

1993/1994 Data Book/Handbook

Advanced Micro Devices

4

AMD's Marketing Communications Department specifies environmentally sound agricultural inks and recycled papers, making this book highly recyclable.

EPROM Products

Data Book/Handbook

1993/1994

Д

© 1993 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and the AMD logo are registered trademarks of Advanced Micro Devices, Inc. ExpressROM, Flasherase and Flashrite are trademarks of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Advanced Micro Devices continues to be at the forefront of non-volatile memory technology. Our technology leadership is evidenced by the world's fastest and highest density EPROMs.

Our CMOS EPROM product portfolio is the broadest available. Today we offer EPROM densities ranging from 64K to 4 Megabit in both ceramic windowed and plastic one-time-programmable packages. Our superior EPROM process technology yields access times as fast as 35 ns enabling you to maximize system performance based on today's high speed microprocessors. Furthermore, we have expanded our product service by providing ExpressROM[™] memories. These preprogrammed and fully tested devices provide users with a cost-effective alternative to EPROMs without the long lead-time associated with ROMs.

We are now proud to announce a family of true Low Voltage EPROMs to complement our product offering. Our low voltage product family consists of 1 Megabit and 2 Megabit devices with speeds of 120 ns and 150 ns respectively. The voltage range has been extended to make them suitable for systems that have regulated power supplies (3.0 V to 3.6 V) and those that are battery powered (2.7 V to 3.6 V). We have also expanded our package portfolio to include Thin Small Outline Packages (TSOP).

There has never been a better time to take advantage of AMD's family of non-volatile memories.

Walid Maghribi

Vice President and General Manager Non-Volatile Memory Division

TABLE OF CONTENTS

Л

1	ntroduction								
Ş	Section 1	Product Selector Guides							
		Non-Volatile EF	Non-Volatile EPROM Memory Products						
			UV & OTP EPROMs						
÷		ExpressRC	DM™ Memories						
5	Section 2		CMOS Erasable Programmable Read Only Memories (EPROMs)						
			MOS EPROM Technology	2-3					
		Am27C64	64K (8,192 x 8-Bit) CMOS EPROM	2-10					
		Am27C128	128K (16,384 x 8-Bit) CMOS EPROM	2-22					
		Am27C256	256K (32,768 x 8-Bit) CMOS EPROM	2-34					
		Am27C512	512K (65,536 x 8-Bit) CMOS EPROM	2-47					
		Am27C010	1 Mbit (131,072 x 8-Bit) CMOS EPROM	2-59					
		Am27C1024	1 Mbit (65,536 x 16-Bit) CMOS EPROM	2-72					
		Am27C020	2 Mbit (262,144 x 8-Bit) CMOS EPROM	2-84					
		Am27C2048	2 Mbit (131,072 x 16-Bit) CMOS EPROM	2-96					
		Am27C040	4 Mbit (524,288 x 8-Bit) CMOS EPROM	2-109					
		Am27C400	4 Mbit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible CMOS EPROM	2-121					
		Am27C4096	4 Mbit (262,144 x 16-Bit) CMOS EPROM	2-133					
		Am27C080	8 Mbit (1,048,576 x 8-Bit) CMOS EPROM	2-145					
		Am27C800	8 Mbit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM Compatible CMOS EPROM	2-157					
\$	Section 3	High-Speed C Only Memorie	MOS Erasable Programmable Read s (EPROMs)	3-1					
			to High-Speed EPROMs	3-3					
		Am27H256	High-Speed 256K (32,768 x 8-Bit) CMOS EPROM	3-9					
		Am27H010	High-Speed 1 Mbit (131,072 x 8-Bit) CMOS EPROM	3-21					
5	Section 4	Low Voltage C	MOS Erasable Programmable Read						
			s (EPROMs)	4-1					
			to Low Voltage EPROMs	4-3					
		Am27LV010/ Am27LV010B	1 Mbit (131,072 x 8-Bit) Low Voltage CMOS EPROM	4-4					
		Am27LV020/ Am27LV020B	2 Mbit (262,144 x 8-Bit) Low Voltage CMOS EPROM	4-21					
	Section 5	ExpressROM ^T	^M Memories	5-1					
		An Introduction	to ExpressROM Memories	5-3					
		Am27X64	64K (8,192 x 8-Bit) CMOS ExpressROM Device	5-8					
		Am27X128	128K (16,384 x 8-Bit) CMOS ExpressROM Device	5-17					
		Am27X256	256K (32,768 x 8-Bit) CMOS ExpressROM Device	5-26					
		Am27X512	512K (65,536 x 8-Bit) CMOS ExpressROM Device	5-36					
		Am27X010	1 Mbit (131,072 x 8-Bit) CMOS ExpressROM Device	5-45					

•			
Section 5	ExpressROM ¹	Memories (continued)	
	Am27X1024	1 Mbit (65,536 x 16-Bit) CMOS ExpressROM Device	5-55
	Am27X020	2 Mbit (262,144 x 8-Bit) CMOS ExpressROM Device	5-64
	Am27X2048	2 Mbit (131,072 x 16-Bit) CMOS ExpressROM Device	5-73
	Am27X040	4 Mbit (524,288 x 8-Bit) CMOS ExpressROM Device	5-82
	Am27X400	4 Mbit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible ExpressROM Device	5-91
	Am27X4096	4 Mbit (262,144 x 16-Bit) CMOS ExpressROM Device	5-100
	Am27X080	8 Mbit (1,048,576 x 8-Bit) CMOS ExpressROM Device	5-109
	Am27X800	8 Mbit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM Compatible ExpressROM Device	5-118
Section 6	Programming		6-1
	Programming	Methodology	6-3
	Flashrite Prog	ramming Flowchart	6-4
	DC Programm	ing Characteristics	6-5
	Switching Cha	rcteristics and Waveforms	6-5
	Third-Party Pre	ogramming Support	6-9
Section 7	Article Reprin	it	7-1
		DM/Flash Trade-Offs" Article Reprint	7-3
Section 8	Physical Dim	ensions	8-1
	CDV028	28-Pin Ceramic DIP	8-3
	CDV032	32-Pin Ceramic DIP	8-3
	CDV040	40-Pin Ceramic DIP	8-4
	CDV042	42-Pin Ceramic DIP	8-4
	CLV044	44-Pin Square Leadless Chip Carrier	8-5
	CLV044 PD 028		8-5 8-6
		44-Pin Square Leadless Chip Carrier	
	PD 028	44-Pin Square Leadless Chip Carrier 28-Pin Plastic Dual In-Line Package 32-Pin Plastic Dual In-Line Package 40-Pin Plastic Dual In-Line Package	8-6
	PD 028 PD 032	44-Pin Square Leadless Chip Carrier 28-Pin Plastic Dual In-Line Package 32-Pin Plastic Dual In-Line Package	8-6 8-6
	PD 028 PD 032 PD 040 PD 048 PL 032	44-Pin Square Leadless Chip Carrier 28-Pin Plastic Dual In-Line Package 32-Pin Plastic Dual In-Line Package 40-Pin Plastic Dual In-Line Package 48-Pin Plastic Dual In-Line Package 32-Pin Rectangular Plastic Leaded Chip Carrier	8-6 8-6 8-7
	PD 028 PD 032 PD 040 PD 048	44-Pin Square Leadless Chip Carrier 28-Pin Plastic Dual In-Line Package 32-Pin Plastic Dual In-Line Package 40-Pin Plastic Dual In-Line Package 48-Pin Plastic Dual In-Line Package	8-6 8-6 8-7 8-7

SECTION

コ

PRODUCT SELECTOR GUIDES

Section 1	Product Selector Guides	1-1
	Non-Volatile EPROM Memory Products	1-3
	UV & OTP EPROMs	1-4
·	ExpressROM™ Memories	1-7

Non-Volatile EPROM Memory Products

Introduction

The Non-Volatile Memory Division manufactures a broad range of high performance memory products. These products include traditional windowed EPROMs, plastic OTP EPROMs, and ExpressROM devices. They offer the system designer an extensive choice of economical alternatives for program storage.

AMD's EPROM offerings are manufactured using advanced CMOS process technology yielding access times as fast as 35 ns. Product densities range from 64K to 4 megabits. Designers challenged with extending useful battery life in portable applications will appreciate the 3 Volt EPROM product family. All EPROM products are offered in windowed ceramic and One-Time Programmable (OTP) plastic packages. A new concept from AMD is the ExpressROM device. These are quick-turn ROMs produced from EPROM wafers. Lead times of these devices are typically half that of ROMs.

AMD is committed to leadership in high-performance CMOS non-volatile memories. These products offer industry-leading speeds and densities that will contribute to the competitive advantages of your design.

UV EPROMs & OTP EPROMs

Part Number	Organization	Access Time (ns)	Temp Range¹	Package Type²	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C64-55	8K x 8	55	С	D, L	28/32	5V± 5%
Am27C64-70	8K x 8	70	С	D,L	28/32	5 V ± 10%
Am27C64-90	8K x 8	90	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-120	8K x 8	120	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-150	8K x 8	150	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-200	8K x 8	200	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C64-255	8K x 8	250	C, I	D, L, P, J	28/32	5V± 5%
Am27C128-55	16K x 8	55	с	D, L	28/32	5V± 5%
Am27C128-70	16K x 8	70	С	D.L	28/32	5 V ± 10%
Am27C128-90	16K x 8	90	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-120	16K x 8	120	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-150	16K x 8	150	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-200	16K x 8	200	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C128-255	16K x 8	250	C, I	D, L, P, J	28/32	.5V± 5%
Am27H256-35	32K x 8	35	С	D, L	28/32	5 V ± 10%
Am27H256-35V05	32K x 8	35	C	D, L	28/32	5V± 5%
Am27H256-45	32K x 8	45	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27H256-55	32K x 8	55	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27H256-70	32K x 8	70	C, I, E, M	D, L, P, J	28/32	5 V ± 10%
Am27C256-55	32K x 8	55	с	D, L	28/32	5V± 5%
Am27C256-70	32K x 8	70	C	D, L	28/32	5 V ± 10%
Am27C256-90	32K x 8	90	C, I, E, M	D, L, P, J, E	28/32	5 V ± 10%
Am27C256-120	32K x 8	120	C, I, E, M	D, L, P, J, E	28/32	5 V ± 10%
Am27C256-150	32K x 8	150	C, I, E, M	E	28/32	5 V ± 10%
Am27C256-200	32K x 8	200	C, I, E, M	D, L, P, J, E	28/32	5 V ± 10%
Am27C256-255	32K x 8	250	C, I	D, L, P, J	28/32	5V± 5%

Notes: see page 1-8

UV EPROMs & OTP EPROMs (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range¹	Package Type²	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C512-75 Am27C512-90 Am27C512-120 Am27C512-150 Am27C512-200 Am27C512-255	64K x 8 64K x 8 64K x 8 64K x 8 64K x 8 64K x 8 64K x 8	70 90 120 150 200 250	C C, I, E, M C, I, E, M C, I, E, M C, I, E, M C, I, E, M	D, L D, L D, L D, L, P, J D, L, P, J D, L, P, J	28/32 28/32 28/32 28/32 28/32 28/32 28/32	$5 V \pm 5\% \\ 5 V \pm 10\% \\ 5 V \pm 5\% $
Am27H010-45 Am27H010-45V05 Am27H010-55 Am27H010-70 Am27H010-90 Am27H010-90V05	128K x 8 128K x 8 128K x 8 128K x 8 128K x 8 128K x 8 128K x 8	45 45 55 70 90 90	C C, I, E, M C, I, E, M C, I, E, M C, I, E, M	D, L D, L D, L, P, J D, L, P, J D, L, P, J D, L, P, J	32/32 32/32 32/32 32/32 32/32 32/32 32/32	$\begin{array}{c} 5 \ V \pm 10\% \\ 5 \ V \pm 5\% \\ 5 \ V \pm 10\% \\ 5 \ V \pm 5\% \end{array}$
Am27C010-105 Am27C010-120 Am27C010-150 Am27C010-200 Am27C010-255	128K x 8 128K x 8 128K x 8 128K x 8 128K x 8 128K x 8	100 120 150 200 250	C C, I C, I, E, M C, I, E, M C, I	D, L D, L, P, J, E D, L, P, J, E D, L, P, J, E D, L, P, J, E D, L, P, J, E	32/32 32/32 32/32 32/32 32/32 32/32	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Am27LV010-120 Am27LV010-150 Am27LV010-200 Am27LV010-250 Am27LV010-300	128K x 8 128K x 8 128K x 8 128K x 8 128K x 8 128K x 8	120 150 200 250 300	C, I, E C, I, E, M C, I, E, M C, I, E, M C, I, E, M	D, L D, L, J, E D, L, J, E D, L, J, E D, L, J, E D, L, J, E	32 32 32 32 32 32	3.3 V ± 10% 3.3 V ± 10%
Am27LV010B-150 Am27LV010B-200 Am27LV010B-250 Am27LV010B-300	128K x 8 128K x 8 128K x 8 128K x 8 128K x 8	150 200 250 300	C, I, E C, I, E C, I, E, M C, I, E, M	D, L, J, E D, L, J, E D, L, J, E D, L, J, E D, L, J, E	32 32 32 32 32	2.7 V - 3.6 V 2.7 V - 3.6 V 2.7 V - 3.6 V 2.7 V - 3.6 V 2.7 V - 3.6 V
Am27C1024-85 Am27C1024-90 Am27C1024-120 Am27C1024-150 Am27C1024-200 Am27C1024-255	64K x 16 64K x 16 64K x 16 64K x 16 64K x 16 64K x 16 64K x 16	85 90 120 150 200 250	C C, I C, I, E, M C, I, E, M C, I, E, M C, I	D D, L D, L D, L, P, J D, L, P, J	40 40/44 40/44 40/44 40/44 40/44	$\begin{array}{c} 5 \ V \pm \ 5\% \\ 5 \ V \pm 10\% \\ 5 \ V \pm 5\% \end{array}$
Am27C020-120 Am27C020-150 Am27C020-200 Am27C020-250 Am27C020-255	256K x 8 256K x 8 256K x 8 256K x 8 256K x 8 256K x 8	120 150 200 250 250	C, I C, I, E, M C, I, E, M M C, I	D, L D, L, P, J* D, L, P, J* D, L* D, L*	32/32 32/32 32/32 32/32 32/32 32/32	$\begin{array}{c} 5 \ V \pm 10\% \\ 5 \ V \pm 5\% \end{array}$
Am27LV020-150 Am27LV020-200 Am27LV020-250 Am27LV020-300	256K x 8 256K x 8 256K x 8 256K x 8 256K x 8	150 200 250 300	C, I, E C, I, E, M C, I, E, M C, I, E, M	D, L, J D, L, J D, L, J D, L, J D, L, J	32 32 32 32 32	3.3 V ± 10% 3.3 V ± 10% 3.3 V ± 10% 3.3 V ± 10%
Am27LV020B-200 Am27LV020B-250 Am27LV020B-300	128K x 8 128K x 8 128K x 8	200 250 300	C, I, E C, I, E, M C, I, E, M	D, L, J D, L, J D, L, J	32 32 32	2.7 V – 3.6 V 2.7 V – 3.6 V 2.7 V – 3.6 V
Am27C2048-105* Am27C2048-120 Am27C2048-150 Am27C2048-200 Am27C2048-250 Am27C2048-255	128K x 16 128K x 16 128K x 16 128K x 16 128K x 16 128K x 16 128K x 8	100 120 150 200 250 250	C C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L	40/44 40/44 40/44 40/44 40/44 40/44	$\begin{array}{c} 5 \ V \pm \ 5\% \\ 5 \ V \pm \ 10\% \\ 5 \ V \pm \ 5\% \end{array}$

Notes: see page 1-8

UV EPROMs & OTP EPROMs (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range'	Package Type²	Pin Count (DIP/PLCC) (TSOP)	Supply Voltage
Am27C040-120 Am27C040-125 Am27C040-150 Am27C040-200 Am27C040-250 Am27C040-255	512K x 8 512K x 8 512K x 8 512K x 8 512K x 8 512K x 8 512K x 8	120 120 150 200 250 250	C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L, P, J	32/32 32/32 32/32 32/32 32/32 32/32 32/32	$5 V \pm 10\% \\5 V \pm 5\% \\5 V \pm 10\% \\5 V \pm 10\% \\5 V \pm 10\% \\5 V \pm 10\% \\5 V \pm 5\%$
Am27C400-125 Am27C400-120 Am27C400-150 Am27C400-200 Am27C400-255	512K x 8/256K x 16 512K x 8/256K x 16	120 120 150 200 250	C, I C, I C, I C, I C, I		40 40 40 40 40	5 V ± 5% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 10% 5 V ± 5%
Am27C4096-125 Am27C4096-120 Am27C4096-150 Am27C4096-200 Am27C4096-250 Am27C4096-255	256K x 16 256K x 16 256K x 16 256K x 16 256K x 16 256K x 16 256K x 16	120 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L	40/44 40/44 40/44 40/44 40/44 40/44	$5 V \pm 5\% \\ 5 V \pm 10\% \\ 5 V \pm 5\% $
Am27C080-105* Am27C080-120* Am27C080-150* Am27C080-200* Am27C080-250* Am27C080-255*	1 Megabit x 8 1 Megabit x 8	100 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L	32/32 32/32 32/32 32/32 32/32 32/32 32/32	5 V ± 5% 5 V ± 10% 5 V ± 5%
Am27C800-125* Am27C800-120* Am27C800-150* Am27C800-200* Am27C800-250* Am27C800-255*	1 Megabit x 8/512K x 16 1 Megabit x 8/512K x 16	120 120 150 200 250 250	C, I C, I C, I, E, M C, I, E, M M C, I	D, L D, L D, L, P, J D, L, P, J D, L D, L	42/44 42/44 42/44 42/44 42/44 42/44	$5 V \pm 5\% \\ 5 V \pm 10\% \\ 5 V \pm 5\% \\$

*Contact the local AMD sales office for the availability of this device. Notes: see page 1-8

ExpressROM Devices

Part Number	Organization	Access Time (ns)	Temp Range ¹	Package Type²	Pin Count (PDIP/PLCC)	Supply Voltage
Am27X64-90	· 8K x 8	90	C, I	P, J	28/32	5 V ± 10%
Am27X64-120	8K x 8	120	C, I	P, J	28/32	5 V ± 10%
Am27X64-150	8K x 8	150	C, I	P, J	28/32	5 V ± 10%
Am27X64-200	8K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X64-255	8K x 8	250	C, I	P, J	28/32	5V± 5%
Am27X128-90	16K x 8	90	C, I	P, J	28/32	5 V ± 10%
Am27X128-120	16K x 8	120	C, I	P, J	28/32	5 V ± 10%
Am27X128-150	16K x 8	150	C, I	P, J	28/32	5 V ± 10%
Am27X128-200	16K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X128-255	16K x 8	250	C, I	P, J	28/32	5V± 5%
Am27X256-90	32K x 8	90	C, I	P, J	28/32	5 V ± 10%
Am27X256-120	.32K x 8	120	C. I	P, J	28/32	5 V ± 10%
Am27X256-150	32K x 8	150	C, I	P,J	28/32	5 V ± 10%
Am27X256-200	32K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X256-255	32K x 8	250	C, I	P, J	28/32	5V± 5%
Am27XH256-45	32K x 8	45	C, I	P, J	28/32	5 V ± 10%
Am27XH256-55	32K x 8	55	C, I	P, J	28/32	5 V ± 10%
Am27XH256-70	32K x 8	70	C, I	P, J	28/32	5 V ± 10%
Am27X512-90	64K x 8	90	C, I	P,J	28/32	5 V ± 10%
Am27X512-120	64K x 8	120	C, I	P, J	28/32	5 V ± 10%
Am27X512-150	64K x 8	150	C, I	P, J	28/32	5 V ± 10%
Am27X512-200	64K x 8	200	C, I	P, J	28/32	5 V ± 10%
Am27X512-255	64K x 8	250	C, I	P, J	28/32	5V± 5%
Am27X010-105	128K x 8	105	C, I	P, J	32/32	5V± 5%
Am27X010-120	128K x 8	120	C, i	P, J	32/32	5 V ± 10%
Am27X010-150	128K x 8	150	C, I	PJ	32/32	5 V ± 10%
Am27X010-200	128K x 8	200	C, I	P, J	32/32	5 V ± 10%
Am27X010-255	128K x 8	250	C, I	P, J	32/32	5V± 5%
Am27XH010-55	128K x 8	55	C, I	P, J	32/32	5 V ± 10%
Am27XH010-70	128K x 8	70	C, I	P, J	32/32	5 V ± 10%
Am27XH010-90	128K x 8	90	C, I	P, J	32/32	5 V ± 10%

Notes: see page1-8

ExpressROM Devices (Cont.)

Part Number	Organization	Access Time (ns)	Temp Range ¹	Package Type ²	Pin Count (PDIP/PLCC)	Supply Voltage
Am27X1024-120	64K x 16	120	C, I	P.J	40/44	5 V ± 10%
Am27X1024-150	64K x 16	150	C, 1	P,J	40/44	5 V ± 10%
Am27X1024-200	64K x 16	200	C, I	P, J	40/44	5 V ± 10%
Am27X1024-255	64K x 16	250	C, I	P, J	40/44	5V± 5%
Am27X020-125	256K x 8	125	C, I	Р	32/32	5 V ± 10%
Am27X020-150	256K x 8	150	Č, İ	P	32/32	5 V ± 10%
Am27X020-200	256K x 8	200	C, I	P	32/32	5 V ± 10%
Am27X020-255	256K x 8	250	C, I	Р	32/32	5V± 5%
Am27X2048-125	128K x 16	120	C, I	P, J	40/44	5 V ± 10%
Am27X2048-150	128K x 16	150	C, I	P, J	40/44	5 V ± 10%
Am27X2048-200	128K x 16	200	C, I	P,J	40/44	5 V ± 10%
Am27X2048-255	128K x 16	250	Ċ, I	P, J	40/44	5 V ± 5%
Am27X040-150	512K x 8	150	C, I	P, J	32/32	5 V ± 10%
Am27X040-200	512K x 8	200	C, I	P, J	32/32	5 V ± 10%

Notes:

1. Temperature Range

C = Commercial (0°C to 70°C)

I = Industrial (-40°C to +85°C)

E = Extended Commercial (-55°C to +125°C)

M = Military (-55°C to +125°C) most products available in both APL and DESC versions.

2. Package Type

D = Ceramic DIP

L = Rectangular Ceramic Leadless Chip Carrier

P = Plastic DIP

J = Rectangular Plastic Leaded Chip Carrier

E = Thin Small Outline Package - standard pin-out

F = Thin Small Outline Package - reverse pin-out

SECTION

2

CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMs)

Section 2

CMOS Erasab	le Programmable Read Only Memories (EPROMs) 2-1
Inside AMD's C	CMOS EPROM Technology 2-3
Am27C64	64K (8,192 x 8-Bit) CMOS EPROM 2-10
Am27C128	128K (16,384 x 8-Bit) CMOS EPROM 2-22
Am27C256	256K (32,768 x 8-Bit) CMOS EPROM 2-34
Am27C512	512K (65,536 x 8-Bit) CMOS EPROM 2-47
Am27C010	1 Mbit (131,072 x 8-Bit) CMOS EPROM 2-59
Am27C1024	1 Mbit (65,536 x 16-Bit) CMOS EPROM 2-72
Am27C020	2 Mbit (262,144 x 8-Bit) CMOS EPROM
Am27C2048	2 Mbit (131,072 x 16-Bit) CMOS EPROM 2-96
Am27C040	4 Mbit (524,288 x 8-Bit) CMOS EPROM 2-109
Am27C400	4 Mbit (524,288 x 8-Bit/262,144 x 16-Bit)
	ROM Compatible CMOS EPROM 2-121
Am27C4096	4 Mbit (262,144 x 16-Bit) CMOS EPROM 2-133
Am27C080	8 Mbit (1,048,576 x 8-Bit) CMOS EPROM 2-145
Am27C800	8 Mbit (1,048,576 x 8-Bit/524,288 x 16-Bit)
	ROM Compatible CMOS EPROM 2-157

Л

INSIDE AMD'S CMOS EPROM TECHNOLOGY

TECHNOLOGY DESCRIPTION

AMD's CMOS EPROM memories use standard CMOS periphery with an n-channel floating-gate memory array. The output buffers of the devices are designed to be compatible with both TTL and CMOS circuits. An n-channel pull-down and a p-channel pull-up provide full rail-to-rail switching of the outputs. The CMOS technology also allows very low standby power dissipation: 1.0 mA maximum TTL standby and 100 µA maximum CMOS standby currents.

Figure 1 shows a cross-section of a basic inverter. The gates consist of polysilicon; the other connections are made with metal. The technology used for the periphery transistors is CMOS (Complementary MOS) technology which combines n and p channel devices on the same silicon. In this case, a non-epitaxial p-type substrate is used for the n-channel transistors and a deep diffused n-well is used for the p-channel transistors.

The fabrication of CMOS EPROM memories is a complex process where every step must be rigorously monitored and controlled. This complex processing is heavily dependent on the following underlying technologies:

Photolithography

The photo or masking technology is key to the manufacturing of integrated circuits (ICs). It allows the same circuits to be printed hundreds of times on the same wafer. It is also inherent to the patterning of the various structures on the wafer necessary to the fabrication of the ICs. Today, with the improved capability of wafer steppers, AMD's EPROM products are manufactured on geometries of one micron and below.

Figure 2-1 CMOS Inverter Cross-Section

17061A-1

Ion Implantation

lon implantation provides precision dopant control that is so critical for the manufacturing of AMD's EPROM products on sub-micron technology. Ion implantation equipment is a combination of mass spectrometry, linear acceleration, high resolution, current integration, ion beam scanning and high vacuum technologies. This process uses charged dopant atoms that are accelerated by an electric field and are implanted into the silicon wafer at a depth determined by the acceleration energy.

Diffusion

The furnace operations are required for silicon oxidation and driving in dopants. Oxidation cycles are used to grow the gate and isolation oxides inherent to the fabrication and operation of the MOS transistors. Drive cycles are used to diffuse the dopant material into the silicon to give the desired profile and depth.

Thin Films

Thin films deposited on the silicon include: polysilicon for gate electrodes and interconnection, interlayer dielectrics, metal layers for interconnection and passivation layers to seal the topside.

AMD EPROM Technology

The manufacturing technology for AMD's EPROM products involves a complex combination and blending of the previously mentioned processes. Each processing step requires a tremendous level of development, optimization and control. Before any new product is put into manufacturing, it must satisfy AMD's commitment to customer satisfaction, quality and reliability. To meet these standards, every new process and new product must pass many rigorous requirements. These requirements are outlined in greater depth in the reliability section.

The AMD EPROM products are being built on the CS19/19A family of technologies. These technologies are all based on a double-poly, single-metal n-well CMOS process. This process has been optimized for high density as well as high performance non-volatile memory devices. The basic features of this family of technologies are:

- n-well CMOS
- non-epitaxial, grounded substrate
- double-poly, single-metal

CS19	CS19A
1.0	0.85
0.9	0.7
190	190
1.0	0.85
3.0	2.7
	1.0 0.9 190 1.0

CS19

This is a 1.0 μ m minimum feature conventional technology and is used to manufacture the low density and high speed EPROM products offered by AMD.

CS19A

This is an 0.85 μ m minimum feature conventional technology and is used to manufacture the medium to high density EPROM products and the family of low voltage EPROM products offered by AMD.

UV-ERASABLE TECHNOLOGY

AMD's CMOS EPROM technology is based upon the concept of stored charge. The charge is stored on a floating gate, that is a gate that has no connection to the rest of the circuit. The storage transistor actually has two gates: one that floats, and the other that acts as a control gate. The control gate is used to establish the field across the floating gate (see Figure 2).

Figure 2-2 Floating-Gate MOS Transistor

Hot electron injection is used for programming EPROM devices. With this scheme, a bias is set up between the source and drain of the transistor, and between the control gate and the substrate (see Figure 3). The channel is pinched off, and a strong current flows. Because of the high fields, the electrons are hot. The two fields (source-to-drain, and substrate-to-control-gate) combine to form a field in a diagonal direction, but because of the oxide barrier, electrons cannot flow in that direction. Occasionally, electrons acquire enough energy to cross the barrier in the shortest direction—from the channel to the floating gate. This is referred to as hot electron injection.

Once an electron is on the other side of the oxide, it is on the floating gate, with no conductive path to get off. It is therefore effectively trapped and remains there. During programming, large fields are set up so that a significant number of electrons are injected.

Erasing these devices requires exposure to ultraviolet light. The energy from the ultraviolet light causes the electrons to cross back over the oxide barrier thereby erasing the device. For this to happen, the device package must have a window that lets the ultraviolet light pass through.

The program and erase mechanisms of all of AMD's EPROM products are fundamentally identical irrespective of the type of technology (CS19 or CS19A) used.

Erasing AMD EPROMs

In order to clear all locations of their programmed contents, it is necessary to expose the EPROM to an ultraviolet light source. A dosage of 15 W sec/cm² is required to completely erase an EPROM. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The EPROM should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the EPROM, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å, although erasure times will be much longer than with UV sources at 2537 Å. Nevertheless, the exposure to fluorescent light and sunlight will eventually erase the EPROM and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming AMD EPROMs

Upon delivery, or after each erasure, the EPROM has all bits in the "ONE," or HIGH state. "Zeros" are loaded into the EPROM through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, \overline{CE} is at V_{IL} and \overline{OE} is at V_{IH}. For programming, the data to be programmed is applied in parallel to the data input-output pins.

The Flashrite[™] programming algorithm reduces programming time by using an initial 100 µs pulse followed by a byte verification operation to determine whether the byte has been successfully programmed. If the data does not verify, an additional pulse is applied for up to a maximum of 25 pulses. This process is repeated while sequencing through each address of the EPROM.

The Flashrite programming algorithm programs and verifies at $V_{CC} = 6.25$ V and $V_{PP} = 12.75$ V. After the final address is completed, all bytes are compared to the original data with $V_{CC} = V_{PP} = 5.25$ V.

ESD

Every pin on the device is protected against electrostatic discharge (ESD), a formal name for static electricity shocks. Output pins rely on the large output drivers as protection. Inputs normally do not have large drivers, so a circuit must be added for input protection. In addition to ESD protection, these input protection circuits also help provide clamping against negative overshoot.

AMD CMOS EPROMs make use of ESD protection circuits as shown in Figures 4a through 4c. Most input pins use the circuit in Figure 4b. On output pins the ESD protection circuit has been modified as shown in Figure 4c.

Figure 2-4 ESD Protection: a. New Version; b. Standard; c. Output Pins

Latch-Up

All of AMD's CMOS devices are guaranteed to endure a current pulse of 100 mA into or out of the pin without inducing latch-up; most devices can actually withstand over 200 mA. Since AMD's CMOS EPROMs have true CMOS outputs, hot insertion is not recommended.

Latch-up may occur as a result of parasitic bipolar transistors between the n-channel and p-channel devices (see Figure 5a). These transistors form a parasitic Silicon Control Rectifier (SCR) (see Figure 5b), which turns ON when triggered, conducting large amounts of current. It is usually impossible to shut OFF without removing all the power from the device. The amount of current drain is so high that it can either overload a power supply or, if the power supply can supply huge amounts of current, destroy the device.

Latch-up is normally triggered by an input or output at a voltage significantly above V_{CC} or below ground, with enough current drawn to cause the SCR to turn on. This condition usually occurs when hot-socketing a part; i.e., plugging a part into a powered-up board or inserting a board into a powered-up system. When this happens, the inputs and V_{CC} power up uncontrolled, and there is a risk of latch-up.

For CMOS outputs, the SCR is an intrinsic part of the CMOS structure and cannot be eliminated. The SCR must be made as difficult as possible to turn ON by using guard rings and very carefully laying out input and output circuits.

Figure 2-5 Latch-Up Mechanism: a. Cross-Section; b. Equivalent Schematic

а.

17061A-5

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4 μ F bulk electrolytic capacitor should be used between V_{CC} and GND for every eight devices. The location of the capacitor should be as close to where the power supply is connected to the array.

SUMMARY

By concentrating on the needs of CMOS users, AMD has developed industry-leading CMOS technology that can provide cost-effective EPROMs of unsurpassed quality, reliability and performance. AMD provides value through:

- Robust technology and circuit design which
 - Does not generate high current transients, and
 - Has high immunity to system noise
- An extremely broad offering of products:
 - 64K through 4 Mbit commodity EPROM densities
 - High-speed family with access times as fast as 35 ns
 - Low-voltage products
 - Regulated (3.0 V 3.6 V)
 - Unregulated (2.7 V 3.6 V)

This note has detailed many of the aspects of the technology that make it superior to other alternatives. This, together with the information in the individual data sheets, qualification books, and a crew of applications engineers, should provide answers to your questions as you make use of AMD's CMOS EPROM technology.

FINAL

Am27C64

64 Kilobit (8,192 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

Fast access time

- 45 ns
- Low power consumption
 - 20 µA typical CMOS standby current
- JEDEC-approved pinout
- Single +5 V power supply
- ±10% power supply tolerance available
- 100% Flashrite[™] programming
 - Typical programming time of 1 second

GENERAL DESCRIPTION

The Am27C64 is a 64-Kbit ultraviolet erasable programmable read-only memory. It is organized as 8K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, and PLCC packages.

Typically, any byte can be accessed in less than 45 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C64 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

BLOCK DIAGRAM

- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C64 supports AMD's FlashriteTM programming algorithm (100 μ s pulses) resulting in a typical programming time of 1 second.

Publication#.11419 Rev. C Amendment/0 Issue Date: July 1993

Advanced Micro Devices

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C64							
Ordering Part No: Vcc ± 5%								-255
Vcc ± 10%	-45	-55	-70	-90	-120	-150	-200	-250
Max Access Time (ns)	45	55	70	90	120	150	200	250
CE (E) Access Time (ns)	45	55	70	90	120	150	200	250
OE (G) Access Time (ns)	30	35	_ 40	40	50	65	75	100

CONNECTION DIAGRAMS

Top View

	DIP)		
	10	28]	Vcc
A12	2	27]	PGM (P)
A7 [3	26]	NC
A6 [4	25]	A8
A5 🛛	5	24]	A9
A4 [6	23]	A11
аз [7	22]	OE (G)
A2 🛛	8	21]	A10 .
A1 [9	20]	CE (E)
AO 🛙	10	19]	DQ7
DQ0 [11	18		DQ6
DQ1 [12	17		DQ5
DQ2	13	16]	DQ4
_{vss} [14	15]	DQ3
,				11419C-2

Notes:

1. JEDEC nomenclature is in parentheses.

2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A12	=	Address Inputs
CE (E)	=	Chip Enable
DQ0-DQ7	=	Data Inputs/Outputs
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
V _{PP}	=	Program Supply Voltage
Vss	=	Ground

ORDERING INFORMATION

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27C64

64 Kilobit (8,192 x 8-Bit) CMOS EPROM

Valid Combinations								
AM27C64-45	DC, DCB, DI, DIB,							
AM27C64-55	LC, LCB, LI, LIB							
AM27C64-70								
AM27C64-90	DC, DCB, DI,							
AM27C64-120	DIB, DE, DEB,							
AM27C64-150	LC, LCB, LI,							
AM27C64-200	LIB, LE, LEB							
AM27C64-255								

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27C64-55						
AM27C64-70						
AM27C64-90	JC. PC.					
AM27C64-120	JI, PI,					
AM27C64-150	JI, FI,					
AM27C64-200						
AM27C64-255]					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combination.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C64-70							
AM27C64-90							
AM27C64-120	/BXA, /BUA						
AM27C64-150							
AM27C64-200							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C64

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C64 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C64. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C64 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C64 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C64 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C64

Upon delivery or after each erasure the Am27C64 has all 65,536 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C64 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, \overline{CE} is at V_{IL} and \overline{PGM} is at V_{IL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C64. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = V_{PP} = 5.25 V.

 $\label{eq:please} Please \ refer to \ Section \ 6 \ for \ programming \ flow \ chart \ and \ characteristics.$

Program Inhibit

Programming of multiple Am27C64 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C64 may be common. A TTL low-level program pulse applied to an Am27C64

PGM input with V_{PP} = 12.75 V±0.25 V and \overline{CE} Low will program that Am27C64. A high-level \overline{CE} input inhibits the other Am27C64 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL} , \overline{PGM} at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C64.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C64. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C64, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} –to_E.

Standby Mode

The Am27C64 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27C64 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE	OE	PGM	AO	A9	V _{PP}	Outputs	
Read		VIL	VIL	x	X	X	Vcc		
Output Disable		x	ViH	x	х	х	Vcc	Hi-Z	
Standby (TTL)		ViH	X	х	х	х	Vcc	Hi-Z	
Standby (CMOS)	andby (CMOS)		X	X X		х	Vcc	Hi-Z	
Program		VIL	X	VIL	X X VPP DI		Din		
Program Verify		VIL	ViL	Viн	Х	Х	Vpp	Dout	
Program Inhibit	Inhibit VIH X X		х	х	Vpp	Hi-Z			
Auto Select (Note 3)	Manufacturer Code	ViL	VIL	x	VIL	Vн	Vcc	01H	
	Device Code	ViL	VIL.	x	Viн	Vн	Vcc	15H	

MODE SELECT TABLE

Notes:

1. $V_H = 12.0 V \pm 0.5 V$

2. $X = Either V_{IH} \text{ or } V_{IL}$

3. $A1 - A8 = A10 - A12 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products
All Other Products
Ambient Temperature
with Power Applied
Voltage with Respect To Vss
All pins except A9, VPP , Vcc -0.6 V to Vcc + 0.5 V
A9 and VPP $\ldots \ldots \ldots \ldots \ldots -0.6$ V to +13.5 V
Vcc –0.6 V to +7.0 V
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- For A9 and VPP the minimum DC input is -0.5 V. During transitions, A9 and VPP may overshoot VSS to -2.0 V for periods of up to 20 ns. A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _C)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (T _c) –55°C to +125°C
Military (M) Devices Case Temperature (T _C)55°C to +125°C
Supply Read Voltages V _{CC} for Am27C64-XX5 +4.75 V to +5.25 V
V_{CC} for Am27C64-XX0 \hdots +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit	
Vон	Output HIGH Voltage	Юн = -400 μА	2.4		٧	
Vol	Output LOW Voltage	lo _L = 2.1 mA		0.45	v	
Viн	Input HIGH Voltage		2.0	Vcc + 0.5	v	
VIL	Input LOW Voltage		-0.5	+0.8	V	
LI.	Input Load Current	VIN = 0 V to Vcc		1.0	μA	
llo	Output Leakage Current	Vout = 0 V to Vcc	C/I Devices		1.0	μA
			E/M Devices		5.0	
ICC1	Vcc Active Current (Note 3)	CE = VIL, f = 10 MHz, louτ = 0 mA		25	mA	
ICC2	Vcc TTL Standby Current	CE = VIH		1	mA	
ICC3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP = VCC$			100	μA

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C64 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.

3. Icc1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc + 0.5 V, which may overshoot to Vcc + 2.0 V for periods less than 20 ns.

 $V_{cc} = 5.5 V, f = 10 MHz$

11419C-6

CAPACITANCE

Parameter		Test	CLV032		CDV028		PL 032		PD 028		
Symbol	Parameter Description	Conditions	Тур	Мах	Тур	Max	Тур	Max	Тур	Мах	Unit
CIN	Input Capacitance	Vin = 0	7	10	8	10	6	10	5	10	pF
Соит	Output Capacitance	Vout = 0	8	12	1.1	14	8	12	8	10	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols					Am27C64								
JEDEC	Standard	Parameter Description	Test Conditions	Test Conditions		-55	-70	-90	-120	-150	-200	-255 -250	Unit
tavqv	tACC	Address to	CE = OE =	Min	-	_	-	-	_	_	-	_	
		Output Delay	VIL	Max	45	55	70	90	120	150	200	250	ns
telov	tCE	Chip Enable to	OE = VIL	Min	-	_	_	-	-		_	_	
		Output Delay		Max	45	55	70	90	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min	-	_	-	-	-	-	-	-	
		Output Delay		Max	30	35	40	40	50	50	50	50	ns
t EHQZ	tDF	Chip Enable HIGH or		Min	- ·	_	-	-	-	-	-	-	
tgнoz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	25	30	30	30	30	ns
taxox	toн	Output Hold from		Min	0	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	1	-	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

- 3. Caution: The Am27C64 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
- 4. For the -45, -55 and -70:

Output Load: 1 TTL gate and C_L = 30 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -45, -55 and -70.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

1. \overline{OE} may be delayed up to t_{ACC} – t_{OE} after the falling edge of the addresses without impact on t_{ACC}.

2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27C128

128 Kilobit (16,384 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 45 ns
- Low power consumption
 - 20 µA typical CMOS standby current
- JEDEC-approved pinout
- Single +5 V power supply
- ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of 2 seconds

■ Latch-up protected to 100 mA from -1 V to Vcc + 1 V

Advanced

Micro Devices

- High noise immunity
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages
- DESC SMD No. 5962–87661

GENERAL DESCRIPTION

The Am27C128 is a 128K-bit ultraviolet erasable programmable read-only memory. It is organized as 16K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 45 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C128 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

BLOCK DIAGRAM

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C128 supports AMD's FlashriteTM programming algorithm (100 μ s pulses) resulting in a typical programming time of 2 seconds.

Publication# 11420 Rev. C Amendment/0 Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C128										
Ordering Part No: Vcc ± 5%								-255			
Vcc ± 10%	-45	-55	-70	-90	-120	-150	-200	-250			
Max Access Time (ns)	45	55	70	90	120	150	200	250			
CE (E) Access Time (ns)	45	55	70	90	120	150	200	250			
OE (G) Access Time (ns)	30	35	40	40	50	65	75	100			

CONNECTION DIAGRAMS

Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A13	=	Address Inputs
CE (E)	=	Chip Enable
DQ0-DQ7	=	Data Inputs/Outputs
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
V _{PP}	=	Program Supply Voltage
Vss	=	Ground

PLCC/LCC

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27C128

128 Kilobit (16,384 x 8-Bit) CMOS EPROM

Valid Combinations									
AM27C128-45	DC, DCB, DI, DIB								
AM27C128-55	LC, LCB, LI, LIB								
AM27C128-70									
AM27C128-90	DC, DCB, DI,								
AM27C128-120	DIB, DE, DEB,								
AM27C128-150	LC, LCB, LI,								
AM27C128-200	LIB, LE, LEB								
AM27C128-255									

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

 Valid Combinations

 AM27C128-55

 AM27C128-70

 AM27C128-90

 AM27C128-120

 AM27C128-150

 AM27C128-200

 AM27C128-255

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

 Valid Combinations

 AM27C128-70
 AM27C128-90

 AM27C128-120
 /BXA, /BUA

 AM27C128-150
 AM27C128-200

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C128

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C128 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C128. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C128 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C128 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C128 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C128

Upon delivery or after each erasure the Am27C128 has all 131,072 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C128 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_PP pin, $\overline{\text{CE}}$ is at V_{IL}, and $\overline{\text{PGM}}$ is at V_{IL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C128. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM memory is verified at V_{CC} = $V_{PP} = 5.25$ V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C128 in parallel with different data is also easily accomplished. Except for \overrightarrow{CE} , all like inputs of the parallel Am27C128 may be common. A TTL low-level program pulse applied to an Am27C128 PGM input with V_{PP} = 12.75 V ± 0.25 V and

CE Low will program that Am27C128. A high-level CE input inhibits the other Am27C128 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL} , \overline{PGM} at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C128.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C128. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C128, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to fatter the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} –to E.

Standby Mode

The Am27C128 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27C128 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	PGM	A 0	A9	Vpp	Outputs
Read		VIL	VIL	x	х	х	Vcc	Dout
Output Disable		х	ViH	x	х	х	Vcc	Hi-Z
Standby (TTL)		Vін	x	x	х	х	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	x	x	х	x	Vcc	Hi-Z
Program		VIL	X	VIL	х	х	Vpp	Din
Program Verify		VIL	VIL	Viн	Х	x	Vpp	Dout
Program Inhibit		VIH	X	х	X	x	Vpp	Hi-Z
Auto Select	Manufacturer Code	VIL	VIL	x	Vi∟	Vн	Vcc	01H
(Note 3)	Device Code	VIL	VIL	Х	Vін	Vн	Vcc	16H

Notes:

1. $V_{H} = 12.0 V \pm 0.5 V$

2. X = Either VIH or VIL

3. $A1-A8 = A10-A12 = V_{IL}, A13 = X$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect To Vss All pins except A9, VPP, Vcc -0.6 V to Vcc + 0.5 V
A9 and V_PP $\ldots \ldots \ldots \ldots \ldots \ldots -0.6$ V to +13.5 V
Vcc –0.6 V to +7.0 V
Notes

- 1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- 2. For A9 and VPP the minimum DC input is -0.5 V. During transitions, A9 and VPP may overshoot Vss to -2.0 V for periods of up to 20 ns. A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _c)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (T _C)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages V _{CC} for Am27C128-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C128-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	юн = -400 μА		2.4		v
Vol	Output LOW Voltage	lo _L = 2.1 mA			0.45	V
Vін	Input HIGH Voltage			2.0	Vcc + 0.5	v
VIL	Input LOW Voltage			-0.5	+0.8	v
ILI	Input Load Current	VIN = 0 V to +Vcc			1.0	μA
h -		VOUT = $0 V$ to +Vcc	C/I Devices		1.0	
ILO.	Output Leakage Current	VOUT = 0 V to + VCC	E/M Devices		5.0	μA
	Vcc Active Current (Note 3)	$\overline{CE} = V_{iL}$, f = 10 MHz,	lout = 0 mA		25	mA
ICC2	Vcc TTL Standby Current	CE = VIH			1.0	mA
ICC3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA
IPP1	VPP Current During Read	CE = OE = VIL, VPP =		100	μA	

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C128 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

11420C-6

CAPACITANCE

Parameter		Test		/032	CD\	/028	PL	032	PD	028	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	7	10	8	10	6	10	5	10	pF
Соит	Output Capacitance	Vout = 0	8	12	11	14	8	12	8	10	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1$ MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	meter							Am27	C128				
Sym JEDEC	Standard	Parameter Description	Test Conditions		-45	-55	-70	-90	-120	-150	-200	-255 -250	Unit
tavov	tACC	Address to	CE = OE =	Min	_	_	_ ·	-		_	_	-	
		Output Delay	VIL	Max	45	55	70	90	120	150	200	250	ns
tELQV	tCE	Chip Enable to	OE = VIL	Min	·		_	-		_	_	1	
		Output Delay		Max	45	55	70	90	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min	-		_	-	_	-	-	-	
		Output Delay		Max	30	35	40	40	50	50	50	50	ns
t EHQZ	tDF	Chip Enable HIGH or		Min	-		-	_	-		-	_	
tGHQZ	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	25	25	25	25	30	30	30	30	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	-	-	-	-	. ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C128 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. For the -45, -55 and -70:

Output Load: 1 TTL gate and C_L = 30 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are \leq 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are \leq 20 ns for -45, -55, and -70.

KEY TO SWITCHING TEST WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. \overline{OE} may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of the addresses without impact on t_{ACC} .

2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

11420C-9

FINAL

Am27C256

256 Kilobit (32,768 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS	
Fast access time	Latch-up protected to 100 mA from –1 V to
— 55 ns	Vcc + 1 V
Low power consumption	High noise immunity
 — 20 µA typical CMOS standby current 	Versatile features for simple interfacing
JEDEC-approved pinout	 Both CMOS and TTL input/output
■ Single +5 V power supply	compatibility
	 — Two line control functions

■ ±10% power supply tolerance available

■ 100% FlashriteTM programming

- Typical programming time of 4 seconds

GENERAL DESCRIPTION

The Am27C256 is a 256K-bit ultraviolet erasable programmable read-only memory. It is organized as 32K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP, and PLCC packages.

Typically, any byte can be accessed in less than 55 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C256 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

OE

CE

A0-A14 Address

Inputs

Vcc
 Vss
 Vpp
 Output Enable

Chip Enable

and

Prog Logic

Y

Decoder

•

BLOCK DIAGRAM

controls, thus eliminating bus contention in a multiple bus microprocessor system.

Standard 28-pin DIP, PDIP, 32-pin TSOP, LCC

and LCC packages

DESC SMD No. 5962–86063

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C256 supports AMD's FlashriteTM programming algorithm (100 μ s pulses) resulting in typical programming time of 4 seconds.

Data Outputs DQ0–DQ7

Output

Buffers

v

Gating

separate Output Enable

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C256							
Ordering Part No: Vcc ± 5%							-255	
Vcc ± 10%	-55	-70	-90	-120	-150	-200	-250	
Max Access Time (ns)	55	70	90	120	150	200	250	
CE (E) Access Time (ns)	55	70	90	120	150	200	250	
OE (G) Access Time (ns)	35	40	40	50	65	75	100	

CONNECTION DIAGRAMS

Top View											
DIP											
	10	28	þ	Vcc							
A12 🛛	2	27	þ	A14							
A7 [3	26	þ	A13							
A6 [4	25	þ	A8							
A5 [5	24	þ	A9							
A4 [6	23	þ	A11							
АЗ [7	22	þ	OE (G)							
A2 [8	21		A10							
A1 [9	20	þ	CE (E)							
A0 [10	19	þ	DQ7							
DQ0 [11	18	Þ	DQ6							
DQ1	12	17	þ	DQ5							
DQ2 [13	16	þ	DQ4							
_{vss} [14	15	þ	DQ3							
				08007G-2							

PLCC/LCC

Notes:

1. JEDEC nomenclature is in parentheses.

2. Don't use (DU) for PLCC.

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0-A14	=	Address Inputs
CE (E)	=	Chip Enable
DQ0-DQ7	=	Data Inputs/Outputs
OE (G)	=	Output Enable Input
Vcc	=	Vcc Supply Voltage
VPP	=	Program Supply Voltage
Vss	=	Ground

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Con	Valid Combinations							
AM27C256-55 AM27C256-70	DC, DCB, DI, DIB LC, LCB, LI, LIB							
AM27C256-90	DC, DCB, DI,							
AM27C256-120	DIB, DE, DEB,							
AM27C256-150 AM27C256-200	LC, LCB, LI,							
AM27C256-255	LIB, LE, LEB							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Con	nbinations
AM27C256-55	
AM27C256-70	
AM27C256-90	
AM27C256-120	JC, PC, EC,
AM27C256-150	JI, PI, EI
AM27C256-200	
AM27C256-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Com	Valid Combinations						
AM27C256-70							
AM27C256-90							
AM27C256-120							
AM27C256-150	/BXA, /BUA						
AM27C256-200							
AM27C256-250							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C256

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C256 to an ultraviolet light source. A dosage of 15 W sec/cm² is required to completely erase an Am27C256. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C256 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C256

Upon delivery or after each erasure the Am27C256 has all 262,144 bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C256 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, \overline{OE} is at V_{IH}, and \overline{CE} is at V_{IL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C256. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM memory is verified at V_{CC} = $V_{PP} = 5.25$ V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C256 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C256 may be common. A TTL low-level program pulse applied to an Am27C256 \overline{CE} input with V_{PP} = 12.75 V ± 0.25 V, and

OE High will program that Am27C256. A high-level OE input inhibits the other Am27C256 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overrightarrow{OE} at V_{IL}, \overrightarrow{CE} at V_{IH}, and V_{PP} between 12.5 V to 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C256.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address like A9 of the Am27C256. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to faster the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} –to E.

Standby Mode

The Am27C256 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27C256 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE	OE	AO	A9	VPP	Outputs
Read		VIL	ViL	х	x	Vcc	Dout
Output Disable		X	ViH	x	x	Vcc	Hi-Z
Standby (TTL)		VIH	x	х	x	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	х	х	x	Vcc	Hi-Z
Program		, ViL	Vін	x	x	V _{PP}	Din
Program Verify		ViH	VIL	Х	х	VPP	Dout
Program Inhibit		Vін	ViH ·	х	х	V _{PP}	Hi-Z
Auto Select (Note 3)	Manufacturer Code	ViL	ViL	Vı∟	Vн	Vcc	01H
(11018-3)	Device Code	VIL	ViL	ViH	Vн	Vcc	10H

MODE SELECT TABLE

Notes:

1. $V_H = 12.0 V \pm 0.5 V$

2. $X = Either V_{IH} \text{ or } V_{IL}$

3. $A1 - A8 = A10 - A14 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect To V _{SS} All pins except A9,V _{PP} ,V _{CC} (Note 1)
A9 and V _{PP} (Note 2)
V _{CC}
Notes: 1 Minimum DC voltage on input or I/O pigs is -0.5 V. During

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _C)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc) –55°C to +125°C
Military (M) Devices
Case Temperature (Tc)55°C to +125°C
Supply Read Voltages
V _{CC} for Am27C256-XX5 +4.75 V to +5.25 V
V_{CC} for Am27C256-XX0 \hdots +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	loн = -400 μA		2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	v
ViH	Input HIGH Voltage			2.0	Vcc + 0.5	v
ViL	Input LOW Voltage			-0.5	+0.8	v
ILI	Input Load Current	VIN = 0 V to +Vcc			1.0	μA
LO	Output Leakage Current	Vout = 0 V to +Vcc	C/I Devices		1.0	μA
			E/M Devices		5.0	μι
ICC1	Vcc Active Current (Note 3)	CE = VIL, f = 10 MHz, lout = 0 mA			25	mA
ICC2	Vcc TTL Standby Current	CE = VIH			1.0	mA
Іссз	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA
IPP1	VPP Current During Read	CE = OE = VIL, VPP = VCC			100	μA

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C256 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. Icc1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

08007G-6

MHZ

08007G-7

CAPACITANCE

Parameter Parameter		Test	CLV032		CDV028		PL 032		PD 028		TS 032		
Symbol	Description	Conditions	Тур	Max	Unit								
CIN	Input Capacitance	Vin = 0	11	14	8	12	8	12	6	10	10	12	pF
Солт	Output Capacitance	Vout = 0	10	14	8	12	8	12	8	10	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. TA = +25°C, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	ameter mbols				Am27C256								
JEDEC	Standard	Parameter Description	Test Conditions	1	-55	-70	-90	-120	-150	-200	-255 -250	Unit	
tavqv	tACC	Address to	$\overline{CE} = \overline{OE} =$	Min		-	-	-	-	_	-		
		Output Delay	VIL	Max	55	70	90	120	150	200	250	ns	
tELQV	tCE	Chip Enable to	OE = Vil	Min	-	-	-	-	-	-	_		
		Output Delay		Max	55	70	90	120	150	200	250	ns	
tGLQV	tOE	Output Enable to	CE = VIL	Min	-	-	-	-	-	-	-		
		Output Delay		Max	35	40	40	50	50	50	50	ns	
tehoz,	tDF	Chip Enable HIGH or		Min	_	_	_	_			-		
tgнqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	30	30	30	30	ns	
taxox	tон	Output Hold from		Min	0	0	0	0	0	0	0		
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	-	-	-	ns	

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C256 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. For the -55 and -70:

Output Load: 1 TTL gate and C_L = 30 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are \leq 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are \leq 20 ns for -55 and -70.

KEY TO SWITCHING TEST WAVEFORMS

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from OE or CE, whichever occurs first.

512 Kilobit (65,536 x 8-Bit) CMOS EPR	Micro ROM Devices
DISTINCTIVE CHARACTERISTICS	
 Fast access time — 70 ns 	Latch-up protected to 100 mA from –1 V to Vcc + 1 V
Low power consumption	High noise immunity
 — 20 μA typical CMOS standby current 	Versatile features for simple interfacing
 JEDEC-approved pinout Single +5 V power supply 	 Both CMOS and TTL input/output compatibility
 single +3 v power supply ±10% power supply tolerance available 	 Two line control functions
 100% FlashriteTM programming 	Standard 28-pin DIP, PDIP, 32-pin TSOP, LCC and PLCC packages
 Typical programming time of 8 seconds 	DESC SMD No. 5962–87648
GENERAL DESCRIPTION The Am27C512 is a 512 K-bit ultraviolet erasable pro-	controls thus eliminating bus contention in a multipl

The Am27C512 is a 512 K-bit ultraviolet erasable programmable read-only memory. It is organized as 64K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP and PLCC packages.

Typically, any byte can be accessed in less than 70 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C512 offers separate Output Enable (OE) and Chip Enable (CE)

BLOCK DIAGRAM

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 µW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C512 supports AMD's Flashrite[™] programming algorithm (100 µs pulses) resulting in a typical programming time of 8 seconds.

FINAL

Δm27C512

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C512									
Ordering Part No: V _{CC} ± 5%	-75					-255				
Vcc ± 10%		-90	-120	-150	-200	-250				
Max Access Time (ns)	70	90	120	150	200	250				
CE (E) Access Time (ns)	70	90	120	150	200	250				
OE (G) Access Time (ns)	40	40	50	50	75	100				

CONNECTION DIAGRAMS

Top View

DIP

A15 🛛	1•	28	þ	Vcc
A12 [2	27	þ	A14
A7 [3	26	þ	A13
A6 [4	25	þ	A8
a5 🛙	5	24	þ	A9
A4 [6	23	þ	A11
аз [7	22	þ	OE (G)/VPP
A2 [8	21	þ	A10
A1 [9	20	þ	CE (Ē)
AO [10	19	þ	DQ7
DQ0	11	18	þ	DQ6
PQ1	12	17	þ	DQ5
DQ2	13	16		DQ4
vss [14	15	þ	DQ3
1				08140G-2

PLCC/LCC

Notes:

1. JEDEC nomenclature is in parentheses.

2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0–A15	=	Address Inputs
CE (E)	=	Chip Enable Input
DQ0-DQ7	=	Data Inputs/Outputs
DU	=	No External Connection (Do Not Use)
NC	=	No Internal Connection
\overline{OE} (\overline{G})/V _{PP}	=	Output Enable Input/ Program Supply Voltage
Vcc	=	Vcc Supply Voltage
Vss	=	Ground

LOGIC SYMBOL

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27C512

512 Kilobit (65,536 x 8-Bit) CMOS EPROM

Valid Combinations								
AM27C512-75	DC, DCB, LC, LCB							
AM27C512-90								
AM27C512-120	DC, DCB, DI, DIB,							
AM27C512-150	DE, DEB, LC, LCB,							
AM27C512-200	LI, LIB, LE, LEB							
AM27C512-250								
AM27C512-255								

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Com	binations
AM27C512-90	
AM27C512-120	
AM27C512-150	PC, JC, EC
AM27C512-200	PI, JI, EI
AM27C512-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27C512-90						
AM27C512-120						
AM27C512-150	/BXA, /BUA					
AM27C512-200						
AM27C512-250						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C512

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C512 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C512. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C512 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C512 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C512 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C512

Upon delivery or after each erasure the Am27C512 has all 524,288 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27C512 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the \overline{OE}/V_{PP} and \overline{CE} is at V_{IL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C512. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C512 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C512 may be common. A TTL low-level program pulse applied to an Am27C512 \overline{CE} input and \overline{OE}/V_{PP} = 12.75 V ± 0.25 V, will program that Am27C512. A high-level \overline{CE} input

inhibits the other Am27C512 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{CE} at V_{IL} and \overline{OE}/V_{PP} at V_{IL}. Data should be verified t_{DV} after the falling edge of \overline{CE} .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C512.

To activate this mode, the programming equipment must force 12.0 \pm 0.5 V on address line A9 of the Am27C512. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C512, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE} /VPP) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs toE after the falling edge of \overline{OE}/VPP , assuming that \overline{CE} has been LOW and addresses have been stable for at least tACC –toE.

Standby Mode

The Am27C512 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27C512 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

Low memory power dissipation

Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE}/V_{PP} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Pins		CE	OE/Vpp	A0	A9	Outputs
Read		ViL	VIL	х	X	Dout
Output Disable		х	Vін	x	X	Hi-Z
Standby (TTL)		Vih	х	Х	Х	Hi-Z
Standby (CMOS)		Vcc + 0.3 V	х	х	Х	Hi-Z
Program		VIL	Vpp	х	х	Din
Program Verify		ViL	ViL	x	x	Dout
Program Inhibit		Viн	VPP	х	X	Hi-Z
Auto Select (Note 3)	Manufacturer Code	ViL	ViL	ViL	Vн	01H
	Device Code	VIL	ViL	ViH	VH	91H

MODE SELECT TABLE

Notes:

1. $V_H = 12.0 \pm 0.5 V$

2. $X = Either V_{IH} or V_{IL}$

3. $A1 - A8 = A10 - A15 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect To Vss All pins except A9, VPP,Vcc0.6 V to Vcc + 0.5 V
· · · · ·
A9 and V _{PP}
V _{CC} –0.6 V to +7.0 V
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- For A9 and VPP the minimum DC input is -0.5 V. During transitions, A9 and VPP may overshoot VSs to -2.0 V for periods of up to 20 ns. A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _C) –40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (T _C) –55°C to +125°C
Military (M) Devices Case Temperature (T _C)55°C to +125°C
Supply Read Voltages
V _{CC} for Am27C512-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C512-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func-

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit		
Vон	Output HIGH Voltage	Юн =400 μА		2.4		V	
Vol	Output LOW Voltage	lo _L = 2.1 mA			0.45	V	
Viн	Input HIGH Voltage			2.0	Vcc + 0.5	v	
VIL	Input LOW Voltage			-0.5	+0.8	V	
lu .	Input Load Current	VIN = 0 V to +Vcc			1.0	μA	
			C/I Devices		1.0		
llo	Output Leakage Current	VOUT = 0 V to +Vcc	E/M Devices		5.0	μA	
ICC1	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL}, f = 10 \text{ MHz},$	IOUT = 0 mA,		30	mA	
ICC2	Vcc TTL Standby Current	CE = VIH		1.0	mA		
Іссз	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA	

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C512 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

08140G-5

vs. Temperature

Vcc = 5.5 V, f = 10 MHz

08140G-6

CAPACITANCE

Parameter		Test	CLV032		CDV028		PL 032		PD 028		
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	Vin = 0	9	12	10	12	9	12	6	10	pF
Солт	Output Capacitance	Vout = 0	10	12	10	13	9	12	6	10	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 \text{ MHz}$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, 4 and 5) (for APL Products, Group A, Subgroups 9,10, and 11 are tested unless otherwise noted)

Parameter Symbols				Am27C512						·	
JEDEC	Standard	Parameter Description	Test Conditions		-75	-90	-120	-150	-200	-255 -250	Unit
tavov	tACC	Address to Output Delay	CE = OE = VIL	Min Max	- 70	- 90	- 120	 150	_ 200		ns
telav	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	- 70		_ 120	_ 150	_ 200	_ 250	ns
tglav .	tOE	Output Enable to Output Delay	CE = VIL	Min Max	- 40	- 40	- 50	- 50	 75	- 75	ns
tehaz tghaz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	_ 25	_ 30	- 30	 30	 30	- 30	ns
taxox	тон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0 -	0 -	0	0 -	0 -	0 -	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C512 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

- 4. Output Load: 1 TTL gate and CL = 100 pF
 - Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs
- 5. For the Am27C512-75:

Output Load: 1 TTL gate and $C_L = 30 \text{ pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are \leq 20 ns for -75 device.

KEY TO SWITCHING WAVEFORMS

Notes:

1. OE/Vpp may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

Am27C010 1 Megabit (131,072 x 8-Bit) CMOS EP	Advanced Micro ROM Devices
DISTINCTIVE CHARACTERISTICS	
 Fast access time 90 ns Low power consumption 20 µA typical CMOS standby current JEDEC-approved pinout Single +5 V power supply ±10% power supply tolerance available 100% Flashrite[™] programming	 Latch-up protected to 100 mA from -1 V to Vcc + 1 V High noise immunity Versatile features for simple interfacing Both CMOS and TTL input/output compatibility Two line control functions Compact 32-pin DIP, PDIP, TSOP, LCC and PLCC packages DESC SMD No. 5962-89614

GENERAL DESCRIPTION

FINAL

The Am27C010 is a 1 Megabit ultraviolet erasable programmable read-only memory. It is organized as 128K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP, TSOP, and PLCC packages.

Typically, any byte can be accessed in less than 90 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C010 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

BLOCK DIAGRAM

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C010 supports AMD's FlashriteTM programming algorithm (100 μ s pulses) resulting in a typical programming time of 16 seconds.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C010									
Ordering Part No: Vcc ± 5%	-95	-105				-255				
Vcc ± 10%	-90		-120	-150	-200					
Max Access Time (ns)	90	100	120	150	200	250				
CE (E) Access Time (ns)	90	100	120	150	200	250				
OE (G) Access Time (ns)	40	50	50	65	75	100				

CONNECTION DIAGRAMS

Top View DIP

VPP [32] v _{cc}
A16 🛛	2	31	PGM (P)
A15 [3	30] NC
A12 🛛	4	29	A14
A7 [5	28	A13
A6 [6	27] A8
A5 [7	26] A9
A4 [8	25	A11
АЗ [9	24] . (G)
A2 [10	23] A10
A1 [11	22	
A0 [12	21] DQ7
DQ0 [13	20	DQ6
	14	19] DQ5
DQ2	15	18] DQ4
Vss [16	17] роз
l		-	10205D-2

PLCC/LCC

Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. The 32-pin DIP to 32-Pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0-A16	=	Address Inputs
CE (E)	=	Chip Enable
DQ0-DQ7	=	Data Inputs/Outputs
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
VPP	=	Program Supply Voltage
Vss	=	Ground

LOGIC SYMBOL

ORDERING INFORMATION EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27C010

1 Megabit (131,072 x 8-Bit) CMOS EPROM

Valid Combinations							
AM27C010-90							
AM27C010-95	DC, DCB, DI, DIB, LC, LCB, LI, LIB						
AM27C010-105							
AM27C010-120							
AM27C010-150	DC, DCB, DE, DEB,						
AM27C010-200	DI, DIB, LC, LCB,						
AM27C010-255	LI, LIB, LE, LEB						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C010-105							
AM27C010-120	50 10 50						
AM27C010-150	PC, JC, EC,						
AM27C010-200	PI, JI, EI						
AM27C010-255							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C010-120							
AM27C010-150	1						
AM27C010-200	/BXA, /BUA						
AM27C010-250							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C010 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C010. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C010 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C010

Upon delivery or after each erasure the Am27C010 has all 1,048,576 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27C010 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, \overline{CE} and \overline{PGM} are at V_{IL}, and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C010. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM memory is verified at V_{CC} = $V_{PP} = 5.25$ V.

 $\label{eq:please} Please \ refer to \ Section \ 6 \ for \ programming \ flow \ chart \ and \ characteristics.$

Program Inhibit

Programming of multiple Am27C010 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C010 may be common. A TTL low-level program pulse applied to an Am27C010 \overline{CE} input and V_{PP} = 12.75 V ± 0.25 V, \overline{PGM}

Low and OE High will program that Am27C010. A highlevel CE input inhibits the other Am27C010 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL} , \overline{PGM} at V_{IH} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C010.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C010. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C010, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} –t_{OE}.

Standby Mode

The Am27C010 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27C010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Pins		CE	ŌĒ	PGM	A0	A9	VPP	Outputs
Read		ViL	ViL	x	х	X	Vcc	Dour
Output Disable		x	Vін	x	х	х	Vcc	Hi-Z
Standby (TTL)		ViH	×	x	х	х	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	X	x	х	х	Vcc	Hi-Z
Program		ViL	Vін	VIL	х	x	Vpp	Din
Program Verify		VIL	ViL	Ин	х	X	Vpp	Dout
Program Inhibit		VIH	х	x	х	x	Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	x	VIL	Vн	Vcc	01H
(NOLE 3)	Device Code	ViL	ViL	х	Vн	Vн	Vcc	0E

MODE SELECT TABLE

Notes:

1. $V_H = 12.0 V \pm 0.5 V$

2. X = Either VIH or VIL

3. $A1 - A8 = A10 - A16 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect To Vss All pins except A9,VPP,Vcc $\ .\ -0.6$ V to Vcc + 0.5 V
A9 and VPP $\dots \dots $
Vcc –0.6 V to +7.0 V
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- For A9 and VPP the minimum DC input is -0.5 V. During transitions, A9 and VPP may overshoot VSS to -2.0 V for periods of up to 20 ns. A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _C)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc) –55°C to +125°C
Military (M) Devices
Case Temperature (Tc) –55°C to +125°C
Supply Read Voltages
V _{CC} for Am27C010-XX5 +4.75 V to +5.25 V
V _{CC} for Am27C010-XX0 +4.50 V to +5.50 V
Operating ranges define these limits between which the fune

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit	
Voн	Output HIGH Voltage	Іон = –400 μА	2.4		V	
Vol	Output LOW Voltage	lo _L = 2.1 mA		0.45	v	
Viн	Input HIGH Voltage		2.0	Vcc + 0.5	v	
ViL	Input LOW Voltage		-0.5	+0.8	v	
lu	Input Load Current	VIN = 0 V to Vcc		1.0	μA	
LO	Output Leakage Current	Vout = 0 V to Vcc		10	μA	
ICC1	Vcc Active Current	CE = VIL, f = 5 MHz,	C/I Devices		30	
	(Note 3)	lout = 0 mA	E/M Devices		60	mA
ICC2	Vcc TTL Standby Current	CE = VIH		1.0	mA	
Іссз	Vcc CMOS Standby Current	$\overline{CE} = Vcc \pm 0.3 V$		100	μA	
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP = VCC$			100	μΑ

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C010 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

10205D-7

CAPACITANCE

Parameter		Test	CLV032		CDV032		PL 032		PD 032		TS 032		
		Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Мах	Unit
Cin	Input Capacitance	VIN = 0	9	12	9	12	8	12	8	12	· 10	12	pF
Солт	Output Capacitance	Vout = 0	11	14	13	15	11	14	11	14	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter Symbols						Am27C010						
JEDEC	Standard	Parameter Description	Test Conditions		-95 -90	-105	-120	-150	-200	-255 -250	Unit	
tavov	tACC	Address to	CE = OE =	Min	-	-	1	-	1	-		
		Output Delay	VIL	Max	90	100	120	150	200	250	ns	
TELQV	tCE	Chip Enable to	OE = VIL	Min	-	-	-	-	-			
		Output Delay		Max	90	100	120	150	200	250	ns	
tGLQV	tOE	Output Enable to	CE = VIL	Min	1	_	1	-	1	-		
		Output Delay		Max	40	50	50	65	75	75	ns	
tEHQZ	tDF	Chip Enable HIGH or		Min	-		-	-	-	-		
tghaz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	35	35	40	40	ns	
taxox	toн	Output Hold from		Min	0	0	0	0	0	0		
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	-	-	ns	

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C010 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

FINAL

Am27C1024

1 Megabit (65,536 x 16-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS	
Fast access time	■ 100% Flashrite [™] programming
— 85 ns	— Typical programming time of 8 seconds
Low power consumption	Latch-up protected to 100 mA from –1 V to
 — 20 µA typical CMOS standby current 	$V_{cc} + 1 V$
■ JEDEC-approved 40-Pin DIP and 44-Pin LCC	High noise immunity
pinouts	Versatile features for simple interfacing
Single +5 V power supply	 Both CMOS and TTL input/output compatibility
±10% power supply tolerance available	 — Two line control functions
	DESC SMD No. 5962-86805

GENERAL DESCRIPTION

The Am27C1024 is a 1 Mbit ultraviolet erasable programmable read-only memory. It is organized as 64K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 85 ns. allowing operation with high-performance microprocessors without any WAIT states. The Am27C1024 offers separate Output Enable (OE) and Chip Enable (CE)

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C1024 supports AMD's Flashrite[™] programming algorithm (100 µs pulses) resulting in a typical programming time of 8 seconds.

06780G-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C1024								
Ordering Part No: Vcc ± 5%	-85					-255			
Vcc ± 10%		-90	-120	-150	-200	-250			
Max Access Time (ns)	85	90	120	150	200	250			
CE (E) Access Time (ns)	85	90	120	150	200	250			
OE (G) Access Time (ns)	45	45	50	65	75	100			

CONNECTIONS DIAGRAMS

- 1. JEDEC nomenclature is in parentheses.
- 2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

1 Megabit (65,536 x 16-Bit) CMOS EPROM

Valid Combinations							
AM27C1024-85	DC, DCB, DI, DIB,						
AM27C1024-90	LC, LCB, LI, LIB						
AM27C1024-120	DC, DCB, DI,						
AM27C1024-150	DIB, DE, DEB,						
AM27C1024-200	LCB, LIB, LE,						
AM27C1024-255	LEB, LC, LI						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations							
AM27C1024-90	PC, JC						
AM27C1024-120							
AM27C1024-150	PC, JC, PI, JI						
AM27C1024-200	FC, JC, FI, JI						
AM27C1024-255							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

1 Megabit (65,536 x 16-Bit) CMOS EPROM

Valid Combinations							
AM27C1024-120							
AM27C1024-150							
AM27C1024-170	/BQA, /BUA						
AM27C1024-200							
AM27C1024-250							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C1024

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C1024 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C1024. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 (Å)—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C1024 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C1024 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C1024 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C1024

Upon delivery or after each erasure the Am27C1024 has all 1,048,576 bits in the "ONE" or HIGH state. "ZE-ROs" are loaded into the Am27C1024 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin and \overline{CE} and \overline{PGM} are at V_{IL}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C1024. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = V_{PP} = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C1024 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C1024 may be common. A TTL low-level program pulse applied to an Am27C1024 \overline{CE} input with V_{PP} = 12.75 V ± 0.25 V, and

PGM Low will program that Am27C1024. A high-level CE input inhibits the other Am27C1024 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL} , \overline{PGM} at V_{IH} and V_{PP} between 12.75 V ± 0.25 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C1024.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V open address the A9 of the Am27C1024. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C1024, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27C1024 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27C1024 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	<u>, CE</u>	ŌĒ	PGM	A0	A9	Vpp	Outputs
Read		ViL	VIL	x	х	х	Vcc	Dout
Output Disable		x	ViH	x	x	х	Vcc	Hi-Z
Standby (TTL)		Vін	х	Х	x	x	Vcc	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	x	x	х	х	Vcc	Hi-Z
Program	-	ViL	x	VIL	х	x	Vpp	DIN
Program Verify		ViL	VIL	ViH	x	X	Vpp	Dout
Program Inhibit	Program Inhibit		х	х	х	х	Vpp	Hi-Z
Auto Select	Manufacturer Code	VIL	VIL	ViH	ViL	Vн	Vcc	01H
(Note 3)	Device Code	VIL	Vı∟	. Vih	Vін	Vн	Vcc	8CH

Notes:

1. $V_H = 12.0 \ V \pm 0.5 \ V$

2. X = Either VIH or VIL

3. $A1 - A8 = A0 - A15 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to V_{SS} All pins except A9,V_{PP},V_{CC} . -0.6 V to V_{CC} + 0.5 V
A9 and V_PP $\dots \dots $
V _{CC} –0.6 V to +7.0 V
Nataa

Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _C)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (T _C)55°C to +125°C
Military (M) Devices Case Temperature (T _c)55°C to +125°C
Supply Read Voltages V _{CC} for Am27C1024-XX5 +4.75 V to +5.25 V
V_{CC} for Am27C1024-XX0 \hdots +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit	
Vон	Output HIGH Voltage	Юн = -400 μА		2.4		v
Vol	Output LOW Voltage	IOL = 2.1 mA			0.45	v
Viн	Input HIGH Voltage		2.0	Vcc + 0.5	v	
VIL	Input LOW Voltage		0.5	+0.8	v	
lu	Input Load Current	VIN = 0 V to +Vcc	C/I Devices		1.0	μA
			E/M Devices		5.0	μ.,
llo	Output Leakage Current	Vour = 0 V to +Vcc	C/I Devices		1.0	
			E/M Devices		5.0	μA
ICC1	V _{CC} Active Current (Note 3)	CE = V _{IL} , f = 5 MHz lout = 0 mA	C/I Devices		30	mA
				50		
ICC2	Vcc TTL Standby Current	CE = VIH			1.0	mA
Іссз	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{IL}$	Vcc		100	μA

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. Caution: The Am27C1024 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter		Test	CDV040		CLV044		PD 040		PL 044		
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	9	12	8	12	7	12	8	10	pF
Солт	Output Capacitance	Vout = 0	12	14	11	14	11	14	11	14	рF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Parameter Symbols				Am27C1024							
JEDEC	Standard	Parameter Description	Test Conditions		-85	-90	-120	-150	-200	-255 -250	Unit
tavov	AVQV tACC Address to		CE = OE = VIL	Min							
Output Delay	Output Delay		Max	85	90	120	150	200	250	ns	
telov	tCE	Chip Enable to	OE = VIL	Min							
		Output Delay		Max	85	90	120	150	200	250	ns
tGLQV tOE Output	Output Enable to	CE = VIL	Min								
		Output Delay	4	Max	45	45	50	65	75	75	ns
t EHQZ	tDF	Chip Enable HIGH or		Min	-	-	-	-	-	_	ns
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	40	40	50	50	50	50	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	0	ns
		Addresses, CE, or OE, whichever occurred first		Max							

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C1024 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.

4. Output Load: 1 TTL gate and $C_L = 100 \, pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0." Input pulse rise and fall times are < 20 ns.

KEY TO SWITCHING TEST WAVEFORMS

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27C020

2 Megabit (262,144 x 8-Bit) CMOS EPROM

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - --- 90 ns
- Low power consumption
 - 100 µA maximum CMOS standby current
- JEDEC-approved pinout
 - --- Plug in upgrade of 1 Mbit EPROM
 - Easy upgrade from 28-pin JEDEC EPROMs
- Single +5 V power supply
- ±10% power supply tolerance standard on most speeds

GENERAL DESCRIPTION

The Am27C020 is a 2 Mbit, ultraviolet erasable programmable read-only memory. It is organized as 256K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages, as well as plastic one-time programmable (OTP) packages.

Typically, any byte can be accessed in less than 90 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C020 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

■ 100% Flashrite[™] programming

- Typical programming time of 32 seconds

- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity
- Compact 32-pin DIP package requires no hardware change for upgrades to 8 Mbits
- DESC SMD No. 5962-90912

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C020 supports AMD's Flashrite programming algorithm (100 μ s pulses) resulting in typical programming times of 32 seconds.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C020						
Ordering Part No: Vcc±5%	-95	-105				-255	
Vcc ±10%	-90	-100	-120	-150	-200	-250	
Max Access Time (ns)	90	100	120	150	200	250	
CE (E) Access (ns)	90	100	120	150	200	250	
OE (G) Access (ns)	40	50	50	65	75	100	

CONNECTION DIAGRAMS

Top View

Notes:

- 1. JEDEC nomenclature is in parentheses.
- 2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

LOGIC SYMBOL **PIN DESIGNATIONS** A0-A17 Address Inputs CE (E) Chip Enable Input = A0–A17 DQ0-DQ7 Data Input/Outputs = OE (G) = **Output Enable Input** DQ0-DQ7 PGM (P) Program Enable Input = CE (E) Vcc Vcc Supply Voltage = PGM (P) VPP Program Supply Voltage = OE (G) Vss = Ground 11507D-4

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

2 Megabit (262,144 x 8-Bit) CMOS EPROM

Valid Combinations				
AM27C020-90				
AM27C020-95				
AM27C020-100	DC, DCB, DI, DIB, LC, LCB, LI, LIB			
AM27C020-105				
AM27C020-120				
AM27C020-150	DC, DCB, DI, DIB,			
AM27C020-200	DE, DEB, LCB, LIB,			
AM27C020-255	LE, LEB, LC, LI			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

2 Megabit (262,144 x 8-Bit) CMOS OTP EPROM

Valid Combinations				
AM27C020-100				
AM27C020-105				
AM27C020-120	PC, JC, PI, JI			
AM27C020-150	FO, JO, FI, JI			
AM27C020-200				
AM27C020-255				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

2 Megabit (262,144 x 8-Bit) CMOS UV EPROM

Valid Combinations				
AM27C020-120				
AM27C020-150				
AM27C020-200	/BXA, /BUA			
AM27C020-250				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C020

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C020 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C020. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Å — with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27C020 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C020, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C020 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C020

Upon delivery, or after each erasure, the Am27C020 has all 2,097,152 bits in the "ONE", or HIGH state. "ZE-ROs" are loaded into the Am27C020 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the VPP pin, \overline{CE} and \overline{PGM} are at V_{IL} and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C020. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = VPP = 5.25 V.

Program Inhibit

Programming of multiple Am27C020s in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27C020 may be common. A TTL low-level program pulse applied to an Am27C020 \overline{CE} input with VPP = 12.75 V ± 0.25 V, \overline{PGM} LOW, and \overline{OE} HIGH will program that Am27C020.

A high-level \overline{CE} input inhibits the other Am27C020s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL}, \overline{PGM} at V_{IH}, and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C020.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C020. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_{IH}), the device identifier code. For the Am27C020, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc – toe.

Standby Mode

The Am27C020 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at Vcc \pm 0.3 V. The Am27C020 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation, and
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE	ŌĒ	PGM	AO	A9	VPP	Outputs
Read		VIL	VIL	X	X	х	Х	Dout
Output Disable		VIL	VIH	X	X	х	X	High Z
Standby (TTL	.)	ViH	x	X	х	х	X	High Z
Standby (CM	OS)	Vcc ± 0.3 V	x	X	X	Х	X	High Z
Program		VIL	VIH	ViL	X	Х	Vpp	DIN
Program Verify		VIL	VIL	ViH	X	Х	VPP	Dout
Program Inhibit		VIH	Χ,	X	X	х	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	Vн	X	01H
	Device Code	VIL	VIL	X	Viн	Vн	X	97H

MODE SELECT TABLE

Notes:

1. $V_{H} = 12.0 \ V \pm 0.5 \ V$

2. X can be either VIL or VIH

3. $A1 - A8 = A10 - A17 = V_{lL}$

ABSOLUTE MAXIMUM RATINGS

Storage	Temperature:
---------	--------------

OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to V _{SS} : All pins except A9, V _{PP} , and Vcc (Note 1)0.6 V to Vcc + 0.6 V
A9 and VPP (Note 2)0.6 V to 13.5 V
Vcc $\ldots \ldots $

Notes:

- During transitions, the input may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to V_{CC} + 2.0 V for periods of up to 20 ns.
- During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc)55°C to +125°C
Military (M) Devices
Case Temperature (Tc)55°C to +125°C
Supply Read Voltages:
Vcc for Am27C020-XX5 +4.75 V to +5.25 V
Vcc for Am27C020-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the func-

Operating ranges define those limits between which the functionality of the device is guaranteed. DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 2 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

		PRELIMINARY				
Parameter Symbol	Parameter Description	Test Conditions		Min	Мах	Unit
Vон	Output HIGH Voltage	Юн = -400 μА		2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	v
VIH	Input HIGH Voltage			2.0	Vcc + 0.5	v
ViL	Input LOW Voltage			-0.5	+0.8	V
ILI	Input Load Current	VIN = 0 V to VCC	VIN = 0 V to Vcc Vout = 0 V to Vcc		1.0	μA
ILO	Output Leakage Current	Vout = 0 V to Vcc			5.0	
ICC1	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL},$ f = 5 MHz,	C/I Devices		30	μA
		lout = 0 mA	E/M Devices		60	
ICC2	Vcc TTL Standby Current	$\overline{CE} = VIH, \overline{OE} = VIL$	$\overline{CE} = VIH, \overline{OE} = VIL$		1.0	mA
ICC3	Vcc CMOS Standby Current	CE = Vcc + 0.3 V	CE = Vcc + 0.3 V		100	μA
IPP1	VPP Supply Current (Read)	CE = OE = VIL, VPP	$\overline{CE} = \overline{OE} = VIL, VPP = VCC$		100	μA

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

2. Caution: The Am27C020 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} + 0.5 V, which may overshoot to V_{cc} + 2.0 V for periods less than 20 ns.

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

CAPACITANCE

Parameter			CDV032		2 CLV032		V032 PD 032		PL 032		
Symbol	Parameter Description	Test Conditions	Тур	Мах	Тур	Мах	Тур	Max	Тур	Мах	Unit
Cin	Input Capacitance	VIN = 0 V	10	12	8	10	10	12	8	10	pF
Соит	Output Capacitance	Vout = 0 V	12	15	9	12	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

	rameter			Am27C020							
	mbols Standard	Parameter Description	Test Conditions		-95 -90	-105 -100	-120	-150	-200	-255 -250	Unit
tavqv	tacc	Address to Output Delay	CE = OE = VIL	Min Max	90	100	120	150	200	250	ns
telov	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	90	100	120	150	200	250	ns
tglav	tOE	Output Enable to Output Delay	CE = VIL	Min Max	40	50	50	55	60	75	ns
teнqz, t _{gнoz}	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	- 25	- 30	- 30	 30	40	- 60	ns
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0	0	0	ns

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C020 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied.

 Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 V to 2.4 V, Timing Measurement Reference Level—Inputs: 0.8 V and 2 V,

Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

 $C_L = 100 \text{ pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORM

1. OE may be delayed up to tACC - toE after the falling edge of the addresses without impact on tACC.

2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27C2048

2 Megabit (131,072 x 16-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 90 ns
- Low power consumption
 - 100 μA maximum CMOS standby current

JEDEC-approved pinout

- Plug-in upgrade of 1 Mbit EPROM
- 40-pin DIP/PDIP
- 44-pin LCC/PLCC

- Single +5 V power supply
- ±10 V power supply tolerance standard on most speeds
- 100% Flashrite[™] programming
 - Typical programming time of 16 seconds
- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity
- DESC SMD No. 5962-92140

GENERAL DESCRIPTION

The Am27C2048 is a 2 Mbit, ultraviolet erasable programmable read-only memory. It is organized as 128K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. The Am27C2048 is ideal for use in 16-bit microprocessor systems. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 90 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C2048 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C2048 supports AMD's Flash-rite programming algorithm (100 μ s pulses) resulting in typical programming time of 16 seconds.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C2048								
Ordering Part No: Vcc ±5%	-95	-105	-125			-255			
Vcc±10%	-90	-100	-120	-150	-200	-250			
Max Access Time (ns)	90	100	120	150	200	250			
CE (E) Access (ns)	90	100	120	150	200	250			
OE (G) Access (ns)	40	50	50	65	75	100			

CONNECTION DIAGRAMS

2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0–A16	=	Address Inputs
CE (E)	=	Chip Enable Input
DQ0-DQ15	=	Data Inputs/Outputs
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
Vpp	=	Program Supply Voltage
Vss	=	Ground

11407D-3

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

2 Megabit (131,072 x 16-Bit) CMOS EPROM

Valid Com	binations
AM27C2048-90	
AM27C2048-95	DC, DCB, DI,
AM27C2048-105	LC, LCB, LI
AM27C2048-120	
AM27C2048-125	DC, DCB, DI,
AM27C2048-150	DIB, DE, DEB,
AM27C2048-200	LCB, LIB, LE,
AM27C2048-255	LEB, LC, LI

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Com	binations
AM27C2048-100	
AM27C2048-105	
AM27C2048-120	
AM27C2048-125	PC, JC, PI, JI
AM27C2048-150	
AM27C2048-200	
AM27C2048-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

2 Megabit (131,072 x 16-Bit) CMOS EPROM

Valid Combinations							
AM27C2048-120							
AM27C2048-150							
AM27C2048-200	/BQA, /BUA						
AM27C2048-250							

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C2048

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C2048 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C2048. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Å — with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27C2048 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C2048, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C2048 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C2048

Upon delivery, or after each erasure, the Am27C2048 has all 2,097,152 bits in the "ONE", or HIGH state. "ZE-ROs" are loaded into the Am27C2048 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the VPP pin, and \overline{CE} and \overline{PGM} are at VIL.

For programming, the data to be programmed is applied 16 bits in parallel to the data pins.

The flowchart (Figure 2) shows AMD's Flashrite algorithm. The Flashrite algorithm reduces programming time by using 100 μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C2048. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = VPP = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C2048s in parallel with different data is also easily accomplished. Except for

 \overline{CE} , all like inputs of the parallel Am27C2048 may be common. A TTL low-level program pulse applied to an Am27C2048 \overline{CE} input with V_{PP} = 12.75 V ± 0.25 V and PGM LOW will program that Am27C2048. A high-level \overline{CE} input inhibits the other Am27C2048 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} , at V_{IL}, \overline{PGM} at V_{IH}, and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C2048.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C2048. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_{IH}), the device identifier code. For the Am27C2048, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc – to_E.

Standby Mode

The Am27C2048 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at Vcc \pm 0.3 V. The Am27C2048 also has a TTL-standby mode which re-

duce the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation, and
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

	Pins	- I					· · · · · ·	1
Mode	Pins	ĈĒ	ŌE	PGM	A0	A9	VPP	Outputs
Read		ViL	VIL	X	X	х	X	Dout
Output Disable		VIL	VIH	X	Х	Х	Х	High Z
Standby (TTL)		Viн	х	X	X	Х	X	High Z
Standby (CMOS)		Vcc ± 0.3 V	x	X	X	Х	Х	High Z
Program		ViL	X	VIL	X	Х	Vpp	DIN
Program Verif	y .	VIL	VIL	Viн	Х	Х	Vpp	Dout
Program Inhibit		Viн	х	X	X	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	X	VIL	Vн	x	01H
	Device Code	VIL	VIL	X	Viн	VH	X	98H

Notes:

- 1. X can be either VIL or VIH.
- 2. $V_H = 12.0 V \pm 0.5 V$
- 3. $A1 A8 = A10 16 = V_{IL}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature: OTP Products
Ambient Temperature: with Power Applied
Voltage with Respect to Vss:
All pins except A9, V _{PP} , and V _{CC} (Note 1)
A9 and VPP (Note 2) $\ldots \ldots \ldots -0.6$ V to 13.5 V
V_{CC} \ldots
Notes:

- During transitions, the input may overshoot V_{ss} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc)55°C to +125°C
Military (M) Devices
Case Temperature (Tc)55°C to +125°C
Supply Read Voltages:
Vcc for Am27C2048-XX5 +4.75 V to +5.25 V
Vcc for Am27C2048-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	Іон = -400 μА		2.4		V
Vol	Output LOW Voltage	lo _L = 2.1 mA	loL = 2.1 mA			V
VIH	Input HIGH Voltage		2.0	Vcc + 0.5	V	
VIL	Input LOW Voltage			-0.5	+0.8	V
lu -	Input Load Current	VIN = 0 V to Vcc		1.0	μA	
ILO	Output Leakage Current	Vour = 0 V to Vcc			5.0	μA
ICC1	Vcc Active Current	CE = VIL,	C/I Devices		50	μA
	(Note 3)	f = 5 MHz, lout = 0 mA	E/M Devices		60	μ.
ICC2	Vcc TTL Standby Current	CE = VIH		1.0	mA	
Іссз	Vcc CMOS Standby Current	CE = Vcc + 0.3 V	CE = Vcc + 0.3 V			μA
IPP1	VPP Supply Current (Read)	CE = OE = VIL, VP		100	μA	

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

2. Caution: The Am27C2048 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency Vcc = 5.5 V, T = 25°C

CAPACITANCE

30

25

15

10

1 2

25 Supply Current in mA 15

Parameter	Parameter		CDV044		CLV044		PD 040		PL 044		
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	10	12	8	10	10	12	7	10	pF
Соит	Output Capacitance	Vout = 0	12	15	10	12	12	15	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	ameter						1	m27C2	048		
·	mbols Standard	Parameter Description	Test Conditions		-90 -95	-100 -105	-120 -125	-150	-200	-250 -255	Unit
tavov	tacc	Address to Output Delay	CE = OE = VIL	Min Max	90	100	120	150	200	250	ns
telov	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	90	100	120	150	200	250	ns
tglav	tOE	Output Enable to Output Delay	CE = VIL	Min Max	40	50	50	55	60	75	ns
teнqz, t _{gнqz}	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	0 25	0 30	0 30	0 30	0 40	0	ns
taxox	тон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0	0	0	ns

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C2048 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied.

 Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 V to 2.4 V, Timing Measurement Reference Level—Inputs: 0.8 V and 2 V, Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0." Input pulse rise and fall times are < 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

FINAL

Am27C040

4 Megabit (524,288 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 100 ns
- Low power consumption
 - 100 µA maximum CMOS standby current
- JEDEC-approved pinout
 - Plug in upgrade of 1 Mbit EPROM and 2 Mbit EPROMS
 - Easy upgrade from 28-pin JEDEC EPROMs
- Single +5 V power supply
- ±10% power supply tolerance standard on most speeds

GENERAL DESCRIPTION

The Am27C040 is a 4 Mbit ultraviolet erasable programmable read-only memory. It is organized as 512K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages, as well as plastic one-time programmable (OTP) packages.

Typically, any byte can be accessed in less than 100 ns. allowing operation with high-performance microprocessors without any WAIT states. The Am27C040 offers separate Output Enable (OE) and Chip Enable (CE)

■ 100% Flashrite[™] programming

 $V_{CC} + 1 V$

High noise immunity

upgrades to 8 Mbits

DESC SMD No. 5962-91752

Typical programming time of 1 minute

■ Latch-up protected to 100 mA from -1 V to

Compact 32-pin DIP, PDIP, LCC and PLCC

packages require no hardware change for

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 µW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C040 supports AMD's Flashrite programming algorithm (100 µs pulses) resulting in typical programming time of 1 minute.

Advanced Micro Devices

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C040							
Ordering Part No:								
Vcc ±5%	-105	-125						
Vcc±10%	-100	-120 -150		-200				
Max Access Time (ns)	100	120	150	200				
CE (E) Access (ns)	100	120	150	200				
OE (G) Access (ns)	40	50	65	75				

CONNECTION DIAGRAMS

Top View

Notes:

1. JEDEC nomenclature is in parentheses.

2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

LOGIC SYMBOL **PIN DESIGNATIONS** A0-A18 Address Inputs = CE (E)/PGM (P) Chip Enable Input = A0-A18 DQ0-DQ7 Data Input/Outputs = OE (G) **Output Enable Input** = Vcc Vcc Supply Voltage = VPP Program Supply Voltage = CE (E)/PGM (P) Vss Ground = OE (G) 14971C-4

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

4 Megabit (524,288 x 8-Bit) CMOS EPROM

Valid Combinations							
AM27C040-100 DC, DCB, LC, I							
AM27C040-105							
AM27C040-120	DC, DCB, DI, DIB, LC, LCB, LI, LIB						
AM27C040-125							
AM27C040-150	DC, DCB, DE, DEB,						
AM27C040-200	DI, DIB, LC, LCB, LI, LIB, LE, LEB						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products (Preliminary)

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

4 Megabit (524,288 x 8-Bit) CMOS OTP EPROM

Valid Combinations						
AM27C040-100						
AM27C040-105]					
AM27C040-120						
AM27C040-125	PC, JC, PI, JI					
AM27C040-150						
AM27C040-200						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

4 Megabit (524,288 x 8-Bit) CMOS EPROM

Valid Combinations						
AM27C040-120						
AM27C040-150						
AM27C040-200	/BXA, /BUA					
AM27C040-250						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C040

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C040 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C040. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Å — with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27C040 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C040, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C040 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C040

Upon delivery, or after each erasure, the Am27C040 has all 4,194,304 bits in the "ONE", or HIGH state. "ZE-ROs" are loaded into the Am27C040 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the VPP pin, $\overline{CE/PGM}$ is at VIL and \overline{OE} is at VIH.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C040. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = VPP = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C040s in parallel with different data is also easily accomplished. Except for CE/PGM, all like inputs of the parallel Am27C040 may be common. A TTL low-level program pulse applied to an Am27C040 CE/PGM input with VPP = 12.75 V \pm 0.25 V, and OE HIGH will program that Am27C040. A high-level CE/PGM input inhibits the other Am27C040s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and $\overline{CE/PGM}$ at V_{IL} , and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C040.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C040. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_{IH}), the device identifier code. For the Am27C040, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C040 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{CE/PGM}$) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tAcc) is equal to the delay from $\overline{CE/PGM}$ to output (tcE). Data is available at the outputs toE after the falling edge of \overline{OE} , assuming that $\overline{CE/PGM}$ has been LOW and addresses have been stable for at least tAcc – toE.

Standby Mode

The Am27C040 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when CE/PGM is at V_{CC} ± 0.3 V. The Am27C040 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when CE/PGM is at V_{IH}. When in standby mode, the outputs are in a high-impedance state; independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{CE/PGM}$ be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the outut pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Pin		CE/PGM	ŌĒ	AO	A9	VPP	Outputs
Read		VIL	ViL	X	х	X	Dout
Output Disable		VIL	VIH	X	Х	X	High Z
Standby (TTL)		ViH	X	X	X	X	High Z
Standby (CMOS)		Vcc ± 0.3 V	Х	X	Х	X	High Z
Program		VIL	VIH	X	Х	Vpp	DIN
Program Veri	fy	VIL	VIL	X	х	VPP	Dout
Program Inhib	oit	Viн	Х	X	Х	VPP	High Z
Auto Select	Manufacturer Code	VIL	VIL	VIL	Vн	X	01H
(Note 3)	Device Code	VIL	VIL	ViH	Vн	Х	9BH

Notes:

1. $V_H = 12.0 V \pm 0.5 V$

2. X can be either VIL or VIH

3. $A1 - A8 = A10 - A18 = V_{IL}$

ABSOLUTE MAXIMUM RATINGS

- During transitions, the input may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to V_{CC} + 2.0 V for periods of up to 20 ns.
- During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc) –55°C to +125°C
Military (M) Devices
Case Temperature (Tc)55°C to +125°C
Supply Read Voltages:
Vcc for Am27C040-XX5 +4.75 V to +5.25 V
Vcc for Am27C040-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Мах	Unit
Vон	Output HIGH Voltage	Iон = -400 µА		2.4		V
Vol	Output LOW Voltage	lol = 2.1 mA			0.45	V
Vih	Input HIGH Voltage			2.0	Vcc + 0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	v
łL)	Input Load Current	VIN = 0 V to Vcc	C/I Devices		1.0	
			E/M Devices 5.0	5.0	μA	
llo	Output Leakage Current	Vout = 0 V to Vcc	C/I Devices		5.0	
			E/M Devices		10.0	μΑ
ICC1	Vcc Active Current	$\overline{CE} = V_{IL}$, f = 5 MHz,	C/I Devices		40	
	(Note 3)	lout = 0 mA	E/M Devices		60	mA
ICC2	Vcc TTL Standby Current	CE = VIH			1.0	mA
Іссз	Vcc CMOS Standby Current	$\overline{CE} = Vcc \pm 0.3 V$			100	μA
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP = T$	Vcc		100	μA

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

2. Caution: The Am27C040 must not be removed from (or inserted into) a socket when Vcc or VeP is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} + 0.5 V, which may overshoot to V_{cc} + 2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter			CDV032		CLV032		PD 032		PL 032		
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Тур	Мах	Тур	Max	Unit
CIN	Input Capacitance	Vin = 0 V	10	12	8	10	10	12	8	10	рF
Соит	Output Capacitance	Vout = 0 V	12	15	9	12	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

	ameter					4	\m27C0	40		
	mbols Standard	Parameter Description	Test Conditions		-105 -100	-125 -120	-150	-200	-255 -250	Unit
tavov	tacc	Address to Output Delay	CE = OE = VIL	Min Max	100	120	150	200	250	ns
telav	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	100	120	150	200	250	ns
tglav	tOE	Output Enable to Output Delay	CE ≕ VIL	Min Max	40	50	55	60	60	ns
tehaz tghaz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever		Min Max	0 30	0 30	0 30	0 40	0 60	ns
		comes first, to Output Float								
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0	0	ns

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C040 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied.

4. Output Load: 1 TTL gate and C_L = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.45 V to 2.4 V, Timing Measurement Reference Level—Inputs: 0.8 V and 2 V, Outputs: 0.8 V and 2 V

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORM

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

FINAL

Am27C400

4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) ROM Compatible CMOS EPROM

DISTINCTIVE CHARACTERISTICS

Fast access time

— 100 ns

- Low power consumption
 - 100 μA maximum CMOS standby current
- Industry standard pinout:
 - ROM compatible
 - 44-pin LCC, and PLCC packages provide easy upgrade to 8 Mbits, DIP upgrades require a 40to 42-pin conversion

GENERAL DESCRIPTION

The Am27C400 is a 4 Mbit ultraviolet erasable programmable read-only memory that is functionally and pinout compatible with 4 Mbit masked ROMs. Under control of the BYTE input, the memory can be configured as either a 512K by 8-bit memory or a 256K by 16-bit memory. It operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic packages as well as plastic one time programmable (OTP) packages for both through hole and surface mount applications.

Typically, any byte can be accessed in less than 100 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C400 offers Single +5 V power supply

±10% power supply tolerance standard on most speeds

Advanced Micro

Devices

- 100% Flashrite[™] programming
 - Typical programming time of 32 seconds
- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity

separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C400 supports AMD's Flashrite™ programming algorithm (100 µs pulses) resulting in typical programming times of 32 seconds.

PRODUCT SELECTOR GUIDE

Family Part No.		Am27C400							
Ordering Part No:									
$V_{CC} \pm 5\%$	-105	-125			-255				
V _{cc} ± 10%	-100	-120	-150	-200	-250				
Max Access Time (ns)	100	120	150	200	250				
CE (E) Access Time (ns)	100	120	150	200	250				
OE (G) Access Time (ns)	50	50	65	75	100				

CONNECTION DIAGRAM

Notes:

1. Inner ring of numbers correspond to the package pins

2. JEDEC nomenclature is in parenthesis

PIN DESIGNATIONS

PIN DESIGNATIONS			LOGIC SYMBOL			
AB	=	Address Input (BYTE Mode)		(*************************************		1
A0–A17	=	Address Inputs		AB		
BYTE	=	Byte/Word Switch	<u>18/</u>	A0-A17		
CE (E)/PGM (P)	=	Chip Enable and Program Enable Inputs				16/
DQ0-DQ15	=	Data Inputs/Outputs			DQ0-DQ15	$\sqrt{-2}$
NĊ	=	No Internal Connection		PGM (P)/CE (E	Ē)	or 8
OE (G)	=	Output Enable Input				
Vcc	=	Vcc Supply Voltage	-	OE (G)		
Vpp	=	Program Supply Voltage	>	BYTE		
Vss	=	Ground				15573B-4

ORDERING INFORMATION EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27C400 4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) CMOS EPROM

Valid Com	binations
AM27C400-100	DC, DCB, DI, DIB,
AM27C400-105	LC, LCB, LI, LIB
AM27C400-120	
AM27C400-125	DC, DCB, DI, DIB,
AM27C400-150	LC, LCB, LI, LIB
AM27C400-200	DE, DEB, LE, LEB
AM27C400-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) CMOS OTP EPROM

Valid Combinations		
AM27C400-120		
AM27C400-125		
AM27C400-150	PC, JC, PI, JI	
AM27C400-200		
AM27C400-255		

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Corr	nbinations
AM27C400-120	
AM27C400-150	/BUA. /BXA
AM27C400-200	
AM27C400-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C400

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C400 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C400. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2,537 Å—with intensity of 12,000 µW/ cm² for 15 to 20 minutes. The Am27C400 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C400 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2,537Å, exposure to fluorescent light and sunlight will eventually erase the Am27C400 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C400

Upon delivery or after each erasure the Am27C400 has all 4,194,304 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27C400 through the procedure of programming.

The programming mode is entered when 12.75 \pm 0.25 V is applied to the V_{PP} pin, $\overline{CE/PGM}$ is at V_{IL}, and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each addresss only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C400. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = $V_{PP} = 5.25$ V.

Please refer to Section 6.0 for programming and flow chart characteristics.

Program Inhibit

Programming of multiple Am27C400s in parallel with different data is also easily accomplished. Except for $\overline{CE/PGM}$, all like inputs of the parallel Am27C400 may be common. A TTL low-level program pulse applied to

an Am27C400 $\overline{CE/PGM}$ input with V_{PP} = 12.75 V ± 0.25 V, and \overline{OE} HIGH will program that Am27C400. A high-level $\overline{CE/PGM}$ input inhibits the other Am27C400 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overrightarrow{OE} at V_{IL} , $\overrightarrow{CE}/\overrightarrow{PGM}$ at V_{IH} and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C400.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C400. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_{IH}), the device identifier code. For the Am27C400, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C400 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}/PGM) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE}/PGM to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE}/PGM has been LOW and addresses have been stable for at least t_{ACC} –to_E.

Byte Mode

The user has the option of reading data in either 16-bit words or 8-bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A0–A17 will address 256K words of 16-bit data. When the BYTE input is LOW, AB functions as the least significant address input and 512K bytes of data can be accessed. The 8 bits of data will appear on DQ0–DQ7.

Standby Mode

The Am27C400 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when CE/PGM is at V_{CC} ± 0.3 V. The Am27C400 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when CE/PGM is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

Low memory power dissipation

MODE SELECT TABLE

Assurance that output bus contention will not occur

It is recommended that $\overline{\text{CE}/\text{PGM}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE/PGM	ŌĒ	A0	A9	Vpp	Outputs
Read		VIL	VIL	X	X	X	Dout
Output Disabl	e	ViL	ViH	X	Х	X	Hi-Z
Standby (TTL)	ViH	Х	X	Х	X	Hi-Z
Standby (CM	OS)	Vcc ± 0.3 V	х	X	X	X	Hi-Z
Program		VIL	ViH	X	Х	VPP	DIN
Program Veri	fy	ViH	VIL	X	Х	Vpp	Dout
Program Inhibit		Vih	ViH	x	х	VPP	Hi-Z
Auto Select (Note 3)	Manufacturer Code	ViL	VIL	ViL	Vн	x	01H
	Device Code	VIL	VIL	Viн	Vн	x	9DH

Notes:

1. $V_H = 12.0 \ V \pm 0.5 \ V$

2. $X = Either V_{IH} or V_{IL}$

3. $A1 - A8 = A0 - A17 = V_{lL}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect To Vss All pins except A9,V_{PP},V_{CC} . -0.6 V to Vcc + 0.6 V
A9 and V_PP $\dots \dots $
Vcc0.6 V to +7.0 V
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _C) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _c)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (T _c)55°C to +125°C
Military (M) Devices Case Temperature (T _c)55°C to +125°C
Supply Read Voltages V _{CC} for Am27C400-XX5 +4.75 V to +5.25 V
V _{cc} for Am27C400-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	Юн = −400 μА		2.4		v
Vol	Output LOW Voltage	lol = 2.1 mA			0.45	v
Viн	Input HIGH Voltage				Vcc + 0.5	v
VIL	Input LOW Voltage			-0.5	+0.8	v
lLı	Input Load Current	VIN = 0 V to +Vcc			1.0	μA
ILO	Output Leakage Current	Vour = 0 V to +Vcc			5.0	μA
ICC1	Vcc Active Current	CE = VIL, f = 5 MHz,	C/I Devices		40	mA
	(Note 3)	lout = 0 mA	E/M Devices		60	
ICC2	Vcc TTL Standby Current	CE = VIH			1.0	mA
Іссз	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$			100	μΑ
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP = VCC$	$\overline{CE} = \overline{OE} = VIL, VPP = VCC$		100	μA

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C400 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

30

15573B-6

CAPACITANCE

Parameter		Test	CD	/040	CL	/044	PD	040	PL	044	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	9	12	9	11	6	8	9	11	рF
Соит	Output Capacitance	Vout = 0	12	15	13	15	9	11	13	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1$ MHz.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Para Sym	meter					A	m27C4	00		
JEDEC	Standard	Parameter Description	Test Conditions		-105 -100	-125 -120	-155 -150	-200	-255	Unit
tavov	tacc	Address to Output Delay	CE = OE = Vil	Min Max	_ 100	_ 120	_ 150	_ 200	_ 250	ns
tELQV	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	_ 100	_ 120	_ 150	_ 200	_ 250	ns
tglav	tOE	Output Enable to Output Delay	CE = VIL	Min Max	_ 50	- 50	_ 55	- 60	_ 75	ns
tehqz, tghqz	t _{DF} (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	_ 30	 30	_ 30	40	60	ns
taxqx	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0 -	0 -	0 -	0 -	0 -	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C400 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs.

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27C4096 4 Megabit (262,144 x 16-Bit) CMOS EF	ROM Advanced Micro Devices
DISTINCTIVE CHARACTERISTICS	
Fast access time	Single + 5 V power supply
— 100 ns	± 10% power supply tolerance standard on
Low power consumption	most speeds
 — 100 μA maximum CMOS standby current 	100% Flashrite TM programming
JEDEC-approved pinout	 Typical programming time of 32 seconds
 Plug in upgrade of 1 Mbit and 2 Mbit EPROMs 	Latch-up protected to 100 mA from –1 V
— 40-pin DIP/PDIP	to Vcc + 1 V
— 44-pin LCC/PLCC	High noise immunity

GENERAL DESCRIPTION

FINAL

The Am27C4096 is a 4 Mbit ultraviolet erasable programmable read-only memory. It is organized as 256K words by 16 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. The Am27C4096 is ideal for use in 16-bit microprocessor systems. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 100 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C4096 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE})

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMDs CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 125 μW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C4096 supports AMD's FlashriteTM programming algorithm (100 μ s pulses) resulting in typical programming times of 32 seconds.

11408C-1

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C4096							
Ordering Part No:								
Vcc ± 5%	-105	-125			-255			
Vcc ±10%	-100	-120	-150	-200	-250			
Max Access Time (ns)	_100	120	150	200	250			
CE (E) Access Time (ns)	100	120	150	200	250			
OE (G) Access Time (ns)	50	50	65	75	100			

CONNECTION DIAGRAMS

2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A17	=	Address Inputs
CE (E)/PGM (P)	=	Chip Enable Input
DQ0-DQ15	=	Data Input/Outputs
DU	=	No External Connection
NC	=	No Internal Connection
OE (G)	=	Output Enable Input
Vcc	=	Vcc Supply Voltage
Vpp	=	Program Supply Voltage
Vss	=	Ground

LOGIC SYMBOL

ORDERING INFORMATION EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

4 Megabit (262,144 x 16 Bit) CMOS EPROM

Valid Com	binations
AM27C4096-100 AM27C4096-105	DC, DCB, DI, DIB, LC, LCB, LI, LIB
AM27C4096-120 AM27C4096-125 AM27C4096-150 AM27C4096-200 AM27C4096-255	DC, DCB, DE, DEB, DI, DIB, LC, LCB, LI, LIB, LE, LEB

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27C4096 4 Megabit (262,144 x 16 Bit) CMOS OTP EPROM

Valid Com	binations
AM27C4096-120	
AM27C4096-125	PC, JC, PI, JI
AM27C4096-150	F0, J0, F1, J1
AM27C4096-200	
AM27C4096-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Comb	inations
AM27C4096-120	
AM27C4096-150	/BXA, /BUA
AM27C4096-200	
AM27C4096-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing The Am27C4096

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C4096 to an ultraviolet light source. A dosage of 15 W seconds/cm₂ is required to completely erase an Am27C4096. This dosage can be obtained by exposure to an ultraviolet lamp —wavelength of 2537 Å-with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27C4096 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C4096 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C4096 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C4096

Upon delivery or after each erasure the Am27C4096 has all 4,194,304 bits in the "ONE" or HIGH state. "ZE-ROs" are loaded into the Am27C4096 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, $\overline{CE}/\overline{PGM}$ is at V_{IL} and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C4096. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = VPP = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics

Program Inhibit

Programming of multiple Am27C4096 in parallel with different data is also easily accomplished. Except for $\overline{CE/PGM}$, all like inputs of the parallel Am27C4096 may be common. A TTL low-level program pulse applied to an Am27C4096 $\overline{CE/PGM}$ input with VPP = 12.75 V ±

0.25 V and OE HIGH will program that Am27C4096. A high-level CE/PGM input inhibits the other Am27C4096 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} at V_{IL}, $\overline{CE/PGM}$ at V_{IH}, and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C4096.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C4096. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1(A0 = VIH), the device identifier code. For the Am27C4096, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{CE}/\overline{PGM}$) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from $\overline{CE}/\overline{PGM}$ to output (tce). Data is available at the outputs to after the falling edge of \overline{OE} , assuming that $\overline{CE}/\overline{PGM}$ has been LOW and addresses have been stable for at least tacc – toe.

Standby Mode

The Am27C4096 has a CMOS standby mode which reduces the maximum Vcc current to 100 μ A. It is placed in CMOS-standby when CE/PGM is at Vcc \pm 0.3 V. The Am27C4096 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when CE/PGM is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{CE/PGM}$ be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE/PGM	ŌE	A0	A9	Vpp	Outputs
Read		VIL	VIL	х	х	x	Dout
Output Disa	ble	VIL	Vн	x	х	х	Hi–Z
Standby (T	Standby (TTL)		х	X	х	х	Hi–Z
Standby (Cl	MOS)	$V_{CC} \pm 0.3 V$	x	x	X	x	Hi–Z
Program		ViL	ViH	x	х	V _{PP}	DiN
Program Ve	erify	VIH	V⊫	x	х	V _{PP}	Dout
Program Inl	hibit	VIH	VIH	x	х	V _{PP}	Hi–Z
Auto Select	Manufacturer Code	VIL	VaL	VIH	V _H	X	O1H
(Note 3)	Device Code	ViL	VıL	VIH	V _H	х	19H

Notes:

1 $X = Either V_{IH} or V_{IL}$

2. $V_{H} = 12.0 V \pm 0.5 V$

3. $A1 - A8 = A10 - A17 = V_{lL}$

4. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature: OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss:
All pins except A9, VPP, and Vcc (Note 1)0.6 V to Vcc + 0.6 V
A9 and VPP (Note 2)0.6 V to 13.5 V
Vcc $\ldots \ldots $
Notoo

Notes:

- During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to Vcc + 2.0 V for periods of up to 20 ns.
- 2. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)
Extended Commercial (E) Devices
Case Temperature (Tc) –55°C to +125°C
Military (M) Devices
Case Temperature (Tc) –55°C to +125°C
Supply Read Voltages:
Vcc for Am27C4096-XX5 +4.75 V to +5.25 V
Vcc for Am27C4096-XX0 \ldots +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6, and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	Юн = 400 μА	2.4		V	
Vol	Output LOW Voltage	lol = 2.1 mA	-	0.45	V	
Vн	Input HIGH Voltage			2.0	Vcc +0.5	V
VIL	Input LOW Voltage			-0.5	+0.8	V
lu	Input Load Current	VIN = 0 V to VCC			1.0	μA
llo	Output Leakage Current				5.0	μA
ICC1	Vcc Active Current	CE = VIL, f = 5 MHz	C/I Devices		50	μA
	(Note 3)	OUT = 0 mA	E/M Devices		60	
Icc2	Vcc TTL Standby	CE = VIH	•		1.0	mA
Іссз	Vcc CMOS Standby	$\overline{CE} = V_{cc} \pm 0.3 V$			100	μA
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{IL}$	cc		100	μА

Notes:

1. V_{CC} must be simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. Caution: The Am27C4096 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is -0.5 V during transitions, the inputs may overshoot -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} +0.5 V, which may overshoot to V_{cc} +2.0 V for periods less than 20 ns.

15573B-5

15573B-6

CAPACITANCE

Parameter	Parameter	Test	CD	V040	CLV	/044	PD	040	PL	044	
Symbol	Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CiN	Input Capacitance	$V_{IN} = 0 V$	10	13	10	13	6	8	10	13	рF
Cout	Output Capacitance	$V_{OUT} = 0 V$	10	13	13	15	8	10	12	14	pF

Notes:

2. $TA = +25^{\circ}C, f = 1 MHz$

Switching CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Paramet	er Symbols					An	n27C40	96		
JEDEC	Standard	Parameter Description	Test Conditions		-105, -100	-125, -120	-150	-200	-255, -250	Unit
Avav	tacc	Address to Output Delay	CE = OE = VIL	Min Max	_ 100	_ 120	 150	_ 200	_ 250	ns
telov	tce	Chip Enable to Output Delay	OE = VIL	Min Max	- 100	 120	- 150	- 200	_ 250	ns
tGLOV	toe	Output Enable to Output Delay	CE = VIL	Min Max	- 50	- 50	_ 55	- 60	- 60	ns
t _{EHQZ} , t _{GHQZ}	t _{DF} (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first.		Min	_	-	-	-	-	ns
		to Output Float		Max	30	40	40	40	60	
tayoy tou	Output Hold from Addresses, CE, or		Min	0	0	0	0	0	ns	
		OE, whichever ocurred first		Max	-	-	-		-	

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C4096 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level — Inputs: 0.8 V to 2.0 V Outputs: 0.8 V to 2.0 V

^{1.} This parameter is only sampled and not 100% tested.

SWITCHING TEST CIRCUIT

 $C_L = 100 \text{ pF}$ including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

AMD

KEY TO SWITCHING WAVEFORMS

KS000010

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

11408C-9

2. tDF is specified from OE or CE, whichever occurs first.

PRELIMINARY

Am27C080

8 Megabit (1,048,576 x 8-Bit) CMOS EPROM

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

Fast access time — 100 ns

- Low power consumption
 - 100 µA maximum CMOS standby current
- JEDEC-approved pinout
 - Plug in upgrade of 1-, 2-, 4-Mbit EPROMs
 - Easy upgrade from 28-pin JEDEC EPROMs
- Single +5 V power supply

GENERAL DESCRIPTION

The Am27C080 is an 8 Mbit ultraviolet erasable programmable read-only memory. It is organized as 1,048K words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 100 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C080 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

BLOCK DIAGRAM

- ±10% power supply tolerance available
- 100% FlashriteTM programming
 - Typical programming time of less than 2 minutes
- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity
- Compact 32-pin DIP, PDIP, and PLCC packages

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C080 supports AMD's Flashrite programming algorithm (100μ s pulses) resulting in typical programming times of less than 2 minutes.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C080						
Ordering Part No: Vcc ± 5%	-105				-255		
Vcc ± 10%	-100	-120	-150	-200	-250		
Max Access Time (ns)	100	120	150	200	250		
CE (E) Access Time (ns)	100	120	150	200	250		
OE (G) Access Time (ns)	50	50	65	75	100		

CONNECTION DIAGRAMS

Top View	DIP		PLC	c
A19 [1 A16 [2 A15 [3 A12 [4 A7 [5 A6 [6 A5 [7 A4 [8 A3 [9 A2 [10 A1 [1 ² A0 [12 DQ0 [12 DQ1 [12 DQ2 [12 Vss [10 Note: 1. JEDEC nor	32 31 30 29 28 27 26 25 24 0 23 1 22 2 2 1 22 21 3 20 4 19 5 18 6 17	 V_{cc} A18 A17 A14 A13 A8 A9 A11 OE (G)/V_{PP} A10 CE (E)/PGM (P) DQ7 DQ6 DQ5 DQ4 DQ3	A7 A7 A7 A6 A5 A4 B A2 D0 A1 A1 A0 A2 D0 A1 A1 A6 A5 A4 B A5 A4 B A5 A4 B A5 A5 A4 B A5 A5 A5 A5 A5 A5 A5 A5	29 A14 29 A14 28 A13 27 A8 26 A9 25 A11 24 OE (G)/VPP 23 A10 22 CE (E)/PGM (P) 21 DQ7

EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27C080-100	DC. DI				
AM27C080-105	50, 51				
AM27C080-120	DC, DCB, DI, DIB				
AM27C080-150					
AM27C080-200	DC, DCB, DI, DIB DE, DEB				
AM27C080-255	1				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27C080-120					
AM27C080-125					
AM27C080-150	PC, JC, PI, JI				
AM27C080-200					
AM27C080-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations				
AM27C080-150				
AM27C080-200	/BXA			
AM27C080-250				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C080

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C080 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C080. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27C080 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C080 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27C080 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C080

Upon delivery or after each erasure the Am27C080 has all 8,388,608 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27C080 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the $\overline{\text{OE}}/\text{V}_{PP}$ and $\overline{\text{CE}}/\overline{\text{PGM}}$ is at V_{LL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C080. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = $V_{PP} = 5.25$ V.

Please refer to Section 6.0 for programming flow charts and characteristics.

Program Inhibit

Programming of multiple Am27C080 in parallel with different data is also easily accomplished. Except for $\overline{CE/PGM}$, all like inputs of the parallel Am27C080 may be common. A TTL low-level program pulse applied to an Am27C080 $\overline{CE/PGM}$ input and $\overline{OE/V_{PP}} = 12.75$ V ± 0.25 V, will program that Am27C080. A high-level CE/PGM input inhibits the other Am27C080 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\text{CE}/\text{PGM}}$ at V_{IL} and $\overline{\text{OE}}/\text{VPP}$ at V_{IL}.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C080.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V open address the A9 of the Am27C080. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27C080, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C080 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}/PGM) is the power control and should be used for device selection. Output Enable (\overline{OE}/V_{PP}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE}/PGM to output (t_{CE}). Data is available at the outputs toe after the falling edge of \overline{OE}/V_{PP} , assuming that \overline{CE}/PGM has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27C080 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when CE/PGM is at V_{CC} ± 0.3 V. The Am27C080 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when CE/PGM is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE/V_{PP} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus connection will not occur

It is recommended that $\overline{\text{CE}/\text{PGM}}$ be decoded and used as the primary device-selecting function, while $\overline{\text{OE}/\text{V}_{PP}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE/PGM	OE/Vpp	AO	A9	Outputs
Read		VIL	VIL	AO	A9	Dout
Output Disable		х	Vін	x	х	Hi-Z
Standby (TTL)		Viн	х	х	х	Hi-Z
Standby (CMOS)		Vcc + 0.3 V	х	х	х	Hi-Z
Program		ViL	Vpp	A0	A9	Din
Program Verify		VIL	ViL	x	x	Dout
Program Inhibit		ViH	VPP	x	х	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL.	VIL	VIL	Vн	01H
	Device Code	ViL	ViL	ViH	Vн	1CH

MODE SELECT TABLE

Notes:

1. $V_{lH} = 12.0 \pm 0.5 V$

2. $X = Either V_{IH} \text{ or } V_{IL}$

3. $A1 - A8 = A10 - A19 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect To V _{SS} All pins except A9,
V_{PP} , V_{CC} ,, -0.6 V to V_{CC} + 0.6 V
A9 and V_PP $\ldots \ldots \ldots \ldots \ldots \ldots -0.6$ V to +13.5 V
V_{CC}
Notos

Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is -0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _c) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _c)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (T _c)55°C to +125°C
Military (M) Devices Case Temperature (T _c) –55°C to +125°C
Supply Read Voltages
V _{CC} for Am27C080-XX5 +4.75 V to +5.25 V
Vcc for Am27C080-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	Юн = -400 μА		2.4		v
Vol	Output LOW Voltage	lol = 2.1 mA		0.45	v	
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	v	
VIL	Input LOW Voltage		-0.5	+0.8	v	
1LI	Input Load Current	VIN = 0 V to +Vcc		1.0	μA	
ILO.	Output Leakage Current	Vour = 0 V to +Vcc			5.0	μΑ
ICC1	Vcc Active Current	$\overline{CE} = V_{IL}$, f = 5 MHz,	C/I Devices		40	μA
	(Note 3)	Iout = 0 mA	E/M Devices		50	μι
Icc2	Vcc TTL Standby Current	CE = VIH			1.0	mA
Icc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{CC}$			100	μA

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

- 2. Caution: The Am27C080 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

15453B-5

15453B-6

PRELIMINARY

Parameter			CDV032		PL 032		PD 032		
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
Сім	Input Capacitance	VIN = 0	7	12	7	12	7	12	pF
Соит	Output Capacitance	Vout = 0	12	16	12	16	12	16	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	meter		i u statution			ļ	\m27C0	80		
Sym JEDEC	Standard	Parameter Description	Test Conditions		-105 -100	-120	-150	-200	-255 -250	Unit
tavov	tacc	Address to	CE = OE =	Min	-	_	-	-	-	
		Output Delay	VIL	Max	100	120	150	200	250	ns
tELQV	tCE	Chip Enable to	OE = VIL	Min	-	-	-	-	_ ·	
		Output Delay		Max	100	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min	<u> </u>	-	-	-	-	
		Output Delay		Max	50	50	55	60	60	ns
TEHOZ	tDF	Chip Enable HIGH or		Min	-	-	_	_	_	
tgнoz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	40	40	40	40	60	ns
taxox	toн	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Мах	-	-	-	-	-	ns

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C080 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and $C_L = 100 \, pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns. 15453B-8

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. DE/V_{PP} may be delayed up to t_{ACC} - t_{OE} after the falling edge of the addresses without impact on t_{ACC}.

2. t_{OE} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

PRELIMINARY

Am27C800

8 Megabit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM Compatible CMOS EPROM

DISTINCTIVE CHARACTERISTICS Fast access time

— 120 ns

Low power consumption

— 100 µA maximum CMOS standby current

Industry standard pinout:

- ROM compatible
- 42-pin DIP, PDIP and 44-pin LCC and PLCC packages provide easy upgrade to 16 Mbits

GENERAL DESCRIPTION

The Am27C800 is an 8 Mbit ultraviolet erasable programmable read-only memory that is functionally and pinout compatible with 8 Mbit masked ROMs. Under control of the BYTE input, the memory can be configured as either a 1 Mbit by 8-bit memory or a 512K by 16-bit memory. It operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic packages as well as plastic one time programmable (OTP) packages.

Typically, any byte can be accessed in less than 120 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C800 offers Single +5 V power supply

- ±10% power supply tolerance standard on most speeds
- 100% Flashrite[™] programming

- Typical programming time of less than 1 minute

- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity

separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C800 supports AMD's Flashrite™ programming algorithm (100 µs pulses) resulting in typical programming times of less than 1 minute.

Publication# 15452 Rev. B Amendment /0 Issue Date: July 1993

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C800						
Ordering Part No: V _{CC} ±5%	-125			-255			
V _{CC} ± 10%	-120	-150	-200	-250			
Max Access Time (ns)	120	150	200	250			
CE (E) Access Time (ns)	120	150	200	250			
OE (G) Access Time (ns)	50	65	75	100			

CONNECTION DIAGRAM

1. JEDEC nomenclature is in parenthesis.

PIN DESIGNATIONS

= = • • • •		
AB	 Address Input (BYTE Mode) 	AB
A0–A18	= Address Inputs	18/
BYTE/VPP	 Byte/Word Switch or Program 	A0-A18
	Supply Voltage	
CE (E)/PGM (F) = Chip Enable	
DQ0-DQ15	 Data Inputs/Outputs 	or 8
NC	= No Internal Connection	
OE (G)	= Output Enable Input	
Vcc	= Vcc Supply Voltage	BYTE/VPP
Vss	= Ground	15452B-4

LOGIC SYMBOL

ORDERING INFORMATION EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

8 Megabit (1,048,576 x 8-Bit/524,288 x 16-Bit) CMOS EPROM

Valid Cor	nbinations
AM27C800-120	
AM27C800-125	DC, DCB, DI, DIB,
AM27C800-150	DE, DEB, LC, LCB,
AM27C800-200	LI, LIB, LE, LEB
AM27C800-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Comb	oinations
AM27C800-150	
AM27C800-155	
AM27C800-200	PC, JC, PI, JI
AM27C800-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Com	binations
AM27C800-150	
AM27C800-200	/BUA, /BXA
AM27C800-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION

Erasing the Am27C800

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C800 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C800. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2,537 Å—with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27C800 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C800 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2,537Å, exposure to fluorescent light and sunlight will eventually erase the Am27C800 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C800

Upon delivery or after each erasure the Am27C800 has all 8,388,608 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27C800 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_PP pin, $\overline{\text{CE/PGM}}$ is at V_{IL}, and $\overline{\text{OE}}$ is at V_{IH}.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each addresss only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C800. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = $V_{PP} = 5.25$ V.

Please refer to Section 6.0 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27C800s in parallel with different data is also easily accomplished. Except for $\overline{CE/PGM}$, all like inputs of the parallel Am27C800 may be common. A TTL low-level program pulse applied to

an Am27C800 $\overline{CE/PGM}$ input with V_{PP} = 12.75 V ± 0.25 V, and \overline{OE} HIGH will program that Am27C800. A high-level $\overline{CE/PGM}$ input inhibits the other Am27C800 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{\text{OE}}$ at V_{IL}, $\overline{\text{CE/PGM}}$ at V_{IH} and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27C800.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27C800. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_{IH}), the device identifier code. For the Am27C800, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C800 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}/PGM) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE}/PGM to output (t_{CE}). Data is available at the outputs to after the falling edge of \overline{OE} , assuming that \overline{CE}/PGM has been LOW and addresses have been stable for at least t_{ACC} -toE.

Byte Mode

The user has the option of reading data in either 16-bit words or 8-bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A18–A0 will address 512K words of 16-bit data. When the BYTE input is LOW, AB functions as the least significant address input and 1 Mbyte of data can be accessed. The 8 bits of data will appear on DQ7–DQ0.

Standby Mode

The Am27C800 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when CE/PGM is at V_{CC} ± 0.3 V. The Am27C800 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when CE/PGM is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that $\overline{CE/PGM}$ be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control

MODE SELECT TABLE

bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

		1 1			7		
Mode	Pins	CE/PGM	ŌĒ	AO	A9	BYTE/Vpp	Outputs
Read		Vil	VIL	X	Х	x	Dout
Output Disabl	le	ViL	Vін	X	Х	X	Hi-Z
Standby (TTL)		Viн	Х	X	Х	x	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	Х	X	X	X	Hi-Z
Program		VIL	Vін	X	X	Vpp	Din
Program Verify		ViH	VIL	X	Х	Vpp	Dout
Program Inhibit		ViH	ViH	X	Х	·Vpp	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	Vн	X	01H
	Device Code	ViL	VIL	ViH	Vн	X	1AH

Notes:

1. $V_H = 12.0 V + 0.5 V$

2. $X = Either V_{IH} \text{ or } V_{IL}$

3. $A1 - A8 = A10 - A18 = V_{1L}, AB = X$

4. See DC Programming Characteristics for VPP voltage during programming.

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect To V _{SS} All pins except A9,V _{PP} ,V _{CC} (Note 1)
A9 and V _{PP} (Note 2)0.6 V to +13.5 V
Vcc0.6 V to +7.0 V
Notes:

- During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input may overshoot to V_{CC} + 2.0 V for periods of up to 20 ns.
- During transitions, A9 and VPP may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (T _c) 0°C to +70°C
Industrial (I) Devices Case Temperature (T _c)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (T _C) –55°C to +125°C
Military (M) Devices Case Temperature (T _c)55°C to +125°C
Supply Read Voltages V _{CC} for Am27C800-XX5 +4.75 V to +5.25 V
V _{cc} for Am27C800-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Am27C800

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vон	Output HIGH Voltage	юн = -400 μА	Юн = -400 μА			v
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	٧
Vih	Input HIGH Voltage			2.0	Vcc + 0.5	v
VIL	Input LOW Voltage			-0.5	+0.8	v
lu	Input Load Current	VIN = 0 V to +Vcc		1.0	μA	
llo	Output Leakage Current	Vour = 0 V to +Vcc	Vout = 0 V to +Vcc		5.0	μA
ICC1	Vcc Active Current	CE = VIL, f = 5 MHz,	C/I Devices		50	^
	(Note 3)	iout = 0 mA	E/M Devices	60		mA
ICC2	Vcc TTL Standby Current	CE = VIH			1.0	mA
Іссз	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V			100	μA
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = V_{IL}, V_{PP} = V_{IL}$	/cc		100	μA

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27C800 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

15452B-5

 $V_{cc} = 5.5 V, f = 5 MHz$

15452B-6

CAPACITANCE

Parameter		Test	CD	/042	CLV	/044	PD	042	PL	044	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	Vin = 0	10	18	10	18	10	18	10	18	pF
Соит	Output Capacitance	Vout = 0	10	18	10	18	10	18	10	18	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz$

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

							Am27C80	0	
JEDEC	Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255 -250	Unit
tavqv	tacc	Address to		Min		-	-	-	
	Output Delay	CE = OE = VIL Mai		120	150	200	250	ns	
telav	tCE	Chip Enable to	=	Min	-	-	-	-	ns
		Output Delay	OE = VIL	Max	120	150	200	250	115
tGLQV	tOE	Output Enable to	CE = VIL	Min	-	-	-	-	
		Output Delay		Max	50	55	60	60	ns
tehqz,	tDF	Chip Enable HIGH or Output Enable		Min	0	0	0	0	
tGHQZ	(Note 2)	HIGH, whichever comes first, to Output Float		Max	40	40	40	60	ns
taxox	toн	Output Hold from		Min	0	0	0	0	ns
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27C800 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: Inputs: 0.8 V and 2.0 V Outputs: 0.8 V and 2.0 V

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORMS

15452B-9

Notes:

- 1. OE/VPP may be delayed up to tACC toe after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Д

HIGH-SPEED CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMs)

.

Section 3	High-Speed CMOS Erasable Programmable Read Only Memories (EPROMs) 3-1					
	An Introduction	to High-Speed EPROMs 3-3				
	Am27H256	High-Speed 256K (32,768 x 8-Bit) CMOS EPROM 3-9				
	Am27H010	High-Speed 1 Mbit (131,072 x 8-Bit) CMOS EPROM 3-21				

Д

AN INTRODUCTION TO HIGH-SPEED EPROMs

Advanced Micro Devices has consistently improved the CMOS process to manufacture EPROMs in order to remain the technology leader in the marketplace. In addition to providing lower cost and higher density EPROM solutions, AMD's advanced CMOS process and superior design techniques create the highest performance devices in the industry. The devices that achieve high speed through process technology are identified by the "Am27C" nomenclature. This family provides the designer with a broad range of speeds and densities for most designs.

AMD has also introduced a family of CMOS EPROMs that have been specifically designed for speed. This "Am27H" family supports 35 ns and 45 ns access speeds at the 256K and 1 Mbit densities, respectively.

These high speed "commodity" and high performance "27H" series of EPROMs allow system designers to maximize microprocessor efficiency by matching clock speed with access time. This performance edge also benefits digital signal processor (DSP) and other designers by doing away with the need for expensive shadow RAM or external glue logic in the case of bank interleaving.

HIGH SPEED EPROMS AND MICROPROCESSORS

With the advent of the current generation of high speed microprocessors and their increasing use in embedded control systems it is becoming more and more important to match clock speed with memory access time. The impact of a slow memory can have a drastic effect on system performance. Until recently the designer's only choices have been to use PROMs or copy the contents of slow EPROMs into faster DRAMs or SRAMs. Both of these solutions are expensive in terms of both device cost and board area. Advanced Micro Devices manufactures a full line of high speed EPROMs that enable the designer to produce systems that allow microprocessors to achieve maximum performance.

The standard method of interfacing to slow EPROMs is by adding wait states to the memory access cycle. At first this may not seem to be a problem. However, with a typical memory cycle requiring 3 CPU cycles, each additional cycle is a 30% reduction in speed! This magnitude of performance degradation is not acceptable in the competitive market of today.

In general, the number of cycles available for "0 wait state" operation for popular microprocessors such as the Am386/286 are two cycles. Based on the above fact, the typical EPROM access time can be calculated using the following formula:

EPROM Access Time = Total Time Available – (Address Ready Delay + Address Buffer Delay + Data Buffer Delay + µproc Set-Up Time) The table below lists CPU clock speed and the required EPROM access time for the given wait states.

Table 3-1

CPU Clock Frequency	Wait States	EPROM Access Time	Memory Access Cycle Time	
40 MHz	1	45 ns	75 ns	
33 MHz	0	30 ns	60 ns	
33 MHz	1	60 ns	90 ns	
33 MHz	2	90 ns	120 ns	
25 MHz	0.	45 ns	80 ns	
25 MHz	1	85 ns	120 ns	
25 MHz	2	120 ns	160 ns	
20 MHz	0	60 ns	100 ns	
20 MHz	1	100 ns	150 ns	
20 MHz	2	150 ns	200 ns	
16 MHz	0	75 ns	125 ns	
16 MHz	1	120 ns	187 ns	

It should be noted that by inserting just one wait state (see Memory Access Cycle Time above) the performance of the CPU is degraded to that of the slower clock speed with zero wait states. Considering the cost premium for the faster CPU, the simple insertion of a wait state can undermine the cost/performance ratio of the final system.

There have been two traditional engineering solutions to this problem:

- utilize a combination of slow EPROM and faster DRAM and/or SRAM, or
- utilize interleaving banks of memory

Both of the above solutions do work but at the expense of increasing cost to achieve the desired performance. The increased cost comes in the form of:

- duplication of memory components when pursuing a shadow memory implementation
- increase of real estate and decreased reliability due to higher component count

Advanced Micro Devices offers a better solution to eliminating wait states. High speed (35 ns - 120 ns) EPROMs are available, and designing a system using them is very easy. Don't add wait states! Most EPROM manufacturers have a formula listed in their design manuals that is used to calculate the EPROM access time required. They suggest that you vary the number of wait states in the formula until you hit on the access time of an EPROM that they manufacture. May we suggest that you use zero wait states in their formula and choose one of AMD's High Speed EPROMs.

BOARD LAYOUT METHODS FOR HIGH-SPEED EPROMs

Now that you have made the decision to get maximum performance from your microprocessor here are a few tips to make sure that your design goes to production smoothly. These tips are general system tips and are not unique to EPROMs. They can be used in any high-speed design.

As system speed increases so does the power supply noise, which can disrupt the system if left unchecked. There are some simple methods for reducing noise that can be used as guidelines when designing and laying out systems. The extent to which these tips are used in your design will depend on PC board size, total power supply capacity, length of feed lines from the power supply, presence of a ground plane in the PC board, clock speed, etc. There is no way to come up with an exact formula to minimize noise, so it is best to start with a standard setup and then modify it to fit the current design.

Rule of thumb 1:

- Place a 0.1 μF capacitor as close as possible to every IC between V_{CC} and GND.
- Place a 1.0 μF capacitor between V_{cc} and GND for every four ICs on a power trace.

Rule of thumb 2:

Use power planes if you can.

This generally requires a multi-layer PC board that uses one or two of the internal layers to carry the power to each IC with very large traces. Don't forget to provide heat relief on the holes.

Figure 3-1 Typical Noise Isolation Between Vcc and GND

Figure 3-2 Typical Ground Plane Heat Relief Pattern

If power planes cannot be used, then do not snake the trace.

Use a comb pattern to distribute the power to the ICs. Run heavy buses down the side of the board with smaller traces taking the power between the ICs and smaller traces, yet taking the power to the individual ICs.

Rule of thumb 3:

If you must wire wrap the prototype design place the bypass capacitors on the wire side of the board and solder them directly to the socket. Save yourself a lot of time and trouble and do this before you wire the board.

Rule of thumb 4:

When wiring a prototype do not channel the wires. This looks nice but you will spend a lot of time looking for cross talk problems where the signal is coupled from one wire to another. Use direct point-to-point wiring.

Rule of thumb 5:

Use a crow foot wiring pattern and not a daisy chain pattern. Have the heel of the crow foot at the signal source to drive the entire foot.

Figure 3-3 Example of a Crow Foot Pattern

If there are too many destinations for the signal to be supplied from a single pin, use a modified crow foot.

tor SPECIFICATIONS AND SYSTEM DESIGN CONSIDERATIONS

There are two specifications listed in data sheets—Output Enable to Output Delay (t_{OE}) and Output Enable to Output Float (t_{DF})—that are not always taken into account when designing a system. These two parameters respectively specify how much time the device takes to provide valid data on the bus when \overline{OE} is asserted and when data is no longer available when \overline{OE} is deasserted. This information is very important to avoid a bus contention problem in the final design.

The t_{OE} parameter is easy to test, but is very dependent on the output drive capacity of the device and the capacitive loading of the bus that the device is driving. The device must drive the bus to valid logic levels within this time limit.

The t_{DF} specification, which stands for Time to Data Float, is the maximum time it takes for a device to no longer be driving a bus. The device does not necessarily have to drive the bus to any voltage level, but only to a level that does not prevent another device from driving the bus. This definition is very critical when testing a part and consequently also affects the decisions made by the system designer. The above definition is not tied to the voltage level of the output and consequently, the loading capacitance has no effect on this parameter from the system point of view. This at first may seem inaccurate, but if the node is no longer being driven, then the voltage on the node resulting from the loading capacitance has an R-C time constant that is independent of the device.

The capacitive loading is a test issue and is of considerable importance. To test t_{DF} , the test engineer must look for a voltage change in order to detect when the device is no longer driving the bus. With the voltage change being the only way to test this, the external R-C time constant must be minimized to give the most accurate measurements.

The systems designer must take the bus loading capacitance into account when dealing with tacc, tce and toe but not for t_DF.

FINAL

Am27H256

256 Kilobit (32,768 x 8-Bit) High Speed CMOS EPROM

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 35 ns
- JEDEC-approved pinout
 - Pin compatible with Am27C256
- Single +5 V power supply
- ±10% power supply tolerance available

- 100% Flashrite[™] programming
 - Typical programming time of 4 seconds
- Latch-up protected to 100 mA from -1 V to Vcc + 1 V
- High noise immunity
- Standard 28-pin DIP, PDIP, 32-pin LCC and PLCC packages
- DESC SMD No. 5962-86063

GENERAL DESCRIPTION

The Am27H256 is an 256 Kbit ultraviolet erasable programmable read-only memory. It is organized as 32K words by 8 bits per word, operates from a single +5 V supply, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 35 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27H256 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 220 mW in active mode, and 50 mW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27H256 supports AMD's Flashrite[™] programming algorithm (100 µs pulses) resulting in typical programming time of 4 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.	Am27	H256
Ordering Part Number Vcc ± 5%	-35V05	
Vcc ± 10%	-35	-45
Max Access Time (ns)	35	-45
CE (E) Access Time (ns)	35	-45
OE (G) Access Time (ns)	20	20

CONNECTION DIAGRAMS

DIP

Top View

VPP	1.	28	Vcc
A12 [2	27	A14
A7 [3	26] A13
A6 [4	25] A8
A5 [5	24	A 9
A4 [6	23	A11
АЗ [7	22] <u>oe</u> (<u>G</u>)
A2 [8	21	A10
A1 [9	20	
A0 [10	19] DQ7
DQ0	11	18	DQ6
DQ1	12	17] DQ5
DQ2 [13	16	
Vss [14	15] DQ3

14944C-2

Notes:

1. JEDEC nomenclature is in parentheses.

2. Don't use (DU) for PLCC.

PIN DESIGNATIONS

A0-A14	=	Address Inputs
CE (E)	=	Chip Enable
DQ0-DQ7	=	Data Inputs/Outputs
NC	=	No Internal Connection
OE (G)	=	Output Enable Input
Vcc	=	Vcc Supply Voltage
VPP	=	Program Supply Voltage
Vss	=	Ground
		· .

ORDERING INFORMATION EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Corr	binations				
AM27H256-35 DC, DCB, DI, DIE					
AM27H256-35V05	LC, LI, LCB, LIB				
AM27H256-45	DC, DCB, DE, DEB, DI, DIB, LC, LCB, LI, LIB, LE, LEB				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Corr	binations
AM27H256-35V05	
AM27H256-45	PC, JC

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Com	binations
AM27H256-45	/BXA, /BUA

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION Erasing the Am27H256

In order to clear all locations of their programmed contents, it is necessary to expose the Am27H256 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27H256. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27H256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27H256 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27H256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27H256

Upon delivery or after each erasure the Am27H256 has all 262,144 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27H256 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the VPP pin, \overline{CE} is at V_{IL} and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27H256. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{cc} = V_{PP} = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27H256 in parallel with different data is also easily accomplished. Except for \overline{CE} ,

all like inputs of the parallel Am27H256 may be common. A TTL low-level program pulse applied to an Am27H256 \overline{CE} input with VPP = 12.75 V ± 0.25 V and \overline{OE} high, will program that Am27H256. A high-level \overline{CE} input inhibits the other Am27H256 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} at V_{IL}, \overline{CE} at V_{IH} and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27H256.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27H256. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27H256, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27H256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Data is available at the outputs to after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least $t_{ACC} - t_{OE}$.

Standby Mode

The Am27H256 has a standby mode which reduces the maximum V_{CC} current to 50% of the active current. It is placed in standby mode when CE is at V_{IH}. The amount of current drawn in standby mode depends on the frequency and the number of address pins switching. The Am27H256 is specified with 50% of the address lines toggling at 10 MHz. A reduction of the frequency or quantity of address lines toggling will significantly reduce actual standby current.

Output OR-Tieing

To accommodate multiple memory connection, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and con-

nected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	AO	A9	VPP	Outputs
Read		VIL	VIL	A0	A9	Vcc	Dout
Output Disable		VIL	ViH	X	X	Vcc	Hi-Z
Standby		Vін	Х	X	X	Vcc	Hi-Z
Program		VIL	Vін	Х	Х	V _{PP}	Din
Program Verify		Vін	VIL	X	X	V _{PP}	Dout
Program Inhibit		ViH	Vih	х	X	V _{PP}	Hi-Z
Auto Select (Note 3)	Manufacturer Code	VIL	ViL	ViL	Vн	Vcc	01H
	Device Code	VIL	VIL	ViH	Vн	Vcc	10H

Notes:

1. $V_{H} = 12.0 V \pm 0.5 V$

2. $X = Either V_{H} or V_{L}$

3. $A1 - A8 = A10 - A14 = V_{IL}$

4. The Am27H256 uses the same Flashrite algorithm during programming as the Am27C256.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied55°C to +125°C
Voltage with Respect to Vss All pins except A9,VPP,Vcc \dots -0.6 V to Vcc +0.5 V (Note 1)
A9 and VPP (Note 2)
Vcc
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- For A9 and VPP the minimum DC input is -0.5 V. During transitions, A9 and VPP may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and VPP must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc) –55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages
Vcc for Am27H256-XXV05 +4.75 V to +5.25 V
V_{CC} for Am27H256-XX0 \hdots +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified. (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit	
Vон	Output HIGH Voltage	Iон = -4 mA		2.4		V
Vol	Output LOW Voltage	IOL = 12 mA			0.45	V
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	v	
VIL	Input LOW Voltage			-0.3	+0.8	V
			C/I Devices		1.0	
li, i	Input Load Current	$V_{IN} = 0 V to + V_{CC}$	E/M Devices		1.0	μA
			C/I Devices		10.0	μA
ILO	Output Leakage Current	Vout = 0 V to +Vcc	E/M Devices		10.0	
ICC1	Vcc Active Current	CE = VIL, f = 10 MHz	C/I Devices		50	
	(Note 3)	lout = 0 mA	E/M Devices		60	mA
ICC2	Vcc Standby Current	CE = VIH	C/I Devices		25	mA
			E/M Devices		35	
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP = V$	/cc		100	μA

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. Caution: The Am27H256 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} + 0.5 V, which may overshoot to V_{cc} + 2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter		Test	CD	/028	CL	V032	PD	028	PL 032			
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	
CiN	Input Capacitance	VIN = 0	6	12	6	12	8	12	8	12	pF	
Солт	Output Capacitance	Vout = 0	8	15	6	15	10	15	10	15	pF	

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

	meter				Am27l	1256
JEDEC	nbols Standard	Parameter Description	Test Conditions		-35V05 -35	-45
tavov	tRCC	Address to	CE = OE = VIL	Min		
		Output Delay	$C_L = C_{L1}$	Max	35	45
TELOV	tCE	Chip Enable to	OE = VIL	Min		
		Output Delay	$C_L = C_{L1}$	Max	35	45
tGLQV	tOE	Output Enable to	CE = VIL	Min		
		Output Delay	$C_L = C_{L1}$	Max	20	20
tehoz,	tDF	Chip Enable HIGH or	$C_L = C_{L2}$	Min	0	0
tghoz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	20	20
taxox	toн	Output Hold from		Min	0	0
		Addresses, CE, or OE, whichever occurred first		Мах		

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27H256 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.

4. Output Load: 1 TTL gate and C = CL Input Rise and Fall Times: 5 ns

Input Rise and Fall Times: 5 ns Input Pulse Levels: 0 V to 3 V. Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0." Input pulse rise and fall times are ≤ 5 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27H010

1 Megabit (131,072 x 8-Bit) High Speed CMOS EPROM

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- Fast access time
 - 45 ns
- JEDEC-approved pinout
 - Plug in upgrade of standard 1 Mbit EPROMs
 - Easy upgrade from 28-pin JEDEC EPROMs
- Single +5 V power supply
- ±10% power supply tolerance available

- 100% Flashrite[™] programming
- Typical programming time of 16 seconds
 Latch-up protected to 100 mA from -1 V to
- Vcc + 1 V
- High noise immunity
- Compact 32-pin DIP, PDIP, LCC and PLCC packages
- DESC SMD No. 5962-89614

GENERAL DESCRIPTION

The Am27H010 is a 1 Mbit ultraviolet erasable programmable read-only memory. It is organized as 131,072 words by 8 bits per word, operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages as well as plastic one time programmable (OTP) PDIP and PLCC packages.

Typically, any byte can be accessed in less than 45 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27H010 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$

controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 220 mW in active mode, and 50 mW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27H010 supports AMD's Flash-riteTM programming algorithm (100 μ s pulses) resulting in typical programming time of 16 seconds.

BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Family Part No.		Am27	'H010	
Ordering Part No: Vcc ±5%	-45V05			-90V05
Vcc ±10%	-45	-55	-70	-90
Max Access Time (ns)	45	55	70	90
CE (E) Access (ns)	45	55	70	90
OE (G) Access (ns)	20	25	35	40

CONNECTION DIAGRAMS

Top View

12750D-3

A14

A13

A8

A9

A11

A10

DQ7

OE (G)

CE (E)

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A16	=	Address Inputs
CE (E)	=	Chip
DQ0-DQ7	=	Data Inputs/Outputs
NC	=	No Internal Connection
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
Vpp	=	Program Supply Voltage
Vss	=	Ground

I£

30 32 31

29

28[

27**[**

26

25

24

23[

22

21

ORDERING INFORMATION EPROM Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Co	ombinations
AM27H010-45	DC, DCB, DI, DIB,
AM27H010-45V05	LC, LI, LCB, LIB
AM27H010-55	DC, DCB, DE, DEB,
AM27H010-70	DI, DIB, LC, LCB, LI,
AM27H010-90	LIB, LE, LEB

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD Standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Com	binations
AM27H010-55	
AM27H010-70	PC, JC
AM27H010-90	P0, J0
AM27H010-90V05	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION Military APL Products

/BXA, /BUA

AM27H010-70

AM27H010-90

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

> Group A Tests Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION Erasing the Am27H010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27H010 to an ultravioletlight source. A dosage of 15 W seconds/cm² is required to completely erase an Am27H010. This dosage can be obtained by exposure to an ultraviolet lamp—wavelength of 2537 Å—with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The Am27H010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27H010 and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight will eventually erase the Am27H010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27H010

Upon delivery or after each erasure the Am27H010 has all 1,048,576 bits in the "ONE" or HIGH state. "ZEROS" are loaded into the Am27H010 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP}, \overline{CE} and \overline{PGM} is at V_{IL} and $\overline{OE} = V_{IH}$.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27H010. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = Vpc = 5.25 V.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27H010 in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27H010 may be common. A TTL low-level program pulse applied to an

Am27H010 \overline{CE} input and with V_{PP} = 12.75 V ± 0.25 V, PGM Low and \overline{OE} High will program that Am27H010. A high-level \overline{CE} input inhibits the other Am27H010 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL}, \overline{PGM} at V_{IH} and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27H010.

To activate this mode, the programming equipment must force 12.0 V \pm 0.5 V on address line A9 of the Am27H010. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and byte 1 (A0 = V_{IH}), the device code. For the Am27H010, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27H010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Assuming that addresses are stable, address access time (tAcc) is equal to the delay from \overline{CE} to output (toE). Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Data is available at the outputs toE after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tAcc – toE.

Standby Mode

The Am27H010 has a standby mode which reduces the maximum V_{CC} current to 50% of the active current. It is placed in standby mode when \overline{CE} is at V_{IH}. The amount of current drawn in standby mode depends on the frequency and the number of address pins switching. The Am27H010 is specified with 50% of the address lines

toggling at 10 MHz. A reduction of the frequency or quantity of address lines toggling will significantly reduce the actual standby current.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE}/V_{PP} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1- μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7- μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	PGM	A0	A9	Vpp	Outputs
Read		ViL	ViL	x	A0	A9	Vін	Dout
Output Disable		VIL	Viн	x	х	x .	ViH	Hi-Z
Standby (TTL)		ViH	x	x	х	x	ViH	Hi-Z
Program		VIL	Viн	ViL	х	x	Vpp	Din
Program Verify		ViL	ViL	ViH	х	x	Vpp	Dout
Program Inhibit		VIH	x	x	х	x	VPP	Hi-Z
Auto Select	Manufacturer Code	VIL	VIL	x	ViL	Vн	Vcc	01H
(Note 3)	Device Code	VIL	ViL	X	VIH	Vн	Vcc	0EH

Notes:

- 1. $V_H = 12.0 \ V \pm 0.5 \ V$
- 2. X = Either VIH or VIL
- 3. A1-A8 = A10-A18 = VIL

4. The Am27H010 uses the same Flashrite algorithm as the Am27C010.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
All Other Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except A9,VPP,Vcc \dots -0.6 V to Vcc + 0.5 V (Note 1)
A9 and VPP (Note 2)
Vcc \ldots –0.6 V to +7.0 V
Notes:

- Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- For A9 and V_{PP} the minimum DC input is −0.5 V. During transitions, A9 and V_{PP} may overshoot V_{SS} to −2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices
Case Temperature (Tc)55°C to +125°C
Military (M) Devices
Case Temperature (Tc)55°C to +125°C
Supply Read Voltages
Vcc for Am27H010-XXV05 +4.75 V to +5.25 V
Vcc for Am27H010-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit		
Vон	Output HIGH Voltage	Юн = -4 mA		2.4		v	
Vol	Output LOW Voltage	lol = 12 mA			0.45	v	
Viн	Input HIGH Voltage			2.0	Vcc + 0.5	v	
ViL	Input LOW Voltage			-0.5	+0.8	v	
lLI	Input Load Current	VIN = 0 V to +Vcc	C/I Devices		1.0	μA	
			E/M Devices		1.0		
ΙLΟ	Output Leakage Current	Vout = 0 V to +Vcc	C/I Devices		10		
			E/M Devices		10	μA	
ICC1	Vcc Active Current	CE = VIL, f = 10 MHz	C/I Devices		50		
	(Note 3)	IOUT = 0 mA	E/M Devices		60	mA	
ICC2	Vcc Standby Current	CE = VIH C/I Devices			25		
				35	mA		
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP = VIL$		100	μA		

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

2. Caution: The Am27H010 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. I_{CC1} is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} + 0.5 V, which may overshoot to V_{cc} + 2.0 V for periods less than 20 ns.

vs. Temperature V_{cc} = 5.0 V, f = 10 MHz

CAPACITANCE

Parameter Symbol	Parameter Description	Test	CD	CDV032 CLV032 PD 032 F		PL	032				
		Conditions	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0	6	12	6	12	8	12	8	12	pF
Cour	Output Capacitance	Vout = 0	8	15	6	15	10	15	10	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9,10 and 11 are tested unless otherwise noted)

Parameter					Am27H010				
JEDEC	nbols Standard	Parameter Description	Test Conditions		-45V05 -45	-55	-70	-90V05 -90	Unit
tavqv	tRCC	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$ $C_L = C_{L1}$	Min Max	45	55	70	90	ns ns
telov	tCE	Chip Enable to Output Delay	$\overline{OE} = V_{IL}$ $C_L = C_{L1}$	Min Max	45	55	70	90	ns ns
tGLQV	tOE	Output Enable to Output Delay	$\overline{CE} = V_{IL}$ $C_{L} = C_{L1}$	Min Max	20	25	35	40	ns ns
tehaz, tghaz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float	C _L = C _{L2}	Min Max	0 20	0 25	0 35	0 40	ns ns
taxqx	тон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0	ns ns

Notes:

- 1. V_{CC} must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27H010 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.
- 4. Output Load: 1 TTL gate and C = CL

Input Řise and Fall Times: 5 ns Input Pulse Levels: 0 V to 3 V. Timing Measurement Reference Level: 1.5 V for inputs and outputs

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0." Input pulse rise and fall times are \leq 5 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC toE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from OE or CE, whichever occurs first.

SECTION

4 LOW VOLTAGE CMOS ERASABLE PROGRAMMABLE READ ONLY MEMORIES (EPROMs)

Section 4		MOS Erasable Programmable Read s (EPROMs)
	An Introduction	to Low Voltage EPROMs 4-3
	Am27LV010B Am27LV020/	1 Megabit (131,072 x 8-Bit) Low Voltage CMOS EPROM 4-4 2 Megabit (262,144 x 8-Bit) Low Voltage CMOS EPROM 4-21

Л

AN INTRODUCTION TO LOW VOLTAGE EPROMS

Advanced Micro Devices is committed to being the technology leader in Non-Volatile memories and therefore, continues to focus on developing superior memory products that serve the needs of our customers. Our technology leadership is evidenced by our offering of a complete line of EPROMs, the highest performance and density EPROM products in the marketplace as well as the industry's smallest die sizes. We are now proud to announce a family of Low Voltage (3.3 V) EPROMs to complement our product offering.

In the recent past, momentum for the need of Low Voltage ICs has been exponentially growing. The Electronics industry has demonstrated a well established trend of product improvements and enhancements while simultaneously decreasing the size and cost of the equipment. Typical examples of this phenomenon is the notebook and sub-notebook class of personal computers and the cellular phones of today. This trend towards "miniaturization" is expected to continue with the market demanding even smaller formfactors and increasing portability—in the form of handheld instrumenta-tion—but with the same capability and performance levels that is available from their larger counterparts.

This trend of smaller formfactors and increasing portability forces manufacturers to constantly reduce the size and weight of their equipment. As batteries consume an increasingly larger share of the size and weight of the portable equipment, many manufacturers are now looking to reduce the number of batteries and/or lowering the power consumption i.e., the battery drain. This has led to the migration towards Low Voltage ICs. For example, a portable computer that utilizes 5.0 V components commonly needs five 1.2 V secondary (rechargeable) Nickel Cadmium or five 1.5 V primary (throw-away) alkaline batteries. By switching to 3.0 V components the required number of batteries now becomes three, thereby effectively reducing the weight of the heaviest component in the system by 40%. Switching to a 3.0 V operation from a 5.0 V operation also cuts down the power consumption significantly. As power is proportional to the square of the voltage, reducing the operating voltage from 5.0 V to 3.0 V results in power savings of at least 57%. This power consumption can further be reduced if the current level of the individual devices is lowered.

In keeping with our philosophy of offering memories that solve customers' needs, AMD is proud to announce a family of 3.3 V EPROMs. This Low Voltage family, designated as "Am27LV", is offered with two voltage ranges. The first has a V_{cc} tolerance level of 3.3 V \pm 10% — 3.0 V to 3.6 V— making it suitable for use in systems that have regulated power supplies, and second, a voltage range of 2.7 V to 3.6 V making it ideally suited for battery operated systems.

This family complies with the recently approved JEDEC standards on Low Voltage. These devices typically have lower active and standby current levels than their 5.0 V counterparts thereby reducing the power consumption by as much as 83%. These products are also pin-compatible with their 5.0 V counterparts and are being offered in the traditional EPROM packages.

PRELIMINARY

Am27LV010/Am27LV010B

1 Megabit (131,072 x 8-Bit) CMOS EPROM

DISTINCTIVE CHARACTERISTICS

- Single +3.3 V power supply
 - Regulated power supply 3.0 V–3.6 V
 - Unregulated power supply 2.7 V–3.6 V (for battery operated systems)

Low power consumption:

- 10 µA typical CMOS standby current
- 90 µW maximium standby power
- 54 mW maximum power at 5 MHz
- Fast access time—120 ns

JEDEC-approved pinout

- Pin compatible with 5.0 V 1 Mbit EPROM
- Easy upgrade from 28-pin EPROMs

GENERAL DESCRIPTION

The Am27LV010 is a low voltage, low power 1 Mbit, ultraviolet erasable, progammable read-only memory, organized as 128K words by 8 bits per word.

The Am27LV010 operates from a single power supply of 3.3 V and is offered with two power supply tolerances. The Am27LV010 has a Vcc tolerance range of 3.3 V ± 0.3 V making it suitable for use in systems that have regulated power supplies. The Am27LV010B has a voltage supply range of 2.7 V-3.6 V making it an ideal part for battery operated systems.

Maximum power consumption of the Am27LV010 in standby mode is only 90 µW. If the device is constantly accessed at 5 MHz, then the maximum power consumption increases to 54 mW. These power ratings are significantly lower than typical EPROMs. Also, as power consumption is proportional to voltage squared, 3.3 V

BLOCK DIAGRAM

- Fast Flashrite[™] programming Typical programming time of 16 seconds
- Latch-up protected to 100 mA from –1 V to Vcc +1 V
- High noise immunity
- Compact 32-pin DIP package requires no hardware change for upgrades to 8 Mbit
- Versatile features for simple interfacing Both CMOS and TTL input/output compatibility
 - Two line control functions

devices consume at least 57% less power than their 5.0 V counterparts. Due to its lower current and voltage, the Am27LV010 is well-suited for battery operated and portable systems as it extends the battery life in these systems. Typical applications are notebook and handheld computers as well as cellular phones.

The Am27LV010 is packaged in the industry standard 32-pin windowed ceramic DIP and LCC packages, as well as one-time programmable (OTP) packages. This device is pin-compatible with the 5.0 V devices.

The Am27LV010 uses AMD's FlashriteTM programming algorithm (100 µs pulses) resulting in typical programming time of 16 seconds. This device is manufactured on AMD's sub-micron process technology which provides high speed, low power and high noise immunity.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product wilhout notice.

Issue Date: July 1993

PRODUCT SELECTOR GUIDE

Family Part No		Am27LV010/Am27LV010B							
Ordering Part No:									
Am27LV010 (3.0 V – 3.6 V)	-120	-150	-200	-250	-300				
Am27LV010B (2.7 V - 3.6 V)	-150	-150	-200	-250	-300				
Max Access Time (ns)	120	150	200	250	300				
CE (E) Access (ns)	120	150	200	250	300				
OE (G) Access (ns)	50	65	75	100	120				

CONNECTION DIAGRAMS

Notes:

1. JEDEC nomenclature is in parenthesis.

2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

*Contact local AMD sales office for package availability.

AMD

PRELIMINARY

PIN DESCRIPTION

A0-A16	=	Address Inputs
CE (E)	=	Chip Enable Input
DQ0-DQ7	=	Data Input/Outputs
NC	=	No Internal Connect
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
VPP	=	Program Supply Voltage
Vss	=	Ground

LOGIC SYMBOL

ORDERING INFORMATION EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27LV010B –1 Megabit (131,072 x 8-Bit) Low Voltage CMOS EPROM with 2.7 V-3.6 V Vcc Tolerance

Valid Combinations								
AM27LV010-120 DC, DCB, LC, LCB								
AM27LV010-150								
AM27LV010-200								
AM27LV010-250								
AM27LV010-300	DC, DCB, DE,							
AM27LV010B-150	DEB, DI, DIB, LC, LI, LE, LEB							
AM27LV010B-200	, _, +=, ==0							
AM27LV010B-250	0B-250							
AM27LV010B-300								

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27LV010B –1 Megabit (131,072 x 8-Bit) Low Voltage CMOS OTP EPROM with 2.7 V–3.6 V Vcc Tolerance

Valid Combinations						
AM27LV010-150						
AM27LV010-200						
AM27LV010-250						
AM27LV010-300	JC, EC, JI, EI					
AM27LV010B-200						
AM27LV010B-250						
AM27LV010B-300						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Am27LV010B -1 Megabit (131,072 x 8-Bit) Low Voltage CMOS EPROM with 2.7 V - 3.6 V Vcc Tolerance

Valid Combinations						
AM27LV010-150						
AM27LV010-200						
AM27LV010-250	/BXA, /BUA					
AM27LV010-300	/674, /60A					
AM27LV010B-250]					
AM27LV010B-300						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION Erasing the Am27LV010

In order to clear all locations of their programmed contents, it is necessary to expose the Am27LV010 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27LV010. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Å — with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27LV010 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27LV010, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27LV010 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27LV010

Upon delivery, or after each erasure, the Am27LV010 has all 1,048,576 bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27LV010 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the VPP pin, \overline{CE} and \overline{PGM} are at V_{IL} and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite programming algorithm reduces programming time by using initial 100 μ s pulses followed by a byte verification to determine whether the byte has been successfully programmed. If the data does not verify, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the EPROM.

The Flashrite programming algorithm programs and verifies at Vcc = 6.25 V and VpP = 12.75 V. After the final address is completed, all bytes are compared to the original data with Vcc = VpP = 5.25 V. Am27LV010 can be programmed using the same algorithm as the 5 V counterpart 27C010.

 $\label{eq:please} Please \ refer to \ Section 6 \ for \ programming \ flow \ chart \ and \ characteristics.$

Program Inhibit

Programming of multiple Am27LV010s in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27LV010 may be common. A TTL low-level program pulse applied to an

Am27LV010 \overline{CE} input with VPP = 12.75 ± 0.25 V, \overline{PGM} LOW, and \overline{OE} HIGH will program that Am27LV010. A high-level \overline{CE} input inhibits the other Am27LV010s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL}, \overline{PGM} at V_{IH}, and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27LV010.

To activate this mode, the programming equipment must force 12.0 \pm 0.5 V on address line A9 of the Am27LV010. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_I), the device identifier code. For the Am27LV010, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27LV010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to device selection. Assuming that addresses are stable, address access time (tAcc) is equal to the delay from \overline{CE} to output (tcc). Data is available at the outputs to after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc – toE.

Standby Mode

The Am27LV010 has a CMOS standby mode which reduces the maximum V_{CC} current to 25 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27LV010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 0.6 mA. It is placed in TTL-standby when \overline{CE} is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Mixed Power Supply System

Am27LV020 (in 3.0 V to 3.6 V regulated power supply) can be intefaced with 5 V system only when the I/O pins (DQ0–DQ7) are not driven by the 5 V system. V_{IHmax} = V_{CCLV} + 2.2 V for address and clock pins and V_{IHmax} = V_{CCLV} + 0.5 V for I/O pins should be followed to avoid CMOS latch-up condition

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-sele cting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in

their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

AMD

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Pins		CE	ŌĒ	PGM	A0	A9	Vpp	Outputs
Read		ViL	VIL	X	Х	Х	x	Dout
Output Disab	le	VIL	Vін	X	Х	х	x	High Z
Standby (TTL)		ViH	х	X	Х	Х	x	High Z
Standby (CMOS)		Vcc ± 0.3 V	х	X	Х	Х	x	High Z
Program		VIL	Vін	VIL	Х	Х	VPP	Din
Program Veri	ify	ViL	VIL	Viн	Х	Х	VPP	Dout
Program Inhi	bit	Vін	х	X	Х	Х	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	VIL	ViL	X	VIL	νн	x	01H
	Device Code	VIL	VIL	х	ViH	Vн	Х	0EH

Notes:

1. X can be either VIL or VIH

2. $V_H = 12.0 V \pm 0.5 V$

3. $A1 - A8 = A10 - A16 = V_{IL}$

4. See DC Programming Characteristics for VPP voltage during programming.

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:
OTP Products
All Other Products
Ambient Temperature
with Power Applied
Voltage with Respect to Vss:
All pins except A9, VPP, and
Vcc (Note 1)0.6 V to Vcc + 0.6 V
A9 and VPP (Note 2)0.6 V to 13.5 V
Vcc0.6 V to 7.0 V
Notes:

- 1. During transitions, the input may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and l/O may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.
- During transitions, A9 and V_{CC} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. This is a stress rating only; functional operation of the devices at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (Tc)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages: Vcc for Am27LV010 +3.0 V to +3.6 V Vcc for Am27LV010B +2.7 V to +3.6 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

PRELIMINARY

DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 2, 3 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit		
TTL and CM	OS Inputs for Vcc = 3.0 V to 3.6	v		·			
Voн	Output HIGH Voltage	loн = -2.0 mA		2.4		V	
Vol	Output LOW Voltage	loL = 2.0 mA			0.4	v	
Vih	Input HIGH Voltage			2.0	Vcc + 0.3	V	
ViL	Input LOW Voltage			-0.3	+0.8	V	
lu	Input Load Current	VIN = 0 V to Vcc	C/I Devices		1.0	μA	
			E/M Devices		1.0		
llo	Output Leakage Current	Vour = 0 V to Vcc	C/I Devices		5	μΑ	
			E/M Devices		5		
ICC1	Vcc Active Current (Note 3)	CE = VIL, f = 5 MHz	C/I Devices		15	mA	
		lout = 0 mA (Open Outputs)	E/M Devices		20	IIIA	
lcc2	Vcc TTL Standby Current	CE = VIH	TTL		0.6	mA	
ICC3	Vcc CMOS Standby Current	$\overline{CE} = Vcc \pm 0.3 V$	CMOS		25	μA	
IPP1	VPP Current During Read	$\overline{CE} = \overline{OE} = VIL, VPP =$	Vcc		100	μΑ	

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit		
CMOS Input	ts for Vcc = 2.7 V to 3.6 V						
Voн	Output HIGH Voltage	Юн = -20 μА		Vcc - 0.1		V	
Vol	Output LOW Voltage	IOL = 20 μA			0.1	V	
ViH	Input HIGH Voltage			0.7 Vcc	Vcc + 0.3	V	
ViL	Input LOW Voltage		<u> </u>	-0.3	0.2 Vcc	V	
lL1	Input Load Current	VIN = 0 V to +Vcc	C/I Devices		1.0		
			E/M Devices		1.0	μΑ	
LO	ILO Output Leakage Current	Vout = 0 V to +Vcc C/I Devices			5	μA	
			E/M Devices				
	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL},$ f = 5 MHz,	C/I Devices		15		
	,	lou⊤ = 0 mA (Open Outputs)	E/M Devices		20	mA	
lcc2	Vcc TTL Standby Current	CE = VIH	TTL		0.6	mA	
ICC3	Vcc CMOS Standby Current	$\overline{CE} = Vcc + 0.3 V$			25	μA	
IPP1	VPP Current During Read	CE = OE = VIL, VPP =	Vcc		100	μA	

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27LV010 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs overshoot to −2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter			CD\	/032	CL	V032	TS	032	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	VIN = 0 V	10	12	8	10	10	12	pF
Соит	Output Capacitance	Vout = 0 V	12	15	9	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

PRELIMINARY

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

						An	n27LV010)/Am27L	V010B	
JEDEC	Standard	Parameter Description	Test Conditions		-120	-150	-200	-250	-300	Unit
tavov	tacc	Address to	CE = OE = VIL	Min						
		Output Delay		Max	120	150	200	250	300	ns
telov	tCE	Chip Enable		Min						ns
		to Output Delay	OE = VIL	Max	120	150	200	250	300	115
tGLQV			Min	-	-	-	-	-		
		Output Delay		Мах	50	65	75	100	120	ns
tehoz tghoz	tDF	Chip Enable HIGH or Output Enable HIGH, whichever		Min	0	0	0	0	0	
		comes first, to Output Float (Note 2)		Мах	40	50	60	60	60	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Мах	-	-	-	-	-	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27LV010 must not be removed from, or inserted into, a socket when VPP or Vcc is applied.

4. Output Load: 1 TTL gate and CL = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.40 V to 2.4 V Timing Measurement Reference Level—Inputs: 0.8 V and 2.0 V Outputs: 0.8 V and 2.0 V AMD 🞜

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.40 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

PROGRAMMING FLOW CHART

Figure 1. Flashrite Programming Flow Chart

PRELIMINARY

DC PROGRAMMING CHARACTERISTICS ($T_A = +25^{\circ}C \pm 5^{\circ}C$) (Notes 1, 2 and 3)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
lu	Input Current (All Inputs)	VIN = VIL or VIH		10.0	μA
ViL	Input LOW Level (All Inputs)		-0.3	0.8	V
VIH	Input HIGH Level	······································	3.0	Vcc + 0.5	V
Vol	Output LOW Voltage During Verify	loL = 2.1 mA		0.45	V
Vон	Output HIGH Voltage During Verify	Іон = -400 μА	2.4		v
Vн	A ₉ Auto Select Voltage		11.5	12.5	V
lcc	V _{CC} Supply Current (Program & Verify)			50	mA
IPP	VPP Supply Current (Program)	CE = VIL, OE = VIH		30	mA
Vcc	Flashrite Supply Voltage		6.00	6.50	V
VPP	Flashrite Programming Voltage		12.5	13.0	V

SWITCHING PROGRAMMING CHARACTERISTICS ($T_A = +25^{\circ}C \pm 5^{\circ}C$) (Notes 1, 2 and 3)

Parameter Symbols						
JEDEC	EDEC Standard Parameter Description		Min	Max	Unit	
tavel	tas	Address Setup Time	2		μs	
tozgl	toes	OE Setup Time	2		μs	
T DVEL	tos	Data Setup Time	2		μs	
t GHAX	tan tan	Address Hold Time	0		μs	
t EHDX	toн	Data Hold Time	2		μs	
taнaz	t DFP	Output Enable to Output Float Delay	0	130	ns	
tvps	tvps	VPP Setup Time	2		μs	
t ELEH1	tew	PGM Initial Program Pulse Width	95	105	μs	
tvcs	tvcs	Vcc Setup Time	2		μs	
t elpl	tces	CE Setup Time	2		μs	
tglav	toe	Data Valid from OE		150	ns	

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- When programming the Am27LV010, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

INTERACTIVE AND FLASHRITE PROGRAMMING ALGORITHM WAVEFORM (Notes 1 and 2)

Notes:

17341A-11

1. The input timing reference level is 0.8 V for VIL and 3 V for VIH.

2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

PRELIMINARY

Am27LV020/Am27LV020B

2 Megabit (262,144 x 8-Bit) Low Voltage CMOS EPROM

DISTINCTIVE CHARACTERISTICS

Single 3.3 V power supply

- Regulated power supply 3.0 V-3.6 V Unregulated power supply 2.7 V – 3.6 V (battery-operated systems)
- Low power consumption:
 - 10 µA typical CMOS standby current
 - 90 µW maximum standby power
 - 54 mW power at 5 MHz maximum
- Fast access time --- 150 ns
- JEDEC-approved pinout
 - Pin compatible with 5.0 V 2 Mbit EPROM
 - Easy upgrade from 28-pin JEDEC EPROMs

GENERAL DESCRIPTION

The Am27LV020 is a low voltage, low power 2 Mbit, ultraviolet erasable, progammable read-only memory organized as 256K words by 8 bits per word.

The Am27LV020 operates from a single power supply of 3.3 V and is offered with two power supply tolerances. The Am27LV020 has a Vcc tolerance range of 3.3 V ±0.3 V making it suitable for use in systems that have regulated power supplies. The Am27LV020B has a voltage supply range of 2.7 V-3.6 V making it an ideal part for battery operated systems.

Maximum power consumption of the Am27LV020 in standby mode is only 90 μ W. If the device is constantly accessed at 5 MHz, then the maximum power consumption increases to 54 mW. These power ratings are significantly lower than typical EPROMs. Also, as power consumption is proportional to voltage squared, 3.3 V

BLOCK DIAGRAM

Advanced

Micro

Devices

- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- High noise immunity
- Compact 32-pin DIP package requires no hardware change for upgrades to 8 Mbit
- Versatile features for simple interfacing - Both CMOS and TTL input/output compatibility
 - Two line control functions

devices consume at least 57% less power than their 5.0 V counterparts. Due to its lower current and voltage, the Am27LV020 is well-suited for battery operated and portable systems as it extends the battery life in these systems. Typical applications are notebook and handheld computers as well as cellular phones.

The Am27LV020 is packaged in the industry standard 32-pin windowed ceramic DIP and LCC packages, as well as one-time programmable (OTP) packages. This device is pin-compatible with the 5.0 V devices.

The Am27LV020 uses AMD's FlashriteTM programming algorithm (100 µs pulses) resulting in typical programming times of 32 seconds. This device is manufactured on AMD's sub-micron process technology which provides high speed, low power and high noise immunity.

Publication# 17342 Rev. A Amendment/0 Issue Date: July 1993

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

PRODUCT SELECTOR GUIDE

Family Part No	Am27LV020/Am27LV020B					
Ordering Part No:						
Am27LV020 (3.0 V-3.6 V)	-150	-200	-250	-300		
Am27LV020B (2.7 V-3.6 V)		-200	-250	-300		
Max Access Time (ns)	150	200	250	300		
CE (E) Access (ns)	150	200	250	300		
OE (G) Access (ns)	65	75	100	120		

CONNECTION DIAGRAMS

Top View

Notes:

1. JEDEC nomenclature is in parenthesis.

2. The 32-pin DIP to 32-pin LCC configuration varies from the JEDEC 28-pin DIP to 32-pin LCC configuration.

PIN DESCRIPTION

AU-AT7	=	Address inputs
CE (E)	=	Chip Enable Input
DQ0-DQ7	=	Data Input/Outputs
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
VPP	=	Program Supply Voltage
Vss	=	Ground

LOGIC SYMBOL

ORDERING INFORMATION EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27LV020B –2 Megabit (262,144 x 8-Bit) Low Voltage CMOS EPROM with 2.7 V – 3.6 V Vcc Tolerance

Valid Combinations						
AM27LV020-150	DC, DCB, DI, DIB, LC, LCB, LI, LIB					
AM27LV020-200						
AM27LV020-250	DC, DCB, DE,					
AM27LV020-300	DEB, DI, DIB,					
AM27LV020B-200	LC, LCB, LI,					
AM27LV020B-250	LIB, LE, LEB					
AM27LV020B-300						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Am27LV020B -2 Megabit (262,144 x 8-Bit) Low Voltage CMOS OTP EPROM with 2.7 V-3.6 V Vcc Tolerance

Valid Combinations						
AM27LV020-150						
AM27LV020-200						
AM27LV020-250						
AM27LV020-300	JC, JI					
AM27LV020B-200						
AM27LV020B-250						
AM27LV020B-300						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

MILITARY ORDERING INFORMATION APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:

Am27LV020B –2 Megabit (262,144 x 8-Bit) Low Voltage CMOS EPROM with 2.7 V-3.6 V Vcc Tolerance

Valid Combinations					
AM27LV020-200					
AM27LV020-250					
AM27LV020-300	/BXA, /BUA				
AM27LV020B-250					
AM27LV020B-300					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION Erasing the Am27LV020

In order to clear all locations of their programmed contents, it is necessary to expose the Am27LV020 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27LV020. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Å — with intensity of 12,000 μ W/ cm² for 15 to 20 minutes. The Am27LV020 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27LV020, and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537 Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27LV020 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27LV020

Upon delivery, or after each erasure, the Am27LV020 has all 2,097,152 bits in the "ONE", or HIGH state. "ZEROs" are loaded into the Am27LV020 through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the VPP pin, \overline{CE} and \overline{PGM} are at V_{IL} and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100 μ s programming pulse and by giving each address only as many pulses as are necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27LV020. This part of the algorithm is done at Vcc = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at Vcc = VPP = 5.25 V. Am27LV020 can be programmed using the same algorithm as the 5 V counterpart 27C020.

Please refer to Section 6 for programming flow chart and characteristics.

Program Inhibit

Programming of multiple Am27LV020s in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs of the parallel Am27LV020 may be common. A TTL low-level program pulse applied to an Am27LV020 \overline{CE} input with VPP = 12.75 ± 0.25 V, \overline{PGM} LOW, and \overline{OE} HIGH will program that Am27LV020.

A high-level \overline{CE} input inhibits the other Am27LV020s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL}, \overline{PGM} at V_{IH}, and V_{PP} between 12.5 V and 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the Am27LV020.

To activate this mode, the programming equipment must force 12.0 \pm 0.5 V on address line A9 of the Am27LV020. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto select mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_I), the device identifier code. For the Am27LV020, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27LV020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs to after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc – toE.

Standby Mode

The Am27LV020 has a CMOS standby mode which reduces the maximum Vcc current to 25 μ A. It is placed in CMOS-standby when \overline{CE} is at Vcc \pm 0.3 V. The Am27LV020 also has a TTL-standby mode which reduces the maximum Vcc current to 0.6 mA. It is placed in TTL-standby when \overline{CE} is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Mixed Power Supply System

Am27LV020 (in 3.0 V to 3.6 V regulated power supply) can be intefaced with 5 V system only when the I/O pins (DQ0–DQ7) are not driven by the 5 V system. V_{IHmax} = V_{CLV} +2.2 V for address and clock pins and V_{IHmax} =

V_{CCLV} +0.5 V for I/O pins should be followed to avoid CMOS latch-up condition.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	PGM	AO	A 9	Vpp	Outputs
Read		ViL	VIL	X	х	x	х	Dout
Output Disab	le	ViL	Viн	X	x	X	· X	High Z
Standby (TTL)		Viн	X	X	Х	Х	X	High Z
Standby (CMOS)		Vcc ± 0.3 V	х	X	X	Х	Х	High Z
Program		VIL	ViH	VIL	x	X	Vpp	DIN
Program Veri	ify	ViL	VIL	ViH	X	X	VPP	Dout
Program Inhibit		ViH	X	Х	Х	X	VPP	High Z
Auto Select (Note 3)	Manufacturer Code	ViL	VIL	X	VIL	Vн	X	01H
	Device Code	VIL	VIL	X	VIH	Vн	X	97H

Notes:

1. $V_{H} = 12.0 V \pm 0.5 V$

2. X can be either VIL or VIH

3. A1-A8 = A10-A17 = VIL

4. See DC Programming Characteristics for VPP voltage during programming.

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:
OTP Products
All Other Products
Ambient Temperature
with Power Applied
Voltage with Respect to Vss:
All pins except A9, VPP, and
Vcc (Note 1)0.6 V to Vcc + 0.6 V
A9 and VPP (Note 2) $\ldots \ldots \ldots \ldots -0.6$ V to 13.5 V
Vcc $\ldots \ldots -0.6$ V to 7.0 V
Notes:
1. During transitions, the input may overshoot V_{SS} to

- 2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to V_{CC} + 2.0 V for periods of up to 20 ns.
- During transitions, A9 and V_{PP} may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. A9 and V_{PP} must not exceed 13.5 V for any period of time.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Extended Commercial (E) Devices Case Temperature (Tc)55°C to +125°C
Military (M) Devices Case Temperature (Tc)55°C to +125°C
Supply Read Voltages: Vcc for Am27LV020 +3.0 V to +3.6 V Vcc for Am27LV020B +2.7 V to +3.6 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 2, 3 and 4) (for APL products, Group A, Subgroups 1, 2, 3, 7 and 8 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Мах	Unit
TTL and CM	OS Inputs for Vcc = 3.0 V to 3.6	Ŷ				
Vон	Output HIGH Voltage	юн = -2.0 mA		2.4		V
Vol	Output LOW Voltage	IoL = 2.0 mA			0.4	v
VIH	Input HIGH Voltage			2.0	Vcc + 0.3	v
VIL	Input LOW Voltage		<u></u>	-0.3	+0.8	V
lu	Input Load Current	VIN = 0 V to Vcc	C/I Devices		1.0	μA
			E/M Devices		1.0	<u>م</u> ا
llo	Output Leakage Current	Vour = 0 V to Vcc	C/I Devices		5.0	μА
			E/M Devices		5.0	
ICC1	Vcc Active Current (Note 3)	CE = VIL, f = 5 MHz	C/I Devices	15	15	
		lout = 0 mA (Open Outputs)	E/M Devices		20	mA
ICC2	Vcc TTL Standby Current	CE = VIH, OE = VIL	ΠL		0.6	mA
ICC3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V	CMOS		25	μΑ
IPP1	VPP Current During Read	CE = OE = VIL, VPP =	Vcc		100	μA

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
CMOS for Ve	cc = 2.7 V to 3.6 V					
Vон	Output HIGH Voltage	Юн = -20 μА		Vcc - 0.1		v
Vol	Output LOW Voltage	loL = 20 μA			0.1	V
ViH	Input HIGH Voltage			0.7 Vcc	Vcc + 0.3	V
ViL	Input LOW Voltage			-0.3	0.2 Vcc	v
ILI	Input Load Current	VIN = 0 V to +Vcc	C/I Devices		1.0	
			E/M Devices		μA 1.0	μη
LO	Output Leakage Current	VOUT = 0 V to +Vcc	C/I Devices		5.0	μA
			E/M Devices		5.0	μ
las.	Vcc Active Current	$\overline{CE} = V_{IL},$	C/I Devices		15	
ICC1	(Note 3)	f = 5 MHz, lout = 0 mA (Open Outputs)	E/M Devices		20	mA
lcc2	Vcc TTL Standby Current	CE = VIH, OE = VIL	TTL		0.6	mA
Іссз	Vcc CMOS Standby Current	$\overline{CE} = Vcc \pm 0.3 V$			25	μA
IPP1	VPP Supply Current (Read)	CE = OE = VIL, VPP =	Vcc		100	μA

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. Caution: The Am27LV020 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.

3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.

 Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} +0.5 V, which may overshoot to V_{cc} +2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter			CD	CDV032		CLV032		PL032	
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
Cin	Input Capacitance	VIN = 0 V	10	12	8	10	8	10	рF
Соит	Output Capacitance	Vout = 0 V	12	15	9	12	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

			PREI	IMINARY							
Parameter Symbols					Am27LV020/Am27LV020B						
JEDEC		Parameter Description	Test Conditions		-150	-200	-250	-300	Unit		
tavqv	tACC	Address to		Min							
		Output Delay		Max	150	200	250	300	ns		
tELQV	tCE	Chip Enable	TT V	Min					ns		
		Output Delay	OE = VIL	Max	150	200	250	300	115		
tGLQV	tOE	Output Enable to	CE = VIL	Min							
		Output Delay		Max	65	75	100	120	ns		
tehqz tghqz	tDF (Note 2)	Chip Enable HIGH or Output Enable		Min	0	0	0	0	ns		
		HIGH, whichever comes first, to Output Float		Max	50	60	60	60			
taxox	tон	Output Hold from Addresses, CE, or		Min	0	0	0	0			
		OE, whichever occurred first		Max					ns		

Notes:

1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27LV020 must not be removed from, or inserted into a socket or board when VPP or Vcc is applied.

 Output Load: 1 TTL gate and CL = 100 pF, Input Rise and Fall Times: 20 ns, Input Pulse Levels: 0.40 V to 2.4 V, Timing Measurement Reference Level—Inputs: 0.8 V and 2.0 V, Outputs: 0.8 V and 2.0 V

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.40 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

KS000010

SWITCHING WAVEFORM

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

PROGRAMMING FLOW CHART

Figure 1. Flashrite Programming Flow Chart

PRELIMINARY

DC PROGRAMMING CHARACTERISTICS ($T_A = +25^{\circ}C \pm 5^{\circ}C$) (Notes 1, 2 and 3)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
lu	Input Current (All Inputs)	VIN = VIL or VIH		10.0	μA
VIL	Input LOW Level (All Inputs)		-0.3	0.8	V
ViH	Input HIGH Level		3.0	Vcc + 0.5	V
Vol	Output LOW Voltage During Verify	loL = 2.1 mA		0.45	V
Voн	Output HIGH Voltage During Verify	Іон = -400 μА	2.4		V
VH	A ₉ Auto Select Voltage		11.5	12.5	V
lcc	Vcc Supply Current (Program & Verify)			50	mA
I PP	VPP Supply Current (Program)	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$		30	mA
Vcc	Flashrite Supply Voltage		6.00	6.50	V
VPP	Flashrite Programming Voltage		12.5	13.0	V

SWITCHING PROGRAMMING CHARACTERISTICS (T_A = +25°C \pm 5°C) (Notes 1, 2 and 3)

Parameter Symbols					
JEDEC	Standard	Parameter Description	Min	Max	Unit
tavel	tas	Address Setup Time	2		μs
tozgl	toes	OE Setup Time	2		μs
t DVEL	tos	Data Setup Time	2		μs
t GHAX	tan	Address Hold Time	0		μs
tendx	toн	Data Hold Time	2		μs
tgнoz	t DFP	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	VPP Setup Time	2		μs
teleh1	tew	PGM Initial Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
t ELPL	tces	CE Setup Time	2	<u> </u>	μs
tglav	toe	Data Valid from OE		150	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- When programming the Am27LV020, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

INTERACTIVE AND FLASHRITE PROGRAMMING ALGORITHM WAVEFORM (Notes 1 and 2)

Notes:

17342A-10

1. The input timing reference level is 0.8 V for VIL and 3 V for VIH.

2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

SECTION

ExpressROM[™] MEMORIES

Section 5

ExpressROM [™]	Memories
An Introduction	to ExpressROM [™] Memories 5-3
Am27X64	64K (8,192 x 8-Bit) CMOS ExpressROM [™] Device 5-8
Am27X128	128K (16,384 x 8-Bit) CMOS ExpressROM [™] Device 5-17
Am27X256	256K (32,768 x 8-Bit) CMOS ExpressROM [™] Device 5-26
Am27X512	512K (65,536 x 8-Bit) CMOS ExpressROM [™] Device 5-36
Am27X010	1 Megabit (131,072 x 8-Bit) CMOS ExpressROM™ Device
Am27X1024	1 Megabit (65,536 x 16-Bit) CMOS ExpressROM™ Device
Am27X020	2 Megabit (262,144 x 8-Bit) CMOS ExpressROM [™] Device
Am27X2048	2 Megabit (131,072 x 16-Bit) CMOS ExpressROM™ Device
Am27X040	4 Magabit (524 288 x 8-Bit) CMOS
Am277040	4 Megabit (524,288 x 8-Bit) CMOS ExpressROM™ Device
Am27X400	4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) ROM
A	Compatible CMOS ExpressROM [™] Device
Am27X4096	4 Megabit (262,144 x 16-Bit) CMOS ExpressROM™ Device
Am27X080	8 Megabit (1,048,576 x 8-Bit) CMOS ExpressROM™ Device
Am07V000	
Am27X800	8 Megabit (1,048,576 x 8-Bit/524,288 x 16-Bit) ROM Compatible CMOS ExpressROM [™] Device

AN INTRODUCTION TO ExpressROM[™] MEMORIES

ExpressROM memories are an exciting product family created by Advanced Micro Devices to offer the system manufacturer lower cost in the manufacturing process. ExpressROM devices are delivered pre-programmed with your stable code in a low cost plastic package and are 100% compatible with the EPROMs they replace. An ExpressROM device is manufactured with the same process as AMD's standard U.V. EPROM equivalent, with the topside passivation layer for plastic encapsulation. Since a standard EPROM die is used, you are assured that the ExpressROM family is identical in architecture, density, and pinout to both AMD's current and future generations of high performance CMOS EPROMs.

ExpressROM devices are inventoried unprogrammed. Upon verification of your code, every device is rigorously tested under both AC and DC operating conditions prior to shipment. Also, because ExpressROM memories are shipped board-ready with factory guaranteed quality, your ship-to-stock or Just-In-Time programs can be easily implemented. At Advanced Micro Devices, we ship them the way you want them—ready for your system. And there are none of the delays, costs or risks normally associated with custom ROMs.

	UV EPROM	OTP	ExpressROM Device	ROM
Leadtime	Manufacturer's Leadtime	Manufacturer's Leadtime	2 Weeks	6–10 Weeks
Set-up Charge	No	No	No	Yes
Minimum Quantity	0	0	5K	15–20K
Fully Tested Custom Pattern	No	No	Yes	Yes
User Programming Required	Yes	Yes	No	No
Auto Insertion	No	Yes	Yes	Yes
Flexibility	Reprogrammable	Cannot Reprogram	Fixed 2 Weeks Prior to Use	Fixed 6–10 Weeks Prior to Use

Table 5-1 Non-Volatile Memory Alternatives

Plastic packaging inherently provides a cost savings over standard EPROMs packaged in expensive windowed ceramic DIPs. However, component price is only a small part of your true in-system cost. ExpressROM devices allow you to eliminate or reduce costs in several other areas: programming, testing, labeling and production. Since ExpressROM memories are delivered with your code, you will reap savings by eliminating programming costs and associated yield losses. Incoming inspection may often be eliminated since your ExpressROM devices have been thoroughly tested and are guaranteed to operate to full specifications with your code! Additional in-house cost savings can be attained by using automatic insertion equipment in lieu of manual placement into sockets.

ExpressROM devices were designed to provide a low cost alternative for EPROM users without the liabilities of other non-volatile memory alternatives. Although ROMs have a

lower component cost, they are economically feasible only at high volume and have the risks of long leadtimes and limited manufacturing flexibility. While OTP EPROMs offer the systems manufacturer the ability to respond to varying codes during production, they force the user to incur additional and hidden costs.

ExpressROM Memories Lower Cost

ExpressROM memories eliminate or reduce costs in several areas. These include programming, testing, marking and labeling. Standard programming of blank devices may reveal other hidden expenses such as costs associated with possible programming yield losses, capacity constraints, labels and other supplies, rework, inventory and associated queue time, handling, maintenance, labor and personnel, transit costs, inspections, floor space and other overhead. AMD's ExpressROM memories add value by eliminating or reducing all these costs in your system manufacturing environment.

Our mission at AMD is to deliver you the services and products you demand to build the cost competitive systems you need to win in your markets. The ExpressROM memory provides this opportunity. As one of the world's five largest IC manufacturers and the first to market with a 1 Mbit EPROM, we appreciate the value of efficient manufacturing. Compressing time-to-market cycles, improving yields and providing high levels of quality are invaluable strategies for today's manufacturer. At Advanced Micro Devices we are proud to offer another tool to give our customers this strategic advantage, the ExpressROM Memory: the ROM without the wait!

ExpressROM Memory Flow

AMD's OTP EPROM devices are taken from inventory in our off-shore testing facility and processed as shown.

ORDERING ExpressROM DEVICES

The following procedure outlines the method for ordering an ExpressROM device. For more information, contact your local AMD sales representative.

1) Send in the Code

Please have your field sales representative provide you with the latest version of the ExpressROM Code Approval Form (see Page 5-7). This form will provide all the necessary information required for processing your order. After receiving this form, fill out the Code Transmittal and Ordering Information sections. Then send the form with two (2) master copies of each code being ordered to your field sales representative. To minimize the verification turn-around process, supply two master copies of each code using standard EPROMs identical in architecture and density as the ExpressROM device being ordered. Two master copies per code are required in order to guarantee proper code transmission. Please be sure the checksum is clearly identified on each master EPROM.

2) AMD Checks the Code and Generates a Verification EPROM

We check that both EPROMs contain the same code to make certain there was not a mix-up in shipping your codes to the factory as well as ensuring that the integrity of your code has been preserved. After confirming this, a unique 5-digit code designation is assigned. The AMD part number is formed by adding the 5-digit code designation as a suffix to the ExpressROM Device number. See below:

AMD then logs in your code with the 5-digit code designation and generates a verification EPROM. The verification EPROM along with one of your master EPROMs and the ExpressROM Code Approval Form should be back in your hand for final approval within 2-3 days. The other master EPROM remains at AMD for our records. Please note: the verification EPROM is simply a means of transferring the code and is not necessarily indicative of the ExpressROM product being ordered.

3) Confirm the Copy and Place the Order

Once the verification EPROM is approved, sign the Approval Section of the ExpressROM Code Approval Form and return it to AMD with your purchase order. Upon receipt of the signed form and a purchase order, AMD enters the order and begins production. Logged codes are maintained for 60 days and then deleted if there is no purchase order placed.

TERMS AND CONDITIONS

You should be aware of the following when ordering ExpressROM devices.

- 1) AMD will maintain customer code confidentiality.
- 2) AMD will absorb all initial set-up costs.
- 3) All orders are subject to minimum quantities. The minimum quantity for initial orders is 5,000 pieces.
- 4) AMD may begin production 14 days in advance of the AMD scheduled ship date covered by a purchase order and requires 14 days minimum notification from the AMD scheduled ship date for code changes. The customer is liable for all work-in-process covered by the same purchase order.
- 5) No schedule changes may be made within 14 days of AMD scheduled ship date.
- 6) All unpackaged die product procured by the customer is for use exclusively in the customer's end products. Any other use of die product must be approved in writing by AMD.
- 7) Code changes with Work-In-Process will require additional charges and may affect delivery schedules.
- All other terms and conditions which normally apply to AMD's EPROMs (if any) also apply with AMD's ExpressROM memories.

· · · · · · · · · · · · · · · · · · ·					
ExpressROM	I™ Code A	Ippro	val For	rm	
CODE TRANSMITTAL AND ORDERIN	NG INFORMATION S	ECTION	Rev. 7	11/05/92	
Please complete items 1 thru 9. To n each code using EPROMs of the sar Also, be sure the checksum is clearly	me architecture and d	ensity as the	ExpressRO		
CODE TRANSMITTAL SECTION					
1. Company Name:		2. Date:			·
3. Incoming Master's Part #:		4. Master	's Checksum	:	
ORDERING INFORMATION SECTION	<u>ON</u>				
Please check the appropriate Expres boxes below:	sROM™ Memory dat	a sheet for v	alid combina	tions and m	ark appropriate
□ Am27X128 □ -55 □ Am27X256 □ -55	□ -70 □ -90 □ -70 □ -90 □ -70 □ -90 □ -75 □ -90 □ -105 □ -90	□ -120 □ -120	□ -150 □ -150	□ -200 -200 □ -200 □ -200	255 -255 -255 -255 -255 -255 -255 -255
	Plastic DIP PLCC TSOP Standard Pinc TSOP Reverse Pinol	out ut	tial (0°C to +70 (-40°C to +85	°C) °C)	
8. Customer Ordering Part Number:					
9. Please indicate the exact marking and		ctions (11 cha	racters per line	a includina sa	aces.
© = 2 spaces if required).	AMD Log ExpressF	0		, molecung op	· · · ·
	Date Cod	e			
APPROVAL SECTION TERMS AND CON	DITIONS				
AMD will maintain customer code confident AMD may begin production 14 days in adva 14 days minimum notification from the AMD The customer is liable for all work-in-proces No schedule changes may be made within All unpackaged die product procured by the Any other use of die product must be appro All orders are subject to minimum quantities Code changes with Work In Process will red	ance of the AMD schedu D scheduled ship date fc ss covered by the same 14 days of AMD schedu a customer is for use exi- ved in writing by AMD. s	uled ship date or code chang purchase ord uled ship date. clusively in the	covered by a p es. er. e customer's er	nd products.	er and requires
AMD Standard Part #: Am27X		Ap	proved Check	(sum:	
Customer Signature:		Dat	te:		
Name (Print):			e:		

12084D-1

FINAL

Am27X64

64 Kilobit (8,192 x 8-Bit) CMOS ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from –1 V to Vcc +1 V
- Versatile features for simple interfacing
 Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X64 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 8,192 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs. Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X64 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

Advanced Micro Devices

PRODUCT SELECTOR GUIDE

Family Part No	Am27X64							
Ordering Part No: V _{CC} ±5%							-255	
Vcc ±10%	-55	-70	-90	-120	-150	-200		
Max Access Time (ns)	55	70	90	120	150	200	250	
CE (E) Access (ns)	55	70	90	120	150	200	250	
OE (G) Access (ns)	35	40	40	50	65	75	100	

CONNECTION DIAGRAMS

Top View

12084D-3

PIN DESIGNATIONS

A0-A12	= Address Inputs
CE (E)	 Chip Enable Input
DQ0-DQ7	 Data Inputs/Outputs
DU	 No External Connection (Do Not Use)
NC	 No Internal Connection
OE (G)	 Output Enable Input
PGM (P)	= Program Enable Input
Vcc	= Vcc Supply Voltage
VPP	 Program Supply Voltage
Vss	= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

64 Kilobit (8,192 x 8-Bit) CMOS ExpressROM[™] Device

Valid Comb	inations
AM27X64-55	
AM27X64-70	
AM27X64-90	
AM27X64-120	PC, JC, PI, JI
AM27X64-150	
AM27X64-200	1
AM27X64-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

It is recommended that CE be decoded and used as the

primary device-selecting function, while OE be made a

common connection to all devices in the array and con-

nected to the READ line from the system control bus.

This assures that all deselected memory devices are in

low-power standby mode and that the output pins are

only active when data is desired from a particular mem-

During the switch between active and standby condi-

tions, transient current peaks are produced on the rising

and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the out-

put capacitance loading of the device. At a minimum,

a 0.1 µF ceramic capacitor (high frequency, low inherent

inductance) should be used on each device between

Vcc and Vss to minimize transient effects. In addition,

to overcome the voltage drop caused by the

inductive effects of the printed circuit board traces on

ExpressROM device arrays, a 4.7-µF bulk electrolytic

capacitor should be used between Vcc and Vss for

each eight devices. The location of the capacitor should be close to where the power supply is connected to

orv device.

the array.

System Applications

FUNCTIONAL DESCRIPTION Read Mode

The Am27X64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs toE after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27X64 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when \overline{CE} is at Vcc \pm 0.3 V. The Am27X64 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTLstandby when \overline{CE} is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

Mode	Pins	CE	ŌE	PGM	Vpp	Outputs
Read		ViL	VIL	Х	х	DOUT
Output Disable		х	ViH	Х	х	Hi-Z
Standby (TTL)		Vih	x	x	х	Hi-Z
Standby (CMOS)	V	/cc ± 0.3 V	х	Х	х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
V _{CC} 0.6 V to +7.0 V
Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages Vcc for Am27X64-255 +4.75 V to +5.25 V
Vcc for all other valid +4.50 V to +5.50 V combinations
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	loн = – 400 µA	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	V
VIH	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μA
lio	Output Leakage Current	Vour = 0 V to +Vcc		1.0	μA
lcc1	Vcc Active Current (Note 3)	CE = VIL, f = 10 MHz, Ioυτ = 0 mA		25	mA
lcc2	Vcc TTL Standby Current	CE = V⊩		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μA

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X64 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods less than 20 ns.

Vcc = 5.5 V, f = 10 MHz

12084D-6

12084D-5

CAPACITANCE

Parameter		· · ·				PL 032		
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit	
C _{IN}	Input Capacitance	V _{IN} = 0 V	5	10	10	12	pF	
Соит	Output Capacitance	V _{OUT} = 0 V	8	10	11	14	pF	

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols							1	Am27X	64			
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255	Unit
tavqv	tRCC	Address to	CE = OE =	Min	_	-	-	-	-	_	-	
		Output Delay	V⊫	Max	55	70	90	120	150	200	250	ns
TELQV	tCE	Chip Enable to	OE = VIL	Min	_	-	-	-	-	-	_	
		Output Delay		Max	55	70	90	120	150	200	250	ns
tGLQV	toe	Output Enable to	CE = VIL	Min	1	-	-	-	-	_	_	
		Output Delay		Max	35	40	40	50	50	50	50	ns
tehoz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	0	0	
tGHQZ	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Мах	25	25	25	30	30	30	30	ns
taxox	toн	Output Hold from		Min	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X64 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. For the -55 and -70

Output Load: 1 TTL gate and C_L = 30 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions

Output Load: 1 TTL gate and CL = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

12084D-8

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are \leq 20 ns for -55 and -70.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

12084D-9

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27X128

128 Kilobit (16,384 x 8-Bit) CMOS ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 100 µA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to V_{CC} +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X128 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 16,384 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X128 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μW in standby mode.

BLOCK DIAGRAM

12083D-1

AMD

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X128						
Ordering Part No:			Ī			[
Vcc ±5%							-255
Vcc ±10%	-55	-70	-90	-120	-150	-200	
Max Access Time (ns)	55	70	90	120	150	200	250
CE (E) Access (ns)	55	70	90	120	150	200	250
OE (G) Access (ns)	35	40	40	50	65	75	100

CONNECTION DIAGRAMS

12083D-3

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0–A13	 Address Inputs
CE (E)	= Chip Enable Input
DQ0-DQ7	 Data Inputs/Outputs
DU	 No External Connection (Do Not Use)
NC	 No Internal Connection
OE (G)	 Output Enable Input
PGM (P)	= Program Enable Input
Vcc	= Vcc Supply Voltage
Vpp	 Program Supply Voltage
Vss	= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X128-55					
AM27X128-70					
AM27X128-90]				
AM27X128-120	PC, JC, PI, JI				
AM27X128-150	7				
AM27X128-200]				
AM27X128-255	1				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X128 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable OE is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs toE after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tACC-tOE.

Standby Mode

The Am27X128 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when \overline{CE} is at V_{cc} \pm 0.3 V. The Am27X128 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

Low memory power dissipation

MODE SELECT TABLE

Assurance that output bus contention will not occur .

It is recommended that CE be decoded and used as the primary device-selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memorv device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum. a 0.1 µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7-µF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE	ŌĒ	PGM	Vpp	Outputs
Read		VIL	VIL	x	х	DOUT
Output Disable		х	ViH	x	х	Hi-Z
Standby (TTL)		Viн	x	x	х	Hi-Z
Standby (CMOS)		Vcc±0.3 V	x	x	х	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X128-255 +4.75 V to +5.25 V
Vcc for all other valid combinations +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Мах	Unit
Vон	Output HIGH Voltage	lон = - 400 µA	2.4		v
Vol	Output LOW Voltage	IOL = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	V
VIL	Input LOW Voltage		- 0.5	+0.8	V
lu	Input Load Current	VIN = 0 V to +Vcc		1.0	μΑ
llo	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μA
ICC1	Vcc Active Current (Note 3)	CE = VIL, f = 10 MHz, lout = 0 mA		25	mA
ICC2	Vcc TTL Standby Current	CE = VIH		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μΑ

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X128 must not be removed from (or inserted into) a socket when VCC or VPP is applied.
- 3. Icc1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

CAPACITANCE

Decemeter			PD	028	PL	032	
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Мах	Unit
CIN	Input Capacitance	V _{IN} = 0 V	5	10	10	12	pF
Cour	Output Capacitance	V _{OUT} = 0 V	8	10	11	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Para Sym	meter						Ar	n27X1	28			
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255	Unit
tavov	tacc	Address to	CE = OE =	Min	_	_	-	_	+	-	-	
		Output Delay	VIL	Max	55	70	90	120	150	200	250	ns
telov	tCE	Chip Enable to	OE = VIL	Min	-	_	1		_	_		
		Output Delay		Max	55	70	90	120	150	200	250	ns
tGLQV	toe	Output Enable to	CE = VIL	Min	-	-	-	-	-	-	-	
		Output Delay		Max	35	40	40	50	50	50	50	ns
t EHQZ	tDF	Chip Enable'HIGH or		Min	0	0	0	0	0	0	0	ns
tGHQZ	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	30	30	30	30	
taxox	toн	Output Hold from		Min	0	0	0	0	0	0	0	
	-	Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	-	-	-	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X128 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.

4. For the -55 and -70:

Output Load: 1 TTL gate and C_L = 30 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load; 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

12083D-8

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are \leq 20 ns for -55 and -70.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC. 2. tpF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27X256

256 Kilobit (32,768 x 8-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 55 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- ±10% power supply tolerance

- High noise immunity
- Low power dissipation
 - 100 µA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP), Plastic Leaded Chip Carrier (PLCC), and Thin Small Outline Package (TSOP)
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X256 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 32,768 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC), and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 55 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X256 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

12082D-1

PRODUCT SELECTOR GUIDE

Family Part No.		Am27X256							
Ordering Part No: V _{CC} ±5%							-255		
V _{cc} ±10%	-55	-70	-90	-120	-150	-200			
Max Access Time (ns)	55	70	90	120	150	200	250		
CE (E) Access (ns)	55	70	90	120	150	200	250		
OE (G) Access (ns)	35	40	40	50	65	75	100		

CONNECTION DIAGRAMS

Top View

1. JEDEC nomenclature is in parentheses.

PLCC

12082D-3

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0–A14	 Address Inputs
CE (Ē)	= Chip Enable Input
DQ0-DQ7	 Data Inputs/Outputs
DU	 No External Connection (Do Not Use)
NC	 No Internal Connection
OE (G)	 Output Enable input
Vcc	= Vcc Supply Voltage
Vpp	 Program Supply Voltage
Vss	= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27X256-55						
AM27X256-70						
AM27X256-90						
AM27X256-120	PC, JC, PI, JI, EC. EI					
AM27X256-150						
AM27X256-200]					
AM27X256-255						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs toE after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tace-tor.

Standby Mode

The Am27X256 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when $\overline{\text{CE}}$ is at V_{CC} \pm 0.3 V. The Am27X256 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

Low memory power dissipation

MODE SELECT TABLE

Assurance that output bus contention will not occur

It is recommended that CE be decoded and used as the primary device-selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7-µF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode Pins	ĈĒ	ŌĒ	Vpp	Outputs	
Read	ViL	ViL	х	DOUT	
Output Disable	х	ViH	х	Hi-Z	
Standby (TTL)	ViH	х	х	Hi-Z	
Standby (CMOS)	Vcc ± 0.3 V	х	х	Hi-Z	

Note:

1. $X = Either V_{H} or V_{H}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except Vcc -0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages Vcc for Am27X256-255 +4.75 V to +5.25 V
Vcc for all other valid combinations
Operating reasons define these limits between which the

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Мах	Unit	
Vон	Output HIGH Voltage	юн = - 400 μА	2.4		v	
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	v	
VIH	Input HIGH Voltage		2.0	Vcc + 0.5	v	
ViL	Input LOW Voltage		0.5	+0.8	v	
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μΑ	
llo	Output Leakage Current	Vout = 0 V to +Vcc		1.0	μΑ	
lcc1	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL} f = 10 \text{ MHz},$ lout = 0 mA		25	mA	
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA	
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ	

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: the Am27X256 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter		Test	PD 028		PL 032		TS 032		
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Мах	Тур	Мах	Unit
CIN	Input Capacitance	V _{IN} = 0 V	6	10	8	12	10	12	pF
Cout	Output Capacitance	V _{OUT} = 0 V	8	10	8	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols				Am27X256								
JEDEC	Standard	Parameter Description	Test Conditions		-55	-70	-90	-120	-150	-200	-255	Unit
tavov	tACC	Address to	CE = OE =	Min	-	-	-	-	-		-	
		Output Delay	VIL	Мах	55	70	90	120	150	200	250	ns
TELOV TOE C	Chip Enable to	OE = VIL	Min	-	_	-	-	-	_	-		
		Output Delay		Max	55	70	90	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min	I	-	-		_	_		
		Output Delay		Max	35	40	40	50	50	50	50	ns
tehoz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	0	0	
tghqz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	25	25	30	30	30	30	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Мах	1	_	-	-	-	_		ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X256 must not be removed from (or inserted into) a socket or board when VPP or V_{CC} is applied.

4. For the -55 and -70:

Output Load: 1 TTL gate and C_L = 30 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0 V to 3 V Timing Measurement Reference Level: 1.5 V for inputs and outputs

For all other versions:

Output Load: 1 TTL gate and CL = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance (30 pF for -55 and -70)

SWITCHING TEST WAVEFORM

12082D-9

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns for -55 and -70.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC. 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27X512

512 Kilobit (65,536 x 8-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS As an OTP EPROM alternative: ■ ±10% power supply tolerance - Factory optimized programming High noise immunity - Fully tested and guaranteed Low power dissipation ■ As a Mask ROM alternative: — 100 µA maximum CMOS standby current - Shorter leadtime Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC) Lower volume per code ■ Latch-up protected to 100 mA from -1 V to Fast access time Vcc+1 V - 90 ns Versatile features for simple interfacing ■ Single +5 V power supply - Both CMOS and TTL input/output compatibility Compatible with JEDEC-approved EPROM pinout Two line control functions

GENERAL DESCRIPTION

The Am27X512 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 65,536 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 90 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X512 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 80 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

12081D-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X512				
Ordering Part No: V _{Cc} ± 5%					-255
V _{CC} ± 10%	-90	-120	-150	-200	
Max Access Time (ns)	90	120	150	200	250
CE (E) Access (ns)	90	120	150	200	250
OE (G) Access (ns)	40	50	65	75	100

CONNECTION DIAGRAMS

PLCC

12081D-3

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0–A15	= Address Inputs
CE (E)	= Chip Enable Input
DQ0-DQ7	 Data Inputs/Outputs
DU	= No External Connection (Do Not Use)
NC	 No Internal Connection
OE (G)	= Output Enable Input
Vcc	= Vcc Supply Voltage
VPP	 Program Supply Voltage
Vss	= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Comb	vinations			
AM27X512-90				
AM27X512-120				
AM27X512-150	- PC, JC, PI, JI, EC, EI			
AM27X512-200	- EU, EI			
AM27X512-255				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X512 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable \overline{OE} is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to Eafter the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} –toE.

Standby Mode

The Am27X512 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X512 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

Low memory power dissipation

MODE SELECT TABLE

Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE}/V_{PP} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7- μ F bulk electrolytic capacitor should be used between V_{cc} and V_{ss} for each eight devices. The location of the capacitor should be the array.

Pins	CE	OE/Vpp	Outputs
Read	ViL	VIL	DOUT
Output Disable	X	Viн	Hi-Z
Standby (TTL)	ViH	x	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	x	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products65°C to +125°C
Ambient Temperature with Power Applied
Voltage with Respect to V _{SS} All pins except V _{CC} 0.6 V to V _{CC} + 0.6 V
Vcc –0.6 V to +7.0 V
Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc + 0.5 V which may overshoot to Vcc + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X512-255 +4.75 V to +5.25 V
Vcc for all other
valid combinations +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	юн = - 400 μА	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	v
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	$V_{IN} = 0 V to + V_{CC}$		1.0	μΑ
llo	Output Leakage Current	Vour = 0 V to +Vcc		1.0	μA
lcc1	Vcc Active Current (Note 3)	CE = VIL, f = 10 MHz, lout = 0 mA		30	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
Іссз	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: the Am27X512 must not be removed from (or inserted into) a socket when VCC or VPP is applied.

3. ICC1 is tested with $\overline{OE}/V_{PP} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc + 0.5 V, which may overshoot to Vcc + 2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter		Test	PD	028	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
CIN	Input Capacitance	V _{IN} = 0 V	6	10	9	12	10	12	pF
Cout	Output Capacitance	V _{OUT} = 0 V	8	10	9	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

Parameter Symbols						A	m27X51	2	_	
JEDEC	Standard	Parameter Description	Test Conditions		-90	-120	-150	-200	-255	Unit
tavqv	tRCC	Address to Output Delay	CE = OE =VIL	Min Max	 90	 120	 150	 200	_ 250	ns
telov	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	_ 90	_ 120	_ 150	_ 200	 250	ns
tGLQV	tOE	Output Enable to Output Delay	CE = VIL	Min Max	 40	 50	 50	 50	- 50	ns
tehaz tghaz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		<u>Min</u> Max	0 30	0 30	0 30	0 30	0 30	ns
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0 -	0	ns

Notes:

1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X512 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are < 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC. 2. tDF is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27X010

1 Megabit (131,072 x 8-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

- As an OTP EPROM alternative:
 Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time — 105 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout
- ± 10% power supply tolerance

GENERAL DESCRIPTION

The Am27X010 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) and thin small outline (TSOP) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 105 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X010 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

Both CMOS and TTL input/output compatibility

— 100 µA maximum CMOS standby current

 Available in Plastic Dual In-Line Package (PDIP), Plastic Leaded Chip Carrier (PLCC),

and Thin Small Outline Package (TSOP)

■ Latch-up protected to 100 mA from -1 V to

Versatile features for simple interfacing

Two line control functions

High noise immunity

Vcc+1 V

Low power dissipation

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

12080D-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X010					
Ordering Part No: Vcc ±5%	-105				-255	
Vcc ±10%		-120	-150	-200		
Max Access Time (ns)	100	120	150	200	250	
CE (E) Access (ns)	100	120	150	200	250	
OE (G) Access (ns)	50	50	65	75	100	

CONNECTION DIAGRAMS

PLCC

Notes:

1. JEDEC nomenclature is in parentheses.

12080D-2

12080D-3

*Contact local AMD sales office for package availability

PIN DESIGNATIONS

A0–A16	= Address Inputs
CE (E)	= Chip Enable Input
DQ0-DQ7	 Data Inputs/Outputs
DU	= No External Connection (Do Not Use)
NC	 No Internal Connection
OE (G)	 Output Enable Input
PGM (P)	= Enable Input
Vcc	= Vcc Supply Voltage
Vpp	 Program Supply Voltage
Vss	= Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Am27X010 1 Megabit (131,072 x 8-Bit) CMOS ExpressROM[™] Device

Valid Comb	inations
AM27X010-105	
AM27X010-120]
AM27X010-150	PC, JC, PI, JI, EC. EI
AM27X010-200	ן בט, בו
AM27X010-255	ן . י

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X010 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{CE}.

Standby Mode

The Am27X010 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X010 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

Mode	Pins CE	ŌE	PGM	Vpp	Outputs
Read	VIL	ViL	x	x	DOUT
Output Disable	×	ViH	x	x	Hi-Z
Standby (TTL)	VIH	x	x	x	Hi-Z
Standby (CMOS)	Vcc±0.3	sv x	X	x	Hi-Z

MODE SELECT TABLE

Note:

1. X = Either VIH or VIL

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on Express-ROM device arrays, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X010-XX5 +4.75 V to +5.25 V
Vcc for Am27X010-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	V
VIH	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		- 0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μΑ
ILO	Output Leakage Current	Vour = 0 V to +Vcc		10	μΑ
Icc1	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL}, f = 5 \text{ MHz},$ $I_{OUT} = 0 \text{ mA}$		30	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. Caution: The Am27X010 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.

3. Icc1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.

4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

 $V_{cc} = 5.5 V, T = 25^{\circ}C$

12080D-6

vs. Temperature Vcc = 5.5 V, f = 5 MHz

12080D-7

CAPACITANCE

Parameter		Test	PD	032	PL	032	TS	032	
Symbol	Parameter Description	Conditions	Тур	Max	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	8	12	8	10	10	12	pF
Cout	Output Capacitance	V _{OUT} = 0 V	11	14	11	12	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C$. f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

	meter					4	Am27X01	0		
Sym JEDEC	Standard	Parameter Description	Test Conditions		-105	-120	-150	-200	-255	Unit
tavov	tacc	Address to	CE = OE =	Min	-	-	-	-	-	
		Output Delay	VIL	Max	100	120	150	200	250	ns
tELQV	tCE	Chip Enable to	OE = VIL	Min	_	_	-		_	
		Output Delay		Max	100	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min		_	-	_	_	
		Output Delay		Max	50	50	65	75	75	ns
tehoz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	
tgнoz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	25	35	35	40	40	ns
taxox	tон	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Мах	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X010 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS 2.4 2.0 2.0 Addresses Addresses Valid 0.8 0.8 0.45 CE tCE ŌĒ tDF toe (Note 2) tACC tон (Note 1) High Z High Z Output Valid Output

Notes:

12080D-10

1. \overline{OE} may be delayed up to tACC-tOE after the falling edge of the addresses without impact on tACC. 2. tpF is specified from \overline{OE} or \overline{CE} , whichever occurs first. FINAL

Am27X1024 1 Megabit (65,536 x 16-Bit) CMOS ExpressROM[™] Device Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

As an OTP EPROM alternative: ±10% power supply tolerance Factory optimized programming High noise immunity Fully tested and guaranteed Low power dissipation As a Mask ROM alternative: — 100 µA maximum CMOS standby current Available in Plastic Dual In-Line Package (PDIP) - Shorter leadtime and Plastic Leaded Chip Carrier (PLCC) Lower volume per code Latch-up protected to 100 mA from -1 V to Fast access time Vcc +1 V – 90 ns Versatile features for simple interfacing ■ Single +5 V power supply Both CMOS and TTL input/output compatibility Compatible with JEDEC-approved EPROM pinout Two line control functions

GENERAL DESCRIPTION

The Am27X1024 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 65,536 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 90 ns allow operation with highperformance microprocessors with reduced WAIT states. The Am27X1024 offers separate Output Enable (OE) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 100 uW in standby mode.

AMD

PRODUCT SELECTOR GUIDE

Family Part No.			Am27X1024		
Ordering Part No:					
V _{cc} ±5%					-255
V _{cc} ±10%	-90	-120	-150	-200	
Max Access Time (ns)	90	120	150	200	250
CE (E) Access (ns)	90	120	150	200	250
OE (G) Access (ns)	45	50	65	75	100

CONNECTION DIAGRAMS

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

1 Megabit (65,536 x 16-Bit) CMOS ExpressROM[™] Device

Valid Combinations					
AM27X1024-90	PC, JC				
AM27X1024-120					
AM27X1024-150					
AM27X1024-200	PC, JC, PI, JI				
AM27X1024-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X1024 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs t_{DE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{DE}.

Standby Mode

The Am27X1024 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X1024 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_H. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM devices. The location of the capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be used between the capacitor should be used between the capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be the array.

Mode Pins	CE	ŌĒ	PGM	V _{PP}	Outputs
Read	ViL	ViL	x	х	DOUT
Output Disable	x	VIH	x	х	Hi-Z
Standby (TTL)	ViH	х	X	х	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	х	x	х	Hi-Z

MODE SELECT TABLE

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to V _{SS} All pins except Vcc
Vcc

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X1024-255 +4.75 V to +5.25 V
Vcc for all other valid combinations

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	І он = — 400 µА	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	v
ViH	Input HIGH Voltage		2.0	Vcc+0.5	v
VIL	Input LOW Voltage		-0.5	+0.8	v
iu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μΑ
lιo	Output Leakage Current	Vour = 0 V to +Vcc		1.0	μΑ
Icc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 10 MHz, lout = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	ČE ≖ V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. Caution: The Am27X1024 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

120790-0

CAPACITANCE

Devenueter			PD	040	PL		
Parameter Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Мах	Unit
CiN	Input Capacitance	$V_{IN} = 0 V$	7	12	8	10	pF
Соит	Output Capacitance	V _{OUT} = 0 V	11	14	11	14	рF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols										
JEDEC	Standard	Parameter Description	Test Condition	IS	-90	-120	-150	-200	-255	Unit
tavov	tACC	Address to	CE = OE = VIL	Min	_	—	-	_		
	· ·	Output Delay		Max	90	120	150	200	250	ns
tELQV	tCE	Chip Enable to	OE = VIL	Min		_	-	-	-	
		Output Delay		Мах	90	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min		_				
		Output Delay		Max	45	50	65	75	75	ns
t EHQZ	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	
tgнaz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	40	50	50	50	50	ns
taxox	tон	Output Hold from	Hold from		0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max			-	-		ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X1024 must not be removed from (or inserted into) a socket or board when VPP or VCc is applied.

4. Output Load: 1 TTL gate and $C_L = 100 \text{ pF}$ Input Rise and Fall Times: 20 ns

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

AMD SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from OE or CE, whichever occurs first.

FINAL

Am27X020

2 Megabit (262,144 x 8-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 Fully tested and guaranteed
- As a Mask ROM alternative:
 - --- Shorter leadtime
 - Lower volume per code
- Fast access time
 - 100 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X020 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 262,144 by 8 bits and is available in plastic dual in-line (PDIP), plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a costeffective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X020 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

PRODUCT SELECTOR GUIDE		ý.			
Family Part No.			Am27X020		
Ordering Part No: Vcc ±5%	-105				-255
V _{cc} ±10%	-100	-120	-150	-200	
Max Access Time (ns)	100	120	150	200	250
CE (E) Access (ns)	100	120	150	200	250
OE (G) Access (ns)	50	50	65	75	100

CONNECTION DIAGRAMS

PLCC

15652B-3

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A17	=	Address Inputs
CE (E)	=	Chip Enable Input
DQ0-DQ7	=	Data Inputs/Outputs
DU	=	No External Connection (Do Not Use)
NC	=	No Internal Connection
OE (G)	=	Output Enable Input
PGM (P)	=	Program Enable Input
Vcc	=	Vcc Supply Voltage
VPP	=	Program Supply Voltage
Vss	=	Ground

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combi	nations
AM27X020-100	
AM27X020-105	
AM27X020-120	PC, JC, PI, JI
AM27X020-150	FC, JC, FI, JI
AM27X020-200	
AM27X020-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X020 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least t_{ACC} – t_{OE}.

Standby Mode

The Am27X020 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X020 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μ F bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE	ŌE	PGM	VPP	Outputs
Read		VIL	VIL.	×	Х	DOUT
Output Disable	-	VIL	ViH	x	Х	Hi-Z
Standby (TTL)		ViH	х	Х	Х	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	х	x	X	Hi-Z

MODE SELECT TABLE

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to V _{SS} All pins except V _{CC} 0.6 V to V _{CC} + 0.6 V V _{CC}
Note:

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices Case Temperature (Tc)40°C to +85°C
Supply Read Voltages Vcc for Am27X020-XX5 +4.75 V to +5.25 V Vcc for Am27X020-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

					•
Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = — 400 μА	2.4		v
Vol	Output LOW Voltage	lo∟ = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		2.0	V _{cc} + 0.5	v
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μΑ
lιo	Output Leakage Current	Vout = 0 V to +Vcc		5.0	μΑ
lcc1	V _{cc} Active Current (Note 3)	CE = VIL, f = 5 MHz, IOUT = 0 mA		30	mA
Icc2	V _{cc} TTL Standby Current	CE ≈ V _{IH}		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μA

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. Caution: The Am27X020 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{H}$ to simulate open outputs.
- Minimum DC Input Voltage is −0.5 V. During transitions, the inputs may overshoot to −2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

CAPACITANCE

Parameter			PD	032	PL		
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
CiN	Input Capacitance	V _{IN} = 0 V	10	12	8	10	pF
Cout	Output Capacitance	V _{OUT} = 0 V	12	15	9	12	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

	ameter									
JEDEC	mbols Standard	Parameter Description	Test Conditior	IS	-105 -100	-120	-150	-200	-255	Unit
tavov	tacc	Address to Output Delay	CE = OE = VIL	Min Max	 100	 120	 150	 200	 250	· ns
telav	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	100	 120		 200	 250	ns
tglav	tOE	Output Enable to Output Delay	CE = VIL	Min Max	 50	 50	 55	<u> </u>	 75	ns
tehoz tghoz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	0 30	0 30	0 30	0 40	0 60	ns
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0	0	0	0	0 —	ns

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X020 must not be removed from (or inserted into) a socket or board when V_{PP} or V_{CC} is applied.

4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

Am27X2048

2 Megabit (131,072 x 16-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

ISTINCTIVE CHARACTERISTICS As an OTP EPROM alternative: — Factory optimized programming — Fully tested and guaranteed As a Mask ROM alternative: — Shorter leadtime — Lower volume per code Fast access time — 100 ns Single +5 V power supply Compatible with JEDEC-approved EPROM	 ±10% power supply tolerance High noise immunity Low power dissipation 100 μA maximum CMOS standby current Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC) Latch-up protected to 100 mA from -1 V to Vcc +1 V Versatile features for simple interfacing Both CMOS and TTL input/output compatibility
Compatible with JEDEC-approved EPROM pinout	— Both CMOS and TTL input/output compatibility — Two line control functions

GENERAL DESCRIPTION

The Am27X2048 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 131,072 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs. Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X2048 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 125 mW in active mode, and 100 μ W in standby mode.

AMD

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X2048						
Ordering Part No:							
V _{cc} ±5%	-105	-125			-255		
V _{cc} ±10%	-100	-120	-150	-200			
Max Access Time (ns)	100	120	150	200	250		
CE (E) Access (ns)	100	120	150	200	250		
OE (G) Access (ns)	50	50	65	75	100		

CONNECTION DIAGRAMS

Top View

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0–A16 CE (E) DQ0–DQ15 DU	 Address Inputs Chip Enable Input Data Inputs/Outputs No External Connection (Do Not Use) 	17 A0-	A16 DQ0-DQ15
NC	= No Internal Connection		
OE (G)	 Output Enable Input 		E)
PGM (P)	= Program Enable Input		<u>a</u>
Vcc	 Vcc Supply Voltage 	OL I	
Vpp	 Program Supply Voltage 		
Vss	= Ground		

LOGIC SYMBOL

15653B-3

15653B-4

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

2 Megabit (131,072 x 16-Bit) CMOS ExpressROM[™] Device

Valid Comb	inations
AM27X2048-100	
AM27X2048-105	
AM27X2048-120]
AM27X2048-125	PC, JC, PI, JI
AM27X2048-150	
AM27X2048-200]
AM27X2048-255] i

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X2048 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tAcc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs to after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tAcc – toE.

Standby Mode

The Am27X2048 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X2048 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus.	
This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.	

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between V_{cc} and V_{ss} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM devices. The location of the capacitor should be used between V_{cc} and V_{ss} for each eight devices. The location of the capacitor should be used between the capacitor should be used between V_{cc} and V_{ss} for each eight devices. The location of the capacitor should be the array.

Mode Pir	IS CE	ŌĒ	PGM	VPP	Outputs
Read	ViL	VIL	X	х	DOUT
Output Disable	x	ViH	x	x	Hi-Z
Standby (TTL)	ViH	х	x	x	Hi-Z
Standby (CMOS)	Vcc ± 0.3 V	x	X	х	Hi-Z

MODE SELECT TABLE

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to V _{SS} All pins except V _{CC} 0.6 V to V _{CC} + 0.6 V
Vcc0.6 V to +7.0 V

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc) –40°C to +85°C
Supply Read Voltages
Vcc for Am27X2048-XX5 +4.75 V to +5.25 V
Vcc for Am27X2048-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
V _{он}	Output HIGH Voltage	l _{он} = 400 µA	2.4		v
VOL	Output LOW Voltage	loL = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		2.0	V _{cc} + 0.5	v
Vil	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	$V_{IN} = 0 V to + V_{CC}$		1.0	μA
luo	Output Leakage Current	$V_{OUT} = 0 V to + V_{CC}$		5.0	μΑ
Icc1	V _{CC} Active Current (Note 3)	$\overline{CE} = V_{IL}, f = 5 \text{ MHz},$ $I_{OUT} = 0 \text{ mA}$		50	mA
Icc2	Vcc TTL Standby Current	CE = V _{IH}		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X2048 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} + 0.5 V, which may overshoot to V_{cc} + 2.0 V for periods less than 20 ns.

15653B-5

15653B-6

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

CAPACITANCE

Parameter			PD	040	PL		
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Мах	Unit
CiN	Input Capacitance	V _{IN} = 0 V	10	12	7	10	pF
Соит	Output Capacitance	V _{OUT} = 0 V	12	¹ 15	12	14	pF

Notes:

- 1. This parameter is only sampled and not 100% tested.
- 2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

	Parameter Symbols				A	m27X20	48			
JEDEC	Standard	Parameter Description	Test Condition	IS	-100 -105	-120 -125	-150	-200	-255	Unit
tavov	tACC	Address to	$\overline{CE} = \overline{OE} = VIL$	Min		_			_	
		Output Delay		Max	100	120	150	200	250	ns
telov	tCE	Chip Enable to	OE = VIL	Min	_		_	_	_	
		Output Delay		Max	100	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min		—		_	_	
		Output Delay		Max	50	50	55	60	75	ns
tehoz	tDF	Chip Enable HIGH or		Min	0	0	0	0	0	ns
tghaz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	30	30	30	40	60	
taxox	tон	Output Hold from		Min	0	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max		-	-	_	-	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

- 3. Caution: The Am27X2048 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
- 4. Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

AMD SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

- 1. OE may be delayed up to tACC toE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from OE or CE, whichever occurs first.

FINAL

Am27X040

4 Megabit (524,288 x 8-Bit) CMOS ExpressROM[™] Device

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Fast access time
 - 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 - 100 µA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)

Advanced

Micro

Devices

- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Versatile features for simple interfacing
 - Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X040 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 524,288 by 8 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X040 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM Data Outputs DQ0-DQ7 Vcc Vss VPP OE Output Enable Output Chip Enable CE Buffers Y Y : Decoder Gating A0-A18 Address х • 4.194.304-Bit Inputs Decoder ٠ Cell Matrix . . •

15654B-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X040							
Ordering Part No:								
V _{cc} ±5%	-125							
Vcc ±10%	-120	-150	-200	-250				
Max Access Time (ns)	120	150	200	250				
CE (E) Access (ns)	120	150	200	250				
OE (G) Access (ns)	50	65	75	100				

CONNECTION DIAGRAMS

Top View

PLCC

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A18	=	Address Inputs	19	r		8/ .
CE (Ē)	=	Chip Enable Input	>	A0-A18	DQ0-DQ7	$\neq \rightarrow$
DQ0-DQ7	=	Data Inputs/Outputs	7-7	[72
DU	=	No External Connection (Do Not Use)		l	ļ	
NC	=	No Internal Connection				
ÕE (G)	=	Output Enable Input		CE (E)	-	
Vcc	2	Vcc Supply Voltage				
Vpp	=	Program Supply Voltage		OE (G)		
Vss	=	Ground		L		15654B-4
	CE (E) DQ0-DQ7 DU NC OE (G) Vcc Vpp	$\begin{array}{rcl} \overline{CE} & (\overline{E}) & = \\ DQ0 - DQ7 & = \\ DU & = \\ NC & = \\ \overline{OE} & (\overline{G}) & = \\ V_{CC} & = \\ V_{PP} & = \end{array}$	CE (Ē)=Chip Enable InputDQ0-DQ7=Data Inputs/OutputsDU=No External Connection (Do Not Use)NC=No Internal ConnectionOE (G)=Output Enable InputVcc=Vcc Supply VoltageVpp=Program Supply Voltage	CĒ (Ē) = Chip Enable Input DQ0-DQ7 = Data Inputs/Outputs DU = No External Connection (Do Not Use) NC = No Internal Connection OĒ (G) = Output Enable Input Vcc = Vcc Supply Voltage VPP = Program Supply Voltage	$\overrightarrow{CE}(\overrightarrow{E}) = Chip Enable Input$ $DQ0-DQ7 = Data Inputs/Outputs$ $DU = No External Connection (Do Not Use)$ $NC = No Internal Connection$ $\overrightarrow{OE}(\overrightarrow{G}) = Output Enable Input$ $Vcc = V_{Cc} Supply Voltage$ $\overrightarrow{OE}(\overrightarrow{G})$ $\overrightarrow{OE}(\overrightarrow{G}) = Program Supply Voltage$ $\overrightarrow{OE}(\overrightarrow{G})$	$\overrightarrow{CE}(\overrightarrow{E}) = Chip Enable Input$ $DQ0-DQ7 = Data Inputs/Outputs$ $DU = No External Connection (Do Not Use)$ $NC = No Internal Connection$ $\overrightarrow{OE}(\overrightarrow{G}) = Output Enable Input$ $Vcc = V_{cc} Supply Voltage$ $Vpp = Program Supply Voltage$ $\overrightarrow{OE}(\overrightarrow{G})$

LOGIC SYMBOL

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

4 Megabit (524,288 x 8-Bit) CMOS ExpressROM[™] Device

Valid Combinations					
AM27X040-120					
AM27X040-125					
AM27X040-150	PC, JC, PI, JI				
AM27X040-200	7				
AM27X040-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X040 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs tor after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tace-toF.

Standby Mode

The Am27X040 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when \overline{CE} is at V_{CC} ± 0.3 V. The Am27X040 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

Mode	Pins	CE	ŌĒ	V _{PP}	Outputs
Read		VIL	ViL	x	DOUT
Output Disable		ViL	Viн	x	Hi-Z
Standby (TTL)		Viн	x	x	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	x	×	Hi-Z

MODE SELECT TABLE

Note:

1. X = Either VIH or VIL

primary device-selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

It is recommended that CE be decoded and used as the

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 µF bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss
All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V

Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{cc} +0.5 V which may overshoot to V_{cc} +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X040-XX5 +4.75 V to +5.25 V
V_{CC} for Am27X040-XX0 \hdots +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = — 400 μА	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	V
VIH	Input HIGH Voltage		0.7 Vcc	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μA
lio	Output Leakage Current	Vour = 0 V to +Vcc		5.0	μΑ
lcc1	V _{CC} Active Current (Note 3)	$\overline{CE} = V_{IL}, f = 5 \text{ MHz},$ lour = 0 mA		40	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. Caution: The Am27X040 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{H}$ to simulate open outputs.
- 4. Minimum DC Input Voltage is -0.5 V. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is Vcc + 0.5 V, which may overshoot to Vcc + 2.0 V for periods less than 20 ns.

CAPACITANCE

Desembles			PD	032	PL		
Parameter Symbol	Parameter Description	Test Conditions	Тур	Мах	Тур	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0 V$	10	12	8	10	pF
Солт	Output Capacitance	V _{OUT} = 0 V	12	15	9	12	pF

Notes:

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

	ameter					Am27	7X040		
	mbols Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-250	Unit
tavov	tacc	Address to Output Delay	CE = OE = VIL	Min Max				 250	ns
telov	tCE	Chip Enable to Output Delay	OE = VIL	Min Max		 150	 200	 250	ns
tGLQV	tOE	Output Enable to Output Delay	CE = VIL	Min Max	 50	 55	 60	 60	ns
tehoz tghoz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever		Min Max	0 30	0	0 40	0 60	ns
		comes first, to Output Float		Wiax	30	30	40	00	
taxox	tон	Output Hold from Addresses, CE, or		Min	0	0	0	0	ns
		OE, whichever occurred first		Мах	-		-	-	

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X040 must not be removed from or inserted into a socket or board when V_{PP} or V_{CC} is applied.
- Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: 20 ns

Input Hise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

^{1.} This parameter is only sampled and not 100% tested.

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0." Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC toE after the falling edge of the addresses without impact on tACC.
- 2. tDF is specified from OE or CE, whichever occurs first.

FINAL

Am27X400

4 Megabit (524,288 x 8-Bit/262,144 x 16-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

 As an OTP EPROM alternative: Factory optimized programming Fully tested and guaranteed As a Mask ROM alternative: Shorter leadtime 	 ±10% power supply tolerance High noise immunity Low power dissipation — 100 μA maximum CMOS standby current — Available in Plantin Purel In Line Package (PDIP)
 Lower volume per code Fast access time 120 ns 	 Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC) Latch-up protected to 100 mA from1 V to Vcc +1 V
 Single +5 V power supply Compatible with JEDEC-approved EPROM pinout 	 Versatile features for simple interfacing Both CMOS and TTL input/output compatibility Two line control functions

GENERAL DESCRIPTION

The Am27X400 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 524,288 by 8 bits/262,144 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X400 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

17344A-1

PRODUCT SELECTOR GUIDE

Family Part No		Am2	7X400	
Ordering Part No:		1		
V _{CC} ±5%	-125			-255
V _{cc} ±10%	-120	-150	-200	
Max Access Time (ns)	120	150	200	250
CE (E) Access (ns)	120	150	200	250
OE (G) Access (ns)	50	65	75	100

CONNECTION DIAGRAMS

Note:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

	Eddid Offindol
AB = Address Input (BYTE Mode)	
A0–A17 = Address Inputs	AB
BYTE = Byte/Word Switch	18 / DQ0-DQ15
CE (E) = Chip Enable Input	A0-A17
DQ0-DQ15 = Data Inputs/Outputs	7-2
DU = No External Connection (Do Not Use)	► CE (Ē)
NC = No Internal Connection	
OE (G) = Output Enable Input	BYIE
Vcc = Vcc Supply Voltage	> OE (G)
VPP = Program Supply Voltage	17344A-4
Vss = Ground	

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

FUNCTIONAL DESCRIPTION Read Mode

The Am27X400 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc-toE.

Byte Mode

The user has the option of reading data in either 16-bit words or 8-bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A0–A17 will address 256K words of 16-bit data. When the BYTE input is LOW, AB functions as the least significant address input and 512K bytes of data can be accessed. The 8 bits of data will appear on DQ0–DQ7.

Standby Mode

The Am27X400 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X400 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌE	Vpp	Outputs
Read		VIL	VIL	x	DOUT
Output Disable		VIL	Vін	x	Hi-Z
Standby (TTL)		ViH	x	x	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	Х	x	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:
1 Minimum DOwnham an insultant/Optimalia OptiV During

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Vcc for Am27X400-XX0 +4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Voн	Output HIGH Voltage	Іон = -400 μА	2.4		V
Vol	Output LOW Voltage	lo _L = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	$V_{IN} = 0 V to + V_{CC}$		1.0	μA
llo	Output Leakage Current	Vour = 0 V to +Vcc		5.0	μΑ
ICC1	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL}, f = 5 \text{ MHz},$ $I_{OUT} = 0 \text{ mA}$	· · ·	50	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
lcc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X400 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is ~0.5 V during transactions, the inputs may overshoot to ~2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} +0.5 V, which may overshoot to V_{cc} +2.0 V for periods less than 20 ns.

vs. Frequency Vcc = 5.5 V, T = 25°C

17344A-5

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

17344A-6

CAPACITANCE

Deveryotar			PD	PD 040		PL 044	
Parameter Symbol	Parameter Description	Test Conditions	Тур	Мах	Тур	Max	Unit
CiN	Input Capacitance	V _{IN} = 0 V	6	8	9	11	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0 V	9	11	13	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C$, f = 1 MHz.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

	meter					Am27	7X400		
Sym JEDEC	bols Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255	Unit
tavov	tRCC	Address to	CE = OE =	Min	-	-	-	-	
		Output Delay	ViL	Max	120	150	200	250	ns
tELQV	tCE	Chip Enable to	OE = VIL	Min	-	_	_	_	
		Output Delay		Max	120	150	200	250	ns
tGLQV	tOE	Output Enable to	CE = VIL	Min	_	-	_	-	
		Output Delay		Max	50	55	60	75	ns
tehoz	tDF	Chip Enable HIGH or		Min	0	0	0	0	
tgнoz	(Note 2)	Output Enable HIGH, whichever comes first, to Output Float		Max	30	30	40	60	ns
taxox	tон	Output Hold from		Min	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X400 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and $C_L = 100 \, pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

1. OE may be delayed up to tACC -tOE after the falling edge of the addresses without impact on tACC.

2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

FINAL

Am27X4096

4 Megabit (262,144 x 16-Bit) CMOS ExpressROM[™] Device

- As an OTP EPROM alternative:
 Factory optimized programming
 Fully tested and guaranteed
- As a Mask ROM alternative:
 Shorter leadtime
 - Lower volume per code
- Fast access time — 120 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc+1 V
- Versatile features for simple interfacing

 Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X4096 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 262,144 by 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X4096 offers separate Output Enable (\overline{OE}) and Chip Enable (\overline{CE}) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

17345A-1

PRODUCT SELECTOR GUIDE

Family Part No		Am27X4096					
Ordering Part No:							
V _{CC} ±5%	-125			-255			
Vcc ±10%	-120	-150	-200				
Max Access Time (ns)	120	150	200	250			
CE (E) Access (ns)	120	150	200	250			
OE (G) Access (ns)	50	65	75	100			

CONNECTION DIAGRAMS

PIN DESIGNATIONS

A0-A17 = Address Inputs		
CE (E) = Chip Enable Input	¹⁸ / N	16/ N
DQ0-DQ15 = Data Inputs/Outputs	\square A0-A17 DQ0-	DQ15
DU = No External Connection (D	Do Not Use)	
NC = No Internal Connection		
OE (G) = Output Enable Input	CE (E)	
Vcc = Vcc Supply Voltage	02(2)	
VPP = Program Supply Voltage		
Vss = Ground	► <u>OE</u> (<u>G</u>)	
		17345A-4

LOGIC SYMBOL

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM27X4096-120					
AM27X4096-125					
AM27X4096-150	PC, JC, PI, JI				
AM27X4096-200					
AM27X4096-255]				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

It is recommended that CE be decoded and used as the

primary device-selecting function, while \overline{OE} be made a

common connection to all devices in the array and con-

nected to the READ line from the system control bus.

This assures that all deselected memory devices are in

their low-power standby mode and that the output pins

are only active when data is desired from a particular

During the switch between active and standby conditions, transient current peaks are produced on the rising

and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the out-

put capacitance loading of the device. At a minimum, a

0.1 uF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between

Vcc and Vss to minimize transient effects. In addition, to

overcome the voltage drop caused by the inductive

effects of the printed circuit board traces on

ExpressROM device arrays, a 4.7 µF bulk electrolytic

capacitor should be used between Vcc and Vss for

each eight devices. The location of the capacitor should

be close to where the power supply is connected to

memory device.

the array.

System Applications

FUNCTIONAL DESCRIPTION Read Mode

The Am27X4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tce). Data is available at the outputs toE after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tACC-tOE.

Standby Mode

The Am27X4096 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when \overline{CE} is at V_{CC} ± 0.3 V. The Am27X4096 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

Mode	Pins	CE	ŌE	Vpp	Outputs
Read		VIL	ViL	X	DOUT
Output Disable		x	ViH	X	Hi-Z
Standby (TTL)		Viн	Х	X	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	х	X	Hi-Z

Note:

1. X = Either VIH or VIL

ABSOLUTE MAXIMUM RATINGS

Storage Temperature OTP Products
All Other Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss
All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

 Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} + 0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc)	0°C to +70°C
Industrial (I) Devices	
Case Temperature (Tc)	40°C to +85°C
Supply Read Voltages	
Vcc for Am27X4096-XX5 .	+4.75 V to +5.25 V
Vcc for Am27X4096-XX0 .	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vон	Output HIGH Voltage	Іон = - 400 μА	2.4		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	v
Vн	Input HIGH Voltage		2.0	Vcc + 0.5	v
VıL.	Input LOW Voltage		-0.5	+0.8	V
lu	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μA
ILO	Output Leakage Current	Vour = 0 V to +Vcc		5.0	μΑ
lcc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 5 MHz, lour = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{CE} = V_{CC} \pm 0.3 V$		100	μΑ

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X4096 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{cc} +0.5 V, which may overshoot to V_{cc} +2.0 V for periods less than 20 ns.

	Parameter Description		PD 040		PL 044		
Parameter Symbol		Test Conditions	Тур	Max	Тур	Мах	Unit
CIN	Input Capacitance	V _{IN} = 0 V	6	8	10	13	pF
COUT	Output Capacitance	V _{OUT} = 0 V	8	10	12	14	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

Parameter Symbols					Am27X4096				
JEDEC	Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255	Unit
	tRCC	Address to	CE = OE =	Min	-	-	_	-	
		Output Delay	VIL	Max	120	150	200	250	ns
telov tce	tCE	Chip Enable to	OE = VIL	Min	_	-	-	-	
		Output Delay		Max	120	150	200	250	ns
tglqv	toe	Output Enable to Output Delay	CE = VIL	Min	-	-	-	-	
				Max	50	55	60	60	ns
tehoz	tDF	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	
tgнqz	(Note 2)			Max	40	40	40	60	ns
taxox toh	tон	Output Hold from		Min	0	0	0	0	
		Addresses, CE, or OE, whichever occurred first		Max	-	-	-	-	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sampled and not 100% tested.

3. Caution: The Am27X4096 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and $C_L = 100 \, pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

17345A-9

2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

PRELIMINARY

Am27X080

8 Megabit (1,048,576 x 8-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

As an OTP EPROM alternative:	±10% power supply tolerance
 Factory optimized programming 	High noise immunity
 Fully tested and guaranteed 	Low power dissipation
As a Mask ROM alternative:	 — 100 µA maximum CMOS standby current
 — Shorter leadtime — Lower volume per code 	 Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
 Fast access time — 120 ns 	■ Latch-up protected to 100 mA from -1 V to
Single +5 V power supply	V _{CC} +1 V Versatile features for simple interfacing
Compatible with JEDEC-approved EPROM pinout	 Both CMOS and TTL input/output compatibility Two line control function

Two line control function

GENERAL DESCRIPTION

The Am27X080 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 1,048 K words by 8 bits per word and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 120 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X080 offers separate Output Enable (OE) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 100 µW in standby mode.

BLOCK DIAGRAM

17346A-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27X080							
Ordering Part No V _{CC} ±5%	-125			-255				
V _{CC} ±10%	-120	-150	-200					
Max Access Time (ns)	120	150	200	250				
CE (E) Access (ns)	120	150	200	250				
OE (G) Access (ns)	50	65	75	100				

CONNECTION DIAGRAMS

Top View

17346A-3

Notes:

1. JEDEC nomenclature is in parentheses.

PIN DESIGNATIONS

A0-A19	 Address Inputs
CE (E)	 Chip Enable Input
DQ0-DQ17	 Data Inputs/Outputs
OE (G)	 Output Enable Input
Vcc	= Vcc Supply Voltage
Vpp	= Program Supply Voltage
Vss	= Ground

LOGIC SYMBOL

5-110

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Combinations						
AM27X080-120						
AM27X080-125	PC, JC, PI, JI					
AM27X080-150						
AM27X080-200						
AM27X080-255						

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

Read Mode

The Am27X080 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE} / V_{PP}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs to_E after the falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc-toE.

Standby Mode

The Am27X080 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X080 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that CE be decoded and used as the
primary device-selecting function, while OE/VPP be
made a common connection to all devices in the array
and connected to the READ line from the system control
bus. This assures that all deselected memory devices
are in their low-power standby mode and that the output
pins are only active when data is desired from a particu-
lar memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM device arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode	Pins	CE	OE/V _{PP}	Outputs
Read		VIL	VIL	DOUT
Output Disable		x	Viн	Hi-Z
Standby (TTL)		Viн	x	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	X	Hi-Z

MODE SELECT TABLE

Note:

1. $X = Either V_{IH} \text{ or } V_{IL}$

ABSOLUTE MAXIMUM RATINGS

Storage Tempera	tι	11	e			
OTP Products						

OTP Products – All Other Products –	
Ambient Temperature with Power Applied –	55°C to +125°C
Voltage with Respect to Vss All pins except A9,VPP,Vcc0.6 V	V to Vcc + 0.6 V

Vcc -0.6 V to +7.0 V

Notes:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is Vcc +0.5 V which may overshoot to Vcc +2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc) 0°C to +70°C
Industrial (I) Devices
Case Temperature (Tc)40°C to +85°C
Supply Read Voltages
Vcc for Am27X080-XX5 +4.75 V to +5.25 V
Vcc for Am27X080-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

AMD

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Voн	Output HIGH Voltage	loн = - 400 µA	Vcc-0.8		V
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	v
VIH	Input HIGH Voltage		0.7 Vcc	Vcc+0.5	V
ViL	Input LOW Voltage		-0.5	+0.8	V
lu lu	Input Load Current	V _{IN} = 0 V to +Vcc		1.0	μΑ
llo	Output Leakage Current	Vour = 0 V to +Vcc		5.0	μΑ
lcc1	Vcc Active Current (Note 3)	$\overline{CE} = V_{IL} f = 5 MHz,$ lout = 0 mA		40	mA
lcc2	Vcc TTL Standby Current	CE = VIH		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μA

Notes:

- 1. V_{CC} must be simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Caution: The Am27X080 must not be removed from (or inserted into) a socket when V_{CC} or V_{PP} is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{H}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V during transitions, the inputs may overshoot -2.0 V for periods less than 20 ns. Maximum
 DC Voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} +2.0 V for periods less than 20 ns.

CAPACITANCE

Parameter	remotor L		PD	032	PL		
Symbol	Parameter Description	Test Conditions	Тур	Max	Тур	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0 V	7	12	7	12	pF
Соит	Output Capacitance	V _{OUT} = 0 V	12	16	12	16	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3 and 4)

	ameter					Am27	X080		
JEDEC	mbols Standard	Parameter Description	Test Conditions		-125 -120	-150	-200	-255	Unit
tavov	trcc	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$	Min Max	_ 120	_ 150	_ 200	_ 250	ns
telqv	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	 120	; <u> </u>	_ 200	 250	ns
tglav	tOE	Output Enable to Output Delay	CE = VIL	Min Max	_ 50	 55	 60	_ 60	ns
tehaz tghaz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	0	0	0	0	
	(·····-,			Мах	40	40	40	60	ns
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0 -	<u> </u>	0 -	0 -	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

2. This parameter is only sample and not 100% tested.

3. Caution: The Am27X080 must not be removed from (or inserted into) a socket or board when VPP or Vcc is applied.

4. Output Load: 1 TTL gate and CL = 100 pF

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs AMD

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

1. OE may be delayed up to tACC - tOE after the falling edge of the addresses without impact on tACC.

2. tDF is specified from OE or CE, whichever occurs first.

PRELIMINARY

Am27X800

8 Megabit (1,048,576 x 8-Bit/524,288 x 16-Bit) CMOS ExpressROM[™] Device

Advanced Micro Devices

- As an OTP EPROM alternative:
 Factory optimized programming
 Fully tested and guaranteed
- As a Mask ROM alternative: — Shorter leadtime
 - --- Lower volume per code
- Fast access time — 150 ns
- Single +5 V power supply
- Compatible with JEDEC-approved EPROM pinout

- ±10% power supply tolerance
- High noise immunity
- Low power dissipation
 100 μA maximum CMOS standby current
- Available in Plastic Dual In-Line Package (PDIP) and Plastic Leaded Chip Carrier (PLCC)
- Latch-up protected to 100 mA from -1 V to Vcc +1 V
- Versatile features for simple interfacing
 Both CMOS and TTL input/output compatibility
 - Two line control functions

GENERAL DESCRIPTION

The Am27X800 is a factory programmed and tested OTP EPROM. It is programmed after packaging prior to final test. Every device is rigorously tested under AC and DC operating conditions to your stable code. It is organized as 1,048,576 by 8 bits/524,288 x 16 bits and is available in plastic dual in-line (PDIP) as well as plastic leaded chip carrier (PLCC) packages. ExpressROM devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 150 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X800 offers separate Output Enable $\overline{(OE)}$ and Chip Enable $\overline{(CE)}$ controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and 100 μ W in standby mode.

BLOCK DIAGRAM

17347A-1

5-118

PRODUCT SELECTOR GUIDE

Family Part No		Am27X800	
Ordering Part No:			
V _{CC} ±5%	-155		-255
V _{cc} ±10%	-150	-200	
Max Access Time (ns)	150	200	250
CE (E) Access (ns)	150	200	250
OE (G) Access (ns)	65	75	100

CONNECTION DIAGRAMS Top View PDIP PLCC 42 A18 NC A18 S 2 41 B F F A17 2 A8 40 A7 3 Α9 44 43 42 41 40 A6 39 A10 4 A4 [39 A12 A5 38 5 A11 38 🗍 A13 A3 🗖 8 37 A4 6 A12 A2 🛛 9 **A14** 37 A3 7 36 A13 36 🗌 A15 A1 П 10 35 A2 8 A14 35 🗌 A16 A0 🗌 11 34 A1 9 A15 CE (E) 12 34 BYTE/VPP 33 A0 10 A16 33 V Vss V_{ss} 13 32 CE (E) 11 BYTE/VPP 32 DQ15/AB OE (G) 14 31 V_{SS} 12 V_{SS} DQ7 DQ0 31 15 30 OE (G) 13 DQ15/AB 30 DQ14 DQ8 16 29 DQ0 14 DQ7 DQ1 29 🗍 D6Q 17 DQ8 28 15 **DQ14** 18 19 20 21 22 23 24 25 26 27 DQ1 DQ6 16 26 DQ3 DQ16 DQ16 DQ3 NC Vcc DQ4 DQ4 DQ5 DQ5 DQ9 17 DQ13 25 DQ2 DQ5 18 24 DQ16 **DQ12** 19 23 DQ3 20 DQ4 21 DQ11 22 Vcc Note: 17347A-2

1. JEDEC nomenclature is in parenthesis.

PIN DESIGNATIONS

AB A0-A18 BYTE CE (E) DQ0-DQ15 NC OE (G) Vcc		Data Inputs/Outputs No Internal Connection	AB A0-A18 CE (E) BYTE CE (D)	DQ0-DQ15
OE (G)	=	Output Enable Input		
Vcc	=	Vcc Supply Voltage	► OE (G)	
VPP	=	Program Supply Voltage	02(0)	
Vss	=	Ground		

LOGIC SYMBOL

17347A-4

17347A-3

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

Valid Collid	valid Combinations	
Am27X800-150		
Am27X800-155	PC, JC, PI, JI	
Am27X800-200	- FO, JO, FI, JI	
Am27X800-255		

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X800 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from \overline{CE} to output (tcE). Data is available at the outputs to attent falling edge of \overline{OE} , assuming that \overline{CE} has been LOW and addresses have been stable for at least tacc-toE.

Byte Mode

The user has the option of reading data in either 16-bit words or 8-bit bytes under control of the BYTE input. With the BYTE input HIGH, input A0–A18 will address 512K words of 16-bit data. When the BYTE input is LOW, AB functions as the least significant address input and 1 Mbyte of data can be accessed. The 8 bits of data will appear on DQ0–DQ7.

Standby Mode

The Am27X800 has a CMOS standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in CMOS-standby when \overline{CE} is at V_{CC} \pm 0.3 V. The Am27X800 also has a TTL-standby mode which reduces the maximum V_{CC} current to 1.0 mA. It is placed in TTL-standby when \overline{CE} is at V_{IH}. When in standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and Vss to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM Device arrays, a 4.7 μ F bulk electrolytic capacitor should be used between Vcc and Vss for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode	Pins	CE	ŌĒ	Vpp	Outputs
Read		ViL	ViL	x	DOUT
Output Disable		ViL	ViH	x	Hi-Z
Standby (TTL)		ViH	х	x	Hi-Z
Standby (CMOS)		Vcc ± 0.3 V	x	x	Hi-Z

Note:

1. X = Either VIH or VIL

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

OTP Products
Ambient Temperature with Power Applied
Voltage with Respect to Vss All pins except Vcc0.6 V to Vcc + 0.6 V
Vcc0.6 V to +7.0 V
Note:

Note:

1. Minimum DC voltage on input or I/O pins is -0.5 V. During transitions, the inputs may overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is V_{CC} +0.5 V which may overshoot to V_{CC} + 2.0 V for periods up to 20 ns.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc)	0°C to +70°C
Industrial (I) Devices	
Case Temperature (Tc)	-40°C to +85°C
Assessed as Description to a second	

Supply Read Voltages

Vcc for Am27X800-XX5 +4.75 V to +5.25 V

Vcc for Am27X800-XX0	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 2 and 4)

Parameter Symbol	Parameter Description	Test Conditions	Min	Мах	Unit
Vон	Output HIGH Voltage	Іон = – 400 μА	2.4		T V
Vol	Output LOW Voltage	lo _L = 2.1 mA		0.45	V
ViH	Input HIGH Voltage		2.0	Vcc+0.5	V
VIL	Input LOW Voltage		-0.5	+0.8	V
lu .	Input Load Current	V _{IN} = 0 V to +V _{CC}		1.0	μA
lio	Output Leakage Current	Vour = 0 V to +Vcc		5.0	μA
Icc1	Vcc Active Current (Note 3)	CE = V _{IL} , f = 5 MHz, lour = 0 mA		50	mA
lcc2	Vcc TTL Standby Current	CE = V⊮		1.0	mA
lcc3	Vcc CMOS Standby Current	CE = Vcc ± 0.3 V		100	μA

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. Caution: The Am27X800 must not be removed from (or inserted into) a socket when Vcc or VPP is applied.
- 3. I_{CC1} is tested with $\overline{OE} = V_{H}$ to simulate open outputs.
- Minimum DC Input Voltage is -0.5 V during transactions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC Voltage on output pins is V_{CC} + 0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.

40

35 30 25 20 -75 -50 -25 0 25 50 75 100 125 150 Temperature in °C

Figure 2. Typical Supply Current vs. Temperature Vcc = 5.5 V, f = 5 MHz

17344A-5

17344A-6

CAPACITANCE

Parameter			PD	PD 042 PL 04		. 044	
Symbol	Parameter Description	Test Conditions	Тур	Мах	Тур	Max	Unit
CIN	Input Capacitance	V _{IN} = 0 V	10	18	10	18	pF
COUT	Output Capacitance	V _{OUT} = 0 V	10	18	10	18	pF

Notes:

1. This parameter is only sampled and not 100% tested.

2. $T_A = +25^{\circ}C, f = 1 MHz.$

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 3, and 4)

	ameter				Am27X800)	
JEDEC	mbols Standard	Parameter Description	Test Conditions		-155 -150	-200	-255	Unit
tavov	tRCC	Address to Output Delay	CE = OE = VIL	Min Max	 150	 200	_ 250	ns
telav	tCE	Chip Enable to Output Delay	OE = VIL	Min Max	_ 150	- 200	- 250	ns
tglav	tOE	Output Enable to Output Delay	CE = VIL	Min Max	 55	- 60	- 60	ns
tehoz tghoz	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min Max	0 40	0 40	0 60	ns
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min Max	0 -	0 -	0 -	ns

Notes:

1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

2. This parameter is only sample and not 100% tested.

3. Caution: The Am27X800 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.

4. Output Load: 1 TTL gate and $C_L = 100 \, pF$

Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs

SWITCHING TEST CIRCUIT

CL = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20 ns.

KEY TO SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Notes:

- 1. OE may be delayed up to tACC tOE after the falling edge of the addresses without impact on tACC. 17347A-9
- 2. tDF is specified from OE or CE, whichever occurs first.

SECTION

Л

PROGRAMMING

Section 6	Programming
	Programming Methodology 6-3
	Flashrite Programming Flowchart 6-4
	DC Programming Characteristics 6-5
	Switching Characteristics and Waveforms 6-5
	Third-Party Programming Support 6-9

•

PROGRAMMING

All of AMD's CMOS EPROMs now utilize the fast Flashrite[™] programming algorithm. Programming the 256K EPROM typically takes 4 seconds, the 1 Mbit EPROM 16 seconds, and the 4 Mbit 1 minute. Bit locations may be programmed singly, in blocks or at random.

PROGRAMMING METHODOLOGY

Upon delivery or after each erasure, AMD's CMOS EPROM has all bits in the "ONE" or HIGH state. "ZEROs" are loaded into the device through the procedure of programming.

The programming mode is entered when 12.75 V \pm 0.25 V is applied to the V_{PP} pin, \overline{CE} and \overline{PGM}^* are at V_{IL}, and \overline{OE} is at V_{IH}.

For programming, the data to be programmed is applied 8- or 16-bits in parallel (depending upon the device organization) to the data output pins.

The flowchart on the next page shows AMD's Flashrite programming algorithm. The Flashrite algorithm reduces programming time by using 100 μ s programming pulses and by giving each address only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum pulse count is reached. This process is repeated while sequencing through each address of the device. This part of the algorithm is done at V_{CC} = 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage.

Program Verify

A program verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} and \overline{CE} at V_{IL}, \overline{PGM}^* at V_{IH}, and V_{PP} between 12.5 V and 13.0 V.

Read Verify

After the final address is programmed, a read verify on the entire EPROM is performed at V_{CC} = V_{PP} = 5.25 V.

*Not all devices have the PGM pin.

17061A-

Table 6-1DC Programming Characteristics
 $(T_A = +25^{\circ}C \pm 5^{\circ}C)$ (Notes 1, 2 and 3)

11/ - +20					
Parameter Symbol	Parameter Description	Test Conditions	Min	Мах	Unit
lL1	Input Current (All Inputs)	VIN = VIL or VIH		1.0	μA
ViL	Input LOW Level		-0.5	0.8	V
Vih	Input HIGH Level		0.7 Vcc	Vcc + 0.5	V
Vol	Output LOW Voltage During Verify	lo _L = 2.1 mA		0.45	V
Vон	Output HIGH Voltage During Verify	Іон = -400 μА	2.4		V
Vн	A9 Auto Select Voltage		11.5	12.5	V
ICC3	Vcc Supply Current (Program & Verify)			50	mA
IPP2	VPP Supply Current (Program)	CE = VIL, OE = VIH		30	mA
Vcc1	Flashrite Supply Voltage		6.00	6.50	V
VPP1	Flashrite Programming Voltage		12.5	13.0	V

Notes:

- 1. V_{CC} must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- When programming an AMD CMOS EPROM, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Switching Characteristics and Waveforms

These programming switching characteristics and waveforms apply to the following AMD EPROM devices: Am27C64, Am27C128, Am27C010, Am27H010, Am27LV010, Am27C1024, Am27C020, Am27LV020 and Am27C2048.

Table 6-2Switching Programming Characteristics $(T_A = +25^{\circ}C \pm 5^{\circ}C)$ (Notes 1, 2 and 3)

Parameter Symbols					
JEDEC	Standard	Parameter Description	Min	Мах	Unit
tAVEL	tas	Address Setup Time	2		μs
tDZGL	tOES	OE Setup Time 2		μs	
TDVEL	tDS	Data Setup Time 2		μs	
t GHAX	tah	Address Hold Time 0		μs	
t EHDX	tDH	Data Hold Time 2		μs	
t GHOZ	tDFP	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	VPP Setup Time	2		μs
teleh1	tpw	PGM Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time 2		μs	
t ELPL	tCES	CE Setup Time	2		μs
tGLQV	tOE	Data Valid from OE		150	ns

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

 When programming the above devices, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-2 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

1. The input timing reference level is 0.8 V for V_{IL} and 2 V for V_{IH}.

2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

These programming switching characteristics and waveforms apply to the following EPROM devices: Am27C256, Am27H256, Am27C040, Am27C400, Am27C4096 and Am27C800.

Parameter Symbols					
JEDEC	Standard	Parameter Description	Min	Max	Unit
tAVEL	tas	Address Setup Time	2		μs
tDZGL	tOES	OE Setup Time	2	2	
t DVEL	tos	Data Setup Time	2	2	
tGHAX	tah	Address Hold Time 0			μs
t EHDX	t DH	Data Hold Time	2		μs
tGHQZ	tDFP	Output Enable to Output Float Delay	0	130	ns
tvps	tvps	VPP Setup Time	2		μs
tELEH1	tpw	PGM Program Pulse Width	n Pulse Width 95 105		μs
tvcs	tvcs	Vcc Setup Time	2		μs
tGLQV	tOE	Data Valid from OE		150	

Table 6-3Switching Programming Characteristics $(T_A = +25^{\circ}C \pm 5^{\circ}C)$ (Notes 1, 2 and 3)

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

 When programming the above devices, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-3 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

17061A-

- 1. The input timing reference level is 0.8 V for VIL and 2 V for VIH.
- 2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

These programming switching characteristics and waveforms apply to the Am27C512 and Am27C080 devices.

Parameter Symbols					
JEDEC	Standard	Parameter Description	Min	Max	Unit
tAVEL	tas	Address Setup Time	2		μs
t DVEL	tos	Data Setup Time	2		μs
tGHAX	tah	Address Hold Time	0		μs
tEHDX	tDH	Data Hold Time	2		μs
t EHQZ	tDFP	Chip Enable to Output Float Delay	0	130	ns
tvps	tvps	Vpp Setup Time	2		μs
TELEH	tpw	CE Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
telav	tDV	Data Valid from OE		150	ns
TEHGL	toeh	OE/V _{PP} Hold Time	2		ns
IGLEL	tvR	OE/V _{PP} Recovery Time	2		ns

Table 6-4Switching Programming Characteristics
 $(T_A = +25^{\circ}C \pm 5^{\circ}C)$ (Notes 1, 2 and 3)

Notes:

1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.

 When programming the above devices, a 0.1 μF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

Figure 6-4 Flashrite Programming Algorithm Waveform (Notes 1 and 2)

Notes:

- 1. The input timing reference level is 0.8 V for VIL and 2 V for VIH.
- 2. toE and tDFP are characteristics of the device, but must be accommodated by the programmer.

THIRD-PARTY PROGRAMMING SUPPORT

Recommended Vendors

Advin Systems

PILOT-U84 Programmer PILOT-U40 Programmer PILOT-145 Programmer PILOT-GCE Programmer PILOT-832D Programmer

BP Microsystems

BP-1200 Programmer

CP-1128 Programmer

EP-1132 Programmer

EP-1140 Programmer EP-1 Programmer

Data I/O Corporation

2900 Programmer UniPak 2B Programmer BoardSite Programmer HandlerSite Programmer UniSite 40 Programmer S1000 Programmer 3900 Programmer

Elan Digital Systems Ltd

132 Programmer 142 Programmer 232 Programmer 532 Programmer 840 Programmer 928 Programmer 932 Programmer 940 Programmer

Logical Devices

ALLPRO 88/XR Programmer Husky Programmer GangPro-8+ Programmer GangPro-S Model II Programmer

Stag Microsystems

39M101 Programmer 41M101 Programmer 41M102 Programmer 41M111 Programmer 41M121 Programmer 42M101 Programmer ZM3000 Programmer Orbit Programmer Solar Programmer Stratus-2 Programmer System 1040/84 Programmer

PROGRAMMING UPDATE

The following charts provide the latest information on programming support for AMD's CMOS EPROMs from the following vendors:

Advin Systems, Inc. BP Microsystems Data I/O Corporation Elan Digital Systems Ltd. Logical Devices Stag Microsystems

These charts indicate the Versions as well as the Family code (where appropriate) that incorporates the **FLASHRITE™ Programming Algorithm** for all of their "popular" models.

Table 6-6

Advin Systems

			Version		
Part Number	PILOT	PILOT	PILOT	PILOT	PILOT
Package	-U84	-U40	-145	-GCE	-832D
Am27C64					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C128	······································				
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C256					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27H256					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C512					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C010					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27H010					
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C100	-				
DIP	V10.42	V10.42	V10.42	V10.42	V10.43
PLCC	V10.42*	V10.42*	V10.42*	V10.42*	V10.43
Am27C1024					
DIP	V10.42	V10.42	V10.42		V10.43
PLCC	V10.42*	V10.42*	V10.42*		V10.43

Table 6-6 Advin Systems (continued)

			Version		
Part Number Package	PILOT -U84	PILOT -U40	PILOT -145	PILOT -GCE	PILOT -832D
Am27C020					
DIP PLCC	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.43 V10.43
Am27C2048					
DIP PLCC	V10.42 V10.42⁺	V10.42 V10.42*	V10.42 V10.42*		V10.43 V10.43
Am27C040					
DIP PLCC	V10.42 V10.42⁺	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*	V10.43 V10.43
Am27C400			1		
DIP PLCC	V10.42	V10.42	V10.42		V10.43
Am27C4096					
DIP PLCC	V10.42 V10.42*	V10.42 V10.42*	V10.42 V10.42*		V10.43 V10.43

Notes:

1. Information listed above applies for all speed grades of that particular device/package.

- 2. Programmer models PILOT-U84, PILOT-U40, PILOT-145 and PILOT-GCE are single socket programmers whereas PILOT-832D is a gang programmer.
- 3. Programmer model PILOT-GCE does not support the X16 organizations.
- 4. PLCC packages for all devices (marked with an *) for the following programmers: PILOT-U84, PILOT-U40, PILOT-145 and PILOT-GCE require separate modules. These modules are listed below:
 - PX-32 32-pin PLCC (X8 organizations)
 - PX-44 44-pin PLCC (X16 organizations)
- 5. For further information please contact Advin Systems directly at (408) 243-7000.

Table 6-7 BP Microsystems

		Versio	n (DIP Package	es only)	
Part Number	BP-1200	CP-1128	EP-1140	EP-1132	EP-1
Am27C64	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C128	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C256	V2.05	V2.05	V2.05	V2.05	V2.05
Am27H256	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C512	V2.05	V2.05	V2.05	V2.05	V2.05
Am27C010	V2.05		V2.05	V2.05	
Am27H010	V2.05		V2.05	V2.05	
Am27C100	V2.05		V2.05	V2.05	
Am27C1024	V2.05		V2.05		
Am27C020	V2.05		V2.05	V2.05	
Am27C2048	V2.05		V2.05		
Am27C040	V2.05		V2.05	V2.05	
Am27C400	V2.05				
Am27C4096					

Notes:

1. Information listed above applies for all speed grades of that particular device/package.

2. There is a reason for the "blanks" above due to the fact that each module serves a specific DIP Package Pin-count(s):

ckage Pin-Count
, 32 and 40 pins
pin
, 32 and 40 pins
and 32 pins
pin

3. All LCC/PLCC packages require adapters. These adapters are common for all programmers. Please contact BP Microsystems directly for availability of these adapters.

4. For further information please contact BP Microsystems directly at (713) 461-9430.

Table 6-8 Data I/O

	V	ersion (Family Cod	e)
Part Number Package	2900	UNIPAK 2B	AutoSite
Am27C64			
DIP PLCC	V1.0 (D6) V1.4 (D6)	V23 (5C) V24 (5C)	V3.6 (D6) V3.6 (D6)
Am27C128			
DIP PLCC	V1.0 (11D) V1.5 (D6)	V23 (5C) V25 (5C)	V3.6 (D6) V3.6 (D6)
Am27C256			
DIP PLCC	V1.0 (5C) V1.4 (5C)	V23 (5C) V24 (5C)	V3.6 (5C) V3.6 (5C)
Am27H256			
DIP PLCC	V1.7 (1DF)	V27 (D6)	V3.6 (1DF)
Am27C512			
DIP PLCC	V1.0 (5E) V1.4 (5E)	V23 (5E) V24 (5E)	V3.6 (5E) V3.6 (5E)
Am27C010			
DIP PLCC	V1.0 (D6) V1.2 (D6)	V24 (5C) V24 (5C)	V3.6 (D6) V3.6 (D6)
Am27H010			
DIP PLCC	V1.4 (D6)	V24 (5C)	V3.6 (D6)
Am27C100			
DIP	V1.0 (D6)	V20 (D6)	3.6 (D6)
Am27C1024			
DIP PLCC	V1.0 (5F) V1.5 (5F)	V18 (5F) V25 (5F)	V3.6 (5F) V3.6 (5F)

Table 6-8 Data I/O (continued)

	v	Version (Family Code)					
Part Number Package	2900	UNIPAK 2B	AutoSite				
Am27C020							
DIP PLCC	V1.0 (D6)	V19 (D6)	V3.6 (D6)				
Am27C2048							
DIP PLCC	V1.1 (5F) V1.9 (5F)	V21 (5F)	V3.6 (5F)				
Am27C040							
DIP PLCC	V1.3 (D6)	V23 (5C)	V3.6 (D6)				
Am27C400							
DIP PLCC	V2.0 (5F)		3.9				
Am27C4096							
DIP PLCC	V2.0 (5F) V2.1 (5F)		1.1 1.5				

Notes:

- 1. Information listed above applies for all speed grades of that particular device/package.
- The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- 4. All AMD EPROMs not specifically supported by Data I/O can be programmed using Intel's Quick-Pulse™ Programming algorithm. Intel's pin-out code must be manually entered as "Autoselect" will not work.

Table 6-8 Data I/O (continued)

		Version (Family Code)	
Part Number Package	UniSite 40	S1000	3900
Am27C64			
DIP PLCC	V3.2 (D6) V3.3 (D6)*	V19 (B5C) V19 (B5C)	V1.0 (D6) V1.0 (D6)
Am27C128			
DIP PLCC	V3.2 (D6) V3.4 (D6)*	V19 (B5C) V20 (B5C)	V1.0 (D6) V1.0 (D6)
Am27C256			
DIP PLCC	V3.2 (5C) V3.3 (5C)*	V18 (B5C) V20 (B5C)	V1.0 (5C) V1.0 (5C)
Am27H256			
DIP PLCC	V3.6 (1DF)	V23 (B5C)	V1.0 (1DF) V1.0 (D6)
Am27C512			
DIP PLCC	V3.2 (5E) V3.3 (5E)*	V19 (B5E) V22 (B5E)	V1.0 (5E) V1.0 (5E)
Am27C010	,		
DIP PLCC	V2.7 (D6) V3.1 (D6)*	V15 (D5C) V20 (D5C)	V1.0 (D6) V1.0 (D6)
Am27H010			
DIP PLCC	V3.3 (D6)	V19 (D5C)	V1.0 (D6)
Am27C100			
DIP	V2.7 (D6)	V14 (C5C)	V1.0 (D6)
Am27C1024			
DIP PLCC	V2.5 (5F) V3.4 (5F)*	V17 (5F) V20 (5F)	V1.0 (5F) V1.0 (5F)

Table 6-8 Data I/O (continued)

		Version (Family Code)	
Part Number Package	UniSite 40	S1000	3900
Am27C020			
DIP PLCC	V2.6 (D6)	V13 (D5C)	V1.0 (D6)
Am27C2048			
DIP PLCC	V3.0 (5F) V3.8 (5F)*	V16 (E5F) V24 (E5F)	V1.0 (5F)
Am27C040 DIP PLCC	V3.2 (D6)	V19 (FD6)	V1.0 (D6)
Am27C400			
DIP PLCC	V3.9 (5F)	V26 (F5F)	V1.4 (5F)
Am27C4096			
DIP PLCC	V3.9 (5F) V4.0 (5F)	V26 (F5F) V26 (F5F)	V1.4 (5F) V1.5 (5F)

Notes:

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. UNISITE 40 requires an optional PinSite Programming Module for PLCC Packages (marked with an *).
- The 3900 programmer model requires an optional PLCC Package Base as it uses the Universal Package System[™].
- The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- All AMD EPROMs not specifically supported by Data I/O can be programmed using Intel's Quick-Pulse™ Programming algorithm. Intel's pin-out code must be manually entered as "Autoselect" will not work.

Table 6-9

	1		Version			
			132 232 532 832	840	Ada	pter
Part Number	142	928	932	940	LCC	PLCC
Am27C64	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C128	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C256	E 5.00	E 5.00	E 5.00		A86A	A86
Am27H256						
Am27C512	E 5.00	E 5.00	E 5.00		A86A	A86
Am27C010	E 5.00		E 5.00	}	A104	A104
Am27H010						
Am27C1024	E 5.00			E 5.00	A94A	A94
Am27C020	E 5.01		E 5.01		A104	A104
Am27C2048	E 5.01		1	E 5.01	A94A	A94
Am27C040	E 5.01		E 5.01		A104	A104
Am27C400						
Am27C4096						

Notes:

1. Information listed above applies for all speed grades of that particular device/package.

2. There is a reason for the "blanks" above due to the fact that each ZIFPAK model serves a specific DIP Package Pin-count (s) :

Model	DIP Package Pin-Count
142	28, 32 and 40 pins
928	28 pin
132, 232, 532, 832 and 932	28 and 32 pins
840 and 940	40 pin

3. All LCC and PLCC Packages require the specific adapter listed. Each adapter supports all ZIFPAK models listed for a specific device.

4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.

5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.

Table 6-10 Logical Devices

	Version							
Part Number Package	ALLPro 88/XR	Husky	GangPro -8+	GangPro-S Model II				
Am27C64								
DIP PLCC	V2.1 V2.1		V1.0 V1.0*	V1.0 V1.0*				
Am27C128								
DIP PLCC	V2.1 V2.1		V1.0 V1.0*	V1.0 V1.0*				
Am27C256								
DIP PLCC	V2.2 V2.2		V1.0 V1.0⁺	V1.0 V1.0*				
Am27H256								
DIP PLCC	V2.2 V2.2							
Am27C512								
DIP PLCC	V2.2 V2.2		V1.0 V1.0*	V1.0 V1.0*				
Am27C010								
DIP PLCC	V2.2 V2.2							
Am27H010								
DIP PLCC	V2.2 V2.2							
Am27C100								
DIP				<u> </u>				
Am27C1024								
DIP PLCC	V2.2 V2.2			V1.0				

Table 6-10 Logical Devices (continued)

	Version					
Part Number Package	ALLPro 88/XR	Husky	GangPro -8+	GangPro-S Model II		
Am27C020						
DIP PLCC	V1.5C V1.5C	V2.10 V2.10*	V1.0 V1.0*	V1.0 V1.0*		
Am27C2048						
DIP PLCC	V2.2 V2.2			V1.0-3		
Am27C040	······································					
DIP PLCC	V2.2 V2.2	V2.4R1 V2.4R1*	V1.1 V1.1*	V1.0 V1.0*		
Am27C400	<u></u>					
DIP PLCC						
Am27C4096						
DIP PLCC	V2.2 V2.2			V1.0-3		

Notes:

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. The ALLPRO programmer model has PLCC Package programming capability.
- 3. The programmer models HUSKY and GANGPRO-8+ need separate adapters for PLCC Packages. These adapters are not currently offered by Logical Devices and need to be procured from third-party vendors. Please contact Logical Devices for additional information on these adapters.

3

- 4. The programmer model GANGPRO-S MODEL II needs a separate adapter OPTGP2-E32 for 32-pin PLCC Packages and is currently offered directly by Logical Devices. 44-pin PLCC Packages are currently not supported on this programmer.
- 5. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 6. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- 7. For further information please contact Logical Devices directly at (305) 974-0967.

Table 6-11 Stag Microsystems

				Soft	ware Revis	sion		
Part Number Package	Pin-Out Code	39M101	41M101	41M102	41M111	41M121	42M101	ZM300
Am27C64	9FDA							
DIP PLCC		9.0	6.0		6.0		6.0	11.1 11.1'
Am27C128	9FDB							
DIP PLCC		9.0	6.0		6.0		6.0	9.0 9.0'
Am27C256	9FDC							
DIP PLCC		4.0	4.3		4.3		4.3	9.0 9.0'
Am27H256								
DIP PLCC								
Am27C512	9FDD							
DIP PLCC		4.0	4.0		4.0		4.0	9.0 9.0 ¹
Am27C010	9FE1							
DIP PLCC		4.0	4.0			4.0	4.0	9.0 9.0'
Am27H010								
DIP PLCC								
Am27C100	9FE3							
DIP		9.0	6.0			6.0	6.0	11.1
Am27C1024	9FF1							
DIP PLCC		4.0		5.0				10.0 10.0²
Am27C020	9FE2							
DIP PLCC		7.0	6.0			6.0	6.0	8.0 8.01

Table 6-11 Stag Microsystems (continued)

			Software Revision					
Part Number Package	Pin-Out Code	39M101	41M101	41M102	41M111	41 M 121	42M101	ZM300
Am27C2048	9FF2							
DIP PLCC		7.0		6.0				11.1 11.1²
Am27C040	9FE4							
DIP PLCC		10.0	7.0				7.0	
Am27C400 DIP PLCC								
Am27C4096	9FF4							
DIP PLCC		9.0		6.0				11.3 11.3²

Notes:

- 1. Information listed above applies for all speed grades of that particular device/package.
- 2. There is a reason for the "blanks" above as each module serves a specific package and pin-count(s):

Model	Package	Pin-Count
39M101	DIP	28, 32 and 40 pins
41M101	DIP	28 and 32 pins
41M102	DIP	40 pin
41M111	LCC/PLCC	32 pin
41M121	LCC/PLCC	32 pin
42M101	DIP	28 and 32 pins
ZM3000 (UNIVERSAL)	All	All

- 3. PLCC Packages require separate adapters. The Legend for these adapters is as follows: ¹ requires Zs3001 Adapter, ² requires Zs3009 Adapter.
- 4. The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.
- 5. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.
- 6. For further information please contact Stag Microsystems directly at (408) 988-1118 in the U.S. and 707-332148 in the U.K.

	Software Revision						
Part Number	Orbit	Solar	Stratos 2	System 1040/84			
Am27C64	3.7	1.0	1.2	10.41			
Am27C128	3.7	1.0	1.2	10.41			
Am27C256	3.7	1.0	1.2	10.41			
Am27H256		1.0					
Am27C512	3.7	1.0	1.2	10.41			
Am27C010	3.7	1.0	1.2	10.41			
Am27H010		1.0		10.41			
Am27C1024	3.7	2.0		10.41			
Am27C020	3.7	1.0		10.41			
Am27C2048		2.0		10.41			
Am27C040		1.0	1.2	10.41			
Am27C400							
Am27C4096		2.0		10.41			

Table 6-11 Stag Microsystems (continued)

Notes:

1. Information listed above applies for all speed grades of that particular device.

The Am27H010 can be programmed by manually entering the pinout code for the Am27C010, as the silicon signature for these devices are the same.

3. The Am27H256 can be programmed by manually entering the pinout code for the Am27C256, as the silicon signature for these devices are the same.

4. For further information please contact Stag Microsystems directly at (408) 988-1188 in the U.S. and 707-332148 in the U.K.

.

SECTION

Section 7	Article Reprint
	"Making EPROM/Flash Trade-Offs" Article Reprint

ETERMINATION OF THE PROPERTY AND A PROVIDED AND A PROVIDA AND A PROVIDA AND A PROVIDA AND A PROVIDA AND A PROVIDED AND A PROVIDA AND A PROVI

Making EPROM/flash trade-offs

By Datar Lalvani Strategic Marketing Manager and Kurt Wolf Senior Product Marketing Engineer Advanced Micro Devices Inc. Sunnyvale, Calif.

he non-volatile memory market, long the bastion of the UV EPROM, has been fissured with the recent emergence of in-system reprogrammable flash memories as a viable technology. Today, both EPROMs and flash memories coexist and they will continue to run parallel paths, with the choice of technology influenced by the requirements of the end product.

Flash memories were born of the marriage between

EPROM and E²PROM devices. Flash incorporates the same programming capability as an EPROM with the added benefit of E²PROM-like electrical erasability, so it can be reprogrammed without removing it from the circuit board. This makes flash an ideal choice for applications that require insystem reprogrammability. While the same benefit can be obtained from either E²PROM or battery-backed SRAM, flash memories are less expensive than both.

In light of the projected rapid growth in demand for flash, the product-development plans announced by the ever-increasing number of vendors, and the recent public announcements by some large vendors who have stated that their strategy is to "de-emphasize" EPROMs in favor of flash memories—the future of EPROMs has become unclear. This has caused some confusion in the memory marketplace. Technical factors such as scalability, die cost, erasure and package considerations—as well as market-based factors such as demand, applications and features—factor into the decisions to build and use either EPROM or flash products.

EPROMs and flash memories will coexist with the choice of technology influenced by the requirements of the end product as used by the customer. While some vendors have stated that flash memories are more scalable than EPROMs with the addition of double-layer metal, even down at 0.5-micron geometries, Advanced Micro Devices Inc. sees no need for multilayer metal for EPROMs. AMD's single-layer metal process for EPROMs using 0.5-micron technology not only will provide the high density—up to the 16-Mbit level—but is also capable of generating the smallest die size and highest performance in the industry.

It is a fact that, at the same density, the flash-memory die is more expensive than an EPROM because it has the slightly larger cell size required to support high endurance. Also, the flash process complexity is greater due to additional masking steps, and it requires longer test times to perform electrical erasure in the tester, as opposed to UV-erase in an oven.

Flash pricing today remains at a multiple of EPROM. However, flash pricing will continue to drop until it settles at around a 20 percent to 30 percent premium over a comparable EPROM. Memory designers are not going to increase the cost of their systems by using flash when there is no need for future reprogramming. In these designs, reprogrammability does not represent value to the customer. Consequently, flash technology will not ubiquitously replace OTP EPROM designs.

The market's demand for various price/ performance products supports the coexistence of both EPROM and flash technology.

There is no question that flash technology has already reserved a bright spot in the history of non-volatile memories. In some designs, however, EPROM and flash memories can coexist comfortably.

Laser-printer designs are becoming commodity-oriented items. Memory-design requirements are dictated by the pagesper-minute output of the printer. Memory designers can make a trade-off between designing interleaved systems with slower/less expensive devices or non-interleaved systems using faster/ higher-cost devices. The software requirements for these systems are also fairly straightforward. Firmware that typically does not change in this system are the PCL-5 and/or Postscript enginecontrol codes.

In addition, the code for font types does not typically change. The density requirements for this code range from 2 to 4 Mbytes of storage, depending on the font types available and the number of scaling options. EPROMs instead of ROMs are used to provide manufacturing flexibility. The EPROMs are programmed just-in-time, depending on the printer engine and font options

Datar Lalvani holds a BSEE from the University of Madras, India, and an MBA from the Wharton Graduate School of Business, University of Pennsylvania. Kurt Wolf holds a BSEE from the University of Michigan.

Copyright© 1991 by CMP Publications, Inc. Reprinted from *Electronic Engineering Times* with Permission.

SEMICONDUCTOR MEMORIES Choosing flash or EPROM

Continued

required for that day's manufacturing run. Flash memory is then incorporated as an option that allows end users to store customized fonts or screen images in the printer. This eliminates the repetitive delay associated with transferring the bit-map-generated images between the computer and printer. This decrease in productivity is eliminated when the code is resident on the printer in flash memory, a clear example of a very high-volume product that requires both high-density EPROM and flash-memory devices.

Each technology is employed to take advantage of its strengths. OTP EPROMs are used in the most cost-sensitive portion of the memory system where the code typically does not change once the system is shipped. OTP EPROMs also allow for smooth transitions between manufacturing runs that incorporate different printer engines and/or font type options.

The higher-priced flash devices provide customers with the ability to personalize their systems. The value of this functionality more than offsets the incremental cost of the devices.

SECTION

PHYSICAL DIMENSIONS*

Section 8	Physical	Dimensions	3-1
	CDV028	28-Pin Ceramic DIP 8	3-3
	CDV032	32-Pin Ceramic DIP 8	3-3
	CDV040	40-Pin Ceramic DIP 8	3-4
	CDV042	42-Pin Ceramic DIP 8	3-4
	CLV044	44-Pin Square Leadless Chip Carrier	3-5
	PD 028	28-Pin Plastic Dual In-Line Package	3-6
	PD 032	32-Pin Plastic Dual In-Line Package 8	3-6
	PD 040	40-Pin Plastic Dual In-Line Package	3-7
	PD 048	48-Pin Plastic Dual In-Line Package 8	3-7
	PL 032	32-Pin Rectangular Plastic Leaded Chip Carrier	3-8
	PL 044	44-Pin Rectangular Plastic Leaded Chip Carrier	3-8
	TS 032	32-Pin Thin Small Outline 8	}-9

*For reference only. BSC is an ANSI standard for Basic Space Centering.

CDV028 28-Pin Ceramic DIP (measured in inches)

CDV032 32-Pin Ceramic DIP (measured in inches)

CDV042 42-Pin Ceramic DIP (measured in inches)

CLV044 44-Pin Square Ceramic Leadless Chip Carrier (measured in inches)

PD 032 32-Pin Plastic Dual In-Line Package

PD 040 40-Pin Plastic Dual In-Line Package (measured in inches)

PD 048 48-Pin Plastic Dual In-Line Package (measured in inches)

PL 032 32-Pin Rectangular Plastic Leaded Chip Carrier (measured in inches)

PL 044 44-Pin Square Plastic Leaded Chip Carrier (measured in inches)

TS 032 32-Pin Thin Small Outline (measured in inches)

•For the standard form/pin-out, the pin one is a round dimple. For the reverse form/pin-out, an inverted triangle will be marked here indicating pin one.

Sales Offices

North Americ	an	
)0
CALIFORNIA,		
	(310) 645-152	
	/ille)(916) 786-670	
	(818) 878-998	38
CANADA, Ontario,		
	(416) 222-780	
	(303) 741-290	
CONNECTICUT		00
FLORIDA,		
Clearwater		71
Orlando (Longwoo	d)(407) 862-929) 2
GEORGIA		20
ILLINOIS,	(200) 011-003	
		22
	(612) 938-000	
NEW JERSEY,		
		201
Darcipopov		20
		2
NEW YORK,	(04.0) 070 000	~
	(716) 425-805	50
NORTH CAROLINA		
		11
OHIO,		
	ville)(614) 891-645	
	(513) 439-026	
OREGON	(503) 245-008	30
PENNSYLVANIA)6
TEXAS,		
	(512) 346-783	
Houston		34
International		
BELGIUM, Antwerper	n TEL (03) 248 43 0	
	FAX(03) 248 46 4	
FRANCE, Paris	TEL	
	FAX (1) 49-75-10-1	
GERMANY,	· •	
Bad Homburg	TEL	51
	FAX	95
München	TEL	-0
	FAX	
HONG KONG	TEL	
Wanchai	FAX	
	TEL (00) 200054	50
ITALT, MIIANO	TEL	+1
	FAX(02) 3810345	98
JAPAN,		
Atsugi	TEL	50
	FAX	
Kanagawa	TEI (0462) 47-291	

International (Continued) _

Tokyo	TEL	
		(06) 243-3253
KOREA, Seoul	TEL	
	FAX	
LATIN AMERICA,		
Ft. Lauderdale		(305) 484-8600
		(305) 485-9736
SINGAPORE		(65) 3481188
	FAX	
SWEDEN,		
TAIWAN, Taipei		(886) 2-7153536
	FAX	(886) 2-7122183
UNITED KINGDOM,		
		(0925) 830380
		(0925) 830204
		(0483) 740440
(Woking)	FAX	(0483) 756196
North America	an Repres	entatives
CANADA		
	TEK MARKETI	NG(604) 430-3680
		ICS (613) 592-0060
Minerica Ontonia		DONICE MARY FRA 0700

Burnaby, B.C. – DAVETEK MARKETING		
Kanata, Ontario - VITEL ELECTRONICS		
Mississauga, Ontario - VITEL ELECTRONI		
Lachine, Quebec - VITEL ELECTRONICS.	(514) 636-5951	1
ILLINOIS		
Skokie – INDUSTRIAL		
REPRESENTATIVES, INC	(708) 967-8430)
IOWA	• •	
LORENZ SALES	(319) 377-4666	5
KANSAS		
Merriam – LORENZ SALES		2
Wichita – LORENZ SALES		
MICHIGAN		
Holland - COM-TEK SALES, INC		3
Brighton - COM-TEK SALES, INC		
MINNESOTA		
Mel Foster Tech, Sales, Inc	(612) 941-9790)
MISSOURI		
LORENZ SALES	(314) 997-4558	2
NEBRASKA		
LORENZ SALES	(402) 475 4660	•
NEW MEXICO		, ,
THORSON DESERT STATES	(EOE) 000 4040	,
NEW YORK	(505) 663-4343	•
East Syracuse – NYCOM, INC	(245) 407 0040	
	(315) 437-8343	5
Hauppauge – COMPONENT CONSULTANTS, INC	(610) 070 5050	
OHIO	(516) 273-5050	,
Centerville – DOLFUSS ROOT & CO	(510) 400 6776	
Columbus – DOLFUSS ROOT & CO Westlake – DOLFUSS ROOT & CO		
		,
PENNSYLVANIA	(440) 040 0500	
RUSSELL F. CLARK CO., INC.		J
PUERTO RICO		
COMP REP ASSOC, INC	(809) 746-6550)
UTAH		
Front Range Marketing	(801) 288-2500)
WASHINGTON		
ELECTRA TECHNICAL SALES	(206) 821-7442	2
WISCONSIN		
Brookfield – INDUSTRIAL		
REPRESENTATIVES, INC	(414) 574-9393	3
	· ·	

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO

DEVICES, INC. 901 Thompson Place P.O. Box 3453 Sunnyvale, California 94088-3453 (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

.

APPLICATIONS HOTLINE & LITERATURE ORDERING USA (800) 222-9323 USA (408) 749-5703 JAPAN 011-81-3-3346-7561 UK & EUROPE 44-(0)256-811101 TOLL FREE USA (800) 538-8450 FRANCE 0590-8621 GERMANY 0130-813875 ITALY 1678-77224

Printed in USA BAN-60M-7/93-0 17061A