs. Temperature $\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$

08140G-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CLV032		CDV028		PL 032		PD 028		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
Cin	Input Capacitance	$\mathrm{V} \mathrm{N}=0$	9	12	10	12	9	12	6	10	pF
Cout	Output Capacitance	VOUT $=0$	10	12	10	13	9	12	6	10	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, 4 and 5) (for APL Products, Group A, Subgroups 9,10, and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C512						Unit
		-75			-90	-120	-150	-200	$\begin{aligned} & -255 \\ & -250 \end{aligned}$		
JEDEC	Standard										
tavav	tacc	Address to Output Delay	$\begin{aligned} & \overline{C E}=\overline{O E}= \\ & V_{I L} \end{aligned}$	Min	-	-	-	-	-	-	
				Max	70	90	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	-	-	
				Max	70	90	120	150	200	250	ns
tglav	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	-	
				Max	40	40	50	50	75	75	ns
$\begin{aligned} & \text { tEHQZ } \\ & \text { tGHOZ } \end{aligned}$	tof (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	-	
				Max	25	30	30	30	30	30	ns
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	0	
				Max	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C512 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs
5. For the Am27C512-75:

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0 V to 3 V
Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

$C_{L}=100 \mathrm{pF}$ including jig capacitance (30 pF for -75)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

08140G-8
AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$ for -75 device.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	InPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
$\square \square$	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	Don't Care Any Change Permitted	Changing State Unknown
$\Rightarrow \rightarrow$	Does Not Apply	Center Line is High Impedence "Off" State

SWITCHING WAVEFORMS

1. $\overline{O E} N_{P P}$ may be delayed up to $\operatorname{tACC}-$ tOE atter the falling edge of the addresses without impact on tACC.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C010

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 90 ns
- Low power consumption
- $20 \mu \mathrm{~A}$ typical CMOS standby current

■ JEDEC-approved pinout

- Single +5 V power supply

■ $\pm 10 \%$ power supply tolerance available

- 100% Flashrite ${ }^{\mathrm{TM}}$ programming
- Typical programming time of 16 seconds

Latch-up protected to 100 mA from -1 V to $\mathrm{Vcc}+1 \mathrm{~V}$

- High noise immunity
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

Compact 32-pin DIP, PDIP, TSOP, LCC and PLCC packages
DESC SMD No. 5962-89614

GENERAL DESCRIPTION

The Am27C010 is a 1 Megabit ultraviolet erasable programmable read-only memory. It is organized as 128 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP, and PLCC packages.
Typically, any byte can be accessed in less than 90 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C010 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.
All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C010 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm (100μ s pulses) resulting in a typical programming time of 16 seconds.

BLOCK DIAGRAM

10205D-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C010					
Ordering Part No: Vcc $\pm 5 \%$	-95	-105				-255
$V C C \pm 10 \%$	-90		-120	-150	-200	
Max Access Time (ns)	90	100	120	150	200	250
$\overline{\mathrm{CE}}$ (\bar{E}) Access Time (ns)	90	100	120	150	200	250
$\overline{\mathrm{OE}} \mathbf{(\overline { \mathrm { G } })}$ Access Time (ns)	40	50	50	65	75	100

CONNECTION DIAGRAMS

Top View

DIP

10205D-2

PLCC/LCC

10205D-3

Notes:

1. JEDEC nomenclature is in parentheses.
2. The 32-pin DIP to 32-Pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

TSOP*

*Contact local AMD sales office for package availability

PIN DESIGNATIONS
$\begin{array}{ll}\text { A0-A16 } & =\text { Address Inputs } \\ \overline{C E}(\overline{\mathrm{E}}) & =\text { Chip Enable } \\ \mathrm{DQ} 0-\mathrm{DQ7} & =\text { Data Inputs/Outputs } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ \overline{\mathrm{PGM}}(\overline{\mathrm{P}}) & =\text { Program Enable Input } \\ V_{C C} & =\text { VCc Supply Voltage }^{\text {VPP }} \\ & =\text { Program Supply Voltage } \\ V_{\text {SS }} & =\text { Ground }\end{array}$

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C010-90	DC, DCB, DI, DIB,
AM27C010-95	
AM27C010-105	
AM27C010-120	DC, DCB, DE, DEB,
AM27C010-150	
AM27C010-200	LI, LIB, LE, LEB
AM27C010-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

```
AM27C010
DEVICE NUMBER
Am27C010
1 Megabit (131,072 \(\times 8\)-Bit) CMOS OTP EPROM
```

Valid Combinations	
$y n$	
$y n n$	AM27C010-105
AM27C010-120	
AM27C010-150 JC, EC,	
AM27C010-200	PI, JI, EI
AM27C010-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:


```
DEVICE NUMBER
Am27C010
1 Megabit (131,072 X 8-Bit) CMOS EPROM
```

Valid Combinations	
AM27C010-120	
AM27C010-150	BXA, /BUA
AM27C010-200	
AM27C010-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups

$$
1,2,3,7,8,9,10,11 .
$$

FUNCTIONAL DESCRIPTION

Erasing the Am27C010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C010 to an ultraviolet light source. A dosage of $15 \mathrm{~W} \mathrm{~seconds} / \mathrm{cm}^{2}$ is required to completely erase an Am27C010. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of 12,000 $\mu \mathrm{W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.
It is important to note that the Am27C010 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C010

Upon delivery or after each erasure the Am27C010 has all $1,048,576$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C010 through the procedure of programming.
The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the V_{PP} pin, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at V_{IL}, and $\overline{O E}$ is at $V_{I H}$.
For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C010. This part of the algorithm is done at $\mathrm{V}_{\mathrm{Cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5.25 \mathrm{~V}$.
Please referto Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C010 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs of the parallel Am27C010 may be common. A TTL low-level program pulse applied to an Am27C010 $\overline{\mathrm{CE}}$ input and $\mathrm{V} P \mathrm{PP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}, \overline{\mathrm{PGM}}$

Low and $\overline{O E}$ High will program that Am27C010. A highlevel $\overline{\mathrm{CE}}$ input inhibits the other Am27C010 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{PGM}}$ at V_{IH}, and V_{PP} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C010.
To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A9 of the Am27C010. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.
Byte $0\left(A 0=V_{\text {IL }}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{H H}\right)$, the device code. For the Am27C010, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A C C$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A C C}-t_{t o E}$.

Standby Mode

The Am27C010 has a CMOS standby mode which reduces the maximum V_{cc} current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27C010 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between V_{cc} and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{C E}$	OE	$\overline{\text { PGM }}$	A0	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	Vcc	Dout
Output Disable		X	VIH	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		V_{IH}	X	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Program		VIL	V_{H}	VIL	X	X	Vpp	Din
Program Verify		V_{IL}	VIL	V_{IH}	x	X	VPP	Dout
Program Inhibit		VIH	X	X	X	X	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	VH	Vcc	01H
	Device Code	VIL	VIL	X	VIH	Vh	Vcc	OE

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A B=A 10-A 16=V_{\mathrm{LL}}$
4. See DC Programming Characteristics for VPp voltage during programming.

ABSOLUTE MAXIMUM RATINGS
 Storage Temperature OTP Products $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ All Other Products $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

 Voltage with Respect To $V_{S S}$
 All pins except A9, Vpp , Vcc . -0.6 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
 A9 and $V_{P P} \ldots \ldots$.
 Vcc -0.6 V to +7.0 V

Notes:

1. Minimum $D C$ voltage on input or //O pins is -0.5 V . During transitions, the inputs may overshoot $V_{S S}$ to-2.0 V forperiods of up to 20 ns . Maximum DC voltage on input and I/O pins is $V c c+0.5 V$ which may overshoot to $V c c+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V_{P P}$ the minimum $D C$ input is $-0.5 V$. During transitions, A9 and VPP may overshoot VSS to -2.0 V for periods of up to 20 ns . A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $\ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Extended Commercial (E) Devices

Case Temperature (TC) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27C010-XX5 +4.75 V to +5.25 V
V_{Cc} for Am27C010-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

AMD
DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
VoL	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
lu	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$
llo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc			10	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{f}=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		30	mA
			E/M Devices		60	
IcC2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
Ipp 1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{VPP}=\mathrm{Vcc}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C010 must not be removed from (or inserted into) a socket when VCc or VPP is applied.
3. ICCt is tested with $\overline{\mathrm{OE}} / V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to VCC +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature $\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

10205D-7

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CLV032		CDV032		PL 032		PD 032		TS 032		Unit
			Typ	Max									
CIN	Input Capacitance	VIN $=0$	9	12	9	12	8	12	8	12	10	12	pF
Cout	Output Capacitance	Vout $=0$	11	14	13	15	11	14	11	14	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHZ}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C010						Unit
		$\begin{array}{r} -95 \\ -90 \\ \hline \end{array}$			-105	-120	-150	-200	$\begin{array}{r} -255 \\ -250 \\ \hline \end{array}$		
JEDEC	Standard										
tavov	tacc	Address to Output Delay	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{VIL} \end{aligned}$	Min	-	-	-	-	-	-	
				Max	90	100	120	150	200	250	ns
tELQV	tCE	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	-	-	
				Max	90	100	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	Min	-	-	-	-	-	-	
				Max	40	50	50	65	75	75	ns
tehoz tGHQZ	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	-	
				Max	25	25	35	35	40	40	ns
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{O E}$, whichever occurred first		Min	0	0	0	0	0	0	
				Max	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C010 must not be removed from (or inserted into) a socket or board when VPP or VCc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	InPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
$\square \square$	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
$\triangle \times X x$	Don't Care, Any Change Permitted	Changing State Unknown
$\Rightarrow+\pi$	Does Not Apply	Center Line is High Impedence "Off" State

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of the addresses without impact on $t_{A C C}$.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C1024

1 Megabit (65,536 x 16-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 85 ns

Low power consumption

- $20 \mu \mathrm{~A}$ typical CMOS standby current

JEDEC-approved 40-Pin DIP and 44-Pin LCC pinouts

- Single +5 V power supply
- $\pm 10 \%$ power supply tolerance available
- 100% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 8 seconds

Latch-up protected to 100 mA from $\mathbf{- 1} \mathrm{V}$ to $\mathrm{V}_{\mathrm{cc}}+1 \mathrm{~V}$
High noise immunity
Versatile features for simple interfacing

- Both CMOS and TTL input/output compatibility
- Two line control functions

DESC SMD No. 5962-86805

GENERAL DESCRIPTION

The Am27C1024 is a 1 Mbit ultraviolet erasable programmable read-only memory. It is organized as 64 K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.
Typically, any byte can be accessed in less than 85 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C1024 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C1024 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in a typical programming time of 8 seconds.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C1024					
Ordering Part No: $V_{C C} \pm 5 \%$	-85					-255
$V_{\text {cc }} \pm 10 \%$		-90	-120	-150	-200	-250
Max Access Time (ns)	85	90	120	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}})$ Access Time (ns)	85	90	120	150	200	250
$\overline{\mathrm{OE}}$ (G) Access Time (ns)	45	45	50	65	75	100

CONNECTIONS DIAGRAMS

Top View

06780G-2

Notes:

1. JEDEC nomenclature is in parentheses.
2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A15	$=$ Address Inputs
$\overline{C E}(\overline{\mathrm{E}})$	$=$ Chip Enable
$\mathrm{DQ} 0-\mathrm{DQ15}$	$=$ Data Inputs/Outputs
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
$\overline{\mathrm{PGM}}$	$=$ Program Enable Input
V_{CC}	$=$ VCCSupply Voltage
V_{VP}	$=$ Program Supply Voltage
V_{SS}	$=$ Ground

PLCC/LCC

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C1024-85	DC, DCB, DI, DIB,
AM27C1024-90	LC, LCB, LI, LIB
AM27C1024-120	DC, DCB, DI,
AM27C1024-150	
AM27C1024-200	LCB, LIB, LE,
AM27C1024-255	LEB, LC, LI

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C1024-90	PC, JC
AM27C1024-120	
AM27C1024-150	PC, JC, PI, JI
AM27C1024-200	
AM27C1024-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

```
DEVICE NUMBER/DESCRIPTION
Am27C1024
1 Megabit ( \(65,536 \times 16\)-Bit) CMOS EPROM
```

Valid Combinations	
AM27C1024-120	
AM27C1024-150	
AM27C1024-170	/BQA, /BUA
AM27C1024-200	
AM27C1024-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C1024

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C1024 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C1024. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537(\AA)$-with intensity of 12,000 $\mu \mathrm{W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C1024 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C1024 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C1024 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C1024

Upon delivery or after each erasure the Am27C1024 has all $1,048,576$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C1024 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the V_{PP} pin and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at V_{IL}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C1024. This part of the algorithm is done at $\mathrm{V}_{\mathrm{cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C1024 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs of the parallel Am27C1024 may be common. A TTL low-level program pulse applied to an Am27C1024 $\overline{\mathrm{CE}}$ input with $\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$, and
$\overline{\mathrm{PGM}}$ Low will program that Am27C1024. A high-level $\overline{\mathrm{CE}}$ input inhibits the other Am27C1024 devices frombeing programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ and $\overline{C E}$ at $V_{L L}, \overline{P G M}$ at V_{H} and V_{PP} between $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C1024.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ open address the A 9 of the Am27C1024. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from V_{IL} to V_{IH}. All other address lines must be held at $V_{I L}$ during auto select mode.
Byte $0\left(A 0=V_{\mathrm{LL}}\right)$ represents the manufacturer code, and byte $1\left(\mathrm{~A} 0=\mathrm{V}_{I H}\right)$, the device code. For the Am27C1024, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable $(\overline{O E})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (taCC) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A c c}-t_{\text {toe }}$.

Standby Mode

The Am27C1024 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27C1024 also has a TTL-standby mode which reduces the maximum $\mathrm{V}_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

π
 AMD

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text { CE }}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{Cc} and $\mathrm{V}_{\text {ss }}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $\mathrm{Vcc}_{\mathrm{cc}}$ and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{C E}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	AO	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	Vcc	Dout
Output Disable		X	V_{H}	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		VIH	X	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	Vcc	$\mathrm{Hi}-\mathrm{Z}$
Program		VIL	X	VIL	X	X	Vpp	Din
Program Verify		VIL	VIL	V_{IH}	X	X	Vpp	Dout
Program Inhibit		ViH	X	X	X	X	Vpp	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIH	VIL	V_{H}	Vcc	01H
	Device Code	VIL	VIL	$\mathrm{VIH}^{\text {H}}$	$\mathrm{V}_{\text {IH }}$	V_{H}	Vcc	8 CH

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 0-A 15=V_{L L}$
4. See DC Programming Characteristics for Vpp voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $V_{s s}$
All pins except $\mathrm{A} 9, \mathrm{~V}_{\text {PP }}, \mathrm{V}_{\mathrm{cc}} .-0.6 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
A9 and V_{Pp}................... -0.6 V to +13.5 V
$\mathrm{V}_{\text {cc }} \ldots$.

Notes:

1. Minimum $D C$ voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to-2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I/O pins is Vcc+ 0.5 V which may overshoot to $V c c+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V_{P P}$ the minimum DC input is -0.5 V . During transitions, A9 and $V_{\text {pp }}$ may overshoot $V_{\text {ss }}$ to -2.0 V for periods of up to 20 ns . A9 and $V_{\text {PP }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (T_{c}) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (T_{c}) $\ldots \ldots . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (T_{c}) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27C1024-XX5 +4.75 V to +5.25 V
$V_{c C}$ for Am27C1024-XXO +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1,2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$			0.45	V
V_{H}	Input HIGH Voltage			2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$V \mathrm{~N}=0 \mathrm{~V}$ to +Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		5.0	
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		5.0	
lcCl	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{iL}}, \mathrm{f}=5 \mathrm{MHz} \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		30	mA
			E/M Devices		50	
Icc2	$V_{\text {cc }}$ TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
Icc3	$V_{\text {cc }}$ CMOS Standby Current	$\overline{C E}=V C C \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
Ipp1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {PP }}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$

Notes:

1. Vcc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27C1024 must not be removed from (or inserted into) a socket when Vcc or Vpp is applied.
3. $I_{C C}$ is tested with $\overline{O E} N_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency $\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

06780G-5
Figure 2. Typical Supply Current vs. Temperature $V_{c c}=5.5, f=5 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV040		CLV044		PD 040		PL 044		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	VIN $=0$	9	12	8	12	7	12	8	10	pF
Cout	Output Capacitance	Vout $=0$	12	14	11	14	11	14	11	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C1024						Unit
JEDEC	Standard				-85	-90	-120	-150	-200	$\begin{aligned} & -255 \\ & -250 \end{aligned}$	
tavav	tacc	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min							
				Max	85	90	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min							
				Max	85	90	120	150	200	250	ns
tglav	toe	Output Enable to Output Delay	$\overline{C E}=\mathrm{V}_{\text {IL }}$	Min							
				Max	45	45	50	65	75	75	ns
$\begin{aligned} & \text { tEHQZ } \\ & \text { tGHQZ } \end{aligned}$	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	-	ns
				Max	40	40	50	50	50	50	ns
taxax	tor	Output Hold from Addresses, CE, or OE, whichever occurred first		Min	0	0	0	0	0	0	ns
				Max							

Notes:

1. Vcc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C1024 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

$C_{L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

06780G-7

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic " 0 ." Input pulse rise and fall times are $<20 \mathrm{~ns}$.

KEY TO SWITCHING TEST WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
45	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	Don't Care, Any Change Permitted	Changing State Unknown
	Does Not Apply	Center Line is High Impedence "Off" State

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to tACC - toE after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C020

DISTINCTIVE CHARACTERISTICS

■ Fast access time

- 90 ns

■ Low power consumption

- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- JEDEC-approved pinout
- Plug in upgrade of 1 Mbit EPROM
- Easy upgrade from 28-pin JEDEC EPROMs
- Single +5 V power supply
- $\pm 10 \%$ power supply tolerance standard on most speeds

■ 100% Flashrite ${ }^{\text {TM }}$ programming

- Typical programming time of 32 seconds

Latch-up protected to 100 mA from -1 V to $\mathrm{Vcc}+1 \mathrm{~V}$
■ High noise immunity

- Compact 32-pin DIP package requires no hardware change for upgrades to 8 Mbits
■ DESC SMD No. 5962-90912

GENERAL DESCRIPTION

The Am27C020 is a 2 Mbit , ultraviolet erasable programmable read-only memory. It is organized as 256 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages, as well as plastic one-time programmable (OTP) packages.

Typically, any byte can be accessed in less than 90 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C020 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C020 supports AMD's Flashrite programming algorithm (100μ s pulses) resulting intypical programming times of 32 seconds.

11507D-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C020					
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$	-95	-105				
Max Access Time (ns)	-90	-100	-120	-150	-200	-250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	90	100	120	150	200	250
$\overline{\mathrm{OE}(\overline{\mathrm{G}}) \text { Access (ns) }}$	90	100	120	150	200	250

CONNECTION DIAGRAMS

Top View

DIP		
$\mathrm{V}_{\text {PP }} 1$	32	Vcc
A16 2	31	$\overline{\text { PGM }}$ ($\overline{\mathrm{P}}$)
A15 3	30	A17
A12 4	29	A14
A7 5	28	A13
A6 6	27] A8
A5 7	26] A 9
A4 ${ }^{8}$	25	A11
A3	24	- $\overline{\mathrm{CE}}$ ($\overline{\mathrm{G}}$)
A2 10	23	A10
A1 11	22	$\overline{C E}(\bar{E})$
A0 ${ }^{12}$	21	DQ7
DQ0 13	20	7 DQ6
DQ1 14	19	\square DQ5
DQ2 15	18	DQ4
$v_{s s} 16$	17	DQ3

PLCC/LCC

11507D-3

Notes:

1. JEDEC nomenclature is in parentheses.
2. The 32 -pin DIP to 32 -pin LCC configuration varies from the JEDEC 28 -pin DIP to 32 -pin LCC configuration.

PIN DESIGNATIONS

A0-A17	$=$ Address Inputs
$\overline{C E}(\overline{\mathrm{E}})$	$=$ Chip Enable Input
$\mathrm{DQ}-\mathrm{DQ} 7$	$=$ Data Input/Outputs
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
$\overline{\mathrm{PGM}}(\overline{\mathrm{P}})$	$=$ Program Enable Input
V_{cc}	$=$ Vcc Supply Voltage
V_{PP}	$=$ Program Supply Voltage
$\mathrm{V}_{\text {SS }}$	$=$ Ground

LOGIC SYMBOL

11507D-4

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C020-90	DC, DCB, DI, DIB, LC, LCB, LI, LIB
AM27C020-95	
AM27C020-100	
AM27C020-105	
AM27C020-120	
AM27C020-150	DC, DCB, DI, DIB, DE, DEB, LCB, LIB, LE, LEB, LC, LI
AM27C020-200	
AM27C020-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C020-100	
AM27C020-105	
AM27C020-120	PC, JC, PI, JI
AM27C020-150	
AM27C020-200	
AM27C020-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C020-120	
AM27C020-150	/BXA, /BUA
AM27C020-200	
AM27C020-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C020

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C020 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C020. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of $2537 \AA$ - with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C020 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C020, and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C020 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C020

Upon delivery, or after each erasure, the Am27C020 has all $2,097,152$ bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27C020 through the procedure of programming.
The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the VPP pin, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite algorithm reduces programming time by using 100μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C020. This part of the algorithm is done at $\mathrm{Vcc}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{Vcc}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Program Inhibit

Programming of multiple Am27C020s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs of the parailel Am27C020 may be common. A TTL low-level program pulse applied to an Am27C020 $\overline{\mathrm{CE}}$ input with $\mathrm{VPP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}, \overline{\mathrm{PGM}}$ LOW, and $\overline{O E}$ HIGH will program that Am27C020.

A high-level $\overline{C E}$ input inhibits the other Am27C020s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{PGM}}$ at V_{IH}, and V_{Pp} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C020.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C020. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A O$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at VIL during auto select mode.

Byte $0\left(\mathrm{~A} 0=\mathrm{V}_{\mathrm{IL}}\right)$ represents the manufacturer code, and Byte 1 ($\mathrm{AO}=\mathrm{V}_{(H)}$), the device identifier code. For the Am27C020, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A \mathrm{CC}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tacc - toe.

Standby Mode

The Am27C020 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$. The Am27C020 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation, and
- Assurance that output bus contention will not occur

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{c c}$ and $V_{s s}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and $\mathrm{V}_{\text {ss }}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE	OE	PGM	AO	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	X	Dout
Output Disable		VIL	VIH	X	X	X	X	High Z
Standby (TTL)		V_{IH}	X	X	X	X	X	High Z
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	X	High Z
Program		VIL	V_{H}	VIL	X	X	Vpp	Din
Program Verify		VIL	VIL	V_{IH}	X	X	Vpp	Dout
Program Inhibit		$\mathrm{VIH}^{\text {I }}$	X	X	X	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	VH	X	01H
	Device Code	VIL	VIL	X	VIH	VH	X	97H

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. X can be either $V_{I L}$ or $V_{I H}$
3. $A 1-A 8=A 10-A 17=V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $\mathrm{V}_{\text {ss }}$:
All pins except A9, Vpp, and
Vcc (Note 1) -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and Vpp (Note 2) 0.6 V to 13.5 V
Vcc -0.6 V to 7.0 V

Notes:

1. During transitions, the input may overshoot $V_{s s}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I/O may overshoot to Vcc +2.0 V for periods of up to 20 ns.
2. During transitions, $A 9$ and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 \checkmark for periods of up to 20 ns . A9 and Vpp must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Industrial (I) Devices

Case Temperature (T_{C}) $\ldots \ldots . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Extended Commercial (E) Devices

Case Temperature (Tc) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages:

Vcc for Am27C020-XX5 +4.75 V to +5.25 V
Vcc for Am27C020-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

AMD
DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 2 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27C020 must not be removed from (or inserted into) a socket when VCc or Vpp is applied.
3. $I_{C C}$, is tested with $\overline{O E} N_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to Vcc +2.0 V for periods less than 20 ns.

11507D-5
Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV032		CLV032		PD 032		PL 032		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	12	8	10	10	12	8	10	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	12	15	9	12	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1,3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C020						
		$\begin{array}{r} -95 \\ -90 \\ \hline \end{array}$			$\begin{array}{r} -105 \\ -100 \\ \hline \end{array}$	-120	-150	-200	$\begin{aligned} & -255 \\ & -250 \\ & \hline \end{aligned}$	Unit	
JEDEC	Standard										
tavav	tacc	Address to Output Delay	$\overline{C E}=\overline{O E}=V_{I L}$	Min							ns
				Max	90	100	120	150	200	250	
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$.	Min							ns
				Max	90	100	120	150	200	250	
tgLav	toe	Output Enable to Output Delay	$\overline{C E}=V_{\text {IL }}$	Min							ns
				Max	40	50	50	55	60	75	
tehoz,t thoz	(Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	-	ns
				Max	25	30	30	30	40	60	
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	0	ns
				Max							

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C020 must not be removed from, or inserted into a socket or board when Vpp or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$, Input Rise and Fall Times: 20 ns , Input Pulse Levels: 0.45 V to 2.4 V , Timing Measurement Reference Level—Inputs: 0.8 V and 2 V ,

Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

11507D-7
$C_{L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ." Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
	May Change from H to L	Will Be Changing from H to L .
	May Change from L to H	Will Be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is High Impedance "Off" State

KS000010

SWITCHING WAVEFORM

1. $\overline{O E}$ may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tacc.
2. TDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C2048

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 90 ns
- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- JEDEC-approved pinout
— Plug-in upgrade of 1 Mbit EPROM
- 40-pin DIP/PDIP
- 44-pin LCC/PLCC
- Single +5 V power supply
- $\pm 10 \mathrm{~V}$ power supply tolerance standard on most speeds
- $\mathbf{\text { - }}$ 100\% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 16 seconds
- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity

■ DESC SMD No. 5962-92140

GENERAL DESCRIPTION

The Am27C2048 is a 2 Mbit, ultraviolet erasable programmable read-only memory. It is organized as 128 K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. The Am27C2048 is ideal for use in 16-bit microprocessor systems. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 90 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C2048 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C2048 supports AMD's Flashrite programming algorithm (100μ s pulses) resulting in typical programming time of 16 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C2048					
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$	-95	-105	-125			
	-90	-100	-120	-150	-200	-250
Max Access Time (ns)	90	100	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	90	100	120	150	200	250
$\overline{\mathrm{OE}(\overline{\mathrm{G}}) \text { Access (ns) }}$	40	50	50	65	75	100

CONNECTION DIAGRAMS

Top View

11407D-2
Notes:

1. JEDEC nomenclature is in parentheses.
2. Don't use ($D U$) for PLCC.

11407D-3

LCC/PLCC

ORDERING INFORMATION

EPROM Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C2048-90	
AM27C2048-95	DC, DCB, DI,
AM27C2048-105	
AM27C2048-120	
AM27C2048-125	DC, DCB, DI,
AM27C2048-150	
AM27C2048-200	LCB, LIB, LE,
AM27C2048-255	LEB, LC, LI

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C2048-100	
AM27C2048-105	
AM27C2048-120	PC, JC, PI, JI
AM27C2048-125	
AM27C2048-150	
AM27C2048-200	
AM27C2048-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C2048-120	
AM27C2048-150	/BQA, /BUA
AM27C2048-200	
AM27C2048-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C2048

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C2048 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C2048. This dosage can be obtained by exposure to an ultraviolet lamp -wavelength of $2537 \AA$ - with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C2048 should be directly under and about one inch from the source and all filters shouid be removed from the UV light source prior to erasure.

It is important to note that the Am27C2048, and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C2048 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C2048

Upon delivery, or after each erasure, the Am27C2048 has all 2,097,152 bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27C2048 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the VPP pin, and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at VIL^{2}.

For programming, the data to be programmed is applied 16 bits in parallel to the data pins.

The flowchart (Figure 2) shows AMD's Flashrite algorithm. The Flashrite algorithm reduces programming time by using $100 \mu \mathrm{~s}$ programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C2048. This part of the algorithm is done at $\mathrm{Vcc}_{\mathrm{cc}}=6.25 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C2048s in parallel with different data is also easily accomplished. Except for
$\overline{\mathrm{CE}}$, all like inputs of the parallel Am27C2048 may be common. A TTL low-level program pulse applied to an Am27C2048 $\overline{\mathrm{CE}}$ input with $\mathrm{VPP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\overline{\text { PGM LOW will program that Am27C2048: A high-level }}$ $\overline{\mathrm{CE}}$ input inhibits the other Am27C2048 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$, at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{PGM}}$ at V_{iH}, and VPP^{2} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C2048.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C2048. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to V_{IH}. All other address lines must be held at VIL during auto select mode.

Byte $0\left(A 0=V_{\text {IL. }}\right)$ represents the manufacturer code, and Byte $1\left(\mathrm{AO}=\mathrm{V}_{\mathrm{H}}\right)$, the device identifier code. For the Am27C2048, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A c c}$ - toe.

Standby Mode

The Am27C2048 has a CMOS standby mode which reduces the maximum V cc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27C2048 also has a TTL-standby mode which re-

AMD
duce the maximum Vcc current to 1.0 mA . It is placed in $\Pi \mathrm{L}$-standby when $\overline{\mathrm{CE}}$ is at V_{I}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation, and
- Assurance that output bus contention will not occur

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $\mathrm{Vcc}_{\mathrm{cc}}$ and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{\text { CE }}$	$\overline{O E}$	$\overline{\text { PGM }}$	A0	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	X	Dout
Output Disable		VIL	V_{IH}	X	X	X	X	High Z
Standby (TTL)		VIH	X	X	X	X	X	High Z
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	X	High Z
Program		VIL	X	VIL	X	X	Vpp	Din
Program Verify		VIL	$\mathrm{VIL}^{\text {IL }}$	VIH	X	X	Vpp	Dout
Program Inhibit		VIH	X	X	X	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	V_{H}	X	01H
	Device Code	VIL	VIL	X	VIH	VH	X	98 H

Notes:

1. X can be either $V_{I L}$ or V_{H}.
2. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. $A 1-A 8=A 10-16=V_{l l}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature:
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $V_{s s}$:
All pins except A9, Vpp, and
Vcc (Note 1) -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and Vpp (Note 2) - 0.6 V to 13.5 V
Vcc -0.6 V to 7.0 V

Notes:

1. During transitions, the input may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I/O may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns.
2. During transitions, $A 9$ and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . A9 and Vpp must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Industrial (I) Devices

Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (TC) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages:
Vcc for Am27C2048-XX5 . . . +4.75 V to +5.25 V
Vcc for Am27C2048-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

AMD
DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1,2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise
noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to			5.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}},$	C/I Devices		50	$\mu \mathrm{A}$
			E/M Devices		60	
Icc2	Vcc TTL Standby Current	$\overline{C E}=V_{1 H}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{VcC}+0$			100	$\mu \mathrm{A}$
IPP1	Vpp Supply Current (Read)	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after VPP.
2. Caution: The Am27C2048 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. $I_{C C}$ is tested with $\overline{O E} N_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to - 2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test	Conditions	CDV0		Max	Typ	Max	Typ	Max	Typ	Max	Unit
	Input Capacitance	VIN $=0$	10	12	8	10	10	12	7	10	pF		
CouT	Output Capacitance	VouT $=0$	12	15	10	12	12	15	12	14	pF		

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C2048							
		-90			-100	-120			-250	Unit		
JEDEC	Standard				-95	-105	-125	-150	-200		-255	
tavav	tacc		Address to Output Delay	$\overline{C E}=\overline{O E}=V_{\text {IL }}$	Min							ns
		Max			90	100	120	150	200	250		
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min							ns	
				Max	90	100	120	150	200	250		
tgLQV	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min							ns	
				Max	40	50	50	55	60	75		
tehaz, tghoz	$\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	0	ns	
				Max	25	30	30	30	40	60		
taxax	OH	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or OE, whichever occurred first		Min	0	0	0	0	0	0	ns	
				Max								

Notes:

1. Vcc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Cautlon: The Am27C2048 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$,

Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 V to 2.4 V ,
Timing Measurement Reference Level-Inputs: 0.8 V and 2 V ,
Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

$C L=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

11407D-8
AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ." Input pulse rise and fall times are $<20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	Will Be Steady
May Change from H to L	Will Be Changing from H to L	
May Change from L to H	Will Be Changing from L to H	
Don't Care, Any Change Permitted	Changing State Unknown	
Does Not Apply	Center Line is High Impedence "Off" State	

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to $t_{A C C}$ - toE after the falling edge of the addresses without impact on tACC.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C040

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 100 ns
- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- JEDEC-approved pinout
- Plug in upgrade of 1 Mbit EPROM and 2 Mbit EPROMs
- Easy upgrade from 28-pin JEDEC EPROMs
- Single +5 V power supply
- $\pm 10 \%$ power supply tolerance standard on most speeds
- 100\% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 1 minute
- Latch-up protected to 100 mA from $\mathbf{- 1} \mathrm{V}$ to $\mathrm{V}_{\mathrm{cc}+1} \mathrm{~V}$
- High noise immunity
- Compact 32-pin DIP, PDIP, LCC and PLCC packages require no hardware change for upgrades to 8 Mbits
- DESC SMD No. 5962-91752

GENERAL DESCRIPTION

The Am27C040 is a 4 Mbit ultraviolet erasable programmable read-only memory. It is organized as 512 K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages, as well as plastic one-time programmable (OTP) packages.

Typically, any byte can be accessed in less than 100 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C040 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C040 supports AMD's Flashrite programming algorithm (100μ s pulses) resulting in typical programming time of 1 minute.

14971C-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C040			
Ordering Patt No:				
Vcc $\pm 5 \%$	-105	-125		
$\mathrm{Vcc} \pm 10 \%$	-100	-120	-150	-200
Max Access Time (ns)	100	120	150	200
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}})$ Access (ns)	100	120	150	200
$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}}$) Access (ns)	40	50	65	75

CONNECTION DIAGRAMS

Top View

DIP

14971C-2

PLCC/LCC

14971C-3

Notes:

1. JEDEC nomenclature is in parentheses.
2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

PIN DESIGNATIONS

$\begin{array}{ll}\mathrm{A} 0-\mathrm{A} 18 & =\text { Address Inputs } \\ \overline{\mathrm{CE}}(\overline{\mathrm{E}}) / \overline{\mathrm{PGM}}(\overline{\mathrm{P}}) & =\text { Chip Enable Input } \\ \mathrm{DQ} 0-\mathrm{DQ} 7 & =\text { Data Input/Outputs } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ \mathrm{V}_{\mathrm{cc}} & =\text { Vcc Supply Voltage } \\ \mathrm{V}_{\mathrm{PP}} & =\text { Program Supply Voltage } \\ \mathrm{V}_{\mathrm{ss}} & =\text { Ground }\end{array}$

LOGIC SYMBOL

14971C-4

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:
AM27C040

Valid Combinations	
AM27C040-100	DC, DCB, LC, LCB
AM27C040-105	DC, DCB, DI, DIB, LC, LCB, LI, LIB
AM27C040-120	
AM27C040-125	
AM27C040-150	DC, DCB, DE, DEB, DI, DIB, LC, LCB, LI, LIB, LE, LEB
AM27C040-200	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products (Preliminary)
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
y AM27C040-100	
AM27C040-105	
AM27C040-120	PC, JC, PI, JI
AM27C040-125	
AM27C040-150	
AM27C040-200	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C040-120	
AM27C040-150	/BXA, /BUA
AM27C040-200	
AM27C040-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C040

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C040 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C040. This dosage can be obtained by exposure to an ultraviolet lamp -wavelength of $2537 \AA$ - with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C040 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C040, and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C040 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C040

Upon delivery, or after each erasure, the Am27C040 has all $4,194,304$ bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27C040 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the V_{PP} pin, $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C040. This part of the algorithm is done at $\mathrm{Vcc}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C040s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE} / \text { PGM }}$, all like inputs of the parallel Am27C040 may be common. A TTL low-level program pulse applied to an Am27C040 $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ input with $\mathrm{VPP}^{2}=12.75 \mathrm{~V} \pm$ 0.25 V , and OE HIGH will program that Am27C040. A high-level $\overline{C E} /$ PGM input inhibits the other Am27C040s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ and $\overline{C E} / \overline{P G M}$ at V_{LL}, and Vpp between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C040.
To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C040. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to V_{IH}. All other address lines must be held at VIL during auto select mode.

Byte $0\left(A O=V_{L L}\right)$ represents the manufacturer code, and Byte $1\left(A 0=V_{H}\right)$, the device identifier code. For the Am27C040, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C040 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE} / \overline{\mathrm{PGM}} \text {) }}$ is the power control and should be used for device selection. Output Enable $\overline{(O E})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E} / P G M$ has been LOW and addresses have been stable for at least tacc - toe.

Standby Mode

The Am27C040 has a CMOS standby mode which reduces the maximum $V c c$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E} / \overline{P G M}$ is at $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$. The Am27C040 also has a TTL-standby mode which reduces the maximum V cc current to 1.0 mA . It is placed in TTL-standby when $\overline{\text { CE/PGM }}$ is at $\mathrm{V}_{\text {IH. }}$. When in standby mode, the outputs are in a high-impedance state; independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control
bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{c c}$ and $V_{s s}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE/PGM	$\overline{O E}$	AO	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	Dout
Output Disable		VIL	VIH	X	X	X	High Z
Standby (TTL)		$\mathrm{V}_{\text {IH }}$	X	X	X	X	High Z
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	High Z
Program		VIL	VIH	X	X	VPP	Din
Program Verify		VIL	VIL	X	X	VPP	Dout
Program Inhibit		V_{IH}	X	X	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	V_{H}	X	01H
	Device Code	VIL	VIL	VIH	V_{H}	X	9BH

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. X can be either $V_{I L}$ or $V_{I H}$
3. $A 1-A 8=A 10-A 18=V_{L L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $V_{s s}$:
All pins except A9, Vpp, and
Vcc (Note 1)
-0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and Vpp (Note 2) - 0.6 V to 13.5 V
Vcc . -0.6 V to 7.0 V

Notes:

1. During transitions, the input may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I/O may overshoot to $V c c+2.0 \mathrm{~V}$ for periods of up to 20 ns.
2. During transitions, $A 9$ and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . A9 and Vpp must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (TC) $\ldots . . .$.
Military (M) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages:
Vccfor Am27C040-XX5 +4.75 V to +5.25 V
Vcc for Am27C040-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
V_{IH}	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage		.	-0.5	+0.8	V
lıI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		5.0	
lıO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc	C/I Devices		5.0	$\mu \mathrm{A}$
			E/M Devices		10.0	
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VIL}, f=5 \mathrm{MHz}, \\ & \text { louT }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		40	mA
			E/M Devices		60	
IcC2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	Vpp Current During Read	$\overline{C E}=\overline{O E}=V_{I L}, ~ V P P=V C C$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27C040 must not be removed from (or inserted into) a socket when $V_{c c}$ or $V_{\text {Pp }}$ is applied.
3. $I_{C C}$ is tested with $\overline{O E} V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to Vcc +2.0 V for periods less than 20 ns.

14971C-5
Figure 1. Typical Supply Current
vs. Frequency
$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$V_{C C}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

AMD
CAPACITANCE

P		Test Conditions	CDV032		CLV032		PD 032		PL 032		Unit
Symbol	Parameter Description		Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	12	8	10	10	12	8	10	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	12	15	9	12	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C040					
		$\begin{array}{r} -105 \\ -100 \\ \hline \end{array}$			$\begin{array}{r} -125 \\ -120 \\ \hline \end{array}$	-150	-200	$\begin{aligned} & -255 \\ & -250 \\ & \hline \end{aligned}$	Unit	
JEDEC	Standard									
tavov	tacc	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min						ns
				Max	100	120	150	200	250	
telqu	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min						ns
				Max	100	120	150	200	250	
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min						ns
				Max	40	50	55	60	60	
$\begin{aligned} & \text { tEHOZ } \\ & \text { tGHOZ } \end{aligned}$	$\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	ns
				Max	30	30	30	40	60	
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{O E}$, whichever occurred first		Min	0	0	0	0	0	ns
				Max						

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C040 must not be removed from, or inserted into a socket or board when VPP or VCc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$,

Input Rise and Fall Times: 20 ns ,
Input Pulse Levels: 0.45 V to 2.4 V .
Timing Measurement Reference Level-Inputs: 0.8 V and 2 V ,
Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

14971C-7
$C_{L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ." Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	OUTPUTS Will Be Steady
May Change from H to L	Will Be Changing from H to L	
May Change from L to H	Will Be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High Impedance "Off" State	

SWITCHING WAVEFORM

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t o E$ after the falling edge of the addresses without impact on $t_{A C C}$.
2. TDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C400

4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
$-100 \mathrm{~ns}$
- Low power consumption
- 100μ A maximum CMOS standby current
- Industry standard pinout:
- ROM compatible
- 44-pin LCC, and PLCC packages provide easy upgrade to 8 Mbits, DIP upgrades require a 40 to 42-pin conversion
- Single +5 V power supply
- $\pm 10 \%$ power supply tolerance standard on most speeds
- 100\% Flashrite™ programming
- Typical programming time of 32 seconds
- Latch-up protected to 100 mA from - $\mathbf{1} \mathrm{V}$ to $\mathrm{Vcc}+1 \mathrm{~V}$
- High noise immunity

GENERAL DESCRIPTION

The Am27C400 is a 4 Mbit ultraviolet erasable programmable read-only memory that is functionally and pinout compatible with 4 Mbit masked ROMs. Under control of the $\overline{B Y T E}$ input, the memory can be configured as either a 512 K by 8 -bit memory or a 256 K by 16 -bit memory. It operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic packages as well as plastic one time programmable (OTP) packages for both through hole and surface mount applications.

Typically, any byte can be accessed in less than 100 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C400 offers
separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C400 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming times of 32 seconds.

15573B-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C400				
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$	-105	-125			
	-100	-120	-150	-200	-250
Max Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access Time (ns)	50	50	65	75	100

CONNECTION DIAGRAM

Top View

Notes:

1. Inner ring of numbers correspond to the package pins
2. JEDEC nomenclature is in parenthesis

PIN DESIGNATIONS

$A B$	$=$ Address Input ($\overline{\text { BYTE }}$ Mode)
A0-A17	= Address Inputs
$\overline{\text { BYTE }}$	= Byte/Word Switch
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}}) / \overline{\mathrm{PGM}}(\overline{\mathrm{P}})$	= Chip Enable and Program Enable Inputs
DQ0-DQ15	= Data Inputs/Outputs
NC	= No Internal Connection
$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}}$)	= Output Enable Input
Vcc	$=$ Vcc Supply Voltage
Vpp	$=$ Program Supply Voltage
$V_{\text {SS }}$	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:
AM27C400

Valid Combinations	
AM27C400-100	DC, DCB, DI, DIB, LC, LCB, LI, LIB
AM27C400-105	
AM27C400-120	DC, DCB, DI, DIB, LC, LCB, LI, LIB DE, DEB, LE, LEB
AM27C400-125	
AM27C400-150	
AM27C400-200	
AM27C400-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
y AM27C400-120	
AM27C400-125	PC, JC, PI, JI
AM27C400-150	
AM27C400-200	
AM27C400-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C400-120	
AM27C400-150	/BUA, /BXA
AM27C400-200	
AM27C400-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C400

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C400 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C400. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of $2,537 \AA$ - with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C400 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C400 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2,537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C400 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C400

Upon delivery or after each erasure the Am27C400 has all $4,194,304$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C400 through the procedure of programming.

The programming mode is entered when $12.75 \pm 0.25 \mathrm{~V}$ is applied to the V_{PP} pin, $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at V_{IL}, and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each addresss only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C400. This part of the algorithm is done at $\mathrm{V}_{\mathrm{cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Please refer to Section 6.0 for programming and flow chart characteristics.

Program Inhibit

Programming of multiple Am27C400s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE} / \mathrm{PGM}}$, all like inputs of the parallel Am27C400 may be common. A TTL low-level program pulse applied to
an Am27C400 CE/PGM input with $\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25$ V, and $\overline{O E}$ HIGH will program that Am27C400. A highlevel $\overline{C E} /$ PGM input inhibits the other Am27C400 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ at $V_{\mathrm{IL}}, \overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ at V_{IH} and V_{PP} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C400.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A9 of the Am27C400. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte $0\left(A 0=V_{L L}\right)$ represents the manufacturer code, and Byte 1 ($\mathrm{AO}=\mathrm{V}_{1 H}$), the device identifier code. For the Am27C400, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C400 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$) is the power control and should be used for device selection. Output Enable $(\overline{O E})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E} / \overline{P G M}$ has been LOW and addresses have been stable for at least $t_{A c c}-t_{t o s .}$

Byte Mode

The user has the option of reading data in either 16-bit words or 8 -bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A0-A17 will address 256 K words of 16 -bit data. When the BYTE input is LOW, AB functions as the least significant address input and 512 K bytes of data can be accessed. The 8 bits of data will appear on DQ0-DQ7.

Standby Mode

The Am27C400 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E} / \overline{P G M}$ is at $\mathrm{V}_{\mathrm{Cc}} \pm 0.3 \mathrm{~V}$. The Am27C400 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}} / \mathrm{PGM}$ is at $\mathrm{V}_{\text {IH }}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control
bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{c c}$ and $V_{s s}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{\text { CE/PGM }}$	$\overline{O E}$	AO	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	Dout
Output Disable		VIL	$\mathrm{V}_{1} \mathrm{H}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		$\mathrm{VIH}^{\text {I }}$	X	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Program		VIL	$\mathrm{V}_{\text {IH }}$	X	X	Vpp	Din
Program Verity		V_{IH}	VIL	X	X	Vpp	Dout
Program Inhibit		VIH	VIH	X	X	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	VH	X	01H
	Device Code	VIL	VIL	VIH	VH	X	9DH

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{H H}$ or V_{k}
3. $A 1-A 8=A 0-A 17=V_{l}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	
OTP Products	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To Vss	
All pins except A9, $\mathrm{V}_{\text {PP }}, \mathrm{V}_{\text {cc }}$	-0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and $\mathrm{V}_{\text {PP }}$	-0.6 V to +13.5 V
Vcc	-0.6 V to +7.0

Notes:

1. Minimum DC voltage on input or I/O pins is -0.5 V . During transitions, the inputs may overshoot $V_{S S}$ to -2.0 V for $p e$ riods of up to 20 ns . Maximum DC voltage on input and $1 / O$ pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V_{p p}$ the minimum DC input is -0.5 V . During transitions, A9 and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . A9 and $V_{\text {Pp }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (T_{c}) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (T_{c}) $\ldots \ldots . . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Extended Commercial (E) Devices Case Temperature (TC) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (TC) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

V_{cc} for Am27C400-XX5 +4.75 V to +5.25 V
$\mathrm{V}_{\text {cc }}$ for Am27C400-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
VOL	Output LOW Voltage	$1 \mathrm{LL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	$V c c+0.5$	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc			5.0	$\mu \mathrm{A}$
Icci	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}, \\ & \mathrm{loUT}=0 \mathrm{~mA} \end{aligned}$	C/I Devices		40	mA
			E/M Devices		60	
IcC2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=\mathrm{Vcc}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C400 must not be removed from (or inserted into) a socket when VCc or VPP is applied.
3. ICCI is tested with $\overline{O E} V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum $D C$ Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to VCC +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency $V_{c c}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
15573B-6

AMD
CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV040		CLV044		PD 040		PL 044		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	$\mathrm{VIN}=0$	9	12	9	11	6	8	9	11	pF
Cout	Output Capacitance	Vout $=0$	12	15	13	15	9	11	13	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

 (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)| Parameter Symbols | | Parameter Description | Test Conditions | | Am27C400 | | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\begin{aligned} & -105 \\ & -100 \\ & \hline \end{aligned}$ | | | $\begin{array}{r} -125 \\ -120 \\ \hline \end{array}$ | $\begin{array}{r} -155 \\ -150 \\ \hline \end{array}$ | -200 | -255 | |
| JEDEC | Standard | | | | | | | | |
| tavav | tacc | Address to Output Delay | $\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | Min | - | - | - | - | - | |
| | | | | Max | 100 | 120 | 150 | 200 | 250 | ns |
| telov | tce | Chip Enable to Output Delay | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ | Min | - | - | - | - | - | |
| | | | | Max | 100 | 120 | 150 | 200 | 250 | ns |
| tglav | toe | Output Enable to Output Delay | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {II }}$ | Min | - | - | - | - | - | |
| | | | | Max | 50 | 50 | 55 | 60 | 75 | ns |
| tehaz, tGHQZ | tDF (Note 2) | Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float | | Min | - | - | - | - | - | |
| | | | | Max | 30 | 30 | 30 | 40 | 60 | ns |
| taxax | tor | Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{O E}$, whichever occurred first | | Min | 0 | 0 | 0 | 0 | 0 | |
| | | | | Max | - | - | - | - | - | ns |

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C400 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs.

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

15573B-8

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-\operatorname{tOE}$ after the falling edge of the addresses without impact on $t_{A C C}$.
2. $t D F$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C4096

4 Megabit (262,144 x 16-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
$-100 \mathrm{~ns}$
■ Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- JEDEC-approved pinout
- Plug in upgrade of 1 Mbit and 2 Mbit EPROMs
- 40-pin DIP/PDIP
- 44-pin LCC/PLCC

■ Single + 5 V power supply

- $\pm 10 \%$ power supply tolerance standard on most speeds
- 100\% Flashrite ${ }^{T M}$ programming
- Typical programming time of 32 seconds

■ Latch-up protected to $\mathbf{1 0 0} \mathrm{mA}$ from $\mathbf{- 1} \mathrm{V}$ to $\mathrm{Vcc}+1 \mathrm{~V}$

- High noise immunity

GENERAL DESCRIPTION

The Am27C4096 is a 4 Mbit ultraviolet erasable programmable read-only memory. It is organized as 256 K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. The Am27C4096 is ideal for use in 16-bit microprocessor systems. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 100 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C4096 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMDs CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and $125 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C4096 supports AMD's Flashrite ${ }^{T M}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming times of 32 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C4096				
Ordering Part No:					
$V c c \pm 5 \%$	-105	-125			-255
$\mathrm{Vcc} \pm 10 \%$	-100	-120	-150	-200	-250
Max Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}})$ Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{OE}}$ (G) Access Time (ns)	50	50	65	75	100

CONNECTION DIAGRAMS

Top View

Notes:

DIP

1. JEDEC nomenclature is in parentheses.
2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

AO-A17	$=$ Address Inputs
$\overline{\text { CE }(E) / P G M ~}(\bar{P})$	$=$ Chip Enable Input
DQ0-DQ15	$=$ Data Input/Outputs
DU	$=$ No External Connection
NC	$=$ No Internal Connection
$\overline{\text { OE (G) }}$	$=$ Output Enable Input
Vcc	$=$ Vcc Supply Voltage
Vpp	$=$ Program Supply Voltage
VSS	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C4096-100	$D C, D C B$, DI, DIB, LC, LCB, LI, LIB
AM27C4096-105	
AM27C4096-120	DC, DCB, DE, DEB, DI, DIB, LC, LCB, LI, LIB, LE, LEB
AM27C4096-125	
AM27C4096-150	
AM27C4096-200	
AM27C4096-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

```
AM27C4096
```



```
ㄷ
```



```
OPTIONAL PROCESSING
Blank = Standard processing
TEMPERATURE RANGE
\(\mathrm{C}=\) Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\(1=\) Industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
PACKAGE TYPE
\(\mathrm{P}=40-\mathrm{Pin}\) Plastic DIP (PD 040)
\(J=44-\) Pin Rectangular Plastic Leaded
Chip Carrier (PL 044)
SPEED OPTION
See Product Selector Guide and Valid Combinations
DEVICE NUMBER/DESCRIPTION
Am27C4096
4 Megabit ( \(262,144 \times 16\) Bit ) CMOS OTP EPROM
```

Valid Combinations	
AM27C4096-120	
AM27C4096-125	PC, JC, PI, JI
AM27C4096-150	
AM27C4096-200	
AM27C4096-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
y AM27C4096-120	
AM27C4096-150	BXA, /BUA
AM27C4096-200	
AM27C4096-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing The Am27C4096

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C4096 to anultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}_{2}$ is required to completely erase an Am27C4096. This dosage can be obtained by exposure to an ultraviolet lamp -wavelength of $2537 \AA$-with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C4096 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C4096 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C4096 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C4096

Upon delivery or after each erasure the Am27C4096 has all $4,194,304$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C4096 through the procedure of programming.

The programming mode is entered when 12.75 V $\pm 0.25 \mathrm{~V}$ is applied to the V_{PP} pin, $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C4096. This part of the algorithm is done at $\mathrm{Vcc}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{Vcc}=\mathrm{VPP}_{\mathrm{P}}=5.25 \mathrm{~V}$.

Please refer to Section 6 for programming flow chart and characteristics

Program Inhibit

Programming of multiple Am27C4096 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$, all like inputs of the parallel Am27C4096 may be common. A TTL low-level program pulse applied to an Am27C4096 $\overline{\mathrm{CE}} / \mathrm{PGM}$ input with $\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm$
0.25 V and $\overline{\mathrm{OE}} \mathrm{HIGH}$ will program that Am27C4096. A high-level $\overline{C E} / \overline{\text { PGM }}$ input inhibits the other Am27C4096 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ at $V_{I L}, \overline{C E} / \overline{P G M}$ at V_{IH}, and $\mathrm{V}_{\text {PP }}$ between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C4096.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C4096. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at $V_{I L}$ during auto select mode.

Byte $0\left(A O=V_{\mathrm{LL}}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device identifier code. For the Am27C4096, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{C E} / \overline{P G M}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{A} C}$) is equal to the delay from $\overline{\text { CE/PGM to }}$ output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E} / \overline{P G M}$ has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27C4096 has a CMOS standby mode which reduces the maximum Vcccurrent to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when CE $/ \overline{P G M}$ is at $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$. The Am27C4096 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{C E} / \overline{P G M}$ is at $V_{I H}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur
It is recommended that $\overline{\text { CE }} / \overline{\text { PGM }}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE/PGM	$\overline{O E}$	AO	A9	Vpp	Outputs
Read		V_{IL}	V_{1}	X	X	X	Dout
Output Disable		$V_{\text {IL }}$	$\mathrm{V}_{1 \mathrm{H}}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		V_{1+}	X	x	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$V_{C C} \pm 0.3 \mathrm{~V}$	X	x	X	X	$\mathrm{Hi}-\mathrm{Z}$
Program		V_{IL}	V_{H}	X	X	$V_{P P}$	$\mathrm{D}_{\text {in }}$
Program Verify		V_{IH}	$\mathrm{V}_{\text {IL }}$	x	X	$V_{P P}$	Dout
Program Inhibit		V_{1}	$V_{1 H}$	X	X	$V_{P p}$	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	$\mathrm{V}_{\text {IL }}$	V_{LL}	V_{H}	V_{H}	X	O 1 H
	Device Code	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{1}	V_{H}	X	19H

Notes:

$1 X=$ Either $V_{H H}$ or $V_{I L}$
2. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. $A 1-A 8=A 10-A 17=V_{L L}$
4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss:
All pins except A9, V_{Pp},
and Vcc (Note 1) $\ldots \ldots . . .{ }^{-0.6} \mathrm{~V}$ to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and Vpp (Note 2) -0.6 V to 13.5 V
Vcc -0.6 V to 7.0 V

Notes:

1. During transitions, the inputs may overshoot $V_{s s}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and $1 / \mathrm{O}$ may overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns.
2. During transitions, A9 and $V_{\text {pp }}$ may overshoot $V_{s s}$ to -2.0 V for periods of up to 20 ns . $A 9$ and $V_{\text {Pp }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages:
Vcc for Am27C4096-XX5 +4.75 V to +5.25 V
Vcc for Am27C4096-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6, and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{loH}=400 \mu \mathrm{~A}$		2.4		V
VoL	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
V_{IH}	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current				5.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz} \\ & \mathrm{OUT}=0 \mathrm{~mA} \end{aligned}$	C/I Devices		50	$\mu \mathrm{A}$
			E/M Devices		60	
lcc2	Vcc TTL Standby	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{I}} \mathrm{H}$			1.0	mA
Icc3	Vcc CMOS Standby	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	VPP Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {PP }}=\mathrm{V}_{C C}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27C4096 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. $I_{c c t}$ is tested with $\overline{O E} N_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V during transitions, the inputs may overshoot -2.0 Vforperiods less than 20 ns. Maximum $D C$ Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$
15573B-5

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
15573B-6

AMD
CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV040		CLV044		PD040		PL044		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
$\mathrm{C}_{1 \times}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	13	10	13	6	8	10	13	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	10	13	13	15	8	10	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T A=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$

Switching CHARACTERISTICS over operating range unless otherwise specified. (Notes 1,3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Descriptlon	Test Conditions	Am27C4096						
JEDEC	Standard				$\begin{aligned} & -105, \\ & -100 \end{aligned}$	$\begin{aligned} & -125, \\ & -120 \end{aligned}$	-150	-200	$\begin{aligned} & -255, \\ & -250 \end{aligned}$	Unit
Avav	$t_{\text {Acc }}$	Address to Output Delay	$\begin{aligned} & \overline{C E}=\overline{O E} \\ & =V_{I L} \end{aligned}$	Min	-	-	-	-	-	ns
				Max	100	120	150	200	250	
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	-	ns
				Max	100	120	150	200	250	
talov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	Min	-	-	-	-	-	ns
				Max	50	50	55	60	60	
tehoz, tGHOZ	tof (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	ns
				Max	30	40	40	40	60	
$t_{\text {taxax }}$	tor	Output Hold from Addresses, CE, or OE, whichever ocurred first		Min	0	0	0	0	0	ns
				Max	-	-	-	-	-	

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Cautlon: The Am27C4096 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level -Inputs: 0.8 V to 2.0 V
Outputs: 0.8 V to 2.0 V

SWITCHING TEST CIRCUIT

11408C-7
$C \mathrm{~L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

11408C-8

AC Testing: Inputs are driven at $2.4 . \mathrm{V}$ for a Logic " 1 " and 0.45 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	InPUTS	OUTPUTS
	Must be Steady	Will be Steady
$\square \square$	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
$000 x$	Don't Care, Any Change Permitted	Changing, State Unknown
$\Rightarrow \square$	Does Not Apply	Center Line is HighImpedance "Off" State

SWITCHING WAVEFORM

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of the addresses without impact on $t_{A C C}$.

11408C-9
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C080

8 Megabit (1,048,576 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 100 ns
- Low power consumption
- 100μ A maximum CMOS standby current
- JEDEC-approved pinout
- Plug in upgrade of 1-, 2-, 4-Mbit EPROMs
- Easy upgrade from 28-pin JEDEC EPROMs

Single +5 V power supply

- $\pm 10 \%$ power supply tolerance available
- 100% Flashrite ${ }^{T M}$ programming
- Typical programming time of less than 2 minutes
■ Latch-up protected to 100 mA from -1 V to Vcc +1 V
- High noise immunity
- Compact 32-pin DIP, PDIP, and PLCC packages

GENERAL DESCRIPTION

The Am27C080 is an 8 Mbit ultraviolet erasable programmable read-only memory. It is organized as 1,048K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 100 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C080 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C080 supports AMD's Flashrite programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming times of less than 2 minutes.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C080				
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$	-105				
Max Access Time (ns)	-100	-120	-150	-200	-250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access Time (ns)	100	120	150	200	250

CONNECTION DIAGRAMS

Top View

DIP
 15453B-2

PLCC

15453B-3

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A19	Address Inputs
$\overline{\mathrm{CE}}(\overline{\mathrm{E}}) / \overline{\mathrm{PGM}}(\overline{\mathrm{P}})$	$=$ Chip Enable
$\mathrm{DQ}-\mathrm{DQ7}$	$=$ Data Inputs/Outputs
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) / V_{\mathrm{PP}}$	$=$ Output Enable Input/
	Program Supply Voltage
$V_{c c}$	$=V_{c c}$ Supply Voltage
$V_{\text {SS }}$	$=$ Ground

LOGIC SYMBOL

15453B-4

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:
AM27C080

Valid Combinations	
AM27C080-100	DC, DI
AM27C080-105	
AM27C080-120	DC, DCB, DI, DIB
AM27C080-150	DC, DCB, DI, DIB,
AM27C080-200	
AM27C080-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

```
AM27C080
```



```
OPTIONAL PROCESSING
Blank = Standard Processing
TEMPERATURE RANGE
\(\mathrm{C}=\) Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\(\mathrm{I}=\) Industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
PACKAGE TYPE
\(P=32-\) Pin Plastic DIP (PD 032)
\(\mathrm{J}=32-\mathrm{Pin}\) Rectangular Plastic Leaded Chip Carrier (PL 032)
SPEED OPTION
See Product Selector Guide and Valid Combinations
DEVICE NUMBER
Am27C080
8 Megabit (1,048,576 x 8-Bit) CMOS OTP EPROM
```

Valid Combinations	
AM27C080-120	
AM27C080-125	
AM27C080-150	PC, JC, PI, JI
AM27C080-200	
AM27C080-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C080-150	
AM27C080-200	/BXA
AM27C080-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups

$$
1,2,3,7,8,9,10,11 .
$$

FUNCTIONAL DESCRIPTION

Erasing the Am27C080

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C080 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C080. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of 12,000 $\mu \mathrm{W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27C080 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C080 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C080 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C080

Upon delivery or after each erasure the Am27C080 has all $8,388,608$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C080 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ and $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at V_{IL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C080. This part of the algorithm is done at $\mathrm{V}_{\mathrm{Cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{Vcc}=\mathrm{VPP}=5.25 \mathrm{~V}$.

Please refer to Section 6.0 for programming flow charts and characteristics.

Program Inhibit

Programming of multiple Am27C080 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE} / \mathrm{PGM}}$, all like inputs of the parallel Am27C080 may be common. A TTL low-level program pulse applied to an Am27C080 $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ input and $\overline{\mathrm{OE}} / \mathrm{VPP}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm$
0.25 V , will program that Am27C080. A high-level $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ input inhibits the other Am27C080 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ at V_{IL} and $\overline{\mathrm{OE}} / \mathrm{VPP}_{\text {p }}$ at V_{IL}.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C080.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ open address the A 9 of the Am27C080. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at $V_{I L}$ during auto select mode.

Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device code. For the Am27C080, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C080 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E} / \overline{P G M}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{O E} / V_{P P}$, assuming that $\overline{C E} / \overline{P G M}$ has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27C080 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E} / \overline{P G M}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27C080 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{C E} / \overline{P G M}$ is at V_{H}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{Pp}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus connection will not occur
It is recommended that $\overline{\text { CE }} / \overline{P G M}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{c c}$ and $V_{s s}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between $\mathrm{Vcc}_{\mathrm{cc}}$ and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE/PGM	OE/Vpp	AO	A9	Outputs
Read		VIL	VIL	AO	A9	Dout
Output Disable		X	$V_{\text {IH }}$	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TLL)		V_{IH}	X	X	x	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc}+0.3 \mathrm{~V}$	X	X	X	Hi-Z
Program		VIL	VPP	AO	A9	Din
Program Verify		VIL	VIL	X	X	Dout
Program Inhibit		V_{IH}	VPP	X	X	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	V_{H}	01H
	Device Code	VIL	VIL	V_{IH}	V_{H}	1 CH

Notes:

1. $V_{H}=12.0 \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{H H}$ or $V_{l l}$
3. $A 1-A 8=A 10-A 19=V_{1 L}$
4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To $V_{s s}$
All pins except A9,

A9 and $\mathrm{V}_{\mathrm{PP}} \ldots$.
Vcc -0.6 V to +7.0 V

Notes:

1. Minimum $D C$ voltage on input or $1 / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to -2.0 V for periods of up to 20 ns. Maximum $D C$ voltage on input and $/ / O$ pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns.
2. For $A 9$ and $V_{p p}$ the minimum $D C$ input is -0.5 V . During transitions, A9 and $V_{P P}$ may overshoot $V_{S S}$ to $-2.0 V$ for periods of up to 20 ns . A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (T_{C}) $\ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (T_{C}) $\ldots \ldots . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (TC) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (TC) $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages
V_{cc} for Am27C080-XX5 +4.75 V to +5.25 V
V_{CC} for Am27C080-XX0 $\ldots . .+4.50 \mathrm{~V}$ to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{OH}=-400 \mu \mathrm{~A}$		2.4		V
Vol	Output LOW Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
1 l	Input Load Current	VIN $=0 \mathrm{~V}$ to +VCC			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\mathrm{VOUT}=0 \mathrm{~V}$ to +VCC			5.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{f}=5 \mathrm{MHz}, \\ & \text { louT }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		40	$\mu \mathrm{A}$
			E/M Devices		50	
Icc2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{C E}=V c c \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
lpp 1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}, \mathrm{VPP}=\mathrm{VCC}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C080 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
3. ICC1 is tested with $\overline{\mathrm{OE}} / V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to VCC +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency $\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

15453B-5

Figure 2. Typical Supply Current

> vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
15453B-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV032		PL 032		PD 032		Unit
			Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	VIN $=0$	7	12	7	12	7	12	pF
Cout	Output Capacitance	Vout $=0$	12	16	12	16	12	16	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

 (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)| Parameter Symbols | | Parameter Description | Test Conditions | | Am27C080 | | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\begin{array}{r} -105 \\ -100 \\ \hline \end{array}$ | | | -120 | -150 | -200 | $\begin{array}{r} -255 \\ -250 \\ \hline \end{array}$ | |
| JEDEC | Standard | | | | | | | | |
| tavav | tacc | Address to Output Delay | $\overline{C E}=\overline{O E}=$ | Min | - | - | - | - | - | |
| | | | VIL | Max | 100 | 120 | 150 | 200 | 250 | ns |
| telov | tce | Chip Enable to Output Delay | $\overline{O E}=\mathrm{V}_{\text {IL }}$ | Min | - | - | - | - | -. | |
| | | | | Max | 100 | 120 | 150 | 200 | 250 | ns |
| tglqu | toe | Output Enable to Output Delay | $\overline{C E}=\mathrm{V}_{\text {IL }}$ | Min | - | - | - | - | - | |
| | | | | Max | 50 | 50 | 55 | 60 | 60 | ns |
| tehaz | tDF (Note 2) | Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float | | Min | - | - | - | - | - | |
| tGhoz | | | | Max | 40 | 40 | 40 | 40 | 60 | ns |
| taxax | tor | Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first | | Min | 0 | 0 | 0 | 0 | 0 | |
| | | | | Max | - | - | - | - | - | ns |

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C080 must not be removed from (or inserted into) a socket or board when VPP or VCc is applied.
4. Output Load: 1 TTL gate and $\dot{C}_{1}=100 \mathrm{pF}$

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.
15453B-8

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	OUTPUTS Will Be Steady		
May				
Change				
from H to L			\quad	Will Be
:---				
Changing				
from H to L				

SWITCHING WAVEFORMS

1. $\overline{O E} N_{P P}$ may be delayed up to tacc - toe after the falling edge of the addresses without impact on $t_{A C C}$.
2. toE is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27C800

DISTINCTIVE CHARACTERISTICS

- Fast access time
$-120 \mathrm{~ns}$

- Low power consumption

- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Industry standard pinout:
- ROM compatible
- 42-pin DIP, PDIP and 44-pin LCC and PLCC packages provide easy upgrade to 16 Mbits
- Single +5 V power supply
- $\pm 10 \%$ power supply tolerance standard on most speeds
- 100% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of less than 1 minute

■ Latch-up protected to $\mathbf{1 0 0} \mathrm{mA}$ from $\mathbf{- 1} \mathrm{V}$ to
Vcc + 1 V
High noise immunity

GENERAL DESCRIPTION

The Am27C800 is an 8 Mbit ultraviolet erasable programmable read-only memory that is functionally and pinout compatible with 8 Mbit masked ROMs. Under control of the BYTE input, the memory can be configured as either a 1 Mbit by 8 -bit memory or a 512 K by 16 -bit memory. It operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic packages as well as plastic one time programmable (OTP) packages.

Typically, any byte can be accessed in less than 120 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C800 offers
separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C800 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming times of less than 1 minute.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C800			
Ordering Part No:				
$V_{\text {cc }} \pm 5 \%$	-125			-255
$V_{\text {cc }} \pm 10 \%$	-120	-150	-200	-250
Max Access Time (ns)	120	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}}$) Access Time (ns)	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \mathrm{Access}$ Time (ns)	50	65	75	100

CONNECTION DIAGRAM

Top View

PIN DESIGNATIONS
AB
= Address Input ($\overline{\text { BYTE }}$ Mode)
A0-A18
= Address Inputs
$\overline{\mathrm{BYTE}} / V_{\text {PP }} \quad=$ Byte/Word Switch or Program Supply Voltage
$\overline{\mathrm{CE}}(\overline{\mathrm{E}}) / \overline{\mathrm{PGM}}(\overline{\mathrm{P}})=$ Chip Enable
DQ0-DQ15
= Data Inputs/Outputs
NC
= No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$
Vcc
= Output Enable Input
Vss
= Vcc Supply Voltage
= Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C800-120	
AM27C800-125	DC, DCB, DI, DIB,
AM27C800-150	DE, DEB, LC, LCB,
AM27C800-200	LI, LIB, LE, LEB
AM27C800-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

```
AM27C800
```



```
OPTIONAL PROCESSING
Blank = Standard processing
TEMPERATURE RANGE
\(\mathrm{C}=\) Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\(\mathrm{I}=\) Industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+80^{\circ} \mathrm{C}\right)\)
PACKAGE TYPE
\(P=42-\) Pin Plastic DIP (PD 042)
\(J=44-\) Pin Rectangular Plastic Leaded Chip Carrier (PL 044)
```


SPEED OPTION

```
See Product Selector Guide and Valid Combinations
DEVICE NUMBER/DESCRIPTION
Am27C800
8 Megabit (1,048,566 x 8-Bit/524,288 \(\times 16\)-Bit) CMOS OTP EPROM
```

Valid Combinations	
AM27C800-150	
AM27C800-155	PC, JC, PI, JI
AM27C800-200	
AM27C800-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:
AM27C800

Valid Combinations	
AM27C800-150	/BUA, /BXA
AM27C800-200	
AM27C800-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C800

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C800 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C800. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of $2,537 \AA$-with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C800 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C800 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2,537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C800 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C800

Upon delivery or after each erasure the Am27C800 has all $8,388,608$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C800 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the V_{PP} pin, $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at V_{IL}, and OE is at V_{IH}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each addresss only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C800. This part of the algorithm is done at $\mathrm{V}_{\mathrm{cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Please refer to Section 6.0 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C800s in parallel with different data is also easily accomplished. Except for CE/PGM, all like inputs of the parallel Am27C800 may be common. A TTL low-level program pulse applied to
an Am27C800 $\overline{\mathrm{CE} / \text { PGM }}$ input with $\mathrm{V}_{\mathrm{Pp}}=12.75 \mathrm{~V} \pm$ 0.25 V , and OE HIGH will program that Am27C800. A high-level CE/PGM input inhibits the other Am27C800 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ at V_{IH} and $\mathrm{V}_{\text {PP }}$ between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C800.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A9 of the Am27C800. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to V_{IH}. All other address lines must be held at $\mathrm{V}_{\text {IL }}$ during auto select mode.

Byte $0\left(A O=V_{\mathrm{LL}}\right)$ represents the manufacturer code, and Byte $1\left(A O=V_{(H)}\right.$, the device identifier code. For the Am27C800, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C800 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE} / \overline{\mathrm{PGM}} \text {) is the power control }}$ and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ to output (t_{CE}). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E} / \overline{P G M}$ has been LOW and addresses have been stable for at least $t_{A c c}-t_{\text {oE }}$.

Byte Mode

The user has the option of reading data in either 16-bit words or 8 -bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A18-A0 will address 512 K words of 16 -bit data. When the BYTE input is LOW, AB functions as the least significant address input and 1 Mbyte of data can be accessed. The 8 bits of data will appear on DQ7-DQ0.

Standby Mode

The Am27C800 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27C800 also has a TTL-standby mode which reduces the maximum V_{cc} current to 1.0 mA . It is placed in TTL-standby when $\overline{\text { CE/PGM }}$ is at V_{HH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{C E} / \overline{P G M}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control
bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{Cc} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE/PGM	$\overline{O E}$	AO	A9	$\overline{\text { BYTE }}$ VPP	Outputs
Read		VIL	VIL	X	X	X	Dout
Output Disable		VIL	$\mathrm{V}_{\text {IH }}$	X	X	X	Hi-Z
Standby (TTL)		V_{IH}	X	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	Hi-Z
Program		VIL	VIH	X	X	VPP	Din
Program Verify		V_{IH}	VIL	X	X	Vpp	Dout
Program Inhibit		VIH	VIH	X	X	. VPP	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	V_{H}	X	01H
	Device Code	VIL	VIL	V_{IH}	V_{H}	X	1 AH

Notes:

1. $V_{H}=12.0 \mathrm{~V}+0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 18=V_{\mathbb{L}}, A B=X$
4. See DC Programming Characteristics for $V_{P P}$ voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products . . . All Other Products	$\begin{aligned} & -65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
Ambient Temperature with Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To V_{ss} All pins except $A 9, V_{p p}, V_{c c}$ (Note 1)	-0.6 V to Vcc +0.6 V
A9 and Vpp (Note 2)	-0.6 V to +
Vcc	-0.6 V to +7.0

Notes:

1. During transitions, the inputs may overshoot $V_{s S}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input may overshoot to Vcc +2.0 V for periods of up to 20 ns .
2. During transitions, A9 and VPP may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . $A 9$ and $V_{\text {pp }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (T_{c}) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (T_{c}) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

V_{cc} for Am27C800-XX5 +4.75 V to +5.25 V
Vcc for Am27C800-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
Vol.	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$			0.45	V
$\mathrm{VIH}^{\text {H}}$	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc			5.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{C E}=V_{I L}, f=5 \mathrm{MHz}, \\ & \text { lOUT }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		50	mA
			E/M Devices		60	
Icce2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
1 lc 3	Vcc CMOS Standby Current	$\overline{C E}=V C C \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	VPP Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{VPP}=V_{C C}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C800 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.
3. ICC1 is tested with $\overline{\mathrm{OE}} / V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is Vcc + 0.5 V , which may overshoot to $V c c+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$
15452B-5

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
15452B-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV042		CLV044		PD 042		PL 044		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	$\mathrm{VIN}=0$	10	18	10	18	10	18	10	18	pF
Cout	Output Capacitance	Vout $=0$	10	18	10	18	10	18	10	18	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

JEDEC	Standard	Parameter Description	Test Conditions		Am27C800				
					$\begin{array}{r} -125 \\ -120 \\ \hline \end{array}$	-150	-200	$\begin{array}{r} -255 \\ -250 \end{array}$	Unit
tavav	tacc	Address to Output Delay	$\overline{C E}=\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	ns
				Max	120	150	200	250	
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	ns
				Max	120	150	200	250	
tglav	toe	Output Enable to Output Delay	$\overline{C E}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	ns
				Max	50	55	60	60	
$\begin{aligned} & \text { tEHQZ, } \\ & \text { tGHOZ } \end{aligned}$	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	ns
				Max	40	40	40	60	
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	ns
				Max	-	-	-	-	

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C800 must not be removed from (or inserted into) a socket or board when VPP or VCc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: Inputs: 0.8 V and 2.0 V
Outputs: 0.8 V and 2.0 V

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 for a logic " 0 ". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	Will Be Steady
May Change from H to L	Will Be Changing from H to L	
May Change from L to H	Will Be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High Impedance "Off" State	

SWITCHING WAVEFORMS

Notes:

15452B-9

1. $\overline{O E} / V P P$ may be delayed up to $t_{A C C}$ - toE after the falling edge of the addresses without impact on tACC.
2. $t D F$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

3
 HIGH-SPEED CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMs)

Section 3 High-Speed CMOS Erasable Programmable Read Only Memories (EPROMs) 3-1
An Introduction to High-Speed EPROMs 3-3
Am27H256 High-Speed 256K ($32,768 \times 8$-Bit) CMOS EPROM 3-9
Am27H010 High-Speed 1 Mbit ($131,072 \times 8$-Bit) CMOS EPROM 3-21

AN INTRODUCTION TO HIGH-SPEED EPROMs

Advanced Micro Devices has consistently improved the CMOS process to manufacture EPROMs in order to remain the technology leader in the marketplace. In addition to providing lower cost and higher density EPROM solutions, AMD's advanced CMOS process and superior design techniques create the highest performance devices in the industry. The devices that achieve high speed through process technology are identified by the "Am27C" nomenclature. This family provides the designer with a broad range of speeds and densities for most designs.

AMD has also introduced a family of CMOS EPROMs that have been specifically designed for speed. This "Am27H" family supports 35 ns and 45 ns access speeds at the 256 K and 1 Mbit densities, respectively.

These high speed "commodity" and high performance "27H" series of EPROMs allow system designers to maximize microprocessor efficiency by matching clock speed with access time. This performance edge also benefits digital signal processor (DSP) and other designers by doing away with the need for expensive shadow RAM or external glue logic in the case of bank interleaving.

HIGH SPEED EPROMs AND MICROPROCESSORS

With the advent of the current generation of high speed microprocessors and their increasing use in embedded control systems it is becoming more and more important to match clock speed with memory access time. The impact of a slow memory can have a drastic effect on system performance. Until recently the designer's only choices have been to use PROMs or copy the contents of slow EPROMs into faster DRAMs or SRAMs. Both of these solutions are expensive in terms of both device cost and board area. Advanced Micro Devices manufactures a full line of high speed EPROMs that enable the designer to produce systems that allow microprocessors to achieve maximum performance.

The standard method of interfacing to slow EPROMs is by adding wait states to the memory access cycle. At first this may not seem to be a problem. However, with a typical memory cycle requiring 3 CPU cycles, each additional cycle is a 30% reduction in speed! This magnitude of performance degradation is not acceptable in the competitive market of today.

In general, the number of cycles available for " 0 wait state" operation for popular microprocessors such as the Am386/286 are two cycles. Based on the above fact, the typical EPROM access time can be calculated using the following formula:

EPROM Access Time $=$ Total Time Available -
(Address Ready Delay + Address Buffer Delay + Data Buffer Delay + μ proc Set-Up Time)

The table below lists CPU clock speed and the required EPROM access time for the given wait states.

Table 3-1

CPU Clock Frequency	Wait States	EPROM Access Time	Memory Access Cycle Time
40 MHz	1	45 ns	75 ns
33 MHz	0	30 ns	60 ns
33 MHz	1	60 ns	90 ns
33 MHz	2	90 ns	120 ns
25 MHz	0	45 ns	80 ns
25 MHz	1	85 ns	120 ns
25 MHz	2	120 ns	160 ns
20 MHz	0	60 ns	100 ns
20 MHz	1	100 ns	150 ns
20 MHz	2	150 ns	200 ns
16 MHz	0	75 ns	125 ns
16 MHz	1	120 ns	187 ns

It should be noted that by inserting just one wait state (see Memory Access Cycle Time above) the performance of the CPU is degraded to that of the slower clock speed with zero wait states. Considering the cost premium for the faster CPU, the simple insertion of a wait state can undermine the cost/performance ratio of the final system.

There have been two traditional engineering solutions to this problem:

- utilize a combination of slow EPROM and faster DRAM and/or SRAM, or
- utilize interleaving banks of memory

Both of the above solutions do work but at the expense of increasing cost to achieve the desired performance. The increased cost comes in the form of:

- duplication of memory components when pursuing a shadow memory implementation
- increase of real estate and decreased reliability due to higher component count Advanced Micro Devices offers a better solution to eliminating wait states. High speed ($35 \mathrm{~ns}-120 \mathrm{~ns}$) EPROMs are available, and designing a system using them is very easy. Don't add wait states! Most EPROM manufacturers have a formula listed in their design manuals that is used to calculate the EPROM access time required. They suggest that you vary the number of wait states in the formula until you hit on the access time of an EPROM that they manufacture. May we suggest that you use zero wait states in their formula and choose one of AMD's High Speed EPROMs.

BOARD LAYOUT METHODS FOR HIGH-SPEED EPROMs

Now that you have made the decision to get maximum performance from your microprocessor here are a few tips to make sure that your design goes to production smoothly. These tips are general system tips and are not unique to EPROMs. They can be used in any high-speed design.

As system speed increases so does the power supply noise, which can disrupt the system if left unchecked. There are some simple methods for reducing noise that can be used as guidelines when designing and laying out systems. The extent to which these tips are used in your design will depend on PC board size, total power supply capacity, length of feed lines from the power supply, presence of a ground plane in the PC board, clock speed, etc. There is no way to come up with an exact formula to minimize noise, so it is best to start with a standard setup and then modify it to fit the current design.

Rule of thumb 1:

■ Place a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to every IC between V_{Cc} and GND.

- Place a $1.0 \mu \mathrm{~F}$ capacitor between V_{Cc} and GND for every four ICs on a power trace.

Rule of thumb 2:

- Use power planes if you can.

This generally requires a multi-layer PC board that uses one or two of the internal layers to carry the power to each IC with very large traces. Don't forget to provide heat relief on the holes.

Figure 3-1 Typical Noise Isolation Between Vcc and GND

Figure 3-2 Typical Ground Plane Heat Relief Pattern

If power planes cannot be used, then do not snake the trace.
Use a comb pattern to distribute the power to the ICs. Run heavy buses down the side of the board with smaller traces taking the power between the ICs and smaller traces, yet taking the power to the individual ICs.

Rule of thumb 3:
If you must wire wrap the prototype design place the bypass capacitors on the wire side of the board and solder them directly to the socket. Save yourself a lot of time and trouble and do this before you wire the board.

Rule of thumb 4:
When wiring a prototype do not channel the wires. This looks nice but you will spend a lot of time looking for cross talk problems where the signal is coupled from one wire to another. Use direct point-to-point wiring.

Rule of thumb 5:
Use a crow foot wiring pattern and not a daisy chain pattern. Have the heel of the crow foot at the signal source to drive the entire foot.

Figure 3-3 Example of a Crow Foot Pattern

Figure 3-4 Example of a Daisy Chain Pattern

17061A-4

If there are too many destinations for the signal to be supplied from a single pin, use a modified crow foot.

Figure 3-5 Example of a Modified Crow Foot Pattern

tof SPECIFICATIONS AND SYSTEM DESIGN CONSIDERATIONS

There are two specifications listed in data sheets-Output Enable to Output Delay (toe) and Output Enable to Output Float (tof)-that are not always taken into account when designing a system. These two parameters respectively specify how much time the device takes to provide valid data on the bus when $\overline{O E}$ is asserted and when data is no longer available when $\overline{\mathrm{OE}}$ is deasserted. This information is very important to avoid a bus contention problem in the final design.

The toe parameter is easy to test, but is very dependent on the output drive capacity of the device and the capacitive loading of the bus that the device is driving. The device must drive the bus to valid logic levels within this time limit.

The tof specification, which stands for Time to Data Float, is the maximum time it takes for a device to no longer be driving a bus. The device does not necessarily have to drive the bus to any voltage level, but only to a level that does not prevent another device from driving the bus. This definition is very critical when testing a part and consequently also affects the decisions made by the system designer. The above definition is not tied to the voltage level of the output and consequently, the loading capacitance has no effect on this parameter from the system point of view. This at first may seem inaccurate, but if the node is no longer being driven, then the voltage on the node resulting from the loading capacitance has an R-C time constant that is independent of the device.

Figure 3-6 Device Output dV/dT Curves

The capacitive loading is a test issue and is of considerable importance. To test tof, the test engineer must look for a voltage change in order to detect when the device is no longer driving the bus. With the voltage change being the only way to test this, the external R-C time constant must be minimized to give the most accurate measurements.

The systems designer must take the bus loading capacitance into account when dealing with $t_{A C C}$, tce and toe but not for tda.

Am27H256

256 Kilobit (32,768 x 8-Bit) High Speed CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 35 ns
- JEDEC-approved pinout
- Pin compatible with Am27C256
- Single +5 V power supply
- $\pm 10 \%$ power supply tolerance available
- 100% Flashrite ${ }^{T M}$ programming
- Typical programming time of 4 seconds
- Latch-up protected to 100 mA from $-\mathbf{1} \mathrm{V}$ to $\mathrm{Vcc}+1 \mathrm{~V}$
- High noise immunity
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages
- DESC SMD No. 5962-86063

GENERAL DESCRIPTION

The Am27H256 is an 256 Kbit ultraviolet erasable programmable read-only memory. It is organized as 32 K words by 8 bits per word, operates from a single +5 V supply, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 35 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27H256 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 220 mW in active mode, and 50 mW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27H256 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming time of 4 seconds.

BLOCK DIAGRAM

14944C-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27H256	
Ordering Part Number Vcc $\pm 5 \%$ Vcc $\pm 10 \%$	$-35 V 05$	
Max Access Time (ns) -35 $\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access Time (ns) 35 $\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access Time (ns) 35 $\mathrm{-45}$		

CONNECTION DIAGRAMS

Top View

DIP

14944C-2

Notes:

1. JEDEC nomenclature is in parentheses.
2. Don't use (DU) for PLCC.

PLCC/LCC

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A14 } & =\text { Address Inputs } \\ \overline{C E}(\bar{E}) & =\text { Chip Enable } \\ \text { DQ0-DQ7 } & =\text { Data Inputs/Outputs } \\ \text { NC } & =\text { No Internal Connection } \\ \overline{O E}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ V_{c C} & =V_{C C} \text { Supply Voltage } \\ V_{\text {PP }} & =\text { Program Supply Voltage } \\ \text { VSS } & =\text { Ground }\end{array}$

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27H256-35	DC, DCB, DI, DIB,				
AM27H256-35V05	LC, LI, LCB, LIB	$	$	AM27H256-45	DC, DCB, DE, DEB, DI, DIB, LC, LCB, LI, LIB, LE, LEB
:---	:---				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products
AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27H256-35V05	PC, JC
AM27H256-45	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination)
is formed by a combination of:

Valid Combinations	
AM27H256-45	/BXA, /BUA

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION
 Erasing the Am27H256

In order to clear all locations of their programmed contents, it is necessary to expose the Am 27 H 256 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am 27 H 256 . This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27H256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27H256 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27H256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27H256

Upon delivery or after each erasure the Am27H256 has all 262,144 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am 27 H 256 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the $V_{P P}$ pin, $\overline{C E}$ is at $V_{\text {IL }}$ and $\overline{O E}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27H256. This part of the algorithm is done at $\mathrm{Vcc}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27H256 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$,
all like inputs of the parallel Am27H256 may be common. A TTL low-level program pulse applied to an Am27H256 $\overline{\mathrm{CE}}$ input with $\mathrm{VPP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\overline{\mathrm{OE}}$ high, will programthat Am27H256. A high-level $\overline{C E}$ input inhibits the other Am27H256 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ at $V_{I L}, \overline{C E}$ at $V_{I H}$ and Vpp between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27H256.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27H256. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{\text {IL }}$ to $V_{I H}$. All other address lines must be held at VIL during auto select mode.

Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device code. For the Am27H256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27H256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{AcC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output ($\mathrm{t} C E)$. Output Enable ($\overline{\mathrm{OE})}$ is the output control and should be used to gate data to the output pins, independent of device selection. Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A C C}$ - toe.

Standby Mode

The Am27H256 has a standby mode which reduces the maximum Vcc current to 50% of the active current. It is placed in standby mode when $\overline{\mathrm{CE}}$ is at V_{IH}. The amount of current drawn in standby mode depends on the frequency and the number of address pins switching. The Am27H256 is specified with 50% of the address lines toggling at 10 MHz . A reduction of the frequency or quantity of address lines toggling will significantly reduce actual standby current.

Output OR-Tieing

To accommodate multiple memory connection, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and con-
nected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between $V_{c c}$ and $V_{s s}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{C E}$	$\overline{O E}$	AO	A9	$V_{\text {Pp }}$	Outputs
Read		VIL	VIL	A0	A9	Vcc	Dout
Output Disable		VIL	V_{H}	X	X	$V_{C C}$	Hi-Z
Standby		VIH	X	X	X	$V_{C C}$	$\mathrm{Hi}-\mathrm{Z}$
Program		VIL	V_{IH}	X	X	$V_{P P}$	Din
Program Verify		$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\text {IL }}$	X	X	$V_{\text {PP }}$	Dout
Program Inhibit		$\mathrm{V}_{\text {IH }}$	VIH	X	X	VPP	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	VIL	$\mathrm{V}_{\text {IL }}$	V_{IL}	V_{H}	$V_{C c}$	01H
	Device Code	VIL	VIL	V_{IH}	VH	$V_{c c}$	10H

Notes:

1. $V H=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 10-A 14=V_{I L}$
4. The Am27H256 uses the same Flashrite algorithm during programming as the Am27C256.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V_{ss}
All pins except A9, $\mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{cc}} \ldots . .-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (Note 1)
A9 and $\mathrm{V} p \mathrm{P}$ (Note 2) $\ldots \ldots$.
Vcc . -0.6 V to +7.0 V

Notes:

1. Minimum DC voltage on input or l/O pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I/O pins is Vcc +0.5 V which may overshoot to $\mathrm{VCC}+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For A9 and Vpp the minimum DC input is -0.5 V . During transitions, A9 and VPP may overshoot VSs to -2.0 V for periods of up to 20 ns . A9 and VPP must not exceed 13.5 V for any period of time .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

Vcc for Am27H256-XXV05 ... +4.75 V to +5.25 V
Vcc for Am27H256-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{loH}=-4 \mathrm{~mA}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=12 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage			-0.3	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		1.0	
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc	C/I Devices		10.0	$\mu \mathrm{A}$
			E/M Devices		10.0	
Icc 1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VII}, f=10 \mathrm{MHz} \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		50	mA
			E/M Devices		60	
IcC2	Vcc Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	C/I Devices		25	mA
			E/M Devices		35	
IPP1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{P P}=\mathrm{VCC}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27H256 must not be removed from (or inserted into) a socket when Vcc or Vpp is applied.
3. $I_{C C}$ is tested with $\overline{O E} N_{P P}=V_{H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is $V_{C C}+0.5 \mathrm{~V}$, which may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods less than 20 ns.

14944C-5
Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$

AMD

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV028		CLV032		PD 028		PL 032		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	V IN $=0$	6	12	6	12	8	12	8	12	pF
Cout	Output Capacitance	VOUT $=0$	8	15	6	15	10	15	10	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27H256	
		$\begin{gathered} -35 \mathrm{~V} 05 \\ -35 \\ \hline \end{gathered}$			-45	
JEDEC	Standard					
tavav	tRCC	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Min		
			$\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}}$	Max	35	45
telav	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Min		
			$C_{L}=C_{L 1}$	Max	35	45
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min		
			$\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}_{1}}$	Max	20	20
tehaz, tGHQZ	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float	$\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L} 2}$	Min	0	0
				Max	20	20
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{O E}$, whichever occurred first		Min	0	0
				Max		

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27H256 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C=C L$

Input Rise and Fall Times: 5 ns
input Pulse Levels: 0 V to 3 V .
Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

14944C-8

AC Testing: Inputs are driven at 3.0 V for a logic " 1 " and 0 V for a logic " 0 ." Input pulse rise and fall times are $\leq 5 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
$\square \square$	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	Don't Care, Any Change Permitted	$\begin{aligned} & \text { Changing } \\ & \text { State } \\ & \text { Unknown } \end{aligned}$
	Does Not Apply	Center Line is High Impedence "Off" State

SWITCHING WAVEFORMS

Notes:
14944C-9

1. $\overline{O E}$ may be delayed up to tACC - toE after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27H010

DISTINCTIVE CHARACTERISTICS

- Fast access time
- 45 ns
- JEDEC-approved pinout
- Plug in upgrade of standard 1 Mbit EPROMs
- Easy upgrade from 28-pin JEDEC EPROMs

Single +5 V power supply
$\square \pm 10 \%$ power supply tolerance available

100% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 16 seconds
- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity
- Compact 32-pin DIP, PDIP, LCC and PLCC packages
DESC SMD No. 5962-89614

GENERAL DESCRIPTION

The Am27H010 is a 1 Mbit ultraviolet erasable programmable read-only memory. It is organized as 131,072 words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 45 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27H010 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$)
controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 220 mW in active mode, and 50 mW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27H010 supports AMD's Flashrite ${ }^{T M}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming time of 16 seconds.

BLOCK DIAGRAM

12750D-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27H010			
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$	-45 V 05			$-90 V 05$
Max Access Time (ns)	-45	-55	$\mathbf{- 7 0}$	-90
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	45	55	70	90
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access (ns)	45	55	70	90

CONNECTION DIAGRAMS

Top View

PLCC/LCC

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A16 } & =\text { Address Inputs } \\ \overline{C E}(\bar{E}) & =\text { Chip } \\ \text { DQ0-DQ7 } & =\text { Data Inputs/Outputs } \\ \text { NC } & =\text { No Internal Connection } \\ \overline{O E}(\bar{G}) & =\text { Output Enable Input } \\ \overline{\mathrm{PGM}}(\overline{\mathrm{P}}) & =\text { Program Enable Input } \\ V_{c C} & =\text { Vcc Supply Voltage } \\ V_{P P} & =\text { Program Supply Voltage } \\ V_{S S} & =\text { Ground }\end{array}$

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27H010-45	DC, DCB, DI, DIB,
AM27H010-45V05	LC, LI, LCB, LIB
AM27H010-55	DC, DCB, DE, DEB,
AM27H010-70	DI, DIB, LC, LCB, LI,
AM27H010-90	LIB, LE, LEB

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27H010-55	
AM27H010-70	PC, JC
AM27H010-90	
AM27H010-90V05	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27H010-55	
AM27H010-70	/BXA, /BUA
AM27H010-90	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION Erasing the Am27H010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27H010 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am 27 H 010 . This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of $2537 \AA$-with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 20 minutes. The Am27H010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am 27 H 010 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27H010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27H010

Upon delivery or after each erasure the Am27H010 has all $1,048,576$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27H010 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the VPP, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ is at VIL^{2} and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27H010. This part of the algorithm is done at $\mathrm{Vcc}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5.25 \mathrm{~V}$.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27H010 in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs of the parallel Am27H010 may be common. A TTL low-level program pulse applied to an

Am27H010 $\overline{\mathrm{CE}}$ input and with $\mathrm{VPP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$, $\overline{\text { PGM Low and } \overline{\mathrm{OE}} \text { High will program that Am27H010. A }}$ high-level $\overline{\mathrm{CE}}$ input inhibits the other Am27H010 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at $\mathrm{VIL}_{\mathrm{IL}}, \overline{\mathrm{PGM}}$ at $\mathrm{V}_{\mathbb{H}}$ and V_{pp} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27H010.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27H010. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at VIL during auto select mode.

Byte $0\left(A 0=V_{I L}\right)$ represents the manufacturer code, and byte $1\left(A 0=V_{I H}\right)$, the device code. For the Am27H010, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27H010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (toE). Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tacc - toe.

Standby Mode

The Am27H010 has a standby mode which reduces the maximum Vcc current to 50% of the active current. It is placed in standby mode when $\overline{\mathrm{CE}}$ is at V_{I}. The amount of current drawn in standby mode depends on the frequency and the number of address pins switching. The Am27H010 is specified with 50% of the address lines
toggling at 10 MHz . A reduction of the frequency or quantity of address lines toggling will significantly reduce the actual standby current.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation

- Assurance that output bus contention will not occur It is recommended that $\overline{\text { CE }}$ be decoded and used as the primary device-selecting function, while $\overline{O E} / V_{P P}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1-\mu \mathrm{F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7-\mu$ F bulk electrolytic capacitor should be used between V_{cc} and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{\mathbf{C E}}$	$\overline{O E}$	$\overline{\text { PGM }}$	A0	A9	Vpp	Outputs
Read		VIL	VIL	X	A0	A9	V_{IH}	Dout
Output Disable		VIL	VIH	X	X	X .	V_{IH}	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		VIH	X	X	X	X	$\mathrm{VIH}^{\text {H }}$	$\mathrm{Hi}-\mathrm{Z}$
Program		$V_{\text {IL }}$	VIH	VIL	X	X	Vpp	Din
Program Verify		VIL	VIL	$V_{\text {IH }}$	X	X	VPP	Dout
Program Inhibit		V_{IH}	X	X	X	X	Vpp	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	V_{IL}	VIL	X	VIL	V_{H}	Vcc	01H
	Device Code	VIL	VIL	X	V_{IH}	VH	Vcc	OEH

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either V_{H} or $V_{I L}$
3. $A 1-A 8=A 10-A 18=V_{\mathrm{L}}$
4. The Am27H010 uses the same Flashrite algorithm as the Am27C010.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $V_{s s}$
All pins except $\mathrm{A} 9, \mathrm{~V}_{\mathrm{Pp}}, \mathrm{V} c \mathrm{cc} \ldots-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (Note 1)
A9 and V_{Pp} (Note 2) -0.6 V to +13.5 V
Vcc
-0.6 V to +7.0 V

Notes:

1. Minimum DC voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{\text {SS }}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I / O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .
2. For $A 9$ and $V_{P P}$ the minimum DC input is -0.5 V. During transitions, $A 9$ and $V_{P P}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . A9 and $V_{p p}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Industrial (I) Devices

Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (Tc) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27H010-XXV05 . . . +4.75 V to +5.25 V
Vcc for Am27H010-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$		2.4		V
VOL	Output LOW Voltage	$\mathrm{loL}=12 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	$V \mathrm{IN}=0 \mathrm{~V}$ to +Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		1.0	
Ito	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc	C/I Devices		10	$\mu \mathrm{A}$
			E/M Devices		10	
lcc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VIL}_{\mathrm{L}}, \mathrm{f}=10 \mathrm{MHz} \\ & \text { loUT }=0 \mathrm{~mA} \end{aligned}$	C/I Devices		50	mA
			E/M Devices		60	
IcC2	Vcc Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	C/I Devices		25	mA
			E/M Devices		35	
IPP1	VPP Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{VPP}=\mathrm{VCC}$			100	$\mu \mathrm{A}$

Notes:

1. $V_{C C}$ must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27H010 must not be removed from (or inserted into) a socket when $V_{C c}$ or $V_{P P}$ is applied.
3. $I_{C C I}$ is tested with $\overline{O E} N_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

12750D-5
Figure 1. Typical Supply Current vS. Frequency
$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

12750D-6
Figure 2. Typical Supply Current
vs. Temperature
$V_{c c}=5.0 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV032		CLV032		PD 032		PL 032		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	V IN $=0$	6	12	6	12	8	12	8	12	pF
Cout	Output Capacitance	VOUT $=0$	8	15	6	15	10	15	10	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

 (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)| Parameter Symbols | | Parameter Description | Test Conditions | | Am27H010 | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\begin{gathered} -45 \mathrm{~V} 05 \\ -45 \end{gathered}$ | | | -55 | -70 | $\begin{gathered} -90 \mathrm{~V} 05 \\ -90 \end{gathered}$ | |
| JEDEC | Standard | | | | | | | |
| tavav | trec | Address to Output Delay | $\begin{aligned} & \overline{C E}=\overline{O E}=V_{I L} \\ & C_{L}=C_{L 1} \end{aligned}$ | Min | | | | | ns |
| | | | | Max | 45 | 55 | 70 | 90 | ns |
| telov | tce | Chip Enable to Output Delay | $\begin{aligned} & \overline{O E}=V_{I L} \\ & C_{L}=C_{L 1} \end{aligned}$ | Min | | | | | ns |
| | | | | Max | 45 | 55 | 70 | 90 | ns |
| tglov | toe | Output Enable to Output Delay | $\begin{aligned} & \overline{C E}=V_{I L} \\ & C_{L}=C_{L 1} \end{aligned}$ | Min | | | | | ns |
| | | | | Max | 20 | 25 | 35 | 40 | ns |
| tehoz,
 tGHaz | $\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$ | Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float | $C_{L}=C_{L 2}$ | Min | 0 | 0 | 0 | 0 | ns |
| | | | | Max | 20 | 25 | 35 | 40 | ns |
| taxax | toh | Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first | | Min | 0 | 0 | 0 | 0 | ns |
| | | | | Max | | | | | ns |

Notes:

1. VCc must be applied simultaneously or before VPp, and removed simultaneously or after Vpp.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27H010 must not be removed from (or inserted into) a socket or board when Vpp or Vcc is applied.
4. Output Load: 1 TTL gate and $C=C L$

Input Rise and Fall Times: 5 ns
Input Pulse Levels: 0 V to 3 V .
Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

$\begin{array}{ll}\mathrm{RL}=121 \Omega & \\ \mathrm{VL}_{\mathrm{L}}=1.9 \mathrm{~V} & \\ \mathrm{CL1}=30 \mathrm{pF} & \\ \mathrm{CL2}=5 \mathrm{pF} & \end{array}$

SWITCHING TEST WAVEFORM

12750D-8

AC Testing: Inputs are driven at 3.0 V for a logic " 1 " and 0 V for a logic " 0 ." Input pulse rise and fall times are $\leq 5 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must Be Steady	OUTPUTS Sill Beady
May Change from H to L	Will Be Changing from H to L	
May Change from L to H	Will Be Changing from Lit to H	
Don't Care, Any Change Permitted	Changing State Unknown	
Does Not Apply	Center Line is High Impedence "Off" State	

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to tACC - toE after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

SECTION

4. LOW VOLTAGE CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMs)

Section 4 Low Voltage CMOS Erasable Programmable Read Only Memories (EPROMs) 4-1
An Introduction to Low Voltage EPROMs 4-3
Am27LV010/ 1 Megabit (131,072 $\times 8$-Bit) Low Voltage Am27LV010B CMOS EPROM 4-4
Am27LV020/ 2 Megabit (262,144 x 8-Bit) Low Voltage Am27LV020B CMOS EPROM 4-21

AN INTRODUCTION TO LOW VOLTAGE EPROMs

Abstract

Advanced Micro Devices is committed to being the technology leader in Non-Volatile memories and therefore, continues to focus on developing superior memory products that serve the needs of our customers. Our technology leadership is evidenced by our offering of a complete line of EPROMs, the highest performance and density EPROM products in the marketplace as well as the industry's smallest die sizes. We are now proud to announce a family of Low Voltage (3.3 V) EPROMs to complement our product offering.

In the recent past, momentum for the need of Low Voltage ICs has been exponentially growing. The Electronics industry has demonstrated a well established trend of product improvements and enhancements while simultaneously decreasing the size and cost of the equipment. Typical examples of this phenomenon is the notebook and sub-notebook class of personal computers and the cellular phones of today. This trend towards "miniaturization" is expected to continue with the market demanding even smaller formfactors and increasing portability-in the form of handheld instrumenta-tion-but with the same capability and performance levels that is available from their larger counterparts.

This trend of smaller formfactors and increasing portability forces manufacturers to constantly reduce the size and weight of their equipment. As batteries consume an increasingly larger share of the size and weight of the portable equipment, many manufacturers are now looking to reduce the number of batteries and/or lowering the power consumption i.e., the battery drain. This has led to the migration towards Low Voltage ICs. For example, a portable computer that utilizes 5.0 V components commonly needs five 1.2 V secondary (rechargeable) Nickel Cadmium or five 1.5 V primary (throw-away) alkaline batteries. By switching to 3.0 V components the required number of batteries now becomes three, thereby effectively reducing the weight of the heaviest component in the system by 40%. Switching to a 3.0 V operation from a 5.0 V operation also cuts down the power consumption significantly. As power is proportional to the square of the voltage, reducing the operating voltage from 5.0 V to 3.0 V results in power savings of at least 57%. This power consumption can further be reduced if the current level of the individual devices is lowered.

In keeping with our philosophy of offering memories that solve customers' needs, AMD is proud to announce a family of 3.3 V EPROMs. This Low Voltage family, designated as "Am27LV", is offered with two voltage ranges. The first has a Vcc tolerance level of $3.3 \mathrm{~V} \pm 10 \%-3.0 \mathrm{~V}$ to 3.6 V - making it suitable for use in systems that have regulated power supplies, and second, a voltage range of 2.7 V to 3.6 V making it ideally suited for battery operated systems.

This family complies with the recently approved JEDEC standards on Low Voltage. These devices typically have lower active and standby current levels than their 5.0 V counterparts thereby reducing the power consumption by as much as 83%. These products are also pin-compatible with their 5.0 V counterparts and are being offered in the traditional EPROM packages.

Am27LV010/Am27LV010B

DISTINCTIVE CHARACTERISTICS

■ Single +3.3 V power supply

- Regulated power supply $3.0 \mathrm{~V}-3.6 \mathrm{~V}$
- Unregulated power supply $2.7 \mathrm{~V}-3.6 \mathrm{~V}$ (for battery operated systems)
- Low power consumption:
- $10 \mu \mathrm{~A}$ typical CMOS standby current
$-90 \mu \mathrm{~W}$ maximium standby power
- 54 mW maximum power at 5 MHz

■ Fast access time-120 ns

- JEDEC-approved pinout
- Pin compatible with 5.0 V 1 Mbit EPROM
- Easy upgrade from 28-pin EPROMs
- Fast Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 16 seconds
- Latch-up protected to 100 mA from $\mathbf{- 1} \mathrm{V}$ to $\mathrm{Vcc}+1 \mathrm{~V}$
- High noise immunity
- Compact 32-pin DIP package requires no hardware change for upgrades to 8 Mbit
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27LV010 is a low voltage, low power 1 Mbit, ultraviolet erasable, progammable read-only memory, organized as 128 K words by 8 bits per word.
The Am27LV010 operates from a single power supply of 3.3 V and is offered with two power supply tolerances. The Am27LV010 has a Vcc tolerance range of $3.3 \mathrm{~V} \pm$ 0.3 V making it suitable for use in systems that have regulated power supplies. The Am27LV010B has a voltage supply range of $2.7 \mathrm{~V}-3.6 \mathrm{~V}$ making it an ideal part for battery operated systems.
Maximum power consumption of the Am27LV010 in standby mode is only $90 \mu \mathrm{~W}$. If the device is constantly accessed at 5 MHz , thenthe maximum power consumption increases to 54 mW . These power ratings are significantly lower than typical EPROMs. Also, as power consumption is proportional to voltage squared, 3.3 V
devices consume at least 57% less power than their 5.0 V counterparts. Due to its lower current and voltage, the Am27LV010 is well-suited for battery operated and portable systems as it extends the battery life in these systems. Typical applications are notebook and handheld computers as well as cellular phones.
The Am27LV010 is packaged in the industry standard 32-pin windowed ceramic DIP and LCC packages, as well as one-time programmable (OTP) packages. This device is pin-compatible with the 5.0 V devices.
The Am27LV010 uses AMD's Flashrite ${ }^{T M}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming time of 16 seconds. This device is manufactured on AMD's sub-micron process technology which provides high speed, low power and high noise immunity.

PRODUCT SELECTOR GUIDE

Family Part No	Am27LV010/Am27LV010B				
Ordering Part No:					
Am27LV010 (3.0 V-3.6 V)	-120	-150	-200	-250	-300
Am27LV010B (2.7 V-3.6 V)	-150	-150	-200	-250	-300
Max Access Time (ns)	120	150	200	250	300
$\overline{\text { CE (E) Access (ns) }}$	120	150	200	250	300
$\overline{\text { OE (G) Access (ns) }}$	50	65	75	100	120

CONNECTION DIAGRAMS

Top View

DIP

PLCC/LCC

Notes:

1. JEDEC nomenclature is in parenthesis.
2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

TSOP*

PIN DESCRIPTION
A0-A16 = Address Inputs
$\overline{C E}$ (E) $=$ Chip Enable Input
DQ0-DQ7 = Data Input/Outputs
NC $=$ No Internal Connect
$\overline{\mathrm{OE}(\mathrm{G})}=$ Output Enable Input
$\overline{\mathrm{PGM}(P)}=$ Program Enable Input
Vcc $\quad=V_{c c}$ Supply Voltage
$V_{P P} \quad=$ Program Supply Voltage
Vss $=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27LV010-120	DC, DCB, LC, LCB
AM27LV010-150	DC, DCB, DE, DEB, DI, DIB, LC, LI, LE, LEB
AM27LV010-200	
AM27LV010-250	
AM27LV010-300	
AM27LV0108-150	
AM27LV010B-200	
AM27LV010B-250	
AM27LV010B-300	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27LV010-150	
AM27LV010-200	
AM27LV010-250	
AM27LV010-300	
AM27LV010B-200 EC, JI, EI	
AM27LV010B-250	
AM27LV010B-300	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27LV010-150	
AM27LV010-200	
AM27LV010-250	BXA, /BUA
AM27LV010-300	
AM27LV010B-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups

$$
1,2,3,7,8,9,10,11 .
$$

FUNCTIONAL DESCRIPTION Erasing the Am27LV010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27LV010 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27LV010. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of $2537 \AA$ - with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27LV010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27LV010, and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27LV010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27LV010

Upon delivery, or after each erasure, the Am27LV010 has all $1,048,576$ bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27LV010 through the procedure of programming.

The programming mode is entered when 12.75 V $\pm 0.25 \mathrm{~V}$ is applied to the VPP pin, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at VIIL^{2} and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.
The Flashrite programming algorithm reduces programming time by using initial 100μ s pulses followed by a byte verification to determine whether the byte has been successfully programmed. If the data does not verify, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the EPROM.

The Flashrite programming algorithm programs and verifies at $V_{C C}=6.25 \mathrm{~V}$ and $\mathrm{VPP}=12.75 \mathrm{~V}$. After the final address is completed, all bytes are compared to the original data with $V_{c c}=V_{P P}=5.25 \mathrm{~V}$. Am27LV010 can be programmed using the same algorithm as the 5 V counterpart 27C010.
Please referto Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27LV010s in parallel with different data is also easily accomplished. Except for $\overline{C E}$, all like inputs of the parallel Am27LV010 may be common. A TTL low-level program pulse applied to an

Am27LV010 $\overline{\mathrm{CE}}$ input with $\mathrm{VPP}=12.75 \pm 0.25 \mathrm{~V}, \overline{\mathrm{PGM}}$ LOW, and OE HIGH will program that Am27LV010. A high-level CE input inhibits the other Am27LV010s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{PGM}}$ at $V_{I H}$, and $V_{P P}$ between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27LV010.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A9 of the Am27LV010. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from V_{L} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte $0\left(A 0=V_{L I}\right)$ represents the manufacturer code, and Byte $1\left(A 0=V_{H}\right)$, the device identifier code. For the Am27LV010, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27LV010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable $(\overline{O E})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{tacc}^{\text {) }}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A c c}-t o E$.

Standby Mode

The Am27LV010 has a CMOS standby mode which reduces the maximum Vcc current to $25 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$. The Am27LV010 also has a TTL-standby mode which reduces the maximum $V c c$ current to 0.6 mA . It is placed in TTL-standby when CE is at V_{14}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Mixed Power Supply System

Am27LV020 (in 3.0 V to 3.6 V regulated power supply) can be intefaced with 5 V system only when the I/O pins (DQ0-DQ7) are not driven by the 5 V system. $\mathrm{V}_{\text {IHmax }}=$ Vcclv +2.2 V for address and clock pins and $\mathrm{V}_{\mathrm{IH} \max }=$ Vcclv +0.5 V for l/O pins should be followed to avoid CMOS latch-up condition

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-sele cting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in
their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	A0	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	X	Dout
Output Disable		VIL	VIH	X	X	X	X	High Z
Standby (TTL)		V_{H}	X	X	X	X	X	High Z
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	X	High Z
Program		VIL	V_{H}	$\mathrm{VIL}^{\text {l }}$	X	X	VPP	Din
Program Verify		VIL	VIL	$\mathrm{VIH}^{\text {H}}$	X	X	VPP	Dout
Program Inhibit		$\mathrm{V}_{\text {IH }}$	X	X	X	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	V_{H}	X	01H
	Device Code	VIL	VIL	X	VIH	V_{H}	X	OEH

Notes:

1. X can be either VIL or $V_{I H}$
2. $V H=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. $A 1-A 8=A 10-A 16=V_{I L}$
4. See DC Programming Characteristics for Vpp voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:

$$
\text { OTP Products }-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
\text { All Other Products }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss:
All pins except A9, Vpp, and
Vcc (Note 1) -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and Vpp (Note 2) -0.6 V to 13.5 V
Vcc . -0.6 V to 7.0 V

Notes:

1. During transitions, the input may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and IIO may overshoot to Vcc +2.0 V for periods up to 20 ns.
2. During transitions, $A 9$ and $V_{C C}$ may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . $A 9$ and $V_{\text {PP }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. This is a stress rating only; functional operation of the devices at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (TC) $\ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (TC) $\ldots \ldots$. . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (Tc) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages:
Vcc for Am27LV010 +3.0 V to +3.6 V
Vcc for Am27LV010B +2.7 V to +3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified
(Notes 1, 2, 3 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
TTL and CMOS Inputs for Vcc $=3.0 \mathrm{~V}$ to 3.6 V						
VOH	Output HIGH Voltage	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$		2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.4	V
VIH	Input HIGH Voltage	\square		2.0	Vcc +0.3	V
VIL	Input LOW Voltage			-0.3	+0.8	V
ILI	Input Load Current	V IN $=0 \mathrm{~V}$ to Vcc	C/I Devices		1.0	$\mu \mathrm{A}$
			E/M Devices		1.0	
LLO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc	C/I Devices		5	$\mu \mathrm{A}$
			E/M Devices		5	
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\overline{C E}}=V_{\mathrm{V}}, \\ & \mathrm{f}=5 \mathrm{MHz} \\ & \text { lout }=0 \mathrm{~mA} \\ & \text { (Open Outputs) } \end{aligned}$	C/I Devices		15	mA
			E/M Devices		20	
Icc2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	TTL		0.6	mA
Icca	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	CMOS		25	$\mu \mathrm{A}$
IPP1	Vpp Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=\mathrm{VCC}$			100	$\mu \mathrm{A}$

Notes:

1. Vcc must be applied simultaneously or before $V_{P p}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27LV010 must not be removed from (or inserted into) a socket when VCc or VPP is applied.
3. $I_{C C 1}$ is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs overshoot to -2.0 V for periods less than 20 ns.

Maximum DC Voltage on output pins is $V_{c C}+0.5 \mathrm{~V}$, which may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$V_{c c}=3.6 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV032		CLV032		TS 032		Unit
			Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	12	8	10	10	12	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	12	15	9	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} C, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

JEDEC	Standard	Parameter Description	Test Conditions		Am27LV010/Am27LV010B					
					-120	-150	-200	-250	-300	Unit
tavov	tacc	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min						
				Max	120	150	200	250	300	
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min						ns
				Max	120	150	200	250	300	
tglov	toe	Output Enable to Output Delay	$\overline{C E}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	ns
				Max	50	65	75	100	120	
tehoz tGHOZ	tDF	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float (Note 2)		Min	0	0	0	0	0	ns
				Max	40	50	60	60	60	
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{O E}$, whichever occurred first		Min	0	0	0	0	0	ns
				Max	-	-	-	-	-	

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after Vpp.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27LV010 must not be removed from, or inserted into, a socket when VpP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.40 V to 2.4 V
Timing Measurement Reference Level-Inputs: 0.8 V and 2.0 V
Outputs: 0.8 V and 2.0 V

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17341A-8
AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.40 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

$\left.\begin{array}{lll|}\hline \text { WAVEFORM } & \text { INPUTS } & \text { OUTPUTS } \\ \text { Must } \mathrm{Be} \\ \text { Steady }\end{array} \quad \begin{array}{l}\text { Will Be } \\ \text { Steady }\end{array}\right\}$

SWITCHING WAVEFORM

1. $\overline{O E}$ may be delayed up to $t_{A C C}-$ toE after the falling edge of the addresses without impact on $t_{A C C}$.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

PROGRAMMING FLOW CHART

Figure 1. Flashrite Programming Flow Chart

DC PROGRAMMING CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1, 2 and 3)

Parameter Symbol	Parameter Description	Test Conditions :	Min	Max	Unit
lu	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10.0	$\mu \mathrm{A}$
ViL	Input LOW Level (All Inputs)		-0.3	0.8	V
V_{IH}	Input HIGH Level		3.0	$\mathrm{Vcc}+0.5$	V
VoL	Output LOW Voltage During Verify	loL $=2.1 \mathrm{~mA}$		0.45	V
VOH	Output HIGH Voltage During Verify	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V
V_{H}	As Auto Select Voltage		11.5	12.5	V
lce	Vcc Supply Current (Program \& Verify)			50	mA
Ipp	Vpp Supply Current (Program)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		30	mA
Vcc	Flashrite Supply Voltage		6.00	6.50	V
Vpp	Flashrite Programming Voltage		12.5	13.0	V

SWITCHING PROGRAMMING CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1, 2 and 3)

Parameter Symbols		Parameter Description	Min	Max	Unit
JEDEC	Standard				
tavel	tas	Address Setup Time	2		$\mu \mathrm{s}$
tozaL	toes	$\overline{O E}$ Setup Time	2		$\mu \mathrm{s}$
tovel	tos	Data Setup Time	2		$\mu \mathrm{s}$
tghax	tah	Address Hold Time	0		$\mu \mathrm{s}$
tehDx	toh	Data Hold Time	2		$\mu \mathrm{S}$
tahaz	tDFP	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	Vpp Setup Time	2		$\mu \mathrm{s}$
telehi	tpw	$\overline{\text { PGM }}$ Initial Program Pulse Width	95	105	$\mu \mathrm{s}$
tvcs	tvcs	Vcc Setup Time	2		$\mu \mathrm{s}$
teLPL	tces	$\overline{C E}$ Setup Time	2		$\mu \mathrm{s}$
talov	toe	Data Valid from OE		150	ns

Notes:

1. VCc must be applied simultaneously or before VPP, and removed simultaneously or after Vpp.
2. When programming the Am27LV010, a $0.1 \mu \mathrm{~F}$ capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

INTERACTIVE AND FLASHRITE PROGRAMMING ALGORITHM WAVEFORM (Notes 1 and 2)

Notes:

1. The input timing reference level is 0.8 V for $\mathrm{VIL}_{\mathrm{I}}$ and 3 V for $\mathrm{V}_{\mathrm{I}} \mathrm{H}$.
2. TOE and IDFP are characteristics of the device, but must be accommodated by the programmer.

DISTINCTIVE CHARACTERISTICS

- Single 3.3 V power supply
- Regulated power supply $3.0 \mathrm{~V}-3.6 \mathrm{~V}$
- Unregulated power supply $2.7 \mathrm{~V}-3.6 \mathrm{~V}$ (battery-operated systems)
Low power consumption:
- $10 \mu \mathrm{~A}$ typical CMOS standby current
- $90 \mu \mathrm{~W}$ maximum standby power
- 54 mW power at 5 MHz maximum

Fast access time
$-150 \mathrm{~ns}$
JEDEC-approved pinout

- Pin compatible with 5.0 V 2 Mbit EPROM
- Easy upgrade from 28 -pin JEDEC EPROMs
- 100% Flashrite ${ }^{\text {TM }}$ programming
- Typical programming time of 32 seconds
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- High noise immunity
- Compact 32 -pin DIP package requires no hardware change for upgrades to 8 Mbit
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27LV020 is a low voltage, low power 2 Mbit, ultraviolet erasable, progammable read-only memory organized as 256 K words by 8 bits per word.
The Am27LV020 operates from a single power supply of 3.3 V and is offered with two power supply tolerances. The Am27LV020 has a Vcc tolerance range of 3.3 V $\pm 0.3 \mathrm{~V}$ making it suitable for use in systems that have regulated power supplies. The Am27LV020B has a voltage supply range of $2.7 \mathrm{~V}-3.6 \mathrm{~V}$ making it an ideal part for battery operated systems.

Maximum power consumption of the Am27LV020 in standby mode is only $90 \mu \mathrm{~W}$. If the device is constantly accessed at 5 MHz , then the maximum power consumption increases to 54 mW . These power ratings are significantly lower than typical EPROMs. Also, as power consumption is proportional to voltage squared, 3.3 V
devices consume at least 57% less power than their 5.0 V counterparts. Due to its lower current and voltage, the Am27LV020 is well-suited for battery operated and portable systems as it extends the battery life in these systems. Typical applications are notebook and handheld computers as well as cellular phones.
The Am27LV020 is packaged in the industry standard 32-pin windowed ceramic DIP and LCC packages, as well as one-time programmable (OTP) packages. This device is pin-compatible with the 5.0 V devices.

The Am27LV020 uses AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm (100μ s pulses) resulting in typical programming times of 32 seconds. This device is manufactured on AMD's sub-micron process technology which provides high speed, low power and high noise immunity.

PRODUCT SELECTOR GUIDE

Family Part No	Am27LV020/Am27LV020B			
Ordering Part No:				
Am27LV020 (3.0 V-3.6 V)	-150	$\mathbf{- 2 0 0}$	$\mathbf{- 2 5 0}$	-300
Am27LV020B (2.7 V-3.6 V)		-200	$\mathbf{- 2 5 0}$	$\mathbf{- 3 0 0}$
Max Access Time (ns)	150	200	250	300
$\overline{\mathrm{CE}(E) \text { Access (ns) }}$	150	200	250	300
$\overline{\text { OE (G) Access (ns) }}$	65	75	100	120

CONNECTION DIAGRAMS

Top View
VPP

17342A-2

PLCC/LCC

17342A-3

Notes:

1. JEDEC nomenclature is in parenthesis.
2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

PIN DESCRIPTION

A0-A17	$=$ Address Inputs
$\overline{C E}(\mathrm{E})$	$=$ Chip Enable Input
$\mathrm{DQ0}-\mathrm{DQ7}$	$=$ Data Input/Outputs
$\overline{\mathrm{OE}(\mathrm{G})}$	$=$ Output Enable Input
$\overline{\mathrm{PGM}(\mathrm{P})}$	$=$ Program Enable Input
Vcc	$=$ Vcc Supply Voltage
V_{PP}	$=$ Program Supply Voltage
Vss	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27LV020-150	DC, DCB, DI, DIB, LC, LCB, LI, LIB
AM27LV020-200	
AM27LV020-250	DC, DCB, DE, DEB, DI, DIB, AM27LV020-300
AM27LV020B-200 AM27LVO20B-250 LCB, LI, LIB, LE, LEB	
AM27LV020B-300	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27LV020-150	JC, JI
AM27LV020-200	
AM27LV020-250	
AM27LV020-300	
AM27LV020B-200	
AM27LV020B-250	
AM27LV020B-300	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION
 APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

DEVICE NUMBER/DESCRIPTION
Am27LVO20-2 Megabit (262,144 x 8-Bit) Low Voltage CMOS EPROM with 3.0 V-3.6 V Vcc Tolerance
Am27LV020B -2 Megabit (262,144 x 8-Bit) Low Voltage CMOS EPROM with 2.7 V-3.6 V Vcc Tolerance

Valid Combinations	
AM27LV020-200	/BXA, /BUA
AM27LV020-250	
AM27LV020-300	
AM27LV020B-250	
AM27LV020B-300	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups

$$
1,2,3,7,8,9,10,11 .
$$

FUNCTIONAL DESCRIPTION

Erasing the Am27LV020

In order to clear all locations of their programmed contents, it is necessary to expose the Am27LV020 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27LV020. This dosage can be obtained by exposure to an ultraviolet lamp -wavelength of $2537 \AA$ - with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27LV020 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27LV020, and similar devices, will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2537 \AA$, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27LV020 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27LV020

Upon delivery, or after each erasure, the Am27LV020 has all $2,097,152$ bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27LV020 through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm$ 0.25 V is applied to the Vpp pin, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27LV020. This part of the algorithm is done at $V_{c c}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{c c}=V_{P P}=5.25 \mathrm{~V}$. Am27LV020 can be programmed using the same algorithm as the 5 V counterpart 27C020.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27LV020s in parallel with different data is also easily accomplished. Except for $\overline{\mathrm{CE}}$, all like inputs of the parallel Am27LV020 may be common. A TTL low-level program pulse applied to an Am27LV020 $\overline{\mathrm{CE}}$ input with $V_{P P}=12.75 \pm 0.25 \mathrm{~V}, \overline{\mathrm{PGM}}$ LOW, and $\overline{\mathrm{OE}} \mathrm{HIGH}$ will program that Am27LV020.

A high-level $\overline{C E}$ input inhibits the other Am27LV020s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ and $\overline{C E}$ at $V_{I L}, \overline{P G M}$ at V_{IH}, and V_{Pp} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27LV020.
To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27LV020. Two identifier bytes may then be sequenced from the device outputs by toggling address line A_{0} from $V_{I L}$ to $V_{I H}$. All other address lines must be held at VII during auto select mode.

Byte $0\left(A O=V_{I L}\right)$ represents the manufacturer code, and Byte $1\left(A 0=V_{H}\right)$, the device identifier code. For the Am27LV020, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27LV020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable $(\overline{\mathrm{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C C}-t_{0}$.

Standby Mode

The Am27LV020 has a CMOS standby mode which reduces the maximum Vcc current to $25 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27LV020 also has a TTL-standby mode which reduces the maximum Vcc current to 0.6 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathbb{H}}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Mixed Power Supply System

Am27LV020 (in 3.0 V to 3.6 V regulated power supply) can be intefaced with 5 V system only when the I/O pins (DQ0-DQ7) are not driven by the 5 V system. $\mathrm{V}_{\text {IHmax }}=$ Vcclv +2.2 V for address and clock pins and $V_{\text {IHmax }}=$

Vcclv +0.5 V for $1 / \mathrm{O}$ pins should be followed to avoid CMOS latch-up condition.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

Low memory power dissipation
Assurance that output bus contention will not occur
It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

		$\overline{\text { CE }}$	OE	$\overline{\text { PGM }}$	A0	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	X	Dout
Output Disable		VIL	V_{IH}	X	X	X	X	High Z
Standby (TTL)		VIH	X	X	X	X	X	High Z
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	X	High Z
Program		VIL	V_{H}	VIL	X	X	VPP	Din
Program Verify		VIL	VIL	V_{H}	X	X	VPP	Dout
Program Inhibit		ViH	X	X	X	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	Vil	VIL	X	V_{IL}	V_{H}	X	01H
	Device Code	VIL	VIL	X	V_{IH}	V_{H}	X	97H

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. X can be either $V_{I L}$ or $V_{I H}$
3. $A 1-A 8=A 10-A 17=V_{I L}$
4. See DC Programming Characteristics for VPP voltage during programming.

AMD

ABSOLUTE MAXIMUM RATINGS
Storage Temperature:
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss:
All pins except A9, Vpp, and
Vcc (Note 1) -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and Vpp (Note 2) - 0.6 V to 13.5 V
Vcc . -0.6 V to 7.0 V

Notes:

1. During transitions, the input may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to Vcc +2.0 V for periods of up to 20 ns.
2. During transitions, A9 and VPp may overshoot VSs to -2.0 V for periods of up to 20 ns . A9 and $V_{P P}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices Case Temperature (Tc) $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (TC) $\ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Read Voltages:
Vcc for Am27LV020 +3.0 V to +3.6 V
Vcc for Am27LV020B +2.7 V to +3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified
(Notes 1, 2, 3 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27L V020 must not be removed from (or inserted into) a socket when Vcc or Vpp is applied.
3. Icct is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to $V c c+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current
vs. Frequency
$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
17342A-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV032		CLV032		PL032		Unit
			Typ	Max	Typ	Max	Typ	Max	
Cin	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	12	8	10	8	10	pF
Cout	Output Capacitance	VOUT $=0 \mathrm{~V}$	12	15	9	12	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

PRELIMINARY									
Parameter Symbols		Parameter Description	Test Conditions		Am27LV020/Am27LV020B				
JEDEC	Standard				-150	-200	-250	-300	Unit
tavav	tacc	Address to Output Delay	$\overline{C E}=\overline{O E}=V_{\text {IL }}$	Min					ns
				Max	150	200	250	300	
telav	tce	Chip Enable Output Delay	$\overline{O E}=\mathrm{V}_{\text {IL }}$	Min					ns
				Max	150	200	250	300	
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min					ns
				Max	65	75	100	120	
$\begin{aligned} & \text { tEHQZ } \\ & \text { tGHQZ } \end{aligned}$	$\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float	.	Min	0	0	0	0	ns
				Max	50	60	60	60	
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	ns
				Max					

Notes:

1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27LV020 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$,

Input Rise and Fall Times: 20 ns,
Input Pulse Levels: 0.40 V to 2.4 V ,
Timing Measurement Reference Level-Inputs: 0.8 V and 2.0 V .
Outputs: 0.8 V and 2.0 V

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17342A-6
AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.40 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	InPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
$\square \square$	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
80×0	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is High Impedance "Off" State

SWITCHING WAVEFORM

PROGRAMMING FLOW CHART

Figure 1. Flashrite Programming Flow Chart

DC PROGRAMMING CHARACTERISTICS (TA $=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1, 2 and 3)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
lıI	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		10.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input LOW Level (All Inputs)		-0.3	0.8	V
$\mathrm{V}_{1 H}$	Input HIGH Level		3.0	Vcc +0.5	V
Vol	Output LOW Voltage During Verify	$1 \mathrm{~L}=2.1 \mathrm{~mA}$		0.45	V
Voh	Output HIGH Voltage During Verity	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V
V_{H}	Ag Auto Select Voltage		11.5	12.5	V
Icc	Vcc Supply Current (Program \& Verify)			50	mA
lpp	Vpp Supply Current (Program)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		30	mA
Vcc	Flashrite Supply Voltage		6.00	6.50	V
VPP	Flashrite Programming Voltage		12.5	13.0	V

SWITCHING PROGRAMMING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ (Notes 1, 2 and 3)

Parameter Symbols		Parameter Description	Min	Max	Unit
JEDEC	Standard				
tavel	tas	Address Setup Time	2		$\mu \mathrm{s}$
tozgl	toes	OE Setup Time	2		$\mu \mathrm{s}$
tovel	tos	Data Setup Time	2		$\mu \mathrm{s}$
tghax	taH	Address Hold Time	0		$\mu \mathrm{s}$
tehdx	toh	Data Hold Time	2		$\mu \mathrm{s}$
tghoz	tofp	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	VPP Setup Time	2		$\mu \mathrm{s}$
teleh1	tpw	$\overline{\text { PGM }}$ Initial Program Pulse Width	95	105	$\mu \mathrm{s}$
tvcs	tvcs	Vcc Setup Time	2		$\mu \mathrm{s}$
telpl	tces	$\overline{C E}$ Setup Time	2		$\mu \mathrm{s}$
tglov	toe	Data Valid from OE		150	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. When programming the Am27LVO20, a $0.1 \mu F$ capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

INTERACTIVE AND FLASHRITE PROGRAMMING ALGORITHM WAVEFORM (Notes 1 and 2)

Notes:

1. The input timing reference level is 0.8 V for V_{IL} and 3 V for V_{IH}.
2. TOE and TDFP are characteristics of the device, but must be accommodated by the programmer.

SECTION

\leftrightarrows ExpressROM ${ }^{\text {TM }}$ MEMORIES

Section 5 ExpressROM ${ }^{\text {TM }}$ Memories 5-1
An Introduction to ExpressROM ${ }^{\text {TM }}$ Memories 5-3
Am27X64 64K (8,192 $\times 8$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-8
Am27X128 $\quad 128 \mathrm{~K}\left(16,384 \times 8\right.$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-17
Am27X256 256K (32,768 $\times 8$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-26
Am27X512 $512 \mathrm{~K}\left(65,536 \times 8\right.$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-36
Am27X010 1 Megabit (131,072 $\times 8$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-45
Am27X1024 1 Megabit ($65,536 \times 16$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-55
Am27X020 2 Megabit (262,144 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-64
Am27X2048 2 Megabit (131,072 $\times 16$-Bit) CMOS
ExpressROM ${ }^{\text {TM }}$ Device 5-73
Am27X040 4 Megabit (524,288×8-Bit) CMOS 5-82
Am27X400 4 Megabit ($524,288 \times 8$-Bit/262,144 $\times 16$-Bit) ROM $\begin{array}{ll}\text { Am27X400 } & 4 \text { Megabit (} 524,288 \times 8 \text {-Bit/262, } 144 \times 16-B \\ & \text { Compatible CMOS ExpressROM }\end{array}$ 5-91
Am27X4096 4 Megabit ($262,144 \times 16$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device 5-100
Am27X080 8 Megabit ($1,048,576 \times 8$-Bit) CMOS
ExpressROM ${ }^{\text {TM }}$ Device 5-109
Am27X800 8 Megabit (1,048,576 x 8-Bit/524,288 $\times 16$-Bit) ROM Compatible CMOS ExpressROM ${ }^{T M}$ Device 5-118

AN INTRODUCTION TO ExpressROM ${ }^{\text {TM }}$ MEMORIES

ExpressROM memories are an exciting product family created by Advanced Micro Devices to offer the system manufacturer lower cost in the manufacturing process. ExpressROM devices are delivered pre-programmed with your stable code in a low cost plastic package and are 100% compatible with the EPROMs they replace. An ExpressROM device is manufactured with the same process as AMD's standard U.V. EPROM equivalent, with the topside passivation layer for plastic encapsulation. Since a standard EPROM die is used, you are assured that the ExpressROM family is identical in architecture, density, and pinout to both AMD's current and future generations of high performance CMOS EPROMs.

ExpressROM devices are inventoried unprogrammed. Upon verification of your code, every device is rigorously tested under both AC and DC operating conditions prior to shipment. Also, because ExpressROM memories are shipped board-ready with factory guaranteed quality, your ship-to-stock or Just-In-Time programs can be easily implemented. At Advanced Micro Devices, we ship them the way you want them-ready for your system. And there are none of the delays, costs or risks normally associated with custom ROMs.

Table 5-1 Non-Volatile Memory Alternatives

	UV EPROM	OTP	ExpressROM Device	ROM
Leadtime	Manufacturer's Leadtime	Manufacturer's Leadtime	2 Weeks	6-10 Weeks
Set-up Charge	No	No	No	Yes
Minimum Quantity	0	0	5 K	$15-20 \mathrm{~K}$
Fully Tested Custom Pattern	No	No	Yes	Yes
User Programming Required	Yes	Yes	No	No
Auto Insertion	No	Yes	Yes	Yes
Flexibility	Reprogrammable	Cannot Reprogram	Fixed 2 Weeks Prior to Use	Fixed 6-10 Weeks Prior to Use

Plastic packaging inherently provides a cost savings over standard EPROMs packaged in expensive windowed ceramic DIPs. However, component price is only a small part of your true in-system cost. ExpressROM devices allow you to eliminate or reduce costs in several other areas: programming, testing, labeling and production. Since ExpressROM memories are delivered with your code, you will reap savings by eliminating programming costs and associated yield losses. Incoming inspection may often be eliminated since your ExpressROM devices have been thoroughly tested and are guaranteed to operate to full specifications with your code! Additional in-house cost savings can be attained by using automatic insertion equipment in lieu of manual placement into sockets.

ExpressROM devices were designed to provide a low cost alternative for EPROM users without the liabilities of other non-volatile memory alternatives. Although ROMs have a
lower component cost, they are economically feasible only at high volume and have the risks of long leadtimes and limited manufacturing flexibility. While OTP EPROMs offer the systems manufacturer the ability to respond to varying codes during production, they force the user to incur additional and hidden costs.

ExpressROM Memories Lower Cost

ExpressROM memories eliminate or reduce costs in several areas. These include programming, testing, marking and labeling. Standard programming of blank devices may reveal other hidden expenses such as costs associated with possible programming yield losses, capacity constraints, labels and other supplies, rework, inventory and associated queue time, handling, maintenance, labor and personnel, transit costs, inspections, floor space and other overhead. AMD's ExpressROM memories add value by eliminating or reducing all these costs in your system manufacturing environment.

Our mission at AMD is to deliver you the services and products you demand to build the cost competitive systems you need to win in your markets. The ExpressROM memory provides this opportunity. As one of the world's five largest IC manufacturers and the first to market with a 1 Mbit EPROM, we appreciate the value of efficient manufacturing. Compressing time-to-market cycles, improving yields and providing high levels of quality are invaluable strategies for today's manufacturer. At Advanced Micro Devices we are proud to offer another tool to give our customers this strategic advantage, the ExpressROM Memory: the ROM without the wait!

ExpressROM Memory Flow

AMD's OTP EPROM devices are taken from inventory in our off-shore testing facility and processed as shown.

ORDERING ExpressROM DEVICES

The following procedure outlines the method for ordering an ExpressROM device. For more information, contact your local AMD sales representative.

1) Send in the Code

Please have your field sales representative provide you with the latest version of the ExpressROM Code Approval Form (see Page 5-7). This form will provide all the necessary information required for processing your order. After receiving this form, fill out the Code Transmittal and Ordering Information sections. Then send the form with two (2) master copies of each code being ordered to your field sales representative. To minimize the verification turn-around process, supply two master copies of each code using standard EPROMs identical in architecture and density as the ExpressROM device being ordered. Two master copies per code are required in order to guarantee proper code transmission. Please be sure the checksum is clearly identified on each master EPROM.

2) AMD Checks the Code and Generates a Verification EPROM

We check that both EPROMs contain the same code to make certain there was not a mix-up in shipping your codes to the factory as well as ensuring that the integrity of your code has
 been preserved. After confirming this, a unique 5 -digit code designation is assigned. The AMD part number is formed by adding the 5 -digit code designation as a suffix to the ExpressROM Device number. See below:

AMD then logs in your code with the 5-digit code designation and generates a verification EPROM. The verification EPROM along with one of your master EPROMs and the ExpressROM Code Approval Form should be back in your hand for final approval within 2-3 days. The other master EPROM remains at AMD for our records. Please note: the verification EPROM is simply a means of transferring the code and is not necessarily indicative of the ExpressROM product being ordered.

3) Confirm the Copy and Place the Order

Once the verification EPROM is approved, sign the Approval Section of the ExpressROM Code Approval Form and return it to AMD with your purchase order. Upon receipt of the signed form and a purchase order, AMD enters the order and begins production. Logged codes are maintained for 60 days and then deleted if there is no purchase order placed.

TERMS AND CONDITIONS

You should be aware of the following when ordering ExpressROM devices.

1) AMD will maintain customer code confidentiality.
2) AMD will absorb all initial set-up costs.
3) All orders are subject to minimum quantities. The minimum quantity for initial orders is 5,000 pieces.
4) AMD may begin production 14 days in advance of the AMD scheduled ship date covered by a purchase order and requires 14 days minimum notification from the AMD scheduled ship date for code changes. The customer is liable for all work-in-process covered by the same purchase order.
5) No schedule changes may be made within 14 days of AMD scheduled ship date.
6) All unpackaged die product procured by the customer is for use exclusively in the customer's end products. Any other use of die product must be approved in writing by AMD.
7) Code changes with Work-In-Process will require additional charges and may affect delivery schedules.
8) All other terms and conditions which normally apply to AMD's EPROMs (if any) also apply with AMD's ExpressROM memories.

ExpressROM ${ }^{\text {TM }}$ Code Approval Form

CODE TRANSMITTAL AND ORDERING INFORMATION SECTION

Rev. 7 11/05/92
Please complete items 1 thru 9 . To minimize the verification turn-around process, supply 2 master copies of each code using EPROMs of the same architecture and density as the ExpressROM ${ }^{\text {M }}$ Device being ordered. Also, be sure the checksum is clearly identified on each master EPROM.

CODE TRANSMITTAL SECTION

\qquad 2. Date:
3. Incoming Master's Part \#: \qquad 4. Master's Checksum: \qquad

ORDERING INFORMATION SECTION

Please check the appropriate ExpressROM ${ }^{\text {TM }}$ Memory data sheet for valid combinations and mark appropriate boxes below:
5. Part \#:
\square Am27X64
\square Am27X128
Am27X256
\square Am27X512
Am27X010
Am27X1024
Am27X020
Am27X048
Am27X040
Am27X400
Am 27×4096

- -55
$\square-70$
-70
-70
$\square-75$
$\square-90$
$\square-90$
-90
$\square-90$
$\square-105$
-90
$\square-120$
\square
\square
$\square-150$
$\square-150$
-150
$\square-150$
$\square-150$
$\square-150$
$\square-150$
$\square-150$
$\square-150$
\square
\square
\square
$\begin{aligned} & \square-200 \\ & \square \\ & \square \\ & \square \\ & \square\end{aligned}-2000$
$\begin{aligned} & \square-255 \\ & \square \\ & \square \\ & \square \\ & \square \\ & \square\end{aligned}-2555050$

6. Package and Temperature:

\square Other \qquad
7. AMD Standard Part Number: \qquad
8. Customer Ordering Part Number: \qquad
9. Please indicate the exact marking and complete the blank sections (11 characters per line including spaces, $\bigcirc=2$ spaces if required).

> AMD Logo
> ExpressROM ${ }^{\text {M }}$

Date Code

APPROVAL SECTION TERMS AND CONDITIONS

AMD will maintain customer code confidentiality. AMD will absorb all initial set-up costs.
AMD may begin production 14 days in advance of the AMD scheduled ship date covered by a purchase order and requires 14 days minimum notification from the AMD scheduled ship date for code changes.
The customer is liable for all work-in-process covered by the same purchase order.
No schedule changes may be made within 14 days of AMD scheduled ship date.
All unpackaged die product procured by the customer is for use exclusively in the customer's end products.
Any other use of die product must be approved in writing by AMD.
All orders are subject to minimum quantities.
Code changes with Work In Process will require additional charges and may affect delivery schedules.

AMD Standard Part \#: Am27X \qquad
Customer Signature: \qquad
Name (Print): \qquad

Approved Checksum: \qquad
Date: \qquad
Title: \qquad

Am27X64

64 Kilobit (8,192 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code
- Fast access time
- 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to

Vcc +1 V

- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X64 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 8,192 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide aboard-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X64 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No	Am27X64						
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$							
	-55	-70	-90	-120	-150	-200	
Max Access Time (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G})}$ Access (ns)	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

12084D-2

Note:

PLCC

12084D-3

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A12 } & =\text { Address Inputs } \\ \overline{\mathrm{CE}}(\overline{\mathrm{E}}) & =\text { Chip Enable Input } \\ \mathrm{DQ} 0-\mathrm{DQ7} & =\text { Data Inputs/Outputs } \\ \mathrm{DU} & =\text { No External Connection (Do Not Use) } \\ \mathrm{NC} & =\text { No Internal Connection } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ \overline{\mathrm{PGM}}(\overline{\mathrm{P}}) & =\text { Program Enable Input } \\ \mathrm{Vcc} & =\text { Vcc Supply Voltage } \\ \mathrm{VPP} & =\text { Program Supply Voltage } \\ \mathrm{Vss} & =\text { Ground }\end{array}$

LOGIC SYMBOL

AMD

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:


```
\(\mathrm{C}=\) Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\(1=\) industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
PACKAGE TYPE
\(P=28-\) Pin Plastic Dual In-Line Package (PD 028)
\(J=32-\mathrm{Pin}\) Rectangular Plastic Leaded
Chip Carrier (PL 032)
SPEED OPTION
See Product Selector Guide and
Valid Combinations
DEVICE NUMBER/DESCRIPTION
Am27X64
64 Kilobit ( \(8,192 \times 8\)-Bit) CMOS ExpressROM \({ }^{\text {M }}\) Device
```

Valid Combinations	
AM27X64-55	PC, JC, PI, JI
AM27X64-70	
AM27X64-90	
AM27X64-120	
AM27X64-150	
AM27X64-200	
AM27X64-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{\operatorname{CE}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27X64 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V c c \pm 0.3 \mathrm{~V}$. The Am27X64 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTLstandby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7-\mu \mathrm{F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	$V_{\text {PP }}$	Outputs
Read	VIL	VIL	X	X	DOUT
Output Disable	X	VIH	X	X	Hi-Z
Standby (TTL)	V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V I H$ or V / L

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss
All pins except $\mathrm{Vcc} \ldots . . .{ }^{-0.6} \mathrm{~V}$ to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc -0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or //O pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to -2.0 Vforperiods of up to 20 ns. Maximum DC voltage on input and $1 / O$ pins is $V_{c c}+0.5 V$ which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27X64-255 +4.75 V to +5.25 V
Vcc for all other valid +4.50 V to +5.50 V combinations
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}^{=}-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{H}	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage		-0.5	+0.8	V
$\mathrm{l}, 1$	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $+\mathrm{Vcc}^{\text {c }}$		1.0	$\mu \mathrm{A}$
lıo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to $+V_{\text {cc }}$		1.0	$\mu \mathrm{A}$
Iccı	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \mathrm{f}=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		25	mA
lcc 2	Vcc TTL Standby Current	$\overline{C E}=V_{1 H}$		1.0	mA
Icce	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X64 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. ICC, is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum $D C$ Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 028		PL 032		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5	10	10	12	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	10	11	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

 (Notes 1, 3 and 4)| Parameter Symbols | | Parameter Description | Test Conditions | | Am27X64 | | | | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JEDEC | Standard | | | | -55 | -70 | -90 | -120 | -150 | -200 | -255 | |
| tavav | tRCC | Address to Output Delay | $\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | Min | - | - | - | - | - | - | - | |
| | | | | Max | 55 | 70 | 90 | 120 | 150 | 200 | 250 | ns |
| telov | tce | Chip Enable to Output Delay | $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$ | Min | - | - | - | - | - | - | - | |
| | | | | Max | 55 | 70 | 90 | 120 | 150 | 200 | 250 | ns |
| tglav | toe | Output Enable to Output Delay | $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$ | Min | - | - | - | - | - | - | - | |
| | | | | Max | 35 | 40 | 40 | 50 | 50 | 50 | 50 | ns |
| tEHQZ
 tGHQZ | tDF
 (Note 2) | Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float | | Min | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | | | Max | 25 | 25 | 25 | 30 | 30 | 30 | 30 | ns |
| taxax | tOH | Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first | | Min | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | | | Max | - | - | - | - | - | - | - | ns |

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X64 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. For the -55 and -70

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0 V to 3 V
Timing Measurement Reference Level: 1.5 V for inputs and outputs
For all other versions
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$C \mathrm{~L}=100 \mathrm{pF}$ including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic " 0 ". Input pulse rise and fall times are ≤ 20 ns.

12084D-8
AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$ for -55 and -70 .

AMD
KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	Will be Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High- Impedance "Off" State	

KS000010

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-$ tOE after the falling edge of the addresses without impact on $t_{A C C}$.

12084D-9
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

DISTINCTIVE CHARACTERISTICS

■ As an OTP EPROM alternative:

- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code

Fast access time

- 55 ns

■ Single +5 V power supply

- Compatible with JEDEC-approved EPROM pinout
- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
-' $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from - $\mathbf{1} \mathrm{V}$ to Vcc +1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X128 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 16,384 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X128 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X128						
Ordering Part No: Vcc $\pm 5 \%$ Vcc $\pm 10 \%$							
						$\mathbf{- 2 5 5}$	
Max Access Time (ns)	-55	-70	-90	-120	$\mathbf{- 1 5 0}$	$\mathbf{- 2 0 0}$	
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access (ns)	55	70	90	120	150	200	250

CONNECTION DIAGRAMS

Top View

PLCC

12083D-3
Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A13 = Address Inputs
$\overline{\mathrm{CE}}(\overline{\mathrm{E}}) \quad=$ Chip Enable Input
DQ0-DQ7 = Data Inputs/Outputs
DU $\quad=$ No External Connection (Do Not Use)
NC = No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \quad=$ Output Enable Input
$\overline{\mathrm{PGM}}(\overline{\mathrm{P}}) \quad=$ Program Enable Input
Vcc $\quad=$ Vcc Supply Voltage
Vpp $\quad=$ Program Supply Voltage
Vss $\quad=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:


```
\(\mathrm{C}=\) Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\(\mathrm{I}=\) Industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
PACKAGE TYPE
\(P=28-\)-Pin Plastic Dual In-Line Package (PD 028)
\(J=32-\) Pin Rectangular Plastic Leaded Chip Carrier (PL 032)
SPEED OPTION
See Product Selector Guide and
Valid Combinations
DEVICE NUMBER/DESCRIPTION
Am27X128
128 Kilobit ( \(16,384 \times 8\)-Bit) CMOS ExpressROM \({ }^{\top M}\) Device
```

Valld Combinations	
AM27X128-55	PC, JC, PI, JI
AM27X128-70	
AM27×128-90	
AM27X128-120	
AM27X128-150	
AM27X128-200	
AM27X128-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable $\overline{O E}$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A C C}-$ toes. $^{\text {. }}$

Standby Mode

The Am27X128 has a CMOS standby mode which reduces the maximum $\mathrm{Vcc}_{\text {c current to }} 100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V c c \pm 0.3 \mathrm{~V}$. The Am27X128 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathbb{I}}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

MODE SELECT TABLE

Mode	Pins	$\overline{\text { CE }}$	$\overline{\text { OE }}$	$\overline{\text { PGM }}$	$\overline{V_{P P}}$
Read	V_{IL}	V_{IL}	X	X	Outputs
Output Disable	X	V_{IH}	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{VCC}_{ \pm} 0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $\ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $\ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V ss
All pins except $\mathrm{Vcc} \ldots \ldots .-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .-0.6 \mathrm{~V}$ to +7.0 V
Note:

1. Minimum DC voltage on input or $/$ /Opins is -0.5 V. During transitions, the inputs may overshoot $V_{s s}$ to-2.0 V forperiods of up to 20 ns . Maximum DC voltage on input and $1 / O$ pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (TC) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Read Voltages

Vcc for Am27X128-255 +4.75 V to +5.25 V
Vcc for all other
valid combinations +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{OH}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{OL}=2.1 \mathrm{~mA}$		0.45	V
VIH	Input HIGH Voltage		2.0	Vcc +0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
IcC1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{C E}=V I L, f=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		25	mA
lcc2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27X128 must not be removed from (or inserted into) a socket when VCc or VPP is applied.
3. ICC1 is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to VCC +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature $\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$

12083D-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 028		PL 032		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	5	10	10	12	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	10	11	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

(Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X128							Unit
JEDEC	Standard				-55	-70	-90	-120	-150	-200	-255	
tavov	tacc	Address to Output Delay	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	Min	-	-	-	-	-	-	-	
				Max	55	70	90	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	-	-	-	
				Max	55	70	90	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{C E}=V_{\text {II }}$	Min	-	-	-	-	-	-	-	
				Max	35	40	40	50	50	50	50	ns
tehoz tghaz	$\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$	Chip Enable'HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	0	0	ns
				Max	25	25	25	30	30	30	30	
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	0	0	
				Max	-	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X128 must not be removed from (or inserted into) a socket or board when VPP or VCc is applied.
4. For the -55 and -70 :

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$ Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0 V to 3 V
Timing Measurement Reference Level: 1.5 V for inputs and outputs
For all other versions:
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$C L=100 \mathrm{pF}$ including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

12083D-8
AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$ for -55 and -70 .

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	Will be Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not	Center Apply	Cine is High- Impedance "Off" State

KS000010

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to tACC-toE after the falling edge of the addresses without impact on tACC.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X256
 256 Kilobit (32,768 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code
- Fast access time
- 55 ns
- Single +5 V power supply
- Compatlble with JEDEC-approved EPROM pinout
$\pm 10 \%$ power supply tolerance
- High noise immunity

■ Low power dissipation

- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), Plastic Leaded Chip Carrier (PLCC), and Thin Small Outline Package (TSOP)
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X256 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under $A C$ and DC operating conditions to your stable code. It is organized as 32,768 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC), and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X256 offers separate Output Enable $(\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

12082D-1

PRODUCT SELECTOR GUIDE

Famlly Part No.	Am27X256						
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$							
	-55	-70	-90	-120	-150	-200	
Max Access Time (ns)	55	70	90	120	150	200	250
$\overline{\mathrm{CE}(\overline{\mathrm{E}}) \text { Access (ns) }} \quad$	55	70	90	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access (ns)	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

12082D-2
12082D-3

1. JEDEC nomenclature is in parentheses.

TSOP*

$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}})$	1 -		32		NC
A11	2		31		A10
A9	3		30		$\overline{C E}(\mathrm{E})$
A8	4		29		DQ7
A13	5		28		DQ6
NC	6		27	\square	DQ5
A14	7		26	\square	DQ4
Vcc	8	Am27X256	25		DQ3
Vpp	9	Standard Pinout	24	\square	Vss
NC	10		23	是	DQ2
A12	11		22		DQ1
A7	12		21	\square	DQ0
A6	13		20		NC
A5	14		19		AO
A4	15		18		A1
A3	16		17		A2

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0-A14 $=$ Address Inputs
$\overline{\mathrm{CE}}(\overline{\mathrm{E}}) \quad=$ Chip Enable Input
DQ0-DQ7 = Data Inputs/Outputs
DU $\quad=$ No External Connection (Do Not Use)
NC $\quad=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \quad=$ Output Enable Input
Vcc $\quad=$ Vcc Supply Voltage
Vpp $\quad=$ Program Supply Voltage
VSS $=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X256-55	
AM27X256-70	
AM27X256-90	PC, JC, PI, JI,
AM27X256-120	
AM27X256-150	
AM27X256-200	
AM27X256-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should beused for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A c c}$-toe.

Standby Mode

The Am27X256 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{C c} \pm 0.3 \mathrm{~V}$. The Am27X256 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{1 \mathrm{H}}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

MODE SELECT TABLE

Mode	Pins	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	Vpp
Read	V_{IL}	V_{IL}	X	Outputs
Output Disable	X	V_{IH}	X	Hi
Standby (TTL)	V_{IH}	X	X	
Standby (CMOS)	$V_{c c} \pm 0.3 \mathrm{~V}$	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $\ldots \ldots \ldots \ldots . . .65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V_{ss}
All pins except $\mathrm{V}_{\mathrm{cc}} \ldots \ldots . \mathrm{F}^{-0.6 \mathrm{~V} \text { to } \mathrm{V} c \mathrm{c}+0.6 \mathrm{~V}, ~}$
Vcc -0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/Opins is -0.5 V. During transitions, the inputs may overshoot $V_{s s}$ to-2.0 Vforperiods of up to 20 ns . Maximum DC voltage on input and //O pins is Vcc + 0.5 V which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27X256-255 +4.75 V to +5.25 V
Vccfor all other valid combinations +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

AMD
DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{1}	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	V
V IL	Input LOW Voltage		-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to $+\mathrm{Vcc}_{\text {cc }}$		1.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{C E}=V_{I L}, f=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		25	mA
lcc2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
1 cc 3	Vcc CMOS Standby Current	$\overline{C E}=V_{c c} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: the Am27X256 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
3. IcCt is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to VCC +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$
12082D-7

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 028		PL 032		TS 032		Unit
			Typ	Max	Typ	Max	Typ	Max	
$\mathrm{C}_{1 \times}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	6	10	8	12	10	12	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$	8	10	8	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X256							Unit
JEDEC	Standard				-55	-70	-90	-120	-150	-200	-255	
tavov	tacc	Address to Output Delay	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	Min	-	-	-	-	-	-	-	
				Max	55	70	90	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	-	-	-	
				Max	55	70	90	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	-	-	
				Max	35	40	40	50	50	50	50	ns
$\begin{aligned} & \text { tEHOZ } \\ & \text { t } G H Q Z \end{aligned}$	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	0	0	
				Max	25	25	25	30	30	30	30	ns
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	0	0	
				Max	-	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X256 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. For the -55 and -70 :

Output Load: 1 TTL gate and $C_{L}=30 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0 V to 3 V
Timing Measurement Reference Level: 1.5 V for inputs and outputs
For all other versions:
Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$C \mathrm{~L}=100 \mathrm{pF}$ including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

12082D-9
AC Testing: Inputs are driven at 3.0 V for a logic " 1 " and 0 V for a logic " 0 ". Input pulse rise and fall times are ≤ 20 ns for -55 and -70 .

KEY TO SWITCHING WAVEFORMS
\(\left.$$
\begin{array}{lll|}\hline \text { WAVEFORM } & \begin{array}{l}\text { INPUTS } \\
\text { Must be } \\
\text { Steady }\end{array} & \begin{array}{l}\text { Will be } \\
\text { Steady }\end{array} \\
\text { May } \\
\text { Change } \\
\text { from H to L }\end{array}
$$ \quad \begin{array}{l}Will be

Changing

from H to L\end{array}\right\}\)| May |
| :--- |
| Change |
| from L to H |\quad| Will be |
| :--- |
| Changing |
| from L to H |

KS000010

SWITCHING WAVEFORMS

12082D-10

Notes:

1. $\overline{O E}$ may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X512
 512 Kilobit (65,536 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed

As a Mask ROM alternative:

- Shorter leadtime
- Lower volume per code

Fast access time

- 90 ns

Single +5 V power supply
Compatible with JEDEC-approved EPROM pinout

- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to

Vcc+1 V

- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X512 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 65,536 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 90 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X512 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

12081D-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X512				
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$					
					-255
Max Access Time (ns)	-90	-120	-150	-200	
$\overline{C E}(\bar{E})$ Access (ns)	90	120	150	200	250
$\overline{\mathrm{OE}(\bar{G}) \text { Access (ns) }} \quad 190$	120	150	200	250	

CONNECTION DIAGRAMS

Top View

12081D-3
12081D-2

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

$\begin{array}{ll}\text { A0-A15 } & =\text { Address Inputs } \\ \overline{C E}(\bar{E}) & =\text { Chip Enable Input } \\ \text { DQ0-DQ7 } & =\text { Data Inputs/Outputs } \\ \text { DU } & =\text { No External Connection (Do Not Use) } \\ \mathrm{NC} & =\text { No Internal Connection } \\ \overline{\mathrm{OE}}(\overline{\mathrm{G}}) & =\text { Output Enable Input } \\ V_{\mathrm{CC}} & =\text { Vcc Supply Voltage } \\ V_{\mathrm{PP}} & =\text { Program Supply Voltage } \\ V_{S S} & =\text { Ground }\end{array}$

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

```
AM27X512
```



```
CODE DESIGNATION
Assigned by AMD
TEMPERATURE RANGE
\(\mathrm{C}=\) Commercial \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\(1=\) Industrial \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
PACKAGE TYPE
\(P=28-\) Pin Plastic Dual In-Line Package (PD 028)
\(J=32-\) Pin Rectangular Plastic Leaded Chip Carrier (PL 032)
\(E=32-\) Pin Thin Small Outline Package (TS 032)
SPEED OPTION
See Product Selector Guide and Valid Combinations
DEVICE NUMBER/DESCRIPTION
Am27X512
512 Kilobit ( \(65,536 \times 8\)-Bit) CMOS ExpressROM \({ }^{\text {M }}\) Device
```

Valid Combinations	
AM27X512-90	
AM27X512-120	PC, JC, PI, JI,
AM27X512-150	
AM27X512-200	
AM27X512-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{C E}$) is the power control and should be used for device selection. Output Enable $\overline{O E}$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (t_{E}). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27X512 has a CMOS standby mode which reduces the maximum V_{cc} current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27X512 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in ΠL-standby when $\overline{C E}$ is at V_{I}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

MODE SELECT TABLE

Mode	Pins	CE	OE $V_{P P}$
Read	V_{IL}	V_{IL}	Outputs
Output Disable	X	V_{IH}	DOUT
Standby (TTL)	V_{IH}	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{Vcc}^{2} \pm 0.3 \mathrm{~V}$	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products .	$5^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $\mathrm{V}_{\text {ss }}$	
All pins except Vcc	-0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc	-0.6 V to +7.0

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot $V_{S S}$ to-2.0 Vforperiods of up to 20 ns . Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27X512-255 +4.75 V to +5.25 V
Vcc for all other
valid combinations
+4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Voh	Output HIGH Voltage	$\mathrm{loH}=-400 \mu \mathrm{~A}$	2.4		V
VoL	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{H}	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	V
V_{IL}	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	$\mathrm{V}_{\mathrm{iN}}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
lıo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{VL} . \mathrm{f}}=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		30	mA
Icce2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{C E}=V_{c c} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: the Am27X512 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
3. ICC1 is tested with $\overline{O E} N_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to $\mathrm{VCC}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$
12081D-5

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$
12081D-6

AMD

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 028		PL 032		TS 032		Unit
			Typ	Max	Typ	Max	Typ	Max	
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	6	10	9	12	10	12	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$	8	10	9	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X512					Unit
JEDEC	Standard				-90	-120	-150	-200	-255	
tavav	trce	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Min	-	-	-	-	-	
				Max	90	120	150	200	250	ns
telav	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	90	120	150	200	250	ns
tglav	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	40	50	50	50	50	ns
tehaz tghoz		Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	
				Max	30	30	30	30	30	ns
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	
				Max	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X512 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Input pulse rise and fall times are $<20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	Will be Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High. Impedance "Off" State	

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to tACC-toE after the falling edge of the addresses without impact on $t_{A C C}$.
2. IDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

FINAL

Am27X010

1 Megabit (131,072 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

- As an OTP EPROM alternative:

- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code
- Fast access time
- 105 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
■ $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-LIne Package (PDIP), Plastic Leaded Chip Carrier (PLCC), and Thin Small Outline Package (TSOP)
- Latch-up protected to 100 mA from - $\mathbf{1} \mathrm{V}$ to Vcc +1 V
■ Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X010 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 105 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X010 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X010				
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$	-105				-255
		-120	-150	-200	
Max Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	100	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G})}$ Access (ns)	50	50	65	75	100

CONNECTION DIAGRAMS

Top View

PDIP

Notes:
12080D-2

1. JEDEC nomenclature is in parentheses.

PLCC

TSOP*

*Contact local AMD sales office for package availability
12080D-4

PIN DESIGNATIONS

A0-A16 = Address Inputs
$\overline{C E}(\bar{E}) \quad=$ Chip Enable Input
DQ0-DQ7 $=$ Data Inputs/Outputs
DU $\quad=$ No External Connection (Do Not Use)
NC $=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \quad=$ Output Enable Input
$\overline{\mathrm{PGM}}(\overline{\mathrm{P}}) \quad=$ Enable Input
Vcc $\quad=$ Vcc Supply Voltage
VPp = Program Supply Voltage
Vss = Ground

LOGIC SYMBOL

AMD

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X010-105	$\begin{aligned} & \mathrm{PC}, \mathrm{JC}, \mathrm{PI}, \mathrm{Jl}, \\ & \mathrm{EC}, \mathrm{EI} \end{aligned}$
AM27X010-120	
AM27X010-150	
AM27X010-200	
AM27X010-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output ($t_{C E}$). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C C}-t c e$.

Standby Mode

The Am27X010 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{Cc}} \pm 0.3 \mathrm{~V}$. The Am27X010 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\text {IH }}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

MODE SELECT TABLE

Mode	Pins	$\overline{\text { CE }}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	VPP
Read	V_{IL}	V_{IL}	X	X	Outputs
Output Disable	X	V_{IH}	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{VCC}_{ \pm} 0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss All pins except Vcc	$-0.6 \mathrm{~V} \text { to } \mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc	. . -0.6 V to +7.0 V
Note:	

1. Minimum $D C$ voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to-2.0 V forperiods of up to 20 ns . Maximum DC voltage on input and I/O pins is Vcc +0.5 V which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Read Voltages

Vccfor Am27X010-XX5 +4.75 V to +5.25 V
Vcc for Am27X010-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{lot}=2.1 \mathrm{~mA}$		0.45	V
V_{H}	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage		-0.5	+0.8	\checkmark
LıI	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {cc }}$		1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$
Icc 1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=V_{\mathrm{IL}}, f=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		30	mA
lcc 2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27X010 must not be removed from (or inserted into) a socket when VCc or VPP is applied.
3. ICC1 is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to Vcc +2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$
12080D-6

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

AMD

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 032		PL 032		TS 032		Unit
			Typ	Max	Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	8	12	8	10	10	12	pF
Cout	Output Capacitance	$V_{\text {OUt }}=0 \mathrm{~V}$	11	14	11	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X010					Unit
JEDEC	Standard				-105	-120	-150	-200	-255	
tavov	tacc	Address to Output Delay	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V} \mathrm{IL} \end{aligned}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{C E}=\mathrm{V}_{\text {II }}$	Min	-	-	-	-	-	
				Max	50	50	65	75	75	ns
tehaz	$\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	
tghaz				Max	25	35	35	40	40	ns
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	
				Max	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X010 must not be removed from (or inserted into) a socket or board when VpP or VCc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

12080D-9

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High- Impedance "Oft" State	

SWITCHING WAVEFORMS

Notes:
12080D-10

1. $\overline{O E}$ may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X1024

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code

Fast access time

- 90 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

똗 $\pm 10 \%$ power supply tolerance

- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc+1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibiiity
- Two line control functions

GENERAL DESCRIPTION

The Am27X1024 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 65,536 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 90 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X1024 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical powerconsumption is only 125 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No. Ordering Part No: $\begin{aligned} & V_{C C} \pm 5 \% \\ & V_{C C} \pm 10 \% \end{aligned}$	Am27X1024				
					-255
	-90	-120	-150	-200	
Max Access Time (ns)	90	120	150	200	250
$\overline{C E}$ ($\overline{\mathrm{E}})$ Access (ns)	90	120	150	200	250
$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}}$) Access (ns)	45	50	65	75	100

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A15	$=$ Address Inputs
$\overline{C E}(\bar{E})$	$=$ Chip Enable Input
DQ0-DQ15	$=$ Data Inputs/Outputs
DU	$=$ No External Connection (Do Not Use)
NC	$=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
$\overline{\mathrm{PGM}}(\overline{\mathrm{P}})$	$=$ Program Enable Input
Vcc	$=$ Vcc Supply Voltage
$V_{\text {PP }}$	$=$ Program Supply Voltage
$V_{S S}$	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X1024-90	PC, JC
AM27X1024-120	
AM27X1024-150	PC, JC, PI, JI
AM27X1024-200	
AM27X1024-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable $\overline{\text { OE }}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t}_{\mathrm{ACC}}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tce). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C C}-t_{O E}$.

Standby Mode

The Am27X1024 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27X1024 also has a TTL-standby mode which reduces the maximum $\mathrm{V}_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V_{Cc} and V_{ss} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	$\overline{\text { CE }}$	$\overline{\mathbf{O E}}$	$\overline{\text { PGM }}$	V_{PP}
Read	V_{IL}	V_{IL}	X	X	Outputs
Output Disable	X	V_{IH}	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{VCC}^{2} \pm 0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to $V_{S S}$
All pins except Vcc -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc . -0.6 V to +7.0 V
Note:

1. Minimum $D C$ voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . Maximum DC voltage on input and $1 / O$ pins is $V_{c C}+0.5 V$ which may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $\ldots \ldots \ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $\ldots \ldots \ldots . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am $27 \times 1024-255 \ldots \ldots+4.75 \mathrm{~V}$ to +5.25 V
Vcc for all other
valid combinations $\ldots \ldots . \ldots . .+4.50 \mathrm{~V}$ to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	\checkmark
V_{H}	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
ILI	Input Load Current	$V_{\text {IN }}=0 \mathrm{~V}$ to $+V_{c c}$		1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to $+\mathrm{Vcc}^{\text {ct }}$		1.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{C E}=V_{1 L}, f=10 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		50	mA
lcce	Vcc TTL Standby Current	$\overline{C E}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X1024 must not be removed from (or inserted into) a socket when VCc or Vpp is applied.
3. $I c c t$ is tested with $\overline{O E}=V_{i H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc +0.5 V , which may overshoot to $V c c+2.0 \mathrm{~V}$ for periods less than 20 ns.

12079D-5

Figure 1. Typical Supply Current vs. Frequency $V_{c c}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$V_{c c}=5.5 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description		PD 040		PL 044		
	Test Conditions	Typ	Max	Typ	Max	Unit	
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$	7	12	8	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	11	14	11	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X1024					Unit
JEDEC	Standard				-90	-120	-150	-200	-255	
tavav	tacc	Address to Output Delay	$\overline{\mathrm{CE}}=\overrightarrow{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	90	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{O E}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	90	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	45	50	65	75	75	ns
$\begin{aligned} & \text { tEHQZ } \\ & \text { tGHOZ } \end{aligned}$	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	
				Max	40	50	50	50	50	ns
taxax	toh	Output Hold from \qquad Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	
				Max	-	-	-	-	-	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X1024 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

12079D-8

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ." Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	Will be Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High- Impedance "Off" State	

KS000010

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}-\operatorname{tOE}$ after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X020

2 Megabit (262,144 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed

■ As a Mask ROM alternative:

- Shorter leadtime
- Lower volume per code
- Fast access time
$-100 \mathrm{~ns}$
■ Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to $\mathbf{1 0 0 ~ m A ~ f r o m ~ - ~} \mathbf{1} \mathrm{V}$ to Vcc+1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X020 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 262,144 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X020 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

15652B-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X020				
Ordering Part No: Vcc $\pm 5 \%$ $V_{c c} \pm 10 \%$	-105				
	-100	-120	-150	-200	
Max Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	100	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G})}$ Access (ns)	50	50	65	75	100

CONNECTION DIAGRAMS

Top View

PDIP

PLCC

15652B-3

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A17 = Address Inputs
$\overline{\mathrm{CE}}(\overline{\mathrm{E}}) \quad=$ Chip Enable Input
DQ0-DQ7 = Data Inputs/Outputs
DU $\quad=$ No External Connection (Do Not Use)
NC $\quad=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}}) \quad=$ Output Enable Input
$\overline{P G M}(\bar{P}) \quad=$ Program Enable Input
Vcc $\quad=$ Vcc Supply Voltage
VPP $=$ Program Supply Voltage
$V_{S S}=$ Ground

LOGIC SYMBOL

AMD
ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

AM27X020

CODE DESIGNATION
Assigned by AMD

TEMPERATURE RANGE
$\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
$\mathrm{I}=$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
PACKAGE TYPE
$P=32-$ Pin Plastic Dual In-Line Package (PD 032)
$J=32$-Pin Rectangular Plastic Leaded Chip Carrier (PL 032)

SPEED OPTION
See Product Selector Guide and
Valid Combinations

DEVICE NUMBER/DESCRIPTION
Am27X020
2 Megabit ($262,144 \times 8$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

Valid Combinations	
AM27X020-100	
AM27X020-105	
AM27X020-120	PC, JC, PI, JI
AM27X020-150	
AM27X020-200	
AM27X020-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output ($t_{C E}$). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A c c}$ - toe.

Standby Mode

The Am27X020 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27X020 also has a TTL-standby mode which reduces the maximum $V_{C C}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{C C}$ and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{c c}$ and $V_{S S}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	$\overline{\mathbf{C E}}$	$\overline{\text { OE }}$	$\overline{\text { PGM }}$	$\mathrm{V}_{\text {PP }}$
Read	V_{IL}	V_{IL}	X	X	Outputs
Output Disable	V_{IL}	V_{IH}	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{VCc} \pm 0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V_{ss} All pins except $\mathrm{Vcc} \ldots . .$.
Vcc -0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or $I O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27X020-XX5 +4.75 V to +5.25 V
Vcc for Am27X020-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{H}	Input HIGH Voltage		2.0	$V_{c c}+0.5$	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	$\mathrm{VIN}_{\text {IN }}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc		5.0	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 3)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}, \mathrm{f}} \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$		30	mA
Icce	$V_{\text {cc }}$ TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	$V_{\text {cc }}$ CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X020 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. l_{Cc}, is tested with $\overline{O E}=V_{H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

15652B-5
Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

AMD

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 032		PL 032		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	10	12	8	10	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} C, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X020					Unit
		$\begin{aligned} & -105 \\ & -100 \end{aligned}$			-120	-150	-200	-255		
JEDEC	Standard									
tavav	tacc	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
telav	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{C E}=\mathrm{VIL}^{\text {I }}$	Min	-	-	-	-	-	
				Max	50	50	55	60	75	ns
$\begin{aligned} & \text { tEHOZ } \\ & \text { tGHOZ } \end{aligned}$	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	
				Max	30	30	30	40	60	ns
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	
				Max	-	-	-	-	-	ns

Notes:

1. Vcc must be applied simultaneously or before $V_{\text {Pp }}$, and removed simultaneously or after $V_{p p}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X020 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$C_{L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

15652B-8

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0. " Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Will be Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High- Impedance "Off" State	

KS000010

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to tACC - toE after the falling edge of the addresses without impact on tACC.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X2048
 2 Megabit ($131,072 \times 16-$ Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed

■ As a Mask ROM alternative:

- Shorter leadtime
- Lower volume per code

Fast access time

- 100 ns

■ Single +5 V power supply

- Compatible with JEDEC-approved EPROM pinout
- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from $\mathbf{- 1} \mathrm{V}$ to Vcc +1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X2048 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X2048 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

$7_{\text {amD }}$

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X2048				
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$					
Max Access Time (ns)	-105	-125			-255
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	-100	-120	-150	-200	
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access (ns)	100	120	150	200	250

CONNECTION DIAGRAMS

Top View

Note:

1. JEDEC nomenclature is in parentheses.

PLCC

15653B-3

PIN DESIGNATIONS

A0-A16	$=$ Address Inputs
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$	$=$ Chip Enable Input
DQ0-DQ15	$=$ Data Inputs/Outputs
DU	$=$ No External Connection (Do Not Use)
NC	$=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
$\overline{\mathrm{PGM}}(\overline{\mathrm{P}})$	$=$ Program Enable Input
VCC	$=$ Vcc Supply Voltage
$V_{\text {PP }}$	$=$ Program Supply Voltage
$V_{\text {SS }}$	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X2048-100	PC, JC, PI, JI
AM27X2048-105	
AM27X2048-120	
AM27X2048-125	
AM27X2048-150	
AM27X2048-200	
AM27X2048-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (tCE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tacc - toe.

Standby Mode

The Am27X2048 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{Cc}} \pm 0.3 \mathrm{~V}$. The Am27X2048 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{c c}$ and $V_{S S}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between V_{cc} and $\mathrm{V}_{\text {ss }}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	$\mathrm{V}_{\text {PP }}$	Outputs
Read	VIL	VIL	X	X	DOUT
Output Disable	X	VIH	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	$\mathrm{V}_{1 \mathrm{H}}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	
OTP Products	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V_{ss}	
All pins except Vcc	-0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc	-0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or l/O pins is -0.5 V . During transitions, the inputs may overshoot $V_{S S}$ to -2.0 V forperiods of up to 20 ns . Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 V$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Industrial (I) Devices

Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vccfor Am27X2048-XX5 +4.75 V to +5.25 V
Vcc for Am27X2048-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V OH	Output HIGH Voltage	$\mathrm{loh}^{\text {O }}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{H}	Input HIGH Voltage		2.0	$\mathrm{V}_{\mathrm{cc}}+0.5$	V
V_{IL}	Input LOW Voltage		-0.5	+0.8	V
lut	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {cc }}$		1.0	$\mu \mathrm{A}$
Lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {cc }}$		5.0	$\mu \mathrm{A}$
$\mathrm{lcC1}$	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}}, f=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		50	mA
Icc2	Vcc TTL Standby Current	$\overline{C E}=V_{i H}$		1.0	mA
Icce	$V_{\text {cc }}$ CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{c c} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. Vcc must be applied simultaneously or before $V_{p p}$, and removed simultaneously or after $V_{p p}$.
2. Caution: The Am27X2048 must not be removed from (or inserted into) a socket when Vcc or VFP is applied.
3. Icc1 is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is VCc +0.5 V , which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

15653B-5
Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 040		PL 044		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	10	12	7	10	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	12	15	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X2048					Unit
		$\begin{aligned} & \hline-100 \\ & -105 \end{aligned}$			$\begin{aligned} & -120 \\ & -125 \end{aligned}$	-150	-200	-255		
JEDEC	Standard									
tavav	tacc	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
tglav	toe	Output Enable to Output Delay	$\stackrel{C}{C E}=\mathrm{VIL}^{\text {I }}$	Min	-	-	-	-	-	
				Max	50	50	55	60	75	ns
$\begin{aligned} & \text { tEHOZ } \\ & \text { tGHOZ } \end{aligned}$	$\begin{gathered} \text { tDF } \\ \text { (Note 2) } \end{gathered}$	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	0	ns
				Max	30	30	30	40	60	
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	ns
				Max	-	-	-	-	-	

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X2048 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

$C_{L}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

15653B-8

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic " 0. . Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to tACC - tOE after the falling edge of the addresses without impact on taCC.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X040

4 Megabit (524,288 x 8-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code
- Fast access time
- 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc+1 V
- Versatile features for simple Interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X040 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 524,288 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X040 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

AMD
3
PRODUCT SELECTOR GUIDE

Family Part No.	Am27X040			
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$	-125			
	-120	-150	-200	$\mathbf{- 2 5 0}$
Max Access Time (ns)	120	150	200	250
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access (ns)	50	65	75	100

CONNECTION DIAGRAMS

Top View

PDIP

PLCC

15654B-3

15654B-2
Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

AO-A18	$=$ Address Inputs
$\overline{C E}(\bar{E})$	$=$ Chip Enable Input
DQ0-DQ7	$=$ Data Inputs/Outputs
DU	$=$ No External Connection (Do Not Use)
NC	$=$ No Internal Connection
$\overline{O E}(\bar{G})$	$=$ Output Enable Input
VcC	$=$ Vcc Supply Voltage
VPP	$=$ Program Supply Voltage
$V_{\text {SS }}$	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X040-120	
AM27X040-125	
AM27X040-150	PC, JC, PI, JI
AM27X040-200	
AM27X040-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X040 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be usedfor device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A c c}-$ toe $_{\text {. }}$.

Standby Mode

The Am27X040 has a CMOS standby mode which reduces the maximum Vcc current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27X040 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{I}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that CE be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and $\mathrm{V}_{\text {ss }}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	$\overline{C E}$	$\overline{O E}$	$V_{\text {PP }}$
Read	$V_{I L}$	$V_{I L}$	X	Outputs
Output Disable	$V_{I L}$	$V_{I H}$	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	V_{IH}	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{VCC}^{2} \pm 0.3 \mathrm{~V}$	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either VIH or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to V_{ss}
All pins except $\mathrm{Vcc} \ldots . . .-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc -0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to - 2.0 V for periods of up to 20 ns . Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $\mathrm{V}_{\mathrm{cc}}+2.0 \mathrm{~V}$ for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

```
Commercial (C) Devices
Case Temperature (TC) . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Industrial (I) Devices
Case Temperature (Tc) . . . . . . . . \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Supply Read Voltages
Vcc for Am27X040-XX5 ..... +4.75 V to +5.25 V
Vcc for Am27X040-XX0 \(\ldots . .+4.50 \mathrm{~V}\) to +5.50 V
```

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Descriptlon	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4		V
VoL	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	\checkmark
V_{H}	Input HIGH Voltage		0.7 Vcc	Vcc+0.5	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	+0.8	V
lLI	Input Load Current	$V_{\text {IN }}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	$V_{\text {OUT }}=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {cc }}$		5.0	$\mu \mathrm{A}$
lcc 1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}}, \mathrm{f}=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		40	mA
Icce	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. Vcc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X040 must not be removed from (or inserted into) a socket when Vcc or Vpp is applied.
3. $I_{C C 1}$ is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

15654B-5
Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

15654B-6
Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

AMD

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 032		PL 032		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	12	8	10	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Notes:

1. VCc must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X040 must not be removed from or inserted into a socket or board when VPP or VCc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$

Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

15654B-8

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ." Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
xux	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is High- Impedance "Off" State

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to tACC - toE after the falling edge of the addresses without impact on tacc.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

- As an OTP EPROM alternative:

- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code
- Fast access time
$-120 \mathrm{~ns}$
- Single +5 V power supply

■ Compatible with JEDEC-approved EPROM pinout

- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
■ Latch-up protected to 100 mA from -1 V to
Vcc +1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X400 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 524,288 by 8 bits/262,144 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X400 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

17344A-1

PRODUCT SELECTOR GUIDE

Family Part No	Am27X400			
Ordering Part No: $V_{c c} \pm 5 \%$ $V_{c c} \pm 10 \%$	-125			
Max Access Time (ns)	-120	-150	-200	
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$ Access (ns)	120	150	200	250
$\overline{\mathrm{OE}(\overline{\mathrm{G}}) \text { Access (ns) }}$	120	150	200	250

CONNECTION DIAGRAMS

Top View

PLCC

17344A-3

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

AB	$=$ Address Input ($\overline{\mathrm{BYTE}}$ Mode)
$\mathrm{AO}-\mathrm{A} 17$	$=$ Address Inputs
$\overline{\mathrm{BYTE}}$	$=$ Byte/Word Switch
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$	$=$ Chip Enable Input
DQ0-DQ15	$=$ Data Inputs/Outputs
DU	$=$ No External Connection (Do Not Use)
NC	$=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
Vcc	$=$ Vcc Supply Voltage
VPP	$=$ Program Supply Voltage
Vss	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
y AM27X400-120	
AM27X400-125	
AM27X400-150	PC, JC, PI, JI
AM27X400-200	
AM27X400-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X400 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{C E}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{A} A \mathrm{CC}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least tacc-toe.

Byte Mode

The user has the option of reading data in either 16-bit words or 8 -bit bytes under control of the BYTE input. With the BYTE input HiGH, inputs AO-A17 will address 256 K words of 16 -bit data. When the BYTE input is LOW, AB functions as the least significant address input and 512 K bytes of data can be accessed. The 8 bits of data will appear on DQ0-DQ7.

Standby Mode

The Am27X400 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{\mathrm{CE}}$ is at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. The Am27X400 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{C E}$ is at $V_{\text {IH }}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{C E}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	$\overline{C E}$	$\overline{O E}$	$V_{\text {PP }}$	Outputs
Read	VIL	VIL	X	DOUT
Output Disable	VIL	$\mathrm{V}_{\text {IH }}$	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	VIH	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	
OTP Products	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied .	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss	
All pins except Vcc	-0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc	-0.6 V to +7.0 V

Note:

1. Minimum $D C$ voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot $V_{s s}$ to-2.0 V forperiods of up to 20 ns . Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 V$ which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (TC) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Read Voltages

Vcc for Am27X400-XX5 $\ldots . .+4.75 \mathrm{~V}$ to +5.25 V
Vcc for Am27X400-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VoH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{1}	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	\checkmark
VIL	Input LOW Voltage		-0.5	+0.8	V
1.1	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $+\mathrm{Vcc}_{\text {cc }}$		1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	VOUT $=0 \mathrm{~V}$ to +Vcc		5.0	$\mu \mathrm{A}$
lccı	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, f=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		50	mA
lcce	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}}$		1.0	mA
Icca	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X400 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. $I_{C C I}$ is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is $V_{c C}+0.5 \mathrm{~V}$, which may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current
vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
17344A-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 040		PL 044		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{1 \times}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	6	8	9	11	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	9	11	13	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X400				Unit
JEDEC	Standard				$\begin{aligned} & -125 \\ & -120 \end{aligned}$	-150	-200	-255	
tavav	trec	Address to Output Delay	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	Min	-	-	-	-	ns
				Max	120	150	200	250	
telov	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	ns
				Max	120	150	200	250	
tglav	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	ns
				Max	50	55	60	75	
tehoz tghaz	(Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	ns
				Max	30	30	40	60	
taxax	toh	Output Hold from Addresses, $\overline{C E}$, or $\overline{O E}$, whichever occurred first		Min	0	0	0	0	ns
				Max	-	-	-	-	

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X400 must not be removed from (or inserted into) a socket or board when VPP or VCc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17344A-8

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Steady be
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High- Impedance "Off" State	

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the falling edge of the addresses without impact on $t_{A C C}$.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X4096

4 Megabit (262,144 x 16-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

Advanced

 Micro Devices
As an OTP EPROM alternative:

- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code
- Fast access time

$$
-120 \mathrm{~ns}
$$

- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

■ $\pm 10 \%$ power supply tolerance

- High nolse immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to

Vcc +1 V

- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X4096 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 262,144 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X4096 offers separate Output Enable $(\overline{\mathrm{OE}})$ and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No	Am27X4096			
Ordering Part No:				
$V_{\text {cc }} \pm 5 \%$	-125			-255
$V_{\text {cc }} \pm 10 \%$	-120	-150	-200	
Max Access Time (ns)	120	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}})$ Access (ns)	120	150	200	250
$\overline{\mathrm{OE}}$ ($\overline{\mathrm{G}}$) Access (ns)	50	65	75	100

CONNECTION DIAGRAMS

Top View
View

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A17	$=$ Address Inputs
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$	$=$ Chip Enable Input
DQ0-DQ15	$=$ Data Inputs/Outputs
DU	$=$ No External Connection (Do Not Use)
NC	$=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
Vcc	$=$ Vcc Supply Voltage
VPP	$=$ Program Supply Voltage
Vss	$=$ Ground

LOGIC SYMBOL

AMD

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X4096-120	PC, JC, PI, JI
AM27X4096-125	
AM27X4096-150	
AM27X4096-200	
AM27X4096-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($\mathrm{t} A C C$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least $t_{A c c}$-toe.

Standby Mode

The Am27X4096 has a CMOS standby mode which reduces the maximum V_{cc} current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$. The Am27X4096 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in TLL-standby when $\overline{C E}$ is at $V_{I H}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

MODE SELECT TABLE

Mode Pins	$\overline{C E}$	$\overline{O E}$	Vpp	Outputs
Read	VIL	VIL	X	DOUT
Output Disable	X	V_{IH}	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	VIH	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	Hi-Z

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

AMD

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $\ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $\ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $\ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss
All pins except $\mathrm{Vcc} \ldots \ldots .-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .-0.6 \mathrm{~V}$ to +7.0 V

Note:

1. Minimum DC voltage on input or $1 / O$ pins is -0.5 V. During transitions, the inputs may overshoot $V_{s s}$ to-2.0 V forperiods of up to 20 ns. Maximum $D C$ voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Read Voltages
Vcc for Am27X4096-XX5 +4.75 V to +5.25 V
Vcc for Am27X4096-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{OH}=-400 \mu \mathrm{~A}$	2.4		V
Vol	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
$\mathrm{V}_{\text {H }}$	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	+0.8	\checkmark
lLI	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
Lo	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc		5.0	$\mu \mathrm{A}$
Icc 1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{f}=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		50	mA
Icce	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X4096 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. ICCI is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum $D C$ Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is $V_{C C}+0.5 \mathrm{~V}$, which may overshoot to $V_{C C}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
17345A-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 040		PL 044		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{1 \times}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	6	8	10	13	pF
Cout	Output Capacitance	$V_{\text {OUT }}=0 \mathrm{~V}$	8	10	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

(Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X4096				Unit
		$\begin{aligned} & -125 \\ & -120 \end{aligned}$			-150	-200	-255		
JEDEC	Standard								
tavav	trec	Address to	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=$	Min	-	-	-	-	ns
		Output Delay		Max	120	150	200	250	
telov	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	-	ns
				Max	120	150	200	250	
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}$ IL	Min	-	-	-	-	ns
				Max	50	55	60	60	
tehaz tghoz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	ns
				Max	40	40	40	60	
taxax	tor	Output Hold from \qquad Addresses, CE, or OE,whichever occurred first		Min	0	0	0	0	
				Max	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27X4096 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

$C L=100 \mathrm{pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

17345A-8

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

AMD

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	Will be bTPUTS Steady		
May Change from H to L	Will be Changing from H to L			
May Change from L to H	Will be Changing from L to H			
Any Change				
Permitted			\quad	Changing,
:---				
State				
Unknown				

SWITCHING WAVEFORMS

17345A-9
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X080

As an OTP EPROM alternative:

- Factory optimized programming
- Fully tested and guaranteed
- As a Mask ROM alternative:
- Shorter leadtime
- Lower volume per code

Fast access time
$-120 \mathrm{~ns}$

- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- $\pm 10 \%$ power supply tolerance
- High noise immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
I. Available In Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc+1 V
- Versatile features for simple Interfacing
- Both CMOS and TTL input/output compatibility
- Two line control function

GENERAL DESCRIPTION

The Am27X080 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as $1,048 \mathrm{~K}$ words by 8 bits per word and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X080 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No. Ordering Part No $V_{c c} \pm 5 \%$ $V_{\text {cc }} \pm 10 \%$	Am27X080			
	-125			-255
	-120	-150	-200	
Max Access Time (ns)	120	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}}$) Access (ns)	120	150	200	250
$\overline{\mathrm{OE}} \mathbf{(\overline { G })}$ Access (ns)	50	65	75	100

CONNECTION DIAGRAMS

Top View

PDIP

17346A-2

Notes:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A19	$=$ Address Inputs
$\overline{C E}(\bar{E})$	$=$ Chip Enable Input
DQ0-DQ17	$=$ Data Inputs/Outputs
$\overline{O E}(\bar{G})$	$=$ Output Enable Input
$V_{c c}$	$=$ Vcc Supply Voltage
$V_{P p}$	$=$ Program Supply Voltage
$V_{S S}$	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27X080-120	PC, JC, Pl, JI
AM27X080-125	
AM27X080-150	
AM27X080-200	
AM27X080-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X080 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}})$ is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$ $V_{P P}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least $t_{A C c}-t o e$.

Standby Mode

The Am27X080 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27X080 also has a TTL-standby mode which reduces the maximum $V_{c c}$ current to 1.0 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{O E} / V_{P P}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{c c}$ and $V_{S s}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	$\overline{\text { CE }}$	$\overline{\mathrm{OE}} \mathrm{V}_{\mathrm{PP}}$
Read	$\mathrm{VIL}_{\mathrm{IL}}$	V_{IL}	Outputs
Output Disable	X	V_{IH}	DOUT
Standby (TTL)	V_{IH}	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{VCc} \pm 0.3 \mathrm{~V}$	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to VSS
All pins except A9,Vpp,VcC . -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc -0.6 V to +7.0 V

Notes:

1. Minimum $D C$ voltage on input or $/ / O$ pins is -0.5 V. During transitions, the inputs may overshoot $V_{S S}$ to -2.0 V forperiods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES
Commercial (C) Devices
Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $\ldots \ldots . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Read Voltages

Vccfor Am27X080-XX5 +4.75 V to +5.25 V
Vccfor Am27X080-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

PRELIMINARY
DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	Vcc-0.8		V
VoL	Output LOW Voltage	$1 \mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{IH}	Input HIGH Voltage		0.7 Vcc	Vcc +0.5	V
$V_{\text {IL }}$	Input LOW Voltage		-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $+\mathrm{Vcc}_{\text {c }}$		1.0	$\mu \mathrm{A}$
lo	Output Leakage Current	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ to $+\mathrm{V}_{\text {cc }}$		5.0	$\mu \mathrm{A}$
Icce	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}, \mathrm{f}}=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		40	mA
Icce2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{C E}=V_{c c} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. VCc must be simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Caution: The Am27X080 must not be removed from (or inserted into) a socket when Vcc or VPp is applied.
3. $I_{C C t}$ is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V during transitions, the inputs may overshoot -2.0 V for periods less than 20 ns . Maximum $D C$ Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature

$$
\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}
$$

15453B-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 032		PL 032		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	7	12	7	12	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	12	16	12	16	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, t=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X080				Unit
		$\begin{aligned} & -125 \\ & -120 \end{aligned}$			-150	-200	-255		
JEDEC	Standard								
tavav	trce	Address to Output Delay	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	
				Max	120	150	200	250	ns
telav	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	-	
				Max	120	. 150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{VIL}$	Min	-	-	-	-	
				Max	50	55	60	60	ns
tEHQZ tGHQZ		Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	
				Max	40	40	40	60	ns
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	
				Max	-	-	-	-	ns

Notes:

1. VCc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sample and not 100% tested.
3. Caution: The Am27X080 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17346A-8

AC Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Steady be
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H	
Don't Care, Any Change Permitted	Changing, State Unknown	
Does Not Apply	Center Line is High- Impedance "Off" State	
KSS000010		

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t O E$ after the falling edge of the addresses without impact on $t_{A C C}$.
2. IDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Am27X800

8 Megabit (1,048,576 $\times 8$-Bit/524,288 $\times 16$-Bit) CMOS ExpressROM ${ }^{\text {TM }}$ Device

As an OTP EPROM alternative:

- Factory optimized programming
- Fully tested and guaranteed

As a Mask ROM alternative:

- Shorter leadtime
- Lower volume per code

Fast access time $-150 \mathrm{~ns}$

- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

■ $\pm 10 \%$ power supply tolerance

- High nolse immunity
- Low power dissipation
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
m Avallable in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc+1 V
- Versatile features for simple interfacing
- Both CMOS and TTL input/output compatibility
- Two line control functions

GENERAL DESCRIPTION

The Am27X800 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as $1,048,576$ by 8 bits $/ 524,288 \times 16$ bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 150 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X800 offers separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system.
AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No	Am27X800		
Ordering Part No:			
Vcc $\pm 5 \%$	-155		-255
$V_{\text {cc }} \pm 10 \%$	-150	-200	
Max Access Time (ns)	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}})$ Access (ns)	150	200	250
$\overline{\mathrm{OE}}$ (言) Access (ns)	65	75	100

CONNECTION DIAGRAMS

Top View
A18

17347A-3

Note:

1. JEDEC nomenclature is in parenthesis.

PIN DESIGNATIONS

AB	$=$ Address Inputs ($\overline{\mathrm{BYTE}}$ Mode)
$\mathrm{A} 0-\mathrm{A} 18$	$=$ Address Inputs
$\overline{\mathrm{BYTE}}$	$=$ Byte/Word Switch
$\overline{\mathrm{CE}}(\overline{\mathrm{E}})$	$=$ Chip Enable Input
$\mathrm{DQ} 0-\mathrm{DQ} 15$	$=$ Data Inputs/Outputs
NC	$=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
VCC	$=$ Vcc Supply Voltage
VPP	$=$ Program Supply Voltage
VSS	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations	
Am27X800-150	
Am27X800-155	PC, JC, PI, JI
Am27X800-200	
Am27X800-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X800 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from CE to output (tce). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tacc-toe.

Byte Mode

The user has the option of reading data in either 16-bit words or 8 -bit bytes under control of the $\overline{B Y T E}$ input. With the BYTE input HIGH, input A0-A18 will address 512 K words of 16 -bit data. When the BYTE input is LOW, AB functions as the least significant address input and 1 Mbyte of data can be accessed. The 8 bits of data will appear on DQ0-DQ7.

Standby Mode

The Am27X800 has a CMOS standby mode which reduces the maximum V_{cc} current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E}$ is at $V_{c c} \pm 0.3 \mathrm{~V}$. The Am27X800 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA . It is placed in TTL-standby when $\overline{C E}$ is at $V_{I H}$. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{\text { CE }}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM Device arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins	$\overline{C E}$	$\overline{O E}$	$V_{\text {pp }}$	Outputs
Read	VIL	ViL	X	DOUT
Output Disable	VIL	$\mathrm{V}_{\text {IH }}$	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)	VIH	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)	$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	$\mathrm{Hi}-\mathrm{Z}$

Note:

1. $X=$ Either $V_{I H}$ or $V_{I L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Vss
All pins except Vcc -0.6 V to $\mathrm{Vcc}+0.6 \mathrm{~V}$
Vcc . -0.6 V to +7.0 V

Note:

1. Minimum DC voltage on input or I/Opins is -0.5 V. During transitions, the inputs may overshoot $V_{S S}$ to-2.0 V forperiods of up to 20 ns . Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+$ 2.0 V for periods up to 20 ns .

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial (I) Devices
Case Temperature (TC) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Read Voltages

Vcc for Am27X800-XX5 +4.75 V to +5.25 V
Vcc for Am27X800-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified
(Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditlons	Min	Max	Unit
Vor	Output HIGH Voltage	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4		V
VoL	Output LOW Voltage	$\mathrm{loL}=2.1 \mathrm{~mA}$		0.45	V
V_{H}	Input HIGH Voltage		2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage		-0.5	+0.8	V
ILI	Input Load Current	$\mathrm{VIN}_{\text {I }}=0 \mathrm{~V}$ to +Vcc		1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc		5.0	$\mu \mathrm{A}$
Iccı	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{f}=5 \mathrm{MHz}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		50	mA
Icce	Vcc TTL Standby Current	$\overline{C E}=V_{I H}$		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{C E}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$		100	$\mu \mathrm{A}$

Notes:

1. $V_{c c}$ must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after $V_{P P}$.
2. Cautlon: The Am27X800 must not be removed from (or inserted into) a socket when $V_{c c}$ or $V_{p p}$ is applied.
3. ICCH^{\prime} is tested with $\overline{O E}=V_{I H}$ to simulate open outputs.
4. Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V forperiods less than 20 ns . Maximum DC Voltage on output pins is $V_{c c}+0.5 \mathrm{~V}$, which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods less than 20 ns .

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$

17344A-5
17344A-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	PD 042		PL 044		Unit
			Typ	Max	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	18	10	18	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	18	10	18	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Parameter Symbols		Parameter Description	Test Conditions		Am27X800			Unit
		$\begin{aligned} & \hline-155 \\ & -150 \end{aligned}$			-200	-255		
JEDEC	Standard							
tavov	trce	Address to Output Delay	$\overline{C E}=\overline{O E}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	
				Max	150	200	250	ns
telqv	tce	Chip Enable to Output Delay	$\overline{O E}=V_{\text {IL }}$	Min	-	-	-	
				Max	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$	Min	-	-	-	
				Max	55	60	60	ns
$\begin{aligned} & \text { tEHQZ } \\ & \text { tGHQZ } \end{aligned}$		Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	
				Max	40	40	60	ns
taxax	tor	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	
				Max	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before $V_{P P}$, and removed simultaneously or after VPP.
2. This parameter is only sample and not 100% tested.
3. Caution: The Am27X800 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

17347A-8
$A C$ Testing: Inputs are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Will be be Steady
May Change from H to L	Will be Changing from H to L	
May Change from L to H	Will be Changing from L to H Don't Care, Any Change Permitted	Changing, State Unknown
Does Not Apply	Center Line is High- Impedance	
"Off" State		

KS000010

SWITCHING WAVEFORMS

1. $\overline{O E}$ may be delayed up to $t_{A C C}-t_{O E}$ after the faling edge of the addresses without impact on $t_{A C C}$.

17347A-9
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

6
 PROGRAMMING

Section 6 Programming 6-1
Programming Methodology 6-3
Flashrite Programming Flowchart 6-4
DC Programming Characteristics 6-5
Switching Characteristics and Waveforms 6-5
Third-Party Programming Support 6-9

PROGRAMMING

All of AMD's CMOS EPROMs now utilize the fast Flashrite ${ }^{\text {TM }}$ programming algorithm. Programming the 256K EPROM typically takes 4 seconds, the 1 Mbit EPROM 16 seconds, and the 4 Mbit 1 minute. Bit locations may be programmed singly, in blocks or at random.

PROGRAMMING METHODOLOGY

Upon delivery or after each erasure, AMD's CMOS EPROM has all bits in the "ONE" or HIGH state. "ZEROs" are loaded into the device through the procedure of programming.

The programming mode is entered when $12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$ is applied to the V_{PP} pin, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}^{*}$ are at V_{IL}, and $\overline{\mathrm{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 8 - or 16 -bits in parallel (depending upon the device organization) to the data output pins.

The flowchart on the next page shows AMD's Flashrite programming algorithm. The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum pulse count is reached. This process is repeated while sequencing through each address of the device. This part of the algorithm is done at $\mathrm{V}_{c c}=6.25 \mathrm{~V}$ to assure that each EPROM bit is programmed to a sufficiently high threshold voltage.

Program Verify

A program verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at V_{IL}, $\overline{\mathrm{PGM}}^{*}$ at V_{H}, and V_{PP} between 12.5 V and 13.0 V .

Read Verify

After the final address is programmed, a read verify on the entire EPROM is performed at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=5.25 \mathrm{~V}$.

Figure 6-1 Flashrite Programming Flowchart

Table 6-1 DC Programming Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1, 2 and 3)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
lıI	Input Current (All Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		1.0	$\mu \mathrm{A}$
VIL	Input LOW Level		-0.5	0.8	V
VIH	Input HIGH Level		0.7 Vcc	$\mathrm{VCC}+0.5$	V
VoL	Output LOW Voltage During Verify	$\mathrm{lOL}=2.1 \mathrm{~mA}$		0.45	V
VOH	Output HIGH Voltage During Verify	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4		V
V_{H}	A9 Auto Select Voltage		11.5	12.5	V
Icc3	Vcc Supply Current (Program \& Verify)			50	mA
IPP2	Vpp Supply Current (Program)	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		30	mA
Vcc1	Flashrite Supply Voltage		6.00	6.50	V
VPP1	Flashrite Programming Voltage		12.5	13.0	V

Notes:

1. VCc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. When programming an AMD CMOS EPROM, a $0.1 \mu F$ capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Switching Characteristics and Waveforms

These programming switching characteristics and waveforms apply to the following AMD EPROM devices: Am27C64, Am27C128, Am27C010, Am27H010, Am27LV010, Am27C1024, Am27C020, Am27LV020 and Am27C2048.

Table 6-2 Switching Programming Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1,2 and 3)

Parameter Symbols		Parameter Description	Min	Max	Unit
JEDEC	Standard				
tavel	tas	Address Setup Time	2		$\mu \mathrm{s}$
tDZGL	toes	$\overline{O E}$ Setup Time	2		$\mu \mathrm{s}$
tDVEL	tDs	Data Setup Time	2		$\mu \mathrm{s}$
tghax	tah	Address Hold Time	0		$\mu \mathrm{s}$
tehDx	toh	Data Hold Time	2		$\mu \mathrm{s}$
tGHQZ	tDFP	Output Enable to Output Float Delay	0	130	ns
tvPs	tVPs	Vpp Setup Time	2		$\mu \mathrm{s}$
teLEH1	tpw	$\overline{\text { PGM Program Pulse Width }}$	95	105	$\mu \mathrm{s}$
tvcs	tvcs	Vcc Setup Time	2		$\mu \mathrm{s}$
tELPL	tces	$\overline{\text { CE Setup Time }}$	2		$\mu \mathrm{s}$
tglav	toe	Data Valid from $\overline{\mathrm{OE}}$		150	ns

Notes:

1. VCc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. When programming the above devices, a $0.1 \mu F$ capacitor is required across VPp and ground to suppress spurious voltage transients which may damage the device.
3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6.2 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

17061A-

1. The input timing reference level is 0.8 V for V_{IL} and 2 V for V_{IH}.
2. TOE and tDFP are characteristics of the device, but must be accommodated by the programmer.

These programming switching characteristics and waveforms apply to the following EPROM devices: Am27C256, Am27H256, Am27C040, Am27C400, Am27C4096 and Am27C800.

Table 6-3 Switching Programming Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1, 2 and 3)

Parameter Symbols		Parameter Description	Min	Max	Unit
JEDEC	Standard				
tavel	tas	Address Setup Time	2		$\mu \mathrm{s}$
tozGL	toes	$\overline{O E}$ Setup Time	2		$\mu \mathrm{s}$
tDVEL	tDs	Data Setup Time	2		$\mu \mathrm{s}$
tghax	tah	Address Hold Time	0		$\mu \mathrm{s}$
tehDX	tDH	Data Hold Time	2		$\mu \mathrm{s}$
tGhaz	tDFP	Output Enable to Output Float Delay	0	130	ns
tVPs	tVPS	Vpp Setup Time	2		$\mu \mathrm{s}$
tELEH1	tpw	$\overline{\text { PGM Program Pulse Width }}$	95	105	$\mu \mathrm{s}$
tves	tvcs	Vcc Setup Time	2		$\mu \mathrm{s}$
tglov	toe	Data Valid from $\overline{O E}$		150	ns

Notes:

1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
2. When programming the above devices, a 0.1μ F capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-3 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:
17061A-

1. The input timing reference level is 0.8 V for VIIL^{2} and 2 V for $\mathrm{VIH}_{\mathrm{IH}}$.
2. TOE and TDFP are characteristics of the device, but must be accommodated by the programmer.

These programming switching characteristics and waveforms apply to the Am27C512 and Am27C080 devices.

Table 6-4 Switching Programming Characteristics
($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$) (Notes 1, 2 and 3)

Parameter Symbols		Parameter Description	Min	Max	Unit
JEDEC	Standard				
tavel	tas	Address Setup Time	2		$\mu \mathrm{s}$
tDVEL	tos	Data Setup Time	2		$\mu \mathrm{s}$
tghax	tah	Address Hold Time	0		$\mu \mathrm{s}$
tehDX	tDH	Data Hold Time	2		$\mu \mathrm{s}$
tehaz	tDFP	Chip Enable to Output Float Delay	0	130	ns
tvps	tvps	Vpp Setup Time	2		$\mu \mathrm{s}$
teleh	tpw	$\overline{C E}$ Program Pulse Width	95	105	$\mu \mathrm{s}$
tvcs	tvcs	Vcc Setup Time	2		$\mu \mathrm{s}$
telov	tDV	Data Valid from $\overline{\mathrm{OE}}$		150	ns
tehgl	toen	$\overline{\text { OE/ }} \mathrm{V}_{\text {PP }}$ Hold Time	2		ns
tGlel	tvR	$\overline{\mathrm{OE}} / \mathrm{V}_{\text {PP }}$ Recovery Time	2		ns

Notes:

1. VCC must be applied simultaneously or before VPp, and removed simultaneously or after VPP.
2. When programming the above devices, a $0.1 \mu F$ capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-4 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

1. The input timing reference level is 0.8 V for VIL and 2 V for. $\mathrm{VIH}_{\mathrm{I}}$.
2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

THIRD-PARTY PROGRAMMING SUPPORT

Recommended Vendors

Advin Systems

PILOT-U84 Programmer
PILOT-U40 Programmer
PILOT-145 Programmer
PILOT-GCE Programmer
PILOT-832D Programmer
BP Microsystems
BP-1200 Programmer
CP-1128 Programmer
EP-1132 Programmer
EP-1140 Programmer
EP-1 Programmer

Data I/O Corporation

2900 Programmer
UniPak 2B Programmer
BoardSite Programmer
HandlerSite Programmer
UniSite 40 Programmer
S1000 Programmer
3900 Programmer
Elan Digital Systems Ltd
132 Programmer
142 Programmer
232 Programmer
532 Programmer
832 Programmer
840 Programmer
928 Programmer
932 Programmer
940 Programmer

Logical Devices

ALLPRO 88/XR Programmer
Husky Programmer
GangPro-8+ Programmer
GangPro-S Model II Programmer
Stag Microsystems
39M101 Programmer
41M101 Programmer
41M102 Programmer
41M111 Programmer
41M121 Programmer
42M101 Programmer
ZM3000 Programmer
Orbit Programmer
Solar Programmer
Stratus-2 Programmer
System 1040/84 Programmer

PROGRAMMING UPDATE

The following charts provide the iatest information on programming support for AMD's CMOS EPROMs from the following vendors:

Advin Systems, Inc.
BP Microsystems
Data I/O Corporation
Elan Digital Systems Ltd.
Logical Devices
Stag Microsystems
These charts indicate the Versions as well as the Family code (where appropriate) that incorporates the FLASHRITE ${ }^{\text {TM }}$ Programming Algorithm for all of their "popular" models.

Table 6-6 Advin Systems

Part NumberPackage	Version				
	$\begin{aligned} & \text { PILOT } \\ & -\mathrm{U} 84 \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & \text {-U40 } \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & -145 \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & \text {-GCE } \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & \text {-832D } \end{aligned}$
Am27C64 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
Am27C128 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
Am27C256 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
Am27H256 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
$\begin{gathered} \text { Am27C512 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{array}{r} \text { V10.43 } \\ \text { V10.43 } \end{array}$
$\begin{array}{\|c} \hline \text { Am27C010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{gathered} \text { V10.42 } \\ \text { V10.42* } \\ \hline \end{gathered}$	V10.42 V10.42*	$\begin{array}{r} \text { V10.43 } \\ \text { V10.43 } \end{array}$
Am27H010 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { V10.43 } \\ \text { V10.43 } \\ \hline \end{array}$
$\begin{array}{\|c\|} \hline \text { Am27C100 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
Am27C1024 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$		$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$

AMD
Table 6-6 Advin Systems (continued)

Part Number Package	Version				
	$\begin{aligned} & \text { PILOT } \\ & -U 84 \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & \text {-U40 } \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & -145 \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & \text {-GCE } \end{aligned}$	$\begin{aligned} & \text { PILOT } \\ & -832 \mathrm{D} \end{aligned}$
Am27C020 DIP PLCC	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
$\begin{array}{\|c} \hline \text { Am27C2048 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$		$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
$\begin{array}{\|c\|} \hline \text { Am27C040 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$
$\begin{gathered} \text { Am27C400 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	V10.42	V10.42	V10.42		V10.43
$\begin{array}{\|l} \hline \text { Am27C4096 } \\ \text { DIP } \\ \text { PLCC } \end{array}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$	$\begin{aligned} & \text { V10.42 } \\ & \text { V10.42* } \end{aligned}$		$\begin{aligned} & \text { V10.43 } \\ & \text { V10.43 } \end{aligned}$

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. Programmermodels PILOT-U84, PILOT-U40, PILOT-145 and PILOT-GCE are single socket programmers whereas PILOT-832D is a gang programmer.
3. Programmer model PILOT-GCE does not support the X16 organizations.
4. PLCC packages for all devices (marked with an ") for the following programmers: PILOT-U84, PILOT-U40, PILOT-145 and PILOT-GCE require separate modules. These modules are listed below:

PX-32 32-pin PLCC (X8 organizations)
PX-44 44-pin PLCC (X16 organizations)
5. For further information please contact Advin Systems directly at (408) 243-7000.

Table 6-7 BP Microsystems

	Version (DIP Packages only)				
	Part Number	BP-1200	CP-1128	EP-1140	EP-1132
Am27C64	V 2.05				
Am27C128	V 2.05				
Am27C256	V 2.05				
Am27H256	V 2.05				
Am27C512	V 2.05				
Am27C010	V 2.05		V 2.05	V 2.05	
Am27H010	V 2.05		V 2.05	V 2.05	
Am27C100	V 2.05		V 2.05	V 2.05	
Am27C1024	V 2.05		V 2.05		
Am27C020	V 2.05		V 2.05	V 2.05	
Am27C2048	V 2.05		V 2.05		
Am27C040	V 2.05		V 2.05	V 2.05	
Am27C400	V 2.05				
Am27C4096					

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. There is a reason for the "blanks" above due to the fact that each module serves a specific DIP Package Pin-count(s):

Model	Package Pin-Count
$B P-1200$	28,32 and 40 pins
$C P-1128$	28 pin
$E P-1140$	28,32 and 40 pins
$E P-1132$	28 and 32 pins
$E P-1$	28 pin

3. All LCC/PLCC packages require adapters. These adapters are common for all programmers. Please contact BP Microsystems directly for availability of these adapters.
4. For further information please contact BP Microsystems directly at (713) 461-9430.

Table 6-8 Data I/O

Part Number Package	Version (Family Code)		
	2900	UNIPAK 2B	AutoSite
$\begin{gathered} \text { Am27C64 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \text { V1.0 (D6) } \\ & \text { V1.4 (D6) } \end{aligned}$	$\begin{aligned} & \text { V23 (5C) } \\ & \text { V24 (5C) } \end{aligned}$	$\begin{aligned} & \text { V3.6 (D6) } \\ & \text { V3.6 (D6) } \end{aligned}$
$\begin{gathered} \text { Am27C128 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{aligned} & \text { V1.0 (11D) } \\ & \text { V1.5 (D6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} 23(5 \mathrm{C}) \\ & \mathrm{V} 25(5 \mathrm{C}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V3.6 (D6) } \\ & \text { V3.6 (D6) } \\ & \hline \end{aligned}$
$\begin{gathered} \text { Am27C256 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{aligned} & \text { V1.0 (5C) } \\ & \text { V1.4 (5C) } \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{V} 23(5 \mathrm{C}) \\ \mathrm{V} 24(5 \mathrm{C}) \\ \hline \end{array}$	V3.6 (5C) V3.6 (5C)
$\begin{gathered} \text { Am27H256 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	V1.7 (1DF)	V27 (D6)	V3.6 (1DF)
$\begin{gathered} \text { Am27C512 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \text { V1.0 (5E) } \\ & \text { V1.4 (5E) } \end{aligned}$	$\begin{aligned} & \text { V23 (5E) } \\ & \text { V24 (5E) } \end{aligned}$	V3.6 (5E) V3.6 (5E)
$\begin{array}{\|c} \hline \text { Am27C010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V1.0 (D6) } \\ & \text { V1.2 (D6) } \end{aligned}$	$\begin{aligned} & \mathrm{V} 24(5 \mathrm{C}) \\ & \mathrm{V} 24(5 \mathrm{C}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V3.6 (D6) } \\ & \text { V3.6 (D6) } \end{aligned}$
$\begin{gathered} \text { Am27H010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	V1.4 (D6)	V24 (5C)	V3.6 (D6)
$\begin{array}{\|c\|} \hline \text { Am27C100 } \\ \text { DIP } \\ \hline \end{array}$	V1.0 (D6)	V20 (D6)	3.6 (D6)
$\begin{array}{\|c} \hline \text { Am27C1024 } \\ \text { DIP } \\ \text { PLCC } \end{array}$	$\begin{aligned} & \text { V1.0 (5F) } \\ & \text { V1.5 (5F) } \end{aligned}$	$\begin{aligned} & \text { V18 (5F) } \\ & \text { V25 (5F) } \\ & \hline \end{aligned}$	V3.6 (5F) V3.6 (5F)

Table 6-8 Data I/O (continued)

Part Number Package	Version (Family Code)		
	2900	UNIPAK 2B	AutoSite
$\begin{array}{\|c} \hline \text { Am27C020 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	V1.0 (D6)	V19 (D6)	V3.6 (D6)
$\begin{array}{\|c} \hline \text { Am27C2048 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V1.1 (5F) } \\ & \text { V1.9 (5F) } \end{aligned}$	V21 (5F)	V3.6 (5F)
$\begin{gathered} \text { Am27C040 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	V1.3 (D6)	V23 (5C)	V3.6 (D6)
$\begin{array}{\|c} \hline \text { Am27C400 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	V2.0 (5F)		3.9
$\begin{gathered} \text { Am27C4096 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{V} 2.0(5 \mathrm{~F}) \\ \mathrm{V} 2.1(5 \mathrm{~F}) \\ \hline \end{array}$		$\begin{array}{r} 1.1 \\ 1.5 \\ \hline \end{array}$

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the siljcon signature for these devices are the same.
3. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
4. All AMD EPROMs not specifically supported by Data I/O can be programmed using Intel's Quick-Pulse ${ }^{T M}$ Programming algorithm. Intel's pin-out code must be manually entered as "Autoselect" will not work.

Table 6-8 Data I/O (continued)

Part Number Package	Version (Family Code)		
	UniSite 40	S1000	3900
$\begin{array}{\|c\|} \hline \text { Am27C64 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{array}{r} \text { V3. } 2 \text { (D6) } \\ \text { V3.3 (D6)* } \\ \hline \end{array}$	$\begin{array}{r} \text { V19 (B5C) } \\ \text { V19 (B5C) } \\ \hline \end{array}$	$\begin{aligned} & \text { V1.0 (D6) } \\ & \text { V1.0 (D6) } \\ & \hline \end{aligned}$
$\begin{array}{\|c} \hline \text { Am27C128 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{array}{r} \text { V3.2 (D6) } \\ \text { V3.4 (D6)* } \\ \hline \end{array}$	$\begin{array}{r} \text { V19 (B5C) } \\ \text { V20 (B5C) } \\ \hline \end{array}$	$\begin{aligned} & \text { V1.0 (D6) } \\ & \text { V1.0 (D6) } \end{aligned}$
$\begin{gathered} \text { Am27C256 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	$\begin{gathered} \text { V3.2 (5C) } \\ \text { V } 3.3(5 \mathrm{C})^{*} \\ \hline \end{gathered}$	$\begin{aligned} & \text { V18 (B5C) } \\ & \text { V20 (B5C) } \end{aligned}$	$\begin{aligned} & \text { V1.0 (5C) } \\ & \text { V1.0 (5C) } \end{aligned}$
$\begin{gathered} \text { Am27H256 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	V3.6(1DF)	V23 (B5C)	$\begin{aligned} & \text { V1.0 (1DF) } \\ & \text { V1.0 (D6) } \end{aligned}$
$\begin{array}{\|c} \text { Am27C512 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{aligned} & \text { V3.2 (5E) } \\ & \text { V3.3 (5E)* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V19 (B5E) } \\ & \text { V22 (B5E) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V1.0 (5E) } \\ & \text { V1.0 (5E) } \\ & \hline \end{aligned}$
$\begin{array}{\|c\|} \hline \text { Am27C010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	$\begin{array}{r} \text { V2.7 (D6) } \\ \text { V3.1 (D6)* } \\ \hline \end{array}$	$\begin{aligned} & \text { V15 (D5C) } \\ & \text { V20 (D5C) } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { V1.0 (D6) } \\ \text { V1.0 (D6) } \\ \hline \end{array}$
$\begin{gathered} \text { Am27H010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	V3.3 (D6)	V19 (D5C)	V1.0 (D6)
$\begin{gathered} \text { Am27C100 } \\ \text { DIP } \end{gathered}$	V2.7 (D6)	V14 (C5C)	V1.0 (D6)
$\begin{gathered} \text { Am27C1024 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	$\begin{array}{r} \text { V2.5 (5F) } \\ \text { V } 3.4(5 F)^{*} \\ \hline \end{array}$	$\begin{aligned} & \text { V17 (5F) } \\ & \text { V20 (5F) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V1.0 (5F) } \\ & \text { V1.0 (5F) } \\ & \hline \end{aligned}$

Table 6-8 Data I/O (continued)

Part Number Package	UniSite 40	Sersion (Family Code)	
	V2.6 (D6)	V13 (D5C)	V1.0 (D6)
	V3.0 (5F)	V16 (E5F)	V1.0 (5F)
Am27C040 DIP PLCC	V3.8 (5F)*	V24 (E5F)	
Am27C400	V3.2 (D6)	V19 (FD6)	V1.0 (D6)
DIP	V3.9 (5F)	V26 (F5F)	V1.4 (5F)
PLCC			
Am27C4096	V3.9 (5F)	V26 (F5F)	V1.4 (5F)
DIP	VLCC		

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. UNISITE 40 requires an optional PinSite Programming Module for PLCC Packages (marked with an *).
3. The 3900 programmer model requires an optional PLCC Package Base as it uses the Universal Package System ${ }^{T M}$.
4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
6. All AMD EPROMs not specifically supported by Data I/O can be programmed using Intel's Quick-Pulse ${ }^{T M}$ Programming algorithm. Intel's pin-out code must be manually entered as "Autoselect" will not work.

Table 6-9 ELAN

Part Number	Version					
	142	928	$\begin{aligned} & 132 \\ & 232 \\ & 532 \\ & 832 \\ & 932 \end{aligned}$	$\begin{aligned} & 840 \\ & 940 \end{aligned}$	Adapter	
					LCC	PLCC
Am27C64	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C128	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C256	E 5.00	E 5.00	E 5.00		A86A	A86
Am27H256						
Am27C512	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C010	E 5.00		E 5.00		A104	A104
Am27H010						
Am27C1024	E 5.00			E 5.00	A94A	A94
Am27C020	E 5.01		E 5.01		A104	A104
Am27C2048	E 5.01			E 5.01	A94A	A94
Am27C040	E 5.01		E 5.01		A104	A104
Am27C400						
Am27C4096						

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. There is a reason for the "blanks" above due to the fact that each ZIFPAK model serves a specific DIP Package Pin-count (s) :

Model	DIP Package Pin-Count
142	28,32 and 40 pins
928	28 pin
$132,232,532,832$ and 932	28 and 32 pins
840 and 940	40 pin

3. All LCC and PLCC Packages require the specific adapterlisted. Each adapter supports all ZIFPAK models listed for a specific device.
4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.

Table 6-10 Logical Devices

Part Number Package	Version			
	$\begin{aligned} & \text { ALLPro } \\ & \text { 88/XR } \end{aligned}$	Husky	$\begin{gathered} \text { GangPro } \\ -8+ \\ \hline \end{gathered}$	GangPro-S Model II
Am27C64				
DIP PLCC	$\begin{aligned} & \text { V2.1 } \\ & \text { V2.1 } \end{aligned}$		$\begin{array}{r} \text { V1.0 } \\ \text { V1.0* } \end{array}$	$\begin{gathered} \text { V1.0 } \\ \text { V1.0* } \end{gathered}$
Am27C128				
$\begin{aligned} & \text { DIP } \\ & \text { PLCC } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { V2.1 } \\ \text { V2.1 } \\ \hline \end{array}$		$\begin{array}{r} \text { V1.0 } \\ \text { V1.0* } \end{array}$	$\begin{array}{r} \text { V1.0 } \\ \text { V1.0* } \end{array}$
Am27C256				
$\begin{aligned} & \text { DIP } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { V2.2 } \\ & \text { V2.2 } \end{aligned}$		$\begin{array}{r} \text { V1.0 } \\ \text { V1.0* } \end{array}$	$\begin{aligned} & \text { V1.0 } \\ & \text { V1.0* } \end{aligned}$
Am27H256				
DIP PLCC	$\begin{array}{r} \text { V2.2 } \\ \text { V2.2 } \\ \hline \end{array}$			
Am27C512				
DIP PLCC	$\begin{aligned} & \text { V2.2 } \\ & \text { V2.2 } \end{aligned}$		$\begin{aligned} & \text { V1.0 } \\ & \text { V1.0* } \end{aligned}$	$\begin{array}{r} \text { V1.0 } \\ \text { V1.0* } \end{array}$
Am27C010				
DIP PLCC	$\begin{aligned} & \text { V2.2 } \\ & \text { V2.2 } \end{aligned}$			
Am27H010				
$\begin{aligned} & \text { DIP } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { V2.2 } \\ & \text { V2.2 } \\ & \hline \end{aligned}$			
Am27C100				
Am27C1024				
DIP PLCC	$\begin{aligned} & \text { V2.2 } \\ & \text { V2.2 } \end{aligned}$			V1.0

Table 6-10 Logical Devices (continued)

Part Number Package	Version			
	$\begin{aligned} & \text { ALLPro } \\ & 88 / X R \end{aligned}$	Husky	GangPro -8+	GangPro-S Model II
Am27C020				
$\begin{aligned} & \text { DIP } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & \text { V1.5C } \\ & \text { V1.5C } \end{aligned}$	$\begin{gathered} \text { V2.10 } \\ \text { V2.10* } \end{gathered}$	$\begin{aligned} & \text { V1.0 } \\ & \text { V1.0** } \end{aligned}$	$\begin{gathered} \text { V1.0 } \\ \text { V1.0* } \end{gathered}$
$\begin{gathered} \text { Am27C2048 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	$\begin{array}{r} \text { V2.2 } \\ \text { V2.2 } \\ \hline \end{array}$			V1.0-3
$\begin{gathered} \text { Am27C040 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{array}{r} \text { V2.2 } \\ \text { V2.2 } \\ \hline \end{array}$	$\begin{aligned} & \text { V2.4R1 } \\ & \text { V2.4R1* } \end{aligned}$	$\begin{array}{r} \text { V1.1 } \\ \text { V1.1* } \\ \hline \end{array}$	$\begin{array}{r} \text { V1.0 } \\ \text { V1.0* } \\ \hline \end{array}$
$\begin{gathered} \text { Am27C400 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$				
Am27C4096 DIP PLCC	V2.2 V2.2			V1.0-3

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. The ALLPRO programmer model has PLCC Package programming capability.
3. The programmer models HUSKY and GANGPRO-8+ need separate adapters for PLCC Packages. These adapters are not currently offered by Logical Devices and need to be procured from third-party vendors. Please contact Logical Devices for additional information on these adapters.
4. The programmer model GANGPRO-S MODEL II needs a separate adapter - OPTGP2-E32 - for 32-pin PLCC Packages and is currently offered directly by Logical Devices. 44-pin PLCC Packages are currently not supported on this programmer.
5. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
6. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
7. For further information please contact Logical Devices directly at (305) 974-0967.

Table 6-11 Stag Microsystems

Part Number Package	Pin-Out Code	Software Revision						
		39M101	41M101	41M102	41M111	41M121	42M101	ZM300
$\begin{gathered} \text { Am27C64 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	9FDA	9.0	6.0		6.0		6.0	$\begin{aligned} & 11.1 \\ & 11.1^{\prime} \\ & \hline \end{aligned}$
$\begin{gathered} \text { Am27C128 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	9FDB	9.0	6.0		6.0		6.0	$\begin{aligned} & 9.0 \\ & 9.0^{1} \end{aligned}$
$\begin{gathered} \text { Am27C256 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	9FDC	4.0	4.3		4.3		4.3	$\begin{aligned} & 9.0 \\ & 9.0^{1} \end{aligned}$
$\begin{gathered} \text { Am27H256 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$								
$\begin{gathered} \text { Am27C512 } \\ \text { DIP } \\ \text { PLCC } \end{gathered}$	9FDD	4.0	4.0		4.0		4.0	$\begin{aligned} & 9.0 \\ & 9.0^{1} \\ & \hline \end{aligned}$
$\begin{gathered} \text { Am27C010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	9FE1	4.0	4.0			4.0	4.0	$\begin{aligned} & 9.0 \\ & 9.0^{1} \end{aligned}$
$\begin{gathered} \text { Am27H010 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$								
$\begin{gathered} \text { Am27C100 } \\ \text { DIP } \end{gathered}$	9FE3	9.0	6.0			6.0	6.0	11.1
$\begin{array}{\|c\|} \hline \text { Am27C1024 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{array}$	9FF1	4.0		5.0				$\begin{aligned} & 10.0 \\ & 10.0^{2} \end{aligned}$
Am27C020 DIP PLCC	9FE2	7.0	6.0			6.0	6.0	$\begin{aligned} & 8.0 \\ & 8.0^{1} \end{aligned}$

Table 6-11 Stag Microsystems (continued)

Part Number Package	Pin-Out Code	Software Revision						
		39M101	41M101	41M102	41M111	41M121	42M101	ZM300
$\begin{gathered} \text { Am27C2048 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	9FF2	7.0		6.0				$\begin{aligned} & 11.1 \\ & 11.1^{2} \end{aligned}$
$\begin{gathered} \text { Am27C040 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	9FE4	10.0	7.0				7.0	
$\begin{gathered} \text { Am27C400 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$								
$\begin{gathered} \hline \text { Am27C4096 } \\ \text { DIP } \\ \text { PLCC } \\ \hline \end{gathered}$	9FF4	9.0		6.0				$\begin{aligned} & 11.3 \\ & 11.3^{2} \end{aligned}$

Notes:

1. Information listed above applies for all speed grades of that particular device/package.
2. There is a reason for the "blanks" above as each module serves a specific package and pin-count(s):
Model
$39 M 101$
41 M101
41 M102
41 M111
41 M121
$42 M 101$
ZM3000 (UNIVERSAL)
Package
DIP
DIP
DIP
LCC/PLCC
LCC/PLCC
DIP
AII

Pin-Count
28, 32 and 40 pins
28 and 32 pins
40 pin
32 pin
32 pin
28 and 32 pins
All
3. PLCC Packages require separate adapters. The Legend for these adapters is as follows: ${ }^{1}$ requires Zs3001 Adapter, ${ }^{2}$ requires Zs3009 Adapter.
4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the sillcon signature for these devices are the same.
6. For further information please contact Stag Microsystems directly at (408) 988-1118 in the U.S. and 707-332148 in the U.K.

Table 6-11 Stag Microsystems (continued)

Part Number	Software Revision			
	Orbit	Solar	Stratos 2	System 1040/84
Am27C64	3.7	1.0	1.2	10.41
Am27C128	3.7	1.0	1.2	10.41
Am27C256	3.7	1.0	1.2	10.41
Am27H256		1.0		
Am27C512	3.7	1.0	1.2	10.41
Am27C010	3.7	1.0	1.2	10.41
Am27H010		1.0		10.41
Am27C1024	3.7	2.0	10.41	
Am27C020	3.7	1.0		10.41
Am27C2048		2.0		10.41
Am27C040		1.0	1.2	10.41
Am27C400				10.41
Am27C4096		2.0		

Notes:

1. Information listed above applies for all speed grades of that particular device.
2. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
3. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
4. For further information please contact Stag Microsystems directly at (408) 988-1188 in the U.S. and 707-332148 in the U.K.

SECTION

$7 \begin{aligned} & \text { ARTICLE } \\ & \text { REPRINT }\end{aligned}$

Section $7 \quad$ Article Reprint 7-1
"Making EPROM/Flash Trade-Offs" Article Reprint 7-3

Making EPROM/flash trade-offs

By Datar Lalvani
Strategic Marketing Manager and Kurt Wolf
Senior Product Marketing Engineer Advanced Micro Devices Inc. Sunnivale, Calif.

he non-volatile memory market, long the bastion of the UV EPROM, has been fissured with the recent emergence of in-system reprogrammable flash memories as a viable technology. Today, both EPROMs and flash memories coexist and they will continue to run parallel paths, with the choice of technology influenced by the requirements of the end product.

Flash memories were born of the marriage between EPROM and E ${ }^{2}$ PROM devices. Flash incorporates the same programming capability as an EPROM with the added benefit of E^{2} PROM-like electrical erasability, so it can be reprogrammed without removing it from the circuit board. This makes flash an ideal choice for applications that require insystem reprogrammability. While the same benefit can be obtained from either E^{2} PROM or battery-backed SRAM, flash memories are less expensive than both.

In light of the projected rapid growth in demand for flash, the product-development plans announced by the ever-increasing number of vendors, and the recent public announcements by some large vendorswho have stated that their strategy is to "de-emphasize" EPROMs in favor of flash memories-the future of EPROMs has become unclear. This has caused some confusion in the memory marketplace. Technical factors such as scalability, die cost, erasure and package considerations-as well as
market-based factors such as demand, applications and features-factor into the decisions to build and use either EPROM or flash products.

EPROMs and flash memories will coexist with the choice of technology influenced by the requirements of the end product as used by the customer. While some vendors have stated that flash memories are more scalable than EPROMs with the addition of double-layer metal, even down at $0.5-\mathrm{mi}$ cron geometries, Advanced Micro Devices Inc. sees no need for multilayer metal for EPROMs. AMD's single-layer metal process for EPROMs using 0.5 -micron technology not only will provide the high densi-ty-up to the 16 -Mbit level-but is also capable of generating the smallest die size and highest performance in the industry.

It is a fact that, at the same density, the flash-memory die is more expensive than an EPROM because it has the slightly larger cell size required to support high endurance. Also, the flash process complexity is greater due to additional masking steps, and it requires longer test times to perform electrical erasure in the tester, as opposed to UV-erase in an oven.

Flash pricing today remains at a multiple of EPROM. However, flash pricing will continue to drop until it settles at around a 20 percent to 30 percent premium over a comparable EPROM. Memory designers are not going to increase the cost of their systems by using flash when there is no need for future reprogramming. In these designs, reprogrammability does not represent value to the customer. Consequently, flash technology will not ubiquitously replace OTP EPROM designs.

The market's demand for various price/ performance products supports the coexistence of both EPROM and flash technology.

There is no question that flash technology has already reserved a bright spot in the history of non-volatile memories. In some designs, however, EPROM and flash memories can coexist comfortably.

Laser-printer designs are becoming com-modity-oriented items. Memory-design requirements are dictated by the pages-per-minute output of the printer. Memory designers can make a trade-off between designing interleaved systems with slower/less expensive devices or non-interleaved systems using faster/ higher-cost devices. The software requirements for these systems are also fairly straightforward. Firmware that typically does not change in this system are the PCL-5 and/or Postscript enginecontrol codes.
In addition, the code for font types does not typically change. The density requirements for this code range from 2 to 4 Mbytes of storage, depending on the font types available and the number of scaling options. EPROMs instead of ROMs are used to provide manufacturing flexibility. The EPROMs are programmed just-in-time, depending on the printer engine and font options

Datar Lalvani holds a BSEE from the University of Madras, India, and an MBA from the Wharton Graduate School of Business, University of Pennsylvania. Kurt Wolf holds a BSEE from the University of Michigan.

Copyright© 1991 by CMP Publications, Inc. Reprinted from Electronic Engineering Times with Permission.

Choosing flash or EPROM

Continued

required for that day's manufacturing run. Flash memory is then incorporated as an option that allows end users to store customized fonts or screen images in the printer. This eliminates the repetitive delay associated with transferring the bit-map-generated images between the computer and printer. This decrease in productivity is eliminated when the code
is resident on the printer in flash memory, a clear example of a very high-volume product that requires both high-density EPROM and flash-memory devices.

Each technology is employed to take advantage of its strengths. OTP EPROMs are used in the most cost-sensitive portion of the memory system where the code typically does not change once the
system is shipped. OTP EPROMs also allow for smooth transitions between manufacturing runs that incorporate different printer engines and/or font type options.

The higher-priced flash devices provide customers with the ability to personalize their systems. The value of this functionality more than offsets the incremental cost of the devices.

SECTION

© PHYSICAL DIMENSIONS*

Section 8 Physical Dimensions 8-1
CDV028 28-Pin Ceramic DIP 8-3
CDV032 32-Pin Ceramic DIP 8-3
CDV040 40-Pin Ceramic DIP 8-4
CDV042 42-Pin Ceramic DIP 8-4
CLV044 44-Pin Square Leadless Chip Carrier 8-5
PD 028 28-Pin Plastic Dual In-Line Package 8-6
PD 032 32-Pin Plastic Dual In-Line Package 8-6
PD 040 40-Pin Plastic Dual In-Line Package 8-7
PD 048 48-Pin Plastic Dual In-Line Package 8-7
PL 032 32-Pin Rectangular Plastic Leaded Chip Carrier 8-8
PL 044 44-Pin Rectangular Plastic Leaded Chip Carrier 8-8
TS 032 32-Pin Thin Small Outline 8-9

CDV028

28-Pin Ceramic DIP (measured in inches)

SIDE VIEW

CDV032

32-Pin Ceramic DIP (measured in inches)

CDV040

40-Pin Ceramic DIP (measured in inches)

SIDE VIEW

CDV042

42-Pin Ceramic DIP (measured in inches)

Package in development.

CLV044

44-Pin Square Ceramic Leadless Chip Carrier (measured in inches)

PD 028

28-Pin Plastic Dual In-Line Package (measured in inches)

PD 032

32-Pin Plastic Dual In-Line Package

PD 040
40-Pin Plastic Dual In-Line Package (measured in inches)

TOP VIEW

SIDE VIEW

PD 048

48-Pin Plastic Dual In-Line Package (measured in inches)

TOP VIEW

PL 032
32-Pin Rectangular Plastic Leaded Chip Carrier (measured in inches)

PL 044

44-Pin Square Plastic Leaded Chip Carrier (measured in inches)

TS 032

32-Pin Thin Small Outline (measured in inches)

*For the standard form/pin-out, the pin one is a round dimple. For the reverse form/pin-out, an inverted triangle will be marked here indicating pin one.

Sales Offices
North American

International

BELGIUM, AntwerpenTEL (03) 2484300	
FAX	(03) 2484642
FRANCE, Paris TEL	(1) 49-75-10-10
	(1) 49-75-10-13
GERMANY,	
Bad HomburgTEL..........................(06172)-24061	
München T	(06172)-23195
	...(089) 45053-0
FAX	...(089) 406490
HONG KONG,TE	(852) 865-4525
Wanchai FAX	...(852) 865-4335
ITALY, MilanoTE	..(02) 3390541
FAX	...(02) 38103458
JAPAN,	
AtsugiTE	..(0462) 29.8460
FAX	...(0462) 29-8458
KanagawaTE	.(0462) 47-2911
FAX	..(0462) 47-1729

International (Continued)

TokyoTEL(03) 3346-7550	
	FAX (03) 3342-5196
OsakaT	..TEL............................(06) 243-3250
	FAX(06) 243-3253
KOREA, SooulT	..TEL(82) 2-784-0030
	FAX........................(82) 2-784-8014
LATIN AMERICA,	
Ft. Lauderdale ${ }^{\text {T }}$	TEL (305) 484-8600
	FAX (305) 485-9736
SINGAPORETEL	..TEL(65) 3481188
	FAX............................(65) 3480161
SWEDEN,	
Stockholm areaT	..TEL...........................(08) 986180
(Bromma) FAX	FAX(08) 980906
TAIWAN, Taipei T	TEL (886) 2.7153536
	FAX(886) 2-7122183
UNITED KINGDOM,	
Manchester areaT	..TEL(0925) 830380
(Warrington) FAX	FAX(0925) 830204
London areaT	..TEL(0483) 740440
(Woking) Fax	FAX(0483) 756196

North American Representatives

CANADA

Burnaby, B.C. - DAVETEK MARKETING(604) 430-3680
Kanata, Ontario - VITEL ELECTRONICS(613) 592-0060
Mississauga, Ontario - VITEL ELECTRONICS .(416) 564-9720
Lachine, Quebec - VITEL ELECTRONICS(514) 636-5951
ILLINOIS
Skokie - INDUSTRIAL
REPRESENTATIVES,INC(708) 967-8430
IOWA
LORENZ SALES ...(319) 377-4666
KANSAS
Merriam - LORENZ SALES(913) 469-1312
Wichita - LORENZ SALES(316) 721-0500
MICHIGAN
Holland - COM-TEK SALES, INC(616) 335-8418
Brighton - COM-TEK SALES, INC(313) 227-0007
MINNESOTA
Mel Foster Tech. Sales, Inc.(612) 941-9790
MISSOURI
LORENZ SALES ...(314) 997-4558
NEBRASKA
LORENZ SALES ...(402) 475-4660
NEW MEXICO
THORSON DESERT STATES (505) 883-4343
NEW YORK
East Syracuse - NYCOM, INC(315) 437-8343
Hauppauge - COMPONENT
CONSULTANTS, INC
(516) 273-5050

OHIO
Centerville - DOLFUSS ROOT \& CO(513) 433-6776
Columbus - DOLFUSS ROOT \& CO(614) 885-4844
Westlake - DOLFUSS ROOT \& CO(216) 899-9370
PENNSYLVANIA
RUSSELL F. CLARK CO.,INC. (412) 242-9500
PUERTO RICO
COMP REP ASSOC, INC (809) 746-6550
UTAH
Front Range Marketing (801) 288-2500
WASHINGTON
ELECTRA TECHNICAL SALES(206) 821-7442
WISCONSIN
Brookfiold - INDUSTRIAL
REPRESENTATIVES,INC
(414) 574-9393

[^1]ADVANCED
MICRO
DEVICES, INC.
901 Thompson Place
P.O. Box 3453

Sunnyvale,
California 94088-3453
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306
APPLICATIONS HOTLINE \& LITERATURE ORDERING

USA (800) 222-9323
USA (408) 749-5703
JAPAN 011-81-3-3346-7561
UK \& EUROPE 44-(0)256-811101
TOLL FREE
USA (800) 538-8450
FRANCE 0590-8621
GERMANY 0130-813875
ITALY 1678-77224

RECYCLED \& RECYCLABLE

[^0]: Notes: see page1-8

[^1]: Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

