
PAL® Device
Handbook

Advanced
Micro

Devices

Monolithic ~~n
Memories uunJJ
A Wholly Owned Sub.idli"Y 01 Ad~.nced Micro Devke.

24-pin Combinatorial TTl/CMOS PAL Devices

PRODUCT PINS TECHNOLOGY tpo(ns} Icc(rnA} DESCRIPTION PAGE

AmPAL22XP10 24 TTL 20,30,40 90,180,210 XOR gate 5-271
PAL20S10 24 TTL 35 240 Product term steering 5-103
AmPAL22P10 24 TTL 15,25 105,210 24-pin superset 5-291
Am/PAL20L 10 24 TTL 15,20,25,30 105,165,210 10 outputs 5-113,5-306
PAL20L8 24 TTL, ECMOS 15,25,35,45 0.1,105,210 Standard 5-122
PAL6L16 24 TTL 25 90 Wide output 5-141
PAL8L14 24 TTL 25 90 Wide output 5-141
PAL12L10 24 TTL 40 100 Simple combinatorial 5-147
PAL 14L8 24 TTL 40 100 Simple combinatorial 5-147
PAL16L6 24 TTL 40 100 Simple combinatorial 5-147
PAL18L4 24 TTL 40 100 Simple combinatorial 5-147
PAL20L2 24 TTL 40 100 Simple combinatorial 5-147
PAL20C1 24 TTL 40 100 Simple combinatorial 5-147

24-pin Registered TTL/CMOS PAL Devices

PRODUCT PINS TECHNOLOGY f MAX (MHz) Icc (rnA) DESCRI PTION PAGE

AmPALC29MA 16 24 EE CMOS 20, 15 120 Advanced Async. Macro 5-209
AmPALC29M16 24 EE CMOS 20, 15 120 Advanced Macrocell 5-231
PAL32VX10 24 TTL 25,22 180 J-K, varied terms 5-70
Am/PAL22V10 24 TTL, ECMOS 40, 33, 28.5, 20, 18 90,180 Versatile 5-79,5-249
PAL22RX8 24 TTL 28.5 210 J-K flip-flops 5-87
PAL20RA10 24 TTL 20 200 Asynchronous 5-95
AmPAL20XRP10 24 TTL 30,22,14 105,180,210 XOR gate & polarity 5-271
AmPAL20XRP8 24 TTL 30,22,14 105,180,210 XOR gate & polarity 5-271
AmPAL20XRP6 24 TTL 30,22,14 105,180,210 XOR gate & polarity 5-271
AmPAL20XRP4 24 TTL 30,22,14 105,180,210 XOR gate & polarity 5-271
PAL20RS10 24 TTL 20 240 Product term steering 5-103
PAL20RS8 24 TTL 20 240 Product term steering 5-103
PAL20RS4 24 TTL 20 240 Product term steering 5-103
PAL20X10 24 TTL 22 180 XOR gate 5-113
PAL20X8 24 TTL 22 180 XOR gate 5-113
PAL20X4 24 TTL 22 180 XOR gate 5-113
AmPAL20RP10 24 TTL 37,25 105,210 Programmable polarity 5-291
AmPAL20RP8 24 TTL 37,25 105,210 Programmable polarity 5-291
AmPAL20RP6 24 TTL 37,25 105,210 Programmable polarity 5-291
AmPAL20RP4 24 TTL 37,25 105,210 Programmable polarity 5-291
PAL20R8 24 TTL, E CMOS 37,25,20,15 0.1, 105, 210 Standard 5-122
PAL20R6 24 TTL, ECMOS 37,25,20,15 0.1, 105, 210 Standard 5-122
PAL20R4 24 TTL, E CMOS 37, 25, 20, 15 0.1,105,210 Standard 5-122
PAL32R16 40 TTL 16 280 MegaPALTM device 5-158

(Continued on back cover)

IPAL® Device Handbook

Introduction

Applications

PAIL Device Data Book

Programming. and Quality ~
®

PALASM 2 Software User Documentation

Data Sheets

Appendices

© 1988 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes
in its products without notice in order to improve design or performance characteristics.
The performance characteristics listed in this document are guaranteed by specific tests,

correlated testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.

The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

ii

In late 1987, the two programmable logic market leaders, Monolithic Memories and Advanced Micro
Devices, merged into one great company. We combined our strong traditions of customer service
and innovation to offer you the best line of programmable logic devices. The 1988 Data Book
presents the technical specifications on the entire product line. The separate 1988 Handbook
presents all of the necessary support material, whether you are accustomed to using MMI or
AMD products.

AMD/MMI has the products, manufacturing capacity and technology to perpetuate the leadership
in the programmable logic field which we pioneered. In the 1988 Data Book you will notice that we
not only have the broadest programmable logic line, but we also have the industry's most
comprehensive CMOS programmable logic line. We think that you will find the Data Book and
Handbook informative and useful. If you have any comments or questions on the books or the
product line, please contact us.

Cyrus Tsui

Vice President
Programmable Logic Division

~ MonollthlcW Memories ~

Description
This 1988 PAL Device Handbook/Data Book is your complete guide to all programmable logic
devices (PLDs) from Monolithic Memories and Advanced Micro Devices. The merger of the two
companies provides a greater wealth of products and services for you. Note that all PLDs which
were in production before the merger are still being produced.

The PAL Device Handbook/Data Book is organized into two volumes and six easy-to-use sections:

PAL Device Handbook

Section 1: Introduction
Includes an overview of the PLD product family.

Section 2: Applications
Includes detailed application examples. The first few chapters provide tutorials in PLD design.
The application notes are grouped by application area.

PAL Device Data Book

Section 3: Programming and Quality
Includes information on PLD software programs, programming information, PLD technology and
quality discussions, and package information.

Section 4: PALASM 2 Software User Documentation
Includes complete documentation for PALASM 2 software.

Section 5: Data Sheets
Includes specifications for all PLDs from the combined company. PAL devices formerly from MMI
are under "PAL Devices," while PAL devices formerly from AMD are under "AmPAL Devices."

Section 6: Appendices
Includes quick reference information.

If you have any questions or comments on PLDs or any other products, please contact your most
convenient AMD/MMI sales office, listed at the end of each book.

~ Monolithic m Memories ~ iii

Major Contributors

Marc Baker
Rich Chin

Arthur Khu
Cindy Lee

Ron Fritz
Scott Graham
Alexandra Huff
Chris Jay
Mitch Kane

David Lee
Warren Miller
Bryon Moyer
Bernadette Olson
Nick Schmitz

David Selby
Kapil Shankar
Malti Swamy
Laurie Taylor
John Turner
Ed Valleau
Phil Watt

Trademarks

PALIEl, HALIEl, PALASMIEl, and SKINNYDIP® are registered trade­
marks of Monolithic Memories, Inc.

ProPAL'N, MegaPAL'N, ZPAL'N, MegaHAL'N, ZHAL'N, PLE'N,
PLEASM'N, DOC'N, Diagnostics-On-Chip'N, PROSE'N, MONOX'N,
HiPAC'N, and AutoVec'N are trademarks of Monolithic Memories, Inc.

IMOxm and SSR'N are trademarks of Advanced Micro Devices.

Xilinx™, XACT""', XACTOR'N, Logic Cell Array'N, and Logic
Processor1M are trademarks of Xilinx Inc.

P-SILOS'N is a trademark of SimuCad.

IBM® is a registered trademark of International Business Machines
Corporation.

Micro ChannelThl , IBM-PC'N, PC-XT""', and PC-AT"'" are trademarks
of International Business Machines Corporation.

Data 1I01El is a registered trademark of Data 1/0 Corporation.

ABELThI, PLDtest™, UniSite'N, LogicPak™, Logic FingerprintThf , and
PROMlink1M are trademarks of Data 1/0 Corporation.

FutureNet® is a registered trademark of FutureNet, a Data 1/0
Company.

DASHThf, DASH-ABELThI, DASH-GATESThf, PLD-CADAT""', and
DASH-CADAT-PLUSThf are trademarks of FutureNet, a Data 1/0
Company.

CUPLThI is a trademark of Personal CAD Systems.

MultibusThf is a trademark of Intel Corporation.

ISDATA® is a registered trademark of ISDATA GmbH.
LOG/iCThf is a trademark of ISDATA GmbH.

Apollo® is a registered trademark of Apollo Computer.

Q-Bus®, UNIBUS®, VAX®, and VMS® are registered trademarks of
Digital Equipment Corporation.

Microsoft® is a registered trademark of Microsoft Corporation.
MS-DOSThf is a trademark of Microsoft Corporation.

UNIXThf is a trademark of AT&T Technologies, Inc.

DAISY® and DNIX® are registered trademarks of Daisy Sysiems.

SOFTPACKThI, SOFTLlNKTM, and LOGILlNK'N are trademarks of
Digelec, Inc.

ALLPROThl and LOGIPROTM are trademarks of Logical Devices, Inc.

PROMACThf is a trademark of Japan Macnics Corporation.

WordStar™ is a trademark of MicroPro International Corporation.

Mouse SystemThf is a trademark of Mouse Systems Corporation

TestPLAThf is a trademark of Structured Design, Inc.

NuBusThl is a trademark of Texas Instruments

iv ~ Monolithic W Memories ~

Table of Contents

PAL Device Handbook

Introduction

I nt rod uct 10 n .. " " ,........................... 1-1
What is a PLD? ... 1-1

What Advantages do PLDs Have Over Other Implementations? ... 1-4

Product Overview .. " .. " ... 1-7
PAL Devices ""." .. ""." .. ""." .. ""."."." .. ""."."."."."." .. ".""."."." .. " , 1-7
Nomenclature ... , 1-7

Programmable Seq uencers .. "... 1-19

LCA Devices ... , ... ". 1-20

Applications

Beginner's Guide ."."." .. ""."."."."."."." .. "".".".".".".".".""".""."." .. " , 2-1
Constructing a Combinatorial Design .. " ... 2-2

Constructing a Registered Design ... 2-9

Programming a Device .. 2-14

PLD Desi g n Methodology ... 2-21
Conceptualizing a Design ... 2-22.

Device Selection Considerations ... 2-23

Implementing a Design .. 2-26

Simulation ... 2-30

Device Programming and Testing .. 2-33

Combinatorial Logic Design ... 2-35
Encoders and Decoders .. , ... 2-35

Multiplexers ... " 2-43

Comparators ... ". 2-45

Range Decoders .. 2-52

Adders/Arithmetic Circuits .. 2-53

Latches .. 2-58

Registered Logic Design .. 2-61
Binary Counters .. 2-67

Modulo Counters .. 2-75

Gray-Code Counters .. ". 2-87

Johnson Counters .. 2-88

Shift Registers ... 2-90

Asynchronous Registered Designs ... 2-94

~ Monollthlo lAin Memories ~ v

Table of Contents

State Machine Design ... 2·101
State Machine Theory .. 2·103

State Machine Types: Mealy & Moore ... 2·105

Device Selection Considerations ... 2·107

PAL Devices as Sequencers .. 2·111

Programmable Logic Sequencers (PLS) .. 2·117

PROSE Sequencer (PMS 14R21) .. 2·120

Fuse Programmable Controller (Am29PL141) ... 2·121

State Machine Design Tutorial .. 2·122

Microprocessor-Based Systems .. 2·131
Interfacing to the 8086/80186/80286 ... 2·134

8086 and Am7990 LANCE Interface ... 2·135

8086 and Am9516 Universal DMA Controller Interface ... 2·138

80286 to Am9568 Data Ciphering Processor Interface .. 2·143

80286 to Am8530 Interface ... 2·147

Interfacing to the 68000/68020 ... 2·149

The 68000 and Am8530 Interface with Interrupts .. 2·150

68000 and Am7990 LANCE Interface ... 2·153

68000 to AmZ8068 Data Ciphering Processor Interface ... 2·155

68000 and Dual Am9516 DMAControliers Interface .. 2·159

Am8530 to 68020 Interface .. 2·162

Interfacing to the 8088 ... 2·165

8088 toAm9516 UDC Interface .. 2·166

80186 to Am9516 Universal DMA Controller Interface ; ... 2·170

68000 Interrupt Controller .. 2·172

Memory Control .. 2·179
Memory Handshake Logic ... 2·184

Customize a DRAM Controller Using Advanced PAL Devices ... 2·187

8088 to Am2968 Interface .. 2·202

MC68000 to Am2968 Interface ... 2·210

General·Purpose Dual·Port Arbiter ... 2·215

Dynamic Memory Control State Sequencer .. 2·224

8·Bit Error Detection and Correction .. 2·229

Fuse Programmable Controller Simplifies Cache Design .. 2·239

PAL22RX8A Provides Control and Addressing for a 32·Location·Deep RAM·Based LIFO 2·250

Graphics and Image Processing Systems ... 2·257
Small System Video Controller ... : 2·261

PAL32VX10 Uses Buried Register for Input· Intensive State Machine Designs ... 2·275

Digital Signal Processing ... 2·283
Waveform Generator .. 2·286

PAL32VX10 Uses Buried Register for Input·lntensive State Machine Designs ... 2·292

Analog to Digital Conversion ... 2·297

PAL Devices, PROMs, FIFOs and Multipliers Team up to

Implement Single·Board High·Performance Audio Spectrum Analyzer .. 2·307

Bus Interface ... 2·325
Unibus Interrupt Controller ... 2·328

A MULTIBUS Arbiter Design for 10 MHz Processors ... 2·333

MULTIBUS to Am9516 Interface .. 2·338

Z·BUS and 8088/8086 Interface .. 2·342

VME Bus Control Simplified with PLDs ... 2·347

vi ~ Monollthlo W MemorIes ~

Table of Contents

Communications .. 2-357
B8ZS Coding Using CMOS ZPAL Devices .. 2-362

HDB3 Line Coding Using PAL Devices ... 2-384

ZPAL Devices Implement D4 Frame Synchronization ... 2-404

T1 Extended Superframe Provides Transmission Error Detection ... 2-431

Time Division Multiplexing with the LCA Device .. 2-435

LCA Device Implements an 8-Bit Format Converter in a PBX Switching Module .. 2-444

Serial Data Link Controller ... 2-453

OAM Encoder in a ZPAL Device .. 2-456

PAL Devices Implement the Full V.32 Convolution Encoder ... - 2-463

PLD Devices Implement 4B3T Line Transcoder .. 2-475

PALC22V10 Creates Manchester Encoder Circuit ... 2-499

Peripheral Design .. 2-507
Building an ESDI Translator Using the M2064 Logic Cell Array .. 2-509

Writing a Tape Drive Controller in PROSE ... 2-519

GCR (4B-58) Encoder/Decoder ... 2-541

Industrial Control ... 2-547
Stepper Motor Controllers .. 2-550

Shaft Encoders ... 2-558

Military Applications .. 2-579
Radiation Hardness .. 2-581

Article Reprints
Programmable Logic Device Preserves Pins, Product Terms (PAL32VX1 0) .. 2-589
PLD Programmability Extends its Sway Over Complex 1/0 (PALC29M/MA16) ... 2-593

PROSE Devices Simplify StClte Machine Design (PMS14R21) ... 2-601

Designing a State Machine with a Programmable Sequencer (PMS14R21) .. 2-607

FPCs and PLDs Simplify VME Bus Control (Am29PL141) .. 2-619

Fuse-Programmable Chip Takes Command of Distributed Systems (Am29PL141) .. 2-633

PAL Device Buries Registers, Brings State Machines to Life (AmPAL23S8) .. 2-639

Programmable Event Generator Conquers Timing Restraints (Am2971) .. 2-644

Wait-State Remover Improves System Performance (PAL22V1 0) ... 2-648

PLDs Implement EncoderlDecoder for Disk Drives (PAL22V1 0) .. 2-651

Mixing Data Paths Expands Options in System Design (PAL22V10) .. 2-660

Programmable Logic Chip Rival~ Gate Arrays in Flexibility (PAL22V10) ... 2-670

XOR PLDs Simplify Design of Counters and Other Devices (PAL20X1 0) ... 2-676

The PAL20RA 10 Story -The Customization of a Standard Product (PAL20RA 10) .. 2-683

PLDs Abound: RAM-Based Logic Joins In ... 2-699

Introduction to Programmable Array Logic ... 2-702

Logical Alternatives in Supermini Design .. 2-711

Conference Proceedings
New PAL Device Architecture Extends Design Flexibility (PAL32VX10) .. 2-719

PROSE Architecture and Design Methodology (PMS14R21) ... 2-724

Blazing Fast PAL Devices Enable New Application Areas (PAL 16R8-1 0, PAL 1 OH20P/G8) 2-730

Sales Offices ... 2-740

~ Monolithic W Memories ~ vii

Table of Contents

PAL Device Data Book

Programming and Quality

Design Software for Programmable Logic ... 3-1
PALASM 2 Logic Design Software Package .. 3-5

PLPL: Programmable Logic Programming Language .. 3-7

Logic Cell Array and Development Systems .. 3-21

ABEL-GATES .. 3-35

CUPL .. 3-43

LOG/iC ... 3-66

Programming ... 3-76
Programmer Reference Guide .. 3-81

ProPAL, HAL and ZHAL Devices Program .. 3-104

Testability .. 3-108
Designing Testable Combinatorial Circuits .. 3-109

Designing Testable Sequential Circuits ... 3-114

Designing Testable State Machines .. 3-118

Designing for Testability with the PROSE Device ... 3-123

Using Test Vectors .. 3-128

Technology and Quality
MONOX 3 Oxide-Isolated Process ... 3-130

Prod uct Ass u rance .. 3-132

Test and Finish Operations .. 3-138

IMOX Product Technology and Reliability .. 3-140

IMOX Product Reliability .. 3-141

IMOX Product Testability ... 3-144

ECL Technology ... 3-150

CMOS HiPAC Technology .. 3-155

CMOS EE Technology ... 3-159

Latchup in CMOS Integrated Circuits .. 3-160

Metastability ... 3-164

Packaging
Surface Mount Technology .. 3-170

PAL Device Package Outlines .. 3-179

PAL Device Package Thermal Characteristics ... 3-208

AmPAL Device Package Outlines ... 3-224

AmPAL Device Package Thermal Characteristics .. 3-231

PALASM 2 Software User Documentation

Introduction .. 4-1

Install PALASM 2 Software .. 4-15

Run the Software .. 4-29

Build a Boolean Equation Design ... 4-61

Build a State Machine Design ... 4-95

Build Simulation ... 4-137

Program the Device .. 4-169

PALASM 2 Software Glossary .. 4-183

PALASM 2 Software Index ... 4-189

vi i i ~ Monolithic W Memories l1

Table of Contents

Data Sheets

PAL/PLD Device Menu ... 5-3

TTL/CMOS PAL Devices ... 5-9

PAL16RA8 .. 5-11

PAL 16RP8A Series ... 5-17
PAL16P8A

PAL16RP8A

PAL16RP6A

PAL16RP4A

PAL 16R8 Family .. 5-26

PAL 16R8D Series .. 5-29

PAL16L8D

PAL16R8D

PAL16R6D

PAL16R4D

PAL 16R88 Series .. 5-31

PAL16L88

PAL16R88

PAL16R68

PAL16R48

PALC16R80-25 Series .. 5-33

PAL 16L80-25

PAL 16R80-25

PAL 16R60-25

PAL 16R40-25

PAL 16R88-2 Series .. 5-35

PAL16L88-2

PAL16R88-2

PAL16R68-2

PAL16R48-2

PAL 16R8A Series .. 5-37

PAL16L8A

PAL16R8A

PAL16R6A

PAL16R4A

PAL 16R88-4 Series .. 5-39

PAL16L88-4

PAL16R88-4

PAL16R68-4

PAL16R48-4

PAL 16R8A-2 Series .. 5-41

PAL16L8A-2

PAL16R8A-2

PAL16R6A-2

PAL16R4A-2

PAL 16R8A-4 Series .. 5-43

PAL16L8A-4

PAL16R8A-4

PAL16R6A-4

PAL16R4A-4

PALC16R8Z-25 Series ... 5-50
PAL 16L8Z-25

PAL 16R8Z-25

PAL 16R6Z-25

PAL16R4Z-25

PAL 16X4 ... 5-51

PAL 1 OH8 Series ... 5-56

PAL10H8

PAL12H6

PAL14H4

PAL16H2

PAL16C1

PAL10L8

PAL12L6

PAL14L4

PAL16L2

PAL32VX10A ... 5-70

PAL32VX10 .. 5-70

PALC22V1 OH-25 .. 5-79

PALC22V1 OH-35 .. 5-79

PAL22RX8A ... 5-87

PAL20RA 10-20 ... 5-95

PAL20RA10 .. 5-97

PAL20RS10 Series ... 5-103

PAL20S10

PAL20RS10

PAL20RS8

PAL20RS4

PAL20X10A Series .. 5-113

PAL20L10A

PAL20X1OA

PAL20X8A

PAL20X4A

~ Monolithic W Memories ~ ix

Table of Contents

PAL20RS Family ... 5-122 nUCMOS AmPAL Devices .. 5-167

x

PAL20RS8 Series .. 5-125
PAL20LS8
PAL20RS8
PAL20R68
PAL20R48

PAL20RS8-2 Series .. 5-126
PAL20LS8-2
PAL20RS8-2
PAL20R68-2
PAL20R48-2

PAL20RSA Series .. 5-12S
PAL20LSA
PAL20RSA
PAL20R6A
PAL20R4A

PAL20RSA-2 Series .. 5-130
PAL20LSA-2
PAL20RSA-2
PAL20R6A-2
PAL20R4A-2

PALC20RSZ-35 Series .. 5-133
PALC20LSZ-35
PALC20RSZ-35
PALC20R6Z-35
PALC20R4Z-35

PALC20RSZ-45 Series .. 5-133
PALC20LSZ-45
PALC20RSZ-45
PALC20R6Z-45
PALC20R4Z-45

PAL6L16A .. 5-141
PAL8L14A .. 5-141

PAL12L10 Series ... 5-147
PAL12L10
PAL14LS
PAL16L6
PAL1SL4
PAL20L2
PAL20C1

PAL32R16 .. 5-15S

General Information .. 5-164

AmPAL23SS-20 .. 5-169
AmPAL23SS-25 .. 5-169

AmPAL16RS Family .. 5-1S4
AmPAL 16RSD Series ... 5-1S3

AmPAL16LSD
AmPAL16RSD
AmPAL16R6D
AmPAL16R4D

AmPAL 16RS8 Series ... 5-197
AmPAL16LS8
AmPAL16RS8
AmPAL16R68
AmPAL16R48

AmPAL 16RSAL Series .. 5-197
AmPAL 16LSAL
AmPAL16RSAL
AmPAL 16R6AL
AmPAL 16R4AL

AmPAL 16RSA Series ... 5-197
AmPAL16LSA
AmPAL16RSA
AmPAL16R6A
AmPAL16R4A

AmPAL 16RSO Series .. 5-197
AmPAL16LSO
AmPAL16RSO
AmPAL16R60
AmPAL16R40

AmPAL 16RSL Series .. 5-197
AmPAL16LSL
AmPAL16RSL
AmPAL16R6L
AmPAL16R4L

AmPAL 16RS Series .. 5-197
AmPAL16LS
AmPAL16RS
AmPAL16R6
AmPAL16R4

AmPAL 1SPS8 ... 5-202
AmPAL1SPSAL ... 5-202
AmPAL 1SPSA ... 5-202
AmPAL 1SPSO ... 5-202
AmPAL1SPSL .. 5-202

~ Monolithic W Memories ~

Table of Contents

AmPALC29MA16-35 .. 5-209 AmPAL20RP10A Series ... 5-306
AmPALC29MA16-45 .. 5-209 AmPAL22P10A
AmPALC29M16-35 ... 5-231 AmPAL20RP10A
AmPALC29M16-45 ... 5-231 AmPAL20RP8A

AmPAL20RP6A
AmPAL22V10-15 ... 5-249 AmPAL20RP4A
AmPAL22V1 OA ... 5-260
AmPAL22V10 .. 5-260 AmPAL20L 1 08 .. 5-306

AmPAL20L 1 0-20 ... 5-306
AmPAL20XRP10 Family .. 5-271 AmPAL20L10AL .. 5-306

AmPAL20XRP10-20 Series ... 5-286
AmPAL22XP10-20 PROSE/PlS Sequencers .. 5-313
AmPAL20XRP10-20 PMS14R21 A .. 5-315
AmPAL20XRP8-20 PMS14R21 ... 5-315
AmPAL20XRP6-20
AmPAL20XRP4-20 PLS167-33 ... 5-331

AmPAL20XRP10-30L Series .. 5-286 PLS168-33 ... 5-331
AmPAL22XP 1 0-30L PLS105-37 ... 5-331
AmPAL20XRP10-30L
AmPAL20XRP8-30L FPC/PEG Sequencers ... 5-337

AmPAL20XRP6-30L Am29PL141 Fuse Programmable Controller 5-339

AmPAL20XRP4-30L Am2971 Programmable Event Generator 5-365

AmPAL20XRP10-30 Series ... 5-286
AmPAL22XP10-30 ECl PAL Devices ... 5-379

AmPAL20XRP10-30 PAL 1 0020EV IEG8 ... 5-381

AmPAL20XRP8-30 PAL 1 OH20EV/EG8 .. 5-381

AmPAL20XRP6-30 PAL 1 OH20G8 .. 5-382

AmPAL20XRP4-30 PAL 1 OH20P8 ... 5-386

AmPAL20XRP1 0-40L Series .. 5-286
AmPAL22XP10-40L
AmPAL20XRP10-40L
AmPAL20XRP8-40L

HAllZHAl Devices ... 5-391
ZHAL20A Series .. 5-394
ZHAL24A Series .. 5-401

AmPAL20XRP6-40L
AmPAL20XRP4-40L

Military PAL Devices .. 5-415
Introduction .. 5-417

AmPAL20RP10 Family ... 5-291
AmPAL20RP1 08 Series ... 5-306

AmPAL22P108
AmPAL20RP108
AmPAL20RP88
AmPAL20RP68
AmPAL20RP48

Military PAUPLD Device Menu .. 5-418
Military 20-pin PAL Devices ... 5-421
Military 24-pin PAL Devices ... 5-439
DC/AC Parametric Testing ... 5-469
JAN 38510 and Standard Military Drawings 5-470
Military Screening .. 5-474
Quality Programs ... 5-477

AmPAL20RP1 OAL Series ... 5-306
AmPAL22P1 CAL

logic Cell Array .. 5-481
M2064 .. 5-483

AmPAL20RP10AL M2018 .. 5-483
AmPAL20RP8AL
AmPAL20RP6AL

Military M2064/M2018 ... 5-518

AmPAL20RP4AL Electrical Definitions ... 5-531

~ Monolithic W Memories ~ xi

Table of Contents

Appendices

Logic Reference .. 6-1
Basic Logic Elements ... 6-1
Basic Storage Elements .. 6-8
Binary Numbers ... 6-15

Sig nal Polarity ... 6-19
Glossary ... 6-24

Competitive Cross-Reference .. 6-30

Worldwide Application Support .. 6-40

Sales Offices ... 6-41

xii ~ Monolithic mil] Memories ~

Alphanumeric Product Index

Am29PL141 5-339 AmPAL20XRP4-40L 5-286 PAL16L2 5-56 PAl20R8A-2 5-130
Am2971 5-365 AmPAL20XRP6-20 5-286 PAL16L6 5-147 PAl20R88 5-125
AmPAl16L8 5-197 AmPAL20XRP6-30L 5-286 PAL16L8D 5-29 PAl20R88-2 5-126
AmPAL16L8A 5-197 AmPAL20XRP6-30 5-286 PAL16L8A 5-37 PAl20RA10 5-97
AmPAL16L8AL 5-197 AmPAL20XRP6-40L 5-286 PAL16L8A-2 5-41 PAl20RA10-20 5-95
AmPAL16L88 5-197 AmPAL20XRP8-20 5-286 PAL16L8A-4 5-43 PAl20RS10 5-103
AmPAL16L8D 5-183 AmPAL20XRP8-30L 5-286 PAL16L88 5-31 PAl20RS4 5-103
AmPAL16L8L 5-197 AmPAL20XRP8-30 5-286 PAL16L88-2 5-35 PAl20RS8 5-103
AmPAL16L80 5-197 AmPAL20XRP8-40L 5-286 PAL16L88-4 5-39 PAl20S10 5-103
AmPAl16R4 5-197 AmPAL20XRP10-20 5-286 PAL16P8A 5-17 PAl20X4A 5-113
AmPAl16R4A 5-197 AmPAL20XRP1 0-30L 5-286 PAL16R4D 5-29 PAl20X8A 5-113
AmPAL16R4AL 5-197 AmPAL20XRP10-30 5-286 PAL16R4A 5-37 PAl20X10A 5-113
AmPAL16R48 5-197 AmPAL20XRP1 0-40L 5-286 PAL16R4A-2 5-41
AmPAL16R4D 5-183 PAL16R4A-4 5-43 PAl22RX8A 5-87
AmPAL16R4L 5-197 AmPAL22P10A 5-306 PAL16R48 5-31
AmPAl16R40 5-197 AmPAL22P10AL 5-306 PAL16R48-2 5-35 PAL32R16 5-158
AmPAL16R6 5-197 AmPAL22P108 5-306 PAL16R48-4 5-39 PAL32VX10 5-70
AmPAL16R6A 5-197 AmPAL22V10 5-260 PAL16R6D 5-29 PAL32VX10A 5-70
AmPAL 16R6AL 5-197 AmPAL22V10-15 5-249 PAL16R6A 5-37
AmPAl16R68 5-197 AmPAL22V10A 5-260 PAL16R6A-2 5-41 PAL10020EV/EG8 5-381
AmPAL16R6D 5-183 AmPAL22XP10-20 5-286 PAL16R6A-4 5-43
AmPAL16R6L 5-197 AmPAL22XP10-30L 5-286 PAL16R68 5-31 PALC 16LSO-25 5-33
AmPAL16R60 5-197 AmPAL22XP10-30 5-2S6 PAL16R68-2 5-35 PALC16L8Z-25 5-50
AmPAl16R8 5-197 AmPAL22XP10-40L 5-2S6 PAL16R68-4 5-39 PALC16R40-25 5-33
AmPAl16R8A 5-197 PAL16R8D 5-29 PALC16R4Z-25 5-50
AmPAL 16RSAL 5-197 AmPAl23S8-20 5-169 PAL16R8A 5-37 PALC16R60-25 5-33
AmPAl16RS8 5-197 AmPAL23SS-25 5-169 PAL16RSA-2 5-41 PALC16R6Z-25 5-50
AmPAL16RSD 5-183 PAL16RSA-4 5-43 PALC16RSO-25 5-33
AmPAL16RSL 5-197 AmPALC29M16-35 5-231 PAL16RS8 5-31 PALC16RSZ-25 5-50
AmPAL16R80 5-197 AmPALC29M 16-45 5-231 PAL16RS8-2 5-35 PALC20L8Z-35 5-133

AmPALC29MA 16-35 5-210 PAL16R88-4 5-39 PALC20R4Z-35 5-133
AmPAL18P8A 5-202 AmPALC29MA 16-45 5-210 PAL16RA8 5-11 PALC20R6Z-35 5-133
AmPAL18P8AL 5-202 PAL16RP4A 5-17 PALC20R8Z-35 5-133
AmPAL18P88 5-202 M2018 5-483 PAL16RP6A 5-17 PALC20L8Z-45 5-133
AmPAl18P8L 5-202 M2064 5-483 PAL16RP8A 5-17 PALC20R4Z-45 5-133
AmPAL18P80 5-202 PAL16X4 5-51 PALC20R6Z-45 5-133

PAL6L16A 5-141 PALC20R8Z-45 5-133
AmPAl20L 1 OAL 5-306 PAL8L14A 5-141 PAL1SL4 5-147 PALC22V10H-25 5-79
AmPAl20L108 5-306 PALC22V10H-35 5-79
AmPAl20L 10-20 5-306 PAL10H8 5-56 PAL20C1 5-147
AmPAl20RP4A 5-306 PAL10H20G8 5-382 PAL20L2 5-147 PLS105-37 5-331
AmPAl20RP4AL 5-306 PAL 1 OH20EV/EG8 5-381 PAL20L10A 5-113 PLS167-33 5-331
AmPAl20RP48 5-306 PAL10H20P8 5-3S6 PAL20L8A 5-12S PLS168·33 5-331
AmPAl20RP6A 5-306 PAL10LS 5-56 PAL20L8A-2 5-130
AmPAl20RP6AL 5-306 PAL20L88 5-125 PMS14R21 5-315
AmPAl20RP68 5-306 PAL12H6 5-56 PAL20LS8-2 5-126 PMS14R21A 5-315
AmPAl20RPSA 5-306 PAL12L6 5-56 PAL20R4A 5-12S
AmPAl20RPSAL 5-306 PAl12L10 5-147 PAL20R4A-2 5-130
AmPAl20RPS8 5-306 PAL20R48 5-125
AmPAl20RP10A 5-306 PAL14H4 5-56 PAL20R48-2 5-126
AmPAl20RP10AL 5-306 PAL14L4 5-56 PAL20R6A 5-12S
AmPAl20RP108 5-306 PAL14LS 5-147 PAL20R6A-2 5-130
AmPAl20XRP4-20 5-2S6 PAL20R68 5-125
AmPAl20XRP4-30L 5-2S6 PAL16C1 5-56 PAL20R68-2 5-126
AmPAl20XRP4-30 5-2S6 PAL16H2 5-56 PAL20R8A 5-128

~ MonolithIc m MemorIes ~ xiii

Notes

xiv ~ Monolithic WMemorles ~

PAL Device Handbook

PAL Device Data Book

Introduction ~
Applications ...

1·i

Table of Contents

Introduction .. 1-1
What is a PLD? ... 1-1

What Advantages do PLDs Have Over Other Implementations? ... 1-4

Product Overview ... 1-7
PAL Devices ... 1-7

Nomenclature ... 1-7

Programmable Sequencers ... 1-19

LeA Devices .. 1-20

1·ii ~ Monolithic W Memories ~

Introduction

The Programmable Array Logic device, commonly known as the
PAL®device, was invented at Monolithic Memories over 12 years
ago. The concept forthis revolutionary type of device sprang forth
as a simple solution to the shortcomings of discrete TTL logic.

The successfully proven PROM technology which allowed the
end user to "write on silicon" provided the technological basis
which made this kind of device not only possible, but very popular
as well.

The availability of design software made it much easierto design
with programmable logic. As designers were freed from the
drudgery of low-level implementation issues, new complex de­
signs were easier to implement, and could be completed more
quickly.

This chapter outlines some basic information essential to those
who are unfamiliar with Programmable Logic devices (PLDs).
The information may also be useful to those who are current users
of programmable logic. The specific issues which need to be
addressed are:

• What is a PLD?
• What other implementations are possible?
• What advantages do PLDs have over other

implementations?

What is a PLD?

In general, a programmable logic device is a circuit which can be
configured by the user to perform a logic function. Most "stan­
dard" PLDs consist of an AND array followed by an OR array,
either (or both) of which is programmable. Inputs are fed into the
AND array, which performs the desired AND functions and
generates product terms. The product terms are then fed into the
OR array. In the OR array, the outputs of the various product
terms are combined to produce the desired outputs. There are
three fundamental types of standard PLD: the PROM, the PAL
device, and the PLS device.

PROMs

PROMs are usually thought of as memory elements. However,
the PROM has a fixed AND array (which decodes the memory
address) followed by a programmable OR array (Figure 1). For

each of a given set of input combinations (addresses), it gener­
ates a value which has been programmed into the device.

~~ ~~ ~~ ~

r-'\
L........I

, , .
FIXED AND

ARRAY

-$- INDICATES PROGRAMMABLE CONNECTION

+ INDICATES FIXED CONNECTION

401 01

PROGRAMMABLE OR
ARRAY

A , ,

Figure 1. PROM Array Structure

~ Monolithic W Memories ~ 1·1

Introduction

PAL Devices

The PAL device has a programmable AND array followed by a
fixed OR array (Figure 2). The fact that the AND array is
programmable makes it possible for the devices to have many
inputs. The fact that the OR array is fixed makes the devices small
(which means less expensive) and fast.

PLS Devices

The PLS (Programmable Logic-based sequencer) devices are
based on the standard PLA architecture (Figure 3), where both
the AND and the OR arrays are programmable. This arrange­
ment allows for greater overall flexibility. The architecture is a bit
more costly in terms of die size and speed, so for simple logic
functions, a PAL device is usually more cost effective. However,
this architecture is very effective for sequencers, where the
flexibility allows larger state machines than might fit in a PAL
device.

Other PLDs

In addition to the basic sum-of-products PLDs, some more
complex PLDs dedicated to sequencing are available, most
notably the PROSETM device and the Am29PL 141. Their archi­
tectures are described elsewhere in the handbook, but their fun­
damental benefits are the same as those of the more traditional
PLDs.

g ~'~ g g

PROGRAMMABLE AND ARRAY

IN I ATES PROG M N -$- D C RA MABLE CO NECTION

+ INDICATES FIXED CONNECTION

In practice, the distinctions between architectures are not as
significant as the differences between the types of functions to be
performed. Forthis reason, this handbook is organized primarily
into discussions about PAL devices and discussions about se­
quencers, whether those sequencers be implemented in PAL
devices, PLS devices, or one of the dedicated sequencers.

What Other Implementations Are
Possible?

There are essentially four alternatives to programmable logic:

• Discrete Logic
• Gate Arrays
• Standard Cell Circuits
• Full Custom Circuits

Discrete Logic

Discrete logic, or conventional TIL logic, has the advantage of
familiarity; hence its popularity. It is also quite inexpensive when
only unit cost is considered. The drawback is that the implemen­
tation of even a simple portion of a system may require many units
of discrete logic. There are "hidden" costs associated with each
unit that goes into a system, which can render the overall system
more expensive.

~
FIXED OR ARRAY .

~

~
~
~
~
~
L.I

n
~
~

1=<
L.I

Figure 2. PAL Device Array Structure
401 02

1·2 ~ Monolilhlc W Memories ~

IntroductiOL'1

Designing with discrete chips can also be very tedious. Each
design decision directly affects the layout of the board. Changes
are difficultto make. The design is also more difficult to document,
making it harder to debug and maintain later. These items all
contribute to a long design cycle when discrete chips are used
extensively.

Gate Arrays

Gate arrays have been increasing in popularity. The attractive­
ness of this solution lies in the device's flexibility. By packing the
functions into the device, a great majority of the available silicon
is actually used. Since such a device is customized for an
application, it would seem to be the optimum device for that
application.

However, one also pays substantial development costs, espe­
cially in the case of a design which needs changes after silicon
has already been processed. Even though the unit costs are
generally quite low for gate arrays, the volumes required to make
their use worthwhile excludes them as a solution for many
designers. This fact, added to the long design cycle and high risk
involved, make this solution practical for only a limited number of
designers.

Standard Cell Circuits

Standard cell circuits are quite similar to gate arrays, their main
advantage being that they consist of a collection of different parts
of circuits which have already been debugged. These circuits are

~ ~~ ~~ ~~ ~¢Z

.
PROGRAMMABLE AND ARRAY

-$- INDICATES PROGRAMMABLE CONNECTION

401 03

then assembled and collected to perform the desired functions.
This can ideally lead to reduced turnaround from conception to
implementation, and a much more efficient circuit.

The drawback is that even though the individual components of
the circuit have been laid out, a complete layout must still be per­
formed to arrange the cells. Instead of just customizing the metal
interconnections, as is done in a gate array, the circuit must be
developed from the bottom up. Development costs can be even
higherthan forgate arrays, and despite the standard cell concept,
turnaround time often tends to be longer than planned. Again, the
volume must be sufficiently high to warrant the development
costs.

Full Custom Circuits

Full custom deSigns require that a specific chip be designed from
scratch to perform the needed functions. The intent is to provide
a solution which gives the designer exactly what is needed forthe
application in question; no more and no less. Ideally, not a square
micron of silicon is wasted. This normally results in the smallest
piece of silicon possible to fit the needs of the design, which in turn
reduces the system cost. Understandably, though, development
costs and risks for such adesign are extremely high, and volumes
must be commensurately high in order for such a solution to be
of value.

PROGRAMMABLE

~ OR ARRAY
.. . .

1'\

~
F<
~
F<
F<
~
F<
~
F<
y

,

Figure 3. PLA Array Architecture

~ PRonolithlc W Memories ~ 1·3

01

I~troduction

What Advantages do PLDs Have Over
Other Implementations?

As user-programmable semicustom circuits, PLDs provide a
valuable compromise which combines many of the benefits of
discrete logic with many of the benefits of other semicustom
circuits. The overall advantages can be found in several areas:

• Ease of design
• Performance
• Reliability
• Cost savings

Ease of Design

The support tools available for use in designing with PLDs greatly
simplify the design process by making the lower-level implemen­
tation details transparent. In a matter of one or two hours, a first
time PLD user can learn to design with a PAL device, program it,
and implement the design in a system.

The design support tools consist of design software and a
programmer. The design software is used in generating the
design; the programmer is used to configure the device. The
software provides the link between the higher-level design and
the low-level programming details.

All of the available design software packages (of which Monolithic
Memories' PALASM® software is the most widely used) perform
essentially the same tasks. The design is specified with relatively
high-level constructs; the software takes the design and converts
it into a form which the programmer uses to configure the PLD.
Most software packages provide logic simulation, which allows
one to debug the design before actually programming a device.
The high-level design file also serves as documentation of the
design. This documentation can be even easier to understand
than traditional schematics.

Depending on the capabilities desired, a device programmer can
cost anywhere from under $1,000.00 to around $15,OOO.00for a
high-volume production programmer. Many PLD users do not
find it necessary to purchase a programmer; it is often quite cost
effective and convenient to have either the manufacturer or an
outside distributor do the programming forthem. Fordesign and
prototyping, though, it is very helpful to have a programmer; this
allows one to implement designs immediately.

The convenience of programmable logic lies in the ability to
customize a standard, off-the-shelf product. PLDs can be found
in stock to suit a wide range of speed and power requirements.
The variety of architectures available also allows a choice of the
properfunctionality forthe application at hand. Thus adesign can
be implemented using a standard device, with the end result
essentially being a custom device. If a design change is needed,
it is a simple matter to edit the original design and then pro~ram
a new device, or, in the case of reprogrammable CMOS devices,
erase and reprogram the old device.

Board layout is vastly simplified with the use of programmable
logic. PLDs offer great flexibility in the location of inputs and
outputs on the device. Since larger functions are implemented
inside the PLD, board layout can begin once the inputs and

outputs are known. The details of what will actually be inside the
PLD can be worked out independently of the layout. In many
cases, any needed design changes can be taken care of entirely
within the PLD, and will not affect the PC board.

Performance

Speed is one of the main reasons that designers use PAL devices.
The TTL PAL devices presently on the market can provide equal
or better performance than the fastest discrete logic available.
ECL PAL devices extend the benefits of programmable logic to
the even higher-speed realm of ECL logic. Today's fastest PAL
devices are being developed on the newest technologies to gain
every extra nanosecond of performance.

Performance cannot come strictly at the expense of power
consumption. Since PLDs can be used to replace several
d'iscrete circuits, the power consumption of a PLD may well be
less than that of the combined discrete devices. As more PLDs
are developed in CMOS technology, the option for even lower
power becomes available, including zero standby power devices
for systems which can tolerate only minute standby power con­
sumption.

Reliability

Reliability is an area of increasing concern. As systems get larger
and more complex, the increase in the amount of circuitry tends
to reduce the reliability of the system; there are "more things to go
wrong". Thus a solution which inherently reduces the number of
chips in the system will contribute to higher reliability. Aprogram­
mabie logic approach can provide device quality levels up to 50
parts per million (ppm), while also providing a more reliable
solution due to the smaller number of devices required.

With the reduction in units and board space, PC boards can be
laid out less densely, which greatly improves the reliability of the
board itself. This also reduces crosstalk and other potential
sources of noise, making the operation of the system cleaner and
more reliable.

Cost

For any design approach to be practical, it must be cost effective.
Cost is almost always a factor in considering a new design or a
design change. But the calculation of total system cost can be
misleading if not all aspects are considered. Many of the costs
can be elusive or difficult to measure. For example, it is difficult
to quantify the cost of market share lost due to late product
introduction.

The greatest savings over a discrete design are derived from the
fact that a single PLD can replace several discrete chips. Board
space requirements can drop by 25% or more when PLDs, are
used. Figure 4 illustrates some of the costs of the various
solutions discussed so far, with many of the factors that may not
always be considered included for comparison. These involve
such items as inventory costs, inspection costs, test costs, board
materials costs, and of course the very costly time spent design­
ing and debugging such systems, and isolating and replacing
units which fail. With each design change, the cost of a custom

1·4 ~ Monolithic W Memories ~

~
f
~
eo =: e: a

~
~
~
~
~
tf

....
in

PLDs: BLANK

PLDs: FACTORY
PROGRAMMED

DISCRETE LOGIC

GATE ARRAYS

STANDARD CELLS

FULL CUSTOM

Unit
Cost

Range

Low-Med

Low-Med

Low-Med

Low

Low

Very Low

--

NREsl Purchase Design Gate Count
Development Costs Volume Flexibility per Device

For Best
Economics

None 5K-200K Med 20()-2K

Low 10K-200K Med 20()-2K

None 1K-10K Low 10-30

Med-High 10K-200K Med-High 1K-10K

High 100K-300K Med-High 1 K-10K

High 200K and Up High 1K-60K

Figure 4. Cost and Design-time Comparisons

Engineering
Design
Time

1/2 Week

3-10
Weeks

1 Week

12-40
Weeks

26-52
Weeks

1-2 Yrs.

-~--

r.J

Design
Turnaround

Time

Short
(1-10 Days)

Moderate
(8-10 Wks.)

Short
(1-10 Days)

Long
(3-9 Mos.)

Long
(6-12 Mos.)

Long
(6-12 Mos.)

Cost
of Each

Design Change

Very Low

Med

Med

High

High

High

-:J ..
""l o
D­
C
() ..
O·
:J

Introduction

solution rises dramatically, while that of a user-customizable
approach is minimal. The relationship between the various
alternatives is summarized in Figure 5.

Another economic benefitof the use of PLDs is that when one PAL
device is used in several different designs, as is often the case,
the user has not com mitted that device to anyone of the particular
designs until the device has been programmed. This means that
inventory can be stocked for several different designs in the form
of one device. As requirements change, the parts can be
programmed to fit the need. And in the case of reprogram mabie
CMOS devices, one is not committed even after programming.

There is also a cost-effective PLD solution for high-volume
production. Just as a ROM is a PROM which has been hard-wired
for mass production, HAL® (Hard Array Logic) devices can be
produced in high volumes for extra cost savings. This mask­
programmed version can be produced in high volume ~ith
unparalleled quality. In addition, in the event that production
quantities for your system show an unexpected increase, the
equivalent PAL or ProPALTM devices (in-factory programmed
PAL devices) can be quickly obtained and programmed in your
factory, by Monolithic Memories, or through distribution to cover
the temporary shortage. More details on HAL and ProPAL
devices are provided on page 3-104 of the Data Book.

One final subtle cost issue is derived from the ease with which a
competitorcan copy a design. PLDs have a unique feature called
a security fuse, whose purpose is to protect a design from being
copied. By using secured PLDs extensively in a system, one can

COST

safely avoid having one's system easily deciphered. The added
design security provided by this feature can buy extra market
time, forcing competitors to do their own original design work
rather than copying the designs of others.

Summary

Programmable logic provides the means of creating semi-custom
designs with readily available standard components. There is a
wide variety of PLDs; PAL devices are most widely used, and
perform well for basic logic and some sequencing functions.
Other dedicated sequencers provide the circuitry required to
implement more complex designs.

By assuming some of the attributes of gate arrays, programmable
logic provides the cost savings of any other semicustom device,
without the extra engineering costs, risks, and design delays.
Reliability is also enhanced as quality increases and board
complexity decreases.

The design tasks are greatly simplified due to the design tools
which are now available. Design software and device program­
mers allow top-down high-level designs, with a minimum of time
spent on actual implementation issues. Simulation allows some
design debug before a device is programmed.

For all of these reasons, programmable logic has become, and
will continue to be, the design methodology of choice among
digital systems designers.

~
~

DEVELOPMENT TIME

Figure 5. Development Cost vs Time for Alternative Logic
Implementations

1·6 ~ Monolithic W Memories ~

Product Overview

Introduction

Monolithic Memories and Advanced Micro Devices offer a wide
variety of PLDs, implemented in a variety of technologies. In this
section, we will briefly discuss the device families, and look at the
various architecture, speed, and power options. More specific
device information can be found in the individual data sheets in
Section 5. Discussions on some of the special architectural fea­
tures of many of the devices can also be found in their respective
datasheets.

There are three basic PLD areas addressed by Monolithic
Memories' devices:

• PAL devices-general purpose
• Programmable sequencers-state machines
• LCATM devices-high density

The largest application area is that covered by the PAL devices.
There is a wide variety of PAL devices, ranging from simple
devices that address general logic design problems to more
sophisticated devices that deal with more complex problems.

There is also a series of sequencers which are not PAL devices,
featuring architectures particularly well suited to sequencing
operations. While there are PAL devices that work well as state
machines in addition to their other applications, these dedicated
sequencers have given up some of their generality to provide
optimal state machine solutions.

The final area covered is that of high-density design, addressed
by the LCA devices. The LCA device takes the approach of a
programmable gate array to provide a PLD with many usable
gates.

Design software radically simplifies the design of any circuit in a
PLD. PALASM software is used for all of the PLDs except the LCA
devices. The LCAdevices make useof XACTTM software for logic
configuration. The PALASM software documentation is in
Section 4; XACT software is discussed more fully on
page 3-17 of the Data Book.

PAL Devices

PAL devices are available in three different technologies:

• TIL
• CMOS
• ECL

The CMOS devices often provide the same functions as the TTL
devices, and can be used in the same sockets, with the added
benefit of lower power. Thus the TIL and CMOS devices will be
discussed together, followed by a summary of specific CMOS
issues. ECLdevices require completely different design consid­
erations, and cannot be interchanged with TIL or CMOS devices.
They will therefore be discussed separately.

PAL devices generally have a mnemonic naming scheme, which
provides some basic information about the devices' capabilities.

Because Monolithic Memories and Advanced Micro Devices
recently merged, there are presently two slightly different naming
conventions in use. Some devices were originally Monolithic
Memories' devices; some were Advanced Micro Devices'; some
devices were produced by both companies before the merger. In
order to minimize the confusion after the merger, the old device
names are being maintained. The two naming conventions will be
discussed separately. Throughout this handbook, "Am PAL"
designates products originally from Advanced Micro Devices.

Note that all products that Monolithic Memories and Advanced ..
Micro Devices were producing before the merger are still in
production.

Monolithic Memories Nomenclature

Monolithic Memories originally set the PAL device naming stan­
dard. An example of an older device name is shown in Figure 1.

As devices have become faster, and as CMOS has become
available, it has become necessary to change the way we
describe the performance of newer devices. While the conven­
tion is slightly different, it does make it easier to see exactly what
the speed grade and power level of a device are. An example of
such a new device is shown in Figure 2.

Advanced Micro Devices
Nomenclature

The Advanced Micro Devices nomenclature follows the Mono­
lithic Memories nomenclature with a few modifications. A typical
older device name is shown in Figure 3.

Advanced Micro Devices also found the need to modify the
nomenclature with the advent of faster devices and CMOS
devices. An example of a newer device is shown in Figure 4.

The relationship between a device and its name will become
apparent in the Tables following.

The package designators also differ. A cross reference for com­
mercial packages is shown in Table 1.

MONOLITHIC ADVANCED
PACKAGE MEMORIES MICRO DEVICES

Plastic DIP N P
Plastic SKINNYDIP® NS P
Ceramic DIP J D
Ceramic SKINNYDIP JS D
PLCC-20-pin NL J
PLCC from 24-pin DIP, FN J
JEDEC

PLCC from 24-pin DIP NL -
PLCC from 28-pin DIP FN J
LCC L L

Table 1. Package Designators

~ Monolithic W Memories l1 1·7

Product Overview

PAL _If
NUMBER OF INPUTS ~
ARCHITECTURE

Notes:

Eel devices also have either '10H' or '100' following 'PAl'to
indicate the ECl family compatibility.

The number of inputs includes feedback, if feedback exists.

The architecture code varies. It is usually mnemonic, and the
meanings of each code will be listed in each of the following
sections.

POWER LEVEL

SPEED GRADE

NUMBER OF OUTPUTS
(OR FLlP·FLOPS) 402 01

The speed grade indicates the propagation delay. In general, the
speeds are as follows:

blank: 35 ns (Note that -2 and -4 devices are slower)
A: 25 ns
B: 15 ns
D: 10 ns

The power level can be one of three designators:

blank: 'full power', 180-240 rnA
-2: 'half power', 90-105 rnA
-4: 'quarter power', 45-55 rnA

Figure 1. MonolithIc Memories Nomenclature for Older Products

Notes:

PAL j~ T
C

16

TECHNOLOGY ~
NUMBER OF INPUTS

ARCHITECTURE

The technology designator can be one of four codes:

blank = TTL
C = CMOS

10H = 10KH ECl
100 = 100K ECl

The number of inputs includes feedback, if feedback exists.

f t SPEED GRADE

L POWER LEVEL

NUMBER OF OUTPUTS
(OR FLlP·FLOPS)

402 02

The architecture code varies. It is usually mnemonic, and the
meanings of each code will be listed in each of the following
sections.

The power level can be one of four designators:

blank: 'full power', 180-240 rnA
H: 'half power', 90-105 rnA
Q: 'quarter power', 45-55 rnA
Z: 'zero power', <0.1 rnA standby current

Figure 2. New Monolithic Memories Nomenclature

1·8 ~ Monolithic W Memories ~

Product Overview

AmPAL ~ l'
NUMBER OF INPUTS ~
ARCHITECTURE _____ -.J

402 03

Notes:

The number of inputs includes feedback, if feedback exists.

The architecture code varies. It is usually mnemonic, and the
meanings of each code will be listed in each of the following
sections.

A L

T l POWER LEVEL

L SPEED GRADE

NUMBER OF OUTPUTS
(OR FLIP·FLOPS)

The speed grade indicates the propagation delay. In general, the
speeds are as follows:

blank: 35 ns
A: 25 ns
B: 15 ns
D: 10 ns

The power level can be one of three designators:

blank: 'full power', 180-240 rnA
L: 'half power', 90-105 rnA

Q: 'quarter power', 45-55 rnA

Figure 3. Advanced Micro Devices Nomenclature for Older Products

~P&-D~C 22

TECHNOLOGY

NUMBER OF INPUTS

402 04 ARCHITECTURE

Notes:

The technology designator can be one of two codes:

blank = TTL
C = CMOS

The number of inputs includes feedback, if feedback exists.

The architecture code varies. It is usually mnemonic, and the
meanings of each code will be listed in each of the following
sections.

XP 10

POWER LEVEL

SPEED GRADE

NUMBER OF OUTPUTS
(OR FLIP-FLOPS)

The speed grade indicates the propagation delay in nano­
seconds.

The power level can be one of three designators:

blank: 'full power', 180-240 rnA
L: 'half power', 90-105 rnA

Figure 4. New Advanced Micro Devices Nomenclature

~ Monolithic WMemorles ~ 1·9

..

Product Overview

AMD/MMI Programmable Logic Product
Cross Reference Guide

As a merged company, the combined PLD offerings of AMD/MMI
provide the PLD user the broadest line of PLDs available from one
supplier. The combined product offering also contains a number
of devices for which each of the original separate companies had
equivalent devices.

This is a guide to the devices that are equivalent and can be
directly substituted (with exceptions as noted in the comments
section).

These are the only products which are direct substitutes for each
other, or which we will be encouraging customers to use as
alternate parts.

AMD MMI

TTL and CMOS PAL Devices

TTL PAL devices are used more widely by far than devices made
with any other technology. They provide very high speed without
the design requirements of ECL. CMOS devices provide the
benefits of reduced power consumption and erasability. Each
CMOS device is either TIL compatible, or has a TTL-compatible
version.

The available devices can be generally placed into four functional
groups:

• Simple combinatorial
• Simple registered
• Sequencer
• Asynchronous

COMMENTS
Part Number Speed/Power Part Number Speed/Power

AmPAL16R8D 10/180 PAL16R8D 10/180
AmPAL16R6D 10/180 PAL16R6D 10/180
AmPAL16R4D 10/180 PAL16R4D 10/180
AmPAL16L8D 10/180 PAL16L8D 10/180

AmPAL16R88 15/180 PAL16R88 15/180
AmPAL16R68 15/180 PAL16R68 15/180
AmPAL16R48 15/180 PAL16R48 15/180
AmPAL16L88 15/180 PAL16L88 15/180

AmPAL 16R8AL 25/90 PAL16R88-2 25/90
AmPAL 16R6AL 25/90 PAL16R68-2 25/90
AmPAL 16R4AL 25/90 PAL16R48-2 25/90
AmPAL 16L8AL 25/90 PAL16L88-2 25/90

AmPAL16R8A 25/180 PAL16R8A 25/180 AMD-20-ns tsu
AmPAL16R6A 25/180 PAL16R6A 25/180 AMD-20-ns tsu
AmPAL16R4A 25/180 PAL16R4A 25/180 AMD-20-ns tsu
AmPAL16L8A 25/155 PAL16L8A 25/180

AmPAL16R80 35/45 PAL16R88-4 35/55
AmPAL16R60 35/45 PAL16R68-4 35/55
AmPAL16R40 35/45 PAL16R48-4 35/55
AmPAL16L80 35/45 PAL16L8B-4 35/55

AmPAL16R8L 35/90 PAL16R8A-2 35/90
AmPAL16R6L 35/90 PAL16R6A-2 35/90
AmPAL16R4L 35/90 PAL16R4A-2 35/90
AmPAL16L8L 35/80 PAL16L8A-2 35/90

AmPAL16R8 35/180 PAL16R8A-2 35/90 Note that the MMI part requires half the power
AmPAL16R6 35/180 PAL16R6A-2 35/90 (90 mA Icc) of the AMD part (180 mA)
AmPAL16R4 35/180 PAL16R4A-2 35/90
AmPAL16L8 35/180 PAL16L8A-2 35/90

AmPAL18P8L 35/90 PAL10H8 35/90 The 18P8L can replace any of the MMI parts,
AmPAL18P8L 35/90 PAL12H6 35/90 but the reverse is not necessarily true.
AmPAL18P8L 35/90 PAL14H4 35/90
AmPAL18P8L 35/90 PAL16H2 35/90
AmPAL18P8L 35/90 PAL10L8 35/90
AmPAL18P8L 35/90 PAL12L6 35/90
AmPAL18P8L 35/90 PAL14L4 35/90
AmPAL18P8L 35/90 PAL16L2 35/90

1·10 ~ Monolithic W Memories ~

I
I

Product Overview

Simple Combinatorial Devices

These PAL devices provide simple combinatorial functions
quickly and efficiently .. There is a wide selection of devices,
allowing the user to choose the right device for the given
application.

There are five basic characteristics that differentiate these
devices:

• The number of inputs
• The number of outputs
• The number of product terms per output
• The speed: propagation delay
• Power consumption

Several of the devices have internal feedback, which routes
output pins back as inputs. This is generally coupled with
programmable three-state capability, so that the output pins can
be used as outputs, inputs, or bidirectional pins.

Most of the devices have fixed output polarity. The AmPAL 18P8,
AmPAL22P10, PAL16P8, PAL20S10, and AmPAL22XP10 all
have programmable output polarity.

The PAL20S10 has a feature called "product term steering",
which allows product terms to be allocated between outputs. This
is described more fully on page 5-103 of the Data Book.

The AmPAL22XP10 has built-in exclusive-OR gates on each
output.

In addition to the devices that are purely combinatorial, there are
also registered devices with flip-flops that can be bypassed to
give a combinatorial device. Although these devices are not
listed in Table 2, they can be used as combinatorial devices. The
best example is the PAL22V10, which is widely used as a com­
binatorial device.

A summary of the architecture codes for these types of devices
is shown in Table 2.

The combinatorial devices are listed in Table 3, with their logic,
speed, and power characteristics.

CODE MEANING EXAMPLE

H Active-HIGH outputs PAL10H8
L Active-LOW outputs PAL16L8
P Programmable output polarity PAL16P8
C Complementary outputs PAL16C1
XP Exclusive-OR gate, prog. AmPAL22XP10

polarity
S Product term steering PAL20S10

Table 2. Combinatorial Architectures

STA.NDBY
PRODUCT SPEED leA DATA SHEET

DEVICE NAME INPUTS OUTPUTS TERMS/OUTPUT (t'D In ns) (m) PAGE NO.

PAL8L14A 8 14 1 25 90 5-141
PAL6L16A 6 16 1 25 90 5-141

PAL10H8 10 8 2 35 90 5-56
PAL12H6 12 6 2,4 35 90 5-56
PAL14H4 14 4 4 35 90 5-56
PAL16H2 16 2 8 35 90 5-56
PAL 10LS 10 S 2 35 90 5-56
PAL12L6 12 6 2,4 35 90 5-56
PAL14L4 14 4 4 35 90 5-56
PAL16L2 16 2 S 35 90 5-56
PAL16C1 16 2 16 40 90 5-56

PAL16L8D 16· S 7 10 1S0 5-29
AmPAL16LSD 10 1S0 5-183

PAL16LSB 15 1S0 5-31
AmPAL16L8B 15 1S0 5-197

PALC16LSZ-25 25 0.1 5-50
PALC16L80-25 25 45 5-33
PAL16LSB-2 25 90 5-35

AmPAL16L8AL 25 90 5-197
PAL16LSA 25 1S0 5-37

AmPAL 16LSA 25 155 5-197
PAL16LSB-4 35 55 5-39

AmPAL16LSO 35 45 5-197
PAL16LSA-2 35 90 5-41

AmPAL16LSL 35 SO 5-197
AmPAL16LS 35 155 5-197

PAL16LSA-4 55 50 5-43

Table 3. Simple Combinatorial PAL Devices

~ Monolithic W Memories ~ 1·11

..

DEVICE NAME INPUTS

PAL16P8A 16·

AmPAL18P8B 18·
AmPAL 18P8AL
AmPAL18P8A
AmPAL18P8Q
AmPAL18P8L

PAL12L10 12
PAL14L8 14
PAL16L6 16
PAL18L4 18
PAL20L2 20
PAL20C1 20

PAL20L8B 20·
PAL20L8B-2
PAL20L8A
PALC20L8Z-35
PAL20L8A-2
PALC20L8Z-45

AmPAL20L 1 OB 20·
AmPAL20L 10-20
AmPAL20L 1 OAL

PAL20L10A

PAL20S10 20·

AmPAL22P10B 22·
AmPAL22P10AL
AmPAL22P10A

AmPAL22XP10-20 22·
AmPAL22XP10-30L
AmPAL22XP10-30
AmPAL22XP10-40L

• Includes feedback
t. Depending on polarity

1·12

Product Overview

PRODUCT
OUTPUTS TERMS/OUTPUT

8 7

8 8

10 2
8 2,4
6 2,4
4 4,6
2 8
2 16

8 7

10 3

10 0-16tt

10 8

10 216t

t Has an exclusive-OR gate
tt Product term steering

STANDBY
SPEED Icc

(tpD In ns) (rnA)

25130·· 180

15 180
25 90
25 180
35 55
35 90

40 100
40 100
40 100
40 100
40 100
40 100

15 210
25 105
25 210
35 0.1
35 105
45 0.1

15 210
20 165
25 105
30 165

35 240

15 210
25 105
25 210

20 210
30 105
30 180
40 105

Table 3. Simple Combinatorial PAL Devices (Continued)

~ Monolithic W Memories ~

DATA SHEET
PAGE NO.

5-17

5-202
5-202
5-202
5-202
5-202

5-147
5-147
5-147
5-147
5-147
5-147

5-125
5-126
5-128
5-133
5-130
5-133

5-306
5-306
5-306
5-113

5-103

5-306
5-306
5-306

5-286
5-286
5-286
5-286

Product Overview

Simple Registered Devices

A basic registered device is generally equivalent to a combinato­
rial device with registers on the outputs for signal synchronization.
All such devices have feedback from the flip-flops back into the
array as inputs, so that they can also be used for very fast small
state machines. The differentiating characteristics of these de­
vices are:

• The number of inputs
• The number of outputs
• The number of flip-flops
• The number of product terms per output
• The speed: maximum clock frequency
• Power consumption

Most of these devices have dedicated clock and output enable
pins. On devices such as the PAL 16R4, which have some
dedicated combinatorial outputs, only the registered outputs are
controlled by the enable pin; the combinatorial outputs have
programmable three-state functions.

The PAL22Vl0, AmPAL22RP10 family, and AmPAL22XRP10
family have programmable three-state outputs. With these fami­
lies, the clock pin may also be used as a logic input if desired.

I

The PAL 16X4 has extra bit-pair decoding circuitry which makes
it especially well suited to arithmetic operations. This is discussed
more fully on page 2-53 in the combinatorial logic section.

DEVICE NAME INPUTS OUTPUTS FLIP-FLOPS

PAL16R8D 16" 8 8
AmPAL16R8D

PAL16R88
AmPAL16R88

PALC16R8Z-25
PALC16R80-25
PAL16R88-2

AmPAL16R8AL
PAL16R8A

AmPAL16R8A
PAL16R88-4

AmPAL16R80
PAL16R8A-2

AmPAL16R8L
AmPAL16R8

PAL16R8A-4

PAL16R6D 16" 8 6
AmPAL16R6D

PAL16R68
AmPAL16RS8

PALC16R6Z-25
PALC16RSO-25
PAL16RS8-2

AmPAL16RSAL
PAL16RSA

The simpler devices all have active-LOW outputs. The
PAL 16RP8 family, PAL22Vl0, AmPAL22RP 10 family,
AmPAL22XRP10 family, PAL20RS10 family, and the PAL32R16
have programmable polarity.

The PAL20RSl 0 family and PAL32R16 have product term steer­
ing, as was discussed above for the PAL20S 10.

The outputs of the PAL32R16 can also be programmed to be
combinatorial in banks of eight. In addition, the PAL32R16 has
multiple clock, enable, and TTL-level preload pins.

The PAL22Vl0 has two programmable initialization product
terms: a synchronous preset term and an asynchronous reset
term. These terms control all flip-flops.

A summary of the architecture codes for these types of devices
is shown in Table 4. The devices are summarized in Table 5.

CODE MEANING EXAMPLE

R Registered outputs PAL16R8
X Exclusive-OR gates PAL16X4
RP Registered with prog. polarity PAL16RP8
RS Registered with term steering PAL20RS10
V Versatile AmPAL22Vl0

Table 4. Registered Architectures

STANDBY
PRODUCT SPEED leA DATA SHEET

TERMS/OUTPUT (fM4X In MHz) (m) PAGE NO.

8 55 180 5-29
55 180 5-183
37 180 5-31
40 180 5-197

28.5 0.1 5-50
28.5 45 5-33
25 90 5-35

28.5 90 5-197
25 180 5-37

28.5 180 5-197
16 55 5-39
18 45 5-197
16 90 5-41
18 90 5-197
18 180 5-197
11 50 5-43

8 55 180 5-29
55 180 5-183
37 180 5-31
40 180 5-197

28.5 0.1 5-50
28.5 45 5-33
25 90 5-35

28.5 90 5-197
25 180 5-37

Table 5. Simple Registered PAL Devices

~ Monollthlo W Memories ~ 1·13

Product Overview

SPEED STANDBY
PRODUCT (fMAX Icc DATA SHEET

DEVICE NAME INPUTS OUTPUTS FLIP-FLOPS TERMS/OUTPUT In MHz) (mA) PAGE NO.

AmPAL16R6A 28.5 180 5-197
PAL16R68·4 16 55 5·39

AmPAL16R60 18 45 5·197
PAL16R6A·2 16 90 5-41

AmPAL16R6L 18 90 5-197
AmPAL16R6 18 180 5-197

PAL16R6A-4 11 50 5-43

PAL16R4D 16* 8 4 8 55 180 5-29
AmPAL16R4D 55 180 5-183

PAL16R48 37 180 5-31
AmPAL16R48 40 180 5-197

PALC16R4Z-25 28.5 0.1 5-50
PALC16R40-25 28.5 45 5-33
PAL16R48-2 25 90 5-35

AmPAL 16R4AL 28.5 90 5-197
PAL16R4A 25 180 5-37

AmPAL16R4A 28.5 180 5-197
PAL16R48-4 16 55 5-39

AmPAL16R40 18 45 5-197
PAL16R4A-2 16 90 5-41

AmPAL16R4L 18 90 5-197
AmPAl16R4 18 180 5-197

PAL16R4A-4 11 50 5-43

PAL16X4 16* 8 4 8t 14 225 5-51

PAL16RP8A 16* 8 8 8 25** 180 5-17
PAL16RP6A 16* 8 6 8 25** 180 5-17
PAL16RP4A 16* 8 4 8 25** 180 5-17

PAL20R88 20* 8 8 8 37 210 5-125
PAL20R88-2 25 105 5-126
PAL20R8A 25 210 5-128
PALC20R8Z-35 20 0.1 5-133
PAL20R8A-2 16 105 5-130
PALC20R8Z-45 15.3 0.1 5-133

PAL20R68 20* 8 6 8 37 210 5-125
PAL20R68-2 25 105 5-126
PAL20R6A 25 210 5-128
PALC20R6Z-35 20 0.1 5-133
PAL20R6A-2 16 105 5-130
PALC20R6Z-45 15.3 0.1 5-133

PAL20R48 20* 8 4 8 37 210 5-125
PAL20R48-2 25 105 5-126
PAL20R4A 25 210 5-128
PALC20R4Z-35 20 0.1 5-133
PAL20R4A-2 16 105 5-130
PALC20R4Z-45 15.3 0.1 5-133

Table 5. Simple Registered PAL Devices (Continued)

1·14 ~ MonolithIc W MemorIes l1

Product Overview

SPEED STANDBY
PRODUCT ('MAX Icc DATA SHEET

DEVICE NAME INPUTS OUTPUTS FLIP-FLOPS TERMS/OUTPUT In MHz) (rnA) PAGE NO.

PAL20RS10 20* 10 10 0-16tt 20 240 5-103
PAL20RS8 20* 10 8 0-16tt 20 240 5-103
PAL20RS4 20* 10 4 0-16tt 20 240 5-103

AmPAL22V10-15 22* 10 0-1O§ 8-16§§ 40 180 5-249
PALC22V10H-25 33.3 90 5-79

AmPAL22V10A 28.5 180 5-260
PALC22V10H-35 20 90 5-79

AmPAL22V10 18 180 5-260

AmPAL20RP10B 22* 10 10 8 37 210 5-306
AmPAL20RP10AL 25 105 5-306
AmPAL20RP10A 25 210 5-306

AmPAL20RP8B 22* 10 8 8 37 210 5-306
AmPAL20RP8AL 25 105 5-306
AmPAL20RP8A 25 210 5-306

AmPAL20RP6B 22* 10 6 8 37 210 5-306
AmPAL20RP6AL 25 105 5-306
AmPAL20RP6A 25 210 5-306

AmPAL20RP4B 22* 10 4 8 37 210 5-306
AmPAL20RP4AL 25 105 5-306
AmPAL20RP4A 25 210 5-306

I

PAL32R16 32*
I

16 16§ 0-16tt 16 280 5-158

* Includes feedback tt Product term steering
** With polarity fuse intact § Flip-flops can be bypassed
t Has an exclusive-OR gate §§ Has varied product term distribution

Table 5. Simple Registered PAL Devices (Continued)

PAL Devices as Sequencers

Several registered PAL devices have added features that make
them particularly well suited to state machine applications.

The basic differentiating aspects of these devices are:

* The number of inputs
• The number of outputs
• The number of flip-flops
• The type of flip-flop possible (D, T, J-K, S-R, latch,

and/or buried)
• The number of product terms per output
• The speed: maximum clock frequency
• Power consumption

The PAL20X1 0 series, AmPAL20XRP1 0 series, PAL22RX8, and
PAL32VX1 0 all have an exclusive-OR gate that makes it possible
to design with D, T, J-K, or S-R flip-flops. Since the PAL20X1 0 has
fewer product terms, it is best for counter-like applications. The
AmPAL20XRP1 0 series, PAL22RX8 and PAL32VX1 0 have more
product terms, for much more sophisticated state machines.

The AmPAL23S8 has six extra flip-flops that are permanently
buried in addition to eight output flip-flops. The PAL32VX1 0 and
AmPALC29M16 also have flip-flops that can be buried if they are
not needed at the outputs. An output pin can be used as an input
if its flip-flop is buried. All of these devices are ideal for applica­
tions incorporating internal state machines as part of the overall
design.

The PAL22RX8, PAL32VX10, and AmPAL23S8 have global
preset and reset control, making system initialization much
easier.

TheAmPALC29M16 is an electrically erasable device that has an
unusually flexible architecture. Almost all pins can be used as
inputs or outputs; both inputs and outputs can be registered,
latched, or combinatorial. There are two pins that can be used as
clocks. Global preset and reset functions are also provided.
Several of the flip-flops can be buried to provide internal state
machines. This device is HC and HCT compatible.

A summary of the architecture codes for these types of devices
is shown in Table 6.

The PAL devices best suited to state machine applications are
listed in Table 7.

~ Monolithic W Memories ~ 1·15

III

Product Overview

CODE MEANING EXAMPLE

X Exclusive-OR gates PAL20X10
XRP Exclusive-OR gates, prog. polarity AmPAL20XRP10
RX Registered, exclusive-OR gates PAL22RX8
S Sequencer AmPAL23S8
M Advanced macrocell AmPALC29M16
VX Varied term distribution, XOR gate PAL32VX10

Table 6. State Machine Architectures

STAND
SPEED BY

FLIP-FLOP PRODUCT (fMAX Icc DATASHEET
DEVICE NAME INPUTS OUTPUTS FLIP-FLOPS TYPES TERMS/OUTPUT In MHz) (mA) PAGE NO.

PAL20X10A 20" 10 10 D,T,JK,SR 212t 22.2 180 5-113
PAL20X8A 20" 10 8 D,T,JK,SR 212t 22.2 180 5-113
PAL20X4A 20" 10 4 D,T,JK,SR 212t 22.2 180 5-113

AmPAL20XRP10-20 22" 10 10 D,T,JK,SR 216t 30.3 210 5-286
AmPAL20XRP10-30L 22.2 105 5-286
AmPAL20XRP10-30 22.2 180 5-286
AmPAL20XRP10-40L 14.3 105 5-286

AmPAL20XRP8-20 22" 10 8 D,T,JK,SR 2/6,8t 30.3 210 5-286
AmPAL20XRP8-30L 22.2 105 5-286
AmPAL20XRP8-30 22.2 180 5-286
AmPAL20XRP8-40L 14.3 105 5-286

AmPAL20XRP6-20 22" 10 6 D,T,JK,SR 2/6,8t 30.3 210 5-286
AmPAL20XRP6-30L 22.2 105 5-286
AmPAL20XRP6-30 22.2 180 5-286
AmPAL20XRP6-40L 14.3 105 5-286

AmPAL20XRP4-20 22" 10 4 D,T,JK,SR 2/6,8t 30.3 210 5-286
AmPAL20XRP4-30L 22.2 105 5-286
AmPAL20XRP4-30 22.2 180 5-286
AmPAL20XRP4-40L 14.3 105 5-286

PAL22RX8A 22" 8 8§ D,T,JK,SR 1/8t 28.5 210 5-87

AmPAL23S8-20 23· 8 14§ D,BO 6-12§§ 33 200 5-169
AmPAL23S8-25 28.5 200 5-169

AmPALC29M16-35 29" 16 16§ D,B,LO 8-16§§ 20 120 5-231
AmPALC29M16-45 15 120 5-231

PAL32VX10A 32" 10 10§ D,T,JK,SR, 1/8-16t 25 180 5-70
PAL32VX10 BO 22.2 180 5-70

" Includes feedback §§ Has varied product term distribution
t Has an exclusive-OR gate o B=flip-flops are or can be buried; L=latched outputs possible
§ Some flip-flops can be bypassed

Table 7. State Machine PAL Devices

1·16 ~ Monolithic W Memories l1

Product Overview

Asynchronous PAL Devices

Several PAL devices have been designed for applications that
require asynchronous control of flip-flops. The simplest devices
are the PAL20RA 10 and the PAL 16RAS. These devices essen­
tially consist of several flip-flops driven by a programmable AND
array and a fixed OR array. Thus the D-type flip-flops have
individually programmable clock, set, and reset lines. They also
have programmable polarity, and the flip-flops can be bypassed
to give combinatorial outputs.

These devices are also useful for replacing random discrete logic.
Each flip-flop is independent; the clocks can be gated if desired,
as can the set and reset lines. This provides for flexibility both
when replacing random gates and when designing logic that is
asynchronous in nature.

The AmPALC29MA 16 combines some of the advantages of the
AmPALC29M16 with the advantages of the PAL20RA 10. Most of
the AmPALC29M16 macrocell is preserved, except that each
flip-flop is given a programmable clock, set, and reset line. Each
output also has individual three-state control. This device is
electrically erasable, and is HC and HCT compatible.

A summary of the architecture codes for these types of devices
is shown in Table S. The asynchronous devices available are
summarized in Table 9.

CODE MEANING EXAMPLE

RA Registered, asynchronous PAL20RA10
MA Asynchronous macrocell AmPALC29MA16

Tabla 8. Asynchronous Architectures

CMOS PAL Devices

PAL devices have recently become available in CMOS technol­
ogy, providing performance competitive with that of many bipolar

devices, but with reduced power consumption. The functions of
these devices have been discussed above, along with the TIL
devices. The particular characteristics ofthe CMOS versions are
discussed below.

Zero-Power vs Low-Power

Two basic types of CMOS PAL devices are available: those that
dissipate essentially no power when in a quiescent state, and
faster devices which draw a nominal amount of current even
when quiescent. Devices are thus classified as "zero-power" or
"low-power". The low-power devices still require far less current
than their bipolar equivalents.

The basic difference between zero-power and low-power devices
is the wake-up circuitry used in the zero-power devices. Any time
a signal changes, the device wakes up in order to respond to the
signal. After the transition is complete, the device goes "back to ~
sleep", as long as no other signals are changing. This wake-up
circuitry exacts a slight speed penalty, usually about 5 ns, but in
applications where minimal power dissipation is crucial, the
benefits of zero-power operation greatly outweigh the extradelay.

The PALC16RSZ family actually has a "turbo product term". This
product term allows the device to operate either in zero-power or
low-power mode. Since this choice has been provided by a
product term, it is actually possible to have a device idle in zero­
power mode, and then switch into low-power mode for faster
operation. This is particularly appropriate for devices that tend to
operate in bursts, with idle periods between bursts.

HCvs HCT

CMOS devices can be characterized as being HC and/or HCT
compatible. HC-compatible devices have outputs that swing
"rail-to-rail", or from ground to VCC. They also have an input
threshold which is about 2.5 V. These devices are normally used
when driving other CMOS devices.

PRODUCT SPEED STANDBY DATA SHEET
DEVICE NAME INPUTS

PAL16RAS

PAL20RA 10-20
PAL20RA10

AmPALC29MA 16-35
AmPALC29MA 16-45

• Includes feedback
•• With polarity fuse intact
tt Has product term steering

16·

20·

29·

OUTPUTS TERMS/OUTPUT (tpc In ns)

S 4 30··

10 4 20··
30··

16 4-12tt 35
45

Table 9. Asynchronous PAL Devices

~ Monolithic W Memories l1

Icc (rnA) PAGE NO.

170 5-11

200 5-95
200 5-97

120 5-209
120 5-209

1·17

Product Overview

HCT-compatible devices have TIL-level output voltages; that is,
a VOH of about 3.5 V and a VOL of about 0.5 V. The input
threshold is usually adjusted to 1.5 V, which is the threshold of TIL
devices. These devices are more suitable for a mixed TTL and
CMOS system.

Roughly speaking, HC and HCT devices can be interchanged.
However, since HCT outputs do not swing rail-to-rail, if they drive
another CMOS device, that device will draw more power. HCT
outputs are faster, have more drive, and are more latch-up
immune. The input threshold is less critical, and is important only
in very touchy situations.

Note that some devices are both HC and HCT compatible. This
means that they have aquick, high drive output rise to a TIL VOH,
and then a slower rise to VCC, ultimately providing rail-to-rail
levels. This is illustrated in Table 10.

INPUT VOL VOH
FAMILY THRESHOLD (V) (V) (V)

HC 2.5 0 Vcc
HCT 1.5 0.5 3.5
HCIHCT 1.5 0 3.5 -> Vee

Table 10. CMOSITTL Compatibility

SPEED
DEVICE NAME INPUTS OUTPUTS (tpD In ns)

PALC16L8Z-25 16" 8 25
PALC16R8Z-25 16" 8 25
PALC16R6Z-25 16" 8 25
PALC16R4Z-25 16* 8 25

PALC16L8Q-25 16" 8 25
PALC16R8Q-25 16" 8 25
PALC16R6Q-25 16" 8 25
PALC16R4Q-25 16" 8 25

PALC20L8Z-35 20* 8 35
PALC20L8Z-45 20" 8 45

PALC20R8Z-35 20" 8 35
PALC20R8Z-45 20" 8 45

PALC20R6Z-35 20" 8 35
PALC20R6Z-45 20" 8 45

PALC20R4Z-35 20" 8 35
PALC20R4Z-45 20" 8 45

PALC22V10H-25 22* 10 25
PALC22V10H-35 22" 10 35

AmPALC29M16-35 29" 16 35
AmPALC29M16-45 29" 16 45

AmPALC29MA 16-35 29" 16 35
AmPALC29MA16-45 29" 16 45

UV Erasable vs Electrically Erasable

CMOS PAL devices come in one of two basic technologies:

• UV erasable
• Electrically erasable

UV-erasable devices use EPROM technology in implementing
the array. They can be erased by exposure to ultraviolet light if the
device is packaged in a windowed package. These packages are
more expensive, so the devices are also available in lower-cost
plastic packages. UV-erasable devices in plastic packages are
not erasable, and are thus referred to as "One-lime Program­
mable", or OTP devices.

Electrically erasable devices can be erased by providing the
appropriatE> signals to the device. No window is required in the
package, and the erase time is much faster than the erase time
of UV-erasable devices. Erasure is implemented by the device
programmer as a portion of the overall programming algorithm.

Summary of CMOS PAL Devices

The PAL devices available in CMOS have been described along
with their bipolar counterparts in the preceding pages. They are
summarized in Table 11, along with their power, compatibility, and
erasability characteristics.

STANDBY DATA SHEET
Icc (mA) COMPATIBILITY ERASABILITY PAGE NO.

0.1/45"" HCIHCT UV 5-50
0.1/45*" HCIHCT UV 5-50
0.1/45** HCIHCT UV 5-50
0.1/45** HC/HCT UV 5-50

45 HCT UV 5-33
45 HCT UV 5-33
45 HCT UV 5-33
45 HCT UV 5-33

0.1 HCIHCT UV 5-133
0.1 HC/HCT UV 5-133

0.1 HCIHCT UV 5-133
0.1 HCIHCT UV 5-133

0.1 HCIHCT UV 5-133
0.1 HC/HCT UV 5-133

0.1 HC/HCT UV 5-133
0.1 HC/HCT UV 5-133

90 HCT UV 5-79
90 HCT UV 5-79

120 HCIHCT EE 5-231
120 HC/HCT EE 5-231

120 HCIHCT EE 5-209
120 HCIHCT EE 5-209

" Includes feedback
"" With turbo term Table 11. Summary of CMOS PAL Devices

1·18 ~ Monolithic m Memories ~

Product Overview

Eel PAL Devices

For a long period of time, PlDs were available only for TIl­
compatible systems. More recently, however, PAL devices have
been introduced which address the users of ECl logic.

Two basic families of ECl logic are addressed by the ECl PAL
devices. These families differ in their voltage ranges and the
compensation built into the circuitry (Table 12). These differences
also affect noise margins and thresholds. Referto page 3-150for
more information on ECl design.

The ECl PAL devices presently have a 6-ns propagation delay;
the differences between the devices can be found in the architec­
turos. Tho PAL 1 OH20PS and PAL 1 OH20GS are simpler devices
which are compatible with other 10KH logic; the former is a
combinatorial device with programmable polarity, the latter has
output latches. 80th devices have product term steering for
added flexibility in allocating logic resources. These features are
described in more detail on page 5-3S2.

The PAL 1 OH20EV lEGS and PAL 1 0020EV lEGS are 10KH and
1 OOK compatible options of the same device, respectively. These
devices have more product terms than the first two devices, and
have outputs that can be programmed as combinatorial or regis­
tered/latched. These devices also have global reset and preset
controls.

A summary of the architecture codes for these types of devices
is shown in Table 13. The ECl PAL devices and their basic
characteristics are summarized in Tables 14 and 15.

FAMilY VEE COMPENSATION

10KH -5.2V±5% Voltage
100K -4.5V± 0.3V Voltage, temperature

Table 12_ 10KH ECl vs 100K ECl

Programmable Sequencers

Many PAL devices can be used to design very fast, efficient
sequencers. Optimal among these devices are the PAl32VX1 0
and the AmPAl23SS. However, there are additional devices with
entire architectures dedicated to the task of sequencing.

Since these devices are primarily intended for use as state
machines, the important characteristics to be evaluated are:

• The number of inputs
• The number of outputs
• The number of states that can be implemented
• The number of branches available from any state
• The speed: maximum clock frequency
• Power consumption

The programmable sequencers available are shown in Table 16. D
The PMS14R21 (also known as the PROSETM device) actually
consists of a PAL device for branching, followed by a PROM to
store the states. This device also has the Diagnostics-On-ChipTM
(DOCTM) testability circuitry, allowing the device to be inserted
into a serial scan path. This is described more thoroughly on page
3-123 of the testability section.

The PlS105, PlS167, and PlS16S are based on the standard
PlS architecture, where both the AND array and the OR array are
programmable. S-R flip-flops are used to minimize the need for
specifying 'HOLD' conditions. There is also a "complement
array", which makes it easier to define default state transitions.

CODE MEANING EXAMPLE

P Combinatorial, prog. polarity PAl10H20PS
G latched outputs PAl10H20G8
EG Latched or combinatorial PAL 1 aH/1 a020EGS
EV Registered or combinatorial PAL 1 OH/1 0020EVS

Table 13. ECl PAL Device Architectures

PRODUCT SPEED DATA SHEET
DEVICE NAME INPUTS OUTPUTS FLIP-FLOPS TERMS/OUTPUT (tpD or fMAX) lEE (mA) PAGE NO.

PAl1aH20P8 20· S a a-8tt 6 ns 210 5-3S5
PAl10H20GS 20· 8 8§ 0-8tt 6 ns 225 5-382
PAL 1 OH20EV/EGS 20· S 8§ 8-12§§ 125 MHz 220 5-381

• Includes feedback § Flip-flops can be bypassed
tt Has product term steering §§ Has varied product term distribution

Table 14. 10KH-Compatlble PAL Devices

PRODUCT SPEED DATA SHEET
DEVICE NAME INPUTS OUTPUTS FLIP-FLOPS TERMS/OUTPUT (fMAX) lEE (mA) PAGE NO.

PAL 1 0020EV/EGS 20· 8 8§ 8-12§§ 125 MHz 220 5-381

• Includes feedback § Flip-flops can be bypassed
§§ Has varied product term distribution

Table 15. 100K-Compatible PAL Devices

~ Monolithic W Memories ~ 1·19

Product Overview

The PMS14R21, PLS105, PLS167, and PLS168 are all sup­
ported by PALASM software, using aconvenient entry format that
has been optimized for state machines. This essentially makes
it possible to transfer a state diagram directly to a design file
without the need for manual logic transformations or calculations.

The Am29PL 141 Fuse Programmable Controller (FPC) is an in­
struction-based sequencer. This is especially convenient for de­
signers who are more comfortable using instruction-based de­
vices. The design is implemented more as microprocessor
program might be written. Indeed, the architecture itself, which is
described in more detail on page 5-339, resembles that of a
simple processor. This device has its own assembler which is
used to reduce the sequencer "program" into a file that can be
used to program the device.

The Am2971 is a Progammable Event Generator. It is a versatile
timing device that can be used as a digital substitute for analog
delay lines or as a general-purpose user-programmable timing/
waveform generator.

LeA Devices

Large-scale designs are now possible with the introduction of the
Logic Cell Array (LCA) devices. These devices can be thought of

STATES
DEVICE NAME INPUTS OUTPUTS (MAX)

PMS14R21A 8 8 128
PMS14R21

PLS105-37 16 8 <64*
PLS167-33 14 6 <128*
PLS168-33 12 8 <1028*

Am29PL141 6 16 64

Am2971 6 14 N/A

as programmable gate arrays, and provide an efficient, cost­
effective means of implementing dense designs within a single
PLD.

Unlike other PLDs, which are non-volatile, LCAdevices make use
of static RAM technology. This makes them easy to develop, easy
to test and debug, and reprogrammable.

There is an entire family of support software and hardware
packages available to aid in the design of LCA applications.
These are described in more detail on page 3-17.

The architecture of an LCA device resembles that of a gate array
more closely than a traditional PLD. It has an array of Configur­
able Logic Blocks (CLBs) that can be connected via a variety of
interconnect resources. There are also Input/Output Blocks
(lOBs) for transferring the signals on and off the chip.

The main features that distinguish one LCA device from another
are:

• The number of I/O pins
• The number of Configurable Logic Blocks
• The speed: internal maximum toggle frequency
• Power consumption

The available devices are summarized in Table 17.

BRANCHES SPEED Icc DATA SHEET
PER STATE (fMAX In MHz) (rnA) PAGE NO.

4 30 210 5-315
25 210 5-315

* 37 200 5-331
* 33 200 5-331
* 33 200 5-331

2 20 450 5-339

N/A 85 310 5-365

* Depends highly on state diagram topology. May be limited by number of product terms or number of flip-flops.

Table 16. Programmable Sequencers

SPEED STANDBY DATA SHEET
DEVICE NAME I/O PINS CLBs (INTERNAL TOGGLE Icc (rnA) PAGE NO.

fMAX In MHz)

M2064-70 58 64 70 5 5-483
M2064-50 50 5 5-483
M2064-33 33 5 5-483

M2018-50 74 100 50 5 5-483
M2018-33 33 5 5-483

Table 17. LCA Devices

1·20 ~ Monolithic W Memories ~

PAL Device Handbook

Introduction ___

Applications ~

Appendices .r.

2·i

Table of Contents

Beginner's Guide .. 2-1
Constructing a Combinatorial Design ... 2-2
Constructing a Registered Design ... 2-9
Programming a Device .. 2-14

PLD Design Methodology ... 2-21
Conceptualizing a Design ... 2-22
Device Selection Considerations ... 2-23
Implementing a Design .. 2-26
Simulation ... 2-30
Device Programming and Testing .. 2-33

Combinatorial Logic Design ... 2-35
Encoders and Decoders .. 2-35
Multiplexers .. 2-43
Comparators .. 2-45
Range Decoders .. 2-52
Adders/Arithmetic Circuits .. 2-53
Latches .. 2-58

Registered Logic Design .. 2-61
Binary Counters .. 2-67
Modulo Counters .. 2-75
Gray-Code Counters ... 2-87
Johnson Counters .. 2-88
Shift Registers ... 2-90·
Asynchronous Registered Designs ... 2-94

State Machine Design ... 2-101
State Machine Theory .. 2-103
State Machine Types: Mealy & Moore ... 2-105
Device Selection Considerations ... 2-107
PAL Devices as Sequencers .. 2-111
Programmable Logic Sequencers (PLS) .. 2-117
PROSE Sequencer (PMS14R21) .. 2-120
Fuse Programmable Controller (Am29PL141) ... 2-121
State Machine Design Tutorial .. 2-122

2·ii ~ Monollthlo IFlll Memories ~

Table of Contents

Microprocessor-Based Systems .. 2-131
Interfacing to the 8086/80186/80286 ... 2-134

8086 and Am7990 LANCE Interface ... 2-135

8086 and Am9516 Universal DMA Controller Interface ... 2-138

80286 to Am9568 Data Ciphering Processor Interface .. 2-143

80286 to Am8530 Interface ... 2-147

Interfacing to the 68000/68020 ... 2-149

The 68000 and Am8530 Interface with Interrupts .. 2-150

68000 and Am7990 LANCE Interface ... 2-153

68000 to AmZ8068 Data Ciphering Processor Interface ... 2-155

68000 and Dual Am9516 DMA Controllers Interface .. 2-159

Am8530 to 68020 Interface .. 2-162

Interfacing to the 8088 ... 2-165

8088 to Am9516 UDC Interface .. 2-166

80186 to Am9516 Universal DMA Controller Interface .. 2-170

68000 Interrupt Controller .. 2-172

Memory Control .. 2-179
Memory Handshake Logic ... 2-184

Customize a DRAM Controller Using Advanced PAL Devices ... 2-187

8088 to Am2968 Interface .. 2-202

MC68000 to Am2968 Interface ... 2-210

General-Purpose Dual-Port Arbiter ... 2-215

Dynamic Memory Control State Sequencer .. 2-224

8-Bit Error Detection and Correction .. 2-229

Fuse Programmable Controller Simplifies Cache Design .. 2-239

PAL22RX8A Provides Control and Addressing for a 32-Location-Deep RAM-Based LIFO 2-250

Graphics and Image Processing Systems ... 2-257
Small System Video Controller ... 2-261

PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs ... 2-275

Digital Signal Processing ... 2-283
Waveform Generator .. 2-286

PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs ... 2-292

Analog to Digital Conversion ... 2-297

PAL Devices, PROMs, FIFOs and Multipliers Team up to

Implement Single-Board High-Performance Audio Spectrum Analyzer .. 2-307

Bus Interface ... 2-325
Unibus Interrupt Controller ... 2-328

A MULTIBUS Arbiter Design for 10 MHz Processors ... 2-333

MULTIBUS to Am9516 Interface .. 2-338

Z-BUS and 8088/8086 Interface .. 2-342

VME Bus Control Simplified with PLDs ... 2-347

~ Monolithic m Memories ~ 2·iii

Table of Contents

Communications .. 2-357
B8ZS Coding Using CMOS ZPAL Devices .. 2-362

HDB3 Line Coding Using PAL Devices ... 2-384

ZPAL Devices Implement D4 Frame Synchronization ... 2-404

T1 Extended Superframe Provides Transmission Error Detection ... 2-431

lime Division Multiplexing with the LCA Device .. 2-435

LCA Device Implements an 8-Bit Format Converter in a PBX Switching Module .. 2-444

Serial Data Link Controller ... 2-453

OAM Encoder in a ZPAL Device .. 2-456

PAL Devices Implement the Full V.32 Convolution Encoder ... 2-463

PLD Devices Implement 4B3T Line Transcoder .. 2-475

PALC22V10 Creates Manchester Encoder Circuit ... 2-499

Peripheral Design .. 2-507
Building an ESDI Translator Using the M2064 Logic Cell Array .. 2-509

Writing a Tape Drive Controller in PROSE ... 2-519

GCR (4B-5B) Encoder/Decoder ... 2-541

Industrial Control ... 2-547
Stepper Motor Controllers .. 2-550

Shaft Encoders ... 2-558

Military Applications .. 2-579
Radiation Hardness .. 2-581

Article Reprints
Programmable Logic Device Preserves Pins, Product Terms (PAL32VX1 0) .. 2-589

PLD Programmability Extends its Sway Over Complex 1/0 (PALC29M/MA16) ... 2-593

PROSE Devices Simplify State Machine Design (PMS14R21) ... 2-601

Designing a State Machine with a Programmable Sequencer (PMS14R21) .. 2-607

FPCs and PLDs Simplify VME Bus Control (Am29PL141) .. 2-619

Fuse-Programmable Chip Takes Command of Distributed Systems (Am29PL 141) .. 2-633

PAL Device Buries Registers, Brings State Machines to Life (AmPAL23S8) .. 2-639

Programmable Event Generator Conquers Timing Restraints (Am2971) .. 2-644

Wait-State Remover Improves System Performance (PAL22V1 0) ... 2-648

PLDs Implement Encoder/Decoder for Disk Drives (PAL22V1 0) .. 2-651

Mixing Data Paths Expands Options in System Design (PAL22V1 0) .. 2-660

Programmable Logic Chip Rivals Gate Arrays in Flexibility (PAL22V1 0) ... 2-670

XOR PLDs Simplify Design of Counters and Other Devices (PAL20X1 0) ... 2-676

The PAL20RA 10 Story -The Customization of a Standard Product (PAL20RA 10) .. 2-683

PLDs Abound: RAM-Based Logic Joins In ... 2-699

Introduction to Programmable Array Logic ... 2-702

Logical Alternatives in Supermini Design .. 2-711

Conference Proceedings
New PAL Device Architecture Extends Design Flexibility (PAL32VX1 0) .. 2-719

PROSE Architecture and Design Methodology (PMS14R21) ... 2-724

Blazing Fast PAL Devices Enable New Application Areas (PAL 16R8-1 0, PAL 1 OH20P/G8) 2-730

Sales Offices ... 2-740

2·iv ~ Monolithic IFJJ) Memories ~

PLD Applications by Product

All design flies use PALASM 2 software unless otherwise noted.

PAL23S8 (PLPL Software)
Customize a DRAM Controller (2) .. 2-187, 2-639

PAL16RA8
HDB3 Line Coding Using PAL Devices .. 2-384

PAL 16P8 (See PAL18P8)
PAL 16RP8 (See PAL 16RP6)
PAL 16RP6
P:~1~~ryp~andShake Logic ... 2-184 E:.

4-Bit Counter ... 2-69

PAL16L8
Address Decoder ... 2-22
8086 and Am7990 LANCE Interface .. 2-135
8086 and Am9516 Universal DMA Controller Interface .. 2-138
80186 to'Am9516 Universal DMAControlier Interface ... 2-170
68000 and Am7990 LANCE Interface ... 2-153
MC68000 to Am2968 Interface .. 2-210
General-Purpose Dual-Port Arbiter (2) .. 2-215
8-Bit Error Detection and Correction (2) ... 2-229
Audio Spectrum Analyzer ... 2-307
MULTIBUS to Am9516 Interface ... 2-338
ZPAL Devices Implement 04 Frame Synchronization .. 2-404

PAL16R8
Basic Flip-Flops .. 2-17
Dual BCD Counter .. 2-77
Dynamic Memory Control State Sequencer .. 2-224
ZeBus and 8088/8086 Interface ... 2-342
B8ZS Coding Using CMOS ZPAL Devices .. 2-362
Stepper Motor Controllers .. 2-550
Shaft Encoders .. 2-558

PAL16R6
8088 to Am2968 Interface .. 2-202
Fuse Programmable Controller Simplifies Cache Design .. 2-239
Audio Spectrum Analyzer (2) .. 2-307
B8ZS Coding Using CMOS ZPAL Devices (2) ... 2-362
ZPAL Devices Implement 04 Frame Synchronization .. 2-404
T1 Extended Superframe Provides Transmission Error Detection ... 2-431
PLD Devices Implement 4B3T Line, Transcoder (2) ... 2-475
GCR (4B-5B) Encoder/Decoder .. 2-541

~ Monollthlo W Memories ~ 2-v

PLD Applications by Product

PAL16R4
8086 and Am7990 LANCE Interface .. 2-135
8086 and Am9516 Universal DMA Controller Interface .. 2-139
80286 to Am9568 Data Ciphering Processor Interface .. 2-143
80286 to Am8530 Interface (PLPL) .. 2-147
The 68000 and Am8530 Interface with Interrupts ... 2-150
68000 to AmZ8068 Data Ciphering Processor Interface .. 2-155
Am8530 to 68020 Interface (PLPL) .. 2-162
68000 Interrupt Controller .. 2-172
8088 to Am2968 Interface .. 2-202
A MULTIBUS Arbiter Design for 10 MHz Processors .. 2-333
MULTIBUS toAm9516 Interface ... 2-338
HDB3 Line Coding Using PAL Devices .. 2-384
Stepper Motor Controllers .. 2-550
Shaft Encoders .. 2-558

PAL16X4 (PALASM 1 Software)
Between Limits Comparator/Register .. 2-47
Adder .. 2-57
8-Bit Error Detection and Correction (2) ... 2-229

PAL18P8
General-Purpose Dual-Port Arbiter .. 2-215
Fuse Programmable Controller Simplifies Cache Design .. 2-239
PLDs Implement Encoder/Decoder for Disk Drives (16HD8) ... 2-651

PAL 1 OH8 (See PAL 18P8)
PAL12H6

Basic Gates ... 2-15
Audio Spectrum Analyzer (2) .. 2-307

PAL 14H4 (See PAL 18P8)
PAL16H2

Simple Encoder .. 2-36
PAL16C1

Octal Comparator .. 2-50
Audio Spectrum Analyzer ... 2-307

PAL10L8
Audio Spectrum Analyzer (2) .. 2-307

PAL 12L6 (See PAL 18P8)
PAL14L4

Quad 3:1 Multiplexer .. 2-44
PAL16L2 (See PAL18P8)

PALC29MA16 (PLPL Software)
PLD Programmability Extends its Sway Over Complex I/O .. 2-593

PALC29M16 (PLPL Software)
PLD Programmability Extends its Sway Over Complex I/O .. 2-593

PAL32VX10
Small System Video Controller (3) ... 2-261
Dual Port Video Shift Register ... 2-275
Dual Binary Rate Multipliers .. 2-292
Programmable Logic Device Preserves Pins, Product Terms .. 2-589
New PAL Device Architecture Extends Design Flexibility .. 2-719

2·vi ~ lfIIonollthlc lijij] lfIIemorles ~

PLD Applications by Product

PAL22V10
Modu10-360 Counter (PLPL) ... 2-81
Nine-Bit Johnson Counter (PLPL) ... 2-89
Eight-Bit Barrel Shifter (PLPL) .. 2-93
68000 and Dual Am9516 DMA Controllers Interface ... 2-159
8088 to Am9516 UDC Interface (PLPL) ... 2-166
General-Purpose Dual-Port Arbiter (PLPL) (3) .. 2-215
Audio Spectrum Analyzer ... 2-307
VME Bus Control Simplified with PLDs (PLPL) (2) .. 2-347,2-619
PLD Devices Implement 4B3T Line Transcoder ... 2-475
PALC22V10 Creates Manchester Encoder Circuit ... 2-499
Wait-State Remover Improves System Performance .. 2-648
PLDs Implement Encoder/Decoder for Disk Drives ... 2-651
Mixing Data Paths Expands Options in System Design ... 2-660
Programmable Logic Chip Rivals Gate Arrays in Flexibility .. 2-670

PAL22RX8
PAL22RX8A Provides Control and Addressing for a 32-Location Deep RAM-Based LIFO .. 2-250

PAL20RA10
5-Bit Ripple Counter ... 2-94 ~
Frequency Divider ... 2-99 ~
Unibus Interrupt Controller .. 2-328
Serial Data Link Controller ... 2-453
The PAL20RA 10 Story: The Customization of a Standard Product ... 2-683

PAL22XP10 (See PAL20L10)
PAL20XRP10 (See PAL20X10)
PAL20XRP8 (See PAL20X8)
PAL20XRP6 (See PAL20X8)
PAL20XRP4 (See PAL20X8)

PAL20S10 (See PAL20L10)
PAL20RS10

Analog to Digital Conversion .. 2-297
PAL20RS8

HDB3 Line Coding Using PAL Devices .. 2-384
PAL Devices Implement the Full V.32 Convolution Encoder .. 2-463

PAL20RS4 (See PAL20RS8)
HDB3 Line Coding Using PAL Devices .. 2-384

PAL20L10
Clean Octal Latch .. 2-59
68000 Interrupt Controller .. 2-172
Unibus Interrupt Controller .. 2-328

PAL20X10
9-Bit Counter ... 2-72
Waveform Generator ... 2-286
Shaft Encoders .. 2-558
XOR PLDs Simplify Design of Counters and Other Devices .. 2-676

PAL20X8
Universal Shift Register ... 2-91
PAL Devices, PROMs, FIFOs, and Multipliers Team up to Implement Single-Board High-Performance
Audio Spectrum Analyzer .. 2-307

PAL Devices Implement the Full V.32 Convolution Encoder .. 2-463
XOR PLDs Simplify Design of Counters and Other Devices .. 2-676

PAL22P10 (See PAL 18P8)
PAL20RP10 (See PAL20RS10)

~ Monolithic W Memories ~ 2·vii

PAL20RP8 (See PAL20RS8)
PAL20RP6 (See PAL20RS8)
PAL20RP4 (See PAL20RS8)

PAL20L8

PLD Applications by Product

Writing a Tape Drive Controller in PROSE .. 2-519
PAL20R8

OAM Encoder in a ZPAL Device ... 2-456
PAL20R6 (See PAL20R8)
PAL20R4

16-lnput Registered Priority Encoder ... 2-37
ZPAL Devices Implement D4 Frame Synchronization .. 2-404

PAL6L16
Four-to-Sixteen Decoder .. 2-40

PAL8L 14 (See PAL6L 16)

PAL12L10 (See PAL18P8)
PAL14L8 (See PAL18P8)
PAL16L6 (See PAL18P8)
PAL18L4 (See PAL18P8)
PAL20L2 (See PAL 18P8)
PAL20C1 (See PAL 18P8)

PAL32R16
Addressable Register .. 2-100
Analog to Digital Conversion .. 2-297

PMS14R21
Traffic Signal Controller .. 2-128
Writing a Tape Drive Controller in PROSE .. 2-519
PROSE Devices Simplify State Machine Design .. 2-601
Designing a State Machine with a Programmable Sequencer ... 2-607
PROSE Architecture 'and Design Methodology ... 2-724

PLS167 (See PMS14R21 and 2-117)
PLS168 (See PMS14R21 and 2-117)
PLS105 (See PMS14R21 and 2-117)

2971 (PEGASUS Software)
Programmable Event Generator Conquers Timing Constraints .. 2-644

29PL 141 (ASM14X Software)
Fuse Programmable Controller Simplifies Cache Design .. 2-239
FPCs and PLDs Simplify VME Bus Control .. 2-347,2-619
Fuse-Programmable Chip Takes Command of Distributed Systems ... 2-633

PAL 1 0020EV IEG8 (See PAL22V10)
PAL 10H20EV/EG8 (See PAL22V10)
PAL 1 OH20G8 (See PAL 16R8)
PAL 1 OH20P8 (See PAL 18P8)

M2064 (XACT Software)
lime Division Multiplexing with the LCA Device .. 2-435
Building an ESDI Translator Using the M2064 Logic Cell Array .. 2-509

M2018 (XACT Software)
LCA Device Implements an 8-Bit Format Converter in a PBX Switching Module ... 2-444

2·viii ~ Monolithic W Memories ~

Beginner's Guide

Introduction

This section is intended as a beginner's introduction to PLD
design, although experienced users may find it agood review. We
will take a step-by-step approach through two very simple de­
signs to demonstrate the basic PLD design implementation
process.

By "beginner", we mean a logic designer who is just beginning to
use programmable logic. You may have a lot of experience with
discrete digital logic, or you may have just graduated from
college. We assume a basic understanding of digital logic,
although there is a logic reference on page 6-1 should you
need a refresher. Some computer experience is helpful, but not
essential.

Through this effort, you will be introduced to PALASM software
and to the concept of device programming. Because of the
simplicity of the designs, we will be using PAL devices, but the
implementation concepts will be applicable to all of Monolithic
Memories' and Advanced Micro Devices' PLDs.

Only enough detail of the software will be presented to allow you
to implement the examples. This will also give you enough
information to understand most of the other design examples in
this handbook. More software details can be found in the actual
software documentation in section 4.

To keep the discussion simple, we will make some assumptions
about the system being used to process your designs. We will
assume an IBM PCIXl'M orcompatible system with one hard disk
and one floppy drive, running PC-DOSTM or MS-DOSTM version
2.1 or higher. The installation procedure for the software will be
described for this setup. The procedures for other setups and
machines are not radically different; details can be found in the
PALASM software documentation, section 4.

We will also take no significant shortcuts for these examples,
even though there may be times when we could. In this way, you
can gain a better understanding of exactly what is happening as
you implement your design.

We will talk about device programming, describing all of the steps
that are necessdry to program a PLD. However, due to the wide
variety of prog rammers available, we will not get down to the level
of detail that tells you exactly which buttons to push. Although we
will get as close as we can, we must defer the details to your
programmer manual.

As we work the design examples, we will, of course, have to
choose devices into which to put the designs. However, we will
not dwell here on the parameters that go into choosing a device.
This is covered more thoroughly in the rest of this section.

Installing PALASM Software

Before we actually start implementing a design, we must install
PALASM software. If you already have the software installed, you
may disregard this discussion. The procedure described here will
allow you to install the software package onto an IBM PCtXT or
compatible with a hard disk and at least one floppy drive.

After you have turned on the computer and allowed it to boot up,
you can install the software by placing disk #1 into drive A, and
typing:

A:PAL2INST<CR>

If you are new to the PC, <CR> is the 'RETURN' key on the right
side of the keyboard.

The program will ask you which disk you wish to install the
programs on. Enter the disk name, or just hit <CR> if installing
onto disk C. The installation program creates directories for all of
the programs. If you presently have an older version of PALASM
software installed in a similar directory structure, the installation
program will warn you that the contents of the directories will be
changed. Otherwise, it will start installing.

Note that the installation procedure may modify two files which
are used when the computer boots up: AUTOEXEC.BAT and
CONFIG.SYS. These changes should not affect any other
programs you run.

The installation program will then give you a choice of programs
to install; hit

l<CR>

to install the software. The installation program will ask you to
insert various disks as it installs the programs. The disks are
labelled, so this should be a simple procedure. Afterthe software
has been installed, reboot the system by holding down

<CTRL><ALTXDEL>

at the same time. This only needs to be done after installation. In
the future when you turn the computer on, the computer will boot
automatically.

You can now call up the menu by typing

PALASM<CR>

Now you need to install the editor or word processing program
you wish to use. You may use any editor you wish, as long as it
can generate a clean ASCII text file. In addition, you need to

~ Monolithic W Memories ~ 2·1

Beginner's Guide

install a communication program; anyone will do. A simple one
called PC2 is provided with the PALASM software. You can install
these programs by hitting

<F6>

When the setup screen comes up, hit the down-arrow key until it
gets to the line that says "Editor". Enter the directory path and
program name for the editor you wish to use. For example, if you
use WordStar™, and you have the program located in the
directory called lOWS" on disk C, then enter

C:\ws\ws

Add enough spaces to delete whatever was there before.

This takes you into the next field. Here you need to enter the
filetype of your editor, which will be either .COM or .EXE.

Once this is complete, for the WordStar example, the line should
now look like:

C:\ws\ws .com

Hit <CR> again to get to the next field. Here you enter the name
of your communication software. If you wish to use PC2, then
type

\PALASM\SUPL\PC2
(adding spaces to delete what was there before.)
<CR>
.EXE

If you are not using PC2, then replace "PC2"with the name of your
program. This procedure works regardless of the editor or
communication software you wish to use. When you are
finished, hit

<ESC>

to get back to the menu.

You are now ready to start.

Constructing a Combinatorial Design
-Basic Gates

The first example we will try is a very simple combinatorial circuit
consisting of all ofthe basic logicgates, as shown in Figure 1. This
will be helpfulforthose designs where you are integrating random
logic into a PAL device to save space and money.

As can be seen from the figure, there will be six separate functions
involving a total oftwelve inputs. It is important to bear in mind that
programmable logic provides a convenient means of implement­
ing designs. With a real design, some work would be required
before this point to conceptualize the design, but due to the
simplicity of these circuits, we are already in a position to start the
implementation.

A

C
D

F
G

I
J
K

M
N

p
a

"'" B

~
~ E

) "" ./
H

L

-) '" o

»)) R -

Figure 1. The Basic Logic Gates

Building The Equations

403 01

We will start by generating Boolean equations. The first function
to be generated is an inverter. This is specified according to
Figure 1 as:

B = /A

Here the "equals" sign ('=') is used to assign a function to output
B. The slash ('I') is used to indicate negation, since it is impossible
to put a bar over a letter in an ASCII file. Thus this equation may
be read:

B is TRUE if NOT A is TRUE

The next function is a simple AND gate. As shown in Figure 1, we
can write

E = C*D

Here we use the "equals· sign again, but this time we have
introduced the asterisk ('*') to indicate the AND operation. This
equation may be read:

E is TRUE if C AND D are TRUE

The third function is an OR gate, which may be written:

H=F+G

The "plus" sign ('+') is used to specify the OR operation here.
Because of the sum-of-products nature of logic as implemented
in PLDs, it is often easy to place product terms on separate lines,
which improves the readability. We may rewrite this equation as:

H=F
+ G

This equation may be read:

H is TRUE if F OR G is TRUE

2·2 ~ Monolithic W Memories ~

Beginner's Guide

For the moment, we will assume that we have active-HIGH
outputs on our device. The functions we have generated so far
have essentially been active-HIGH functions. At times we wish to
generate active-LOW functions; the next two functions are
active-LOW functions that we wish to implement in an
active-H IGH device.

When we talk in terms of an active-HIGH or an active-LOW
device, the real question is whether there is an extra inverter atthe
output. An active-HIGH device has an AND-OR structure; an
active-LOW device has an AND-OR-INVERT structure which
inverts the function at the output (see Figure 2).

a. AND-OR Structure

b. AND-OR-INVERT Structure

40302

Figure 2. Active HIGH vs. Active LOW

NAND and NOR gates could be generated very simply in an
active-LOW device, because we would just have to generateAND
and OR functions, and let the output inverter generate their
complements. However, given that we wish to implement these
functions in an active-HIGH device, we must invoke DeMorgan's
theorem, as shown in Figure 3.

/(X*y) = IX + /y

/(X + Y) = /x*/y

Figure 3. DeMorgan's Theorem

PALASM software has the capability of applying DeMorgan's
theorem to functions, so we may generate our NAND function by
writing:

L = / (I*J*K)

or, if preferred,

L = /1
+ /J
+ /K

Likewise the NOR function may be specified as

o = /(M
+ N)

or

o = /M*/N

Finally, an exclusive-OR (XOR) gate may be specified either as

R = P :+: Q

where :+: represents the XOR operation, or more explicitly as

R = P*/Q
+ /P*Q

We have now specified all of the functions in terms of their
Boolean equations. The equations are summarized in Figure 4.

B = /A

E = C*D

H = F
+ G

L = /1
+ /J
+ /K

o = /M*/N

R = P*/Q
+ /P*Q

Figure 4. Basic Gates Equations

Understanding the Logic Diagram

We will use a PAL 12H6 for this function, since it has all of the
resources needed to implement all of these functions. A portion
of the logic diagram for this device is shown in Figure 5. The full
logic diagram for this device can be found on page 5-62.

The logic diagram shows all of the logic resources available in a
particular device. In each device, inputs are provided in true and
complement versions, as shown in Figure 5. These drive what are
often called "input lines", which are the vertical lines in the logic
diagram. These input lines can then be connected to product
terms. The name "product term" is really just a fancy name for an
AND gate. However, PLDs provide very wide gates, which can be
cumbersome to draw. To save space, the product terms are
drawn as horizontal lines with a small AND gate symbol at one end
to indicate the function being performed.

So we see that in the PAL 12H6, there are twelve inputs and six
outputs. Four of the outputs, on pins 14 through 17, have two
product terms connected to the OR gates. The outputs on pins
13 and 18 have four product terms connected to the OR gates.
Thus pins 13 and 18 can be used to implement more complex
functions than the other four outputs.

Although you really do not need to be concerned with the actual
implementation of these functions inside the PAL device, you may
be curious. Figure 6shows how the inverterandtheAND gate are
implemented in the PAL 12H6. An IX' indicates a connection. A
product term that is not used is indicated by an IX' in the small
AND gate.

~ MonollthlcWMemorles ~ 2·3

Beginner's Guide

13

., .. ,.,

12

9 11

• 0 1 2~ 4 5 6 7 6 9 1213 1617 2021 24252627 28293031 \ -

TRUE AND INPUT
COMPLEMENT LINES

INPUTS

403 03

Figure 5. A Portion of a Logic Diagram

.....
A :> ...

E

c --t:L ...
B

.....
o :>

.....

403 04

Figure 6. Implementation of NOT, AND Gates

2·4 ~ Monol/lhlo IFJJ] Memories ~

Beginner's Guide

Building the Design File

Once the design has been conceptualized, the design file must be
generated. This can be done with any editor program. The only
requirement is that the editor produce a clean ASCII file. Most
word processing programs have this capability, so you can use
your favorite program. Any hidden control characters for format­
ting may cause problems when assembling; thus only "non­
document" or "clean" modes should be used. The filename is
usually given the extension '.PDS' (for PAL device Design Speci­
fication), although this is not required.

We now know exactly what our functions are going to be. We
have twelve inputs, six outputs, and the NAND function requires
three product terms. Note that if we had specified

L .. /(I*J*K)

instead of

L .. /I
+ /J
+ /K

for the NAND gate, it would not be as obvious how many product
terms would be needed.

We are now in a position to create the design file. First you need
to enter the PALASM menu. This menu will let you perform all of
the tasks you need, including editing your design file. Call up the
menu by typing

PALASM <CR>

When prompted, hit any key to bring the menu onto the screen.

Enter the file name of the design file you wi~h to create in the field
called "Input PDS file". The cursor should be there when the
menu appears on the screen. Then hit

<CR>

This will take you to the filetype field, which should already say
".PDS". We recommend that you use ".PDS"forall of your design
files. Hit

<CR>

again. At this time, the menu will say that the file cannot be
opened; this is just because you have not actually created the file
yet, so there is no need to be concerned. You can now create your
design file by hitting

<F3>

This will call up your editor, and you can begin building the file.

We start with what is called the DECLARATION SECTION. This
section allows you to document your design, and also provides
some definitions for the assembler.

The first step is to provide some documentation information. This
is done with six keywords:

TITLE (The title of your design goes here)
PATTERN (The pattern name or number goes here)
REVISION (The revision number or level goes here)
AUTHOR (Your name goes here)
COMPANY (Your company name goes here)
DATE (The date of creation or modification goes here)

This is followed by the CHIP declaration, which tells the assem­
bier which device is being used and what the pin names are going
to be. We do this by typing:

CHIP (any name goes here) (the device type goes here)
(the pin list goes here)

Thus, we can create the declaration section for our design as
shown in Figure 7.

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Basic gates
POOOO
A
Stateyour Namehere
Name of your Co., Inc.
7/22/87

CHIP GATES PAL12H6
ACDFGIJKMGND
N P B E H R 0 L Q vee

Figure 7. The Doclaratlon Section

Note that the pin list has all pins in order, from pin 1 to pin 20,
including VCC and GND. You can see that the inputs were
assigned to pins 1-12 and 19, whereas the outputs have been
assigned to pins 13-18. Of course these assignments must be
made knowing which pins are inputs and outputs, as per the logic
diagram. Knowing that the NAND gate requires three product
terms, we assigned this function to pin 18, since it can provide up
to four product terms.

We can make the pin list easier to read by adding the pin numbers
as comments. Anything following a semicolon (;) Is treated as a
comment, and ignored by the processor. This helps make the
design file more readable. The pin list with comments is shown
in Figure 8. Notice how much easier it is to read.

CHIP GATES PAL12H6

;PINS 1 2 3 5 6 7 8 9 10
A C D F G I J K M GND

;PINS 11 12 13 14 15 16 17 18 19 20
N P B E H R 0 L Q VCC

Figure 8. Pin List with Comments

~ MonollthlD W Memories ~ 2·5

EJI

Beginner's Guide

Next we enter the equations. This section begins with the
keyword

EQUATIONS

after which all of the equations are entered, exactly as shown in
Figure 4. Note that the equations may be defined in any order, not
necessarily in the order presented in the pin list.

The fact that this is an active-HIGH device does have some
bearing on the way the file is built. This is discussed at length on
page 6-19 and in the software documentation; we will need to
address the issue again below, when we do an active-LOW
design. For now, suffice it to say that the design as specified here
will work correctly for an active-HIGH device.

Finally, add comments to the equations to document the design.
Liberal commenting is encouraged to make it easier for you and
others to understand your de~ign in the future.

The equation section, with comments, is shown in Figure 9.

EQUATIONS

B = /A

E = C*D

H = F
+ G

L = /1
+ /J
+ /K

o = /M*/N

R = P*/Q
+ /P*Q

iinverter

iAND gate

iOR gate

iNAND gate after applying
i DeMorgan's theorem

iNOR gate after applying
i DeMorgan's theorem

iXOR gate, expanded

Figure 9. The Equation Section

When you have completed the file, save the file and get out of the
editor.

Generating aJEDEC File

Once the design file has been entered, you can assemble the
design to get aJEDEC file. We have two purposes here: to make
sure there are no basic mistakes in the file, and to generate a
JEDEC file for programming.

To start processing, hit

<FS>

This gives you a choice of processing options on the right of the
screen. To run all of the processing steps automatically, hit

6

The first program will now run, as evidenced by the file scrolling
up the bottom of the screen. if there are any errors, they will
appear on the screen and in an error file. These errors will be
syntactical in nature; typos, misspelled words, missing declara­
tions, malformed expressions.

Once the first program has been run with no errors, the equations
are minimized. It is a good practice to run the expander and
minimizer for all designs. Minimization may allow you to fit a
design into a smaller device. It also improves the testabimy of
your design. More complicated designs may have to be ex­
panded and minimized.

Afterthe minimization has been performed, the JEDEC file will be
generated. If there are any reported errors, it will likely be
because you requested some function that the part you chose
could not provide. Some examples are:

• Active-HIGH equations in an active-LOW device
• Too many product terms
• Registered equations in a device that has no registers

Since you have used the "autorun" feature, the simulation pro­
gram will automatically be run. Since we have not specified the
simulation yet, this will generate an error. Ignore the error
message for now.

When processing is complete, hit

<ESC>

to get back to the main menu.

If there were any errors during processing, you can see what they
were by viewing the run-time log. This is done by hitting

<F7>

to get a choice of things to view. To view the run-time log, hit

You can scroll down until you find any errors and make a note of
what needs correcting. Once you havefound the error(s), you can
get back to the menu by hitting

<ESC><ESC>

Any corrections should be made by editing the design file. After
making any changes, the design needs to reprocessed.

2·6 ~ Monolithic W Memories ~

Beginner's Guide

The JEDEC file will have the same file name as your design file,
except that it will have the extension '.JED'. The program also
creates an 'xplot' file (with file extension '.XPT') which relates the
final design implementation to the logic diagram of the PLD being
used. The xplot file is usually not needed, but it confirms the
physical implementation of the gates. Figure 10 shows a portion
of the xplot for this design; the inverter and the AND gate are
shown. You can see how this relates to the logic diagram by
referring back to Figure 6.

You may view the complete xplot file by hitting

<F7XPgDnX1>

To return to the main menu after inspecting the xplot file, hit

<ESC>

40 x--- x--- --00 --00 --00 --00 ---- ----
41 XXXX XXXX xxoo xxoo xxoo xxoo xxxx XXXX
42 0000 0000 0000 0000 0000 0000 0000 0000
43 0000 0000 0000 0000 0000 0000 0000 0000
44 0000 0000 0000 0000 0000 0000 0000 0000
45 0000 0000 0000 0000 0000 0000 0000 0000
46 0000 0000 0000 0000 0000 0000 0000 0000
47 0000 0000 0000 0000 0000 0000 0000 0000 '

48 ---x ---- --00 --00 --00 --00 ---- ----
49 XXXX XXXX xxoo xxoo xxoo xxoo xxxx XXXX
5 a XXXX XXXX xxoo xxoo xxoo xxoo XXXX XXXX
51 XXXX XXXX xxoo xxoo xxoo xxoo XXXX XXXX
52 0000 0000 0000 0000 0000 0000 0000 0000
53 0000 0000 0000 0000 0000 0000 0000 0000
54 0000 0000 0000 0000 0000 0000 0000 0000
55 0000 0000 0000 0000 0000 0000 0000 0000

Figure 10. A Portion of an Xplot

Simulating the Gates

After you have verified that your design file is correct, it is time to
verify that the design itself is correct. This is done by simulating
the design. Simulation provides a way for you to see whether your
design is working as you expect it to. You provide a series of
commands, or events, which are then simulated by the software.
If requested, the software can tell you if the simulation matches
what you expect, and, if not, where the problems are.

The simulation section is the last part of the design file. It is not
required, but is invariably helpful both in debugging the design,
and in generating what can eventually be used as a portion of a
test vector sequence. It is introduced by the keyword:

SIMULATION

The events to be simulated are specified by placing logic levels
)n pins of interest. Any pins not specifically mentioned will either

maintain their present level, or, if no level was ever defined,
remain undefined. The SETF command is used to set levels.

We can start by simulating the inverter. To prove that the inverter
works as expected, first we wish to set input A HIGH to verify that
the output goes LOW. This is done with the statement:

SETF A

Since all we did here was set A HIGH, all other inputs are still
undefined. However, this is enough to determine the output for
signal B.

The simulator will calculate the value for B and put it in the output
fila (to bo discussed later), but it is helpful to write what you expect
B to be. If the simulator calculates a result that is different from
what you expect, it will alert you, and place a marker in the output
file to tell you where the problem is. You can do this with the
CHECK statement. Since A is HIGH here, we expect B to be
LOW. To verify that B is indeed LOW, usa the statement:

CHECK IB

Note that CHECK statements are not required for simulation.
However, without them, you must examine the simulation output
to see if the design functioned correctly.

We also need to verify that when A go as LOW, B goes HIGH, as
expected. This can be done with the pair of statements:

SETF IA
CHECK B

We have now fully exercised the inverter. However, the standard
output file forthe simulator, called the history file, tracks all signals
on the device, in increasing pin order. From Figure 8, this would
be in the order

ACDFGIJKMNPBEHROLQ

Instead, we may wish to place related signals near each other.
We can do this with the TRACE_ON and TRACE_OFF com­
mands. These commands cause a second output file to be
generated, which will only show signals and events as deter­
mined by the TRACE_ON command.

In our case, we would like to have the output of the gate appear
right after its inputs, so that the workings of the gate can be easily
examined. This can be done with the command:

TRACE_ON ABC 0 E F G H I J K L M N 0 P Q R

At the end of the simulation, the TRACE_OFF command is used
to end the special trace.

Note that both a history file and a trace file will now be generated.
The history file will have the simulation results in increasing pin
order; the trace file will have the signals in the order requested
with the TRACE_ON command.

l1 Monolithic W Memories l1 2·7

Beginner's Guide

Now we can exercise all of the other gates in the circuit. The full
simulation section is shown in Figure 11.

SIMULATION

TRACE_ON ABC 0 E F G H I J K L M N ° P 0 R

; look at the inverter
SETF A
CHECK IB
SETF IA
CHECK B

; look at ANO gate
SETF IC 10
CHECK IE
SETF 0
CHECK IE
SETF C 10
CHECK IE
SETF 0
CHECK E

; look at OR gate
SETF IF IG
CHECK IH
SETF G
CHECK H
SETF F
CHECK H
SETF IG
CHECK H

; look at NANO gate
SETF II IJ IK
CHECK L
SETF K
CHECK L
SETF J IK
CHECK L
SETF K
CHECK L
SETF I IJ IK
CHECK L
SETF K
CHECK L
SETF J IK
CHECK L
SETF K
CHECK IL

; look at NOR gate
SETF 1M IN
CHECK 0
SETF N
CHECK 10
SETF M
CHECK 10
SETF IN
CHECK 10

; look at XOR gate
SETF IP 10
CHECK IR
SETF Q

CHECK R
SETF P 10
CHECK R
SETF 0
CHECK IR

;set A HI
; verify that B is LO
;set A LO
;verify that B is HI
;end of inverter trace

;set C, 0 LO
;verify E LO
;C stays LO, 0 goes HI
;E should stay LO
;set CHI, 0 LO
;E should stay LO
;C stays HI, 0 goes HI
;E should now be HI
;end of ANO gate trace

;set F, G LO
;verify H LO
;F stays LO, G goes HI
; H should go HI
;G stays HI, F goes HI
;H should stay HI
;F stays HI, G goes LO
;H should stay HI
;end of OR gate trace

;IJK = 000
;verify L HI
;IJK = 001
;L should still be HI
;IJK = 010
;L should still be HI
;IJK = 011
;L should still be HI
;IJK = 100
;L should still be HI
;IJK = 101
;L should still be HI
;IJK = 110
;L should still be HI
;IJK = 111
;L should go LO
;end of NANO gate trace

;set M, N LO
;verify 0 HI
;M stays LO, N goes HI
;0 should go LO
;M, N now both HI
;0 should stay LO
;M stays HI, N goes LO
;0 should stay LO
;end of NOR gate trace

;set P, 0 LO
;verify R LO
;P stays LO, Q goes HI
;R should go HI
;now PHI, Q LO
;R should stay HI
;both inputs HI
;R should go LO

TRACE_OFF ;end of trace
Figure 11. The Simulation Section

This completes the simulation. The entire design file is shown in
Figure 21 at the end of this section. You can now run the
simulation to make sure that your design is correct.

Running the Simulator

After adding the simulation, the file needs to be reprocessed. Do
this again by hitting

<FS>

and then hitting

This completely reprocesses the file and runs the simulation.

Each of the events specified in the simulation section of the
design file is executed. The resulting outputs are calculated, and,
if CHECK statements are used, the calculated outputs are com­
pared to the expected outputs. If the two values do not match,
then you are expecting an output that the circuit is not generating.
This means either that the expected values are wrong, or that
there is a problem with the circuit itself. In either case, the design
file must be modified to fix the problem, and then the file should
be completely reprocessed.

The main output of the simulator is the history file. In addition, a
trace file will be generated if the TRACE_ON statement was used,
as in the example above. These files will have the same name as
your original design, except that the extension for the history file
is '.HSr and that for the trace file is '.TRF'.

You may look at the history and trace files with your editor, or print
them out for closer analysis. Note that the history file contains the
results of every signal and every event in increasing pin order,
whereas the trace file contains signals in the order specifically re­
quested by the TRACE_ON commands.

It is usually easier to look at the simulation output as waveforms.
To generate the waveforms, hit

<F7>

To see the waveforms for the trace file, hit

6

Once the waveforms are on the screen, you may scroll around
using the arrow keys. The vertical bar cursor will help you line up
events.

After you are through examining the file, hit

<ESC>

to get out of the waveform generator, and then,

<ESC>

to get back to the main menu.

2·8 ~ Monollthlo W Memories ~

Beginner's Guide

This makes it much easier to debug your design. You can look at
the entire simulation in the history file, or break it up into manage­
able bits in the trace file.

The simulator also converts the simulation results into test
vectors, and appends the vectors to the JEOEC file. This gives
you two JEOEC files; one with vectors and one without. The new
file has the same name as your original design file, but with the
extension '.JOC'. This file can be used with programmers that
provide functional tests.

Constructing a Registered Design­
Basic Flip-Flops

Next we will do a very simple registered design: we will be
designing all of the basic flip-flop types (Figure 12). We will
conceptualize the design by reviewing briefly the behavior of the
Ootype flip-flop. We will then present the results for T, J-K, and S­
R flip-flops. More detail on these flip-flop types can be found in
the logic reference, on page 6-8.

Rememberthat the devices we will be using only have Ootype flip­
flops. Thus we will be emulating the other flip-flops with Ootype
flip-flops.

403 06

CLK

D

T

K

S

R

CLR

.-L
DC a

>-t> pO

r-~
..---J.-
TCa

...-1> pO

... ~
r-4-
J Co

~I>
KpO

~~
r-1--
sCa

L-I)

RpO

~
PR

Figure 12. Basic Flip·Flops

DT

DC

TT

TC

JKT

JKC

SRT

SRC

Building the D-Type Flip-Flop
Equations

A Ootype flip-flop merely presents the input data at the output after
being clocked. Its basic transfer function can be expressed as

DT := D

where we have used pins OT ("0 True") and D as shown in
Figure 12.

Note the use of ':=' here instead of '='. This indicates that the
output is registered for this equation. The difference is illustrated
in Figure 13.

D -I--------~- DT

b. DT~ 0

-D 0 a DT

CLK
"---

40307 a DT:~D

Figure 13. Registered vs. Combinatorial Equations

We can also generate the complement signal (named ~C) with
the statement

DC := /D

As per Figure 12, we want to add synchronous preset and clear
functions to the flip-flops. This can be done with two input pins,
called PR and CLR. To add these functions to the true flip-flop
signal, we add /CLR to every product term and add one product
term consisting only of PRo Likewise, for the complement
functions, we add /PR to every product term, and add one product
term consisting only of CLR. This is shown in Figure 14.

DT :- D*/CLR
+ PR

DC := /D*/PR
+CLR

Figure 14. O·Type Flip.Flops with Clear and Preset

~ Monolithic m Memories ~ 2-9

Ell

Beginner's Guide

Inthis way, when clearing the flip-flops, the active-HIGH flip-flops
have no product terms true, and go lOW; the active-lOW flip­
flops have the last product term true, and will therefore go HIGH.
The reverse will occur for the preset function.

DT :- D*/CLR
+ PR*/CLR

DC :- /D*/PR
+ CLR

There Is still one hole in this design: what happens if we preset
and clear at the same time? As it Is right now, both outputs will go
HIGH. This makes no sense since one signal Is supposed to be
the Inverse of the other. To rectify this, we can give the clear
function priority over the preset function. We can do this by
placing lelR on every product term for the true flip-flop signal.
The results are shown In Figure 15.

Figure 15. D-Type Flip-Flops with Clear Priority

Building the Remaining Equations

The same basic procedure can be applied to all of the other flip­
flops. The equations are shown In Figure 16.

2·10

EQUATIONS

;emulating all flip-flops with D-type flip-flops

DT :- D*/CLR
+ PR*/CLR

DC :- /D*/PR
+ CLR

TT :- T*/TT*/CLR
+ /T*TT*/CLR
+ PR*/CLR

TC : - T* /TC* /PR
+ /T*TC*/PR
+ CLR

JKT := J*/JKT*/CLR
+ /K*JKT*/CLR
+ PR*/CLR

JKC :- /J*/JKC*/PR
+ K* / JKC* /PR
+CLR

SRT :- S*/CLR
+ /R*SRT*/CLR
+ PR*/CLR

SRC : .. R*/PR
+ /S*SRC*/PR
+ CLR

;output is D if not clear
;or 1 if preset and not clear at the same time

;output is /D if not preset
;or 1 if clear

;go HI if toggle and not clear
;stay HI if not toggle and not clear
;go HI if preset and not clear at the same time

;go HI if toggle and not preset
;stay HI if not toggle and not preset
;go HI if clearing

;go HI if J and not clear
;stay HI if not K and not clear
;go HI if preset and not clear at the same time

;go HI if not J and not preset
;stay HI if K and not preset
;go HI if clear

;go HI if set and not clear
;stay HI if not reset and not clear
;go HI if preset and not clear at the same time

;go HI if reset and not preset
;stay HI if not set and not preset
;go HI if clear

Figure 16_ Flip-Flop Equations Section

~ MonollthlcWMemorles ~

Beginner's Guide

40308

ClK

ClR

T

PR

I!!I := T" 0Il"tClR
+ /T" [!!] "tClR
+ PR*tClR

>---1--10 QH>---TT

Figure 17" Feedback In the Equation for IT

Notice that in some of the equations above, the output signal itself
shows up in the equations. This is the way in which feedback from
the flip-flop can be used to determine the next state of the flip-flop.
An equivalent logic drawing of the TT equation is shown in
Figure 17.

Completing the Design File

We are now in a position to select a device and complete the
device file. The device used will be a PAL 16R8, which is actually
an active-LOW device. The logic diagram for this device can be
found on page 5-47. The implications of an active-lOW device
are discussed more fully on page 6-19. For now, suffice it to say
that one way of implementing active-lOW logic is to declare
outputs in the pin list with a slash ('f) in front of them. This
essentially defines them as 'negative' or 'inverted' pins.

The declaration section is built up just like the last one, and is
shown in Figure 18.

TITLE Basic flip-flops
PATTERN PODOl
REVISION A
AUTHOR Stateyour Namehere
COMPANY Nameofyour Co., Inc.
DATE 7/22/87

CHIP Flip-flops PAL16R8

iPINS 1 2 3 4 5 6 7 8 9 10
CLK J K T PR CLR D S R GND

iPINS 11 12 13 14 15
OE ISRC ISRT IDC IDT

iPINS 16 17 18 19 20
ITC ITT I JKC I JKT VCC

Figure 18. Basic Flip-Flops Declaration Section

Notice that this device has aclockand an output enable pin, called
elK and OE, respectively. The input and output pins are named
:is shown in Figure 12. The output pins are all defined with
;Iashes, to indicate that they are inverted pins.

The design can now be processed by hitting

<F5>

and then hitting

6

This will tell you whether there are any basic problems with your
design. You can correct any mistakes by editing the file and then
reprocessing.

Simulating the Flip·Flops

After processing the design and correcting any mistakes, we can
write the simulation. We have all of the simulation instructions we
need, except for one new instruction which simplifies manipula­
tion of the clock signal. It is possible to use SETF instructions with
the clock pin, but then each clock transition would require two
instructions: one to set the clock HIGH, and one to bring it
back lOW.

Instead, we can use the CLOCKF instruction. This pulses a clock
pin in one instruction. Of course, registered outputs will not
change state until after the rising edge of the clock signal. Since
we have named the clock pin ClK, we can clock this device with
the instruction

CLOCKF CLK

We can simulate the true D-type flip-flop as follows:

SETF D
CLOCKF CLK
CHECK DT
SETF ID
CLOCKF CLK
CHECK IDT

iset the D input HI
;clock the device
;verify that the output went HI
;set the D input LO
;clock the device
;verify that the output went 10

Before we actually simulate any registered design like this, two
items must be initialized: the clock and the output enable pin (OE).
Since the ClOCKF statement executes a HIGH-LOW pulse on
the clock pin, we must first make sure that the clock is set LOW

l1 Monolithic IFJJ) Memories l1 2·11

EJI

Beginner's Guide

to begin with. We must also enable tho outputs, which is done by
setting the OE pin LOW. These tasks can be accomplished with
the statement:

SETF CLR IPR
CLOCKF CLK

;set the clear pin
;clear the circuit

SETF ICLK 10E
;make sure the clear function worked
CHECK lOT DC ITT TC IJKT JKC ISRT SRC
SETF ICLR ;remove the clear signal

We also need to initialize the flip-flops. At the same time we can
verify that the CLR function is working correctly: We are now in a position to simulate the entire circuit. A thorough

simulation is shown in Figure 19.

2·12

SIMULATION

TRACE_ON CLR PR D DT DC T TT TC JK JKT JKC SR SRT SRC

;initialize the circuit
SETF CLR IPR
CLOCKF CLK

;3et the clear pin
;clear the circuit

;make sure the clear function worked
CHECK IDT DC ITT TC IJKT JKC ISRT SRC
SETF ICLR ;remove the clear signal

;check out the preset function
SETF PR ; set the preset pin
CLOCKF CLK ; preset the circuit
CHECK DT IDC TT ITC JKT IJKC SRT ISRT
SETF IPR ; remove the preset signal

;verify that clear has priority
SETF PR CLR ;set both clear and preset
CLOCKF CLK
CHECK IDT DC ITT TC IJKT JKC ISRT SRC
SETF IPR ICLR ;remove both preset, clear

;disable all flip-flop inputs for now
SETF ID IT IJ IK IS IR

;check out D-type flip-flops
SETF D ; set the D input HI from LO
CLOCKF CLK ; clock the device
CHECK DT IDC ;verify that the true output went HI

;and the complement went LO

SETF D
CLOCKF CLK
CHECK DT IDC

SETF ID
CLOCKF CLK
CHECK IDT DC

SETF ID
CLOCKF CLK
CHECK IDT DC

;hold a HI

;verify that state maintained

;set the D input 10 from HI
;clock the device
;verify that the true output went LO
;and complement went HI

;hold a LO

;verify that state ~aintained

;check out T-type flip-flops
SETF IT ; hold a LO
CLOCKF CLK
CHECK ITT TC ;true output should still be 10

;complement output HI

SETF T
CLOCKF CLK
CHECK TT ITC

;toggle from a LO

;both outputs should have changed state

Flguro 19. Flip-Flop Simulation Section

~ Monollthlo W Memories ~

Beginner's Guide

SETF IT
CLOCKF CLK
CHECK TT ITC

SETF T
CLOCKF CLK
CHECK ITT TC

;check out J-K flip-flops
SETF IJ IK
CLOCKF CLK
CHECK I JKT JKC

SETF J IK
CLOCKF CLK
CHECK JKT I JKC

SETF IJ IK
CLOCKF CLK
CHECK JKT I JKC

SETF IJ K
CLOCKF CLK
CHECK I JKT JKC

CLOCKF CLK
CHECK I JKT JKC

SETF J K
CLOCKF CLK
CHECK JKT / JKC

SETF J IK
CLOCKF CLK
CHECK JKT I JKC

SETF J K
CLOCKF CLK
CHECK I JKT JKC

;check out S-R flip-flops
SETF Is /R
CLOCKF CLK
CHECK I SRT SRC

SETF S IR
CLOCKF CLK
CHECK SRT I SRC

SETF IS IR
CLOCKF CLK
CHECK SRT I SRC

SETF S IR
CLOCKF CLK
CHECK SRT I SRC

SETF IS R
CLOCKF CLK
CHECK ISRT SRC

CLOCKF CLK
CHECK ISRT SRC

;hold a HI

;both outputs should have held their state

;toggle from a HI

;both outputs should have changed state

;hold a LO

;both outputs should have held their state

;set a HI

;outputs should have changed

;hold a HI

;both outputs should have held their state

;reset a LO

;outputs should have changed

;reset an output that is already LO
;make sure that the outputs didn't change

;toggle from a LO

;verify that outputs changed

;set an output that is already HI

;make sure the outputs didn't change

;toggle from a HI

;verify that outputs changed

;hold a LO

;both outputs should have held their state

;set a HI

;outputs should have changed

;hold a HI

;both outputs should have held their state

;set an output that is already HI

;make sure the outputs didn't change

;reset a LO

;outputs should have changed

;reset an output that is already LO
;make sure that the outputs didn't change

Figure 19. Flip-Flop Simulation Section (Cont'd.)

~ Monolithic: W Memories ~

EJI

2·13

Beginner's Guide

The file can now be simulated in the same manner as the basic
gates design. The simulation results can be viewed either by
examining the history or trace file, or by generating waveforms.
The complete design file is shown in Figure 22 at the end of this
section.

Programming a Device

After simulating the design, and verifying that it works, it is time to
program a device. There are several steps to programming, but
the exact operation of the programmer naturally depends on the
type of programmer being used. We will be as explicit as we can
here, but you will need to refer to your programmer manual forthe
specifics.

The first thing that must be done after turning the programmer on
is to select the device type. This tells the programmer what kind
of programming data to expect. The device type is usually
selected either from a menu or by entering a device code. Your
programmer manual will have the details.

Next a JEOEC file must be downloaded. To transfer the JEOEC
file from the computer to your programmer, you will need to
provide a connection, as shown in Figure 20. This is normally
done with an RS-232 cable connected between the
programmer's port and a serial port on the computer (usually
COM1).

403 09

Figure 20. A Connector Must Be Provided Between the
Computer and the Programmer

If your programmer can perform functional tests, and you wish for
those tests to be performed, you should download the '.JOC· file;
otherwise you should download the '.JEO' file.

To download data, the programmer must first be set up to receive
data. The programmer manual will tell you how to do this. The
data can then be sent from the computer by hitting

<F4>

This sets up communication between the computer and the
programmer. Whichever communication program is installed will
be invoked. This is used to transmit the JEOEC file to the
programmer. The details below assume you are using PC2; if not,
follow the instructions for your program to accomplish the same
steps.

Before actually sending the data, you must verify the correct com­
munication protocol. Check to make sure you know what protocol
the programmer is expecting; then hit the <F2> key on the
computer. This allows you to set upthe baud rate, data bits, stop
bits, and parity.

Once the protocol has been set up, hit the <F1> key. You will be
asked for the file name; enter the name of the JEOEC file you wish
to use. The computer will then announce that it is sending the
data, and tell you when it is finished. Note that just because it says
it has finished sending data does not mean that the data was
received. Your programmer will indicate whether or not data was
received correctly.

Once the data has been received, the programmer is ready to
program a device. Place a device in the appropriate socket, and
follow the instructions for your programmer to program the
device. This procedure programs and verifies the connections in
the device, and, if a '.JOC' file was used, will perform a functional
test.

The programmer will announce when the programming proce­
dure has been completed. You may then take the device and plug
it into your application.

If you have actually programmed one of the examples that we
created above, you naturally don't have a board into which you
can plug the device. If you do have a lab setup, you may wish to
play with the devices to verify for yourself that the devices perform
just as you expected them to.

You will find much more detail on many issues that were not
discussed in this section in the remaining sections of this hand­
book. This section should have provided you with the basic
knowledge you need to understand the remaining design ex­
amples in this book, and to start your own designs.

2·14 ~ lfIIonollthlc W lfIIemorles ~

Basic gates
POOOO
A

Beginner's Guide

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Stateyour Namehere
Nameofyour Co., Inc.
7/22/87

CHIP GATES PAL12H6

;PINS 2 3 4 5 6 7 8 9 10
A C D F G I J K M GND

;PINS 11 12 13 14 15 16 17 18 19 20
N P B E H R 0 L Q VCC

EQUATIONS

B - /A

E = C*D

H = F
+ G

L - /I
+ /J
+ /K

o - /M*/N

R = P*/Q
+ /P*Q

SIMULATION

; inverter

;AND gate

;OR gate

;NAND gate after applying DeMorgan's theorem

;NOR gate after applying DeMorgan's theorem

;XOR gate, expanded

TRACE_ON ABC D E F G H I J K L M N 0 P Q R

;look at the inverter
SETF A
CHECK /B
SETF /A
CHECK B

;look at AND gate
SETF /C /D
CHECK /E
SETF D
CHECK /E
SETF C /D
CHECK /E
SETF D
CHECK E

;look at OR gate
SETF /F /G
CHECK /H
SETF G
CHECK H
SETF F
CHECK H
SETF /G
CHECK H

;set A HI
;verify that B is LO
;set A LO
;verify that B is HI
;end of inverter trace

;set C, D LO
;verify E LO
;C stays LO, D goes HI
;E should stay LO
iset CHI, D LO
iE should stay LO
;C stays HI, D goes HI
;E should now be HI
iend of AND gate trace

iset F, G LO
;verify H LO
iF stays LO, G goes HI
;H should go HI
iG stays HI, F goes HI
iH should stay HI
iF stays HI, G goes LO
;H should stay HI
iend of OR gate trace

Figure 21. Complete Basic Gates DeSign File

~ Monollthlo [FJJJ Memories ~ 2·15

2·16

Beginner's Guide

jlook at NAND gate
SETF II IJ IK
CHECK L
SETF K
CHECK L
SETF J IK
CHECK L
SETF K
CHECK L
SETF I IJ IK
CHECK L
SETF K
CHECK L
SETF J IK
CHECK L
SETF K
CHECK IL

jlook at NOR gate
SETF 1M IN
CHECK 0
SETF N
CHECK 10
SETF M
CHECK 10
SETF IN
CHECK 10

jlook at XOR gate
SETF IP IQ
CHECK IR
SETF Q
CHECK R
SETF P IQ
CHECK R
SETF Q
CHECK IR

jIJK .. 000

jverify L HI
jIJK .. 001
jL should still be HI
jIJK .. 010
jL should still be HI
jIJK .. 011
jL should still be HI
jIJK co 100
jL should still be HI
jIJK .. 101
jL should still be HI
jIJK .. 110
jL should still be HI
jIJK .. 111
jL should go LO
;end of NAND gate trace

jset M, N LO
;verify 0 HI
jM stays LO, N goes HI
;0 should go LO
;M, N now beth HI
;0 should stay LO
;M stays HI, N goes LO
;0 should stay LO
;end of NOR gate trace

;set P, Q LO
;verify R LO
;P stays LO, Q goes HI
;R should go HI
;now PHI, Q LO
;R should stay HI
;beth inputs HI
;R should go LO

;end of trace

Figure 21. Complete Basic Gates Design File (Cont'd.)

~ MonolithIc W MemorIes ~

Beginner's Guide

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Basic flip-flops
P0001
A
Stateyour Namehere
Nameofyour Co., Inc.
7/22/87

CHIP Flip-flo PAL16R8

;PINS 1 2 3 5 6 7 8 9 10
CLK J K T PR CLR D S R GND

;PINS 11 12 13 14 15
OE /SRC /SRT /DC /DT

;PINS 16 17 18 19 20
/TC /TT /JKC /JKT VCC

EQUATIONS

;ernulating all flip-flops with D-type flip-flops

DT := D*/CLR
+ PR*/CLR

DC := /D*/PR
+CLR

TT := T*/TT*/CLR
+ /T*TT*/CLR
+ PR*/CLR

TC := T*/TC*/PR
+ /T*TC*/PR
+CLR

JKT : = J* / JKT* /CLR
+ /K*JKT*/CLR
+ PR*/CLR

JKC := /J*/JKC*/PR
+ K*JKC*/PR
+ CLR

SRT := S*/CLR
+ /R*SRT*/CLR
+ PR*/CLR

SRC := R*/PR
+ /S*SRC*/PR
+CLR

;output is D if not clear
;or 1 if preset and not clear at the same time

;output is /D if not preset
;or 1 if clear

;go HI if toggle and not clear
;stay HI if not toggle and not clear
;go HI if preset and not clear at the same time

;go HI if toggle and not preset
;stay HI if not toggle and not preset
;go HI if clearing

;go HI if J and not clear
;stay HI if not K and not clear
;go HI if preset and not clear at the same time

;go HI if not J and not preset
;stay HI if K and not preset
;go HI if clear

;go HI if set and not clear
;stay HI if not reset and not clear
;go HI if preset and not clear at the same time

;go HI if reset and not preset
;stay HI if not set and not preset
;go HI if clear

Figure 22. Complete Basic Flip-Flops Design File

~ Monolithic IFJJl Memories ~

HI

2·17

2·18

Beginner's Guide

SIMULATION

TRACE_ON CLR PR D DT DC T TT TC JK JKT JKC SR SRT SRC

;initialize the circuit
SETF CLR IPR
CLOCKF CLK

;set the clear pin
;clear the circuit

;make sure the clear function worked
CHECK IDT DC ITT TC IJKT JKC ISRT SRC
SETF ICLR ;remove the clear signal

;check out the preset function
SETF PR :set the preset pin
CLOCKF CLK ;preset the circuit
CHECK DT IDC TT ITC JKT I JKC SRT I SRT
SETF IPR : remove the preset signal

;verify that clear has priority
SETF PR CLR :set both clear and preset
CLOCKF CLK
CHECK IDT DC ITT TC IJKT JKC ISRT SRC
SETF IPR ICLR :remove both preset, clear

;disable all flip-flop inputs for now
SETF ID IT IJ IK IS IR

;check out D-type flip-flops
SETF D :set the D input HI from LO
CLOCKF CLK : clock the device
CHECK DT IDC :verify that the true output went HI and the complement went LO

SETF 0
CLOCKF CLK
CHECK DT IOC

SETF ID
CLOCKF CLK
CHECK IDT DC

SETF ID
CLOCKF CLK
CHECK IDT DC

:hold a HI

:verify that state maintained

;set the D input LO from HI
:clock the device
:verify that the true output went LO and complement went HI

;hold a LO

;verify that state maintained

;check out T-type flip-flops
SETF IT ; hold a LO
CLOCKF CLK
CHECK ITT TC :true output should still be LO, complement output HI

SETF T
CLOCKF CLK
CHECK TT ITC

SETF IT
CLOCKF CLK
CHECK TT ITC

SETF T
CLOCKF CLK
CHECK ITT TC

;toggle from a LO

;both outputs should have changed state

;hold a HI

:both outputs should have held their state

;toggle from a HI

;both outputs should have changed state

Figure 22. Complete Basic Flip-Flops Design File (Cont'd.)

~ Monollthlo W Memories ~

Beginner's Guide

icheck out J-K flip-flops
SETF IJ IK
CLOCKF CLK
CHECK I JKT JKC

SETF J IK
CLOCKF CLK
CHECK JKT I JKC

SETF IJ IK
CLOCKF CLK
CHECK JKT I JKC

SETF IJ K
CLOCKF CLK
CHECK I JKT JKC

CLOCKF CLK
CHECK I JKT JKC

SETF J K
CLOCKF CLK
CHECK JKT I JKC

SETF J IK
CLOCKF CLK
CHECK JKT I JKC

SETF J K
CLOCKF CLK
CHECK I JKT JKC

;check out S-R flip-flops
SETF IS IR
CLOCKF CLK
CHECK ISRT SRC

SETF S IR
CLOCKF CLK
CHECK SRT ISRC

SETF IS IR
CLOCKF CLK
CHECK SRT I SRC

SETF S IR
CLOCKF CLK
CHECK SRT ISRC

SETF IS R
CLOCKF CLK
CHECK ISRT SRC

CLOCKF CLK
CHECK ISRT SRC

ihold a LO

iboth outputs should have held their state

;set a HI

ioutputs should have changed

ihold a HI

;both outputs should have held their state

;reset a LO

;outputs should have changed

;reset an output that is already LO
;make sure that the outputs didn't change

;toggle from a LO

;verify that outputs changed

;set an output that is already HI

;make sure the outputs didn't change

;toggle from a HI

;verify that outputs changed

;hold a LO

;both outputs should have held their state

;set a HI

;outputs should have changed

;hold a HI

;both outputs should have held their state

;set an output that is already HI

;make sure the outputs didn't change

;reset a LO

;outputs should have changed

;reset an output that is already LO
imake sure that the outputs didn't change

Figure 22. Complete Basic Flip-Flops Design File (Cont'd.)

~ MonollthleW Memories ~ 2·19

Notes

2·20 ~ Monolithic W Memories ~

PLD Design Methodology

Programmable logic devices (PLDs) are used in digital systems
design for implementing a wide variety of logic functions. These
logicfunctions range from simple random logic replacement (dis­
cussed earlier in the Beginner's Guide to PLDs on page 2-2) to
complex control sequencers (discussed in the subsequent sec­
tions). Programmable logic devices offerthe multiple advantages
of low cost, high integration, ease of use, and easier design
debugging capability not available in other systems design op­
tions. These are described in the introduction (on page 1-1) tothis
handbook. In the following discussion we will detail the PLD
design process.

Most PLDs have an AND-OR array structure with programmable
connections in eitheror both of the arrays. A programmable array
implies that the connections can be programmed by the user.
PLDs are classified depending on which of the two arrays is
programmable or fixed. The popular PAL (Programmable Array
Logic) devices have a programmable AND array and a fixed OR
array. PAL devices are used for a wide variety of combinatorial
and registered logic functions. PROM (Programmable Read­
Only Memory) devices-used often as memory and seldom as
logic-have a fixed AND array and a programmable OR array.
Both arrays are programmable in PLS (Programmable Logic Se­
quencer) devices. These devices are used for special state
machine applications discussed on page 2-117. In addition, there
are other programmable logic devices that combine program­
mable arrays with dedicated logic for providing optimal function­
ality for a specific system application. The PROSE (PROgram­
mable SEquencer) device is one such device, with its architec­
ture optimized for state machine designs. A discussion of the
various PLD architectures is included on page 1-7. In this discus­
sion we will also examine the various design constraints to be
considered when selecting the correct architecture for a given
application.

All digital logic can be efficiently reduced to two fundamental
gates, AND and OR, provided bmh true and complement versions
of all input signals are available. Such logic is generally built
around what is known as the sum-of-products (AND-OR) form.
Please see page 6-1 for details on sum-of-products form and
Boolean logic. Programmable logic devices are ideal for imple­
menting such two-stage logic in the AND and OR arrays.

Various process technologies offer many design options for
PLDs. The connections in the programmable arrays can be fuse­
based, commonly used in both ECL and TIL bipolar technolo­
gies, E/EEPROM cell-based in UV-EPROM and EEPROM
CMOS technologies and RAM cell-based in CMOS RAM technol­
ogy. ECL PLDs are used for very high-speed designs (greater
than 125 MHz bandwidth), while CMOS is used for low-power
::lesigns. Bipolar TIL fuse-based PLDs cover the vast midrange
)f applications and are the most popular PLDs. The selection of
echnology is mostly dependent upon the system speed and
)ower constraints. Most design engineers are familiar with these

constraints, which not only dictate the technology of PLDs but of
all other logic used in a system. In the following discussion, we
will assume TIL fuse-based technology for simplicity. A detailed
discussion of the technology is included on page 3-130.

Designing with PLDs involves the use of design software and a
device programmer (Figure 1). The design software eliminates
the need to identify every connection to be programmed for
implementing the desired sum-of-products logic. The design
process begins with the creation of a design file which specifies
the desired function. The function is typically represented by its
sum-of-products form and can be derived directly from the timing
diagram and/or truth tables. Occasionally Karnaugh maps and ' BI
state diagrams are also used. The design file is then assembled
to produce the "JEDEC"file. The JEDEC file gets its name from
the fact that it is an approved JEDEC standard for specifying the
state of every connection on the device. Simulation can then be
performed. If the design is correct, the JEDEC file is downloaded
into a device programmer for programming the connections on
the device. The device can then be plugged into the PC board
where it will function. The entire procedure can often be per-
formed with the designer never having to leave the desk. Most
programmers interface to personal computers, so that the design
file can be edited, assembled, simulated, and downloaded, and
the device programmed, all in one place.

404 01

JEDEC
FILE

Figure 1. PLDs are Designed using Software
and a Device Programmer

~ Monolithio W Memories ~ 2·21

PLD Design Methodology

The first stage in a PLD design process (Figure 2) is the concep­
tualization of a design problem; the second is the selection of the
correct device; the third is the implementation of the design, which
also includes simulating the design with test vectors; and finally,
the actual programming and testing on a system board. We will
take a simple design example and go through the various stages
of this design process.

404 02

Figure 2. Programmable Logic Device Design Process

± TOP
RESET

SUnON .
SonOM

t-
INTERFACE

LOGIC
RW ...

~ RESET AS

Conceptualizing a Design

The first step in the PLD design process is also required for any
SSI/MSI design. An advantage of PLDs is that at this stage the
designer needs to be concerned only with the required logic
function. With SSI or MSI, various device logic limitations must
be accounted for before the design can be started. Clearly a
designer needs to develop a brief and complete functional de­
scription, based upon the system design requirements.

We will take the example of a simple address decoder circuit
required for a 68000 microprocessor. The microprocessor has 24
address lines along with separate read and write signals. It
requires some ROM to store the boot-up code as well as some
RAM for storing and executing programs. The purpose of the
address decoder circuitry is to select one of the memory ad­
dresses at a time. The RAMs and ROMs are assigned addresses
on the 68000 microprocessor address space. The address
decoder circuit has to select one of the RAMs or ROMs for a
specific range of addresses, called the address space. This
selection is accomplished by asserting the specific chip-select
signal for the RAM or ROM when the microprocessor accesses
one of the addresses in the address space. There is additional
circuitry in a typical microprocessor system for addressing 1/0

INIT

ROMCS1

ROMCS2

PROM 1

PROM 2

DRAM 1
f- ••••••••••

DRAM 2

DRAM 3 .---------
DRAM 4

OOOOOO-OFFFFF

100000-1FFFFF

200000-2FFFFF

300000-3 FFFFF

400000-4FFFFF

SOOOOO-SFFFFF

600000-7FFFFF

Figure 3. Memory Address Map

J PROM1

J PROM2

~
1-+ }

READ
ONLY

404 03

RAMCS H DRAM1 ~
1 READ. ~ WRITE

A 21 • A 22• A23 ...

I H DRAM2 ~
M68000 /- ... DRAM

MICROPROCESSOR /2 A 22• A23
CONTROLLER H DRAM3 r--

H DRAM4 ~ J
D0-16

404 04

Figure 4. Microprocessor to Memory Interface

2·22 ~ Monolithic W Memories ~

PLD Design Methodology

devices (such as disk controllers). These devices also require
that chip-select signals be asserted when the microprocessor
addresses them. Figure 3 shows an example address map for a
68000 microprocessor.

Figure 4 shows the circuitdiagram. The address signals from the
68000 microprocessor are inputstothe interface logicblock. The
outputs generated are ROMCS1, ROMCS2, and RAMCS. The
generation of signals for selecting device I/Os is similar and is not
shown here for the sake of simplicity. Other system inputs to the
interface are the address strobe signal generated by the 68000
microprocessor as well as the read/write signal. The truth table
for generating the outputs is shown in Figure 5. This truth table
is derived from the memory address map and the functional de­
scription of the design.

ADDRESSES
HEX SIZE A23 A22 A21 SIGNAL

OOOOO-OFFFF 1 Mbytes 0 0 0 ROMCS1

10000-1 FFFF 1 Mbytes 0 0 1 ROMCS2

20000-2FFFF 1 Mbytes 0 1 0 RAMCS

30000-3FFFF 1 Mbytes 0 1 1 RAMCS

40000-4FFFF 1 Mbytes 1 0 0 RAMCS

50000-5FFFF 1 Mbytes 1 0 1 RAMCS

Figure 5. Truth Table for Chip-Select Signals

Device Selection Considerations

Thefirsttaskforthe designer is to identify the design problem and
classify it as a combinatorial function or a registered function,
depending upon whether or not registers are required. In most
cases, this decision depends upon the functional nature of the
problem. Sometimes timing and logic considerations can also
dictate the use of registers;this will be discussed later. Registers
are usually not required for such simple combinatorial functions
such as encoders, decoders, multiplexers, demultiplexers, ad­
ders, and comparators. Registers are required, however, for
functions such as counters, timers, control signal generation, and
state machines. No registers are required forthis simple address
decoding example.

A brief look at the places where various architectural features are
used will help us select a device for our design example. Based
on historic record of usage and architectural functionality, PLDs
can be classified into three basic application segments. Figure 6
shows the optimal placement of PAL, PLS, and PROSE/FPC
(Fuse Programmable Controller) devices for these three seg­
ments; combinatorial designs, simple registered designs and
complex registered (sequencer) designs. This classification also
shows the available functionality and device speeds. These are
rough estimates that most designers implicitly assume and de­
velop with experience. These estimates vary drastically among
different designers, based on personal preferences and experi­
ence. They have been included here to provide a complete road
map for device selection and should be considered strictly as a
rule of thumb.

COMBINATORIAL f
SPEED DESIGNS

I
FUNCTIONALIlY

SIMPLE f
REGISTERED SPEED

DESIGNS

I
FUNCTIONALIlY

STATE MACHINES! f SEQUENCERS.
COMPLEX SPEED

REGISTERED

I
DESIGNS

404 06
FUNCTIONALIlY

Flguro 6. Various PLD Design Options

Based on these criteria, the best choice for our combinatorial
design would be a PAL device. The task now is to select a PAL
device for implementing the desired function. The main function­
specific selection considerations are shown in Figure 7. These
items are applicable to most designs. There are other function­
specific issues which need addressing when selecting a device;
these will be discussed in the later sections of the book, when we
address advanced designs.

1. Number of Input pins
2. Number of output pins
3. Number of I/O pins
4. Device speed
5. Device power requirements
6. Number of registers (If any)
7. Number of product terms
8. Output polarity control

Figure 7. General Device Selection Considerations

The first resource that must be provided in a PLD is the number
of pins needed for the basic logic function. This consists of the
number of input and output pins. Many PLDs have internal
feedback, which allows the generated output signal to be reused
as an input. The same feedback also allows the pin to be used
as a dedicated input, if required. This is especially useful forfitting
various designs with different input/output requirements on the
same device. The I/O pin capability of certain PLDs can also be
very useful forcertain bus applications and will be discussed later.

~ Monolithic WMemorles ~ 2·23

Ell

PLD Design Methodology

Figure 8 and 9 show the pin resources available on various
combinatorial and registered PLDs. The task is as simple as
counting the number of input, output and I/O pins required by the
design and picking a PLD from the table which has the requisite
number of pins. We will pick a PAL 16L8 for our design, since it
has sufficient pin resources.

DEVICE TOTAL DEDICATED DEDICATED
NUMBER INPUT OUTPUT
OF PINS PINS PINS

TTL

10H8 20 10 8
10L8 20 10 8
12H6 20 12 6
12L6 20 12 6
14H4 20 14 4
14L4 20 14 4
16H2 20 16 2
16L2 20 16 2
16C1 20 16 2

16L8 20 10 2
16P8 20 10 2

16RA8 20 8 -
18P8 20 10 -

6L16 24 6 16
8L14 24 8 14

12L10 24 12 10
14L8 24 14 8
16L6 24 16 6
18L4 24 18 4
20L2 24 20 2
20C1 24 20 2

20L8 24 14 2
20L10 24 12 2

20RA10 24 10 -
20510 24 12 2
22P10 24 12 -

22XP10 24 12 -
22RX8 24 14 -
22V10 24 12 -

32VX10 24 12 -

CMOS

C16L8 20 10 2
C20L8 24 14 2

C22V10 24 12
C29M16 24 5 -

C29MA16 24 5 -

ECl

10H20P8 24 12 -

The next selection issue is the device speed. The most important
timing consideration for combinatorial PLDs is the propagation
delay (tpll) of signals from the input to the output of the device. For
registered PLDs, the important timing consideration is the device
clocking frequency. This clocking frequency (shown in Figure 9)
is in turn determined by sum of the register setup time (t • .,), and
clock-to-output propagation delay (tCl.IJ Most systems impose

1/0 lOGICAL SPEED GRADES
PINS PRODUCT tpD IN ns

TERMSI
OUTPUT

- 2 35
- 2 35

2-4 35
2-4 35

- 4 35
4 35
8 35

- 8 35
- 16 40

6 7 10,15,25,35
6 7 25
8 4 20,30
8 8 15,25

- 1 25
- 1 25

- 2 40
- 2-4 40
- 2-4 40
- 4-6 40
- 8 40
- 16 40

6 7 15,25,35
8 3 15, 20, 25,35
10 4 20,30
8 8-16 35
10 8 15,25
10 8 20,30,40
8 8 25
10 8-16 15,25,35
10 8-16 25,30

6 7 25
6 7 35,45
10 8-16 25,35
16 8-16 35,45
16 4-12 35,45

8 4-8 6

Figure 8. Combinatorial PlDs with Pin Resources and Speed Requirements

2·24 ~ Monolithic W Memories l1

PLD Design Methodology

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OFPINS PINS OUTPUT TERMS! MHz

PINS OUTPUT fMAX

TTL

16R8 20 8 8 8 55.5, 37, 25, 16
16R6 20 8 6 2 8 55.5, 37, 25, 16
16R4 20 8 4 4 8 55.5, 37, 25, 16

16RP8 20 8 8 8 22.2
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20

16X4 20 8 4 4 8 14
23S8 20 9 4 4 8-12 33.3,28.5

20R8 24 12 8 8 37,25,16
20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25,16

20X10 24 10 10 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

20RP10 24 10 10 8 37,25
20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25

20XRP10 24 10 10 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS10 24 10 10 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18

32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 8-16 16

CMOS

C16R8 20 8 8 - 8 28.5
C16R6 20 8 6 2 8 28.5
C16R4 20 8 4 4 8 28.5
C20R8 24 12 8 - 8 20,15.3
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,15.3

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 16 8-16 20, 15
C29MA16 24 5 16 4-12 20, 15

ECl

10H/020EV/G8 24 12 0-8 8-0 8-12 125
10H20G8 24 12 0-8 8-0 4-8 NA
(Latched)

Figure 9. Registered PlDs with Pin Resources and Speed Requirements

~ f-1ono/ithio Wrllemories ~ 2·25

PLD Design Methodology

ADDRESS ADDRESS
DECODING - --- MEMORY ACCESS TIME ---M-- DECODING

TIME TIME

~ 10 ns .1" 220 ns ------... ''''1 .. �----1o ns =-='
~"".------I----------------240ns------------~---~

404 10
READ I WRITE CYCLE TIME

Figure 10. System Timing Requirements

some timing restrictions on the internal logic functions. These
restrictions will determine the necessary tpo (for combinatorial
devices) or fMAX (for registered devices). Details on clocking
frequency are provided on page 2-64.

In our design example, the PLD will primarily perform address
decoding. The critical system timing constraint is determined by
the readlwrite cycle time of the microprocessor and the memory
access time available (Figure 10). Most microprocessors allow
anywhere from 10 to 35 ns for address decoding. That is, 10-35
ns after the address is available, the correct memory chip-select
signal should be asserted. in our design example the available
cycle time of 240 ns and memory access time of 220 ns leaves
barely 10 ns for address decode time. From the table in
Figure 8, we can check the propagation delay and select the
appropriate speed of PAL 16L8 forour design, which is tpo=10 ns.

We have already briefly discussed the types of applications
where registers are needed. Sometimes the consideration of
system timing can affect whether or not registers are needed.
Devices with registers can hold a signal stable for the long
durations required by the addressed peripheral or memory.
However, this slows the initial response or access time of the
device since the chip select must wait for the setup time before the
rising edge of the clock cycle. Devices without registers provide
fast access time but hold the signal valid only as long as the input
conditions are valid. In most address decoders, the address
signals are kept asserted by the microprocessor until the readl
write cycle is completed. In this case, the registers are not
required for holding the signals asserted.

The remaining two general design considerations are the number
of product terms and output polarity. We will discuss these two as
we implement the design in the next section.

Implementing a design

Implementing a design (Figure 11) requires the creation of a
design file. This design file is called the PAL device Design
Specification (PDS) in the PALASM 2 software package. Details
of PALASM 2 software can be found in section 4 of this handbook.
The design file contains three types of information.

1. Basic bookkeeping information
2. Design syntax
3. Simulation syntax

The first section provides documentation information, along with
the name of the device selected, and the signal names. All of the
signal names are assigned to pins and are defined as inputs or
outputs. The Declaration Section contains the signal names in
the ascending order of pin numbers. Figure 12 shows the pin
assignments of the signals used in our example. Signals which
are used as lIDs are assigned as outputs and are used as both
inputs and outputs in the sum-of-products logic explained later.

Once the design file is complete, it is then assembled and
simulated. Once it passes assembly and simulation, the resultant
JEDEC file is downloaded to a device programmer for configuring
the device.

SELECT DEVICE

r- ------------ --------------------- ---------,

CREATE DESIGN FILE
WRITE BOOLEAN

LOGIC EQUATIONS

CREATE DESIGN FILE
WRITE STATE

MACHINE

Figure 11. Implementing a Design

2·26 ~ Monolithic W Memories ~

PLD Design Methodology

Title M68000_ADDRESS_DECODER

Pattern P8000

Revision A

Author ENGINEER

Company MMI SUNNYVALE, CALIFORNIA

DATE 07/21/87

CHIP DECODER PAL16L8

NC A23 A22 A21 TOP BOTTOM AS RW NC GND

OE ROMCS1 ROMCS2 RAMCS INIT NC NC NC NC VCC

Figure 12. Declaration Section of a Design File

Design Syntax

As shown in Figure 11, there are two options available to the
designer for expressing the design. The first is through traditional
Boolean logic equations; the second is through a state machine
syntax. The Boolean logic equations are the only option for
combinatorial designs and can also be efficient for some regis­
tered designs. The Boolean equations can be derived from a
combination of the functional description, the truth table and/or
the timing diagrams (Figure 13). The state machine approach is
ideal for large registered control designs, and can be derived from
the functional description, state table, state diagram and/or the
timing diagram (Figure 14). The latter approach can also be used
with PROSE and PLS devices, and will be discussed in a later
section on state machine design.

Boolean Logic Equations

Boolean equations are used to represent the sum-of·products
logic form (see page 6-1 for a logic design review). The Boolean
equations are ideally suited for representing the two-level
AND-OR logic available in most PLDs.

A conventional approach to the design is to convert the design
problem to its discrete logic implementation. Such random SSI
and MSI logic can be easily implemented in PLDs (see the
Beginner's Guide, page 2-2). This usually involves converting to
sum-of-products Boolean logic form. This approach can be a
chore, and much effort can be saved by implementing a design
with PLDs in a sum-of-products form right from the start. This
essentially means that the designer does not have to design
around the limitations of fixed SSI and MSI functions. A direct
implementation of a design in sum-of-products form in a PLD can
also yield a faster circuit.

Boolean equations can be directly derived from the truth table or
timing diagram (Figure 13). The truth table is used more often in
simple combinatorial designs. The timing diagram method is
used more often in registered control designs. We will first
discuss the truth table method and then discuss the details of the
timing diagram method. The state-machine-based registered
design approach will be discussed on page 2-101.

In addition to specifying the logic function, the Boolean equations
in the design file help document the design. There is no need to
draw out an equivalent schematic. This allows design modularity;
the schematic can just show a block for a particular PLD.
Separate supporting documentation (the design file) provides the
details without cluttering the drawing.

Truth-Table-Based Design

The requirements for our particular design example can be easily
converted to a truth table format (Figure 15). This truth table is
based upon the functional description of the design, and is
derived from the address map (Figure 3) and the truth table
(Figure 5).

Figure 13. Writing Boolean Logic Equations

~ Monolithic W Memories ~ 2-27

E1I

PLD Design Methodology

STATE TABLE

404 14

Figure 14. State Machine DsecrlpUon

OUTPUT GENERATED

A23 A22 A21 INIT AS RW ROMCS1 ROMCS2 RAMCS

0 0 0 1 0 1 0 1 1
0 0 1 1 0 1 1 0 1
0 1 0 1 0 X 1 1 0
0 1 1 1 0 X 1 1 0
1 0 0 1 0 X 1 1 0
1 0 1 1 0 X 1 1 0

Figure 15. Truth Table for the Address Decoder

There are three additional input signals in this design example.
The first, RW, is generated by the microprocessor, and distin­
guishes between read and write cycles. Since the ROM data is
only for reading, the ROMCS 1 and ROMCS2 signals are asserted
only when RW is high (when the microprocessor attempts to read
the ROM) and are not asserted for the write cycle. On the other
hand, RAMCS is generated for both read and write cycles and the
state of signal RW is "don't care".

The second additional signal, AS, is the address strobe signal
generated by the microprocessor, and is asserted only when the
address lines carry a valid address. All of the chip select signals
need to be gated with the AS signal to ensure that they are only
generated for valid addresses, and no spurious chip selects are
generated.

The last signal is the INIT signal, which is a system initialization
signal. This signal is used to initialize the microprocessor for a
"warm boot," and none of the chip selects is allowed when this
INIT signal is asserted.

Writing Boolean equations from the above logic is very straight­
forward. The output signal names, along with their polarity, are

assigned to sum-of-product equations, which are based upon
inputs and their polarities.

IROMCS1 = IA23 * IA22 * IA21 * INIT * lAS * RW
. IROMCS2 = IA23 * IA22 * A21 * INIT * lAS * RW

/RAMCS - /A23 * A22 * /A21 * INIT * /AS

+ IA23 * A22 * A21 * INIT * lAS
+ A23 * /A22 * IA21 * INIT * lAS
+ A23 * IA22 * A21 * INIT * lAS

Figure 16. The Implementation In Boolean Equations

The equations are derived directly from the truth tables. Each one
of the AND equations uses up one product term of the device as
shown in Figure 16. One device selection consideration is to
ensure that all the outputs have sufficient product terms to
accommodate the desired function. The device we have selected
for this design is the popular PAL 16L8D. This device has
sufficient inputs, outputs, and product terms, and has the requi­
site speed for the design.

2·28 ~ Monolithic m Memories ~

PLD Design Methodology

This brings us to the issue of output polarity. Suppose we had to
generate active-HIGH outputs. In that case the output equations
for the ROMCS1 signal would be :

ROMCSl = /A23 * /A22 * /A21 * IN IT * /AS * RW

As the PAL 16L8 has active-LOW outputs only, this equation's
output polarity needs to be inverted to be able to fit the device.
Using DeMorgan's theorem for Boolean logic we get:

/ROMCSl = A23 + A22 + A21 + /INIT + AS + /RW

This equation requires a large number of product terms (six).
Some signals are efficient and use fewer product terms in their
true form, while others are more efficient in their inverted form.
This poses no problems until the signals exceed the device limit
of 8 product terms provided by the PAL 16L8 and other standard
PAL devices. In such cases, an output polarity control is required.
The PAL 16RP8 family provides just the control for fitting the
required number of product terms on the device. The device
selection issues of product terms and output polarity also apply to
registered designs. A detailed discussion of output polarity is
included on page 6-15.

Timing.Diagram.Based Design

Until now, we have discussed a PLD design using truth tables as
the primary design vehicle. In this section we will attempt a design
using a timing diagram as a design vehicle.

Earlier in the address decoder design we mentioned the INIT
signal. This INITsignal is essentially an initialization signal forthe

. entire system, and can be generated by the PAL 16L8. Note that
the PAL 16L8D used for decoding still has several unused outputs
left, one of which can be used to generate the INIT signal. The
INIT signal is used internally (via feedback) for disabling the chip
selects during initialization. Externally it can be used to initialize
other system signals. This INITsignal is generated from a RESET
switch connected to the inputs of the PAL 16L8 device as shown
in Figure 17.

To avoid unwanted initialization, the RESET switch must be
debounced. That is, we want the INITsignal to remain HIGH until
the switch actually contacts the bottom side. Once the bottom
side is hit, INIT should be asserted active LOW. Once asserted,
it should stay LOW and not change until the top side is hit again.
The timing requirements of the debounce circuitry are shown in
Figure 18. Signals TOP and BOTTOM are inputs to the program­
mable logic device. These signals are activated when the RESET
switch touches the top and the bottom contacts, respectively.

VCC

(~
((
) ')

404 17

TOP
PAL DEVICE
DEBOUNCE

CIRCUIT

BonOM PAL16L8

RESET ± r
Figure 17. RESET Switch for System Initialization

We can formulate the equations by looking at the timing require­
ments of the debounce circuitry shown in Figure 18. The idea is
to identify the key elements of this timing diagram. The arrows in
Figure 18 show the critical events. The first arrow shows the
normal state of all the pins when the RESET switch is not
asserted. Subsequent arrows show each event in the timing of
the INIT signal, depending upon the movement of the switch.

404 18

RESET
SWITCH

TOP

BonOM

INIT

Figure 18. Timing Diagram for the Debounce Switch

The logic level of the signals at each critical event carries useful
logic information for deriving Boolean equations. This logic
information for each event is converted into direct Boolean
equations as shown in Figure 19 below. For example, at instant
1 the INITsignal remains HIGH as long as the TOP signal remains
LOW; this is converted to INIT = !TOP· BOTTOM.

1. Normal state INIT = /TOP

2. Switch travels INIT = TOP * BOTTOM * INIT
from TOP to BOTTOM

3. Switch contacts /INIT = /BOTTOM
BOTTOM

4. Switch travels /INIT = /INIT * BOTTOM * TOP
form BOTTOM to TOP

5. Normal State Again

Figure 19_ Boolean Logic at Every Instant of Timing

Since we are working with an active-LOW device, we can com­
bine the two active-LOW events into one equation:

/INIT = /BOTTOM
+ /INIT * BOTTOM * TOP

Minimizing, this becomes:

/INIT = /BOTTOM
+ /INIT * TOP

This can also be done by way of a truth table and Karnaugh map.

~ Monolithic W Memories ~ 2·29

PLD Design Methodology

TOP BOTTOM INIT- INIT+

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 X
0 0 0 x

Figure 20. Truth Table of INIT logic

Here TOP or BOTTOM will be LOW if contacted. Note that both
TOP and BOTTOM can not be contacted at the same time. The
truth table of Figure 20 yields the Karnaugh map shown in Figure
21. Grouping the zeros (because the PAL 16LB offers active-LOW
outputs) yields the Boolean equation identical to the one derived
from the timing diagram.

tRESET

tTOP
tBOTTOM

00 01 11 10

Figure 21. Karnaugh Map of IN IT Signal Logic

404 21

There is essentially no difference between the truth table and
timing diagram techniques for writing Boolean logic. A careful
analysis will indicate that we implicitly assumed a truth table in the
timing diagram example also. Some designers prefer to make a
separate truth table (at least in the first few PLD designs), while
others prefer to design directly from timing diagrams. While the
truth table method allows a more optimal utilization of product
terms, the timing diagram method is easier to visualize as it
retains the design perspective. In both cases the logic should be
minimized by the design software to ensure that the design is
testable. Refer to page 3-1 OB for a discussion on testability.

Most experienced designers understand the tradeoffs for device
selection. They implicitly go through the steps of design concep­
tualization and device selection, explained earlier. They typically
draw a block around the logic being designed, with the previous
knowledge that it would fit a PLD which has sufficient inputs,
outputs, 1I0s and product terms. Now that we have selected a
device and implemented the design, the next step is design
simulation.

Simulation

Design simulation is an integral part of the design process, as
shown in Figure 22. The purpose is to exercise all of the inputs
and test the response of outputs to verify that they will work as
desired in the system. These are essentially test vectors which
designate the state of every input on the device; the outputs are

then checked for an appropriate response. The simulation test
vectors identify any flaws in the design equations which could
affect the logical operation of the devices programmed. Thus the
simulation vectors serve as a design debugging tool.

Simulation test vectors will eventually make up part of a larger set
of test vectors called "functional test vectors". These functional
test vectors are used to exercise a real device after programming
to identify any individual devices which are defective. Other
means of identifying defective devices, such as signature
analysis, are also available. All of these are discussed in detail on
page 3-12B. In this section we will strictly focus on simulation
vectors.

Simulation is included in the design file along with the logic
equations. There is little standardization in these simulation
expressions among various PLD design software packages,
although most of them rely on test vectors to exercise the logic.
PALASM 2 software offers an advanced event-driven capability
that retains a closer design perspective than simulation vectors.
Details of PALASM 2 simulation syntax are included on page
4-137.

The simulation vectors or events can be directly derived from the
truth table and the timing diagram of the design. The logic level
and functions of all signals can be expanded and rewritten in a test
vector form by the software. For example, the truth table for the
address decoder example discussed earlier can be easily rewrit­
ten as shown in Figure 23.

SIMULATE THE
DESIGN WITH

SIMULATION VECTORS

ERR6~~ +-____ N_O<:

DOWNLOAD JEDEC
FILE TO THE DEVICE

PROGRAMMER

r----------------------,
I
I
I
I
I
I
I
I
I
I

PROGRAM
THE PLD

404 22

Figure 22. Device Simulation and Programming

2·30 ~ Monolithic W Memories ~

PLD Design Methodology

A23 A22 A21 TOP BOTTOM AS RW ROMCS1 ROMCS2 RAMCS INIT

0 0 0 0 1 1 1 H H H H
0 0 0 0 1 0 1 L H H H

0 0 1 0 1 1 1 H H H H
0 0 1 0 1 0 1 H L H H

0 1 0 0 1 1 X H H H H
0 1 0 0 1 0 X H H L H

0 1 1 0 1 1 X H H H H
0 1 1 0 1 0 X H H L H

1 0 0 0 1 1 X H H H H
1 0 0 0 1 0 X H H L H

1 0 1 0 1 1 X H H H H
1 0 1 0 1 0 X H H L H

1 0 1 0 1 X X H H H H
1 0 1 1 1 X X H H H H

1 0 1 1 0 1 X H H H L
1 0 1 1 1 1 X H H H L
1 0 1 0 1 1 X H H H H

Figure 23. Truth Table Used to Derive Simulation Vectors

These are essentially the simulation vectors which will allow us to
define the inputs to the device and check the outputs of the
device. The PALASM 2 syntax for these simulation vectors is
shown in Figure 24.

There is a direct relationship between the truth table vectors of
Figure 23 and the simulation shown in Figure 24. The simulator
then interprets the design file and generates the output logic
levels and/or waveforms, which can be checked by the designer.

Once the simulation is complete, the design file can be as·
sembled to generate the JEDEC file. In the preceding discus·
sions we have assumed prior knowledge of the design file
assembly. The procedure for assembly varies with different
software packages and is covered for the PALASM 2 software
package in the Beginner's Guide (page 2·6).

~ Monolithic W Memories ~ 2·31

2·32

PLD Design Methodology

SETF IA23 IA22 IA21 ITOP BOTTOM AS RW
CHECK ROMCSl ROMCS2 RAMCS INIT

SETF lAS ; READ CYCLE VALID ROMCSl ADDRESS
CHECK ROMCSl ROMCS2 RA}1CS INIT
SETF AS
SETF IRW lAS ; WRITE TO ROMCSl NOT POSSIBLE
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF RW AS

SETF IA23 IA22 A21 ; SET UP ROMCS2 ADDRESS
SETF lAS ; READ CYCLE VALID ROMCS2 ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF AS
SETF IRW lAS ; WRITE TO ROMCS2 NOT POSSIBLE
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF RW AS

SETF IA23 A22 IA21 ; SET UP RAMCS ADDRESS
SETF lAS ; READ CYCLE VALID RAMCS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF AS
SETF IRW lAS ; WRITE CYCLE VALID RAMCS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF RW AS

SETF IA23 A22 A21
SETF lAS

; SET UP RAMCS ADDRESS
; READ CYCLE VALID RAMCS ADDRESS

CHECK ROMCSl ROMCS2 RAMCS INIT
SETF AS
SETF IRW lAS ; WRITE CYCLE VALID RA}1CS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF RW AS

SETF A23 IA22 IA21 ; SET UP RAMCS ADDRESS
SETF lAS ; READ CYCLE VALID RAMCS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF AS
SETF IRW lAS ; WRITE CYCLE VALID RAMCS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF RW AS

SETF A23 IA22 A21 ; SET UP RAMCS ADDRESS
SETF lAS ; READ CYCLE VALID RAMCS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF AS
SETF IRW lAS ; WRITE CYCLE VALID RAMCS ADDRESS
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF RW AS

SETF TOP ; RESET SWITCH TRAVELING DOWN
SETF IBOTTOM ; RESET HITTING BOTTOM
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF BOTTOM ; RESET TRAVELING TO TOP
CHECK ROMCSl ROMCS2 RAMCS INIT
SETF TOP ; RESET HITTING TOP
CHECK ROMCSl ROMCS2 RAMCS INIT

Figure 24. PALASM 2 Software Simulation for Address Decoder

~ Monolithic W Memories l1

PLD Design Methodology

404 25

DOWNLOAD JEDEC
FILE TO DEVICE
PROGRAMMER

;----------- ----------,
, , , ,

TEST PLD WITH
SIMULATION AND

OTHER TEST VECTORS

PROGRAM

PLD ~

TEST
PLD

PERFORMED BY
/DEVICE PROGRAMMERS

Figure 25. Device Programming and Testing

Device Programming and Testing

Once the design simulation is completed, the final step is device
programming and testing (Figure 25). Programmers are avail­
able from a variety of vendors. It is important to note that
Monolithic Memories qualifies programmers upon verifying that
the algorithms used by the programmers. are correct and that
other basic criteria are met. When purchasing a programmer,
check that the programmer is qualified for the devices you intend
to use.

There are two types of programmer available; menu-driven or
device code based. The menu-driven programmer directly indi­
cates the part type being programmed, whereas the latter type
requires the user to enter the device code before programming.

OncetheJEDECfusefile has been downloaded, the programmer
can program the device; the PLD is then ready for use. The
programmer also verifies the connections after the programming
cycle. Programmers also provide the capability of reading a
previously programmed device and creating duplicates of that
device.

Testing PLDs

The testing of PLDs can be performed by the device programmer
or by other test equipment. For a manufacturing environment
where high yields are required, device testing is critical. This
subject merits a separate discussion and has been included on
page 3-128. After testing is complete, the device security cells
may be programmed if desired to secure the design from copying.

~ Monolithic m Memories ~ 2·33

Notes

2·34 ~ Monolithic W Memories ~

Combinatorial Logic Design

In this section we will take a detailed look at several aspects of
combinatorial logic design. Most combinatorial design applica­
tions can be easily segmented into five major fields.

• Encoders and Decoders
• Multiplexers
• Comparators
• Adders and Arithmetic Logic
• Latches

We will not only focus on the design methodology for these func­
tions, but will also explore further function-specific PLD selection
requirements. Generalized designs will be developed, which can
be customized later to suit specific system applications. Ways of
optimizing the design will also be discussed.

Encoders and Decoders

Two of the most important functions required in digital design are
encoding and decoding. The encoding and decoding of data are
used extensively in digital communications as well as in periph­
erals. Both these areas use various complex encoding and de­
coding techniques, which are described in more detail on pages
2-357 and 2-507. Most of these techniques are extensions of the
simple encoding and decoding techniques often used in other
digital designs. In this discussion we will focus on simple encod­
ing and decoding techniques.

Encoders

A binary code of n bits can be used to represent 2n distinct pieces
of coded data. A simple combinatorial encoder is a circuit which
generates n bits of output information based upon one of the 2n

unique pieces of input data information. This encoding of infor­
mation is controlled by other independent control signals in a
typical digital circuit.

An illustration of a typical encoder is shown in Figure 1. The
design methodology typically followed is based on truth tables
(Figure 2), from which the Boolean equations are directly derived
for the design. The same generic device selection considerations
discussed in the section on PAL device design methodology
apply for encoder and decoder designs.

INP~S !~
405 01

ENCODER ENCODED
OUTPUTS

Figure 1. A Block Diagram of an Encoder

INPUTS OUTPUTS

A B C 0 Co C1

1 0 0 0 L L
0 1 0 0 L H
0 0 1 0 H L
0 0 0 1 H H

Figure 2. Truth Table of a Typical Encoder

The Boolean equations can then be optimized using Karnaugh ~
maps or the PALASM 2 software minimizer. ~

The resulting Boolean equations are:

ellA * B * Ie * ID
+ IA * IB * Ie * D

eo IA * IB * e * ID
+ IA * IB * Ie * D

The complete PALASM 2 design file (including the simulation) for
this simple encoder design is shown in Figure 3.

A Priority Encoder

Let us take another look at the encoder example of Figure 2. In
this example it is assumed that only one of the inputs A. B, C or
D is asserted HIGH at anyone time. If two of the inputs are
asserted HIGH simultaneously, a conflict would be created. To re­
solve this, a priority needs to be assigned to each of the inputs.
Such a priority assignment is used to select a particular element
when several inputs are asserted simultaneously. Each input is
assigned a priority with respect to the other inputs. The output
code generated is the code assigned to the highest priority
input asserted.

Thus, a priority encoder is a combinatorial circuit block similar to
a general encoder, except that the inputs are assigned a priority.
Such priority encoders are used often in state machine applica­
tions, where they detect the occurrence of the highest priority
event. They are also used for microprocessor interrupt control­
lers, where they detect the highest priority interrupt. Another use
for priority encoders is in bus control, where they are used in
arbitration schemes for allowing selective access to the bus.

The model of a priority encoder is shown in Figure 4. The four
input signals are A, B, C and D. These are to be encoded as LL,
LH, HL and HH outputs. Let us assign priority to Dover C, Cover
B, and B over A. The next design step would be to modify the truth
table (Figure 5) to reflect these priorities.

~ Monolithic m Memories ~ 2·35

A

B

c

D

Combinatorial Logic Design

SIMPLE ENCODER
ENCODE-:-PDS
01
JOE ENGINEER

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

MONOLITHIC MEMORIES, INC.
8/20/87

This is an example of a simple encoder.
are generated based upon inputs A,
truth table is following:

A B

1 0
0 1
0 0
0 0

CHIP ENCODER PAL16H2

A B C D NC NC NC NC
NC NC NC NC CO Cl NC NC

EQUATIONS

Cl /A * B /C * /D
+ /A * /B /C * D

CO /A * /B * C * /D
+ /A * /B * /C * D

SIMULATION

TRACE ON
SETF - A /B /C /D
CHECK /CO /Cl
SETF /A B /C /D
CHECK /CO Cl
SETF /A /B C /D
CHECK CO /Cl
SETF /A /B /C D
CHECK CO Cl

C

0
0
1
0

NC
NC

D

0
0
0
1

GND
VCC

B, C

CO

L
L
H
H

The output Cl and CO
and D. The function

Cl

L
H
L
H

Figure 3. PALASM 2 File for a Simple Encoder

PRIORITY
ENCODER

405 04

A

1
0
0
0

X
X
X

INPUTS

B C

0 0
1 0
0 1
0 0

1 0
X 1
X X

D Co

0 L
0 L
0 H
1 H

0 L
0 H
1 H

OUTPUTS

C1

L
H
L
H

H Priority
L Assignments
H

Figure 4. A Four-Input Priority Encoder Block Diagram Figure 5. Priority Encoder Truth Table

2·36 ~ Monolithic W Memories l1

Combinatorial Logic Design

The Boolean equations, directly derived from the truth table, are: These equations can be further optimized by the design software
to the following:

Cl IA *
+ IA *
+
+

B * Ic * 10 co =

IB * IC * 0 +
B * IC * 10 +

0 +

IA * IB *
IA * IB *

C *
IC *

C *

10
0

10
0

Cl = 0 + IC * B
co = 0 + C

Although a priority encoder is a purely combinatorial function,
output registers are frequently used to hold the output signal
stable for longer durations. An example of a registered 16-input
priority encoder is shown in Figure 6.

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

16 INPUT REGISTERED PRIORITY ENCODER
P7090
01
J. ENGINEER
MONOLITHIC MEMORIES, INC.
8/20/87

CHIP IN_PRTY PAL20R4

; DESCRIPTION

;THE 16 INPUT REGISTERED PRIORITY ENCODER ACCEPTS SIXTEEN ACTIVE-LOW INPUTS
;(10-115) TO LOAD THE BINARY WEIGHTED CODE OF THE PRIORITY ORDER INTO THE
;OUTPUT REGISTER (03-00) ON THE RISING EDGE OF THE CLOCK (CLK). A PRIORITY
;IS ASSIGNED TO EACH INPUT SO THAT WHEN TWO INPUTS ARE SIMULTANEOUSLY
;ACTIVE, THE INPUT WITH THE HIGHEST PRIORITY IS LOADED INTO THE OUTPUT
;REGISTER. THEREFORE THE HIGHEST PRIORITY INPUT (IO=H) PRODUCES HHHH IN
;THE OUTPUT REGISTER AND THE LOWEST PRIORITY INPUT (I15=H) PRODUCES LLLL IN
;THE OUTPUT REGISTER.

;OPERATI0NS TABLE

/OC CLK 115-10 03-00 OPERATION

H X X Z HI-Z
L C 10 =H 15 10 INTERRUPT (HIGHEST PRIORITY INPUT)
L C 11 =H 14 11 INTERRUPT
L C 11 =H 13 12 INTERRUPT
L C 11 =H 12 13 INTERRUPT
L C II =H 11 14 INTERRUPT
L C 11 =H 10 15 INTERRUPT
L C 11 =H 9 16 INTERRUPT
L C 11 =H 8 17 INTERRUPT
L C 11 =H 7 18 INTERRUPT
L C 11 =H 6 19 INTERRUPT
L C 11 =H 5 IlO INTERRUPT
L C 11 =H 4 III INTERRUPT
L C 11 =H 3 Il2 INTERRUPT
L C 11 =H 2 Il3 INTERRUPT
L C Il =H 1 Il4 INTERRUPT
L C Il =H 0 Il5 INTERRUPT (LOWEST PRIORITY INPUT)

CLK 10 II 12 13 14 15 16 17 18 19 GND
/oe 110 III 112 03 02 01 00 113 114 115 vee

EOUATI0NS

/00 : = /10* 11
+ /10*/11*/12* 13
+ /10*/11*/12*/13*/14* 15
+ /10*/11*/12*/13*/14*/15*/16* 17
+ /10*/11*/12*/13*/14*/15*/16*/17*/18* 19
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110* III
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112* 113
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113*/114*115

Figure 6. A 16-lnput Registered Priority Encoder Design File

~ Monolithic W Memories ~ 2·37

Ell

Combinatorial Logic Design

/01 := /10*/11* 12
+ /10*/11*/12* 13
+ /10*/11*/12*/13*/14*/15* 16
+ /10*/11*/12*/13*/14*/15*/16* 17
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19* 110
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110* III
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113* 114
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113*/114*115

/02 := /10*/11*/12*/13* 14
+ /10*/11*/12*/13*/14* 15
+ /10*/11*/12*/13*/14*/15* 16
+ /10*/11*/12*/13*/14*/15*/16* 17
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111* 112
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112* 113
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113* 114
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113*/114*115

/03 := /10*/11*/12*/13*/14*/15*/16*/17* 18
+ /10*/11*/12*/13*/14*/15*/16*/17*/18* 19
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19* 110
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110* III
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111* 112
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112* 113
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113* 114
+ /10*/11*/12*/13*/14*/15*/16*/17*/18*/19*/110*/111*/112*/113*/114*115

SIMULATION NOT INCLUDED HERE

Figure 6. A 16-lnput Registered Priority Encoder Design File (Cont'd.)

2·38 ~ Monolithic WMemorles ~

Combinatorial Logic Design

INPUT SELECT LINES OUTPUT LINES

A B C 0 00 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
a 1 1 a 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 a 1 1 1 1 1 1 1 1
1 a 0 a 1 1 1 1 1 1 1 1 a 1 1 1 1 1 1 1
1 a a 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 a 1 a 1 1 1 1 1 1 1 1 1 1 a 1 1 1 1 1
1 a 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a

Figura 7. Tha Truth Tabla of an Active-LOW 4-to-16 Decoder

Decoders

A decoder performs the reverse function of an encoder. It
converts an n-bit code to one of its 2" unique items. It is a
combinatorial circuit designed such that at most one of its several
outputs will be asserted based upon the unique input codes.

Adecoder may have as many outputs as there are possible binary
input selection combinations. As shown in the truth table
(Figure 7), only one output may be asserted at any time. When
a new combination is applied, another output is asserted and the
original output is returned to its non-asserted state.

The Boolean logic equations can be directly derived from the truth
table shown in Figure 7. The procedure is the same as explained
in the previous section on PLD design methodology on page 2-27.
The Boolean equations derived are shown in Figure 8.

/QO '" /D * /e * /B * /A
/Ql = /D * /e * /B * A
/Q2 = /D * /e * B * /A
/Q3 = /D * /e * B * A
/Q4 = /D * e * /B * /A
/Q5 = /D * e * /B * A
/Q6 = /D * e * B * /A
/Q7 = /D * e * B * A
/Q8 D * /e * /B * /A
/Q9 = D * /e * /B * A
/Ql0 = D * /e * B * /A
/Ql1 '" D * /e * B * A
/Q12 '" D * e * /B * /A
/Q13 = D * e * /B * A
/Q14 = D * e * B * /A
/Q15 = D * e * B * A

Figure 8. Decoder Boolean Logic Equations

Notice from the truth table that there is no combination of inputs
that wiil send all the outputs to their non-asserted state. Many
designs actually need to be able to make all outputs inactive. This
can be done simply by putting enable lines in all ofthe output AND
gates. Many such design modifications can be easily added once
the basic Boolean equations have been derived, instead of
redoing the truth table. Figure 9 shows the PALASM 2 software
design file of one such 4-to-16 decoder with the enable function.

Probably the most commonly used decoders are the address
decoders required by most microprocessors and bus interfaces.
These also constitute the most common application of PLDs in
digital designs. The design considerations for address decoders
have been covered earlier in the PLD Design Methodology
section, page 2-23. Later we will develop a general Boolean
equation for an address decoder circuit when we discuss range
decoders.

~ M~nollthlc m Memories ~ 2·39

E1I

Combinatorial Logic Design

Title
Pattern
Revision
Author
Company
Date

4to16 Decoder
4-l60EC.POS
A
Mehrnaz Hada
Monolithic Memories, Santa Clara, CA
1/9/85

CHIP Decoder PAL6L16

00 01 02 ABC 0 ENI EN2 03 04 GNO
05 06 07 08 09 010 011 012 013 014 015 vce

iThe 4 to 16 decoder decodes four binary encoded inputs
iinto one of 16 mutually exclusive outputs, whenever the
itwo enable lines ENI and EN2 are high. When one or both
iof the enable lines are low the outputs are all set to
:high values.

EOUATIONS

/00 /O"/C"/B"/A" ENl" EN2 iDecode 0000
/01 /O"/C"/B" A" EN!" EN2 :Decode 0001
/02 /O"/C" B"/A" ENl" EN2 :Decode 0010
/03 /O"/C" B" A" EN!" EN2 iOecode 0011
/04 /0" C"/B"/A" ENl" EN2 iOecode 0100
/05 /0" C"/B" A" ENl" EN2 :Decode 0101
/06 /0" C" B"/A" ENl" EN2 iDecode 0110
/07 /0" C" B" A" ENl" EN2 iOecode 0111
108 O"/C"/B"/A" EN1" EN2 iDecode 1000
/09 O"/C"/B" A" ENl" EN2 :Oecode 1001
1010 D"/C" B"/A" ENl" EN2 ;Decode 1010
/011 D"/C" B" A" ENl" EN2 ;Decode 1011
/012 0" C"/B"/A" ENl" EN2 ;Decode 1100
/013 0" C"/B" A" EN1" EN2 :Oecode 1101
/014 0" C" B"/A" ENl" EN2 ;Decode 1110
/015 0" C" B" A* ENl" EN2 :Decode 1111

SIMULATION

TRACE_ON 0 B C A 00 01 02 03 04 05 06 07 08 09 010
011 012 013 014 015

SETF /0 /C /B /A ENI EN2
SETF A
SETF B
SETF C
SETF 0
SETF /0
SETF /C
SETF /B
SETF /A
SETF /EN1
SETF ENI /EN2
SETF /ENI

TRACE_OFF

:Set outputs to high

:Set outputs to high
;Set outputs to high

Figure 9. Design File of Four-to-Slxteen Decoder with Enable

Encoder/Decoder Device Selection Considerations • Number of Input Pins

The general device selection considerations are listed in
Figure 10. Based upon the number of inputs and outputs
required, a device can be selected from the table in Figure 11 for
combinatorial devices or Figure 12 for registered devices.

• Number of Output Pins
Number of 1/0 Pins

• Device Speed
• Device Power Requirements
• Number of Registers
• Number of Product Terms
• Output Polarity Control

Figure 10. General Encoder/Decoder Device Selection
Considerations

2·40 ~ Monollthlo.Memorles ~

Combinai:orial Logic Design

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT OUTPUT PINS PRODUCT tpD IN ns
OF PINS PINS PINS TERMS!

OUTPUT

TIL

10H8 20 10 8 2 35
10L8 20 10 8 - 2 35
12H6 20 12 6 - 2-4 35
12L6 20 12 6 2-4 35
14H4 20 14 4 4 35
14L4 20 14 4 - 4 35
16H2 20 16 2 - 8 35
16L2 20 16 2 - 8 35
16C1 20 16 2 - 16 40

16L8 20 10 2 6 7 10,15,25,35
16P8 20 10 2 6 7 25

16RA8 20 8 - 8 4 30
18P8 20 10 - 8 8 15,25

6L16 24 6 16 - 1 25
8L14 24 8 14 - 1 25

12L10 24 12 10 - 2 40
14L8 24 14 8 - 2-4 40
16L6 24 16 6 - 2-4 40
18L4 24 18 4 4-6 40
20L2 24 20 2 - 8 40
20C1 24 20 2 - 16 40

20L8 24 14 2 6 7 15,25,35
20L10 24 12 2 8 3 15,20,25,30

20RA10 24 10 10 4 20,30
20S10 24 12 2 8 8-16 35
22P10 24 12 - 10 8 15,25

22XP10 24 12 - 10 8 20,30,40
22RX8 24 14 8 8 25
22V10 24 12 10 8-16 15,25,35

32VX10 24 12 10 8-16 25,30

CMOS

C16L8 20 10 2 6 7 25
C20L8 24 14 2 6 7 35,45

C22V10 24 12 - 10 8-16 25,35
C29M16 24 5 16 8-16 35,45

C29MA16 24 5 - 16 4-12 35,45

ECl

10H20P8 24 12 8 4-8 6

Figure 11. Combinatorial Programmable logic Devices

~ Monolithic W Memories l1 2·41

Combinatorial Logic Design

DEVICE TOTAL DEDICATED DEDICATED 110 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS! MHz

PINS OUTPUT fMAX

TTL

16R8 20 8 8 - 8 55.5,37,25, 16
16R6 20 8 6 2 8 55.5,37,25, 16
16R4 20 8 4 4 8 55.5,37,25, 16

16RP8 20 8 8 - 8 22.2
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20

16X4 20 8 4 4 8 14
23S8 20 9 4 4 8-12 33.3,28.5

20R8 24 12 8 - 8 37,25,16
20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25,16

20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

20RP10 24 10 10 - 8 25,37
20RP8 24 10 8 2 8 25,37
20RP6 24 10 6 4 8 25,37
20RP4 24 10 4 6 8 25,37

20XRP10 24 10 10 - 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18

32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16

CMOS

C16R8 20 8 8 - 8 28.5
C16R6 20 8 6 2 8 28.5
C16R4 20 8 4 4 8 28.5
C20R8 24 12 8 - 8 20,15.3
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,15.3

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15

ECl

10H/020EV/G8 24 12 0-8 8-0 8-12 125
10H20G8 24 12 0-8 8-0 4-8 NA
(Latched)

Figure 12. Registered Programmable logic Devices

2-42 ~ Monolithic W Memories l1

Combinatorial logic Design

Encoders typically require a large number of inputs and fewer
outputs, whereas decoders typically require a large number of
outputs and fewer inputs. We can see from these tables that the
PAL device for the priority encoder application (Figure 6) shou Id
be the PAL20R4 and for the decoder application (Figure 7) it
should be the PAL6L 16.

Another important device selection consideration for encoders
and decoders is the number of product terms required for a
design. A careful selection of code values (and priority assign­
ments in priority encoders) can often reduce the required number
of product terms. This can sometimes determine whether or not
a design fits a device successfully. Figure 13 shows the truth
tables of two simple partial 3-to-2 encoders. The product terms
required for the two designs are different due to the different
assignment of encoded bits.

INPUTS OUTPUTS

A B C X
1 Xa

1 0 a a a
0 1 a a 1
a a 1 1 a

Xl /A * /B * C

XO = /A * B * /C

A

1
a
a

INPUTS OUTPUTS

B C X
1 Xa

a a a
1 a 1
0 1 1

Xl = /A * B * /C
+ /A * /B * C

XO A * /B * /C
+ /A * /B * C

1
a
1

Figure 13_ Two Encoders With Different Product Term
Requirements

Another way of looking at a decoder is as a logic function which,
depending upon the select code applied, connects one data input
to the selected outputs. Also known as a Demultiplexer, a
decoder essentially connects an input to one of 2n outputs based
upon n select code bits. The reverse logic function, which
combines data from multiple sources to an output signal, is called
a multiplexer and is discussed next.

Multiplexers

A multiplexer (sometimes referred to as a data selector) is a
special combinatorial circuit, widely used in digital design. It is
designed to gate one of several inputs to a single output. The
input selected for connection to the output is controlled by a
separate set of select inputs.

The traditional use of a multiplexer is for "time division multiplex­
ing" in data communication, when gating several data lines to a
single data transmission line for short intervals of time. The data
received is then demultiplexed by using a demultiplexer, de­
scribed earlier.

The design methodology employed for multiplexer design is the
truth-table approach. As an example, we can look at a three­
input-to-one-output (3:1) mUltiplexer, which uses two select sig­
nals A and B. Based on these two select bits, the data on one of
the three inputs is sent to the output. The truth table is shown in
Figure 14.

SELECT INPUTS OUTPUT
B A 11CO 11C1 11C2 OW

0 0 0 X X a
0 0 1 X X 1
0 1 X a X 0
0 1 X 1 X 1
1 0 X X 0 0
1 0 X X 1 1

Figure 14_ Truth Table for a Three-to-One Multiplexer

Deriving the Boolean equation from this truth table is a straight­
forward task. In this case no further minimization is possible. The
Boolean equation is:

/OlY = IB * IA * II1CO
+ IB * A * II1Cl
+ B * /A * /I1C2

The complete PALASM 2 design file for this design example
showing four such three-to-one multiplexers is shown in
Figure 15.

~ Monolithic W Memories ~ 2·43

Ell

2·44

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

;DESCRIPTION

Combinatorial Logic Design

QUAD 3:1 MULTIPLEXER
P7074
01
COLI/VOLPIGNO
MONOLITHIC MEMORIES, INC.
8/20/87

;THIS IS AN EXAMPLE OF A QUAD 3-TO-l MULTIPLEXER USING A PAL14L4. SELECT
;LINES A,B ARE ENCODED IN BINARY, WITH A REPRESENTING THE LSB. THE OUTPUTS
;(Y) ARE ALL HIGH IF THE SELECT LINES ARE BOTH HIGH (B,A=H).

CHIP

IlCO
I4CO

OPERATIONS TABLE:

INPUT OUTPUTS
SELECT
BAY

L L CO
L H Cl
H L C2
H H H

QUAD_MUX PAL14L4

IlCl IlC2 12CO 12Cl
I4Cl I4C2 04Y 03Y

EQUATIONS

/OlY /B"'/A '" /IlCO
+ /B'" A '" /IlCl
+ B"'/A '" /IlC2

/02Y /B"'/A '" /I2CO
+ /B'" A '" /I2Cl

B"'/A '" /I2C2

/03Y /B"'/A '" /I3CO
+ /B'" A '" /I3Cl
+ B"'/A '" /I3C2

/04Y /B"'/A '" /I4CO
+ /B'" A '" /I4Cl
+ B"'/A '" /I4C2

I2C2 I3CO
02Y OlY

SIMULATION NOT INCLUDED HERE

I3Cl 13C2 GND
B A VCC

Figure 15. Quad 3:1 Multiplexer

SELECT
SELECT
SELECT

SELECT
SELECT
SELECT

SELECT
SELECT
SELECT

SELECT
SELECT
SELECT

l1 Monolithic W Memories ~

INPUT lCO
INPUT lCl
INPUT lC2

INPUT 2CO
INPUT 2Cl
INPUT 2C2

INPUT 3CO
INPUT 3Cl
INPUT 3C2

INPUT 4CO
INPUT 4Cl
INPUT 4C2

Combinatorial Logic Design

The equations derived in the above example can be easily
generalized for other multiplexers. The symbol for a general
2n-inputs-to-one-output multiplexer is shown in Figure 16 where
n select lines are used.

INPUTS

405 16

MULTIPLEXER

So S1 Sn-1

INPUT SELECT LINES

y
OUTPUT

Figure 16. General Model of a 2n-to-1 Multiplexer

The Boolean equations are:

n=2

n=3

Y = /S1*/SO*(IO)
+ /S1* SO* (Il)
+ S1*/SO*(I2)
+ S1* SO*(I3)

Y = /S2*/S1*/SO*(IO)
+ /S2*/S1* SO*(I1)
+ /S2* S1*/SO*(I2)
+ /S2* S1* SO*(I3)
+ S2*/S1*/SO*(I4)
+ S2*/S1* SO*(IS)
+ S2* S1*/SO*(I6)
+ S2* S1* SO*(I7)

Multiplexer Device Selection Considerations

Multiplexers typically require more inputs than outputs, so the
devices with a large number of inputs and lias are usually more
useful. Careful consideration must also be given to the number
of product terms available on each output.

Several multiplexers are often used simultaneously to route
multiple address and data bits, under the control of the same
select lines. In such cases, multiple devices can be cascaded
when the number of inputs and outputs exceeds device limits.
Cascading is also possible for large multiplexers that do not fit in
a single device. In such cases, the select bits should also be
judiciously selected for each PLD, to minimize the number of
product terms.

Another common trick for designing a multiplexer is to connect a
number of outputs together and control the output enables using
the select bits to multiplex data. This multiplexing technique is
used extensively in DRAM controllers for multiplexing address
signals. liming considerations for such designs include the
output enable and disable times, which should be carefully
selected to avoid output contentions.

Comparators

A comparator is a combinatorial circuit designed primarily to Ill'
compare the relative magnitude of two binary numbers. Figure 17
shows the truth table for a two-bit comparator.

INPUTS OUTPUTS

A B EQL LES GTR

A2 Al 82 81 A=B A<8 A>8

0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 a
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 a 0
1 a 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

Figure 17. Truth Table for a Comparator

A basic comparator compares two numbers only for equality,
and generates the EOL signal (indicating A=B). An extension,
called a magnitude comparator, also generates the LES signal
(indicating A<B) and GTR signal (indicating A>B). Based on this
truth table, the equations for the three output signals EOL, LES
and GTR can be easily derived. These equations can then be
optimized by using Boolean algebra, Karnaugh maps or the
minimization routine available with PALASM 2 software.

~ Monolithio W Memories ~ 2·45

Combinatorial Logic Design

The final Boolean equations are:

EQL =

LES=

GTR =

/A2 * /AI * /B2 *
+ /A2 * Al * /B2 *
+ A2 * /AI * B2 *
+ A2 * Al * B2 *

/A2 * /AI * /B2 *
+ /A2 * /AI * B2 *
+ /A2 * /AI * B2 *
+ /A2 * Al * B2 *
+ /A2 * Al * B2 *
+ A2 * /AI * B2 *

/AI * B2 * BI
+ /A2 * /AI * BI
+ /A2 * B2

/A2 * Al * /B2 *
+ A2 * /AI * /B2 *
+ A2 * Al * /B2 *
+ A2 * /AI * /B2 *
+ A2 * Al * /B2 *
+ A2 * Al * B2 *

Al * /B2 * /BI
+ A2 * Al * /BI
+ A2 * /B2

/BI
B1

/BI
BI

BI
/BI
BI

/BI
BI
BI

/BI
/BI
/BI
BI
BI

/BI

Comparator Device Selection Considerations

The number of product terms needed is directly related to the
number of bits compared. For LES (less than) and GTR (greater
than) functions, the number of product terms required depends
upon the number of bits in the two operands compared, as well as
their value. The LES and GTR equations can be rewritten as
follows:

DEVICE TOTAL DEDICATED DEDICATED
NUMBER INPUT OUTPUT
OF PINS PINS PINS

TTL

16C1 20 16 2
20C1 24 20 2

20S10 24 12 2
22V10 24 12 -

32VX10 24 12 -

CMOS

C22V10 24 12

C29M16 24 5
C29MA16 24 5

LES = B2 * /A2
+ (B2 :+: /A2) * BI * /AI

GTR = A2 * /B2
+ (A2 :+: /B2) * Al * /BI

These equations can then be extended for a general comparison
of n-bit comparands as follows:

LES = Bn'" IAn
+ (Bn :+: IAn) ." Bn-l ." IAn-l
+ (Bn :+: IAn) ." (Bn-l :+: IAn-l) ." Bn-2 ."

IAn-2

+ .. .
+ .. .
+ .. .
+ (Bn :+: IAn) ." (Bn-l :+: IAn-l) ...

(82 :+: IA2) ." Bl ." IAl

GTR = An'" /Bn
+ (An :+: /Bn) ." An-l ." /Bn-l
+ (An :+: /Bn) ." (An-l :+: /Bn-l) ." An-2 ."

/Bn-2
+ .. .
+ .. .
+ .. .
+ (An :+: IBn) ." (An-l :+: /Bn-l)

(A2 :+: /B2) ." Al ." /Bl

The total number of product terms required for an n-bit compari­
son is 2n-1. Comparators require a large number of product terms
and devices that offer many product terms can be used very ef­
fectively. Figure 18 shows a list of devices that offer many product
terms. It also includes registered devices, since registers are
sometimes used to hold the comparator output signals asserted
for long durations.

1/0 LOGICAL SPEED GRADES
PINS PRODUCT tpD IN ns

TERMSI
OUTPUT

- 16 40
- 16 40

8 8-16 35
10 8-16 25,35
10 8-16 25,35

10 8-16 25,35

16 8-16 35,45
16 4-12 35,45

Figure 18. PLDs With Large Numbers of Product Terms

2·46 ~ Monolithic W Memories ~

Combinatorial Logic Design

As is obvious from these equations, comparators require exclu­
sive-OR functions, and can also be efficiently implemented in the

PAL 16X4, which offers exclusive-OR functions. An example of a
four-bit comparator implemented on a PAL 16X4 is shown in
Figure 19.

PAL16X4
P7031
BETWEEN LIMITS COMPARATOR/REGISTER
MMI SUNNYVALE, CALIFORNIA

CLK LOAD CLEAR BO B1 B2 B3 NC /OC2 GND
/OC1 /NE /EQ A3 A2 Al AO /LT /GT VCC

iDESCRIPTION

ITHE DEVICE CONTINUOUSLY COMPARES THE BUS VALUE
ITHE REGISTER (A3-AO) AND REPORTS THE STATUS ON

* LT INDICATES THAT B IS LESS THAN A
* EQ INDICATES THAT B IS EQUAL TO A
* NE INDICATES THAT B IS NOT EQUAL TO A
* GT INDICATES THAT B IS GREATER THAN A

STATUS BUS

PAL DESIGN SPECIFICATION
BIRKNER/COLI 07/12/81

(B3-BO) WITH THE VALUE OF
OUTPUTS LT, EQ, NE, AND GT:

REG
I/OC1 /OC2 CLK LOAD CLEAR LT EQ NE GT B3-BO A3-AO OPERATION
--

H X X X X X X X X X Z REG HI-Z
X H X X X Z Z Z Z x X STATUS HI-Z
L X X L L X X X X X A READ REG
X X C H L X X X X B B LOAD REG
X X C L L X X X X X A HOLD
X X C X H X X X X X L CLEAR REG
X L X L L STATUS B A COMPARE

IF(OC2) LT (A3*/B3) IB3=L, A3=H
+ (A3:*:B3) * (A2*/B2) IB2=L, A2=H
+ (A3:*:B3) * (A2:*:B2) * (A1*/B1) IB1=L, A1=H
+ (A3:*:B3) * (A2: * :B2) * (A1:*:B1) * (AO*/BO) IBO=L, AO=H

IF(OC2) GT (/A3*B3) IB3=H, A3=L
+ (A3: * :B3) (/A2*B2) IB2=H, A2=L
+ (A3:*:B3) (A2:*:B2) * (/A1*B1) IB1=H, A1=L
+ (A3:*:B3) (A2:*:B2) * (AI: *: B1) * (/AO*BO) IBO=H, AO=L

IF(OC2) EQ (A3:*:B3) * (A2:*:B2) * (A1:*:B1) * (AO:*:BO) ICOMPARE EQUAL

IF(OC2) NE (A3:+:B3) + (A2:+:B2) + (A1:+:B1) + (AO:+:BO) INOT EQUAL

/A3 := (/A3) */LOAD IHOLD REG A3
+ (/B3) * LOAD I LOAD REG A3
+ CLEAR I CLEAR REG A3

/A2 := (/ A2) * /LOAD IHOLD REG A2
+ (/B2)* LOAD I LOAD REG A2
+ CLEAR I CLEAR REG A2

/A1 := (/A1) */LOAD IHOLD REG Al
+ (/B1)* LOAD I LOAD REG Al
+ CLEAR I CLEAR REG Al

/AO := (/ AO) * /LOAD IHOLD REG AO
+ (/BO)* LOAD I LOAD REG AD
+ CLEAR I CLEAR REG AO

Figure 19. PAL 16X4 Based Four·Blt Comparator

~ Monollthlo m MemorIes ~ 2·47

Ell

Combinatorial Logic Design

FUNCTION TABLE

CLK lOCI IOC2 LOAD CLEAR B3 B2 B1 BO A3 A2 Al AO LT EO NE GT

; CONTROL BUS REG
IOC OPERATIONS BBBB AAAA --STATUS--- COMMENTS

;CLK 1 2 LOAD CLEAR 3210 3210 LT EO NE GT (HEX VALUES)
--

C L X X H XXXX LLLL X X X X CLEAR REG
C L X H L LLLL LLLL X X X X LOAD REG (0)
X L L L L LLLL LLLL L H L L COMPARE (0 EO 0)
X L L L L LLLH LLLL L L H H COMPARE (1 GT 0)
X L X L L XXXX LLLL X X X X READ REG (0)
C L X X H xxx X LLLL X X X X CLEAR REG
C L X H L LHLH LHLH X X X X LOAD REG (5)
X L L L L LLLL LHLH H L H L COMPARE (0 LT 5)
X L L L L LHLH LIILH L H L L COMPARE (5 EO 5)
X L L L L HHHH LHLH L L H H COMPARE (F GT 5)
X L X L L XXXX LHLH X X X X READ REG (5)
C L X X H XXXX LLLL X X X X CLEAR REG
C L X H L HLHL HLHL X X X X LOAD REG (A)
X L L L L LHLL HLHL H L H L COMPARE (4 LT A)
X L L L L HLHL HLHL L H L L COMPARE (A EO A)
X L L L L HLHH HLHL L L H H COMPARE (B GT A)
X L X L L XXXX HLHL X X X X READ REG (A)
C L X X H XXXX LLLL X X X X CLEAR REG
C L X H L HHHH HHHH X X X X LOAD REG (F)
X L L L L HHHL HHHH H L H L COMPARE (E LT F)
X L L L L HHHH HHHH L H L L COMPARE (F EO F)
X L X L L XXXX HHHH X X X X READ REG (F)
C L X L L XXXX HHHH X X X X HOLD (F)
X H X X X XXXX ZZZZ x x x X TEST HI-Z (/OC1=H)
X X H X X XXX X XXXX Z Z Z Z TEST HI-Z (/OC2=H)

--

Figure 19. PAL16X4 Based Four-Bit Comparator (Cont'd.)

The values of the comparands themselves affect the number of
product terms used. When the comparison is made with compar­
ands which are power-of-two numbers, the number of product
terms required can be reduced drastically. This essentially relies
on the fact that when the lower bits of a comparand are all zeros
only the highest bit needs to be compared, requiring only one
product term. For example in a two-bit comparator, if A1 is zero
andA2 is one, the equation forthe greater-than function becomes
very simple and requires only one product term:

GTR = IB2

The general equation for the GTR signal can also be simplified
when comparing a number B to a fixed power-of-two comparand
A with p least significant zeros.

A = 000010000 _ 00

n p 1

GTR = /Bn * /Bn-1 ... * /Bp+1 * /Bp

This general GTR equation can also be considered as an equa­
tion for comparing a number to a range of numbers extending
from zeroto numberA. In factthistrickis used very often by many
system designers for address decoder functions. In PLD Design
Methodology (page 2-22) the ROMCS1 signal is one such signal
which is generated for the address range from (000000) hex to
(OFFFFF) hex. Forthis design n=23, the comparand A=(OFFFFF
+ 1)=1 00000 and p=21. Substituting in the general equation we
get the same address decoder Boolean logic equation.

ROMCS1 = /A23 * /A22 * /A21

As such designs require few product terms and no XOR gates,
they are efficiently implemented on standard combinatorial PLDs.
A list of such standard combinatorial PLDs is shown in Figure 20.
A general form of range comparators with two boundary com par­
ands will be discussed later.

2·48 ~ Monollthlo W Memories ~

Combinatorial Logic Design

DEVICE TOTAL DEDICATED DEDICATED 110 LOGICAL SPEED GRADES
NUMBER INPUT OUTPUT PINS PRODUCT tpD IN ns
OF PINS PINS PINS TERMS!

OUTPUT

TTL

1618 20 10 2 6 7 10,15,25,35
16P8 20 10 2 6 7 25
18P8 20 10 - 8 8 15,25

2018 24 14 2 6 7 15,25,35
20L10 24 12 2 8 3 15,20,25,30
20S10 24 12 2 8 8-16 35
22P10 24 12 - 10 8 15,25

22XP10 24 12 - 10 8 20,30,40
22RX8 24 14 - 8 8 25
22V10 24 12 - 10 8-16 25,35

32VX10 24 12 - 10 8-16 25,30

CMOS

C16l8 20 10 2 6 7 25
C20l8 24 14 2 6 7 35,45

C22V10 24 12 - 10 8-16 25,35

C29M16 24 5 - 16 8-16 35,45
C29MA16 24 5 - 16 4-12 35,45

Figure 20. Standard Combinatorial PLDs with Sum-of-Products Logic

The third output signal is the EOl signal. The EOl Boolean
equation tells us whether the two numbers are identical. Such
information is useful not only in address decoders, but also in
digital signal processing designs. This equ~tion requires a large
number of product terms. A closer examination reveals that it is
essentially an exclusive-OR function.

EQL = /A2 * /B2 * (/AI * /BI + Al * BI)
+ A2 * B2 * (/AI * /BI + Al * BI)

EQL = (AI :*: BI) * (A2 :*: B2) Exclusive-NOR
function

Inverting this:

IEQL = (AI :+: BI) + (A2 :+: B2) ; Exclusive-OR
; function

rhis equation can be extended to give a general equation for
lqual-to comparison for two n-bit comparands.

'EQL = (An :+: Bn)
+ (An-1 :+: Bn-1)
+ (An-2 :+: Bn-2)
+ (An-3 :+: Bn-3)
+ .. .
+ .. .
+ (Al :+: B1)

This inverted equation is implementable in the sum-of-products
form of the exclusive-OR functions, and can be easily expanded
to the following:

/EQL = A1 * /B1 + IAl * B1
+ A2 * /B2 + IA2 * B2
+ A3 * /B3 + IA3 * B3
+ ...
+ ...
+ An * IBn + IAn * Bn

This gives us a general sum-of-products form of a comparator
equation which is easily implemented in PAL devices. An n-bit
comparator requires 2n product terms. An eight-bit comparator
is implemented in the design shown in Figure 21. This design
uses the PAL 16C1 , which is specifically designed for comparator
applications, and provides a large number of product terms
connected to EOl and IEOl (NE) outputs. All of the devices that
have a large number of product terms are illustrated in Figure 18,
and would be appropriate for such designs.

~ Monolithic W Memories l1 2·49

2·50

Combinatorial Logic Design

Octal Comparator
OctCoiiip.pds
A

Title
Pattern
Revision
Author
Company
Date

Mehrnaz Hada
Monolithic Memories
1/29/85

Inc., Santa Clara,CA

;The octal comparator establi~hes when two 8-bit data
;strings (A7-AO) and (B7-BO) are equivalent (EQ=H) or not
;equivalent (NE=H).

CHIP OctalCom PAL16Cl

A7 AO BO Al Bl A2 B2 A3 B3 GND
A4 B4 A5 B5 EQ NE A6 B6 B7 VCC

EQUATIONS

NE AO*/BO + IAO* BO
+ Al*/Bl + IAl* Bl
+ A2*/B2 + IA2* B2
+ A3*/B3 + IA3* B3
+ A4*/B4 + /A4* B4
+ A5*/B5 + IA5* B5
+ A6*/B6 IA6* B6
+ A7*/B7 + IA7* B7

SIMULATION

TRACE_ON A7 A6 AS A4 A3 A2 Al AO
B7 B6 B5 B4 B3 B2 Bl BO

SETF A7 IA6 IA5 IA4 IA3 IA2 IAI
IB7 IB6 IB5 IB4 IB3 IB2 IBI

SETF IA7 A6
SETF IA6 A5
SETF lAS A4
SETF /A4 A3
SETF IA3 A2
SETF IA2 Al
SETF IAI AO

NE

lAO
IBO

SETF IA7 IA6 IA5 IA4 IA3 IA2 IAI lAO
B7

SETF IB7 B6
SETF IB6 B5
SETF IB5 B4
SETF IB4 B3
SETF IB3 B2
SETF IB2 Bl
SETF IBI BO
SETF IBO
SETF A7 A6 AS A4 A3 A2 Al AO

B7 86 85 84 B3 82 81 80
SETF IA7 A6 lAS A4 IA3 A2 IAI AO

187 86 IBS B4 IB3 B2 IBI BO
SETF A7 IA6 AS 1M A3 IA2 Al lAO

B7 IB6 BS IB4 B3 IB2 BIlBO

TRACE_OFF

;AO : + BO
;Al : + Bl
;A2 : + B2
;A3 :+ B3
;A4 :+ B4
;A5 :+ B5
;A6 : + B6
;A7 : + B7

;A7=H, B7=L

;A6=H, B6=L
;A5=H, B5=L
;A4=H, B4=L
;A3=H, B3=L
;A2=H, B2=L
;Al=H, Bl=L
;AO=H, BO=L
;A7=L, B7=H

;A6=L, B6=H
;A5=L, B5=L
;A4=L, B4=H
;A3=L, B3=H
;A2=L, B2=H
;Al=L, Bl=H
;AO=L, BO=H
;Test all L's
;Test all H' s

;Test even ones

;Test odd ones

Figure 21. Octal Comparator Design Example

~ Monolithic m Memories ~

Combinatorial Logic Design

Note that the EQl equation, as well as GTR and lES equations,
rely upon the XOR function. Often the logic represented by the
equations is implemented in two or more devices. There are
several PAL devices that provide dedicated XOR capability, and
can efficiently implement the logic. These devices,listed in Figure
22, can be used for comparator applications. The PAl32VX10
and the PAl22RX8 offer an architecture with a multiple number
of product terms on one side of the XOR gate, which allows a
number to be compared against multiple comparands. The de-

DEVICE TOTAL DEDICATED DEDICATED
NUMBER INPUT REGISTERED
OF PINS PINS OUTPUT

PINS

TTL

16X4 20 8 4

20X10 24 10 10
20X8 24 10 8
20X4 24 10 4

22XP10 24 12 -

20XRP10 24 10 10
20XRP8 24 10 8
20XRP6 24 10 6
20XRP4 24 10 4

22RX8 24 14 0-8
32VX10 24 12 0-10

sign example in Figure 19 shows the XOR implementation of the
lES, GTR and EQl functions.

let us analyze these equations further. The lES and GTR
outputs indicate whether one number is greater than or less than
another. In fact, these equations can also be judiciously com­
bined to get a comparison of a range of numbers such as
A> X > B. Such range comparisons are very useful for address
decoder circuits.

I/O LOGICAL SPEED GRADES
PINS PRODUCT FREQUENCY IN

TERMS! MHz
OUTPUT fMAX

4 8 14

- 4 22.2
2 4 22.2
6 4 22.2

tpD =
10 8 20,30,40

- 8 30,22.2,14
2 8 30,22.2,14
4 8 30,22.2,14
6 8 30,22.2,14

8-0 8 28.5
10-0 8-16 25,22.2

Figure 22. PAL Devices with XOR Capability for Comparators

~ Monolithic IFJFJ] Memories ~ 2·51

Ell

Combinatorial Logic Design

Range Decoders

Range decoders implemented as address decoders are one of
the most commonly used applications of PLDs in digital systems.
Agood example is the address decoder illustrated earlier on page
2-22, in the PLD Design Methodology section. Range decoders
compare a number (address) to a given range of comparands
(addresses). One way to arrive at the range decoder Boolean
equations is to use the traditional truth table approach. Another
way is to use the Boolean equations generated earlier in the
comparator section for greater-than and less-than functions. To
decode a range of three-bit numbers from B to A, we must
compare another number X such that A>X>B. The Boolean
equations for the GTR (A>X) and LES (B<X) functions are
illustrated below:

GTR = A3 * /X3
+ (A3 :+: /X3) * A2 * /X2
+ (A3 :+: /X3) * (A2 :+: /X2) * A1 * /X1

LES = X3 * /B3
+ (X3 :+: /B3) * X2 * /B2
+ (X3 :+: /B3) * (X2 :+: /B2) * Xl * /81

Combining these two equations can give us a range signal which
will be asserted only when A is greaterthan X and X is greaterthan
B. The combined Boolean equation follows:

RANG... (A3 * /X3
+ (A3 :+: /X3) * A2 * /X2
+ (A3 :+: /X3) * (A2 :+: /X2) * A1 * /X1)

(X3 * /B3
+ (X3 :+: /B3) * X2 * /B2
+ (X3 :+: /B3) * (X2 :+: /B2) * Xl * /B1)

Using Boolean algebra we get the following equation:

RANG =

(A3 :+: /X3) * (X3 :+: /B3) * (A2 :+: /X2) * A1 * /X1 * X2 * /B2
+ (A3 :+: /X3) * (X3 :+: /B3) * (X2 :+: /B2) * A2 * /X2 * Xl * /B1
+ (A3 :+: /X3) * (A2 :+: /X2) * A1 * /X1 * X3 * /B3
+ (X3 :+: /B3) * (X2 :+: /B2) * A3 * /X3 * Xl * /B1
+ (A3 :+: /X3) * A2 * /X2 * X3 * /B3
+ (X3 :+: /B3) * A3 * /X3 * X2 * /B2

The general equation for n-bit comparands can also be obtained by extending these equations.

:R1ING (An * /Xn
+ (An :+: /Xn) * An-l * /Xn-l
+ (An :+: /Xn) * (An-l :+: /Xn-l) * An-2 * /Xn-2
+ .. .
+ .. .
+ (An :+: /Xn) * (An-l :+: /Xn-l) .. , (A2 :+: /X2) * A1 * /Xl)

*
(Xn * IBn

+ (Xn :+: IBn) * Xn-l * /Bn-l
+ (Xn :+: IBn) * (Xn-l :+: 1Bn-1) * Xn-2 * /Bn-2
+ .. .
+ .. .
+ .. .
+ (Xn :+: IBn) * (Xn-l :+: 1Bn-1) ... (X2 :+: /B2) * Xl * /Bl)

2·52 ~ Monolithic W Memories ~

Combinatorial Logic Design

The number of product terms required is clearly very large and
can easily exceed one hundred for an eight-bit range comparator.
Most microprocessors have addresses which exceed 16 bits. In
order to fit the design on a PAL device, one commonly used
technique is to select the address range defined by A and B such
that the range extends from address B+1 toA-1, whereAand B+1
are power-of-two numbers. Because the address space is
aligned on the power-of-two boundaries, a number of bits of the
address comparands will be zero. When implemented in Boolean
equations, this substantially reduces the numberof product terms
required.

The maximum number of product terms required for a three-bit
range decoder shown above, with any comparand values, is 28.
If the address is chosen from 2 to 3, resulting in A=4 and B=1, then
only one product term will be required.

RANG = /X3 * X2

Similarly for a range from one to five, B = 1 and A = 6 (a multiple­
of-two), and the number of product terms required is only two.

RANG = /X3 * X2
+ X3 * /X2

Thus a careful selection of range boundaries allows such logic
functions to be implemented easily in PLDs. Such reduction in
logic obviously also holds true for discrete implementations. Most
address decoders are designed with address ranges with
boundaries that are power-of-two numbers, and require few prod­
uct terms for implementation.

For a power-of-two address range, the comparand A would be a
power-of-two; 2, 4 or 8. These are numbers whose least signifi­
cant bits are all zeros. Similarly, comparand B will be a power-of­
two number (minus one); 1,3, and 7. These are numbers whose
least significant bits are all ones. Substituting these in the general
equation for range comparators we arrive oat:

A = 0000100000000000
n p 1

B = 0000000000011111
n q 1

:RANG = /Xn * /Xn-l *_.* /Xp * (Xp-l + Xp-2 + ... +Xq)

This is a general equation for a power-of-two range comparison.
In the example on page 2-22, the ROMCS2 signal addresses the
range from 100000 to 1 FFFFF, in which case B=OFFFFF and
A=2FFFFF. Here n=23, p=22 and q';21. The address decode
equation forthe ROMCS2 signal can be arrived at by substituting:

~OMCS2 = /A23 * /A22 * A21

This is the same equation as was found from the truth table.

3uch designs are very common for address decoder applica­
ions. These do not require any XOR gates, and can be imple­
nented in standard combinatorial PLDs with only sum-of-prod­
IctS logic. A list of such PLDs is shown in Figure 20.

Adders/Arithmetic Circuits

Digital systems are designed to carry out a variety of arithmetic
instructions on binary numerical data. A good example is the
ALU (Arithmetic Logic Unit) used in all digital computers. The
basic function of an ALU is that of an adder performing addition
on two binary numbers. A binary adder takes two inputs, adds
them, and generates the binary sum. A full adder is a one-bit
adder with carry-in and carry-out; this is the basic building block
of any adding circuit. The truth table of such an adder is shown
in Figure 23.

INPUTS OUTPUTS

A B C1N Y COUT

0 a a a 0
a a 1 1 0
a 1 a 1 0
0 1 1 a 1
1 a a 1 0
1 a 1 a 1
1 1 0 0 1
1 1 1 1 1

Figure 23. Truth Table for a Full Adder

This truth table is then used to form the Boolean equations in the
manner described earlier.

y = A * /B * /Cin
+ /A * /B * Cin
+ A * B * Cin
+ /A * B * /Cin

Cout = A * Cin
+ A * B
+ B * Cin

Bigger binary adders can be made by cascading these full
adders. Each carry-out is directed to carry-in for the next stage.
Such adders are known as Ripple Adders.

Combinatorial PAL devices are ideal for this purpose, since they
also provide internal feedback. Thus one strong consideration in
such designs is the internal feedback capability of the device, in
addition to other general device selection considerations.

These ripple adders have an advantage in that they can be
cascaded to any length possible. But since the carry-out from the
least significant bit has to travel all the way to the highest
significant bit, this can take a long time, making such large adders
inefficient. Adders with built in carry-look-ahead circuitry can
save time by simultaneously generating the carry-in signal for all
of the bits.

~ Monolithic W Memories l1 2·53

EJI

Combinatorial Logic Design

Rewriting the equations for a full adder from above gives:

YO = AO :+: BO :+: Cin

where the carry-out signal is:

CO = AO * BO + (AO + BO) * Cin

Extending these equations for an n-bit carry-look-ahead adder,
we can directly get the following equations:

YO = AO :+: BO :+: Cin

Y1 = A1 :+: B1 :+: CO

where

CO = AO * BO
+(AO + BO) * Cin

Y2 = A2 :+: B2 :+: C1

where

C1 = A1 * B1
+(A1 + B1)*(AO * BO)
+(A1 + B1)*(AO + BO) * Cin

Y3 = A3 :+: B3 :+: C2

where

C2 = A2 * B2
+(A2 + B2)*(A1 * B1)
+(A2 + B2)*(A1 + B1)*(AO * BO)
+(A2 + B2)*(A1 + B1)*(AO + BO) * Cin

In general

Yn = An :+: Bn :+: Cn-l

and Cn-l = An-l * Bn-l
+(An-l + Bn-l) * (An-2* Bn-2)
+ .. .
+ .. .
+(An-l + Bn-l) * * (AD + BO) * Cin

and finally the carry-out is:

Cn= An*Bn
+ (An + Bn) * (An-l * Bn-l)
+ (An + Bn) * (An-l + Bn-l) * (An-2 * Bn-2)
+ .. .
+ .. .
+ (An + Bn) * * (AD + BO) * Gin

These equations are essentially a combination of the traditional
generate and propagate logic for ALU design.

Adder Device Seiectlon Considerations

The number of product terms required for implementing a carry­
look-ahead adder is enormous. The carry-out function alone for
a four-bit carry-look-ahead adder requires over 36 product terms
in the sum-of-products form. For a single-level AND-OR implem­
entation the number of product terms required for the most
significant bit Y3 is 28. This will not fit into any of the available
standard combinatorial devices. A PLD with this many product
terms per output will not only be slow, but will also allow very low
silicon utilization.

Special circuitry, known as bit-pair decoding, has been provided
on the PAL 16X4 to allow implementation of such functions with up
to six productterms. Designed primarily for arithmetic operations,
the PAL 16X4 device has an architecture which implements three
different stages of logic. The first is the bit-pair decoding between
an input and a feedback. The second is the standard AND-OR
array logic. The third is the XOR gate provided on selected
outputs.

Although adders are strictly a combinatorial function, the
PAL 16X4 provides four registered outputs. Not only are these
registers used for storing the result, but they are also used
temporarily to hold one of the two operands being added. The
other operand is provided directly at the inputs. To keep the
discussion simple we will not discuss how the first operand is
loaded into the registers. This load function can be implemented
by using an extra product term on each output.

The logic trick lies in the bit-pair decoding function. All of the bits
of the first operand in the registers (A) and the second operand at
the inputs (B) are bit-pair decoded. As illustrated in Figure 24, the
results of this bit-pair decoding are A + B, A + IB, IA + B, and
IA + lB. These outputs are then fed to the AND array as inputs.

,-----------,
INPUT I

A --i--...... ---\
B --;--....... -t---L

FEEDBACK

-----------'

BIT-PAIR
DECODING

A+B

Figure 24. Bit-Pair-Decoding Function

405 24

2·54 ~ Monolithic IFJFJ] Memories ~

Combinatorial Logic Design

Sixteen AND combinations of these four inputs can then be
formed on every product term of the AND-OR array. These are
shown in Figure 25, and include the standard true and comple­
ments of both the bits as well as XOR, XNOR and various other
combinations. This bit pair decoding essentially provides an extra
two-level AND-OR logic level before the AND-OR array. The cost
as well as extra propagation delay of the extra logic level is
minimal, since the array size does not increase.

The equations forthe adder can obviously benefit from multi-level
logic. The bit-pair decoding is used to implement the first two

405 25

levels of logic. The next level of logic is implemented in the
standard AND-OR array. Every product term of this AND-OR
array can combine one of the sixteen possible functions of
different inputs/feedbacks of the device.

The product terms are then combined together through an OR
gate to implement the CARRY-OUT function, shown in Figure 26.
For adder outputs YO, Y1, Y2, and Y3, the product terms are
combined through the XOR gate, as shown in Figure 27. This
XOR gate on the outputs is the final logic level on the device.

PRODUCT TERMS

A+B

A:*:B

A*S

A + B

A

A*S

A*B

Flguro 25. Sixteen Possible Input Logic Combinations

~ Monolithic W Memories ~ 2·55

Combinatorial Logic Design

A3* 83
(A 3 + 83) * A2 * 82

(A3+ 83) * (A2+ 82) * Al* 81
(A3 + 83) * (A2 + 82) * (Al + 81) * Ao * 80

(A3+ 83) * (A2 + 82) • (Al+ 81) * (Ao * Bo) * Cin

8
Ao

I
3

I
82

I
81

I
80

I I I I I BIT PAIR
DECODING

I I BIT PAIR, I I BIT PAIR, I I BIT PAIR I
DECODING DECODING DECODING

I
(") (") (") (") C\I C\I C\I N

en ICD co ICD co ICD CD ICD
++++++++
(") (") (") (") C\I C\I C\I N

~ ~ I~ I~ ~ ~ I~I~

CARRY-OUT = A3 * 83
(A3+ 8 3) * A2 *82
(A3+ 83) * (A2+ 82) * Al* 81

(A3+ 83)' (A2+ 82)· (Al+ 8 1) * Ao * 80

rv

(A3 + 83) • (A2+ 82) * (Al+ 81) • (Ao • 80) *C in

Figure 26. Implementation of CARRY-OUT Function

Al

I
Ao

I
81

I
80

I
I BIT PAIR I I BIT PAIR I I BIT PAIR 1 I BIT PAIR 1 'i 7

DECODING I DECODING I DECODING I DECODING ~

(A2*82) ~~~~-+~~~-4-+-+~~~-+-+---+4--,
(A 2 + 82) • (A 1 * 81) -+-+--+--+--4-+-+-+-......... t-1~--t--I-+-+--+--l--f­

(A2 + 82) • (A 1 +8 1) • (Ao * 80) -+-+--I--I--<l-+-+-+--40--l--I---I---+--+-......... -I---I-;I---4-.....

(A 2 + 82) • (A 1 + 81) • (Ao· 80) * C in -+-+--I--I--<l-+-+--I---40--l--I---I---+--+--I--I---+-II---.J

M M M ("') N C\,I C\I N
CDICD CDICD CDICD CDICD mlm mlcO
++++ ++++ + + + +
MMMM NNNN
~ ~I~I~ ~ ~I~I~ ..{..{ I..{I<

:+: ((A2 * 82)
+(A2+ 82) • (Al· 81)

o 0 0 a
CDICD CDICD
+ + + +

.<. .<. 1'<' 1'<'

+(A2 + 82) • (Al + 8 1) • (Ao· 80)
+(A2+ 82) • (Al + 8 1) • (Ao * 80) * Cin)

.b .b
UIU

7

Figure 27. Relationship Between Adder Boolean Equation and PAL 16X4 Device Logic

2·56 ~ Mono/itllie m Memories ~

CARRY-OUT

405 26

D-

405 27

Combinatorial Logic Design

Thus the most significant bit of the output can be implemented
using only five product terms; the carry-out function can be
implemented using only six product terms. All of this is possible
because the PAL 16X4 offers a modified programmable array with
hardware dedicated to bit-pair decoding at the inputs and an XOR
gate at the outputs.

Figure 28 illustrates an example of one such adder, which also
includes the logic required for loading the registers with one ofthe
operands.

PAL16X4
PNEW
ADDER

PAL DESIGN SPECIFICATION
J. ENGINEER 9/15/87

MMI SUNNYVALE, CALIFORNIA

CLK LOAD ADD BO Bl B2 B3 NC NC GND
CIN NC NC A3 A2 Al AD G P VCC

; DESCRIPTION

;THE DEVICE FUNCTIONS AS AN ADDER. IT FIRST STORES ONE OPERAND IN THE FOUR­
;8IT OUTPUT REGISTER UNDER THE CONTROL OF LOAD SIGNAL. USING FEED8ACK AND A
;SECOND OPERAND AT THE INPUTS, IT ADDS THE TWO UNDER CONTROL OF SIGNAL ADD.
;THE RESULTS ARE STORED BACK IN THE OUTPUT REGISTERS. THE DEVICE ALSO
;GENERATES THE PROPAGATE AND GENERATE SIGNALS WHICH ALLOW A NUMBER OF
;SIMILAR DEVICES TO 8E CASCADED.

IF(VCC) P (A3 + 83)
* (A2 + B2)
* (AI + Bl)
* (AD + BO)

; PROPAGATE SIGNAL

IF(VCC) G (A3*83) ; GENERATE SIGNAL
+ (A3 + 83) * (A2*82)
+ (A3 + B3) * (A2 + 82) * (Al*Bl)
+ (A3 + B3) * (A2 + 82) * (AI + Bl) * (AO*BO)

CARRYO.EQU ADD * CIN

CARRYl.EQU ADD * (AD*BU)
+ ADD * (AD + BO) * CIN

CARRY2.EQU ADD * (Al*8l)
+ ADD * (AI + Bl) * (AO*BO)
+ ADD * (AI + 81) * (AD + BO) * CIN

CARRY3.EQU ADD * (A2*82)
+ ADD * (A2 + 82) * (Al*Bl) (
+ ADD * (A2 + 82) * (AI + Bl) * (AO*BO)
+ ADD * (A2 + 82) * (AI + 81) * (AD + BO) * CIN

/A3 := (/A3)*/LOAD * /ADD iHOLD REG A3
+ (/B3)* LOAD iLOADo REG B3
+ (A3:*:83)*AD iADD A3 AND B3

:+: CARRY3

/A2 := (/A2)*/LOAD * /ADD iHOLD REG A2
+ (/82) * LOAD iLOAD REG B2
+ (A2:*:82)*ADD iADD A2 AND B2

: +: CARRY2

/Al := (/Al) * /LOAD * /ADD iHOLD REG Al
+ (/Bl) * LOAD iLOAD REG Bl
+ (Al:*:8l)*ADD iADD Al AND 81

: +: CARRY!

/AO : = (/AO) * /LOAD * /ADD iHOLD REG AD
+ (/80) * LOAD iLOAD REG BO
+ (AO:*:80)*ADD iADD AD AND 80

:+: CARRYO

FUNCTION TABLE

; NOT INCLUDED HERE

Figure 28. A Four-Bit Adder Implemented in a PAL 16X4

~ Monolithic m Memories ~ 2·57

Combinatorial Logic Design

Latches

PAL devices are often used to implement latches. One of the
most common uses for latches is as temporary storage for data
or addresses. PLO-based latches are often used in address
decoders to assert the decoded signal for long durations. These
latches are also very useful for asynchronous digital designs, and
are used often for control and arbitration functions.

A latch is essentially a simple combinatorial circuit in which the
output is a function of inputs and feedback. The most commonly
used latch is the Ootype latch. When the control signal latch­
enable (LEN) is HIGH, the latch is in the "transparent mode" and
the input signal /0 is available at the outputs. When the LEN
signal is LOW, the input data is latched on the outputs and is
retained until LEN goes back HIGH. In a typical address decoder,
the input will be a combination of various address signals,
decoded as explained earlier for range comparators. The latch­
ing signal in most microprocessors is called AS (address strobe)
or ALE (address latch enable).

The truth table for a latch can be derived directly from this
functional description, and is shown in Figure 29.

INPUTS OUTPUTS

/0 LEN /0

0 1 0
1 1 1
X 0 /0 (previous)

Figure 29. Truth Table of a Simple Latch

The Boolean equations for this latch can be directly derived from
the truth table:

/Q - /D * LEN
+ /Q * /LEN

The logic implementation for this latch is shown in Figure 30.

5------r~
LEN ---..... --L....-/

,..-..._-0

Figure 30. A Transparent Latch

Hazards

405 30

Even when a combinatorial circuit has been designed correctly,
it may still have erroneous outputs due to "hazards". Hazards
exist because physical circuits do not behave ideally. Combina­
torial complementary output functions based on the same inputs

are prime candidates for such hazards. As the input changes, the
two outputs will not respond simultaneously and change state at
the same instant. Although this will not change the steady-state
output of the circuit, it may cause a spurious pulse or a "glitch".
Such hazards are even more dangerous in latches, where the
glitch can cause incorrect data to be latched.

There are two types of hazards, static and dynamic. Static
hazards occur when the steady-state output of combinatorial
logic is not supposed to change due to an input transition, but a
momentary change does occur. Such a glitch can be further
classified as a static 1 or a static 0 hazard as shown in Figure 31.

STATIC 0 HAZARD STATIC 1 HAZARD

40531

Figure 31. Static Hazards

Oynamic hazards involve situations where the the steady-state
output is supposed to change due to an input transition. The
hazard occurs when the transient output changes several times
before settling. Figure 32 shows dynamic hazards.

405 32

Figure 32. Dynamic Hazards

A Karnaugh map is a very good way of detecting hazard condi­
tions. When trying to detect a static 0 or static 1 hazard, only the
mapping of the zeros and the ones, respectively, are required.
For example, the latch equations in Figure 30 can be mapped to
a Karnaugh map shown in Figure 33. The relationship between
the Karnaugh mapping and the Boolean equation product terms
is also illustrated.

OLEN

00 01 11 10

STATIC 1
HAZARD.

COVERING
HAZARD

405 33

Figure 33. Karnaugh Map for Transparent Latch Design

2·58 ~ Monolithic W Memories ~

Combinatorial Logic Design

The possibility of a hazard exists when the signal LEN changes.
Initially, when 0 and LEN are HIGH, the output Q is also HIGH.
When LEN switches to LOW, it is possible for the output to go
LOW momentarily. This is because when LEN goes LOW the first
product term is disabled, and to maintain the output HIGH the
second product term should be enabled exactly at the same
instant. Due to the uneven gate delays or routing conditions on
the board, these two events will not take place simultaneously.
This is a static 1 hazard. It can also be identified directly in the
Karnaugh map by the two adjacent but disjoint sets of ones,
grouped together to form a product term each.

The hazard conditions can be easily avoided in the PLDs by
providing an extra cover product term. This product term is shown
with a dotted line in the Karnaugh map. This third product term
will keep the output asserted during the transition of the LEN
signal, when the control changes from the first product term to the
second. The modified Boolean equation is shown above.

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

CLEAN OCTAL LATCH
P7096
A
VINCENT COLI
MONOLITHIC MEMORIES, INC.
03/10/83

CHIP OCT_LAT PAL20L10

G NC 00 01 02 03 04 05 06 07 NC GND
/OC NC 07 06 05 04 03 02 01 00 NC VCC

;OESCRIPTION

/Q = /0 * LEN
+ /Q * /LEN
+ /0 * /Q (Cover product term)

Devices on which latches are implemented need to provide
output feedback. All devices with I/O pins provide this necessary
feedback. The only other consideration for selecting a device
would be the provision of sufficient number of product terms for
addressing the needs of glitch-free and testable design.

A complete latch design implemented in a PAL20L 10 is shown in
Figure 34. Although the design is now glitch-free, the cover
product term introduces further complications in the testability of
this circuit. This design does not have the additional circuitry to
address the testability requirements. Details on designing for
testability are discussed on page 3-108.

;THIS PAL16L8 IMPLEMENTS AN 8-BIT LATCH FUNCTION WITH THREE-STATE OUTPUTS.
;THE LATCH PASSES EIGHT BITS OF DATA (07-00) TO THE EIGHT OUTPUTS (07-00)
;WHEN LATCH ENABLE IS TRUE (G=HIGH). THE DATA IS LATCHEO WHEN LATCH ENABLE
;IS FALSE (G=LOW). THE OUTPUTS WILL BE DISABLED (HI-Z) WHEN OUTPUT ENABLE
;IS TRUE (/OC=TRUE) REGARDLESS OF ANY OTHER INPUTS.

;/OC G D7-DO 07-00

; H
; L
; L

X
L
H

x
X
o

Z
o
D

COMMENTS

HI-Z
LATCH OUTPUT
LOAD LATCH

;THIS DESIGN SHOWS HOW TO IMPLEMENT A "CLEAN" LATCH SINCE THERE ARE NO
;OUTPUT GLITCHES AS THE DEVICE CHANGES STATE.

Figure 34. Clean Octal Latch Design

~ Monolithic W Memories ~ 2·59

Ell

Combinatorial Logic Design

EQUATIONS

/QO G*/DO ;LOAD LATCH (QO)
+ /G*/QO ;LATCH OUTPUT
+ /DO*/QO ;COVER ALWAYS HIGH HAZARD

QO .TRST = OC ;OUTPUT ENABLE

/Q1 G*/D1 ;LOAD LATCH (Q1)
+ /G*/Ql ;LATCH OUTPUT
+ /D1*/Q1 ;COVER ALWAYS HIGH HAZARD

Q1.TRST = OC ;OUTPUT ENABLE

/Q2 G*/D2 ;LOAD LATCH (Q2)
+ /G*/Q2 ;LATCH OUTPUT
+ /D2*/Q2 ;COVER ALWAYS HIGH HAZARD

Q2.TRST = OC ;OUTPUT ENABLE

/Q3 G*/D3 ;LOAD LATCH (Q3)
+ /G*/Q3 ;LATCH OUTPUT

+ /D3*/Q3 ;COVER ALWAYS HIGH HAZARD

Q3.TRST = OC ;OUTPUT ENABLE

/Q4 G*/D4 ;LOAD LATCH (Q4)
+ /G*/Q4 ;LATCH OUTPUT
+ /D4*/Q4 ;COVER ALWAYS HIGH HAZARD

Q4.TRST = OC ;OUTPUT ENABLE

/Q5 G*/D5 ;LOAD LATCH (Q5)
+ /G"/Q~ iLATCH OUTPUT
+ /D5*/Q5 ;COVER ALWAYS HIGH HAZARD

Q5.TRST = OC iOUTPUT ENABLE

/Q6 G*/D6 ;LOAD LATCH (Q6)
+ /G*/Q6 ;LATCH OUTPUT
+ /D6*/Q6 ;COVER ALWAYS HIGH HAZARD

Q6.TRST = OC ;OUTPUT ENABLE

/Q7 G*/D7 ;LOAD LATCH (Q7)
+ /G*/Q7 ;LATCH OUTPUT
+ /D7*/Q7 ;COVER ALWAYS HIGH HAZARD

Q7.TRST = OC ;OUTPUT ENABLE

SIMULATION NOT INCLUDED HERE

Figure 34. Clean Octal Latch Design (Cont'd.)

2·60 ~ Monollthlo W Memories l1

Registered Logic Design

In the previous section we discussed combinatorial designs,
circuits whose outputs are totally independent of any system
clock. In this section we will discuss sequential circuits, where
outputs store their previous values until a new clock is applied.
The storage elements which retain the previous output values are

called flip-flops. A bank of these flip-flops forms a register,
although individual flip-flops are often called registers. Monolithic
Memories and Advanced Micro Devices offer a number of PLDs
which provide registered outputs. The table in Figure 1 lists all of
the PLDs which provide registered outputs.

DEVICE TOTAL DEDICATED DEDICATED 1/0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fllAX

TTL

16R8 20 8 8 8 55.5, 37, 25, 16
16R6 20 8 6 2 8 55.5, 37, 25, 16
16R4 20 8 4 4 8 55.5, 37, 25, 16
16RP8 20 8 8 - 8 22.2
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23S8 20 9 4 4 8-12 33.3,28.5

20R8 24 12 8 - 8 37,25,16
20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25,16
20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

20RP10 24 10 10 - 8 37,25
20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25
20XRP10 24 10 10 - 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16

PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 '33

PLS105 28 16 8 - Total 48 37

Figure 1. Registered PLDs

~ Monolithic W Memories ~ 2·61

Registered Logic Design

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT 'MAX

CMOS

C16R8 20 8 8 - 8 28.5
C16R6 20 8 6 2 8 28.5
C16R4 20 8 4 4 8 28.5
C20R8 24 12 8 - 8 20,15.3
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,15.3

C22V10 24 12 0-10 10-0 8-16 33.3,20
C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15

ECl

10H20EV/EG8 24 12 0-8 8-0 8-12 125
10020EV/EG8 24 12 0-8 8-0 8-12 125

Figure 1. Registered PlDs (Cont'd.)

Before we discuss purely registered designs, let us take a look at
designs which combine both registered and combinatorial por­
tions. Registered and combinatorial outputs are often mixed on
a single device. There can be two distinct designs, one registered
and one combinatorial (often glue logic) combined on a single
device for higher integration. There may also be a design
requirement where registered outputs need to be decoded using
combinatorial logic.

There are a number of devices which provide both registered and
combinatorial outputs. Some devices provide programmable

register bypass, which allows outputs to be programmed as
registered or combinatorial. Figure 2 shows a list of PLDs with
both registered and combinatorial outputs. Figure 3 shows a list
of PLDs with programmable register bypass.

In most design software packages the output registers are
signified by the ":=" assignment symbol, as opposed to the "="
sign for acombinatorial output. This helps easily identify registers
in each equation. In devices which provide outputs configurable
as either registered or combinatorial, this sign is also used by the
software to configure the outputs.

2·62 ~ Monolithic W Memories ~

Registered Logic Design

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT f lu•x

TTL

16R6 20 8 6 2 8 55.5, 37, 25, 16
16R4 20 8 4 4 8 55.5, 37, 25, 16
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23S8 20 9 4 4 8-12 33.3,28.5

20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25,16
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25

Ell
20RP4 24 10 4 6 8 37,25
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16

CMOS

C16R6 20 8 6 2 8 28.5
C16R4 20 8 4 4 8 28.5
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,15.3

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15

ECl

Latched
10H20G8 24 12 0-8 8-0 4-8 N.A. (latch)
10H/020EG8 24 12 0-8 8-0 8-12 N.A. (latch)
10H/020EV8 24 12 0-8 8-0 8-12 125

Figure 2. PlDs with Both Registered and Combinatorial Outputs

~ Monolithic W Memories ~ 2·63

Registered Logic Design

DEVICE TOTAL DEDICATED DEDICATED I/O lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TTL

16RA8 20 8 0-8 8-0 4 20
2388 20 9 4 4 8-12 33.3,28.5

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 8-16 16

CMOS

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 16 8-16 20, 15
C29MA16 24 5 16 4-12 20, 15

ECl

Latched
10H20G8 24 12 0-8 8-0 4-8 N.A. (latch)
10H/020EG8 24 12 0-8 8-0 8-12 NA (latch)
10H/020EV8 24 12 0-8 8-0 8-12 125

Figure 3. PlDs with Programmable Register Bypass

General Device Selection
Considerations

The same set of general device selection considerations dis­
cussed in the PLD design methodology section (page 2-21) apply
to registered designs. The list of items which must be considered
is repeated in Figure 4 for convenience. A device can be
conveniently selected from the table of registered PLDs
(Figure 1) based upon the specific input and output requirements.

1. Number of input pins
2. Number of output pins
3. Number of 1/0 pins
4. Device speed
5. Device power requirements
6. Number of registers
7. Number of product terms
8. Output polarity control

Figure 4. General Device Selection Considerations

Maximum Frequency

For registered designs, speed is a parameter which needs careful
consideration. Most combinatorial designs use the propagation
delay (tpp) for ensuring that enough time is allowed for the data
from the rnputs to appear at the outputs. In registered designs the
effects of the ciock must be taken into account. This is reflected

in the maximum frequency (fMAx) parameter. The flexibility inher­
ent in PLD design provides a choice of configurations from which
different fMAX parameters can be calculated.

In the first type of design, the PLD is used for a stand-alone
registered design. In order to decide the next logic level of the
registers, the present logic level needs to be available at the
inputs of the registers before they are clocked (Figure 5). Under
these conditions the ciock period is limited by the internal delay
from the flip-flop outputs through the internal feedback and logic
to the flip-flops inputs (tsu+tCF)' For this configuration:

ClK

f MAX INTERNAL: 1/(1 su+ ICF)

Figure 5. Internal fMAX

2·64 ~ Monolithic m Memories ~

Registered logic Design

The second type of system configuration is when a number of
logic devices with registers, including PLDs, are clocked with a
common clock. This is probably the most prevalent configuration.
In this case the registered outputs are sent off-chip back to the
device inputs or to the inputs of a second device. The slowest
path required to set up an input (Figure 6) is the sum of the clock­
to-output delay and the input setup time for the external signals
(tsu + tCLK)· The same speed grade devices are typically clocked
together, which means that the tsu and tCLK of all the devices will
usually be the same.

Thus for this configuration:

This fMAX is the maximum frequency when external feedback is
used or when several equivalent-speed devices are used. This
fMAl<. is designated the external fMAX. The tables for registered
deVices show this fMAX parameter.

The third type of design is a simple data path application. In this
case, input data is presented to the flip-flop and clocked; no
feedback is employed (Figure 7). In this case, the period is limited
by the sum of data setup time and data hold time (t +th).
However, the minimum clock period (tWH + twL) is usually a ;tUricter
limit. Thus the third fMAX' designated "fMAX' no feedbacl<' will be
the lesser of:

i
:~

lOGIC ~

r

Flip-flop Types

There are four basic types of flip-flops; S-R, J-K, T and the popular
D-type. Details on the various types of flip-flops are provided in
the logic reference (page 6-8). In this section we will assume that
the reader is familiar with these flip-flops.

Almost all registered PLDs provide the basic D-type flip-flops.
D-type flip-flops are the simplest to design with and will be used
throughout this section. Some PLDs provide the capability of
configuring output registers as either D, T, J·K or S-R. Configur­
able flip-flops in some cases can reduce the number of product
terms required for certain designs. The effect of the configurable
flip-flops will be discussed wherever relevant.

Synchronous vs Asynchronous

Registered designs can be easify classified into two categories;
synchronous and asynchronous. In synchronous designs the
clock inputs of all the registers are tied together to a common
clock. This is the most commonly used type of registered design. EJI
With asynchronous designs, the flip-flops' clock inputs may not be
tied together, and the clocks may be gated or even driven by other
flip-flops. We will first discuss synchronous registered designs
and then asynchronous registered designs.

elK

I
I
v

r-V (SECOND CHIP)

REGISTER

1

406 02
f MAX EXTERNAL: 1(t su+ tCLK)

406 03

Figura 6. External flolAl(

CLK

LOGIC

j:::

:::: ,:.:.:.:.:.:.:.;.:.: ... :

\144---- t
SU

f MAX NO FEEDBACK: 1/(tsu+ th) OR 1/(twh + twl)

Figure 7. flolAl(with No Feedback

~ Monollthlo W Memories ~ 2·65

Registered Logic Design

Synchronous Registered Designs

Synchronous registered designs are used for two major func­
tions: data handling and control. Registered synchronous de­
signs for data handling include counters and shift registers. There
are various types of counters, among them binary counters,
modulo counters, Johnson counters, and Gray-code counters.
These counters are differentiated by the sequence of values
through which the counter travels. A binary counter is the
simplest form of a counter, and is used most often for data
functions. Any system requiring a regular count uses a binary
counter. Modulo, Gray-code and Johnson counters are also used
for control.

All counters are actually subsets of a larger class of digital designs
called state machines. State machines are discussed in detail in
the next chapter of this handbook.

Counters

Counters are the most commonly used sequential circuits. A set
of registers which cycles through a predetermined, unvarying
sequence is called a counter. A general model of a synchronous
counter is illustrated in Figure 8. This shows a common clock to
all the flip-flops, whose outputs are fed back to a combinatorial
logic array called the next-state (count) decoder. The next count
is generated by this logic based upon the present count and
control inputs. Most PLDs use the standard sum-of-products
form of array for this logic.

The relationship between a four-bit counter and its signal timing
diagram is illustrated in Figure 9. The counters can also be
represented by state diagrams (Figure 10). The state diagrams
are bubble-and-arrow diagrams, with each bubble representing a
count value and each arrow a transition from one count to the
next. More detail on state diagrams is given in the next chapter
on state machine design. For counters, the state diagrams are a
convenient representation tool and will be used in the discussion
when necessary.

elK

.r-,r-I----.. OUTPUTS

406 04

Figure 8. General Model of a Counter

elK

xo

Xl

X2 I
X3 I

STATE 23456 7 9 10 11 12 13 14 15 3
(COUNT)

Figure 9. Timing Diagram of a Four-bit Binary Counter
406 05

2·66 ~ Monolithic W Memories ~

Registered Logic Design

SIXTEEN STATES NUMBERED FROM 0-15

406 06

Figure 10. State Diagram of a Four-bit Binary Counter

Binary Counters

Let us examine a four-bit binary counter. The truth table (also
called the transition table) for such a counter is given in Figure 11.
The table lists the next state values of all the output registers
based upon their present values.

PRESENT STATE

X3 X2 X1 XO

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

NEXT STATE

X3 X2 X1 XO

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
0 0 0 0

Figure 11. The Truth Table for a Four-bit Binary Counter

~ Monolithic W Memories ~ 2·67

Registered Logic Design

We derive Boolean equations for each bit directly from the above
truth table by collecting all the product terms where outputs are
asserted HIGH (ones). This yields:

X3 := !X3 * X2 * Xl * XO
+ X3 * !X2 * !Xl * !XO
+ X3 * !X2 * !Xl * XO
+ X3 * !X2 * Xl * !XO
+ X3 * !X2 * Xl * XO
+ X3 * X2 * !Xl * !XO
+ X3 * X2 * IXI * XO
+ X3 * X2 * Xl * !XO

X2 :~ !X3 * !X2 * Xl * XO
+ !X3 * X2 * IXI * !XO
+ !X3 * X2 * !Xl * XO
+ !X3 * X2 * Xl * !XO
+ X3 * !X2 * Xl * XO
+ X3 * X2 * !Xl * !XO
+ X3 * X2 * !Xl * XO
+ X3 * X2 * Xl * !XO

Xl := !X3 * !X2 * !Xl * XO
+ !X3 * !X2 * Xl * !XO
+ !X3 * X2 * !Xl * xo
+ !X3 * X2 * Xl * !XO
+ X3 * !X2 * !Xl * XO
+ X3 * !X2 * Xl * !XO
+ X3 * X2 * !Xl * XO
+ X3 * X2 * Xl * !XO

XO := !X3 * !X2 * !Xl * !XO
+ !X3 * !X2 * Xl * !XO
+ !X3 * X2 * !Xl * !XO
+ !X3 * X2 * Xl * !XO
+ X3 * !X2 * !Xl * !XO
+ X3 * !X2 * Xl * !XO
+ X3 * X2 * !Xl * !XO
+ X3 * X2 * Xl * !XO

These Boolean equations are for devices with active-HIGH
outputs. These equations can be inverted for devices with active­
LOW outputs. The Boolean equations for active-LOW devices
can also be directly derived from the truth table by collecting all the
product terms where the active-LOW outputs (zeros) are
asserted.

Manipulating the equations with Boolean algebra we obtain the
Boolean logic equations:

xo := !XO
Xl := Xl :+: XO
X2 := X2 :+: (Xl * XO)
X3 := X3 :+: (X2 * Xl * XO)

Similarly for active-LOW output devices
(since f(A :+: B) = fA :+: B):

!XO := xo
!Xl := !Xl :+: XO
!X2 !X2 :+: (Xl * XO)
!X3 := !X3 :+: (X2 * Xl * XO)

These equations could also be obtained from the Boolean equa­
tions developed for an adder in the combinatorial design section
on page 2-54.

Rewriting the equations for an adder:

XO = AO :+: BO :+: Cin

Xl = Al :+: Bl :+: CO
; where

co - AO * BO +(AO + BO) * Cin

X2 - A2 :+: B2 :+: Cl
; where

Cl = Al * Bl +(Al + Bl)*(AO * BO)
+(Al + Bl)*(AO + BO) * Cin

X3 = A3 :+: B3 :+: C2
; where

C2 = A2 * B2 +(A2 + B2)*(AI * Bl)
+(A2 + B2) * (AI + Bl)*(AO * BO)
+(A2 + B2) * (AI + Bl)*(AO + BO) * Cin

Assuming one of the operands in the adder is the number itself
and the second operand is one (X3-XO = A3-AO, B3-BO = 0001
and Cin = 0) we get the following equations for a counter:

XO := !XO
Xl := Xl :+: XO
X2 := X2 :+: (Xl * XO)
X3 := X3 :+: (X2 * Xl * XO)

These are of course the same equations as the ones derived
directly from the truth table. The equations for a binary counter
are very regular. The general equation for an n-bit binary counter
can be directly expressed:

Xn := Xn :+: (Xn-1 • Xn-2 ... XO)

For devices with active-LOW outputs the general Boolean equa­
tions can be derived by inverting both sides of the equation:

IXn := fXn :+: (Xn-1 • Xn-2 ... XO)

These equations represent a binary UP counter. Counting
backwards for a DOWN counter, the Boolean equations can be
similarly generated, either from the truth table or from the adder
Boolean equations. The general equation for a DOWN
counter is:

Xn := Xn :+: (IXn-1 • fXn-2 ... IXO)

This equation is for active-HIGH outputs. For active-LOW output
devices the Boolean equation for a DOWN counter is:

IXn := fXn :+: (IXn-1 • /Xn-2 ... IXO)

A four-bit binary counter which combines both UP and DOWN
capability is illustrated in Figure 12. This design is implemented
in a registered PLD and requires at least six product terms for the
most significant output bit. The design logic has been imple­
mented in sum-of-products form. It uses a control input (UP)
which selects between the "count up" and "count down" product
terms, allowing the counter to count up or down.

2·68 ~ Monolithic W Memories ~

Registered Logic Design

Further control functions can be added to these counter equa­
tions directly either at the truth-table stage or in the equations. For
example, a load data function is required in most counters. This
allows registers to be loaded with a count under the control of

another input signal (LOAD). When the LOAD signal is HIGH the
counter is loaded with the input data, and when the LOAD signal
is LOW the counting is resumed.

Ti tle
Pattern
Revision
Author
Company
Date

4Bit Counter
4cnt-:-pds
B
Mehrnaz Hada, Bill Hollon, Ali Sebt
Monolithic Memories Inc. Santa Clara, CA
1/14/85

CHIP 4BitCoun PAL16RP4

CLK UP AI Bl CI 01 CLR LOAD NC GND
/OC NC NC 0 C B A NC NC VCC

;The 4-bit counter counts up or down and has the clear and
;load capability. The clear operation overrides count and
;load. The counter counts up when CLR=low, LOAD=low, and
;UP=high. It counts down whenever CLR=low, LOAD=low, and
;UP=low

EQUATIONS

A := /A*/B*/C*/D*/UP*/LOAD*/CLR ;When CLR=l, A=O.
+ /A* B* C* 0* UP*/LOAD*/CLR ;Else it will count
+ A* B* /UP*/LOAD*/CLR ;UP or DOWN.
+ A*/B* 0* /LOAD*/CLR
+ A* /C* UP*/LOAD*/CLR
+ A* C*/D* /LOAD*/CLR
+ LOAD*/CLR* AI ;New value is loaded

;when LOAD=l, CLR=O.

B := /B*/C*/D*/UP*/LOAD*/CLR ;When CLR=l, B=O.
+ /B* C* 0* UP*/LOAD*/CLR ;Else it will count.
+ B* C*/D* /LOAD*/CLR
+ B*/C* UP*/LOAD*/CLR
+ B* D*/UP*/LOAD*/CLR
+ LOAD*/CLR* Bl ;New value is loaded

;when LOAD=l, CLR=O.

C := /C*/D*/UP*/LOAD*/CLR ;When CLR=l, C=O.
+ /C* D* UP*/LOAD*/CLR ;Else it will count.
+ C*/D* UP*/LOAD*/CLR
+ C* D*/UP*/LOAD*/CLR
+ LOAD*/CLR* CI ;New value is loaded

;when LOAD=l, CLR=O.

D := /D* /LOAD*/CLR ;Count
+ LOAD*/CLR* Dl ;New value is loaded

;when LOAD=l, CLR=O.

Figure 12. Design File for a Four-bit Counter

~ Monolithic W Memories ~ 2·69

Registered Logic Design

SIMULATION

TRACE ON AI BI CI DI LOAD CLR UP ABC D

SETF LOAD /CLR AI BI CI DI OC
CLOCKF CLK

SETF CLR
CLOCKF CLK

SETF /CLR UP /LOAD

FOR 1:= 1 TO 16 DO
BEGIN

CLOCKF CLK
END

SETF LOAD /CLR /UP AI BI CI DI
CLOCKF
SETF /LOAD

FOR 1:= 1 TO 16 DO
BEGIN

CLOCKF CLK
END

SETF LOAD CLR AI /BI CI /DI
CLOCKF CLK

SETF /OC

;Load all registers
;to HIGH and count up

;Clear all registers

;Start Counting up

;Count up 16 clock
;cycles

;Load all registers
;to HIGH and count
;down
;Count down 16 clock
;cycles

;Test setting LOAD
;and CLR on at the
;same time.

Figure 12. Design File for a Four-bit Counter (Cont'd.)

Binary Counter Device Selection Considerations

One major device selection consideration is the logic require­
ment. The binary counter Boolean equations make use of
exclusive-OR functions in the output. In most of the registered
PLDs shown in Figure 1, the XOR functions are implemented in
their sum-of-products logic form. This usually requires a large
number of product terms. We have seen a design example for a
four-bit UP/DOWN binary counter which requires up to six prod­
uct terms. Most standard PAL devices provide eight product
terms per output. However, for larger counters, a large number
of product terms is required. Figure 13 shows a list of PLDs which
provide more than eight product terms per output.

Some PLDs provide a dedicated XOR gate on the outputs (Figure
14). This allows an AND-OR-XOR implementation of the Boolean
logic, and consequently requires fewer product terms. A nine-bit
binary counter design is illustrated in Figure 15. This design has
been implemented in the PAL20X10, which provides an XOR
gate. This design cannot be implemented in standard PAL
devices.

Cascading Binary Counters

Situations are occasionally encountered in digital system designs
where very long counters are required. Few PLDs provide
greater than ten outputs to implement such counters. Binary
counters can be easily cascaded into two or more devices to
construct such large counters. The design of long counters is very
simple. These are designed as simple binary counters with a
count enable control. The less significant counters generate an
extra output signal at the penultimate count. These signals are
ANDed together to form the count enable signal for the higher­
order counter. For a down counter the reverse scheme is
implemented.

Cascading counters is a lot simpler than cascading adders
because the carry-look-ahead circuitry is not required. The only
thing to remember is that the more significant countertoggles only
when the penultimate count of all of the less significant counters
is reached.

Notice that the nine-bit counter has a built-in mechanism for cas­
cading. This count enable output signal is represented by CO and
is easily implemented in the PLD. This is just another example
of how such modifications are easy to handle in a PLD design,
unlike standard SSI/MSI designs.

2·70 ~ MonolithIc IFJJ] Memor/~s ~

Registered Logic Design

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREOUENCYIN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TIL

23S8 20 9 4 4 8-12 33.3,28.5

20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2

PLS167 24 14 6 Total 48 33
PLS168 24 12 8 - Total 48 33

PLS105 28 16 8 - Total 48 37

CMOS

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15

ECl

10H20EV/EG8 24 12 0-8 8-0 8-12 125
10020EV/EG8 24 12 0-8 8-0 8-12 125

Figure 13. Registered PLDs with More Than Eight Product Terms Per Output

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREOUENCYIN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TTL

16X4 20 8 4 4 8 14

20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

20XRP10 24 10 10 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

22RX8 24 14 0-8 8-0 8 28.5
32VX10 24 12 0-10 10-0 8-16 25,22.2

Figure 14. Registered PlDs for Binary Counter Design with XOR Gate Output

~ Monolithic W Memories l1 2·71

2·72

Registered logic Design

Title 9BitCounter
Pattern 9BitCnt.pds
Revision A
Author Mehrnaz Hada
Company Monolithic Memories Inc., Santa Clara, CA
Oate 1/28/85

;The 9-bit synchronous counter has parallel load, increment,
;a~d hold capabilities. The carry out pin (/CO) shows how to
;implement a carry out using a register by anticipating one
;count before the terminal count if counting and the terminal
;count if loading.

;Operations Table

/OC CLK /LD 08-00

H
L
L
L

CHIP 9BitCoun

CLK 00 01 02
/OC /CO 08 07

EOUATIONS

X
L
C
C

x
X
L
H

PAL20X10

03 D4 D5 06
06 05 04 03

/00 : = /LO*/OO

X
X
D
X

07
02

08
01

08-00

Z
o
D

o PLUS

/LO GNO
00 VCC

Operation

HI-Z
Hold
Load
Increment

Hold 00
+ LO*/DO Load 00 (LSB)

: +: /LO Count

/01 : = /LO*/Ol Hold 01
+ LD*/Ol Load D1

: +: /LO* 00 Count

/02 := /LD*/02 Hold 02
+ LD*/D2 Load 02

: +: /LD* 00* 01 Count

/03 : = /LO*/03 Hold 03
+ LD*/D3 Load 03

: +: /LO* 00* 01* 02 Count

/04 := /LO*/04 Hold 04
LO*/D4 Load 04'

: +: /LD* 00* 01* 02* 03 Count

/05 : = /LD*/05 Hold 05
+ LD*/05 Load 05

: +: /LO* 00* 01* 02* 03* 04 Count

/06 : = /LD* /06 Hold 06
+ LO*/06 Load 06

: +: /LD* 00* 01* 02* 03* 04* 05 Count

/07 := /LD*/07 Hold 07
+ LD*/D7 Load 07

: +: /LO* 00* 01* 02* 03* 04* 05* 06 Count

108 := /LO*/08 Hold 08
+ LD*/08 Load 08 (MSB)

:+ : /LO*, 00* 01* 02* 03* 04* 05* 06* 07 Count

CO := /LD*/OO* 01* 02* 03* 04* 05* 06* 07* 08 Carry out
(Anticipate Count)

+ LO* DO* D1* D2* D3* D4* D5* D6* D7* D8 Carry out
(Anticipate Load)

Figure 15. Design File for a Nine-bit Counter

~ Monollthlo W Memories ~

Registered Logic Design

SIMULATION

TRACE ON /OC /LD D8 D7 D6 D5 D4 D3 D2 D1 DO
- /CO 08 07 06 05 04 03 02 01 00

SETF OC LD /D8 /D7 /D6 /05 /04 /03 /02 /D1 /DO
CLOCKF CLK

SETF /LO
CLOCKF CLK

SETF LD /D8 /07 /06 /05 /D4 /03 /02 /D1 DO
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LD /D8 /D7 /06 /05 /04 /03 D2 01 DO
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LO /D8 /D7 /06 /05 /04 03 02 01 DO
CLOCKF CLK

SETF /LO
CLOCKF CLK

SETF LO /08 /D7 /06 /05 04 03 02 01 DO
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LO /08 07 06 05 04 D3 02 01 DO
CLOCKF CLK

SE'rF /LO
CLOCKF CLK

TRACE_OFF

;Load

;Increment

;Load

;Increment

;Load

;Increment

;Load

;Increment

;Load

;Increment

;Load

;Increment

Figure 15. Design File for a Nine·bit Counter (Cont'd.)

~ Monolithic WMemorles ~

Ell

2·73

Registered Logic Design

Flip-flop Selection

Until now, all of the designs have been implemented in devices
with Ootype flip-flops. What happens if the counter design is
implemented in a device which allows both J-K and T-type
registers? The Boolean logic equations for such a design can be
derived from the truth table. This requires advance knowledge of

PRESENT STATE

X3

X3 X2 X1 XO D J K T D J

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 1 0
0 1 1 0 0 0 0 0 1 0
0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 1 1
1 1 0 0 1 0 0 0 1 0
1 1 0 1 1 0 0 0 1 0
1 1 1 0 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0

X2

K

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1

the functionality of the J·K and T-type registers. For the J-K
register the output is asserted when the J input goes HIGH, and
the output is unasserted when the K input goes HIGH. Toggle
type registers require the T input to be asserted for every change
in the output level.

NEXT STATE

X1 XO

T D J K T D J K T

0 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 1
0 1 0 0 0 1 1 0 1
1 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 1
0 1 0 0 0 1 1 0 1
1 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 1
0 1 0 0 0 1 1 0 1
1 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 1
0 1 0 0 0 1 1 0 1
1 0 0 1 1 0 0 1 1

Figure 16_ Truth Table for D, J-K and T-type Flip-flops

Figure 16 showsthetruthtableforbothaJ-Kand aT-type register
implementation for a binary counter. Deriving and optimizing the
equations from the table, we get the following results:

X3-J := /X3 * X2 * Xl * XO
X3-K := X3 * X2 * Xl * XO

X2-J := /X2 * Xl * XO
X2-K := X2 * Xl * XO

XI-J := /Xl * XO
XI-K := Xl * XO

XO-J := /XO
XO-K := XO

X3-T := X2
X2-T := Xl
XI-T := XO
XO-T := 1

* Xl

* XO
* XO

As wecan see from these equations, the numberof product terms
used for J-K and T-type implementations is smaller than the
number of product terms required for a Ootype implementation
(Figure 12).

Which flip-flop is most efficient depends on the relative number of
transitions or holds required. As a counter traverses from one
count (state) to another, every output either makes a "transition"
(changes logic level) or "holds" (stays at the same logic level).
Small counters in general require more transitions and fewer
holds. As the designs get larger, the higher-order bits require
fewer transitions and more holds.

D-type flip-flops use up product terms only for active transitions
from logic LOW level to HIGH level, and for logic HIGH level holds
only. J-K and T-type flip-flops use up product terms for both LOW­
to-HIGH and HIGH-to-LOW transitions, but eliminate hold terms.
Generally, the requirements of transition and hold terms depends
upon the count sequence selection. Ootype flip-flops are more
efficient for small designs. Conversely J-K and T-type flip-flops
can be more efficient for large designs, which require more hold
terms.

A comparison of product term requirements of 2-,3-, 4- and 5-bit
binary counters can be representative for other types of counters
and state machines. The table in Figure 17 shows the transition
terms and the hold terms required for these counters. For a J-K
type flip-flop implementation, after optimizing, total product terms
required are 4, 6, 8, and 10 respectively. The Ootype implemen­
tation requires 3, 6, 10, and 15 respectively, and is relatively less
efficient for large counters.

2·74 ~ MonolithIc mill MemorIes ~

Registered Logic Design

BINARY COUNTER TRANSITIONS HOLDS o PRODUCT J-K PRODUCT TPRODUCT
TERMS TERMS TERMS

2-Bit 6 2 3 4 1
3-Bit 14 10 6 6 1
4-Bit 30 34 10 8 1
5-Bit 62 98 15 10 1

Figure 17. Product Term Requirements for Configurable Flip-flops

There are a number of PLDs which offerthe capability of program­
mable D, J-K and T-type registers. Figure 18 shows a list of all
PLDs which offer configurable flip-flops. The J-K and T-type flip-

flops are constructed from a basic D-type flip-flop using an extra
XOR gate per flip-flop.

DEVICE TOTAL DEDICATED DEDICATED 1/0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREOUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TIL

22RX8 24 14 0-8 8-0 8 28.5
32VX10 24 12 0-10 10-0 8-16 25,22.2

Figure 18. Registered PLDs with Configurable Flip-flops

Modulo Counters

The number of unique states a counter traverses is generally
referred to as the modulus. A typical n-bit binary counter has a
maximum modulus of 2n. It is often necessary to introduce signal
delays into the logic design to meet timing requirements. This
makes it possible to allow for bus-skew, access time or differential
propagation delays between devices along two different signal
paths. A typical example of this is the introduction of wait states
to allow for access times of different memory elements. Counters
and delay lines are commonly used to introduce the delay.
Counters in PLDs have the added advantage of programmability
to select the required delay. Such applications where precise
timing duration control is required usually use modulo counters
with a non-power-of-two modulus. Other applications of modulo
counters include waveform generators and arbiters.

PRESENT STATE NEXT STATE

03 02 01 00 03 02 01 00

a a a a 0-> 1 a a a 1
a a a 1 1 -> 2 a a 1 a
a a 1 a 2 -> 3 a a 1 1
a a 1 1 3 ->4 a 1 a a
a 1 a a 4 -> 5 a 1 a 1
a 1 a 1 5 -> 6 a 1 1 a
a 1 1 a 6 -> 7 a 1 1 1
a 1 1 1 7 -> 8 1 a a a
1 a a a 8 -> 9 1 a a 1
1 a a 1 9 -> a a a a a

Figure 19. Truth Table for a BCD Counter

A good example of a modulo counter is a BCD counter. Such a
counter is useful in applications where the computer's outputs are
generated using a decimal system. While a four-bit binary
counter can count up to sixteen, the BCD counter terminates the
count at the modulus of 10.

Modulo counters can be designed in a variety of ways. One direct
way is to use the truth table to implement a count to a modulus and
directly derive the equations from it. The truth table for a BCD
count (from zero to nine) is shown in Figure 19.

Now let us consider what happens if the device accidentally
powers up in one of the count values from ten to fifteen. These
are illegal counts (states) and, for a good design, a mechanism
must be built into the equations to allow it to recover back into a
legal state. What we actually need is to consider the truth table
in Figure 20 in conjunction with the one in Figure 19 for deriving
the Boolean equations.

PRESENT STATE NEXT STATE

03 02 01 00 Q3 02 01 00

1
1
1
1
1
1

a 1 a 10 -> a 0 a a
a 1 1 11 -> a 0 a a
1 a a 12 -> 0 0 a a
1 a 1 13-> 0 0 a a
1 1 a 14 -> 0 0 a a
1 1 1 15 -> a 0 a a

Figure 20. Truth Table for Illegal State Recovery to
Count Zero

a
a
a
a
a
a

~ Monolithic W Memories ~ 2·75

EJI

Registered Logic Design

A state diagram for the BCD counter is shown in Figure 21. For
active-LOW outputs, the Boolean equations can be derived
directly from the truth table and optimized using Karnaugh maps
or the PALASM 2 software minimizer.

The Boolean equation for 03 is:

The equation can be reduced to the following:

/Q3:= /Q3 * /Q2
+ /Q3 * /Q1
+ /Q2 * QO
+ Q3 * Q1
+ Q3 * Q2

/Q3:= /Q3 * /Q2 * /Q1 * /QO
+ /Q3 * /Q2 * /Q1 * QO
+ /Q3 * /Q2 * Q1 * /QO
+ /Q3 * /Q2 * Q1 * QO
+ /Q3 * Q2 * /Q1 * /Qo
+ /Q3 * Q2 * /Q1 * QO
+ /Q3 * Q2 * Q1 * /Qo
+ Q3 * /Q2 * /Q1 * QO
+ Q3 * /Q2 * Q1 * /Qo
+ Q3 * /Q2 * Q1 * QO
+ Q3 * Q2 * /Q1 * /QO
+ Q3 * Q2 * /Q1 * QO
+ Q3 * Q2 * Q1 * /QO
+ Q3 * Q2 * Q1 * QO

Similar Boolean equations can be generated for 02,01 and 00.
Figure 22 shows the circuit diagram of a loadable dual BCD
counter implemented in a PAL 16R8. Figure 23 shows the design
file for such a counter.

2·76

Figure 21_ State Sequence of a BCD Counter Showing Illegal State Recovery

CEB--------------------------,
LDB------------------------~

INPUT
BUFFERS 1------+-+ ..

CEA---------------------------;
LDA---------------------------;

CLOCK------------------------------~

Figure 22. Circuit of a Dual BCD Counter

~ Monolithic W Memories l1

406 07

406 08

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

CHIP BCD PAL16R8

Registered Logic Design

DUAL BCD COUNTER.
00
Ol.
CHRIS JAY.
MMI SANTA CLARA, CA.
17 JULY 1987

;THE PAL16R8 HAS BEEN PROGRAMMED AS A DUAL BINARY
;CODED DECIMAL COUNTER. REGISTERS MAY BE LOADED FROM
;DATA INPUTS DO - D3, THE LDA ENABLES DATA ON
;DO - D3 TO BE SYNCHRONOUSLY LOADED INTO 04 - 07.
;LDB ENABLES DATA ON DO - D3 TO BE LOADED INTO
;REGISTERS 00 - Q3. TWO COUNT ENABLE INPUTS CEA
;AND CEB ENABLE A BINARY CODED DECIMAL COUNT IN
;BOTH COUNTERS. THE COUNTERS RESET IF POWERED UP
;IN A HEXADECIMAL STATE, SO IF USED IN A STAND
;ALONE MODE THE COUNTERS WILL NOT LOCK UP INTO
;AN INVALID STATE.

;PIN 2 4 5
CLK /LDA CEA DO Dl

;PIN 6 7 8 9 10
D2 D3 CEB /LDB GND

;PIN 11 12 13 14 15
JOE QO Ql Q2 Q3

;PIN 16 17 18 19 20
04 05 06 Q7 VCC

STRING RESA 'Q5*Q7 + 06*07'
STRING RESB 'Ql *03 + 02*Q3'

EQUATIONS

RESET FROM
STATES

/QO := ;COUNT EQUATION

HEX

+
+
+

QO*/LDB*CEB
RESB
/DO*LDB*/CEB
/QO*/CEB*/LDB

;RESET FROM ILLEGAL STATE
;LOAD DO

/Ql

/Q2

/Q3

/Q4

:=
+
+
+

:=
+
+

+

+

: ::;.

+

: =

+

Q3*/LDB*CEB
QO*Ql*/LDB*CEB
/QO*/ Ql*/LDB*CEB
RESB
/Dl*LDB*/CEB
/Ol*/CEB*/LDB

Q3*/LDB*CEB
/QO*/Q2*/LDB*CEB
/Ql*/Q2*/LDB*CEB
QO* 01*Q2*/LDB*CEB
RESB
/D2*LDB*/CEB
/Q2*/CEB*/LDB

/Q3*/QO*/LDB*CEB
QO*/Q2*/LDB*CEB
/Ql*/Q3*/LDB*CEB
RESB
/D3*LDB*/CEB
/Q3*/CEB*/LDB

Q4*/LDA*CEA
RESA
/DO*LDA*/CEA
/Q4*/CEA*/LDA

;HOLD QO

; COUNT EQUATION

;RESET FROM ILLEGAL STATE
;LOAD D1
;HOLD Ql

;COUNT EQUATION

;RESET FROM ILLEGAL STATE
;LOAD D2
;HOLD Q2

;COUNT EQUATION

;RESET FROM ILLEGAL STATE
;LOAD D3
;HOLD Q3

;COUNT EQUATION
;RESET FROM ILLEGAL STATE
;LOAD DO
;HOLD Q4

Figure 23. Design File for a Dual BCD Counter

~ Monolithic W Memories ~ 2·77

2·78

Registered Logic Design

/Q~

/06

/Q7

: =

+
+

:=
+
+

+
+

:=

+
+

SIMULATION
TRACE ON

Q7*/LDA*CEA
Q4*Q5*/LDA*CEA
/Q4*/Q5*/LDA*CEA
RESA
/D1*LDA*/CEA
/Q5*/CEA*/LDA

Q7*/LDA*CEA
/Q4*/Q6*/LDA*CEA
/Q5*/Q6*/LDA*CEA
Q4*Q5*Q6*/LDA*CEA
RESA
/D2*LDA*/CEA
/Q6*/CEA*/LDA

/Q7*/Q4*/LDA*CEA
Q4*/Q6*/LDA*CEA
/Q5*/Q7*/LDA*CEA
RESA
/D3*LDA*/CEA
/Q7*/CEA*/LDA

CLK Q4 Q5 Q6 Q7
QO Q1 Q2 Q3 LDA
LDB DO D1 D2 D3
CEA CEB OE

;PRLDF
SETF
CLOCKF
SETF
SETF
CLOCKF
SETF
CLOCKF
SETF

QO Q1 Q2 Q3 Q4 Q5 Q6 Q7
/CLK OE
eLK
/CLK OE DO D1 D2 /D3
LDA LDB /CEA /CEB
CLK
/LDB /LDA
eLK
CEA /LDA

FOR I := 1 TO 10 DO
BEGIN CLOCKF eLK
END
SETF /CEA CEB /LDB
FOR I := 1 TO 10 DO
BEGIN CLOCKF CLK
END
SETF /CEB LDB /DO D1 /D2 D3
CLOCKF CLK
SETF /LDB
CLOCKF CLK
SETF LDB DO D1 /D2 D3
CLOCKF CLK
SETF /LDB
CLOCKF CLK
SETF LDB /DO /D1 D2 D3
CLOCKF CLK
SETF /LOB
CLOCKF CLK
SETF LDB DO /D1 D2 D3
CLOCKF CLK
SETF /LDB
CLOCKF CLK
SETF LDB /DO D1 D2 D3
CLOCKF CLK
SETF /LDB
CLOCKF CLK
SETF LDB DO D1 D2 D3
CLOCKF CLK
SETF /LDB
CLOCKF CLK
TRACE OFF

;COUNT EQUATION

;RESET FROM ILLEGAL STATE
;LOAD D1
;HOLD Q5

;COUNT EQUATION

;RESET FROM ILLEGAL STATE
;LOAD D2
;HOLD Q6

; COUNT EQUATION

;RESET FROM ILLEGAL STATE
;LOAD D3
;HOLD Q7

;TRACE ALL SIGNALS

;SET DATA INPUTS SELECT
;REGISTERS QO - Q3 PERFORM
;SYNCHRONOUS LOAD.
;SELECT REGISTERS Q4 - Q7
;PERFORM SYNCHRONOUS LOAD.
;ENABLE Q4 - Q7 AS A BCD
;COUNTER, CLOCK FOR 10
;CLOCK CYCLES

;ENABLE QO - Q3 AS A BCD
;COUNTER, CLOCK FOR 10
iCYCLES

;LOAD ILLEGAL STATES
;TO TEST COUNTER RESET

Figure 23. Design File for a Dual BCD Counter (Cont'd.)

~ Monolithic WMemorles ~

Registered Logic Design

Modulo Counter Device Selection Considerations

We have illustrated a counter which counts from zero to a fixed
modulus. The same technique can be applied for a counter which
counts down from a maximum power-of-two number to a fixed
modulus, or even a counter which counts from one modulus to
another. The important considerations will be the number of
product terms used.

The registered PlDs used for modulo counters are similar to the
ones selected for other counters. Since the counts used are
binary, devices with J-K or T-type flip-flops or XOR gates will help
optimize the number of product terms used. The product term
usage also depends upon the modulus selected. Generally a
power-of-two or a multiple-of-two modulus will require fewer
product terms.

Another factor for flip-flop selection is the illegal states. D-type
flip-flops are generally better suited for illegal state recovery than
the J-K arT-type flip-flops. This is because when no product term
is asserted, the D-typeflip-flops resetto zero. Designers using J­
K or T-type flip-flops must design-in illegal state recovery.

Certain devices allow the use of a synchronous RESET product
term for modulo counters. The idea is to use a minimal number
of product terms to build a binary counter which counts up to a
power-of-two number. However, this counter is RESET to zero
using the synchronous RESET product term when the desired
modulus is reached. It then begins counting afresh from zero, and
the procedure is repeated. Similar operation can also be
achieved with a synchronous PRESET product term for a down
counter. Figure 24 shows a table of all the PLDs that provide the
RESET and PRESET product terms.

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TTL

16RA8 20 8 0-8 8-0 4 20
23S8 20 9 4 4 8-12 33.3,28.5

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8·0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2

--
CMOS

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 16 8-16 20,15
C29MA16 24 5 16 4-12 20,15

ECl

10H20EV/EG8 24 12 0-8 8-0 8-12 125
10020EV/EG8 24 1? 0-8 8·0 8-12 125

Figure 24. PLDs Which Provide RESET or PRESET Product Terms

~ Monolithic W Msmorlss ~ 2·79

Registered Logic Design

Using synchronous RESET and PRESET product terms allows
the counter to recover from illegal states. Notice that the logic
product terms in the counter are designed for a complete binary
count. If the counter powers up in any illegal state (as shown in
Figure 25), it will continue the count until the terminal count and
return to zero, where the correct modulo count will begin. This
illegal state recovery will take an unpredictable number of clock
cycles, and you may wish to design a more systematic recovery
system.

Cascading Modulo Counters

For large modulo counters, the technique of generating Boolean
equations from the truth tables is very tedious and time consum­
ing. Another approach for designing modulo counters is to divide
it into two smaller modulo counters. In addition to simplifying the
design, this approach usually helps optimize the number of
product terms.

SYNCHRONOUS
RESET PRODUCT
TERM ASSERTED

As an example, a modu10-360 counter can be directly imple­
mented with nine register bits. However, instead of implementing
this as a straight 9-bit counter, we can implement this as two
counters: one four-bit counter (counting from zero to 14) and
another five-bit counter (counting from zero to 23). Together the
two counters count up to 360. Shown in Figure 26 the terminal
count output MOUT is asserted when the count reaches 360.

The design requires nine inputs, nine outputs, one clock pin, one
LOAD pin, one RESET and one MOUT (module output signal)
pin. Note that no extra flip-flops or pins were needed. Obviously,
the count values of this counter are not the same as a straight
modu10-360 counter. Actually, this is what contributes to the
optimization of the number of product terms used. The PLPL
design file of this counter is shown in Figure 27.

406 09

Figure 25. A BCD Counter Using Synchronous RESET Product Term

2·80

A (8:4)
lOAD

RST
elK

:~:
;::

:::

024 (4) (3) (2) (1) (0) 015 (3) (2) (1) (0)

[)-

5

A~.IIrF I J

I J J MODULO 24 MODULO 15

I I L 5 BITS 4 BITS

III
AmPAl22V10

406 11

Figure 26. A Modulo-360 Counter In PAL22V10

~ MonolithIc W MemorIes ~

Registered Logic Design

DEVICE MODOLO_360_COONTER (PAL22V10)

PIN CLK = 1 RST = 2
LOAD = 3

BEGIN

A[8:0] = 4:11,13
024[4:0] = 18:14
015[3:0] = 22:19
M_OUT = 23; "ASSERTED WHEN COUNT REACHES 360"

IF (RST) THEN ARESET() ;
IF (LOAD) THEN BEGIN

024[4:0] := A[8:4]
015[3:0] := A[3:0]

"COUNTER INITIALIZATION"

"INITIALIZATION COUNT"
"INITIALIZATION COUNT"

END;
ELSE BEGIN

IF (024[4]*/024[3]* 024[2]* 024[1]* 024[0]*
015[3]* 015[2]* 015[1]*/015[0]) THEN M_OUT 1;

CASE (024[4:0)) BEGIN "MODULO 24"
'BOOOOO) BEGIN

END ;

,BOOOOl)

END ;

,BOO010)

END ;

'B00011)

END ;

#B00100)

END ;

,BOOI01)

END ;

'BOO110)

END ;

#BOOl11)

END ;

'BOI000)

END ;

#BOI00l)

END ;

#BOI0I0)

END ;

#BOI011)

END ;

015[3:0] := 015[3:0]
024[4:0] := ,BOOOOI ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := 'BOOOI0 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := #BOOO11 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := #B00100 ;

BEGIN
015[3:0] := 015[3:0)
024[4:0] := 'BOOI01 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := #BOO110 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := #BOO111 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := 'BOI000 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := 'BOI001 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := ,BOI0I0 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := #BOI011 ;

BEGIN
015[3:0] := 015[3:0]
024[4:0] := 'B01100 ;

;

;

;

;

;

;

;

;

;

;

;

Figure 27. Design File of a Modu10-360 Counter

~ Monolithic WMemorles ~

Ell

2·81

Registered Logic Design

#B01100) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := 'B01101 ;

END ;

,B01101) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := 'B01110 ;

END ;

'B01110) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := 'B01111 ;

END ;

,BOllll) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := #B10000 ;

END ;

'B10000) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := 'B10001 ;

END ;

'B10001) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) : = ,B10010 ;

END ;

'B10010) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := 'BI0011 ;

END ;

,B10011) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := #B10100 ;

END ;

#BI0100) BEGIN
015[3:0) := 015[3:0) ;
024[4:0) := #BI0101 ;

END ;

'B10101) BEGIN
015[3:0] := 015[3:0] ;
024[4:0] := #B10110 ;

END ;

#B10110) BEGIN
015[3:0] := 015[3:0] ;
024[4:0] := 'B10111 ;

END ;

#B10111) BEGIN
024[3:0] := #BOOOOO ;
CASE (015[3:0) BEGIN "MODULO 15"

#BOOOO) 015[3:0] := #BOOOI
#BOOOl) 015[3:0] := #B0010
#B0010) 015[3:0] := #BOO11
#B0011) 015[3:0] := #B0100
'B0100) 015[3:0) := #B0101
#B0101) 015[3:0] := #B0110
'BOlIO) 015[3:0J := #B0111
'BOllI) 015[3:0] := ,BI000
'BlOOD) 015[3:0) := #B1001
#B1001) 015[3:0) := #B1010
#BI010) 015[3:0) := #B1011
#B1011) 015[3:0) := #B1100
#B1100) 015[3:0) := #B1111
#B1101) 015[3:0) := #B1110
#B1110) 015[3:0) := #BOOOO

END
END

END
END ;

END.

Figure 27. Design File of a Modu10-360 Counter (Cont'd.)

2·82 ~ Monollthlo W Memories ~

Registered Logic Design

TEST VECTORS

IN CLK RST LOAD A[B:O]

OUT 024[4:0] 015[3:0] M_OUT

BEGIN

"CLK RST LOAD A[B: 0] 024[4:0] 015[3:0] M OUT"
X 1 X X X X X X X X X X L L L L L L L L L L;
C 0 1 1 0 101 1 1 0 0 H L H L H H H L L L;
C 0 0 x x x x x x x x X H L H H L H H L L L;
C 0 0 x x x x x x x x X H L H H H H H L L L;
C 0 0 x x x x x x x x X L L L L L H H L H L;
C 0 1 0 1 1 1 1 1 1 1 0 L H H H H H H H L L;
C 0 0 x x x x x x x x X H L L L L H H H L L;
C 0 0 x x x x x x x x X H L L L H H H H L L;
C 0 0 x x x x x x x x X H L L H L H H H L L;
C 0 0 x x x x x x x x X H L L H H H H H L L;

Ell c 0 0 x x x x x x x x X H L H L L H H H L L;
C 0 0 x x x x x x x x X H L H L H H H H L L;
C 0 0 x x x x x x x x X H L H H L H H H L L;
C 0 0 x x x x x x x x X H L H H H H H H L H;
C 0 0 x x x x x x x x X L L L L L L L L L L;
C 0 0 x x x x x x x x X L L L L H L L L L L;
C 0 0 x x x x x x x x X L L L H L L L L L L;

END.

Figure 27. Design File of a Modu10-360 Counter (Cont'd.)

PLS Devices for Modulo Counters

Monolithic Memories offers a family of PLS devices. PLS devices also provide a complement array term which is very useful for
provide programmable AND and programmable OR arrays. designing modulo counters. The available PLS devices are listed
These devices offer S-R type output and buried flip-flops. They in Figure 28.

DEVICE TOTAL DEDICATED DEDICATED 1/0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TTL

PLS105 28 16 8 - Total 48 37
PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 33

Figure 28. PLS Devices

~ Monolithic W Memories ~ 2·83

Registered Logic Design

The complement array is an OR array term, the complement of
which is fed back as an input to the AND array of the device
(Figure 29). The complement term can be used for both illegal
state recovery and programmable modulo counter designs.

Illegal State Recovery

For any counter going through a sequence of legal counts
(states), at least one product term is always active as long as the
counter never needs to hold a count; such terms determine the
next legal state. When the counter powers up in any invalid state,
none of the product terms for deciding the next state will be active.
When none of the product terms connected to the complement
array is active, the complement array is asserted.

The complement array is usually connected to all of the product
terms of the counter. Thus when the count is legal, the comple­
ment array output is always LOW (Figure 30). When the counter
is in an illegal state, the complement array detects it and is

DEVICE
INPUTS

STATE

asserted HIGH. This signal can then be used to reset the registers
to some legal state. One advantage of the complement array is
that it allows recovery to any state predetermined by the designer.

Programmable Modulus Counter

The complement array term can instead be used for designing
programmable modulus counters. Acounter is implemented with
the device registers. Different product terms are programmed
with different modulus values. These product terms are under the
control of input signals. At anyone time only one of the product
terms is kept active. The complement array is connected to all
such terminal count product terms. Since all of these product
terms are LOWthe complement array is initially HIGH and is used
as a count enable for the counter. When the count reaches the
terminal value the complement array term goes LOW disabling
the normal count product terms. Simultaneously the terminal
count product term becomes active, resetting the counter to
begin counting afresh.

(COUNT) f"..::----+---+-----t---- COMPLEMENT /ARRAVTERM
FEEDBACK

Figure 29. The Architecture of the Complement Array Term

2·84 ~ Monolithic IFJJ1 Memories ~

DEVICE
OUTPUTS

406 11

Registered Logic Design

HIGH WHEN IN AN
ILLEGAL STATE

HIGH WHEN IN
LEGAL STATE

LEGAL RECOVERY PRODUCT
PR56C6~--+---------~~==~~r--------t~-~1 _____________________ b~~u~~~~~ER~~~T~TERS

TERMS
DEVICE
OUTPUTS

406 12

Figure 30. Complement Array for Illegal State Recovery

STATE (COUNl)

PRODUCT TERMS
Wb~u~f~~~5~~--4----=~~====~~--------t---t---t---t-~

PROGRAMMED

06 13

COUNT ENABLE GOES LOW
WHEN MODULUS IS REACHED

LOW WHEN COUNTING,
HIGH AT MODULUS

DEVICE
OUTPUTS

Figure 31. Programmable Modulo Counter Using Complement Array Term

~ MonolithIc: W MemorIes ~ 2·85

Registered Logic Design

Counters with Encoding

Until now we have discussed counters which generate binary
output sequences. Most peripherals require a predetermined
sequence of control signals. Custom control sequences can be
generated by decoding the binary sequence with combinatorial
logic. Figure 32 shows a general model of a counter with

combinatorial output decoding circuitry. This combinatorial circuit
modifies the counter bits and generates output signals in the
manner required for peripheral timing and control. Since these
circuits require extra combinatorial logic, they are not very effi­
cient. They are also more susceptible to hazards and output
glitches.

COMBINATORIAL "---- ~

lOGIC =.. ~

CONTROL
INPUTS r--;--+ . r

1
NEXT I .:
STATE .

DECODER ~

CLOCK

~ OUTPUT . OUTPUTS
v DECODER .

FLlP- · · FLOPS ·
I

406 14

Figure 32. Counter with an Output Decoder

It is possible to have a different output coding for a four-bit
counter, as shown in Figure 33. This code, called Gray code,
allows only one output bit to toggle for each new count value. This

BINARY CODE GRAY CODE

X3 X2 X1 XO G3 G2 G1 GO

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

Figure 33. Generating Gray Code from a Binary Code

code can be easily derived from a four-bit binary counter code
(also shown in Figure 33) using an output decoder.

Wecan derive the Boolean equations forthe combinatorial output
decoder from the truth table. The equations are:

G3 '" X3
G2 '" X3 :+: X2
GI '" X2 :+: Xl
GO '" Xl :+: XO

A more efficient and easier technique for generating control
signals is to implement the decode circuitry before the registers.
This alternative is shown in Figure 34. This essentially generates
a non-standard counter with state values which are not a binary
progression. It can also be considered to be a counter where the
product terms for a binary count and encoding the outputs have
been combined.

Many different codes can be generated using such techniques.
We will limit ourselves to the ones which are most commonly
used: Gray-code counters and Johnson counters.

ClK

FLIp. OUTPUTS
FLOPS

406 15

Figure 34. Counter with Combined Next State Generation and Output Encoding Circuit

2·86 ~ Monolithic W Memories ~

Registered Logic Design

Gray.Code Counters The Boolean logic equations for a Gray-coda counter are:

Gray-code counters are often used in digital designs for control
timing functions. The primary advantage of Gray-code counters
stems from the characteristic that only one output bit changes
value for every clock cycle. These output signals can then easily
be decoded using a combinatorial decoder without any risk of
hazards. Gray-code counters are used extensively as system
clocks, since the different output bits provido different clock
phases without the risks of hazards. Gray-code is also used in
high-speed data communication applications, where data is
transmitted from one part of the system to another, and where the
error susceptibility increases with the number of bit changes
between adjacent numbers in a sequence. These are also used
for such specialized applications as shaft encoders and real-time
process control.

The implementation of a Gray-code counter is very simple. A
truth table can be derived from the transition table as is done for
a binary counter. The Boolean equations can then be directly
derived from the truth table. The truth table for the Gray-code
counter is shown in Figure 35.

PRESENT STATE NEXT STATE

X3 X2 X1 XO X3 X2 X1 XO

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 1
0 0 1 1 0 0 1 0
0 0 1 0 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 0 1 0 1
0 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 0 0 1
1 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0

Figure 35. Truth Table for a Four-bit Gray-code Counter

X3 :"" /X3 * X2 * /Xl * /xo
X3 * X2 * /Xl * /xo
X3 * X2 * /Xl * xo
X3 * X2 * Xl * xo
X3 * X2 * Xl * /xo
X3 * /X2 * Xl * /xo
X3 * /X2 * Xl * xo
X3 * /X2 * /Xl * xo

X2 := /X3 * /X2 * Xl * /xo
/X3 * X2 * Xl * /xo
/X3 * X2 * Xl * xo
/X3 * X2 * /Xl * xo
/X3 * X2 * /Xl * /xo

X3 * X2 * /Xl * /xo
X3 * X2 * /Xl * xo
X3 * X2 * Xl * xo

Xl := /X3 * /X2 * /Xl * xo
/X3 * /X2 * Xl * xo
/X3 * /X2 * Xl * /XO
/X3 * X2 * Xl * /xo
X3 * X2 * /Xl * XO
X3 * X2 * Xl * XO
X3 * X2 * Xl * /XO
X3 * /X2 * Xl * /XO

xo := /X3 * /X2 * /Xl * /XO
/X3 * /X2 * /Xl * XO
/X3 * X2 * Xl * /XO
/X3 * X2 * Xl * XO

X3 * X2 * /Xl * /XO
X3 * X2 * /Xl * XO
X3 * /X2 * Xl * /XO
X3 * /X2 * Xl * XO

~ Monolithic W Memories ~ 2·87

Ell

Registered Logic Design

Johnson Counters

A Johnson counter is part of a family of counters known as "ring
counters." These counters are used for special applications
where code symmetry is desired. Ring counters are also often
used for timing purposes, since all of the outputs are essentially
a series of pulses. This code symmetry also allows use of the
fewest possible product terms with a Ootype register. Devices
such as the Logic Cell Array (LCA), which provide a small amount
of logic per cell, can implement Johnson counters very easily.

Johnson counters are also known as circular-shift counters. The
sequence for a five-stage Johnson counter is shown in Figure 36.
As can be seen in the truth table, the counter first fills up with 1 's
from left to right and then it fills up with zeros again. Note from the
output sequence that only one of the Johnson counter bits
changes for every clock period, like the Gray-code counter. One
major advantage of the Johnson counter is that it can be readily
decoded with small two-input NAND gates and hence is suitable
for high-speed applications.

Note that the five-stage sequence has a table of 10 legal states
and 22 illegal states (Figure 37). In general, an n-bit Johnson
counter will produce a modulus of 2n. Figure 38 shows the state
diagram of the five-bit counter.

Legal States

PRESENT STATE NEXT STATE

a4 a3 a2 a1 ao a4 a3 a2 Q1 ao

0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1
0 0 1 1 1 0 0 0 1 1
0 1 1 1 1 0 0 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1 1 0
1 1 0 0 0 1 1 1 0 0
1 0 0 0 0 1 1 0 0 0

Figure 36. Five-bit Johnson Counter Truth Table

The implementation of a Johnson counter is relatively straight­
forward, and is the same regardless of the number of stages.
When Ootype flip-flops are used, the a output of each flip-flop is
connected to the 0 input of the following stage. The single
exception is the a output of the last stage, which is complemented
and connected to the 0 input of the first stage.

Illegal States

PRESENT STATE NEXT STATE

a4 a3 a2 a1 ao a4 a3 a2 a1 ao

0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0

Figure 37. Illegal States for a Five-bit Johnson Counter

406 16

Figure 38. State Diagram of a Five-bit Johnson Counter

One disadvantage of the counter is the number of invalid (or
illegal) states. The invalid states increase exponentially with the
length of the counter. The bigger the counter becomes, the
greater are its chances of entering an illegal state. Johnson
counters are very susceptible to illegal states, and can "hang up"
very easily. Noise or improper use can cause this counter to end
up in an illegal state. Therefore a design with illegal state recovery
circuitry is always recommended.

2·88 ~ Monollthlo IFJJl Memories ~

Registered Logic Design

Figure 39 shows a nine-bit Johnson counterwhich can be derived
by directly extending the design of a five-bit Johnson counter. The
design file adds a LOAD function; it requires nine input pins, nine
output pins, one RESET pin, one LOAD pin, one invalid status pin

and one clock pin. The design incorporates the product terms
required for illegal state recovery. The PLPL design file for this
counter is shown in Figure 40.

CLK

Flguro 39_ Block Diagram of a Nino-bit Johnson Counter

DEVICE NINE_BIT_JOHNSON_COUNTER (AmPAL22V10)

1
2

3: 11
14:21,23

PIN CLK
RST
A[8:0]
0[8:0]
VF
LOAD

22 "VALID STATE FLAG"
13 ;

BEGIN

IF (RST) THEN ARESET(0[8:0]) ,
IF (LOAD) THEN 0[8:0] := A[8:0]
ELSE BEGIN

CASE (0[8:0])
BEGIN

#BOOOOOOOOO) O[8:0]
#B100000000) O[8:0]
#B110000000) O[8:0]
#B111000000) 0[8:0]
#B111100000) O[8:0]
#B111110000) O[8:0]
#B111111000) O[8:0]
#B111111100) 0[8:0]
#B111111110) O[8: 0]
#B111111111) O[8:0]
#8011111111) O[8:0]
#BOOl111111) O[8:0]
#BOOOl11111) O[8:0]
#B000011111) 0[8:0]
#BOOOOOl111) O[8: 0]
#B000000111) O[8:0]
#B000000011) O[8:0]
#BOOOOOOOOl) O[8:0]

END
END ;

CASE (O[8: 0])
BEGIN

#BOOOOOOOOO) VF 1
#BI00000000) VF 1
#8110000000) VF 1
#8111000000) VF 1
#8111100000) VF 1
#BI11110000) VF 1
#B111111000) VF 1
#8111111100) VF 1
#8111111110) VF 1
#8111111111) VF 1
#8011111111) VF 1
#B001111111) VF 1
#B000111111) VF 1
#8000011111) VF 1
#8000001111) VF 1
#B000000111) VF 1
#8000000011) VF 1
#8000000001) VF 1

END

END.

"COUNTER INITIALIZATION"
"LOAD NEW VALUE"

:= #B100000000
:= #B110000000
:= #B111000000
:= #B111100000
:= #B111110000
:= #B111111000
: ;;;;: #B111111100
:= #B111111110
: = #B111111111
: ;;;;: #B011111111
:= #8001111111
:= #8000111111
:= #BOOOO11111
:= #BOOOOOl111
:=- #BOOOOOO111
:= #8000000011
:= #8000000001
:= #BOOOOOOOOO

Figure 40. Design Fllo for a Nino-bit Johnson Countor

~ Monolithic W Memories ~

406 17

2·89

Ell

Registered Logic Design

TEST_VECTORS

IN CLK RST LOAD A[8:0];
OUT Q[8: 0] VF;

BEGIN

L
"C R 0
"L S A A A A A A A A A A Q Q Q Q Q Q Q Q Q V"
"K T D 8 7 654 3 2 1 0 87654 3 210 F"

X 1 X X X X X X X X X X L L L L L L L L L H; "RESET"
C 0 1 1 1 1 1 1 1 1 1 1 H H H H H H H H H H; "LOAD"
C 0 0 x x x x x x x x X L H H H H H H H H H; "COUNT"
C 0 0 x x x x x x x x X L L H H H H H H H H;
C 0 0 x x x x x x x x X L L L H H H H H H H; "COUNT"
C 0 1 1 0 1 0 1 0 1 0 1 H L H L H L H L H L; "LD INVALID ST"
C 0 0 x x x x x x x x X L L L L L L L L L H; "INVALID ST"
C 0 0 x x x x x x x x X H L L L L L L L L H; "RECOVERY"
C 0 1 1 1 1 1 1 1 1 1 0 H H H H H H H H L H; "LOAD"
C 0 0 x x x x x x x x X H H H H H H H H H H; "COUNT"
C 0 0 x x x x x x x x X L H H H H H H H H H;
C 0 1 0 0 0 0 0 0 0 0 1 L L L L L L L L H H;
C 0 0 x x x x x x x x X L L L L L L L L L H;

END.

Figure 40. Design File for a Nine-bit Johnson Counter (Cont'd.)

Shift Registers

A Shift Register is a special digital circuit often used as a primary
building block in digital computer systems. It is closely related to
a ring counter. Its fundamental usage is for temporary data
storage and bit-wise data manipulation for advanced arithmetic
and multiplication operations. Shift registers are also frequently
used in communications, for converting parallel byte-wide data
from the microprocessor to a serial data bit-stream for transmis­
sion. An example of a serial data link controller on page 2-453
shows such a shift register design. Shift registers are also used
in graphics systems for serializing parallel data for use by the
display monitor. A number of examples of video shift registers are
included in the graphics section (page 2-257).

The fundamental purpose of a shift register (Figure 41) is to shift
data from one flip-flop to another. There are several types of shift
registers. They are classified by the way in which incoming data
is received (parallel or serial), and how outgoing data is transmit­
ted (parallel or serial).

In the following example, we will discuss a simple universal shifter
which provides both serial and parallel input and output functions.
Depending upon the control signals 10 and 11, the data is shifted
from one flip-flop to another in the left or the right direction. These
inputs also control when the new parallel data is loaded onto the
registers. When shifting left or right, serial data can be received
and transmitted on serial pins L1RO and RILO. Since the flip-flop
outputs appear on the output pins at all times, the parallel output
data is always available. The truth table is shown in Figure 42.

The Boolean logic equations can be directly derived from the truth
table, and are shown in the PAL device design file in Figure 43.

Shift registers can be modified to suit various system design
requirements. This universal shift register can be used for serial
in/serial out, parallel in/parallel out, serial in/parallel out and
parallel in/serial out functions.

CLOCK

CONTROL
SIGNALS

PARALLEL DATA IN

2·90

LEFT SERIAL DATA
IN AND OUT (LlRO)

0 0 0 1 O2 0 3 0 4 as 0 6 0,

PARALLEL DATA OUT

RIGHT SERIAL DATA
OUT AND IN (RILO)

Figure 41. A Shift Register Block Diagram

~ Monolithic W Memories ~

406 18

Registered Logic Design

07 06 05 04 03 02 01 00 11

07 06 05 04 03 02 01 00 0
RILO 07 06 05 04 03 02 01 0
06 05 04 03 02 01 00 L1RO 1
D7 D6 D5 D4 D3 D2 D1 DO 1

Figure 42. The Truth Table for a Universal Shift Register

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

UNIVERSAL SHIFT REGISTER
SHIFT.PDS- -
01
JOE ENGINEER
MONOLITHIC MEMORIES, INC.
09/12/87

CHIP UNIV SHI PAL20X8

CLK 10 DO 01 02 03 04 05 06 07 II GND
/OC RILO 07 06 05 04 03 02 01 00 LIRO VCC

;DESCRIPTION

10

0 ;Retain Data
1 ;Shift Right
0 ;Shift Left
1 ;Load Data

;THIS PAL DEVICE IS AN 8-BIT SHIFT REGISTER WITH PARALLEL LOAD AND
;HOLD CAPABILITY. TWO FUNCTION SELECT INPUTS (10,11) PROVIDE ONE OF
;FOUR OPERATIONS WHICH OCCUR SYNCHRONOUSLY ON THE RISING EDGE OF THE
;CLOCK (CLK). THESE OPERATIONS ARE:

/OC CLK Il 10 07-00 07-00 OPERATION

H X X X X Z HI-Z
L C L L X L HOLD
L C L H x SR(O) SHIFT RIGHT
L C H L x SL(O) SHIFT LEFT
L C H H 0 0 LOAD

;TWO OR MORE OCTAL SHIFT REGISTERS MAY BE CASCADED TO PROVIDE LARGER
;SHIFT REGISTERS. RILO AND LIRO ARE LOCATED ON PINS 14 AND 23
;RESPECTIVELY, WHICH PROVIDES FOR CONVENIENT INTERCONNECTIONS WHEN
;TWO OR MORE OCTAL SHIFT REGISTERS ARE CASCADED TO IMPLEMENT LARGER
;SHIFT REGISTERS.

EOUATIONS

/00 := /11*/10*/00 ;HOLD 00
+ /Il* 10"/01 ;SHIFT RIGHT

: +: Il*/IO*/LIRO ;SHIFT LEFT
+ 11* 10*/00 ;LOAD DO

/01 := /11*/10*/01 ;HOLD 01
+ /Il* 10*/02 ;SHIFT RIGHT

:+ : 11*/10*/00 ; SHIFT LEFT
+ 11* 10*/01 ;LOAD 01

/02 := /Il*/IO*/02 ;HOLD 02
+ /11* 10*/03 ;SHIFT RIGHT

:+: Il*/IO*/Ol ;SHIFT LEFT
+ 11* 10*/02 ;LOAD 02

/03 := /ll */10*/03 ;HOLD 03
+ /11* 10*/04 ;SHIFT RIGHT

: +: 11*/10*/02 ;SHIFT LEFT
+ 11* 10*/03 ;LOAD 03

/04 := /Il*/IO*/04 ;HOLD 04
/11* 10*/05 ;SHIFT RIGHT

: + : 11*/10*/03 ;SHIFT LEFT
+ 11* 10*/04 ;LOAD 04

/05 := /ll*/IO*/05 ;HOLD 05
+ /ll* 10*/06 ;SHIFT RIGHT

: +: Il*/10*/04 ;SHIFT LEFT
11* 10*/05 ;LOAD 05

Figure 43. Octal Shift Register Design File

~ Monolithic: W Memories ~

EJI

2·91

Registered Logic Design

/Q6 := /11*/IO*/Q6 ;HOLO Q6
/11* IO*/Q7 ; SHIFT RIGHT

: +: 11*/IO*/Q5 ;SHIFT LEFT
+ 11* 10*/06 ;LOAO 06

/Q7 := /11*/IO*/Q7 ;HOLO Q7
+ /11* IO*/RILO ;SHIFT RIGHT

: +: Il*/10*/Q6 ;SH1FT LEFT
11* 10*/07 ;LOAO 07

/LIRO /QO ;LEFT IN RIGHT OUT
LIRO.TRST /11*10

/RILO /Q7 ;RIGHT IN LEFT OUT
RILO.TRST 11*/10

SIMULATION NOT SHOWN HERE

Figure 43. Octal Shift Register Design File (Cont'd.)

Barrel Shifters

In most data processing systems, some form of data shifting or
rotation is necessary. In typical computer systems, the shifter is
located at the output of the ALU, and usually requires a single­
cycle shift and add function (Figure 44). For such applications as
floating-point arithmetic or string manipulation, ordinary shift
registers are inefficient, since they require n clock cycles for an n­
bit shift.

CLK---I~

OE------d

406 19

OUTPUT DATA BUS

Figure 44. Typical ALU Architecture

A specialized shift register, caiied a "barrel shifter," is used to shift
(or rotate) data by any number of bits in a single clock cycle. The
name "barrel shifter" is used because of the circular nature of the
shift operation. The storage registers on tho output of the shifter
are used in this architecture to pipeline the data operation.
increasing throughput. The three-state buffer on the output
registers is also useful for providing an interface to the data bus.

The design of a barrel shifter proceeds in the same manner as a
regular shift register. The truth table is drawn, and the Boolean
equations are then written based upon the truth tables. An eight­
bit barrel shifter requires at least eight data inputs, eight regis­
tered data outputs, three control lines to specify the shift distance,
a clock input and an output enable that controls the three-state
buffer on the register output.

Figure 45 shows the block diagram for an eight-bit registered
barrel shifter, while Figure 46 shows the truth table. The regis­
tered barrel shifter requires a total of 14 inputs and 8 outputs. This
function can be easily implemented in an AmPAL22V1 O. Figure
47 shows the PLPL design file for this eight-bit barrel shifter
function.

406 20

Figure 45. Block Diagram of an Eight-bit Barrel Shifter

2·92 ~ Monolithic W Memories ~

Registered Logic Design

S2 S1 so a7 a6 as a4 a3 a2 a1 ao

0 0 0 07 06 05 04 03 02 01 DO
0 0 1 06 05 04 03 02 01 DO 07
0 1 0 05 04 03 02 01 DO 07 06
0 1 1 04 03 02 01 DO 07 06 05
1 0 0 03 02 01 DO 07 06 05 04
1 0 1 02 01 DO 07 06 05 04 03
1 1 0 01 DO 07 06 05 04 03 02
1 1 1 DO 07 06 05 04 03 02 01

Figure 46. Truth Table for an Eight-bit Barrel Shifter

DEVICE EIGHT_BIT_BARREL_SHIFTER (PAL22VI0)

PIN

BEGIN
IF

CLK
D (7:0]
SEL2
OE

1
2:9 /Q(7:0]
13 SELl
14 RSY

(RST) THEN ARESET () ;

23:16
11 SELO 10
15;

"SHIFTER INITIALIZATION"
IF (OE) THEN ENABLE(Q(7:0]); "ENABLE OUTPUTS"
IF (/SEL2 /SELI /SELO) THEN Q[7:0] := D[7:0];
IF (/SEL2 /SELI SELO) THEN Q[7:0] := D[6:0], D[7] ;
IF (/SEL2 * SELl * /SELO) THEN Q[7:0] := D[5:0], D[7 :6]
IF (/SEL2 * SELl * SELO) THEN Q[7:0] := D(4:0], D(7:5]
IF (SEL2 * /SELl * /SELO) THEN Q[7:0] := D(3: 0], D(7:4]
IF (SEL2 * /SELl * SELO) THEN Q[7:0] := D[2: 0], D[7:3]
IF (SEL2 * SELl * /SELO) THEN Q[7:0] : = D[1: 0], D[7:2]
IF (SEL2 * SELl * SELO) THEN Q[7:0] := D[0], D[7: 1];

END.

"FUNCTION TABLE SPECIFICATION"

TEST_VECTORS

IN CLK RST D(7:0] SEL2 SELl SELO;
I 0 OE;
OUT Q (7 : 0] ;
BEGIN
"CLK RST D[7:0] SEL2 SELl SELO OE Q[7: 0]

C 1 00000000 1 0 1 0 ZZZZZZZZ;
C 0 11111111 0 1 0 1 HHHHHHHH;
C 1 XXXXXXXX X x X 1 LLLLLLLL;
C 0 xxxxxxxx x x x 0 ZZZZZZZZ;
C 0 00000000 0 0 0 1 LLLLLLLL;
C 0 11111111 0 0 0 1 HHHHHHHH;
C 0 01111111 1 0 0 1 HHHHLHHH;
C 0 01111111 0 1 0 1 HHHHHHLH;
C 0 01111111 1 1 0 1 HHLHHHHH;

END.

Figure 47. Design File for an Eight-bit Barrel Shifter

Gray-code, Johnson Counter and Shift Register Device
Selection Considerations

Gray-code counters, Johnson counters and shift registers are not
very logie-intensive; the number of product terms required is
minimal. The Ootype flip-flops provide the most efficient imple­
mentations, allowing these designs to be easily implemented in
most PAL devices.

Since Gray-code counters are often used as system clocks, very
high speed PAL devices provide the highest resolution clocks.

Barrel shifters are very logic-intensive and require many product
terms, since data from allthe inputs needs to be accessible at any
output. Registered PLOs with a large number of product terms
are ideal for barrel shifters. Large barrel shifters can also be
partitioned into a number of PLOs.

;rG Monolithic W Memories ~ 2·93

E1II

Registered Logic Design

Asynchronous Registered Designs

Until now we have discussed strictly synchronous registered
designs, where a common system clock is used. In asynchro­
nous registered designs, a common clock is not used. The
register clock may be generated by the output of another register,
or by a logical combination of various other signals. Such designs
are usually slow for such applications as timing generation,
because when the output of one register is used to clock another,
multiple delays are encountered before all the register outputs
stabilize. On the other hand, designs can be very fast for
asynchronous applications such as bus arbitration and control,
where a fast response to a bus signal can be provided without
waiting for a common system clock.

Although asynchronous designs are easier to visualize, they
present larger problems in implementation. Combinatorial haz-

RESET

,.-
I

ard conditions can cause false clocking of registers, destroying
the logic intended by the designer. The designer also needs to
worry about race conditions when clocking a number of registers
simultaneously. Careful design analysis is strongly recom­
mended before implementing any asynchronous design.

Ripple counters are probably the easiest examples of such
asynchronous designs. Figure 48 shows the logic diagram of a
five-bit binary ripple counter. These counters clearly have the
advantage of design simplicity. The output from one stage is fed
as the clock to the next stage. However, this results in a slower
counting rate, since the clock signals need to propagate through
all five registers before the next count is reached.

The ripple counter design illustrated below is implemented in a
PAL20RA 10. Figure 49 shows the design file for this counter.

CK SET

,---_______ J 0 4 0 3 I O2
L. .. -- --, ... ~ ___ .. ___ _ ___ .. _________ __ ___ .. ___ J

0 0

2·94

EXTRA CIRCUIT REOUIRED
FOR MODULO 20 COUNTER

Figure 48. A Five-bit Ripple Counter

TITLE Dual 5-Bit Counter
PATTERN Upcount.pds
REVISION 01
AUTHOR
COMPANY
DATE

Joe Engineer
Monolithic Memories, Inc.
11/12/87

CHIP Upcount PAL20RAI0

PL CKA CKB ENA ENB NC NC NC NC NC INIT GND
OE QB4 QB3 QB2 QBl QBO QA4 QA3 QA2 QAl QAO vee

EQUATIONS
; The First Counter

/QA4 := QA4 * /ENA Toggle if lower MSB
is zero

+ /QA4 * ENA Hold count
QA4.CLKF /QA3 Toggle
QA4.RSTF INIT Initialize
QA4.TRST = vee

/QA3 := QA3 * /ENA Toggle when QA2 zero
+ /QA3 * ENA Hold count

QA3.CLKF = /QA2 Toggle
QA3.RSTF = INIT Initialize
QA3.TRST = VCC

Figure 49. Design File for a Five-bit Ripple Counter

~ Monolithic W Memories ~

406 21

Registered Logic Design

lQA2

QA2.CLKF
QA2.RSTF
QA2.TRST

lQA1

QA1.CLKF
QA1.RSTF
QA1.TRST

lQAO

QAO.CLKF
QAO.RSTF
QAO.TRST

:- QA2 * lENA
+ lQA2 * ENA
.. lQA1
.. INIT
-vee

:- QA1 * lENA
+ lQA1 * ENA
- lQAO
.. INIT
""vee

:- QAO * lENA
+ lQAO * ENA
-CKA
'" INIT
... vee

; The Second Counter

Toggle when QA1 zero
Hold count
Toggle
Initialize

Toggle when QAO zero
Hold count
Toggle
Initialize

Toggle LSB
Hold count
Toggle
Initialize

IQB4 :'" QB4 * IENB ; Toggle if lower MSB is zero
+ IQB4 * ENE Hold count

QB4.CLKF ... IQB3 Toggle
QB4.RSTF '" INIT Initialize
QB4.TRST .. vee

IQB3 : ... QB3 * IENB Toggle when QB2 zero
+ IQB3 * ENB Hold count

QB3.CLKF ... IQB2 Toggle
QB3.RSTF .. INIT Initialize
QB3.TRST ",vee

IQB2 := QB2 * IENB Toggle when QB1 zero
+ IQB2 * ENE Hold count

QB2.CLKF = IQB1 Toggle
QB2.RSTF = INIT Initialize
QB2.TRST ... vee

IQB1 := QB1 * IENB Toggle when QBO zero
+ IQB1 * ENE Hold count

QB1.CLKF = IQBO Toggle
QB1.RSTF .. INIT Initialize
QB1.TRST .. vee

IQBO : .. QBO * IENB Toggle LSB
+ IQBO * ENE Hold count

QBO.CLKF =CKB Toggle
QBO.RSTF = INIT Initialize
QBO.TRST = vee

SIMULATION

TRACE_ON IPL QA4 QA3 QA2 QA1 QAO QB4 QB3 QB2 QB1 QBO

SETF PL INIT ICKA ICKB IOE

SETF INIT CKA CKB
SETF IINIT /CKA ICKB
CHECK lQA4 /QA3 lQA2 lQA1 lQAO
CHECK IQB4 /QB3 /QB2 IQB1 IQBO

Figure 49. Design File for a Five-bit Ripple Counter (Cont'd.)

~ Monolithic W Memories ~ 2·95

Registered Logic Design

SETF CKA CKB

CHECK /QA4 /QA3 /QA2 /QAl QAO
CHECK /QB4 /QB3 /QB2 /QBl QBO
SETF /CKA /CKB

SETF CKA CKB
CHECK /QA4 /QA3 /QA2 QAl /QAO
CHECK /QB4 /QB3 /QB2 QBl /QBO
SETF /CKA /CKB

SETF CKA CKB
CHECK /QA4 /QA3 /QA2 QAl QAO
CHECK /QB4 /QB3 /QB2 QBl QBO
SETF /CKA /CKB

SETF CKA CKB
CHECK /QA4 /QA3 QA2 /QAl /QAO
CHECK /QB4 /QB3 QB2 /QBl /QBO
SETF /CKA /CKB

SETF CKA CKB
CHECK /QA4 /QA3 QA2 /QAl QAO
CHECK /QB4 /QB3 QB2 /QBl QBO
SETF /CKA /CKB

Figure 49. Design File for a Five-bit Ripple Counter (Cont'd.)

There are additional independent SET and RESET controls in the
PAL20RA 10 which can be used to restart the count. If a modulo
counteris desired, these SET and RESET signals can be used as
described above. Figure 48 shows the implementation of a
modul0-20 counter which is RESET when output bits 04 and 02
are both HIGH. Since the RESET is implemented with a product
term, the extra AND gate shown can be implemented directly
within the PAL device.

Asynchronous Designs Device Selection Considerations

DEVICE

TTL

16RA8
20RA10

CMOS

C29MA16

2·96

TOTAL DEDICATED
NUMBER INPUT
OF PINS PINS

20 8
24 10

24 5

The device selection for asynchronous designs is easy. As the
clock signals require logic, only PLDs which allow implementation
of Boolean logic on the clock signals are useful. Figure 50 shows
a list of devices which provide programmable clock signals. They
also provide programmable SET and RESET product terms, and
the capability of bypassing the register.

DEDICATED I/O LOGICAL SPEED GRADES
REGISTERED PINS PRODUCT FREQUENCY IN

OUTPUT TERMS! MHz
PINS OUTPUT fMAX

0-8 8-0 4 20
0-10 10-0 4 33,20

16 4-12 20, 15

Figure 50. Programmable Logic Devices for Asynchronous Designs

~ Monolithic W Memories l1

Registered Logic Design

Other Applications of
Registered PLDs

Registered PLDs are used for a number of miscellaneous appli­
cations which are not covered by the synchronous and asynchro­
nous design applications discussed upto now. In the subsequent
discussion we will cover a few of these applications:

• Frequency dividers
• Addressable registers

Frequency Dividers

Standard synchronous counters provide the basic capability of
dividing an input frequency. A single register of a PAL device will
let us divide by two. If we stack these registers, a binary counter
provides symmetrical division by 2,4,8,16, etc. This divider has
been a standard for years, and the PAL device has always been
an excellent choice for such applications.

One unique application of PAL devices is for dividing input
frequencies by odd numbers. This has been done historically by
designing a counter which cycles modulo an odd number, and
decoding the specific states of the counter. The disadvantage of
this approach is that the output is not symmetrical and the duty
cycle is not 50%.

Let's examine a simple divide-by-five counter. This counter can
be implemented using three flip-flops that start at zero and reset
at four, resulting in a five-state counter. The table in Figure 51
shows the outputs of the three individual flip-flops.

Present State Next State

02 Q1 00 02 01 00

0 0 0 0 0 1 State zero to one.
0 0 1 0 1 0 State one to two.
0 1 0 0 1 1 State two to three.
0 1 1 1 0 0 State three to four.
1 0 0 0 0 0 State four to zero.

Figure 51. Truth Table for a Five-bit Counter

The Boolean equations are:

Q2 := /Q2 * Ql * QO ;MSB bit
Ql := /Ql * QO + Ql * /QO
QO := /Q2 * /QO ;LSB bit

The waveforms for this divider are shown in Figure 52. Notice that
the 02 output goes HIGH for one state and that this output is one­
fifth of the input frequency, but it is a 20% duty cycle. 01 is active
for two states; it provides the same frequency, but with a 40% duty
cycle. If we want a 50% duty cycle we are going to have to divide
a state in half.

To provide the 50% duty cycle, the two edges should be evenly
spaced in the count sequence, one edge in the middle of state two
and one at the beginning of state zero. The first edge can be
formed by logically "ANDing" state_2 with the falling edge of the
clock. The second edge can be formed by decoding state zero.

edge_l - /clock * /Q2 * Ql * /Qo ;edge between
;states two and
ithree

edge_2 = /Q2 * /Ql * /QO iedge at state
izero

The logical "OR" of these two equations will provide the needed Ell
rising edges. To provide a clean output, this signal should clock
another output register.

The next step in the design is to pick the appropriate PAL device
to fit this design. Our biggest concern is that we need the
capability of clocking the counter at one speed and the output flip­
flop at another. To do this, we cannot use a PAL device that has
a dedicated clock pin; we need an architecture that allows pro­
grammable clocks. The PAL20RA 10, PAL 16RA8 and
AmPALC29MA16 have this feature. This design uses the
PAL20RA 10 device.

Since the clock signal requires two product terms (one for each
edge), and the PAL20RA10 clock signal has only one product
term, this implementation is not possible. Anothertechnique is to
use the independent asynchronous SET and asynchronous
RESET product terms of the PAL20RA 10 output register. AHIGH
on the SET product term asserts the register output, and a HIGH
on the RESET product term unasserts the register output. Due to
the asynchronous nature of the product terms some adjustment
in timing is required. The SET product term is asserted when in
state 0 (02=0, 01=0 and 00=0), and the RESET product term is
asserted when between states two and three.

OUTPUT.SET - Iclock * /Q2 * Ql * /00 ;set between
;states 2 & 3

OUTPUT.RESET - /Q2 * /Ql * /QO ;reset at
; state zero

~ Monolithic IFJJ] Memories ~ 2·97

Registered Logic Design

406 22

Figure 52. Waveform for a Frequency Divider

2·98 ~ Monolithic W Memories l1

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Registered Logic Design

DIVIDE BY FIVE EXAMPLE
DIVBY5.PDS
A
BARRY SEIDNER
MONOLITHIC MEMORIES INC., SANTA CLARA, CA
7/25/1987

CHIP DIVIDER PAL20RAIO

PL CLK 13 14 15 16 17 18
OE 014 015 016 017 018 019 020

EOUATIONS

19 110 III GND
/021 /022 /023 VCC

;The following equations delineate the three bit counter of our
;state machine driver. It has a total count of five starting
;at zero and counting thru four, then resetting to zero.

;MSB OF STATE MACHINE 023:= 021 * 022 * /023
023.CLKF=CLK
023.TRST=VCC

;CLOCK ON RISING EDGE OF CLK PIN
;OUTPUT ALWAYS ON

;BIT 1 OF STATE MACHINE 022:=/022 * 021 + 022 * /021
022.CLKF=CLK
022.TRST=VCC

iCLOCK ON RISING EDGE OF CLK PIN
;OUTPUT ALWAYS ON

;LSB OF STATE MACHINE 021:=/021 * /023
021.CLKF=CLK
021.TRST=VCC

;CLOCK ON RISING EDGE OF CLK
;OUTPUT ALWAYS ON

;The last cell of our divide by five counter is the actual
;output of divider. It divides by setting and resetting at the
;appropriate time in the count sequence. The output will stay high
;for count zero, one, and the first half of two-then go low for
;the second half of two, thru three and four.

020.SETF
020.RSTF
020.CLKF
020 :=
020.TRST =

SIMULATION

/023 * 022 * /021 * /CLK
/023 * /022 * /021
GND
GND
VCC

;SET ON COUT THREE AND
;RESET ON COUNT ZERO
;CLOCK INPUT NOT USED
;DATA INPUT NOT USED
;OUTPUT ALWAYS ON

;This simulation will run the divider through
;several passes o~ the count to verify operation.

TRACE ON OE PL CLK 023 022 021 020

;Initialization of all inputs. Before the simulator can be
;executed, all of the inputs to the PAL device should be
;set to a specific value. This section of simulator
;declaration sets three input variables inactive.

SETF PL JOE /CLK ;SET PRELOAD FALSE
;SET OUTPUT ENABLE
;SET CLOCK LOW

;The PRLDF statement will set the registers to a known
;state at the beginning of our simulation. This line sets
IUS to state zero.

PRLDF /023 /022 /021 020

;The FOR loop statement exemplifies an easy way to perform
;repetitive functions. In this example, the "RA" cell does
;not have a dedicated clock input so this routine will
;generate 30 repetitive clocks to drive our design.

FOR 1:=1 TO 30 DO
BEGIN

SETF CLK
SETF /CLK

END

;End of simulation
TRACE OFF

;SET CLOCK HIGH
;SET CLOCK LOW

Figure 53. Design File for Frequency Divider

~ Monolithic W Memories ~

1/2

Ell

2·99

Registered Logic Design

Addressable Registers

Addressable registers are commonly-used MSI functions, often
implemented in PAL devices. Addressable registers are used as
building blocks for digital computers. Depending upon the ad-

TITLE 16-BIT ADDRESSABLE REGISTER
PATTERN ADREG16. PDS
IU:VISIOH A
AUTIlOR John Birkner
COMPANY Monolithic Memorie. Inc. Santa Clara, CA
DATE 2/11/85

The 16-bit addressable register loads one ot 16 registers
selected by ADDReO •• J] with data input, DATA.

CHIP AoREG16 PALJ2R16
00 01 02 OJ /!:l HC HC AO Al VCC A2 AJ DATA NC IPRL02 CLK2
04 05 06 07 08 09 010 011 /E2 NC NC NC NC GNo NC NC NC NC IPRLD1 C!.Kl
012 01J 014 015

EOUATIONS

00

01

02

OJ

04

05

06

07

08

09

010

011

012

013

AO *00
Al *00

1.2 *QO
+ AJ*OO
+ /AO*/A1*/A2*/AJ*oATA

:- /AO *01
+ Al *01
+ 1.2 *01

AJ*Ol
AO*/A1*/A2*/AJ * DATA

AO *02
/A1 *02

1.2 *Q2
+ AJ*02 .. /AO* A1*/A2*/AJ*oATA

:- /AO *OJ
+ /A1 *OJ

A2 *OJ
AJ*OJ

AO* Al*/A2*/AJ*DATA

AO *04
A1 *04

11.2 *Q4
+ AJ*04
+ /AO*/A1* A2*/AJ*OATA

:- lAO *05
+ A1 *05

/1.2 *05
AJ*05

AO*/A1* A2*/AJ*OATA

AO *06
/A1 *06

11.2 *Q6
AJ*06

+ IAO* 1.1* A2*/AJ*OATA

:- lAO *07
/A1 *07

/A2 *07
AJ*07

AO* A1* A2*/AJ*oATA

AO *08
A1 *08

*Q8
+ /AJ*08
+ /AO*/A1*/A2* AJ*DATA

~- /AO Al *09
*09

A2 *09
/AJ*09

AO*/A1*/A2* AJ*OATA

AO *010
/Al *010

A2 *010
+ /AJ*010
+ /AO* A1*/A2* AJ*OATA

:- /1.0 *011
+ /A1 *011

A2 *011
/AJ*Ol1

AO* A1*/A2* AJ*OATA

AO *012
A1 *012

IA2 *Q12
+ /AJ*012
+ /AO*/A1* 1.2* AJ*OATA

~- /1.0 Al :~g
+ /A2 *OlJ
+
+

/AJ*OlJ
AO*/A1* A2* AJ*OATA

:hold
:ho1d
:ho1d
:hold
:load

:hold
:hold
:hold
:hold
:load

:hold
:~.old
:hold
:hold
:load

:ho!d
:hold
:hold
:hold
:load

:hold
:hold
:hold
:hold
:load

:hold
:hold
:hold
:hold
:load

:hold
:hold
;hold
:hold
:load

:hold
:hold
:hold
:hold
:load

:hold
:hold
:hold
:hold
:load

:hold
:hold
:hold
:hold
:load

:hold
:hold
ihold
:hold
;load

:hold
:hold
:hold
:hold
:load

:hold
:hold
:ho1d
:hold
:load

:hold
:hold
:hold
:hold
:load

dress input one of the many flip-flops in a register is loaded with
the input data. All other flip-flops in the register retain their
previous values. An example of a 16-bit addressable register is
shown in Figure 54.

014 AO *014 Ihold
/Al *014 :hold

/A2 *014 :ho1d

/AJ*014 :hold
+ /AO* A1* A2* AJ*OATA :load

015 :- /AO *015 :hold
/Al *015 :hold

/A2 *015 :hold
/AJ*015 :hold

AO* 1.1* A2* AJ*oATA :load

SIMULATION

TRACE ON 00 01 02 OJ 04 05 06 07 08 09 010 Q11 Q12 01J 014 015
- AO A1 A2 AJ DATA

StTF t1 t2 /01.1'1. /PRLD1 /PRLD2

StTF /AO /Al /A2 /AJ
CLOCKF CLK1 CLK2

StTF AO IA1 11.2 /AJ
CLOCKF CLK1 CLK2

StTF 11.0 A1 11.2 IAJ
CLOCKF CLK1 CLK2

StTF AO 1.1 /A2 IAJ
CLOCKF CLK1 CLK2

SETF lAO IA1 A2 /AJ
CLOCKF CLK1 CLK2

StTF AO 11.1 1.2 /AJ
CLOCKF CLK1 CLK2

stTF /1.0 Al A2 /AJ
CLOCKF CLK1 CLK2

StTF AO 1.1 1.2 /AJ
CLOCKF CLK1 CLK2

StTF lAO /A1 /1.2 AJ
CLOCKF CLK1 CLK2

StTF AO 11.1 /A2 AJ
CLOCKF CLK1 CLK2

StTF /AO 1.1 IA2 AJ
CLOCKF CLK1 CLK2

SETF AO A1 11.2 AJ
CLOCKF CLKl CLK2

StTF /AO IA1 A2 AJ
CLOCKF CLKl CLK2

SETF AO /A1 A2 AJ
CLOCKF CLK1 CLK2

SETF lAO A1 A2 AJ
CLOCKF CLK1 CLK2

StTF AO A1 A2 AJ
CLOCKF CLK1 CLK2

SETF DATA

StTF lAO /A1 /A2 /AJ
CLOCKF CLK1 CLK2

page 1
9 9 cgcgcg cgcgcgcgcg cgcgcgcgcg cgcgcgc

00 XXXXLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLH
01 XXXXXXLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLL
02 XXXXXXXXLL LLLLLLLLLL LLLLLLLLLL LLLLLLL
OJ XXXXXXXXXX LLLLLLLLLL LLLLLLLLLL LLLLLLL
04 XXXXXXXXXX XXLLLLLLLL LLLLLLLLLL LLLLLLL
05 XXXXXXXXXX XXXXLLLLLL LLLLLLLLLL LLLLLLL
06 XXXXXXXXXX XXXXXXLLLL LLLLLLLLLL LLLLLLL
07 1(XXXXXXXXX XXXXXXXXLL LLLLLLLLLL LLLLLLL
08 XXXXXXXXXX XXXXXXXXXX LLLLLLLLLL LLLLLLL
09 XXXXXXXXXX XXXXXXXXXX XXLLLLLLLL LLLLLLL
010 XXXXXXXXXX AXXXXXXXXX XXXXLLLLLL LLLLLLL
011 XXXXXXXXXX XXXXXXXXXX XXXXXXLLLL LLLLLLL
012 XXXXXXXXXX XXXXXXXXXX XXXXXXXXLL LLLLLLL
01J XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX LLLLLLL
014 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXLLLLL
015 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXLLL
AO XXLLIJ!!!LLH HUJ!HUJ!HL UlHUJ!HLLH HUJ!HLL
A1 XXLLLLIJnIH HLLLLHHI!IIL LLIJnlHHLLL LHHHHLL
A2 XXLLLLLLLL LllHHHHHl!HL LLLLLLIJIHII l!I!l!MlILL
AJ XXLLLLLLLL LLLLLLLLLH IIHHI!Hl!HHHII l!I!l!MlILL
DATA LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLlJU!

Figure 54. A Sixteen-bit Addressable Register Design File

2·100 ~ Monolithic IFJFJ] Memories ~

State Machine Design

Introduction

State machine designs are widely used for sequential control
logic, which forms the core of many digital systems. State ma­
chines are required in a variety of applications covering a broad
range of performance and complexity; low-level control of micro­
processor-to-VLSI-peripheral interfaces, bus arbitration and
timing generation in conventional microprocessors, custom bit­
slice microprocessors, data encryption and decryption and trans­
mission protocols are but a few examples.

Typically, the details of control logic are the last to be settled in the
design cycle, since they are continuously affected by changing
system requirements and feature enhancements. Program­
mable logic is a forgiving solution for control logic design because
it allows easy modifications to be made without disturbing PC
board layout. Its flexibility provides an escape valve that permits
design changes without impacting time-to-market.

A majority of registered PAL device applications are sequential
control designs where state machine design techniques are
employed. As technology advances, new high-speed and high­
functionality devices are being introduced which simplify the task
of state machine design. A broad spectrum of different function­
ality-and-performance solutions is available for state machine
design. In this discussion we will examine the functions per­
formed by state machines, their implementation on various de­
vices, and their selection. Finally, we will implement a state

40701

DEVICE
INPUTS

COMBINATORIAL LOGIC

NEXT
STATE

DECODE

OUTPUT
DECODE

machine design and go through all of the stages involved in a
design tutorial.

What Is a State Machine?

A state machine is a digital device which traverses through a
predetermined sequence of states in an orderly fashion. A state
is a set of values measured at different parts of the circuit. A
simple state machine can consist of PAL-device-based combina-
torial logic, output registers, and buried (state) registers. The EJ
state in such a sequencer is determined by the values stored in
the buried and/or output registers.

A general form of a state machine can be depicted as a device
shown in Figure 1. In addition to the device inputs and outputs,
a state machine consists of two essential elements: combinatorial
logic and memory (registers). This is similar to the registered
counter designs discussed on page 2-66, which are essentially
simple state machines. The memory is used to store the state of
the machine. The combinatorial logic can be viewed as two
distinct functional blocks: the next state decoder and the output
decoder (Figure 2). The next state decoder determines the next
state of the state machine while the output decoder generates the
actual outputs. Although they perform two distinct functions,
these are usually combined into one combinatorial logic array as
in Figure 1.

OUTPUTS

Figure 1. Block Diagram of a Simple State Machine

40702

INPUTS

COMBINATORIAL
LOGIC

COMBINATORIAL
LOGIC

OUTPUT
DECODER
(OUTPUT
DECODE

• FUNCTION)

OUTPUTS

Figure 2. State Machine, with Separato Output & Next State Decoders

~ MonolIthIc W MemorIes ~ 2·101

State Machine Design

The basic operation of a state machine is twofold:

1. l!traverses through a sequence of states, where the next state
is determined by next state decoder, depending upon the
present state and input conditions.

2. It provides sequences of output signals based upon state
transitions. The outputs are generated by the output decoder
based upon present state and input conditions.

Using input signals for deciding the next state is also known as
branching. In addition to branching, complex sequencers provide
the capability of repeating sequences (looping) and subroutines.
The transitions from one state to another are called control
sequencing and the logic required for deciding the next states is
called the transition function (Figure 2).

The use of input signals in the decision-making process for output
generation determines the type of a state machine. There are two
widely-known types of state machines: Mealy and Moore
(Figure 3). Moore state machine outputs are a function of the
present state only. In the more general Mealy-type state ma­
chine, the outputs are functions of both the state and the input
signals. The logic required is known as the output function. For
either type, the control sequencing depends upon both states and
input signals.

Most practical state machines are synchronous sequential cir­
cuits which rely on clock signals to trigger the state transitions. A
single clock is connected to all of the state and output edge­
triggered flip-flops, which allows a state change to occur on the
rising edge of the clock. Asynchronous state machines are also
possible, which utilize the propagation delay in combinatorial
logic for the memory function of the state machine. Such
machines are highly susceptible to hazards, hard to design and
are seldom used. In our discussion we will focus solely on
sequential state machines.

INPUTS

State Machine Applications

State machines are used in a number of system control applica­
tions. A sampling of a few of the applications, and how state
machines are applied, is described below.

As sequencers for digital signal processing (OSP) applications,
state machines offer speed and sufficient functionality withoutthe
overkill of complex microprocessors. For simple algorithms, such
as those involved in performing a Fast Fourier Transform (FFT),
a state machine can control the set of vectors that are multiplied
and added in the process. For complex OSP operations, a pro­
grammable OSP may be better. On the other hand, the program­
mable OSP solution is not likely to be as fast as the dedicated
hardware approach.

Consider the case of a video controller. It generates addresses
for scanning purposes, using counters with various sequences
and lengths. But instead of implementing these as actual count­
ers, the sequences involved can be "unlocked" and implemented,
instead, as state machine transitions. And there is an advantage
beyond mere economy of parts. A count can be set or initiated,
then left to take care of itself, freeing the microprocessor for other
operations.

In peripheral control the simple state machine approach can be
very efficient. Consider the case of run-length-limited (RLL) code.
Both encoding and decoding can be translated into state ma­
chines, which examine the serial data stream as it is read, and
generate the output data.

Industrial control and robotics offer further areas where simple
control functions are required. Such tasks as mechanical posi­
tioning of a robot arm, simple decision making, and calculation of
a trigonometric function, usually do not require the high-power
solution of microprocessors with stacks and pointers. Rather,
what is required is a device that is capable of storing a limited
number of states and allows simple branching upon conditions.

40704a

a Mealy State Machines

INPUTS

40704b
b. Moore State Machines

Figure 3. The Two Standard State Machine Models

2·102 ~ Monolithic W Memories ~

State Machine Design

Data encryption and decryption present similar problems to those
encountered in encoding and decoding for mass media, only here
it is desirable to make the scheme not so obvious. A program­
mable state machine device with a security fuse is ideal for this
because memory is internally programmed and cannot be ac­
cessed by someone tampering with the system.

Functions Performed

All of the system design functions performed by controllers can be
categorized as one of the following state machine functions:

• Arbitration
• Event monitoring
• Multiple condition testing
• liming delays
• Control signal generation

Later we will take a design example and illustrate how these
functions can be used when designing a state machine.

State Machine Theory

Let us take a brief look at the underlying theory for all sequential
logic systems, the finite state machine (FSM), or simply state
machine.

Those parts of digital systems whose outputs depend on their
past inputs as well as their current ones can be modeled as finite
state machines. The "history" of the machine is summed up in the
value of its internal state. When a new input is presented to the
FSM, an output is generated which depends on this input and the
present state of the FSM, and the machine is caused to move into
a new state, referred to as the next state. This new state also
depends on both the input and present state. The structure of an
FSM is shown pictorially in Figure 2. The internal state is stored
in a block labelled "memory". As discussed'earlier, two combina­
torial functions are required: the transition function, which gener­
ates the value of the next state, and the output function, which
generates the state machine output.

State Diagram Representation

The behavior of an FSM may be specified in graphical form as
shown in Figure 4. This is called a state diagram, or state
transition diagram. Each bubble represents a state, and each
arrow represents a transition between states. Inputs which cause
the transitions are shown next to each transition arrow.

40705

Figure 4. State Machine Reprosentation

Control sequencing is represented in the state transition diagram
as shown in Figure 5. Direct control sequencing requires an
unconditional transition from state A to state B. Similarly condi­
tional control sequencing shows a conditional transition from
state C to either state D or state E, depending upon input
signal 11.

a. Direct Control
Sequencing

40706

b. Conditional Control
Sequencing

Figure 5. Control Sequencing

For Moore machines the output generation is represented by ~
assigning outputs with states (bubbles) as shown in Figure 6. ~
Similarly, for Mealy machines conditional output generation is
represented by assigning outputs to transitions (arrows), as was
shown in Figure 4. More detail on Mealy and Moore output
generation is given later.

a Moore Machine b. Mealy Machine
40707

Figura 6. Output Generation

For this notation, there is a specification uncertainty as to which
signals are outputs or inputs, as they both occur on the drawing
next to the arrow in which they are active. This is usually resolved
by separating the input and output signals names with a line
(Figures 4 & 6). Sometimes an auxiliary pin list detailing the logic
polarity and input or output designations is also used.

State transition diagrams can be made more compact by writing
on the transitions not the input values which cause the transition,
as in Figure 4, but a Boolean expression defining the input
combination or combinations which cause this transition. For
example, in Figure 7, some transitions have been shown for a
machine with inputs "START", "X1" and "X2". In the transition
between states 1 and 2, the inputs X1 and X2 are ignored (that is,
they are "don't cares") and thus do not appear on the diagram.
This saves space and makes the function more obvious.

START

40706

Figuro 7. Stato Transition Diagram with Mnemonics

~ Monolithic W Memories ~ 2·103

State Machine Design

There can be a problem with this method if one is careless. The
state transitions in Figure 8 show what can happen. There are
three input combinations, {IO, 11, 12, 13} = {1011}, {1101} and
{1111}, which make both (/10*/12 + 13) and (10*11 + 10*12) true.
Since a transition to two next states is impossible, this is an error
in the specification. It must either be guaranteed that these input
combinations never occur, or the transition conditions must be
modified. In this example, changing (10*11 + 10*12) to (10*11 +
10*12)*/13 would solve the problem.

Figure 8. State Diagram with Conflicting
Branch Conditions

State Transition Table Representation

40709

A second method for state machine representation is the tabular
form known as the state transition table, which has the format
shown in Figure 9. Along the top are listed ali of the possible input
bit combinations and internal states. Each row gives the next
state and the next output; the table thus specifies the transition
and output functions. This type of table, however, is not suitable
for specifying practical machines in which there is a large number
of inputs, since each input combination defines a row of the table.
With 10 inputs for example, there would have to be 1024 rowsl
A modified version of this table is often used directly for program­
mable logic sequencer (PLS) device design.

PRESENT INPUTS NEXT STATE OUTPUTS
STATE GENERATED

S -S o n I-I o m S -S o n 0-0 o p

Figure 9. A State Transition Table

Flowcharts

Another popular notation is based on flowcharts. In this notation,
states are represented by rectangular boxes, and alternative
state transitions are determined by strings of diamond-shaped
boxes. The elements may have multiple entry points, but in
general have only one exit. The state name is written as the first
entry in the rectangular state box. Any Moore outputs present are
written next in the state box, with a caret ("II") following those that
are unregistered. The state code assignment, if it is known, is
written next to the upper right corner of the state box. Decision
boxes are diamond or hexagonal shaped boxes containing either
an input signal or a logic expression. Two exits labelled "0" and
"1" lead to either another decision box, a state box, or a Mealy
output. The rounded oval is used for Mealy machine outputs.
Once again, a caret ("II") follows those outputs that are unregis­
tered. All of the boxes may need to be expanded to accommodate
a number of output signals or a larger expression.

The use of these symbols is shown in Figure 1 O. Each path
through the decision boxes from one state to another defines a
particular combination or set of combinations of the input vari­
ables. A path does not have to include ail input variables; thus it
accommodates "don't cares". These decision trees take more
space than the expressions WOUld, but in many practical cases,
state machine controllers only test a small subset of the input
variables in each state and the trees are quite manageable. Also,
the chain of decisions often mirrors the designer's way of thinking
about the actions of the controller. It is important to note that these
tests are not performed sequentially in the FSM; ali are performed
in parallel by the FSM's state transition logic.

A benefit of this method of specifying transitions is that the
problem of Figure 8 can be avoided. Such a conflict would be
impossible as one path cannot diverge to define paths to two
states.

When there is no danger of conflicts due to multiple next states
being defined, this flowchart notation can be compacted by
aliowing more complex decisions. Expressions can be tested, as
shown in Figure 11 a, or multiple branches can extend from a
decoding box, as in Figure 11b. In the second case it is
convenient to group the set of binary inputs into a vector, and
branch on different values of this vector.

The three methods of state machine representation-state dia­
grams, state tables, and flowcharts-are ali equivalent and
interchangeable, since they all describe the same hardware
structure. Each style has its own particular advantages. Although
most popular, the state transition diagrams are more complex for
problems where state transitions depend on many inputs, since
the transition conditions are written directly on the transition
arrows. Although cumbersome, the state tables allow the de­
signer tight control over signal logic. Flowcharts are convenient
for small problems where there are not more than about ten states
and where up to two or three inputs or input expressions are
tested in each state. For larger problems, they can become
ungainly.

Once a state machine is defined, it must be implemented on a
device. Software packages are then used to implement the
design on a device. The task is to convert the state machine
description into transition and output functions. Software pack­
ages also account for device·specific architectural variations and
limitations, to provide a uniform user interface.

NN--STATE CODE ..--........ _..,

407 10

Figure 10. Flowchart Notation

2·104 ~ Monolithic [FJJ] Memories ~

State Machine Design

Some software packages accept all of the three different state
machine representations directly as design inputs. However, the
most prevalent design methodology is to convert the three state
machine design representations to a simple textual representa­
tion. Textual representations are accepted by most software
packages although the syntax varies. The PALASM 2 software
package offers one such simple and easy-to-use state machine
textual representation. The task of converting from a state
transition diagram and flowchart representation to PALASM 2
software state machine syntax is demonstrated in a design
tutorial on page 2-122.

Since the most common of all state machine representations is
the state transition diagram representation, we will use it in all
subsequent discussions. Transition table and flowchart repre­
sentation implementations will be very similar.

a. Testing Expressions

407 lla

State Machine Types: Mealy & Moore

With the state machine representation clarified, we can now
return to the generic sequencer model of Figure 1, which has
been labelled (Figure 12) to show the present state (PS), next
state (NS) and output (OB, OA). This will illustrate how Mealy and
Moore machines are implemented with most sequencer devices
which provide a single combinatorial logic array for both next state
and output decode functions. There are four ways of using the se­
quencer, two of which implement Moore machines and two Mealy.
First, let us look at the Mealy forms.

The standard Mealy form is shown in Figure 13, where the signals
are labelled as in Figure 12 to indicate which registers and outputs
are used. The register outputs PS are fed back into the array and
define the present state. The combinatorial logic implements the
transition function, which produces the next state flip-flop inputs
NS, and the output function, which produces the machine output
OB. This is the asynchronous Mealy form.

b. Multiway Branch

407 lIb

Figura 11. Using Flowcharts

407 11

40712

COMBINATORIAL LOGIC

~ ______________ -+OB

DEVICE NEXT
INPUTS STATE

DECODE

OUTPUT
DECODE

Figure 12. Generic ModeJ of an FSM

TRANSITION NEXT
FUNCTION STATE

NS

REGISTER
(STATE

MEMORy)

OUTPUT
FUNCTION

PRESENT STATE
L-------------------1-----~PS

CLOCK

Figure 13. Asynchronous Mealy Form

~ Monolithic W Memories ~

OA

OUTPUTS

OB
OUTPUTS

2·105

State Machine Design

An alternative Mealy form is shown in Figure 14. Here the outputs
are passed through an extra output register (OA) and thus do not
respond immediately to input changes. This is the synchronous
Mealy form.

The standard Moore form is given in Figure 15. Here the outputs
08 depend only on the present state PS. This is the asynchro­
nous Moore form. The synchronous Moore form is shown In
Figure 16. In this case the combinatorial logic can be assumed
to be the unity function. The outputs (08) can be generated
directly along with the present state (PS). Although these forms
have been described separately, a single sequencer is able to
realize a machine which combines them, provided that the
required paths exist in the device.

TRANSITION NEXT
FUNCTION STATE

NS

REGISTER

In the synchronous Moore form, the outputs occur in the state in
which they are named in the state transition diagram. Similarly in
the asynchronous Mealy and Moore forms the outputs occur in
the state in which they are named, although delayed a little by the
propagation delay of the output decoder. This is because they are
combinatorial functions of the state (and inputs in the Mealy
case).

However, the synchronous Mealy machine is different. Here an
output does not appear in the state in which it is named, since it
goes into another register first. It appears when the machine is
in the next state, and is thus delayed by one clock cycle. The state
diagram in Figure 17 illustrates all of the possibilities on a state
transition diagram.

OUTPUT
FUNCTION

PRESENT STATE

REGISTER
OA
OUTPUTS

~ __________________ ~------~PS

2·106

CLOCK-4----------------------~

Figure 14. Synchronous Mealy Form

TRANSITION NEXT
FUNCTION STATE

NS

REGISTER
(STATE

MEMORY)

OUTPUT
FUNCTION

PRESENT STATE
~ __________________ ~------~PS

CLOCK

Figure 15. Asynchronous Moore Form

TRANSITION NEXT
FUNCTION STATE

NS

REGISTER

CLOCK

Figure 16. Synchronous Moore Form

OA
OUTPUTS

PRESENT STATE
PS

~ Monolithic IFJFJ) Memories ~

OB
OUTPUTS

407 13

407 14

407 15

State Machine Design

407 16

~
1/04

ASYNCHRONOUS
MEALY OUTPUT
AVAILABLE

n SYNCHRONOUS , C MOORE OUTPUT q AVAILABLE

ASYNCHRONOUS
MOORE OUTPUT

AVAILABLE

Figure 17. State Diagram Labelling for
Different Output Types

As a matter of notation, Moore outputs are often placed within the
state bubble and Mealy outputs are placed next to the path or
arrow which activates them.

The relationship of Mealy and Moore, synchronous and asyn­
chronous outputs to the states is shown in Figure 18.

Device Selection Considerations

Architecturally, the state machine devices can be divided into
three categories:

• Logic-based devices
• Memory-based devices
• Instruction-based devices

CLOCK

STATE

INPUT

REGISTERED MOORE
OUTPUT

REGISTERED MEALY
OUTPUT

ASYNCHRONOUS
MOORE

OUTPUT
On

Logic-based devices include the PAL and PLS devices. These
devices use the sum-of-products logic array to implement the
transition and output functions. The memory-based devices like
PROSE implement the transition and output functions using a
PROM or RAM array. Conceptually this is no different from the
logic-based devices, since the memory can be viewed as special
logic. The instruction-based sequencers (Am29PL 141) offer
hardwired instructions and fixed logic blocks to provide the
transition function logic with enhanced capabilities like subrou­
tines. Functionally all three types of devices work similarly per­
forming two basic functions: control sequencing and output
generation.

There are three major criteria for selecting the correct state
machine device for a design:

• Number of inputs/outputs
- I/O flexibility
- Number of output registers

• Speed
• Intelligence/functionality

- Number of product terms
- Type of flip-flops
- Number of state registers
- Number of PROM locations (memory-based sequencers)

Number of I/0s

The number of inputs, outputs and I/O pins determines the signals
which can be sampled or generated by a state machine. Figure
19 lists the devices offered for state machine designs, and shows
the number of inputs, outputs and I/O pins available on each
device.

Timing and Speed

The timing considerations for sequencer design are similar to
those for registered logic design (page 2-64). A system clock

On+2

407 17

ASYNCHRONOUS
MEALY

OUTPUT
~ __ ~o~n ____ ~)(~ __ ~_On_+_1 ____ ~)(~~ __ 0n __ +_2 __ __

STATE n STATE n+l STATE n+2

Figure 18. State Machine Timing Diagram

~ Monollthlo W Memories ~ 2·107

EJI

State Machine Design

DEVICE TOTAL DEDICATED DEDICATED 1/0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TTL

16R8 20 8 8 - 8 55.5,37,25, 16
16R6 20 8 6 2 8 55.5,37,25,16
16R4 20 8 4 4 8 55.5,37,25, 16
16RP8 20 8 8 - 8 22.2
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
2388 20 9 4 4 8-12 33.3,28.5

20R8 24 12 8 - 8 37,25,16
20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25,16
20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

20RP10 24 10 10 - 8 37,25
20RPB 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25
20XRP10 24 10 10 . - 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16

PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 33

PLS105 28 16 8 - Total 48 37

PMS14R21 24 8 8 - 128 states 25

29PL141 28 8 16 64 states 20

CMOS

C16R8 20 8 8 8 28.5
C16R6 20 8 6 2 8 28.5
C16R4 20 8 4 4 8 28.5
C20R8 24 12 8 - 8 20,15.3
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,15.3

Figure 19. Devices for State Machine Design

2·108 ~ Monolithic W Memories ~

State Machine Design

DEVICE TOTAL DEDICATED DEDICATED I/O lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS! MHz

PINS OUTPUT fMAX

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15

Eel

10H20EV/EG8 24 12 0-8 8-0 8-12 125
10020EV/EG8 24 12 0-8 8-0 8-12 125

Figure 19. Devices for State Machine Design (Cont'd.)

cycle forms the basic kernel for evaluating control function
behavior. For the most part, all input and output functions are
specified in relationship to the positive edge. Registered outputs
are available after a period of time tCLK' the clock-to-output
propagation delay. Asynchronous outputs require an additional
propagation delay (tpo) before they are valid.

For the circuit to operate reliably, all of the flip-flop inputs must be
stable at the flip-flop no later than the minimum set-up time (t,) of
the flip-flops before the next active clock edge. If one of the inputs
changes after this threshold, then the next state or synchronous
output could be stored incorrectly; the circuit may even malfunc­
tion. To avoid this, the clock period (t) must be greater than the
sum of the set-up time of the flip-flops ~nd the clock to output time
(tou + tCLK). This determines the minimum clock period and hence
the maximum clock frequency, fMAX' of the circuit. Metastability
and erroneous system operation may occur if these specifica­
tions are violated.

The timing relationships are shown in Figure 20. In each cycle
there are two regions: the stable region, when all signals are
steady, and the transition region, when the machine is changing
state and signals are unstable. The active clock edge causes the
flip-flops to load the value of the new state which has been set up

407 18

CLOCK

INPUT

REGISTERED
OUTPUT

ASYNCHRONOUS
OUTPUT

STATE

x
X

X
n+l

attheir inputs. At a time afterthis, the present state and output flip- Ell
flop outputs will start to change to their new values. After a time
has elapsed, the slowest flip-flop output will be stable at its new
value. Ignoring input changes forthe moment, the changes in the
state register cause the combinatorial logic to start generating
new values forthe asynchronous outputs and the inputs to the flip-
flops. If the propagation delay of the logic is tpo' then the stable
period will start at a time equal to the sum of the maximum values
of tCLK and tpo.

Figure 19 also shows the maximum operating frequency of the
devices. ECl-based PAL sequencers can implement simple
state machines from 60 MHz to above 100 MHz. Conventional
TIL PAL sequencers can now reach speeds of 55 MHz. The new
PlS devices operate at 37 MHz. Finally, PROSE sequencers
provide 25 MHz operation, and the Am29PL141 can run at 20
MHz. The design engineer usually selects the simplest device
that provides the desired level of performance.

Asynchronous Inputs

The timing of the inputs to a synchronous state machine are often
beyond the control of the designer and may be random, such as
sensor or keyboard inputs, or they may come from another

x==
X n+2 X n+3

Figure 20. Timing Diagram for Maximum Operating Frequency

l1 Monolithic m Memories l1 2·109

State Machine Design

oo<i??
"c£A

CLOCK ~

INPUT

407 19

Figure 21. Asynchronous Input Causing Race

synchronous system that has an unrelated clock. In either case
no assumptions can be made about the times when inputs can or
cannot arrive. This fact causes reliability problems that cannot be
completely eliminated, but only reduced to acceptable levels.

Figure 21 shows two possible transitions from state "S1" (code
OO) eitherbackto itself, orto state "S2" (code 11). Which transition
is taken depends on input variable "A" which is asynchronous to
the clock. The transition function logic for both state bits 81 and
82 includes this input. The input A can appear in any part of the
clock cycle. For the flip·flops to function correctly, the logic for 81
and 82 must stabilize correctly before the clock. The input should
be stable in a windowtsu (setup time} before the clock and th (hold
time) after the clock. If the input changes within this window, both
the flip-flops may not switch, causing the sequence to jump to
states 01 or 10, which are both undefined transitions. This type
of erroneous behavior is called an input race.

A solution to this problem is to change the state assignment so
that only one state variable depends on the asynchronous input.
Thus the 11 code must be changed to 01 or 10. Now, with only
one unsynchronized flip-flop input, either the input occurs in time
to cause the transition, or it does not, in which case no transition
occurs. In the case of a late input, the machine will respond to it
one cycle later, provided that the input is of sufficient duration.

There is still the possibility of an input change violating the setup
time of the internal flip-flop, driving it into a metastable state. This
can produce system failures which can be minimized, but never
eliminated (see Metastability, page 3-164). The same problem
arises when outputs depend on an asynchronous input.

Very little can be done to handle asynchronous inputs without
severely constraining the design of the state machine. The only
way to have complete freedom in the use of inputs is to convert
them into synchronous inputs. This can be done by allocating a
flip-flopto each input as shown in Figure 22. These synchronizing
flip-flops are clocked by the sequencer clock, and may even be
the sequencer's own internal flip-flops. This method is not
foolproof, but significantly reduces the chance of metastability
occurring.

Functionality

The functionality of different devices is difficult to compare since
different device architectures are available. The number of
registers in a device determines the number of state combina­
tions possible. However, all of the possible state combinations
are not necessarily usable, since other device constraints may be
reached. The number of registers do give an idea of the
functionality achievable in adevice. Otherfunctionality measures
include the number of product terms, type of flip-flop, or the
number of PROM locations in a memory-based sequencer. One
device may be stronger than another in one of these measures,
but overall may be less useful due to other shortcom ings. Choos­
ing the best device involves both skill and experience.

A designer has a complete spectrum of devices with different
architectures to choose from for a state machine design. These
range from the PAL 16R8D family of very high speed devices to
the new PROSE PMS14R21 and instruction-based Am29PL 141
high-functionality devices. The spectrum is completed by mid­
range PAL devices including the PAL23S8, PAL22RX8A and
PAL32VX10/A, with architectural features specifically designed
for state machine designs, and the PLS devices designed exclu­
sively for state machine implementation.

In order to give an idea of device functionality, we will consider
each of the architecture options available to the designer and
evaluate its functionality.

COMBINATORIAL
LOGIC

CLOCK------~----------~~----------~

Figure 22. Input Synchronizing Register

AO

40720

2·110 ~ Monolithic W Memories ~

I

State Machine Design

PAL Devices as Sequencers

A vast majority of state machine designs are implemented with
PAL devices. Early versions of software required the user to
manually write the sum-of-products Boolean equations for using
PAL devices. Second generation software allows one to specify
the design in "state machine syntax," and handles the translation
to sum-of-products logic automatically. PAL devices implement
the output and transition functions in sum-of-products form via a
user-programmable AND array and a fixed OR array.

PAL devices deliver the fastest speed of any sequencer and are
ideally suited for simple control applications characterized by few
input and output signals interacting within a dedicated controller
in a sequential manner. The number of flip-flops in a PAL device
range from 8 to 12, which offer potentially more than one thou­
sand state values. Since some of the flip-flops are used for
outputs, and the number of product terms is limited, the usable
number of states is reduced drastically. Generally, up to about 35
states can be utilized.

PAL Device Flip-flops

PAL device based sequencers implement small state machine
designs, which have a relatively large number of output transi­
tions. Since the output registers change with most state transi­
tions, they can be used simultaneously as state registers, once
the state values are carefully selected. Most PAL devices are
used for small state machines, and efficiently share the same
register for output and state functions. High-functionality PAL
device based sequencers provide dedicated buried state regis­
ters when sharing is difficult.

As a state machine traverses from one state to another, every
output either makes a transition (changes logic level) or holds
(stays at the same logic level). Small state machine designs
require relatively more transitions and fewer holds. As designs
get larger, state machines statistically require relatively fewer
transitions and more holds.

Most PAL devices provide D-type output registers. D-type f1ip­
flops use up product terms only for active transitions from logic
LOW to HIGH level, and for holds for logic HIGH level only. J-K,
S-R, and T-type flip-flops use up product terms for both LOW-to­
HIGH and HIGH-to-LOW transitions, but eliminate hold terms.
Thus D-type flip-flops are more efficient for small state machine
designs. Some high-end PAL devices offer the capability of
configuring the flip-flops as J-K, S-R or T-types, which are more
efficient for large state machine designs since they require no
hold terms.

Many examples of PAL-device-based sequencers can be found
in system time base functions, special counters, interrupt control­
lers, and certain types of video display hardware.

PAL devices are produced in a variety of technologies for multiple
applications, and provide a broad range of speed-power options.
PAL devices which can be used for sequencer designs are listed
in Figure 23. We will consider the following PAL devices in detail.

PAL 1 OH/1 0020EV/EG8
PAL 16R8D family
PAL23S8
PAL22RX8
PAL32VX10

DEVICE TOTAL DEDICATED DEDICATED 1/0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

TTL

16R8 20 8 8 - 8 55.5,37,25, 16
16R6 20 8 6 2 8 55.5,37,25, 16
16R4 20 8 4 4 8 55.5, 37, 25, 16
16RP8 20 8 8 - 8 22.2
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23S8 20 9 4 4 8-12 33.3,28.5

20R8 24 12 8 8 37,25,16
20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25,16
20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2

Figure 23. Table of PAL Devices for Sequencer Applications

~ Monollthlo W Memories ~ 2·111

State Machine Design

DEVICE TOTAL DEDICATED DEDICATED 1/0 lOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMSI MHz

PINS OUTPUT fMAX

20RP10 24 10 10 - 8 37,25
20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25
20XRP10 24 10 10 8 30,22.2,14
20XRPB 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20XRP10 24 10 10 - 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2,14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2,14

20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2

20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,28.5,18
32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16

CMOS

C16R8 20 9 8 - 8 28.5
C16R6 20 9 6 2 8 28.5
C16R4 20 9 4 4 8 28.5
C20R8 24 13 8 - 8 20,15.3
C20R6 24 13 6 2 8 20,15.3
C20R4 24 13 4 4 8 20,15.3

C22V10 24 12 0-10 10-0 8-16 33.3,20

C29M16 24 5 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15

ECl

10H20EV/EG8 24 12 0-8 8-0 8-12 125
10020EV/EG8 24 12 0-8 8-0 8-12 125

Figure 23_ Table of PAL Devices for Sequencer Applications (Cont'd.)

2·112 ~ Monolithic W Memories ~

Stai:e Machine Design

The EeL PAL 10H/10020EV/EGB

At 125 MHz, the EeL PAL10H/10020EV/EG8 provides
the highest speed for a state machine design. The
PAL 1 OHI1 0020EV/EG8 has eight outputs and 20 inputs. Half of
the outputs have 8 product terms and half have 12 product terms.
All of the 20EV8 outputs use Ootype flip-flops, while the 20EG8
outputs are transparent latches. Two architectural fuses per
output control the polarity of the logic and bypass the flip-flop for
combinatorial asynchronous outputs. Two global product terms
are present to Set and Reset all flip-flops. Maximum frequency
of operation as a state machine is 125 MHz.

Figure 24 details the macrocell for the PAL 1 OH/1 0020EV8.

The PAL 16RBO Family

This is the high-speed end (55 MHz) of the TTL state machine
design solutions. PAL 16R8D family devices are available in three
different versions (PAL 16R8/6/4) with varying numbers of regis­
tered and combinatorial outputs and 110 pins for convenient
design fitting. The PAL16R8 family provides 64 product terms
(eight per output).

OE

AR AP elK

Pn

n = 8 OR 12

63002

The software design options available for the PAL 16R8D family
are the traditional Boolean equations and the state machine
syntax provided by PALASM 2 software.

The PAL23SB

At 33.3 MHz and in a 20-pin DIP, this device (Figure 25) provides
the highest performance-to-board-space ratio. Designed for
high-functionality state machines, this device offers eight output
and six dedicated buried registers. It also offers four output
macrocells with register bypass for asynchronous outputs. It has
nine dedicated device inputs and four I/O pins giving a total of 23
array inputs. For improved state machine initialization, it also
offers dedicated synchronous Preset and asynchronous Reset
product terms. Pin-compatible with the PAL 16R8 family, this
device offers varied distribution of 145 product terms for large
designs and optimal fit.

The software design options include Boolean equations and state
machine syntax.

Figure 24. The PAL10H/10020EV8 Output Macrocell

~ Monollthlo W Memories l1 2·113

State Machine Design

The PAL22RX8A

The 24-pin PAL22RX8A (Figure 26) provides eight configurable
input/output macrocells with register bypass for a user-program­
mable number of registered or combinatorial outputs and I/O
pins. It also provides dedicated asynchronous reset and preset
product terms for state machine initialization. The PAL22RX8A
provides a product-term-controlled XOR gate with its sum-of­
products logic. This allows users to configure individual macro­
cells with 0, J-K, S-R or T-type flip-flops.

The requirements of transition and hold terms are dependent
upon state selection, which varies for different applications. The
PAL22RX8A provides both Ootype and J-K type flip-flops, allow­
ing the designer to select the one requiring fewer product terms.

The PAL22V10

The PAL22V10 provides output macros similar to the
PAL22RX8A. It provides both programmable polarity and regis­
ter bypass. In addition, it has varied product term distribution.

The PAL22V1 0 has an advantage of a large number of product
terms. It provides a varied distribution of eight to sixteen product
terms per output. It also provides ten output macrocells, allowing
for larger designs.

The PAL32VX10/A

The PAL32VX10/A (Figure 27) provides high functionality and
density for PAL device designs. The PAL32VX10/A has config­
urable flip-flops and initialization product terms for state machine
designs. It offers unprecedented design density because of its 10
input/output macros and a large number (8-16/output) of product
terms.

The PAL32VX10/Aalso provides dual feedback paths from each
output macrocell. This allows the macrocell register to be used
as a buried state register in case the I/O pin is used as a dedicated
input. The PAL32VX10/A is designed for large state machine
designs which have relatively few output transitions and require
separate output and buried registers. The PAL32VX10/A pro­
vides up to 10 buried registers for state machine design without
any I/O penalty. The PAL32VX1 O/A also allows trading-off output
registers for state registers and vice-versa. This optimizes the
use of device resources.

COMMON ASYNCH. RESET

Figure 25. Block Diagram of PAL23S8

2·114 ~ MonolithIc IFJJ] MemorIes ~

CIl c: w
~
a w c:
~ a..
~ o

~
~ a
w
c:
o w c:
::>
CD

40722

40723

407 24

State Machine Design

ASYNCHRONOUS RESET
ASYNCHRONOUS PRESET

CLOCK

Figure 26. PAL22RXBA Output Macrocell

Figure 27. PAL32VX10/A Output Macrocell

~ MonolIthIc W MemorIes ~

EJI

2·115

2·116

State Machine Design

---------------------PRODUCTTERMS--------------------

PRESET

SO==~HHHH~~~~~++++++~~~++++~~++~~~~~==~~--t-!
S1==~~HH~~~~~++++++~~~++++~++++~~~~~==~~--t.1
S2==~~~~~~~~~~~+4~~t+t+~t+tt~t+tttt~~~--tJlI
S3==~HHHH~~tttt~++++++~~++++++~++++~~~~~==~~--t,1I1

S4==~HHHH~~tttt~++++++~~++++++~+4+4~~~~~==~~--hlill
S5~~4+++++++++~~~~~~4+++++++++~~~~~+=~~--+
C --++++~~~++~~~++~~~~~~~~++~~~~~~~rr--~~<iC~

C ~

~: --++~~~~~~++~-r++~~~~~~~+-~~++~~++~~~--~lS= ~

-+~~4+H+H+~~H4~~~+H~+H+H~~~ -

--~~++++-H~~~~~-H-H~++++++~-r~~++~Y-~~~--43= =
--++~~~~~~++++-r++~~~++~~~+-~~++~~++~~~--~~ ::

Figure 28. Architecture of a PLS105 Device

~ Monolithic W Memories ~

19 PiE

OUTPUT
ENABLE

State Machine Design

Programmable Logic Sequencers (PLS)

Another alternative for control logic is the PLS (Programmable
Logic Sequencer) device (Figure 28). PLS devices have both
programmable AND and programmable OR arrays. Forty-eight
product terms are available, which can be shared between
transition functions and output functions for all of the outputs, as
dictated by the application needs. PLS devices also offer S-R flip­
flops with buried registers for control sequencing. The flip-flops
have a common clock line. The S-R type flip-flops are similar to
the J-K type flip-flops discussed earlier, and require no hold
terms. Consequently S-R type flip-flops are very efficient for large
state machine designs. PLS devices can function as either as
Moore machines or Mealy machines with a register on the output
path.

With the improvements in design tools, it is possible to specify
designs directly from the state diagram. However, one format
which has been used often in the past is the PLS table. This table
is primarily used where the design is entered manually. The table
is also useful for learning about and experimenting with se­
quencer designs. Often, it is possible to manipulate sequencer
programs using the table in ways which are not possible with
some of the more rigid CAD languages.

The table has provision for input and output signal pin allocation
and naming, and a line for each of the 48 device product terms.
The entries used in each line are shown in Figure 29.

AND ARRAY TERMS OR ARRAY TERMS
VALUE

(input, present state) (next state, output)

H true inpuUstate bit Set Flip-flop
L complement Reset Flip-flop
- don't care no change

Figure 29. Symbols Used In a PLS Table

407 2Ba

Figure 30. Example State Machine

The table defines the output function and transition function. Both
functions depend on the present state and inputs. Each possible
link path between two states uses a product term and becomes
a line in the PLS table. The collection of all link path lines is a
complete definition of the combinatorial logic required. The
following example illustrates the relationship between a state
diagram and the PLS table.

Let us look at an arbitrary function as shown in Figure 30. The
inputs are A,B,C, and D; the state names are SO, S1, S2 and S3;
and tho outputs are W, X, Y and Z. To construct the PLS table, a
state assignment is necessary. Selecting an arbitrary binary code
for each state:

SO = 00
S1 = 01
S2 = 10
S3 = 11

With the two state variables P and Q, the PLS table can be
derived, and is shown in Figure 31.

PATH INPUTS PRESENT NEXT OUTPUTS
STATE STATE

A B C D P Q P Q WX Y Z

1 H L L H L L H L L
2 L L L L H H L L L
3 H H L H H H L L L L
4 - L - - L H L L L L L L
5 - H L - L H L L L L L L
6 - H - H L H H L L L L
7 - L H L L L L L L L
8 H H H L L L L L H
9 - - L H H L L L L H L

Figure 31. Example PLS Table

407 2Bb

Figure 32. "HOLD" Transitions

~ Monolithic m Memories ~ 2·117

State Machine Design

This is now a complete description of the combinational logic of
the state machine. Every line in the table is a product term which
is active when conditions for a transition to another state are
satisfied. For this reason, the product terms in a PLS device are
also known as transition terms. As the circuit moves from state
to state, new transition terms become active as others become
inactive.

A comment may be appended to each term to aid documentation
of the design.

"Hold" Terms

The flip-flops used in PLS devices are the S-R type. As discussed
earlier, S-R flip-flops do not require any product terms for holds
and require product terms only for state transition or output
generation (Figure 32).

This may be seen in the two lines of the PLS table corresponding
to the two link paths shown, in Figure 33.

INPUT PRESENT NEXT
X1 STATE STATE

L LHLH - - - -
H LHLH •• H L

Figure 33. Hold Transitions in a PLS Table

The first path, corresponding to the first line in Figure 33, is a
transition back to the same state. No change is thus required in
any of the state variables. '.' entries can thus be used. The first
line has only'·' entries in the OR Array part of the table; the
transition term is thus not connected and this line can be elimi­
nated altogether. This is a logic minimization which can be done
immediately when converting the flowchart or state diagram into
a PLS table. The second path is to a different state, "0110". This
does require a term since some state variables have to change.
Also, note that "hold" state transitions are only free if no output
changes are required,

Complement Array Term

An important addition to the PLS device's programmable AND·
OR array is the complement array term (Figure 34). This is an

extra OR line which is first complemented and then fed back as
an additional input into the AN D array. Figure 35 shows the three
possible configurations of the array at each transition term. The
symbols shown are used in an extra truth table column for config­
uring the complement array.

TRANSITION TERMS

X INDICATES FUSE
40726

Figure 34. Connections of the Complement Array Term

Proper usage of the complement array can lead to considerable
savings in product terms. This can be seen in the typical use of
the complement array in the implementation of default or "ELSE"
transitions. Figure 36 shows a set of four transitions from state
SA, three of which are enabled by one of three combinations of
inputs A, 8, and C, causing transitions to states SO, S1 and S2.
All other combinations cause a transition to state SX.

GENERATE PROPAGATE TRANSPARENT
'A'

X INDICATES FUSE

40727

Figure 35. Complement Array Configurations

INPUT COMBINATIONS

GO TO

A B C So

A B C Sx

A B C Sx

A B C Sl

A B C Sx

A B C Sx

A B C S2

A B C Sx

4072B

Figure 36. Transitions with a Default

2·118 ~ Monolithio W Memories ~

State Machine Design

Three product terms are required for transition to states SO, S1
and S2 which encode the three different conditions. For the
default transition to state SX, the remaining five condition combi­
nations of A, Band C would have to be encoded, requiring five
more product terms (Figure 37). But these terms can be thought
of as "not the transitions to SO or S 1 or S2". By using the comple­
ment array (which provides this NOT signal), only one more
product term is required for the default transition (Figure 38).

The last five terms have been compressed into one. If none ofthe
three defined input combinations is true in state SA, the inputs to
the complement array will all be zeros, and the complement array
output will be a one. This activates the fourth transition term,
causing a transition to SX (Figure 39).

The same complement array term can be used in other states too,
since the propagated signal isANDed with the present state code.
Therefore all defaults can be realized with one term per state.
PLS devices can be an effective solution in state- and branch­
intensive applications, typically found in a variety of protocol con­
trollers, waveform generators, and sequence detectors. In such
applications, complex arrangements of multiple branches may be
present. Multi-step control functions may include many loops of
dozens of steps to count packets of data or input events as they
occur.

PLS devices can be characterized by the number of inputs,
number of product terms, number of flip-flops and number of
outputs. The MMI PLS family currently has three members; these
are listed in Figure 40.

Software for PLS devices can usually accept input descriptions in
three formats: truth tables, Boolean equations and state machine
syntax. The first two require the user to work out the explicit logic
assignment for all terms and code the detailed fuse states
programmed or unprogrammed. The new state machine syntax
allows design in a high-level syntax, and is easier to use.

407 29

ALL THREE PRODUCT
TERMS ARE LOW = ·0·
WHEN NONE OF THE

THREE CONDITIONS FOR
TRANSITION TO S, • S2 OR S:3

IS VALID

"0· ·0· "0-

Cn A B C PRESENT NEXT COMMENT
STATE STATE

- L L L LHL H-H to SO
L H H LHL H - - to 51

- H H L LHL - L- to S2
- L L H LHL -LH path to SX
- L H L LHL -LH
- H L L LHL -LH
- H L H LHL -LH
- H H H LHL -LH

Figure 37. Product Terms Required for Transition to
State SX

Cn

A
A
A .

A B C PRESENT NEXT COMMENT
STATE STATE

L L L LHL H-H
L H H LHL H--
H H L LHL -L-
- - - LHL -LH path to state

SX

Figure 38. Default Transition Using Complement
Array Term

DEFAULTS
HIGH "1·

"1-
CAUSES DEFAULT
TRANSITION
TO STATE Sx

COMPLEMENT
ARRAY
TERM

Figure 39. Transitions Using Complement Array Term

~ Monolithic m Memories ~ 2·119

EJ

State Machine Design

DEVICE TOTAL DEDICATED DEDICATED I/O LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz

PINS OUTPUT fMAX

TIL

PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 33

PLS10S 28 16 8 - Total 48 37

Figure 40. Table of PLS Devices

PROSE Sequencer (PMS14R21)

The PROSE (PMS14R21 PROgrammable SEquencer) is a revo­
lutionary architecture optimized for very high functionality state
machine designs. It combines a PROM and a PAL array on a
single device, utilizing the efficiencies of both for state machine
design.

The PROSE is a high-speed, 14-input, 8-output state machine. It
consists of a 128x21 PROM array preceded by a 14H2 PAL array
(see Figure 41). The PAL array is efficient for performing logic
functions on a large number of input conditions, while the PROM
array is optimal for implementing a large number of product terms
(decision branches) and states. The combination allows a very
efficient implementation of a state machine.

MODE--------~--------_+---------+~

128 X 21
PROM ARRAY

SOl --------~--------_t--------4~ SHADOW AN
DClK OUTPUT

ClK REGISTERS

PIE ---------t---------+--------4~

SDO

407 30

Figure 41. PROSE PMS14R21 Device Architecture

PROM Operation

The PROM consists of 128, 21-bit word locations. Each of these
locations in the PROM can be viewed as a state. Eight bits
0(7-0) at each location define the outputs. The other 13 bits are
used as feedback: six as condition select bits CS(S-O) to the PAL
array, and seven to the PROM array itself for determining the next
location to be addressed. Five of these seven constitute the low­
order address bits A(4-0) for the next state. The remaining 2 bits
are XF(1-0), inputs to the exclusive-OR gates which determine
address bitsA6 and AS in conjunction with PAL output signals X1

and XO. Effectively, the seven-bit address of every PROM
location is generated by seven bits of the PROM data and
constitutes the present state. The next PROM location is the one
whose address is stored as data in the present location. Eight of
the PROM data bits are used as outputs.

PAL Array Operation

The PAL 14H2 has 14 complementary inputs and 2 active-HIGH
outputs (X1 and XO). Each of the 2 outputs is a sum of eight
product terms. Eight of the inputs, 1(7-0), are from an external
source, and are used for encoding conditions for branch selec­
tion. Six inputs, CS(S-O), are from internal feedback from the
PROM, and are used for selection of the conditions that deter­
mine branching when decisions are involved in state transitions.

Just as PROMs are efficient for direct control sequencing, PAL
arrays are very efficient for encoding input conditions. The
function of the PAL14H2 in the PROSE device is to encode all
eight test input conditions along with the state information. Based
upon these test conditions being true it inverts the polarity of the
two most significant PROM address bits. This causes the PROM
to address a different location (state), which is equivalent to
conditional branching. The PALASM 2 design software selects
these branch locations automatically and isolates the designer
from low-level details.

With 128 PROM locations, the PROSE device can be used for
large state machines. It is very effective in single-thread control
functions characterized by long sequences of events generated
by one ''trigger" event. There may be a single repetitive decision
evaluated many times or a long chain of decisions evaluated for
sequential inputs. The output control stream may be quite wide
and complex depending on the system. Generally, only narrow
branches (two or four-way) are needed. Typical applications
occur in controllers for error detection, numerical processing, and
data encryption and decryption. The PROM output structure can
hold any pattern of eight-bit values to be read out as needed. No
trade-off has to be made with branching complexity to providethis
output flexibility. Byte or word-oriented expansion can be made
by arranging multiple devices in parallel.

PROSE state machines are fully supported by PALASM 2 soft­
ware. A complete design example of a PROSE-based state
machine is included on page 2-122.

2·120 ~ Monolithic WMemories ~

State Machine Design

Fuse Programmable Controller
(Am29PL 141)

The Am29PL 141 is a high-performance, single-chip, fuse-pro­
grammable controller (FPC). This chip is designed to allow the
implementation of complex state machines and controllers by
programming the appropriate sequence of microinstructions in
the on-chip microprogram memory.

T(5:0)
6/
/

cc
4)'

COND
SELE

ITION CODE
CT LOGIC I ..
~ 1 TESTMUX

• ..
~ 1 MICRO-

INSTRUCTION
DECODE

~ ~ ~ ~

r-

12)/

I

J

MICROINSTRUCTION
DECODE LOGIC

MICROADDRESS
CONTROL LOGIC

" ~~ DETECT
BRANCH

CONTROL
LOGIC

(GOTO)

EQ

L II FLlP-
FLOP

I

Large state machines require the capability of nested routines.
Nested state machines are control sequences that may be
invoked by one or more control functions, but when invoked,
suspend the "calling" control sequence. Following completion of
the low-level routine, the higher-level "calling"sequence resumes
where it left off. The nested task may have modified part of the
machine environment or the data processed by the system. The
Am29PL141 provides stacks which allow nested subroutines.

•
I DECREMENTER I

(COUNTER - 1)

~ L 1 r- L

I C MUX I I MICROPROGRAM I
COUNTER (PC)

~ 1

" , COUNT REGISTER' , INCREMENTER ,
(CREG) (PC + 1)

1 I
'---., L " ,

S MUX
,

~
, SUBROUTINE REG'

(SREG)

1

• !
PC MUX I

6

MICROPROGRAM PROM ,
(64 x 32)

MOD E
32~ ,1. ------------

---1 32 BIT SSR ~
SO , -D

o

PIPELINE REGISTER

I
/

1 t t
MICROPROGRAM

/16 MEMORY

ZERO SOl DCLK P(15:8) P(7:6) P(S:O)

407 31
OUTPUTS

Figure 42. Architecture of Am29PL 141

~ Monolithic W Memories ~ 2·121

State Machine Design

With its on-chip intelligent microprogram address sequencer
(Figure 42), high-speed 64 x 32-bit PROM-based microprogram
memory, on-chip pipeline register, and an on-chip diagnostics
serial shadow (SSR) register, this chip offers two major advan­
tages: fast operation, and testability. This device is available with
a 20-MHz clock rate (50-ns cycle time) in a 28-pin dual-in-line
package.

A microprogram address sequencer is the heart of the FPC, and
performs all control sequencing functions. The Am29PL 141 has
29 high-level microinstructions which include jumps, loops, sub­
routine calls, and multiway branching. These microinstructions
can be conditionally executed based on the test inputs. The
output generation function is similar to that of the PROSE device,
where output data is stored in PROM locations. A block diagram
of the FPC is shown in Figure 42.

The FPC consists of five main logic blocks: the microaddress
control logic, condition code selection logic, branch control logic,
microinstruction decode logic, and the microprogram memory.

The microaddress control logic generates the proper sequences
of addresses for the microinstructions in the microprogram
memory. A PLA microinstruction decoder is used to decode the
opcode from the microinstruction. This microinstruction decoder
also generates all necessary control signals for executing each
microinstruction. Depending on the microinstruction, the mi­
croaddress can be generated from a number of different sources:
branch control, microprogram counter (PC+ 1), subroutine regis­
ter, or the microprogram counter (PC).

A six-bit stack is available for looping and subroutine calls. When
the loop counter is not being used for counting purposes, it can be
configured with the stack register to implement a two-deep stack
for nested loops and nested subroutine calls. The condition code
selection logic consists of an 8:1 test multiplexer. One of eight test
conditions can be selected on which to base the conditional
instructions. The polarity of the selected condition code input is
controlled by the POL bit in the microword.

The branch control logic is used for generating multiway branch
addresses from the external inputs T(5-0). This logic also per­
forms the comparison between the inputs and the pipeline data
field for executing the COMPARE instruction. An EQ signal is
generated as an output of the COMPARE instruction and can be
used for a condition code test in the next clock cycle.

With its 64-location PROM, the Am29PL 141 provides up to 64
states for state machine designs. It offers the most sophisticated
control sequencing circuitry, which allows multiple branching and
nested subroutines. This can enhance the functionality of the
device even beyond 64 states.

The Am29PL 141 is supported by an assembler (ASM14X) which
allows the user to write instructions in a high-level language
syntax. The assembler then converts the high-level statements
into the specific device microinstructions and PROM data. The
JEDEC device output file is also generated for programming the
device PROM.

State Machine Design Tutorial

The following discussion is a tutorial on state machine design
methodology. In this tutorial we will use the PROSE PMS14R21
device and explain the state machine design process. The
PROSE PMS14R21 is supported by the state machine syntax of
PALASM 2 design software. This software syntax is identical to
and can be used for programming other PAL and PLS devices.

There are four stages in a state machine design. The first requires
conceptualizing the design and selecting the correct device;
second converting it to its state diagram representation; third
converting the state diagram to its state machine syntax text file;
and fourth assembling the file and programming the device. To
explain all the stages in the design process we will take a general
design example and then go through the stages of the dosign
process. As an alternative design methodology, we will also
examine the flowchart state representation in the design
example.

Conceptualizing the Design

This is the first step in a state machine design process. In this step
a complete functional description of the design is formalized
along with the requisite truth tables and/or timing diagrams. We
will consider a simple traffic signal controller example for illustra­
tive purposes.

To begin with, let us visualize the scene of a traffic intersection
(Figure 43), simplified to two one-way streets.

RED 2 GRN 2
VEL 2

1
000

1

r rn~D1
z o VEL 1
0 o GRN 1 i3
w
II:
0

-4-- DIRECTION 2 ~SEN2

~
SEN 1

40732

Figure 43. A Traffic Intersection

2·122 ~ Monolithic IFJJ] Memories l1

State Machine Design

The traffic intersection shows two one-way streets: one in direc­
tion 1 and the other in direction 2. Each direction has a signal
consisting of red. yellow. and green lamps. These lamps are
activated with appropriately-named active-HIGH signals (RED,.
YEL,. GRN,. RED2• YEL2• GRN2). The signals are generated by
the state machine controller. Also. each direction has a sensor
which provides an active-HIGH signal (SEN,. SEN

2
) that indi­

cates the presence of a vehicle. The controller has to manage this
intersection. with the sensors as inputs and the lamps as outputs.

The assertion of SEN, or SEN2 signals a request for a green light
for traffic in the corresponding direction. Once SEN, is HIGH and
SEN

2
is LOW. indicating traffic in direction 1. the GRN, light

should be on at all times. Similarly. when SEN2 is HIGH and SEN,
is LOW. the GRN

2
1ight should be on at all times. When SEN, and

SEN2 are both HIGH. indicating traffic in both directions. the traffic
controller should cycle. allowing equal periods of green signals
(GRN, and GRN2) for both directions. This cycling is also done
when SEN, and SEN

2
are both LOW. indicating no traffic.

SEN2 SEN,

L H Allow traffic in direction 1: RED2• GRN, = H
H L Allow traffic in direction 2: RED,. GRN2 = H
H H Cycle with equal durations in both directions
L L Cycle with equal durations in both directions

Figure 44. Table for Traffic Flow Direction

GRN 2
---T------01

Whenever the signals change from direction 1 to direction 2. the
appropriate yellow light (YEL, or YEL

2
) is turned on for the

transition duration. This allows time for the traffic in the intersec­
tion to pass. before allowing traffic in the other direction. The
timing diagram is shown in Figure 45. When both sensors
indicate the presence of traffic (SEN,. SEN2 = H). extra time is
allowed for traffic to pass. before the signals change the direction.
The extra time is also allowed when there is no traffic in both
directions (SEN,. SEN

2
= L). The timing diagram for this is shown

in Figure 46. Finally. the traffic signal controller shown includes
the system clock (CLK). and an initialize or reset signal (INIT).
INIT drives the controller to an initial state.

Before we proceed to the next step. we mustselect a device which
will implement this design.

In the previous section we found that the basic selection of a state
machine controller device depends upon the speed and 1/0
considerations. The PROSE PMS14R21 has eight inputs and
eight outputs in addition to the initialization input signal PRESET, Ell
which are sufficient for this design. Another selection criterion is
the intelligence of the PROSE device. The device should be able
to implement all of the states required by the design. The PROSE
device is the only 24-pin SKINNYDIP device which has the
capacity for up to 128 states. Later we will see that these are
sufficient for implementing our design.

YEL 2
------------------------------------~

STATE So So S3 S4 S4 S4 S4 S7 So So

40733 DIRECTION 1 --.- DIRECTION 2 DIRECTION 2 --.- DIRECTION 1

Figure 45. Fast Traffic Flow Transition

~ Monolithic IFJJ] Memories l1 2·123

State Machine Design

SEN 2 __ ~~~ ________________ -J

YEL2

----------------------------------~
STATE So So Sl S2 S3 S4 S4 S4 S4 S5 S6 S7 ~ So

DIRECTION 1 ~ DIRECTION 2 DIRECTION 2 ~ DIRECTION 1 407 34

Figure 46. Slow Traffic Flow Transition

State Machine Representation

Once the design problem is defined. the next stage is to convert
it to its state machine representation. State machines can be
represented by bubble-and-arrow state diagrams (Figure 4).
Each bubble represents a state. with each arrow representing a
transition. A second method of state machine representation is
with flow charts. details of which are explained on page 2-104.
State diagrams are by far the most popular representation.
Flowcharts are included for completeness; you need not worry if
you are not comfortable with them.

The transition from the present state to the next state is depend­
ent upon present state and input conditions. Similarly. outputs
can be generated based upon the present state (called a Moore
type state machine). or present state and input conditions (called
a Mealy type state machine). Our design example is a Moore type
state machine. The PALASM 2 syntax supports both Moore and
Mealy type state machines.

The first step for constructing a state diagram is to define states.
All of the specific events in a design are assigned a state. These
include: change of output signals. response to a change in input
signals. ortime delays. For example. in Figure 45. different states
(So' S3 and S4) have been assigned where the outputs change.
Often states with the same outputs can be merged into one
unique state. as shown in the case of state So' Once the states
are defined as bubbles. the transition from one state to another
(called control sequencing) and outputs generated for each state
(output generation) are defined. The task is to use the timing
diagram along with the functional description of the design to

develop control sequencing and output generation functions for
state representations. The state diagram is an improvement over
the timing diagram since it also provide additional branch decision
information.

Each of the functions performed by a controller can be viewed as
one of the following operations. We will show how each of these
operations determine the control sequencing and the output
generation for the state machine. and their state diagram and
flowchart representations.

• Arbitration
• Multiple condition testing
• Event monitoring
• Control signal generation
• Timing delays

Arbitration is the decision-making process. It is inadequately
represented in timing diagrams with arrows (Figures 45 and 46).
The table in Figure 44 represents the functional requirement for
arbitration. Based upon the sensor inputs. the state machine
stays. in the same state So. when SEN,=H and SEN2=L (for
allOWing traffic in direction 1) or transitions either to state S
(SEN,=L. SEN

2
=H). orto state S, (SEN,. SEN2 are both HIGH 0:

LOW). This is represented in the state diagram and flowchart as
the transition from So (Figure 47).

So can also be thought of as an event monitoring state where the
controller waits for the command from the sensors. Based upon
the two bits SENo and SEN,. the state machine moves to different
next states. This is also an example of multiple condition testing.

2·124 ~ Monolithic W Memories ~

State Machine Design

a. State Diagram

407 37

407 42a b. Flowchart

Figure 47. Conditional State Transitions

An example of control signal generation (Figure 48) is signal
RED2 which is used to turn on the red light for direction 1. This
control signal generation example requires assigning output
signal name(s) (RED2) to the state(s) (So' S,. S2 and S3) where it
is asserted (see Figure 46). For simplicity. we are only consider­
ing the outputs which are asserted. Other outputs in their default
states must be accounted for in the final state machine represen­
tation.

The signal GRN, is kept asserted for two extra clock cycles
(Figure 46) to allow the traffic to pass when changing the traffic
pattern from direction 2 to direction 1. The state diagram repre­
sentation (Figure 48) requires assigning unconditional transition
(control sequencing) from one state to another. for a number of
states (S,. S2 and S3)' depending upon the required time delay. It
also requires assigning the signal name (GRN,) to all three states.

407 36

a State Diagram

407 41a b. Flowchart

Figure 48. Output Assignment to States

which results in signal assertion for the extra two clock cycles.

Once the design has been converted into a state diagram (Figure
49) orflowchart (Figure 50) representing all of its timing and func­
tional requirements. the next stage involves conversion to state
machine syntax for its textual representation.

State Machine Syntax

The PALASM 2 programming software design file (also called the
PAL device Design Specification or PDS) allows both conven­
tional Boolean equations and state machine design constructs. It
also allows both Mealy and Moore types of designs with extensive
logic minimization capabilities and easy menu-driven operation.
Other programming software packages which provide similar
design capabilities are also available from various vendors.

~ Monolithic W Memories ~ 2·125

EJI

State Machine Design

Figure 49. State Diagram-Traffic Signal Controller

A PALASM 2 state machine design file consists of four sections:

• Declaration section
• State section
• Condition section
• Simulation section (optional)

Declaration Section

As illustrated in Figure 51, this section stores the basic informa­
tion about the device type and pin names. It is also used to store
some bookkeeping information such as the company name and
design revision numbers.

TITLE TRAFFIC CONTROLLER
PATTERN STATE MACHINE
REVISION 1
AUTHOR J. ENGINEER
COMPANY. MONOLITHIC MEMORIES
DATE JANUARY 30, 1987

CHIP S MACHINE PMS14R21
CLOCK DCLOCK SEN1 SEN2 12 13 14
IS 16 I? SDI GND
RESET SDO RED1 YELl GRN1 RED2
YEL2 GRN2 01 00 MODE VCC

Figure 51. Declaration Section

40743a

Figure 50. Flowchart-Traffic Signal Controller

State Section

The state section contains all the control sequencing and output
generation information. The state section also stores all of the
state initialization values and default parameters. As illustrated in
Figure 52, it initially defines the type of state machine being
designed with keywords MOORE_MACHINE or
MEALY MACHINE. For the PROSE device it also selects the
use of pin 13 as either MASTER_RESET or OUTPUT_ENABLE.

2·126 ~ Monolithic W Memories ~

State Machine Design

It also defines the default output logic values as HIGH or LOW
with the keyword DEFAULT_OUTPUT. Once an output is as­
signed a default logic value, it is explicitly mentioned only when
asserted; otherwise it is assumed to be in its default logic value.
This usually simplifies the task of drawing a state diagram (see
Figure 49). Similarly, the keyword OUTPUT_HOLD defines the
outputs which retain their previous values unless explicitly men­
tioned in a new state. The last two keywords also help isolate the
user from the implementation details of J-K or D-type flip-flops
when using PAL-device-based state machines. The keyword
OUTPUT_HOLD is not used in this design.

STATE

MOORE_MACHINE
MASTER_RESET

STATE_A:- vee -> STATE_B

a Direct Control Sequencing

STATE_A.OUTF:- 0.
c. Moore Machine

STATE_C:-T, -> STATE_D
+11 -> STATE_E

b. Conditional Control Sequencing

STATE_A.OUTF:_11 ->01
d. Mealy Machine

DEFAULT_OUTPUT /RED1/YEL1/GRN1/RED2/YEL2/GRN2 407 ~

POWER_UP := VCC -> SO

Figure 52. State Section

Once the default parameters are defined, all of the state transi­
tions are represented. Only state names are used, since the state
values are assigned automatically by the software. Every state
transition (Figures 53 and 54) can depend upon the present state
for direct control sequencing (state_x := VCC -> state..}'), or the
present state and input conditions for conditional control se­
quencing (state_x := Condition_name -> state..}'). The syntax
has a direct relationship to the state diagrams. For conditional
control sequencing, the syntax also allows a default state when
none of the conditions of transitions to other states are satisfied.

The output generation can also be represented easily. Outputs
are specified from each present state. These outputs can be
Moore type (state.OUTF := outpuCname) or Mealy type
(state.OUTF := Condition_name -> output_name), depending
upon whether or not conditions are used to generate outputs.

STATE_A:=VCC -> STATE_B

a. Direct Control Sequencing

Figure 53. Direct Relationship Between State Diagram
and State Syntax

Condition Section

This is the third section of the PALASM 2 state machine file
structure. This section assigns names to all of the input conditions
used by the state section for both control sequencing and output
generation.

Design Example Syntax

All of the state machine tasks represented by the state diagram
can be converted easily to textual format. The transition from
state S, to S2 and S3 (Figure 55) illustrates how outputs RED2 and
GRN, are generated. These represent control signal generation
and timing delay tasks of a state machine. Similarly, the arbitra­
tion function can be converted to textual format, showing the

STATE_C:= Ii -> STATE_D
+11 -> STATE_E

40746a

STATE_A.OUTF:=Ol

c. Moore Machine

b. Conditional Control Sequencing

STATE_A.OUTF:=1 1-> 01

d. Mealy Machine

Flguro 54. Direct Rolationship Between Flowchart and State/Condition Syntax

~ Monolithic W Memories ~ 2·127

State Machine Design

transition from So to various other states (Figure 56). This is also a
good example of multiple condition testing and event monitoring.

Simulation Section

SO.OUTF
S1.0UTF
S2.0UTF
S3.0UTF

:= RED2
:= RED2
:= RED2
:= RED2

* GRN1
* GRN1

* GRN1
* YELl

The simulation section is similar to that used for conventional
Boolean equation simulation. Please see page 4-137fordetails.

Assembly and Programming

Figure 55. Output Generation Representation
Once the state diagram is converted to its textual constructs, the
file (Figure 57) can be easily assembled by using PALASM 2
software. The software then generates the device programming
JEDEC format file. This JEDEC format file can be downloaded to
a device hardware programmer provided by various vendors. For
detail please see page 4-169 of the PALASM 2 software section.

so := C3 -> Sl
+ co -> Sl
+ C1 -> S3

+-> so

Figure 56. Control Sequencing Representation

2·128

Traffic Signal Controller

TITLE TRAFFIC CONTROLLER
PATTERN STATE MACHINE
REVISION 1
AUTHOR J. ENGINEER
COMPANY MONOLITHIC MEMORIES
DATE JANUARY 30, 1987

CHIP S_MACHI~ PMS14R21
CLOCK DCLOCK SEN1 SEN2 12 13 14
IS 16 17 SDI GND
RESET SDO RED1 YELl GRN1 RED2
YEL2 GRN2 01 00 MODE VCC

STATE

MOORE_MACHINE ; Defined as a Moore Machine
MASTER_RESET ; Initialization
DEFAULT_OUTPUT /RED1/YEL1/GRN1/RED2/YEL2/GRN2
POWER_UP:-VCC -> SO

so :- C3 -> Sl
+ CO -> Sl
+ C1 -> S3
+-> SO
Sl :- VCC -> S2
S2 :- VCC -> S3
S3 :- VCC -> S4
S4 :- C3 -> 55
+ CO -> S5
+ C2 -> S7
+-> S4
S5 :- VCC -> S6
S6 :- VCC -> S7
S7 :- VCC -> SO

Power up state defined

Traffic in direction
Slow signal change
Fast signal change
Otherwise stay in state SO
Time delay
Time delay
Time for yellow
Traffic in direction 2
Slow signal change
Fast signal change
Otherwise stay in state so
Time delay
Time delay
Time for yellow

Figure 57. The Design File

~ Monolithic W Memories ~

State Machine Design

SO.OUTF := GRNl * RED2
S1.0UTF := GRNl * RED2
S2.0UTF := GRNl * RED2
S3.0UTF := YELl * RED2
S4.0UTF := REDl * GRN2
SS.OUTF := RED! * GRN2
S6.0UTF := REDl * GRN2
S7.0UTF := REDl * YEL2

CONDITIONS

co = /SENl * /SEN2
Cl = /SENl * SEN2
C2 = SENl * /SEN2
C3 = SENl * SEN2

SIMULATION

Allow direction 1 traffic

Change from direction 1 to 2
Allow direction 2 traffic

Change from direction 2 to 1

Condition for no traffic
Condition for direction 2
Condition for direction 1
Condition for traffic in both directions

TRACE_ON CLOCK SENl SEN2 REDl YELl GRNl RED2 YEL2 GRN2

SETF RESET /CLOCK
CLOCKF CLOCK iSTATE TRANSITION ONLY ON 1ST CLOCK
CLOCKF CLOCK i LIGHTS CHANGE ON 2ND CLOCK
CHECK /REDl /YELl GRNl /YEL2 /GRN2 RED2
SETF /SENl /SEN2
CLOCKF CLOCK
CLOCKF CLOCK
CHECK /REDl /YEL1 GRN1 RED2 /YEL2 /GRN2
CLOCKF CLOCK
CHECK /RED1 YELl /GRNl RED2 /YEL2 /GRN2
CLOCKF CLOCK
CHECK RED1 /YEL1 /GRNl /RED2 /YEL2 GRN2
CLOCKF CLOCK
CHECK RED1 GRN2
CLOCKF CLOCK .
CHECK RED1 YEL2
CLOCKF CLOCK
CHECK /REDl /YELl GRNl RED2 /YEL2 /GRN2
SETF /SENl SEN2
CLOCKF CLOCK
CHECK /REDl /YELl GRNl RED2 /YEL2 /GRN2
CLOCKF CLOCK
CLOCKF CLOCK
SETF SENl /SEN2
CLOCKF CLOCK
CLOCKF CLOCK
CHECK YEL2 REDl
CLOCKF CLOCK
CHECK GRNl RED2

Flguro 57. Tho Doslgn Fllo (Cont'd.)

~ Monolithic W Memories ~

EI

2·129

Notes

2·130 ~ Monolithic W Memories l1

Microprocessor-Based Systems

Introduction

The microprocessor has become the standard processing
element in a wide variety of digital systems. Applications ranging
from ignition control in automobiles to high performance engi­
neering workstations utilize microprocessors. Usually a micro­
processor with its associated VLSI components (the dynamic
RAM, EPROM and standard microprocessor peripherals) can
implement most application problems. The microprocessor's
general-purpose nature, ease of use, and cost-effectiveness
makes it the device of choice in all but the most performance­
intensive or specialized applications.

All the designer needs is the necessary "glue logic" to connect
these VLSI components together. A typical microprocessor
based design is illustrated in Figure 1. The heart of the design is
the microprocessor. Typically, DRAMs provide the data storage
and EPROMs provide the non-volatile program storage. De­
pending on the application such standard microprocessor periph­
erals as DMA controllers, serial 110 or disk controllers are usually
present. Glue logic is needed to connect these devices together
to create a working system. For example, memories and periph­
erals need to be selected based on the desired address range,
a function called "address decoding"; high-speed address strobe
signals RAS and CAS must be generated for the DRAMs; wait
states must be generated for the slower memory and peripheral
chips; arbitration and prioritization between different bus masters
(system components which control the bus transactions: DMA
and CPU) is necessary in multi-master systems.

Programmable Logic Devices as
Standard Product Glue

The typical microprocessor system shown in Figure 1 highlights
several of the places where programmable logic is used to
implement the "glue" in a microprocessor system. These simple
random logic and control-oriented functions are necessary to
hold the standard products together to construct a complete
system; thus the name "glue". The common glue functions in a
microprocessor system share several application needs, and are
best satisfied by programmable logic devices.

Microprocessor glue functions compete for board space with LSI ~
devices in almost all cases. If the glue logic uses too much board ~
space, the design will need to sacrifice features (reducing the
design's value to the customer) or add extra boards (increasing
the cost). In either case the cost/value ratio increases, which is
undesirable. Programmable logic devices can reduce the board
space required for glue functions because of the density advan-
tage the devices have over standard SSI/MSI devices. This
makes more board space available for standard VLSI devices or
customized peripherals.

Since the microprocessor glue functions tend to be control- and
timing-oriented, they are subject to many changes as the board
design evolves, processor speeds increase, or new standard
products are incorporated in the design. In complex systems,
logic functions are commonly "tuned"to optimize bus band-width,
peripheral access time, or memory timing only after the system is

WAIT ~ ~\. ADDRESS TIMING f-I\.
DRAM

ADDRESS
EPROM STATE

DECODER r-v CONTROL I-V DECODER H/ GENERATION

! J n I I it II ~J, A
.(}

/0..
MICROPROCESSOR

"I {} {t- "
~~~ -t {1 li 

k;= ~ A 
ADDRESS 

A ~ DMA STANDARD DECODER 
ARBITRATION CONTROL PERIPHERAL "f CONTROL 

'\I v GENERATOR 

U 
409 01 

Figure 1. Typical Microprocessor System 

~ Monolithic W Memories ~ 2·131 



Microprocessor-Based Systems 

running. The optimum balance is usually too difficult to predict 
and can only be found via experimentation. Because of their 
programmable nature, PLDs offer the designer the capability of 
changing the logic at any time. Thus designs can quickly adjust 
to changing requirements, or can be improved without adding 
components or changing the circuit board. 

The address decoding, timing, and simple state machines are 
"shallow" and "wide" logic functions. Shallow logic functions need 
only a few levels of gating at a high speed. The standard AND­
OR array architecture offers 3 to 5 levels of gating (inverter, AND­
gate, OR-gate, fliplflop-master and fliplflop-slave) at very high 
speed (10 to 18ns). Wide logic functions require a large number 
of inputs on each gating structure. For example, address decode 
functions may need over 10 inputs to decode a microprocessor 
address and an 8-bit refresh counter would require over 8 inputs 
for the most significant bit. The wide-input structure of PLDs, 
where practically all signals are available (in both polarities) at 
each gating structure, is a good match for this application 
requirement. 

PLDs offer the designer several important charcteristics which 
match well with the needs of glue logic functions. Some common 
application areas will help illustrate the advantages of PLDs in 
microprocessor glue applications. 

PROGRAMMABLE 
LOGIC 

GLUE LOGIC NEEDS: ATTRIBUTES: 

• Minimum Board Space • High Logic Density 
• Easy and Frequent • Quick and Easy Device 

Design Changes Modifications 
• High Speed Simple • Optimized for Fast 

Logic Functions Shallow Logic 

Figure 2. Table for Glue Logic Needs and Programmable 
Logic Attributes 

68000 
MICROPROCESSOR 

ADDRESS SELECT 
DECODE 

CONTROUADDRESS 

Address Decoding 

The single most common application of combinatorial PAL de­
vices is address decoding (Figure 3). In order for a microproces­
sorto communicate with a peripheral or memory chip a chip select 
signal must be generated by the glue logic. Usually a combination 
of address signals and control signals are required to generate 
the chip select for microprocessor memory and peripheral de­
vices. For example, in the 68000 microprocessor some of the 
address signals, the address strobe signal, and the read/write 
signal must participate in the address decode function. The logic 
needed to generate the chip select is many times simply a NAND 
of the true or complement of the necessary address and control 
inputs. 

In high-performance microprocossors, the chip select must be 
generated fast enough to allow single cycle access (no wait 
states) to memory. PLDs provide the high-speed wide-gating 
logic functions necessary to generate these chip select signals. 
Additionally, the addresses for peripherals and memory devices 
are often not known at the beginning of the design or may change 
many times during the design. PLDs can be easily changed to 
adjust to such modifications. More on address decoding is on 
page 2-35. 

Wait-State Generation 

Wait-state generation is in many ways related to the address 
decode function (Figure 4). After the addressed chip is selected, 
the CPU must be notified that the data transfer can be completed. 
The signal to the CPU which identifies the end of a data transfer 
may need to be extended if a slow device is being accessed. 
DRAMs, EPROMs, EEPROMs, and microprocessor peripherals 
may all need different delays depending on their access time bus 
bandwidth requirements and frequency of access. Usually there 
is at least a fast access (no wait-states) aslower access (one wait­
state) and a longer access (several wait-states). The wait state 

SERIAL 
1/0 

TIMING 
CONTROL DRAM 

REALTIME 
CLOCK 

EPROM 

EEPROM 

409 02 
Figure 3. Address Decoding Application Example 

2-132 ~ Monolithio W Memories ~ 



Microprocessor.Based Systems 

generation logic must create a variable delay depending on the 
device being presently accessed. Usually the delay only depends 
on the present access and is independent of previous accesses. 

A registered PAL device has the capability of implementing the 
simple state machine needed for wait-state generation. Addition­
ally, the PLD contains enough logic to provide for a variety of 
memory, peripheral and processor speeds, without requiring 
additional board space. Thus a single design can have an 
extended lifetime, or provide a quick time to market when faster 
or lower-cost processors, peripherals and memories are 
available. 

DRAM Control 

DRAM control logic consists of several distinct functions: address 
multiplexing, RAS/MS/CAS generation, refresh request genera­
tion, and memory request arbitration. Address multiplexing, as 
the name implies, involves multiplexing the upper and lower 
processor addresses to the DRAM chips. RAS/MS/CAS genera­
tion involves the generation of the three separate DRAM timing 
signals: Row Address Strobe, Column Address Strobe, and Mux 
Select (on the address multiplexer). Tight timing relationships 
between the address multiplexer and the RAS/MS/CAS logic is 
necessary in high-performance systems. Refresh request gen­
eration logic is used to time the interval between DRAM refresh 
cycles. The logic is usually a wide counter using a slow clock. 
Memory request arbitration logic decides whether the refresh 
request will be granted or a memory access will be allowed. 

PLDs have a variety of characteristics which make them well 
suited for DRAM control applications. High speed and minimum 
skew specifications are important considerations for address 
multiplexing, RAS/MS/CAS generation and refresh arbitration in 
high performance designs. High-speed PLDs have significantly 
tighter skew specifications than the equivalent multi-device SSII 
MSI solutions. This makes PLD-based DRAM control applica­
tions easier to design and higher performance than SSI/MSI 
based designs. Detail on DRAM designs is provided on 
page 2-179. 

409 03 

68000 
MICROPROCESSOR 

DTACK 

ADDRESS SELECT 
DECODE 

Microprocessor Peripheral Interface 

Microprocessors are usually connected to a number of VLSI 
peripherals performing various ancilliary functions. In many 
cases a design calls forthe use of "incompatible" microprocessor 
and VLSI peripherals. Cost, performance, availability, backwards 
compatibility, orotherconstraints sometimes dictate that different 
families of devices need to coexist in the same design. Glue logic 
is necessary to allow these incompatible devices to communi­
cate. Sometimes logic signals need to be translated. The most 
obvious case is probably the different way a processor read or 
write cycle is encoded. One popular processor uses two separate 
read and write signals (fR or /W) with the active state indicating 
the presence of a valid address. Another popular processor uses 
an "address valid" signal to indicate the presence of an address 
and a single read/write signal to indicate the type of access. 
Peripherals hooking onto the other processor's bus will need 
somesimple logictotranslatethe meaning of these signals. Often 
signal timing is also different between families. This requires 
signals to be delayed or qualified by glue logic. 

The two most popular processor families for high performance 
designs are the 8086/80186/80286 family and the 60000/680101 
68020 family. Each processor has its own peculiarities which the 
designer must take into account when hooking up a peripheral 
device. Subsequent discussion covers several applications 
examples for each family. Finally, PLDs can also be used to make 
custom microprocessor peripherals. An application example of a 
PLD-based interrupt controller is shown on page 2-172. 

Conclusion 

PLDs offer the designer several important characteristics which 
match well with the needs of glue logic applications. The following 
application examples will illustrate the PLD's versatility at imple­
menting microprocessor glue functions. 

TIMING 
CONTROL DRAM 

Figure 4. Wait State Generator Application Example 

~ Monolithic W Memories ~ 2·133 



Interfacing to the 8086/80186/80286 

Overview 
The 8086 is a general-purpose 16-bit microprocessor CPU. 
The CPU has a 16-bit data bus multiplexed with 16 address 
outputs. There are 4 additional address lines (segment ad­
dresses which are multiplexed with STATUS) that increase the 
memory range to 1 Mbyte. 8086 addresses are specified as 
bytes. In a 16 bit word, the'least significant byte has the lower 
address and the most significant byte has the higher address. 
This is compatible with 8080, 8085, Z80 and PDPll address­
ing schemes but differs from the Z8000 and 68000 
addressing. 

The data bus is "asynchronous", i.e., the CPU machine cycle 
can be stretched without clock manipulation by inserting Wait 
states between t2 and t3 of a read or write cycle to accom­
modate slower memory or peripherals. Unlike the 68000, the 
8086 has separate address space for I/O (64 kBytes). 

The 8086 can operate in MIN. or MAX. mode. Maximum mode 
offloads certain bus control functions to a peripheral device 
and allows the CPU to operate efficiently in a co-processor 
environment. A brief discussion on both the MIN. and MAX. 
modes are as follows: 

MIN. mode: 1/0 addressing is defined by a HIGH or 
the 10iM output, and activated by the RD 
output for readin~m memory or 1/0, or 
activated by the WR output for writing to 
memory or 1/0. 

DMA: The Bus is requested by activating the HOLD input to 
the 8086. Bus Grant is confirmed by the HLDA output 
from the 8086. 

MAX. mode: 
(8086 plus 
8288) 

I/O operation is controlled by two outputs 
from the 8288. 
10RC: active during Read from I/O 
10WC: active during Write to I/O 
MRDC: active during Read from memClry 
M WTC: active during Wrile to memory 

DMA: The Bus is requested and Bus Grant is acknowledged 
on the same pin (RQ/GTO OR RQ/GT1) through a 
pulsed handshake. 

Interrupts In Min. and Max. Modes: 

Interrupt is requested by activating the INTR or NMI inputs to 
the 8086. 

Interrupt is acknowledged by the INTA pin on a MIN. mode 
6086 or by the INT A pin on the 8288 in MAX. mode. 

Note: There is no RD or 10RC during the interrupt­
acknowledge sequence. 

2·134 ~ Monolithic W Memories ~ 



8086 and Am7990 LANCE Interface 

8086 and Am7990 LANCE 
The LANCE, Am7990, has been designed to be interfaced 
easily with the popular 16-bit microprocessors (8086/80186, 
68000, Z8000, LSI-11). Most of the interface logic is embedded 
inside the chip and is program selectable. 

Although the LANCE itself has a multiplexed bus, it can easily 
be interfaced to demultiplexed buses with a minimal amount of 
effort. The following designs assume that the processor and 
the LANCE reside on the same board. Address buffers and 
data transceivers are set up to be shared between the proces­
sor and the LANCE. All of these designs use PAL devices to 
reduce the parts count. 

The 8086 to LANCE interface requires a different Bus Request 
handshake, depending on whether the 8086 is configured in 

MAX. or MIN. mode. The 8086 has a bidirectional signal for 
both Bus Request and Bus Grant (RQ/GT). Both Bus Re­
quest (RQ), and Bus Grant (GT) to/from 8086 are one CPU 
clock wide, and are synchronous to the CPU clock. Figure 1 
shows a PAL device design for the conversions in MAX. 
mode. This PAL device is utilized to include other external 
logic requirements for interfacing the LANCE to 8086. The 
interface diagram is similar to the one for the 80186 to 
LANCE interface except for the changes made in program­
ming the PAL device. The interface timing diagram is shown 
in Figure 3. The PAL device design file is shown in Figure 2. 

Figure 4 shows a block diagram of the 8086 to Am7990 
interface, in MIN. mode. The interface also employs a PAL 
device to minimize parts count. The PAL device equations 
are given in Figure 5. 

Figure 1. 8086 RG/GT, Am7990 HOLD/HOLDA Conversion PAL Device 

8086 CI K -----II""'.n-----, 

elK 

PAL16R4 

(80M) RQJGT Hoi]) a....If---- i«5Lo (LANCE) 

i-----IRI H'i:OA '----~ HLoA (LANCE) 

(OC) 

~ MonollthloW Memories ~ 2·135 

EJI 



2·136 

8086 and Am7990 LANCE Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

8086 RQ/GT TO LANCE HOLD/HLDA CONVERTOR 
PAT001 
01 
RASOUL OSKOUY 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP CONVERT PAL16R4 

CLK NC HOLD /GT NC NC NC NC NC GND 
NC NC NC /HLDA /D2 /R2 /R1 NC NC VCC 

EQUATIONS 

R1 '= HOLD 
D2 '= /R1 

;8086 RQ/GT conversion to LANCE HOLD/HLDA 
;both REQ and GRANT are one clock wide and 
;are synchronous to CPU clock 

R2 '= R1*/D2 
+ /R1*D2 

HLDA := GT*/R2 
+ HLDA*/D2 

Figure 2. 8086 RG/GT, Am7990 HOiJ5/Hri5A Conversion PAL Device Design File 

TITLE 8086 MIN MODE TO LANCE INTERFACE 
PATTERN PAT 
REVISION 01 
AUTHOR KHUYNH NGUYEN 
COMPANY ADVANCED MICRO DEVICES 
DATE 11/06/87 

CHIP LANC INT PAL16L8 

ALE /AS DTR NC NC 
NC CPURDY READ /R 

EQUATIONS 

/LE = /ALE 
+ /AS 

DEN NC /READY HLDA GND 
/T /DAS /WR /RD LE VCC 

/CPURDY = /READY CPU (86) is a bus master 

DAS = RD + WR 
DAS.TRST = /HLDA 
/READ = DTR 
/READ.TRST = /HLDA 
T = DTR 
T.TRST = /HLDA 
R = /DTR * DEN 
R.TRST = /HLDA LANCE is a bus master 

RD = READ * DAS 
RD.TRST = HLDA 
WR = /READ * DAS 
WR.TRST = HLDA 

Figure 5. Source Listing for Example of Figure 4 

~ Monollthlo W Memories ~ 



elK 
(INPUT) 

HOLD 
(INPUT) 

ffi (OUTPUT) 

D2 (OUTPUT) 

R2 (OUTPUT) 

8086 and Am7990 l.ANCE Interface 

RQGT (INPUT)~ J PU BUS ________________ th ACKNOWLEDGE 

HlDA (OUTPUT) ,f-' _________ \. ____ 1 
Figure 3. AmPAL16R4, 8086 (Max. Mode) LANCE Interface Timing Diagram 

02188A-20 

i:~;~~~~ 
jJ: Vc:c:Vc:c: 

129863 ~~ r-

'I 'It "'1r 
I I ~j;,-

v 

l~ Lh l~m A~' +----1 
L ~7 

:c A 16-1' AD 0-15 
To Syn-

WJ II 0-7 c: , 
rc: ~ LHlN 

iii: -
INTR %NT 

~ INTA %NTA IRO lNTR TCl.J( ~ 

- iJR 8259A IIAU 

1C:C: 
IIAL!I 

~ ~ iUi 

tUlA ~ tuiA I -<J---HCUl 
tiiUi 7990 

8086 
'-- u: HUlA 

f 
RD Rn PAL16L8 if Vc:c: 

OR \{R 8S/90.PAL _ ~ 
II£N I!::N 

,..-s AS 
AIJ: AU: II"-S BAS 

UTIR IlTR READ REAll 
,"",""'-

REAllY ~ RIlY - CNtIIY 

8284 iifAiiY 
~ 

READY 
RESET ~-~! FROM SYSTEM 

I 
, r 

-{) R£S:ff 

02188A-21 
Figure 4. Am7990 to 8086 Interface 

~ Monolithic: W Memories ~ 2·137 

Ell 



8086 and Am9516 Universal DMA 
Controller Interface 

Am9516 in MIN. Mode 
Figure 1 illustrates the interface of the Am9516 to the 8086 in 
the MIN. mode configuration. Figure 3 illustrates the interface 
in MAX. mode. The interfaces could be accomplished by 
using rather complex implementation of standard SSI/MSI 
logics. Examples here replace the logic portion with a PAL 
device. The MIN. Mode uses the PAL device 16L8. This is a 
good example of "garbage collection". It reduces the amount 
of real estate, interconnections, parts, and part types. 

HOLD 

HLDA 

8086 
DTIR ~ DT 

HLDA 
fTBEN 

[)EfJ 
~ /DEN fRBEN 

ALE ALEP ALE D 

PAL16LB Ao 

fSEL 

Both interface examples accomplish two major functions. First, 
when the Am9516 is bus master, it converts AD and WA into 
AMi and OS, and vice versa when the Am9516 is not the bus 
master. Secondly the buffer controls, TBEN and AEBN, are 
generated from DEN and DT/R. 

The two examples show different types of latches and 
transceivers and there are many more to choose frort:l. The 
designer selects those that best meet system requirements 
while trying to minimize the number of different parts that must 
be stocked. Figure 2 shows the PAL device equations for this 
example. 

BREQ 

BACK 

y.~ y"c,E 

: . Am9516 
'fBEN 
JfB"EfJ 
ALE 

-
ADo 810 ... BfW 

AD fRO IDS llS 
WR fWR fRW RfW 

ALE 

MfiO MfiO cs 

lr {r 
I I 

JJ .lJ ( 

I G 
Am25LS373 ~I'F Am2949 I Am25LSl38I 

LATCH ~ TRANSCEIVER DECODER 

02188A-29 

Figure 1. The Am9516 UDC to 8086 CPU Interface (Minimum Mode) 

2·138 ~ Monolithic W Memories ~ 



8086 and Am9516 Universal DMA Controller Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

Am9516 TO 8086 MIN MODE INTERFACE 
01-3.66 
01 
JOE ENGINEER 
ADVANCED MICRO DEVICES 
11/05/87 

CHIP DMA INTFCE PAL16L8 

iAm9516 to 8086 min mode interface chip 

NC ALED ALEP HLDA BW ADO DT /DEN /SEL GND 
NC /RBEN /RD ALE AO /RW /DS /WR /TBEN vec 

EQUATIONS 

OS = RD + WR 
DS.TRST /HLDA 

RW = DT 
RW.TRST = /HLDA 

TBEN = /DT * /SEL * DEN 
TBEN.TRST /HLDA 

RBEN = DT * /SEL * DEN 
RBEN.TRST = /HLDA 

RD = /RW * DS 
RD.TRST /HLDA 

WR = RW * OS 
WR.TRST =·/HLDA 

ALE = /ALEP * /ALED 

AO /ADO * /BW * HLDA * ALED 
+ ADO * BW * HLDA * ALED 
+ /ADO * /HLDA * ALEP 
+ AO * /ALEP + AO * /ALED 

iDESCRIPTION 

;THIS PAL DEVICE CONVERTS THE CONTROL SIGNALS TO INTERFACE THE BDB6 
;IN MIN MODE TO THE Am9516 DMA CONTROLLER. ANOTHER EXAMPLE SHOWS 
;HOW THIS IS DONE IN MAX MODE. 

; SIMULATION NOT INCLUDED 

Figure 2. Source Listing for Example of Figure 1 

~ Monolithic W Memories ~ 

Ell 

2·139 



8086 and Am9516 Universal DMA Controller Interface 

Am9516 in MAX. Mode 
This MAX. mode interface between the 8086 and Am9516 
(Figure 3) also uses PAL devices to reduce component 
count. 

The example makes several assumptions which result in a 
slightly more complex design than absolutely necessary. The 
8086 is assumed to be in MAX. Mode, and the design has to be 
compatible with a MULTIBUS or similar interface; the 16R4 
and 82S8 could be eliminated if this is not the case. 

The 16R6 (Figure 4) is a PAL device that performs a function 
similar to the 8288, that is, it converts the processor's status 
signals~nd clock into control signals. In this case, the signals 
are R/W, Oata Strobe (OS), Interrupt Acknowledge (INTA) 
and Peripheral Acknowledge (PACK). This PAL device 
basically generates ZBUS signals for Zilog peripherals. 
In the example, it connects to the Am9516 (UOC). The OMA 
Controller is very similar to the AmZ8016 except its bus inter­
face has been modified to interface to non-multiplexed 
buses. This was changed from the previous design using a 
16R8 to eliminate problems due to skew between OSC 
and CLK. 

The 16R4, Figure 5, has two functions. The first is connecting 
the MIN. Mode protocol of the Am9516 or similar device to 

the MAX. Mode protocol for bus exchange. The 74LS03s are 
used to aid in this function. The timing waveform illustrates 
what happens in detail. The basic philosophy is that a rising 
edge on the HaLO input generates a pulse that is one clock 
wide. The CPU samples this pulse and, in response, issues a 
one-clock-wide pulse. The 16R4 uses this response pulse to 
generate HLOA. When the Am9516 has completed the nec­
essary transfer, HaLO transitions HIGH to Law. This gener­
ates another pulse to the CPU signalling that the Am9516 is 
done and that the CPU may continue. 

The second function of the 16R4 is the conversion of Riw, 
OS and MfTB into the MULTIBUS-compatible signals 
fMRDC, fMWTC, fIORC, and fIOWC, when HLDA is HIGH. It is 
possible to collapse the 74LS03s into the PAL device, thus 
reducing the external logic required to only one open collector 
inverter. The disadvantage, however, is that it adds two addi­
tional clocks for the bus exchange overhead, one during ac­
quisition of the bus and one on bus release. For block 
transfers, this is not significant but it may be undesirable when 
performing single transfers, or short burst, or when in Demand 
Mode. To eliminate the 74LS03, change the equation for R2 to 

fR1 • /02 + R1 • 02, 

and then drive the f[RQfGT] line with a 74LS05 from the R2 
output. 

C LOCK - ~CO< 

r 
(,3;1D' 

~ 
CLK CLK 

HOLD BREO 

HLDA BACK 

PAL16R4 ---. 74LS03 ~ 

ml/~ C=/RI 
'\. _ IR2 ----. PIn 

8086 

~ CEO 

IROGT 
CPU 

~ 
10E ----. CLK 

lOB 
8288 

---+ ClK AEN !+-H-HlDA Am9516 
S2 S2 Wil5'C IMRDC IRW R/W UDC 

S'i S'i ~ IMWTC IDS os 
SO SO ~ 

T 
IIORC IMIO M/TO 

U5CK ~ 

l~ 
/lOWC 

l IlOCK 10E I+-
IRDY 

CO< ClK IRW 

~ ISo IDS --. lSI IIACK TN'TACl{ 

IS2 lAS f---+ 
AmPAL16R6 

02188A-30 
Figure 3. 

2·140 ~ Monolithic m Memories ~ 



8086 and Am9516 Universal DMA Controller Interface 

TITLE 8086 TO 85XX PERIPHERAL INTERFACE 
PATTERN 01-3.68 
REVISION 01 
AUTHOR JOE BRCICH 
COMPANY ADVANCED MICRO DEVICES 
DATE 11/06/87 

CHIP DMA_INTRR PAL16R6 

CLOCK RESET CLK ISO /Sl /S2 /LOCK NC NC GND 
fOE /AS /Pl /RW /DS /PO /IACK /RDY CLKD VCC 

EQUATIONS 

PO := /RESET * SO * /PO * /Pl 
+ /RESET * Sl * /PO * /Pl 
+ /RESET * S2 * /PO * /Pl 
+ /RESET * SO * PI 
+ /RESET * Sl * PI 
+ /RESET * S2 * PI 

PI := /RESET * /PO * /Pl 
+ /RESET * PI * SO 
+ /RESET * PI * Sl 
+ /RESET * PI * S2 

DS := /IACK * /PO * PI * SO * /Sl * S2 
+ /IACK * /PO * PI * ISO * Sl * S2 
+ lACK * SO * Sl * S2 * PO * /Pl * LOCK 
+ DS * SO Sl * S2 
+ DS * SO * /Sl * S2 
+ DS * ISO * Sl * S2 

RW SO * /Sl * S2 

lACK /RESET * SO * Sl * S2 * /PO * /Pl * /LOCK 
+ /RESET * lACK * SO * Sl * S2 * PO * /Pl * /LOCK 
+ /RESET * lACK * LOCK * /DS 
+ /RESET * lACK * /LOCK * DS * /PO * PI 

RDY := /RESET * . SO * /Sl * S2 * PO * PI 
+ /RESET * ISO Sl * S2 * PO * PI 
+ /RESET * RDY SO * /Sl * S2 
+ /RESET * RDY * ISO * Sl * S2 
+ /RESET * lACK * SO * Sl * S2 * DS 
+ /RESET * RDY SO * Sl * S2 

/CLKD = CLK 

AS = /CLKD * PO * /Pl * /IACK * CLK 

iDESCRIPTION 

iTHIS PAL DEVICE TRANSLATES 8086 BUS SIGNALS INTO COMPATIBLE SIGNALS FOR 
iTHE 9516. IT IS ALSO APPLICABLE TO 85XX PERIPHERALS BY ALTERING /RW AND 
i/DS TO /RD AND /WR. ONE FLIP-FLOP IS AVAILABLE TO GIVE THE NECESSARY 
iDELAY TO THE FALLING EDGE OF /WR. THE DATA STROBE TIMING FOR A WRITE 
iCYCLE IS DELAYED UNTIL THE FALLING EDGE OF T2 TO MEET THE REQUIREMENTS 
iOF THE 85XX PARTS. THIS DESIGN ASSERTS RDY TO DEMAND ONE WAIT STATE 
iFROM THE 8086. THIS WAIT STATE IS NOT LONG ENOUGH FOR DESIGNS WHICH USE 
iAN 8 MHz 8086. THEREFORE, WITH AN 8 MHz CPU, 85XX PERIPHERALS SHOULD BE 
iUSED. AS AN ALTERNATIVE, THREE WAIT STATES CAN BE USED BY ALTERING THE 
iRDY EQUATION. THIS PAL DEVICE ALSO TRANSFORMS THE 8086 TWO-CYCLE 
iINTERRUPT ACKNOWLEDGE INTO A SINGLE CYCLE OF THE TYPE NECESSARY FOR 85XX 
iPARTS. THIS IS MADE POSSIBLE BY SAMPLING THE LOCK STATUS, PO, PI, AND 
iIACK SIGNALS. 

Figure 4. Source Listing for Example of Figure 3 

~ Monolithic W Memories l1 2·141 



8086 Am9516 Universal DMA Controller Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

Am9516 TO 8086 INTERFACE 
01-3.67 
01 
JOE ENGINEER 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP DMA INTFCE2 PAL16R4 

;8086 to Am9516 interface 

CLK /RQGT HOLD NC NC NC /RW 
JOE /MWTC /MRDC HLDA /D2 /R2 /R1 

EQUATIONS 

lORC = /MlO * DS * /RW 
IORC.TRST = HLDA 

IOWC = /MIO * DS * RW 
IOWC.TRST = HLDA 

MRDC = MIO * DS * /RW 
MRDC.TRST = HLDA 

MWTC = MIO * DS * RW 
MWTC.TRST = HLDA 

Rl := HOLD 

R2 := /R1 

D2 := R1 

/HLDA :~ /Rl + /D2 * /HLDA + 
/RQGT * /HLDA 

jDESCRIPTION 

/DS MIO GND 
/IOWC /IORC VCC 

;THIS DEVICE CONVERTS THE MIN MODE SIGNALS HOLD AND HLDA TO THE 
;MAX MODE RQGT PROTOCOL. ADDITIONALLY IT GENERATES THE 8288 
;EQUIVALENT CONTROL OUTPUTS MRDC, MWTC, IORC, AND IOWC. THIS 
;PAL DEVICE WAS USED TO CONNECT THE Am9516 TO THE 80a6 IN MAX MODE. 

; SIMULATION NOT INCLUDED 

Figure 5. Source Listing for Example of Figure 3 

2·142 ~ Monolithic W Memories ~ 



80286 to Am9568 Data Ciphering 
Processor Interface 

80286 to Am9568 Data Ciphering 
Processor Interface 

This interface is designed for an 8-MHz CPU where the Data 
Ciphering Processor (DCP) is synchronously operating at the 
maximum clock rate of 4 MHz. A block diagram for the inter­
face is shown in Figure 1. The Am9568 requires a narrower 
width of address strobe than the Am9518. This works comfor­
tably with the 60-ns address strobe width of an 8-MHz CPU. 

The MULTIBUS Mode Select input of the Bus Controller 82288 
is tied LOW to optimize th~ command and control signals for 
short bus cycles. The Command Delay (CMDLY) becomes 
active-HIGH for one 16-MHz clock cycle whenever the DCP is 
selected to delay the Read and Write strobes by 125 ns. This 
satisfies the timing requirement of the minimum delay between 
ALE inactive and Read or Write strobe active of the DCP. An 
open-collector gate must be added to allow other peripherals to 
drive this input. 

The ALE, IORC and IOWC outputs of the 82288 are wired 
directly to the DCP. ALE strobes a D-Flip-Flop to store the state 
of Chip Select for the entire cycle. 

Q 3 and the latched Chip Select CSL are ANOed externally to 
generate the Synchronous Ready for the 82284. The 82284 
samples the line at the falling edge of the clock. The registered 

output 0 3 is clocked with the rising edge of the same clock, 
thus satisfying the setup and hold time requirements of the 
82284. Two Wait States are inserted. 

Half of the PAL device operates as a bidirectional Ad­
dress/Data Multiplexer. During the Address Latch Enable ac­
tive phase, the state of A1 and A2 is transferred to the AD1 and 
AD2 pins of the PAL device. The DCP latches this two bit­
address with the falling edge of ALE. 

When IORC and CSL are active, the states of AD1 and AD2 
are passed to D1 and D2 respectively. The OCP Register can 
be read. If IOWC and CSL are active, the data path is turned 
around: 01 and D2 are inputs, AD1 and AD2 are outputs. 

The Address Hold Time of the PAL device is sufficient because 
the address information is passed to AD1 and AD2 whenever 
IORC'CSL or IOWC'CSL are not true, i.e. whenever data is 
not transferred between the CPU and the DCP. 

The Read Data Hold Time requirement of 5 ns of the Am9568 
is satisfied by the propagation delay of the PAL device. 

The Read Data Hold Time requirement of 5 ns of the iAPX286 
is also satisfied by the PAL device. 

The Master Port Chip Select (MCS) input of the DCP is con­
nected to the unlatched address decoder output. 

Figure 3 shows the source listing and the pin descriptions. 

~ Monolithic W Memories ~ 2·143 

Ell 



80286 to Am9568 Data Ciphering Processor Interface 

~-~ ~~-----------------------~-
MPo-MP7 

A2 

L..:I D,. D, AD,. AD, ~ 
I--------f--------~~I A2 

AI t-------1---;:::==:::;---+1 A1 

M/iO 
L k:>-...-__ ~I 0 0 

-.~ ClK a 1--_-+1 H DECODER 
CSl Qi ..... 

Am9568 80286 

11 ADDR 

PAL16R4 
ALE 02 ClK 

cs 
~ CMDlY 

ClK 1--+------+++1 ClK 

82284 
SRDY .... _-t-0;;..;c;;..;01~..1 r­.'--.,. 

SRDvEN~ 
OJ 

TORe 10WC 

AlE~-4---------1----;---~~--------+1 ALE 

CMDlY 1+--------------' 
82288 

10RC J-----------------c>---"1t--------+1 MRD 

10WC~------------------------~>_---------+1 MWR 

021BBA·43 

Figure 1. 80286 to Am9568 Interface 

The DCP Clock 
The PAL device synchronizes the DCP clock to the Data 
Strobes IORC and IOWC (Figure 2). It also divides the 
16 MHz system clock (8 MHz CPU clock) down to the maxi­
mum DCP clock rate of 4 MHz. At this clock rate, the Data 
Strobe Delay to the DCP clock must be 0-30 ns. The Bus 
Controller is specified to generate a Data Strobe timing of 
3-15 ns to the falling edge of ClK (16 MHz). Because of the 
higher propagation delay of a standard PAL device, the regis­
tered outputs are toggled at the rising edge of ClK before the 
Data Strobes become inactive. This gives an additional 
32.5 ns for the DCP clock signal path. 

01 to 03 are three outputs of the PAL device state machine. 
The registered outputs are clocked with t~ising edge of the 
16-MHz 82284 clock. Whenever ALE and C S are active, 01 to 
03 are set to the initial state. 01 to 03 are outputs of a 3·bit 
down counter, with 03 as the most significant bit. 

03 is used to generate the SRDY signal for the 82284 as 
mentioned above. 

O2 is the DCP clock. This design must guarantee that the 
minimum DCP clock HIGH or lOW time is at least 115 ns or 
two 16-MHz clock cycles. This is done by toggling O2 only 

during phase 2 cycles of the CPU. The CPU design guarantees 
that there is always a phase 1 cycle between two phase 2 
cycles. 

Assuming a typical PAL device propagation delay of 25 ns, 
timing parameter tCDS (Time Clock Data Strobe) is 10.5 to 
22.5 ns ( 3 + 32.5 - 25 ns to 15 + 32.5 - 25 ns). This satisfies 
the 0 to 30 ns requirement. 

The AmPAl 16R4 has active· lOW outputs. But one output, O2 , 

should be active·HIGH. The equation for O2 was derived to be 

O2 = ALE • CS + 01 • 02 + 0 1 .°2 

To compensate for the inversion in the PAL device, the 
PALASM software minimizer (or 16RP4) can be used to 
convert it to the form shown in the PAL device Design Speci­
fication. 

Improvements 
The DCP needs two Wait States only when the Control Reg· 
isters are read. Data Register read or writes and Control 
Register reads can be executed with only one Wait State, 
which improves the Data Ciphering speed of this interface. 
The more sophisticated Wait control logic and the two exter­
nal TIL gates can be integrated into one PAL22V10 device. 

2·144 ~ Monolithic W Memories l1 



80286 to Am9568 Data Ciphering Processor Interface 

ClK 

PClK 

ALE 

CMDlY 

IORC/IOWC 

.1 Ts 

--------------~ 

(W) 
Tc 

(W) 
Tc 

SRDY -----------------' 

CSl 
--------------~ 

DATA (READ) 

----------------------------{ 
DATA (WRITE) 

____________________ -J 

ADDRESS ADDRESS VALID 

---------------------------' 
~ __________________________ --J! 

Figure 2. Timing Diagram 

~ Monolithic: W Memories ~ 

Tc Ts II I 

leMHz 

02188A-44 

2·145 



80286 to Am9568 Data Ciphering Processor Interface 

rr I'1'LE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

80286 TO Arn9568 (DCP) INTERFACE 
DCP043 
01 
JUERGEN STELBRINK 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP DCP INTFCE PAL16R4 

CLK /CS 
JOE Dl 

CSL ALE /IORC 
D2 /Q1 Q2 

EQUATIONS 

Ql := ALE*CS 
+ /Ql 

/Q2 := Ql*/Q2*/ALE 
+ Ql*/Q2*/CS 
+ Ql*Q2*/ALE 
+ Ql*Q2*/CS 

Q3 : = ALE*CS 
+ Ql*Q2*Q3 
+ /Ql*Q2*Q3 
+ Ql*/Q2*Q3 
+ /Ql*/Q2*/Q3 

/CMDLY:= /ALE 
+/CS 

/Dl = /ADI 
Dl.TRST = CSL * IORC 

/02 = /AD2 
D2.TRST = CSL * IORC 

/ADI = /Al*ALE + /Dl*/ALE 
AOl.TRST = CSL * IORC 

/AD2 = /A2*ALE + /D2*/ALE 
AD2.TRST = CSL * IORC 

; SIMULATION NOT INCLUDED 

/IOWC Al A2 
/Q3 CMDLY ADI 

NC 
AD2 

GND 
VCC 

Figure 3. Design File for the Example of Figure 1 

2·146 ~ Monolithic IFJJ) Memories ~ 



80286 to Am8530 Interface 

80286 to Am8530 Interface 

The Am8530 is a high-speed, dual-channel serial communi­
cations controller that supports a variety of advanced 
communication protocols. It supports data rates up to 
1.5M bps. 

This design note shows an 80286 to an Am8530 CPU inter­
face when no interrupts are used (Figures 1 and 2). The 
design is for a CPU running at 5 MHz with a 100 ns system 
clock cycle time. This clock is used to generate the clock for 
the 6 MHz Am8530 SCC. 

The chip select generated by the external decoder in an 
80286 system that is enabled by the MilO line will go inactive 
with the falling edge of T elK-phase 1. However, the chip 
enable for the SCC should stay valid for the entire read or 

~ 82288 

'" 
BUS 

CONTROLLER 

80286 
CPU 

" 1/0 h 
DECODER t-J 

'" MIlO-

'" 82284 
CLOCK 

'" GENERATOR 

SRDYEN 

~ 

r 

write cycle. The PAL device generates the chip enable signal 
for the SCC using a structure equivalent to two cross-coupled 
NOR gates. 

The Am8530 requires a minimum pulse width of 250 ns for RD 
and WR control signals. For a 100-ns cycle time 80286 with no 
wait state, these controls will be activtJ for 200 ns only. SRDY 
control is generated for the 82284 bus controller to guarantee 
minimum RD and WR pulse widths for the Am8530. 

CMDLY is not used in this design because the address to read 
or write control setup time required is only 80 ns for the 
Am8530; with a 100 ns system cycle time, the time between 
ALE valid and IIORC or IIOWC valid is 100 ns. Even after 
accounting for the address latch delay, 80 ns timing will still 
be met. 

RD 

WR 

8530 
SCC 

--.. IORC CE 
--.. IOWC 

--.. ALE 
8530ClK 

PAL 16R4 

---. CS 

~ elK 

SRDY 

Figure 1. 80286-Am8530 Interface 

~ Monolithio W Memories ~ 2·147 



t.) . .. 
~ 
CD 

tJ 
f 
= e.. 
i cr 
~ 
f 
~ 
~ 
~ 
tJ 

II THIS PLPL FILE IS FOR A 16R4 THAT IMPLEMENTS THE LOGIC II COUNT Dm.JN SPECIFICATION FOR THE COUNTER. II 

NECESSARY TO INTERFACE AN Am8530 (SCC) TO AN 80286 SYSTEM. II II Q2 OF THE COUNTER IS THE CLOCK INPUT OF THE Am8530. II 

DEVICE Am8530_to_80286 (PAL16R4) 

PIN 
CLK = 1 VCC = 20 
/CS = 2 ICE = 19 
ALE = 3 /INTSO = 18 
/IORC = 4 /Q [1] = 17 
/IOWC = 5 /Q [2] = 16 
NC1 = 6 /Q [3] = 15 
NC2 = 7 NC5 = 14 
NC3 = 8 /SRDY = 13 

NC4 = 9 NC6 = 12 
GND = 10 NC7 = 11 

BEGIN 

II CHIP ENABLE FOR THE Am8530 IS DERIVED FROM ALE AND 
THE EXTERNAL DECODER CHIP SELECT OUTPUT. II 

CE = CS * ALE + INTSO ; 
INTSO = /( IORC * IOWC) + CE 

II SYNCHRONIZE THE COUNTER WITH ALE. II 

IF ( CS * ALE) THEN Q[3:1] = 7 ; 

CASE ( Q [3: 1] ) 

BEGIN 
o ) Q [3 : 1] : = 7 ; 
1 ) Q [3 : 1] : = 0 
2 ) Q [3 : 1] : = 1 
3 ) Q [3 : 1] : = 2 
4 ) Q [3: 1] : = 3 ; 
5 ) Q [3 : 1] : = 4 ; 
6 ) Q [3 : 1] : = 5 ; 
7 ) Q [3 : 1] : = 6 ; 
END ; 

II SRDY IS GENERATED FOR WAIT STATE GENERATION, IT IS SENT 
TO THE 82284 CLOCK GENERATOR. II 

SRDY /(Q[3] * CE) 

END. 

Figure 2. Source Listing for AmPAL16R4 for the Example of Figure 1 

m o 
I\) 
m 
m ... o 
~ 
3 
m 
(II 
w 
o -::::I ... 
(D 

~ 
D) 
n 
(D 



Interfacing to the 68000/68020 

The 68000 has an asynchronous, 16-bit, bidirectional data 
bus. Data types supported by the 68000 are: bit data, integer 
data of 8, 16, or 32 bits, 32-bit addresses and binary-coded 
decimal data. It can transfer and accept data in either words 
or bytes. The DTACK input indicates the completion of a data 
transfer. When the processor recognizes DT ACK during a 
read cycle, the data is latched and the bus cycle terminates. 
When DT ACK is recognized during a write cycle, the bus 
cycle also terminates. An active transition of DT ACK indi­
cates the termination of a data transfer on the bus. All control 
and data lines are sampled during the 68000's clock HIGH 
time. The clock is internally buffered, which results in some 
slight differences in the sampling and recognition of various 
signals. The 68000 mask sets prior to CC1 and allows 
DT ACK to be recognized as early as S2, and all devices 
allow BERR or DTACK to be recognized in S4, S6, etc., 
which terminates the cycle. If the required setup time is met 
during S4, DTACK will be recognized during S5 and S6, and 
data will be captured during S6. DTACK signal is internally 
synchronized to allow for valid operation in an asynchronous 
system. If an asynchronous control signal does not meet the 
required setup time, it is possible that it may not be 
recognized during that cycle. Because of this, synchronous 
systems must not allow DTACK to precede data by more 
than 40 to 240 nanoseconds, depending on the speed of the 
particular processor. 1/0 is memory-mapped, i.e., there are 
no special 1/0 control signals, any peripheral is treated as a 
memory location. 

DMA: This Bus is requested by activating the BR input of the 
68000. Bus Arbitration is started by the BG output going active. 
The Bus is available when AS becomes inactive. The request­
ing device must acknowledge bus mastership by activating the 
BGACK input to the CPU. 

The 23-bit address (A1 ... A23) is on a unidirectional, three-state 
bus, and can address 8 M words 116 M bytes) of memory or 
1/0. It provides the address for bus operation during all cycles, 
except the interrupt cycles. During interrupt cycles, address 
lines A 1, A2 and A3 provide information about the level of 
interrupt being serviced. Instead of Ao and BYTEIWORD, 
there are two separate data strobe lines for the two bytes in a 
word. A note of caution here, the 68000 treats the MSB of the 
lower byte as an even byte, or word address. The same goes 
with processors such as the Z8000. Processors such as the 
8086 treats the lower byte as the odd byte. 

Interrupt is requested by activating any combination of the in­
terrupt inputs to the 68000 (IPLO ... 2), indicating the encoded 
priority level of the interrupt requester (inputs at or below the 
current processor priority are ignored). The 68000 automati­
cally saves the status register, switches to supervisor mode, 
fetches a vector number from the interrupting device, and dis­
plays the interrupt level on the address bus. For interfacing 
with old 68000 peripherals, the 68000 issues an Enable signal 
at one-tenth of the processor clock frequency. There are a 
number of AMD proprietary third generation peripherals that 
can be interfaced to the 68000 CPU, to improve system perfor­
mance. This section deals mainly with the interfaCing of the 
68000 and some of the AMD proprietary peripherals. 

~ Monolithic W Memories ~ 2·149 

Ell 



The 68000 to Am8530 Interface 
with Interrupts 

This example shows how a PAL device simplifies the task of 
interrupt generation compared to the MSI implementation. 
The block diagram for the interface via a PAL device is shown 
in Figure 1. The timing diagram (Figure 2) illustrates the Inter­
rupt Acknowledge cycle. As in the other designs, RD is 
generated during Interrupt Acknowledge to place the vector 
on the bus. 

The timing during register programming is not shown. The PAL 
device allows selection of one or two Wait States by making Wo 
HIGH or LOW, respectively. The table below shows the appro­
priate number of Wait States as a function of CPU speed. 

Part CPU Speed Wait States 

85XX 4 MHz 
85XX 6 MHz 
85XXA 8 MHz 
85XXA 10 MHz 

PAL device equations are shown in Figure 3. 

74LS04 

A2J 
..... 
V I 

G 

A'B 8/ AT 

A'" 
I 

/ 
• Am29809 

Ao 

EOUT 

I 

CI_ 
--
ACK ANY!: 

Tvcc 
r-------------------------------+---------~--------~----------4INT 

~ " 
CLOCK ~-------~ CLOCK ACK- f----

LOS .------------------------~ LOS 

--
RD~-----------------------~RD 
WRr------------------------~WR 

R/W .------------------------~ RW AmPAL 16R4 

T Vcc 
AS AS 68K8SXX Wo ~---''\/V\~---.J 

FC2 r------------------------~ FC2 

FC, .-----------------------_~ FC, 

--
OE~----.~...., 

FCO .------------------------~ FCo INTA ~-----------------------_1 INTA 

A,r--------------------------------------------------------------~D/C 

1 
2 
2 
2 

o 
M 
lO 
to 
E « 

~~ 1 ,~ 
~ __________ ~~~ / vI~D_~ __________ ~ 

Figure 1. 68000 to Am8530 Connection Using a PAL Device 02188A-68 

2·150 ~ Monolithic m Memories ~ 



AS 

DS 

RD 

PAL Device 
Outputs: 

DTACK 

A 

B 

C 

The 68000 to Am8530 Interface with Interrupts 

02188A-69 

Figure 2. Timing Diagram for 68000 to Am8530 Interface 

~ Monolithic m Memories ~ 2·151 



The 68000 to Am8530 Interface with Interrupts 

rfIffLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

68000 TO 8500 OR 9500 PERIPHERALS 
PAT002 
01 
JOE BRCICH 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP PERI INTFC PAL16R4 

CLOCK 
JOE 

/CS 
/INTA 

EQUATIONS 

A:= A*/B 
+ B *C 
+ /AS 

B:= A*/C 
+ /A*C 
+ /AS 

RW /LDS /WO 
/ACK /C /B 

C .= /A*/B*AS 
+ B*C*AS 

DLDS := LOS 

RD LDS*DLDS*RW*/INTA 
+ A*C*INTA*AS 
+ A*/B*INTA*AS 

WR LDS * /RW 

INTA = FCO*FC1*FC2*AS 

ACK /INTA*/A*/B*/C*/WO 
+ /INTA*/A*/B*C*WO 
+ INTA*/B*A 
+ ACK * LOS 

; DESCRIPTION 

/AS 
/A 

FCO FCl FC2 GND 
/DLDS /RD /WR VCC 

;THIS PAL DEVICE INTERFACES 85XX TYPE PERIPHERALS TO THE 68000 
;MICRO PROCESSOR. IT INSERTS 1 OR 2 WAIT STATES AS SELECTED BY 
;/WO=O IS ONE AND /WO=1 IS TWO WAIT STATES. FOUR WAIT STATES ARE 
;INSERTED DURING INTERRUPT ACKNOWLEDGE CYCLES. ALSO THE RD OUTPUT 
;GENERATED DURING INTA IS A FUNCTION OF THE INTERNAL STATE 
;MACHINE AND NOT A FUNCTION OF LOS. OE CAN BE LEFT OPEN SINCE 
;THE FLIP FLOP OUTPUTS ARE NOT USED DIRECTLY. THE FALLING EDGE 
;OF RD IS DELAYED IN ORDER TO GUARANTEE THE CS TO RD SETUP TIME 
;REQUIREMENTS. 

; SIMULATION NOT INCLUDED 

Figure 3. Source Listing for the Example of Figure 1 

2·152 ~ Monolithic W Memories ~ 



68000 and Am7990 LANCE Interface 

The design on the LANCE has made it easier for the user to 
interface the device with demultiplexed buses. The example 
shown here is an interface to be compatible with an 8 MHz or 

faster 68000 (Figure 1). The two flip-flops are needed to adapt 
the LANCE bus request handshake to the 68000. 

ADDRESS BUS DATA BUS 

11 11 D 
Vee 

I I I I 29863 ~~ 
~ 

29827 29827 

j I 
A23-A16 A23-A,6 

II '" ,I ADR 
A1S-A, 

~ 
V 

I '" 29809 AD,s-ADo 
OE LE " 

I' DALO t t ......--
A DALI 

015-00 

veel 
cs 

DTACK READY 

As ALE 
-DTACKFROM 

BR 
~M 

HACK a 0 

~ CP I- LANCE 68000 Ao lAS ICS/RB/TB 
PR Am7990 -,- >--- BR 

ICLR2 IHOLD - HoLil 
BGACK 

T 
IBGACK 

4U IDAS - CAs 

f D"a AmPAL16L8 
CP 68K9U.PAL 

.sr ICLR 

iiG IBG 

U~ IUDS 

LOS ILDS 

R/W 

-- I 
BYTE RW 

iPLo -
iPL, 

74LS - READ 
142 -

iPL2 = ~ 
BYTE 

- t
vee 

- TO SYSTEM 

FCo 
74LS 

INTR 

FC, 138 'iN'i'A' 
FC2 

-l VPA 
02188A-70 

Figure 1. Am7990 to 68000 Interface 

~ Monolithio W Memories ~ 2·153 



68000 and Am7990 LANCE Interface 

Autovectoring is used since the Am7990 does not return a 
vector during interrupt acknowledge cycles. The BYTE and 
DAS signals of LANCE are used to generate the UOS and LOS 
when LANCE is in Bus Master mode; the UOS and LOS is used 
to generate the DAS when LANCE is in Bus Slave mode. It 

takes two latches to demultiplex the LANCE address/data 
lines to adapt to the 68000 address bus. The flip-flops can be 
replaced by a PAL22V10 to minimize parts count. Equations 
for the PAL 16L8 are shown in Figure 2. 

TITLE 
PATTERN 
REVISION 
AU'l'HOR 
COMPANY 
DATE 

68000 TO LANCE INTERFACE 
PAT002 
01 
JOE BRCICH 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP LANCE IN PAL16L8 

/AS 
/CS 

RW 
/TB 

EQUATIONS 

BYTE 
IUDS 

RB = CS*RW*UDS 

/HOLD 
/DAS 

+ CS*RW*LDS 
RB.TRST = /BGACK 

TB = CS*/RW 
TB.TRST = /BGACK 

UDS = DAS*/AO*BYTE 
+ BYTE*DAS 

UDS.TRST = BGACK 

LOS = DAS*AO*BYTE 
+ /BYTE*DAS 

LDS.TRST = BGACK 

DAS = UDS*LDS 
DAS.TRST = /BGACK 

CLR1 

CLR2 

/AS*BG 

BGACK 

/BR = /HOLD 

iDESCRIPTION 

NC /BG AO NC 
/CLR1 BR /CLR2 

iDELAY 

/BGACK 
/LDS 

GND 
/RB VCC 

iTHE GOAL OF THIS INTERFACE WAS TO BE COMPATIBLE WITH 8 MHZ 
iAND FASTER 68000'S WHILE MINIMIZING PARTS COUNT. THE 
iAm22V10 COULD BE USED TO ELI~INATE THE TWO FLIP-FLOPS 
iSHOWN. AUTOVECTORFING IS USED SINCE THE 7990 DOES NOT 
iRETURN A VECTOR DURING INTERRUPT ACKNOWLEDGE CYCLES. 
iNOTE PROGRAM BSWP, BCON TO 1, AND ACON TO 0 IN CSR3 REG. 

; SIMULATION NOT INCLUDED 

Figure 2. Source Listing for the Example of Figure 1 

2·154 ~ Monolithic WMemorles ~ 



68000 to AmZ8068 Data Ciphering 
Processor Interface 

Figures 1 and 2 show the 68000-DCP interface and the inter­
face timing. This interface provides a two-chip solution to add 
high-speed data ciphering to a 68000-based system. About 
500 kbyte/sec are possible in a CPU-controlled transfer. The 
ciphering rate can be increased with a sophisticated DMA 
controller, or with several DCPs operating in parallel. The 
CPU operates at 8 MHz and the DCP operates synchro­
nously at 4 MHz. The Interface Controller, a PAL device, gen­
erates the Address and Data Strobes for the DCP and the 
Data Acknowledge for the CPU. It also divides the CPU clock 
by two and synchronizes it to the Data Strobes. 

The main features of this interface are: 

- Multiplexed Control Mode 

- Demultiplexed address and data bus 

- Two-Cycle Operation 

D7 A 0 

0 < 0 
'1 

Do 

R/W 
9 

A23 
~ 0 

). 0 

0 

A2 
Y 

68000 

Al 
29 

6 
AS 

7 
UDS 

8 
lDS 

DTACK 
10 

PROM, 
COMPARATOR, 

OR OTHER [~ 

DECODER 

-r- Vec 

:.-
.~ 

,8 

I 
I 

2 

7 

3 

4 

5 

19 

(OC) 

NC !Z... 

4
15 8. ClK t 

I I OSC 
8MHz 

- Clock Synchronization with two Low Cycles after the Data 
Strobes 

- About 500 kbyte/sec ciphering speed 

Data transfers between the CPU and the DCP are accom­
plished by a two-cycle operation. First the address of an inter­
nal register is latched in, then the data is transferred. This 
causes a small overhead in the initialization phase, but im­
proves the ciphering rate in a high-speed data ciphering ses­
sion. The rate of 500 kbyte/sec can be reached only if a 
high-speed peripheral device is connected to the Slave Port 
and the DCP is programmed for dual port configuration. 

The PAL device is programmed to allow only DCP transfers to 
the DCP. The PAL device equations are shown in Figure 5. 
Ao must be odd to make the CPU transfer the data on the Low 
byte of the data bus. A "0" on A1 indicates an Address Latch 
Cycle, whereas a "1" on A1 indicates a Data Transfer Cycle: Ao 
must be "1" in both cycles. 

~ MP7 

} 
0 

0 

Y 0 

MPo 
28 

MR/W 

16 

R/W 

14 14 
CS DCP ClK ClK 

PAL16R4 ArnZ8068 

Al MAS 
12 27 AS 

AS 

UDS 

13 26 
lDS MDS MDS 

DTACK2 ClKl 
18 

:J DTACK1 ClK2 

OE 
11 13 

C/K ClK r MCS 

Figure 1. AmZ8068 to 68000 Interface 02188A-73 

~ Monolithic m Memories ~ 2·155 

EJII 



68000 to Am Z8068 Data Ciphering Processor Interface 

02188A-74 

Figure 2. 68000-AmZ8068 Address Latch Cycle (A1 = Low) 

An address decoder generates the Chip Select for the DCP. 
The Address Strobe indicates a valid address. The PAL device 
is only activated if the Lower Data Strobe becomes active while 
the Upper Data Strobe stays inactive. This means that data is 
transferred in MOVE.B instructions with an odd peripheral 
address. 

The PAL device provides two Data Acknowledge outputs. 
OT ACK, is an active Low TTL output. OT ACK 2 has the same 
timing as OTACK, , but is an Open Collector output. (The 
Open Collector output is realized by a three-state output which 
has only two states, Low or Floating.) 

Address Latch Cycle 

In this cycle only a Master Port Address Strobe (MAS) is 
generated. Master Port Chip Select (MCS) is tied to Low. LOS 
is sent to the MAS output. The minimum pulse width of LDS is 
115 ns; 80 ns are required for the AmZ8068. 

DT ACK is activated with the falling edge of the CPU clock after 
cycle S2. The CPU inserts no Wait states. DTACK is deac­
tivated with the first edge of CLK after AS becomes inactive. 

Data Read Cycle: (Figure 3) 

The generation of M OS in a Data Read Cycle is similar to the 
Data Write Cycle. Because the CPU activates LDS one cycle 
earlier, there is no need for a Wait State. The minimum pulse 
width of LOS is 240 ns; the OCP requires 200 ns for a Status 

Register read. DTACK is activated using the same logical con­
dition as in the Data Write cycle. Because of the earlier activa­
tion of LDS, DTACK becomes active earlier and the CPU 
inserts no Wait states. 

Data Write Cycle: (Figure 4) 

A Data Write Cycle is performed with Ao is HIGH, AS, CS and 
LOS are LOW. The minimum pulse width of LDS is not suffi­
cient for the DCP which requires at least 125 ns. One Wait 
state or a slower system clock will satisfy this parameter. In this 
interface, one Wait state is inserted by activating DTACK at the 
end of S4. 

The OCP clock is synchronized in Data Read or Write Cycles 
by forcing it Low when OTACK becomes active. This gua~ 
tees that the OCP clock has a falling edge just before LOS 
(MOS) rises. The delay of the OCP clock to CLK is typically 
8 ns for a PAL device. The delay of LOS to MOS is typically 
12 ns. The delay of LOS to the system clock is 0-70 ns for the 
8 MHz version. This results in a delay of 4-74 ns of MOS to 
the OCP clock. The OCP requires 0-50 ns when operating at 
the maximum clock rate. 

This problem is solved by stretching the clock for one cycle. 
The OCP clock stays LOW for two cycles in the end of a 
transfer cycle. This is done automatically by the PAL device 
(see Figure 4). 

2·156 ~ Monolithic W Memories ~ 



68000 to Am Z8068 Data Ciphering Processor Interface 

Ell 

02188A-75 

Figure 3. 68000-AmZ8068 Data Read Cycle (A1 = HIGH) 

02188A-76 

Figure 4. 68000-AmZ8068 Data Write Cycle (A1 = HIGH) 

~ Monolithic m Memories ~ 2·157 



68000 to AmZ8068 Data Ciphering Processor Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

68000 - ArnZ8068 (DCP) INTERFACE DEVICE 
DCP044 
01 
JUERGEN STELBRINK 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP ArnZ INTFCE PAL16R4 

CLK2 /CS /AS IUDS /LDS RW Al CLK NC GND 
JOE /MAS /MDS DCPCLK NC NC /DTACKI CLKI /DTACK2 VCC 

EQUATIONS 

/CLKI CLK iINVERT CLOCK TO TRIGGER THE REGISTERED 
iOUTPUTS WITH THE FALLING EDGE OF CLK 

MAS AS*LDS*/UDS*/RW*/Al*CS 

MDS AS*LDS*/UDS*Al*CS 

/DCPCLK := DCPCLK 
+ /DTACKl*CS*AS*LDS*/UDS 
+ DTACKl*/AS*/LDS*/UDS 

DTACKI := AS*LDS*/UDS*Al*CS 
+ AS*/RW*/Al*CS 

DTACK2 = DTACKI 

DTACK2.TRST = DTACKl*AS*CS 

i SIMULATION NOT INCLUDED 

DIVIDE BY TWO 

TWO CLOCKS LOW IN 
THE END OF A DATA CYCLE 

DATA TRANSFER CYCLE 
ADDRESS LATCH CYCLE 

Figure 5. Source listing for Example of Figure 1 

2·158 ~ Monolithic W Memories ~ 



68000 and Dual Am9516 DMA 
Controllers Interface 

There has been interest shown in connecting two Am9516 
DMA Controllers to obtain four channels. The example here 
shows that such a system can be built by incorporating one 
PAL device, AMD's 22V10 (Figure 1). Address and data 
buses are not shown as they are straightforward and require 
no explanation. The PAL device, designated 68K16D2, con­
verts the two DREQs into the 68000 three-wire handshake, 
prioritizes the request, and converts the control signals 

~ 

T 

~ 29863 1 TR~SCE~VER 

~ 
t eOR 

10MHz T 

ClK 
ITB IRB 

ClK ALE, 

IBW 
BREa, 
BACK, 

68000 PAL22V10 
ICS 

68K1602 

TO 

IC 

appropriately. Equations for the PAL device are shown in 
Figure 2. 

The key parameters are: 1) data hold with respect to the rising 
edge of OS during a write, and 2) OT ACK setup time. Control 
for a data bus transceiver is shown because it will be required 
in most systems. The PAL device provides these signals when 
the CPU is bus master; the Am9516 generates these control 
signals directly when it is bus master. 

=O~-
ClK CP 

Ep ~cc v~ 

ClK 

J:imI 
TBm 

ClK15 

Am9516 

LJ 
ALE 

y~ 

rnJI ..-- f---+!lS 
BIW PID .-A, 
BREa 
BACK ~1L ...-f-- RIW 

mt-

r lNYE 

Am29806 

~ 
n 

SYtEM 

lAS Aoi.-
~~ BIW 

1m IBGI AlEz ALE 

~ 
BREaz BREa 

!ill BR BACK2 BACK ClK I--ClK16 
IDS !lS 

I 
IBGACK IlOS RW IUDS 

L-. WAlT Pllli+-- A, 
AllOWS 

OTHER BUS 

LJ 
MASTERS Am9516 

~ 
RIW RIW 
m 

1iB'£N EOP 

Tern 
OC 

~<:}-- BACK, BACK,j=c>-

BGACK BACKz BGO 
OC 

L-o BACKz 1I1l1 

021B8A·80 

Figure 1. Dual Am9516 UDCs to 68000 CPU Interface 

~ Monolithic W Memories ~ 2·159 

Ell 



68000 and Dual Am951 6 DMA Controllers Interface 

The Am9516s are shown with independent clocks. The clocks 
may be divided from the CPU clock or may be generated inde­
pendently of the CPU. Because WAIT must meet the set-up 
and hold times, DTACK may need synchronization by the use 
of a flip-flop, as shown. This flip-flop may be eliminated in 
synchronous systems. 

The clock is inverted to the PAL device to meet DT ACK set-up 
time in systems of 10 MHz or faster. This inverter may be 
deleted in slower systems, if appropriate changes to the PAL 
device equations are made. This PAL device implements fixed 
priority between the Am9516s. BREQ1 is the highest priority. 
Rotating priority can be implemented by adding another PAL 
device. 

EOP s are pulled up separately, but could be tied together 
since they affect a channel only if it is active. The bus-error 
function can be supported by connecting BERR and EOP. 

If a bus error occurs, EOP will stop the current transfer and 
interrupt the CPU. The Interrupt Service routine can read the 
status to determine if EOP caused the interrupt or if termina­
tion was normal. If EOP caused the interrupt, the Address 
Register can be read to determine where the bus error oc­
curred. After the problem is corrected, the CPU can program 
the Am9516 to complete the transfer or do an alternate trans­
fer, as appropriate. 

When operating the DMA in interleave mode, an external EOP 
should be gated with DACK to prevent affecting the wrong 
chctnnel. This is unnecessary if interleave is not used, since the 
UDC releases the bus. 

This arbiter'design supports both serial and parallel-expansion 
techniques and is therefore compatible with VME bus protocol. 
Bus grant out was implemented with an external gate due to a 
shortage of pins. The VME/BCLR function was not imple­
mented because the Am9516 does not support pro-emption. 

2·160 it1 Monollthlo W Memories it1 



68000 and Dual Am9516 DMA Controllers Interface 

'l'ITLE 
PATTERN 
REVISION 
Au'rHOR 
COMPANY 
DATE 

68000 TO DUAL 9516 INTERFACE 
PATOOl 
01 
JOE BRCICH 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP DUAL 9516 PAL22VIO 

CLK RW AU BREQl BREQ2 
/CS /LDS IUDS /DS /C 

EQUATIONS 

BR BREQl*/BGACK 
+ BREQl*BG 
+ BREQ2*/BGACK 
+ BREQ2*BG 

BACKl = BREQl*BG*/AS 
+ /BG*BGACK 

BACK2 = BREQ2*/BREQ1*BG*/AS 
+ /BG*BGACK 

RB = CS*RW*UDS 
+ CS*RW*LDS 

RB.TRST = /BGACK 

TB = CS*/RW 
TB.TRST = /BGACK 

DS = AS*/C*/RW 
+ AS*RW 

DS.TRST = /BGACK*AS 

AS = ALEl 
+ ALE2 

AS.TRST = BGACK 

UDS = DS*/AO*/BW 
+ BW*DS 

UDS.TRST = BGACK 

LDS = DS*AO*/BW 
+ BW*DS 

LDS.TRST = BGACK 

C := UDS*BGACK 
+ LDS*BGACK 

C.TRST = AS 

/BG NC ALEl /BW ALE2 /BGACK GND 
/AS /BR BACK2 BACK1 /TB /RB VCC 

Figure 2. Source Listing for the Example of Figure 1 

~ Monollthlo W Memories ~ 

EI 

2·161 



Am8530 to 68020 Interface 

This design shows the logic to interface a 6 MHz Am8530 
Serial Communications Controller to the 68020 CPU (Fig­
ure 1) running at 10 MHz with a system clock cycle time of 
100 ns. The Am8530 is a high-performance, dual-channel 
SCC that supports data rates up to 1.5M bps and a variety of 
communication protocols. 

The PAL device generates the lAD and IWA control signals for 
the Am8530 from the 68020 IDS and A/W- control signals. It 
also generates the clock for the SCC by dividing the 68020 
system clock. This meets the 165-ns minimum cycle time for 
the 6-MHz SCC clock. 

/' 0124:31] 
~ 

"-
A_BUS " 110 h v 

DECODER f'-' 

68020 
CPU 

RIW-

DSACKI1] 

DSACKIO] 

Also, a state machine is implemented to perform the hand­
shake necessary for byte transfers on the 68020 bus. The 
state machine transition diagram is shown in Figure 2. Nor­
mally, DSACK[1 :0) is inactive. When this device is selected, a 
wait state is inserted and then data transfer is acknowledged 
by asserting DSACK[1 :0) for byte transfer. When the CPU 
deasserts the address strobe, DSACK[1 :0] is negated. 
DSACK[1 :0] will be driven by other devices on the 68020 
system bus. The PAL device enables DSACK[1 :0) only when 
the CPU performs a read or write cycle for the SCC; at other 
times DSACK[1 :0] lines are three-stated. 

Since the Am8530 is a byte-wide peripheral, it is connected to 
the upper byte of the 32-bit wide 68020 data bus. 

~ 
. 

010:7] / 

ICE 

8530 
SCC 

4 ICS .. lAS IWR 

IDS .. IRD 
RW 

PAl16R4 

.. 8530ClK 
ClK 

i 
08749A·ll 

Figure 1. Am8530 to 68020 Interface 

2·162 ~ Monolithic m Memories ~ 



Am8530 to 68020 Interface 

/CS 

INIT 

DSACK[1:0]=11 Ell 

DSACK[1 :0]=10 

OB479A·12 

Figure 2. 68020 Byte Port DSACK Handshake State Diagram 

~ Monolithic W Memories ~ 2·163 



Am8530 to 68020 Interface 

II TH[S PLPL FILE [S FOR A 16R4 THAT IMPLEMENTS THE LOG[C 

NECESSARY TO INTERFACE AN Am8530 (SCC) TO A '68020 SYSTEM. II 

DEV[CE Am8530_TO_68020 (PAL 16R4) 

PIN 

CLK = 1 VCC = 20 

lAS = 2 DSACK[1] = 19 

IDS = 3 DSACK [0] = 18 

RIJ = 4 ST [1] 17 
ICS = 5 ST [0] 16 

NC1 = 6 Q 15 

NC2 = 7 NC5 14 

NC3 = 8 \lR 13 

NC4 = 9 RD 12 

GND = 10 NC6 11 

BEGIN 

II READ AND IJRITE CONTROL SIGNALS ARE DER[VED FROM 

R/\I· AND OS'. II 

\lR = I(OS ." IRIJ) ; 

RD = I(DS ." RIJ) ; 

II THE [NCOM[NG CLOCK IS DIVIDED BY 2 TO GENERATE THE 

CLOCK FOR THE Am8530. II 

CASE ( Q ) 

BEG[N 

0) Q .- 1; 

1) Q := 0; 

END; 

II THE FOLLO\J[NG CODE IMPLEMENTS THE STATE MACH[NE TO 

PERFORM DSACK OPERAT[ON. IT INSERTS \lAIT STATES, 

ASSERTS DSACK FOR BYTE TRANSFER AND REMOVES DSACK 

\lHEN AS [S NEGATED. II 

IF ICS) ENABLE ( DSACK [1 :0] 

[ F ( ST [1 :0] = #B10 ) 

THEN DSACK[1:0] = #B10; 

ELSE DSACK[1:0] = #B11; 

CASE ( ST[1 :0] ) 

BEGIN 

#BOO) BEG[N 

IF ( ICS ) 

THEN ST[1:0] := #BOO ; 

ELSE ST[1 :0] := #B01; 

END; 

#B01 ) ST [1 :0] := #B10; 

#B10) BEG[N 

[F ( lAS) 

THEN ST[1: 0] := #BOO ; 

ELSE ST[1:0] := #B10; 

END; 

END 

END. 

Figure 3. PLPL Specification for the 8530 to a 68020 Interface 

2·164 ~ Monolithic W Memories l1 



Interfacing to the 8088 
Overview 

The 8088 CPU is an 8-bit processor designed around the 8086 
internal structure. Most functions of the 8088 are identical to 
the equivalent 8086. The 8088 fetches and writes 16-bit words 
in two consecutive bus cycles. Both the 8086 and the 8088 
handle the external bus the same way but the 8088 handles 
only 8-bits at a time; and both appear identical to the software 
engineer, with the exception of execution time. 

The hardware interface of the 8088 contains the major differ­
ences between the two CPUs. The pin assignments are nearly 
identical, however, with the following functional changes: 

Aa-A15 These pins are only address outputs on the 
8088. They are latched internally and remain 
valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

SSO Provides the SO status information in the mini­
mum mode. This output occurs on pin 34 in 
minimum mode only. 

DT/R ,101M, and 550 provide the complete bus status in 
minimum mode. 

101M has been inverted to be compatible with the 
MCS-85 bus structure. 

ALE is delayed by one clock cycle in the minimum mode when 
entering HALT, to allow the status to be latched with ALE. 

The 8088 and AMD Proprietary 
Peripherals 

The evolution of chip design has taken the 8-bit environment 
into the 16-bit environment. While the new generation of pe­
ripheral devices are often 16 bits wide, the older, established 
8-bit orientation of CPUs and peripherals are still significant. 
Interfacing a 16-bit peripheral with an 8-bit CPU often encoun­
ters data path incompatibility and involves bus control 
manipulation. This type of integration mainly involves separat­
ing the control and data paths from the new peripheral and the 
system. 

The ability to mix different data path widths caq improve sys­
tem functionality, performance, and cost. It is less expensive 
to use an 8-bit bus in a new design because the memory 
requirements are generally cheaper. A designer can use this 
data path mixing to upgrade the existing system until a new 
system design is warranted, or the designer can simply im­
prove on the existing design as new peripherals become avail­
able. 

~ Monolithic m Memories ~ 2·165 

Ell 



8088 to Am9516 UDC Interface 

Figure 1 shows the Data Bus and Control Interface between 
an 8088 microprocessor and an Am9516. This interface is 
accomplished by using an AmPAL22V10, a 74LS161 
counter, an Am2952 bidirectional liD port, and an Am2949 
bidirectional transceiver. Figures 2 and 3 show the PAL 
device timing for both the Bus Master and the Bus Slave 
cases. 

In this design, certain simplifying constraints have been made. 
Word operations are only allowed during command chaining 
operations when the Am9516 is Bus Master. During Slave 
Write operations, the first byte output to the Am9516 must have 
an odd address, and the following second byte an even ad­
dress. Conversely, during a Slave Read cycle, the first byte 
read from the Am9515 must be at an even address and the 
second at the next higher odd address. Furthermore, for both 

I 
MIIO

HOLO 
HLDA 

ALE 

8088 .: 

)---+ 

~ 

Vee 

I 
l 

IRD ALE 

IWR 
READY 
RESET 

lAo 

slave and master operations, the system must use the 
latched Ao (LAo) from the PAL22V10 as its sole Ao. That is, 
this LAo must circumvent any address latching to memory 
and so is to be used directly. 

As can be seen from the figures, the AmPAL22Vl0 manip­
ulates the control signals to the transceivers and latches so 
that bytes can be funneled into words during Am9516 Com­
mand Chaining operations and Slave Writes, and words can be 
funneled into bytes during Am9516 Slave Reads. Also, LAO is 
alternately toggled in order to provide the dual address (16-
bits) during chaining operations. 

Figure 4 shows the PLPL equations and resulting sum-of­
products equations for the design (PLPL is a higher level 
"C-like" language for PAL devices). For those not familiar 
with "C" or Pascal, the intermediate sum-of-products form 
shows the e~uations in Boolean form. 

oc 

I 
BREa

MliO 

BACK T 

l 
ALE 

HLDA IBW BIW 
9516 

IDS llS 
PAL IRW RIW 

22V10 IWAIT WAIT 
CK CLOCK 

RESET rr+ RESET Ao--+ AD 

ISElll ADo-AD15~l ADo-ADt So S, S2 IA IB IC 10 

./). /'0.. 

~ 
NC aA as ac 

16 

M"")~ al4LS161 
CLOCK 

'---- CLEAR 
..... ~8 ..... ~8 1 P T LOAD 

l r--

.-------.:::s Z.- "" 7' 

--.- 1 ~ L R 
Us OEBs I+- T 
C"£R <m! 2949 

~~" 

CLOCK }. 
Figure 1. The Am9516 UDC to 8088 CPU Data Bus and Control Interface 02188A-60 

2·166 ~ Monolithic W Memories ~ 



AmiSIi 
CLOCK 

8088 to Am9516 UDC Interface 

ALE J=i_------'nL.-_---'n'----__ 

LATCHED .. 

Figure 2. The Atn9516 UDC to 8088 CPU Bus Slave Timing 
02188A-61 

ALE r-1 n n ~ I~------------------------~ ~ __________ ~ ~ ____________ _ 

xxx 
~ ________ ~r--l~ ________ ~ 

I 

'---____ -'r--
L--________ ----Ir 

I L 
~ ____________ ~n~ ____________ ~r__ 

02188A-62 

Figure 3. The Am9516 UDC to 8088 CPU Bus Master Timing 

~ Monolithic WMemorles ~ 2·167 



8088 to Am9516 UDC Interface 

DEVICE _8088_9516 (pa122VI0) 

"This is a PLPL file to implement an interface between the 8-bit 
8088 and the 16-bit Am9516. This design assumes that the Am9516 
is programmed for byte operations and so only accesses 16-bit 
words during chaining. -James Williamson" 

PIN 

CK 1 /RD 23 
S[0:2] 2:4 /WR 22 
AO 5 LAO 21 
/SEL 6 /DS 20 
ALE 7 /RW 19 
HLDA 8 /WAIT 18 
/BW 9 /A 17 
READY 10 /B 16 
RESET 11 /C 15 

BEGIN 
/D 14~ 

IF (RESET) THEN ARESET()~ 
11==============================================================11 

2·168 

"This section defines the wiggles when the Am9516 is Bus Master" 
"==============================================================11 

IF (HLDA) THEN ENABLE()~ 
IF (/S[2] * HLDA) THEN BEGIN 

IF (/S[l] * /S[O]) THEN 
LAO /CK * BW + /BW * AO * ALE + 

/BW * LAO * /ALE 
ELSE 

END~ 

LAO BW + /BW * AO * ALE + 
/BW * LAO * /ALE 

IF (HLDA) THEN 
CASE (S[2:0]) 

BEGIN 
1) BEGIN 

RD 

END~ 

A 
WR 
C 
WAIT 

2) BEGIN 
RD 

END~ 

B 
A 
WR 
C 
WAIT 

/RW * 
/BW * 
/BW * 
/BW * 
1 

/RW * 
BW 
/BW * 
/BW * 
/BW * 
BW 

DS 
/RW * /CK 
RW * DS 
RW 

DS 

/RW 
RW * DS 
RW 

Figure 4. PLPL Specification for 8088 to Am9516 Interface 

~ Monolithic W Memories ~ 



END~ 

8088 to Am9516 UDC Interface 

3) BEGIN 
RD 

END~ 

B 
A 
WR 
C 
WAIT 

5) BEGIN 
RD 

END~ 

A 
WAIT 

6) BEGIN 
RD 
A 

END~ 

7) BEGIN 

IRW * DS * B 
BW * CK 
IBW * RD 
IBW * RW * DS 
IBW * RW 
BW 

IRW * DS 
IBW * ICK 
BW 

/RW * DS 
BW 

RD /RW * DS 
A /RD 

END~ 

11===============================================================" 
"This section defines the wiggles when the 8088 is Bus Master" 
II ===============================================================11 

BEGIN 

LAO AO * ALE * SEL + 
LAO * /ALE * SEL 

B LAO * WR * SEL 
A /LAO * WR * SEL 
DS A + 

/LAO * RD * SEL 
C /LAO * RD * SEL 
D LAO * RD * SEL 

END~ 

END. 

Figure 4. PLPL Specification for 8088 to Am9516 Interface (Continued) 

~ Monolithic: m Memories ~ 2·169 



80186 to Am9516 Universal DMA 
Controller Interface 

The addition of the Am9516 to an 80186 design is a natural 
choice in systems requiring four channels of DMA. Figure 1 
shows the interface between the 80186 and the Am9516 with 
a PAL device. pess is programmed to provide a latched A1 
signal. 

16 MHz 

o rll 
ARDY 

pCSs 

pCSo 

HOLD 

HLDA 

80186 
DT/R DT 

D'EN IDEN 
ALE ALE P 

HLDA 

This interface accomplishes two major control transformations. 
First, it converts R 0 and W R into RIW and OS when the 80186 
is Bus Master, and vice versa when the Am9516 is Bus Master. 
Secondly, the transceiver control signals, TBEN and RBEN, 
are generated from DEN and DT/R. This example shows only 
one possible configuration. Other configurations can be made 
as dictated by system requirements. A PAL device is used here 
to reduce board space. 

0 a f--+ WATT 
74LS74 

CP 

P/D 

BREa 

Vee Vee 
BACK 

-r- r-

Am9516 
ITBEN T"EiEN 
IRBEN RHER 
ALE 0 ALE 

ISEL ~ 
PAL16L8 

Ao 
ADo BW B/W 

1m IRD IDS ~ 
WR IWR IRW R/W 

ALE 

S2 M/fO 

CLKOUT CP a CLOCK 

AD1S-ADo 74LS74 ADIS-ADo 

f[ r D o~ _il~ 

~ ~ I G 
Am25LS.373 

10 yr Am2949 
LATCH . LJi TRANSCEIVER 

1a 

! 
ARDY AD WA MIlO Ao 

02188A-31 

Figure 1. Am9516 to 80186 Interface 

2·170 ~ Monolithic m Memories ~ 



80186 to Am9516 Universal DMA Controller Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

Am9516 TO 80186 INTERFACE 
PAT001 
01 
JOE ENGINEER 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP DMA INT PAL16L8 

NC ALED ALEP HLDA BW ADO DT /DEN /SEL GND 
NC /RBEN /RD ALE AO /RW /DS /WR /TBEN VCC 

EQUATIONS 

OS = RD + WR 
DS.TRST /HLDA 

RW = DT 
RW.TRST = /HLDA 

TBEN = /DT * /SEL * DEN 
TBEN.TRST /HLDA 

RBEN = DT * /SEL * DEN 
RBEN.TRST = /HLDA 

RD = /RW * OS 
RD.TRST HLDA 

WR = RW * OS 
WR.TRST = HLDA 

ALE = /ALEP * /ALED 

AO /ADO * /BW * HLDA ~ ALED 
+ ADO * BW * HLDA * ALED 
+ /ADO * /HLDA * ALEP 
+ AO * /ALEP 
+ AO * /ALED 

DESCRIPTION 

THIS PAL DEVICE CONVERTS THE CONTROL SIGNALS TO INTERFACE THE 80186 
TO THE Am9516 DMA CONTROLLER. 

SIMULATION NOT INCLUDED 

Figure 2. Source Listing for Example of Figure 1 

~ Monolithic W Memories ~ 

Ell 

2·171 



68000 Interrupt Controller AN-119 

I ntrod uction 
Commercial and industrial microprocessor-based systems typi­
cally consist of a processor interfaced with many peripherals 
which randomly require service. To fully utilize the processor's 
computing potential, sources of hardware interrupts must be 
used to free the processor from software routines. The 68000 
16-bit microprocessor has 256 different exception-processing 
vectors which point to predetermined locations in the program 
memory space. There are 192 external user interrupt vectors and 
seven autovector interrupts. Table 1 shows the exception vector 
assignments. The interrupt structure of the 68000 will be dis­
cussed in more detail along with two methods of designing an 

Vector Address 

Number(s) Dec Hex Space 
Assignment 

0 0 000 SP Reset: Initial SSP 

- 4 004 SP Reset: Initial PC 

2 8 008 SO Bus Error 

3 12 OOC SO Address Error 

4 16 010 SO Illegal Instruction 

5 20 014 SO Zero Divide 

6 24 018 SO CHK Instruction 

7 28 01C SO TRAPV Instruction 

8 32 020 SO Privilege Violation 

9 36 024 SO Trace 

10 40 028 SO Line 1010 Emulator 

11 44 02C SO Line 1111 Emulator 

12* 48 030 SO (Unassigned, reserved) 

13* 52 034 SO (Unassigned, reserved) 

14* 56 038 SO (Unassigned, reserved) 

15 60 03C SO Uninitialized Interrupt Vector 

16-23* 64 04C SO (Unassigned, reserved) 

95 05F -
24 96 060 SO Spurious Interrupt 

25 100 064 SO Level 1 Interrupt Autovector 

26 104 068 SO Level 2 Interrupt Autovector 

27 108 06C SO Level 3 Interrupt Autovector 

28 112 070 SO Level 4 Interrupt Autovector 

29 116 074 SO Level 5 Interrupt Autovector 

30 120 078 SO Level 6 Interrupt Autovector 

31 124 07C SO Level 7 Interrupt Autovector 

32-47 128 080 SO TRAP Instruction Vectors 

191 OBF -
48-63* 192 OCO SO (Unassigned, reserved) 

255 OFF -

64-255 256 100 SO User Interrupt Vectors 

1023 3FF -

* Vector numbers 12, 13, 14, 16through 23 and 48through 63 are reserved for 
future enhancements. No user peripheral devices should be assigned these 
numbers. 

Table 1. Exception Vector Assignment 

interrupt controller using PAL (Programmable Array Logic) 
devices. 

68000 Exception Processing and 
Pin Description 
The interrupt structure of the 68000 can grant up to 256 types of 
interrupt requests. These interrupts, or exceptions, are generated 
either by external or internal causes and are serviced by directing 
the flow of program to an exception processing routine. Table 1 
lists these exceptions and their respective address in memory. 
Exception vectors are locations in memory where the processor 
fetches the address of a routine or subprog ram which will service 
that exception. The exception vector is either internally or exter­
nally generated depending on the cause of the interrupt. The 
externally generated exceptions are interrupts which are placed 
on the interrupt control pins (IPL2, IPL 1 and IPLO), bus errors, 
and reset requests. The interrupts placed on control pins IPL2-
IPLO are requests from peripheral devices. The internally-gener­
ated exceptions come from instructions, address errors, or 
tracing. These different types of exceptions and their priorities 
are shown in Table 2. We will focus on group 1 interrupt 
exceptions. 

Group Exception Processing 

Reset Exception processing begins 0 Bus Error 
Address Error within two clock cycles. 

Trace Exception processing begins 1 Interrupt before the next instruction. Illegal Privilege 

TRAP, TRAPV, Exception processing is started 2 CHK, by normal instruction execution. 
Zero Divide 

Table 2. Exception Grouping and Priority 

The pinout of the 68000 is shown in Figure 1. The three 
interrupt control pins (IPL2, IPL1, IPLO) are asynchronous 
active low inputs which indicate the encoded priority level of 

PROCESSOR{ 
STATUS 

M6800 { 
PERIPHERAL 

CONTROL 

FCO 

FC1 

FC2 

r--------, ADDRESS 
BUS A1-A23 

Iv==-='-=i/00-015 

68000 
MICROPROCESSOR ........,.""""'"'"-~ I 

L-___ j'l-'-'-=-

Figure 1. 

ASYNCHRONOUS 
BUS CONTROL 

} 
INTERRUPT 
CONTROL 

2·172 ~ Monolithic m Memories ~ 



68000 Interrupt Controller 

the device requesting an interrupt. The least significant bit is 
IPLO and the most significant bit is IPL2. Level seven, (IPL2, 
IPL 1, IPLO) = (000), has the highest priority, while level zero, 
(111), indicates that no interrupts are requested. All lower or 
equal priority interrupts are masked during the interrupt 
service routine of the present interrupting device. There are 
two ways by which a peripheral'device can interrupt the 
normal flow of program: autovectoring or external vector 
number generation. The function code pins (FC2, FC1, and 
FCO) all become high during an interrupt acknowledge cycle. 
The interrupt acknowledge cycle always follows an interrupt 
request only after the present instruction cycle is completed. 
Thus interrupt acknowlege cycles come in between the 
instruction cycles and no information is lost. 

The signals which are used during an external interrupt 
request are listed below with a description of their behavior 
and function. 

ADDRESS BUS: the 24-bit address bus holds the address of the 
data to be accessed. During an interrupt acknowledge cycle the 
lower three bits (A3, A2, A 1) hold the encoded level of the inter­
rupt being serviced. If a level 5 interrupt is being serviced then 
(A3, A2, A1) will be (101) respectively. 
DATA BUS: The lower eight bits of this 16-bit data bus must 
contain the vector number during a user interrupt acknowledge 
cycle. If an autovector routine is in process then the data bus is 
ignored. 

AS: The processor asserts address strobe anytime there is valid 
data on the address bus. It remains asserted for as long as the 
address is valid. 

Riw: This signal defines the data bus transfer as a read or a write 
cycle. During an interrupt acknowledge cycle the processor is in 
a read mode. 

UDS, LOS: The upper and lower data strobes are asserted when 
the processor is in a read or write instruction cycle. Upper strobe 
enables the most significant byte of data while the lower strobe 

INTERRUPT ACKNOWLEDGE SEQUENCE 
FLOW CHART 

PROCESSOR 

, 
GRANT INTERRUPT 

INTERRUPTING DEVICE 

REQUEST INTERRUPT 

1) COMPARE INTERRUPT LEVEL IN STATUS REGISTER 
AND WAIT FOR CURRENT INSTRUCTION TO COMPLETE 

2) PLACE INTERRUPT LEVEL ON A1, A2, A3 
3) SET R/W TO READ 
4) SET FUNCTION CODE TO INTERRUPT ACKNOWLEDGE 
5) ASSERT ADDRESS STROBE (AS) 
6) ASSERT LOWER DATA STROBE (LOS) , 

PROVIDE VECTOR NUMBER 

CLK 

enables the least significant. 

DTACK: Data transfer acknowledge is an externally-generated 
signal which tells the processor that valid data is present on the 
data bus. If DTACK is not asserted before the falling edge of S4 
(S4 is the fourth CPU clock state in a seven-state instruction cycle) 
then wait states are introduced. 

IPL2-IPLO: The three interrupt control pins are inputs which 
contain the encoded priority level of the external interrupting 
device. Note that these are active low pins where (000) is level 
seven encoded. 

FC2-FCO: Function code output pins indicate the processor's 
status. When they are all high the processor is in an interrupt 
acknowledge cycle. 

E, VMA, VPA: Enable, valid memory address, and valid peripheral 
address are the standard 6800 family signals. VPA is also used 
when autovectoring. 

The following two design examples use PAL units as a simple 
and cost-effective interrupt controller interface to the 68000. The 
first introduces external vector generation while the second ~ 
shows how autovectoring can be done on the 68000. ~ 

Prioritized Individually Vectored 
Interrupt (Method 1) 
As shown in the interrupt acknowledge sequence flow chart and 
timing diagram (Figure 2), a peripheral device must interrupt the 
processor by placing ~encoded level of priority on the 
interrupt control pins (IPL2-IPLO). The processor then grants 
the interrupt after the completion of the current instruction cycle. 
The encoded priority level of the interrupt is placed on address 
bus bits A3-A 1 during the interrupt acknowledge cycle. The 
status code lines (FC2-FCO) become high, indicating an interrupt 
acknowledge cycle. Once the lower data strobe (LDS)is asserted 
the external device must place an 8-bit vector on the least signif­
icant byte of the data bus. This data is latched in state S7. 

INTERRUPT ACKNOWLEDGE SEQUENCE 
TIMING DIAGRAM 

________ ~~~ __________ _J 

1) PLACE VECTOR NUMBER ON 00-07 
2) ASSERT DATA TRANSFER ACKNOWLEDGE (DTACK) 

R/W--.------r----'\r-----------~'__ __ _ 

, 
ACQUIRE VECTOR NUMBER 

1) LATCH VECTOR NUMBER 
2) NEGATE LOS 
3) NEGATE AS , 

RELEASE 

1) NEGATE DTACK 

t 
START INTERRUPT PROCESSING 

DTACK 

D8-D15----c:::::>-\.,-------------C== 

00-07 

FCO-2:x'---____ --Ip \'------

IPLO-2 \~ ______ ~~:=========~~~~~~7------
I -LAST BUS CYCLE I ~TAC~ I - lACK CYCLE • I ;TACK AN~ I 

OF INSTRUCTION PCL (VECTOR NUMBER VECTOR 
(READ OR WRITE) (SSP) ACQUISITION) FETCH 

Figure 2. 

~ Monolithic m Memories ~ 2·173 



68000 Interrupt Controller 

As shown on Table 1 vectors 64-255 are assigned to the user 
interrupt vector numbers. These vectors must be generated 
externally and placed on the data bus during an interrupt 
acknowledge cycle. In our interrupt controller we arbitrarily 
choose vectors 249-255 as the vectors assigned to the inter­
rupting peripheral devices. Table 3a shows this assignment 
and how the vector can be decoded from the address 
bits A1-A3. 

Priority Vector 
level assigned Data Address 

Device tt Decimal tt 07 06 05 04 03 02 01 DO A3A2A1 

1 (low priority) 249 1 1 1 1 1 0 0 1 001 
2 250 1 1 1 1 1 0 1 0 010 
3 251 1 1 1 1 1 0 1 1 o 1 1 
4 252 1 1 1 1 1 1 0 0 100 
5 253 1 1 1 1 1 1 0 1 1 0 1 
6 254 1 1 1 1 1 1 1 0 1 1 0 

7 (high priority) 255 1 1 1 1 1 1 1 1 1 1 1 

Table 3a. 

The two PAL devices used on this design example generate the 
interrupt vectors and all the necessary control signals. The var­
ious Signals and their implementation on the PAL devices are 
explained below. 

INT7-INTO: Any of the seven peripheral devices can 
request an interrupt by asserting one of these inputs. The 
interrupt must remain asserted until acknowledged by the 
CPU. 

FC2-FCO and AS: Function code or processor status code 
become logical high during an interrupt acknowledge cycle. 
Address strobe is asserted anytime valid address is on the 
bus. DTACK and Data output control are decoded from these 
four outputs of the 68000. 
A1-A3: The three least significant bits of the address bus 
contain the encoded level of the interrupting device. These 
signals are used in generating the vector number which is 
to be put on the data bus. 
RESET: Reset is an input which clears all outputs, and is 
used for system initialization. 
IPL2-IPLO: These PAL device outputs are active low synchro­
nous signals which interface directly to the CPU. They represent 
the encoded level of the highest priority interrupt that is 
requested. Table 3b shows the truth table of our priority encoder 
implemented on a PAL device. 

Interrupt request input from peripheral Encoded int. level 

INT7 INT6 INT5 INT4 INT3 INT2 INT1 IPL2 IPL1 IPLO 

0 X X X X X X 0 0 0 
1 0 X X X X X 0 0 1 
1 1 0 X X X X 0 1 0 
1 1 1 0 X X X 0 1 1 
1 1 1 1 0 X X 1 0 0 
1 1 1 1 1 0 X 1 0 1 
1 1 1 1 1 1 0 1 1 0 
1 1 1 1 1 1 1 1 1 1 

Table 3b. 

OTACK: Data transfer acknowledge must be asserted by outside 
circuitry during a data transfer operation. The logic diagram 
shown below illustrates how DTACK is derived from address 
strobe and processor status signals. 

~ 
+5V 

FC2 AS -----~---, FCO FC1 f 
Jt>~. ffiCK 

07-00: The three least significant bits of the data output can be 
decoded straight from the address bits A3, A2 and A 1. That is 
D2=A3, 01 =A2 and DO=A 1. The other five bits of data can be held 
high with pull-up resistors. Outputs of the three data bits become 
enabled by using the same scheme which enables the 5fACR 
output. 

INTACK7-INTACK1: Only one of these Signals will be 
asserted during the interrupt acknowledge cycle. This signal 
feeds back into the interrupting device to tell that device 
that its interrupt has been acknowledged. We can use the 
3-bit addresses to decode these signals as shown in Table 3c. 

INTACK 
A3 A2 A1 7 6 5 4 3 2 

0 0 0 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 0 
0 1 0 1 1 1 1 1 0 1 
0 1 1 1 1 1 1 0 1 1 
1 0 0 1 1 1 0 1 1 1 
1 0 1 1 1 0 1 1 1 1 
1 1 0 1 0 1 1 1 1 1 
1 1 1 0 1 1 1 1 1 1 

Table 3c. 

The logic diagram of the controller is shown in Figure 3. The 
controller can operate without any wait states at the fastest CPU 
clock rate of 12.5 MHz as shown in the timing diagram of Figure 4. 

Auto-vectored Interrupts (Method 2) 
The seven autovector interrupts are assigned vector numbers 25 
through 31. Interrupts are requested by placing th~coded 
level of the request on the interrupt control pins (IPL2-IPLO). The 
processor responds to this request by placing the requested level 
in the processor's status register and by inhibiting all req uests of 
lower priority. When the current instruction cycle is completed 
an interrupt acknowledge cycle takes place. If Valid Peripheral 
Address (VPA), is asserted before the falling edge of S4 then an 
autovector routine takes place. The data or the vector number is 
generated internally depending on the priority level of the inter­
rupt request; the vector assigned is shown on the table at the 
beginning of this report. The autovector timing diagram and a 
very simple and practical interrupt controller implemented on a 
PAL device is shown in Figure 5. The PAL design specifications 
are included in the appendix. Note that VPA is generat~by 
enabling the PAL output when FC2-FC1 are high and AS is 
asserted. 

2·174 ~ Monolithic W Memories ~ 



_1_ 
so Sl S2 S3 

CLK 

Al-23 

68000 Interrupt Controller 

Interrupt Controller Logic Diagram 
External Vector Generation 

~
5VD7 

A1 

FC2 

FC1 

FCO 

S4 S5 S6 

PAL20L 10 +5 V 
06 
05 
04 
03 

1-------------~.~02 

~ ____________ ~~D1 

I-------------~.~ DO 

Figure 3. 

S7 

R/W __ +-+ __ ..J 

FCO-2 __ +-+_--J 

00-7 -...44--~------_<J....l_------

DTAci< 
18 

---+---

~·~I-~--------------------------------~· I- ·1·-~------------------------------~·~14STACK 
WRITE MACHINE CYCLE STACK PCL INTERRUPT ACKNOWLEDGE CYCLE 

1 CLOCK PERIOD (80 n5) 
2 CLOCK LOW TO ADDRESS (55 n5) 
3 CLOCK HIGH TO ADDRESS HI-Z (60 n5) 
4 CLOCK HIGH TO As LOW (55 n5) 
5 CLOCK LOW TO AS HIGH (50 n5) 
6 CLOCK HIGH TO os LOW (55 n5) 
7 CLOCK LOW TO os HIGH (50 n5) 

8 CLOCK HIGH TO R/W HIGH (60 n5) 
9 CLOCK HIGH TO R/W LOW (60 n5) 

10 CLOCK HIGH TO FC VALID (55 n5) 
11 CLOCK HIGH TO DATA HI-Z (60 n5) 
12 AS HIGH TO OTACK HIGH (70 n5) 
13 PAL CLOCK TO OUT (25 n5) 
14 MINIMUM SETUP TIME (20 n5) 

Figure 4. 

~ Monolithic m Memories ~ 

15 DATA VALID TO os LOW (15 n5) 
16 CLOCK HIGH TO AS, os LOW (55 n5) 
17 PAL INPUT TO HI-Z (25 n5) 
18 PAL INPUT TO HI-Z (25 n5) 
19 PAL INPUT TO HI-Z (25 n5) 

2·175 

Ell 



68000 Interrupt Controller 

AurOVECTOR OPERATION TIMING DIAGRAM 

SO S2 S4 S6 SO S2 S4 w 
elK 

,'-_______ 1 

Figure 5. 

Conclusions 
We have just seen how to implement an interrupt controller 
circuit using one or two PAL devices. This circuit can operate at 
the maximum operating frequency of the 68000 which is 12.5 
MHz. Since the most critical timing of the circuit is the P~.L 
device unit's input to Hi-Z, we see that we can operate the circuit 
with a wide spectrum of frequencies and with slower PAL devi­
ces. To guarantee operation, timing spec. No. 16 and No. 19 on 
Figure4 mustadd upto assert DTACK 20 ns priorto falling edge 
of S4. Thus 55 ns + (PAL device input delay to Hi-Z) should be 
less than. or equal to, 100 ns for a 12.5-MHz clock. We see that 

this qualifies fast, regular, half-power and quarter-power PAL 
devices for this circuit. 

ClK 

2·176 ~ Monolithic W Memories ~ 

+5V 

FC2 

VPA (TIE TO PUllUP 
RESISTOR) 

FCl 

FCO 



68000 Interrupt Controller 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

INTERRUPT CONTROLLERI 
INTA.DAT 
01 
DANESH TAVANA 
MONOLITHIC-MEMORIES, INC. 
11/06/87 

CHIP INTA PAL16R4 

CLK /INT7 /INT6 
/OC FCO FCI 

/INT5 /INT4 /INT3 /INT2 /INTI /AS GND 
NC /IPLO /IPLI /IPL2 /DTACK FC2 VCC 

EQUATIONS 

DTACK = VCC iASSERT IF OUTPUT ENABLE 
DTACK.TRST = FC2*FCl*FCO*AS 

IPL2:= INT7 iPRIORITY ENCODED BIT 
+ /INT7* INT6 
+ /INT7*/INT6* INT5 
+ /INT7*/INT6*/INT5* INT4 

IPLI := INT7 iPRIORITY ENCODED BIT 
+ /INT7* INT6 
+ /INT7*/INT6*/INT5*/INT4* INT3 
+ /INT7*/INT6*/INT5*/INT4*/INT3* INT2 

IPLO:= INT7 iPRIORITY ENCODED BIT 
+ /INT7* INT6 
+ /INT7*/INT6* INT5*/INT4* INT3 
+ /INT7*/INT6*/INT5*/INT4*/INT3*/INT2* INTI 

SIMULATION NOT INCLUDED 

~ Monolithic W Memories ~ 

EJI 

2·177 



rrITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

68000 Interrupt Controller 

INTERRUPT CONTROLLER2 
INTC.DAT 
01 
DANESH TAVANA 
MONOLITHIC MEMORIES, INC. 
11/06/87 

CHIP INTC PAL20LI0 

lAS A3 A2 Al FC2 FCI FCO NC NC NC NC GND 
NC /INTACKI /INTACK2 /INTACK3 /INTACK4 /INTACK5 /INTACK6 /INTACK7 DO 
Dl D2 VCC 

EQUATIONS 

ID2 = /A3 
ID2.TRST = FC2*FC1*FCO*AS 

IDI = /A2 
jDl.TRST = FC2*FCl*FCO*AS 

JDO = /Al 
jDO.TRST = FC2*FCl*FCO*AS 

INTACK7 = A3* A2* Al 
INTACK7.TRST = FC2*FCl*FCO*AS 

INTACK6 = A3* A2*/Al 
INTACK6.TRST = FC2*FCl*FCO*AS 

INTACK5 = A3*/A2* Al 
INTACK5.TRST = FC2*FCl*FCO*AS 

INTACK4 = A3*/A2*/Al 
INTACK4.TRST = FC2*FCl*FCO*AS 

INTACK3 =/A3* A2* Al 
INTACK3.TRST = FC2*FCl*FCO*AS 

INTACK2 =/A3* A2*/A1 
INTACK2.TRST = FC2*FC1*FCO*AS 

INTACK1 =/A3*/A2* A1 
INTACK1.TRST = FC2*FC1*FCO*AS 

; SIMULATION NOT INCLUDED 

2·178 ~ Monollthlo IFJJ) Memories ~ 



Memory Control 

Memories are an integral component of any computer system. 
PROMs (Programmable Read Only Memory), SRAMs (Static 
Random Access Memory), and DRAMs (Dynamic Random 
Access Memory) are used most often to store programs and data. 
PROMs are used to store programs which can only be read by the 
computer. The SRAMs and DRAMs are used for reading and 
writing data and programs. Figure 1 shows a system processor 
interfaced to PROMs, SRAMs and DRAMs. 

DRAMs are cheaper bulk memory, and are used instead of 
SRAMs in many systems. DRAMs are available in speeds 
ranging from 70 ns to 250 ns access times, enough to keep up 
with the new generation processor speeds. This performance is 
also sufficient to match the usually high speed SRAMs in many 
existing and new designs. DRAM densities have also progressed 
from 64K-bit in 1983 to 1 M-bit in 1986, and 4M-bit and 16M-bit 
DRAMs are being developed. DRAMs are also available in space 
efficient SIP, SIMM and ZIP (Zig-zag Inline Package) packages 
with modules that can carry up to eight or nine DRAM devices. In 
this discussion we will focus on the design of PROM, SRAM and 
DRAM control circuitry using PLDs. 

ADDRESS 
DECODER 

PROCESSOR ~ADDRESS AND DATA BUS 

Large memory requirements result in the use of many DRAMs 
which cannot be conveniently located on the same board with the 
CPU. DRAM devices are placed on separate boards and con­
nected to the processor board via a bus. Off-board, DRAM 
devices mandate the use of specialized outputs to drive the 
address and control traces of the DRAM array. In systems with 
many off-board DRAMs the soft error rate is high and sometimes 
calls for the use of error detection and correction circuits. A 
detailed discussion of EDC (Error Detection and Correction) 
circuit design with PLDs is also included here. 

The proximity of the DRAMs to the processing units depends on 
the hierarchy of the DRAM memory in the system. This hierarchy 
depends heavily on the speed of the DRAM system versus the 
processor speed, and on the required addressing space. When 
the processor speed can be accommodated by the DRAM 
devices, it is efficient to place a DRAM subsystem as close to the 
processor as possible and to use it as the immediate storage 
space. When DRAMs are not fast enough for the processor, they 
must be used as remote, main-storage, while static-RAM-based 
caches are used in the processor's immediate proximity. A 
review of such cache systems design using PLDs is also included 
here. 

CONTROL 

CONTROL -

" ) PROMs 
v 

" SRAMs 

CONTROL 

~ DRAM ~ --v' CONTROLLER ~ DRAMs 

41301 

Figure 1_ Processor interface to PROMs, SRAMs and DRAMs 

~ Monolithic m Memories ~ 2·179 

Ell 



Memory Control 

PROM and SRAM Control 

The control of static RAM or PROM devices is very simple. Both 
of these devices provide a chip select input signal which activates 
the devices to read or write data. The chip select control of these 
devices is enabled by the decoded processor address signals. 
The address bits selected depend upon the range of addresses 
covered by each SRAM or PROM. More detail on address 
decoders can be found on page 2-35. . 

To optimize the number of productterms used, the address range 
is generally selected so that the boundary addresses are power­
of-two numbers. From page 2-53, for an address decoder we 
have the following equations: 

For an n-bit address X in the range from B+ 1 to A-1 (A>X>B) 

A= 0010000-00 (a power-of-two number) 
n p 1 

B= 0000011-11 (a power-of-two number minus one) 
n q 1 

CS = /Xn * /Xn-1 * - - - * /Xp * 
(Xp-1 + Xp-2 + - - - + Xq) 

Typical SRAMs also include a read/write input signal which 
selects between a read and a write operation. This signal is 
usually directly connected to the processor read/write signal. 
PROMs are "read only", and thus do not require this signal. 

PROM chip select signals should only be asserted for read 
cycles. Attempting a write to a PROM can cause bus contention 
problems where the memory and processor data signals attempt 
to drive the same bus lines simultaneously. This can be easily 
avoided by ensuring that the chip selects are not asserted for a 
processor write cycle. The PROM chip select signals are gated 
with the read signal (R) to insure a chip select only when R is low. 

/CS_PROM = (X) * /R ; (X is a 
combination of address signals) 

Most of the "second generation" SRAMs have output enable (OE) 
and write enable (WE) pins in addition tothe chip select (CS) pins. 
A separate and independent OE line eliminates the data bus 
contention problem entirely. The OE line is disabled before 
writing to the SRAM, allowing the data pins to be driven by the 
external bus. The OE line is enabled only during the read cycles. 
Most microprocessors provide a data signal which can be directly 
connected to the OE lines, providing the proper timing to avoid 
bus contention. 

W 

R 

x 

PAL 
DEVICE 

SRAM 
CS 

WE 

Figure 2. Controlling an SRAM Without OE 

413 02 

Some memories so not provide a separate OE pin (Figure 2). 
Generating CS for these memories can cause serious bus 
contention problems. Often this problem is solved by gating the 
CS with read (R) or write (W) signals as follows: 

/CS (X) * /R 
+ (X) * /W 

/WE /W 

This approach allows usually sufficient time for other buffers on 
the data bus to be disabled. This works well for the read cycles 
in which the memory is expected to be the only bus driver. 
However, for the write cycles where the processor is usually the 
data bus driver, this does not quite solve the problem completely. 

In the above equation, the CS is generated either from the read 
or the write signal. If the CS line is generated before the WE is 
asserted low, the memory will drive the data lines, which are 
already being driven by the processor, causing bus contention. 
There is still no way to ensure that CS is generated only after the 
WE signal to the memory is asserted. Some delay can be added 
by controlling the CS line from the WE signal, by gating the W 
signal with the WE signal (for CS) (Figure 3) as follows: 

R 

w 

WE 

cs 

41303 

Figure 3. Waveform for SRAM Control Without OE 

/CS = (X) * /R + (X) * /W * /WE 

This ensures that the WE signal of the memory is low before the 
CS is asserted. This solves only part of the problem. On the other 
edge, WE should be removed only after CS is removed. This can 
be accomplished by controlling WE from the CS by gating CS 
along with the WE signal: 

/WE = /W * /CS 

This ensures the assertion of WE as long as the CS is asserted 
and W is low. As soon as the CS is unasserted, the WE of the 
memory will be unasserted. These signals CS and WE used for 
controlling each other are simply the feedback from the appropri­
ate I/O pins. The feedback path provides the extra delay. 

2·180 ~ Monolithic W Memories ~ 



Memory Control 

Access Time Considerations 

PROMs and SRAMs with data access time which match the 
processor speeds are commercially available. Sometimes, 
however, there is a speed mismatch.. Systems with different 
types of memories encounter this problem the most. For such 
systems, different memories generate their own data available 
(DAV) and write complete signals and inform the processor of 
cycle completion. This allows processors to prolong their cycles 
and add wait states, to match the memory speeds. These signals 
are generated by using PAL devices which can generate timing 
delays. Registered PAL devices are ideal candidates for such 
timers. The application note on page 2-184 illustrates one such 
memory design where a PAL device generates the memory 
control timing signals. This design also implements the memory­
to-processor interface handshake logic. 

DRAM Systems 

In any system that uses dynamic RAMs, special circuitry in the 
address and control lines must be introduced to drive the memory 
chips and link them to the CPU (see Figure 4). Acircuit known as 
a DRAM controller performs several functions: 

• Multiplexes the row and column addresses 
• Provides access timing 
• Provides refresh timing and addresses 
• Arbitrates between access and refresh 
• Drives the DRAMs' capacitive load inputs 

CPU 

413 04 

ADDRESS 

CONTROL 

DATA 

DYNAMIC RAM 
INTERFACE 

AND CONTROL 

DYNAMIC 
MEMORY 

Figure 4. Functions of a DRAM Controller 

Multiplexing processor addresses into row and column ad­
dresses is required because the DRAM architecture divides the 
addresses into rows and columns. This reduces the number of 
pins required for addressing the DRAMs and consequently the 
package size. The external DRAM controller multiplexes the 
addresses and also generates the RAS (Row Address Strobe) 
and CAS (Column Address Strobe) signals to the DRAMs to 
distinguish between these two addresses. Every DRAM access, 
for reading or writing data, requires a predetermined timing 
sequence of RAS, CAS and WE (Write Enable) signals. ADR,\M 

controller's main task is to generate these read and write cycle 
timings. In addition to the regular read and write cycles, many 
DRAMs are available which provide higher data bandwidth read 
and write cycle. Such nibble mode, ripple mode or page mode 
cycles require different sequences of RAS and CAS signals. 
Depending upon the data requirements, these schemes are used 
for high speed data throughput in various systems. 

DRAMs also require intermittent refresh cycles to charge the 
capacitors for every row of data. This refresh is provided by a 
specific sequence of RAS and CAS signals. There are three 
different refresh cycles, one of which is selected according to the 
system requirements. These are: . 

• Regular RAS only refresh cycle 
• CAS before RAS refresh cycle 
• Hidden refresh cycle. 

The regular RAS-only refresh 'cycle requires an external refresh 
address generator which sequences through all the row ad­
dresses of a DRAM. The CAS before RAS refresh cycle is only 
provided by certain DRAMs. These DRAMs are usually costlier, 
since they require internal circuitry for row address generation. 
The hidden refresh cycle DRAMs retain the last read/write cycle 
data at the outputs during the refresh cycles, which is helpful in 
certain designs. 

In addition to the type of refresh cycle, the frequency of refresh 
cycles also varies in different systems. Some systems provide 
intermittent refresh when refresh cycles are executed at fixed 
time intervals. The DRAM accesses are sometimes delayed 
pending an intermittent refresh cycle. With burst mode refresh, 
a number of refresh cycles are completed simultaneously, allow­
ing the processor an uninterrupted access for read and write 
cycles later. Time critical systems usually find burst mode more 
useful. 

DRAM Controllers and PLDs 

Many DRAM systems make use of a VLSI DRAM controller. 
Most VLSI DRAM controllers perform the DRAM control func­
tions which do not change greatly form one system to another. 
Excellent representatives of this approach are the 2964, 2968 
and the 673103 Dynamic RAM Controller/Drivers (Figure 5). 

Most VLSI DRAM controllers do not support all of the various 
types of read/write cycles, refresh cycles and refresh timings. 
Custom DRAM controllers are required forthe following reasons: 

• Higher throughput bandwidth 
• Different memory access times 
• Different refresh cycles and mechanisms 
• Processor related requirements. 

Depending upon the specific system requirements, DRAM con­
trollers can be made from PLDs which support the specific cycles 
required by a design. 

Fast registered PLDs are used as DRAM controllers in many 
designs. Functions of a DRAM controller are usually split into a 
number of PLDs. The application note on page 2-187 shows a 

~ Monolithic IFJJ] Memories ~ 2·181 



413 05 

2·182 

Memory Control 

MULTIPLEXER 

ADS 

CQ-C9 

VCC 

REFRESH 
COUNTER 

RIC 

AUTO 

RFSH 
2 

RASIN 

BO RAS 
DECODER 

Bl 

2 

CASINo -----------------------------------------H CAS 
DRIVER 

CASINI ----------------------------------------~ 

WEIN ------------------------------------------------------t-t 
OE ----------------------------------------------------~ 

Figure 5. A VLSI DRAM Controller 

~ Monolithic W Memories ~ 

QO-Q9 

RASa 

RASI 

RAS2 

RAS3 

CASo 

WE 



Memory Control 

DRAM controller for a 68020 microprocessor which implements 
a custom data sizing and alignment function required by the 
microprocessor. 

VLSI DRAM controllers use PALdevices for a variety offunctions. 
These functions depend upon the capabilities of individual VLSI 
controllers. Three detailed application notes are included in the 
subsequent sections which illustrate the interface of these VLSI 
DRAM controllers to the various microprocessors. The applica­
tion note on page 2-202 shows an AMD 8088 microprocessor 
interfaced to a 2968 DRAM controller using a PAL 16R4. The ap­
plication note on page 2-210 shows a 68000 microprocessor 
interface tothe 2968. The interface between the DRAM controller 
and the CPU accommodates the specific access protocols and 
speeds of the CPU as well as the access and refresh timing of the 
dynamic RAMs. This interface between the controller and the 
rest of the system is best implemented using fast programmable 
logic devices such as the PAL 16R8D family devices. 

Error Detection and Correction 

Compared to PROMs and SRAMs, the physical dimensions, 
signal levels, and the stored charge of the DRAM cells are greatly 
reduced to allow higher density. As the stored charge in the 
DRAM cells decreases, the device is more susceptible to soft 
errors caused by alpha particles as well as by environmental 
noise. 

Soft errors are temporary, random, and they can be corrected by 
rewriting into the erroneous cell. Therefore, if the system has the 
ability to locate the bit in error, the soft error can be corrected. One 
method to locate the bit in error is to append a fixed number of 
check-bits to the data word and store these check-bits along with 
data. This increases the data width of the DRAM system. Upon 
reading, both the data and check-bits are read into the EDAC. 
The check-bits are regenerated from the read data, and these 
newly generated check-bits are compared with the read check­
bits. The comparison produces the syndrome bits. The syn­
drome bits constitute a binary number that points to the bit in error. 

This encoding scheme of generating the check-bits and the 
syndrome bits is called a Hamming code, after its inventor. The 
modified Hamming code has one more check-bit than the original 
Hamming code, but it can detect all double-bit errors as well as 
detect and correct all single-bit errors. In addition it can detect a 
substantial number of multiple-bit errors. The modified Hamming 

code has proved particularly useful for its relatively low overhead 
in today's wide-data-word systems and its capability to detect and 
correct single-bit errors and detect all double-bit errors. 

A number of XOR logic functions are required for generating 
Hamming codes. PAL devices which provide XOR gates are ideal 
candidates for such designs. Details of Hamming codes and a 
sample eight-bit error detection and correction application note 
which uses the PAL 16X4 is included on page 2-229. 

Cache Memory Systems 

Fast access time SRAM caches are used for very high-speed 
processors. These allow high system performance while retain­
ing the low cost of DRAM bulk memory. Based upon how the 
SRAM cache addresses map to the DRAM addresses, three 
major cache schemes are used. 

For fully associative caches, data in a DRAM location may be in 
any cache location. For direct mapped caches, data may be in DI 
one of the many locations determined by higher order address 
bits. For set associative caches, data may be in one particular 
location of every set. Depending upon the performance required 
and other such system constraints such as cost, board space etc. 
oneofthethree schemes is used. Details of cache system design 
are included in the application note on page 2-239. 

A major task in cache memory systems is replacement, which 
requires transferring data between the cache and the DRAMs. 
This is done in an effort to keep the cache filled with only those 
blocks of memory which are in use by a program. The replace­
ment task requires a controller with intelligence, which can read 
cache data and write to the DRAMs and vice versa. This requires 
a state-machine-based controller. Since most cache designs are 
custom designs, due to various system constraints, limited VLSI 
solutions are available. State-machine-based controllers such 
as the Am29PL141 and the PMS 14R21 can perform these 
functions very effectively. 

Other uses of PLDs in cache memory systems include general 
glue logic which is required for controlling SRAM caches or tag 
buffers. Such PLDs are usually very high-speed combinatorial 
PLDs. Monolithic Memories also provides a number of ECL 
PLDs which can be used in ECL cache memory systems. These 
ECl PAL devices allow 6 ns access times. 

~ Monolithic: W Memories ~ 2·183 



Memory Handshake Logic 

A typical control logic problem is the memory-to-processor 
handshake on memory transfer used in many computer ar­
chitectures. The processor makes a transfer request by activat­
ing a request line (REO) and specifies a read or write operation 
on a Read/Write line (R/W). 

During a read operation, the processor waits for a Data Avail­
able signal at which time the data bus is sampled and the re­
quest line lowered, thus completing the cycle. During a write 
operation, the processor places data on the bus and waits for a 
Write Complete signal after the write cycle is finished. Upon 

Figure 1. State Diagram-Memory Handshake Logic 

write complete, the request line is lowered, hence completing 
the cycle. Figure 2 shows the state assignments and the appro­
priate outputs. The state diagram is shown in Figure 1. Also the 
handshaking operation is illustrated in the timing diagram of 
Figure 3. 

The memory-board logic to implement this function may be de­
signed with gates and edge-triggered flip-flops as shown in Fig­
ure 4. This particular design would require about five SSI/MSI 
packages, but the same design can be implemented by a single 
PAL 16RP6. The PAL device design specification using state 
equations is shown on page 2-186. 

STATE DOUT DA WE WC CO C1 

WAIT 0 0 0 0 0 0 

READ1 1 0 0 0 0 0 

READ2 1 1 0 0 0 0 

READ3 0 0 0 0 0 0 

COUNT1 0 0 1 0 1 0 

COUNT2 0 0 1 0 0 1 

COUNT3 0 0 1 0 1 1 

WRITE1 0 0 1 0 0 0 

WRITE2 0 0 1 1 0 0 

WRITE3 0 0 0 1 0 0 

Figure 2_ 

2·184 ~ Monolithic m Memories ~ 



Memory Handshake Logic 

REO 

Rm ----+---~--~--~ 

WE 

Figure 3. Memory Handshake Timing 

DATA 
OUT 

ENABLE 

DATA 
AVAILABLE 

WRITE 
COMPLETE 

Figure 4. Memory Handshake Logic 

~ Monollthlom Memories ~ 2·185 



Memory Handshake Logic 

PAL Device Design Specification 

Title Memory Handshake Logic 
Pattern Mcmoryl.pds 
Revision B 
Author Kelvin Chow/Nick Schmitz 
Company AMD/MMI 
Date 2/28/85 

CHIP Memory PAL16RP6 

CLK ADRI ADR2 ADR3 ADR4 REO RW INIT NC GND 
10E NC WC Cl CO WE DA DOUT NC VCC 

STATE MEALY MACHINE 
DEFAULT_OUTPUT IDOUT IDA 

WAIT 
READI 
READ2 
READ3 
WRITEI 
COUNT 1 
COUNT2 
COUNT3 
WRITE2 
WRITE3 

WAIT 
READI 

= lWE • IWC • ICI • ICO 
-/WE • IWC • ICI • ICO 
-/WE • IWC • ICI • ICO 
=/WE • IWC • ICI • ICO 
= WE • IWC • ICI • ICO - WE • IWC • ICI • CO 
= WE • IWC • Cl • ICO 
= WE • IWC • Cl • CO 
= WE . WC • ICI • ICO 
- lWE • WC • ICI • ICO 

:= C 2 -> WRITEI + C 1 -> READ 1 
: - C:) -> WAIT +-> READ2 

READ2 : = C 5 -> WAIT +-> READ3 

+-> WAIT 

READ3 : = C - 4 -> WAIT + C 5 -> WAIT +-> READ3 
WRITEl:= C-S -> WAIT +->-COUNTl 
COUNT 1 : = C -5 -> WAIT +-> COUNT2 
COUNT2 := C-5 -> WAIT +-> COUNT3 
COUNT3 := C-5 -> WAIT +-> WRITE2 
WRITE2 : = C -5 -> WAIT +-> WRITE3 
WRITE3 := C:) -> WRITE3 + C_4 -> WAIT + C_S -> WAIT 

READl.outf : = DOUT· IDA 2 
READ2.outf : = DOUT· DA ; 3 

CONDITIONS 

C_l = REO' RW· ADRI • ADR2 • ADR3 • ADR4 • IINIT 
C 2 - REO • IRW • ADRl • ADR2 • ADR3 • ADR4 • IINIT 
C-3 = UREO + IADRI + IADR2 + IADR3 + IADR4) • /INIT 
C-4 = UREO + IADRI + IADR2 + IADR3 + IADR4 + IRW) * /INIT 
C::::S = INIT 

SIMULATION 
TRACE_ON CLK REO RW DOUT DA WE WC Cl CO 

SETF INIT IREO OE RW ADRI ADR2 ADR3 ADR4 
CLOCKF CLK CLOCKF CLK 
CLOCKF CLK CHECK wait IDOUT 

SETF REO IINIT 
CLOCKF CLK CHECK readl 
CLOCKF CLK CHECK read2 
CLOCKF CLK CHECK read3 
CLOCKF CLK CHECK read3 

SETF IN IT 
CLOCKF CLK CHECK wait 
CLOCKF CLK CHECK wait 
CHECK IDOUT IDA 

SETF /INIT REO IRW 
CLOCKF CLK CHECK wri tel 
CLOCKF CLK CHECK countl 
CLOCKF CLK CHECK count2 
CLOCKF CLK 
CLOCKF CLK 
CLOCKF CLK 

CHECK count3 
CHECK write2 
CHECK write3 

Logic Symbol 

ClK 

ADDR1 

ADDR2 

ADDR4 

REO 

RW 

INIT 

2·186 ~ Monolithic W Memories ~ 

VCC 

NC 

DOUT 

DA 

WE 

CO 

C1 

WC 

NC 

Of 



Customize a DRAM Controller 
Using Advanced PAL Devices 

Ever increasingly dense DRAMs and their interface to the emerg­
ing sophisticated 32-bit microprocessors provide an increasing 
number of system options to the designer. In orderto utilize these 
advanced DRAM features and to satisfy the individual system de­
sign requirements, custom DRAM controllers are required. PAL 
device sequencers, such as the PAL23SS, provide effective con­
trol sequencing power, flexibility, customizability and ease of use. 
They offer a very desirable alternative to the dedicated function­
ality of VLSI DRAM controllers. 

The following megabit DRAM controller design based on the 
PAL23SS sequencer is illustrative of a design which is easily 
customized to a system requirement. It supports features such as 
data bus sizing and data alignment which are required for the 
emerging 32-bit microprocessors, but which are not yet easily and 
adequately supported by the VLSI controllers. 

A DRAM controller needs to support at least the following func­
tions: 

• Flexible Refresh Generation 
• Flexible Arbitration 
• Processor Handshake 
• Processor Cycle Timing and Control 
• Refresh Cycle Timing and Control 

Flexible Refresh Generation 
Mechanisms 

For refresh generation, different system designs may require 
either burst mode, intermittent mode or both kinds of refresh. In 
burst mode, refresh requests occur once very 4 milliseconds to 
meet the dynamic RAM's speed. For a megabit RAM, which 
needs 512 cycles for a complete refresh, all 512 cycles will be 
performed consecutively. The major disadvantage of the Burst 
refresh approach is that memory is "out of service"for a long time. 
The intermittent refresh scheme minimizes the out of service time 
by stealing single cycles between processor cycles. This cycle 
stealing is performed by a pre-defined arbitration mechanism for 
prioritization of different cycle requests. This design incorporates 
the arbitration in a manner which allows both intermittent and 
burst mode refreshes. 

Flexible Arbitration Scheme 

The arbitration in most designs involves prioritizing memory 
accesses for: read cycles, write cycles, read-modify-write cycles, 
and refresh cycles. 

The DRAM controller must allow both asynchronous memory and 
refresh cycle requests. It should decide whether a memory cycle 
is an access cycle or a refresh cycle. When refresh and processor 
accesses are requested simultaneously, the refresh is given 
priority. If a refresh cycle is in progress and a memory cycle 

request is made, then the memory access is inhibited until the 
refresh is complete. The memory request in this case is kept 
pending by asserting a processor wait signal. 

For a typical intermittent refresh scheme, the cycle requests are 
derived from the oscillator, which operates asynchronously with 
respect to the system clock. The arbiter grants a refresh request 
when no other memory cycle is either occurring or pending. If a 
memory cycle is in progress, the arbiter inhibits the refresh cycle 
until the current cycle is completed. However, it needs to 
rememberthat a refresh request was made and grant that request 
on completion of the processor cycle. The PAL23SS's buried 
registers are very useful in performing such arbitration functions, Ell 
even between asynchronous events. These registers can also be 
used for remembering refresh cycle requests and initiating ac-
tions later for execution of the refresh cycles. 

However, some designs may require additional functions, such 
as prioritizing different processor requests. Some may require a 
specific kind of handshake mechanism between the processor 
and the DRAM controller. All such functions can be performed in 
the PAL sequencer by using more of chip resources such as I/O 
pins, buried registers and product terms. On the other hand some 
systems may not require functions such as read-modify-write 
cycles, in which case the PAL sequencer resources can be saved 
and used for other system functions. 

Flexible Handshake Protocol 

The PAL23SS sequencer can provide a customizable interface to 
the system processor without requiring additional parts. The logic 
required for interface protocols for the APX family or the 6S000 
family microprocessors can be very easily built using the internal 
resources of the PAL23SS. The design example below is for 
6S020 processor interface signals. 

Processor Cycle Execution 

Different DRAMs can have different processor cycles. Some just 
support the basic read/write cycles, whereas others support 
extended functions such as page mode, ripple mode or static 
column mode cycles. Some DRAMs also support additional 
functions for extended applications such as the transfer cycle in 
VRAMs (DRAMs optimized for video applications). PAL devices 
allow user-definable functionality to be implemented in the de­
sign, which optimizes resource utilization and improves system 
performance. Another advantage offered by such designs is the 
customizability of the design to the DRAM timing requirements, 
which can vary between -12, -15, and -20 parts significantly. All 
these timing functions can be easily implemented and modified 
using buried state registers. 

Our design implements the basic read, write, and read-modify­
write cycles required in most designs. The timing required has 

~ Monolithic W Memories ~ 2·187 



Customize a DRAM Controller Using Advanced PAL Devices 

been calculated for a -12 memory part. The processor cycle 
execution involves the following functions: 

• Address multiplexing 
• nming and control signal generation 

Am29841 ten-bit buffers are used for address mUltiplexing. The 
multiplexing of the row or column address is under the control of 
the DRAM controller. 

Generation of the timing and control signals RAS, CAS, WE and 
DACK is also the core function of the controller. The controller 
multiplexes the address and produces RAS, CAS, WE in a 
sequence that is understandable by the DRAMs. It also gener­
ates a handshake signal "DACK" forthe CPU, to indicate whether 
or not the memory is ready to be accessed. 

Refresh Cycle Execution 

DRAMs support different types of refresh cycles. Some DRAMs 
support CAS before RAS refresh. These DRAMs have the 
refresh address counter embedded along with the memory, thus 
eliminating the need for an external counter. Some designs may 
require "hidden refresh", or the standard RAS only refresh. 
Depending upon the system requirements, the designer can 
optimize the design and resource utilization. For this example, 
the PAL device has been designed to execute a RAS only refresh. 
However, it can be easily modified to support CAS-before-RAS 
refresh, or hidden refresh also, if needed. 

Megabit DRAM Controller with Data 
Alignment and Dynamic Bus Sizing 

In many cases the currently available DRAM controllers do not 
support the esoteric requirements of different system designs. 
The designer is left to make a custom DRAM controller. The 
PAL23S8, with its embedded extra buried state registers, pro­
vides an excellent tool for designing such a flexible, fast DRAM 
controller. It also offers the right speed for interfacing to the 
emerging 8 and 16 MHz processors, allowing superior synchro­
nous designs with few or no wait states. 

Some ofthe emerging 32-bit microprocessors, such as the 68020 
and the 80386, support the concept of dynamic bus sizing and 
mis-aligned data transfers. Presently, there is no DRAM control­
ler which utilizes the advantages offered by these two features 
effectively. 

Dynamic Data Bus Sizing 

Dynamic bus sizing allows the processor to handle variable width 
data buses (8, 16 or 32 bits) on a cycle-by-cycle basis. Dynamic 
bus sizing makes the size of the RNJ port or channel transparent 
to the software designers. 

The 68020 allows operand transfers to or from 8, 16, and 32-bit 
ports by dynamically determining the port size during each bus 
cycle. Similarly, 80386 allows operand transfers to or from 16 and 
32-bit ports by determining the port size during each bus cycle. 
During an operand transfer, the slave device signals its port size 
and transfer status (complete or not) to the processor using the 

DSACK inputs for the 68020, and the Ready & BS 16 signals for 
the 80386 . 

DSACK1 DSACKO 

H H Insert Wait States 
H L Complete Cycle 

Data bus port size 8 bits 
L H Complete Cycle 

Data bus port size 16 bits 
L L Complete Cycle 

Data bus port size 32 bits 

The design implemented shows a 68020 interface, but can be 
easily modified to accommodate the 80386. The 68020 always 
attempts to transfer the maximum possible amount of data (32 
bits) in a single cycle. lithe port responds with asize smaller than 
32 bits, the processor repeats the cycles with the remaining bytes 
of data. For each cycle, the 68020 informs the slave of the number 
of bytes it is attempting to transfer by two signals SIZO, SIZ1, as 
follows: 

SIZO SIZ1 SIZE 

0 1 Byte 
1 0 Word 
1 1 3 Bytes 
0 0 Long Word 

Due to various considerations, memories with different data width 
can exist on the same system. For example, it is often preferable 
to have smaller external bus sizes, while retaining a 32-bit internal 
memory size on a board. Such instances are common when 
using DMA in microprocessor based systems. Varied memory 
widths are also required in graphics and image processing 
systems. PAL devices allow customizable dynamic memory data 
bus sizing based on various system requirements-such as 
address range (address signals) or jumper selectable static 
control for increasing memory width. 

Mis.Aligned Transfers 

Dynamic sizing is used in conjunction with address bitsAO and A 1 
to also support mis-aligned data transfers; for example, a word 
write to a long word data bus size with an address offset of 1 byte 
(AO/A 1 =01). The 68020 and the 80386 contain internal bus 
multiplexers to route the data to the correct data lines. Both of 
these also generate extra cycles necessary to complete a mis­
aligned transfer. However, external circuitry is still needed to 
generate the correct write enables and chip selects to support 
both these functions. PAL devices, however, can be customized 
to support both these functions easily. 

A1 AO OFFSET 

0 0 o Bytes 
0 1 1 Byte 
1 0 2 Bytes 
1 1 3 Bytes 

2·188 ~ Monolithic W Memories ~ 



Customize a DRAM Controller Using Advanced PAL Devices 

The DRAM Controller 8ydecoding AO andA1. the two transferdata size signals SIZEO. 
SIZE1. and the size of the port being addressed. PAL devices can 
easily support dynamic bus sizing and generate the appropriate 
chip select signals for the four banks of memory. 

The memory organization selected (Figure 1) allows access to 
individual data bytes underthe control of the CAS signal. The four 
banks of memory are addressed by the four RAS signals. 

The D RAM controller consists of two PAL23S8s: the first is called 
the Timing and Arbitration PAL device. and the second device is 
called the Data Sizing and Alignment PAL device (Figure 2). 

441 02 

44102 

RASO­
BANKO 

CASO CAS1 CAS2 CAS3 EACH BANK OF 
1 M X32 BITS 

D31-024 D23-D16 Dl5--D8 D7-00 

Figure 1. Memory Organization 

20 BIT ROW AND 
COL ADDRESS TO 
ALL FOUR BANKS 

AS ------------------------------------~--~ 
A2-A21 

MREQL -----i 
RFCLK ------I 

A22-A23 A~r;tsL 
RMCL ---.----i 
INITL ---f---+---I 

AO-Al ------I 
SI20-S121 

PRTO-PRT1 ------i 

AMPAL 
23S8 

SIG 

ROWADD 

COLADD 

RFSHl 
OE 

MA0--MA9 
TO DRAM 
ADDRESS 
LINES 

L-____________________________ --.. RASO-RAS3 

~----------------------------------~ CAS~AS3 

~----------------------------------~ WE 

~----------------------------------~ DACK~DACK1 
Rffl ----L~-.J 

CLOCK ---------' 

Figure 2. A Megabit DRAM Controller 

~ Monolithio W Memories ~ 2·189 

EJI 



Customize a DRAM Controller Using Advanced PAL Devices 

The Timing and Arbitration Controller 

The timing and arbitration PAL device performs the following 
functions: 

• Arbitration between current cycle, Refresh cycle & CPU cycle 
• Read and Write Cycle Execution 
• Read-Modify-Write Cycle Execution 
• Refresh Cycle Execution 
• Interface Signaling 

The timing and arbitration PAL device arbitrates between the 
processor request MREO signal and the refresh request RFCLK, 
giving the highest priority first to the current cycle, next to the 
refresh request and finally to the processor cycle. This allows 
support for both intermittent refresh and burst mode refresh. It 
also uses a mechanism to store the refresh requests when the 
processor cycle is in progress for servicing later. 

This device also generates the appropriate ROWADD and 
COLADD signals to multiplex the row and column addresses onto 
the memory address bus respectively. During refresh cycles it 
asserts the RFSH signal enabling the refresh row address onto 
the DRAMs. 

This PAL device executes the read and write cycles as well as 
read-modify-write cycles. The selection between these two is 
under the control of the processor signal RMC. The timing of the 
different cycles is under the control of internal registers. 

The timing requirements of the different cycles are shown in 
Figure 3. The operation of the state machine to perform all these 
functions is also shown in Figure 4. This state diagram has been 
derived directly from the timing diagrams and the arbitration 
requirements of the design. This state machine is implemented 
by five of the six available buried state registers on the device, and 
is used mainly for timing and arbitration functions. The sixth 
buried state register implements a flag function and is repre­
sented as a small independent state machine, as described 
below. The state description (operation) has been written in 
CUPL software which generates the JEDEC file directly for 
programming the device. 

Arbitration Between Current Cycles, Refresh Cycle 
& CPU Cycle 

The request for a refresh is received by signal line RFCLK. The 
CPU requests a cycle by asserting MREO line. If a cycle is in 
progress as indicated by states other than state 0, no arbitration 
for a fresh cycle is performed. In such a case, the PAL device just 
continues to execute the current cycle. This effectively implies 
that the current cycle is given the most priority and no other cycle 
is initiated until its completion. 

When the current cycle is complete (indicated by state 0) the PAL 
device arbitrates between the MREO signal and the buried 
register 85 flag. This buried register flag is used to latch the 
request for refresh (RFCLK) which is usually only one clock cycle 
duration. The operation of this flag is controlled by a second small 
state machine (two states only) in the same device. When RFCLK 
is high this state machine toggles to state 1 (85=1) and stays in 
that state till the refresh cycle is executed (indicated by RFSH 
signal low), and then it toggles back to state 0 (85=0) preparing 
itself for the next refresh request RFCLK. 

Forthefirst state machine, the arbitration begins on state o. If 85 
is high, a refresh cycle is 9iven priority and the state machine 
jumps to state 16 to execute a refresh cycle. If on the other hand 
there is no refresh request pending (indicated by the 85 flag being 
equal to 0) and MREO is asserted, a processor cycle is started by 
jumping to state 1. If none of these conditions exists the state 
machine stays in state 0, polling for any of these events to occur. 
Such a scheme can support both burst mode and the intermittent 
refresh. 

Processor Read Write Cycle Execution 

When the processor cycle wins the arbitration, indicated by state 
1, the timing and control signals required for the processor cycle 
are initiated. 

There are four memory banks in the design, each with a capacity 
of 4 Mbytes of memory organized as 1 M X 32 bits (Figure 1). The 
liming & Arbitration PAL device generates the 4 RASO-RAS3 
signals, one for each memory bank. The selection of one of these 
four RAS signals depends upon the two input signals ADSELO 
and ADSEL 1. In most systems these would constitute the high 
bits of the system processor address bus. 

After assertion of the appropriate RAS signal the state machine 
jumps to state 2 where it manipulates its address handling 
signals. In state 2 it removes the ROWADD signal and asserts the 
COLADD signal to allow assertion of the column address to the 
memory. At the same time it asserts another signal, SIG, which 
is used to inform the Data Sizing and Alignment PAL device of a 
processor cycle request, and allows the Data Sizing and 
Alignment PAL device to generate the appropriate CAS signal to 
the memory. 

The state machine then sequences to state 4, allowing for the 
data access time. In state 4 it decides between a read write cycle 
or a read-modify-write cycle, based on the processor signal RMC; 
it jumps either to state 5 for a read or write cycle or to state 8 (for 
read-modify-write cycle. For read or write cycle it then removes 
the RAS signals and waits for another clock period for the RAS 
precharge time before completing the cycle. Simultaneously it 
also removes COLADD signal and asserts ROWADD signal 
preparing the memory for the next processor cycle. The SIG 
signal to the data sizing and alignment PAL device is also 
removed. The DSACK signal (acknowledge to the processor) 
and the WE signals (for a write cycle) are generated if and when 
required by the Data Sizing and Alignment PAL device. 

Processor Read-Modify-Write Cycle Execution 

When the processor requests a read-modify-write cycle by as­
serting the RMC signal, the liming and Arbitration PAL device 
automatically increases the length of the cycle. It keeps the RAS 
asserted for the appropriate duration of a read-modify-write 
cycle. Althe same time the Data Sizing andAlignment PAL device 
generates the appropriate WE and DSACK signals. After this 
extended RAS assertion the liming and Arbitration PAL device 
completes the cycle, similar to a read or write cycle. 

Refresh Cycle Execution 

When the arbitration is won by the refresh cycle, the timing and 
arbitration control PAL device executes a RAS-only refresh cycle. 

2·190 ~ Monolithic W Memories ~ 



44103 

44104 

Customize a DRAM Controller Using Advanced PAL Devices 

PCLK 

MREQ 

ROWADD 

RAS 

COLADD 

CAS 

DSACK 

WE 

RFSH 

SIG 

READ CYL 

~ 

~ 
----, 
~ 

L-J 

~ 

WRITECYL RMWCYL 

'---I '---I 

" " 
L-J L-J 
L-J 

Figure 3. The Timing Diagram 

PROCESSOR 
CYCLE 

NOTE: WHERE SIGNAL DESIGNATIONS 
APPEAR BOTH ABOVE AND BELOW 
A LINE, THE UPPER INDICATES INPUTS 
AND THE LOWER, OUTPUTS. 

Figure 4. State Diagram for Timing and Arbitration PAL Device 

~ Monollthlo WMemorles ~ 

RFSHCYL 

Ell 

2·191 



Customize a DRAM Controller Using Advanced PAL Devices 

On state 16 it removes the ROWADD signal and asserts the 
RFSH signal which applies the refresh row address to the 
memory address bus. In state 17 it generates all four 
RASO-RAS3 signals, refreshing all the banks of the memory. It 
then counts for a few states (depending upon the refresh timing 
requirements of the memory) before removing the RAS and 
RFSH signals. On removal of the RFSH signal the external 1 o­
bit refresh row address counter (PAL22V1 0) is also incremented 
for the next row. 

Interface Signaling 

One additional function performed by this PAL device is to inform 
the Data Sizing and Alignment PAL device of the execution timing 
reference of a processor cycle. This it does by asserting /SIG 
signal low for all processor cycles. This signal is basically used 
as a synchronizing signal between these two PAL devices doing 
two independent functions. 

Data Sizing and Alignment PAL Device 

The Data Sizing and Alignment PAL device performs the following 
functions: 

1. CAS generation for dynamic sizing & alignment. 
2. DSACK generation for dynamic sizing & alignment. 
3. WE generation for write and read-modify-write cycles. 

441 05 

READ AND 
WRITE CYCLES 

Its state diagram is shown in Figure 5. This state machine is 
synchronized to the operation of the state machine of the Timing 
and Arbitration PAL device by using signal SIG. This PAL device 
has no function for a refresh cycle. For a processor cycle it asserts 
the appropriate CASO-CAS3 and WE signals and generates the 
cycle complete signals DSACKO-DSACK1. The state machine 
functions are implemented in the four buried state registers on 
this device. 

CAS Generation 

The state machine starts at the initial polling state 0, and remains 
there until it receives the SIG signal from the timing and arbitration 
PAL device indicating the start of a processor cycle. The maxi­
mum allowable data width for the 68020 processor is 32 bits. The 
data bus is split into four byte wide segments. The CAS signals 
for these four byte segments are independently controlled, allow­
ing independent byte-wide read and write capability. These four 
CAS signals allow read and write for low-low, low-middle, high­
middle and high-high bytes of a 32-bit data port. For a 16-bit data 
port size, CAS 2-3 provide the low and high byte strobes, 
respectively. For an 8-bit port, only CAS3 is used. 

In state 1 the CAS signals are asserted. The CAS signals 
asserted depend upon the PORT size available, the size of data 
being transferred. and the alignment of the transfer. As explained 
before, the attempted transfer data size is encoded on two SIZO, 

NOTE: WHERE SIGNAL DESIGNATIONS 
APPEAR BOTH ABOVE AND BELOW 

• OUTPUTS INDEPENDENT OF 
RWAND RMC 

2·192 

A LINE, THE UPPER INDICATES INPUTS 
AND THE LOWER, OUTPUTS. 

Figure 5. State Diagram of Data Sizing and Alignment PAL Device 

~ Monollthlo W Memories ~ 



Customize a DRAM Controller Using Advanced PAL Devices 

SIZ1 bits by the processor, and the alignment is indicated by the 
least significant address bits AO, A1 of the processor. 

The port size is very application dependent. Different systems 
might require either static or dynamic selection of this port size. 
For example, the designer can define different address ranges 
where the port size may be different. Alternatively, jumpers can 
also define the port size. A general-purpose means for this has 
been selected, in the form of two input pins PRTO & PRT1, which 
define the size of the port. 

Port Size 

The size of the data bus is decided based on the input pins PRT1, 
PRTO. 

PRTO PRT1 SIZE 

L L 8 bits 
L H 16 bits 
H L 16 bits 
H H 32 bits 

For 32-bit ports, all four CAS signals need to be asserted. For a 
16-bit port only two CAS signals need to be asserted. For an 
eight-bit port only CAS3 is asserted. As mentioned before, the 
processor always attempts to transfer the maximum possible 
amount of data. Its 81Zo-1 signals encode the amount of data 
being transferred. The table in Figure 6 illustrates the relationship 
of the data size, port size and alignment which is decided by 
address bits A 1, AD. 

TRANSFER 
SIZE SIZ1 SIZO A1 AO 

0 1 0 0 
0 1 0 1 

BYTE 0 1 1 0 
0 1 1 1 

1 0 0 0 
1 0 0 1 

WORD 1 0 1 0 
1 0 1 1 

1 1 0 0 
THREE- 1 1 0 1 

BYTE 1 1 1 0 
1 1 1 1 

0 0 0 0 
LONG 0 0 0 1 
WORD 0 0 1 0 

0 0 1 1 

The data from this table is directly used in the state description 
syntax to generate the CAS signals for state 1. The software 
compiles the Boolean equations for this logic directly. 

Once asserted, the CAS signals are held by the state machine 
until the appropriate read, write, or read-modify-write cycles are 
complete. 

DSACK Acknowledge to CPU 

The amount of data receivable by any device is dependent upon 
its port size. Based on the port size (PRTO-1) the encodings for 
DSACKO-1 are generated to acknowledge the CPU and inform it 
of the port size. The timing of acknowledge is synchronized by the 
state machine. For read and write cycles, the DSACK signals are 
generated in state 1 and removed on cycle completion in state 4. 

For a read-modify-write cycle, a complication exists. The read­
modify-write cycle requires two DSACK signals; one for read and 
one for a write. The first DSACK is generated in state 1 and 
removed in either state 4 or state 5. The second is generated in 
state 8 and removed in state 11. 

WE Generation 

In state 1 the WE is generated for normal write cycles. For read­
modify-write cycles, a delayed WE signal is generated based 
upon the internal four-bit state counter in state 8 (Figure 3). 

OATA BUS ACTIVE SECTIONS 
BYTE (B)-WORO (W)-LONG WORO (L) PORTS 

031-024 023-016 015-08 07-00 

BWL - - -
B WL - -

BW - L -
B W - L 

BWL WL - -
B WL L -

BW W L L 
B W - L 

BWL WL L -
B WL L L 

BW W L L 
B W - L 

BWL WL L L 
B WL L L 

BW W L L 
B W - L 

Figure 6. Oata Bus Activity for Byte, Word and Long Word Ports 

~ Monolithic W Memories ~ 2·193 



~ ... 
CD 
~ 

tf 
~ 
::z e. 
~ cr 
~ 
~ 
= I:) 

:! 
Q' 
en 

~ 

NAME 

PART NO 

MEGABIT DRAM TIMING & ARBITRATION CONTROLLER; 

AnilAL 23S8 ; 

DATE 03/24/86 ; 

REV 01 ; 

DESIGNER KAPI L SHANKAR 

COMPANY ADVANCED MICRO DEVICES 

ASSEMBL Y NONE; 

LOCATION SUNNYVALE, CA 

DEVICE P23S8 ; 

/****************************************************************** / 

/* 

/* 

/* 

*/ 

*/ 
*/ 

/****************************************************************** / 

/* Allowable Target Device Types: THE ONLY ONE */ 
/****************************************************************** / 

/** Inputs **/ 

PIN 2 MREQ 

PIN 3 ADSELO 

PIN 4 ADSEL 1 

PIN 5 RMC ; 

PIN 6 RFCLK 

PIN 7 INIT 

/** Outputs ** / 

PIN 19 = RO\JADD 

PIN 18 !RASO ; 

PIN 17 !COLADD 

PIN 16 !RASl 

PIN 15 !RAS2 

PIN 14 !RFSH 

PIN 13 !RAS3 

PIN 12 !SIG ; 

NOOE [BO,B1,B2,B3,B4,B5] 

/** Declarations and Intermediate Variable Definitions **/ 

FIELD STMA = [BO,B1,B2,B3,B4] 

FIELD STMB = [B5] ; 

FIELD BANK = [ADSEL 1, ADSELO] 

BANKO = BANK 0 

BANK1 = BANK 1 

BANK2 = BANK 2 

BANK3 = BANK 3 

$DEFINE SAO 'b'OOOOO 

$DEFINE SA1 'b'OOO01 

$DEFINE SA2 'b'OO010 

$DEFINE SAl 'b'OO011 

$DEFINE SA4 'b'00100 

$DEFINE SA5 'b'OO101 

$DEFINE SA6 'b'OOl10 

$DEFINE SA7 'b'OOl11 

$DEFINE SA8 'b'01000 

$DEFINE SA9 'b'01001 

$DEFINE SA10 'b'01010 

$DEFINE SA11 'b'01011 

$DEFINE SA12 'b'01100 

$DEFINE SA13 'b'Ol101 

$DEFINE SA14 'b'01110 

$DEFINE SA15 'b'Ollll 

$DEFINE SA16 'b'10000 

$DEFINE SA17 'b'10001 

$DEFINE SA18 'b'10010 

$DEFINE SA19 'b'10011 

$DEFINE SA20 'b'10100 

$DEFINE SA21 'b'10101 

$DEFINE SA22 'b'10110 

/** STATE MACHINE A **/ 

/** STATE MACHINE B **/ 

/** MEMORY BANK ADDRESSED ** / 

/** STATE 0 **/ 

/** STATE 1 **/ 

/** STATE 2 **/ 

/** STATE 3 **/ 

/** STATE 4 **/ 

/** STATE 5 **/ 
/** STATE 6 **/ 

/** STATE 7 **/ 

/** STATE 8 **/ 

/** STATE 9 **/ 

/** STATE 10 **/ 

/** STATE 11 ** / 

/** STATE 12 **/ 

/** STATE 13 **/ 

/** STATE 14 **/ 

/** STATE 15 **/ 

/** STATE 16 ** / 

/** STATE 17 **/ 

/** STATE 18 ** / 

/** STATE 19 **/ 

/** STATE 20 **/ 

/** STATE 21 **/ 

/** STATE 22 ** / 

Figure 7. Source Code for Timing and Controller PAL Device 

n 
c 
en ... 
o 
3 
N' 

" DI 

C 
:D 
:I> 

== n 
o 
::s ... 
""I 

2. 

" ""I 

C 
en 
5' 
ea 
:I> 
a. 
< 
DI ::s 
n 

" a. 

" :I> 
r-
C 

" < 
c;' 

" en 



~ , 
::I 
t 
i cr 
~ 
f a 
~ 
ct 
(I) 

~ 

~ .... 
U) 
(JI 

SOEFINE SBO 'b'O 

$DEFINE SBl 'b'l 

/** Logic Equations **/ 

/** THE FIRST STATE MACHINE **/ 

SEQUENCE STMA { 

/** STATE 0 **/ 
/** STATE 1 **/ 

/** POLLI NG FOR PROCESSOR OR RE FRESH CYCLES ** / 

PRESENT SAO IF! B5 & ! MREQ & BANKO 

IF !B5 & !MREQ & BANKl 

IF !B5 & !MREQ & BANK2 

IF ! B5 & ! MREQ & BANK3 

/** PROCESSOR CYCLE ** / 
/** JUMP TO STATE SAl **/ 

NEXT SAl OUT RASO ; 

NEXT SAl OUT RASl ; 

NEXT SA 1 OUT RAS2 ; 

NEXT SAl OUT RAS3 ; 

/** ASSERT THE RAS FOR THE MEMORY BANK ADDRESSED ** / 

IF B5 

/** REFRESH CYCLE **/ 
/** JUMP TO STATE SA16 **/ 

NEXT SA16 OUT RO\IADD 

OUT RFSH ; 

/** REMOVE RO\I ADDRESS AND SET UP REFRESH ADDRESS ** / 

DEFAULT 

/** ELSE POLL AGAIN **/ 
/** STAY ·IN STATE SAO **/ 

/** THIS IS THE PROCESSOR CYCLE **/ 

PRESENT SA 1 I F BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

NEXT SAO 

NEXT SA2 

NEXT SA2 

NEXT SA2 

NEXT SA2 

NEXT SA2 

/*., REMOVE RO\I ADDRESS AND SET UP COLUMN ADDRESS ** / 

OUT RASO ; 

OUT RASl ; 

OUT RAS2 ; 

OUT RAS3 : 

OUT RO\IADD 

OUT COLADD 

OUT SIG ; 

/** ASSERT SIG TO INFORM DATA SIZING & ALIGNMENT PAL OF PROCESSOR CYCLE **/ 

PRESENT SA2 I F BANKO 

IF BANK1 

IF BANK2 

IF BANK3 

/** MEMORY ACCESS TIME DELAY **/ 

PRESENT SA3 I F BANKO 

IF BANK1 

IF BANK2 

IF BANK3 

PRESENT SA4 I F BANKO & RMC 

IF BANKl & RMC 

IF BANK2 & RMC 

IF BANK3 & RMC 

IF RMC 

NEXT SA3 

NEXT SA3 

NEXT SA3 

NEXT SA3 

NEXT SA3 

NEXT SA4 

NEXT SA4 

NEXT SA4 

NEXT SA4 

NEXT SA4 

NEXT SA5 

NEXT SA5 

NEXT SA5 

NEXT SA5 

NEXT SA5 

OUT RASO 

OUT RASl 

OUT RAS2 

OUT RAS3 

OUT RO\IADD 

OUT COLADD 

OUT SIG ; 

OUT RASO 

OUT RASl 

OUT RAS2 

OUT RAS3 

OUT RO\IADD 

OUT COLADD 

OUT SIG ; 

OUT !RASO 

OUT I RASl 

OUT IRAS2 

OUT IRAS3 

OUT I RO\IADD 

OUT ICOLADD 

OUT SIG ; 

/** DISTINGUISH BET~EN READ WRITE OR READ MOO 1 FY WRITE CYCLES **/ 
/** IF RMC HIGH EXECUTE AS READ WRITE CYCLE **/ 
/** JUMP TO STATE SA5 **/ 
/** ALSO REMOVE COLUMN ADDRESS AND APPLY RO\I ADDRESS ** / 
/** ALSO REMOVE THE RAS SIGNAL **/ 

IF BANKO & IRMC 

IF BANKl & IRMC 

IF BANK2 & IRMC 

IF BANIC3 & !RMC 

IF IRMC 

NEXT SA8 OUT RASO ; 

NEXT SA8 OUT RAS1 ; 

NEXT SA8 OUT RAS2 ; 

NEXT SA8 

NEXT SA8 

OUT RAS3 ; 

OUT ! RO\IADD 

OUT ICOLADD 

OUT SIG ; 

/** IF RMC LO\I EXECUTE READ MoolFY WRITE CYCLE **/ 
/** JUMP TO STATE SA8 **/ 

/** ALSO REMOVE COLUMN ADDRESS AND ASSERT RO\I ADDRESS ** / 

Figure 7. Source Code for Timing and Controller PAL Device (Cont'd.) 

II 

n 
c 
UI .. 
o 
3 
N' 
C'D 

Al 
C 
:u 
~ 
=: 
n 
o = .. .. 
g 
C'D 
'"Z 

c 
UI 
5' 
ea 
~ 
a. 
< 
DJ = n 
C'D 
a. 

" ~ 
r0-

C 
C'D 
< 
C:;' 
(\) 
UI 



~ -U) 
Q) 

~ 
f 
~ 
eo =: a: a 

~ 
f 
i 
;!. 

= tf 

PRESENT SA5 

/** RAS PRECHARGE TIME DELAY **/ 

PRESENT SA6 

PRESENT SA7 

/** PROCESSOR READ WRITE CYCLE COMPLETE **/ 

/** THIS IS THE READ MODIFY WRITE CYCLE **/ 

PRESENT SA8 I F BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

NEXT SA6 OUT ! SIG 

NEXT SA7 

NEXT SAO 

NEXT SA9 OUT RASO 

NEXT SA9 OUT RASl 

NEXT SA9 OUT RAS2 

NEXT SA9 OUT RAS3 

NEXT SA9 OUT SIG 

/** ACCESS TIME DELAY FOR BOTH READ AND \lRITE **/ 

PRESENT SA9 I F BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

PRESENT SA10 IF BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

PRESENT SA 11 I F BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

PRESENT SA 12 I F BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

NEXT SAl a OUT RASa 

NEXT SA10 OUT RASl 

NEXT SA10 OUT RAS2 

NEXT SA 1 a OUT RAS3 

NEXT SA10 OUT SIG ; 

NEXT SA 11 OUT RASa 

NEXT SA 11 OUT RASl 

NEXT SA 11 OUT RAS2 ; 

NEXT SA 11 OUT RAS3 ; 

NEXT SA 11 OUT S I G ; 

NEXT SA12 OUT RASa; 

NEXT SA12 OUT RASl ; 

NEXT SA 12 OUT RAS2 ; 

NEXT SA 12 OUT RAS3 

NEXT SA12 OUT SIG ; 

NEXT SA13 OUT RASa; 

NEXT SA13 OUT RASl ; 

NEXT SA 13 .(X!T RAS2 ; 

NEXT SA 13 OUT RAS3 ; 

NEXT SA13 OUT SIG ; 

/** THIS IS THE READ \lRITE CYCLE **/ 

PRESENT SA 13 IF BANKO 

IF BANKl 

IF BANK2 

IF BANK3 

/** REMOVE THE RAS SIGNAL **/ 

PRESENT SA14 

/** RAS PRECHARGE TIME DELAY **/ 

PRESENT SA 15 

NEXT SA14 OUT !RASO 

NEXT SA14 OUT !RASl 

NEXT SA 14 OUT ! RAS2 

NEXT SA 14 OUT ! RAS3 ; 

NEXT SA14 OUT SIG ; 

NEXT SA15 OUT !SIG 

NEXT SAO; 

/** PROCESSOR READ MOD I FY WR ITE CYCLE COMPLETE ** / 

/** TH I SIS THE MEMORY REFRESH CYCLE ** / 

PRESENT SA16 

/** ASSERT ALL FOUR RAS SIGNALS **/ 

PRESENT SA17 

/** REFRESH TIME DELAY **/ 

PRESENT SA18 

NEXT SA 17 OUT RASa 

OUT RASl 

OUT RAS2 

OUT RAS3 

OUT ROWADD 

OUT RFSH ; 

NEXT SA18 OUT RASa 

OUT RASl 

OUT RAS2 

OUT RAS3 

OUT ROWADD 

OUT RFSH ; 

NEXT SA19 OUT RASa 

OUT RASl 

OUT RAS2 

OUT RAS3 

OUT ROWADD 

OUT RFSII ; 

Figure 7. Source Code for Timing and Controller PAL Device (Cont'd.) 

() 
C 
U) .. 
o 
3 
N' 
CI) 

DI 
a 
:II 
:t­
i: 
() 
o 
:s .. .. 
2-
CI) .. 
c 
!!!. 
:s 

CQ 

:t­
o. 
< 
DI 
:s 
n 
CI) 
a. 

" :t-
r-
a 
CI) 

S. 
n 
CI) 
U) 



tJ 
~ 
8 
;:: 
~ a-
~ 
~ a c 
~ 

= ~ 

~ .... 
(0 
..... 

PRESENT SA19 NEXT SA20 ruT ! RASO 

ruT !RAS1 

ruT !RAS2 

ruT !RAS3 

ruT I RO\lADD 

ruT !RFSH ; 

/** REMOVE ALL RAS SIGNALS **/ 
/** ALSO REMOVE REFRESH ADDRESS AIID ASSERT RO\l ADDRESS ** / 

PRESENT SA20 

/** RAS PRECHARGE TIME DelAY **/ 

PRESENT SA21 

PRESENT SA22 

/** TERM I NATE MEMORY REFRESH CYCLE ** / 

/** GO BACK TO POLLING STATE **L 
) 

/** THE FIRST STATE MACHINE COMPLETE **/ 

/** THE SECOND STATE MACHINE **/ 

SEQUENCE STMB { 

PRESENT SBO IF RFCLK 

DEFAULT 

/** JUMP TO STATE SB1 **/ 
/** REMEMBER REFRESH REQUEST ** / 

PRESENT SB1 IF RFSH 

DEFAULT 

/** JUMP TO STATE SBO **/ 
/** REFRESH CYCLE EXECUTED THUS RETURN ** / 

/** THE SECOND STATE MACHINE COMPLETE **/ 

NEXT SA21 

NEXT SA22 

NEXT SAO 

NEXT SB' 

NEXT SBO 

NEXT SBO ; 

NEXT SB1 ; 

/** EQUATIONS FOR SYSTEM INITIALIZATION AFTER RESET **/ 

[BO •• B5] .ar = ! INIT 

RASO.AR ! INIT 

RAS1.AR IINIT 

ROIJADD.AR ! INIT 

COLADD.AR ! INIT 

RAS2.AR ! INIT 

RAS3.AR IINIT 

RFSH.AR ! INIT 

SIG.AR ! INIT 

/* THESE ARE THE ruTPUT ENABLES */ 

RASO.OE 'B'1 

RAS1.0E 'B" 

RO\lADD.OE 'B'1 

COLADD.OE 'B" 

RAS2.OE 'B'1 

RAS3.0E 'B'1 

RFSH.OE 'B" 

SIG.OE 'B'1 

Figure 7. Source Code for Timing and Controller PAL Device (Cont'd.) 

m 

(') 
c 
en .... 
o 
3 
N' 
(l) 

m 
c 
:u 
~ 
3: 
(') 
o 
:s .... 
~ 

2-
C'D 
~ 

c 
~. 
:s 
(Q 

~ 
a. 
< 
Q) 
:s 
() 
C'D 
a. 

" ~ 
r-
C 
C'D 
< 
c:;' 
C'D 
en 



~ -U) 
CD 

tf 
~ 
~ 
eo =: ;: 
a 

~ 
f 
! 
~ 
CD" 
~ 

tf 

NAME 

PART NO 

DATE 

MEGABYT DRAM DATA SIZING & ALIGNMENT CONTROLLER; 

Ani'AL 23S8 ; 

03/24/86 ; 

REV 01 ; 

DESIGNER KAPIL SHANKAR 

C~PANY ADVANCED MICRO DEVICES 

ASSEHBL Y NONE; 

LOCATION SUNNYVALE, CA 

DEVICE P23S8 ; 

/****************************************************************** / 

/* 
/* 
/* 

*/ 
*/ 

*/ 
/****************************************************************** / 

/* Allowable Target Device Types: THE ONLY ONE */ 
/****************************************************************** / 

/** Inputs **/ 

PIN 2 SIG 

PIN 3 AO 

PIN 4 A1 

PIN 5 RU 

PIN 6 RHC 

PIN 7 SIZO 

PIN 8 SIZ1 

PIN 9 PRTO 

PIN 11 PRT1 

PIN 12 INIT 

/** Outputs ** / 

PIN 19 !UE 

PIN 18 !CAS2 

PIN 17 !CASO 

PIN 16 !CAS3 

PIN 15 !CAS1 

PIN 14 !DSACK1 

PIN 13 !DSACKO 

NODE [BO,B1,B2,B3] 

/** Declarations and Intermediate Variable Definitions **/ 

FIELD STM = [BO,B1,B2,B3] 

FIELD PORTS I ZE = [PRT1, PRTO] 

PORT8 = PORTSIZE 0 

PORT16 = PORTSIZE 2 

PORT32 = PORTSIZE 3 

/** DEFINE THE STATES **/ 

$DEFINE SAO 'b'OOOO 

$DEFINE SA1 'b'OO01 

$DEFINE SA2 'b'0010 

$DEFINE SA3 'b'0011 

$DEFINE SA4 'b'0100 

$DEFINE SA5 'b'0101 

$DEFINE SA6 'b'0110 

$DEFINE SA7 'b'0111 

$DEFINE SA8 'b'1000 

$DEFINE SA9 'b'1001 

$DEFINE SA10 'b'1010 

$DEFINE SA11 'b'1011 

/** Logic Equations **/ 

/** THE STATE MACHINE **/ 

SEQUENCE STH { 

/** THE STATE MACHINE **/ 

/** SIZE OF THE PORT **/ 

/** INTERFACED TO PROCESSOR 

/** 8 BIT UIDE PORT ** / 

/** 16 BIT WIDE PORT **/ 

/** 32 BIT WIDE PORT **/ 

/** STATE 0 **/ 

/** STATE 1 **/ 

/** STATE 2 **/ 

/** STATE 3 ** / 

/** STATE 4 **/ 

/** STATE 5 **/ 

/** STATE 6 ** / 

/** STATE 7 **/ 

/** STATE 8 **/ 

/** STATE 9 **/ 

/** STATE 10 **/ 

/** STATE 11 **/ 

/** POLLING FOR SIG INDICATING A PROCESSOR CYCLE **/ 

Figure 8. Source Code for Data Sizing and Alignment PAL Device 

n 
c 
en .... 
0 
3 

**/ II ;' 

Dl 

C 
::D 
~ 

== n 
0 
:s .... 
""I 

2-
(D 
""I 

C 
en 
5' 

CQ 

~ 
a. 
< 
Dl 
:s 
n 
(D 
a. 

" ~ 
r-
C 
(D 

~, 
n 
(D 
en 



tf 
f 
~ e. 
i cr 
~ 
f 
:! 
~ 
ct 
~ 

tf 

~ . -CD 
CD 

/** PORT DATA OFFSET STATE ruTPUT **/ 
PRESENT SAO 

/** FOR PORTSIZE S **/ 
IF I SIG & PORTS 

/** GENERATE ACKNOULEDGE **/ 
IF I SIG & PORTS 

/** FOR PORTSIZE 16 **/ 

NEXT SAl ruT CAS3 ; 

NEXT SAl ruT DSACKO ; 

IF !SIG & PORT16 & lAO NEXT SA1 ruT CAS3 ; 

IF !SIG & PORT16 & !SIZO & SIZl & AD NEXT SA1 ruT CAS2 ; 

/** GENERATE ACKNOULEDGE **/ 
IF ISIG & PORT16 

/** FOR PORTSIZE 32 **/ 
/** BYTE TRANSFER SIZE **/ 

IF ISIG & PORT32 & IAl & lAO 

IF ISIG & PORT32 & IAl & AO 

NEXT SA 1 ruT DSACKl 

NEXT SA 1 ruT CAS3 ; 

NEXT SA 1 ruT CAS2 ; 

IF ISIG & PORT32 & IA1 & ISIZO NEXT SA1 ruT CAS2 ; 

IF ISIG & PORT32 & IA1 & SIZl NEXT SA1 ruT CAS2 ; 

IF ISIG & PORT32 & A1 & !AO NEXT SAl ruT CASl 

IF ISIG & PORT32 & IAl & ISIZ1 & ISIZO NEXT SAl ruT CAS1 

IF ISIG & PORT32 & IA1 & SIZl & SIZO NEXT SAl ruT CASl 

IF !SIG & PORT32 & IAl & AO & !SIZO 

IF ISIG & PORT32 & Al & AO 

IF ISIG & PORT32 & ISIZl & !SIZO 

IF ISIG & PORT32 & AO & SIZl & SIZO 

/** GENERATE ACKNOULEDGE **/ 
IF ISIG & PORT32 

/** JUMP TO STATE SAl **/ 

NEXT SAl ruT CASl 

NEXT SAl ruT CAS3 

NEXT SAl ruT CAS2 ; 

NEXT SAl ruT CASt; 

NEXT SAl ruT DSACKO 

ruT DSACKl ; 

/** ASSERT THE CAS FOR THE RIGHT PORTSIZE DATASIZE AND ADDRESS OFFSET **/ 

IF !SIG & !RY & RtlC NEXT SA 1 ruT YE 

/** GENERATE YE FOR READ YRITE CYCLE ONLY **/ 

IF SIG NEXT SAO 

/** ELSE ~AIT FOR THE PROCESSOR CYCLE **/ 
/** POLL AGAIN **/ 

/** STAY IN STATE SAO **/ 

/** THIS IS THE PROCESSOR CYCLE START **/ 

PRESENT SAl 

IF CASO NEXT SA2 

IF CASl NEXT SA2 
IF CAS2 NEXT SA2 

IF CAS3 NEXT SA2 
IF IR~ & RMC NEXT SA2 

ruT CASO ; 

ruT CASl ; 

ruT CAS2 ; 

ruT CAS3 ; 

ruT WE ; 
IF PORTS NEXT SA2 ruT DSACKO ; 
IF PORT16 NEXT SA2 ruT DSACKl ; 
IF PORT32 NEXT SA2 ruT DSACKO 

ruT DSACKl 

NEXT SA2 ; 

/** HOLD CAS GENERATED IN THE LAST STATE **/ 
/** IF WITE CYCLE AND NOT READ MODIFY wnE CYCLE ASSERT WE **/ 
/** JUMP TO STATE SA2 **/ 

PRESENT SA2 

IF CASO NEXT SAl ruT CASO ; 
IF CASl NEXT SAl ruT CASl ; 
IF CAS2 NEXT SAl ruT CAS2 ; 
IF CAS3 NEXT SAl ruT CAS3 ; 
IF IR~ & RMC NEXT SAl ruT WE ; 
IF PORTS NEXT SAl ruT DSACKO ; 
IF PORT16 NEXT SAl ruT DSACKl ; 
IF PORT32 NEXT SAl ruT DSACKO 

ruT DSACKl 

NEXT SA3 ; 

/** HOLD CAS GENERATED IN THE LAST STATE **/ 
/** HOLD ~E FOR ACCESS DURATION **/ 
/** JUMP TO STATE SA3 **1 

PRESENT SA3 

IF RMC NEXT SA4 ruT! CASO 

ruT !CASl 

ruT !CAS2 

Figure 8. Source Code for Data Sizing and Alignment PAL Device (Cont'd.) 

I 

n 
c 
en .. 
o 
3 
N' 
CD 
SU 

o 
:D 
~ 
=: 
n 
o 
:::J .. 
"'I: 

2-
CD 
"'I: 

c 
!!. 
:::J 
(Q 

» 
Do 
< m 
:::J 
(') 
CD 
Do 

"a 
:t:a 
r-
CI 
CD 
5. 
n 
CD 
en 



I\) 

~ o 
o 

tf 
~ 
~ e. =: a: 
CO) 

~ 
f a a 
3-

= tf 

ruT !CAS3 

ruT !WE 

ruT !DSACKO 

ruT ! DSACK1 ; 

/** FOR READ \/RlTE CYCLE REMOVE CAS AND WE FOR CYCLE COMPLETION **/ 
/** ACKNO\lLEDGE CYCLE COMPLETION BY ACKNOT **/ 

/** JUMP TO STATE SA4 **/ 

IF CASO & IRHC NEXT SAS ruT CASO ; 

IF CAS1 & !RHC NEXT SAS ruT CAS1 ; 

IF CAS2 & !RHC NEXT SAS ruT CAS2 ; 

IF CAS3 & !RHC NEXT SAS ruT CAS3 ; 

IF !RHC NEXT 'SAS ruT IDSACKO 

ruT ! DSACK1 ; 

/** FOR READ MODIFY \lRITE CYCLE CONTINUE TO ASSERT CAS SIGNALS **/ 
/** ACKNO\lLEDGE COMPLETION OF READ PORTION OF THE CYCLE BY ACKNOT **/ 

/** JUMP TO STATE SAS **/ 

/** REMAINING PORTION OF THE READ \lRlTE CYCLE **/ 

PRESENT SA4 NEXT SAO 

/** GO BACK TO POLLING STATE SAO **/ 

/** COMPLETION OF READ WITE CYCLE **/ 

/** REMAINING PORTION OF THE READ HOOIFY \lRITE CYCLE **/ 

PRESENT SAS 

IF CASO 

IF CAS1 

IF CAS2 

IF CAS3 

NEXT SA6 ruT CASO ; 

NEXT SA6 ruT CAS1 ; 

NEXT SA6 ruT CAS2 ; 

NEXT SA6 ruT CAS3 ; 

NEXT SA6 ; 

/** CONTINUE THE READ HOOIFY \/RlTE CYCLE **/ 

PRESENT SA6 

IF CASO NEXT SA7 ruT CASO ; 

IF CAS1 NEXT SA7 ruT CAS1 ; 

IF CAS2 NEXT SA7 ruT CAS2 ; 

IF CAS3 NEXT SA7 ruT CAS3 ; 

NEXT SA7 ; 

/** CONTINUE THE READ HOOIFY \lRlTE CYCLE **/ 

PRESENT SA7 

IF CASO NEXT SA8 ruT CASO ; 

IF CAS1 NEXT SA8 ruT CAS1 ; 

IF CAS2 NEXT SA8 ruT CAS2 ; 

IF CAS3 NEXT SA8 ruT CAS3 ; 

IF PORTS NEXT SA8 ruT DSACKO ; 

IF PORT16 NEXT SA8 ruT DSACK1 ; 

IF PORT32 NEXT SA8 ruT DSACKO 

ruT DSACK1 

NEXT SA8 ruT WE ; 

/** THIS IS THE \lRlTE PORTION OF THE READ HOOIFY IoIRlTE CYCLE **/ 

/** GENERATE THE WE SIGNAL FOR ENABLING \/RITE **/ 
/** GENERATE THE CORRECT ACKNO'oILEDGE FOR THE \/RITE CYCLE PORTION ** / 

/** CONTINUE TO ASSERT CAS **/ 

PRESENT SA8 

IF CASO NEXT SA9 ruT CASO ; 

IF CAS1 NEXT SA9 ruT CAS1 ; 

IF CAS2 NEXT SA9 ruT CAS2 ; 

IF CAS3 NEXT SA9 ruT CAS3 ; 

IF PORTS NEXT SA9 ruT DSACKO ; 

IF PORT16 NEXT SA9 ruT DSACK1 ; 

IF PORT32 NEXT SA9 ruT DSACKO 

ruT DSACK1 

NEXT SA9 ruT IoIE ; 

/** THIS IS THE IoIRlTE PORTION OF THE READ HODIFY \/RlTE CYCLE **/ 

Figure 8. Source Code for Data Sizing and Alignment PAL Device (Cont'd.) 

(') 
c 
en .. 
o 
3 
N" 
(D 

m 
o 
:a 
~ 

== 
(') 
o 
:l .. .. 
2-
(D .. 
C 
en 
S" 
ca 
~ 
Co 
< m 
:l 
n 
(D 
Co 

" ~ 
r0-

O 
(D 

< 
i;" 
(D 
en 



~ 
f 
8 ;:: 
~ cr 
~ 
f 
~ 
~ 

= 
~ 

...., 
;.., 
o .... 

PRESENT SA9 

IF CASO 

IF CAS1 

IF CAS2 

IF CAS3 

IF PORT8 

IF PORT16 

IF PORT32 

NEXT SA10 OUT CASO ; 

NEXT SA10 OUT CAS1 ; 

NEXT SA 10 OUT CAS2 ; 

NEXT SA10 OUT CAS3 ; 

NEXT SA10 OUT DSACKO ; 

NEXT SA 10 OUT DSACK1 ; 

NEXT SA 10 OUT DSACKO 

OUT DSACK1 

NEXT SA10 OUT \IE ; 

/** THIS IS THE WRITE PORTION OF THE READ MODIFY WRITE CYCLE **/ 

PRESENT SA 10 

NEXT SA 11 OUT ! CASO 

OUT !CAS1 

OUT !CAS2 

OUT !CAS3 

OUT !DSACKO 

OUT !DSACK1 

OUT !\IE ; 

/** COMPLETION OF THE WRITE PORTlOII OF THE READ MODIFY WRITE CYCLE **/ 

/** REMOVE ALL CAS \IE AND ACKNWLEDGE COMPLETION **/ 

/** REMAINING PORTION OF THE READ IIODIFY WITE CYCLE *:/ 

PRESENT SA 11 NEXT SAO 

/** GO BACK TO POLLING STATE SAO **/ 

/** COMPLETION OF THE READ MODIFY URITE CYCLE **/ 
} 

/** THE STATE MACHINE COMPLETE **/ 

/** EQUATIONS FOR SYSTEM INITIALIZATION AFTER RESET **/ 

[BO •• B3] .ar = IINIT 

CASO.AR ! INIT 

CAS1.AR ! INIT 

DSACKO.AR ! INIT 

DSACK1.AR ! INIT 

CAS2.AR ! INIT 

CAS3.AR ! INIT 

\IE.AR ! INIT 

/* THESE ARE THE OUTPUT ENABLES * / 

CASO.OE 'B'1 

CAS1.0E 'B'1 

DSACKO.OE 'B'1 

DSACK1.OE 'B'1 

CAS2.0E 'B'1 

CAS3.OE 'B'1 

~E.OE 'B'1 

Figure 8. Source Code for Data Sizing and Alignment PAL Device (Cont'd.) 

II 

(') 
c 
en .. 
o 
3 
N' 
CD 
D) 

c 
:a » 
:: 
(') 
o 
:I 
polo 

""Z 

2-
CD 
""Z 

c 
!!!, 
:I 
to 
~ 
a. 
< 
D) 
:s 
n 
CD 
a. 
"0 
~ ,.. 
C 

" < 
c;' 
(I) 
en 



8088 To Am2968 Interface 

Introduction 
This application note describes the implementation of a timing 
generator which interfaces between the 8088 and the Am2968 
Dynamic Memory Controller (DMC) using programmable logic 
and a delay line. The implementation does not account for any 
error detection and correction (EDC) circuitry. 

The timing generator, like the Am2970, is needed in memory 
systems utilizing a dynamic memory controller. It serves as an 
interface between the processor and the controller and gener­
ates the necessary control signals for the controller. 

A dynamic memory controller, in brief, interfaces between a pro­
cessor and the dynamic memory array. It stp-ers the appropriate 
address inputs and Rowand Column Address Strobes (RAS 
and CAS) required in the selected memory operations (Le. 
refreshing, read/write). 

The following sections will introduce and illustrate the implemen­
tation of the timing generator using 20-pin PAL devices, and also 
show its interface to AMD's Am2968 (DMC) and 8088 proces­
sor. Figure 1 shows the block diagram of the interface. Program­
mable logic was chosen because it is readily available, simple to 
use and reduces the number of devices required to implement 
specific functions. 

Interface Overview 
The implementation of this timing generator is not a general 
purpose application. It is dedicated specifically to a particular 
processor, the Intel 8088, and is limited to accessing only four 
·banks of memory. The range of the four banks of memory is 

therefore 1 Mbyte-with 256K in each bank. This limitation is set 
by the fact that no additional decoding circuitry has been added. 
Decoding is done with the two address lines (A 18-A 19) of the 
8088, thus allowing only four banks to be selected. 

The clock to the 8088 and the two PAL devices is provided by 
the 8284A. The ClK signal from the 8284A is connected directly 
to the ClK input of the 8088 and also to ClK of RASER 
(PAL 16R4). The PClK of the 8284A connects to the PClK input 
of HlDR (PAL 16R6) to operate the 6-bit counter. Note that the 
clock operates on a 113 and 2/3 duty cycle. 

Description of PAL Device Function 
The function of RASER (PAL16R4) is to create RASI (Row Ad­
dress Strobe) and CASI (Column Address Strobe) at the appro­
priate time. RASI is generated directly from the device, whereas 
CASI is generated from MRASI via a delay line. Figure 2 shows 
the timing delays between the controller and processor interface 
signals. The two modes of operation which the timing is focused 
on is Refresh w/o Scrubbing and ReadIWrite. By toggling the 
state of the mode control pin MC1 to either a lOW or HIGH 
respectively, and with MCO tied lOW (at the Am2968), the 
desired mode is generated. The mode control pin MC1 is 
generated based on the state of the processor's interface pins: 
101M, DT/A' and SSO. The combination of these signals decodes 
the processor's current bus cycle and indicates the ongoing 
memory activity. The MUX Select pin (MSEl) is also generated 
from the delay line. It determines whether a Row or Column 
address is sent to the memory address input based on the mode 
control inputs, MCO and MC1. 

2·202 ~ Monolithio W Memories ~ 



8088 To Am2968 Interface 

AS-At? 

9 
AlII 50..8 

AlB SQ.l 

AD0-AD7 
296B 

, LI: 

BelBB f Mal ... 11:" 4 
ALL AU: 

ItCI Mel 
EJI 

[0//1 llVR 
MS£L IH05I - ffi Dr~ Ill"" LIte: CASt 4 

~ '-_.':' ~ 
RAS[ 

cuc k AASCA -? 1tC1 

pr~ -?::I 
PRLI6RB 

HLDR 
RE:SE:T ,111::1 

tul tt.CA tt.oSl ' ..... ~ 
"",n 

vee ~ ntwf'RX 

-
CU< c- 06829A-1 

PCU< --
-

Figure 1. Am2968 to 8088 Interface Block Diagram 

~ Monolithic m Memories ~ 2·203 



8088 To Am2968 Interface 

I 0 I 1 I 2 I 3 I 0 I 0' I l' I 2' I 3' I 
CLK 

PCLK 60 61 62 63 I 63 
I 

HLD ---1 ~ 

HLDA I ~ 

RASI I \ 

FALE \ I 
RASn \ I 

Figure 2. Interface Timing 

A two-bit counter implemented internal to the (PAL 16R4) 
RASER is used to keep track of the internal state of RASI during 
the Read/Write or Refresh operations. In a normal memory 
Read/Write operation, the appropriate RASn outputs from the 
DMC will be activated in response to RASI going HIGH, as 
shown in the memory timing in Figure 3, during this time ALE 
initiates the cycle. In Refresh mode, receiving RASI will force all 
the RASn outputs of the DMC to go Low. FALE initiates the 
refresh cycle, since no ALE occurs during this time, as shown in 
refresh timing of Figure 3. The counter is also configured such 
that, during memory o~tions, sufficient time has been allotted 
within the cycle for RAS precharge (required in DRAMs) to 
occur. 

b) HLDR (PAL 16R6) 
The function of the (PAL 16R6) HLDR is to generate the two 
signals-FALE (False Address Latch Enable) and HLD (Hold). 
FALE controls the internal latches (ALS and ALR) of the 
(PAl16R4) RASER and initiates the refresh cycle independent 
of the processor's ALE (Address Latch Enable) signal. 

The (PAL 16R6) HLDR is essentially a 6-bit counter that gener­
ates 64 T-Clock cycles for the 8088 processor. When a hold 
request (HLD) is made and a hold acknowledge (HLDA) is 
received from the processor, FALE will be generated for the 
(PAl16R4) RASER to initiate the refresh cycle. Refresh is per­
formed every 8 I-ls which is double the required frequency. This 
time is derived in the Refresh Calculations section of this appli­
cation note. The 8088 processor allows request only at the end 
of the bus cycle. A bus cycle duration is 4 T-Clocks, thus refresh 
is performed at cycles "60-63" as noted in the function table in 
the HLDR design specification. Figure 2 refresh timing shows 
this critical portion of the timing activity when RASI is generated 
for refresh. During CLK (0 - 0*), (this corresponds to PCLK count 
value 62), the processor acknowledge is received and RASI 
becomes active. While RASI is HIGH, the internal 2-bit counter 
will cycle through its count sequence (0* - 3*); at the end of the 
sequence as indicated by PCLK count value 63 (Le., CLK 3*), 
RASI will become inactive. 

2·204 ~ Monolithic W Memories ~ 



8088 To Am2968 Interlace 

Tl T2 T3 T4 

ClK 

ALE III \ 

RASI I \ 

ADDRESS < VALID ADDRESS > 
MEMORY TIMING 

FAlE \\... ___ ....J/ 

RASI 
____________________ -....J' 

\\..----

ADDRESS --------------~<:~ ______ V_A_ll_D_A_D_D_R_ES_S ____ __J>~--------

---------~(~«-~«-~<-----------------------~>~~~~ 

Figure 3. Refresh Timing 

Refresh Timing Calculations 
The timing calculations are based on 8088 processor being in 
minimum mode (8 MHz) and a cell array of 128 rows. 

The 8088 clock period is 8 MHz, thus 

From the above calculations, refreshing needs to be performed 
at least every 15 J-ls. But for this application, memory is being 
refreshed every 8 J-ls as shown below: 

t = 1If = 118 M = 125 ns. 

Refreshing for DRAMs are performed on 128 rows every 2 ms. 
The calculations for the above memory array is determined 
to be: 

Required refresh time = 2 ms/128 = 15.6 J-ls. 

Thus the required time for 256 row cell array will be: 

Required refresh time = 4 ms/256 = 15.6 J-ls. 

Refresh time = 64 T-clock cycles x 125 ns = 8 J-ls. 

Delay Line Taps Computation 
The calculations for the assignment of the delay line taps is 
based on the parameters CASI and MSEL relative to RASI 
making a transition to the active state. See the timing in Fig­
ure 4. 

~ Monolithic W Memories ~ 2·205 



8088 To Am2968 Interface 

T1 T2 T3 T4 

ClK 

I I 
110-£01 x== ( ««« 101M, sso --'---+Hff< 

110-801 

~ »»» ADD-AD7 ----f<ftffi 

A8-A15 ----( ( x== 
10--£0 10--£01 

~ »».}X S3 )--A16-A19 -----Kf<ffl 

110-501 

Ii!!!h ALE 
----~~ 

MCi -----f*ffl ~ »FiJ 
I I 
I I 

\ I T4/ T4 = IASR+ 122 
I 

RASI ----.......... ~ 

\ ! 

I \ RASI _____ ----1 

MSEl T2! T2 = lRAH + 124 \ 
T3 ! T3 = T2 + 124 + IASC \ CAS I ---------' 

CASn \ ! 

100 

( DATA OUT ) 

Figure 4. Delay Line Timing Diagram 

2·206 ~ Monolithic W Memories ~ 



8088 To Am2968 Interface 

MSEL may switch some time after T 2. T 2 is calculated to be as 
follows: 

T2 = tRAH + t24 = 20 + 11 = 31 ns. 

where T 2 delay time from RASI to MSEL 
tRAH = Row Address Hold Time of the DRAM 
t24 = skew time for an to RASn of the DMC 

Thus, after 31 ns MSEL should initiate its active transition. 

CASI is calculated to make its change; T 3 ns relative to RASI. 
The calculated value is as follows: 

T3 = T2 + t25 + tAse = 31 + 33 + 0 = 64. 

where T 3 = delay from RASI to CASI 
t25 = skew time for an to CASn of the DMC 
tAse = column setup time of the DRAM 

Two Bit Counter 
A B 

0 0 

. 
0 0 ;0 
1 0 ;1 
0 1 ;2 
1 1 ;3 

Two Bit Counter 
Sequence 101M DT/R 

0 1 0 
a 1 0 
0 1 1 
a 1 1 
a 0 1 

1 3 ------ 0 0 
1 3 ------ 0 0 
1 3 ------ 0 1 

Note: This design does not allow the user to insert Wait States 
during memory operations! Wait States may be inserted in 
interrupt or liD cycles. 

Thus, 64 ns after RASI initiates its transition, CASI may begin to 
go active. 

For simplicity, delay line taps may be assigned as follows: 

RASI ---------- MSEL - 30 ns 
RASI ---------- CASI - 60 ns 

Counter and Mode Function Table 
The following function tables describe the activity of the 
RASI/MRASI during the specific modes of the processor's inter­
face signals (IOiM, DT/R and SSO) and the state of the internal 
counter which controls RASIIMRASI. Note: RASI will be active 
during the counter sequences between 1 to 3 as shown below in 
Figure 5. 

RASI 

0 

0 
1 
1 
1 

SSO MRASI COMMENTS 

0------ o ------ lACK 
1 ------ 0------ lOR 
0------ 0------ lOW 
1 ------ 0------ HALT 
1 ------ 0------ PASSIVE 
0------ 1 ------ CODE ACCESS 
1 ------ 1 ------ RD 
0------ 1 ------ WR 

Figure 5. 

~ Monollthlo IFJJ] Memories l1 2·207 



8088 To Am2968 Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

Am2968 TO 8088 INTERFACE 
RASER 
01 
G. SPEARS 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP RASER PAL16R4 

CLK RES ALE FALE 10M DTR SSO CLK2 NU2 GND 
TRI MRASI RASI /MC1 NC /B /A /ALR /ALS VCC 

EQUATIONS 

ALS FALE*/ALE*/ALR 
+ RES 

ALR = /A*B*/ALS 
+ A*/ALS 

/RASI = /A*/B*/RES 
+ RES*CLK2 

/MRASI IOM*/DTR 
+ IOM*DTR 
+ /IOM*DTR*SSO 
+ /A*/B 

A := /A*/RES*/ALS 
+ /A*/RES*ALE 

B := A*/B*/RES*/ALS 
+ /A*B*/RES*/ALS 

MCl := IOM*/DTR*ALE*/RES 
+ DTR*SSO*ALE*/RES 
+ IOM*DTR*/SSO*ALE*/RES 
+ MC1*/ALE*/RES 

SIMULATION NOT INCLUDED 

Figure 6. Source Listing for the 8088 to Am2968 Interface (AmPAL 16R4) 

2·208 ~ Monolithic IFJJ) Memories ~ 



8088 To Am2968 Interface 

TI'I'LE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

Arn2968 TO 8088 INTERFACE 
HLDR 
01 
G. SPEARS 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP HLDR PAL16R6 

PCLK RASI MRASI HLDA RES CLK MCl NU2 NU3 GND 
TRI /FALE /F /E /0 /C /B /A HLD VCC 

EQUATIONS 

A := /A*/RES*MCl 

B := A*/B*/RES*MCl 
+ /A*B*/RES*MCl 

C := A*B*/C*/RES*MCl 
+ /B*C*/RES*MCl 
+ /A*C*/RES*MCl 

o := A*B*C*/D*/RES*MCl 
+ /C*D*/RES*MCl 
+ /B*D*/RES*MCl 
+ /A*D*/RES*MCl 

E:= A*B*C*D*/E*/RES*MCl 
+ /D*E*/RES*MCl 
+ /A*E*/RES*MCl 
+ /B*E*/RES*MCl 
+ /C*E*/RES*MCl 

F := /A*F*/RES*MCl 
+ /C*F*/RES*MCl 
+ /B*F*/RES*MCl 
+ /D*F*/RES*MCl 
+ A*B*C*D*E*/F*/RES*MCl 
+ /E*F*/RES*MCl 

/HLD /C + /0 + /E + /F 

FALE HLDA*CLK*RASI*/MRASI 

i SIMULATION NOT INCLUDED 

Figure 7. Source Listing for the 8088 to Am2968 Interface (AmPAL 16R6) 

~ Monolllhic W Memories l1 2·209 



MC68000 to Am2968 Interface 

Introduction 
This application note shows how the general-purpose timing 
generator can be configured to interface between MC68000 and 
the Am2968. Figure 1 shows the block diagram of the interface. 
The correct interface signals must be adapted from the proces­
sor to the TimGen (PAL 16L8) and the Am2968. Note, from.£!9: 
ure 2, that AS (Address Strobe) replaces CYCREQ, and UDS 
(Upper Data Strobe) and LOS (Lower Data Strobe) replace OS 
and S/W. 

Asserting the Address Strobe signal (AS), which is connected to 
the LE input, latches the valid address into the Am2968. UDS 
and LOS are controls indicating the flow of data on the data bus 
(000-015) during memory read/write operations~ asserting 
the correct polarity on these two signals (UDS & LOS), either a 
byte or a word may be accessed. 

The following sections will show the timing requirements which 
are being considered-that is, the desired processor operating 
frequency and the appropriate DRAM. Timing diagrams are also 
included to show the status of the interface signals during 
read/write operations for various processor frequencies. 

MC68000 Timing Requirements 
In generating the hardware for the timing interface for the 
MC68000 to the Am2968, the overall system timing require­
ments must be considered to guarantee that the desired 
memory access time can be met. 

The following general equation formulates the parameters which 
must be considered in generating the read cycle time for the 
68000 processor. The write cycle time may be similarly 
generated. 

tREAD = 2tCyc + tCH - tCHSLx - tDICL - 2tpAL - t2 - tLATCH 
+ Ntcyc 

tREAD = read cycle time 

tCYC = clock period of the processor 

tCH = clock width High of the processor 

tCHSLx = clock High to AS, OS Low of the processor 

tDICL = data in to clock Low (setup time) of the processor 

tpAL = programmable logic access time 

t2 = delay from RASI to RASn of the DMC 

tLATCH = delay through latch 

N = number of inserted Wait States. 

For simplicity, zero Wait States have been assumed in selecting 
the appropriate DRAMs. If Wait States had been asserted, the 
appropriate DRAM must be selected to meet the overall tREAD 
cycle time. Note that the access time of the DRAM (tACe) must 
be less than or equal to tREAD cycle time or else access to 
memory will be missed. The following evaluations show the cal­
culated tACC based on the various processor operating frequen­
cies: 8 MHz, 10 MHz and 12.5 MHz. 

MC68000 W/WAIT STATES 

BMHz 

tREAD = (250 + 55 - 60 - 15 - 30 - 23 - 13 + N • 125) ns 
= (164 + 125N) ns 

DRAM tACC = 150 ns 

10 MHz 

tREAD = (200 + 45 - 55 - 10 - 30 - 23 - 13 + N • 100) ns 
= (114 + 100N) ns 

DRAM tACC = 100 ns 

12.5 MHz 

tREAD = (160 + 35 - 55 - 10 - 30 - 23 - 13 + N • 80) ns 
= (64 + 80N) ns 

2·210 ~ Monolithic m Memories ~ 



MC68000 to Am2968 Interface 

A01·A10 ~AA 

A19·A20 SELn -
Qn 9/ 

AS LE 
,-

I 

t AM2968 
_________ -4 __________ 

- - 4 
I 

~DECODER~ TO RASn A21·A23 RASI / I 

- AM90C256 

I ~ ~ 4/ 
ONE MEGAWORD 

TIMER DELAY MSEL CASn --- -- -- --~- --- -- - ---
MC68000 noo LINE T40 I 

- TIMGEN CAS1 
SUP_ PAL16L8 

I 

- Cs OE

i 
I 

RNI cs-
UDS RFRQ MC1 MCO I ---- -- - -- .... - - -- - - - ---- I LOS -

VCC WEH WE 

? WEL WE 

~ a 0 

DTACK 16{ 16{' 

- ~~~ AM29845 J I AM2968_ 
OE OE 

16t 16t 
DATA BUS 

000·015 

Figure 1. 68000 System Diagram 

cs_ RASI(TO) 
Ox 

AS DELAY 
Ox RASI 

FA T80 LINE 20x MSEL 
80x 

CASI T100 100x 
40x 

DTACK TIMGEN 
PAL16L8 

SUP FRH 

ANI RWRQ 

UDS RFRQ 

LOS WEH 

WEL 

OE 

Figure 2. Interface Diagram 

~ Monolithic W Memories l1 2·211 



MC68000 to Am2968 Interface 

lDS/UDS 

PM W/$/!//$/i1 
TO ---------' 

T20 _______ ----1 

T40 ________ --.J L-
......------.1 T60 _________ ----J L-

TBO __________ --.J L-.-
T100=======:::::-___ SI ----.L 

I 

WE 0'/I//!I/////$//A 
QO-015----------~« VALID »--­
DO-015------------<~ VALID »-
DTACK "-_---1,-

READ CYCLIE TIMING BAND 10 MHz 

ClK 

L--____ --J! 

RlW ~\\\\\\\~\~~~\\~\\\\\~ 

TO I 
T20 _______ ---.J 

140 ________ ----' 

T60 _________ ----l L-
T60 __________ ~---~ 

T100 

========~--
L 

L....-.._--Ir­
L-__ ---..JI 

DO-D15 _______ ---lI--__ ....:V.:.;:Al::.;:ID ___ ...LI_ 

QO-<l15 

WRITE CYCLE TIMING 

U< VALID »»}­

I-I __ --..JI 
BAND 10 MHz 

Figure 3. Read and Write Cycle Timing Diagram 

For 12.5 MHz frequency, asserting at least one Wait State will 
allow tREAD = 144 ns, thus DRAM tACC = 120 ns. 

to the processor's cycle time. The 8 MHz and 10 MHz are shown 
on the same diagram because of their similarity. Figure 4 shows 
the read and write timing for the processor operating at 12.5 
MHz with Wait States asserted during these operations. Figure 3 shows the read and write cycle timing diagrams relative 

2·212 ~ Monolithic W Memories ~ 



MC68000 to Am2968 Interface 

ClK 

R/W VIZZl/lllla 
TO 

T20 

T40 

T60 

Tao 

T100 

RA51 

WE 1IIIIIIIIIIZZ/d 

00-015 

DO-D15 

ClK 

lD5/UD5 

----------------------------~ 
----------------------------<<< VALID »-

~ ____ ....II 

READ CYCLE TIMING 
12.5 MHz 

57 50 51 52 53 54 55 5W 5W 56 57 50 

~ ______________ ~r____ 

R/W \\\\\\\\\\\\\\\\\'1 
TO 

T20 

T40 

T60 

Tao 

noo 
RA51 

DO-D15 

00-015 

L­
L 

I--____ ~J 

VALID 

----------<((««<< VALID »>))»>--
~ __________ ....Ir--

WRITE CYCLE TIMING 
12.5 MHz 

Figure 4. Read and Write Cycle Timing Diagram 

~ Monolithic W Memories ~ 2·213 



TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

MC68000 to Am2968 Interface 

GEN INTERFACE FOR 68000 
TIMGEN 
01 
LEE/YEE 
ADVANCED MICRO DEVICES 
11/06/87 

CHIP TIMGEN PAL16L8 

ICS /AS /FR /SUP RW T80 IUDS /LDS T100 GND 
NC /DTACK TO FRH /RFRQ /RWRQ /WEL /WEH JOE VCC 

EQUATIONS 

IFRH FR*/FRH + TO*RFRQ 

RWRQ CS*AS*/RWRQ*/T100 + RWRQ*/T100 

RFRQ FR*FRH*/RWRQ*/TIOO + RFRQ*/TIOO 

ITO = /RWRQ*/RFRQ + T80 

DTACK = CS*RWRQ*/RFRQ*T80 

DTACK.TRST = CS*RWRQ*/RFRQ*T80 

WEH /SUP*RWRQ*CS*/UDS*/RW 

WEL /SUP*RWRQ*CS*/LDS*/RW 

OE = CS*RW*UDS + RW*CS*LDS 

; SIMULATION NOT INCLUDED 

Figure 5. Source Listing for the 68000 Interface 

2·214 ~ Monolithic W Memories ~ 



General-Purpose Dual-Port Arbiter 

Introduction 
This application note shows the implementation of a general­
purpose dual-port arbiter interfacing three processors, a 
Dynamic Memory Controller (Am2968A DMC), and dynamic 
memory. The arbiter, implemented with two programmable array 
logic PAL devices, and a delay line, can provide a simple and 
complete arbitration solution operating in asynchronous mode. 

The interface consists of two PAL devices (TIMGEN2A and 
TIMGEN2B), a timer, a delay line, and two multiplexers. Figure 1 
shows the block diagram of the system which includes the ar­
biter logic implemented with the PAL devices. These two 
devices, TIMGEN2A and TIMGEN2B, provide the control sig­
nals to the DMC as well as to the dynamic memory. The purpose 
of the arbiter is to mediate when two processors request for 

,..r---
A01A·A20A 20 0 

v 
" MUX 16 

,.. " 
A01B·A20B 20 1 2/ 

" L...-s~ ,/ +sv 

r----o L E I REFRESH I L TAP1 TIMER A 1 
I=:..- Y2 TAP2 
RWROA TAP3 

TAPa L 3 

XAg~~~ TAP'! a I 
4 N 

CYCREOA- TIMEGEN TAPS 
~ 2A RFRO 

CS~-

CY~~~g~ WEH 

WEL 

AmPAL16L8 

~ ~ ~ 
CSA._ 
RO~_ I--
WRA;-

B=:::: TIMEGEN 
LEA 

~:::: 
28 OEA 

LEB 

~::: OEB 

B~:::: AmPAL22V10 

08479A 3·189 

memory cycles, or when refresh cycles need to be performed. 
The first PAL device, TIMGEN2A, generates the signals for the 
DMC and the Address MUX; it also contains the arbitration logic. 
The second device, TIMGEN2B, generates the control signals 
for the memory and the data bus latches. 

The Am2968A Dynamic Memory Controller (DMC) interfaces 
between the processors and the dynamic memory array. The 
DMC provides the required addresses either for the memory or 
the refresh cycles. For memory cycles, the addresses are 
generated by the processor and latched into the DMC. For 
refresh cycles, the addresses are generated by a 20-bit counter 
internal to the DMC. When the DMC receives the correct control 
signals, it generates the appropriate address (an) and the Row Ell 
and Column Address Strobes (RASn and CASn) that are re-
quired to perform memory read/write and refresh. 

Am2966A 

,.. 
AN ON 

v 

SELN 
DYNAMIC RASN 

RAM 
CASN 

LE 
RASI MCa 

fi MSEL C'S 
CAS I 

MC1 

f 
DON DIN 

~ ~t 
LATCH 

I 
LATCH MUX 

~ 
LE LE 

OEA I OEB 0 1 

II l l~ 
16 

J 
16 

0~ ;;. 
OOOA·015A 000B·015B 

Figure 1. Block Diagram 

~ Monolithic m Memories ~ 2·215 



General.Purpose Dual·Port Arbiter 

Interface Overview 
The dual·port arbiter can be interfaced to various processors, 
using the proper control signals from the particular processor. 
~the processor interface signals are C~Chip Select), 
CYCREO (Cycle Request), RD (Read), and WR (Write), see 
Figure 1. 

The two PAL devices, TIMGEN2A and TIMGEN2B are designed 
to operate in the following modes: 

(1) generate proper control signals when cycle request is made 
(2) arbitrate between two processor requests 
(3) arbitrate between a refresh request and processor request 
(4) arbitrate between a refresh request and two cycle requests 

Requests by the processor are made when CS and CYCREO 
are valid and the memory address is present. During dual·port 
arbitrati~he occurrence of simultaneous requests, for in· 
stance, CS~Chip Select Port A), CYCREOA (Cycle Request 
Port A) and FR (Forced Refresh), will result in the granting of a 
refresh cycle and the appropriate address being generated 
accordingly by the DMC. 

TIMGEN2A generates the appropriate control signals to the 
data and address multiplexers, the delay line, and the memory 
controller. These control signals are: RASI (Row Address Strobe 
Input), SEL (Processor Address MUX Select), and MC1 (Mode 
Control Input). RASI is generated for all read/write and refresh 
cycles. It is also used as the delay line input from which MSEL 
(MUX Select for the DMC) and CASI (Column Address Strobe 
Input) are generated. SEL allows the correct port address, A or 
B, to be the input to the DMC depending upon which port is 
acknowledged. MC1 specifies the operating mode of the DMC, 
read/write or refresh (see Am2968A data sheet). 

The arbitration logic prioritizes and grants the requests for 
read/write cycles from either port, A or B, and refresh cycles. 
The Mode Table (Figure 2) shows the order of precedence. 
When simultaneous request for a read/write or refresh cycle 
~, the refresh cycle will be given priority. The connection of 
RFRO (Refresh Request) from TIMGEN2A to MC1 of the DMC, 
as shown in the block diagram, implicitly gives refresh the 
precedence. When simultaneous read/write requests are made 
by processor A and processor B, processor A will be given 
priority over B. Again, the order of precedence is set implicitly by 
the connection of RWROA (Read/Write Request Port A) to the 
select input signal of the processor address MUX. 

FR 
CYCREQ 

Port A Port B GRANT 

L L L FR (refresh) 
L L H FR (refresh) 
L H L FR (refresh) 
L H H FR (refresh) 
H L L PORT A (/-LP Req) 
H L H PORT A (/-LP Req) 
H H L PORT B (/-LP Req) 
H H H no activity 

Figure 2. Mode Select Table 

The second programmable logic device, TIMGEN2B generates 
the OE (Output Enable) signal for the data bus latches and the 
WE (Write Enable) signa!1£!:..m~rl...Ib.e inputs to TIMGEN2B 
are the control signals-CSA, CSB, RDA (Read A), RDB (Read 
B), WRA (Write A), and WRB (Write B). Signals such as BHEN 
(Byte High Enable) and AOO, the least significant bit of the ad· 
dress, have been included to show their function (if available). 
These two signals are provided by the processor and together 
they determine whether a word or byte transfer is to be per· 
formed during memory operations. 

+5V 

R1 

R2 3 

c 0.01 fLF 

Figure 3. Refresh Timer Diagram 

Refresh Timer and Calculations 
The refresh timer below shows one method of implementing an 
external refresh clock. This section is optional if an alternate 
source is used. The refresh timer, implemented with a 555 timer, 
needs to generate an active·LOW edge·triggered signal at least 
once every 15 fLS. This means that a refresh occurs when a 
LOW-going edge on the FR signal is detected. The 15 /-LS value 
is derived from the dynamic memory refresh timing require· 
ments; refresh is normally required, over 256 rows, every 4 ms. 
This equates to a required refresh cycle every 15.6 /-Ls. In this 
application, the refresh timer generates FR approximately once 
every 9.8 /-Ls. Figure 3 shows the circuit for the forced refresh 
(FR) timer. The timer is a commercially·available 555 timer. The 
delay equation shown below must be solved for R1, R2, and C 
values. This satisfies the refresh requirement of less than, or 
equal to, 15.6 /-LS 

T = 0.693 (R1 + 2R2) C < 4 ms/256 = 15.6 /-Ls 

For the following values of R1, R2 and C 

R1 = R2 = 10K and C = 470 pF 

the timer generates a refresh every 9.8 /-LS which allows some 
margin in the refresh requirement. The specified values for R1, 
R2, and C allow for 30% total discrete component tolerance. 

2·216 ~ Monollthlo W Memories ~ 



General·Purpose Dual·Port Arbiter 

TIMGEN2A 
The function of TIMGEN2A is to generate RASI (Row Address 
Strobe Input) and arbitrate between processor and refresh 
cycles. Based on the arbitration, TIMGEN2A also generates 
RWRO (Read/Write Request), or RFRO (Refresh Request), that 
determines the type of cycle to be performed. TIMGEN2A can 
arbitrate between refresh and processor requests and also arbi­
trate between Port A and Port B processor requests. 

When simultaneous refresh and processor requests are 
generated, refresh (RFRO) will be given priority. The priority is 
implicit by design because the RFRO output of TIMGEN2A is 
connected to MC1 of the Am296SA DMC. When RFRO be­
comes active (LOW), MC1 forces the DMC into refresh mode. 

When simultaneous processor requests are made, RWROA 
(Read/Write Request of Port A) will be granted before RWROB 
(Read/Write Request of Port B). This priority is also implicit by 
design because the RWROA output is connected to SEL of the 
processor's address multiplexer. When RWROA becomes ac­
tive, address from Port A will be selected for input to the Row 
and Column Address latches of the Am296SA, also, the data 
from Data Bus A will be allowed to flow to the inputs of the 
DRAMs. In either case, RASI must be generated to initiate any 
of the cycles. Once RASI is generated, the control signals, 
MSEL and CASI, will be generated from the delay line relative 
to RASI. 

TIMGEN2B 
The function of TIMGEN2B is to generate WE (Write Enable) for 
memory and also OE (Output Enable) to control the flow of data 
throu~e data bus latches. The inputs to TIMGEN2B ~ 
CSA, RDA (Read Strobe A), WRA (Write Strobe A), CSB, RDB 
(Read Strobe B), and WRB (Write Strobe B). In addition, there 
are BHENA (Byte High Enable A) and BHENB (Byte High 
Enable B), AOOA (least significant address bit for Port A) and 
AOOB (least significant address bit for Port B). These signals are 
generated by the processor and are used 'to specify either byte 
or word transfers. 

The follow~escription outlines the operation ofTIMGEN2B. If 
CSA and RDA become active (LOW), TIMGEN2B will cause 
OEA to become active (LOW), enabling the data bus latches 
and allowing data corresponding to address A to flow onto the 
system data bus (read operation). The identical procedure oc­
curs for Port B when the control inputs for Port B is active. The 
block diagram shown in Figure 1 shows a multiplexer for the 
system data bus. This multiplexer controls the data flow into 
memory from either processor A or processor B, during write 
operations. The select to the MUX is controlled by RWROA, the 
same signal that controls the select to the processor address 
MUX, allowing address Port A to implicitly have higher priority 
during process memory access. 

The following sections provide general information about 
interfacing the arbiter to various major types of processors; they 
are: the iAPX-type, the AmZSOOO, and the MC6S000-type 
processors. The PAL devices for the three types of processors 
will be identified as follows: TIMGEN2A and TIMGEN2B are for 
the iAPX-type; TIMGEN3A, TIMGEN3B for the AmZSOOO; and 
TIMGEN4A and TIMGEN4B are for the MC6S000-type. When 
mixing different processor in an interface, some of the control 
signals mentioned for the particular groups may need to be 

modified to be applicable to the processor under consideration. 
The designer can tailor the design to meet specific needs with 
simple modification to the PAL device logic equations provided. 

Interfacing the iAPX· Type Processors 
The control signals required for TIMGEN2A are shown in Fig­
ure 4. These signals are: CS, CYCREO, FR and the delay line 
outputs (TAP1-TAP5). CS and CYCREQ are provided by the 
processor. FR is the refresh request from the refresh timer. 
Sources to this input can be provided either by the timer 
described in this application note or other appropriate sources. 
TAP1-TAP5 are the timing delay outputs used to regulate many 
of the signal generation. The outputs generated from this PAL 
device are TAPO (RASI), XACKA, XACKB, and the grants for 
processor and refresh requests. 

The signals for TIMGEN2B are RD, WR, BHE, and AOO. For 
byte/word transfers, the designer should consult the appropriate 
E!E.£essor data sheet. In general, this processor group uses 
BHE in conjunction with AOO to define the transfer function of the 
data bus. The outputs from this PAL device are: Write Enables, 
Latch Enables, and Output Enables. 

Interfacing the AmZ8000 
The control signals required for this interface are shown in Fig­
ure 5. For TIMGEN3A, the general controls are CS and 
CYCREO, FR and the delay line outputs (TAP1-TAP5). CS and 
CYCREO are generated by the processor. FR is the refresh 
request from the refresh timer. TAP1-TAP5 are the delay line 
outputs used to regulate the signal generation. The outputs from 
this PAL device are WAlTA, WAITB, TAPO (RASI), and the 
grants for processor and refresh requests. 

The control signals for TIMGEN3B are Riw, DS, AOO and B/W, 
For byte/word transfers, the designer should consult the proces­
sor data sheet for correct signal generation. The outputs from 
this PAL device are: Write Enables, Latch Enables and Output 
Enables. 

Interfacing the MC68000· Type 
Processors 
The control signals required for this interface are shown in Fig­
ure 6. For TIMGEN4A, the general controls are CS and 
CYCREO, FR and the delay line outputs (TAP1-TAPS). CS and 
CYCREO are generated by the processor. FR is the refresh 
request from the refresh timer. TAP1-TAP5 are the delay line 
outputs used to regulate signal generation. The outputs 
generated from this PAL device are: DTACKA, DTACKB, TAPO 
(RASI) and the grants for processor and refresh request. 

The control signals for TIMGEN4B are R/W, UDS, and LDS. For 
byte/word transfers, the designer should consult the respective 
processor data sheet for correct signal generation. For example, 
to obtain eithe~e or w0!:9. transfers with the MC6S000, three 
signals, UDS, LDS and R/W, must provide the correct levels to 
guarantee the correct data transfers, see MC6S000 Data Bus 
Control Table in the User's Manual. The outputs generated from 
this PAL device are: Write Enables, Latch Enables, and Output 
Enables. 

The programmable logic device equations for all three interfaces 
are shown in Figures 7, S, and 9. 

~ Monolithic W Memories ~ 2·217 

Ell 



General.Purpose Dual·Port Arbiter 

CSA .. 

CYCREOA ... -_ ... --
CSB ... XACKA ... 

~ ~ --
CYCREOB ... XACKB .. 

~ .. 
TAP 1 .. AmPAL16L8A TAP 0 .. 

po 

TAP 2 ... TIMGEN2A RFRO ... .. .. 
TAP3 .. RWROA .. 

po ... 
TAP4 ... RWROB ... .. .. 
TAPS .. _ ... 

FR ... .. 

TAP3 ... .. 
GSA .. -- ... 
RDA .. 

~ 

WRA ... .. 
BHENA .. OEA ... ... 

AOOA .. 
OEB 

... 
--- ~ .. 
BHENB ... 

WEL 
-- po AmPAL22V10A ... 
WRB ... WEH 

.. 
-- .. TIMGEN2B .. 
ROB ... LEA -- .. .. 
CSB .. .. 

~ LEB ... 
AOOB ... .. 
-- .. 
SUP .. 

RFRO ... 

RWROA ... ... 
AWROB .. .. 

08479A 3·191 

Figure 4. Interface for IAPX-Type Processors 

2·218 ~ Monollthlo IFJJI Memories ~ 



General.Purpose Dual·Port Arbiter 

CSA .. 
· 

CYCAEOA ... · ---
CSB ... WAlTA .. · ,.. ---

CYCAEOB ... WAITB ... · 
TAP 1 .. AmPAL18P8 TAP 0 .. · ~. --
TAP2 ... TIMGEN3A AFAO ..... · ---'" 
TAP3 ... AWAOA ... · ,.. 
TAP4 .. AWAOB .... · TAPS .. - . 

FA ... .. 

CSA ... .. 
AWA ... -- .. 
DSA ... -- .. 
BWA ... · AOOA .. 

OEA -- .. 
BWB .. 

OEB 
.. 

-- . .. 
DSB .. 

WEL 
--.. 

-- . AmPAL22V10 .... 
AWB ... WEH 

. 
-- .. TIMGEN38 .. 
CSB .. ... .. LEA .. 

AOOB .. .. 
LEB .... 

SUP ... -- .. 
AFAO .. --- . 

AWAOA .. 

AWAOB ... .. 
TAP3 ... · 

08479A 3-192 

Figure 5. Interface for Z8000.Type Processors 

~ Monolithic m Memories ~ 2·219 



General.Purpose Dual·Port Arbiter 

GSA .... --.. 
CYCREQA ~ .. 

CSB .... DTACKA .. 
-'P ." 

CYCREOB ... DTACKB ... .. 
TAP 1 .... AmPAL16L8A RFRO . .. --_ .. 
TAP 2 .... TIMGEN4A RWROA ... ... 
TAP 3 _ ... RWROB .. .. .. 
TAP 4 .... TAP 0 .... ... .. 
TAP 5 ... - .. 

FR .... 
- ... 

CSA .. 

RWA _ .. .. 
UDSA ... 

lDSA _ ... .. 
LDSB ... 

LEA ... ... 
UDSB .... 

LEB 
.. 
.... 

RWB ... 
OEA .. AmPAL22V10A .. 

CSB .... 
OEB 

.. 
TIMGEN4B .. 

TAP3 ... 
WEH -- .. .. 

SUP .... .. 
WEL .. 

RFRO .. --- .. 
RWROA ... -----.. 
RWROB ... 

08479A 3-193 

Figure 6. Interface for MC68000.Type Processors 

2·220 ~ Monolithic W Memories l1 



General.Purpose Dual·Port Arbiter 

TITLE INTERFACE TIMING PAL DEVICE #1 
PATTERN A3-249A 
REVISION 01 
AUTHOR J. ENGINEER 
COMPANY ADVANCED MICRO DEVICES 
DATE 12/15/87 

CHIP TIMGEN2A PAL16L8 

/CSA /CYREQA /CSB /CYREQB TAP1 TAP2 TAP3 TAP4 TAPS GND 
/FR /XACKA /XACKB TAPO FRH /RFRQ /RWRQA /RWRQB NC VCC 

EQUATIONS 

/FRH FR*/FRH + TAPO*RFRQ 

RFRQ FR*FRH*/RWRQA*/RWRQB*/TAPS + RFRQ*/TAPS 

RWRQA CSA*CYREQA*/RFRQ*/RWRQB*/TAPS + RWRQA*/TAP5 

RWRQB 

/TAPO 

CSB*CYREQB*/RFRQ*/RWRQA*/TAPS + RWRQB*/TAPS 

/RFRQ*/RWRQA*/RWRQB + TAP4 ;PAL device for 8086,80186 
;and 80286 processors 

XACKA CSA*RWRQA*/RFRQ*TAP4 
XACKA.TRST = CSA*RWRQA*/RFRQ*TAP4 

XACKB = CSB*RWRQB*/RFRQ*/RWRQA*TAP4 
XACKB.TRST = CSB*RWRQB*/RFRQ*/RWRQA*TAP4 

TITLE INTERFACE TIMING PAL DEVICE #2 
PATTERN A3-249B 
REVISION 01 
AUTHOR J. ENGINEER 
COMPANY ADVANCED MICRO DEVICES 
DATE 12/15/87 

CHIP TIMGEN2B PAL22V10 

/CSA /RDA /WRA /BHENA AOOA /BHENB /WRB /RDB /CSB NC TAP3 GND 
AOOB /OEA /OEB /SUP /RFRQ /RWRQA /RWRQB /WEL /WEH LEB LEA vec 
GLOBAL 

EQUATIONS ;PAL DEVICE FOR 8086 PROCESSORS 

WEH /SUP*RWRQA*/RFRQ*CSA*WRA*BHENA 
+ /SUP*RWRQB*/RFRQ*/RWRQA*CSB*WRB*BHENB 

WEL /SUP*RWRQA*/RFRQ*CSA*WRA*/AOOA 
+ /SUP*RWRQB*/RFRQ*/RWRQA*CSB*WRB*/AOOB 

OEA CSA*RWRQA*/RFRQ*RDA 

OEB CSB*RWRQB*/RFRQ*RDB 

LEA CSA*RWRQA*/RFRQ*RDA*TAP3 

LEB CSB*RWRQB*/RFRQ*RDB*TAP3 

Figure 7. PLPL Specification for the Example of Figure 4 

~ Monolithic IFJJ) Memories ~ 2·221 



2·222 

General.Purpose Dual·Port Arbiter 

TITLE INTERFACE TIMING PAL DEVICE #1 
PATTERN A3-2S0A 
REVISION 01 
AUTHOR J. ENGINEER 
COMPANY ADVANCED MICRO DEVICES 
DATE 12/15/87 

CHIP TIMGEN3A PAL18P8 

/CSA /CYREQA /CSB /CYREQB TAP1 TAP2 TAP3 TAP4 TAPS GND 
/FR /WAITA /WAITB TAPO FRH /RFRQ /RWRQA /RWRQB NC VCC 

EQUATIONS 

/FRH FR*/FRH + TAPO*RFRQ 

RFRQ FR*FRH*/RWRQA*/RWRQB*/TAPS + RFRQ*/TAPS 

RWRQA CSA*CYREQA*/RFRQ*/RWRQB*/TAPS + RWRQA*/TAPS 

RWRQB CSB*CYREQB*/RFRQ*/RWRQA*/TAPS + RWRQB*/TAPS 

/TAPO /RFRQ*/RWRQA*/RWRQB + TAP4 

/WAITA = CSA*RWRQA*/RFRQ*TAP4 
WAITA.TRST = CSA*RWRQA*/RFRQ*TAP4 

iPAL device for z8000 
iprocessor 

/WAITB = CSB*RWRQB*/RFRQ*/RWRQA*TAP4 
WAITB.TRST = CSB*RWRQB*/RFRQ*/RWRQA*TAP4 

TITLE INTERFACE TIMING PAL DEVICE #2 
PATTERN A3-250B 
REVISION 01 
AUTHOR J. ENGINEER 
COMPANY ADVANCED MICRO DEVICES 
DATE 12/15/87 

CHIP TIMGEN3B PAL22V10 

/CSA RWA /DSA BWA AOOA BWB /DSB RWB /CSB NC TAP3 GND 
AOOB /OEA /OEB /SUP /RFRQ /RWRQA /RWRQB /WEL /WEH LEB LEA VCC 
GLOBAL 

EQUATIONS iPAL DEVICE FOR Z8000 PROCESSOR 

WEH /SUP*RWRQA*/RFRQ*CSA*/RWA*/BWA 
+ /SUP*RWRQA*iRFRQ*CSA*/RWA*BWA*AOOA 
+ /SUP*RWRQB* /i;.FRQ* /RWRQA*CSB*/RWB*/BWB 
+ /SUP*RWRQB* /R!:?Q* /RWRQA*CSB* /RWB*BWB*AOOB 

WEL /SUP*RWRQA*/RFRQ*CSA*/RWA*/BWA 
+ /SUP*RWRQA*/RFRQ*CSA*/RWA*BWA*/AOOA 
+ /SUP*RWRQB*/RFRQ*/RWRQA*CSB*/RWB*/BWB 
+ /SUP*RWRQB*/RFRQ*/RWRQA*CSB*/RWB*BWB*/AOOB 

OEA CSA*RWRQA*/RFRQ*RWA*DSA 

OEB CSB*RWRQB*/RFRQ*RWB*DSB 

LEA CSA*RWRQA*/RFRQ*RWA*TAP3 

LEB CSB*RWRQB*/RFRQ*RWB*TAP3 

Figure 8. PLPL Specification for the Example of Figure 5 

~ Monolithic W Memories ~ 



General.Purpose Dual·Port Arbiter 

TITLE INTERFACE TIMING PAL DEVICE #1 
PATTERN A3-251A 
REVISION 01 
AUTHOR J. ENGINEER 
COMPANY ADVANCED MICRO DEVICES 
DATE 12/15/87 

CHIP TIMGEN4A PAL16L8 

/CSA /CYREQA /CSB /CYREQB TAP1 TAP2 TAP3 TAP4 TAP5 GND 
/FR /DTACKA /DTACKB TAPO FRH /RFRQ /RWRQA /RWRQB NC VCC 

EQUATIONS 

/FRH FR*/FRH + TAPO*RFRQ 

RFRQ FR*FRH*/RWRQA*/RWRQB*/TAP5 + RFRQ*/TAP5 

RWRQA CSA*CYREQA*/RFRQ*/RWRQB*/TAP5 + RWRQA*/TAP5 

RWRQB CSB*CYREQB*/RFRQ*/RWRQA*/TAP5 + RWRQB*/TAP5 

/TAPO /RFRQ*/RWRQA*/RWRQB + TAP4 

DTACKA = CSA*RWRQA*/RFRQ*TAP4 
DTACKA.TRST = CSA*RWRQA*/RFRQ*TAP4 

iPAL device for 68000 
iprocessor 

DTACKB = CSB*RWRQB*/RFRQ*/RWRQA*TAP4 
DTACKB.TRST = CSB*RWRQB*/RFRQ*/RWRQA*TAP4 

TITLE INTERFACE TIMING PAL DEVICE #2 
PATTERN A3-251B 
REVISION 01 
AUTHOR J. ENGINEER 
COMPANY ADVANCED MICRO DEVICES 
DATE 12/15/87 

CHIP TIMGEN4B PAL22V10 

/CSA RWA /UDSA /LDSA NC5 /LDSB /UDSB RWB /CSB NC TAP3 GND 
NC10 /OEA /OEB /SUP /RFRQ /RWRQA /RWRQB /WEL /WEH LEB LEA VCC 
GLOBAL 

EQUATIONS iPAL DEVICE FOR 68000 PROCESSOR 

WEH /SUP*RWRQA*/RFRQ*CSA*/RWA*UDSA 
+ /SUP*RWRQB*/RFRQ*/RWRQA*CSB*/RWB*UDSB 

WEL /SUP*RWRQA*/RFRQ*CSA*/RWA*LDSA 
+ /SUP*RWRQB*/RFRQ*/RWRQA*CSB*/RWB*LDSB 

OEA CSA*RWRQA*/RFRQ*RWA*(UDSA + LDSA) 

OEB CSB*RWRQB*/RFRQ*RWB*(UDSB + LDSB) 

LEA = CSA*RWRQA*/RFRQ*RWA*TAP3 

LEB = CSB*RWRQB*/RFRQ*RWB*TAP3 

Figuro 9. PLPL Spocification for tho Examplo of Figuro G 

~ Monolithic IFJFJ] Memories ~ 

EJI 

2·223 



Dynamic Memory Control 
State Sequencer 

An example of a control path application for a PAL device is in a 
memory system. Most large memory systems use MaS 
dynamic RAMs. Their high density allows packing a large 
memory size into a small board area. Dynamic RAM prices also 
make them very cost effective. 

Dynamic RAMs require external logic for address multiplexing, 
timing generation and refresh control. This application note 
shows the use of a PAL 16R8A and an Am2964B to provide the 
necessary external logic for a typical dynamic memory system. 
The PAL device is used as a state sequencer for timing genera­
tion and the Am2964B provides specialized control circuitry and 
reduces timing skew between control signals. This implementa­
tion replaces about 20 SSI/MSI packages. 

I" 
/8 

/ 

/8 
/ 

/2 
I 

--,. 

--,. 

II) r---+ 
:::> 

Design Requirements 
A system block diagram is shown in Figure 1. The control bus 
provides most of the inputs to the PAL state sequencer. Th~e 
include: Memory Request (MREQ), READ/WRITE (RW), 
RESET (RST), Refresh Clock (RFCK), and Read-Modify-Write 
(RMW). Two upper address lines of the address bus serve as 
board selects (BS 1 , BSo), and one local signal, SLOW/FAST 
Memory (FAST), allows use of either slow or fast memory. A 
READ/WRITE sequence is initialized by MREQ ANDed with the 
proper board select conditions and a refresh sequence is in­
itialized by RFCK. If both sequences are requested at the same 
time, a refresh sequence is performed. RW when HIGH selects 
a READ operation and when LOW selects a WRITE operation. 
RMW when HIGH selects a Read-Modify-Write cycle. 

A7-Ao 
/8 

ADR / 

A1s-Aa 

RSEL 

CLR 
Am2964B ~4 

~ 
RAS 

/ 

MS DYNAMIC 
MEMORY 

CAS ARRAY 

r mH /1 CD CAS 
II) / 
II) 
W 
a: 
c 
c BS1 < 

BSo 

f"""o AmPAL16R8A . 
MREQ 

II) 
:::> 

RFCK WE CD 
-' 
0 RS'i' sv a: 

I 
I-
Z 
0 RMW 
u 

~ ~ 
RW FAST ~6 

... -, 

~ , DATA BUS l 

03862A·86 
Figure 1. Dynamic Memory Controller 

2·224 ~ Monolithic W Memories ~ 



Dynamic Memory Control State Sequencer 

The outputs of the PAL device provide the timing and control 
inputs to the Am2964B. These are: Row Address Strobe (RAS), 
Address Multiplexer Select (MS), Column Address Strobe 
(CAS), and Refresh (RFS.,!:!L In addition, the PAL device pro­
vides the Write Enable (WE) to the Memory Array. Figure 1 
shows the timing for fast READ/WRITE cycles. The memory 
cycle is initiated b~EQ going LOW. The PAL device re­
sponds by bringing RAS LOW at to, followed by MS going LOW 
at t1, and finally bringing CAS LOW at t2' If RW is LOW, WE is 

also brought LOW at t2' WE is held LOW until t4' RAS, MS and 
CAS are brought HIGH at t5. The rising edge of any of these 
three signals may be used to latch output data during a Read 
operation. The state sequencer then disabled for three states to 
allow for memory precharge. 

"M"':~: 
MREQ 

RW 

RAS 

MS 

CAS 

WE 

25M Hz CLK 

By holding the FAST input LOW, an extended memory cycle is 
available to accommodate slower RAMs. The timing appears in 
Figure 3. 

~ h b b ~ h ~ b 

\ I \ 

'-------------' '---

\ I 
\ I 

\ I 
, I 

'----' 
03862A·87 

Figure 2. Fast READIWRITE Cycle 

ADRmt: 

Mmrn~~ ________________________________________ ~1 

RW 

MS 

\ I 

'-----------------------' 
\~----------------------~I 

\~--------------------~I 
\~----------------~I 
, I 

'--------' 

Figure 3. Extended Memory Cycle 

~ Monolithic m Memories ~ 

, 
'- -

03862A·88 

2·225 

EJI 



Dynamic Memory Control State Sequencer 

RAS-Only refresh cycle timing is shown in Figure 4. The refresh 
cycle is initiated when RFC.!S....9ges HIGH. The RFSH output 
goes LOW at to, followed by RAS at t1' The Am2964B supplied 
the necessary refresh address. RAS is brought back HIGH at ts 
and precharge is then timed out. An extended refresh cycle for 
slower memory is available also. Burst refresh can be accom­
plished by leaving RFCK HIGH for as many refresh cycles as 
desired. 

Read-Modify-Write cycle timing is activated by setting RMW 
HIGH. This is especially valuable in systems with Error Detec­
tion/Correction (EDC) capability. Data can be read, modified by 
the EDC circuitry (Am2960), and if necessary, written back to 
memory in a single memory cycle. Read-Modify-Write cycle 
timing is shown in Figure 5. Note that WE goes LOW at the end 
of the cycle. 

25MHz ClK 

RFCKJ \ --------------------
\'--__________ -J1 ______ --

\'--____ -JI 
MS 

03862A-89 

Figure 4. RAS-Only Refresh Cycle 

25 MHz ClK 

ADDRESS~-~~ __________________ ~_=========~==== __ _ 

MRro \~ _____________ --JI ,"-__ _ 

RMW WIllI 'Wdw. 
, , 
~-----------------------~ 

, 
~---

RW 

~~~------------------------------~I 
MS _--------------------1

\'--__________________ -J1
\ I
~---'

03862A-90

Figure 5. Read-Modify-Write Cycle

2·226 ~ Monolithic W Memories ~

Dynamic Memory Control State Sequencer

Design Approach
The first step in the state sequencer design process is to define
the timing waveforms for all of the functions desired. Figures 2,
3, 4, and 5 are the result. Next, characteristics of the resulting
waveforms are examined. Initially, the sequencer is waiting on
the MREQ or RFCK input. If MREQ goes LOW, the RAS to MS
to CAS sequence is initiated. If RFCK goes HIGH, the RFSH to
RAS sequence is initiated. Both sequences are equivalent to a
simple "shift" function. Once the shift sequence is completed
and the signals are asserted, they must stay asserted for a
specific time depending on the selected function. To time the

RMW-.

FAST

RST-.

FUNCTION

MREO-. SELECTI
CONTROL 4

'S51s

RFCK -.

length that signals must stay asserted requires a "counting"
function. The precharge sequence at the end of all cycles also
requires "counting". This partitions most of the design int~ t~o
smaller functional blocks; a shifter and a counter. The remammg
function select and control logic is partitioned into a "multiplexer­
like" functional block. Figure 6 shows the PAL device partitioned
into functional blocks. By dividing the design into blocks, its
implementation becomes simple.

Figure 7 shows PAL device equations forthe PAL 16R8Adynamic
memory state sequencer.

CP

RST

SHIFT

RST

SL

INC/DEC

HOLD

03862A-91

Figure 6. Partitioned Design/PAL Device Equivalent

~ Monolithic IFJJ] Memories ~ 2·227

2·228

Dynamic Memory Control State Sequencer

TITLE
PATTERN
REVISION
NAME
COMPANY
DATE

DYNAMIC MEMORY
AMP3-285
01
JOE ENGINEER
ADVANCED MICRO
11/25/87

CHIP MEMORY1 PAL16R8

STATE SEQUENCER

DEVICES

CK RFCK /RST RW /MREQ RMW FAST BS1 BSO GND
/E /QO /Q1 /Q2 /RFSH /WE /CAS MS /RAS VCC

EQUATIONS

QO := /RST*/MS*/QO
+ /RST*RFSH*RAS*/QO
+ /RST*/FAST*/QO*Q2
+ /RST*/FAST*/QO*Q1
+ /RST*/FAST* Q1*Q2
+ /RST* FAST*/RMW*QO*/Q1
+ /RST* FAST*/RMW*QO*/Q2

01 := /RST*RAS*/QO* Q1
+ /RST*RAS* QO*/Ol
+ /RST*RAS* 00* Q1
+ /RST*RAS*/QO* Q2

02 := /RST*RAS* Q2
+ /RST* 00*Q2
+ /RST*RAS*OO* Q1

RFSH := /RST*RFCK*/Q2*/Q1*/QO*/RAS
+ /RST*RFSH*RAS
+ /RST*RFSH*/FAST* 01
+ /RST*RFSH* 02

WE := /RST*/RW*/MS*/RFSH*/RMW*/QO*/Q2
+ /RST*/RW*/MS*/RFSH*/RMW*/Q1*/Q2

CAS

/MS

+ /RST*/RW*/MS*/RFSH* RMW*/QO* Q1 *Q2
+ /RST*/RW*/MS*/RFSH* RMW* 00*/Q1 *02

:= /RST*/RFSH*/MS*/QO
+ /RST*/RFSH*/MS*/Ql
+ /RST*/RFSH*/MS*/Q2

:= /RST*/RFSH*RAS*/QO
+ /RST*/RFSH*RAS*/Q1
+ /RST*/RFSH*RAS*/Q2

RAS := /RST*/RFCK*/QO*/Q1*/02~MREQ*/BS1*/BSO
+ /RST*/RFSH*/QO*/Q1*/Q2*MREQ*/BS1*/BSO
+ /RST* RFSH*/QO*/Q1*/Q2
+ /RST*RAS*/QO
+ /RST*RAS*/Q1
+ /RST*RAS*/Q2

Figure 7. Source Listing for Dynamic Memory Control State Sequencer

~ Monolithic W Memories ~

a-Bit Error Detection
and Correction

Single bit error detection and correction for an 8-bit data word
requires 4 check bits, making a 12-bit code word. The simplest
code to design is a 12-bit Hamming code. To arrive at the code,
we set up the following matrix:

B7 B6 B5 B4 B3 B2 B1 BO C3 C2 C1 CO

S3 X X X X X

S2 X X X X X

S1 X X X X X X

SO X X X X X X

The vertical columns are in a counting pattern, excluding
the single bit values of 8, 4, 2, 1. The single bit values are
assigned to the check bits C3-CO. By reading horizontally
across the rows of the matrix, we get the check equations
by exclusive OR'ing the data bits with X's In that row and
equating that to the check bit with an X in that row:

C3 B7 ffi B6 ~ B5 ~ B4

C2 B7 ffi B3 ffi B2 ~ B1

C1 86 ~ B5 ffi B3 ffi B2 ffi BO

CO B6 ffi B4 ffi B3 $ B1 ffi BO

The check bits are stored along with the data bits in the
following message format:

M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1

B7 B6 B5 B4 C3 B3 B2 B1 C2 BO C1 CO

When a read occurs, the check bits are recalculated and
compared with the stored bits to generate the 4 bit syndrome:

S3

S2

S1

SO

B7 ~ B6 ffi B5 ffi B4 ffi C3

B7 $ B3 $ B2 ffi B1 ffi C2

B6 <il B5 ffi B3 $ B2 ffi BO ffi C1

B6 $ B4 ~ B3 ffi B1 ~ SO ffi CO

The 4 syndrome bits indicate the location of any single bit errors
in the 12-bit message format which may than be corrected by
inversion.

The Hamming code works by introducing enough other code
words to create a difference of exactly 3 bits between legal code
words. All other code words are illegal. If, in storage, one bit
flips, the result is an illegal word. In addition, there is only one
word in the set of legal code words from which it could have
come, hence the correction.

The Hamming matrix and resultant sets of check bit and
syndrome equations are selected so that when a single bit error
occurs, the syndrome gives the position of that bit (either data
or check) in the 12-bit message format.

Example B7 BO
random data word: 0 0 0

check bits:

C3 B7 ffi B6 ffi B5 ~ B4

1 ffi ffi 0 ffi 1

C2 B7 ~ B3 $ B2 ffi B1

1 ffi ffi 1 ffi 0

C1 B6 $ B5 ffi B3 ffi B2 $ BO

1 ffi 0 ffi 1 ffi 1 ~ 0

CO B6 ffi B4 ffi B3 ~ B1 $ BO

ffi ffi 1 ffi 0 ffi 0

message:

M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 Mj
1 1 0 1 1 1 1 0 1 0 1 1

B7 B6 B5 B4 C3 B3 B2 B1 C2 BO C1 CO

EDAC System Block Diagram

ADDR DATA
BUS BUS

16 TIMING
AND

CONTROL

4-BIT

+-~'--·~6~~~~~~

CORRECTED
CHECK

LOGGING

CONTROL
BUS

~ Monolithic W Memories ~ 2·229

B

8·Bit Error Detection and Correction

assume no error:

S3 87 ffi 86 ffi 85 ffi 84 ffi C3

ffi ffi 0 ffi 1 ffi 1 0

S2 87 ffi B3 ffi 82 ffi 81 ffi C2

1 ffi 1 ffi 1 ffi 0 ffi 1 0 ,
S1 86 ffi B5 ffi 83 ffi 82 ffi 80 ffi C1

1 ffi 0 ffi 1 ffi ffi 0 ffi 0

SO 86 .ffi 84 ffi 83 ffi 81 ffi BO ffi CO

ffi ffi ffi 0 ffi 0 ffi 0

syndrome 0000 indicates no error
assume data bit B7 flips (1 - 0):

S3 Q ffi 1 ffi 0 ffi 1 ffi

S2 Q ffi 1 ffi ffi 0 ffi 1

S1 ffi 0 ffi ffi ffi 0 ffi 0

SO ffi ffi ffi 0 ffi 0 ffi 0

syndrome 1100 indicates M12 or 87 is in error
assume check bit C3 flips (1 - 0):

S3 1 ffi 1 ffi 0 ffi 1 ffi Q
S2 ffi 1 ffi ffi 0 ffi 0

S1 ffi 0 ffi ffi 1 ffi 0 ffi 0

SO ffi ffi ffi 0 ffi 0 ffi 0

syndrome 1000 indicates M8 or C3 is in error

While the check bits can be generated with a 256x4 PROM if
the tolerances are loose, high performance systems will need
to latch or register the check bits to meet cycle time require­
ments. Similarly, the syndrome bits can be generated with a
4096x4 PROM but in both cases the PAL16X4 is the high
performance choice.

The worst case equations are S1 and SO with a 6 term exclusive
OR. We use 2 properties of the exclusive OR to fit the equations
into the 16X4:

1. Associativity
Affi8ffiC=(Affi8)ffiC

2. A ffi 8 ffi C = ABC + A8C + ABC + A8C

Since a 3 term exclusive OR can be realized with a 4 product
sum in sum of products form, a 6 term exclusive OR can be
realized by exclusive OR of 2 4 product sums. This is exactly
the 16X4 configuration.

Check Bit Equations

C3 = 87 ffi 86 ffi 85 ffi B4
= (87 • 86 + 87 . 86) EB (85 • §4 + 85 • 84)

C2 = 87 ffi 83 ffi 82 ffi 81

= (87 • 83 + 87 • 83) ffi (82 • B1 + 82 • 81)

C1 = 86 ffi 85 ffi 83 ffi 82 ffi 80

= (86 • 85 • 83 + B6 . Bs . 83 + B6 . 85 • 83 + 86 • 85 • 83)

ffi (82 • 80 + B2 . BO)

CO = 86 ffi 84 ffi 83 ffi 81 ffi 80

= (86 • 84 • 83 + 86 • §4 . 83 + B6 • 84 • 83 + 86 • §4 . 83)

ffi (81 • 80 + 81 . 80)

Syndrome Bit Equations

S3 = 87 ffi86 ffi 85 ffi B4 ffi C3

= (87 • 86 • B5 + 87 • 86 • 85 + B7 • 86 • 85 + 87 • 86' 85)

ffi (84 • C3 + §4 . C3)

S2 = 87 ffi 83 ffi 82 ffi 81 ffi C2

= (87 • 83 • 82 +- B7 • B3 . 82 + 87 • 83 • 82 + 87 • 83 • 82)

ffi (81 • C2 + 81 • C2)

S1 = 86 ffi B5 ffi 83 ffi 82 ffi 80 ffi C1
= (86 • 85 • B3 + §6 . §5 • 83 + B6 • 85 • §3 + 86 • 85 • 83)

ffi (82 . 80 • C1 + B2 . 80 • C1 + 82 • 80 • C1 + 82 • BO)

SO = 86 ffi 84 ffi B3 ffi 81 ffi 80 ffi CO

= (86 • B4 • B3 + B6 • §4 • 83 + B6 • 84 • 83 + 86 • §4 . 83)

ffi (81 • 80 • CO + 81 • 80 • CO + 81 • 80 • CO + 81 • 80 • CO)

The error correction block decodes the 4 syndrome bits, and, if
they are not 0000, inverts the indicated bit in the message
format. The equations:

M12 (= 87C) = S3 • S2 • Sf· SOffi 87

=S3.~.~.~.~+~.~.~.~.~

= S3 • S2 • S1 • So . 87 + 53' 87 + S2 • 87 + S1

• 87+ SO, 87

M11 (= 86C) = S3 • S2 • S1 • SO • 86· 53' 86 • S2 • 86 + 51
• 86' So· 86

M10 (= B5C) = S3 • S2 • S1 • SO • 85 + S3' B5 + S2 • 85 + 51
• 85+ SO ·85

M9 (= B4C) = S3 • S2 • S1 • SO • 84 + S3' B4 + S2 • B4 + S1

• 84+ SO .B4

M8 (= C3C) = S3 • S2 • 51 . SO • C3 + S3' C3 + S2 • C3 + S1

• C3+S0 'C3

M7 (= B3C) = 53 . S2 • S1 • SO • 83 + S3' B3 + S2 • 83 + 51
• 83+SO' 83

M6 (= 82C) = S3 • S2 • S1 • SO . 82 + S3' 82 + S2 • 82 ... S1

• 82+SO+82
M5 (= 81C) = 53 . S2 ·51 . SO • 81 + S3' 81 + S2 • 81 + S1

• 81+SO' B1

M4 (= C2C) = 53 . S2 • 51 . SO • C2 + S3' C2 + S2 • C2 + S1

• C2+SO ·C2

M3 (= BOC) = 53 . 52 . S1 • SO • SO + S3' 80 + S2 • 80 + 51
• 80+ SO • 80

M2 (= C1 C) = S3 • S2 • S1 • SO • C1 + S3' C1 + S2 .• C1 + 51
• C1+SO 'C1

M1 (= COC) = S3 . S2 ·51 . SO • CO + S3' CO + S2 • CO + S1

'CO'SO'CO

ERROR = S3 • S2 • S1 • SO

ERROR Is an active high error Indicator available for error
logging along with the 4 syndrome bits.

To use 2 PAL 16LB's for the error correction block, we need
only invert the message bits to get active true outputs.

2·230 ~ Monolithic W Memories ~

a·Bit Error Detection and Correction

Description

This PAL device generates 4 check bits in a 12 bit hamming code word to provide error detection
and correction on an 8 bit data word.

PAL16X4

~ Monolithic m Memories ~

Ell

2·231

B·Bit Error Detection and Correction

Description

This PAL device generates the syndrome bits for a 12 bit hamming code word as a function of the
8 data bits and the 4 check bits to point to any single bit in error.

PAL16X4

SYNCLK 1 J---i>--, VCC

(

BO 4

CHECK B1
BITS

B2

B3

11 :) SYNDROME
BITS

L..L..I.,nL..L.......... A2

L..L..I,'OL..L.......... A3

2·232 ~ Monollthlo W Memories 11

a·Bit Error Detection and Correction

Description

This PAL device performs error correction of bits 82-87 based on the 4 bit error syndrome SO-S3.

1

531

SYNDROME 52
BITS Si

so

PAL16L8

VCC

6MSB
ERROR

CORRECTED
BITS

~ Mono!lthlc m Memories l1 2·233

8-Bit Error Detection and Correction

Description

This PAL device performs error correction of bits 80-81 and checks bits CO-C3 based on the 4 bit
error syndrome SO-S3.

PAL16L8

1
13 1

SYNDROME 52 2

BITS 51 3

so 4

VCC

19 B1 C} 2 LSB ERROR

J---lt>-~ BOC CORRECTED BITS

17 :: I CORRECTED
CHECK

~I>o-~ C1C

~:>o-~ cac

2·234 ~ Monolithic W Memories ~

a·Bit Error Detection and Correction

PAL16X4 PAL DESIGN SPECIFICATION
CBG B. BRAFMAN 02/16/81
CHECK BIT GENERATOR
MMI FIELD APPLICATIONS ENGINEER YORBA LINDA, CALIFORNIA
CHKCLK B7 B6 NC NC NC NC B5 84 GND
/oe B3 B2 /CO /Cl /C2 /C3 Bl BO vec

C3 :"" B7*/B6 1B7 :+: B6
+ /B7* B6 1 :+:
+ GND 1 DO NOT BLOW THIS PRODUCT LINE
+ GND 1 DO NOT BLOW THIS PRODUCT LINE

:+1 B5*/B4 1B5 :+: B4
+ /B5* B4

C2 := B7*/B3 1B7 :+: B3
+ /B7* B3 :+:
+ GND 1 DO NOT BLOW THIS PRODUCT LINE
+ GND 1DO NOT BLOW THIS PRODUCT LINE

:+: B2*/Bl 1B2 :+: Bl
+ /B2* Bl

Cl := B6* B5* B3 ;B6 :+: B5 :+: B3
+ /B6*/B5* B3
+ /B6* B5*/B3 :+:
+ B6*/B5*/B3

:+: B2*/B0 1B2 :+: BO
+ /B2* BO

co := B6* 84* B3 1B6 :+: B4 :+: B3
+ /B6*/B4* B3
+ /B6* B4*/B3 :+:
+ B6*/B4*/B3

:+: Bl*/BO 1Bl :+: BO
+ /Bl* BO

~ Monolithic W Memories l1

EJII

2·235

PAL16X4
SBG
SYNDROME BIT GENERATOR

8-Bit Error Detection and Correction

PAL OESIGN SPECIFICATION
B. BRAFMAN 03/13/81

MMI FIELO APPLICATIONS ENGINEER YORBA LINDA,
SYNCLK 07 06 BO B1 B2 B3 05 04 GND

CALIFORNIA

/oe 03 02 A3 A2 A1 AO 01 00 vec

IN THE ABOVE PIN LIST, THE FOLLOWING SUBSTITUTIONS HAVE BEEN
MADE TO ACCOMOOATE THE SPECIFIC FORMAT (FIXEO SYMBOLS) FOR THE
ARITHEMETIC PAL DEVICES IN PALASM SOFTWARE :

07 MEANS B7
06 MEANS B6
05 MEANS B5
04 MEANS B4
03 MEANS B3
02 MEANS B2
01 MEANS B1
00 MEANS BO

BO MEANS /C3
B1 MEANS /C2
B2 MEANS /C1
B3 MEANS /CO
AO MEANS /S3
A1 MEANS /S2
A2 MF.ANS /Sl
A3 MEANS ISO

BO-B7 ARE THE BITS OF THE OATA WORD.

(CHECK BIT 3)
(CHECK BIT 2)
(CHECK BIT 1)
(CHECK BIT 0)
(SYNDROME BIT 3)
(SYNDROME BIT 2)
(SYNDROME BIT 1)
(SYNDROME BIT 0)

THE SUBSTI'lUTIONS APPLY BELOW WITH THE EXCEPTION OF COMMENTS.

/AO. := 07* 06* 05 1B7 :+: B6 :+: B5
+ /D7*/D6* 05
+ /D7* 06*/D5 :+:
+ 07*/D6*/D5

:+: 04* (/BO) lB4 :+: C3
+ /D4*(BO)

/Al := 07* 03* 02 1B7 :+: B3 :+: B2
+ /D7*/D3* 02
+ /D7* D3*/D2 :+:
+ 07*/D3*/D2

:+: D1* (/B1) 1B1 :+: C2
+ /D1* (B1)

/A2 := 06* 05* 03 :B6 :+: B5 :+: B3
+ /D6*/D5* 03
+ /D6* 05*/D3 :+:
+ 06*/D5*/D3

:+: 02* 00*(B2) :B2 :+: BO :+: CI
+ /D2*/D0*(B2~
+ /D2* 00* (/B2)
+ 02*/D0*(/B2)

/A3 := 06* 04* 03 ;B6 :+: B4 :+: B3
+ /06*/D4* 03
+ /D6* 04*/D3 :+:
+ 06*/D4*/D3

:+: 01* 00*(B3) ;BI :+: BO :+: CO
+ /D1*/D0*(B3)
+ /D1* 00* (/B3)
+ O1*/D0*(/B3}

2·236 ~ Monolithic W Memories ~

a·Bit Error Detection and Correction

TITLE
PA'rTERN
REVISION
AUTHOR
COMPANY
DATE

ERROR CORRECTION UNIT NO. 1
ECUI
01
B. BRAFMAN
MONOLITHIC MEMORIES, INC.
11/06/87

CHIP ECUI PAL16L8

/S3 /S2 /SI ISO B7 B6 B5 B4 B3 GND
82 NC NC B2C B3C B4C B5C B6C B7C VCC

EQUATIONS

/B7C S3* S2*/SI*/SO* B7 ;CORRECTION OF
+ /S3*/B7 ;NO CORRECTION
+ /S2*/87 ;NO CORRECTION
+ SI*/B7 ;NO CORRECTION
+ SO*/B7 ;NO CORRECTION

/B6C S3*/S2* Sl* SO* B6 ;CORRECTION OF
+ /S3*/B6 ;NO CORRECTION
+ S2*/B6 ;NO CORRECTION
+ /Sl*/B6 ;NO CORRECTION
+ /SO*/B6 ;NO CORRECTION

/85C S3*/S2* SI*/SO* B5 ;CORRECTION OF
+ /S3*/B5 ;NO CORRECTION
+ 82*/B5 iNO CORRECTION
+ /SI*/B5 ;NO CORRECTION
+ SO*/B5 ;NO CORRECTION

/B4C S3*/S2*/Sl* SO* B4 ;CORRECTION OF
+ /S3*/B4 ;NO CORRECTION
+ 82*/B4 iNO CORRECTION
+ Sl*/B4 ;NO CORRECTION
1: /SO*/B4 ;NO CORRECTION

/B3C /S3* S2* Sl* SO* B3 ;CORRECTION OF
+ S3*/B3 ;NO CORRECTION
+ /S2*/B3 ;NO CORRECTION
+ /Sl*/83 iNO CORRECTION
+ /SO*/B3 ;NO CORRECTION

/B2C /S3* S2* Sl*/80* B2 ;CORRECTION OF
+ S3*/B2 ;NO CORRECTION
+ /S2*/B2 ;NO CORRECTION
+ /Sl*/B2 ;NO CORRECTION
+ SO*/B2 ;NO CORRECTION

SIMULATION NOT INCLUDED

l1 Monolithic W Memories l1

B7

B6

B5

B4

B3

B2

Ell

2·237

8·Bit Error Detection and Correction

TI'rLE
PATTERN
REVI5ION
AUTHOR
COMPANY
DATE

ERROR CORRECTION UNIT NO. 2
ECU2
01
B. BRAFMAN
MONOLITHIC MEMORIE5, INC.
11/06/87

CHIP ECU2 PAL16L8

/S3 /52 /51 /50 Bl BO /C3 /C2 /Cl GND
/eo NC ERROR COC C1C C2C C3C BOC B1C VCC

EQUATION5

/B1C /53* 52*/51* 50* Bl iCORRECTION OF
+ 53*/Bl iNO CORRECTION
+ /5'2*/Bl iNO CORRECTION
+ 51*/Bl iNO CORRECTION

/BOC /53*/52* 51* 50* BO iCORRECTION OF
+ 53*/BO iNO CORRECTION
+ 52*/BO iNO CORRECTION
+ /51*/BO iNO CORRECTION
+ /50*/BO iNO CORRECTION

/C3C 53*/52*/51*/50* C3 iCORRECTION OF
+ /53*/C3 iNO CORRECTION
+ 52*/C3 iNO CORRECTION
+ 51*/C3 iNO CORRECTION
+ 50*/C3 iNO CORRECTION

/C2C /53* 52*/51*/50* C2 iCORRECTION OF
+ 53*/C2 i,NO CORRECTION
+ /52*/C2 iNO CORRECTION
+ 51*/C2 iNO CORRECTION
+ 50*/C2 iNO CORRECTION

/C1C /53*/52* 51*/50* Cl iCORRECTION OF
+ 53*/Cl iNO CORRECTION
+ 52*/C1 iNO CORRECTION
+ /51*/C1 ;NO CORRECTION
+ 50*/C1 iNO CORRECTION

/COC /53*/52*/51* 50* CO iCORRECTION OF
+ 53*/CO iNO CORRECTION
+ 52*/CO ;NO CORRECTION
+ 51*/CO iNO CORRECTION
+ /50*/CO iNO CORRECTION

/ERROR = /53*/52*/51*/50 iNO ERROR!

i 5IMULATION NOT INCLUDED

2·238 ~ Monolithic W Memories ~

Bl

BO

C3

C2

Cl

CO

Fuse Programmable Controller
Sil11plifies Cache Design

Introduction

The growing sophistication of computer systems has dictated a
corresponding increase in memory storage capacity. Unfortu­
nately, the speed of these large memories has not kept pace with
that of their associated processors. Fast memories are still
expensive; in order to reduce this cost, a cache memory system
can be used to provide information to the processor without sac­
rificing speed. Located between the central processing unit and
the main memory a cache memory stores only the blocks of
memory currently in use by a program. This provides fast access
to program and data resulting in higher system performance.
Once a new memory location is desired, blocks of cache and main
memory are swapped to update the cache with the memory
blocks currently in use. Thus a cache memory can dramatically
increase the performance of the entire computer system while
maintaining minimal costs. Acache system with a 35 ns access
time and a 50 ns cycle time is described below.

The use of a fuse-programmable controller (FPC), Am29PL 141,
simplifies the design of such a cache memory system. The simple
internal architecture and instruction set of the FPC make this
controller easy to implement in systems, and an on-chip micro­
programmable fuse array provides a high level of integration. The
cache controller algorithm is programmed and stored inthis array.

.A

ADDRESS
.....

TAG BUFFER
.A

DATA 'Y- .----
CONTROL +- t---

~ 7- ~ '7

ADDRESS DATA

CONTROL f4--

DATA CACHE
MEMORY

44201

Because the FPC operates at 20 MHz, as opposed to the 10 MHz
clock frequency of other currently available controllers, it is
especially well suited for high-performance applications.

Cache Memory Systems

Almost any system that requires a high-speed memory interface
can benefit from the use of a cache-memory system. The system
bottleneck is typically the memory access time. Large dynamic
RAMs that are currently available have access times of 100-180
ns with cycle times of about 180-400 ns. The smaller, faster
memory devices that can be used for a cache have access times
of 25-30 ns and cycle times of around 40-50 ns. In order to ~
achieve these lower access times and still have the memory ~
capacity of the larger DRAM memories, a cache memory hierar-
chy is used.

Any application can make effective use of caches provided that
the concept of "locality of reference" is operative. This concept
states that, at any particular time, the addressing pattern of a
program tends to be localized within a block or area of the total
available address space. In other words, if data at a given
address is accessed, it is likely that the next memory access will
also be in that same block of addresses. In general, for systems
where this concept does not apply, the use of a cache system
would be difficult.

DRAM

MAIN MEMORY

DATA ADDRESS CONTROL

Ur ~ .'" CPU

ADDRESS BUS ADDRESS
v-

-.;; 7 ...
DATA BUS DATA

v-

I
CONTROL

FUSE PROGRAMMABLE
CONTROLLER

CACHE SYSTEM PAL CONTROL CONTROLLER +-.
CIRCUITRY

LRU
CONTROLLER

Figura 1. Block Diagram of Cacho Momory System

~ Monolithic m Msmorlss ~ 2·239

Fuse Programmable Controller Simplifies Cache Design

Sections of main memory data that can be identified as frequently
used can be stored in cache memories to allow decreased access
times, thereby increasing the overall performance of the system.
As different sections of a program become frequently used, they
can be transferred to the cache memory. displacing other sec­
tions that are no longer needed. Some of the application areas
where caches are used to increase the system performance are
for mini/micro-computers, signal processing and image process­
ing systems.

The main components of the cache memory system are the
cache data memory, the cache tag buffer, the replacement logic,
and the cache controller (see Figure 1).

Cache Data Memory

The cache data memory is the small, fast memory that contains
the most often used data, copied from the slower main memory.
The cache data memory size directly affects the performance of
the entire system. The larger the cache data memory, the more
data that can be accessed at the faster speeds. However, if the
size of the memory device gets very large, the performance of the
memory decreases. The larger the memory devices are, the
longer are their access times, and, consequently, their cycle
times. The optimum data cache size will vary depending on the
application/algorithm being executed.

Tag Buffer

An identifier (or tag) accompanies every block (a contiguous set
of data words) that can be transferred to or from main memory.
This tag is stored in the tag buffer. This tag identifies where the
data is located in main memory. To determine whether a block of
data is already in the cache memory, the tags stored in the tag
buffer are compared to the desired tag (Figure 2). Various
methods exist for searching the tag buffer for a block of data.
Three of the most popular approaches are:

1. Fully associative
2. Direct mapped
3. Set-associative

In fully associative caches, any memory word can be found in any
of the cache-data blocks. The memory address is divided into two
sections: the TAG and the BLOCK fields. The TAG is used to
determine if the block of data is in the cache and the BLOCK
indicates a data word within that block.

For a direct-mapped cache the memory word can be found in only
one of the cache blocks. The memory address is sectioned into
three fields: the TAG, the INDEX, and the BLOCK. The BLOCK
indicates the data word in the block. The INDEX selects the
program block that contains the word, and the TAG is used to
determine if the block is in the cache.

The third way of searching the cache for data words is the set­
associative method. This divides blocks into sets and allows the
cache block to be located in anyone of these sets. Typically, the
number of sets used are two, four, or eight. The TAG, INDEX and
the BLOCK fields are similar to those in the direct mapped
techniques. Figure 2 shows the three different address tech­
niques and their fields.

When a tag search is performed in the tag buffer, either a hit or
miss condition results. A hit indicates that the desired word is in
the cache; a miss indicates that the desired word must be ac­
cessed from the main memory or a transfer from main memory to
cache is needed. The performance of the cache system is
dependent on the ratio of the number of hits to the total number
of memory references made, which is called the hit ratio. The hit
ratio depends on the size of the cache memory selected and the
application of the system using the cache memory. A high hit ratio
implies that most of the data accessed by the CPU was in the fast
data-cache memory when requested. The performance of the
entire system gets degraded if a poor hit ratio occurs. This is why
"locality of reference" is important for performance.

Replacement Algorithms

The replacement algorithm is used to decide the cache location
to replace with new data when a miss occurs. Three of the most
common data replacement algorithms currently in use are:

1. First-in First-out (FIFO)
2. Least Recently Used (LRU)
3. Random Replacement (RR).

The choice between these three techniques is dependent upon
the nature of the data being transferred to and from the cache.
The FIFO algorithm simply selects the oldest block of data written
into the cache to be replaced. After the cache buffer is full, data
blocks are replaced sequentially. In this manner, even a data
block which is used very often, will be replaced.

The LRU technique selects the data block to be replaced by
determining which block in the cache was least used as com­
pared to the other blocks at that time. With this strategy, the
chances that the block just replaced in the cache will be required
again soon is assumed to be relatively small.

FULLY ASSOCIATIVE CACHE
MEMORY SYSTEM

TAG BLOCK

TAG IDENTI- DATA WORD
FIES IF BLOCK IN CACHE
IS IN CACHE BLOCK

DIRECT MAPPED MEMORY

TAG INDEX BLOCK

TAG IDENTI- INDEX FOR DATA WORD
FIES IF BLOCK CACHE IN CACHE

IS IN CACHE BLOCK

SET-ASSOCIATIVE
CACHE MEMORY

TAG INDEX BLOCK

TAG IDENTI- INDEX FOR OATA WORD
FIES IF BLOCK CACHE IN CACHE

IS IN CACHE BLOCK

Figure 2. Cache Organizations

442 02

2·240 ~ Monolithic m Memories ~

Fuse Programmable Controller Simplifies Cache Design

The third method, the random replacement approach, randomly
chooses the block of data to be replaced. The easiest to
implement, this technique is optimum for some applications.

Another important design consideration for cache memory sys­
tems is the method used for keeping the cache data and main
memory updated. When writing to the cache memcry, the data
change must be echoed to the main memory before that data
word is replaced by new data in the cache block. One way this is
handled is the "store-through" method. On a write command, the
data is written to the cache as well as the main memory simulta­
neously. In this way, the main memory data is kept current. This
also saves the. task of writing back old cache data into main
memory when replacing a new data block into cache.

Cache Controller

All of the signals that are required to keep track of the various
functional blocks involved in the cache memory system are
controlled by the cache controller. This controller monitors the
state of the tag buffer search, the CPU, main memory and cache
data memory condition, as well as handling all memory transfers
for hits or misses and read and write operations. The high­
performance and integrated functions available on a single chip
make the design of a cache controller using the Am29PL 141
simple. Tho FPC provides 16 control signals for off-chip control
and seven input test pins for monitoring external conditions. The
flexible instruction set permits easy microprogramming of the
desired function.

,. ---_._-- _ .. _--- _- --_ _ -- __ _ _-- _--- ... _----- _-_ --_ _-

TEST
INPUTS

T[5:0)

MICROINSTRUCTION
DECODE LOGIC

MICRO ADDRESS
CONTROL LOGIC

PC MUX

1.. __ .. ___ .. ______ ______ .. _______ ____ _____ __ .. _ _____ .. _ ____ __ __ _____

r'" .. ···················~I~~~~~~~~~~·~·~~~·············'·"'l

: r.- :~ ~ MODE'

l : 32·BIT SSR : :

1 . r-o SDO
'

: .A :

~ ____ ... _______ _____ _______ ... _____ __ ___ J
MICROPROGRAM
MEMORY

'NOTE: THESE PINS AVAILABLE ONLY IN SSR MODE.

"NOTE: THESE PINS AVAILABLE ONLY IN NORMAL MODE.
ZERO" SDI' DCLK' P[15:8) P[7:6)" P[5:0)

OUTPUTS

44203

Figure 3. FPC Detailed Functional Diagram

~ Monollthlo IFlDMemorleB ~ 2·241

~
~

Fuse Programmable Controller Simplifies Cache Design

The Am29PL 141 Fuse-Programmable Controller Am29PL 141 has 29 high-level microinstructions which include
jumps, loops, subroutine calls, and multiway branching. These
microinstructions can be conditionally executed based on the test
inputs. As a single chip solution, the FPC is designed to ease the
implementation of distributed microprogrammed systems. It can
be used to off-load the central controller by serving as an
intelligent distributed controllerfor various functional units. Its on­
chip diagnostics register is used to control and observe the
parallel pipeline register during diagnostics mode. This capability
provides both controllability and observability for the functional
blocks connected to the FPC control outputs. A block diagram of
the FPC is shown in Figure 3 and the micro-instruction format is
shown in Figure 4.

The Am29PL141 is a high-performance, single-chip, fuse­
programmable controller (FPC). This chip is designed to allow
implementation of complex state machines and controllers by
programming the appropriate sequence of microinstructions in
the on-chip microprogram memory. With its intelligent micropro­
gram address sequencer, high-speed 64 x 32 bit microprogram
memory, pipeline register, and an on-chip diagnostics register,
this chip offers the benefits of low chip count, fast operation, easy
development, and testability. This device is available with a 20
MHz clock rate (50 ns cycle time) in a 28 pin dual-in-line package.
A microprogram address sequencer is the heart of the FPC. The

2·242

31 30 26 25 24 22 21 16

[OE] [OPCODE] [POL] [TEST] [DATA]

WHERE:
OE = SYNCHRONOUS OUTPUT ENABLE FOR P[15:8]

OPCODE - A FIVE-BIT OPCODE FIELD FOR SELECTING
ONE OF THE TWENTY-EIGHT SINGLE DATA
FIELD MICROINSTRUCTIONS

POL = A ONE-BIT TEST CONDITION POLARITY SELECT
o = TEST FOR TRUE (HIGH) CONDITION
1 = TEST FOR FALSE (LOW) CONDITION

TEST = A THREE-BIT TEST CONDITION SELECT

TEST [2:0]

000
001
010
011
100
101
110
111

UNDER TEST

T[O]
T[l]
T[2]
T[3]
T[4]
T[5]
CC
EQ

DATA = A SIX-BIT CONDITIONAL BRANCH MICROADDRESS, TEST
INPUT MASK, OR COUNTER VALUE FIELD DESIGNATED
AS PL IN MICROINSTRUCTION MNEMONICS

THE SPECIAL TWO DATA FIELD MICROINSTRUCTION FORMAT IS SHOWN BELOW:

31 30 28 27 22 21 16

[OE] [OPCODE] [CONSTANT] [DATA]

WHERE:
OE .. SYNCHRONOUS OUTPUT ENABLE FOR P[15:8]

OPCODE .. COMPARE MICROINSTRUCTION (BINARY 100)
CONSTANT .. A SIX-BIT CONSTANT FOR EQUAL TO

COMPARISON WITH T'M

DATA .. A SIX-BIT MASK FIELD FOR MASKING THE
INCOMING T[5:0) INPUTS

Figure 4. Microinstruction Format

~ Monollthlo IFJJ) Memorle. ~

442 04

Fuse Programmable Controller Simplifies Cache Design

System Overview

The cache scheme selected for implementation is a set-associa­
tive cache with four sets (see Figure 5). The 1S-bit physical
memory address word is divided into S bits of tag, S bits of index,
and 2 bits of block address. Four 256-byte deep, index-ad-

BLOCK ADDRESS------~~-_.
INDEX ADDRESS-.-----_.

DATA OUT

TAG ADDRESS---------J

44205
TAGADDO-7 IDXADDO-7 BLOCKO-l

Figure 5. A Set-Associative Cache Scheme

~T L- 10 °0 I-
HITiMlSS 4

L-- 11 °1 Ta

DRDY

°2
CYCl

T2

dressed tag buffers are used in this scheme. These tag buffers
contain four possible sets of tags for the same index location.
Corresponding to each tag bufferthere are four 16-bit wide cache
memories, which contain four (block) words for each index
location. The physical block address is also used to address
these cache memories.

Figure 6 shows the actual implementation where the main system
controller is the Am29PL 141 FPC. There is additional glue logic
in the form of one PAL 1SPS and one PAL 16R6. The PAL 1SPS is
used in the cache access path and is very fast. It generates the
cache output enable, cache selects, and write signals for the
cache. The PAL 16R6 is used to generate the Ready signal to the
system CPU. It is also used to inform the FPC of the status of
readlwrite cycles. All the PAL devices are controlled by the FPC
for generation of the system control signals.

System Operation

There are four main system cycles possible: read and hit, read Ell
and miss, write and hit and write and miss. The response of the
controller is different for each system operation cycle. For read
& hit cycle the FPC performs no action. Only on detection of write
cycle, orread & miss cycle, the PAL 16R6 asserts the CYCLsignal
initiating FPC action.

Read and Hit Cycle

When the system CPU requests a read cycle, it sends out an 1S­
bit address. The most significant eight bits (Figure 6)
TAGADD0-7 are the eight bit tag which is compared to the tags
stored in the four tag buffers to detect a hit or a miss. The next
eight bits IDXADD0-7 for index, address the correct tag buffer

ROY TO cpu

P2
ADLATCH

P1
INHIBIT

Pa DOEL

P4

AmPAL16R6 Am29PL141 Po

DREQ

CTRST

DRW

ClKI (40 MHz)

HIM 0-5
MREQ
RHWL

IDXADD 0-7

CACWRT

44206

.-----

r-

r-

-
'---

-
-

12 MREQ
To Ps

Ia 0a f-
Ps

RHWl
T1 Pa

14-7 Pg

I °4
ClKO P7

(20 MHz) 4"
4/ /

/

TAGWRT E 00-3 f-- "- Is LRU1
LRU LRUO

Al 74F139 - + CONTROLLER AD IO-a °O-a

...-1-I-W '--- 14 04_7 ~ L-- I
15 AmPAL18P8
7

Is

Ig

Figure 6. Control Section for Cache System uses one FPC and two PAL Devices.

l1 Monollthlo m Memories l1

BLDBL

BADO

BADl

CACWRT

TAGWR 0-3

CACWR 0-3
CACS 0-3

2·243

Fuse Programmable Controller Simplifies Cache Design

locations. These eight bits are also used to access the four cache
sets simultaneously. The least significant BLOCKO-1 block
address are directly used to address the four cache sets. A
cache CACS (chip select) is generated by the PAL 18P8 to access
the four cache sets simultaneously. Once the tag buffer match
occurs, the selected tag buffers asserts the hit signal. The hit
signal is used to enable the outputs of the corresponding cache
set, in order to provide the correct cache data to the CPU. The
flow chart is shown in Figure 9.

Read and Miss Cycle

If the proper tag does not appear in any of the four tag buffers, a
miss signal is generated by the tag buffers on H/MO-3 signal lines
(Figure 7 and 8). On detection of the four miss signals the
PAL 16R6 removes the "RDY" signal to CPU (for CPU wait cycles)
and informs the FPC of the MISS by asserting the CYCL & HIT/
MISS signals. When the FPC detects this read and miss, it
iatches the current physical address by asserting the AD LATCH
sig nal, and initiates a DRAM (System Memory) cycle by asserting
the DREQ signal, to provide the data to the CPU from the system
memory. When this data is available signalled by the DRAM data
ready signal DRDY, the FPC signals the assertion of the RDY
signal, allowing the CPU to read the requested data. Simultane­
ously the FPC asserts the INHIBIT signal which disallows further
CPU access to the cache.

The FPC then performs an update algorithm which brings the
data from the system memory to the cache. It asserts the CTRST
signal which disables the CPU data lines to the cache system. It
also disables CPU block addresses by asserting BLDBL signal
and enables its own output address lines BADO-1 in order to

address different memory words within a block itself. It then
performs read cycles on the system memory by using DREQ
(DRAM memory request), DRW (read or write) and DRDY
(DRAM data ready) signals and write cycles on all the blocks of
the corresponding cache set by asserting CACWRT signal. The
replacement set is determined by the LRU control block which
selects one of the four sets.

Upon completion of the update of new cache data, the FPC
removes the INHIBIT signal to allow further CPU access to the
cache.

Write and Hit Cycle

The write cycle operation is differentfrom the read cycle, since the
main memory has to be updated along with the cache. This is
called the "write-through" strategy. Since typical programs re­
quire only 1 0-15%ofthe processortimeforwrite cycles, this does
not impact the overall performance. For every write cycle for
which the tag buffer signals a hit, the CPU writes the data to the
cache. In addition, the FPC initiates a DRAM (system memory)
cycle and updates it with the same data (see Figure 10).

Write and Miss Cycle

For a write and miss cycle, the function of the system is similar to
the read and miss cycle, except that a write of the main memory
is performed instead of a read_ Afterthewritetothe main memory
is completed, the FPC executes the update algorithm to bring the
contents of that memory block into the cache. The flow chart for
the microcode executed by the FPC for the write cycle is shown
in Figure 10.

DREO(DRAM CYC REO)

I II DRW (DRAM RIW)
DOEL (DRAM OE)

DRAM CONTROLLER -.. DRDY
DRAM READY

256K
DRAM

MAIN MEMORY

DATA OUT

~
DATA INPUT CACHE
16 CACWR 0-3 ,-

L 8/
TAG IN f-- CACWR O~ ,-TAGADD 0-7

~ DATA TO CPU "-
"- INDEX DATA OUT DATA IN DATA OUT - 16

8
-V AD DR +/MO~ v

j
ADDR

4 SETS 256 X 8 r----V 4 SETS 1KX 16

- WE TAG - CS 3-0 DATA
BUFFER CACHE

OE 3--{)

'-- J
2 10

IDXADD 0-7

TAGWR 0-3

BLOCK 0-1 442 07

/
/ CACS 0-3
4

Figure 7. Memory Organization of Cache System

2·244 ~ Monolithic m Memories ~

~
f
~
2-
i a-
~
f
:I
~
al'
~

~

I\)

t.l
~
(J'I

BLOCK ADDR
(BAD 0-1)

BLOCK ADDR
FROM CPU

(BLOCK 0-1)

BLDBL
TAGWR 0

TAGWR 1

TAGWR 2

TAG
TAGADD 0-7

TAGWR 3

INDEX ADDRESS
IDXADD 0-7

2

~I BUFFER

OE TA~51fU~~tR

8 ----L-
f--;LTAG

~
512X8

ADDR
-HiMO -

8 r---L--
~TAG

-/-
512X8

ADDR
-HlM1

L...-

8~

~
TAG ~ TAG
L~H 512X8

~ OE ADDR
r- HIM 2

~

8 _ ~ TAG

OE 8 512X8
INDEX ~ ADDR

2 ,

/

'8

ADLA

~.~
LATCH I- HIM 3

L...-

{ CACSO CACWR3
FROM PAL CACWR 2 -

DEVICE CACWR 1 -
CACWRO-

CACS 2
.--CACS1

.------ CACS 0

"- (DREOl DRAM CYC REO

I (DRW DRAM Rf\N
(DOEL) DRAMOE

"- 16 (1KX4) DRAM CONTROLLER
SRAM HlM1-

HlMOiJ
256K

DRAM

'-- - CS f-- CS I-- CS f-- CS OEO MAIN MEMORY

WE I--- WE I-- WE t--- WE DATA OUT
f-- I-- f--

~ DATA IN DATA IN DATA IN DATA IN
ADDR r- ADDR ~ AD DR - ADDR

10 OUT ~ OUT~ OUTl OUT~ 1KX4 1KX4 1KX4 1KX4
DATA OUT /

16
'-- r- cs I-- CS ~ CS t-- CS OE1 t--

'TI
DRDY II C
DRAM READY til

CD

" "'l
0

CO
"'l
EU
3
3
EU
2:

WE I-- WE r- WE I-- WE CD
I-- f-- t-

~ DATA IN DATA IN DATA IN DATA IN
ADDR I-- ADDR f-- I- ADDR t-- ADDR

10 OUT~ OUT~ OUT~ OUT~ 1KX4 1KX4 1KX4 1KX4

n
0
:s ..
"'l

~
CS t-- CS I-- CS t- CS OE2 I--
WE f-- WE f-- WE f-- WE

f-- I-- t-

~ R~b~ IN f--
DATA IN DATA IN DATA IN
ADDR I-- ADDR t-- ADDR

10 OUT~ OUT~ OUT~ OUT~ 1KX4 1KX4 1KX4 1KX4

Ci'
"'l

til
3'
'tJ

s:
CS f-- es f-- CS r- es OE3 I--
WE f-- WE f-- WE t-- WE

t- f- r-
y: ~~b~ IN f-

DATA IN DATA IN DATA IN
ADDR ~ ADDR r- ADDR

10 OUT ~ OUT~ OUT~ OUT~ 1KX4 1KX4 1KX4 1KX4

CD
til

n
EU n
:r-
CD

, 4 /4 /4 , 4

\. \. DATA IN /
;

C
I'D

16 til
HiM 1 - ta'

:s
442 08

Figure 8. Detailed Diagram of Tag Buffer and Data Cache

II

2·246

Fuse Programmable Controller Simplifies Cache Design

TRANSFER DATA
BLOCK REQUEST TO
CACHE MEMORY AND

ITS TAGS TO THE
TAG BUFFER

·SEE FIGURE 11 FLOW CHART FOR TRANSFER DATA

Figure 9. Read Control Flow Chart

~ Monolithic m Memories ~

442 09

442 10

Fuse Programmable Controller Simplifies Cache Design

READ/HIT YES
CYCLE

READY FOR NEXT
CPU MEMORY

REQUEST

HIT

NO

TRANSFER DATA
BLOCK REQUEST TO
CACHE MEMORY AND

ITS TAGS TO THE
TAG BUFFER

·SEE FIGURE 11 FLOW CHART FOR TRANSFER DATA

Figure 10. Write Control Flow Chart

NO

~ Monolithic m Memories ~

READ/MISS
CYCLE

2·247

Fuse Programmable Controller Simplifies Cache Design

FPC Operation

The System Controller has five main functions:

1. Test for a cycle request (CYCL)
2. Test for different cycle types
3. Execute appropriate action for each cycle
4. Execute update algorithm if required
5. Generate update addresses if required.

Test for Cycle Request

The FPC samples the CYCL signal continuously. The CYCL
signal is generated only for read & miss, write and hit, and write
and miss cycles. The system requires FPC intervention only for
these three cycles. When CYCL is asserted, the FPC tests for the
three cycle types.

Test for Cycle Type

This involves sampling the CPU, memory request MREQ, and
read or write (RHWL) signals. On the basis of these signals the
FPC decides between the initiation of read or write cycles. It then
samples the HIT/MISS signal generated by the PAL 16R6 to
decide on the appropriate action to be taken.

Action for Each Cycle

Once the FPC determines the CPU cycle type and whether the
location exists in the cache (HIT or MISS), it then performs
appropriate actions such as dynamic RAM (System Memory)
cycle, and Update algorithm. The functions performed by the
FPC for each cycle type were detailed earlier.

Update Algorithm

On detection of a CPU cycle and a MISS, the FPC performs the
update algorithm. It consists of reading data from the system
memory (DRAM) and writing that data to the appropriate cache
set. The address forthis replacement is the one on which the CPU
cycle MISS occurs, which in turn is latched by the FPC on
detection of the MISS. The selection of the appropriate cache set
is dependent upon the information provided by the replacement
logic block. The update is done for all four blocks (words) of data.
During this update, the FPC isolates the CPU data bus from the
cache data bus by asserting the CTRST signal.

Update Address Generation

The replacement address is the CPU address at which the MISS
occurs. However, all the four blocks for the same memory
address should be replaced in the cache. To generate these four
addresses, two of the FPC's eight three-state lines are used. The
two least significant bits of the CPU's physical address (Block
Address bits) are disabled by the FPC by asserting the BLDBL
signal, and the two output bits of the FPC (three-state control
lines) are enabled onto the address bus. This is done in a manner
to allow the system CPU to continue to work with the address and
data bus, isolated from the cache system, during the execution of
the replacement algorithm.

The replacement algorithm then executes read cycles on the
memory and write cycles on the cache for all the four block
addresses. After the replacement is complete, the control returns
for sampling of new CPU cycles. The design file for the Cache
controller is shown in Figure 12.

The replacement set selection can depend upon various selec­
tion algorithms as described before. This set selection logic has
not been shown in this design. However, the algorithm used here
is LRU (Least Recently Used) method, and only its interface with
the cache controller is shown.

Timing and Performance

For a cache read cycle when a hit occurs, the worst case access
time forthe cache system is the tag buffer delay (20 ns) along with
the cache output enable delay (15 ns). The worst case access
time forthis cache implementation is 35 ns. The cycle time for the
system will be a little longer than the access time.

The 50 ns cycle time is a very high speed cache performance,
considering that the usual cycle time for DRAMs is in the range of
280-400 ns. Further improvements in the cycle time can be made
by using PAL devices with a faster propagation delay of 10 ns.

CALL REPLACEMENT
SUBROUTINE

SET UP BLOCK
ADDRESS FOR

DATA TRANSFER

REPEAT FOR THREE
MORE DATA WORD
TRANSFERS WITH
CORRESPONDING

BLOCK ADDRESSES

READY FOR NEXT
CPU MEMORY REQUEST

NO

Figure 11. Flow Chart for Cache Update Scheme

442 11

2·248 ~ Monolithic m Memories ~

Fuse Programmable Controller Simplifies Cache Design

device (am29pI141)
default 0;

define
mreq
rhwl
hitm
drdy
nocdn
intword

to
tl
t2
t3
t4
= 07dilh;

"No condition"
"Initialize output word"

begin
init

start

read

latch

write

wrtht

wrtms

rplce

wai tl

wait2

wai t3

end.

od intword, continue ; "Initialize Outputs"

od intword, if (mreq) then goto pl(start);
"Check for memory cycle"

od intword, if (not rhwl) then go to pl(write);
"Check for read or write"

od intword, if (hitm) then goto pl(start);

od 079i1h,

od 069i1h,
od 063i1h,
od 063i1h,

"Read & hit go to start"

if (not drdy) then goto pl(latch);
"Read & miss latch address"

continue; "DRAM req for CPU data"
continue; "DRAM output enb & CPU cycle"
if (nocdn) then call pl(rplce);

"Goto replacement subroutine"
od intword, if (nocdn) then goto pl(start);

"Read cycle complete"

od intword, if (not hitm) then goto pl(wrtms);
"Write hit or miss"

od Ofd,h,

od 04dilh,
od 04filh,
od 04f#h,

if (not drdy) then goto pl(wrtht);
"Hit write to cache"

continue; "Write to DRAM"
continue;
if (nocdn) then goto pl(start);

"Write hit complete"

od intword, if (not drdy) then goto pl(wrtms);

od 049i1h,
od 04bilh,
od 04bilh,

continue;
continue;
if (nocdn) then

"Miss check DRAM for write"

"Latch address & DRAM write"
call pI (rplce) ;

od intword, if (nocdn) then
"goto replacement algorithm"

goto pl(start);

od 07bilh,

oe 022i1h,
oe 022,h,
oe Oa2#h,
od 13ailh,

oe 122i1h,
oe 122#h,
oe la2,h,
od 23ailh,

oe 222i1h,
oe 222i1h,
oe 2a2#h,
od 33ailh,

oe 322i1h,
oe 322#h,
oe 3a2#h,
od 03a,h,

"Write miss complete"

if (not drdy) then goto pl(rplce);

continue;
continue;

"This is replace routine"
"Isolate CPU databus"
"DRAM data enb for cache write"

continue; "Write to cache at address 00"
if (not drdy) then goto pl(waitl);

continue;
continue;

"Change Block address"
"Repeat as before address 01"

continue; "Write to cache at address 01"
if (not drdy) then goto pl(wait2);

continue;
continue;

"Change Block address"
"Repeat as before address 02"

continue; "Write to cache at address 02"
if (not drdy) then go to pl(wait3);

continue;
continue;

"Change Block address"
"Repeat as before address 03"

continue; "Write to cache at address 03"
if (nocdn) then ret;"Return from replace routine"

Figure 12. Cache Controller Design File

~ Monolithic m Memories ~ 2·249

PAL22RX8A Provides Control and
Addressing for a 32-Location-Deep
RAM-Based LIFO AN-164

Two components used in the temporary storage of data are
LIFO (Last In, First Out), and FIFO (First In, First Out) buffers.
Usually, a FIFO would be used to store data between asyn­
chronously operating devices. For example, data sent from
one microprocessor system to a second might reside tempo­
rarily in a FIFO until the second microprocessor is ready to
read the data. Sometimes the FIFO is known as an asynchron­
ous temporary buffer store.

The LIFO also offers temporary storage and will store data in
the same way as a FIFO but the sequence of reading the data
will be reversed. LIFO applications in digital processing sys­
tems would usually be to store return addresses and essential
registers when the processor is executing a branch to subrou­
tine or interrupt service routine. The processor will retrieve this
information when it executes return instructions. The LIFO is
an essential component in the processor's ability to perform
context switching.

The LIFO is sometimes called a stack, and the process of writ­
ing to the stack is called a PUSH operation and reading data is
a POP operation. In the central processor dedicated instruc­
tions for PUSH and POP operations are decoded and executed
to save and restore return addresses, contents of accumula­
tors, status registers, and index registers. Other LIFO applica­
tions could be found in data buffering where the order of data
reception should be reversed.

The concept of the stack is used in performing Reverse Polish
Notation (RPN) mathematics, and it is claimed by some to be
superior in performance to the conventional algebraic process­
ing technique. With RPN, instructions and operands are
pushed onto the stack, and evaluated as they are popped off;
the result is usually left in the general purpose register.

When a memory is used as a stack, the evaluation process
may be repeated because the initial evaluation did not destroy
the RAM contents. This non-destructive reading of data is a
feature of RAM-based FIFO and LIFO architectures, and is not
the case for register-based architectures. FIFOs and LlFOs
made from register arrays rely on data shuffling through the
array. Data in the registers are overwritten during each cycle.
The RAM control for a LIFO essentially consists of an Up/Down
counter to address locations in the memory, and a control
sequencer to drive the memory's chip select (CS) and write
(WR) inputs.

The new PAL22RX8A has been programmed to perform a
control function for a small 32-location-deep stack. A two-chip
solution is achieved by using an Am 9128 static RAM and a
PAL22RX8A (see Figure 1), for bytewide applications.
Additional RAM devices may be added in parallel for 16- and
32-bit wide applications. A deeper LIFO may be configured by
cascading a second PAL22RX8A to create a higher-order Up/
Down counter.

PAL22RX8A
Cs CSX

WR ~

CLOCK QO AO

RS'f Q1 A1 00
PUSH Q2 A2 01

POP Q3 A3 02
Q4 A4 Am9128 03

2Kx8 OATA
XO A5 RAM 04 110

A6 05
A7 06
A8 07
A9

Al0

OE

RAM OPERATION

WR CS OATA

X H THREE-STATE

H L OATA OUT

L L OATAIN

Figure 1. 32-Locatlon-Deep LIFO Controller Uses PAL22RXBA

Figure 2 shows the block diagram of the PAL22RX8A device.
Fourteen dedicated inputs drive the single fuse array through
true/complement buffers. One of those inputs includes the
clock, so logic operations may be performed on the clock or its
complement.

2·250 l1 MonolithIc W MemorIes l1

PAL22RX8A

ClK

1
10/ClK

(2)

2
11

(3)

3
12

(4)

4
13

(5)

5
14

(6)

6
AND

15 LOGIC
(7) ARRAY

7
16
(9)

S
17

(10)

9
IS

(11)

10
19

(12)

11
110

(13)

13
111

(16)

Figure 2. Block Diagram

Note:
PlCC pin numbers are indicated in parentheses.
PlCC pins 1.8. 15 and 22 are not connected.

23
113
(27)

22
1/01
(26)

21
1/02
(25)

20
1/03
(24)

19
1/04
(23)

lS
1/05
(21)

17
1/06
(20)

16
1/07
(19)

15
I/OS
(lS)

14
112
(17)

There exist eight macrocells in the device. The schematic view
of the macrocell architecture is shown in Figure 3. The D-type
register is the storage element in the device and is clocked
from a single clock input. The D input is fed from an exclusive­
OR (XOR) gate, the two inputs of which are driven from one
product term and a sum of eight product terms. This XOR gate
can be used to control the polarity at the output pin; the single
product term input can be used to create polarity inversion.

OE~=r--------------------------~

CK AR

Figure 3. PAL22RX8A Macrocell

With regard to registered output configurations, the XOR gate
may be used to configure alternative registered functions. It
can be shown that a J-K flip-flop may be derived by using feed­
back, the sum-of-product inputs, and the XOR input, as shown
in the equations below. Three out of the five equations use the ~
XOR gate to create the J-K function. ~

1. 0 := O'J + O'i<

2.0:= O·J + O'K

3.0 := 0 :+: (Q'J + O'K)

4. Q:= Q :+: (O'J + O'K)

5.0:= Q :+: (a'j + O'K)

Also, S-R and other subset functions may be configured in tho
macrocell.

There exist two multiplexers in the macrocell which select
either a registered or combinatorial output path. If the control
fuse is intact, the output is registered, and the feedback into
the fuse array is through a buried feedback path from the IT
node. A combinatorial route may be selected by programming
the fuse; the register is flushed and feedback to the array is
from the output pin. Programmable I/O may be achieved in this
configuration by controlling the three-state condition of the in­
verting output buffer. A single product term can enable the out­
put buffer with a logic High or disable it with a logic Low. When
in a three-state condition the output pin may be used as an in­
put.

When using the flip-flop in the macrocell it is possible to use
the asynchronous Reset or Preset feature. A single input pin
may be dedicated to a Reset or Preset function, and driven ac­
tive to initialize the register in the device.

Toggle Function as a J·K Subset

A frequently used subset of the J-K function used in binary
count applications is the Toggle (T) function. If J and K are tied
together and driven with a logic High then the flip-flop output
will Toggle when clocked; if driven Low the output will Hold. For
a given flip-flop (N) in the count sequence the toggle equation
will be:

6. ON := ON :+: ON-1·0N-2· ... 01·00.

This will cause the flip-flop to Hold until the product term of all
the lesser significant registers goes to a logic High; then, the
flip-flop will toggle polarity. This equation is suitable for an Up
count. A Down count is given by:

7. ON := ON :+: ON-1·ON-2· .. 01·OO.

~ Monolithic IRllI Memories ~ 2·251

PAL22RX8A

Both equations can be combined with an Up/Down control to
effect an Up/Down counter. With regard to the LI FO applica­
tion, the Up/Down control for the address input to the CMOS
RAM will be decoded from the PUSH or POP instruction. The

CLK

PUSH

ADDR

Active Write Cycle . PUSH
1. PUSH input goes active High at tsu or greater

before the clock edge.

2. First clock edge samples the active PUSH input.

2a. WR goes active Low.

2b. Address increments.

3. Second clock edge; PUSH still active High.

CLK

pop

ADDR

Active Read Cycle· POP
1. POP instruction goes active High at tsu or

greater before the clock edge.

2. First clock edge samples the active POP input.

2a. CS goes active Low to select the RAM.

3. Second clock edge; POP still active High.

3a. CS goes inactive High.

sequence will be "Increment then Write" for a PUSH operation
and "Read then Decrement" for a POP operation. The timing
waveforms (Figure 4) show the sequence for PUSH and POP
cycles. Note that the LIFO starts from memory address zero.

3a. CS goes active Low.

4. Third clock edge; PUSH still active High.

4a. CS goes inactive High.

5. Fourth clock edge; PUSH still active High.

5a. WR goes inactive High.

6. PUSH instruction is removed.

®

n-1

4. Third clock edge; POP still active High.

4a. WR goes active Low; the memory is deselected
so no Write wilitake place.

4b. Address lines decrement.

5. POP instruction is removed.

5a. WR goes inactive High.

Figure 4. LIFO Control Timing Diagrams

2·252 ~ Monolithio W Memories ~

PAL22RXBA

The control outputs to the RAM are CSX and WR. An additional
register (XO) is required to enable all states to be reached; two
registers alone are not enough. From the timing waveforms it
can be seen that an active write cycle is initiated after an ac­
tive PUSH input has been sampled by the system clock. The
WR signal then toggles, cau::ing the output pin to go active
Low. This condition is maintained until the control register XO
goes High, at the end of the PUSH cycle.

The equations after the XOR symbol in the design specification
(page 2-255) cause the toggle function; when these product
terms become active High a toggle operation is effected in the
associated flip-flop. For example, the CSX flip-flop is in a Hold
state until WR goes Low and while XO is High during a PUSH
sequence; during a POP sequence, CSX holds unless both WR
and XO are High. The equations are written for each flip-flop by
using one product term after the XOR label to effect the
change of state or toggle condition to fit the requirements of
the state machine. Without the XOR gate, an Up/Down counter

would require more than the eight product terms available in
standard PAL devices.

Instruction Decoding
Although not shown in the design specification, it is possible
for the PAL device to decode instructions for PUSH and POP.
Assuming the unused input pins are converted to 10-17, which
come from an instruction register in a processor system, then
decoding could be achieved in the fuse array. If an additional
input Vi qualifies a valid instruction and the code for PUSH is
given as j7*j6*j5*i4*13*12*11*10*Vi, then this equation could
be added to the string declaration statement of the design
specification. The PAL device could decode POP operations
similarly. In this way, external decoding logic may be incorpo­
rated into the PAL device, which should increase the operation
speed.

~ Monolithio m Memories ~ 2·253

EJI

2·254

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE
,

PAL22RX8A

LIFO RAM CONTROLLER
01.
04.
CHRIS JAY.
MMI SANTA CLARA, CA
23 APRIL 1987

CHIP LIFOCONT PAL22RX8
,
iTHE PAL22RX8 HAS BEEN DESIGNED TO CONTROL 32 RAM
iLOCATIONS AS A LIFO RAM CONTROLLER. THE PAL DEVICE
iDESIGN SPECIFICATION CONSISTS OF TWO STATE MACHINES.
iONE STATE MACHINE IS AN UP/DOWN BINARY COUNTER THAT
iDRIVES THE ADDRESS LINES OF THE RAM, AND THE SECOND
iDRIVES THE /WR AND /CS LINES OF THE RAM TO CONTROL
iWRITE AND READ OPERATIONS. DURING A PUSH OPERATION
iDATA IS WRITTEN TO THE LIFO; THE PROCEDURE IS INC­
iREMENT ADDRESS COUNTER AND WRITE DATA. FOR A POP
iOPERATION THE READ CYCLE IS PERFORMED FOLLOWED BY
iAN ADDRESS DECREMENT. THE XOR GATE IN EACH MACRO­
iCELL ALLOWS INCREMENT AND DECREMENT OPERATIONS
iTO BE EFFECTED WITHOUT UTILIZING A LARGE NUMBER OF
iPRODUCT TERMS.
;
iPIN 1 2 3 4 5 6

CLK PUSH POP NC NC NC

iPIN 7 8 9 10 11 12
NC NC NC NC /RST GND

;PIN 13 14 15 16 17 18
NC NC /CSX /XO /WR /Q4

;PIN 19 20 21 22 23 24
/03 /02 /01 /00 NC VCC

GLOBAL ;GLOBAL TERM
iENABLES THE
;GLOBAL RESET
;

STRING INC '/CSX*/WR*/XO*PUSH' ; INCREMENT LABEL
STRING DEC '/CSX*/WR* XO*POP' ; DECREMENT LABEL

Figure 6. LIFO RAM Controller Design File

~ Monolithic m Memories ~

EOUATIONS

GLOBAL.RSTF

00

01

02

03

04

CSX

XO

:=
:+:

+

:=
: +:

+

:=
: +:
+

:=
: +:
+

:=
:+:
+

:=
:+:

+

:=
:+:

+
+
+

:=
: +:
+
+
+

RST

00
INC
DEC

01
OO*INC

/OO*DEC

02

PAL22RX8A

00* 01*INC
/OO*/Ol*DEC

03
00* 01* 02*INC

/00*/01*/02*DEC

04
00* 01* 02* 03*INC

/00*/01*/02*/03*DEC

CSX
WR*/XO*PUSH

/WR*/XO*POP

WR
/WR*/CSX*/XO* PUSH

WR*/CSX* XO* PUSH
/WR*/CSX* XO* POP

WR*/CSX*/XO*/POP*/PUSH

XO
WR* CSX*/XO* PUSH

/WR*/CSX* XO*/PUSH
/WR* CSX*/XO* POP
/WR*/CSX* XO* POP

i
iRESET AT POWER ON
;
iOO HOLD
iINC ADDRESS FOR PUSH
iDEC ADDRESS FOR POP
i
i01 HOLD
iINC 01
:DEC 01
,
i02 HOLD
iINC 02
:DEC 02
i
:03 HOLD
iINC 03
iDEC 03
i
i04 HOLD
iINC 04
iDEC 04
,
iCHIP SELECT
iTO RAM DEVICE

,
iWRITE CONTROL
iTO RAM DEVICE

i
iCONTROL REGISTER
iFOR READ-WRITE
iSTATE MACHINE.

Figura 6. LIFO RAM Controller Design File (Continued)

~ Monolithic m Memories ~

EI

2·255

2·256

PAL22RX8A

SIMULATION
TRACE ON CLK 00 01 02 03 04

/CSX /WR /XO PUSH POP
RST

SETF /CLK
CLOCKF CLK
SETF /RST
SETF PUSH

RST /PUSH /POP

FOR I := 1 TO 4 DO
BEGIN
CLOCKF CLK
END
SETF /PUSH
CLOCKF CLK
SETF PUSH
FOR I := 1 TO 4 DO
BEGIN
CLOCKF CLK
END
SETF /PUSH
CLOCKF CLK
SETF POP
FOR I := 1 TO 4 DO
BEGIN
CLOCKF CLK
END
SETF /POP
FOR I:= 1 TO 3 DO
BEGIN
CLOCKF CLK
END
TRACE OFF

iSIMULATION
iSECTION.
iTRACE ESSENTIAL
iSIGNALS.
iRESET PAL DEVICE.
iCLOCK RESET TO
iREGISTERS.
iENABLE PUSH INPUT.
iPERFORM ONE PUSH
iCYCLE.
i
iPUSH AND POP MUST
iBE INACTIVE BETWEEN
;CYCLES. SET PUSH
iINACTIVE.
;SET PUSH ACTIVE
;AND PERFORM SECOND
;PUSH.
,
iSET PUSH INACTIVE
;AND CLOCK DEVICE
;THEN SET POP
iACTIVE. PERFORM
;POP CYCLE.

,
iSET PUSH AND POP
iINACTIVE. CLOCK
;SYSTEM FOR A PASSIVE
;MODE.

Figure 6. LIFO RAM Controller Design File (Continued)

~ Monolithic (FIJI Memories ~

Graphics and Image
Processing Systems

Graphics systems are commonly used in most computers for
displaying pictures and text. Functions of a graphics system
include creation, manipulation and storage of picture databases
and text. Usually, graphics systems also allow users to dynami­
cally control a picture's content, size or colors.

Graphics systems are closely related to Image processing sys­
tems. While graphics systems manipulate images which already
exist as a database, image processing systems analyze images
taken from cameras by converting them to a graphical database
and then processing that database. The hardware used for these
systems is very similar. In fact, it is so similarthat many systems
offer integrated graphics and image processing functions.

In this section we will examine the possible uses of PLDs in a
graphics and image processing system and their implementation.
We will also determine which PLDs are suited for different
applications in graphics and image processing systems. Laterwe
will also see some design examples of PLD applications.

A simple graphics system consists of five components, as shown
in Figure 1.

The first component is the graphics processor, which draws the
image (referred to as "image rendering"). It also provides an
interface to the main system processor (also known as the host
processor). The second component is the display controller,
which is an interface between the graphics processor and the
graphics frame buffer. The display controller is essentially a
modified DRAM controller. The third component is the graphics

(> :'.>.:'.':

:::

frame buffer, which is typically a memory that stores the image
data. The data from the frame buffer is then serialized by data
serializers which make up the fourth component of a graphics
system. The data serializers are essentially modified shift regis­
ters. The serial data is then converted to an analog signal suitable
for driving the video monitors for display. This function is per­
formed by the fifth and the final component of the graphics
system, a digital-to-analog converter (DAC).

Local Graphics Processor

The graphics (or image) processor gets all the commands from
the host processor. The interface between the graphics proces- EJ
sor and the host processor is through a bus (Figure 2), where
commands and data bytes are transferred. Most of the popular
standard bus interfaces are used for this function. Some of the
commonly used bus interfaces are:

• Multibus
• VME
• PC-bus
• Nu-bus
• Microchannel

The bus interface performs three major functions:

• Bus arbitration
• Bus control
• Address decoding

••

FRAME BUFFER H DATA {[I] MEMORY SERIALIZERS
~ DACs MONITOR

:

DISPLAY
CONTROLLER GRAPHICS BOARD

I lOCAL GRAPHICS
PROCESSOR (OPTIONAL)

I',»:,>,,:,>::,:

HOST DISK
APPLICATION PROCESSOR SOFTWARE

44001

Flguro 1. Components of Graphics System Hardware

~ Monolithic W Memories ~ 2·257

Graphics and Image Processing Systems

There are two major types of buses, synchronous and asynchro­
nous. For synchronous buses, the bus arbitration and control
functions can be effectively performed by fast registered PlDs
such as the PAl16R8/6/4, PAl20R8/6/4 and PAl22V10. For
asynchronous buses, the arbitration and control functions can be
provided by combinatorial PlDs, or by an asynchronous PlD (the
PAL20RA 10 or AmPAlC29MA 16). The details for designing bus
interface functions are given in a separate section on page 2-325.
The address decoding function is performed most effectively by
a combinatorial PAl16l8, PAl20l8 or PAl22V1 O. Address de­
coding is discussed along with other combinatorial functions in
the section on page 2-35.

VME BUS

SYSTEM BUS~ MULTI BUS-II
~PCBUS

...-_--lL...-___ NU BUS

Figure 2. System Bus Interface
44002

The local graphics processor is used to interpret the database of
the graphical image ("display list"), down-loaded from the host
processor. The graphics processor interprets the display list into
objects with geometrical entities. It also performs coordinate
transformation functions for recalculating object size as the object
moves or viewer perspective changes. The last function per­
formed by the graphics processor is the actual image rendering
(drawing) functions of drawing arc/vectors, moving blocks of
image data (bit-blit), and character manipulation for handling
large chunks of text.

In an image processing system the local processor performs the
role of an image processing engine. The image processing
software tasks are very different from the graphics tasks. Image
processing tasks include interpreting the list of commands sent by
the host and executing required functions such as image en­
hancement, pattern recognition, or computer vision. The most
intensive task is image enhancement which requires generating
image transforms in their spatial or frequency domain. Generat­
ing transforms requires a large number of multiplication opera­
tions. Typical image processing systems use either a special
microprocessor or a floating point multiplier for this purpose.
PLDs can also be used to interface this multiplier to the local
microprocessor. Some image processing tasks are very uniform
and repetitive, and dedicated hardware can be easily designed to
speed up such tasks in the interest of overall system perform­
ance. Such dedicated hardware can be readily made with PLDs.

The Display Controller

For implementing graphics functions the local processor must be
able to write to the frame buffer (draw an image). Similarly for
implementing image processing functions the local processor
must be able to read from and write to the frame buffer. The
reading and writing of frame buffer data is possible with the help

of the display controller, as shown in Figure 3. The display
controller is essentially a timing generator which performs three
major functions:

• DRAM timing
• Monitor control signal timing
• Screen refresh

The display controller generates the read and write cycle timings
as well as the refresh timing of the DRAMs. The read and write
cycles are initiated by the local graphics processor. These
functions are identical to a regular DRAM controller discussed in
the section on memory control (page 2-179). The second function
required for the display controller is the generation of monitor
control signals. This function is usually integrated with the DRAM
controller, although it can also be implemented separately.

FRAME BUFFER
MEMORY

Figure 3. The Display Controller

44003

The controller needs to generate the DOTClK signal which
determines the rate atwhich datais senttothe monitor. The video
monitor synchronization signals HSYNC for every new line, and
VSYNC for every new frame (Figure 4) are generated by dividing
this DOTCLK signal. Anothersignal, BLANK, asserted only when
the pixels are being displayed, is also generated by this controller.
The HSYNC, VSYNC and BLANK signals not only drive the
monitor, but are also used as synchronization signals by the
subsequent stages of the graphics system.

In an image processing system, the HSYNC and VSYNC signals
are generated by the camera which captures the image. The
internal DOTCLK signal is a multiple of these HSYNC and
VSYNC signals and is generated by using a phase locked loop
(PlL).

The third function of the display controller is to refresh the screen.
The controller automatically reads data in sequential addresses
from the frame buffer at fixed time intervals, and sends it to the
monitor at a rate determined by the DOTCLK signal. The
sequential addresses are also generated by the display controller
as shown in the example on page 2-261. Each chunk of data is
called a pixel and is displayed on the screen as a dot.

Registered PLDs can easily implement these display control
functions. As this would be a fast state machine, the range of
options includes the PAL32VX10/A, PAl16/20R8/6/4,
AmPAL23S8, and the PLS105/167/168. An example for a line
sync generator (HSYNC), and another for a frame sync generator
(VSYNC), are discussed later on pages 2-263 and 2-265 respec­
tively.

2·258 ~ Monolithic W Memories ~

44004

Graphics and Image Processing Systems

RASTERS

/

/
---- 1 HSYNC SIGNAL FOR

LINE RETRACE ,
r-~-~-~-~----------------_-_-=-~-~~ 2 - - - -- -'- -~~~~~----------------~~ 3

'" - - - -~------,

,
,

, ,
VSYNC SIGNAL FOR
FRAME RETRACE

BLANK SIGNAL IS ASSERTED FOR
DURATIONS SHOWN BY DOTTED LINES

VSYNC

HSYNC

BLANK

u
u
II I

BACK ---.J L FRONT
PORCH PORCH

u u
U

LIlJ

Figure 4. A Raster Scan Display Timing Control

The Frame Buffer reading and writing the frame buffer data. The first port is for the
display update to and from the graphics processor; the second
port is for the screen refresh to the monitor. The frame buffer (Figure 5) is traditionally made from dynamic

RAMs (DRAMs). The DRAMs provide cost effective means for
storing image data. Graphics systems require two ports for

PIXEL

~~ __ ..,512

512

PLANE 4

PLANE 3

PLANE 2

L-___ ..J PLANE 1

44005

Figure 5. The Frame Buffer

The performance of agraphics system is measured by the screen
update bandwidth. This is the rate at which the image data can
be written to the frame buffer. The DRAMs can be organized in
various ways to provide access to multiple bits of image data
simultaneously, which can increase update bandwidth. Another
related factor is the screen resolution, which determines the rate
at which pixels have to be sent to the monitor in order to provide
a flicker free display. The table in Figure 6 shows this pixel clock
(DOTCLK) rate required for various screen resolutions. Varying
DRAM organizations can also be used to meet this screen
resolution bandwidth.

RESOLUTION FREQUENCY PIXEL CLOCK (DOTCLK)

512 X 512 25 MHz 40 ns
640 X 480 25 MHz 40 ns
720 X 350 50 MHz 20 ns

1000 X 1000 100 MHz 10 ns
1280 X 1000 125 MHz 8 ns

Figure 6. Various Screen Resolutions and
Bandwidth Required

~ Monolithic WMemories ~ 2·259

Graphics and Image Processing Systems

44006

DATA TO SERIALIZER
OR MONITOR

Figure 7. A Video RAM

Video DRAMs (VRAMs) are specialized memories which provide
two ports. The VRAMs (Figure 7) include a built-in serializer
capable of supporting high data bandwidths. These serializers
are used to support high bandwidth requirements of the monitors.
The VRAMs require extra control signals which are typically
generated by the display controller.

The performance of a graphics system is also determined in part
by the frame buffer organization. There are two main types of
organizations used in the industry.

• Bit-plane mapped
• Pixel-packed mapped

Bit-plane mapping allows the graphics processorto access single
bits (also called planes) from a number of adjacent pixels simul­
taneously. The pixel-packed organization allows the graphics
processor to access all the bits of one pixel sim ultaneously. The
former was used in the monochrome type of displays whereas the
latter is increasingly being used in the modern color displays.

For high performance and large screen resolution systems,
multiple pixel access is possible only with custom DRAM organi­
zations, which require a custom display controller design. Also,
different frame buffer organizations (bit-plane or pixel-packed),
and the special timing requirements of VRAMs, further reduce the
application of dedicated VLSI display controllers. PLDs provide
an easy means of designing custom display controllers and are
often used in such systems.

Serializers

The function of the serializer is to accept multiple pixels of parallel
data, as sent by the display controller at slow speeds, and
transform them into a serial pixel data stream. The serializer is
required even for VRAMs, which can only support 25 MHz
bandwidths. The serializer speed requirements are based on
monitor resolution and are shown in Figure 5.

The serializer is synchronized by the monitor control signals
HSYNC, VSYNC and BLANK, which are generated by the display
controller. A serializer is essentially a shift register, similar to the
one discussed earlier on page 2-90. Certain modifications are
added to accommodate the specific design requirements of a
graphics system. These include synchronization with the display
control signals.

Many standard video serializers (679501, 679502, and AmS177)
are available, which can be used for standard DRAM organiza­
tions. For non-standard organizations, custom serializers can be
made with PLDs. Sometimes graphics-related functions, which
are not available in standard serializers, can also be added to
such custom serializers. For example, a ZOOM function can be

easily implemented in a custom serializer by having it repeat the
same pixel data two or more times. An example of a seven bit shift
register used as a serializer is shown on page 2-271. This
serializer has the capability of providing reverse video, where it
inverts the outgoing pixel data stream.

In certain character-based terminals, a dedicated DRAM or
VRAM based frame buffer is not used. The screen characters are
stored in a static RAM and are sent to the monitor through a font
RAM or ROM which stores the displayed shape of each character.
This font RAM or ROM is also known as the character generator.
The data from the font RAM constitutes the pixels which are sent
to the monitor via serializers. One such application of a dual port
serializer with changeable fonts is illustrated on page 2-275.

PLDs which allow fast state machines are ideal candidates for
such serializers. Due to the very high speed requirements, the
most suitable PLDs are the registered "0" PAL devices at 55 MHz
or the registered ECL PAL devices running at 125 MHz speed.
Sometimes buried registers are also very useful for state machine
designs. The serializer application on page 2-275 uses a
PAL32VX10A as it provides buried registers for state machine
functions.

Look Up Table and Digital to Analog
Converter

The last stage of a graphics system is the look-up table (LUT) and
digital-to-analog converter (DAC). The numbers of simultane­
ously displayable colors or the gray scales is determined by the
numberofbits in a pixel. The LUTis usedto increase the number
of possible colors or gray scales that can be displayed on the
monitor.

The LUT (Figure S) is a fast RAM addressed by the pixels from the
serializers. The data stored in the RAMs is used as the color or
gray scale value. Since the data speeds can be very fast (as little
as S ns for a 125 MHz display) and the static RAM access times
are relatively slow, multiple static RAMs are used to store identical
copies of look up tables. Different static RAMs are addressed for
sequential pixels in order to maintain a fast overall data rate.
Controllers made with such fast PAL devices as the
PAL 1 OH20EVS or PAL 16RS/6/4D can be used to spread sequen­
tial pixels between various static RAMs for this function. The LUT
output is then routed to the DAC stage of the circuit.

The DAC is the only analog portion of the circuit, and is used to
convert the color or gray scale data into an analog format usable
by the video monitors. There are many standard monolithic and
hybrid solutions available for such functions.

44007

PIXEL
VALUE 8 ADDRESS

RAM
256 x 12

DATA

12 BITS

NUMBER OF COLORS
POSSIBLE = 4K

Figure 8. The Lookup Table

2·260 ~ Monollthlo W Memories ~

Small System Video Controller

This small system video controller is designed for an 80 character
wide terminal display of 24 rows (Figure 1). The display resolution
is 640 X 400 pixels, with a character box of 8 X 16 pixels. The
character font used is a dot matrix of 7 X 9 pixels which is stored
in a character PROM. Thefirst seven horizontal pixels display the
character while the eighth pixel provides the horizontal character
separation. Similarly the first nine lines display a visible character
while the remaining seven are blank to provide line separation.
The frame buffer is an SRAM which stores character ASCII codes
of 80 X 24 characters and can be addressed by the system
processor for update or by the display controller.

The display controller provides all the necessary timing and
addressing for supporting this display. Synchronized to the
monitor timing signals, it generates the row and column ad­
dresses (Figure 2), of the character being scanned. The row and
column addresses access the character ASCII code from the
frame buffer at the instant the character is displayed. This ASCII
code addresses the character PROM which stores the 7 X 9 dot
matrix font. Suppose the letter "N is to be displayed (Figure 3).
The contents of the character PROM pertaining to the current
character row and column are read and loaded into the video shift
register to be clocked out as a video signal. The video shift
register must be seven-bits long, and the entire character is

CHARACTER SIZE = 7 X 9
CHARACTER BOX = 6 X 16

CHARACTER
ROW

ADDRESS

!

A
24

CHARACTER ..
ROWS

~

41401

7 8

CHARACTER COL. ADDRESS

80 CHARACTER COLUMNS

/!"

" 16 LINES
+-- PER

CHARACTER

/
! LINE ADDRESS

Figure 1. A Character Display

:,::':':':':':':':':':':':':':':':':':::':':':':':':':.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.;.:.:.:.:.:.::::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,:.:.:.:.:.:.:.:.:.:.:.:':':'::,:: PROCESSOR ADDRESS BUS

FRAME
SYNC

GENERATOR
FUNCTION

HYSYNC

NINE
BIT

COUNTER

DOTCLK ~

........................

CHARACTER
ROW ADDRESS

5/
/

LINE
ADDRESS

/

D12

FRAME
BUFFER

(STORING
CHARACTER

ASCII
CODES)

ASCII
CHARACTER

DATA
/

VIDEO
SHIFT

REGISTER

-
-+ VIDEO

CHARACTER 1-7'/<-",:+--~
PROM /6

OOTCLK

j/" ... ' ' .. ~~~
:.::

/

I
OOTCLK ---..J

Figure 2. Functional Block Diagram

~ Monolithic W Memories ~

CHARACTER
PERIOD

REFERENCE

VIDEO SHIFT REGISTER

41403

2·261

Small System Video Controller

displayed over nine lines. To display a character 'A', the ASCII
code of '41' hexadecimal selecting the letter is read from a frame
buffer location. This character code will point to the base location
in the PROM. This base location holds the first line of a table of
nine locations which hold the dot information for each scan line.
The line address counter first selects the RO line address, then the
next line address R1 and then R2 to R8, until the entire character
is displayed.

The character column, row addresses and the line address can
be generated by what is essentially one big counter. As can be
seen from Figure 1, there are eight pixels in acolumn, 80columns
in a line, and 16 lines in a row. The characters are counted by
dividing the pixel clock (DOTCLK) by eight, which is the number
of pixels in a character box. The character column addresses are
generated by a seven bit counter which counts up to 80 character
columns. For every eighty columns of character addresses a line
address (a four-bit counter) is incremented. And finally for every
16 line addresses a character row address is incremented. This
counter is implemented in two different devices which also gen­
erate related monitor timing signals.

The Implementation

The functions of the display controller (Figure 4) are divided into
three portions. The related tasks of generating the system
HSYNC and BLANK signals and charactercolumn addresses are
performed by a line sync generator. The tasks of generating the
VSYNC signal and the line address and character row address
are performed by the frame sync generator. Finally, the task of
generating character period reference from the DOTCLK has

LINE 0

been conveniently combined with the video shift register, which
also uses this reference to shift out appropriate font pixels. The
character period reference is also used by line sync and frame
sync generators to count number of characters.

The sequential frame buffer column address MAO-MA6 for dis­
playing these 80 characters per row, is generated by the line sync
generator (IC2 in Figure 4). The line sync generator is a counter
clocked by DOTCLK with a count enable function under the
control of a character period reference. This enables it to count
the number of character periods. The line sync generator also
generates HSYNC and BLANK signals at the end of each line.

The character display is divided into 24 rows of 161ines each. The
four-bit line address (RD-R3) is used by the character PROM to
generate the appropriate bits of font for the different lines in a
character row. The line address to the character PROM is
generated by the frame sync generator (IC3), using the BLANK
signal as a new line reference. For every new line (BLANK signal)
the line address counter is incremented. The frame sync genera­
tor also generates the five-bit row address (A4-A8) for the 24
different rows of characters stored in the frame buffer. This
address is generated by a counter which is incremented once for
every 16 counts of the line address counter.

The final component is the video shift register (IC1) which
serializes the character PROM seven-bit character line data. This
function is accomplished by using a three-bit counter which
divides the DOTCLK frequency by eight to generate the character
period reference.

LINE 1 LINE 2

III
LINE 3 LINE 4 LINE 5

1000001 1111111 1000001

III
LINE 6 LINE 7 LINE 8

1000001 1000001 1000001

III
414 02

Figure 3. Character Generation

2·262 ~ Monolithic W Memories l1

Small System Video Controller

Line Sync Generator

The PAL32VX10 used for line sync generation (Figure 5) has a
versatile macrocell structure capable of transforming a basic D­
type flip-flop into a more complex T-type flip-flop which efficiently
implements counter designs. The seven-bit character column
address counter uses seven of these T-type flip-flops. The line
sync (HSYNC) signal is generated based on the value of the
counter. The HSYNC signal initiates line flyback which separates
the many lines of which a visual display is composed. The device
also generates the blanking signal for monitor control. This
design has been developed into state machine logic contained in
the PAL32VX1 O.

VIDEO HSYNC

CLOCK

Addressing the Frame Buffer

The frame buffer address lines MAO-MA6 are shared by a host
processor which updates the memory with new characters.
These addresses are generated by a binary character period
counter. The only system clock conveniently available is the
DOTCLK. Since the counter has to keep track of character
periods. One easy way is to clock the device with DOTCLK, but
enable count only when all three bits of the pixel counter S2, S 1
and SO are high. These three bits high indicate a character
boundary; this will effectively result in clocking the counter every
character period.

VSYNC

I
I I
I J I r------I----++-..., S2

~ 01 v VIDEO l-

V-- 02 SO

V- D3 S1

V- D4 VIDEO
SHIFT

S2 ~~

V-- 05 REGISTER -
V- D6 r--

v--- 07 -I"--

REV I--
r- VSYNC

r-- BLANK

PAL32VX10
IC1

41404

v

SO
BLANK

S1
MAO

S2
MA1

VSYNC MA2

WR
MA3

- MA4 CS

LINE
MAS

SYNC MAS
GENERATOR

ROY

PAL32VX10
IC2

1-1-

r----..
r-----
I-..

r----..
I-..

r----..
r-----
f--+

I I"--

I'--- so
I'--- S1

'-- S2

-- WR

I
v

FRAME
SYNC

RO I----+-......

R1
R2 1-----+ __

R31----+-----.I

VSYNC i----<

MA11 I-..

MA10 r----..
GENERATOR MA9 r----..

r-- CE1 MAS ----
~ TST MA7 :---""

CHARACTER AO I+-
PROM A1 I+- ROW ADDRESS RO-R3

A2 ~ DE
<I"--

ADDRESS BUS AO-A11
CAN BE CONNECTED
TO HOST CPU SYSTEM
THROUGH 3-STATE
BUFFERS

-.- vee

< OPEN COLLECTOR
< DRIVE

Lr~ WRT

()

WR

ADDRESS
AO-A11

FRAME
BUFFER

'-- DO

'-- 01

'-- 02

'-- 03

'-- 04

'-- 05

'-- 06

::~~Q o r----- r- oo
AS f+--. .r-- a o r----..
A6 h .r-- a o r----..
A7 t"I:....~r---w.,--'1 a o r-----
AS h .r-- a o I-..
A9 f+--. r- a o r----..

A10 h .r-- a o r-----
~--~~--~ ~---~

OE
~ OCTAL REGISTER

MMI74LS374

Figure 4_ Small System Video Controller

~ Monolithic W Memories l1

~ 01

~ 02

~ D3

V- D4

~ 05

V- D6

DATA BUS 00-06

DATA BUS 00-06
MUST BE CONNECTED
TO HOST CPU SYSTEM
THROUGH 3-STATE
BUFFERS

2·263

Ell

DOTCLK

RST

so

S1

Small System Video Controller

rr:====::;--, ~~~~crATE

MAO

MA1

MAl

MA3

MA4

MAS

MA6

MEMORY
ADDRESS
OUTPUTS
DRIVE LINE
DISPLAY
RAM.

11---- HSYNC
TO VIDEO
LINE SYNC
CIRCUITRY.

11--- BLANK
LINE FL YBACK
CONTROL TO
VIDEO SHIFT
REGISTER

RDY

PAL32VX10 USES J-K AND T FLIP-FLOP
CONFIGURATIONS.

Figure 5. Schematic Diagram of Line Address
Generator Circuit

414 05

The count is extended up to 107 to provide a timing reference to
generate the monitor control signals (HSYNC and BLANK) also.
Seven registers in the PAL32VX10 provide this count. The
registers are programmed as T-type flip-flops (Figure 5) for opti­
mizing the numberof product terms used. For each scan line after
reaching 107 the T-type counters are reset to provide the start of
the next active line. Of the ten registered cells in the PAL32VX1 0,
nine registers are used for addressing memory (MAO-MAS), line
sync generation (HSYNC) and blanking control (BLANK).

Since the processor can not read or write to the frame buffer at the
same time as the display controller, the address lines (MAO-MAS)
of the display controller are three-stated during a processor cycle.
When processor signal rNR is asserted LOW, indicating a write
cycle, the MAO-MAS address outputs are th ree-stated to allow the
processor address bus to drive the memory address.

The line blanking signal (BLANK) is designed to go active low
after 80 character cycles. This is followed by the line sync signal
(HSYNC), which goes active eight character cycles later. This
gives an eight character back porch to the display (see Figures S
& 7). The line flyback time (HSYNC width) of 1S blank characters
ensures adequate time for the CRT line circuitry to stabilize
before starting the next active line scan. The blanking signal is
then turned off three character periods later to provide a three
character front porch to the display. The duty cycle for one scan
line is (80+8+ 1S+3)= 107 character periods.

Selecting a DOTCLKof 16 MHz, and a character of eight bits, the
resulting 2 MHz character cycle can be divided down to a line duty
cycle of:

HSYNC Line frequency = Character freqlline duty cycle
.. 2000 KHz 1107
.. 18.7 KHz

Video data in the frame buffer can be updated by the processor
only for durations when video is not displayed. A BLANK signal
is a good indicator to the processor for when to begin and stop
updates. Most processors, however, need an advance warning,
preferably a few microseconds earlier.

The ROY signal is used to provide this advance warning to the
processor. When HIGH, the ROY signal allows data modification
in the frame buffer. This flag is turned off before the removal of the
blanking pulse (BLANK) allowing a margin of four micro-seconds
to elapse at the end of the blanking period. It is assumed that four
microseconds is ample time to test the flag and perform the last
write operation. However, the time taken for a processor to read
this flag and respond can be programmed into the PAL device

2·264 ~ Monollthlo WMemor/es ~

Small System Video Controller

depending upon the software requirements of the system. The
ROY signal is also set during vertical retrace when all processor
updates are allowed and no display controller accesses are
required. The design uses the system VSYNC for accomplishing
this.

The ROY signal is also disabled unless it is being read by the
processor. This is done because the ROY signal is usually
directly connected to the processor data bus which is used to
carry data from different sources (drivers). The disabling is done
using the CS chip-select signal asserted by the processor. If CS
is driven LOW, the ROY output buffer is enabled and the ROY flag
may be read by the processor.

Frame Sync Generator

Another PAL32VX10 (Figures 8 & 9) is programmed to perform
the function of a frame sync generator (VSYNC), with the ability
to access the character PROM and the frame buffer. The VSYNC
signal controls frame flyback for the CRT controller. Each frame
of displayed data is terminated, and the electron beam in the CRT
performs a retrace operation prior to the display of the next frame.
Clocked by the system BLANK signal, it uses a counter to
generate the row address for the character being displayed. It
also generates the line address to access the dot pattern for each
scan line, stored in character PROM.

80
CHARACTE~

+-DISPLAY
LINE

BACK PORCH
8 CHARACTER

CYCLES

FRONT
HSYNC WIDTH --1 PORCH 3 r80 CHARACTER
16 CHARACTER CHARACTER DISPLAY LINE -+

PERIODS CYCLES

BLANK

HSYNC

414 06

~---------r--------------------------I

FRONT
PORCH

3 CHARACTER
PERIODS

SCAN LINE
80 CHARACTERS

MONITOR
SCREEN

Figure 6. Blanking and Sync. Signals.

BACK
PORCH
8 CHARACTER
PERIODS

DISPLAYED
IMAGE

~ Monolithic IFJJJ Memories ~ 2·265

2·266

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE
,

Small System Video Controller

LINE SYNC GENERATOR.
02.
02.
CHRIS JAY.
MMI SANTA CLARA, CA.
20TH AUGUST 1986.

:THE PAL32VXI0 HAS BEEN DESIGNED AS A LINE SYNC GENERATOR FOR A
:THREE PAL SOLUTION TO A VIDEO DISPLAY CONTROLLER. THE DEVICE
:HAS BEEN PROGRAMMED TO GENERATE ADDRESSING TO ACCESS A CHARACTER
:RAM MAO - MA6 ARE CONFIGURED TO ACCESS ASCCII CHARACTERS STORED IN
:THE RAM FOR AN EIGHTY CHARACTER WIDE DISPLAY. THESE ADDRESS OUTPUTS
:MAY BE PUT INTO A THREE STATE CONDITION IF THE HOST PROCESSOR
:REOUIRES TO CHANGE THE CONTENTS OF THE DISPLAYED MEMORY. WITH
:THE /WR INPUT ACTIVE LOW THE HOST PROCESSOR MAY DRIVE THE
:ADDRESS INPUTS TO ACCESS AND MODIFY THE CONTENTS OF THE VIDEO RAM.
:THE INTERFACE SIGNALS TO THE VIDEO SHIFT REGISTER (PAL DESIGN 01
:OF THE THREE PAL DESIGNS) ARE SO,Sl,S2, AND BLANK. WHEN SO*Sl*S2
:ARE HIGH THE ADDRESS OUTPUTS MAO - MA6 INCREMENT SYNCHRONOUSLY
;AS A RESULT OF THE DOT CLOCK. SO,Sl AND S2 ARE STATE MACHINE
;OUTPUTS FROM THE VIDEO SHIFT REGISTER THAT CONTROL THE LOADING
;AND SHIFTING OF PIXEL DATA. THE BLANK OUTPUT IS ACTIVE HIGH AND
;IS FED TO THE VIDEO SHIFT REGISTER TO PROVIDE A BLANKING SIGNAL
;DURING LINE SYNC FLYBACK WITH A MARGIN FOR FRONT AND BACK PORCH.
;A ROY REGISTER IS AVAILABLE TO INDICATE THAT THE SCREEN IS BLANK
;DURING LINE AND FRAME FLYBACK PERIODS AND VIDEO RAM MAY BE UPDATED.
;THE OUTPUT IS 3-STATED AND IS ENABLED BY AN ACTIVE /CS INPUT.
,
CHIP VIDEO_l PAL32VXI0

;LINE SYNC GENERATOR PAL

;PINS 1
CLK

;PINS 7
NC

;PINS 13
/CS

;PINS 19
MA4

GLOBAL 00 01

STRING HEX6B

STRING HEX67
STRING HEX63
STRING HEX57
STRING HEXSO
STRING CEI
EOUATIONS

GLOBAL.SETF

/00 :=
:+:
+

BLANK
BLANK.CMBF =

/01 :=
:+:

+
MAO
MAO.CMBF
MAO.TRST

/02 :=
:+:

+
MAl
MAl.CMBF
MAl.TRST

2 3
/RST SO

8 9
NC NC

14 15
BLANK MAO

20 21
MAS MA6

02 03 04 05 06 07

4
Sl

10
NC

16
MAl

22
HSYNC

08 09

5
S2

11
/WR

17
MA2

23
ROY

6
/VSYNC

12
GND

18
MA3

24
VCC

'07*06*/05*04*/03*02*01'

'07*06*/05*/04*03*02*01'
'07*06*/05*/04*/03*02*01'
'07*/06*05*/04*03*02*01'
'07*/06*05*/04*/03*/02*/01'
'SO*Sl*S2'

;STRING DECLARATIONS.
;CLEAR ADDRESS COUNTER
;AND TURN BLANK OFF
;TURN LINE SYNC OFF
;TURN ROY OFF
;TURN LINE SYNC ON
;TURN BLANK SIGNAL ON
;COUNT ENABLE INPUT

RST

/00
/00*HEX50·CEI

00*HEX6B*CEI
00

GND

/01
CEI
01*HEX6B*CEI
01
GND
/WR

/02
01*CEI
02*HEX6B*CEI
02
GND
/WR

;ASYNCHRONOUS RESET
;J - K EOUATION FOR
;BLANK OUTPUT.
;HEX50 = J. BLANK ON
;HEX6B = K. BLANK OFF
;ASSIGN 00 TO BLANK PIN
;ENABLE REGISTERED OUTPUT

;COUNT EOUATION eEl = T
; TOGGLE. HEX6B*CEI = K
;TO RESET MAO AFTER ACTIVE
;LINE. ASSIGN MAO TO 01
;REGISTER.
;ENABLE THREE-STATE
;DURING MPU/RAM ACCESS.
;COUNT EOUATION 02
:OI*CEI = T FUNCTION
;HEX6B*CEI = K
:ENABLE 02 REGISTER TO
;MAl OUTPUT. CONTROL
;THREE-STATE DURING
;MPU/RAM ACCESS.

Figure 7. Design File of Line Sync Generator

~ Monollthlo W Memories ~

Small System Video Controller

/Q3 := /Q3
: +: Q2"'Ql"'CEI"'/Q7

+ Q2"'Ql"'CEI"'/Q6
+ Q2"'Ql"'CEI"'Q5
+ Q2 "'Ql*CEI '" /Q4
+ Q2*Ql*CEI"'Q3

MA2 Q3
MA2.CMBF GND
MA2.TRST /WR

/Q4 := /Q4
:+ : Q3*Q2*Ql*CEI

+ Q4*HEX6B*CEI
MA3 Q4
MA3.CMBF GND
MA3.TRST /WR

/Q5 : = /Q5
: +: Q4*Q3*Q2*Ql*CEI

Q5*HEX6B*CEI
MA4 Q5
MA4.CMBF GND
MA4.TRST /WR

/Q6 := /Q6
: +: Q5*Q4*Q3*Q2*Ql"'CEI

+ Q6"'HEX6B"'CEI
MA5 Q6
MA5.CMBF GND
MA5.TRST /WR

/Q7 := /Q7
: +: Q6*Q5"'Q4*Q3*Q2*Ql*CEI

+ Q7*HEX6B*CEI
MA6 Q7
MA6.CMBF GND
MA6.TRST /WR

/Q8 := /Q8
: +: /Q8"'HEX57*CEI
+ Q8*HEX67*CEI

/HSYNC /Q8
/HSYNC.CMBF GND

/Q9 := /Q9
: +: /Q9*HEX50*CEI*/VSYNC
+ /Q9*CEI*VSYNC
+ Q9*HEX63*CEI*/VSYNC

RDY Q9
RDY.CMBF GND
RDY.TRST CS

SIMULATION
TRACE ON CLK RST SO Sl S2 MAO MAl MA2

- MA3 MA4 MA5 MA6 HSYNC BLANK
RDY /VSYNC

SETF WR /VSYNC

SETF
CLOCKF
SETF
PRLDF

FOR I
BEGIN

/CLK RST SO Sl S2 /WR CS
CLK

/RST
/QO /Ql /Q2 /Q3 Q4
/Q5 /Q6 Q7 /Q8 /Q9

:= 1 TO 60 DO

CLOCKF CLK
END
SETF VSYNC
FOR I := 1 TO 8 DO
BEGIN CLOCKF CLK
END

ISO
CLK
/Sl
CLK
/S2

SETF
CLOCKF
SETF
CLOCKF
SETF
CLOCKF
TRACE OFF

;COUNT EQUATION Q3
;Q2*Ql*CEI = T FUNCTION
;COUNT ENABLE UNTIL
;END OF LINE BLANKING
;PERIOD. DE MORGAN OF
;EQU Q7*Q6*/Q5*Q4*/Q3=K
;/Q9 = RESET FUNCTION.
;ASSIGN Q3 TO MA2
;REGISTERED OUTPUT.
;CONTROL O/P WITH /WR
;COUNT EQUATION Q4
;Q3*Q2*Ql*CEI = T.
;Q4*HEX6B*CEI = K.
;ASSIGN Q4 TO MA3.
;ENABLE REGISTER O/P.
;THREE - STATE CONTROL.

;COUNT EQUATION Q5.
;Q4*Q3*Q2*Ql*CEI = T.
;Q5*HEX6B*CEI = K.
;ASSIGN Q5 TO MA4.
;ENABLE REGISTER O/P.
;THREE - STATE CONTROL.

;COUNT EQUATION Q6.
;Q5"'Q4*Q3*Q2"'Ql*CEI T.
;Q6"'HEX6B*CEI = K.
;ASSIGN Q6 TO MA5.
;ENABLE REGISTER O/P
;THREE - STATE CONTROL

;COUNT EQUATION Q7.
;Q6*Q5"'Q4*Q3"'Q2*Ql*CEI =T.
;Q7"'HEX6B*CEI = K.
;ASSIGN Q7 TO MA6.
;ENABLE REGISTER O/P
;THREE - STATE CONTROL

;J - K EQUATION FOR Q8
;HEX57"'CEI = J.
;HEX67*CEI = K.
;ASSIGN Q8 TO HSYNC.
;ENABLE REGISTER O/P
;J - K EQUATION FOR Q9
;RDY STATUS
;FLYBACK.HEX50*CEI = Jl
;AND FRAME = J2
;HEX63*CEI = Kl RESET
;AFTER LINE AND FRAME
;ASSIGN RDY TO Q9
;ENABLE REGISTER O/P
;WHEN /CS = LOW RDY
;OUTPUT IS ENABLED.
;START OF SIMULATION.
;TRACE ESSENTIAL I/P
;AND O/P SIGNALS.

;TEST THREE - STATE
;CONTROL. INITALISE
;INPUTS. PERFORM
;RESET. AND PRELOAD
;REGISTERS.

;APPLY 60 CLOCK PULSES
;TO TRACE THE MEMORY
;ADDRESS COUNTER, HSYNC,
;BLANK AND CEO.

;TEST THAT AN ACTIVE
;FRAME WILL SET THE
;RDY FLAG.
;DISABLE COUNTER BY
;SETTING SO,Sl AND S2
;LOW.

;END OF SIMULATION.

Figure 7. Design File of Line Sync Generator (Cont'd.)

~ Monolithic m Memories ~ 2·267

Small System Video Controller

DOTCLK

RST

so

Sl

S2

CEI

TST

FUSE
ARRAY

AND
GLOBAL

INTERCONN- r-t--+_--J
ECTIVITY

MA7

MAS

MAg

MAlO

MAll

RO

Rl

R2

R3

PAL32VX10 USES J-K AND T FLIP-FLOP
CONFIGURATIONS.

MEMORY
ADDRESS
OUTPUTS
DRIVE LINE
DISPLAY
RAM.

41407

Figure 8. Schematic of Frame Sync Generator

The PAL device is programmed as acounter. The least significant
four bits count through sixteen line addresses RO-R3 for each
character row. The higher significant bits of the countertrack the
24 rows of characters. The frame sync pulse is generated on the
25th character row and frame flyback is turned on for sixteen line
count periods, which is the duration of the twenty-fifth row. With
24 character rows, each having sixteen lines, the system gave
384 visible lines. Since the frame flyback occurs over sixteen
lines, the total number of lines in the system is (384+ 16)= 400.
The frame repetition rate is derived by dividing the line frequency
by the total number of lines in the system.

Frame repetition rate = 18.7 X 10+3 HZl400 (1).
= 46.75 Hz

The video terminal used for testing the final design functioned
best at this frame repetition rate. If desired, other frame repetition
rates can also be selected. For example a thirteen character row
with nine rows active and the same 7 X 9 character box would give
a 57 Hz frame rate. Most video terminals have a synchronizing
circuit that determines the choice of frame frequency. This is
similar to a phase-locked loop, providing a window of acceptable
frame oscillator frequencies to which the display will be locked.
Outside of this capture range, the display will not be synchro­
nized, and the result will look like a rolling unstable picture.

Signal Assignments

The NSYNC output is an active LOW signal. When displaying
data this output is driven HIGH. As with the line sync generator
design, the rNR input is driven from the host processor system.
When LOW, the video memory address outputs MA7-MA11 are
disabled. The host system may enable its output buffers and drive
the frame buffer's address inputs directly to modify video data.

For normal counting, the CEI input should be driven LOW. A TST
input was provided to minimize the number of test vectors
required to test the device. This pin is driven LOW for normal
operation.

2·268 ~ Monolithic IFJJl Memories ~

Small System Video Controller

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

FRAME SYNC GENERATOR.
02
02.
CHRIS JAY.
MMI SANTA CLARA, CA.
20TH AUGUST 1986.

CHIP VIDEO_l PAL32VXI0

; FRAME SYNC GENERATOR PAL

;THE PAL 32VXI0 IS THE THIRD OF A THREE PAL SYSTEM DESIGNED
;AS A SIMPLE VIDEO CONTROLLER. THE DEVICE GENERATES ADDRESSING
;FOR A CHARACTER MEMORY AND CPU RAM. ALSO A FRAME SYNC PULSE
;/VSYNC IS USED TO PROVIDE FRAME FLYBACK AT THE END OF ONE
;COMPLETE FRAME. THERE ARE FOUR ROW OUTPUTS FROM THE PAL WHICH
;ADDRESS THE CHARACTER MEMORY. THESE OUTPUTS ARE DRIVEN FROM
;AN INTERNAL COUNTER WHICH IS INCREMENTED AFTER EACH LINE
;SCAN. THE RO,Rl,R2 AND R3 INCREMENT AS A SIXTEEN BIT COUNTER
;ADDRESSING CHARACTER MEMORY. MA7 - MAll ADDRESS VIDEO MEMORY
;ACCESSING THE ASCII CODES OF THE CHARACTER TO BE DISPLAYED
;ON EACH ROW OF THE VIDEO DISPLAY. THE COUNTER MA7 - MAll
;IS INCREMENTED AFTER ONE COMPLETE CHARACTER SCAN THAT IS
;SIXTEEN LINES. THE /WR INPUT CAN BE DRIVEN BY THE HOST CPU
;TO 3 - STATE MA7 - MAll OUPUTS AND DYNAMICALLY CHANGE THE
;CONTENTS OF THE VIDEO RAM. THIS INPUT CAN BE MAPPED INTO
;HOST PROCESSOR'S MEMORY ADDRESS RANGE. UPDATING RAM SHOULD
;BE DONE BY THE HOST DURING LINE AR FRAME FLYBACK. THE PAL
;DEVICE MAY BE RESET AT POWER ON AND /CEI SHOULD BE WIRED LOW
;TO ENABLE THE ADDRESS COUNTERS. TST IS HARDWIRED LOW, THIS
;PIN WAS USED AS A TEST INPUT PULLED HIGH TO DISABLE SOME OF
;LOWER ORDER COUNTER REGISTERS WHEN GENERATING TEST VECTORS
;OF THE TEST VECTORS. THIS AVOIDED GENERATING UNECESSARY
;REPETATIVE LOWER ORDER COUNTS WHEN TESTING THE COUNT
;EQUATIONS FOR HIGHER ORDER REGISTERS IN THE COUNTER
;CHAIN.

;PINS 1 2 3 4 5
CLK /RST /CEI NC NC NC

;PINS 7 8 9 10 11 12
NC NC NC /WR TST GND

;PINS 13 14 15 16 17 18
NC MA7 MA8 MA9 MAIO MAll

;PINS 19 20 21 22 23 24
/VSYNC RO Rl R2 R3 VCC

GLOBAL QO Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

;STRING VARIABLE DECLARATIONS FOR A NON-INTERLACED SYSTEM.

STRING HEX18NI
STRING HEX19NI
STRING ROWNI

EQUATIONS

GLOBAL.SETF
/QO :=

MA7
MA7.CMBF
MA7.TRST

: +:
+

/Ql :=
:+ :

MA8
MA8.CMBF
MA8.TRST =

'Q9*Q8*Q7*Q6*Q4*Q3*/Q2*/Ql*/QO' ;SET VSYNC
'Q9*Q8*Q7*Q6*Q4*Q3*/Q2*/Ql*QO' ;CLEAR VSYNC
'Q6*Q7*Q8*Q9'

RST
/QO

CEI*ROWNI
CEI*HEX19NI
QO
GND

/WR

/Ql
QO*CEI*ROWNI*/Q5
Ql
GND

/WR

;ROW COMPLETE

;RESET AT POWER UP
;COUNT EQUATION.
;TOGGLE WHEN CEI*ROWNI TRUE
;RESET AFTER FRAME SCAN.
;ENABLE MA7 OUTPUT
;SET REGISTER MODE
;THREE - STATE O/p WHEN /WR
;ACTIVE.
;COUNT EQUATION Ql
;ENABLE TOGGLE
;ENABLE MA8 OUTPUT.
;SET REGISTER MODE.
;THREE - STATE O/P WHEN /WR
;ACTIVE.

Figure 9. Design File of Frame Sync Generator

~ Monolithic W Memories ~ 2·269

2·270

Small System Video Controller

/Q2 := /Q2
: +: Ql*QO*CEI*ROWNI

+ Q2*HEX19NI*CEI
MA9 Q2
MA9.CMBF GND
MA9.TRST /WR

/Q3 /Q3
: +: Q2*Ql*QO*CEI*ROWNI

Q3*HEX19NI*CEI
MAIO Q3
MAlO.CMBF GND
MAlO.TRST = /WR

/Q4 := /Q4
: +: Q3*Q2*Ql*QO*CEI*ROWNI

+ Q4*HEX19NI*CEI
MAll Q4
MAll.CMBF GND
MAll.TRST = /WR

/Q5 : = /Q5
: +: /Q5*HEX18NI*CEI*ROWNI

+ Q5*HEX19NI*CEI*ROWNI
/VSYNC /Q5
/VSYNC.CMBF GND

/06 := /06
: +: CEI

RO 06
RO.CMBF GND

/07 := /Q7
: +: Q6*CEI*TST

+ /Q7*/TST
Rl 07
R1. CMBF GND

/08 := /Q8
: +: 06*Q7*CEI*TST

+ /Q8*/TST
R2 Q8
R2.CMBF GND

/09 /Q9
:+ : 06*Q7*Q8*CEI*TST

+ /Q9*/TST
R3 Q9
R3.CMBF GND

SIMULATION
TRACE ON CLK RST MA7 MA8 MA9 MAIO

- MAll /VSYNC RO Rl R2 R3
/CLK RST CEI /WR SETF

CLOCKF
SETF
PRLDF

FOR
BEGIN
END

SETF
PRLDF

FOR
BEGIN
END
SETF
FOR
BEGIN

CLK
/RST /TST
00 Ql Q2 /Q3 04
/05 /06 /Q7 /08 /09
I := 1 TO 40 DO
CLOCKF CLK

TST
00 Ql Q2 /03 04
/Q5 /06 /Q7 08 Q9
I := 1 TO 40 DO
CLOCKF CLK

/CEI
I := 1 TO 8 DO
CLOCKF CLK

END
TRACE_OFF

:COUNT EQUATION 02
:ENABLE TOGGLE
:RESET AFTER FRAME SCAN
;ENABLE MA9 OUTPUT.
:SET REGISTER MODE.
;THREE - STATE O/P WHEN /WR
:ACTIVE.
:COUNT EQUATION 03
;ENABLE TOGGLE
:RESET AFTER FRAME SCAN
:ENABLE MAIO OUTPUT.
:SET REGISTER MODE
;THREE - STATE O/P WHEN /WR
;ACTIVE.
;COUNT EQUATION 04
:ENABLE TOGGLE
;RESET AFTER FRAME SCAN
;ENABLE MAll OUTPUT
;SET REGISTER MODE
;THREE - STATE O/p WHEN /WR
:ACTIVE.
;J - K VSYNC O/P
;J EQUATION TO SET VSYNC
;K EQUATION TO RESET VSYNC
;ENABLE 05 TO VSYNC.
;SET REGISTER MODE

iCOUNT EQUATION FOR Q6
; TOGGLE
;FRAME SYNC. ENABLE Q6
:REGISTER OUTPUT FOR
;ROW O.
;COUNT EOUATION FOR Q7
;ENABLE TOGGLE
;DISABLE COUNT DURING TEST.
:ENABLE 07 REGISTER OUTPUT
;FOR ROW 1.

;COUNT EQUATION FOR Q8
;ENABLE TOGGLE
;DISABLE COUNT DURING TEST.
;ENABLE 08 REGISTER OUTPUT
;FOR ROW 2.

;COUNT EQUATION FOR Q9
;ENABLE TOGGLE
;DISABLE COUNT DURING TEST.
;ENABLE Q9 REGISTER OUTPUT
;FOR ROW 3.

;SIMULATION SECTION
;TRACE ESSENTIAL SIGNALS

:SET INITIAL CONDITIONS
;ENABLE COUNT ON
:DISABLE ROW Rl, R2, R3.
:PRELOAD INITIAL STATE
:TWO COUNTS BEFORE FRAME
;SYNC. CLOCK INPUT TO VIEW
:WAVEFORMS OF ROW 0, VSYNC
:AND MEMORY ADDRESSES MA7 TO
iMAl1.
:DISABLE TEST MODE, THE ROW
;COUNTERS ARE ENABLED.
;PROVIDE CLOCK INPUTS TO
;GENERATE TEST VECTORS TO
;VERIFY THE NORMAL COUNT
;OPERATION OF THE ROW
;ADDRESS COUNTER.
;DISABLE COUNT MODE AND
;APPLY CLOCK INPUT TO
:VERIFY THE COUNTER
;HOLD OPERATION.

Figure 9. Design File of Frame Sync Generator (Cont'd.)

~ Monolithic W Memories ~

Small System Video Controller

Video Shift Register

The third component of this video system (Figures 10 & 11),
provides a means of converting parallel data into a high speed
serial data stream. The PAL32VX1 0 implements one such video
shift register, where it receives parallel data from a character
memory and clocks the serial data out at a rate determined by the
pixel clock (DOTCLK). The conversion of parallel character data
to a serial stream is synchronized to the character period of the
system. The character period is generated by dividing the
DOTCLK by eight and this circuit has been conveniently imple­
mented in the same device. The design also offers blanking
controls and a reverse video option.

The PAL32VX1 0 contains ten registers, three of which are used
as a binary counter which synchronously counts through eight
states at a rate determined by the DOTCLK of the video system.
This countto eight determines a character period reference since
there are eight pixels (dots) in every character. The outputs
SO-S2 are used by the rest of the system as a character period
reference.

Thethree-bitoutputS2,S1 and SO of the character period counter
are also used internally as a timing reference for loading new
character data. When all three S2, S1 and SO are high, the
remaining seven registers of the device 01--Q7 are loaded with
the seven bit character data from inputs Do-D6. The registers
used as a counter are oa, 09 and 01 O. 010, the least significant
bit, is assigned to the output pin SO, 09 is assigned to pin S1; and
oa is assigned to pin S2.

The "new character" load command is given as a string statement
in the design specification: STRING LOAD 'oa*09*01 0'.

This parallel load is followed by seven shift states when the data
is transferred from one register to another. The binary sequence

The reverse video input REV can be used to create an inverse
video display. For normal video this input is LOW. The characters
displayed on the video screen will be bright on adark background.
When the reverse video control is set HIGH, the video data is
inverted when it is loaded. The display background is then bright,
and the displayed characters are dark. The BLANK and VSYNC
controls have the same effect of driving the video output LOW
during line and frameflyback whetheror notthevideo is reversed.

THREE BIT BINARY COUNTER

01 ----"..--....

02 --1---".--.....

03 --1---" . ..--...

04 --1--"_

05 --1--"_'"

~~==~--~~-------+-so
~-+------4-'---------+-Sl

r---~------4-4-.-------~S2

of 0-6 at counter S2-S0 enable this synchronous data shift 06 --'---".--.....

through registers 01--Q7, 07 being the last register in the chain.
The VIDEO output of the PAL device is therefore assigned to the
last register 07. 07 ~--" . ..--.....

The shift command is developed from the DeMorgan expansion
of NOT(LOAD): oa + 09 + 010.

Additional Control Features

REV
BLANK ___ --.J
VSYNC ______J

41408

~-------VIOEO

The video shift register has a number of inputs which control the
serial output of the video data stream. The BLANK input, when
asserted, inhibits the video, causing it to go LOW independent of
activity at the parallel data inputs. It is necessary to use the
BLANK signal to override active video during line flyback or
retrace. The VSYNC input also inhibits the loading of video data
and suppresses video drive during frame flyback.

Figure 10. Schematic of Video Shift Register

l1 Monollthlo m Memories ~ 2·271

EJI

2·272

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Small System Video Controller

VIDEO SHIFT REGISTER.
01
02.
CHRIS JAY.
MMI SANTA CLARA, CA.
20TH AUGUST 1986.

;THE PAL32VXI0 HAS BEEN DESIGNED AS A VIDEO SHIFT REGISTER
;TO SUPPORT A THREE PAL SOLUTION TO A SMALL VIDEO CONTROLLER
;CIRCUIT. SEVEN INPUTS FROM THE CHARACTER GENERATOR ARE LOADED
;INTO THE INTERNAL SHIFT REGISTER THROUGH INPUTS Dl - D7,
;AND SUBSEQUENTLY SHIFTED THROUGH IT. AN INTERNAL THREE BIT
;BINARY COUNTER CONTROLS THE LOAD AND SHIFT ACTIVITY. WHEN
;THE BINARY OUTPUTS SO,Sl AND S2 ARE ALL HIGH THE SHIFT
;REGISTER IS LOADED WITH NEW DATA FROM THE CHARACTER MEMORY,
;SHIFTING TAKES PLACE FOR ALL THE OTHER BINARY STATES.
;THE DATA IS LOADED AND SHIFTED SYNCHRONOUSLY, AT A RATE
;DETERMINED BY THE APPLIED CLOCK INPUT. THE DEVICE MAY BE
;ASYNCHRONOUSLY RESET BY APPLYING A LOGIC LOW TO THE /RST PIN.
;THERE IS A REV INPUT, WHICH CAUSES THE DATA TO BE REVERSED
;FOR REVERSE VIDEO. THIS INPUT IS HELD LOW FOR NORMAL DATA.
;THE BLANK AND /VSYNC CONTROLS ARE FEEDBACK INPUTS FROM THE
;LINE SYNC AND FRAME SYNC PAL DEVICE OUTPUTS. THESE CAUSE THE
;VIDEO DATA OUTPUT TO BE INACTIVE DURING LINE AND FRAME SYNC.
;PERIODS. THE SO, Sl AND S2 OUTPUTS DRIVE THE LINE AND FRAME
;SYNC PAL32VXI0 AND ACT AS COUNT ENABLE INPUTS TO THOSE
;DEVICES.

CHIP VIDEO 1 PAL32VXI0

;VIDEO SHIFT REGISTER PAL

;PINS 1 2 3 4 5 6
CLK /RST Dl D2 D3 D4

;PINS 7 8 9 10 11 12
D5 D6 D7 BLANK /VSYNC GND

;PINS 13 14 15 16 17 18
REV NC NC NC NC NC

;PINS 19 20 21 22 23 24
NC VIDEO S2 Sl SO VCC

GLOBAL Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0

STRING LOAD 'Q8*Q9*QI0' ; ENABLE LOADING OF CHARACTER DATA.

EQUATIONS

GLOBAL.SETF RST ;ASYNCHRONOUS RESET.

/Q10
SO
SO.CMBF

/Q9

Sl
Sl.CMBF

/08

S2
S2.CMBF

/Ql

: = QI0 ;INTERNAL STATE COUNTER
QI0 ;LEAST SIGNIFICANT BIT QI0.

GND ;ENABLE REGISTER TO PIN
;SO.

:= /09 ;INTERNAL STATE COUNTER
:+ : QI0 ;QI0 = HIGH = TOGGLE.

09 ;ENABLE REGISTER OUTPUT
GND ;TO PIN Sl.

: = /08 ;INTERNAL STATE COUNTER
: t: QI0*Q9 ;010*Q9 = HIGH = TOGGLE.

08 ;ENABLE REGISTER OUTPUT
GND ;TO PIN S2.

:= /Dl*LOAD*/REV*/BLANK*/VSYNC :LOAD DATA INPUT Dl.
Dl*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /Dl.

t /08*/REV ;SHIFT HIGH INTO Ql.
+ /09*/REV
+ /QI0*/REV
+ BLANK ;BLANK DATA DURING
+ VSYNC ;LINE AND FRAME SYNC

;INPUTS.

Figure 11. Design File of Video Shift Register

~ Monolithic W Memories ~

Small System Video Controller

/02 := /D2*LOAD*/REV*/BLANK*/VSYNC ;LOAD DATA INPUT 02.
+ D2*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /02.
+ /01*/08 ;SHIFT DATA FROM 01
+ /01*/09 ; INTO 02, FOR SIX
+ /01*/010 ;BINARY COUNT PERIODS.

BLANK ;BLANK DURING LINE
+ VSYNC ;AND FRAME PERIODS.

/03 := /D3*LOAD*/REV*/BLANK*/VSYNC ;LOAD DATA INPUT D3.
+ D3*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /D3.
+ /02*/08 ;SHIFT DATA FROM 02
+ /02*/09 ;INTO 03, FOR SIX
+ /02*/010 ;BINARY COUNT PERIODS.
+ BLANK ;BLANK DURING LINE
+ VSYNC ;AND FRAME PERIODS.

/04 := /D4*LOAD*/REV*/BLANK*/VSYNC ;LOAD DATA INPUT D4.
+ D4*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /04.
+ /03*/08 ;SHIFT DATA FROM 03
+ /03*/09 ;INTO 04, FOR SIX
+ /03*/010 ;BINARY COUNT PERIODS.
+ BLANK ;BLANK DURING LINE
+ VSYNC ;AND FRAME PERIODS.

/05 := /D5*LOAD*/REV*/BLANK*/VSYNC ;LOAD DATA INPUT D5. 1:_ + D5*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /D5
+ /04*/08 ;SHIFT DATA FROM 04
+ /04*/09 ;INTO OS, FOR SIX
+ /04*/010 ;BINARY COUNT PERIODS.
+ BLANK ;BLANK DURING LINE
+ VSYNC ;AND FRAME PERIODS.

/06 := /D6*LOAD*/REV*/BLANK*/VSYNC ;LOAD DATA INPUT 06.
+ D6*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /D6
+ /05*/08 ;SHIFT DATA FROM 05
+ /05*/09 ;INTO 06, FOR SIX
+ /05*/010 ;BINARY COUNT PERIODS.
+ BLANK ;BLANK DURING LINE
+ VSYNC ;AND FRAME PERIODS.

/07 : = /D7*LOAD*/REV*/BLANK*/VSYNC ;LOAD DATA INPUT D7
+ D7*LOAD*REV*/BLANK*/VSYNC ;LOAD DATA INPUT /D7
+ /06*/08 ;SHIFT DATA FROM 06
+ /06*/09 ;INTO 07, FOR SIX
+ /06*/010 ;BINARY COUNT PERIODS.
+ BLANK ;BLANK DURING LINE
+ VSYNC ;AND FRAME PERIODS.

/VIDEO /07 ;ENABLE REGISTER
/VIDEO . CMBF = GND ;OUTPUT 07 TO VIDEO

;PIN.

SIMULATION ; START OF SIMULATION
TRACE_ON CLK SO Sl S2 ;TRACE ALL ESSENTIAL

VIDEO /VSYNC BLANK ;INPUTS AND OUTPUTS.
REV 01 02 03 04 05
06 07 D1 D2 D3 D4 D5
06 D7 RST ;SET INITIAL CONDITIONS.

SETF /CLK RST REV ;APPLY ASYNCHRONOUS
/D1 /D2 D3 D4 ;RESET. SET REVERSE
05 /D6 /D7 ;VIDEO INACTIVE AND
BLANK /VSYNC ;CREATE ACTIVE BLANK

SETF /RST ;AND REMOVE RESET.
FOR J := 0 TO 5 DO ;INPUTS GENERATE FIVE
BEGIN ;LOOPS.
IF J = 1 THEN
BEGIN SETF VSYNC /BLANK ;SET VSYNC TO TEST
END ;BLANKING.

Figure 11. Design File of Video Shift Register (Cont'd.)

~ Monolithic W Memories ~ 2·273

2·274

Small System Video Controller

IF J = 2 THEN
BEGIN SETF /REV /VSYNC BLANK
END
IF J = 3 THEN
BEGIN SETF D1 /02 D3 /04 05

/D6 D7 /BLANK /REV
END
IF J = 4 THEN
BEGIN SETF REV
END
FOR I := 1 TO 8 00
BEGIN
CLOCKF CLK
END
END
TRACE_OFF

;TEST ACTIVE BLANK
;INPUT. REMOVE ACTIVE
;VSYNC. CLEAR ALL
;BLANKING CONTROLS.
;TEST THE LOADING
;AND SHIFTING OF
;DATA. FOR REVERSE
;VIDEO ACTIVE AND
; INACTIVE.
;GENERATE LOOPS
;TO LOAD AND SHIFT
; DATA.

;END OF SIMULATION

Figure 11. Design File of Video Shift Register (Cont'd.)

DOTCLK Vee OOTCLK Vee OOTCLK
RST ROY RST R3 RST

SO HSYNC CEI R2 01
S1 MA6 NC R1 02
S2 MAS NC RO 03

VSYNC MA4 NC VSYNC 04
NC MA3 NC MA11 05
NC MA2 NC MA10 06
NC MA1 NC MAg 07
NC MAO VA MAS BLANK

WR BLANK TST MA7 VSYNC
GNO Cs GNO NC GNO

PAL32VX10 PAL32VX10 PAL32VX10

Vee
SO
S1
S2
VIDEO
NC
NC
NC
NC
NC
NC
REV

LINE SYNC GENERATOR FRAME SYNC GENERATOR VIDEO SHIFT REGISTER

Figure 12. Pinouts for Various Components of a Small System Graphics Controller

~ MonolithIc mil) MemorIes ~

414 09

PAL32VX10 Uses Buried Register
for Input-Intensive
State Machine Designs

AN-160A

The PAL®32VX10 offers design engineers several features not
previously found in programmable logic devices (PLOs). Many
of these features are found in the output macrocell; which al­
lows over thirty possible configurations. This application note
will highlight some of these features, and show how they are

used in a Dual Port Video Shift Register.

The PAL32VX10 is a 24-pin PLO with twelve dedicated inputs.
The ten I/O macrocells have dual feedback, providing twenty
additional array inputs. Each macrocell has the architecture
shown in Figure 1.

CLOCK INPUT

SR
FUSE SYNCHRONOUS

ARRAY RESET

OUTPUT ENABLE

VARIED
PRODUCT TERMS;

8, 10, 12, 14 OR 16

REGISTER
BYPASS CONTROL

BURIED REGISTER
FEEDBACK

REGISTER
POLARITY
CONTROL

FEEDBACK FROM INPUT PIN

AP
ASYNCHRONOUS

PRESET

Figure 1. PAL32VX10 Macrocell

Macrocell Description
A O-type flip-flop is clocked by a dedicated input which also
feeds the programmable array. The flip-flop data input is fed by
a varied number of product terms, from eight to sixteen per out­
put. The sum of these products feeds an Exclusive-OR (XOR)
gate controlled by an additional product term. Global reset and
preset signals are also controlled by product terms.

A fuse controls flip-flop output polarity. A product term allows
the flip-flop to be bypassed, and another product term enables
the output. Feedback signals come from the flip-flop and the
I/O pin, providing dual feedback.

The device is manufactured with Monolithic Memories' ad­
vanced oxide-isolated process, providing high speed and low
power consumption. The propagation delay is 30 ns maximum
for the standard version and 25 ns maximum for the A-speed
version. Power consumption is only 180 mA maximum.

J·K Programmable Function
The XOR gate in each of the ten macrocells provides the de­
signer with the option to extend the functionality of the Ootype
register to perform J-K and subset functions, such as T-type
toggle flip-flops for binary counter applications. This option can
aid product term economy considerably. In many state ma­
chine designs large numbers of product terms are needed as
holding functions for a Ootype flip-flop. The hold function is not
inherent to the truth table of a Ootype register, but in a J-K
function it is, so a logic designer can invoke the hold condition
without using up any of the product terms in the macrocell.

It can be shown that there exist five logic equations for a J-K
function using a Ootype flip-flop, an XOR gate, and sum of
product inputs;

1. 0 := O"J + O"R

2. Q := C"J + O"K

3.0:= 0 :+: (O"J + O"K)

4. a := Q :+: (O"J + O"K)

5.0:= 0 :+: (O"J + O°R)

See Appendix 1 for the derivation of these equations.

The key feature to note about these equations is that the first
two can be realized from the sum of two product terms but ei­
ther J or K must be inverted. A OeMorgan expansion of a com­
plex J or K input might result in using too many product terms,
and may not fit in the PAL32VX10. This limitation can be cir­
cumvented by using equation 3; here, J and K inputs need no
inversion but there is a requirement for the XOR operator, as
shown in equations 3, 4 and 5. Alternatively, the non-inverted J
and K functions may use more terms than the inverted ver­
sions, pointing to the use of equations 1, 2, or 5. The macrocell
structure is capable of making use of anyone of these five
equations, allowing the designer to choose the one that makes
optimum use of product terms.

The fuse array was extended to 9,738 programmable fuses to
accommodate ten additional feedback paths from the ten ma­
crocells. These are the ten buried feedback paths (from the
flip-flop) that make it possible to realize buried register state
machine designs. Any macrocell whose output pin is pro­
grammed as an input still has available its internal feedback
path, and the registered cell's functionality need not be lost.
The cell could be programmed as a buried register for use in a
buried state machine. This feature extends the application of
this device to input-intensive designs such as the Dual Port

Video Shift Register.

~ Monolithio W Memories ~ 2·275

OIl

PAL32VX 10 Uses Buried Register for Input-Intensive State Machine Designs

SYSTEM DATA BUS

AD
A1
A2
A3

CHARACTER DUAL PORT W A4 SYSTEM
GENERATOR DOT VIDEO AO AS ADDRESS

PROM CLOCK SHIFT A1 A6 REGISTER
RO AO DO DA1 DB1 A2 A7
R1 A1 01 DA2 DB2 A3 AS
R2 A2 02 DA3 DB3 M A9
R3 A3 03 OM DB4 AS MUX A10

MOO A4 04 DAS DBS A6
MD1 AS OS DA6 DB6 A7
MD2 DISPLAY A6 06 DA7 DB7 AS
MD3 MEMORY A7 SELA SO A9
MD4 BUFFER AS VSYNC S1 A10
MDS A9 BLANK S2 CHARACTER
MD6 A10 VIDEO GENERATOR

RAM
PAL32VX10

FROM
SELECT PORT HORIZONTAL SERIAL
INPUT FROM SYNC VIDEO
MPU SYSTEM GENERATOR OUTPUT

FROM VERTICAL
SYNC GENERATOR

Figure 2. Dual Port Video Shift Register in Video System

Dual Port Video Shift Register

This design highlights the the advantages of using PAL devices
for implementing custom designs. This design is shown in the PAL
device Design Specification file on page 2-279. Figure 2 shows
how the device would be configured to a Microprocessor
Unit (MPU) system as a parallel-to-serial converter in video
applications.

The PAL32VX10 in the system is capable of supporting one of
two parallel input paths from character storage elements. The
selected port input is converted to a serial video data stream
through the VIDEO output for display on a CRT screen. Events
of loading and shifting are synchronized to a Dot Clock input
which is applied to pin 1 of the device, and is the rate at which
the character dots are displayed on the CRT. There are two in­
put ports, DA1-0A7 and DB1-0B7. One of these inputs is select-

ed by the SELA contro\. When SELA is High the OA1-0A7 input
is loaded, and subsequently shifted to the VIDEO output. When
SELA is Low the DB1-0B7 input is loaded and shifted.

The OA1-DA7 port could be configured to a character PROM,
the content of which is a fixed character font. A second character
memory could be configured to the OB1-DB7 port, which could
be a RAM circuit. While the standard character font of the PROM
is being displayed on the CRT, the RAM memory could be pro­
grammed by the host CPU with a specialized character font. The
contents of the RAM could be changed at any time, so a wide
variety of custom fonts could be loaded, while the system is dis­
playing the regular standard font stored in the PROM. Switching
of the SELA input is controlled by the host system to select the
required character memory.

2·276 ~ Monolithic W Memories ~

PAL32VX 10 Uses Buried Register for Input-Intensive State Machine Designs

Each of the two input ports is seven bits wide and is designed
to interface with character matrix sizes of 7 by 9. However, if
the SELA input is controlled by an external register which de­
codes the state outputs SO, S1 and S2, the two ports may be
configured as one single port, fourteen bits wide.

The inputs BLANK and VSYNC are used to force a video blank­
ing output during line and frame flyback. The BLANK input
overlaps the line sync signal in a practical application to create
front and back porch blanking on the CRT screen.

Of the ten registered macrocells in the PAL32VX10, seven are
connected as a parallel load serial shift register to the VIDEO
output. The three remaining registers are configured as a
three-bit binary counter. The counter outputs SO, S1 and S2
determine whether the device is in load or shift mode. When
SO-S2 are all High the shift register loads character informa­
tion; otherwise, shifting takes place for the seven remaining
states of the binary counter. The output pins SO, S1 and S2 are
connected to the buried registers 010, 09 and 08 respective­
ly, and are assigned in the PAL device Design Specification by
SO = 010, etc. Similarly, the VIDEO output pin is assigned reg­
ister 07. Registers 01 to 06 remain buried; the output pins
normally associated with these register cells have been as­
signed as the dedicated DB port inputs DB2-DB7.

The three-bit binary counter has been designed using aT-type
toggle register. Choosing Equation 4 and equating J = K = 1 for
the Toggle function and J = K = ° for the Hold function, in gen­
eral J = K = T. The new input for a Toggle function becomes T
and the equation becomes:

6.0 := Q :+: (0 + Q)*T

but since

7. {O+O)= 1

the equation becomes:

8. Q:= Q:+: T.

The basic function in a binary counter is that a flip-flop must re~
main in a Hold state until the product term made up of all of the
less significant flip-flops in the count sequence becomes a log­
ic High. So, the equation for 08 in the design specification be­
comes:

9. 08 := 08 :+: 09*010.

When 09*01 ° = a flip-flop 08 holds its contents, and when
09*010 = 1 08 changes state.

The PAL device Design Specification shows that eighteen in­
puts and four outputs are required, but the buried register fea­
ture has not wasted the macrocells whose associated pins
have been used as inputs. The design has been programmed
with two other PAL devices (not shown here), one as a line
sync generator and one as a frame sync generator, to form the
basis of a low-cost video system.

A simulation section has been included with the design to veri­
fy functional operation before the Design Specification is com­
mitted to the fuse array of the PAL device. It is recommended
that the A-speed part is used in this specific application to ac­
commodate good resolution of the displayed video information.

The oscilloscope photograph in Figure 4 shows the SO, S1 and
S2 outputs, running from the top trace down, and the serial
VIDEO data on the bottom trace. The Load event takes place
when all state outputs are High. For the first section of the
trace, port DB7-DB1 is loaded and subsequently shifted
through the buried register file. The cursor on the right marks
the end of one Load/Shift cycle. The bit pattern loaded into
DB7-DB1 is HLLHHHL. In the second half of the the trace, port
DA7-DA1 is selected. The bit pattern of LLHLHLH is clocked
into the DA7-DA1 port and shifted through to the VJDEO out­
put.

so

S1 Ell
S2

VIDEO

HLLHHH L LL HLHLH

Figure 4. Video Shift Register Waveforms

PAL32VX10

Dual Port Video Shift Register

~ Monolithic W Memories l1 2·277

PAL32VX 10 Uses Buried Register for Input-Intensive State Machine Designs

Appendix 1
Derivation of the J·K Function
The complete truth table of a J-K function is shown in Table 1.
Inputs J and K are tabulated with the current state of the regis­
ter (ON) and the required next state (ON+ 1). Equations 1 and 2
from the text are derived by directly grouping ones (S and s) or
zeros (R and r) in the truth table. The other equations for the J­
K function are derived by tabulating active 'SET' and 'RESET'
functions and passive 'set' and 'reset' functions.

4

5

7

J K ON °N+1 FUNCTION

0 0 0 0

0 0 1 1

1 0 0 1

1 0 1 1

0 1 0 0

0 1 1 0

1 1 0 1

1 1 1 0

0= 10*J + O*/K
10 = 10*/J + O*K

reset

set

SET

set

reset

RESET

SET

RESET

0= 0 :+: (/O*J + O*K)
10 = 10 :+: (/O*J + O*K)
0= 10 :+: (/O*/J + O*/K)

EO. 1
EO.2
EO.3
EO. 4
EO.5

Table1. Truth Table of J-K Function Using Change of State.

Identifying Transition and Hold conditions as well as logic High
and Low states enables the designer to draw a Karnaugh map
for an XOR-gate register input. The XOR gate has the capabili­
ty of a Hold function for the remain in 'set' and 'reset' states,
and a Change-of-State function for active 'SET' and 'RESET'.
To derive Equation 3,

0:= 0 :+: (O*J + O*K),

the following equation is considered:

o := s :+: (R + S),

or, "0 holds unless an active transition is true." The entries in
the equation show Hold and Transition states. When both'S'
and 'R' are inactive Low the register a is in a Hold condition by
the's' entry in the equation. If's' and 'R' become High simulta­
neously the result will be an active Reset after the following
clock edge; for this reason minimization of the's' equation can
include any 'R' entries in the Karnaugh Map. Also, the states of
's' and's' are mutually exclusive, so with's' inactive and'S' ac­
tive the output will transition to a Set condition.

Minimize all the Hold 'set' states but include the active 'RESET'
states for the entry to the left of the XOR function.This gives 0
as shown in group 2 of the Karnaugh map. Then identify the
change-of-state entries shown by the capital letters 'S' and 'R'.
Minimization achieved in groups 1 and 3 are shown to the right
of the equation.

With regard to the equation for 0 a similar procedure applies:

a := r :+: (S + R)

This time all the passive 'reset' conditions are minimized with
active 'SET' states, and XORed with minimization of active
'SET' and 'RESET' states (group 4). This leads to Equation 4.

Equation 5 is derived by examining the equation for "a will tog­
gle unless a Hold is true", or

0:= Q:+: (s + r);

the derivation is similar to those above.

2·278 ~ Monolithic W Memories ~

PAL32VX 10 Uses Buried Register for Input-Intensive State Machine Designs

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE
i

DUAL PORT VIDEO SHIFT REGISTER.
01B
01
CHRIS JAY.
MMI SANTA CLARA, CA.
15TH MARCH 1987.

iTHE PAL32VX10 HAS BEEN DESIGNED AS A VIDEO SHIFT REGISTER
iWITH A DUAL SEVEN BIT PORT INPUT. PARALLEL CHARACTER DATA
iMAY BE LOADED FROM A FIXED CHARACTER ROM VIA PORT INPUTS
iDA1 - DA7, WHILE THE SELA INPUT IS HIGH. PORT INPUTS DBI-DB7
iMAY BE CO~NECTED TO A CHARACTER RAM, THE CONTENTS OF WHICH
iCAN BE CHANGED BY THE HOST MICROPROCESSOR. THIS ENABLES THE
iVIDEO SYSTEM DISPLAY A STANDARD CHARACTER FONT WHILE DYNAMICALLY
;CHANGING CUSTOM CHARACTER FONTS IN THE CHARACTER RAM. WHEN A
;NEW CHARACTER DATA IS LOADED INTO THE RAM THE SELA INPUT CAN BE
;DRIVEN LOW TO SELECT THE DB1-DB7 PORT INPUT. THE ON CHIP
;STATE COUNTER SO, Sl AND S2 FORMS A SYNCHRONOUS BINARY COUNT.
;STATES 0 TO 6 REPRESENT SHIFT ACTIVITY IN THE SEVEN BIT VIDEO
;SHIFT REGISTER. WHEN THE COUNTER REACHES A COUNT OF SEVEN THE
;NEXT CHARACTER DATA IS LOADED INTO THE REGISTER VIA PORT DA OR DB.
;THERE ARE TWO BLANKING INPUTS /VSYNC AND BLANK. WHEN /VSYNC IS
;LOW THE CONTENTS OF THE VIDEO SHIFT REGISTER ARE LOADED WITH LOGIC
;ZEROS. THIS IS ALSO THE CASE WHEN BLANK IS ACTIVE HIGH. THE
;VSYNC AND BLANK INPUTS SHOULD BE USED DURING FRAME AND HORIZONTAL
;FLYBACK, RESPECTIVELY.
,
CHIP VIDEO 2 PAL32VX10
,
;DUAL PORT VIDEO SHIFT REGISTER PAL
,
;PINS

;PINS

;PINS

;PINS

1
CLK

7
DA6.

13
DB1

19
DB7

2 3 4 5
DA1 DA2 DA3 DA4

8 9 10 11
DA7 BLANK /VSYNC SELA

14 15 16 17
DB2 DB3 DB4 DB5

20 21 22 23
VIDEO S2 Sl SO

6
DA5

12
GND

18
DB6

24
VCC

GLOBAL 01 02 03 04 05 06 07 08 09 010

STRING LOAD

EOUATIONS

/010 :=
SO
SO.CMBF

/09 :=

Sl
Sl.CMBF

: +:

108*09*010 1

010
010

GND

/09
010
09

GND

;ENABLE LOADING OF CHARACTER DATA.

,
;INTERNAL STATE COUNTER
;LEAST SIGNIFICANT BIT
;010. ENABLE REGISTER
;OUTPUT FOR PIN so.
;INTERNAL STATE COUNTER
;010 = HIGH = TOGGLE.
;ENABLE PIN Sl
;REGISTERED OUTPUT.

~ Monolithic W Memories ~ 2·279

Ell

PAL32VX 10 Uses Buried Register for Input-Intensive State Machine Designs

;
/08 := /08 ; INTERNAL STATE COUNTER

: +: 010*09 ;010*09 = HIGH = TOGGLE.
S2 08 ;ENABLE PIN S2 AS A
S2.CMBF GND ;REGISTERED OUTPUT.

/01 := /DA1*LOAD*SELA*/BLANK*/VSYNC ; LOAD DATA INPUT DA1.
+ /DB1*LOAD*/SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DB1.
+ /08 ;SHIFT HIGH INTO 01.
+ /09 ;WHEN 010,09 AND 08
+ /010 ;ARE NOT ALL HIGH
+ BLANK ; SIMULTANEOUSLY.
+ VSYNC ;LINE/FRAME BLANKING

;
/02 := /DA2*LOAD*SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DA2.

+ /DB2*LOAD*/SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DB2.
+ /01*/08 ;SHIFT DATA FROM 01
+ /01*/09 ;INTO 02.
+ /01*/010 ;
+ BLANK ;LINE AND FRAME
+ VSYNC ; BLANKING.

;
/03 := /DA3*LOAD*SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DA3.

+ /DB3*LOAD*/SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DB3
+ /02*/08 ;SHIFT DATA FROM 02
+ /02*/09 ; INTO 03.
+ /0'2* /010 ;
+ BLANK ;LINE AND FRAME
+ VSYNC ;BLANKING.

;
/04 := /DA4*LOAD*SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DA4.

+ /DB4*LOAD*/SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DB4
+ /03*/08 ;SHIFT DATA FROM 03
+ /03*/09 ;INTO 04.
+ /03*/010 ;
+ BLANK ;LINE AND FRAME
+ VSYNC ;BLANKING.

;
/05 := /DA5*LOAD*SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DA5.

+ /DB5*LOAD*/SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DB5
+ /04*/08 ;SHIFT DATA FROM 04
+ /04*/09 ;INTO 05.
+ /04*/010 ;
+ BLANK ;LINE AND FRAME
+ VSYNC ;BLANKING.

;
/06 := /DA6*LOAD*SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DA6.

+ /DB6*LOAD*/SELA*/BLANK*/VSYNC ;LOAD DATA INPUT DB6.
+ /05*/08 ;SHIFT DATA FROM 05
+ /05*/09 ;INTO 06.
+ /05*/010 ;
+ BLANK ;LINE AND FRAME
+ VSYNC ; BLANKING.

2·280 ~ Monolithic m Memories ~

PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs

/07 := /DA7*LOAD*SELA*/BLANK*/VSYNC
/DB7*LOAD*/SELA*/BLANK*/VSYNC
/06*/08

+
+
+
+
+
+

/06*/09
/06*/010

/VIDEO
/VIDEO.CMBF

BLANK
VSYNC

/07
= GND

SIMULATION
TRACE ON CLK SO Sl S2

PRLDF
SETF

FOR I
BEGIN
END
SETF
FOR I
BEGIN
END
SETF
FOR I
BEGIN
END
SETF
FOR I
BEGIN
END
8ETF
FOR I
BEGIN
END
TRACE

VIDEO /VSYNC BLANK SELA
01 02 03 04 05 06
DAI DA2 DA3 DA4 DAS DA6 DA7
DBI DB2 DB3 DB4 DBS DB6 DB7
01 02 03 04 05 06 07 08 09 010
/CLK
DAI /DA2 DA3 /DA4 DAS /DA6 DA7
/DBI DB2 /DB3 DB4 /DBS DB6 /DB7
SELA BLANK /VSYNC

: = 0 TO 7 ,DO
CLOCKF CLK

/SELA
:= 0 TO 7 DO
CLOCKF CLK

/BLANK SELA
:= 0 TO 7 DO
CLOCKF CLK

/SELA
:= 0 TO 7 DO
CLOCKF CLK

VSYNC
:= 0 TO 7 DO
CLOCKF CLK

OFF

jLOAD DATA INPUT DA6.
jLOAD DATA INPUT DB6.
jSHIFT DATA FROM 06
jINTO 07.
i
jLINE AND FRAME
jBLANKING.
j

jOUTPUT 07 TO VIDEO.

iSTART OF SIMULATION
jTRACE ALL ESSENTIAL
i
jINPUTS AND OUTPUTS.

i
jPRELOAD REGISTERS
jSET INITIAL CONDITIONS.
iON DATA A INPUT PORT
iAND DATA B INPUT PORT.
jENABLE A PORT AND
iBLANK INPUT.
iBEGIN THE DOT CLOCK
iINPUT FOR EIGHT CLOCK
jCYCLES. SELECT B INPUT
jENABLE CLOCK FOR EIGHT
iCLOCK CYCLES.
,
jREMOVE BLANKING INPUT
iSELECT A PORT CLOCK
jFOR EIGHT CYCLES.
i
jENABLE B INPUT PORT
jCLOCK FOR EIGHT CLOCK
iCYCLES.
,
iENABLE VSYNC INPUT
iCLOCK FOR EIGHT
iCLOCK CYCLES.
i
iEND OF SIMULATION

~ Monolithio m Memories ~ 2·281

Notes

2·282 ~ Monollthlo W Memories ~

Digital Signal
Processing

The field of Digital Signal Processing (DSP) was originally limited
to the digital filtering and processing of analog signals. Today, the
field encompasses a wide range of numeric processing applica­
tions, primarily due to the versatility of the Fast FourierTransform
algorithm with its accompanying repetitive addition and multipli­
cation operations.

The ability to perform multiplication and addition in a single clock
cycle is the key to achieving high-speed mathematics in DSP
hardware. When executing math-intensive algorithms, even the
slowest DSP components are at least ten times faster than con­
ventional microprocessors. When a DSP solution is used, it is
usually for speed considerations. Conventional microprocessors
are not optimized for arithmetic, and have to simulate math
through software. This simulation tends to require several clock
cycles. DSP systems use specialized hardware, including a
multiplier and adder, that allow them to execute numeric opera­
tions in a single cycle. A typical DSP system is shown in
Figure 1.

ADDRESS
CONTROL

Figure 1. High-Performance DSP System
411 01

In addition, the architecture must try to provide data to the
multiplier and adder at every clock cycle, forthe highest efficiency.
This can be done by using an architecture where data and
instructions are stored separately and have their own buses, one
for data and one for instructions. If two data buses are used, two
data elements can be moved to the multiplier or adder in parallel
for execution, while the CPU is fetching an instruction. Another
efficient architecture uses pipelining, allowing the processor to
work on subsections of the operation in parallel.

Application Areas

The algorithms implemented in DSP components are being
applied to a wide variety of systems. Examples include standard
signal processing for applications from compact disc players to
artificial intelligence, matrix-manipulation algorithms for graphics
systems, filtering algorithms used in image·processing systems,
and floating-point algorithms used in workstations and scientific
computers. Many of these applications are often categorized
under "numerical processing" or "number crunching" rather than
DSP, but any algorithm that makes extensive use of repetitive
multiplication and addition operations can benefit from DSP
hardware. The primary application area is communications, with B
military applications also a major part of the market. The
application areas are listed below.

• Communications
-Codecs
-Modems
-Multiplexers/Demultiplexers
-Echo Cancellation
-Filtering
-Gain equalization

• Military
-Radar/Sonar
-Guidance and Control
-Telemetry
-Electronic Warfare/Countermeasures

• Computers
-PC-Board Add-Ons for PCs
-Minicomputers/Workstations
-Parallel/Array Processors

• Graphics and Image Processing
-CAD/CAE
-Image Enhancement and Restoration
-Image Subtraction, Compression, Decompression
-CAT Scanning

• Industrial Automation
-CAM
-Vision Systems/Robotic Vision and Other Senses
-Artificial Intelligence

• Voice Data Entry/Synthesis
• Test Equipment
• Process Control
• Consumer Products

-Television
-Compact Disc Players

~ Monolithic W Memories ~ 2·283

Digital Signal Processing

411 02

Figure 2. Typical General-PurposeDSP Processor System

Speed versus Other Requirements

As mentioned, most DSP designs are chosen because of speed.
However, speed is not always a critical element once a DSP
solution is selected: the slowest DSP design will still be fasterthan
the fastest conventional microprocessor design.

Speed remains a critical element in most communications appli­
cations. An exception is modems, which require single-chip
solutions for size reduction and do not require high speed to
handle voice frequencies. Speed is also critical in computer
applications, but price and performance advantages are also
important. DSP add-in boards require small size, and therefore
single-chip solutions. In military applications, however, price is
less critical, and designs are typically customized for
performance.

Consumer applications use custom single-chip solutions for both
size reduction and cost reduction; these are usually produced by
a captive supplier. Many of the other applications require a
flexible solution and a short development time, both efficiently
provided by programmable logic devices.

ALGORITHM #1
Am29540 FFT

ADDRESS SEQUENCER

Single Chip versus Building Block

Similar to the beginnings of the conventional microprocessor,
dedicated DSP processors are being introduced along with
development software. Single-chip DSP solutions offer easier
software development, smaller size, and lower cost. Several
DSP processors are commercially available, and are taking the
place of conventional microprocessors in DSP systems (Figure
2). Most are general-purpose processors, but application-spe­
cific processors are also being developed.

In addition to these dedicated DSP processors, custom proces­
sors can be built with an ASIC methodology. Custom processors
are especially efficient for high-volume applications.

The alternative to a single-chip DSP processor is a building-block
solution using multiple components. These components would
typically involve bit-slice, multiplier/accumulators, ALUs, and
program memory, as performed in the application note on page
2-307. These solutions provide higher speed and are efficient in
speed-critical or low-volume applications. An example is medical
image processing, where only a few dedicated image filtering
routines are performed repeatedly on the images-the building
blocks can be designed to perform quickly a small set of functions.
Many applications use a mix of single-chip solutions with accom­
panying building blocks for added functionality (see Figure 3).

HOST COMPUTER

INTERFACE
IMAGINARY DATA

DATA RAM REAL DATA

MICROPROGRAMMED
CONTROL UNIT

411 03

Figure 3. Am29500 Processor Family Architecture.

2·284 ~ Monolithic W Memories ~

Digital Signal Processing

PLD Applications

PLDs are useful both in single-chip and building block designs. If
DSP components are used as accelerators in conjunction with
standard microprocessors, the interface logic can be placed
into PLDs.

When supporting DSP processors, PLDs perform functions
similar to those supporting a general purpose microprocessor.
These include address decoding, interrupt control, DMA control,
and bus control. See the section on Microprocessor-Based
Systems for more detail.

Programmable logic devices are also useful in the building-block
applications. PLDs often perform functions similar to their use in
standard bit-slice designs, as counters or sequencers.

The need for a continuous supply of data to the numeric compo­
nents of the DSP system provides opportunities for PLDs in both
building-block and single-chip designs. Handshaking between
components, especially between the numeric chips and the

memory or sequencer, is also required, and with multiple buses
in the system, complex bus interface logic is needed.

The application note on page 2-307 shows PAL devices providing
several functions for a building-block DSP system which imple­
ments an audio spectrum analyzer. The PAL devices create the
sequencerfor program execution, mUltiplex the data outputs to an
oscilloscope, and provide several miscellaneous control func­
tions.

PLDs provide an effective solution in any type of DSP architec­
ture. General-purpose DSP processors need PLDs to perform
typical processor support functions, while ASIC processors may
need additional logic to provide the proper interface to other
chips. In building block systems, PLDs perform both the basic
control functions and interface functions. With limited availability
of software development tools for most DSP applications, pro­
grammable logic devices'offer the flexibility to implement last­
minute design changes to adapt to the needs of the software and
application.

~ Monolithio m Memories l1 2·285

Waveform Generator

A simple waveform generator can be built with a PAL device ad­
dressing locations within a PROM. Using a PAL20X1 0 device to
address locations in a registered PROM (Monolithic Memories
63RA 1681), digital data may be accessed and fed to a Digital to
Analog Converter (DAC). The locations in the memory are pro­
grammed with appropriate data to provide a sinusoidal, triangu­
lar, sawtooth or step function output. A square wave output may
be generated directly from the PAL device itself.

Digital vs. Analog Waveform
Generation

There are advantages and disadvantages in generating analog
functions by this method when considered against a dedicated
analog circuit design. The main advantages favoring the digital
method of waveform generation involve controllability. In this
design example phase shift generation can be controlled within a
tolerance of one degree. The PAL device has been programmed
as a 180 degree up/down counter. An initial count and up/down
control may be loaded into the counter so precise phase shifts can
be generated. When considering the phase shift of a sinusoidal
waveform in an analog circuit, complex Resistor-Capacitor (RC)
networks might need to be added to generate phase shifting.

Another advantage is the ability of the system to generate a wide
range of waveform types, and the convenience of generating new
waveforms by simply re-programming a PROM, or programming
blank locations in the existing PROM. Also, if it were a require­
ment to generate a burst of any number of cycles, this could be
controlled by a digital interface from a microprocessor.

Thedisadvantages associated with the digital circuit would bethe
generation of quantization noise due to the encoding of a digital
code into a close approximation of the analog conversion. For
example, an eight-bit digital code can be converted to 256 differ­
ent voltage levels. Supposing a 10 volt signal were to be evenly
encoded into 256 discrete levels, the difference between each
level would be about 39 mV. The approximation of the digital
signal to its analog equivalent gives rise to quantization noise, in
this example 39 mV.

A way of reducing the quantization noise is to generate a larger
digital code. For a 1 O-volt dynamic range encoded by a fourteen­
bit digital code, the quantization noise is reduced to 0.61 mV. Of
course there are problems in increasing the resolution of the
digital code in the respect that a much higher sampling frequency
would be required to generate the analog output of a given period.

Additional to the problem of quantization noise is the noise
generated by the super-imposition of elements of the master
sampling clock on the analog wave output. Fortunately the
frequency of this clock is much higher than the analog output, for
a resolution of eight bits, and may be filtered out with a simple RC
filter.

In summary, the advantages in a digital waveform generator are
in the controllability of phase shifting, and the number of cycles
generated. Also, the ability to guard against drift might be an
advantage. With an analog system, purity of signal output and the
ability to generate higher frequencies are the main advantages.

PAL Device Implementation

The diagram in figure 1 shows the circuit used to create the
waveforms. Photographs of the waveforms are provided in figure
2. The different functions generated were selectable by a unique
digital code applied to the higher order address inputsAB, A9, and
A 10 of the PROM. The lower order addresses were driven from
the PAL20X10; outputs 00-07 were fed to address inputs
AO-A7. The design specification of the 180 Degree Up/Down
counter (page 2-288) was encoded into the PAL device.

Look·Up Table Generation

To generate the hexadecimal look-up table, which was pro­
grammed into the PROM, a sma" TURBO PASCAL program was
written to provide a conversion from the angle (degrees) to the
sine of the angle, in a hexadecimal value (page 2-290). The
program generated the nearest hexadecimal value to 100
(sine(x) + 1), for a range of 180 degrees, at a resolution of one
degree. The sawtooth and triangular waveforms were simple
identity functions; the PROM location address was programmed
into its own contents. The step waveform was programmed as
constant values in a number of successive adjacent locations.

2·286 ~ Monolithic W Memories ~

FREOUENCY
ADJUST

Waveform Generator

SELECT FUNCTION
WITH DIGITAL TTL CODE

AS A9 Al0

CLK co INl

00 AO 01 IN2

01 Al 02 1N3

Dl 02 A2 Q3 IN4

D2 03 A3 63RA1681 04 INS
LOAD

PHASE D3 PAL20Xl0 04 A4 OS IN6
INPUT

D4 OS AS Q6 IN7

DS 06 A6 07 INS

D6 07 A7

D7 is E
DOWN

~IGITAl GROUND

SVOLT

Figura 1.

Triangular Wavoform

Step Waveform

Figure 2.

~ Monolithic W Memories l1

AD588

VOUT ANALOG OUTPUT

SENSE

10VOLT

SELECT ANALOG GROUND

DIGITAL GROUND

+VCC= 12V

DIGITAL GROUND

Sinowavo

Sawtooth Waveform

43901 B

2·287

2·288

Waveform Generator

TITLE 180DEGREE COUNT
PATTERN 01
REVISION 01
AUTHOR CHRIS JAY
COMPANY MMI SANTA CLARA
DATE 17 OCTOBER 1986

CHIP DEGREE PAL20X10

;PIN 1 2 3 4 5 6
CLK /LD DO D1 D2 03

;PIN 7 8 9 10 11 12
04 D5 D6 D7 DOWN GND

;PIN 13 14 15 16 17 18
JOE QO Q1 Q2 Q3 Q4

;PIN 19 20 21 22 23 24
Q5 Q6 Q7 CUP CDN VCC

,
; THE PAL20X10 HAS BEEN DESIGNED AS A 180 DEGREE
;LOADABLE UP/DOWN COUNTER. THE COUNTER OUTPUTS
;DRIVE THE ADDRESS INPUTS OF A PROM WHICH IS
: PROGRAMMED WITH A 'LOOK UP' SINE TABLE. A COUNT
:UP FROM ZERO TO 180 WILL GENERATE ONE HALF
:CYCLE FROM THE PROM CONTENTS. THE COUNTER WILL
:AUTOMATICALLLY SWITCH TO A DOWN COUNT AND GENERATE
;THE SECOND HALF OF ONE COMPLETE CYCLE. IF THE
;PROM OUTPUTS ARE REGISTERED AND FED TO A D/A
;CONVERTER A CONTINOUS SINUSOIDAL SIGNAL WILL BE
; GENERATED. COUNTING CAN BE INTERRUPTED WITH A
;LOAD. PHASE SHIFTING OF THE SINUSIODAL WAVEFORM
; MAY BE ACHIEVED WITH A RESOLUTION OF 1 DEGREE.
,
EQUATION

/QO :- QO*/LD
+ /DO*LD

/Q1 :- /Q1*/LD
+ /D1*LD
:+: QO*/LD*CUP
+ /QO*/LD*/CUP

/Q2 :- /Q2*/LD
+ /D2*LD
:+: QO*Q1*/LD*CUP
+ /QO*/Q1*/LD*/CUP

/Q3 :- /Q3*/LD
+ /D3*LD
:+: QO*Q1*Q2*/LD*CUP
+ /QO*/Q1*/Q2*/LD*/CUP

/Q4 :- /Q4*/LD
+ /D4*LD
:+: QO*Q1*Q2*Q3*/LD*CUP
+ /QO*/Q1*/Q2*/Q3*/LD*/CUP

~ Monollthlo W Memories ~

: COUNT
: LOAD
;
;HOLD
; LOAD
;UP COUNT
;DOWN COUNT
;
;HOLD
; LOAD
;UP COUNT
;DOWN COUNT
;
;HOLD
; LOAD
;UP COUNT
;DOWN COUNT
;
;HOLD
; LOAD
;UP COUNT
;DOWN COUNT
;

/QS

/Q6

/Q7

/CUP

/CDN

:= /QS*/LD
+ /DS*LD

Waveform Generator

:+: QO*Q1*Q2*Q3*Q4*/LD*CUP
+ /QO*/Q1*/Q2*/Q3*/Q4*/LD*/CUP

:= /Q6*/LD
+ /D6*LD
:+: QO*Q1*Q2*Q3*Q4*QS*/LD*CUP
+ /QO*/Q1*/Q2*/Q3*/Q4*/QS*/LD*/CUP

:= /Q7*/LD
+ /D7*LD
:+: QO*Q1*Q2*Q3*Q4*QS*Q6*/LD*CUP
+ /QO*/Q1*/Q2*/Q3*/Q4*/QS*/Q6*/LD*/CUP

:= /CUP*/LD
+ DOWN*LD
:+: /Q7*/Q6*/QS*/Q4*/Q3*/Q2*/Q1*QO*/LD*/CUP
+ Q7*/Q6*QS*Q4*/Q3*/Q2*Q1*QO*/LD*CUP

:= CUP*/LD
+ /DOWN*LD
:+: /Q7*/Q6*/QS*/Q4*/Q3*/Q2*/Q1*QO*/LD*/CUP
+ Q7*/Q6*QS*Q4*/Q3*/Q2*Q1*QO*/LD*CUP

SIMULATION
TRACE ON CLK /DOWN LD CUP CDN

- QO Q1 Q2 Q3 Q4 QS Q6 Q7
SETF /CLK LD OE DO D1 D2

/D3 /D4 /DS /D6 /D7 DOWN
CLOCKF
SETF /LD
CLOCKF
FOR I := 0 TO lS DO
BEGIN CLOCKF
END
SETF /CLK LD /DO /D1 /D2

/D3 D4 D5 /D6 D7 /DOWN
CLOCKF
SETF /LD
CLOCKF
FOR I := 0 TO 15 DO
BEGIN CLOCKF
END
TRACE_OFF

~ Monollthlo W Memories ~

: HOLD
: LOAD
:UP COUNT
:DOWN COUNT
,
:HOLD
: LOAD
:UP COUNT
:DOWN COUNT
,
:HOLD
: LOAD
:UP COUNT
:DOWN COUNT

:COUNT UP
: REGISTER

,
:COUNT DOWN
: REGISTER

,
:LOAD 03H
:AND DOWN
: COUNT. SET
:INTO COUNT
:MODE AND
: GENERATE
:VECTORS TO
:TEST DOWN
:TO UP TRANS­

:-ITION. LOAD
:BOH AND UP
:COUNT.
: GENERATE
:VECTORS TO
:TEST UP TO
:DOWN TRANS­
: -ITION.

EI

2·289

2·290

Waveform Generator

program sinetable:

(********** ••••••••••• * •••••••••••• *.******* •• ** ••• **.* ••••••• *.* ••)
(* *)
(* The program 'sinetable' has been designed to generate .)
(* the closest possible HEXIOECIMAL value to 100 X [sine(x) + 1 .)
(* for -90 <= x => +90, in steps of delta x = 1 degree. The *)
(* HEXIOECIMAL PROM address locations have been evaluated as *)
(* as n = x + 90. The program will generate a SINE.OAT file *)
(* which will contain a table of PROM address locations from *)
(* from 00 to B4 HEX, and the contents of each location as the *)
(* closest possible sine value as computed in the above equation. *)
(* Program written by: *)
(* Chris Jay and Ser-Hou Kuang. MMI Santa Clara. *)
(* *)
(**** •• * •••• **** ••• **.* ••• * •• *.***.*** •• ** •• * •••• *.** •• *.******.*.*)

const
hexsize = 10:

type
hex_type = packed array [1 •. hexsizel of char:

var
SinFile: text:
i,k:integer:
s,x,f:real:
hexar,hexcon : hex_type:

(**.*********)
(* *)
(* Procedure to convert decimal values into hexadecimal values *)
(* *)
(**)

Procedure DecToHex (dec: integer: var tohex: hex_type):
var

i, dig, idx, next: integer:

Function
begin

case
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

end;
end;

hex

i of
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex

(i : integer) : char:

:= '0' :
:= Ill;
:= '2' :
:= 13 1 ;

:= '4' ;
:= '5' ;
:= '6' ;
:= '7' ;
:= '8' ;
:= '9' ;
:= 'A' ;
:= 'B' ;
:= IC' ;
:= 'D' ;
:= 'E' ;
:= 'F' ;

l1 Monolithic [FJJJ Memories l1

Waveform Generator

begin
for i := 1 to hexsize do

tohex [i) : = ' ';
idx := hexsize;
dig := dec;
next := dig div 16;
while (next <> 0) and (idx > 0) do

begin
ToHex [idx) := hex (dig - (next • 16));
idx := idx -1;
dig := next;
next := dig div 16;

end;
ToHex [idx) := hex (dig);

end;

begin
Assign(SinFile, 'B:SINE.DAT');
Rewrite(SinFile);
x := 0;
f : = 0;
i := -90;
s := pi/lBO;
while i < 91 do

begin
k := i + 90;
x := (i·s);
f := 1 + sin(x);
f := 100*f;
DecToHex (round (f), hexar);
DecToHex (k,hexcon);
if i = -90 then

begin
writeln ('DEGREES LOC 100*SIN X + 1 HEXLOC HEX');
end;
write (i:3,' ',k:3,' ');
writeln (f:l0:5,' ',hexcon,' ',hexar);
if i = -90 then
begin
writeln(SinFile, 'DEGREES 100*SIN(X)+1 HEXLOC 100·SIN(X)+l[HEX)');
end;
writeln(SinFile,k:5,' ',f:l0:5,' ',hexcon,' ',hexar);
i := i + 1;

end;
Close(SinFile) ;

end.

~ MonolithIc W MemorIes ~ 2·291

PAL32VX10 Uses Buried Register
for Input-Intensive
State Machine Designs AN-160B

The PAL®32VX10 offers design engineers several features not
previously found in programmable logic devices (PLOs). Many
of these features are found in the output macrocell, which al­
lows over thirty possible configurations. This application note
will highlight some of these features, and show how they are
used in Dual Binary Rate Multipliers.

The PAL32VX10 is a 24-pin PLD with twelve dedicated inputs.
The ten I/O macrocells have dual feedback, providing twenty
additional array inputs. Each macrocell has the architecture
shown in Figure 1.

CLOCK INPUT

SR
FUSE SYNCHRONOUS

ARRAY RESET

OUTPUT ENABLE

VARIED
PRODUCT TERMS;

8, 10, 12, 14 OR 16

REGISTER
BYPASS CONTROL

BURIED REGISTER
FEEDBACK

REGISTER
POLARITY
CONTROL

FEEDBACK FROM INPUT PIN

AP
ASYNCHRONOUS

PRESET

Figure 1. PAL32VX10 Macrocell

Macrocell Description
A Ootype flip-flop is clocked by a dedicated input which also
feeds the programmable array. The flip-flop data input is fed by
a varied number of product terms, from eight to sixteen per out­
put. The sum of these products feeds an Exclusive-OR (XOR)
gate controlled by an additional product term. Global reset and
preset signals are also controlled by product terms.

A fuse controls flip-flop output polarity. A product term allows
the flip-flop to be bypassed, and another product term enables
the output. Feedback signals come from the flip-flop and the
I/O pin, providing dual feedback.

The device is manufactured with Monolithic Memories' ad­
vanced oxide-isolated process, providing high speed and low
power consumption. The propagation delay is 30 ns maximum
for the standard version and 25 ns maximum for the A-speed
version. Power consumption is only 180 mA maximum.

Dual Binary Rate Multipliers
The availability of the clock input in the fuse array avoids the
addition of external logic in applications where it is necessary
to use the system clock as a logic input. In many synchronous
PLDs the system clock input is connected only to the register
file. The rising edge of the clock input synchronizes data flow
through the Ootype registers, but the clock is not available as a
Boolean signal in the fuse array.

The application of the Dual Binary Rate Multipliers uses the
buried register capability, the XOR function to build counters
with a T-type register, and the presence of the clock input in
the fuse array. The circuit requires sixteen data inputs. There
are two data byte inputs OAO-OA7 and DBO-OB7. The two serial
outputs are OA associated with the DA port and OB with the DB
port. The clock input is divided by sixteen and is available at
the OA or OB outputs multiplied by the binary data inputs OAO­
OA3 or 0A4-DA7, and OBO-DB3 or OB4-0B7.

The output SELOP (Select Output) selects one half of each A
or B byte as the multiplying vector. When SELOP is High the
lower half of each input byte is selected to multiply the clock in­
put. When Low, the upper half of each input is used to multiply
the clock input.

For example, if data inputs DA4-DA7 and DB4-DB7 were binary
encoded as six and three, respectively, then six and three
clock pulses would be gated through to the outputs OA and OB
respectively while SELOP is Low. When SELOP goes High the
data inputs OAO-OA3 and OBO-OB3 are selected as the multipli­
ers. If OAO-OA3 contained the binary encoded input of eight,
then eight clock pulses would be gated to OA. At the same
time, if DBO-DB3 contained fifteen, fifteen clock pulses would
appear at the OB output. These waveforms are shown in the
oscilloscope photograph in Figure 2.

2·292 ~ Monolithic W Memories ~

PAL32\fX 10 Uses Buried Register for Input-Intensive State Machine Designs

SElOP

OA

os

elK

Figure 2. Dual Binary Rate Multipliers Waveforms

The two additional outputs, LSB and MSB, are byte-select out­
puts. This internal state machine has four unique states, per­
forming a binary count zero to three. Just as the SELOP output
can be used to select the multiplying half of each byte, LSB
and MSB may be decoded externally to select a one-of-four
byte data input to be applied to parallel inputs A or B. A pro­
grammable controlled pulse train from four byte inputs can then
be available at the OA and OB outputs.

PAL32VX10

Dual Binary Rate Multipliers

Figure 3. Pin Layout

~ Monolithic m Memories ~ 2·293

PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs

2·294

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

DUAL BINARY RATE MULTIPLIERS
05

,

01
CHRIS JAY
MMI SANTA CLARA, CA
AUGUST 6, 1986

CHIP BINRATE PAL32VXI0
,
iTHE PAL32VXI0 HAS BEEN PROGRAMMED TO PERFORM BINARY
iRATE MULTIPLICATION. THE OUTPUTS AT
:QA AND QB ARE ONE-SIXTEENTH OF THE CLOCK INPUT
iMULTIPLIED BY THE BINARY VALUE OF THE INPUTS
iDAO-DA3 AND DBO-DB3, RESPECTIVELY, WHEN SELOP
:IS HIGHi OR, ONE-SIXTEENTH OF THE CLOCK INPUT
:MULTIPLIED BY THE BINARY VALUE OF THE INPUTS DA4-DA7
:AND DB4-DB7, WHEN THE SELOP SIGNAL IS LOW.
:
:PINS 1 2 3

CLK DAO DAI

:PINS 7 8 9
DA5 DA6 DA7

:PINS 13 14 15
DB2 DB3 DB4

:PINS 19 20 21
QB DB7 SELOP

GLOBAL QO Ql Q2 Q3 NC NC NC

STRING Kl IQO* Ql* Q2*/Q3 1

STRING K2 IQO* Ql*/Q2 1

STRING K3 IQO*/Ql 1

STRING K4 IQO*/Ql* Q2* Q3 1

STRING K5 IQO*/Ql*/Q2*/Q3 1

STRING CKNL I/CLK* SELl
STRING CKNH I/CLK*/SEL I

EQUATIONS

/QO := QO

/Ql := /Ql : +: QO

/Q2 := /Q2 : +: QO*Ql

/Q3 := /Q3 :+: QO*Ql*Q2

4
DA2

10
DBO

16
DB5

22
LSB

SEL LSBI

5 6
DA3 DA4

11 12
OBI GND

17 18
DB6 QA

23 24
MSB VCC

MSBI iBURIED NODES

iSTRING STATEMENTS
iTO DECODE USABLE
iSTATES OF INTERNAL
iDIVIDE BY SIXTEEN
iBINARY COUNTER.
iCLOCK SELECTION
iSTRING STATEMENTS

iCLOCK DIVIDE BY TWO.
iBURIED REGISTER.

iCLOCK DIVIDE BY FOUR.
iBURIED REGISTER.

iCLOCK DIVIDE BY EIGHT.
iBURIED REGISTER.

iCLOCK DIVIDE BY SIXTEEN.
iBURIED REGISTER.

~ Monolithic W Memories ~

PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs

/SEL
SELOP

OA

OA.CMBF

OB

OB.CMBF

/LSBI
LSB

/MSBI

MSB

:= /SEL :+: 00*Ql*Q2*Q3
:= SEL

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

OAO
OA3
OAI
OA2* OA3
OA2*/OA3
OAl* OA2

/OAl* OA2*
/OAl* OA2*

OA4
OA7
OAS
OA6* OA7
OA6*/OA7
OAS* OA6

/OAS* OA6*
/OAS* OA6*
VCC

OBO
OB3
OBI
082* OB3
OB2*/OB3
OBl* OB2

/OBl* OB2*
/OBl* OB2*

OB4
OB7
OB5
OB6* OB7
OB6*/OB7
OB5* OB6

/OB5* OB6*
/OB5* OB6*
VCC

* Kl*CKNL
*/QO*CKNL
* K2*CKNL
* K2*CKNL
* K3*CKNL
* K3*CKNL

OA3* K4*CKNL
OA3* KS*CKNL

* Kl*CKNH
*/QO*CKNH
* K2*CKNH
* K2*CKNH
* K3*CKNH
* K3*CKNH

OA7* K4*CKNH
OA7* K5*CKNH

* Kl*CKNL
*/QO*CKNL
* K2*CKNL
* K2*CKNL
* K3*CKNL
* K3*CKNL

OB3* K4*CKNL
OB3* K5*CKNL

* Kl*CKNH
*/QO*CKNH
* K2*CKNH
* K2*CKNH
* K3*CKNH
* K3*CKNH

OB7* K4*CKNH
OB7* K5*CKNH

:= /LSBI :+: SEL*Q3*Q2*Ql*QO
:= LSBI

:= /MSBI
:+: LSBI*SEL*Q3*Q2*Ql*QO
:= MSBI

:SELECT O/P HIGH TO SELECT
:OATA 0-3, LOW TO
:SELECT DATA 4-7.

:COMBINATORIAL OUTPUT OF
:CLOCK MULTIPLIED BY THE
:OAO-OA3 INPUT WHEN SEL
:IS HIGH, AND OA4-DA7
:WHEN SEL IS LOW.

:
iENABLE COMBINATORIAL
:OUTPUT FUNCTION.
:
iCOMBINATORIAL OUTPUT OF
:CLOCK MULTIPLIED BY THE
:OBO-OB3 INPUT WHEN SEL
iIS HIGH, AND OB4-DB7
iWHEN SEL IS LOW.

i
:ENABLE COMBINATORIAL
:OUTPUT FUNCTION.

~ Monolithic W Memories ~ 2·295

PAL32VX 10 Uses Buried Register for Input-Intensive State Machine Designs

SIMULATION
TRACE ON CLK QA QB QO Ql Q2 Q3

SELOP LSB MSB DAO DAI
DA2 DA3 DA4 DA5 DA6 DA7
DBO DBI DBZ DB3 DB4 DB5

PRLDF
SETF

DB6 DB7
/Qo /Ql /Q2 /Q3
/CLK /DAO /DAI

DBD /DBI
/DA4 DA5

DB4 DB5
o TO 4 DO FOR J :=

BEGIN
IF J = 1 THEN

SEL /LSBI /MSBI
/DA2 /DA3
/DB2 /DB3
/DA6 /DA7
/DB6 /DB7

BEGIN SETF DA2 DB2 DA6 DB6
END

IF J = 2 THEN
BEGIN SETF /DA2 DA3 /DB2 DB3

/DA6 DA7 /DB6 DB7
END

IF J 3 THEN
BEGIN SETF DA2 DB2 DA6 DA6
END

FOR I:= 1 TO 32 DO
BEGIN
SETF CLK
SETF /CLK
END

END
TRACE OFF

;SIMULATION SECTION.
;TRACE ESSENTIAL
;WAVEFORMS.

,
;PRELOAD INITIAL VALUES.
;SET INPUT DAO-DA3 O.
;SET INPUT DBD-DB3 1.
;SET INPUT DA4-DA7 = 2.
;SET INPUT DB4-DB7 = 3.
;
;GENERATE FOUR LOOPS.
iON SECOND LOOP SET
;DAO-DA3 = 4, DBO-DB3 5,
;DA4-DA7 = 6, DB4-DA7 7.
iON THIRD LOOP SET
;DAO-DA3 = 8, DBO-DB3 9,
;DA4-DA7 = 10, DB4-DB7 11.
iON FOURTH LOOP SET
;DAO-DA3 12, DBO-DB3 13,
iDA4-DA7 14, DB4-DB7 15.

;
iON EACH LOOP APPLY
;32 CLOCK PULSES.
;OUTPUTS QA AND QB
;WILL GENERATE THE
;CLK DIVIDED BY 16 MULTIPLIED
;BY THE BINARY CODE AT THE
iSELECTED INPUT.

2·296 ~ Monolithic W Memories ~

Analog to Digital Conversion

It is often necessary to interface analog inputs into a digital sys­
tem. In digital instruments the signal being measured is usually
an analog level. Transducers are used to provide a linear relation­
ship between a measured input signal and a voltage output. An
example of a transducer would be a strain gauge. In this case the
amplitude of the voltage output would be a measure of mechani­
cal stress. If the measuring device were microprocessor-based
or minicomputer-based, the voltage level would have to be
converted to a digital binary code before it could be read and proc­
essed. An analog to digital converter would be required to accom­
plish this task.

Conversion Techniques

There are a number of techniques used to provide analog to
digital (A to D) conversion. The slowest methods of A to D
conversion are based on counters, and would probably be used
in instruments such as multimeters. An example would be the
self-calibrating Dual Slope Integrator. The fastest A to D convert­
ers are based on look-up tables and might be used in video
applications. In the case of a Flash Converter high conversion
speed is obtained at the expense of a very large number of input
comparator circuits. An eight-bit digital output code would require
28_1 comparator circuits at the input. The comparator outputs
would drive a look-up table from which the closest binary weight­
ing to the analog input would be referenced. Techniques to
simplify the input circuitry would reduce the number of compara­
tors required. A Half Flash converter would accomplish this but
with some degradation in conversion speed.

Successive Approximation

A medium to high conversion speed can be realized with the
Successive Approximation technique of conversion, and many
circuits exist to perform this type of conversion. Figure 1 shows
a diagram of an A to D converter that uses a PAL20RS10 as a
Successive Approximation Register. The advantage of using the
successive approximation technique of conversion is that the
circuit is relatively simple when using a PAL device, and the cycle
of conversion is constant. Conversion using counters is no more
simple, and does not give a constant conversion time because the
time required to produce the closest possible binary output is
dependent on the amplitude of the input signal.

The PAL20RS10 has been programmed as a state machine to
perform the approximation cycle. The Design Specification title
SAR8 (page 2-300) refers to the eight-bit SuccessiveApproxima­
tion Register. To provide more bits of resolution, a fourteen-bit
SAR14 has been programmed into a PAL32R16 (page 2-303).

Quantization Error

Why would a system require additional bits of data in the SAR
circuit? Suppose a two-digit code is used to represent a dynamic
voltage range of 0 V to 9 V. A linear mapping would be:

BINARY CODE 00 01 10 11

Input Voltage (Volts) 0.0 3.0 6.0 9.0

EIGHT BIT DIGITAL OUTPUT

SYSTEM CLOCK INpUT------< --i ClK
.----~CMP

601 01

GND
Vcc

POL

EN

SARB

PAl20RS10

CC
07~---~~~~+-~---~D7
0 6 D6
Os Ds
0 4 D4
03 D3
02 D2
0 1 Dl
00 Do

EOC EOC (END OF COUNT)

Figure 1. Eight-Bit Successive Approximation Analog to Digital Converter

~ Monollthlo IFJJI Memories ~

COMPARATOR
CIRCUIT

2·297

Analog to Digital Conversion

For a two-digit code there exist 22 codes which represent four
discrete analog voltage levels. The difference between each
voltage level is 3.0 V. In this simple example there are not enough
binary bits to represent any voltages between each separate
level. The difference between the actual value and the approxi­
mation is the quantization error. The resolution can be increased
and quantization error reduced by adding more bits to encode the
data. With a three-digit code resolution improves:

BINARY CODE VOLTAGE LEVELS (VOLTS)

000 0.0000
001 1.2857
010 2.5714
011 3.8571
100 5.1429
101 6.4286
110 7.7143
111 9.0000

However, there remain voltage levels that cannot be accurately
represented. In general, if we assume an input dynamic range
(Vdr) is to be encoded into equal discrete levels (Vq) by a number
(n) of bits of binary data, the relationship becomes:

Vdr/(2n - 1) = Vq.

If adynamic range of 10 Vwere represented by eight bits of digital
data the input voltage level could be resolved to an accuracy of
approximately

10/(28 - 1) = approximately 40 mV.

For some systems this might be accurate enough. To decrease
quantization error even further the PAL32R16 has been pro­
grammed to perform successive approximation with 14 bits of
binary information. With the given figures the resolution is

10/(214'1) = approximately 0.6 mV.

PAL20RS10 Implementation

The design shown in Figure 1 is an eight-bitAto D system. The
PAL20RS10 has a clock input which synchronously clocks the
state machine programmed into the PAL device. The 0 0-07

outputs will contain the closest digital binary weighting to the
analog input (to a resolution of 40 mV for a 10-volt range) after
each approximation cycle. 0

7
is the most significant bit.

The CC signal is an active-HIGH Conversion Comptete signal.
CC can be converted to provide an additional bit of code to make
a nine-bit SAR if increased system resolution were required. The
EOC output is an End Of Count or Conversion signal.

The input CMP is driven by the output of a very high tolerance
comparator circuit. The TTL level output is fed to the CMP input
and clocked into the selected register during each compare
operation. The POL input is hard-wired HIGH or LOW; this
influences the polarity of the CMP input. The CMP input can be
either active-HIGH or LOW as selected by the POL control.

The EN input is the ENable control. If HIGH the SAR is configured

for eight bits, and if LOW CC becomes an additional register to
create a nine-bit SAR. The registers increase in significance by
one and CC becomes 0

0
,

An active-LOW RESET input has been added to the design so a
synchronous reset may be applied to the circuit. When LOW, the
clock input will set 0

7
HIGH, CC, EOC, and 0 6-0

0
LOW, shown

in Figure 2 at t1•

The SAR output (0
7

HIGH and 0 6-00 LOW) provides a binary
input to the D to A converter, generating a corresponding analog
signal. The comparator will compare this output with the current
value of the analog input. If voltage level of the converted signal
is greater than the current level of the analog input the binary
weig hting of the SAR contents is too large. The feedback from the
comparator output to the CMP input will cause the contents of 07
to be RESET on the next clock rising edge, t2 in Figure 2. If the
level of the converted signal is less than the input, the binary
weighting of the contents of the SAR is not large enough. The
comparator feedback will cause the 0

7
register contents to

remain SET after the arrival of the clock rising edge t2. Simulta­
neously 0

6
will be SET HIGH to perform the next lesser significant

approximation.

At t3 the result of the next CMP input is registered at 0
6

while Os
is SET for the next lesser significant compare. The entire cycle
is completed with the contents of 0

7
-0

0
containing the closest

approximation of an eight-bit digital code to the current analog
input. The end of one complete cycle finishes at t10 and starts
again at t11'

After the CMP input has been loaded into a register, the contents
of that register must be held forthe duration of the approximation
cycle. When the digital code is set up in the register file of the
PAL20RS10 it may be synchronously loaded into an octal re­
gister, as shown in Figure 1. CC will provide an enabling HIGH
(Figure 2) and the digital data is registered at time t

10
in the cycle.

The input to the comparator should be held constant during the
conversion cycle in aSAMPLE and HOLD circuit. The EOC signal
may be used as an interrupt inputtothe host processor, which can
read the data over an eight-bit data bus by enabling the output of
the octal register.

The PAL20RS10 was selected because some of the outputs
require more than the eight product terms available in standard
PAL devices. The PAL20RS10 features product term steering,
whereby sixteen product terms are shared between two outputs.
To fit in the device, the outputs are arranged such that an output
using morethan eight product terms is adjacent to an output using
less than eight product terms.

The oscilloscope trace (Figure 3) shows one complete cycle of
successive approximation. A PAL20RS10 device was pro­
grammed as an SAR and configured with an AD558 D to A
converter and a comparator circuit. The top trace shows the
output of the comparator and the bottom trace shows the output
of the D to A converter. Initially 07 is set HIGH, and the CMP
feedback holds the 0

7
contents HIGH as 0 6 is set HIGH for the

next compare. 0
6

is SET HIGH as a result of the next compare.
When Os is set HIGH the D to A output is greater than the input
voltage level so the content of Os is reset LOW. When the cycle
is complete the result HHLH HLLH is the closest binary weighting
to the level of the analog input.

2·298 ~ Monolithic W Memories ~

601 02

601 03

Analog to Digital Conversion

11

CLOCK

I
I
I

RST I
I
I
I

07~

0 6

Os

0 4

0 3

O2

0 1

0 0

CC

EOC

I
I

~----------~Il~-­
I

---------------~
PAL20RS10

Figure 2. Eight-Bit Successive Approximation Register Output Waveforms

COMPARATOR
OUTPUT

~ ~~--~~--~~----~~ ~

CONVERTER
OUTPUTr-----~--1_+=~--+_----H_~r_~

Figure 3.

~ Monolithic W Memories l1 2·299

EJI

2·300

Analog to Digital Conversion

:EIGHT BIT SUCCESSIVE APPROXIMATION REGISTER
:WITH CONVERSION COMPLETE AND END OF CONVERSION.

TITLE SAR 8
PATTERN 01
REVISION 01
AUTHOR CHRIS JAY
COMPANY MMI SANTA CLARA
DATE 29 JANUARY 1985

CHIP SAR_8 PAL20RSI0

:PIN 1 2 3 4
CLK /RST CMP POL

:PIN 7 8 9 10
NC NC NC NC

:PIN 13 14 15 16
JOE EOC CC 03

:PIN 19 20 21 22
01 05 00 06

EOUATIONS

/07 := /RST*07*CMP*/06*/05*/04*/03
/02/01*/00*/CC*/EOC*POL

+ /RST*07*/CMP*/06*/05*/04
/03/02*/01*/00*/CC*/EOC*/POL

+ /RST*/07*/EOC

06 := /RST*07*/06*/05*/04
/03/02*/01*/00*/CC*/EOC

+ /RST*06*/CMP*/05*/04
/03/02*/01*/00*/CC*/EOC*POL

+ /RST*06*CMP*/05*/04*/03
/02/01*/00*/CC*/EOC*/POL

+ /RST*06*05*/EOC
+ /RST*06*04*/EOC
+ /RST*06*03*/EOC
+ /RST*06*02*/EOC
+ /RST*06*01*/EOC
+ /RST*06*00*/EOC
+ /RST*06*CC*/EOC

00 := /RST*OI*/OO*/CC*/EOC
+ /RST*OO*/CMP*/CC*/EOC*POL
+ /RST*OO*CMP*/CC*/EOC*/POL
+ /RST*OO*CC*/EOC

05 := /RST*06*/05*/04*/03
/02/01*/00*/CC*/EOC

+ /RST*05*/CMP*/04*/03
/02/01*/00*/CC*/EOC*POL

+ /RST*05*CMP*/04*/03
/02/01*/00*/CC*/EOC*/POL

+ /RST*05*04*/EOC
+ /RST*05*03*/EOC
+ /RST*05*02*/EOC
+ /RST*05*01*/EOC
+ /RST*05*00*/EOC
+ /RST*05*CC*/EOC

01 := /RST*02*/01*/00*/CC*/EOC
+ /RST*OI*/CMP*/OO*/CC*/EOC*POL
+ /RST*OI*CMP*/OO*/CC*/EOC*/POL
+ /RST*OI*OO*/EOC
+ /RST*OI*CC*/EOC

NC
11
EN
17
02
23
07

6
NC
12
GND
18
04
24
VCC

:ACTIVE LOW RESET WILL SET
:07 HIGH. THE CMP OR /CMP
;INPUT IS REGISTERED
:DEPENDING ON POL INPUT.
;07 IS HELD UNTIL THE END
;OF CONVERSION.
:ACTIVE LOW RESET WILL
:RESET 06 LOW. 06 GOES
;HIGH AFTER 07 AND THE
:CMP OR /CMP INPUT IS
:REGISTERED.POL SELECTS
:CMP POLARITY. THE DATA
:REGISTERED IN 06 IS
;HELD THROUGH THE WHOLE
;APPROXlMATION CYCLE 05
;DOWN TO CONVERSION
: COMPLETE. THE EOC LOW
;SIGNAL, END OF CONVER­
;-SION CLEARS THE
;REGISTERS.
;SET REGISTER 00
;REGISTER CMP
;OR /CMP INPUT
;HOLD 00 DATA

;SET REGISTER 05
;AFTER 06. DURING
;COMPARE CYCLE.
;REGISTER CMP
;OR /CMP INPUT

;HOLD 05 DATA
;DURING THE
; APPROXIMATION
;CYCLE FROM 04
;TO CONVERSION
;COMPLETE.

;SET REGISTER 01 HIGH
;AFTER 02 REG CMP OR /CMP
;INPUT SELECTED BY POL
;HOLD 01 DATA FOR
;REST OF CONVERSION

~ Monolithic W Memories ~

Analog to Digital Conversion

Q4 := /RST*Q5*/Q4*/Q3*/Q2 ;SET REGISTER Q4
/Q1/QO*/CC*/EOC ;AFTER Q5 THEN

+ /RST*Q4*/CMP*/Q3*/Q2 ;COMPARE CYCLE
/Q1/QO*/CC*/EOC*POL ;REGISTER CMP OR

+ /RST*Q4*CMP*/Q3*/Q2 ;/CMP INPUT.
/Q1/QO*/CC*/EOC*/POL

+ /RST*Q4*Q3*/EOC ;HOLD Q4 DATA
+ /RST*Q4*Q2*/EOC ;DURING THE
+ /RST*Q4*Q1*/EOC ;APPROXIMATION
+ /RST*Q4*QO*/EOC ;CYCLE OF Q3
+ /RST*Q4*CC*/EOC ;DOWN TO CC

;RESET REGISTER Q3
Q2 := /RST*Q3*/Q2*/Q1*/QO*/CC*/EOC ;SET REGISTER Q2 HIGH

+ /RST*Q2*/CMP*/Q1*/QO*/CC*/EOC*POL;AFTER Q3 REG CMP OR
+ /RST*Q2*CMP*/Q1*/QO*/CC*/EOC8/POL;/CMP INPUT SELECT W/POL
+ /RST*Q2*Q1*/EOC ;HOLD Q2 DATA
+ /RST*Q2*QO*/EOC ;FOR APPROXIMATION
+ /RST*Q2*CC*/EOC ;CYCLE TO CC.

;RESET REGISTER Q3
Q3 /RST*Q4*/Q3*/Q2*/Q1*/QO ;THEN SET Q3.

/CC/EOC ;REGISTER THE CMP
+ /RST*Q3*/CMP*/Q2*/Q1*/QO :OR /CMP INPUTS

/CC/EOC*POL ;AND HOLD CONTENTS
+ /RST*Q3*CMP*/Q2*/Q1*/QO ;OF Q3 DURING THE

/CC/EOC*/POL ;REST OF THE APP-
+ /RST*Q3*Q2*/EOC ;-ROXIMATION CYCLE
+ /RST*Q3*Q1*/EOC ;DOWN TO CC
+ /RST*Q3*QO*/EOC
+ /RST*Q3*CC*/EOC

CC /RST*QO*/CC*/EOC
+ /RST*CC*/CMP*/EOC*/EN*POL
+ /RST*CC*CMP*/EOC*/EN*/POL

EOC /RST*CC*/EOC

SIMULATION

TRACE ON CLK /RST EN CMP POL
Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO CC EOC

SETF OE /CLK RST EN CMP /POL
CLOCKF
SETF /RST
CLOCKF
FOR I := 1 TO 9 DO
BEGIN CLOCKF
END
SETF /CMP
FOR J := 1 TO 9 DO
BEGIN CLOCKF CLK
END
SETF POL
FOR K := 1 TO 9 DO
BEGIN CLOCKF CLK
SETF CMP
FOR L := 1 TO 9 DO
BEGIN CLOCKF CLK
END
CLOCKF
END
TRACE OFF

;RESET CC. CC GOES HIGH
;AFTER QO TO INDICATE
;THAT CONVERSION IS NOW
; COMPLETE. IF EN IS LOW
;THEN CC CAN PROVIDE ONE
;ADDITIONAL BIT OF
;RESOLUTION.

;END OF COUNT
;GOES HIGH TO
;RESET THE SAR.

;SET INITIAL CONDITIONS
;AND RESET Q6 - QO, CC
;AND EOC, SET Q7
;FOR NINE CLOCK CYCLES
;PERFORM ONE PASS OF
;SUCCESSIVE APPROXIMATION
;WITH CMP HIGH AND POL
;LOW. PERFORM SECOND
;PASS WITH CMP LOW

;SET POLARITY PIN ACTIVE
;TEST SUCCESSIVE CYCLE OF
;APPROXIMATION WITH THE
;INVERSION INPUT ACTIVE
;FOR CMP HIGH AND CMP
; LOW

~ Monolithic W Memories ~ 2·301

2·302

Analog to Digital Conversion

PALASM SIMULATION, V2.21A MARKET VERSION (07-24-86)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986
PALASM SIMULATION SELECTIVE TRACE LISTING

Title SAR
Pattern 01
Revision 01

SAR
Page 1

Author
Company
Date

CHRIS JAY
MMI SANTA CLARA
29 JANUARY 1985

9 cg c c c c c c c c c cg c c c c c c c c cg c c c c c c c c c

CLK

/RST

EN

CMP

POL

Q7

Q6

Q5

Q4

Q3

Q2

Q1

:: II QO
--II

CC -- i i
EOC :: II

~ Monolithic W Memories ~

Analog to Digital Conversion

;FOURTEEN BIT SUCCESSIVE APPROXIMATION REGISTER

TITLE SAR14
PATTERN 01
REVISION 01
AUTHOR CHRIS JAY
COMPANY MMI SANTA CLARA
DATE 29 JANUARY 1985

;THE PAL32R16 HAS BEEN DESIGNED AS A FOURTEEN BIT SUCCESSIVE
;APPROXIMATION REGISTER FOR MEDIUM TO HIGH SPEED ANALOG TO
;DIGITAL CONVERSION. THE FOURTEEN OUTPUTS ARE CONNECTED TO
;THE INPUTS OF A FOURTEEN BIT DAC, WITH Q13 AS THE MOST SIG­
;NIFICANT BIT DOWN TO QO, WHICH IS THE LEAST SIGNIFICANT
;BIT. THE CC OUTPUT IS THE CONVERSION COMPLETE SIGNAL, WHEN
;HIGH IT INDICATES THAT THE CONTENTS OF THE FOURTEEN BIT REGISTER
;HOLDS THE CLOSEST BINARY WEIGHTING TO THE CURRENT VERSION OF
;THE ANALOG SIGNAL UNDERGOING CONVERSION. THE DAC OUTPUT AND
;THE ANALOG INPUTS ARE FED TO A HIGH QUALITY COMPARATOR CIRCUIT,
;THE OUTPUT OF WHICH IS A TTL LEVEL THAT DRIVES THE CMP COMPARE
;INPUT OF THE PAL32R16.

CHIP SAR14 PAL32R16

;PIN 1 2 3 4 5 6 7
Q13 NC Q12 CC /OE1 /RST CMP

;PIN 9 10 11 12 13 14 15
NC VCC NC NC NC NC /PLD2

;PIN 17 18 19 20 21 22 23
Qll QO Q10 Q1 Q9 Q2 Q8

;PIN 25 26 27 28 29 30 31
/OE2 NC NC NC NC GND NC

:PIN 33 34 35 36 37 38 39
NC NC /PLD1 /CLK1 Q7 Q4 Q6

STRING H13 'Q13*/CC' HOLD EQUATION FOR Q13
STRING H12 'Q12*/CC*/RST' HOLD EQUATION FOR Q12
STRING Hll 'QU*/CC*/RST' HOLD EQUATION FOR Qll
STRING H10 'Q10*/CC*/RST' HOLD EQUATION FOR Q10
STRING H9 'Q9*/CC*/RST' HOLD EQUATION FOR Q9
STRING H8 'Q8*/CC*/RST' HOLD EQUATION FOR Q8
STRING H7 'Q7*/CC*/RST' HOLD EQUATION FOR Q7
STRING H6 'Q6*/CC*/RST' HOLD EQUATION FOR Q6
STRING H5 'Q5*/CC*/RST' HOLD EQUATION FOR Q5
STRING H4 'Q4*/CC*/RST' HOLD EQUATION FOR Q4
STRING H3 'Q3*/CC*/RST' HOLD EQUATION FOR Q3
STRING H2 'Q2*/CC*/RST' HOLD EQUATION FOR Q2

~ Monollthlo IFJJJ Memories ~

8
NC
16
/CLK2
24
Q3
32
NC
40
Q5

2·303

2·304

Analog to Digital Conversion

EQUATIONS

Q13 := Q13*CMP*/Q12*/Qll*/Ql0*/Q9*/QB*/Q7
/Q6/Q5*/Q4*/Q3*/Q2*/Ql*/QO*/CC

+ H13*Q12 + H13*Qll + H13*Ql0
+ H13*Q9 + H13*QB + H13*Q7
+ H13*Q6 + H13*Q5 + H13*Q4
+ H13*Q3 + H13*Q2 + H13*Q1
+ H13*QO + RST + CC

Q12 := Q13*/Q12*/Q11*/Ql0*/Q9*/QB*/Q7*/Q6
/Q5/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST

+ Q12*CMP*/Qll*/Ql0*/Q9*/QB*/Q7*/Q6
/Q5/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST

+ H12*Qll + H12*Ql0 + H12*Q9
+ H12*QB + H12*Q7 + H12*Q6
+ H12*Q5 + H12*Q4 + H12*Q3
+ H12*Q2 + H12*Ql + H12*QO

Qll := Q12*/Qll*/Ql0*/Q9*/QB*/Q7*/Q6*/Q5
/Q4/Q3*/Q2*/Ql*/QO*/CC*/RST

+ Qll*CMP*/Ql0*/Q9*/QB*/Q7*/Q6*/Q5
/Q4/Q3*/Q2*/Ql*/QO*/CC*/RST

+ Hll*Ql0 + Hll*Q9 + Hll*QB
+ Hll*Q7 + Hll*Q6 + Hll*Q5
+ Hll*Q4 + Hll*Q3 + Hll*Q2
+ Hll*Ql + Hll*QO

Ql0 := Qll*/Ql0*/Q9*/QB*/Q7*/Q6*/Q5*/Q4
/Q3/Q2*/Ql*/QO*/CC*/RST

+ Ql0*CMP*/Q9*/QB*/Q7*/Q6*/Q5*/Q4
/Q3/Q2*/Ql*/QO*/CC*/RST

+ Hl0*Q9 + Hl0*QB + Hl0*Q7
+ Hl0*Q6 + Hl0*Q5 + Hl0*Q4
+ Hl0*Q3 + Hl0*Q2 + Hl0*Ql
+ Hl0*QO

Q9 := Ql0*/Q9*/QB*/Q7*/Q6*/Q5*/Q4*/Q3
/Q2/Ql*/QO*/CC*/RST

+ Q9*CMP*/QB*/Q7*/Q6*/Q5*/Q4*/Q3
/Q2/Ql*/QO*/CC*/RST

+ H9*QB + H9*Q7 + H9*Q6
+ H9*Q5 + H9*Q4 + H9*Q3
+ H9*Q2 + H9*Q1
+ H9*QO

QB := Q9*/QB*/Q7*/Q6*/Q5*/Q4*/Q3*/Q2
/Ql/QO*/CC*/RST

+ QB*CMP*/Q7*/Q6*/Q5*/Q4*/Q3*/Q2
/Ql/QO*/CC*/RST

+ HB*Q7 + HB*Q6 + HB*Q5
+ HB*Q4 + HB*Q3 + HB*Q2
+ HB*Ql + HB*QO

Q7 := QB*/Q7*/Q6*/Q5*/Q4*/Q3*/Q2*/Ql
/QO/CC*/RST

+ Q7*CMP*/Q6*/Q5*/Q4*/Q3*/Q2*/Ql
/CC/RST

+ H7*Q6 + H7*Q5 + H7*Q4
+ H7*Q3 + H7*Q2 + H7*Ql
+ H7*QO

iREGISTER CMP I/P

iHOLD RESULT OF COMPARE
iTHE APPROXIMATION CYCLE
iQ12 TO QO CLEAR ON RESE
iCYCLE Q12 TO QO
iAND CONVERSION COMPLETE

iCLEAR Q12.DURING
iFIRST APPROXIMATION
iREGISTER COMPARE
iINPUT.
iHOLD CONVERSION RESULT
iDURING APPROXIMATION CY
iQll TO QO CLEAR ON RESE
iAND CONVERSION COMPLETE

i HOLD Qll LOW
iBEFORE COMPARE
iCYCLE. REGISTER
iCOMPARE INPUT.
;HOLD RESULT OF COMPARE
iDURING APPROXIMATION
:CYCLE Ql0 TO QO. RESET
:AND CC CLEARS REGISTER.

:HOLD Ql0 LOW
:BEFORE COMPARE
:CYCLE. REGISTER
:RESULT OF COMPARE
:HOLD RESULT ON
: APPROXI~.ATION
iCYCLE Q9 TO QO.
:RESET AND CC
:CLEARS REGISTER.
:HOLD Q9 LOW
:BEFORE COMPARE.
:REGISTER RESULT
:OF COMPARE.
:HOLD RESULT ON
: APPROXIMATION
:CYCLE QB TO QO.
:RESET AND CC
:CLEARS REGISTER.
:HOLD QB LOW
:BEFORE COMPARE
:REGISTER RESULT
iOF COMPARE.
;HOLD RESULT ON
iAPPROXlMATION
;CYCLE Q7 TO QO
iHOLD Q7 LOW
iBEFORE COMPARE
iREGISTER RESULT
iOF COMPARE.
iHOLD CONTENTS
iOF RESULT ON
iAPPROXlMATION
iCYCLE Q6 TO QO

~ Monolithic W Memories ~

Analog to Digital Conversion

Q6 := Q7*/Q6*/Q5*/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ Q6*CMP*/Q5*/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ H6*Q5 + H6*Q4 + H6*Q3
+ H6*Q2 + H6*Ql + H6*QO

Q5 := Q6*/Q5*/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ Q5*CMP*/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ H5*Q4 + H5*Q3 + H5*Q2
+ H5*Ql + H5*QO

Q4 := Q5*/Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ Q4*CMP*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ H4*Q3 + H4*Q2 + H4*Ql
+ H4*QO

Q3 := Q4*/Q3*/Q2*/Ql*/QO*/CC*/RST
+ Q3*CMP*/Q2*/Ql*/QO*/CC*/RST
+ H3*Q2 + H3*Q1 + H3*QO

Q2 := Q3*/Q2*/Q1*/QO*/CC*/RST
+ Q2*CMP*/Q1*/QO*/CC*/RST
+ H2*Ql + H2*QO

01 := 02*/Q1*/00*/CC*/RST
+ 01*CMP*/00*/CC*/RST
+ 01*00*/CC*/RST

00 := 01*/00*/CC*/RST
+ OO*CMP*/CC*/RST

CC := OO*/CC*/RST

SIMULATION

TRACE_ON CLKI CMP RST 013 012 011 010 09
08 07 06 05 04 03 02 01 00 CC

SETF
CLOCKF
CHECK

SETF
CLOCKF
FOR

BEGIN
END

SETF CMP
FOR

BEGIN

/CLKI /CLK2 OE1 OE2 /PLD1 /PLD2 RST /CMP
CLK1 CLK2
013 /012 /011 /010 /09 /08 /07 /06 /05
/04 /03 /02 /01 /00

/RST
CLK1 CLK2
I := 1 TO 14 DO
CLOCKF CLKI CLK2

I := 1 TO 14 DO
CLOCKF CLK1 CLK2

END
TRACE_OFF

;HOLD Q6 LOW BEFORE COMP
;REGISTER RESULT OF
;COMAPRE. HOLD RESULT
;ON APPROXIMATION
;Q5 - QO.
;HOLD Q5 LOW BEFORE
;REGISTER RESULT OF
;HOLD RESULT ON
;APPROXIMATION
;CYCLE Q4 - QO.
;HOLD Q4 LOW
;REGISTER COMPARE
;HOLD RESULT ON
;Q3 - QO.

;HOLD Q3 LOW
iREGISTER COMPARE
;HOLD RESULT ON
;CYCLE Q2 - QO.
;HOLD Q2 LOW.
;REGISTER COMPARE
;HOLD RESULT
iON Q2 - QO.
;HOLD 01 LOW.
;REGISTER COMPARE.
;HOLD RESULT.

;HOLD 00 LOW.
;REGISTER COMPARE.

;HIGH CONVERSION
; COMPLETE.

;SET INITIAL

CONDITIONS
SYNCHRONOUS
RESET CHECK
INITIAL REGISTER
STATE.
APPLY 14 CLOCK
PULSES WITH CMP
INPUT LOW.

SET CMP INPUT
HIGH AND APPLY
14 CLOCK PULSES.

COMP
COMP

~ Monolithic W Memories l1

DI

2·305

2·306

Analog to Digital Conversion

PALASM SIMULATION, V2.21 P- PROGRAMMER VERSION (21-0CT-1986)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986
PALASM SIMULATION SELECTIVE TRACE LISTING

Title : SAR14 Author : CHRIS JAY
Company : MMI SANTA CLARA
Date : 29 JANUARY 1985

Pattern : 01
Revision : 01

SAR14
Page: 1

g cg c c c c c c c c c c c c c c c c cg c c c c c c c c c c c c c c c c

CLK1 llJ1jJ-U{f-lH Hf1~UU-WlHJ--lItru I ~ ri ~U-I ri ri rl rl ~ 1- j-lfLf-Lr IV n- rT r r r r r r I I I r r H
r ~-+-~I-+-+-~-+-+-~ ~+-+-~ ~t---H--+-+-~-H

::: MIIIIII I II III IIII ,
j---4-' I I I I I I ~ II I I I I I I I Q13

Q12

Q11

Ql0

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Ql

QO

cc

F : II "- I I I I I I I I I I rl I I I I I I I I I r-L
1: :n-I ~ I I I I I I I I I I I : i I I iii ill "-

E ~n-H ~i I I I I I I I III I ~~
t--IIIII ~i II II I I I I I I ~~~
Hili '- III I II I I
r:11 I I I r- I I I
r:li II II - I I
F : II I 1 1-+_ -+-+-41 l-+-+--tl -+-++-1 +-+-+-, +-!I I
r: II I I I I r-- 1 I I 1 r:" Ii' ~ I I 1 I I I !

I I
I I

I

F: ~ I I I I
E ~:::::=::::~::::;~::~~-!-''--+:i--++--r+l~+-'_++-' :~~:::-i~~~I-1--+--t-I
t : : II I I ~!-I-+--l--++-f-+-+-I+-+-++-+--+-+--If-:
I ~. -!-+~~4-i-+-+-r~-!-+~ f-~~ t-- i I I i I I •

~ Monolithic m Memories ~

PAL Devices, PROMs, FIFOs, and Multipliers
Team up to Implement Single-Board
High-Performance Audio Spectrum Analyzer AN-100

Introduction

This application note illustrates a high-performance audio spec­
trum analyzer. This circuit can analyze high-fidelity audio sig­
nals with a resolution of 20 Hz and an input bandwidth of 20 kHz.
It is useful in production test, performance evaluation, or
adjustment of high-fidelity audio equipment. The analyzer pro­
vides a sweep generator output for rapid analysis of audio filter
frequency response.

The design techniques used to implement the analyzer are quite
general, and can be applied to a wide variety of DSP tasks. An
understanding of the approach used will suggest solutions to a
number of DSP problems. The architecture chosen for the
spectrum analyzer is controlled by a microprogram stored in
PROM. Many other applications can be accommodated by
changing the microprogram. The high performance of this
architecture provides an attractive price/performance alterna­
tive to other DSP approaches.

Spectrum Analyzer Functions
The spectrum analyzer requires many of the functions com­
monly used in DSP. Figure 1 shows the analyzer functions. An
input signal is mixed with a swept audio sinewave oscillator
(below).

Frequency Sweep

The frequency sweep acts as a sampler, starting from DC and
increasing to its maximum frequency.

Mixing is accomplished by multiplying the input signal by the
sinewave. From basic trigonometry:

cos w1t x cos w2t = 1/2 cos (W1 + W2)t + 1/2 cos (w1 -W2)t (1)

The mixing process generates two new sinewaves whose fre­
quencies are the sum and difference of the input sinewave
frequencies. When the sinewave oscillator matches the fre­
quency of an input signal component, a DC term is generated in
proportion to the amplitude of that component:

cos w1t x cos w1t = cos2 w1t = 1 + 2 cos w1t

The DC term is extracted by a narrow lowpass filter. Due to the
finite bandwidth of this lowpass filter, mixer output signals
whose frequencies fall within the filter passband also appear at
the filter output. As a result, the analyzer output will represent
the energy contained in a range of frequencies, from the sine­
wave frequency minus the filter cutoff frequency, to the sine­
wave frequency plus the filter cutoff frequency. The effective
bandwidth of the analyzer is twice the lowpass filter bandwidth.

I I ~UT~UTS
DETECTOR ~VERTICAL

HORIZONTAL

~ __ -+~D~C~-2~O~k~HZ~ __ ~VCO

Figure 1. Spectrum Analyzer Functions

A detector converts the lowpass filter output to a DC voltage ~
representing the total energy in the filter passband. If this DC .
voltage is plotted on a vertical axis with the sinewave oscillator
frequency (represented by the sweep voltage) controlling the
horizontal axis, a spectrum of the input signal results.

Other mixing schemes can be used to extract the spectrum.
However, this "direct conversion" approach has two significant
advantages. As shown in Figure 2, the swept oscillator output can
be used to plot the frequency response of an audio filter. Other
schemes require additional mixing to achieve the same results.

OSCILLOSCOPE

Figure 2. Filler Test Mode Setup

The direct conversion scheme confines the frequencies of all
Signals following the mixer to the lowpass filter bandwidth.
Limiting the signal bandwidth has great benefit when the
analyzer is implemented digitally. This benefit can be better
understood with a brief review of DSP theory.

l1 Monolithio m Memories l1 2·307

Audio Spectrum Analyzer

Digital Signal Processing
Theory Review
Digital signal processing is accomplished by first converting the
continuous analog input signal to a series of digital numbers.
The digital numbers are then manipulated to perform the
required signal processing. The processed digital numbers are
then converted back to a continuous analog signal, completing
the processing. The functions required for DSP are shown in
Figure 3.

--ANALOG --:-DIGITAL----ANALOG--

® ©

Sampling

DIGITAL
PROCESSING

H(z)

@

Figure 3. DSP Functions

® ®

Representing a continuous input signal would require an infinite
array of digital numbers. A finite collection of digital numbers
can be obtained by considering the signal amplitude at discrete,
periodic points in time. This process is called sampling, and is
equivalent to multiplying the input signal by a periodic train of
impulses of unit amplitude. The sampling theorem states that
the input signal can be reconstructed without distortion if the
input is bandlimited to contain no frequency components
greater than half the sampling frequency. The sampling theorem
means that the discrete samples completely represent the input
signal, as long as the bandwidth constraint is met.

Aliasing
What is really happening during the sampling process? Consider
the Fourier series representation of a periodic unit impulse train.
It can be shown that:

k = co

t(t) ~ cos (2rrkfst), k = 0,1,2,3, ...

k = - co

1
where f = ----­

s sample period

(2)

The periodic impulse train is equivalent to a series of sinusoids
consisting of all harmonics of the sampling frequency, including

®L-_~_~_~~ ___ -+ ___ ~

®-~~~-'--+----+------I
FREQUENCY-DC Is/2 Is 2'ls 3 'Is

Figure 4. Aliasing Spectra of Figure 3 DSP Functions

a DC term. Recalling Eq. (1) all possible sum and difference
frequencies will be generated when the impluse train and the
input signal are multiplied. This process is shown graphically in
Figure 4. Observe that if the input contains frequencies greater
than half the sampling frequency, the spectra in Figure 4 will
overlap. This overlap phenomenon is known as aliasing distor­
tion, and introduces noise in the signal.

Another consequence of the sampling process is that high­
frequency signal components near a harmonic of the sampling
frequency will be mixed to produce new signal components near
DC. These new components have frequencies within the desired
signal passband, but are really "alias" high-frequency compo­
nents. The phenomenon is called aliasing.

To eliminate the undesirable effects of aliasing, a continuous
analog lowpass filter is placed before the sampler. This aliasing
filter removes frequency components beyond the fs/2 limit.

Quantizing
The input samples are converted to a series of digital numbers by
an analog-to-dig ita I (ND) converter. The ND converter operates
by quantizing the continuous sample amplitude into a finite
number of amplitude ranges, and then assigning a digital
numberto represent the quantized amplitude value. As might be
expected, this process introduces noise in the signal, known as
quantization distortion. The quantization distortion is in the form
of a "white" or broadband random noise, whose RMS ampli­
tude is:

0 2 = .l2-2b
12

where b is the number ot bits in the output
digital word, excluding the sign bit

(3)

The effect of aliasing on quantization noise is to alias high
frequency noise components to the DC to fs/2 range. The result­
ing noise spectral density is equivalent to a white noise of ampli­
tude 0 2, band limited to fs/2.

Dynamic Range
The ND output contains a finite number of bits. Dynamic range
is defined as the ratio of the maximum-to-minimum signal
amplitude that can be represented by the digital numbers.
Dynamic range is determined by the number of bits in the digital
numbers, and by the noise "floor."

For a digital number containing b bits plus a sign bit, the
dynamic range would be:

Dynamic range (dB) = 10 10910 2-2b (4)

The noise floor is the sum of all noise components that can
appear at the DSP output. The primary noise factors are
quantization noise and limit cycle noise (to be discussed
shortly). Digital filtering will affect the noise floor by eliminating
components of the noise signal. For example, the quantization
noise at the DSP output is:

NO (dB) = 10 10910 0 -[
2 BWJ

fs/2
(5)

where BW is the net bandwidth of the digital filters

The noise components are uncorrelated, and are therefore
combined by adding the power of each noise component.
Remember that

Power (absolute) = 10910 -1 [power (dB)/10J (6)

2·308 ~ Monolithic W Memories ~

Audio Spectrum Analyzer

The resulting dynamic range is:

Dynamic range (dB) = 10 10910 ~ NOi~~5power (7)

where 0.5 = the maximum mean-squared amplitude

The overall dynamic range is the lesser of the result given by Eq.
(4) or Eq. (7). In a practical system, the width of the digital
numbers can vary. The dynamic range is usually calculated for
all critical points in a digital system, with the overall dynamic
range being the worst case value.

Digital Processing
The digital numbers from the NO converter are manipulated to
process the signal. Carrier generation, filtering, and nonlinear
operations are performed by appropriate "number crunching".

Generation of sinusoidal carriers is easily accomplished using a
linear ramp function (digital up/down counter) and converting
the results to sinusoidal samples using ROM lookup tables.
Alternately, recursive equations can produce the desired carriers.

Nonlinear operations on the digital numbers must be handled
with care. Since aliasing is always present in the sampled
domain, harmonics generated by nonlinear operations can alias
to lower frequencies. The aliasing occurs "immediately," since it
can be shown that performing a nonlinear operation in the
sampled domain is equivalent to first performing the nonlinear
operation on a continuous signal and then sampling the result
without bandlimiting the sampler input.

The sampling rate can be changed to improve the efficiency of
the digital processing. For example, discarding every other
digital number would reduce the effective sampling rate by a
factor of two. If the processing at the higher sample rate
includes digital aliasing filters to remove components greater
than half the lower sample rate, the requirements of the
sampling theory are still met. The sampling rate can be
increased by repeating digital sample values. This repetition is
equivalent to a "sample and hold" operation, and modifies the
signal spectrum by

F' (jw) = F(jw) X sin (wT/2)
wT/2

where w = 27T X freq
T = input (longer) sample period

(8)

The effects of changing the sampling rate are best determined
by plotting the resulting aliasing spectra.

Digital Filtering
Digital filtering is accomplished using multiplication, addition,
and delay. For example, consider the biquadratic filter section
in Figure 5. If z-1 is defined to be a unit sample period delay
operator, then the input-to-output transfer function of the
biquadratic section is:

1 + a1z-1 + a2z-2
H(z) =

1 + b z-1 + b z-2
1 2

(9)

The biquadric sections can be cascaded to implement higher­
order filters.

The Laplace transform of a unit delay is e-sT , where T is the
delay period. Remember that z-1 represents an inverse opera­
tor, so that z X z-1 = 1. Thus,

z = e s"\ where s = a + jw (10)

X' N = XN -b1 X' N-1 - b2 X' N-2

YN = X' N +a1 X' N-1 + a2 X' N-2

Figure 5. Digital Biquadratic Filter Section

Digital filter poles and zeroes (in the z-plane) can be mapped
into the s-plane to determine the equivalent analog filter
function, and vice-versa. The digital filter section of Eq. (9)
corresponds to an analog biquadratic filter section with,

s2+aowos+w02
H(s) = 2 2

s +a1w1S+w1
(11)

However. the periodic nature of the esT function causes the
digital filter passband to repeat periodically. The effect is the
same as aliasing. The analog filter response is mixed with the
sampling frequency harmonics to generate the true digital filter
response.

Designing Digital Filters
How does one go about designing a digital filter? One approach
is to perform a least mean squared error optimization using a
computer. The desired function is specified, and the computer
adjusts the an and bn values until the desired response is
achieved.

A second approach is to design an equivalent analog filter and
then convert that design to a digital filter. This approach has
great merit, since analog filter design theory is well developed.
However. the digital passband will be distorted if the analog
equivalent filter has significant response to frequencies greater
than fs/2. The aliased passbands overlap at that point.

To circumvent this problem, the analog filter function can be
modified to compensate for the aliasing effects. The analog
transfer response is modified using several transforms to
compensate for aliaslng. Unfortunately, the nature of the
s-plane to z-plane mapping is such that no transform can
compensate for all aliasing effects without introducing other
forms of distortion.

The standard (or impulse invariant) z-transform represents a
direct mapping to the z-plane. No frequency, amplitude, or
phase distortion is introduced, but aliasing effects are not
compensated. This transform should be used when the analog
filter has negligible response to frequencies greater than f2/2.

The bilinear z-transform preserves the filter amplitude response
in the presence of aliasing. However, the bilinear transform
introduces a distortion or warping of the frequency axis. As a
result, only the filter cutoff frequency can be accurately trans­
formed, using a pre-warping technique. Frequencies within the
filter passband remain warped, introducing phase distortion in
the digital filter response. The bilinear transform is used when
the filter amplitude response is more critical than the phase
response.

~ Monolithic m Memories ~ 2·309

Audio Spectrum Analyzer

The matched z-transform preserves the filter phase response at
the expense of amplitude response distortion. However, this
amplitude distortion, unlike the aliasing distortion, can be
corrected by placing additional zeroes in the transfer function.
The matched transform is used when the filter phase response is
critical, and either the amplitude response is not critical or the
additional compensation zeroes can be accommodated.
Performing the transforms by hand is quite tedious. Fortunately,
computer programs are widely available which handle the
complete filter synthesis procedure, including z-transforms and
pre-warping.

Limit Cycle Noise
An effect of using digital numbers with a finite number of bits is
the generation of quantization noise. When implementing digital
filters, the quantization noise introduces oscilaltions that are
analogous to ringing in analog filters. These oscillations are
called limit cycles. The limit cycle generates a noise which peaks
at frequencies corresponding to the filter pole frequencies. The
noise power is roughly proportional to pole Q. Limit cycle noise
for a second order filter section of Equation (11) is given by:

2 -2b 1 + r 2 1
NL(dB) = 10 10910(-2 --2 -4:--...:..--2::::----) (12)

12 1-r r +1-2r cos2w

where b = number of digital number bits (excluding sign bit)

pole freq. = w1
pole Q = 1/0'1

pole freq.
w = 21T--­

fs

-w
r = exp(2. pole Q)

The limit cycle noise must be calculated for each complex pole
pair, and adjusted to reflect the response of subsequent filter
stages to the limit cycle frequency. Computer programs can
calculate limit cycle noise power, including all of these considerations.

Output Signal Reconstruction
Once manipulation of the digital sample numbers is complete,
the resulting digital numbers must be converted back to a

continuous analog signal. Referring back to Fig. 3, a digital-to­
analog (O/A) converter transforms the digital numbers to a
series of analog output pulses.

A sample-and-hold (S&H) circuit eliminates transients that are
introduced during the 01 A conversion process. The spectrum of
the S&H output is modifed as follows:

t sin (wtl2)
S&H F' (jw) = F(jw);: wtl2

where t = hold time T = sample period

An output smoothing filter completes the reconstruction by
removing all components with frequencies greater than fs/2.
The smoothing filter is often optional, depending on the impor­
tance of removing the high-frequency output components.

The spectral effects of reconstruction are shown in Figure 4.

Implementing the Spectrum Analyzer
The architecture used for the spectrum analyzer is shown in
Fig. 6. Input signals are digitized and buffered with FIFOs before
interface with a common 16-bit data bus. The 16-bit arithmetic
unit (AU) provides multiply and accumulate operations. A 16-bit
wide RAM stores intermediate results. A 16-bit temporary

register facilitates z-1 delays and data movement. Outputs
are provided using a 01 A converter and S&H circuits.

The VCO output is buffered using FIFOs to provide a uniform
high-speed sample rate. The VCO output is 12 bits wide,
providing a signal-to-quantization noise ratio of 91 dB, using
Equations (5) and (7). The calculation assumes a 500-Hz band­
width. A smoothing filter at the VCO output is not necessary. The
filter test configuration of Figure 2 allows the input aliasing filter
to remove the effects of VCO high-frequency components, as
long as the filter under test is a linear analog circuit.

The vertical and horizontal outputs are intended to interface an
oscilloscope or X-V plotter. The sampling of these outputs can
be non-uniform, as long as the outputs track each other. The
elastic storage at the input and VCO interfaces permits arbitrary ,
non-uniform processing of the analyzer functions.

The 16-bit resolution of the internal data word provides 90-dB
dynamic range according to Equation (4), or 115-dB dynamic
range according to Equations (5) and (7), assuming 500-Hz
bandwidth and no limit cycle noise and aliasing.

2·310 ~ Monolithic W Memories ~

Audio Spectrum Analyzer

SIG.IN

CLOCK t: 8 MHz
GEN. 50 kHz

PAL
CONTROL

LOGIC

12

VCO HORIZ VERT

Figure 6. Analyzer Architecture

Microprogram control was selected for the analyzer. PAL devi­
ces can efficiently implement sequential state machines. It is
possible to encode all control information in PAL devices, but
only three packages would be saved (one PROM and two
buffers). Distributing the control among several PAL devices
would reduce flexibility and make corrections very difficult. The
few extra packages required for microprogram control provide
an extremely flexible architecture and greatly simplify the PAL
device functions.

INPUT
DC-20 kHz

VCO---"-1

HORIZ---"-1

With the theoretical background and architecture in mind, the
spectrum analyzer functions can be defined in detail. The objec­
tive is to realize a circuit capable of high-resolution analysis of
audio signals in the DC to 20-kHz range. Selectable bandwidth
and linear/logarithmic output display are highly desirable.
Detailed functions are shown in Figure 7.

BANDWIDTH
STRAP OPTIONS

BA BW Fe
00 20 Hz 10 Hz
01 50 Hz 25 Hz
10 100 Hz 50 Hz
11 500 Hz 250 Hz

1.5625 kHz B A

Figure 7. Detailed Functional Diagram

l1 Monolithic W Memories ~ 2·311

Audio Spectrum Analyzer

Input Aliasing Filter
An analog lowpass filter removes high-frequency components
from the input signals. With a sample frequency of 50 kHz and a
maximum input frequency of 20 kHz, the lowest aliasing fre­
quency is (50-20) = 30 kHz.

An eighth-order Chebychev filter with 0.1-dB passband ripple
will provide 44 dB of attenuation at 30 kHz, and 86 dB attenuation
at 50 kHz. It is desirable to provide at least 60-dB overall dynamic
range for high-performace analysis. To eliminate spurious
responses above the -60-dB "floor," the input signal should have
all components above 30 kHz suppressed by at least (60-44) =
16 dB. Most input signals will meet this requirement. If not,
additional filtering must be provided.

S&H and AID Converter
The input S&H maintains a constant sampled signal level while
the NO conversion is in progress. No sin XIX correction is made
for this S&H since the net effect of the S&H plus NO action is an
impulse sample at the start of the "hold" period.

The NO conversion time should be less than 16 p.S. The NO
converter output digital number should "saturate" when the
input signal exceeds the maximum level. The digital numbers
should be in inverted two's complement form. The S&H
acquisition time should be less than 4 p.s.

For a full 60-dB overall dynamic range, a 12-bit NO is required.

Mixer
The mixer multiplies the NO output by the swept sinewave
oscillator value. The multiplication produces sum and difference
frequencies, according to equation (1).

Two's complement fractional arithmetic is used throughout the
analyzer. Multiplication cannot overflow, since all numbers are
less than 1 in magnitude.

Swept Sinusoidal Oscillator (VCO)
A precision swept sinusoid from DC to 20 kHz must be
generated to mix with the input signal. A technique particularly
well suited to this application is solving the two equations:

sin (x+y) = sin x cos y + cos x sin y

cos (x+y) = cos x cos y - sin x sin y

(13)

(14)

These two trigonometric identities generate a new sin and cos
value with y representing the phase shift per sample period. The
technique is a "CORDIC" algorithm, based on coordinate
rotation. Exact results are produced, but truncation and round­
off errors due to the finite digital word length can cause a slow
change or "drift" of carrier amplitude. Fortunately, the swept
sinusoid is periodically reset in the spectrum analyzer, arresting
this amplitude drift.

The VCO frequency is swept by varying the value of y. However,
since equations (13) and (14) require sin y and cos y, an identical
CORDIC algorithm is used to obtain these values. To sweep the
VCO, then, sinu and cos.l are placed in RAM, selected by the
bandwidth setting. These are two fixed numbers originally stored
in PROM, and represent the frequency shift per sample time.
Equations (13) and (14) are then applied to calculate sin yand
cos y, which represent the desired phase shift per sample time.
Equations (13) and (14) are executed again to generate the
actual sinusoidal output.

The calculation of sin y and cos y can take place at a reduced
sample rate to save processing time. Only the last execution of
equations (13) and (14) must be performed at the full 50-kHz
sample rate.

A linear ramp is generated to provide horizontal drive for an
oscilloscope or X-V plotter. The ramp is incremented each time
the sin y and cos y values are updated, tracking the VCO sweep.
When the ramp value overflows, the analyzer sweep cycle is re­
initialized.

Figure 8. All-Pole Digital Filter Section

Digital Filters
Fig. 8 shows the implementation of the all-pole digital filter
sections. Because of the low pole Q values in all filters, the
second order sections can be simply cascaded to implement
high-order filters. Fig. 8 shows a technique for handling
coefficients greater than 1 with fractional number representa­
tion.

Scaling must be performed to ensure maximum dynamic range.
Filter sections with high-Q poles will show peaking of signals
near the pole frequencies. The input to such sections must be
scaled down to prevent overflow of the arithmetic. For a second­
order all-pole section, this peaking factor is exactly the Q of the
poles. Thus, when a given second-order section has a pole Q of
2, the input signal to that section must be multiplied by 0.5 to
prevent overflow. When the Q is less than or equal to 1, no
scaling is performed.

Saturation arithmetic is not provided in this architecture. Careful
scaling eliminates the need for saturation arithmetic, since the
AID will saturate at a precisely known value.

Aliasing Filters
Two 4th-order Chebyschev filters permit reduction of the
sample rate following the mixer. Each filter provides 0.3 dB
passband ripple and at least 68 dB attenuation of aliasing
components. The slightly high passband ripple is acceptable,
since subsequent filters will dominate the composite passband
shape.

The first filter permits a sample rate reduction factor of 16. It is
designed with a passband cutoff frequency of 479 Hz and a
sample rate of 50 kHz. Eq. (12) predicts the limit cycle noise for
this filter to be -58 dB.

2·312 ~ Monolithic W Memories ~

Audio Spectrum Analyzer

The second filter permits a second sample rate reduction factor
of two. Its cutoff frequency is 219 Hz, with a sample rate of
3.125 kHz. Equation (12) predits the limit cycle noise forthis filter
to be -83 dB. This filter also provides an additional 14-dB
attenuation of the limit cycle noise generated in the first aliasing
filter, reducing the limit cycle noise from the first filter to -72 dB.

These two filters permit an overall fs reduction factor of 32
before processing the Bessell filter, detector, and linear-to-1092
functions. This results in a very substantial throughput improve­
ment. Net execution time is determined by the time to execute a
given function multiplied by the sample rate for that function.
Thus 32 instructions at the redlJced rate will increase the net
execution time by an amount equivalent to only 1 instruction at
the full sample rate.

Fig. 9 shows the aliasing spectra of the sample rate reduction
process.

MIXER
OUTPUT

(Is = 50 kHZ)_"'-+..I...-_--' ___ ""'-__ -"+-__ -+ __ -'-I'"""'--

1ST ALIASING
FILTER

OUTPUT
(Is = 3.125 kHZ) J.Uw..t-:w..JJ.UlIJ...1.1L.1...UIJ...w....Jf.I-.l.Ll....I.LI....lIrL-.w...J..LL...I.I.f-..I.LI...I..LI...I..I.l..i..I..I..!...U

2ND ALIASING
FILTER

OUTPUT
(Is = 1.56 kHZ) o 20 30 40

FREQUENCY (kHz)

Figure 9. Aliasing Spectra for fs Reduction

Lowpass Filter
A 4th-order Bessel lowpass filter determines the overall band­
width of the analyzer. The overall bandwidth is twice the
bandwidth of this filter. Overall bandwidths of 20,50,100 or 500
Hz are provided by loading the proper set of filter coefficients
into RAM when the bandwidth is selected.

The Bessel filter provides an optimal transient response for the
analyzer. Good transient response is important, especially at
narrow bandwidths, since the spectral peaks are swept with
respect to the fiter passband. The net effect is similar to pulsing
the filter input. Because the phase response is critical, the
matched-z transform is used to convert the analog Bessel design
to the z-domain.

The second aliasing filter provides 3 dB of attenuation at 250 Hz.
When cascaded with the Bessel filter, which also provides 3 dB
attenuation at 250 Hz in the 500 Hz bandwidth mode, the
response at this bandwidth is modified. However, since the
overall bandwidth is relatively broad, good transient response is
still achieved. Cascading these two filters provides a "transitional"
filter with a Bessel response at low attenuation and a
Chebyschev response at high attenuation. At bandwidths less
than 500 Hz, the combination produces an optimal tradeoff
between transient response and resolution.

Analysis of Equation (12) reveals that limit cycle noise increases
exponentially as the pole frequency is reduced. Operating the
lowpass filter althe lowest possible sampling frequency (1.5625
kHz) minimizes limit cycle noise, in addition to improving
throughput. Limit cycle noise for the lowpass filter will be -95 dB

at the 500-Hz bandwidth, increasing to -67 dB at the 20-Hz
bandwidth.

Detector
A square-law detector provides a DC Signal corresponding to
the energy at the lowpass filter output. From trigonometry:

A2
(A cos wt)2 ="2 (1 + cos 2wt) (15)

The detector output contains the desired DC term and a single
undesired term at frequency 2w. If the square law is ideal (easy
in the digital domain), no additional terms are produced. The
elimination of harmonics ensures the accuracy of the detector
with fs/32 = 1.5625 kHz. The highest component is always less
than fs/64 with a 250 Hz maximum lowpass filter cutoff
frequency. However, 2w can be anywhere from DC to 500 Hz as
the VCO sweeps past the spectral component.

Figure 10. Detector Sweep Filtering

Fig. 10 illustrates a technique to render the effects of the 2w
terms negligible. The analyzer passband is divided into n equal
intervals. The VCO sweep rate is controlled so that the VCO
sweeps BW/n perfs/32 interval. The detector is followed by a
single-pole lowpass filter with a 3 dB frequency of BW/n. As the
VCO sweeps a component through the passband, the DC term is
present in all n intervals, but the 2w term can affect only one
interval. The worst-case DC error is 1/n for an ideal cutoff, and
is multiplied by (20 + 2-1 + 2-3 + 2-4 + 2-5 + 2-5.5 + 2-6 +
2-6.5 + 2-7 + 2-7.25 +) = 1.85 due to the finite 6 dB/octave
rolloff of the single-pole filter. Further analysis reveals that:

1.85
n=---

lOe/10 -1
(16)

where e represents the resulting error in dB. For e = 0.1 dB,
n = 80.

In the filter test mode, the signal frequency and VCO frequency
are the same, forcing w = o. The detector has no error in this
mode, but has a 3 dB gain due to the second DC term.

The detector output represents signal energy. Each bit in the
detector output word thus represents only 3 dB, and 21 bits are
required to reflect a 60 dB dynamic range. Double precision
arithmetic is required for the detector ouput and the sinQIe-pole
filter. The 67C7560 multiplier will handle double precision calcu­
lations with a time penalty. Fortunately, the calculations to be
performed are simple and the operations take place at the
minimum sample rate, reducing the impact on throughput.

Linear-to-Log Conversion
The architecture of Figure 6 is customized to provide an efficient
algorithm for Iinear-to-Iogarithmic output conversion. The RAM
address generator monitors the 8 MSBs of the data bus, and can
provide a number indicating the MSB position of a positive

~ Monolithio m Memories ~ 2·313

EJI

Audio Spectrum Analyzer

number. This output is used to retrieve a lookup table value.
This value is used to scale the data word to quickly left-justify
the MSB. A second 4-point lookup table is then used to improve
the accuracy of the resulting 1092 conversion. A 1092 con­
version is adequate, since:

1092 x
log x = -- (17)

10 109210

Equation (17) demonstrates that the output can be displayed in
decibels by setting the oscilloscope or X-V plotter Y-axis gain to
the proper value.

Two lookup tables provide .027 dB accuracy for output values
from 0 to -45 dB, and 3 dB accuracy from -45 to -84 dB. The
logarithmic accuracy is limited by the 10-bit output word length
to the D/A. This output can represent 0 to -84 dB in .082 dB
increments. The accuracy of the 4-point lookup is therefore
sufficient.
The logarithmic conversion procedure is as follows:
1) If the MSB of the data word is not among the 8 MSBs into the

address generator, multiply the word by 27 = 128, and
increment the output number by 7. Repeat until the data
word is greater than 2-7 , but no more than three times.
Set a flag if this step is executed more than once.

8 MHz

SS
-;- 160

OP1 (llC)

OPO (DlC) INSTRUCTION MEM.

6 { 'IB~ lCO ENR
TEM
ADE
CON

INR
PAL

{S' 16C1 AUB C1
(CONDX

OVF CXO
SS

8 635281 eX1 DET) CON CX2
CX3
CXE
Jll

1 {Bf OP6

8 635281 O~~
OP3
OP2
OP1
OPO

8MHz

2) Look up the appropriate scale factor, from 20 to 26. Add
log 2 of the scale factor to the output word. The conversion
is now accurate to 3 dB.

3) If the flag was not set during step 1, multiply the data word
by the scale factor to left-justify the MSB position.

4) If the flag was not set during step 1, retrieve an intercept
and slope value from the 8-word lookup table (four pairs
available). Perform a linear interpolation using:

x' = a x + b

where a is the slope value (18)
b is the intercept value

The conversion is now accurate to .027 dB.

5) Scale the result to provide 84-dB output range with a
10-bit word.

6) Subtract 2-1 from the output to convert it to two's com­
plement form for the DI A.

The calculations are double precision for steps 1, 2, and 3, and
single precision thereafter. The conversion sequence can be by­
passed using a strap option to provide a linear amplitude output
from 0 to -30 dB.

ENT
SV
SH
sve
ST2

}4-

16

PAL INS

16R6

} +32
(AU

CNTRl

AUB

8 MHz

~~~RARY REG. 

~ENT 
16 

12 

veo HORIZ, VERT 

Figure 11. Simplified Schematic Hi-Fi Audio Spectrum Analyzer 

2·314 ~ Monolithic W Memories ~ 



Audio Spectrum Analyzer 

Control Logic 
Figure 11 shows a simplified schematic of the analyzer. All 
critical components are shown. Bypass capacitors and some 
component input connections are omitted for clarity. 

The microprogram is stored in three 63S281 PROMs. The 
microcode word formats are shown in Figure 12. A wide, highly­
parallel instruction word ensures maximum flexibility and pro­
gram efficiency. 

Eight PAL devices interpret the instruction word and control the 
analyzer. Two additional PAL devices generate a 50-kHz strobe 
from the 8-MHz master clock, and implement the output D/A 
multiplexer. The control PAL devices function as follows: 

Sequencer: A PAL20X8 implements an 8-bit instruction sequen­
cer. The sequencer performs the following operations: 

c Iffi 
:;; 

I~ Is I~ :;: N W C U e:( e:( I- U 

TYPE 1 
CONSTANT 

0 AU :;; e.. III I- m e:( INSTR e:( :;; e:( z UI 0 a: w z e:( ::. ..J w I- W I-
::J ..J W a: UI 

z 
e:( III a: 0 

0 e:( 0 0 
Z l- e:( U 
w UI 

TYPE 2 

I PROGRAM JUMP/ I 1 
LOAD LOOP CTR 

0 AU :;; e.. III I- SEa 
e:( INSTR e:( :;; e:( z CNTRL 0 a: w z e:( 
..J I- w I-

W 
W a: UI 

::J ..J Z 
e:( III a: 0 0 e:( 0 0 u Z l- e:( 

w UI 

TYPE 3 

I RAM ADDRESS : o I MODIFY 
0 AU :;; e.. III I- SEa 
e:( INSTR e:( :;; e:( z eNTRL 0 a: w z e:( 
..J I- W I-

::J ~ w a: UI 
0 Z 

e:( III a: 0 e:( 0 0 u Z l- e:( 
W UI 

TYPE 4 I 
DATA MOVEMENT 11 

0 AU :;; e.. III I- sEa 
e:( INSTR e:( :;; e:( Z CNTRL 0 a: w z e:( 
..J 

W 
I- W I-

::J ..J W a: UI 
Z 

e:( III a: 0 0 e:( 0 0 u Z l- e:( 
UI w 

c 
)( 

U 

I 

C1 .9!. CX O(!eration 
a a x Increment by 1 (execute next instruction) 
a 1 a Increment by 2 (skip next instruction) 
1 a a Jump to address 

1 a No increment (repeat current instruction) 

The CX input conditions the sequencer. Conditional 
branches or skip operations can be implemented. The 
sequencer will increment if the conditional requirement is 
not met. 

Condition detector: A PAL16C1 monitors up to twelve status 
flags, and generates CX. The microcode word includes a 4-bit 

X N M 

/0 I~ 
.... to '" 

.,. M N 0:: c 
)( )( e.. e.. e.. e.. e.. e.. e.. 

U U U 0 0 0 0 0 0 0 0 

: I 
CONSTANT VALUE m 

UI 

~ 

0 I I I 
CONDITION u u m JUMP/LOAD m u u 

w ..J 
UI VALUE UI ..J ..J 

)( 0 w e:( ~ ::. 0 I-

)( 0 
e:( Z 
0 w 

0 ..J ..J :;; z Ii: w 
0 :;; a: 
U 

~ 
U 
w 
0 

: I I 
CONDITION u u m ADDR m ADDR UI 

w ..J UI VALUE ~ CONTROL e.. 
)( 0 ~ 

e:( 
W e:( a: 
)( g I-

UI 
0 
z Ii: I-
0 :;; UI 

U 
w 

~ I-

1 
1 

1 ·1 1 I 
CONDITION u u c I:: I- 0 e.. ....: N UI 

w ..J e:( a: ::J u :;; a: a: e.. 
)( 0 a: e.. > w w e:( 
w e:( 0 :;; ~ I- > 0 a: 
)( 0 e:( I-

W J: I-
e:( ::J I- UI 

0 ..J :;; a: 0 e.. ..J ::J l-z Ii: e:( 
e:( 

I- III e.. ::J I-
W e:( UI 0 :;; a: a: ::J l- e.. w 

U 
~ 0 Z ::J l- I-w 0 ::J 

0 

Figure 12. Microinstruction Word Fonnats 

~ Monolithic W Memories ~ 2·315 



Audio Spectrum Analyzer 

condition word, CXO through CX3. ex will be zero under the 
following conditions: 

CX3 CX2 CX1 CXO Condition for CX = 0 
0 a 0 0 Always (unconditional operation) 
0 a a 1 Sample strobe (SS) = 1 
0 0 0 AU overflow (OVF) = 1 
a a 1 1 AU busy (AUB) = 1 
0 1 a a Input sample ready (INR) = a 
0 1 0 1 Loop counter timeout (LLC) = a 
0 1 1 a LLC = 1 
0 1 1 1 Address control (AC3-ACO) = 0 
1 a 0 a ACO = 0 
1 a a 1 ACO = 1 
1 0 1 a AC1 = 0 
1 0 1 1 AC1 = 1 
1 1 a a AC2 = 0 
1 1 a 1 AC2 = 1 

0 AC3 = 0 
1 AC3 = 1 

The assignment is made using the flexible PAL device coding, 
and is optimized for the analyzer. The user can select a different 
set of conditions by reprogramming the PAL device. 

When the microcode represents a constant (Type 1 microinstruc­
tion - see Figure 12) the CON input forces CX = 1 to suppress 
conditional operations. CX is also used to suppress certain 
strobes in the analyzer, providing conditional arithmetic 
operations. 

Loop counter: A PAL 16R6 implements a 6-bit programmable 
down counter. This counter controls iteration loops and provides 
a timeout signal to the condition detector. The counter is preset 
via a Type 2 microinstruction, and can be decremented by other 
Type2 microinstructions. The counter will halt when zero count 
is reached. Up to 64 iterations can be accommodated with 
minimal overhead. 

Address control: A PAL22V10 provides indexed addressing for 
the 32x16 RAM, and analyzes the eight MSBs of the data bus for 
conditional operations. If 015 represents the data bus sign bit, 
then OP1-0P3 will provide the following functions: 

OP3 OP2 OP1 AC3-ACO Output Function 
o a 0 Clear (0000) 
o 0 1 Increment 
o 1 a Decrement 
o 1 1 Preset to 015-012 (Sign + 3 MSB) 

a 0 Preset to 014-011 (4 MSB) 
a 1 Preset to 011-08 (Address load) 

a MSB position 
1 No change 

The AOE input enables a change in the address word. The 
address word will not change if AOE = 1. 

The MSB position function indicates the position of the MSB for 
positive numbers. AC3 represents sign bit 015. This output 
should be zero. AC2-AC1 represent the position of the first 1 
following the sign bit. Code 0000 indicates that 015-08 are all O. 

InpuVRAM control: Miscellaneous FIFO input and RAM control 
is provided by a PAL 10L8. The 67401 FIFO includes input ready 
(FIR) and output ready (FOR) signals, which are latched using 

the inpuVoutput shift clocks to generate two flags. The first flag 
(FR) resets the FIFO when input ready (latched) goes low, 
indicating the FIFO capacity is exhausted. The latched output 
ready signal flag represents input sample ready (INR). The INR 

flag is used as a sequencer condition to synchronize wait loops. 
Use of the FR and INR flags maintains proper fill of the FIFO. 

The RAM address LSB (AO) and read-write line (R/W) are 
decoded and latched. These signals are provided directly by 
Type IV microinstructions. 

Notice that a clocked register function requires two PAL 
combinatorial outputs per bit, while a transparent latch function 
requires only one PAL output per bit. 

Arithmetic unit control: The variety of functions listed in Table 3 
indicate the utility of the arithmetic unit (AU). A PAL 16R6 pro­
vides simplified control of the AU. 

The PAL devices and AU load signal provide conditional arith­
metic operations. Gating the load input will suppress the start of 
a new arithmetic operation. When CXE is high, the operation is 
performed unconditionally. When CXE is low, the operation is 
performed only if CX is low. Combining conditional jumps and 
conditional AU operations provides a high degree of program 
flexibility. 

The PAL device monitors the AU instructions and generates a 
busy signal (AUB). A counter in the PAL device keeps track of 
variable-length operations to provide the correct output for any 
instruction sequence. The AUB signal conditions the sequencer 
to synchronize the microprogram to the AU operation. Microp­
rogramming is simplified as a result. 

The PAL device also gates the input FI FO shift out clock (INS) to 
eliminate transients while providing a full 125-ns pulse for proper 
FIFO operation. 

Data strobe generator: A PAL 10L8 provides a number of 
transient-free, gated strobes. These strobes provide control of the 
analyzer data flow. The PAL device interprets the microinstruc­
tion to determine the proper microinstruction type, and gener­
ates the strobes accordingly. 

The PAL device also generates an 8-MHz buffered clock, as 
shown in Figure 11. The crystal oscillator circuit provides inde­
pendent AC and DC feedback, permitting reliable operation with 
the PAL device. 

Strap/output sample control: A PAL 16L8 generates additional 
control strobes for the output sample-and-hold circuits. 

The PAL device also provides a tristate buffer function, connect­
ing control straps to the data bus for certain conditional jump 
operations. Two straps select the desired analyzer bandwidth/ 
sweep rate, and the third strap selects linear or logarithmic 
output. 
Signal output 

The VCO output must be sampled at precise intervals to avoid 
phase modulation effects. Three 67401 FIFOs buffer the VCO 
samples, which are generated during the 50-kHz input process­
ing. A 12-bit 0/ A converter provides better than 91 dB signal-to­
distortion ratio. The S&H circuit provides VCO outputs at pre­
cise 50-kHz intervals, and removes spikes that are generated in 
the 0/ A converter. All necessary control signals are generated 
by the strap/output data control PAL device. 

The horizontal and vertical outputs normally drive an X-Y plotter or 
oscilloscope. There is no need to buffer these signals as long as 
the two outputs track each other. The 0/ A used for the VCO 
output is shared by adding two PAL 12H6 chips programmed as 
multiplexers. Use of PAL devices requires fewer packages than a 
TTL multiplexer. Additional S&H circuits decode the multiplexed 
[;)/ A output to separate the output signals. 

2·316 ~ Monolithic W Memories ~ 



Audio Spectrum Analyzer 

Microprogram 
The architecture can implement a variety of DSP functions. A 
microprogram, stored in 63S281 PROMs, customizes the archi­
tecture to perform the spectrum analyzer tasks. The microin­
struction formats were summarized in Figure 12. The algorithms 
to be implemented were discussed in the previous section. The 
step-by-step implementation of these algorithms is converted to 
a sequence of microinstructions to form the microprogram. The 
procedure is analogous to programming a microprocessor. 

Operation of the microprogram is better understood by consid­
ering the allocation of the 74S218 RAM locations, shown in 
Figure 13. The microprogram consists of two parts. High-speed 
input processing provides the carrier generation, mixing, alias­
ing filter and lowpass filter functions. Figure 13a shows the RAM 
allocation during input processing. The input segment includes 
an efficient iteration loop, using the PAL device loop counter, to 
process the 50-kHz functions. The carrier frequency shift and 
lowpass filter functions are processed at the fs/32 reduced sam­
ple rate for maximum throughput efficiency. 

The values of sin .1, cos .1. and the Bessell filter coefficients 
depend on the analyzer bandwidth strap selection. These values 
are stored in a "table" area in Fig. 13. and can be easily changed. 
The fixed aliasing filter coefficients are stored as constants in the 
microprogram itself. 

Once the input processing is complete, coefficients located in 
the table area can be changed. This area is re-used by the output 
program segment to hold the scale factors for the linear-to-Iog 
conversion routine. The detector functions are processed, and 
the logarithmic conversion is started with the RAM allocation of 
Figure 13(b). The table area is then reloaded with the interpola­
tion coefficients (Figure 13(c)) to complete the logarithmic con­
version. Shaded areas in Figure 13 provide temporary data and 
flag storage for the routines. 

The microprogram samples the strap settings and loads the table 
area with the appropriate coefficients for input processing. The 
detector filter coefficient (b1) is also determined and loaded. 
The input processing is then repeated. This sequence repeats 
indefinitely. The coefficient loading technique makes efficient 
use of RAM capacity while eliminating elaborate jump 
sequences. All coefficient table updates are processed at the 
minimum sample rate for best efficiency. 

The PAL device controllers simplify the microprogram. A PAL 
device provides hardware iteration loops. The AU controller 
eliminates wasteful "NO-OP" instructions otherwise required to ~ 
allow completion of AU operations. The input control PAL ~ 
device simplifies handshaking with the input logic. With the 
benefit of the PAL device controllers, the analyzer microprogram 
easily fits into the 256-instruction capacity of the PROMs. 

(A4-A1) 

~~ ~ ~ 

~ ~ ~ ~ 

~~~~~, ~(~ 

.'MSB ~k~
UTILITY

'~SVB
~ • 1.IMSB OUTPU'

UTILITY

SINX SINY SIN~

cos x cos Y COS~

CARRIER GENERATOR

X X SCALE
A

X X LOG A

b1 b1

b2 b2

LOWPASS
FILTER

SCALE SCALE
B C

LOG B LOG C

- XN-1

- XN-1

(a) INPUT

SCALE X
D

LOG D X

A B c D E F (AO)

xN-2 XN_1 XN-2 xN-1 xN-2 XN-1 xN-2

XN-2 XN-1 xN-2 X X X VCO
RAMP

ALIASING FILTERS LOWPASS FILTER

X X X X X X X

X X X XN-1 XN-1 b1 X
LSB MSB

LIN-LOG SCALING DETECTOR

X X a1

X X b1

(b) OUTPUT-1

a2 a3 a4 X X

b2 b3 b4 X X

LIN LOG INTERPOLATION

(e) OUTPUT-2

Figure 13. RAM Allocation

X X X

X X X

KEY: ~SCRATCH
- NOT USED

~ Monolithic W Memories ~

X

X

X X

X X

x NOT AVAILABLE
OTABLE

2·317

Audio Spectrum Analyzer

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

AN-IOO DSP Counter
DSPCOUNT
1
Marc Baker
Monolithic Memories
August 20, 1987

CHIP DSPCOUNT PAL20X8

CLK NC OP3 OP4 OP5 OP6 OP7 CO Cl /CX NC GND
JOE NC A7 A6 A5 A4 A3 A2 Al AO /LOAD VCC

EQUATIONS

LOAD = /CO* Cl* CX

/AO := /LOAD*/AO
+ /CO* Cl* CX

:+: /CO*/Cl

/Al := /LOAD*/Al
+ /CO* Cl* CX

:+: /CO*/Cl* AO
+ CO*/Cl* CX*/AO

/A2 := /LOAD*/A2
+ /CO* Cl* CX

:+: /CO*/Cl* Al* AO
+ CO*/Cl* CX* Al*/AO

/A3 := /LOAD*/A3
+ /CO* Cl* CX*/OP3

:+: /CO*/Cl* A2* Al* AO
+ CO*/Cl* CX* A2* Al*/AO

/A4 -= /LOAD*/A4
+ /CO* Cl* CX*/OP4

:+: /CO*/Cl* A3* A2* Al* AO
+ CO*/Cl* CX* A3* A2* Al*/AO

;FED BACK TO EQUATIONS

;HOLD/INCREMENT BY 2
;LOAD 0
;INCREMENT BY 1

;HOLD
;LOAD 0
:INCREMENT BY 1
;INCREMENT BY 2

;HOLD
;LOAD 0
;INCREMENT BY 1
;INCREMENT BY 2

;HOLD
: LOAD
:INCREMENT BY 1
:INCREMENT BY 2

:HOLD
: LOAD
:INCREMENT BY 1
:INCREMENT BY 2

/A5 := /LOAD*/A5 : HOLD
+ /CO* CI* CX*/OP5 : LOAD

:+: /CO*/Cl* A4* A3* A2* Al* AO :INCREMENT BY 1
+ CO*/Cl* CX* A4* A3* A2* Al*/AO :INCREMENT BY 2

/A6 := /LOAD*/A6
+ /CO* Cl* CX*/OP6

:+: /CO*/CI* A5* A4* A3* A2* AI* AO
+ CO*/Cl* CX* A5* A4* A3* A2* Al*/AO

: HOLD
: LOAD
:INC BY 1
:INC BY 2

/A7 := /LOAD*/A7 : HOLD
+ /CO* Cl* CX*/OP7 : LOAD

:+: /CO*/Cl* A6* A5* A4* A3* A2* Al* AO :INC BY 1
+ CO*/Cl* CX* A6* A5* A4* A3* A2* Al*/AO iINC BY 2

2·318 ~ Monolithic W Memories ~

Audio Spectrum Analyzer

SIMULATION

TRACE ON CLK A7 A6 A5 A4 A3 A2 Al AO iTrace CLK and outputs

SETF OE ICO Cl CX IOP7 IOP6 IOP5 IOP4 IOP3
CLOCKF CLK iLoad all as
CHECK IA7 IA6 IA5 IA4 IA3 IA2 IAl lAO

SETF CO ICl
CLOCKF CLK iIncrement by 2
CHECK IA7 IA6 IA5 IA4 IA3 IA2 Al lAO ito 2

CLOCKF CLK iIncrement by 2
CHECK IA7 IA6 IA5 IA4 IA3 A2 IAl lAO ito 4

CLOCKF CLK iIncrement by 2
CHECK IA7 IA6 IA5 IA4 IA3 A2 Al lAO ito 6

SETF ICO

II CLOCKF CLK iIncrement by 1
CHECK IA7 IA6 IA5 IA4 IA3 A2 Al AO ito 7

CLOCKF CLK i1ncrement by 1
CHECK IA7 IA6 IA5 IA4 A3 IA2 IAl lAO ito 8

SETF CO Cl
CLOCKF CLK iHOld
CLOCKF CLK iHold
CHECK IA7 IA6 IA5 IA4 A3 IA2 IAl lAO ito 8

TRACE OFF

~ Monolithic W Memories ~ 2·319

2·320

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Audio Spectrum Analyzer

AN-100 DSP Condition
DSPCOND
1
Marc Baker
Monolithic Memories
August 20, 1987

CHIP DSPCOND PAL16Cl

CX3 CX2 CXl CXO SS OVF AUB INR /LLC GND
ICON ACO ACl AC2 /CX COMP CX AC3 NC NC VCC

EQUATIONS

cx /CX3*/CX2*/CX1*/CXO* CON
+ /CX3*/CX2*/CX1* CXO* SS* CON
+ /CX3*/CX2* CX1*/CXO* OVF* CON
+ /CX3*/CX2* CX1* CXO* AUB* CON
+ /CX3* CX2*/CX1*/CXO*/INR* CON
+ /CX3* CX2*/CX1* CXO* LLC* CON
+ /CX3* CX2* CX1*/CXO*/LLC* CON
+ /CX3* CX2* CX1* CXO*/AC3*/AC2*/AC1*/ACO* CON
+ CX3*/CX2*/CX1*/CXO*/ACO* CON
+ CX3*/CX2*/CX1* CXO* ACO* CON
+ CX3*/CX2* CX1*/CXO*/AC1* CON
+ CX3*/CX2* CX1* CXO* AC1* CON
+ CX3* CX2*/CX1*/CXO*/AC2* CON
+ CX3* CX2*/CX1* CXO* AC2* CON
+ CX3* CX2* CX1*/CXO*/AC3* CON
+ CX3* CX2* CX1* CXO* AC3* CON

SIMULATION

SETF ICON iSET /CX HIGH
CHECK /CX

SETF CON /CX3 /CX2 /CXl /CXO iCX3-CXO=0 - SET
CHECK CX

SETF CXO SS iCX3-CXO=1 - SET
CHECK CX

SETF CXl /CXO OVF iCX3-CXO=2 - SET
CHECK CX

SETF CXO AUB iCX3-CXO=3 - SET
CHECK CX

SETF CX2 /CXl /CXO /INR iCX3-CXO=4 - SET
CHECK CX

/CX LOW

/CX LOW

/CX LOW

/CX LOW

/CX LOW

SETF CXO LLC iCX3-CXO=5 - SET ICX LOW
CHECK CX

~ Monollthlo W Memories ~

Audio Spectrum Analyzer

SETF CXl ICXO ILLC iCX3-CXO=6 - SET ICX LOW
CHECK CX

SETF CXO IAC3 IAC2 IACI IACO iCX3-CXO=7 - SET ICX LOW
CHECK CX

SETF CX3 ICX2 ICXl ICXO iCX3-CXO=8 - SET ICX LOW
CHECK CX

SETF CXO ACO iCX3-CXO=9 - SET ICX LOW
CHECK CX

SETF CXl ICXO iCX3-CXO=lO - SET ICx LOW
CHECK CX

SETF CXO ACI iCX3-CXO=11 - SET ICx LOW
CHECK CX

SETF CX2 ICXl ICXO iCX3-CXO=12 - SET ICX LOW
CHECK CX

SETF CXO AC2 iCX3-CXO=13 - SET ICX LOW
CHECK CX

SETF CXl ICXO iCX3-CXO=14 - SET ICX LOW
CHECK CX

SETF CXO AC3 iCX3-CXO=15 - SET ICX LOW
CHECK CX

~ Monollthlo WMemorles ~ 2·321

2·322

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Audio Spectrum Analyzer

AN-100 DSP Address Control
ADDCONT
1
Marc Baker
Monolithic Memories
August 21, 1987

CHIP ADDCONT PAL22V10

CLK OP3 OP2 OP1 /ADE D15 D14 D13 D12 NC NC GND
NC NC D1l D10 ACO ACl AC2 AC3 D9 D8 NC VCC
GLOBAL

EQUATIONS

ACO := /OP3*/OP2* OP1*/ACO* ADE
+ /OP3* OP2*/OP1*/ACO* ADE
+ /OP3* OP2* OP1* D12* ADE
+ OP3*/OP2*/OP1* D11* ADE
+ OP3*/OP2* OP1* D8 * ADE
+ OP3* OP2*/OP1* D14* ADE
+ OP3* OP2*/OP1*/D14*/D13* D12* ADE

;INC
;DEC
;D12
;D11
;D8
;MSB EQUATIONS

+ OP3* OP2*/OP1*/D14*/D13*/D12*/Dll* D10* ADE
+ OP3* OP2*/OP1*/D14*/D13*/D12*/D11*/D10*/D9*D8* ADE
+ OP3* OP2* OP1* ACO ;HOLD
+ ACO*/ADE ; HOLD

AC1 := /OP3*/OP2* OP1* AC1*/ACO* ADE ;INC
+ /OP3*/OP2* OP1*/AC1* ACO* ADE ;INC
+ /OP3* OP2*/OP1* AC1* ACO* ADE ;DEC
+ /OP3* OP2*/OP1*/AC1*/ACO* ADE ;DEC
+ /OP3* OP2* OP1* D13* ADE ;D13
+ OP3*/OP2*/OP1* D12* ADE ;D12
+ OP3*/OP2* OP1* D9 * ADE ;D9
+ OP3* OP2*/OP1* D14* ADE ;MSB EQUATIONS
+ OP3* OP2*/OP1*/D14* D13* ADE
+ OP3* OP2*/OP1*/D14*/D13*/D12*/D11* D10* ADE
+ OP3* OP2*/OP1*/D14*/D13*/D12*/D11*/D10* D9* ADE
+ OP3* OP2* OP1* AC1 ; HOLD
+ AC1*/ADE ; HOLD

~ Monolithic W Memories ~

Audio Spectrum Analyzer

AC2 := /OP3*/OP2* OP1*/AC2* AC1* ACO* ADE
+ /OP3*/OP2* OP1* AC2*/AC1* ADE
+ /OP3*/OP2* OP1* AC2* /ACO* ADE
+ /OP3* OP2*/OP1*/AC2*/AC1*/ACO* ADE
+ /OP3* OP2*/OP1* AC2* AC1* ADE
+ /OP3* OP2*/OP1* AC2* ACO* ADE
+ /OP3* OP2* OP1*. 014* ADE
+ OP3*/OP2*/OP1* 013* ADE
+ OP3*/OP2* OP1* 010* ADE
+ OP3* OP2*/OP1* 014* ADE
+ OP3* OP2*/OP1* 013* ADE
+ OP3* OP2*/OP1* 012* ADE
+ OP3* OP2*/OP1* 011* ADE
+ OP3* OP2* OP1* AC2
+ AC2*/ADE

AC3 := /OP3*/OP2* OP1*/AC3* AC2* AC1* ACO*
+ /OP3*/OP2* OP1* AC3*/AC2*
+ /OP3*/OP2* OP1* AC3* /AC1*
+ /OP3*/OP2* OP1* AC3* /ACO*
+ /OP3* OP2*/OP1*/AC3*/AC2*/AC1*/ACO*
+ /OP3* OP2*/OP1*/AC3* AC2*
+ /OP3* OP2*/OP1*/AC3*
+ /OP3* OP2*/OP1*/AC3*
+ /OP3* OP2* OP1* 015*
+ OP3*/OP2*/OP1* 014*
+ OP3*/OP2* OP1* 011*
+ OP3* OP2* OP1* AC3
+ AC3*/ADE

SIMULATION

TRACE ON CLK AC3 AC2 AC1 ACO

SETF ADE /OP3 /OP2 /OP1
CLOCKF CLK
CHECK /AC3 /AC2 /AC1 /ACO

ADE
ADE
ADE

AC1*
ACO*

iCLEAR TO 0

ADE
ADE
ADE
ADE
ADE
ADE
ADE
ADE

SETF OP1
CLOCKF CLK iINCREMENT TO 1
CHECK /AC3 /AC2 /AC1 ACO

CLOCKF CLK
CHECK /AC3 /AC2 AC1 /ACO

CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CHECK AC3 /AC2 /AC1 /ACO

iINCREMENT TO 2

iINCREMENT TO 8

~ Monolithic WMemorles ~

iINC
iINC
iINC
iDEC
iDEC
iDEC
iD14
iD13
iD10
iMSB EQUATIONS

iHOLD
iHOLD

iINC
iINC
iINC
iINC
iDEC
iDEC
iDEC
iDEC
iD15
iD14
iD11
iHOLD
iHOLD

2·323

2·324

Audio Spectrum Analyzer

SETF OP2 IOPI
CLOCKF CLK iDECREMENT TO 7
CHECK IAC3 AC2 ACI ACO

CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK iDECREMENT TO 3
CHECK IAC3 IAC2 ACI ACO

SETF OPI IDI5 DI4 IDI3 DI2 IDII
CLOCKF CLK iSET TO D15-D12
CHECK IAC3 AC2 IACI ACO

SETF OP3 IOP2 IOPI
CLOCKF CLK iSET TO DI4-DII
CHECK AC3 IAC2 ACI IACO

SETF OPI DIO ID9 D8
CLOCKF CLK iSET TO DII-D8
CHECK IAC3 AC2 IACI ACO

SETF OP2 IOPI
CLOCKF CLK iCHECK MSB
CHECK IAC3 AC2 ACI ACO

SETF IDI4
CLOCKF CLK iCHECK MSB
CHECK IAC3 AC2 IACI ACO

SETF OPI
CLOCKF CLK iHOLD
CHECK IAC3 AC2 IACI ACO

SETF IOP3 IOP2 IOPI lADE ;HOLD
CLOCKF CLK
CHECK IAC3 AC2 IACI ACO

TRACE OFF

l1 Monolithic W Memories l1

Bus Interface

Bus interface plays an important role in computer architecture
design. As systems become more complicated, the bus require­
ment becomes more critical in terms of speed, power, accessibil­
ity and feasibility. There are many different kinds of buses in the
electronics industry. Each of tho buses is specially designed to
fit into a special architecture for various purposes. There are
many stringent rules and regulations to follow depending on the
application to design a bus architecture or bus interface. The
application depends on timing (synchronous or asynchronous),
type (military or commercial), architecture (open or closed), data
structure (serial or parallel), computer type (micro, mini or others)
or a mix of the above.

There have been nearly one hundred buses since the invention
of the computer. A great deal of them have faded away because
the application no longer exists, or have been replaced by new
technology.

The following are some current major buses:

• DEC Unibus
• Future Bus
• IEEE 4SS Bus
• Multibus II
• Nu Bus
• PC Bus
• VME Bus
· a Bus

Disregarding the complexity and different varieties of buses,
there are four basic sections (Figure 1) in the bus structure:

• Address Section
• Data Section
• Control Section
• Utility Section

I BUS INTERFACE I
i !
+

41501

ADDRESS SECTION

DATA SECTION

CONTROL SECTION

UTILITY SECTION

Figure 1_ Four Sections of the Bus Interface

Address Section

The Address Section consists of the address lines and control
portion. The address lines are used by the processor to indicate
to memory and other peripherals the location with which it wants
to communicate. The address width varies from bus to bus. For

example, VME, Nu and Multibus II are 32 bits wide. DEC Unibus,
PC Bus and a Bus are 1S, 20 and 22 bits wide, respectively. The
width of the address line has gradually expanded with each new
bus announcement. As the width expands, the address decoding
becomes more complex. One solution to this complex address
decoding problem is to use PAL devices such as the PAL 16LS/
20LS/20L 10. The advantage of using these PAL devices is to
utilize their wide input range (up to 16/20) to address up to 64/1 M
addresses by a single PAL device.

Data Section

The Data Section consists of the data lines and control portion.
The data lines carry instruction and data between the processor
and the peripherals, including the memory. The control portion
provides support to the data lines. In most cases, data can be
addressed as byte, word or double-word. For instance, PC Bus,
DEC Unibus, and Nu Bus can be addressed as S, 16 and 32-bits
wide, respectively. VME and Multibus II can both be addressed
asS, 16, 240r32-bitswide. The externalbusdatacommunication
requires handshaking. As long as the protocol is well defined, it
can be implemented easily by the PAL 16RS/20RS/20X1 O. If a
change is needed after the circuit is designed, we can simply
modify the PAL device file. In other words, by using PAL devices
fordata communication, flexibility can be achieved with minimum
hardware change.

One of the major problems when dealing with data transfer is
synchronization. Synchronization is when events occur concur­
rently with a regular or predictable timing relationship, typically
based on a system clock. The data transfer control functions for
this type of synchronous bus can be implemented by PAL devices
such as the 20RS. In asynchronous buses, the data lines com­
municate through handshaking instead of the data clock. This
can be tedious when using discrete logic. The asynchronous
devices PAL 16RAS/20RA 10 can be very useful for implementing
such designs.

Another problem is when both ends of the data lines have different
data rates. In this case we need FIFO memories. FIFO memories
match the data rates and serve as temporary buffers between
source and destination.

Control Section

The Control Section coordinates the operation of all bus interface
circuitry. This is the heart of the bus interface design. The major
architecture differences can be observed here. Generally, any
device that is capable of controlling bus operation is called a "bus
master". Devices that operate on the bus but cannot control it, i.e.
the memory system, I/O ports, etc. are called "slaves". Most of
the buses are designed to allow more than one bus master or a
variety of intelligent devices, i.e. a second CPU, disk controller or
network controller, on the bus.

~ Monolithic W Memories ~ 2·325

Bus Interface

Functionally, the Control Section can be split into three
subsections:

• Interrupt Subsection
• DMA Subsection
• Arbiter Subsection

Interrupt Subsection

Interrupts are important to all bus systems. These signals are
designed to allow infrequent or important peripherals to get the
attention of the bus master. A maskable interrupt can be ignored
by the bus master, while a non-maskable interrupt can not.
Vectored interrupt inputs provide priority to the interrupt controller
in case more than one interrupt request should occur simultane­
ously. The number and type of interrupt inputs vary widely among
buses.

To determine which device caused the interrupt in order to
execute the correct interrupt-handling routine, two methods can
be used:

1. Software Method-In this method, a polling program checks,
one by one, each of the devices connected tothe interrupt line,
to determine which one is interrupting. When an interrupting
device is found, the routine then branches to the appropriate
interrupt handler. This scheme is considerably slow duetothe
software overhead involved.

2. Hardware Method-This method is more efficient than the
software scheme. The interrupted peripheral will provide an
interrupt vector which forms the branching address to the
interrupt-handling routine at the time it occurs. This is called
automated interrupt-vectoring (Figure 2). After the Interrupt
Request (IR) and the vector are issued by a peripheral, the
Interrupt Handler arbitrates, grants and serves that interrupt.
The VME and DEC Unibus use this interrupt technique. The
required branching address is loaded in the address register.
Ordinary registered PAL devices such as the 20RS120X1 0 to­
gether with the 20LS/20L 10 are suitable for this technique. A
design example of the interrupt controller for the DEC Unibus
is shown on page 2-32S. This example demonstrates a near
4 to 1 chip count saving by using a PAL device design. Obvi­
ously, the real estate and debugging time shrink and the
reliability increases.

In the event that several interrupts occur simultaneously, a priority
scheme is used to decide which 1/0 device should be granted
control of the bus. The most popular one is the Fixed Priority
Scheme. This assigns a fixed priority number to each device.
This number will be there until the next configuration change. The
other scheme is more complex and is rarely used, called the
Programmable Priority Scheme. In this scheme, the priority can
be changed dynamically by the software program. This scheme
may be useful in applications such as strategic military or dynamic
financial marketing where the strategy changes with various
battles or investment environments; but, the software design
may be very complex. However, both schemes can be accom­
plished by using sequencer devices such as the PMS14R21.
This powerful device can serve as a local distributed processor
within the Bus Interface Unit.

Direct Memory Access (DMA) Subsection

The Direct Memory Access concept exists because the ordinary
memory transferring speed often isn't fast enough. The transfer
speed of a microprocessor is limited by the software overhead
involved in transferring successive words: several instructions
must be executed in order to transfer a word or a chain of words.
In such cases where the ordinary memory transferring speeds
may not be sufficient, as in a floppy disk or a frame buffer, DMA
is required. The DMA COhtroller implements the transfer algo­
rithm in hardware and automates the word or block transfers
directly between the memory and the 110 device.

Two techniques are used:

1. The processor is halted or suspended by the DMA Controller
(DMAC). The DMA dominates the bus until the end of the
transfer.

2. The DMAC steals a memory cycle from the processor and
inserts a data transfer between the memory and the 1/0
device. This is called cycle-stealing DMA.

These methods can also be used in a combined fashion.

~--+-~---------------r--------------+-~-------------+--~--~IR

~--~-----------------r--------------~--------------~------~ IA

~---------------------'---------------------------------------~ ARBITRATION BUS
41502

Figure 2. Bus Interrupt Example

2·326 ~ Monolithic: m Memories ~

Bus Interface

DMAC design can involve complex handshake sequences be­
tween the processor and an 1/0 device. It contributes significantly
to the system's cost and complexity and thus it is not normally
used in small systems. However, with the availability of PAL
devices, DMA applications are becoming more popular. The
handshake sequence and complex discrete logic design can be
replaced by asynchronous PAL devices such as the PAL 16RASI
20RA10 and programmable sequencers such as the
PMS14R211A. This can significantly decrease the cost, real
estate and debugging time.

Arbiter Subsection

Bus Arbiter designs are becoming more critical and complex as
microprocessor costs decrease. This is because it is becoming
more cost-effective to design systems with multiple processors
sharing global resources. In the bus interface, the arbiter acts as
a judge to decide who should own the proprietorship of the bus
and for how long. The arbiter decides which Requester should be
granted control of the Bus when several requests happen simul­
taneously.

The function of the arbiter consists of:

1. Granting the use of the bus to one of the bus masters.

2. Scheduling requests from multiple bus masters for optimum
bus use.

3. Preventing simultaneous use of the bus by two bus masters.

In other words, a successful arbiter design can prevent bus
hangup and increase bus bandwidth.

Four major types of arbitration are:

1. Prioritized Arbiter-This priority scheme provide a pre-as­
signed number to each bus master to arbitrate the execution
order.

2. Round-robin Arbiter-This scheme assigns the bus master
on a rotating priority basis.

3. Single-Level Arbiter-This scheme provides only single level
arbitration. However, it relies on a bus grant daisy-chain to
arbitrate the request.

4. Fairness Arbiter-This scheme prohibits the winning module
from being serviced again until all pending requests have
been serviced.

An example of using the PAL22V10 to perform the Prioritized
Arbiter is described on the application note on page 2-347. The
arbitration process and PAL device equations are also provided.

An example of an arbiter used for resolving a bus contention
between two bus masters fighting for control is shown in
Figure 3.

When both master 1 (M1) and master 2 (M2) issue a Bus Request
(BR), the Arbiter will grant the Bus Grant (BG) to the one with
higher priority. Assuming it is M2, M2 will then drive Bus Busy (B
Busy) active and release the BR signal. After M2 finishes its op­
eration, the Arbiter detects that the BR signal is still low and
transfers the bus control to MI'

4-~4-~---------+~~L--------+~~L-"BR

4-~4-L----------+~~---------+~~--" BG

4-~~-----------+~-----------+~----" BBUSY
4-....L ____________L. ____________L. ______ .. B CLR

41503

Figure 3. Arbitration Example: Bus Contention

Utility Section

The Utility section provides support to each of the previous
sections. It links the entire bus interface between modules. The
Utility Section consists of the System Clock Distribution, Power
Monitor and System Diagnostics. The Power Monitor detects
power failures and signals the system to start an orderly shut­
down. When power is then reapplied to the system, it ensures that
each module is initialized accordingly. For example, the power
failure and power up sequences forthe VME bus are 4 ms and 200
ms, respectively. This can help the processor to react to these
external interrupts according to the system specification. A
system without diagnostics is an incomplete system. System
Diagnostics can be implemented by a Programmable Sequencer
such as the PMS14R21/A (page 3-123).

Future System Expansion

With the rapid rate of improvement of technology, the useful life
of a new system is increasingly getting shorter. Therefore, the
future system expansion consideration can be a major design
feature to system designers as well as a selection guideline to a
buyer. The key to system expansion in a general computer
system is the bus through which the CPU communicates with the
present and future system components. Design flexibility, high
throughput, multiprocessor support, and low power consumption
soon become critical design considerations for bus interface
techniques. PLDs can be the solution for bus interface, not only
because of theirflexibility in terms of possible hardware modifica­
tion, but also because of their real estate saving, which in turn
lowers the manufacturing cost and power consumption.

~ Monolithic m Memories ~ 2·327

Unibus Interrupt Controller AN-131C

Functional Description
One of the more established computer families is the Digital
Equipment Corporation's PDP-11 series. This family of compu­
ters uses the DEC unibus to communicate between cards. A
specific protocol is required to interface a card to the unibus.
This protocol is described in the available DEC literature.

Since the unibus is an asynchronous bus, much of the interface
circuitry consists of combinational logic to generate specific
signals and flip-flops which are set and reset as flags. This tends
to use a lot of SSI and MSI logic packages. Using Monolithic
Memories' PAL devices, much of this logic can be condensed
into a few packages. Figure 2 is the schematic diagram for an
interrupt controller to be used on the unibus.

Many cards communicate over the bus by taking control of the
unibus with an interrupt request, and then do whatever they
require before releasing control. As can be seen, this interrupt
controller takes six special interface ICs, (380 and 8881 bus

drivers and receivers) eight MSI, SSIICs, (7400, 7402 and 7474s)
along with some transistors and discrete parts. This parts count
can be considerably reduced by using a PAL20RA10 and a
PAL20L10.

Figure 1 shows how the circuit with the PAL devices would look.
Thetwo PAL devices allow almost all ofthe7400, 7402 and 7474
packages to be removed. (Almost a four-to-one saving in chip
count.) In addition, the preload pin (PRLD) on the 20RA10
allows the flip-flops to be easily set to a known state on power
up, or when reinitializing. So the PAL devices reduce the logic
package count from eight chips to three.

In the schematic shown, there are three VLSI devices, three
MSlsand two SSls. Using a PAL20RA10, it is possible to replace
three MSls and one SSI device, thereby reducing the chip count
by a factor of two. The ICs inside the enclosed loop were
replaced.

2·328 ~ Monolithic m Memories ~

Unibus Interrupt Controller

INTRAH 1 24 VCC

INTRAHEN 2 23 NBGINBH

MCLEARAH 3 22 EN INTRA

INTRBH
INTRBHEN

MCCLEARBH FF1RESET
21

NBGINBH
20

PAL 19
SSYN

BGINBH

20Ll0
18

EN8881

BGINAH
17
16

15

BUSSSYNL--~--<r~ 14

BUSBBSYL----1-~~
10

STARTINTRAL----------~-;

STARTINTRBL-----------------------J

8881
BUS 001 L BUS 008 L

8881 8881
BUS 002 L BUS 007 L

BUS 006 L

BUS DOS L

PRELOAD 24 VCC
FF1

AINTR 23 FF2
22

NC NFF2
ABGIN

21

FF1RESET

FF4
SSYN 20

PAL
20RA10 NFF4

INTRDONEAH
INTRDONE BH BINTR

ENINTRB
NC

FF3RESET FF3RESET

BBGIN
~---------110

NC

Figure 1.

11

12

VCC

~: FF3

OUTl
17

~ Monolithic m Memories ~

8881

7400

VCC

BUSBBSYL

BUSSACKL

BUSBRBL

MASTERAL ~

MASTERBL

BGOUTAH

2·329

Unibus Interrupt Controller

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

INTERRUPT LOGIC
INTRPOI
01
DAN KINSELLA
MONOLITHIC MEMORIES,
11/06/87

INC.

CHIP INT LOGIC PAL20LI0

INTRAH INTRAHEN MCLEARAH INTRBH INTRBHEN MCLEARBH BGINBH
BGINAH BUS~SYNL BUSBBSYL STARTINTRAL GND
STARTINTRBL FF3RESET ENINTRB INTRDONEBH INTRDONEAH EN8881
SSYN NBGINBH FFIRESET ENINTRA NBGINAH VCC

EQUATIONS

/NBGINAH

/FFIRESET

/ENINTRA

/NBGINBH

/SSYN

/EN8881

/INTRDONEAH

/ENINTRB

/FF3RESET

/INTRDONEBH

iDESCRIPTION

BGINAH

MCLEARAH+ENINTRA

INTRAHEN*INTRAH

iFFl CLK CONTROL
i BLOCK A
iSET FFI CONTROL
i BLOCK A
iENABLE INTERRUPT A

BGINBH iFF3 CLOCK CONTROL
; BLOCK B

BUSSSYNL*BUSBBSYL iSYNCHRONIZE FF2 &
; FF4

STARTINTRAL*STARTINTRBL;INTERRUPT BUS

BUSSSYNL+STARTINTRAL

INTRBH*INTRBHEN

MCLEARBH+ENINTRB

= BUSSSYNL+STARTINTRBL

iSIGNAL INTERRUPT
i DONE
iENABLE INTERRUPT B

iSET FF3 CONTROL
i BLOCK B
iSIGNAL INTERRUPT
; DONE

iCOMBINATORIAL LOGIC FOR PAL20RAI0 INTERRUPT CONTROLLER
i(IST PART OF THE TWO PAL SOLUTION: PAL20LI0 & PAL20RAI0)

i SIMULATION NOT INCLUDED

2·330 ~ Monolithic W Memories ~

Unibus Interrupt Controller

INSIDE PAL20RA10 L INSIDE ;.~~~~.~.~~ •••••••••••.•.••••••••...••••••..•••..•.•.•••.................•.••. L... ····7402···!

_I_N_TR_A_H_--rrr-_-"", - - - - -, 1 AINTR 7400 !

INTR ENB AH

MASTER
CLEAR A H

FF1

GND--------r-------------------~--~

INTR B H

MASTER
CLEAR B H

L----------------------r~:'S~S~Y~N.-L-J !
.2, •. :.:::.:.: . .;.:::.:.: . .:..:..;:; . .:..:..;:; . .:..:..;:; . .:..:..::::.:.:.:.:.::.:.: • .:..:..::.;. . .;.::::.;. • ., •..• 1

I

BUS BR A L

BUS SACK L

BUS BBSYL

MASTER A L

+5V

BG OUTAH

BUS BR BL

MASTER B L

BG OUT B H

BUS SSYN L
:~ INSIDE PAL20L10

INTR DONE B H I

INTR DONE AH

START INTR A L ...J

START INTR. B L BUS INTR L

VECTOR BIT2 BUS 002 L

EXT GND (MUST BE GROUNDED)
BUS 003 L

BUS 004 L

BUS DOS L

BUS 006 L

BUS 007 L

BUS 008 L

Figure 2.

~ Monolithio W Memories ~ 2·331

Unibus Interrupt Controller

PAL Design Specification

Title
Pattern
Revision
Author
Company
Date

DEC PDP-II unibus interrupt controller
Control. pds
A
Dan Kinsella
Monolithic Memories Inc., Santa Clara, CA
3/1/85

CHIP INTR_CONTROL PAL20RAlO

PL AINTR NC ABGIN FFlRESET SSYN BINTR NC FF3RESET BBGIN
NC GND
NC OUT4 OUT3 OUT2 OUTI FF3 NFF4 FF4 NFF2 FF2 FFl VCC

EQUATIONS

/FFl := /FFl*FF2 ;Master control
FFl. SETF = /FFlRESET ;block A
FFl.CLKF = /ABGIN

FF2 := FFl ;Bus Busy Signal
FF2. SETF = /AINTR
FF2. CLKF = ABGIN*FF2*/SSYN

/NFF2 := FFl ; Bus sack signal
NFF2.SETF = /AINTR
NFF2.CLKF = ABGIN*NFF2*/SSYN

/FF3 := /FF3*FF4 ;Master control
FF3.SETF = /FF3RESET ;block B
FF3.CLKF = /BBGIN

FF4 := FF4 ;Bus busy signal
FF4. SETF = /BINTR
FF4.CLKF = BBGIN*FF4 */SSYN

/NFF4 := FF3 ;Bus sack signal
NFF4. SETF = /BINTR
NFF4.CLKF BBGIN*NFF4 */SSYN

/OUTI FFl+FF2 ; Bus request signal
;block A

/OUT2 FF4+FF3 ; Bus request signal
;block B

/OUT3 = AINTR ;Intr. signal for
:bus reg. block A

/OUT4 = BINTR ;Intr. signal for
;bus req. block B

SIMULATION

TRACE ON FFlRESET FF3RESET AINTR BINTR SSYl! ABGIl! BBGIN
- FFl FF3 NFF2 NFF4 OUTI OUT2 OUT3 OUT4

SETF /FFlRESET /FF3RESET AINTR BINTR

SETF FFlRESET FF3RESET /AINTR /BINTR
ABGIN BBGIN

SETF /SSYN

;Reset all regs

;Clock FFI and FF3
:regs

;Clock NFF and NFF3
:regs

Simulation Results

Page:
gg g

FFIRESET LHHH
FF3RESET LHHH
AINTR HLLL
BINTR HLLL
SSYN XXXL
ABGIl! XHHH
BBGIN XHHH
FFl LLLL
FF3 LLLL
NFF2 XLLL
NFF4 XLLL
OUTI XHHH
OUT2 XHHH
OUT3 LHHH
OUT4 LHHH

2·332 ~ Monolithic W Memories ~

A Multibus Arbiter Design
for 1 0 MHz Processors

This application note describes the implementa­
tion of a bus arbiter using a PAL 16R4 to interface
the 10 MHz 80186 to the MULTIBUS multi-master
environment. The PAL equations for bus ex­
change were developed based on functional and
timing requirements specified in the Intel
MULTIBUS Specification. The interface shown
addresses the bus master case in regards to bus
exchange only. No attempt has been made to
include the requirements for bus slave operation,
interrupt handling or byte operations. This note
assumes a knowledge of MULTIBUS operations
and signal names.

Overview

The system environment is assumed to be a
collection of loosely coupled independent
processors which communicate through a com­
mon memory on the system bus. Each processor
in this system possesses its own local resources.

A block diagram showing the interface of one such
processor, an 80186, to the system bus,
MUL TIBUS, is shown in Figure 1. A block of the
80186's address space is allocated to system
memory. Access into this portion of the address
map generates a request for the system bus via a
programmable memory chip-select pin. Once a
request is generated by the CPU, the PAL 16R4
arbiter and the 8288 bus controller combine to
perform a bus exchange and transfer cycle.

In this design the arbiter maintains control of the
system bus and therefore must be forced off either
by a higher priority master (BPRN goes HIGH) or a
Common Bus Request (CBRO).

Functional Requirements

On the MUL TIBUS, the bus exchange process
begins when the Bus Request (BREO) goes LOW
(parallel priority resolution scheme), or when
BPRD goes HIGH to succeeding masters (serial

priority resolution scheme). If the requesting
master is granted priority (BPRN enabled) and the
bus is not under control of another master (BUSY
disabled), then the master may take control of the
bus by forcing BUSY LOW.

An optional request mechanism, Common Bus
Request, used in conjunction with either parallel or
serial priority has been implemented in this design.

It reduces bus acquisition overhead by allowing
bus retention across transfer cycles, unless a
request is p,ending (CBRO is LOW). For example,
in pa~riority the requesting master asserts
both BREO and CBRQ to force the current master
off the bus. Once acquisition is complete CB-RO is
released for use by another master.

Timing Considerations

Bus exchange on MULTIBUS is a synchronous
process. BREO, BPRO, BUSY and CBRO are all
synchronized with the trailing edge (HIGH-to­
LOW transition) of BCLK. BCLK is a MULTIBUS
signal having a duty cycle of approximately 50%
and a maximum frequency of 10 MHz. There is no
requirement for synchronization between BCLK
and any other clock in a MULTIBUS system.
Synchronizer circuits must be used on signals
that cross clock boundaries, because it is possi­
ble (as in this design) for the processor clock to be
asynchronous to BCLK.

Bus priority on MULTIBUS resolution takes place
in one BCLK cycle. If the serial priority scheme is
implemented, this requirement will place an upper
limit on the number of masters allowed for a given
BCLK rate. The parallel priority scheme allows
the relationship between BCLK and the number of
masters to be independent. Whichever is chosen,
the MULTIBUS specified minimum setup time of
22 ns (resolution to clock), plus the desire to keep
the BPRN to BPRO propagation delay to a mini­
mum, points to the use of an "A" speed PAL
device (Figure 2).

~ M.onolithic m Memories ~ 2·333

A Multibus Arbiter Design for 10 MHz Processors

The MUlTIBUS bus exchange timing requires a
BUSY setup time before clock of 25 ns (see Fig­
ure 2). Release by one master and acquisi­
tion by another takes place on two successive
HIGH to lOW transitions of BelK.

PAL Design Description

The PAL design specification with supporting
timing diagrams are shown in Figures 3 and 4. The

BCLK
AmPAL16R4

8REci

following remarks are in addition to the comments
found on the PAL design specification.

The term "BROp· AEN" found in the equation for
"BREO" is required to keep the arbiter from
recapturing the bus when it is the releasing master.
This can occur when a CBRQ forced the
surrender, and the processor cycle which follows
the just completed cycle accesses the system
memory.

A80186-10

t------.... BPRN
BPRO BRa MCS

S
Y
s
t
e
m

B
u
s

LOCK -------~ LOCK
~-----.... BUSY
~------.... CBRa ARBITER

ARDY

+5 52 52
Sf Sf

8288 So So
BUS PCLK CLKOUT

CONTROLLER
ALE

DEN DTiR

OE

DATA
TRANSCEIVER

LE

L
0
c
a
I

B
u
s

OE ... -----1

08479A3·221

2·334

ADDRESS
LATCH

Figure 1. Single Multimaster Bus Interface

~ Monolithic W Memorie,s ~

A Multibus Arbiter Design for 10 MHz Processors

Using BREQ to disable BPRO results in a 40 ns
delay worst case from clock (tCO + tPD). Taking
into account the 22 ns setup (see Fig. 2) and
clock skew (3 ns max) leaves 35 ns of cycle (10
MHz BCLK), if the serial priority resolution
scheme is being employed. Lower priority mas­
ters using this design would exhibit a 25 ns worst
case delay SPRN to SPRO. Use an external gate
to imRlement the equation "BPRO =
BPRN*BREQ" if the serial priority is required when
using more than two masters.

MUL TIBUS address hold after Command (50 ns
min.) is satisfied by using the ALE Signal from the
8288 instead of the 80186. The 8288 Command
lines go inactive on the HIGH to LOW transition of
CLKOUT at the beginning of T4 (30 ns max delay).
The 8288 ALE signal goes active on the HIGH to
LOW transition of CLKOUT at the beginning of T1
(1/2 clock cycle later than ALE from the 80186).
The minimum hold time is therefore 100 ns - 35 ns
= 65 ns.

Note the inversion of BLCK for use by the PAL
device. PAL device registers load data on the
LOW to HIGH clock transition of pin 1.

MUL TIBUS address setup before Command (50
ns min.) is determined by the 8288 bus controller.
The 8288 specification guarantees 115 ns
minimum between AEN going LOW and
Commands going active.

~ tBCY
~100ns Min. ---f /4-tBW~ 0.5 !BCY Nom.

~~~ 
ISAEOl ~ tBREOH 

36~~s~:x'~1 I I I 1j=36ns Max. I 
Aequested 1---11 I~ ~ 
Master 22n M'n tBUSYs I 22ns Min. by New ISAPNs ~ r- ~ tBPANs 

~ s :I~,I 25ns Min. tBPANh C: Z 

I I tBUSY ti tBUSY:tt- tBUSYs 1 it tBUSY 70ns Max. 25ns Min. 
Released Taken by r-

~~-------~II------1 by Master New Master I 
tBPANO -.L...J..- ~ tBPAO I Previously tBPA I tBPRNO 

30ns Max.~ r-r-40ns Max. in Control 40ns Max. --t--1+- -+f--t4- 30ns Max. 

BPRO 1 -BPANn 7 Il-ilr- tAD -1 II ~W~~~~~~:n~~ ~ ~ If used by next 
Master in 

~i~~:sS _________ ~:::: ~-~:II-: --------Priority Chain. 

08479A3-222 

Figure 2. Bus Exchange AC Timing 

~ MonolIthIc I1JJ] MemorIes ~ 2·335 

Ell 



2·336 

A Multibus Arbiter Design for 10 MHz Processors 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

A MULTI BUS ARBITER 
AMP3-318 
005 
JOE ENGINEER 
ADVANCED MICRO DEVICES 
11/15/87 

CHIP MULTIB PAL16R4 

BCLK /RD /WR /SREQ /RESET /BPRN NC NC NC GND 
/E /CBRQ /BUSY /SYNC /HREQ /AEN /OEN /BREQ /BPRO VCC 

EQUATIONS 

BPRO /HREQ*BPRN 

BREQ HREQ+AEN 

OEN := /RESET*SREQ*AEN 

AEN := /RESET*AEN*HREQ*RD 
+ /RESET*AEN*HREQ*WR 
+ /RESET*HREQ*BPRN*/BUSY 
+ /RESET*AEN*BPRN*/CBRQ 

HREQ := /RESET*SYNC 

SYNC := /RESET*SREQ*RD 
+ /RESET*SREQ*WR 

BUSY = AEN 
BUSY.TRST = AEN 

CBRQ = /AEN*HREQ 
CBRQ.TRST = /AEN*HREQ 

;HOLD BUS UNTIL CURRENT 
iCYCLE IS COMPLETE 
iINITIAL BUS ACQUISITION 
;HOLD BUS IF NO OTHER REQUEST 

;THIS MODIFICATION ALLOWS THE ARBITER TO RESIDE ANYWHERE IN 
;THE ARBITRATION DAISY CHAIN 

Figure 3. PAL 16R4 Arbiter Design Specification 

~ Monolithic IFJJl Memories ~ 



CLKOUT 

S2 51 so 

AD15-AD0 

ALE (80186) 

BRQorMCS 

~ 
ALE (8288) 

~ 
::z £3C[R 

BRQP 
eo .... 
S 
cs' 

~ 
BREQ 

BPRN ~ 
BPRO = 0 :: CD' 

til AEN 

~ 
BUSY 

CBRQ 

08479A3-224 

t\) 

II 
(,.) 
..... 

:: 

""""=A II~ 

\ I 

• Delayed by 8288 
115n5 Min. 

:: 

Figure 4_ Bus Transfer Timing Diagram 

II 

I 
I 

/ 

35n5 Max . 

:I> \ 3: 
c 
;. 
D" 
C 
UI 

:I> 
""l 
D" 
:+ 
(1) 
""l 

C 
(1) 
UI 
cQ' 
:::s -0 
""l 

..a. 
0 

3: 
:t 
N 

" ""l 
0 

II g 
UI 

II ~ 
""l 
UI 



Multibus to Am9516 Interface 

This interface shows the Am9516 connected to the MULTIBUS 
(Figure 1). This is accomplished by two PAL device designs. 
The equations for the PAL devices are shown in Figures 2 and 3. 
The first designated Am9516MBC does the MULTIBUS arbitra­
tion as defined by the MULTIBUS specification. Common bus 
request (CBRQ) was not implemented in this design. Addition­
ally this design holds the bus as long as BREQ is active. If the 
user wishes to release the bus after each transaction the 
Am9516 should be programmed for CPU interleave. 

The second PAL device in this interface designated 9516MBC, 
converts the Am9516 si~s into MULTIBUS control signals. It 
also generates RD and WR for the 8530 so that flyby transfers 

can be done. When not doing flyby, this part of the PAL device 
should be changed. There are several considerations when 
using the SCC with DMA not addressed here. These are cov­
ered in a separate application. This example will work for 
moderate serial data rates. To operate the SCC at maximum 
speed, a local RAM should be used as bus arbitration overhead 
could cause problems. The main purpose here was to illustrate 
the versatility of PAL devices and how easy it is to interface 
apparently incompatible devices to the MULTIBUS. 

The two PAL devices shown are similar in function to the 8289 
and 8288 shown with the 8086 CPU. A similar design could be 
done for processors such as the 68000 or other bus masters 
such as the 8052 CRT controller which has its own DMA. 

2·338 ~ Monolithic W Memories ~ 



~ 
I 
~ e. ;;: 
! c 

~ 
~ a 
~ cr 
til 

~ 

~ 
II 
w 
U) 

rO~ 
Am8284 

r-iRDY, 

AEN2 
AEN, 

RESET FI RESET 
READY READY 

ClK 
Am8086 

cpu 

MN/Mx~ 

.A 

r---~~------------~IClDCK 
r-----------~.lDCK L.-___ --,_--r_~-A-D-O -_A_D_'S ... ~ :r1DRESS.DATA BUS s;; 5, S, 

¢. 

Ig 
~ 

<=>!CH-A 

.r ~ 

D/C AlB 

0 0-07 

AmZ8530 
scc 

] 
MUlTIBUS 

Ig 

Wfil--

SYSTEM MEMORY 

MUlTIBUS 

I I I I I I I I 
OSC 

<=>!CH-B REQr---------+------------------------; 1CENt--

R/W 1-1 -----+---1 
WR 

os .... 1 ____ ---4_~ 
PAL16L8 
("lIMBC) 

I' ' ~--------------~- I I 
I I I "r----o= d om 

Figure 1. Am9516 to 8086 in a MULTIBUS' Environment 

II 
02188A-128 

... 
0) 

;-... 
CD 
::l 
OJ 
n 
CD 

II 



2·340 

Multibus to Am9516 Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

MULTIBUS CONTROLLER FOR AM9516 
AMP3-189 
01 
JOE BRCICH 
ADVANCED MICRO DEVICES 
11/15/87 

CHIP MULTll PAL16L8 

BACK MIO NC NC /DACK NC NC NC /CEN GND 
NC /RD /IORC /DS /MWTC /MRDC /IOWC /RW /WR VCC 

EQUATIONS 

IORC = /MIO*DS*/RW*CEN 

IORC.TRST = BACK 

IOWC = /MIO*DS*RW*CEN 

IOWC.TRST = BACK 

MRDC = MIO*DS*/RW*CEN 

MRDC.TRST = BACK 

MWTC = MIO*DS*RW*CEN 

MWTC.TRST = BACK 

RD DACK*RW*BACK 
+ IORC*/BACK 

WR DACK*/RW*BACK 
+ IOWC*/BACK 

OS IORC 
+ IOWC 

DS.TRST = /BACK 

RW = IOWC 

RW.TRST = /BACK 

iDESCRIPTION 
iThis PAL device converts multibus signals into 9516 compatible 
isignals and vice-versa. It also supports the 8530 in flyby mode 

Figure 2. Source listing for MULTIBUS to Am9516 Interface 

~ Monolithic W Memories ~ 



Multibus to Am9S16 Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

MULTIBUS ARBITER FOR AM9516 
AMP3-l90 
01 
JOE BRCICH 
ADVANCED MICRO DEVICES 
11/15/87 

CHIP MULTI2 PAL16R4 

/BCLK /XACK BRQ /BSY /BPRN /DS NC /IORC /CS GND 
JOE /RBEN /TBEN BACK /CEN /BREQ /BUSY /BPRO /WAIT VCC 

EQUATIONS 

TBEN = IORC*CS 

TBEN.TRST = /BACK 

RBEN = /IORC*CS 

RBEN.TRST = /BACK 

WAIT =/XACK*BACK 

BREQ := BRQ 

BPRO = /BRQ*BPRN 

/BACK := /BUSY 

BUSY := BREQ*BPRN*/BSY*/BUSY 
+ BREQ*BUSY*BPRN 
+ DS*BUSY 

CEN := BACK 

;DESCRIPTION 
i/CEN delays the commands to meet the multibus requirements that 
;address and data be valid at least 50 ns prior to control active. 
ilf we do not allow preemptioni remove BPRN from the second 
iexpression in the BUSY equation and eliminate the third expression 

Figure 3. Source Listing for MULTIBUS to Am9516 Interface 

~ Monolithic W Memories l1 2·341 



Z-Bus and 8088/8086 Interface 

This application note describes how replacing two 8086 support 
chips with a Z8000 support chip and a PAL 16R8A allows the 
8086 CPU to interface directly to the Z-BUS. Since the timing of 
the signals used is the same for the 8088 CPU, this circuit will 
work equally well in those applications. 

Interfacing the 8086 CPU to the Z-BUS allows 8086 users to 
take advantage of the very powerful Z8000 peripheral and 
memory support circuits that are available. The Z8000 periph­
eral circuits in particular offer the user higher throughput rates, 
simpler control software and less system overhead require­
ments than any previous generation peripheral family for 
any CPU. 

Design Requirements 
The 8086 CPU can operate in two different modes. In minimum 
mode, it generates all the bus control and timing signals for the 
8086 (8085, 8088) buses directly on-chip. In maximum mode, 
the CPU puts out status information early in each bus cycle and 
relies on an external bus controller chip, the 8288, to generate 
timing and control signals. This implementation uses the CPU in 
maximum mode and replaces the 8288 with a PAL 16R8A that 
generates the Z-BUS timing and control signals from the status 

56pF 
17 

READY r 300n 10 
X2 

9 
OSC 

RESET OUT 
14 

ZCK c::J 15MHz 

11 
Xl 

AmZ8127 

signals provided by the CPU. It also makes use of the AmZ8127 
clock generator to allow precise timing resolution by providing 
an oscillator signal at 3 times the CPU clock frequency. The 
AmZ8127 provides all the clock generation functions of an 
8284A as well as several additional functions. Either clock chip 
will work in this system. 

The bus controller provides the following functions: 

-Generates AS, OS, INTACK and R/W with proper timing rela-
tive to address and data. 

-Provides simultaneous assertion of AS and OS during reset. 

-Automatic insertion of 1 wait state for all liD cycles. 

-Synthesizes a single Z-BUS interrupt acknowledge cycle from 
the 8086 lACK cycles. 

Figure 1 shows the circuit interconnection dia~m..:.lhe system 
uses a high-speed PAL 16R8A to generate AS, OS, R/Wand 
INTACK of the Z-BUS, ROY for wait state generation, and three 
internal state variables. The registers are clocked with the 15-
MHz OSC signal from the 8127. The five input signals to the PAL 
device are 5-MHz CPU Clock Signal (CLK1, ~s~m Reset 
(RESET), and the three CPU Status States (So, S" S2)' 

15MHz 
CK 

18 
ROY 

2 
RESET 

5MHz 3 17 
INTACK CLK 

AmPAl16R8A AS 

RESET SO 26 4 SO os 

I 56

•

F ClK 51 27 5 51 
13 

WAif 
16 

52 28 6 52 4/8 READY R/W 
8086 -= 

03862A-l03 

Figure 1. Circuit Interconnection Diagram 

2·342 ~ Monolithic W Memories ~ 



Z-Bus and 8088/8086 Interface 

The CPU indicates the start of a bus cycle by bringing at least one 
of the status lines low from the idle high state (see Figure 2). This 
starts an internal timing sequence within the PAL device which 
corresponds closely to the various T states of a bus cycle. AS is 
asserted during the time ClK is lOW during T 1• OS is asserted 
at the start of T 3. If it is an I/O cycle, then ROY would be disabled 
for one ClK period straddling T2 and T3 caus~ the 8127 to 
request 1 wait state after T3. In either case, OS remains as­
serted until after the first 1/3 of T 4, which is identified by the 
status lines returning to the idle state during the previous cycle. 
R/W is generated by sampling 80 and 81 during AS. 

It is in the realm of interrupts where the Z8000 peripherals shine 
over other peripherals. Each peripheral can identify many differ­
ent exception conditions during its operation. The occurrence of 
one or more of these conditions causes activation of a single 
interrupt request line. The peripheral wants the CPU to respond 
with a single interrupt acknowledge cycle, during which the pe­
ripheral resolves priority and provides the CPU with enough 
status and vector information to allow it to respond to the excep­
tion without any further interrogation of the peripheral. This al­
lows interrupt driven systems to achieve very high data 
throughput rates. 

I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I 

81270SC t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t 
r--f--66.6ns 

8127 CLK 

8086 SO, 51, 52 

Po 
--:>--1 

R/W 

03862A·104 

Figure 2. Memory and I/O Timing Diagram 

~ Monollthlo W Memories ~ 2·343 

HI 



Z-Bus and 8088/8086 Interface 

The 8086 CPU responds to an interrupt request with a sequence 
of two interrupt acknowledge cycles, and only in the second is 
any data read off the bus. As stated before, the Z-BUS peripher­
als require only one acknowledge cycle. The timing of this has to 
be such that there is enough delay between AS going HIGH and 
OS ~g LOW to allow any prioritizing daisy chains to settle, 
and OS has to be wide enough to allow the peripheral time to 
place vector or status information on the bus. Figure 3 shows 
how these two requirements are accomplished by turning the 
two acknowledge cycles into one. The first cycle allows only AS 
and the second asserts only OS and does so for the complete 
cycle. This appears to the peripheral as one very long bus cycle 
which is identified as an interrupt acknowledge cycle by the 
assertion of INTACK. 

Design Approach 
To implement this design in a PAL 16R8A requires recognizing 
the Z-BUS timing characteristics in Figures 2 and 3. The major 
characteristic to consider is counting the phases of a bus cycle. 
Internal state variables Po and P1 are the result (see Figure 4). 
An additional internal state variable (12 ) is necessary to count the 
second bus cycle of an interrupt acknowledge seque.!!£e. As 
shown in Figure 5, 12 in conjunction with INT ACK allows AS to be 
asserted only in the first interrupt acknowledge cycle and OS 
only in the second. The RESET input is used to initialize the 
internal variables and assert AS and OS. Note also that 80 and 
81 are included in the OS equation to prevent OS from being 
asserted during a halt cycle. 

I T1 I T2 I T3 I T1 I TI I TI I T1 I T2 I T3 I T4 I T1 

8127 OSC t t t t t t t t t t t t t t t t t t t f t t t t t t t t t t t f t 
f---t-- 66.6ns 

8127 ClK 

8086 So. 51. 52 \ ..... ___ s_=_o ___ -II S=7 \~ ______ s_=o ______ ~1 S=7 

Po __ ~n .... _---, ~ ____________ ~r-l~ __ ~ 

IN~CK~~ ______________________________________ ~ 

LJ 

03862A·105 

Figure 3. Interrupt Acknowledge Timing Diagram 

2·344 ~ Monolithic W Memories ~ 



Z-Bus and 8088/8086 Interface 

The fact that PAL devices are user programmable allows a great 
deal of flexibility for the designer. Minor timing changes are 
easily implemented by simply adding or changing a term in the 
logic equations and reprogramming the device. In this system, 
we have timing resolution to 67 ns. This same configuration can 
be used with a 24-MHz crystal for 8-MHz CPU chips. The logic 
equations would change because the OSC period would be 
42 ns. The only hardware change would be the crystal. 

An additional PAL device could also perform chip select decod­
ing based on both address and status signals. 

P1 Po PHASE 

0 0 IDLE 

0 1 ASTIME 

Conclusion 
We have seen how a properly programmed PAL device can be 
used to replace a specialized bus controller chip and allow an 
8086 CPU to interface directly to Z-BUS peripheral(s) and/or 
memory systems. This brings all the advantages of the superior 
Z8000 peripheral family in terms of both throughput and ease of 
use to 8086 users with no increase in chip count while still 
allowing a wide range of design flexibilty. The ~ALASM so~tware 
equations for the PAL 16R8A 8086 to Z-BUS Interface chip are 
shown in Figure 6. 

CPU T STATES 

T4, T1 

T1 

1 0 AS TO OS DELAY T2 

1 1 DSTIME T3. Tw 

03862A·l06 

Figure 4. 

12 INTACK AS OS 

NO NO YES YES 

NO YES YES NO 

YES YES NO YES 

03862A·l07 

Figure 5. 

~ Monollthlo W Memories ~ 2·345 

,1\,'1 

EJI 



2·346 

Z-Bus and 8088/8086 Interface 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

8086 TO Z-BUS INTERFACE 
AMP3-195 
01 
NICK ZWIC,K 
ADVANCED MICRO DEVICES 
11/15/87 

CHIP ZBUSI PAL16R8 

CK RESET CLK ISO /SI /S2 NC NC NC GND 
/E /PO /Pl /RW /DS /AS /INTACK RDY /12 VCC 

EQUATIONS 

i INTERNAL STATE VARIABLES 

PO := /RESET* SO*/PO*/Pl*/CLK 
+ /RESET* SI*/PO*/Pl*/CLK 
+ /RESET* S2*/PO*/Pl*/CLK 
+ /RESET* PO*/CLK 
+ /RESET* Pl* CLK* SO 
+ /RESET* Pl* CLK* SI 
+ /RESET* Pl* CLK* S2 

PI := /RESET* PO*/Pl* CLK 
+ /RESET* Pl*/CLK 
+ /RESET* Pl* CLK* SO 
+ /RESET* Pl* CLK* SI 
+ /RESET* Pl* CLK* S2 

12 .= /RESET* INTACK*/I2* CLK* PO*.Pl 
+ /RESET* I2*/Pl 
+ /RESET* I2*/PO 
+ /RESET* I2*/CLK* PO* PI 

Z-BUS OUTPUT SIGNALS 

AS:= RESET 
+ /PO*/Pl* CLK*/I2 
+ AS*/PO*/12*/DS 

DS:= RESET 
+ /1NTACK*/PO* Pl* CLK*SO 
+ /1NTACK*/PO* Pl* CLK*SI 
+ 12* SO* SI* S2 
+ DS* PO* PI 

RW:= AS* SO*/SI 
+ RW*/AS 

1NTACK:= /RESET*AS*SO*SI*S2 
+ /RESET*1NTACK*/I2*Pl 
+ /RESET*I2 

/RDY := /RESET* SO*/SI* S2*/PO* PI 
+ /RESET*/SO* SI* S2*/PO* PI 

Figure 6. Source Listing for the Z-Bus to SOSS/SOS61nterface 

~ Monolithic W Memories ~ 



VME Bus Control Simplified with PLDs 

A High.Performance Bus 
The VMEbus is a high-performance asynchronous bus capable 
of supporting multiple 16- and 32-bit processors. Its asynchro­
nous nature permits easy implementation of hardware control­
lers that reduce the time required for bus control tasks such as 
bus arbitration. By offloading these tasks to hardware, bus ar­
bitration time is minimized which consequently maximizes the 
overall bus transfer rate. 

This article describes PLD implementations of two such control­
lers in a typical VMEbus system: the bus arbiter and the inter­
rupter that comply with the VMEbus protocol. These state 
machines used to require multi-chip designs consisting of se­
quencers, microprogrammed control stores, and other MSI/LSI 
chips. By using the PAL22V10 programmable array logic device, 
you can reduce substantially the number of chips needed for 
these state-machine implementations. 

Functional Modules 
A typical VMEbus-based computer system contains a bus ar­
biter and an interrupt handler board. A processor/master in­
itiates a data transfer to a slave by requesting control of the data 
bus from the bus arbiter. Once bus control has been granted to a 
master, control signals to and from the master and slave are 
exchanged which follow predefined protocols. These protocols 
guarantee an orderly transfer of data between the communicat­
ing modules. Interrupt servicing capability is provided by the 
interrupt handler board (see Figure 1). 

PROCESSOR/ 
MASTER 1 

CPU I---

_l 
ADDR/ ~ F 
DATA ~ P 

REG C 
'--r-

r r 

PROCESSOR/ 
MASTER 2 

CPU t----

i 
ADDR/ ~ F 
DATA ... P 

REG C 
-r-

r • 
VMEbus 

Steps in Designing the 
Bus Controllers 
VMEbus protocols outline the steps to perform any bus-related 
operation, such as transferring data over the bus between two 
modules. These protocols are described using flow diagrams 
with interactions between the communicating modules shown 
through various interface Signals. For example, the priority bus 
arbiter flow diagram (Figure 2) shows how bus requests be­
tween two modules using the same request line are resolved. 

The flow diagrams are analyzed to pick out the functions that 
can be incorporated into PLDs, and then state machines are 
created for these functions. These state machines can be 0 
described logically, or with flowchart symbols such as rectan-
gular blocks (to symbolize events or control signals) and deci-
sion diamonds (to determine control program flow). Logic 
equations are then written for these state machines. 

This methodical process is used in designing the two PLD­
based VMEbus controllers: the bus arbiter and interrupt handler 
controller. 

A PLD Bus Arbiter 
Before any module can perform a data transfer, it must request 
control of the data transfer bus from the bus arbiter. This design 
uses a priority option bus arbiter implemented on a single 
PAL22V10 that monitors the four bus request lines BRO-3(L) 
with BR3(L) assigned the highest priority. 

CACHE/SLAVE 

HIGH-

r: SPEED 
RAM 

, 
ADDRESS J 
DECODER 

'6 REG 

~ ~ I 

BUS 
ARBITER 

AmPAL22V10 

08749A·17 

I 

Figure 1- Intermodule Communication Through Am29PL141 (FPCs) and PLDs in a VMEbus System 

~ Monolithic m Memories ~ 2·347 



2·348 

VME Bus Control Simplified with PLDs 

LOCATED IN SLOT 2 

I MASTER B REOUESTER B I 
DRIVE (DEVICE 
WANTS BUS) HIGH 

L DETECT (DEVICE WANTS 
BUS) DRIVEN HIGH 
DRIVE mrr LOW 

I 

'-ARBITRATION- , 
, IN PROGRESS' 
-------" 

LOCATED IN SLOT 1 
I MASTER A REQUESTER A ARBITER I 
DRIVE (DEVICE 
WANTS BUS) HIGH 

DETECT (DEVICE WANTS 
BUS) DRIVEN HIGH 
DRIVE mrr LOW 

DETECT EiRT LOW 
DRIVE trnTI1r LOW 

DETECT tsmnr LOW 
DRIVE~ LOW 

I 

+1 "= ",....--_----, 
RELEASE m t 

1
----------- DRIVE (DEVICE DETECT BBSY LOW 

GRANTED BUS) HIGH DRIVE mmJf LOW 

I 
+ 

, MASTER A HAS CONTROL' 
, OF DATA TRANSFER BUS , 
~-----------~ 

DETECT (DEVICE GRANTED 
BUS) DRIVEN HIGH 

~ 
PERFOR'-C DATA TRANSFERS 

~ 
DRIVE (DEVICE WANTS 

BUS) TO LOW 

I 

DETECT mmJf HIGH 

+ DETECT (DEVICE 

~:~J:SEBUMRIVEN LOW 

~I L--__ --, 

DRIVE (DEVICE t 
GRANTED BUS) LOW DETECT 1iBSY HIGH 

DETECT (DEVICE GRANTED 

t 
DETECT (DEVICE 
GRANTED BUS) 

LOW 

DETECT (DEVICE WANTS 
BUS) DRIVEN LOW 

DRIVE (DEVICE GRANTED 
BUS) TO LOW 

RELEASE 1l1l"SV 

1 

+ 
DETECT Bciii'N LOW 
DRIVE mmmr LOW 

I 

BUS) DRIVEN LOW .... f-------.I ~ A-RBITER- WAITS FOR: 
, NEW BUS REQUESTS ----------, 

Figure 2. Bus Arbitration Flow Diagram 

~ Monolithic W Memories ~ 

+ 
DRIVE mmfr LOW 

I 



VME Bus Control Simplified with PLDs 

Based on the flow diagram (Figure 2), the arbiter grants the bus 
to the requesting module using the highest active request line, in 
this case BR1 (L). A bus grant signal is daisy-chained to all the 
devices using this request line to resolve simultaneous bus re­
quests from two or more modules. This dictates that the arbiter 
be in the first slot of the VMEbus system, and that the module 
physicall}1 closest to the arbiter through the daisy-chain will get 
the bus grant. 

All bus requests are processed in parallel by the AND-OR array 
of the PLD. This allows priority arbitration to occur in a single 
clock cycle, which minimizes arbitration time and maximizes the 
data transfer rate on the VMEbus. 

When the bus is free, the module using the highest active bus 
request line is granted the bus. This is described with Boolean 
logic notation where registered outputs are defined with ':=': 

IF (lBBSY*(BRO+BR1 +BR2 if bus not busy and a 
+BR3)) THEN BEGIN request line is active 

IF (BR3) THEN BG31N := 1; if BR3 is active, grant 
bus to device on BR3 

IF UBR3*BR2) THEN 
BG2IN:= 1; 

IF UBR3* IBR2*BR1) THEN 
BG1IN:= 1; 

activate bus grant daisy 
chain 2 

if BR1 is active and BR3 
and BR2 are not, then 
grant bus to device 
using request line 1 

IF UBR3* IBR2* IBR1*BRO) BRO-3 and BGOIN to 
THEN BGOIN := 1; BG31N are active low 

END; 

The PAL22V10 can be programmed with normal or inverted 
outputs and the logic software can support active high or low 
input polarities. 

BG1IN(L) is asserted until the requesting module asserts 
BBSY(L). This is defined in logic equation form as: 

IF (lBBSY*BG1IN) THEN 
BG1IN:= 1; 

continue asserting 
BG1'IN until BBSY 
becomes active 

Priority Arbitration Options 
It may be necessary for the arbiter to force the current bus 
master to relinquish bus control for certain conditions, such as if 
a higher priority operation must be attended to. This is done by 
asserting the bus clear signal BCLR(L) based on the priority of 
the current bus master and the bus clear conditions. 

The PLD arbiter keeps track of the current bus master's priority 
by recording which bus request line was used to gain control of 
the bus. For example, two output registers called BUS_MAS­
TER will be set to the binary value "2" if the current bus master 
used BR2(L) to gain control of the bus. 

In this design, BCLR(L) wil be activated under two conditions: 

1. If the BUS_MASTER is 2,1 or 0 and the active bus request 
line is 3 or 2 

2. If BUS_MASTER is 0, and any bus request line is active. 

When BUS_MASTER is 3, then the arbiter will not honor any 
bus requests until the bus busy line BBSY(L) is low. The above 
conditions are expressed logically as: 

IF (BBSY*(BRO+BR1 +BR2+BR3)) THEN 
BEGIN IF (BR3*UMASTER[1 :0] = 3) ) ) THEN 

BCLR := 1; "assert BCLR if MASTER < > 3" 
IF (lBR3*BR2*UMASTER[1 :0] = 3) ) ) THEN 

BCLR:= 1; 
IF (MASTER[1 :0] = 0) THEN 

BCLR:= 1; 
END; 

Once the BCLR(L) line is active, then it should be held until the 
current bus master releases BBSY(L). This is logically ex­
pressed as BCLR = BCLR*BBSY, or in a high-level syntax, 

IF (BCLR*BBSY) THEN 
BCLR:= 1; 

The BCLR(L) signal is defined such that uninterruptible devices 
use BR3(L). Devices that can be temporarily suspended to ac­
commodate interrupts and higher-priority operations are as­
signed to bus request line O. The BCLR conditions will vary with 
your application, but any modifications will only require redefini­
tions of the high-level logic expressions. 

The PAL22V10 is ideal as the bus arbiter because of the input! 
output signal requirements and the large number of product 
terms needed to logically define the bus grant and bus clear 
signals. 

Processing Interrupts 
When real-time or urgent response is needed by a processor, it 
generates an interrupt request signal and waits for the interrupt 
acknowledge Signal IACK(L) and IACKIN(L) daisy-chain signal. 
A 3-bit value is then read from the VMEbus when the data 
strobes are active; this value indicates which interrupt request 
line was acknowledged. These three-bits are decoded to deter­
mine if it matches the processor's request level. 

If the interrupt is acknowledged, then the interrupting processor 
puts its status or ID byte on the data bus for the interrupt hand­
Ier. This data is used by the interrupt handler as an interrupt 
vector. This processor can then wait in a loop until ~he IACK(L) 
signal from the interrupt handler is driven HIGH to signify inter­
rupt service completion. 

Interrupt Handling: The Interrupt 
Handler Preprocessor (lHP) 
To handle external liD or special system events (e.g., timeout, 
overflow), interrupts are supported on the VMEbus through an 
interrupt handler (IH) module. 

The logic complexity olthe IH is reduced by offloading some of the 
initial interrupt recognition tasks to a PLD. A PAL22V1 0 can be 
programmed as an IHP to preprocess interrupt requests, obtain 
the bus and handle data transfers (such as interrupt acknowledge 
signals). Control is passed to the interrupt handler only when the 
IHP latches the interrupt vector. 

Interrupt request processing, bus acquisition, and the interrupt 
vector transfer phase are all specified using logic equations 
which are written using a high-level Boolean notation. The 
PAL22V10 monitors seven interrupt request lines and five other 
control inputs, and generates ten registered outputs to send 
control signals to the interrupt handler and the VMEbus drivers. 

~ Monolithic W Memories ~ 2·349 

Ell 



VME Bus Control Simplified with PLDs 

Interrupt Logic 
All interrupt request lines are monitored according to the follow­
ing logic equation: 

IF (IR1 + IR2 + IR3 + IR4 + IR5 + IR6 + IR7) THEN 
BR3 := 1 ; this interrupt handler uses 

the BR3 request line 

If any of the interrupt lines are active, then BR3(L) is asserted. 
This initiates the bus acquisition phase. 

The next step is to wait for the bus grant in signal. Only when 
BGIN3(L) is active will BBSY(L) be active. This is expressed 
logically as: 

IF (BR3* IBG3IN) THEN 
BR3:= 1; 

IF (BR3*BG3IN + BBSY* ISERVICE_DONE) 
THEN 

BBSY := 1; 

[AJ 

[BJ 

Equation [AJ continually asserts BR3(L) as long as BG3IN(L) is 
not active, while [BJ asserts BBSY(L) only when request line 
BR3(L) and BG3IN(L) are active, or if service has not been 
completed once the IHP asserts BBSY(L). 

When the IHP is the bus master, it puts the 3-bit interrupt-line 
acknowledge value on the bus and applies the data strobes. 
When the DTACK(L) signal is received from the interrupter, the 
IHP then strobes the status byte from the bus into a register on 
the interrupt handler card. The IHP informs the interrupt handler 
that a status/lD byte is ready and to commence interrupt 
servicing. 

The IHP takes only a single clock cycle to resolve interrupt 
priorities because all interrupt/input signal lines are processed 
in parallel by the PLD. This is expressed in a logic description 
language as follows: 

IF (BBSY) THEN 
BEGIN 

(1) IF (IR7) THEN 
INTR[2:0J := 7; 

IF (lIR7*IR6) THEN 
INTR[2:0J := 6; 

IF (lIR7*(IR6*IR5) THEN 
INTR[2:0J := 5; 

IR7 was active 
3-bit value acknowledging 
interrupt line 7 
IR6 active, IR7 inactive 
acknowledge interrupt line 6 
IR5 highest priority 
interrupt line active 

(2) IF (lIR7* IIR6* IIRS* IIR4* IIR3* IIR2*IR1) THEN 
INTR[2:0J := 1 ; acknowledge interrupt line 1 

END; 

As noted above, if both the IR7(L) and BBSY(L) signal are ac­
tive in (1), then regardless of the value of the other interrupt 
lines, the three-bit value generated will be "111" or 7. In (2), if 
IR1 (L) and BBSY(L) are active and the other six control signals 
are inactive, then the three-bit output value will be "001" or 1. In 
(2), IR1 (L) is the highest priority line active. 

The remaining preprocessing involves completing the interrupt 
vector byte transfer. This is logically expressed as: 

IF (BBSY) THEN 
BEGIN 
lACK := 1; begin interrupt acknowledge 

(X) IF (DTACK) THEN daisy chain; if device sends 
LATCH_STATUS := 1; data transfer acknowledge 

END; (DTACK) signal, then latch 
IF (lACK) THEN the status 

AS := 1; assert the address strobe signal to inform 
the interrupter that the interrupt 
acknowledge level is ready 

Once the 8-bit status of 10 byte is transferred successfully via 
the DTACK(L) signal (X), the IHP PAL device informs the inter­
rupt handler module to begin the interrupt service routine: 

IF (BBSY*LATCH_STATUS +BBSY*START _SERVICE* 
ISERVICE_DONE) THEN 

START_SERVICE := 1; 

In this design, the START_SERVICE signal is constantly as­
serted until the interrupt handler generates a SERVICE_DONE 
signal, at which point START_SERVICE is brought LOW. The 
above equations will generate the timing diagram in Figure 3. 

2·350 ~ Monolithic W Memories ~ 



VME Bus Control Simplified with PLDs 

CL K( H) -+-1 -t----t-+---t--t--+--t-I---+--+--+--+---+-+--+---t--+--t---+~t__­

IR6(L) -tl-tl-tl-t-I--+---+--+---+--I--+--+--+--+--~+--~-t--+_t__+_-
IHP ISSUES ,....--_--, 
BUS REQUES~ I 

G ETBUS(H) ~r-_~---:-t~----:,-t_---=..-t _-....!...:-+ =-:-f-= -=-: +=1 ~t=t.1 =f-I~ ---\II----lI-+I-+-t--+-f--t--t--t--
~~~~~~U:~~~ 6NUT;US,JI' ~ 

DTACK(L) -t--t-I -+--t--+-+--+I--+-I -f-I -+1 ~I --11'-+1-+-1 -t--+--+-+--t--t--+---
BUS GRANT SIGNAL IS NOT DAISY·CHAINED OUT ~

BG30 UT (L) -t--t-I -+--+--+-+1 -t-I -t--+-+-+--+--+--+-f-f-f-ff-I--il--I---

BG3IN(L) ~~~~~~~~~~~:~~~I~~~~~~~~I ~~~~~~~~-
\~ ___ ~~/r---------------------------

B R3(L) -+--+-1---+1-+--11--+-1 -t--+--+--II-I-I -t-I -+1--+-1 --111--+-t--t--+--tf--
SERVICE DONE SIGNAL FORCES

IHP TO -RELEASE 1i8SY SIGNAL ~

BBSY(L) -+---+--+--+--+---+--+-+-+--+---+--~4--+--+--~-+--+---+i:-I--+--+--

INTR[2:0](H) -+--+-+-+--t--+-+-\-t---f--+-~+---+--l--+--+--t---tJI---1t---f--t--

IACK(L) -+--+--+-+---f--+--+-+---f--+--~-+---+--l---~-+---+--+--II-+--f--+--

AS(L) -I---+--I--+-+---+--+-+---+-I-f-I --11--+1 --+-1 -+I--+---+--+-+--+-+---+--
LATCH STATUSIID BYTE ~ ~'-____ _

08749A·19

Figure 3. Timing Diagram

Controller Design Simplified
with Development Tools
The task of programming FPCs and PLDs as VMEbus control­
lers is simplified with the development tools. The designer need

only analyze the bus protocols, convert these into state ma­
chines and then write assembly language programs or high­
level logic equations to describe these state machines. The
assembler and logic software will then process these programs
and equations to fit into the FPC or PLD.

~ Monolithic m Memories ~ 2·351

tI)

l.J en
tI)

~
f
::z
2-
~
~ a

~
~
~
:t

= tJ

DEVICE ARBITER (AMPAL22Vl0) "VMEbus Priority Arbiter Option

For this application, if the bus is busy, then bus requests will be

deferred unti l the BBSY(L) (bus pusy line active LO\I) goes HIGH,

unless the bus request is of a higher priority. In this case, the

bus clear signal BCLR(l) is asserted and the current bus master

relinquishes control. If the bus is free and 2 or more masters

request service, then the bus is granted to the master with the

higher priority request line. "

PIN CLI' = 1

IBBSY = 2

IBRO = 3

IBR1 = 4

IBR2 = 5

IBR3 = 6

IBCLR = 23

IBGOIN = 22

IBG1IN = 21

IBG21N = 20

IBG31N = 19

IlASTER[1:0] = 18,17;

BEGIN
"if a bus request occured and bus = free, then activate the bus grant in

line corresponding to the highest priority bus request line

IF (/BBSY*(BRO+BR1+BR2+BR3» THEN

BEGIN

IF (BR3) THEN

BG31N := 1 ;

IF (/BR3*BR2) THEN

BG21N := 1 ;

IF (fBR3*/BR2*BR1) THEN

BG1IN := 1 ;
IF (fBR3* IBR2* IBR1 *BRO) THEN

BGOIN := 1 ;

END;

"while the bus grant in line is active and the bus is still busy,

then latch the bus grant signals until BBSY(l) becomes active"

IF (BG3IN*/BBSY) THEN

BG31N := 1 ;

IF (BG21 N* IBBSY) THEN

BG21N := 1 :

IF (BG1iN*/BBSy) THEN

BG1iN := 1 :

IF (BGOIN*/BBSY) THEN

BGOIN := 1 :

IF (BG3IN*BBSY) THEN

HASTEP.[1:0] := 3 ;

" when requester responds with BBSY active, then"

" HASTER is set to the Ii ne currently control Ii 09"

IF (BG2IN*BBSy) THEN "the bus: this is used internally for future

HASTER[1:0] := 2; "bus priority resolution

IF (BG1IN*BBSy) THEN

HASTER[1:0] := 1 :

IF (BGO I N*BBSY) THEN

HASTER[1:0] := 0 :

IF (BBSY) THEN "when bus busy, then remenber current bus master line"

HASTER [1 :0] := HASTER [1 :0] ;

"if a higher priority bus request occurs and the bus is busy, then begin

bus resolution (by using bus clear BCLR) under the following conditions

• if BR3 and present bus master is not using bus line 3: i.e., once a device

uses BR3, then no one can force it to rel inqui sh the bus or

if BR2 and present bus master is not 3: i.e., BR2 can assert bus clear

except when the presetn bus master obtained the bus using bus line 3 or

if BR1 and the bus master obtained the bus using bus request line 0, then

assert BCLR

==> if BRO is act i vated when the bus is busy, then do not assert BCLR: BRO

devices cannot force anyone off the bus. This is one possible priority

implementat ion.

IF (BBSY*(BRD+BR1+BR2+BR3» THEN "if a bus request occured and bus = busy"

BEGIN

IF (BR3*(lHASTER[1]+/HASTER[0] » THEN "if BR3 and present master is not"

BEGIN

BCLR := 1 ;

IF (BCLR*BBSY) THEN

BCLR := 1:

END:

" us i n9 line 3, then assert BCLR "

Figure 4. PLPL Specifications for the Example of Figure 1

<
I:
m
ED c
en
n o
:::I ..
~
en
3'
'2.
::;:
(D'
a.
~
:.
::r'

" r-
ei
en

VME Bus Control Simplified with PLDs

IF (fBR3*BR2*(fMASTER [1] +/MASTER [0]» THEN

BEGIN

BCLR := 1 ;

IF (BCLR*BBSY) THEN

BClR := 1;

END;

IF (fBR3* IBR2*BR1 * IMASTER [1] * IMASTER [0]) THEN

BEGIN

BCLR := 1 ;

IF (BClR*BBSY) THEN

BClR := 1;

END;

END;

END.

"Test vectors used for sirwlation and testing"

TEST_VECTORS

IN ClK, IBBSY , IBRO , IBR1 , IBR2 , IBR3 ;

OUT IBClR , IBGOIN , IBG1 IN , IBG2IN , IBG3IN , MASTER [1 :0]

BEGIN

I I I I I
"cbbbbb

"lsrrrr
'! kyO 1 2 3

I I I I I
bbbbbmm"

c 9 9 g g s s"
r 0 1 2 3 1 0"

11 ___________ .. __ • __ ... __ ... _____ 11

C 1 0 1 XXXXXXX;

C 0 1 111 XXXXXXX;

C 1 1 11 1 XXXXXXX;

C 1 1 o 0 1 XXXXXXX;

C 0 1 111 XXXXXXX;

C 0 1 XXXXXXX;

C 0 1 XXXXXXX;

C 0 1 XXXXXXX;

C 1 1 XXXXXXX;

C 1 XXXXXXX;

C 1 XXXXXXX;

C 0 XXXXXXX;

COO 1 XXXXXXX

COO 1 XXXXXXX;

C 0 1 0 1 XXXXXXX;

C 0 XXXXXXX;

C 0 1 1 0 XXXXXXX;

END.

Figure 4. PLPL Specifications for the Example of Figure 1 (Cont'd.)

~ Monolithic W Memories ~ 2·353

~
(.)
en
~

~
I
i ::::
~ cr
~
~ a
~
CD" •
~

Dli,VICE INTR_HND_CTRLR (AHPAL22V10) " VHEbus interrupt handler preprocessor

This PAL serves as an interface between the interrupt servicing logic in the

interrupt handler and the bus arbiter-: when an interrupt is detected, the
PAL requests the bus fran the arbi ter. When the bus is granted, the bus

busy BBSY(L) is asserted. The 3 bit code corresponding to the highest

priority interrupt request is put on the bus, and both IACK(L) and AS(L)

are also asserted. The PAL wai ts for DTACK(L) LOll and then latches the

status/ID byte. The START_SERVICE signal informs the interrupt handler

to begin the interrupt service sequence wi th the status/lD byte latched in.

Note: this interrupt handler interface PAL handles all interrupts using

bus request line BR3; this is appl ication-dependent "

PIN

CLK = 1
/IR1 = 2
/IR2 = 3
/IR3 = 4
/IR4 = 5
/IR5 = 6
/IR6 = 7

/IR7 = 8
/DTACK = 9

/BG3IN = 10

SERVICE_DONE = 13

"interrupt request lines 1 to highest priority 7"

"data transfer ack; used by interrupter to indicate

status/lD data byte ready on bus "

"bus grant in signal fran arbiter"

"signal fran interrupt handler indicating

service canplete"

LATCH_STATUS = 23 "latches data fran bus for interrupt service routine"

/BBSY = 22 "bus busy"
/IACK = 21 "interrupt acknowledge"

/AS = 20 "address strobe"
/BR3 = 19 "bus request signal to bus arbiter"

GET_BUS = 18 "used internally by PAL"

INTR [2:0] = 15: 17 "3-bi t level code put on bus
START_SERVICE = 14; "sent fran PAL to intr handler"

BEGIN

"if any interrupt request line is active, then try getting the bus. All the

interrupts handled by this PAL will use the bus request line BR3_ A

request can occur only when no other interrupt is being serviced (i.e.,

bus should not be busy and bus grant in should not be active) II

IF (JBBSY*/BG3IN*(lR1 + IR2 + IR3 + IR4 + IR5 + IR6 + IR7» THEN
BEGIN

GET_BUS := 1 ;

BR3 := 1 "subject to application"

END;

"if interrupt handler wants the bus, the bus grant line is still inactive,

and the interrupt request is still active, then continue requesting the bus II

IF (GET_BUS*BR3*/BG3IN*(lR1 + IR2 + IR3 + IR4 + IR5 + IR6 + IR7» THEN

BEGIN

BR3 := 1 ;

GET_BUS := GET_BUS

END;

"if bus grant in line is active, then assert the bus busy signal"

IF (GET_BUS*BG3IN + BBSY*/SERVICE_DONE) THEN

SBSY := 'j ;

"if interrupt handler received bus, then ack.nowledge the interrupt"
IF (BBSY) THEN

BEGIN
IF (JSTART_SERVICE) THEN

lACK := 1 ;
IF (DTACK) THEN

LATCH_STATUS :=

IF- (lR?) THEN

"when the interrupter responds with DTACK(L), then "

"latch the status/ID byte into the interrupt handler"

INTR [2:0] := 7 ;

IF (JIR7*IR6) THEN

"IR7 line is highest prioritY"

INTR [2:0] := 6 ;
IF (JIR7*/IR6*IR5) THEN

INTR [2:0] := 5 ;

IF (JIR7*/IR6*/IR5*IR4) THEN
INTR [2:0] := 4 ;

IF (JIR7*/IR6*/IR5*/IR4*IR3) THEN

INTR [2:0] := 3 ;

IF (JIR7*/IR6*/IR5*/IR4*/IR3*IR2) THEN

INTR [2:0] := 2 ;
IF (JIR7*/IR6*/IR5*/IR4*/IR3*/IR2*IR1) THEN

INTR[2:0] := 1 ; "IR1 line is lowest prioritY"

END;

Figure 5. PLPL Specifications for the Example of Figure 1

<
I:
III
ED c
en
n o
::I ..
2-
fA
3'
"2-
~
C;.
Q.

~
::;:
:::r
"'D
r-
i

VME Bus Control Simplified with PLDs

IF (IACK*/AS + IACK*/DTACK) THEN

INTR[2:0] := INTR[2:0] ;

"hold the interrupt acknowledge level unti l"

"strobed by address strobe signal or until

the interrupter acknowledges the 3·bit

level with DTACK

"if the lACK line is active and interrupt servicing has not yet begun

activate the address strobe line AS II

IF (IACK*/START_SERVICE) THEN

AS := 1 ;

"send the start service signal unti l service is done"
IF (BBSY*LATCH_STATUS + BBSY*START_SERVICE*/SERVICE-DONE) THEN

START_SERVICE := 1 ;

END.

TEST_VECTORS
IN ClK, /IR1 , /IR2 , /IR3 , /lR4 , /IRS, IIR6 I IIR7 ,

IDTACK , IBG31N , SERVICE_DONE;
OUT START_SERVICE, GET_BUS, INTR[2:0] , lATCH_STATUS

lAS, IIACK , IBBSY , IBR3 ;

BEGIN

"CIIIIIIIII SGIIILIIII"

"lIIIIIIIDB R RENNNTAIBB"
"KRRRRRRRTG V VTTTTCSABR"

1234567A3 CBRRRH CS3"
CI N EU210 KY

______ K_N_E_I __ S ______ _

1011110 XXXXXXXXXX

C 1

C 1
C 1

1 1 0 1
1 1 1 0 1

C 1 1 1

C 1 1 1 1 1

C 1 1

C 1 1 1

C 1 1 1

END.

1 1 0 XXXXXXXXXX

11 XXXXXXXXXX

XXXXXXXXXX

11 XXXXXXXXXX

11 XXXXXXXXXX

1 0 1 XXXXXXXXXX

1 1 XXXXXXXXXX

1 X X.X X X X X X X X

11 XXXXXXXXXX

11 XXXXXXXXXX

Figure 5. PLPL Specifications for the Example of Figure 1 (Cont'd.)

~ lfIIonolithic W lfIIemories ~

Ell

2·355

Notes

2·356 ~ Monolithic m Memories 11

Communications

Introduction to Communication
Systems

Modern communications has developed from two major sources:
telephones and computers. Within telephony, what was once
straightforward engineering in the analog telephone system has
grown over 100 years into the sophisticated discipline of telecom.
Within computers, communication needs have expanded rapidly
over the last 20 years from simple asynchronous terminals
clustered around a hostto also include networking of pes, work­
stations and minicomputers across rooms and continents. Both
areas can be expected to merge into complex information net­
works which handle all aspects of communications over the next
10-20 years. A graphic portrayal of a hypothetical future system
is shown in Figure 1.

Historically, the system architecture, engineering and compo­
nents of these two converging areas have been dissimilar. As

T r;;l
MEDIUM /L:..:J

~ SPEED
~CSMA/CD

BUS ~

MANUFACTURING

aQ
MEDIUM IvZl- SPEED ___ ~

~TOKEN
BUS

EYe]
W/S:WORK STATION

I/C: INDUSTRIAL CONTROLLER
PC: PERSONAL COMPUTER
D/B: DATABASE

408 1

LOW
SPEED

CSMA/CD
STAR

I ~
ENGINEERING

ADMINISTRATION

telephony systems become digital-based and computer systems
use more of the telephony system for interaction, this dissim ilarity
is eroding. In particular, digital design techniques developed in
computer engineering are used increasingly in telecom. The
original application was in the trunk links between exchanges
where digital time division multiplexing allowed a much higher
density of circuits over a given pair of wires. This spread into the
switch, line card and other areas of the exchange until only the
subscriber line to the exchange remains largely analog. Develop­
ment of the Integrated Services Digital Network (ISDN) interna­
tional standard will make this digital as well, enabling data and
video as well as voice to be handled in a uniform and flexible
manner. Future telecom engineering will therefore have much in
common with the digital design techniques used in computers
and the distinction between them will become minimal.

ANALOG

D
PBX I

G

T1
LINKS I-I----Ia

CENTRAL
OFFICE

T1
LINK

1

PUBLIC
TELEPHONY

PRIVATE
TELEPHONY

Figure 1. Communications in the Nineties

~ Monollthlo m Memories ~ 2·357

Communications

Along with the strong trend in equipment design towards digital
systems, there is a parallel move towards a more global market
for equipment. The development costs for major pieces of tele­
com systems, such as central office switches, require a large
market in order to amortize the costs. This implies a requirement
for standards beyond national boundaries, permitting sales into
foreign markets with minimum engineering changes. This in­
creased market size on top of increased complexity of services is
realizable only through widespread standardization. It also
makes such a universal system more complex and therefore
more elusive.

The computer area has evolved around a number of proprietary
computer families whose architectures and operating systems
were incompatible to a large degree. The need to interconnect
multiple computer systems with high-speed links led to a polari­
zation around proprietary standards as local area network (LAN)
interconnect standards were evolved by each major manufac­
turer. Recent moves towards decentralized computing, based on
personal workstations of varying power, has crystallized users
around a few LAN standards, but the dream of universal LAN
interconnectivity among equipment is still far off.

Communications therefore requires widespread standards for
any meaningful inter-vendor or international operation. Teleph­
ony is the more advanced in this area. Standards efforts by the
Bell system in the US and the local PTT (the governmental Post,
Telephone and Telegraphy authority) in other industrial countries
has ensured that any equipment which connects to the public
telephone network operates fully with any other piece of equip­
ment.

The main international body which regulates that is the CCITT
(Consultative Committee forTelephony and Telegraphy) through
a series of "recommendations", which are effectively standards.
In the USA, before deregulation, AT&T published technical stan­
dards or "Bell Pubs"which specified the operating characteristics
for equipment in a manner similar to and sometimes based on the
CCITT recommendations. Since deregulation, AT&T continues
to issue such documents as it pertains to their equipment and the
RBOCs (Regional Bell Operating Companies) now issue their
own either directly or through their joint research organization,
BeliCoRe (Bell Communications Research).

Despite strenuous efforts among governing bodies, problems of
compatibility have existed. Deregulation, the increase in the
number of suppliers, international traffic and equipment sales,
and most of all, the massive increase in equipment complexity
have led to a growing demand for flexibility within telecom
systems to handle compatibility issues. Fully compatible systems
on a global scale remain an unrealistic goal before the billenium.
Most systems are variants on a few widespread standards. The
small deviations among manufacturers or countries can fre­
quently be handled by a minimal amount of flexibility in the
system design, such as that provided by PLDs.

The situation on the computing side remains even more chaotic.
Other than IBM, no vendor has managed to establish a wide­
spread standard based on their own proprietary network. All
others have turned to variants of the newer LAN standards, such
as Ethernet, but even here, compatibility at the hardware levels
does not necessarily mean compatibility at the upper or software
levels.

Features of Programmable Logic
in Communications

Programmable logic has already demonstrated its usefulness in
computer systems in a variety of roles, including address decod­
ing, state machines and "garbage collection". All these applica­
tions exist in communications, but others particular to this market
also exist.

The problems of interconnecting dissimilar systems will remain in
communications for a number of years. Equipment manufactur­
ers are therefore faced with a dilemma of how to combine the
economies of scale associated with volume production with the
need to interface with multiple vendor equipment, some of which
deviates from the standards. PLDs offer a unique method of
customizing logic to conform to deviations while maintaining
identical hardware layout and parts.

Power and space requirements are considerations in most
computer systems, but normally are relegated to being secon­
dary issues when compared to performance. The opposite is true
of telephony, where these factors assume paramount importance
over speed. In order to satisfy requirements from both areas,
components must therefore be available in both high-speed and
low-power versions.

In telephony, certain high-volume functions such as line card
interfaces justify VLSI devices. But a large number of other lower­
volume functions differ among equipment vendors and applica­
tions. Such design problems cannot be easily solved with ·dedi­
cated VLSI components. With the introduction of CMOS PLDs,an
opportunity now exists to combine higher integration with low
power and the ability to modify designs without hardware compo­
nent or board alteration.

In computers, the proliferation of decentralized computing power,
particularly in the form of PCs and workstations, has brought the
power issue into focus as engineers attempt to minimize power
consumption and the associated heat generation. While minis
and mainframes continue to strive for increased speed, the bulk
of applications now have a need for both lower-power compo­
nents and a flexibility which permits each unit to communicate
with as many of the office automation interconnection schemes
as possible. Again, the advent of CMOS PLDs offers a solution to
the system design problems associated with this.

Basic Telephony

Basic telephony is loosely defined as the classic telephone
system. It includes such major components as the voice tele­
phone with twisted pair interface to the exchange, as well as the
Private Branch Exchange (PBX), the Central Office (CO) and the
trunk lines which interconnect them. The voice telephone has little
scope for PLDs due to high volume and extremely low cost
requirements. From an architecture point of view, both the PBX
and the CO can be considered similar and divided into several
main components:

• The line cards which interface to subscriber lines
• The central switching facility which routes calls through the

exchange
• The trunk interface which connects to other exchanges

2·358 ~ Monolithic mMemorles ~

Communications

A simplified structure of a PBX is shown in Figure 2.

4082

~
w
:::E a.
5
@

~
w
it
a: w
a.

CENTRAL READ MAGNETIC TELETYPE PROCESSING WRITE TAPE WRITER UNIT (CPU) MEMORY UNIT

~ r w

I :::E COMMON CONTROL BUS a.
5
0 i. ~ i. ~ i.). J.). W

~

IT:
NETWORK SWITCHING BUS :::E

8
V "I; >' ~ '7' ~ .,.

NETWORK NETWORK
CIRCUIT NETWORK CIRCUIT NETWORK

(UPT012 CIRCUIT (UPT04 CIRCUIT
FOR TRAFFIC) SERVICES)

MULTIPLEX 1
LOOP

MULTIPLEX MULTIPLEX MULTIPLEX
LOOP LOOP LOOP

SERVICE
CIRCUITS

-------- ---------------- --------------- -------
PERI- UPT010 PERI- PERI-
PHERAL LINE OR PHERAL PHERAL
SHELF PERIPHERAL TRUNK SHELF PERIPHERAL SHELF PERIPHERAL
~UP BUFFER CIRCUITS BUFFER BUFFER
04PER PER

MULTI- SHELF
PLEX
LOOP)

I I II I I I IIIIIII II J 1/ I I I
LINE TRUNK ANALOG TRUNK DIGITAL TRUNK

CIRCUIT CIRCUIT LINE CIRCUIT LINE CIRCUIT CIRCUIT CIRCUIT PACK PACK PACK PACK PACK PACK

I I I I I I

---~~~~---~~-------~~~~---~~-------~~~~---~~---
2 PAIRS CENTRAL OFFICE

TRUNKS
(UPT02PER

TRUNK CIRCUIT
PACK)

1 PAIR

ANALOG
PHONE
SETS

CENTRAL
OFFICE
TRUNKS

Figure 2. PBX Architecture Example

~ Monolithic m Memories ~

4 PAIRS

DIGITAL
PHONE
SETS

CENTRAL
OFFICE
TRUNKS

--,

--'

2·359

Communications

Line cards are the most cost- and power-sensitive components of
the basic telephony system. They are usually fabricated in
volume and incorporate VLSI devices available from several
semiconductor houses. The scope for PLDs is limited, due to
these constraints and the limited customization needs of the
simpler functions of the voice telephone.

The central switch in modern PBX and CO exchanges is a digital
memory-based system controlled by a minicomputer. As such, it
contains many familiar opportunities for PLD applications from
the computer industry, but a limited number that are distinctly
communication-oriented.

The trunk interface is an area that received little attention until
recently as the interface was buried in the heart of the telephony
system. Its moderate unit volume attracted little interest in dedi­
cated silicon development. Deregulation of the Bell system in the
US has resulted in a proliferation of equipment complying with the
widespread T1 standard developed by AT& Tfor Multiplexers and
other Channel Service Units (CSUs) which use trunk links.

From its beginnings as a means of allowing several voice circuits
to share the same cable, T1, has developed in application to the
stage where it is being used in many cases where up to 24 x 64
Kb/sec channels are required in a point-to-point configuration
both within and between isolated customer sites. This application
allows data and video, as well as the original voice connections,
to be multiplexed over existing standardized links provided by
both AT& T and the RBOCs. It is one of the fastest growing areas

TRANSMIT

of modern telecom and is spawning related equipment such as T1
switching nodes and T1 testers.

The basic interface to the T1 connection can be engineered in a
number of ways but basically consists of a transmit and receive
section, as shown in Figure 3.

The transmit section of a T1 mux must buffer and rate-adapt the
bit stream of incoming channels which are to be multiplexed,
perform a 24-to-1 multiplex function and then encode the result­
ing bits with appropriate framing onto the line using a bipolar line
driver. The receive section of a mux contains a corresponding line
receiver and decoder. The recovered NRZI data is then fed into
a deframer which detects frame synchronization and allows
channel demultiplexing and buffering.

Several of these functions can be efficiently implemented using
programmable logic. The encoder and decoder for both the North
American T1 B8ZS and the European HDB3 coding schemes can
be implemented in such devices (pages 2-362 and 2-384, respec­
tively). The deframing problem for the most common current T1
framing scheme (D4 Superframes) can also be solved with a few
PAL devices (page 2-404). In the newer T1 Extended Super­
Frame (ESF) standard, an error detection scheme is superim­
posed on the framing bit pattern using a CRC-6 scheme. The
CRC generator for this fits nicely within a single PAL device (page
2-431).

Two applications are also shown for the LCA (Logic Cell Array)
device. Page 2-435 shows a 32:1 mux for a T1 link, and page
2-444 shows a format converter for a PBX.

RECEIVE

DATA
INPUTS

--~~--------~
SIGNALING ---+-------.....

EFFECTIVELY
LIMITLESS
DISTANCE

DATA

SIGNALING

CLOCK

CLOCK

~ ________ R_E_C_EI_V_E ________ ~~ ~~ ________ T_R_A_N_S_M_IT ________ ~
4083

Figure 3. Basic T1 Connection

2·360 ~ Monolithic W Memories ~

Communications

Data Communications

Unlike telephony, data communications is a relatively new disci­
pline and equipment designed to interconnect data processing
equipment evolved in parallel with mainframe computers. Such
equipmenttends to be high-speed and less concerned with power
requirements than telephony equipment. Its main function is to
transmit binary data in a reliable manner across a room or across
a continent between computers compatible enough to exchange
data. Awide variety of methods exist to do this at speeds ranging
from 300 bits per second to 100,000,000 bits per second. As
distance increases, the speed options available become limited.
Generally, the options can be considered in a number of catego­
ries, in order of increasing speed, cost and sophistication:

• Asynchronous terminals and connections using existing
analog phone lines

• Synchronous terminals and dedicated data links
• High-speed point-to-point links, including microwave and

satellite
• Multipoint, medium-speed local area networks
• Multipoint backbone, high-speed local area networks

The slowest and most widely available category includes most
"dumb" terminals, which are normally linked to a host system
either directly via an RS-232CIV.24 serial link or over a standard
telephone line via a voiceband modem. Maximum data rates
available are 9600 bits/sec and the typical modem rates are
currently 300 and 1200 baud. Devices used in building either type
of link are typically LSI low-cost NMOS devices with most new
devices being VLSI CMOS. Where PAL devices offer the greatest
advantage is in higher-performance applications for which VLSI
solutions do not yet exist.

There are, however, a number of additional control functions
required around standard UART/USARTs which can be optimally
implemented in a single PAL device, such as providing address
latching and an asynchronous divider around a Motorola 6850
Asynchronous Communications Interface Adapter (page 2-453).

In the case of modems, however, several highly sophisticated
techniques beyond that found in the standard modem "box" can
be used to improve throughput on the link. One technique used
to increase the bit rate across the link both in the slow, voiceband
modems and in the higher-speed satellite modems is Quadrature
Amplitude Modulation (QAM). Another technique uses a convo­
lutional encoding scheme to increase the reliability of data trans­
mitted across a noisy link. This cuts down the requirement for
retransmission of lost data and effectively increases the through­
put of the link.

Both schemes can be implemented efficiently in PAL devices as
described in the application notes on pages 2-456 and 2-463.

Synchronous terminal links usually comply with one of a number
of standards for which low-cost LSI devices exist. These provide
for data rates above that of async links and generally can perform
upto 1 MbiVsec and beyond, but only over a limited distance, such
as within a building. Data rates above 2400 baud over long
distances are currently expensive and limited in popularity.

One scheme which is expected to overcome this and gain wide
application over the coming years is the provision of 64Kbit/sec
data across the new digital telephone system which will be
available on the international Integrated Services Digital Network
(ISDN) "S" and "U· interfaces to the phone line. This is a standard
to which virtually every telephony authority and a large number of
major computer manufacturers have given their support. Among
the difficulties which will be encountered is the problem of
adapting existing terminal devices to communicate with the wave
of VLSI CMOS devices which are being released for use on the
ISDN "S· and "U· interface link.

The "S" interface is being addressed by a number of VLSI
solutions. The recently standardized "U" interface has no such
devices and has an additional encoding/decoding requirement
similar to trunk lines, due to the longer distances involved to the
central office. A4B3T coding scheme is used, which can be im­
plemented using PLDs, as shown in the application note on page
2-475.

Further applications in data communications can be found in
LANs. While several VLSI chip sets exist for standards such as
Ethernet, a number of proprietary systems are in use and their
numbers are increasing steadily. Some of the more basic func­
tions required in the LAN interface, such as the Manchester
encoding function of Ethernet, can be provided in a single PAL
device (page 2-499).

Conclusion

The opportunities for the use of PLDs in communications is
widespread and is becoming increasingly important forthefollow­
ing reasons:

• Power and space limitations.
• Increasing adherence to mUltiple standards, yet the need

for ...
• Standardized hardware to permit low-cost

volume production.
• Need to reconfigure equipment in the field

at the minimum overhead.

Where speed is an issue, the broad range of fast bipolar PAL
devices provides a range of solutions. But in the more recent trend
towards low-power circuitry, the need for which is most apparent
in equipment such as in fan less or portable personal computers,
The family of low-power CMOS devices provides the same func­
tionality at a fraction of the power budget.

~ Monolithic W Memories ~ 2·361

EJI

B8ZS Coding
Using CMOS ZPALTM Devices AN-169

8ipolar with eight zero substitution (88ZS) coding provides
clear channel capability, which is required in an Integrated
Service Digital Network (ISDN) or an open network. A (88ZS)
encoder and decoder can be implemented in CMOS PAL
devices. The encoder and decoder convert between non­
return-to-zero (NRZ) data and 88ZS while providing a flexible
interface to framing chips.

Principles of Coding
Communication lines require a data stream with imbedded
clocking information. T1 digital communication lines transmit
Alternate Mark Inversion (AMI) coded voice and data. For AMI,
logic "1's" are encoded as alternating positive and negative
pulses, while logic "D's" are encoded as zero voltage. This
coding scheme ensures that consecutive pulses alternate in
polarity. The pulse edges provide the clocking. A pair of
consecutive pulses with the same polarity is called a bipolar
violation.

Since a string of zeros in AMI coding does not contain any
transitions, a clock cannot be derived. If this string of D's is
too long, the system will lose synchronization. Therefore, the
AT&T T1 standard limits the maximum number of consecutive
D's to fifteen. For voice transmission this restriction is
acceptable; however, for data it is not. A variation of AMI could
provide clocking information while not restricting user data.

88ZS coding is such an improvement on the AMI code; logic
"1 's" are encoded as alternating positive and negative pulses,
while logic "D's" are encoded as zero voltage. Additionally,
88ZS substitutes a string of eight D's with a code word as
shown in Table 1. The polarity of the preceding pulse
determines which 88ZS code word is substituted. The 88ZS
code words contain bipolar violations in the fourth and seventh
bit positions.

Since 88ZS coding allows strings of D's for any length, it
supplies clear channel capability. Clear channel capability is
required for an open network and ISDN. With 88ZS coding, the
maximum length of consecutive zeros is seven bits.

PRECEDING PULSE B8ZS CODE WORDS

+ 000+-0-+

- 000-+0+-

Table 1. B8ZS Coding

88ZS coding is used in the following applications:

• T1 multiplexers

• T1 repeaters

• T1 channel banks

• T1 network equipment

.. Video CODECs

Functional Description
Implementing 88ZS coding in such equipment requires
converting between NRZ and 88ZS format. In this design,
CMOS PAL devices encode and decode data while providing
flexibility. Current single chip solutions do not interface to all
framing devices. Using the PAL devices, 88ZS line coding can
be added to any framing technique. This design performs two
operations: encoding and decoding. The encoding operation
converts NRZ data into positive and negative pulses with 88ZS
code words. Decoding converts the positive and negative
pulses into NRZ data and substitutes eight D's for the 88ZS
code words shown in Table 1.

B8ZS Encoder
The 88ZS encoder converts NRZ data to 88ZS data. Each
string of eight consecutive D's is replaced with a 88ZS code
word.

Two PAL devices can be configurated to encode the data
stream. Figure 1 shows the PAL devices, designated, PAL_A
and PAL_8. Signals on Figure 1 are explained in Table 2.
PAL_A, a PALC16R8Z, implements the 3-bit counter, which
searches for strings of eight D's. An 8-bit string of D's is
detected by C2-CO and NRZ_IN. PAL_A also incorporates a
5-stage shift register, which delays the NRZ_IN data stream to
ensure proper alignment with the counter's output. The
delayed data, NRZ_DELAY, is encoded by PAL_8.

PIN DESCRIPTION

RST Active low master reset

NRLCK External NRZ clock

NRLIN NRZ input data stream

C(2-0) Counter output

NRLDELAY Delay NRZ data stream

CS Current state

PPO Positive pulse output

NPO Negative pulse output

Table 2. B8ZS Encoder Pin Description

2·362 ~ Monolithic W Memories ~

B8ZS Coding

PAL A
PALC16R8Z

RST
C2

C1

NRZ IN
CO

R3

R2

NRZ_O< R1

RO

Figure 1. 88ZS Encoder

PAL_B, a PALC16R6Z, encodes the data using two state
machines; one generates the B8ZS sequence, and the other
generates the positive and negative pulse outputs. Figure 2a
shows the B8ZS Sequence State Machine, which generates
the B8ZS sequence. If an 8-bit string of O's is detected, the
B8ZS Sequence State Machine forces the B8ZS code word to

be encoded. Otherwise, B8ZS Encoder State Machine
performs normal AMI-type encoding. The 88ZS Encoder State
Machine encodes NRZ_DELAY into positive and negative
pulses based on the 88ZS Sequence states, 02-00 (see
Figure 2b). The positive and negative pulses (PPO and NPO) ~
occur six clock cycles after the input NRZJN. ~

C2*C1*CO*NRZJN

Figure 2a. 88ZS Sequence State Machine

O1*QO

Figure 2b. 88ZS Encoding State Machine

~ Monolithic m Memories ~ 2·363

B8ZS Coding

B8ZS Decoder
PIN DESCRIPTION

RST Active low master reset

TLCK External T1 clock

PPI Positive pulse input

NPI Negative pulse input

DATA NRZ data stream

NRZ_OUT NRZ output data stream

B8ZS B8ZS flag

BPV BPV (Bipolar Violation) flag

Decoding is performed by a PALC16R6Z and a shift register
(see Figure 3). The PAL device searches for incoming B8ZS
code words. When a B8ZS code word is detected, the PAL
device substitutes an 8-bit string of O's. The output, NRZ_OUT,
is delayed eight clock cycles from the positive and negative
pulse inputs (PPI and NPI). The device flags the B8ZS code
words and any bipolar violations. If two bipolar violations occur
in a non-B8ZS 8-bit data string, the device will only flag a single
bipolar violation. The B8ZS Decoding State Machine shown in
Figure 4 searches for the two B8ZS code words. The state
machine has two groups of states; SN(0-7) searches for
000-+0+- and SP(0-7) searches for 000+-0-+. The decoder's
state machine shows reduced equations from the B8ZS and
BPV (Bipolar Violation) outputs. Note: PPI and NPI are never
both HIGH. Table 3. B8ZS Decoder Pin Description

2·364

RST~

PPI~

NPI-

PALC16R6Z

R3

R2

R1

RD

I------BPV

Figure 3. B8ZS Decoder

~ Monolithic m Memories ~

NRZ_OUT

=

PPI'NPI

ppj'NPI

ppj'NPI

ppj'NPI

PPI'NPI

PPI'NPI

PPI'NPI

B8ZS Coding

PPI'NPI

PPI'NPI

PPI'NPI

PPI'NPI

PPI'NPI

PPI'NPj

PPI'NPI

PPI'NPI

Figure 4. 88ZS Decoder State Machine

l1 Monolithic W Memories 11

Ell

2·365

TITLE PAL A
PATTERN B8ZS ENCODER PAL A
REVISION 1.02
AUTHOR THERESA SHAFER
COMPANY MMI
DATE 6/6/87

CHIP PAL_A PAL16R8

;PINS
;1 2 3 4
NRZ_CK /RST NRZ_IN NC

;11 12 13 14
JOE CO C1 C2

B8ZS Coding

5 6
NC NC

15 16
NRZ_DELAY R3

INPUTS: EXTERNAL CLOCK

7
NC

17
R2

NRZ CK
/OE-
/RST

ACTIVE LOW OUTPUT ENABLE SIGNAL
ACTIVE LOW MASTER RESET SIGNAL

8
NC

18
R1

NRZ_IN SERIAL NRZ DATA STREAM WHICH IS ENCODED
AND TRANSMITTED

OUTPUTS:

EQUATIONS

NRZ_DELAY
C2 - CO

DELAY NRZ DATA WHICH IS INPUT FOR PAL B
COUNTER OUTPUTS (111) INDICATES

AN 8 - BIT STREAM OF ALL ZEROS

; 3-BIT COUNTER WITH SYNCHRONOUS RESET AND ENABLE

/C2 .- C2 * C1 * CO
+ /C2 * /C1
+ /C2 * /CO
+ RST
+ NRZ_IN

/C1 := /C1 * /CO
+ C1 * CO
+ RST
+ NRZ_IN

/CO .- CO
+ RST
+ NRZ_IN

5-STAGE PIPELINE DELAY

/NRZ_DELAY := /R3 + RST

/R3 := /R2 + RST

/R2 := /Rl + RST

/R1 := /RO + RST

/RO .- /NRZ_IN + RST

2·366

MASTER RESET
CLEAR COUNTER WHEN NRZ_IN 1

MASTER RESET
CLEAR COUNTER WHEN NRZ_IN 1

MASTER RESET
CLEAR COUNTER WHEN NRZ_IN 1

l1 Monolithic m Memories ~

9
NC

19
~O

GND
20
VCC

B8ZS Coding

SIMULATION

TRACE_ON NRZ_CK JOE /RST NRZ_IN
C2 Cl CO NRZ_DELAY R3 R2 Rl RO

SETF OE
RST

CLOCKF NRZ_CK

SETF NRZ IN
/RST

CLOCKF NRZ_CK

SETF /NRZ_IN
FOR J:= 0 TO 8 DO

BEGIN
CLOCKF NRZ_CK
END

SETF NRZ_IN
CLOCKF NRZ CK
SETF NRZ IN
CLOCKF NRZ CK
SETF /NRZ_IN
CLOCKF NRZ CK
SETF NRZ IN
CLOCKF NRZ_CK

SETF /NRZ_IN
FOR J:= 0 TO 6 DO

BEGIN
CLOCKF NRZ_CK
END

SETF NRZ IN
CLOCKF NRZ_CK

TRACE_OFF

ENABLE OUTPUT
RESET

INITIALIZE

PERFORM ZERO SUBSTITUTION

ALTERNATE POSITIVE AND NEGITIVE PULSES

PERFORM ZERO SUBSTITUTION

~ Monolithic ~ Memories ~

Ell

2·367

2·368

B8ZS Coding

PAlASM SIMULATION. V2.22 - MARKET RELEASE (11-19-86)
ee) - COPYRIGHT MONOLITHIC MEMORIES INC. 1986
PALASM SIMULATION SELECTIVE TRACE LISTING

Ti.tle
F'.;.~ t t. er- n
F:evi si on

F'(~1L A
F'i:\qe :

"'IF:Z C~:::

/DE

/F:ST

NFU IN

C2

C1

co

NfU DELAY

F:l

RO

PAl. {~
B8ZS ENCODER PAL A
1.02

Author­
CClmp,:-:Ir1V
D"''Ite

THERE:~3A SHAFEr.:::
t'H", I
6/6/8"7

g cg cg c c c c c c c c cg c

I I
I I

I I
I I

I I
I I

I I I I I • I I I I , I 1 I. I
'-r-"-"'~-'T'~"-~'---"'---'--"-"T--""-"---r""-~'''--'''''-----'-''--''T''

I I I I I I I , I I I • I I I
- I I f---~"..,.---""---r-""'---T--..,.--"--.-r---T-I ;-, --;.--1

I I I I I I I I I I I I I I
-r----,- II I I I • I 1 I I I'

: ;";'-." ; : : : : : : : :'
-x x X t : 0---:.---l--.-+-----l---+--+-+-+---l-.r-

I -, I I
I I

I I
I I r+--:

-I X --!--l---!-+----!-.--+---;i--<I: :

I I I

G-- II

I I I I J I I I I I I I I • I

I I I I I I J--r"---'--l' I r----r, I I I

-:t X --:-:--·ri---4-: : -;--+-1: : L.. ;-.: --+!-i!--H

!X:: :: f:-':J~-':J'~l: ~1: ~ ".If\ ,_,-,.--..,.-,--. ~ I L+- I L:----1: ...,.---.J:!
, "

-. I I

:tx ::
"
" , I

i'
: :~l: :
I~: L:---~--r---T--+~--;~

• I I I I I 1 I 1
-I I I I I I I J-'T, I

:t X --~-l---!-+---!----!--! I -;-.: -+--
I I I I I I I -, I , I , r:-L: IX , , , I

I , I ,
, I , , , I I ,

lX- I I

~ Monolithic W Memories ~

PAL .. J~I
Paqe

NHZ

/(JE

/F;:~3T

!'ml

cr.,

Ci

CO

!'.IHZ

F:~::'

F'?

Pi

F:O

C~:::

IN

DELAY

B8ZS Coding

cg cg c:g c: c: c: c c c: cq c

r-n-rrrTTTrrrrnT1TflTTrrrril"l-q""ITfTTl-r

[~~"r~_~J--~---~"r~ .. .r-~r-!"J·-"~_,J~~r-~ , .. I I I I I I I I I 1 1 I I I I

I I I I I I I , I I I I I I I ----T-T----.,.-,·------r-T .. -~-·--,---.. ...,..---r---.,..·--_,.__~·--·
I I I I I I I I I I I I I I I

----r--T----~--,-.,------.,--~---·r---...,.----__,._- .. ~~--,. .. · , , , , , , , , , , , , , , , ,
---:'"1' : j'----4-1' : : : : : : : J'--

~ --+ ~ --~--..;..-~-+--~~-~
I I I I I I I I I I I I I I I :: :: ;: : : :~~--~~--~-:--L:

-----r~----,-..,..--__"T_,___r_---r-.,. I 1 I I I

I I I I I I I I I I I I I I I

- I 1 I I 'I I J-r--'--'''--'-l' I r'----r-r-l. ' .
.~_~ ____ ... :_ .. ~_-+~_~_: : -+-~---1: :: I

:: r-..;.-.. ~:: "~-"l: J"'~' : r-:--8' --4-";'-l:
I I-.-J ! I I I I I I I..J I J I I I ---r-r II I ...,_ .. I - I II-r

I I J I I I I I I I I I I I
- II II IIJ"~II r~1 I II

.~~ __ -:-;"'~_':-: : ~--1: 4--+--~ I

I---i-T--';': "~J~-~l.l-J~l"l-~--;'--ir_T_--;'-I
I I I I I I I I I I I I I I , rT'T"----r-,.--, I '-'--1 I I 1 I 1 I I

'---1 :: :: l~: -+--+---i----...;.-~~
I~---+-~I :: r--l: : : : : ,

"
: : :: L;-.:--..J: 4-.. -+-~----+--~--ir_T_--T-~

t:: Fl: : : : : : ::
-+-..:-J :: _~_~-~--_~-_ _:__-+----+-~

.Ll-LLLL.LJ... I I I I I I I I .L.L .. LLLL.LLJ.-L.LL.LLLL.

~ Monolithic m Memories ~ 2·369

TITLE PAL B
PATTERN B8ZS ENCODER PAL B
REVISION 1.04
AUTHOR THERESA SHAFER
COMPANY MMI
DATE 6/6/87

CHIP PAL_B PAL16R6

;PINS
; 1 2
NRZ_CK /RST

;11 12
JOE NC

3 4
NRZ IN C2

13 - 14
CS NPO

B8ZS Coding

5
C1

15
PPO

6
CO

16
QO

INPUTS: NRZ_CK EXTERNAL CLOCK

7 8
NRZ DELAY NC

17 - 18
Q1 Q2

JOE ACTIVE LOW OUTPUT ENABLE SIGNAL
/RST ACTIVE LOW MASTER RESET SIGNAL

NRZ_DELAY SERIAL NRZ DATA STREAM WHICH WAS DELAYED
BY PAL A

C2 - co COUNTER OUTPUTS
NRZ_IN NRZ DATA STREAM INDICATES AN

8-BIT STREAM OF ALL ZERO WHEN
COUNTER OUTPUTS ARE 111 AND NRZ_IN

OUTPUTS: CS CURRENT STATE
PPO POSITIVE B8ZS
NPO NEGATIVE B8ZS
Q2 - QO B8ZS SEQUENCE

EQUATIONS

B8ZS ENCODING STATE MACHINE EQUATIONS
STATE VARIATES = [CS,PPO,NPO]
WITH THE FOLLOWING STATE ASSIGNMENT

P_ZERO [0,0,0]
NEGATIVE = [1,0,1]
N_ZERO = [1,0,0]
POSITIVE = [0,1,0]

/CS := /CS * /NPO * /Q1 * QO
+ CS * /PPO * Q1 * /QO
+ /CS * /NPO * /NRZ_DELAY * /Q1
+ /CS * /NPO * Q2 * /Q1

CODE
CODE
STATE MACHINE

+ CS * NRZ_DELAY * /PPO * /Q2 * /QO
+ RST

/PPO := CS * /PPO * QO * /Q1
+ /CS * /NPO * /QO
+ cs * /NRZ_DELAY * /PPO * /Q1
+ CS * /PPO * Q2 * /Q1
+ RST

2·370 ~ Monolithic W Memories ~

STATES

°

9
NC

19
NC

GND
20
VCC

B8ZS Coding

/NPO := /CS * /NPO * /Q1 * QO

+ /cs * /NPO * /NRZ_DELAY * /Q1
+ /cs * /NPO * Q2 * /Q1
+ CS * /PPO * /Qo
+ RST

B8ZS SEQUENCE STATE MACHINE EQUATIONS
STATE VARIATES [Q2,Q1,QO]
WITH THE FOLLOWING STATE ASSIGNMENTS

A = [0,0,0]
B = [0,0,1]
C = [0,1,0]
o = [1,0,0]
E = [1,0,1]
F = [1,1,0]

/Q2 := /Q2 * /Q1
+ Q2 * Q1
+ RST

/Q1 := /QO
+ Q2 * Q1
+ RST

/QO := /Q2 * /Q1
+ /Q2 * /Q1
+ /Q2 * /Q1
+ /Q2 * IQ1
+ QO
+ Q1
+ RST

SIMULATION

* /QO * /C2
* /QO * /C1
* /QO * /CO
* /QO * NRZ_IN

TRACE_ON NRZ_CK JOE /RST NRZ_DELAY NRZ_IN C2 Cl CO
CS PPO NPO Q2 Q1 QO

SETF OE
RST

CLOCKF NRZ_ CK

SETF NRZ DELAY
/RST
NRZ_IN /C2 IC1 /CO

CLOCKF NRZ_ CK

SETF /NRZ_DELAY
/NRZ_IN jC2 /C1 JCO

CLOCKF NRZ CK
SETF NRZ_DELAY

ENABLE OUTPUT
RESET

INITIALIZE

PERFORM NORMAL ENCODING

~ MonolithicW Memories ~ 2·371

2-372

IC2 ICl CO
CLOCKF NRZ CK
SETF NRZ DELAY

IC2-Cl ICO
CLOCKF NRZ CK
SETF NRZ DELAY

IC2-Cl CO
CLOCKF NRZ CK
SETF INRZ_DELAY

C2 ICl ICO
CLOCKF NRZ CK
SETF INRZ_DELAY

C2 ICl CO
CLOCKF NRZ CK
SETF INRZ_DELAY

C2 Cl ICO
CLOCKF NRZ CK
SETF INRZ_DELAY

C2 Cl ICO
CLOCKF NRZ CK
SETF C2 Cl-CO
CLOCKF NRZ CK
SETF IC2 /Cl ICO
CLOCKF NRZ CK
FOR I:=O TO 5 DO

BEGIN
CLOCKF NRZ_CK
END

SETF IC2 ICl ICO
NRZ DELAY

CLOCKF NRZ CK
SETF INRZ_DELAY
CLOCKF NRZ CK
SETF INRZ_DELAY
CLOCKF NRZ CK
SETF INRZ_DELAY
CLOCKF NRZ CK
SETF C2 Cl-CO

I NRZ_DE LAY
CLOCKF NRZ CK
SETF IC2 /Cl ICO

I NRZ_DE LAY
CLOCKF NRZ CK
FOR I:=O TO 5 DO

BEGIN
CLOCKF NRZ CK
END -

SETF INRZ_DELAY
NRZ IN C2 Cl ICO

CLOCKF NRZ CK
SETF C2 Cl-CO
CLOCKF NRZ CK
SETF IC2 lel ICO

B8ZS Coding

PERFORM B8ZS SUBSTITUTION
FORCE VIOLATION

FORCE ONE

FORCE ZERO

FORCE VIOLATION

FORCE ONE

PERFORM NORMAL ENCODING

~ Monolithio W Memories ~

CLOCKF NRZ CK
FOR I:=O TO 5 DO

BEGIN
CLOCKF NRZ_CK
END

B8ZS Coding

PERFORM B8ZS SUBSTITUTION

~ Monolithic m Memories ~

EJI

2·373

2·374

B8ZS Coding

PALASM SIMULATION~ V2.22 - MARKET RELEASE (11-19-86)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC~ 1986
PALASM SIMULATION SELECTIVE TRACE LISTING

Title
PattE'r-n
F:evi si on

PPIL_B
Paqe :

NF:Z ... D:::

IDE

IRST

NRZ DELAY

NRZ IN

C2

C1

co

CS

PPO

NP()

Q2

Q1

QO

PAL_B
BelS ENCODER PAL 8
1.04

Author­
Company
Dab"?

THEf~:ES{~ SHAFEF:
MMI
6/6/87

cg cg cg cg cg cg cg c cg c

~.--i-";--;'-;--
, , , ,

, , , ,
, , , ,
, , -.-,.-

, , , ,
, ,

-T ,

: ;. • I ; I .--i-+..--i-T---;....;

tXXI~J

, , , , , , , ,
, , , , , , ,
• I I I
~

: : I I. : :

X X X X ~.-;-;.--;--;--;-;.--;--;--;-T--;--;--;--,.....,
• I I I • I I I I.

'~'--rr-~:.~--: : : Ir---;-T--;-r--;--;-r---~ IXXI-!· ... ~
: : ; : ; r--+-~ : r' --i--;'-;---;-;

IXXI..;.!--;-+--~!r:-~'MI :: : ~'--r+-~
I I I I I I I t I I I
I II ., 'r--rl 'r
IXXX~ :~
I I' I' I I " • I I I I f I I
111~'I~ •• III.

:t X--++-J :; ;: ~;: ~~.-;-;.-;----;-;
I I. I I
, • I ,.

I X -+-i---ii-T--"';-;'--'

IX , ,
I I

XX
: : ' , , I

IX

IX

~ Monolithio m Memories ~

, , , ,

, ,
, I

P{-i'-""."B
Page :

NF:l CK

IDE

NF:Z DELAY

NF:Z IN

C2

C1

co

cs

PPO

NPO

IJ2

01

QO

B8ZS Coding

g c c c c c c cg cg c c cg cg

"TT, I I I I I fTTTTITTITTr rrrTf1
IFlnflJ~l..;J"1J1

,
"' " I I " I I

-:---+---+-.~"--i--T-
-+----.;.-~..;--.;...-__4___:__;.4_++__~"-;.....;..-_T_T___l

,
- I

" I
I

I I
I I

+---+--~--~~--~~~~--~~~

~ Monolithic m Memories ~

EJI

2·375

F"~L .. _.B
Paqe 3

IDE:::

I'lF:Z DELJW

I'lF:Z IN

C2

Cl

co

cs

PPCl

I'lPO

E12

CH

QO

2·376

B8ZS Coding

c c c c c c cg cg cg c c c c c c c

, -,

I I I I
11 I'

--+._ .. _--+--+---;.---..;.-+-;.--i--i--i--i--i---i---i--;---;--+---i-!

+---r-~~'~-~~-r:-i--;---;~~:~--r-~-+~

: : , , , ,
, ,-

~-+---;----;----;----i--i-~.~~:~~--r-~:~~~­
, " --i-r--r--r--'-';i---i--+-i--.;.....!
r-~ ~-":--~---;----i--T-I' "

: : r--;-;--:-; : :
~---+---+---+---;---,-~ :: : ~~--r--+--+~i--~

,
~~~+---r---r-~~ 

~ Monolithic m Memories ~ 



TITLE B8ZS DECODER 
PATTERN B8ZS DECODER PAL 
REVISION 1.05 
AUTHOR THERESA SHAFER 
COMPANY MMI 
DATE 6/6/87 

CHIP B8ZS_DECODER PAL16R6 

iPINS 
i1 2 
T1_CK /RST 

ill 12 
JOE NC 

3 
PPI 

13 
QO 

4 
NPI 

14 
Q1 

B8ZS Coding 

5 
NC 

15 
Q2 

6 
NC 

16 
Q3 

INPUTS: EXTERNAL CLOCK 

7 
NC 

17 
/BPV 

8 
NC 

18 
/B8ZS 

T1 CK 
JOE 
/RST 

PPI 

ACTIVE LOW OUTPUT ENABLE SIGNAL 
ACTIVE LOW MASTER RESET SIGNAL 
SERIAL POSITIVE PUSLE DATA STREAM 

NPI 

OUTPUTS: DATA 

EQUATIONS 

Q3 - QO 
/BPV 

/B8ZS 

i DATA OUTPUT 

/DATA = /PPI * /NPli 

i /BPV AND /B8ZS FLAGS 

BPV := PPI * /Q2 * Q1 

TO BE DECODED 
SERIAL NEGATIVE PUSLE DATA STREAM 

TO BE DECODED 

DATA WHICH IS LOADED INTO THE SHIFT 
REGISTER 

STATE MACHINE OUTPUTS 
LOW ACTIVE SIGNAL WHICH INDICATES THAT 

BIPOLAR VIOLATION HAS OCCURRED 
LOW ACTIVE SIGNAL WHICH INDICATES THAT 

ZERO SUBSTITUTION HAS OCCURRED 

+ PPI * /Q3 * Q2 * /QO 
+ NPI * Q2 * Q1 
+ NPI * /Q3 * Q1 * /QO 
+ /PPI * /Q2 * /Q1 * QO 
+ /PPI * Q3 * /Q1 * QO 
+ /NPI * /Q3 * Q2 * /Q1 
+ /NPI * Q2 * /Q1 * /QOi 

B8ZS := /PPI * NPI * /Q3 * Q2 * /Q1 * QO 
+ PPI * /NPI * Q3 * Q2 * /Q1 * QO; 

STATE MACHINE WHICH DETECTS B8ZS SEQUENCE 
STATE VARIABLES [Q3,Q2,Q1,QO] 
WITH THE FOLLOWING STATE ASSIGNMENTS 

~ Monolithic W Memories ~ 

9 
NC 

19 
DATA 

GND 
20 
VCC 

2·377 



2·378 

B8ZS Coding 

Spo = [0,0,1,1] 
SP1 [1,0,1,1] 
SP2 = [1,0,1,0] 

SP3 [0,0,0,0] 
SP4 [0,1,0,0] 
SP5 [0,0,1,0] 
SP6 [1,1,0,0] 
SP7 [1,1,0,1] 
SNO [1,1,1,1] 
SN1 [0,1,1,1] 
SN2 [1,1,1,0] 
SN3 [1,0,0,0] 
SN4 [1,0,0,1] 
SN5 [0,1,1,0] 
SN6 = [0,0,0,1] 
SN7 [0,1,0,1] 

/Q3 := PPI * /RST 
+ /NPI * /Q3 * /Q2 * /Q1 * /Qo * /RST 
+ /NPI * Q3 * /Q2 * Q1 * /Qo * /RST 
+ /NPI * /Q3 * 02 * 01 * /00 * /RST 
+ /NPI * Q3 * /01 * 00 * /RST 
+ /NPI * 03 * 02 * 00 * /RST 
+ NPI * /03 * 02 */01 * /Qo * /RST; 

/Q2 := PPI * 01 * /RST 
+ PPI * 02 * /RST 
+ /NPI * /03 * 02 * /Qo * /RST 
+ /NPI * Q3 * Q1 * /Qo * /RST 
+ /PPI * /NPI * /Q3 * /Q1 * /RST 
+ /NPI * /Q2 * Q1 * QO * /RST 
+ Q3 * /Q2 * /Q1 * /Qo * /RST 
+ /03* 02 * /Q1 * /Qo * /RST; 

/Q1 := PPI * /Q3 * /Q2 * /Q1 * /RST 
+ /PPI * /NPI * /Q2 * /Qo * /RST 
+ /PPI * /NPI * Q1 * /Qo * /RST 
+ /PPI * NPI * Q3 * /Q1* /QO * /RST; 

/Qo := PPI * /Q3 * /Q2 * /Q1 * /Qo * /RST 
+ PPI * Q3 * /Q2 * /Q1 * QO * /RST 
+ /PPI * /NPI * /Q2 * /QO * /RST 
+ /PPI * /NPI * Q3 * /QO * /RST 
+ /PPI * /NPI * /Q3 * /Q2 * /Q1 * /RST 
+ /PPI * /NPI * Q3 * /Q2 * Q1 * /RST 
+ /PPI * /NPI * /Q3 * Q2 * Q1 * QO * /RST 
+ /PPI * NPI * /Q3 * Q2 * /Q1 * /QO * /RST; 

......................................................... 

~ Monollthlo IFJJ) Memories ~ 



B8ZS Coding 

SIMULATION 

TRACE_ON T1_CK JOE /RST PPI NPI 
Q3 Q2 Q1 QO /BPV /B8ZS 

SETF OE 

RST 
/PPI /NPI 

CLOCKF T1_CK 
SETF RST 
CLOCKF T1 CK 
SETF /PPI-/NPI 

/RST 
CLOCKF T1_CK 

SETF· PPI /NPI 
CLOCKF T1 CK 
SETF /PPI-/NPI 
CLOCKF T1 CK 
SETF /PPI-NPI 
CLOCKF T1 CK 
SETF /PPI-/NPI 
CLOCKF T1 CK 
SETF PPI 7NPI 
CLOCKF T1 CK 

.SETF /PPI-NPI 

CLOCKF T1 CK 
SETF PPI 7NPI 
CLOCKF T1_CK 

SETF /PPI /NPI 
CLOCKF Tl CK 
SETF /PPI-/NPI 
CLOCKF Tl CK 
SETF /PPI-/NPI 
CLOCKF Tl CK 
SETF PPI 7NPl 
CLOCKF T1 CK 
SETF /PPI - NPl 
CLOCKF Tl CK 
SETF /PPI-/NPI 
CLOCKF Tl CK 
SETF /PPI-NPl 
CLOCKF T1 CK 
SETF PPl 7NPI 
CLOCKF Tl_CK 

SETF /PPI NPI 
CLOCKF Tl_CK 

SETF /PPI /NPI 
CLOCKF Tl_CK 

ENABLE OUTPUT 

RESET 

NORMAL DECODING 

DETECT B8ZS SEQUENCE 
+ SEQUENCE 

SET-UP FOR NEXT SEQUENCE 

- SEQUENCE 

~ Monolithio W Memories ~ 

EJI 

2·379 



2·380 

SETF IPPI INPI 
CLOCKF Tl CK 
SETF IPPI-INPI 
CLOCKF Tl CK 
SETF IPPI-NPI 
CLOCKF Tl CK 
SETF PPI 7NPI 

CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF PPI 7NPI 
CLOCKF Tl CK 
SETF IPPI-NPI 
CLOCKF Tl_CK 

SETF IPPI INPI 
CLOCKF Tl CK 
SETF PPI 7NPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF PPI 7NPI 
CLOCKF Tl CK 
SETF IPPI-NPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF IPPI-NPI 
CLOCKF Tl CK 
SETF PPI 7NPI 
CLOCKF Tl CK 
SETF IPPI-INPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF IPPI-/NPI 
CLOCKF Tl CK 
SETF PPI 7NPI 
CLOCKF Tl_CK 

TRACE_OFF 

B8ZS Coding 

DETECT BIPOLAR VIOLATIONS 

~ Monolithic W Memories ~ 



B8ZS Coding 

PALASM SIMULATION. V2.22 - MARKET RELEASE (11-19-86) 
eel - COPYRIGHT MONOLITHIC MEMORIES INC~ 1986 
PALASM SIMULATION SELECTIVE TRACE LISTING 

Title 
f:''::itt.er-n 
f-~:t~\I i ~~ ion 

B8ZS DECODER 
BI3ZS DECODEF~: F'f';L 
1. ()5 

f:;uthor­
Companv 
Dat.e 

THEF:ESA SH;;FEF: 
1"11'1 I 
6/6/87 

8Ell::) "DECODER 
F'aqe 

Tl CV 

/OE 

/F,ST 

F'PI 

NPI 

Q2 

01 

00 

/BPV 

/GelS 

9 c cg cg cg cg cg cg cg cg c 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

I I 
I I 

--~--,,:-,-r:--i-:-i-:-"";:"";:-- :: 
I I 
I I 

I I 
I I 

I I I I 
,-,..- 'i 

I I I I I I I I I I I I I I I I I I 
- I I J--T~--"T-'---'"T""T'--'---r-T"---""-'---T-,"--""'-'-'-

I I , I f I I I I I I I I I I I' 
...,---...,.-- 'I II 11 II II II 'i 

I I I I I I I I I I I J I' I I 

~--~~-~~~~~T 
I 

-I 
I I 
I I :: :: :r--+; :: :' 

~ __ ~ ___ ~: r:--~:-i-:---M: I ; ~_ 1 

• I I I I I I I I I I I I I I I I I I -. --r---,-,---, I I I I r-,----~I I. I 
""XX I !! L' I I I I! I I I I I I I I I I .4\" I II ,.....,.--"""T .. ~ II 11 II 

I I I I L:: :: ( I I I J I I I I 
I I I I I I , 

~~ IXX I I I I I I I I I I I I I 
I I I I , ~"""""'--I I I I 

I I I I I I I I I I I I I 1 I 
~---r-T , , , , , , ---,-,-----.-.-----r-r---

IXX I I I I , I I I I I I I I 
I I , I I I I I I I I I I 

I I I I I I I I I I I I I 
~, I I I , , , I , I , 

IXX I I I I I I I I I I I I I 
I I I I I I , I I I I I I 

I I I I I I I I I I I 
I -.....,- I I I I ~ I I 

-XXXXIX I I I I I I I I I I 
I I I I I I I I I , 

I -, 
XXX I I I I I , I I I I I 

I I I I I I I I I I I 

--L.l-L. I I I I I I I I I I I I I I I I I I I I 

~ Monolithio W Memories ~ 

Ell 

2·381 



2·382 

Paqe : 

1'l. CK 

/DE 

PPI 

NPI 

E13 

0.1 

00 

/BPV 

.l88ZS 

r~ 

L 

9 c c cg 

, , , , 

B8ZS Coding 

cg 

, , , , 

cg 

, , , , 

cg 

, , , , 

c:g cq cq c 

-+--li---i---....;......:.·--+-..;.--+-+---+-;.--~·-;-: --;.-: ~:----;r-r--;.---t 

, -, , , , , , , , , , , , , , , , , , , , , 
I • I J I I I I I I I 'I I I 

;:::~:: If :I~:: -,...-----r---,---+-I : ~___r-T-, --;-, -T--~ : J...----,-i---i----I 

I-;'--i"--;'--T-T--ir-lr-~-t---J--HJ-~--r--; 
-: ,-+---+-,::: ~~~-I :: r~-~I:r 
...;...-.J: : L..:-..;.--.;..: "';'-_"";'-';-...11 :: • I L;.....:.-.J.. L:--

~-r--;'--;'---~'~:--~-r--~~~-i-r---r-i----i---~ 
I I I I 
11 I I 

:~--~ ::-'::J:: :~-
fl' I 4-~ I I I 

L-I.-1-.1...I.-L...L..L-I.-'-.LLLL.LL..J. I I I I I '-Ll_L.L.Ll...LLLJ,_.LL..L.L.L.L 

88ZS DECODEF~: 

Pi~ge ~5 

T1 CK 

iDE 

IPST 

PPI 

NF'I 

03 

()2 

ell 

QO 

IBF'V 

lB8ZS 

c cg cg cg cg cg cg cg cg cg c 

lliTrrrrnTTTTfTn-rTTTTrrr"rTTTTT-rrT-rrrrl'T 
-: I--'l : j---1 : J----l : I--l : I-"'l ; I'-'--l : '--'-1: r-'--'] : "--"1 : j'- ' ~ , ~ ~ ~ ~ ~ ~ ~ ~ 

! '-, " , I 
, , , , , , , , , , , , , , , , , , , , , , , , 

I I I I I 11 I I I I I I 
~-""-r---'T~'----,-,----""-""-'--r-r---r-r-

-4-· .. -4-+-~---+-+--ri·---+-~,--i-T--i-+_-;.I. -+--~-, -, 

, -, 

, , , , , , , , , , , , , , 
" 

I I I I I I I 
·-r---r-r---l I I I 

, , , , 

:: :-: ~'-i-: -i---;-;--' 

, , , , 

~-I :: :: ~:: r-:-:-'--+-;---:~-':: : 
I ~...:.--J:: l-:.-:---J:: I I 4...,---;"';;'--+-1 

~:: :: ~:: :: I-+-r---+-ir---";r-r---i-: -:-----.;. 
. ~:: l--r-r---T4---J , -, 
~
:: I I :: I I I I -M---+!~':--';-"';---+-I 

I I • I •• I' I I I I I. 
• I I I I I I I 11 

, , , , 
--;--r---~:·~~_+_---r+_-T!~~~ , , , , , , , , , , , , , , , , 

.L-,-'. __ -;-'-.;.'_-..;.' I I I I I I I I t I I I I 
• I , i -r--,-..,..-----y-,.--., I' ~....,.--.,-,. .. , , , , :: :: :: L~J:: :: :: 

~-Ll-Li-L~'~~~'~'_'L-L'~I~I~I~'~'~' ~'~'~'~I-L'_~I_'~'~I~'_~~~~~..L..~ 

~ Monolithicm Memories ~ 



B8ZS Coding 

B8ZS ... DECODER 
Page 4 

Tl_CK 

IDE 

.lRST 

PPI 

NPI 

Q2 

Ql 

00 

IBF'V 

IB8ZS 

9 cg c c cg cg cg c c c cg c 

I I I I I I I I I I rTfTTlllTqTTTTrrfTrr 
~.rWnrlJlJ~-~l~J·-lJ-··l.J-1-n-~ .. I1-

" I I 
I I 
I I " , , 

, , 
, I 

-;-! --T:-T:--+--.... ~--H--...;.-.;.--+4----4--.-;.---~-.;.-~ 
J I I I I I I I I -,----,.-,----... -r----r--,-., i i 

, ., 
I -, 

I I 
I I 

" 
" 

I I 
I I 

, I 

" 

I • I 1'1 I' 

~-·-~-ll---T-__+_--T-II:G-i;-__i_-__i_-

-l-J~TllJ'~ ::~':~"~::: 
I I I I I I • I I 
• I - I """"'T 

I I I I til I I I I I 

'~-;--T--·-~'~....,.........l' , " 
I J! I I • I " I I I I 
'" I I -r--T'"---,--

~~: I ~:: r:--.: 
t :: : ~.,.---1:: L.;.-~: l4---;---i-i----r--t 

r~T-~--_;_--~~-;-:+--~+~ 
I I 
I I 

I I 
, I 

rT·--i--T_--~----i--__i_T_--i-i----~+_~__4_~~ 
I 

I I 

L....L.. ......... ~~"-'-....... _L_J.....l..1 I I I 

~ : 
I ... L.L.I....L.U..J.....l...L..L I I I I I I 

~ Monolithic (RiD Memories ~ 

EJ 

2·383 



HDB3 Line Coding 
Using PAL Devices 

Introduction 
A digital communication trunk system consists essentially of two 
channel banks and several repeaters on the transmission lines 
(Figure 1). A channel bank is terminal equipment which multi­
plexes more than one channel onto a single transmission line 
using Time Division Multiplexing (TOM) technique. This TOM 
technique assigns an equal individual time slot for each channel 
to allow several channels to share a transmission line sequen­
tially. 

1~ 

2"-' CHANNEL 
3~ BANK 

REPEATERS ON 
TRANSMISSION LINES 

CHANNEL 
BANK 

Figure 1. Digital Communication Trunk System 

High Density Bipolar (HDB3) code is a modified bipolar code. A 
bipolar code uses alternating polarities for successive logic 
ones. The signal edges provide the timing information. An error 
occurs when two contiguous logic ones have the same polarity; 
this is defined as a "bipolar violation." HDB3 code permits a legal 
bipolar violation to prevent four or more contiguous zeros in the 
data stream. Three is the maximum number of contiguous zeros 
allowed before a violation is inserted to maintain timing informa­
tion for a long string of logic zeros. 

HDB3 Code 
Code conversion rules for trunk lines are defined in the CCITT 
G703 recommendation, which includes two standards. One 
standard is T-carrier standard for North America and Japan; the 
other standard is CEPT standard for Europe and elsewhere. 
HDB3 code is recommended by CCID for the CEPT standard, 
at the 2,048, 8,448, or 34,368 kbps rates. 

Violation patterns used for four-zeros-substitution in HDB3 are 
shown in Figure 2. Four possible HDB3 substitution codes are: 
+00+, -00-, 000+, or 000-. The "+" indicates the positive voltage, 

AN-176 

"-" indicates the negative voltage, and "0" indicates the zero volt­
age. The polarity of the preceding pulse and the number of bipo­
lar pulses after the previous bipolar violation select the substitu­
tion code. 

POLARITY NUMBER OF BIPOLAR PULSE 
PRECEDING 

PULSE ODD EVEN 

Positive 
000+ -00-

(+) 

Negative 
000- +00+ 

(-) 

Figure 2. HDB3 Substitution Table 

HDB3 Coding Example 
An example of converting from NRZ (Non-Return-Zero) data to 
HDB3 code is shown in Figure 3. There are four sets of four suc­
cessive zeros in the data stream. In the first group the previous 
signal is positive and the number of logic ones is odd, so the 
"000+" pattern is generated. In the second group the previous 
signal is positive and the number of logic ones is even, so the "-
00-" pattern is generated. In the third group the previous signal is 
negative and the number of logic ones is even, so the "+00+" 
pattern is generated. A "000-" pattern is generated in the fourth 
group because the previous signal is negative and the number 
of logic ones is odd. 

HDB3 substitution codes force the fourth bit to be a bipolar viola­
tion. The violation is chosen by the following scheme, based on 
the number of bits since the previous violation: 

(1) When the number is even, HDB3 substitution code forces the 
first zero to be a bipolar code (B) and the fourth zero to be a bi­
polar violation (V). Therefore, four successive zeros is converted 
to a bipolar signal, following two continuous zeros, and a bipolar 
violation with the first bipolar signal (BOOV). The polarity of the 
bipolar violation (V) is the same as the polarity of the first bipolar 
signal (B). 

HDB3 SUBSTITUTION CODE - 0 0 0 + - 0 0- +00+ 000 -

HDB3 CODE - 0 0 + 0 0 0 + 

U 
·00· 

U 
000· 

U 
+00+ 

U 
GROUP 1 GROUP 2 GROUP 3 GROUP4 

Figure 3. An Example of HDB3 Coding 

2·384 ~ Monolithio m Memories ~ 



HDB3 Line Coding Using PAL Devices 

(2) When the number is odd, HDB3 sUbstitution code forces the 
fourth zero to be a bipolar violation (V). Therefore, HDB3 is con­
verted as three continuous zeros followed by bipolar violation 
with the previous bipolar signal (OOOV). The polarity of the bipo­
lar violation is the same as the polarity of the previous bipolar 
signal. 

HDB3 Encoder Implementation 
Figure 4 shows the block diagram of an HDB3 encoder, which 
includes three state machines and one 4-bit shift register. A DE­
TECT _ 4_ZEROS state machine detects four successive zeros. 
An ODD_EVEN state machine checks the number of logic ones 
after the last bipolar violation. An HDB3 encoding state machine 

NRZIN 
I 1

4-ZEROS 

l:
DETECT 4 ZEROS I : 

I I I I 
DSIN 

S3S2 S1S0: 

4-BIT 
SHIFT REGISTER 

generates the HDB3 code and a RESET signal which clears the 
ODD_EVEN state machine. A 4-bit shift register delays the in­
coming NRZ data in order to synchronize with the 4-ZEROS sig­
nal from the DETECT _ 4_ZEROS state machine. 

The HDB3 encoding state machine generates HDB3 code, de­
pending on the DSIN, 4-ZEROS, ODD_EVEN, and paS_NEG 
signals. When DSIN is false and 4-ZEROS is false, the output is 
a zero. When DSIN is true and 4-ZEROS is false, the output 
generates a signal that alternates between the positive and neg­
ative signals. When DSIN is true and 4-ZEROS is true, an error 
flag is raised. HDB3 substitution code is generated when DSIN 
is false and 4-ZEROS is true. Four possible HDB3 substitution 
codes are generated, depending on paS_NEG and 
ODD_EVEN signals. These are summarized in Figure 5. 

RESET 

j 
I ODD - EVEN I ODD _ EVEN 

( + t GENERATE 1---------+--+--...­
HDB3 

CODING 
STATE 

MACHINE 

( -) 

PHDB 

NHDB 

Figure 4. Block Diagram of an HDB3 Encoder 

DSIN 4-ZEROS POS....NEG ODD_EVEN CHARACTERISTICS 

0 0 0 0 

0 0 0 1 

0 0 1 1 
Zero output 

0 0 1 0 

0 1 0 0 +00+ 

0 1 0 1 000-

0 1 1 1 000+ 

0 1 1 0 -00-

1 0 0 0 

1 0 0 1 Alternating 

1 0 1 1 PHDB (+) and NHDB (-) 

1 0 1 0 

1 1 0 0 

1 1 0 1 
Error 

1 1 1 1 

1 1 1 0 

Figure 5. HDB3 Encoding State Table 

~ Monollth/eW MemorIes ~ 2·385 



HDB3 Line Coding Using PAL Devices 

The three Programmable Array logic (PAL) devices used to im­
plement the entire HDB3 encoder are a 16RA8, a 20RS8, and a 
16R4 (see Figure 6). 

The 16RA8 includes two state machines: ODD EVEN and DE­
TECT_4_ZEROS. The ODD_EVEN's output signal is fed into 
the HDB3 decoding state machine. If the ODD EVEN state ma­
chine is triggered by the same clock edge as the decoding state 
machine, the wrong result is generated because the encoding 
state machine always gets the ODD_EVEN's output signal one 
clock early. Therefore, the ODD EVEN state machine must be 
triggered by the falling edge of the clock to compensate for this 
timing problem. However, the DETECT 4 ZEROS state ma­
chine is triggered by the rising edge of the ciCck. Both rising and 
falling edges are needed for these two state machines. The 
16RAB device offers the programmable clock feature because 
one of the product terms in each cell is the clock input. The clock 
flexibility of the 16RA8 allows the falling-edge clock (ClK) for 
the ODD_EVEN state machine and the rising- edge clock (ClK) 
for the DETECT _ 4_ZEROS state machine in a single 20-pin 
PAL device. 

ClK -+-+-I-+ ........ --I~ 

NRZIN -t-~--~ 

MR-----l~ 

= 

The HDB3 encoding state machine diagram is shown in Figure 
7. Four registers are used for fifteen states. Two of the four reg­
isters have ten product terms, one register has eight product 
terms, and the final register has seven product terms. Both the 
20RS4 and 20RS8 have the product-sharing feature. The 
20RS8 is used to implement this HDB3 encoding state machine 
because the product sharing feature is sixteen product terms 
shared by two registers exclusively, and in this case at least sev­
enteen product terms are required per register pair. The design 
fits in the 20RS8 by using the product terms from two registers 
for one output, and leaving the other output as a no-connect. In 
addition to the HDB3 encoding state machine, a reset signal and 
an error message are generated in this 20RS8. The reset signal 
clears the ODD_EVEN state machine. The error message oc­
curs when DSIN and 4_ZEROS both are high simultaneously. 

The 16R4 has four registered outputs and four combinatorial 
outputs. A 4-bit shift register is implemented using four regis­
tered outputs. The positive HDB3 signal (PHDB) and negative 
HDB3 signal (NHDB) are generated using two combinatorial 
outputs. 

1---+4-+-~ PHDB 

I---+--+-~ NHDB 

Figure 6. HDB3 Encoder Implemented by Three PAL Devices 

2·38& ~ Monolithic m Memories ~ 



HDB3 Line Coding Using PAL Devices 

IOSIN> ZEROS 

IOSIN> 
ZEROS> IOSIN> 

S4 (0100) IOOOEVEN S13 (0101) IZEROS> S12 (0001) 
PHOB=l PHOB=O PHOB=O 
NHOB=O NHOB=O r--- NHOB=l -RESET = 1 RESET =0 ~ RESET = 1 
ERROR=O 

IOSIN> IOSIN> 
ERROR=O ERROR=O 

j 
ZEROS> ZEROS> 

IOOOEVEN IOOOEVEN 

lOS IN> OSIN> 
ZEROS> !ZEROS 

OOOEVEN 
IOSIN> 

SS (1100) 
IZEROS> 

SO (0000) S3 (1110) Sll (0011) 

C 
IOSIN> 

PHOB=O PHOB=O !ZEROS> PHOB=O PHOB=O 
NHOB=O NHOB=O NHOB=l NHOB=O 
RESET = 0 RESET=O RESET=O RESET = 0 
ERROR = 0 ERROR=O ERROR = 0 ERROR=O 

OSIN> OSIN> 

OSIN> !ZERosi 

!ZEROS !ZEROS 
OSIN> 

IZEROS 
OS IN> 

!ZEROS 

I IOSIN> 

!ZEROSQ 

S6 (1101) Sl (1000) 
IOSIN> 

S10 (0010) !ZEROS S2 (1010) 
PHOB=O PHOB:l PHOB=O PHOB=O 
NHOB=O NHOB=O NHOB=O NHOB=O 
RESET = 0 RESET = 0 RESET = 0 RESET = 0 
ERROR=O ERROR=O IOSIN> 

I 
ERROR=O ERROR =0 

ZEROS> 
IOOOEVEN 

IOSIN> 
ZEROS> 

IOSIN> 
IODOEVEN 

ALL OSIN> ZEROS 
ZEROS> , 

OOOEVEN 

S7(llll) S8 (0111) S14 (1001) S9 (0110) 

PHOB=l f- PHOB=O PHOB=O ~ PHOB=l 
NHOB=O '---- NHOB=O NHOB=O NHOB=O 
RESET = 1 RESET = 0 RESET = 0 RESET = 1 
ERROR =0 IOSIN> ERROR = 0 ERROR=l ERROR=O 

IZEROS> 

IOSIN> ZEROS 

Notes: 

1. Inputs: DSIN, ZEROS, and ODDEVEN. 

2. State Outputs: PH DB, NHDB, RESET and ERROR. 

Figure 7. HDB3 Encoding State Machine 

Monolithic W Memories 2·387 



HDB3 Line Coding Using PAL Devices 

HDB3 Decoder Implementation 
The block diagram of the HDB3 decoder is shown in Figure 8. A 
decoding state machine detects the HDB3 code, then either a 
Data Serial OUT (DSOUT) signal or a RESET signal is generat­
ed. These two signals are fed into the 4-bit shift register. Two 
error flags are generated: VERROR (Violation ERROR) and ER­
ROR. 

NRZOUT ~S31 s21 S1 Iso I- RESET DETECT ~ PHDB 
4 _ BIT DSOUT HDB3 CODING 

SHIFT REGISTER ERROR~ STATE 
VERROR~ MACHINE .- NHDB 

Figure 8. Block Diagram of an HDB3 Decoder 

A single 24-pin PAL device (20RS4) and a 4-bit shift register 
(HCT194) are used to implement the HDB3 decoder (see Figure 
9). The decoding state machine diagram is shown in Figure 10. 
Four registers are used for thirteen states. Two of the four reg­
isters have eight product terms, one register has nine product 
terms, and the final register has five product terms. Because 
the total product terms of two registers can be less than six­
teen product terms, these four registers can be implemented 
using a 20RS4 device rather than a 20RS8. 

When an HDB3 substitution code is detected, a reset signal is 
generated to load four zeros to the HCT194. Otherwise, 
DSOUT is generated to the shift right serial input (SR SER) of 
the HCT194. When any two sequential signals of the same po­
larity are detected except the HDB3 substitution code, the 
bipolar violation signal is generated (VERROR). The ERROR 
signal is generated when both positive HDB3 signal and nega­
tive HDB3 signal are high simultaneously. 

Figure 9. HDB3 Decoder Implemented by a PAL Device and a Shift Register 

2·388 ~ Monolithic W Memories ~ 



HDB3 Line Coding Using PAL Devices 

PHDB* 

n/NHDB 

511(1110) 
RE5ET=0 

VERROR=1 
ERROR =0 

IPHDB* 
INHDB 

PHDB* 
INHDB 

IPHDB* 
INHDB 

PHDB* 
INHDB 

IPHDB* 
INHDB 

PHDB* 
INHDB 

PHDB* 
INHDB 

It 

51(1000) 
RE5ET=0 

VERROR=1 
ERROR=O 

IPHDB* 
INHDB 

52 (1001) 
RE5ET=0 

VERROR=1 
ERROR=O 

IPHDB* 
INHDB 

53 (1011) 
RE5ET= 

PHDB*/NHDB 
VERROR=O 
ERROR=O 

IPHDB* 
INHDB 

54 (1010) 
RESET = 

PHDB*/NHDB 
VERROR=O 
ERROR=O 

PHDB* 
INHDB 

55 (0010) 
RE5ET=0 

VERROR= 1 
ERROR =0 

IPHDB* 

INHDBn 

PHDB* 
INHDB 

PHDB* 
INHDB 

PHDB* 
INHDB 

IPHDB* 
NHDB 

IPHDB* 
NHDB 

IPHDB* 
NHDB 

IPHDB* 
INHDB 

IPHDB* 
NHDB 

Notes: 

50 (0000) 
RE5ET=0 

VERROR=O 
ERROR = 

PHDB* 
NHDB 

1. Inputs: PHOB and NHOB. 

ALL 
~----PHDB* 

NHDB 

IPHDB* 
NHDB 

IPHDB* ~ 

NHDB ( 1 

512 (1101) 
RE5ET=0 

VERROR=1 
ERROR=O 

IPHDB* 
INHDB 

PHDB* 
INHDB 

PHDB* 
INHDB 

PHDB* 
INHDB 

PHDB* 
INHDB 

IPHDB* 
INHDB 

PHDB* 
INHDB 

56 (0110) 
RE5ET=0 

VERROR=1 
ERROR=O 

IPHDB* 
INHDB 

57 (0100) 

RE5ET=0 
VERROR=1 
ERROR=O 

IPHDB* 
INHDB 

58 (0101) 
RE5ET= 

IPHDB*NHDB 
VERROR=O 
ERROR=O 

IPHDB* 
INHDB 

59 (0111) 
RE5ET= 

IPHDB*NHDB 
VERROR=O 
ERROR=O 

IPHDB* 
NHDB 

510 (1111) 
RE5ET=0 

VERROR= 1 
ERROR=O 

IPHDB* 
NHDB 

IPHDB' 
NHDB 

IPHOB* 
INHOB 

IPHDB* 
NHDB 

IPHDB* 
NHDB 

~ 

2. State Outputs: RESET, VERROR and ERROR. 

~ Monolithic m Memories ~ 2·389 



HDB3 Line Coding Using PAL Devices 

HDB3 encoder logic 
HDB3ENl. pds 
A 
cindy Lee 

Title 
Pattern 
Revision 
Author 
Company 
Date 

Monothic Memories Inc., santa Clara, Ca 
3/4/87 

CHIP HDB3EN1 PAL16RA8 

iPIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9 PIN10 
jPL CLK PHDB NHDB NRZIN RESET MR NC NC GND 

iPIN11 PIN12 PIN13 PIN14 PIN15 PIN16 
JOE ZQO ZQ1 ZQ2 ZEROS NC 

PIN17 PIN18 PIN19 PIN20 
OQO OQ1 ODDEVEN VCC 

INPUT SIGNALS 
jPL ASSERTIVE LOW PRELOAD 
CLK EXTERNAL CLOCK 
PHDB POSITIVE HDB3 SIGNAL 
NHDB NEGATIVE HDB3 SIGNAL 
NRZIN NOR-RETURN-ZERO INPUT SIGNAL 
RESET RESTE SIGNAL TO RESET THE ODD_EVEN STATE MACHINEG 
MR MASTER REST 
JOE ASSERTIVE LOW OUTPUT ENABLE 

OUTPUT SIGNALS 
ZQO, ZQ1, ZQ2 : DETECT 4 ZEROS STATE VARIABLES 

ZEROS : DETECT 4 ZEROS STATE OUTPUT 
OQO, OQ1 : ODD -EVEN STATE VARIABLES 
ODDEVEN ODD_EVEN STATE OUTPUT 

EQUATIONS 

i16RA8 PROVIDES TWO STATE MACHINES 

;(1) THE ODD EVEN STATE MACHINE CHECKS THE NUMBER OF BIPOLAR PULSES 
AFTER THE PREVIOUS BIPOLAR VIOLATION IS ODD OR /EVEN 

ODDEVEN 

OQ1 

OQ1.SETF 
OQ1.CLKF 

OQO 

OQO.SETF 
OQO.CLKF 

2·390 

OQO*/OQ1 

:= NHDB*OQO*jOQ1*/RESET 
+ PHDB*OQO*/OQ1*/RESET 
+ /NHDB*/PHDB*OQO*OQ1*/RESET 

MR 
JCLl< 

:= NHDB*/OQ1*/RESET 
+ PHDB*/OQ1*/RESET 
+ OQO*/RESET 

MR 
/CLK 

ODD_EVEN STATE OUTPUT 

MSB STATE VARIABLE 

MASTER RESET 
THE FALLING EDGE OF 
THE CLOCK 

LSB STATE VARIABLE 

~ Monolithic m Memories ~ 



HDB3 Line Coding Using PAL Devices 

i(2) THE DETECT_4_ZEROS STATE MACHINE DETECTS FOUR CONTINUOUS ZEROS 

ZEROS 

ZQ2 

ZQ2.SETF 
ZQ2.CLKF 

ZQ1 
ZQ1.SETF 
ZQ1.CLKF 

ZQO 

ZQO.SETF 
ZQO.CLKF 

SIMULATION 

/ZQO * /ZQ1 * ZQ2 

:= /NRZIN * /ZQO * ZQ1 * /ZQ2 

=MR 
=CLK 

.- /NRZIN * ZQO * /ZQ2 
MR 
CLK 

:= /NRZIN * /ZQO * /ZQ1 
+ /NRZIN * /ZQ1 * /ZQ2 

MR 
CLK 

STATE OUTPUT 

MSB STATE VARIABLE 

MASTER RESET 
EXTERNAL CLOCK 

LSB STATE VARIABLE 

TRACE_ON CLK MR NRZIN PHDB NHDB RESET ODDEVEN ZEROS 

SETF /CLK MR /NRZIN /PHDB /NHDB /RESET OE /PL iRESET CONDITION 
SETF CLK /MR i/DSIN, /ZEROS, /ODDEVEN 

SETF /CLK /MR /NRZIN /PHDB /NHDB /RESET iVECTOR 1, STATE 0 
SETF CLK i/DSIN, /ZEROS, /ODDEVEN 

SETF /CLK /NRZIN /PHDB /NHDB /RESET iVECTOR 2, STATE 0 
SETF CLK i/DSIN, /ZEROS, /ODDEVEN 

SETF /CLK /NRZIN /PHDB /NHDB /RESET iVECTOR 3, STATE 0 
SETF CLK i/DSIN, /ZEROS, /ODDEVEN 

SETF /CLK /NRZIN /PHDB /NHDB /RESET iVECTOR 4, STATE 0 
SETF CLK i/DSIN, ZEROS, /ODDEVEN 

SETF /CLK NRZIN PHDB /NHDB RESET 
SETF CLK 

SETF /eLK NRZIN /PHDB /NHDB /RESET 
SETF CLK 

SETF /CLK NRZIN /PHDB /NHDB /RESET 
SETF CLK 

SETF /CLK /NRZIN PHDB /NHDB RESET 
SETF CLK 

SETF /CLK NRZIN /PHDB NHDB /RESET 
SETF CLK 

SETF /CLK /NRZIN PHDB /NHDB /RESET 

iVECTOR 5, STATE 4 
i/DSIN, /ZEROS, /ODDEVEN 

iVECTOR 6, STATE 5 
i/DSIN, /ZEROS, /ODDEVEN 

iVECTOR 7, STATE 6 
i/DSIN, /ZEROS, /ODDEVEN 

iVECTOR 8, STATE 7 
iDSIN, /ZEROS, /ODDEVEN 

iVECTOR 9, STATE 3 
iDSIN, /ZEROS, ODDEVEN 

iVECTOR 10, STATE 1 

~ Monolithio [RiD Memories ~ 2·391 

Ell 



HDB3 Line Coding Using PAL Devices 

SETF CLK 

SETF JCLK NRZIN jPHDB NHDB jRESET 
SETF CLK 

SETF JCLK jNRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK jNRZIN PHDB jNHDB IRESET 
SETF CLK 

SETF JCLK jNRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK jNRZIN jPHDB NHDB jRESET 
SETF CLK 

SETF JCLK NRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK NRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK jNRZIN jPHDB jNHDB jRESET­
SETF CLK 

SETF JCLK jNRZIN jPHDB NHDB RESET 
SETF CLK 

SETF JCLK jNRZIN PHDB jNHDB jRESET 
SETF CLK 

SETF jCLK jNRZIN jPHDB NHDB jRESET 
SETF CLK 

SETF JCLK NRZIN PHDB jNHDB RESET 
SETF CLK 

SETF JCLK jNRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK NRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK jNRZIN PHDB jNHDB RESET 
SETF CLK 

SETF JCLK NRZIN jPHDB NHDB jRESET 
SETF CLK 

SETF JCLK NRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF JCLK jNRZIN PHDB jNHDB jRESET 
SETF CLK 

;DSIN, jZEROS, jODDEVEN 

;VECTOR 11, STATE 3 
;jDSIN, jZEROS, ODDEVEN 

;VECTOR 12, STATE 0 
;DSIN, jZEROS, ODDEVEN 

;VECTOR 13, STATE 1 
;jDSIN, jZEROS, jODDEVEN 

;VECTOR 14, STATE 2 
;DSIN, jZEROS, jODDEVEN 

;VECTOR 15, STATE 3 
ijDSIN, ZEROS, ODDEVEN 

iVECTOR 16, STATE 13 
ijDSIN, jZEROS, ODDEVEN 

iVECTOR 17, STATE 10 
ijDSIN, jZEROS, ODDEVEN 

iVECTOR 18, STATE 11 
ijDSIN, jZEROS, ODDEVEN 

;VECTOR 19, STATE 12 
;DSIN, jZEROS, jODDEVEN 

;VECTOR 20, STATE 1 
;DSIN, jZEROS, ODDEVEN 

iVECTOR 21, STATE 3 
;jDSIN, ZEROS, jODDEVEN 

iVECTOR 22, STATE 4 
;jDSIN, jZEROS, jODDEVEN 

;VECTOR 23, STATE 5 
;jDSIN, jZEROS, jODDEVEN 

;VECTOR 24, STATE 6 
;jDSIN, jZEROS, jODDEVEN 

;VECTOR 25, STATE 7 
;DSIN, jZEROS, jODDEVEN 

;VECTOR 26, STATE 3 
;jDSIN, jZEROS, ODDEVEN 

;VECTOR 27, STATE 0 
;DSIN, jZEROS, ODDEVEN 

;VECTOR 28, STATE 1 
;jDSIN, jZEROS, jODDEVEN 

2·392 ~ Monolithic W Memories ~ 



HDB3 Line Coding Using PAL Devices 

SETF jCLK jNRZIN jPHDB jNHDB jRESET 
SETF CLK 

SETF jCLK jNRZIN jPHDB NHDB jRESET 
SETF CLK 

SETF jCLK jNRZIN PHDB jNHDB jRESET 
SETF CLK 

iVECTOR 29, STATE 2 
iDSIN, jZEROS, jODDEVEN 

iVECTOR 30, STATE 3 
iDSIN, jZEROS, ODDEVEN 

iVECTOR 31, STATE 1 
ijDSIN, ZEROS, jODDEVEN 

~ Monolithic [RiD Memories ~ 2·393 



HDB3 Line Coding Using PAL Devices 

Title HDB3 encoder 
Pattern HDB3EN2.pds 
Revision A 
Author Cindy Lee 
Company Monolithic Memories Inc., santa Clara, Ca 
Date 3/9/87 

CHIP HDB3EN2 PAL20RS8 

;PINI PIN2 PIN3 PIN4 PINS PIN6 
CLK DSIN ZEROS ODDEVEN NC MR 

;PIN7 PIN8 PIN9 PINI0 PINll PIN12 
NC NC NC NC NC GND 

;PIN13 PIN14 PINIS PIN16 PIN17 PIN18 
JOE ERROR NC Q3 NC Q2 

;PIN19 PIN20 PIN21 PIN22 PIN23 PIN24 
NC Ql NC QO RESET VCC 

INPUT SIGNALS 
CLK EXTERNAL CLOCK 
DSIN SERIAL DATA INPUT SIGNAL 
ZEROS FOUR ZEROS DETECTION FLAG INPUT 
ODDEVEN ODD OR /EVEN SIGNAL 
MR MASTER RESET 
JOE ASSERTIVE LOW OUTPUT ENABLE 

OUTPUT SIGNALS 
ERROR : ERROR FLAG 

Q3, Q2, Ql, QO : HDB3 DECODING STATE MACHINE STATE VARIABLES 
RESET : RESET SIGNAL 

EQUATIONS 

;20RS8 GENERATES TWO SIGNALS AND ONE STATE MACHINE 

;(1) A RESET SIGNAL CLEARS THE ODD_EVEN STATE MACHINE 

RESET = /QO * Q2 * /Q3 
+ QO * /Ql * /Q2 * /Q3 
+ QO * ~1 * Q2 * Q3 

STATE 4 AND STATE 9 
STATE 12 
STATE 7 

;(2) A ERROR SIGNAL IS RAISED WHEN DSIN AND 4-ZEROS BOTH ARE 
HIGH AT THE SAME TIME 

ERROR QO * /Ql * /Q2 * Q3 ; STATE 14 

;(3) HDB3 ENCODING STATES MACHINE 

Q3 := /QO * /Ql * Q2 * /MR MSB STATE VARIABLE 

2·394 ~ Monolithic m Memories l1 



HDB3 Line Coding Using PAL Devices 

Q2 

+ /QO * /Q2 * Q3 * /ZEROS * /MR 
+ DSIN * /QO * ZEROS * /MR 
+ DSIN * Q2 * Q3 * /MR 
+ DSIN * /Q1 * /Q2 * /Q3 * /MR 
+ DSIN * /Q1 * ZEROS * /MR 
+ /Q1 * Q2 * Q3 * /MR 
+ DSIN * /Q3 * ZEROS * /MR 
+ QO * Q1 * Q2 * /Q3 * /MR 
+ QO * Q2 * Q3 * /ZEROS * /MR 

:= /DSIN * /Qo * /Q1 * Q2 * /MR 
+ /DSIN * QO * Q1 * Q2 * /Q3 * /MR 
+ /Qo * /Q1 * Q2 * /ZEROS * /MR 
+ /Q1 * Q2 * Q3 * /ZEROS * /MR 
+ QO * Q1 * Q2 * /Q3 * /ZEROS * /MR 
+ DSIN * /Qo * /Q2 * Q3 * /ZEROS * /MR 
+ DSIN * QO * Q2 * Q3 * /ZEROS * /MR 
+ /DSIN * /Qo * Q3 * ZEROS * /MR 
+ /DSIN * /Q1 * /Q2 * /Q3 * ZEROS * /MR 
+ /DSIN * Q2 * Q3 * ZEROS * /MR 

Q1 := /DSIN * /Qo * Q1 * /Q3 * /MR 
+ /DSIN * QO * /Q1 * Q2 * /MR 
+ /Qo * Q1 * /Q3 * /ZEROS * /MR 
+ QO * /Q1 * Q2 * /ZEROS * /MR 
+ /Qo * /Q2 * Q3 * /ZEROS * /MR 
+ QO * Q2 * Q3 * /ZEROS * /MR 
+ /DSIN * /Qo * /Q2 * Q3 * /MR 
+ /DSIN * QO * Q2 * Q3 * /MR 

QO := DSIN * /Qo * ZEROS * /MR LSB STATE VARIABLE 
+ DSIN * /Q1 * ZEROS * /MR 
+ /Q1 * Q2 * Q3 * /MR 
+ Q1 * /Q2 * /Q3 * /MR 
+ DSIN * Q2 * ZEROS * /MR 
+ ODDEVEN * /QO * Q3 * ZEROS * /MR 
+ ODDEVEN * /QO * /Q2 * ZEROS * /MR 

SIMULATION 

TRACE_ON MR CLK DSIN ZEROS ODDEVEN Q3 Q2 Q1 QO RESET ERROR 

SETF OE MR DSIN ZEROS ODDEVEN iRESET CONDITION 
CLOCKF CLK 

SETF /MR 

SETF DSIN ZEROS /ODDEVEN iVECTOR 1, STATE 14, 1001 
CLOCKF CLK iERROR 

SETF /DSIN /ZEROS /ODDEVEN iVECTOR 2, STATE 0, 0000 
CLOCKF CLK 

SETF DSIN /ZEROS /ODDEVEN iVECTOR 3, STATE 1, 1000 
CLOCKF CLK iPHDB 

~ Monolithic m Memories ~ 

EJI 

2·395 



HDB3 Line Coding Using PAL Devices 

SETF jDSIN ZEROS ODDEVEN ;VECTOR 4, STATE 8, 0111 
CLOCKF CLK 

SETF jDSIN jZEROS ODDEVEN :VECTOR 5, STATE 5, 1100 
CLOCKF CLK 

SETF jDSIN jZEROS ODDEVEN ; VECTOR 6, STATE 6, 1101 
CLOCKF CLK 

SETF jDSIN jZEROS ODDEVEN ;VECTOR 7, STATE 7, 1111 
CLOCKF CLK ;PHDB, RESET 

SETF DSIN jZEROS jODDEVEN ;VECTOR 8, STATE 3, 1110 
CLOCKF CLK :NHDB 

SETF DSIN jZEROS ODDEVEN ;VECTOR 9, STATE 1, 1000 
CLOCKF CLK :PHDB 

SETF jDSIN ZEROS jODDEVEN :VECTOR 10, STATE 9, 0110 
CLOCKF CLK ;NHDB, RESET 

SETF jDSIN jZEROS jODDEVEN ; VECTOR 11, STATE 10, 0010 
CLOCKF CLK 

SETF jDSIN jZEROS jODDEVEN ;VECTOR 12, STATE 11, 0011 
CLOCKF CLK 

SETF jDSIN jZEROS jODDEVEN ;VECTOR 13, STATE 12, 0001 
CLOCKF CLK ;NHDB, RESET 

SETF DSIN jZEROS jODDEVEN ;VECTOR 14, STATE 1, 1000 
CLOCKF CLK ;PHDB 

SETF DSIN jZEROS ODDEVEN ; VECTOR 15, STATE 3, 1110 
CLOCKF CLK ;NHDB 

SETF jDSIN ZEROS jODDEVEN ;VECTOR 16, STATE 4, 0100 
CLOCKF CLK ;PHDB, RESET 

SETF jDSIN jZEROS jODDEVEN iVECTOR 17, STATE 5, 1100 
CLOCKF CLK 

SETF jDSIN jZEROS jODDEVEN iVECTOR 18, STATE 6, 1101 
CLOCKF CLK 

SETF jDSIN jZEROS jODDEVEN iVECTOR 19, STATE 7, 1111 
CLOCKF CLK ;PHDB, RESET 

SETF DSIN jZEROS jODDEVEN : VECTOR 20, STATE 3, 1110 
CLOCKF CLK ;NHDB 

SETF IDSIN ZEROS ODDEVEN ; VECTOR 21, STATE 13, 0101 
CLOCKF CLK 

SETF IDSIN jZEROS ODDEVEN ; VECTOR 22, STATE 10, 0010 
CLOCKF CLK 

2·396 ~ Monolithio m Memories ~ 



SETF /DSIN /ZEROS 
CLOCKF CLK 

SETF /DSIN /ZEROS 
CLOCKF CLK 

TRACE_OFF 

HDB3 Line Coding Using PAL Devices 

ODDEVEN 

ODDEVEN 

iVECTOR 23, STATE 11, 0011 

iVECTOR 24, STATE 12, 0001 
iNHDB, RESET 

PALASM SIMULATION, V2.22 - MARKET RELEASE (11-19-86) 
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986 
PALASM SIMULATION SELECTIVE TRACE LISTING 

~ Monolithic W Memories ~ 2·397 



HDB3 Line Coding Using PAL Devices 

HDB3 shift register 
HDB3EN3.pds 
A 
cindy Lee 

Title 
Pattern 
Revision 
Author 
Company 
Date 

Monothic Memories Inc., santa Clara, Ca 
2/24/87 

CHIP HDB3EN3 PAL16R4 

;PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9 PIN10 
CLK NRZIN QINO QIN1 QIN2 QIN3 MR NC NC GND 

;PIN11 PIN12 PIN13 PIN14 PIN15 PIN16 PIN17 PIN18 PIN19 PIN20 
JOE NC NC DSIN Q2 Q1 QO NHDB PHDB VCC 

INPUT SIGNALS 
CLK : EXTERNAL CLOCK 
NRZIN : NON-RETURN-ZERO INPUT SIGNAL 

QINO, QIN1, QIN2, QIN3 : FOUR STATE VARIABLE INPUTS 
MR : MASTER RESET 
JOE : ASSERTIVE LOW OUTPUT ENABLE 

OUTPUT SIGNALS 
DSIN, Q2, Q1, QO : 4-BIT SHIFT REGISTER OUTPUT SIGNALS 

PHDB POSITIVE HDB3 SIGNAL 
NHDB : NEGATIVE HDB3 SIGNAL 

EQUATIONS 

;16R4 GENERATES TWO HDB SIGNALS AND PROVIDES A 4-BIT SHIFT REGISTER 

;(1) A POSITIVE HDB3 AND A NEGATIVE HDB3 SIGNALS ARE GENERATED 

/PHDB 

/NHDB 

QINO * /QIN1 
+ /QINO * QIN2 * QIN3 
+ QIN1 * QIN2 * /QIN3 
+ QIN1 * /QIN2 
+ /QIN2 * /QIN3 

/QINO * /QIN1 
+ QIN1 * /QIN2 
+ /QIN2 * QIN3 
+ QINO * QIN2 

THE PHDB IS GENERATED AT 
STATE 1, STATE 4, OR STATE 7 
THIS EQUATION IS THE INVERTING 
LOGIC OF THE PHDB SIGNAL 

THE NHDB IS GENERATED AT 
STATE 3, STATE 9, OR ATATE 12 
THIS EQUATION IS THE INVERTING 
LOGIC OF THE NHDB SIGNAL 

; (2) THIS IS A 4-BIT SHIFT REGISTER WITH MASTER RESET 

/QO .- /NRZIN LSB OF SHIFT REGISTER 
+ MR ; MASTER RESET 

/Q1 .- /QO 
+ MR 

/Q2 .- /Q1 

2·398 ~ Monolithic W Memories ~ 



HDB3 Line Coding Using PAL Devices 

+ MR 

/DSIN := /Q2 
+ MR 

MSB OF SHIFT REGISTER 

SIMULATION 

TRACE_ON MR CLK QINO QIN1 QIN2 QIN3 PHDB NHDB NRZIN DSIN 

SETF OE MR QINO /QIN1 /QIN2 QIN3 NRZIN 
CLOCKF CLK 

SETF /MR QINO /QIN1 /QIN2 QIN3 NRZIN 
CLOCKF CLK 

SETF /MR QINO /QINl /QIN2 QIN3 NRZIN 
CLOCKF CLK 

SETF /MR /QINO /QIN1 /QIN2 /QIN3 /NRZIN 
CLOCKF CLK 

SETF /MR /QINO /QIN1 /QIN2 QIN3 NRZIN 
CLOCKF CLK 

SETF /MR /QINO QINl /QIN2 QIN3 /NRZIN 
CLOCKF CLK 

SETF /MR /QINO /QINl QIN2 QIN3 /NRZIN 
CLOCKF CLK 

SETF /MR QINO /QIN1 QIN2 QIN3 NRZIN 
CLOCKF CLK 

SETF /MR QINO QINl QIN2 QIN3 NRZIN 
CLOCKF CLK 

SETF /MR QINO /QIN1 QIN2 /QIN3 /NRZIN 
CLOCKF CLK 

SETF /MR /QINO QIN1 /QIN2 /QIN3 NRZIN 
CLOCKF CLK 

SETF /MR QINO QIN1 /QIN2 /QIN3 /NRZIN 
CLOCKF CLK 

SETF /MR QINO /QIN1 /QIN2 /QIN3 NRZIN 
CLOCKF CLK 

;RESET CONDITION 

;VECTOR 1 

;VECTOR 2 

;VECTOR 3 

;VECTOR 4, PHDB 
;DSIN STARTS 

;VECTOR 5 
;DSIN 

;VECTOR 6 
;/DSIN 

;VECTOR 7 
;DSIN 

;VECTOR 8, PHDB 
;/DSIN 

;VECTOR 9 
;/DSIN 

;VECTOR 10 
;DSIN 

;VECTOR 11 
;DSIN 

;VECTOR 12, NHDB 
;/DSIN 

l1 Monollthlo W Memories l1 

OIl 

2·399 



HDB3 Line Coding Using PAL Devices 

HDB3 decoder 
HDB3DE.pds 
A 
cindy Lee 

Title 
Pattern 
Revision 
Author 
Company 
Date 

Monolithic Memories Inc., santa Clara, Ca 
3/12/87 

CHIP HDB3DE PAL20RS4 

iPIN1 PIN2 PIN3 PIN4 PIN5 PIN6 
CLK NC PHDB NHDB MR NC 

iPIN7 PIN8 PIN9 PIN10 PIN11 PIN12 
NC NC NC NC NC GND 

iPIN13 PIN14 PIN15 PIN16 PIN17 PIN18 
JOE ERROR VERROR NC Q3 Q2 

iPIN19 PIN20 PIN21 PIN22 PIN23 PIN24 
Q1 QO NC DSOUT RESET VCC 

INPUT SIGNALS 
CLK EXTERNAL CLOCK 
PHDB POSITIVE HDB3 SIGNAL 
NHDB NEGATIVE HDB3 SIGNAL 
MR MASTER RESET 
JOE ASSERTIVE LOW OUTPUT ENABLE 

OUTPUT SIGNALS 
ERROR : ERROR FLAG 
VERROR : ~IPOLAR VIOLATION ERRIR 

Q3, Q2, Q1, QO : HDB3 DECODING STATE VARIABLE OUTPUTS 
DSOUT DATA SERIAL OUTPUT 
RESET : RESET SIGNAL 

EQUATIONS 

;THE 20RS4 GENERATES ONE SIGNAL, TWO ERROR FLAGS 
;AND A HDB3 DECODING STATE MACHINE 

;(1) A RESET SIGNAL IS GENERATED TO CLEAR 
THE 4-BIT SHIFT REGISTER 

RESET QO * Q2 * /Q3 * /PHDB * NHDB 

+ Q1 * /Q2 * Q3 * PHDB * /NHDB 

STATE 8 OR STATE 9 
WITH /PHDB * NHDB 
STATE 3 OR STATE 4 
WITH PHDB * /NHDB 

;(2) A VERROR SIGNAL IS GENERATED TO INDICATE THE VIOLATION ERROR 

VERROR = /QO * Q1 * Q2 * Q3 
+ QO * /Q1 * Q2 * Q3 

; STATE 11 
; STATE 12 

2·400 ~ Monolithic W Memories ~ 



HDB3 Line Coding Using PAL Devices 

CLOCKF CLK 

SETF /MR PHDB NHDB ; VECTOR 1, STATE 0, 0000 
CLOCKF CLK ; ERROR 

SETF /MR /PHDB /NHDB ; VECTOR 2, STATE 0, 0000 
CLOCKF CLK 

SETF /MR /PHDB /NHDB ; VECTOR 3, STATE 0, 0000 
CLOCKF CLK 

SETF /MR PHDB /NHDB ; VECTOR 4, STATE 1, 1000 
CLOCKF CLK 

SETF /MR /PHDB /NHDB ; VECTOR 5, STATE 2, 1001 
CLOCKF CLK 

SETF /MR /PHDB /NHDB ; VECTOR 6, STATE 3, 1011 
CLOCKF CLK EJI 
SETF /MR /PHDB /NHDB ; VECTOR 7, STATE 4, 1010 
CLOCKF CLK 

SETF /MR PHDB /NHDB ; VECTOR 8, STATE 5, 0010 
CLOCKF CLK ;RESET 

SETF /MR /PHDB NHDB ; VECTOR 9, STATE 6, 0110 
CLOCKF CLK 

SETF /MR PHDB /NHDB ; VECTOR 10, STATE 1, 1000 
CLOCKF CLK 

SETF /MR /PHDB NHDB ; VECTOR 11, STATE 6, 0110 
CLOCKF CLK 

SETF /MR /PHDB /NHDB ; VECTOR 12, STATE 7, 0100 
CLOCKF CLK 

SETF /MR /PHDB /NHDB ; VECTOR 13, STATE 8, 0101 
CLOCKF CLK 

SETF /MR /PHDB NHDB ; VECTOR 14, STATE 10, 1111 
CLOCKF CLK ; RESET 

SETF /MR PHDB (NHDB ; VECTOR 15, STATE 1, 1000 
CLOCKF CLK 

SETF /MR /PHDB NHDB ; VECTOR 16, STATE 6, 0110 
CLOCKF CLK 

SETF /MR PHDB /NHDB ; VECTOR 17, STATE 1, 1000 
CLOCKF CLK 

SETF /MR /PHDB /NHDB ; VECTOR 18, STATE 2, 1001 
CLOCKF CLK 

l1 Monolithic W Memories l1 2·401 



HDB3 Line Coding Using PAL Devices 

;(3) A ERROR SIGNAL IS GENERATED WHEN PHDB AND NHDB BOTH ARE HIGH 
AT THE SAME TIME, 

ERROR = NHDB * PHDB ; BOTH PHDB AND NHDB 
; ARE HIGH 

;(4) A DATA SERIAL OUTPUT SIGNAL IS GENERATED 

DSOUT = NHDB 
+ PHDB 

;(5) THE HDB3 DECODING STATE MACHINE 

Q3 := /NHDB * /PHDB * /Q2 * Q3 * /MR 
+ /NHDB * PHDB * /QO * /Q3 * /MR 
+ /NHDB * /QO * Q1 * /Q2 * /Q3 * /MR 
+ /NHDB * /QO * Q1 * Q2 * Q3 * /MR 
+ /NHDB * /Q1 * /Q2 * Q3 * /MR 
+ /NHDB * PHDB * QO * Q2 * /MR 
+ NHDB * /PHDB * Q2 * /Q3 * /MR 
+ NHDB * /PHDB * QO * Q2 * /MR 

MSB STAE VARIABLE 

Q2 := /NHDB * PHDB * /QO * Q1 * /Q2 * /Q3 * /MR 
+ /NHDB * PHDB * /QO * Q1 * Q2 * Q3 * /MR 
+ /NHDB * PHDB * /Q1 * /Q2 * Q3 * /MR 
+ NHDB * /PHDB * /QO * /Q3 * /MR 
+ NHDB * /PHDB * Q1 * Q3 * /MR 
+ NHDB * /PHDB * /Q2 * Q3 * /MR 
+ /PHDB * Q2 * /Q3 * /MR 
+ /PHDB * QO * Q2 * /MR 

Q1 := /NHDB * /PHDB * QO * Q3 * /MR 
+ /NHDB * PHDB * /Q2 * Q3 * /MR 
+ /NHDB * PHDB * /QO * Q1 * /Q2 * /MR 
+ /NHDB * PHDB * /QO * Q1 * Q3 * /MR 
+ NHDB * /PHDB * /QO * /Q2 * /MR 
+ NHDB * /PHDB * /QO * Q1 * Q3 * /MR 
+ /PHDB * QO * /Q2 * Q3 * /MR 
+ /PHDB * Q1 * /Q2 * Q3 * /MR 
+ /PHDB * QO * Q2 * /Q3 * /MR 

QO := /NHDB * /PHDB * /Q1 * /Q2 * Q3 * /MR 
+ NHDB * /PHDB * Q2 * /Q3 * /MR ; LSB STATE VARIABLE 
+ /PHDB * /Q1 * Q2 * /Q3 * /MR 
+ /PHDB * QO * Q2 * /Q3 * /MR 
+ NHDB * /PHDB * QO * Q2 * /MR 

SIMULATION 

TRACE_ON MR CLK PHDB NHDB DSOUT Q3 Q2 Q1 QO RESET VERROR ERROR 

SETF OE MR PHDB NHDB ;RESET CONDITION 

2·402 ~ Monolithic W Memories ~ 



HDB3 Line Coding Using PAL Devices 

SETF /MR /PHDB /NHDB iVECTOR 19, STATE 3, 1011 
CLOCKF CLK 

SETF /MR PHDB /NHDB : VECTOR 20, STATE 5, 0010 
CLOCKF CLK iRESET 

SETF /MR /PHDB NHDB iVECTOR 21, STATE 6, 0110 
CLOCKF CLK 

SETF /MR /PHDB /NHDB iVECTOR 22, STATE 7, 0100 
CLOCKF CLK 

SETF /MR /PHDB /NHDB : VECTOR 23, STATE 8, 0101 
CLOCKF CLK 

SETF /MR /PHDB NHDB iVECTOR 24, STATE 9, 0111 
CLOCKF CLK 

SETF /MR /PHDB NHDB : VECTOR 25, STATE 10, 1111 Ell CLOCKF CLK :RESET 

TRACE_OFF 

~ Monolithic m Memories ~ 2·403 



ZPALTM Devices Implement 
D4 Frame Synchronization AN-170 

With the rapid increase in popularity of T1 trunk links following 
the deregulation of AT&T, the transparent nature of the 24 data 
channels must be supported by handling of the framing bits. 
These must comply with certain standards, the most common 
of which is known as 04. 

T1·Carriers 
More than 100 million miles of T-carrier lines are installed in the 
U.S. and Canada. They are full-duplex digital communication 
links with a specific bit rate and format. T-carrier lines' 
transmission quality and reliability exceeds that of analog 
lines. T-carrier lines are available in a range of transmission 
rates between 1.S44 Mbps and 274 Mbps, designated T1, T1C, 
T2, T3, and T4. 

The most common standard, T1 can be considered a building 
block for the others. T1 transmits at 1.S44 Mbps. AT&T 
specifications define 01, 010, 02, 03, 04 and ESF framing 
structures for T1 carriers. These standards specify the 
framing-bit pattern and frame synchronization. 01 was 
established in 1969 and has been superseded by the later 
standards. 010, 02, 03, and 04 framing formats group twelve 
frames into a superframe. Today, the 04 framing format is the 
most prevalent. The future format is ESF, also called Fe, which 
groups twenty-four frames into an extended superframe. It is 
presently under definition, and will be supported in the future. 

D4 Framing Format 
The T1 standard for 04 framing defines a superframe as a 
group of twelve frames. A frame consists of twenty-four 8-bit 
channels plus one framing bit for a total of 193 bits. The 8-bit 
channel consists of one polarity bit and seven magnitude bits; 
however, in frames six and twelve, the eighth bit in each 
channel carries signaling information. Since this bit cannot 
transmit user data (either voice or data) it is called robbed-bit 
signaling. The signaling bit transmits requests for services and 
calling information. At the 1.S44 Mbps transmission rate, 8 
kbps are overhead for framing; so the user transmission rate is 
1.536 Mbps. Because the user transmission rate is divided 
into twenty-four channels, each channel transmits at 64 kbps. 

A frame bit should occur every 193rd bit in the data stream. 
Frame detection occurs when a sequence of sampled frame 
bits matches the frame pattern. However, occasionally data 
can produce the same pattern. False framing occurs when the 
frame synchronization circuitry mistakes data bits for the 
framing bits. 

A frame-bit error occurs when the incoming frame bit does not 
match the expected framing bit. If two out of four consecutive 
frame bits are in error, then frame synchronization is "lost." 
Once frame synchronization is "lost," a search for the frame 
pattern is started. AT&T T1 standards specify the maximum 
time to search and re-synchronize as SO ms. This time period 
is called the reframe time. 

For the 04 frame format, the framing bits are divided into two 

groups: Ft and Fs. The terminal framing bit (Ft) identifies frame 
boundaries. The signaling frame bit (Fs) identifies the 
superframe boundary and the frames containing signaling bits. 
Ft and Fs are interleaved to create the 12-bit framing pattern 
shown in Table 1.This pattern is repeated every twelve frames. 

TERMINAL SIGNALING SUPER-
FRAME FRAMING FRAMING FRAMING 

Ft Fs SF 

1 1 - 1 

2 - 0 0 

3 0 - 0 

4 - 0 0 

5 1 - 1 

6 - 1 1 

7 0 - 0 

8 - 1 1 

9 1 - 1 

10 - 1 1 

11 0 - 0 

12 - 0 0 

Table 1. Framing Pattern 

Hardware Implementation 
The frame synchronization logic was implemented in PAL 
devices because current single-chip solutions do not offer 
enough flexibility in line coding. Using PAL devices, this 
design has the flexibility to interface various line coding 
devices. 

The PAL devices implement the frame synchronization logic, 
which can be divided into three sections. The first section 
detects the 04 framing pattern. The second section searches 
for frame synchronization. The third section provides the su­
perframe timing. These are implemented using four CMOS PAL 
devices, a shift register, and a counter as shown in Figure 1. 

The frame detection hardware samples every 193rd bit of the 
data stream. The data is sampled on the positive edge of 
T1_CK. Either a shift register or a state machine can be used 
to sample the framing bits. The data stream is shifted into a 
(193x23)-bit shift register with taps every 193 bits. The taps 
are fed into two identical Frame Pattern Detection (FPO) PAL 
devices. The more taps sampled, the less likely a data pattern 
will reproduce the framing pattern. In this design, twenty-four 
taps ensure reasonable prevention of false framing. 

2-404 ~ Monollthio m Memories ~ 



D4 Frame Synchronization 

Each FPD device monitors twelve framing bits. If the framing 
pattern is found, a FP _DETB signal is generated. From these 
signals, the controller determines the correct framing pattern. 
The FPD's FRM1 B indicates the start of a superframe. 

The first FPD's inputs are the first eleven taps from the shift 
register plus the data input stream. The second FDP monitors 
the remaining taps from the shift register as shown in Figure 1. 

The control section is a controller and a counter, which search 
for frame synchronization. The controller, SYNC PAL, uses the 
193-bit counter to determine if the frame detection signals are 
spaced every 193 bits. First the controller searches for the 
first framing pattern. During the search operation, SYNC PAL 

L 

waits for the FPD's frame detection signals. When a framing 
pattern is found, the counter is reset. If 193 bits later, the next 
expected framing bit is found, the controller is "in sync." It 
continues checking the framing pattern every 193 bits. If the 
framing pattern is not found, it assumes that the incoming 
framing bit is in error. If the next four framing bits are correct, 
the controller remains "in sync." If, during this time, a second 
frame-bit error occurs, the framing is "lost." The controller, 
then, asserts the lost frame signal, NO_FRM. Once the framing 
is "lost," the controller begins searching for the correct frame 
pattern. While the controller searches for the correct frame 
pattern, the previous frame synchronization is maintained until 
the controller re-synchronizes. 

FRM BIT 193x23 SHIFT REGISTER I 

DATA 

N031C 

RST 

TCCK 

-

111 121 

SRD(l-ll) SRD(O-ll) 

,.- SRD(O) FPD PAL I-r-; FPDPAL 
PALC16L8Z PALC16L8Z 

FP_DET I FRM1 FP_DET FRM1 

X 

L...... I--- BIT FPD1 FPD2 

SYNC PAL 
PALC20R4Z 

t 
CB(2-0)1-
~ 

LD i 3)" 
SUPER 
FRAME 

PAL 
PALC16R6Z 

193 COUNTER 

Figure 1_ Frame Synchronization Logic 

~ MonollthloW MemorIes ~ 

I-

I--

NO_FRM 

BYT_CK 

SUNK 

FRM6 

FRM12 

SOF 

2·405 

Ell 



D4 Frame Synchronization 

Figure 2 shows the sync. state machine for the controller. 
Signals FPD1 Band FPD2B (from the FPDs) indicate a T1 frame 
pattern detection, while SOF (from the counter) indicates 193 
counts. Beginning in states F and G, the controller searches 
for the frame pattern. Once the framing has been found, the 
state machine enters state A. At state A SUNK is asserted, 
which indicates "in sync." The state machine remains in state A 
until a single frame-bit error occurs. Upon the first frame-bit 
error, the state machine enters state B. If the next four framing 
bits are correct, the state machine sequences through states 
C, D, and E, which returns to state A. However, if during this 
time, a second frame bit error occurs, the state machine enters 
state F. Loss of T1 carrier (NO_T1CB) or reset (RSTB) forces 
the state machine into the searching state. 

SYNC PAL performs two other miscellaneous functions. When 
a single framing-bit error is encountered, the device corrects 
the bit. The corrected version of the input data stream, BIT, is 
fed into the shift register. The device also generates the 
BYT_CK. A single pulse is asserted for every channel for 
external serial-to-parallel (SIP) data conversion. For this imple­
mentation BYT_CK is asserted when the counter's three least 

significant bits are all zeros. Depending on the requirements of 
the SIP converter, any combination of the counter's three least 
significant bits could generate BYT_CK for the correct 
alignment with the channel sample. 

SUPER FRAME PAL generates the superframe timing. It 
generates FRM_6 and FRM_12 by counting the frames. These 
signals indicate the frames containing the signaling bits. The 
CMOS PAL device implements a 4-bit counter. When the frame 
is "in sync," SOF increments the counter, while FRM_1 clears 
it. If the controller is "out of frame sync," the counter continues 
counting, based on the last known frame position. 

Design Recommendations 
While this design meets the D4 specification, one design 
improvement might be useful. A Signal flagging single-framing 
bit errors could be added. Monitoring this signal indicates the 
amount of random noise on the line. This signal could warn that 
a line is noisy even though frame synchronization was never 
lost. 

FP01 B * FP02B * SOF + SOF 

FPD1 B * FPD2B * SOF 

2·406 

FP01 B * SOF + FPD2B * SOF 

FPD1B* SOF + 
FPD2B*SOF 

FPD1 B * FPD2B * SOF 

NOTE: "BITA = FPD1B * FPD2B * SOF * DATA + 
SOF*DATA+ 
FPD1B * SOF* DATA + 
FPD2B * SOF* DATA 

Figure 2. Sync State Machine 

FPD1 B * FPD2B * SOF 

~ Monolithic m Memories ~ 

FPD1 B * FPD2B * SOF 



D4 Frame Synchronization 

TITLE FRAME DETECTION PAL 
PATTERN T1-FRAME DETECTION PAL FOR T1 INTERFACE 
REVISION P1.04 
AUTHOR STEVE PATTERSON AND THERESA SHAFER 
COMPANY 
DATE 6/4/87 

This PAL device monitors 12 193rd bits in the incoming T1 NRZ data s 
It detects any valid Frame Pattern (start of any Frame) and the start 
of Frame 1. 

CHIP FPD PAL16LS 

; PINS 
;1 2 
SRDO SRD1 
;11 12 
SRD9 FRM1B 

INPUTS: 

OUTPUTS: 

3 4 
SRD2 SRD3 
13 14 
SRD10 SRD11 

SRD(11-0) 
SOF 

5 6 7 S 9 
SRD4 SRD5 SRD6 SRD7 SRD8 
15 16 17 18 19 
NC FRM1_6B NC SOF FP_DETB 

FRAMING BITS 
LAST KNOWN START OF FRAME 

ACTIVE LOW SIGNAL INDICATING FRAMING 
PATTERN DETECTED 

ACTIVE LOW SIGNAL INDICATING START OF 
FRAME 1 

ACTIVE LOW SIGNAL INDICATING FRAME 1 
TO 6 DETECTED 

;FRAMING PATTERNS 

FRM 1 
FRM-2 
FRM-3 
FRM-4 
FRM-5 
FRM-6 
FRM-7 
FRM-S 
FRM-9 
FRM-10 
FRM-11 
FRM:12 

S S S S S S S S S S S S 
RRRRRRRRRRRR 
00000 0 0 0 0 0 0 0 
119 S 7 654 3 210 

1 ° 1,0,0,0,1,1,0,1,1,1,0,0 ]; 
0,1,0,0,0,1,1,0,1,1,1,0 ]; 
0,0,1,0,0,0,1,1,0,1,1,1 ]; 
1,0,0,1,0,0,0,1,1,0,1,1 ]; 
1,1,0,0,1,0,0,0,1,1,0,1 ]; 
1,1,1,0,0,1,0,0,0,1,1,0 ]; 
0,1,1,1,0,0,1,0,0,0,1,1 ]; 
1,0,1,1,1,0,0,1,0,0,0,1 ]; 
1,1,0,1,1,1,0,0,1,0,0,0 ]; 
0,1,1,0,1,1,1,0,0,1,0,0 ]; 
0,0,1,1,0,1,1,1,0,0,1,0 ]; 
0,0,0,1,1,0,1,1,1,0,0,1 ]; 

EQUATIONS 

/FRM1B = SOF * SRD11 * /SRD10 * /SRD9 * /SRD8 * SRD7 * SRD6 * /SRD5 
* SRD4 * SRD3 * SRD2 * /SRDl * /SRDO 

/FRM1_6B SRDll * /SRDIO * /SRD9 * /SRDS * SRD7 * SRD6 * /SRD5 ; FRM 1 
* SRD4 * SRD3 * SRD2 * /SRDl * /SRDO 

~ Monolithic m Memories ~ 

10 
GND 
20 
vce 

2·407 



D4 Frame Synchronization 

+ /SRD11 * SRD10 * /SRD9 * /SRD8 * /SRD7 * SRD6 * SRD5 
* /SRD4 * SRD3 * SRD2 * SRD1 * /SRDO 

+ /SRD11 * /SRD10 * SRD9 * ,SRD8 * /SRD7 * /SRD6 * SRD5 
* SRD4 * /SRD3 * SRD2 * SRD1 * SRDO 

+ SRD11 * /SRD10 * /SRD9 * SRDS * /SRD7 * /SRD6 * /SRD5 
* SRD4 * SRD3 * /SRD2 * SRD1 * SRDO 

+ SRD11 * SR010 * /SRD9 * /SRD8 * SRD7 * /SRD6 * /SRD5 
* /SRD4 * SRD3 * SRD2 * /SRD1 * SRDO 

+ SRD11 * SRD10 * SRD9 * /SRDS * /SRD7 * SRD6 * /SRD5 
* /SRD4 * /SRD3 * SRD2 * SRD1 * /SRDO 

FRM 2 

FRM 3 

FRM 4 

FRM 5 

FRM 6 

/FP DETB = /FRM1 6B 
- + /SRD11-* SRD10 * SRD9 * SRD8 * /SRD7 * /SRD6 * SRD5 

FRM 1-6 

* /SRD4 * /SRD3 * /SRD2 * SRD1 * SRDO 
+ SRD11 * /SRD10 * SRD9 * SRD8 * SRD7 * /SRD6 * /SRD5 

* SRD4 * /SRD3 * /SRD2 * /SRD1 * SRDO 
+ SRD11 * SRD10 * /SRD9 * SRD8 * SRD7 * SRD6 * /SRD5 

* /SRD4 * SRD3 * /SRD2 * /SRD1 * /SRDO 
+ /SRD11 * SRD10 * SRD9 * /SRD8 * SRD7 * SRD6 * SRD5 

* /SRD4 * /SRD3 * SRD2 * /SRD1 * /SRDO 
+ /SRD11 * /SRD10 * SRD9 * SRD8 * /SRD7 * SRD6 * SRD5 

* SRD4 * /SRD3 * /SRD2 * SRD1 * /SRDO 
+ /SRD11 * /SRD10 * /SRD9 * SRDS * SRD7 * /SRD6 * SRD5 

* SRD4 * SRD3 * /SRD2 * /SRD1 * SRDO 

SIMULATION 

TRACE ON 

FRM 7 

FRM S 

FRM 9 

FRM 10 

FRM 11 

FRM 12 

SOF SRD11 SRD10 SRD9 SRD8 SRD7 SRD6 SRD5 SRD4 SRD3 SRD2 SRD1 SRDO 
FP_DETB FRM1B FRM1_6B 

SETF SOF 

SETF ; FRAME 1 
SRD11 /SRD10 /SRD9 /SRD8 SRD7 SRD6 /SRD5 SRD4 SRD3 SRD2 /SRD1 /SRDO 

SETF ; FRAME 2 
/SRD11 SRD10 /SRD9 /SRDS /SRD7 SRD6 SRD5 /SRD4 SRD3 SRD2 SRD1 /SRDO 
SETF ; FRAME 3 
/SRD11 /SRD10 SRD9 /SRD8 /SRD7 /SRD6 SRD5 SRD4 /SRD3 SRD2 SRD1 SRDO 
SETF ; FRAME 4 

SRD11 /SRD10 /SRD9 SRDS /SRD7 /SRD6 /SRD5 SRD4 SRD3 /SRD2 SRD1 SRDO 
SETF ; FRAME 5 

SRD11 SRD10 /SRD9 /SRDS SRD7 /SRD6 /SRD5 /SRD4 SRD3 SRD2 /SRD1 SRDO 
SETF ; FRAME 6 

SRD11 SRD10 SRD9 /SRDS /SRD7 SRD6 /SRD5 /SRD4 /SRD3 SRD2 SRD1 /SRDO 
SETF ; FRAME 7 
/SRD11 SRD10 SRD9 SRDS /SRD7 /SRD6 SRD5 /SRD4 /SRD3 /SRD2 SRD1 SRDO 
SETF ; FRAME S 

SRD11 /SRD10 SRD9 SRDS SRD7 /SRD6 /SRD5 SRD4 /SRD3 /SRD2 /SRD1 SRDO 
SETF ; FRAME 9 

SRD11 SRD10 /SRD9 SRDS SRD7 SRD6 /SRD5 /SRD4 SRD3 /SRD2 /SRD1 /SRDO 
SETF ; FRAME 10 
/SRD11 SRD10 SRD9 /SRD8 SRD7 SRD6 SRD5 /SRD4 /SRD3 SRD2 /SRDl /SRDO 

2·408 ~ Monolithic W Memories ~ 



D4 Frame Synchronization 

SETF ; FRAME 11 
/SRD11 /SRD10 SRD9 SRD8 /SRD7 SRD6 SRD5 SRD4 /SRD3 /SRD2 SRD1 /SRDO 
SETF ; FRAME 12 
/SRD11 /SRD10 /SRD9 SRD8 SRD7 /SRD6 SRD5 SRD4 SRD3 /SRD2 /SRD1 SRDO 

SETF ; NOT FRAMING PATTERN 
/SRD11 /SRD10 /SRD9 /SRD8 /SRD7 /SRD6 /SRD5 /SRD4 /SRD3 /SRD2 /SRD1 /SRDO 
SETF ; NOT FRAMING PATTERN 
/SRD11 /SRD10 SRD9 /SRD8 /SRD7 /SRD6 /SRD5 /SRD4 /SRD3 /SRD2 /SRD1 /SRDO 
SETF ; NOT FRAMING PATTERN 
/SRD11 /SRD10 /SRD9 /SRD8 /SRD7 /SRD6 /SRD5 /SRD4 /SRD3 /SRD2 /SRD1 /SRDO 
SETF ; NOT FRAMING PATTERN 
/SRD11 SRD10 SRD9 /SRD8 SRD7 /SRD6 /SRD5 /SRD4 /SRD3 /SRD2 jSRD1 /SRDO 
SETF ; NOT FRAMING PATTERN 

SRD11 SRD10 SRD9 SRD8 /SRD7 SRD6 SRD5 SRD4 SRD3 SRD2 SRD1 SRDO 
SETF ; NOT FRAMING PATTERN 

SRD11 SRDIO SRD9 SRD8 SRD7 SRD6 SRD5 SRD4 SRD3 SRD2 SRDl SRDO 

TRACE_OFF Ell 

~ Monollthlem Memories ~ 2-409 



D4 Frame Synchronization 

PALASM SIMULATION, V2.22 - MARKET RELEASE (11-19-86) 
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986 
PALASM SIMULATION SELECTIVE TRACE LISTING 

Title 
Pattern 
Revision 

FPD 
Page 

SOF 
SRD11 
SRD10 
SRD9 
SRD8 
SRD7 
SRD6 
SRD5 
SRD4 
SRD3 
SRD2 
SRD1 
SRDO 
FP DETB 
FRM1B 
FRM1_6B 

2-410 

1 

FRAME_DETECT ION_PAL Author 
T1 FRAME DETECTION PAL FCompany 
P1.04 Date 

gggggggggg ggggggggg 
HHHHHHHHHH HHHHHHHHH 
XHLLHHHLHH LLLLLLLHH 
XLHLLHHHLH HLLLLLHHH 
XLLHLLHHHL HHLLHLHHH 
XLLLHLLHHH LHHLLLLHH 
XHLLLHLLHH HLHLLLHLH 
XHHLLLHLLH HHLLLLLHH 
XLHHLLLHLL HHHLLLLHH 
XHLHHLLLHL LHHLLLLHH 
XHHLHHLLLH LLHLLLLHH 
XHHHLHHLLL HLLLLLLHH 
XLHHHLHHLL LHLLLLLHH 
XLLHHHLHHL LLHLLLLHH 
XLLLLLLLLL LLLHHHHHH 
XLHHHHHHHH HHHHHHHHH 
XLLLLLLHHH HHHHHHHHH 

STEVE PATTERSON AND THER 

6/4/87 

~ Monollthlo W Memories ~ 



D4 Frame Synchronization 

TITLE SYNC PAL 
PATTERN T1-FRAME SYNC PAL FOR Tl INTERFACE 
REVISION P1.06 
AUTHOR STEVE PATTERSON AND THERESA SHAFER 
COMPANY 
DATE 6/4/87 

This PAL device decides whether the T1 Interface is in Frame Sync, 
provisional Sync, or out of Sync. It controls the Frame Sync 
process. 

CHIP SYNC PAL20R4 

;PINS 
;1 2 3 4 
T1_CKB RSTB NO_T1CB DATA 

5 
FPD1B 

6 
FPD2B 

7 
BC2 

8 
BC1 

;9 10 
BCO SOF 

;13 14 
OEB NC 
;21 22 
BYT_CK BIT 

;INPUTS:T1 CKB 
RSTB 

11 
NC 

15 
NO_FRM 
23 
NC 

NO T1CB 
FPD(1-2)B 
BC (2-0) 
SOF 
DATA 
OEB 

;OUTPUTS:BIT 
LOB 
SUNK 
NO FRM 
Q(2-0) 
BYT_CK 

EQUATIONS 

12 
GND 

16 
SUNK 
24 
VCC 

17 
LOB 

18 
QO 

19 
Q1 

ACTIVE LOW EXTERNAL T1 CLOCK 
ACTIVE LOW MASTER RESET 
NO T1 SIGNAL ACTIVE LOW INPUT 

20 
Q2 

ACTIVE LOW FRAME PATTERN DETECT INPUTS 
193 COUNTER 3 LSBs INPUTS USED FOR BYT_CK 
LAST KNOWN START OF FRAME 
INPUT DATA STREAM 
ACTIVE LOW OUTPUT ENABLE INPUT 

NEXT T1 BIT STREAM 
ACTIVE LOW LOAD COUNTER SIGNAL 
IN SYNC STATE AND NO FRAME BIT ERROR 
FRAME LOST, IN SEARCH STATE 
STATE VARIABLES 
8-BIT CHANNEL SAMPLE CLOCK 

;STATE MACHINE OUTPUTS AND STATE VARIABLES 

/BIT = DATA * /Q2 * /Q1 * QO * FPD1B * SOF 
+ DATA * /Q2 * /Q1 * QO * FPD2B * SOF 
+ /DATA * /SOF 
+ /DATA * /FPD1B * /FPD2B 
+ /DATA * Q2 
+ /DATA * Q1 
+ /DATA * /QO 

/LDB := Q2 * Ql * QO * /FPD1B * /FPD2B + SOF 

/SUNK = /Q2 * /Q1 * /QO + Q1 * QO IN FRAME SYNC 

~ Monolithic W Memories ~ 2·411 



D4 Frame Synchronization 

/NO_FRM = /Q2 + /Q1 + /QO 

USING THE 
A 

FOLLOWING 
001 

STATE ASSIGNMENTS 
IN SYNC STATE 

; SEARCHING FOR FRAME SYNC 

B 010 SINGLE FRAME BIT ERROR STATE 
C 
o 
E 
F 
G 
H 

110 
100 
101 
111 
011 
000 

SEARCHING STATE 
SEARCHING STATE 
UNUSED STATE - GOES TO F 

/Q2 := /FPD2B * /FPD1B * Q1 * QO * RSTB * NO_T1CB 
+ /Q2 * Q1 * /SOF * RSTB * NO T1CB 
+ /Q2 * /Q1 * QO * RSTB * NO T1CB 
+ /FPD2B * /FPD1B * QO * SOF-* RSTB * NO_T1CB 

/Q1 := /Q1 * QO * /SOF * RSTB * NO_T1CB 
+ Q2 * /Q1 * /SOF * RSTB * NO_T1CB 
+ /FPD2B * /FPD1B * Q2 * /QO * SOF * RSTB * NO T1CB 
+ /FPD2B * /FPD1B * Q2 * /Q1 * RSTB * NO_T1CB 
+ /FPD2B * /FPD1B * /Q2 * QO * SOF * RSTB * NO_T1CB 

/QO := Q1 * /QO * /SOF * RSTB * NO_T1CB 
+ Q2 * /QO * /SOF * RSTB * NO_T1CB 
+ FPD1B * /Q2 * /Q1 * QO * SOF * RSTB * NO_T1CB 
+ FPD2B * /Q2 * /Q1 * QO * SOF * RSTB * NO T1CB 
+ /FPD2B * /FPD1B * Q1 * /QO * RSTB * NO_T1CB 

; BYTE CLOCK 

/BYT CK = BC2 + BC1 + BCO 

SIMULATION 

TRACE ON T1 CKB RSTB NO T1CB DATA FPD1B FPD2B SOF 
Q2 Q1-QO BIT LOB SUNK NO FRM 
BYT_CK BC2 BC1 BCO -

SETF /OEB ENABLE OUTPUT 
/RSTB /NO_T1CB RESET REGISTERS 

CLOCKF T1_CKB 

SETF RSTB NO T1CB RESET REGISTERS 
DATA -
/BC2 /BC1 /BCO STATE MACHINE - GO TO STATE F 
FPD1B FPD2B SOF 

CLOCKF T1_CKB 

SETF FPD1B /FPD2B SOF 
CLOCKF T1_CKB LOOPS AT STATE F 

2·412 ~ Monolithic W Memories ~ 



D4 Frame Synchronization 

SETF /FPDlB FPD2B SOF 
CLOCKF Tl_CKB 

SETF FPDlB /FPD2B /SOF 
CLOCKF Tl_CKB 

SETF /FPDlB FPD2B /SOF 
CLOCKF Tl_CKB 

SETF FPDlB FPD2B /SOF 
CLOCKF Tl_CKB 

SETF /FPDlB /FPD2B SOF 
CLOCKF Tl_CKB 

SETF FPDlB FPD2B SOF 
/BC2 /BCl BCO 

CLOCKF Tl_CKB 

SETF /FPDlB /FPD2B 
/BC2 BCl /BCO 

CLOCKF Tl_CKB 

SETF /SOF 
/BC2 BCl BCO 

CLOCKF Tl CKB 
SETF FPDlB /FPD2B SOF 

BC2 /BCl /BCO 
CLOCKF Tl_CKB 

SETF /FPDlB /FPD2B /SOF 
BC2 /BCl BCO 

CLOCKF Tl CKB 
SETF /FPDIB /FPD2B SOF 

BC2 Bel /BCO 
CLOCKF Tl_CKB 

SETF /SOF 
BC2 BCl BCO 

CLOCKF Tl CKB 
SETF /FPDIB /FPD2B SOF 

/BC2 /BCl /BCO 
CLOCKF Tl_CKB 

SETF /FPDlB FPD2B SOF 
CLOCKF Tl CKB 
SETF FPDlB FPD2B /SOF 

/BC2 /BCl BCO 
CLOCKF Tl CKB 
SETF /FPDIB /FPD2B SOF 
CLOCKF Tl_CKB 

SETF /SOF 
CLOCKF Tl_CKB 

LOOPS AT STATE F 

LOOPS AT STATE F 

LOOPS AT STATE F 

LOOPS AT STATE F 

GO TO STATE G 

GO TO STATE F 

GO TO STATE G 

LOOP AT STATE G 

GO TO STATE F 

GO TO STATE G 

GO TO STATE A 

LOOP AT STATE A 

LOOP AT STATE A 

GO TO STATE B 

LOOP AT STATE B 

GO TO STATE C 

LOOP AT STATE C 

~ Monolithic W Memories ~ 

EI 

2·413 



D4 Frame Synchronization 

SETF /FPDIB /FPD2B SOF 
CLOCKF T1_CKB GO TO STATE D. 

SETF /SOF 
CLOCKF T1 CKB LOOP AT STATE D 
SETF /FPDIB /FPD2B SOF 
CLOCKF T1_CKB GO TO STATE E 

SETF /SOF 
CLOCKF T1 CKB LOOP AT STATE E 
SETF /FPDIB /FPD2B SOF 
CLOCKF T1_CKB GO TO STATE A 

SETF FPD1B /FPD2B SOF 
CLOCKF T1 CKB GO TO STATE B 
SETF FPD1B /FPD2B SOF 
CLOCKF T1_CKB GO TO STATE F 

SETF /FPDIB /FPD2B /SOF 
CLOCKF T1 CKB GO TO STATE G 
SETF /FPDIB /FPD2B SOF 
CLOCKF T 1 CKB GO TO STATE A 
SETF /FPDIB FPD2B SOF 
CLOCKF T1 CKB GO TO STATE B 
SETF /FPDIB /FPD2B SOF 
FOR I:=1 TO 1 DO BEGIN 

CLOCKF T1_CKB GO TO STATE C 
END 
SETF FPD1B SOF 
CLOCKF T1_CKB GO TO STATE F 

SETF /FPDIB /FPD2B /SOF 
CLOCKF T1 CKB GO TO STATE G 
SETF /FPDIB /FPD2B SOF 
CLOCKF T1 CKB GO TO STATE A 
SETF /FPDIB FPD2B SOF 
CLOCKF T1 CKB GO TO STATE B 
SETF /FPDIB /FPD2B SOF 
FOR I:=1 TO 2 DO BEGIN 

CLOCKF T1_CKB GO TO STATES C,D 
END 
SETF FPD1B /SOF 
CLOCKF T1 CKB LOOP AT STATE D 
SETF FPD1B SOF 
CLOCKF T1_CKB GO TO STATE F 

SETF /FPD1B /FPD2B /SOF 
CLOCKF T1 CKB GO TO STATE G 
SETF /FPDIB /FPD2B SOF 
CLOCKF T1 CKB GO TO STATE A 
SETF /FPDIB FPD2B SOF 
CLOCKF T1 CKB GO TO STATE B 
SETF /FPDIB /FPD2B SOF 
FOR I:=1 TO 3 DO BEGIN 

CLOCKF T1_CKB GO TO STATES C,D,E 

2·414 ~ MonolithIc m Memories ~ 



D4 Frame Synchronization 

END 
SETF FPDIB SOF 
CLOCKF Tl_CKB 

SETF /DATA 
SETF /FPDIB /FPD2B /SOF 
CLOCKF Tl CKB 
SETF /FPDIB /FPD2B SOF 
CLOCKF Tl CKB 
SETF /FPDIB FPD2B SOF 
CLOCKF Tl CKB 
SETF /FPDIB /FPD2B SOF 
FOR I:=l TO 4 DO BEGIN 

CLOCKF Tl_CKB 
END 
SETF FPDIB SOF 
CLOCKF Tl CKB 
TRACE_OFF-

GO TO STATE F 

INVERT DATA 

GO TO STATE G 

GO TO STATE A 

GO TO STATE B 

GO TO STATES C,D,E,A 

GO TO STATE B 

~ MonollthleW Memories ~ 

EI 

2·415 



D4 Frame Synchronization 

PALASM SIMULATION. V2.22 - MARKEt RELEASE (11-19-86) 
(C) - COPYRIGHT MONOLITHIC MEMORIES INC. 1986 
PALASM SIMULATION SELECTIVE TRACE LISTING 

Titlt~ 

F'r.~t.tern 

F:€?\!· i ~'5 i. on 

~;YNC 

F'aqE' 

Tl""CkB 

F:STB 

NO T1CB 

FPD1B 

FPD2B 

E;OF 

D1 

QO 

BIT 

LOB 

sw'w: 

ND FF:1"1 

BCl 

BCO 

2·416 

SYNC_PAL Author STEVE PATTERSON AND THER 
T1 FRAME SYNC PAL FOR T1Companv 
Pl.06 Date 6/4/87 

9 cg cg cg cg cg cg cg cg cg cg c 

I I I I I I I I I I I • I I I I I I I 

- : :J--.-~~7.---:-:--~-~~---:~:--T:~:-' 
-r---,. 1111 II II II 11 11 II 

II 
II 

: : [I -:-:--i:r-;...-T-i--~~'~--~-7,~-.- 1 
· .. T .. _ .. • .. -,... I 1 I I I I I I I I I I I I 1 

1 
-I 

-:tx::o:: II II II II I I I I I I 
1 I 11 I I 

II 
II 

II 
II 

II II 

-':':(\1': ~--~ : r-~ : 1--711 _ : r~L' : : : .~ . , ,t', . .,. I ::: 1--+-1 : J--.--.;.-.t : --:-.J I ....,.----, 

~:~ X X :~ ~-~t-lj--~~~·--H---~t--1l--l-
1 I I I I I I I I I I I I I I I I I I I I 
I I .,-.. --r-r-"T"".,....-~ I I I I I r--r-r--~--Tl 

IXXI: ::::: I-~-~ :: :: : I-
: _+-~-+-;-~..:----:-..:-_ 1 I I I I I :: I I :: : 

·..,X II II II II ~:: r:-~II I 
,-t..,ll II II II :::::: L+-;.-.J:, -r-r--T 

-: -~-~~.~:--+:~I---~~-T;--+~--~r-~-r---i-+---T1 

-:tx II II II II II 
II 

II II II 
II 

--~~-;:-'!i--...;-;--T-T:~.-:i----;r-+---r-;--~ 

-:tX II 
II 

_·:tXXt: 

II II II II 

I I I I 
I f I I 

I I f I I I I I I I I I I I 
I I I I. I I I r-r---r-r----r-T 
tXXttX--.;.....:...~--,-;....--I :! : : 

tx 

II 
II 

tXXI! 
1 I 
1 I 

II II I I • I I I f 
11 • r~---r 

t X X :t ~-;-r--r-:i--;....;i--~-r~-+--+~--+! .4-----+-1 :: : 
II 
II 

I I • I : r--, 
:tXXt~---+;--+~-r~--~;--~--~---+I~· 1 

~ MonollthleW Memories ~ 



SYNC 
F'aqe 

T 1 .... CkB 

NO ..... T1CB 

Df'4T{-'t 

FF'DlB 

D2 

01 

DO 

BIT 

L.DB 

SUN~::' 

NO FRl'1 

BYT [Y: 

BC2 

B[:l 

E(CO 

D4 Frame Synchronization 

cq cg cq cq cq cg cq cq 'c:q c 

[T1TfTTllTTTTrrrTrITrlT~TTTfTTl-nTTrr-ITf 
-~-~r-1.;J~-·1J-Lrl-Jld-1~JLJ- . 
~ , " " " " " " " " " , ~-r---T"T'-'----...,..-r"----~T-----,-,-.---~----,--r--'--'----.--r----r-r-

t
il I 'I I I I I I I I I I I I I I I I 

-, I I I I I I I I 'I I I I I 1 I I I I 

I I I 'I I I I I I I I I I I I I I' f -.,.-----r-r----r-T----....,...-r--·--.,--,-----r-I---r-T---'--r-.. --~T--.,._r_---_r 

t
il I I I I I I I I I I I I I I I I I I 

-, I I I I I I I I I I 11 I I I I I I I 

I I I I I I I I I I' " I I I I I I I 
,----......,...-,---T·-·-"T~-,__r_-.,--r·-~__r_T----_,...,-----r-"T""--

I 'I I I I I I I I f I I I I I I I I , 
-, I I I I I I I I I I I I I I I I I I I 

I I I I I I I 

~~·--~-L~~~ -r: ..;.'--;.'-+: --+ 
I I I I I I I I I I I I I I I If 
I I I I 1 I I I I I r---.,---r---r-l I I 

-~-----;.-~-_+~-__+_~ :: : I----+-~----r-T_--i-I 

--:.---~G' :J'-~"~" ~-~" : r-' Tl" J" 
I I I I , I I I I I I 

-, I I 11 I ~- 1--

I I I I I I I I I 

-:-1 :: :: :: 0-:--1'-~_--;-r----'~'" 
.. I 4-r-"--r"--~-"-- I I 

I I J I I I I 

~---.~--~~~~ 
: r-':: 

.. ~:: L~ --~----r:~'----;-T:----r+_--_r_r---~~-
, " I I I I I I 

-I 1 I 

, " r---r-r .~r-~~-.~~~~---T--r----r+_--
I I I I I I I I I 

--r------,....,.---,-y----,-,.-~ 

.. ; :: ;: ;: : I~--T_r_--_;_+_--_r_r---~---i--T---;_I 

l1 Monolithic W Memories ~ 

, 
t· 

lEI 

2·417 



2·418 

~;YNC 

F'aqe 

T 1 .... D::B 

NO T1CB 

FF'D1B 

FF'D:Z8 

02 

01 

00 

BIT 

LDE{ 

SLJNK 

NCl FF:1"1 

BYT Ck 

BC2 

Bel 

BCO 

3 

D4 Frame Synchronization 

9 cg cg cg cg c cq cg cg cg cg 

TTTT' I I I I I I I ITfTTTTTTTTfTlTfTT1ITTfI­
: rl1-rLJ~.Jlfl-TI.J1~r~f~ 

-~----:,,~-~-~.---+-:--.~.+---+-----.;...+ .. .....;._: -i-:--;"-i-, 
"' 

, , , , , , , , 
~~~----r~--1-r , , , , , , , , 
"~---r: -;'---;.: -~____:_;..._-+...;.----.;. ,
"'

, , , , , , , , , , , ,

, , , ,

I I I I I I I I I I I

, , , , , ,

, ,

, ,
, ,

-: :: :: :: : 1;---+--"'-" L
--'-"--"'-'--'-r-T---+-! -;-..;--....

I

"'
I I , , " , , , , , , , , , , , ,

,
i

, ,

, ,

, ,
, ,

r

, , , ,

: J"~L' -J"~~' , " :' "--+":-
I I I I I. I I I I I • I

--r-- I 11 I f I I • I

t-r-"-+:..;'---;r+--~ :: ; r-+--l:; ::
.. : ;: L~:: ~-;:i-T-: -.....;.__;_

I

"' r,----+l---+-:-, : :
--;'~--;-;---i-i----' : : : : 4-;-

I' • f • f

l~
:L'~: , , i

,--' :: r:~L-T_r_---r----ii-T---~----;i-T---.-r-i---_r_r1 I ~:I--

~--;-;----ii-i---- ·-i---;.--,l,....;;i-i-_-+--i--I
: I

I I I I I I I I I
1111. Ir~"

-l--i-i---i-: ~-44----:.-r.--:.---J :: 4-;---_;_i---;-.: . ..;.'---r""i-i
,

"'

, -,

, , , , , ,
, i

t-r.----r~---ii-T---~--__;i-T---r--.....;.__;_--_r_;._-~~

~ Monolithic m Memories ~

, , , ,

E;YNC
F'c.'\qe 4

Tl Cf:::B

r':;:!3TB

NO TiCE<

DATA

FPD2B

S(::JF

02

01

00

BIT

L.OB

SUNI<

NO FRM

BYT CV

BC2

Bel

[<co

D4 Frame Synchronization

c:g cg cg cg c cq c:g c:q c:q c:q

I I I I I I I I I I I I I I I I I I I
----r-r-----r~----r-r--,-,---__,__~"_T~--_,__,.---"TI--__,._,_-.-

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

--H---;-r--+--T

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

-~~-~rT~--~i-~-;--.-~ 1

I I I I I I I I I I I I I I

II :r----:-L 11 II I, 'I
-~;-: --+--+--.-,.- I -T--;-r---....;.-:--;.-+--~

---:-~' :' II -+~_~' II :f'~" ~'I II
I I " " I I I I I It
I I I I I I I I I I

~ :: :; :: Jr-+:--;-r--+--T
:: L;-+-~: -i:i----.;...+.- ~
I I I I I I I I I

~::r:~
:: :: ~:, I L-T-;""--;""';-....J
I I '-+-_-;-;--,

~~ r
-++----:.-+-

L-T-+---r---+--;....--~T_~ :: ::

I I I I I I I I I I I • I I I I I

G'~I ---,..--r---r--~-r--~' I I
I I I I I I I I I I I I I I I I I

I I I I It. I I

I I I I I I

- ~~--~T_--_;....-~T_--~:-I~~
I I
I I

~-'rl --_T__;....---rT_--_;....r---T-·--;....~-;_;--__irT-_;~--_T__;...._1

I I
I I

I I
I I

I I
I I

~ MonollthlcW Memories ~ 2·419

2·420

SYNC
Page

Tl eKE<

F~STB

NO T1CE<

DATA

FPD1B

SOF

02

01

00

BIT

L.DB

SUNK

NO FRI"1

BYT C~:::

BC2

BCl

Be!)

c·
...J

D4 Frame Synchronization

cg c e cg egg cg cg cg c c c

rTTrI I I I I I I I I I I ITrrrTI1TT1TIfTTTrrrTTTfT
~~r11..~Jl~n~_Jl-~-r1JlJ1J
-~~---';'----"';"--:-+-·---ri+--.. ~~-·-+: -+:--+: _i:~----4--~ ..

I I
I I

I I
I I

I I I
I I I : : : : I I

I I

I I I I " I I I I I " I I I I ---r-,.-·---r----..,..---,-,.----,-,--r----r-r----r--T--.,.....,..--T·---r-.. -
I I
I I

I I
I I

I I I
I I I

I I
I I

I I
I I

I I
I I

I I I I I I I I I I I I I I I I I I
.--'T .. oor-~~ .. ~---,-~I I I I I. I I I

I I I I f I I I • I I I I I I I I
" I I I I I -'---~-"-'-"""~---r--

I I
I I

I I
I I

I I
I I : : : r'----";" I I

~·~:-:~~-~--+:4· :: ~--r+--~~---r+---+---+---~-1
I I I I I I I I I I I I I I I I
~ I I 11 III II I~ I

: J..---+.--:--g---++...;..--.;.~ : J..---';"'--+--+--I

I 1---~.~-_T_i__--i:M-: L' : ~~-~:--~-
II ~ :. I' I I

I I I I I I I I I I

--:-~ : : :: :: rT-, --i----i---;
I ;: 4-r-----r-r--~ 1

~"~~"::
I I I I I I I
I I I 11

'-~'-~-i--..J
I ~ ~
Ll-:----...;.--T---'

...;.....:....--i---+--;-. .,..- I 1 ~ : ~ ;. ;;

: : : ~--i---i----i---;
I I
I I

I I I
~ -+--+~--i-~-__T_r--_r+---~~--r-.~

-~--~-~--~-, r+~--~T__--~: ~

I 1'1

~_i'"_T_:_-+--_r~~~~-~T__--~--__T-~--~~

-ri-.--+---+-.--~~--~.~--~T__-.;--;.--__;._r--_r--_r---+-1
I

- I

~ Monolithic m Memories ~

D4 Frame Synchronization

SYNC
F'c.~ge . 6

T 1 CVB

RSTB

NCl T1[;B

Of·iTA

FF'D lB

FF'D2B

!3ClF

Q2

01

no

BIT

L.DB

SUNV

ND FRl'l

[3,(T CV

BC2

BCl

BC!)

cg c

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

'"'"11

~ MonollthleW Memories ~ 2·421

D4 Frame Synchronization

PALASM SIMULATION, V2.22 - MARKET RELEASE (11-19-86)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986
PALASM SIMULATION SELECTIVE TRACE LISTING

Title
Pattern
Revision

SYNC
Page

T1 CKB
RSTB
NO_T1CB
DATA
FPD1B
FPD2B
SOF
Q2
Q1
QO
BIT
LDB
SUNK
NO FRM
BYT_CK
BC2
BC1
BCO

SYNC
Page

T1_CKB
RSTB
NO T1CB
DATA
FPD1B
FPD2B
SOF
Q2
Q1
QO
BIT
LDB
SUNK
NO_FRM
BYT_CK
BC2
BC1
BCO

2·422

SYNC PAL Author STEVE PATTERSON AND THER
T1 FRAME SYNC PAL FOR T1Company
P1.06 Date 6/4/87

1

2

g cg cg cg cg cg cg cg cg cg cg c
XHHLLHHLLH LLHLLHHLLH LLHLLHHLLH HLLHHLLHHL
LLLLHHHHHH HHHHIrnHHHH HHHHHHHHHH HHHHHHHIrnH
LLLLHHHIrnH IrnHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXXXHHHHHH llliHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXXXHHHHHH HLLLHHHHLL LHHHLLLLHH HHLLLLLLLL
XXXXHHHHLL LHHHLLLLHH HHHHLLLLHH HHLLLLLLLL
XXXXHllliHHH HHHHLLLLLL LLLLHHHHHH IrnHHHHLLLL
XXHllliHHHHH HHHHHHHHHH HHHHHHLLLL HHHHLLLLLL
XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXHHllliHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXXXHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXXXXXLLLL LLLLLLHHHH IrnHHHHLLLL LLLLLLLLHH
XXLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
XXHHHHHIrnH HHHHHHHHHH HHHHHHLLLL HHHHLLLLLL
XXXXHHHHHH HHHHHHHHHH HHHHHHHHLL LLLLLLLLLL
XXXXLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
XXXXLLLLLL LLLLLLLLLL LLLLLLLLLL LLHHHHHHHH
XXXXLLLLLL LLLLLLLLLL LLLLLLLLHH HHLLLLHHHH

g cg cg cg cg c g cg cg cg cg c
LHHLLHHLLH HLLHHLLHHL LHHLLHHLLH HLLHHLLHHL
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH IrnHHHHHHHH
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
HHHHLLLLLL LLLLLLLLLL LLLLHHHHLL LLLLLLLLLL
LLLLLLLLLL LLLLLLLLLL HHHHHIrnHLL LLLLLLLLLL
HHHHLLLLHH HHLLLLHHHH HHHHLLLLHH HHLLLLHHHH
LLHHHHLLLL LLLLLLLLLL LLLLLLLLLL HHHHHHHHHH
HHHHHHHHHH LLLLLLLLLL LLHHHHHHHH HHHHHHHHLL
HHHHHHHHHH HHHHHHHHHH HHLLLLLLLL LLLLLLLLLL
HHHHHHHHHH HHHllliHHHHH LLHHHHHHHH HHHHHHHHHH
HHLLLLLLLL LLLLHHHHLL LLLLLLHHHH LLLLHHHHLL
LLLLLLLLLL llliHHHHHHHH HHHHHHHHHH HHHHHHHHHH
LLHHHHLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
LLLLLLLLLL LLLLLLHHHH HHHHLLLLLL LLLLLLLLLL
HHHHHHHHHH HHHHHHLLLL LLLLLLLLLL LLLLLLLLLL
LLLLLLLLHH HHHHHHLLLL LLLLLLLLLL LLLLLLLLLL
LLLLHHHHLL LLHHHHLLLL LLLLHHHHHH HHHHHHHHHH

~ Monolithic m Memories ~

D4 Frame Synchronization

SYNC
Page 3

9 cg cg cg cg c cg cg cg cg cg
Tl_ CKB LHHLLHHLLH HLLHHLLHHL HHLLHHLLHH LLHHLLHHLI
RSTB HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
NO TlCB HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
DATA HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
FPD1B LLLLLLLLLL LLLLLLHHHH HHHLLLLLLL LLLLLLLLLH
FPD2B LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LHHHHLLLLL
SOF LLLLHHHHLL LLHHHHHHHH HHHLLLLHHH HHHHHHHHHH
Q2 HHHHHHHHHH HHHHLLLLLL LHHHHLLLLL LLLLLLLHHH
Ql LLLLLLLLLL LLLLLLLLHH HHHHHHHHHL LLLHHHHHHH
QO LLLLLLHHHH HHHHHHHHLL LHHHHHHHHH HHHLLLLLLL
BIT HHHHHHHHHH HHHHHHLLHH HHHHHHHHHH HLLHHHHHHH
LDB LLHHHHLLLL HHHHLLLLLL LLLLLLLLLL LLLLLLLLLL
SUNK HHHHHHHHHH HHHHHHHHHH HLLLLLLLLH HHHHHHHHHH,
NO FRM LLLLLLLLLL LLLLLLLLLL LHHHHLLLLL LLLLLLLLLL
BYT CK LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
BC2- LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
BCl LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
BCO HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

SYNC
Page

T1 CKB
RSTB
NO T1CB
DATA
FPD1B
FPD2B
SOF
Q2
Q1
QO
BIT
LDB
SUNK
NO FRM
BYT CK
BC2-
BC1
BCO

4
cg cg cg cg c cg cg c 9 cg cg

HHLLHHLLHH LLHHLLHHLH HLLHHLLHHL LHHLLHHLLH
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
HHHLLLLLLL LLLLLLLLLL LLHHHHHHHH LLLLLLLLLL
LLLLLLLLLL LHHHHLLLLL LLLLLLLLLL T.T.T.T.T.T.T·LHH
HHHLLLLHHH HHHHHHHHHH HHLLLLHHHH LLLLHHHHHH
HHHHHLLLLL LLLLLLLHHH HHHHHHHHHH HHLLLLLLLL
HHHHHHHHHL LLLHHHHHHH LLLLLLLLHH HHHHHHLLLL
LHHHimHHHH HHHLLLLLLL T.T.T.T.T.T.LLHH HHHHHHHHHH
HHHHHHHHHH HLLHHHHHHH HHHHHHHHHH HHHHHHHHLL
LLLI.T.T.T.T·I·'[, LLLLLLLLLL LLLLHHHHLL LLLLLLLLLL
HI·I·I·I·I·I·LLH HHHHHHHHHH HHHHHHHHLL LLLLLLHHHH
LHHHHLLLLL LLLLLLLLLL LLLLLLLLHH HHLLLLLLLL
I·I·I·IJ·I·I·I·I·I· I·I·I·I·I·T·I.I.I.L LI.I·I·I·I·I·I·LL LLLLLLLLLL
I·I·I·I·I·T·I·I.'LL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
I·I·I·I·I·IJJ·I·'[, LLLLLLLLLL I·I·I·I.I.I.LLLL LLLLLLLLLL
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

~ Monolithic m Memories ~

Ell

2·423

2·424

D4 Frame Synchronization

SYNC
Page 5

eg e e eg egg eg eg eg e e e
Tl CKB HLLHHLHHLH HLLHHLLLHH LLHHLLHHLL HHLHHLHHLH
RSTB HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
NO TlCB HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
DATA HHHHHHHHHH HHHHHHLLLL LLLLLLLLLL LLLLLLLLLL
FPDlB LLLLLLLLLL LLHHHHHLLL LLLLLLLLLL LLLLLLLLLL
FPD2B HHLLLLLLLL LLLLLLLLLL LLLLLHHHHL LLLLLLLLLL
SOF HHHHHHHHHH HHHHHHHLLL LHHHHHHHHH HHHHHHHHHH
Q2 LLLLHHHHHH HHHHHHHHHL LLLLLLLLLL LHHHHHHHHH
Ql HHHHHHHLLL LLLLHHHHHH HHHLLLLHHH HHHHLLLLLL
QO LLLLLLLLLL HHHHHHHHHH HHHHHHHLLL LLLLLLLHHH
BIT HHHHHHHHHH HHHHHHLLLL LLLLLHHLLL LLLLLLLLLL
LDB LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
SUNK HHHHHHHHHH HHHHLLLLLL LLLHHHHHHH HHHHHHHHHH
NO_FRM LLLLLLLLLL LLLLHHHHHL LLLLLLLLLL LLLLLLLLLL
BYT CK LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
BC2- LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
BCl LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
BCO HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

SYNC
Page

Tl CKB
RSTB
NO TlCB
DATA
FPDlB
FPD2B
SOF
Q2
Ql
QO
BIT
LDB
SUNK
NO FRM
BYT CK
BC2-
BCl
BCO

6
eg e

HLLHHL
HHHHHH
HHHHHH
LLLLLL
LLHHHH
LLLLLL
HHHHHH
LLLLLL
LLLLHH
HHHHLL
LLHHLL
LLLLLL
HHHHHH
LLLLLL
LLLLLL
LLLLLL
LLLLLL
HHHHHH

~ Monolithio m Memories ~

D4 Frame Synchronization

TITLE SUPER FRAME PAL
PATTERN SUPER FRAME PAL FOR Tl INTERFACE
REVISION PI. 03
AUTHOR STEVE PATTERSON AND THERESA SHAFER
COMPANY
DATE 6/4/87

This PAL device counts the T1 Frames and controls the signal Bits
extraction process, including Fly Wheeling. It also provides variou
other signals which indicate the frames with signal bits.
The counter is reset with either RSTB or when frame detection is SUNK
and frame 1 occurs from two different sources (FRM1 & SOF).

CHIP SUPER_FRAME PAL16R6

;PINS
;1 2
T1_CKB RSTB

;11
OEB

12
NC

;INPUTS:T1 CKB
RSTB
SOF

FRM1B

SUNK
OEB

; OUTPUTS : Q (3-0)
FRM_6
FRM_12

EQUATIONS

/Q3 := /Q2 * Ql
+ /Q3 * /Q2
+ /Q3 * /Q1
+ /Q3 * /QO

3 4 5
SOF

6
NC

7
NC

8
NC

9
NC

10
GND FRM1B SUNK

13
Q3

* QO

14
Q2

15
Q1

16
QO

ACTIVE LOW EXTERNAL Tl CLOCK
ACTIVE LOW MASTER RESET
ACTIVE HIGH INPUT SIGNAL INDICATING

LAST KNOWN START OF FRAME
ACTIVE LOW INPUT SIGNAL INDICATING

START OF FRAME 1

20
VCC

ACTIVE HIGH INPUT SIGNAL INDICATING "IN FRAME SYNC"
ACTIVE LOW OUTPUT ENABLE INPUT

STATE VARIABLES
CLOCK SIGNAL WHICH INDICATES SIGNAL BIT A
CLOCK SIGNAL WHICH INDICATES SIGNAL BIT B

+ /FRM1B * SOF * SUNK ; RESET WHEN SUNK AND FRAME 1 OCCURS
+ /RSTB ; MASTER RESET

/Q2 := Q2 * Ql * QO
+ /Q2 * Q3
+ /Q2 * /Ql
+ /Q2 * /QO
+ /FRM1B * SOF * SUNK RESET WHEN SUNK AND FRAME 1 OCCURS
+ /RSTB MASTER RESET
+ /RSTB MASTER RESET

~ Monolithic W Memories ~ 2·425

Ell

D4 Frame Synchronization

/Q1 := Q1 * QO
+ /Q1 * /Qo
+ /FRM1B * SOF * SUNK

/QO := QO
+ /FRM1B * SOF * SUNK
+ /RSTB

; SIGNAL BIT EXTRACTION OUTPUTS

/FRM 6 := Q3 + /Q2 + Ql + QO

/FRM 12 := /Q3 + Q2 + /Ql + QO

SIMULATION

TRACE ON T1 CKB RSTB FRM1B SOF SUNK
Q3 Q2-Ql QO-FRM_6 FRM_12

SETF /OEB
/RSTB

CLOCKF Tl CKB
SETF RSTB-/SOF FRM1B SUNK
CLOCKF Tl_CKB

FOR I:=l TO 24 DO
BEGIN
CLOCKF Tl_CKB
END

SETF /SUNK SOF /FRM1B
CLOCKF Tl CKB
SETF /SUNK /SOF /FRM1B
CLOCKF Tl CKB
SETF /SUNK SOF FRM1B
CLOCKF Tl CKB
SETF /SUNK /SOF FRM1B
CLOCKF Tl CKB
SETF SUNK-SOF /FRM1B
CLOCKF Tl CKB
SETF SUNK-/SOF /FRM1B
CLOCKF Tl CKB
SETF SUNK-/SOF FRMIB
CLOCKF Tl CKB
SETF SUNK-SOF FRMIB
CLOCKF Tl_CKB

TRACE_OFF

; RESET WHEN SUNK AND FRAME 1 OCCURS

RESET WHEN SUNK AND FRAME 1 OCCURS
MASTER RESET

ENABLE OUTPUT
RESET REGISTERS

COUNT

RESET CONDITIONS

2·426 ~ Monolithic m Memories ~

D4 Frame Synchronization

PALASM srMuLATION~ V2.22 - MARkET RELEASE (11-19-86)
(C) _. [:C)P'y'P I C~HT I'HJNDL. I TH I C r'1EnDF: I ES Inc. 1. '7'F36
PAlASM SIMULATION SELECTIVE TRACE LISTING

Titl~=: SUPER FRAME_PAL Author STEVE PATTERSON AND THER
Pelt tt:~t'·n
F:E'V i 5 ion

SUPER FRAME PAL FOP T1 ICompanv
P1.03 Date 6/4/E~7

SUPEF: ... FF~:{~1'1E
Paqf?: 1

T1 ... 0:::8

F:STB

SOF

SUN~<

03

(I'J

01

00

FRI'1 6

FRM 12

9 cg c c c c c c c c c c c

I I I I I I I I I I I I I

.J
--r-"'---T-~---"-'-~.--r---'----r---

I I I I I I I I I I I I
I I I I I I I I I I I

, -,
:tXXI:
, " -, 11

·:t X X X ..:..--T--:---+--+----+--T--~.--T---+--i----l

XXXI: , , , ,
IX :: , , , ,

: : : : : : .--+-: -.;---;..---+--.
-..:...--:---..:.---..:.---..:.-. .i-J :

r,--:
: :

: l:
: .~:-;-~--;-~

: :: : I I : : I J : : '---;-'

· ... X II ,~: ; ~1J I ~ f
A _o....,-r---,---1: : ~: : ...,.--,._w I I

~ MonolIthIc W Memories ~ 2·427

F..JI

2·428

D4 Frame Synchronization

SUF'EF: .. FF:AME
Page :

T 1 ... C~::.B

FF:t'11 B

SDF

SUN~<

02

01

00

FRl'l 6

FF:l'l 12

~,

L

c c c c c c c c c c '- c c:

I I I I
T---T---·-..,----r-

~_ .. -+__~_-~.-.. ...;.----+----.~-____+___+_ .. ~--+-_+_- I

, .,

I I I I I I,.-----r---.. --r.~-..,._------,-

...;.----+-----.:--~.--Ir--i_ , .,
I I I I 1 I I-----r---.--.,----r--..,.----.

I I I I I I I I I I I I I I
.. I I 1 I I I I 1 rr·-~--,----,--l I I

-+----~--__:.___:_ .. --.. _+-.. _i--~ .. __+_-J: : : : ~ .. ---;
I I I I I I
"IIII~'

I I I i f I
-,---..,---~~ t I

LLL.L.LLLLLLLLLL.LLLLLL..LLLJ.~ I I I I I 1...Ll...L...J....l-L...L-I

::;UF'EF: FF:r-iI'lE
F'ac)e:

T 1. CI<B

SClF

!3UNK

0::;

01

00

FF:M 6

FF:M 12

9 cg cq cg c:g cg cg cq

!
TTTrrrrnT I I I I I I I I rl-PTrrn'nrT~

~t~=}~~~]~}i~~l+-~~I±C}
I I I I I I I I I I I " I I I

'" I I I I I I I I I 1 I I I I 1

I I I I I I I I I I I 1 I I I I

- I I I 'I"---r-~--"~ " T--'--~-
I I I I I I I t I I I I I

--,--,----'''-T I I I --,.-..r--- I I I

Illffllllllll'G' "'--"'-1 'f-'--'L' r·-"1- " , I I I I I I I I I I
.. I I ---,- I -,- I -..,.-.,----,. ,

I I I I I I I I I I I I I I I I
.. I I I I I I I J---w-T----~.---,..,--.---.-r ...

I I' I I I I I I I I I I I I
""T""-----r-T"" .. -.-.--~---~-- I til I I I

, ., , , , , , , , , , , , , , , , ,
-+--.-r-+--T-;"; --~-:--~";'---~--. ...;.....:--~

I I I 1 I I 1 I I I I I I I I I
-I I I I I I-.-,------r.,.-l" 1 I I I 1

i~---__!_~--.J :: :: -+.+---+-+--~--+-
I I I I 1 I I I I I I I 1
---~1'1 II 11 J~-"

:; :: L+-:--~-.-...;.....:--~ ;: :

: :~" :: J-l-+-~': r+-+--,::
I' II II II II~!! l'l

'"T-"T I I , I 1 I ."'T"-r-

,
I I I I I I

--'-T---"'~

-1
,
,

LLl_L.L..LLL..LLLLL.LL..LLl..l~..L.LL.LLLL.LL.L.LJ

~ Monolithic W Memories ~

D4 Frame Synchronization

PALASM SIMULATION, V2.22 - MARKET RELEASE (11-19-86)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986
PALASM SIMULATION SELECTIVE TRACE LISTING

Title
Pattern
Revision

: SUPER FRAME PAL Author STEVE PATTERSON AND THER
SUPER FRAME PAL FOR T1 ICompany
P1.03 Date 6/4/87

SUPER FRAME
page:- 1

T1 CKB
RSTB
FRM1B
SOF
SUNK
Q3
Q2
Q1
QO
FRM 6
FRM=12

g cg c c c c c c c c c c c
XHHLLHHLHH LHHLHHLHHL HHLHHLHHLH HLHHLHHLHH
LLLLHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXXXHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXXXLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
XXXXHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
XXLLLLLLLL LLLLLLLLLL LLLLLLLHHH HHHHHHHHHL
XXLLLLLLLL LLLLLHHHHH HHHHHHHLLL LLLLLLLLLL
XXLLLLLLLH HHHHHLLLLL LHHHHHHLLL LLLHHHHHHL
XXLLLLHHHL LLHHHLLLHH HLLLHHHLLL HHHLLLHHHL
XXXXXXLLLL LLLLLLLLHH HLLLLLLLLL LLLLLLLLLL
XXXXXXLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLHHHL

SUPER FRAME
Page -; 2

T1 CKB
RSTB
FRM1B
SOF
SUNK
Q3
Q2
Q1
QO
FRM 6
FRM=12

c c c c c c c c c c c c c c
LHHLHHLHHL HHLHHLHHLH HLHHLHHLHH LHHLHHLHHL
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
LLLLLLLLLL LLLLLLLLLL LLLHHHHHHH HHHHHLLLLL
LLLLLLLLLL LHHHaHHHHH HHHLLLLLLL LLLLLLLLLL
LLLLLHHHHH HLLLLLLHHH HHHLLLLLLH HHHHHLLLLL
LLHHHLLLHH HLLLHHHLLL HHHLLLHHHL LLHHHLLLHH
LLLLLLLLLL LLLLHHHLLL LLLLLLLLLL LLLLLLLLLL
LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLHHHLLLLL

~ Monolithio m Memories ~ 2·429

011

2-430

D4 Frame Synchronization

SUPER_FRAME
Page: 3

Tl_CKB
RSTB
FRMIB
SOF
SUNK
Q3
Q2
Ql
QO
FRM_6
FRM_12

9 cg cg cg cg c 9 cg cg c
LHHLLHHLLH HLLHHLLHHL LHHLLHHLLH HL
HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HH
LLLLLLLLHH HHHHHHLLLL LLLLHHHHHH HH
HHHHLLLLHH HHLLLLHHHH LLLLLLLLHH HH
LLLLLLLLLL LLLLLLHHHH HHHHHHHHHH HH
LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LL
LLLLLLLLLL HHHHHHHHLL LLLLLLLLLL LL
LLHHHHHHHH LLLLLLLLLL LLLLLLHHHH HH
HHLLLLHHHH LLLLHHHHLL LLHHHHLLLL HH
LLLLLLLLLL LLLLHHHHLL LLLLLLLLLL LL
LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LL

~ Monolithic W Memories ~

T1 Extended Superframe Provides
Transmission Error Detection AN-162

Principles of CRC·6
In digital transmission, bits are grouped into frames. North
America's standard, T -carrier uses a framing bit to group data
into frames. In T1 extended-superframe (ESF or Fe), the frame­
bit position carries additional information besides framing. One
such extended functionality provides transmission line error
detection. I n transmission channels, most errors are bursty in
nature; the cyclic-redundancy-checking (CRC) codes provide
sufficient detection for these types of errors. With CRC, the
block length and the polynomial determine the type and percent­
ageoferrorwhich can be detected. For ESF, the block length is
one extended-superframe or 4,632 bits. The T1 Fe standard
specifies the CRC-6 polynomial. The CRC-6 = X6 + X + 1
polynomial detects 98.4% of one or more errors.

Functional Description
Figure 1 shows a simple configuration of XOR-gates and
registers which calculates the CRC-6 polynomial.

Figure 1. CRC-6 Block Diagram

The low-power PALC16R6Z implements the CRC-6 polynomial
for a serial data stream (see Figure 1). At the beginning of CRC
generation, the remainder is preset to all zeros by enabling the
synchronous CLR. After shifting in the 4,632-bit superframe, the
result is the CRC-6 remainder. This remainder is transmitted in
the check-bit positions of the subsequent superframe. The
remainder can be shifted out serially, most significant bit first or

PAL® is a registered trademark of Monolithic Memories.

ZPAL'· is a trademark of Monolithic Memories.

output as a parallel word. The CHECK_BIT signal enables the
remainder to be shifted out serially; it must be held HIGH until
the entire 6-bit remainder has been shifted out. When CHECK_
BIT= 0, CRC6echoes the serial data input stream. CB1-CB6are
the parallel remainder bits where CB1 is the most significant bit
and CB6 is the least significant bit.

There are two implementations for error detection at the
receiver. First, the transmitted CRC-6 value is fed serially along
with the data. If a non-zero remainder is calculated, an error has
occurred. In this case, the ERROR flag indicates at least one
transmission error. Second, the CRC-6 for the extended- GIl
superframe can be recalculated and externally compared with
the transmitted CRC-6 value.

VCC

CRCG

CB6

CBS

CB4

CB3

CB2

CB1

ERROR

GND

Figure 2. CRC-6 Configuration

~ MonolIthIc (R1;I1 Memories ~ 2·431

T1 Extended Superframe Provides Transmission Error Detection

PAL® Device Design Specification

TITLE CRC6
PATTERN CRC 6 ERROR DETECTION PAL
REVISION 1. 01
AUTHOR THERESA SHAFER
COMPANY MMI
DATE 9/10/86

CHIP CRC6 PAL16R6

CK DATA /CLR CHECK BIT EOX NC NC NC NC GND
JOE ERROR CBl CB2 CB3 CB4 CB5 CB6 CRC6 VCC

THE CRC-6 PAL PERFORMS ERROR DETECTION ON A SERIAL DATA
STREAM. CRC-6 PAL SUPPORTS THE Tl Fe STANDARD FOR ERROR
DETECTION. THE CRC RESULT CAN BE OUTPUT EITHER IN SERIAL
OR IN PARALLEL.

CRC-6 = ,X**6 + X + 1

INPUTS: CK
JOE
/CLR

EXTERNAL CLOCK
ACTIVE LOW OUTPUT ENABLE SIGNAL
ACTIVE LOW CLEAR SIGNAL WHICH RESETS THE

DATA
CHECK BIT

EOX

CRC
SERIAL DATA STREAM INPUT
ACTIVE HIGH SELECT INPUT WHICH SWITCHES
FROM SERIAL DATA STREAM TO CHECK BITS
ACTIVE HIGH SIGNAL WHICH INDICATES END OF
EXTENDED SUPERFRAME AND ENABLES THE

ERROR DETECTION FLAG

OUTPUTS: CRC6 CRC SERIAL OUTPUT

EQUATIONS

; CRC-6 PAL

/CRC6 = /CBl
+ /DATA

jERROR = EOX
+ /EOX

/CBl := /CB2

/CB2 := /CB3

/CB3 := /CB4

/CB4 := /CB5

2-432

ERROR ACTIVE HIGH OUTPUT FLAG WHICH INDICATES
A TRANSMISSION ERROR

CBl - CB6 REMAINDER BITS (CHECK BITS)
CBl - MOST SIGNIFICANT BIT
CB6 - LEAST SIGNIFICANT BIT

* CHECK BIT
* /CHECK_BIT

* /CBl * /CB2 * /CB3 * /CB4 * /CB5 * /CB6

+CLR

+CLR

+CLR

+CLR

~ Monolithio W Memories ~

T1 Extended Superframe Provides Transmission Error Detection

/CBS .- /DATA * /CBl * /CB6
+ DATA * CBl * /CB6
+ DATA * /CBl * CB6 * /CHECK BIT
+ /DATA * CBl * CB6 * /CHECK=BIT
+ /CB6 * CHECK BIT
+ CLR -

/CB6 := DATA * CBl * /CHECK BIT
+ /DATA * /CBl * /CHECK BIT
+ /CBl * CHECK BIT -
+ CLR -

SIMULATION

TRACE ON CK JOE /CLR CHECK BIT EOX DATA CRC6 ERROR
CBl CB2 CB3 CB4 CBS CB6

SETF OE
CLR

CLOCKF CK

; INITIALIZE
SETF DATA

/CHECK BIT
/EOX -
/CLR

CLOCKF CK

; FIND PERIOD
SETF /DATA
FOR J:= 0 TO 70 DO

BEGIN
CLOCKF CK
END

; ENABLE OUTPUT
; CLEAR SHIFT REGISTER

; CALULATE CRC-6 FOR 1110010101
SETF CLR ; CLEAR SHIFT REGISTER

DATA
CLOCKF CK
SETF /CLR

DATA
CLOCKF CK
SETF DATA
CLOCKF CK
SETF DATA
CLOCKF CK
SETF /DATA
CLOCKF CK
SETF /DATA
CLOCKF CK
SETF DATA

~ Monolithio m Memories ~ 2·433

T1 Extended Superframe Provides Transmission Error Detection

CLOCKF CK
SETF /DATA
CLOCKF CK
SETF DATA
CLOCKF CK
SETF /DATA
CLOCKF CK
SETF DATA
CLOCKF CK

; CHECK ERROR DETECTION
SETF EOX
SETF /DATA
CLOCKF CK
SETF /DATA
CLOCKF CK
SETF DATA
CLOCKF CK
SETF /DATA
CLOCKF CK
SETF /DATA
CLOCKF CK
SETF DATA
CLOCKF CK

; READ CRC RESULT
SETF /EOX
SETF /DATA
CLOCKF CK
SETF DATA
CLOCKF CK
SETF CHECK BIT

DATA -
FOR J:= 0 TO 6 DO

BEGIN

2·434

CLOCKF CK
END

CHECK ERROR FLAG
001001

~ Monolithic W Memories ~

Time Division Multiplexing
with the LeA Device AN-161

Introduction
The Logic Cell Array (LCA device) implements a multiplexer and
counter used in time division multiplexing. With the device's
flexible liD pins, the multiplexer and counter are implemented
into a single CMOS device. This application note covers time
division multiplexing and the design of a multiplexer and coun­
ter. Additional information on how to design with an LCA device
can be found in the LCA design methodology chapter in Mono­
lithic Memories' LCA Design and Applications Handbook. For
programming the LeA device, refer to "Configuring the LCA De­
vice", Monolithic Memories' Application Note 182.

Principles of Multiplexing
Multiplexing efficiently utilizes data communication lines by
combining multiple low-speed signals into a single, high-speed
line. The two methods of performing multiplexing are Time Divi­
sion Multiplexing (TDM) and Frequency Division Multiplexing
(FOM). TDM divides the transmission bandwidth into equal time
slots where each input signal is assigned one time slot per time
cycle. Once assigned, that time slot is not used by any other
input. Figure 1 shows a multiplexer combining three low-speed
signals into one high-speed line. Terminal A transmits during
the first time slot, B transmits during the second time slot, and
C transmits during the third time slot. This sequence is repeat­
ed every time cycle. FOM, on the other hand, divides the fre­
quency spectrum among logical channels where each channel
has full bandwidth of its assigned frequencies. Analog sys­
tems usually use FDM.

TOM

Figure 1. Time Division Multiplexing

There are many classes of TOMs including bit interleave, char­
acter interleave, statistical TDM, and T1 multiplexers. In bit in­
terleaved TOM, each input is assigned to one time slot. Each
time slot's length is one bit. Character interleaved TDM is simi­
lar to bit interleave, except that each time slot represents one
character. Statistical multiplexing assigns the bandwidth into
unequal slots where only the active incoming lines are as-

signed slots. The slots are of variable length, so each input is
assigned the amount of bandwidth needed. The T1 standard
specifies twenty-four 64 kbps channels multiplexed on a 1.544
Mbps high-speed link.

Data Selection/Time Slot
Assignment
To transmit data from terminal A in the first time slot as shown
in Figure 1, data buffering, rate adaption and data selection
must be performed. Data buffering and rate adaption are re- ~
quired since the rates of the lines to be multiplexed are slower ~
than the high-speed link. A serializing FIFO or shift register can
implement the required buffering. Rate adaption is performed
by a clock/shift scheme tailored to the exact application. Once
buffered, the data must be selected in the proper order. Sever-
al methods can be used for data selection; one method is a 32-
to-1 multiplexer. To implement sequential selection of input
lines, an on-board counter selects the multiplexer's output.
However, for random selection needed in statistical multiplex-
ing, more flexibility is needed. A 2-to-1 multiplexer provides
this flexibility by selecting between the counter and random
selection inputs.

Comparison of Design Methodologies
The 32-to-1 multiplexer and counter design can be implement­
ed in several ways. Briefly, we will evaluate discrete logic, PAL
and LCA device implementations.

For this design, thirty-eight inputs, five registers, and one out­
put are required. Conventional PLD devices do not meet this
large liD requirement. A single PLO device is not suited for this
specific application because flexible liD and buried registers
are not supported. Instead, the design must be divided into
four sections. The counter fits in a PALC16R6Z device and the
32-to-1 multiplexer requires three PALC20L8Z devices.

Since a large 32-to-1 multiplexer is not available as a discrete
part, it must be built using smaller multiplexers. The total chip
count, using discrete logic, is five devices: two 74AS850s, two
74ALS257s and one 74AS867. A combination of PAL devices
and discrete logic devices is possible, however, it is also a
multiple chip solution.

Monolithic Memories' LCA device is a high-density programma­
ble CMOS circuit with flexible liDs. It has forty pins which are
user-defined as either inputs, outputs, or bidirectional. The
LCA device meets the liD requirement for this design. Since
the LCA circuit allows multiple logic levels, implementing the
counter does not use up output pins. Moreover an LCA device
enables the 32-to-1 multiplexer with counter to be implemented
in a single low-power device.

~ MonolIthIc m Memories ~ 2·435

Time Division Multiplexing with the LCA Device

Detailed LCA Design
The M2064 LCA device in a 48-pin DIP is used in this design,
although both PLCC and PGA packages are available. Eight of
the forty-eight pins are reserved for programming, power, and
ground, and the remaining forty 1/0 pins are available to the
user. Table 1 shows the efficient use of the package pinout.

PIN DESCRIPTION TOTAL PINS

ADDR(4:0) External Address Inputs 5 inputs
CK External Clock Input 1 input
LD Counter Load Input 1 input
0(31:0) 32-to-1 Multiplexer 32 inputs

Data Inputs.
OUT Output 1 output

TOTAL 1/0 40 pins

Table 1. 32-to-1 Multiplexer Pins

Figure 2 shows the block diagram of the 32-to-1 multiplexer and
the counter. The select lines of the 32-to-1 multiplexer are ei­
ther the address lines or the output of the counter. When LD is
deasserted, the 5-bit counter sequentially selects each input.
Asserting the LD signal loads the counter with the external ad­
dresses.1t also selects the external address for the 32-to-1
multiplexer's select lines. This permits random input selection
from the external address lines which supports statistical mul­
tiplexing.

LD
CK

Figure 2. Block Diagram

OUT

The select signals for the 32-to-1 multiplexer are determined by
the LD signal. When LD = 0, the counter selects the multiplex­
er's output. When LD = 1, the counter is loaded and the exter­
nal address selects the output. Also, the LD asynchronously
loads the 5-bit counter. Table 2 summarizes the device opera­
tion.

INPUTS OUTPUT FUNCTION

LD ADDR(4:0) OUT

0 xxxxx D(CNT) Counter as Select
1 ADDR(4:0) D(ADDR) Address as Select

and Load Counter

Table 2. 32-to-1 Multiplexer Function Table

The design was entered with FutureNet's DASH schematic cap­
ture package uSing· high-level macros. Then the schematic
capture file was translated into an LCA design file. The transla­
tion software, called PIN2LCA, partitions the design into CLBs
and generates the equations for the CLBs' configuration. The
translation software produces an unrouted LCA design file.
This design file requires final placement of CLBs and intercon­
nect routing which was performed using Monolithic Memories'
APR software, an automatic place and route program. After the
design is placed and routed, it was optimized with Monolithic
Memories' XACT Design Editor System. The XACT system pro­
vides a graphic interface to manually optimize the CLB logic
functions and connections.

The logic functions and interconnects of an LCA device are es­
tablished with CMOS memory cells, so the array is never physi­
cally altered, although it is physically programmed. A program­
mable LCA device can be reconfigured for the prototype. In ad­
dition, it can be reprogrammed any number of times in the tar­
get system. With reconfigurable devices such as this one, the
array can also be programmed on power-up, or whenever the
design details need to be changed. For volume production, a
hard-array version will be available.

Entering the Design with Futurenet
The schematic entered in FutureNet's DASH is comprised of
different components called from the macro library supplied by
Monolithic Memories. The M8-1 and M4-1 macros are the multi­
plexers which implement the 32-to-1 multiplexer as shown in
Figure 3. The 5-bit counter was built from INV, C16BPRD,
XOR2, and FDM macros. Since the C16BPRD macro is only a
4-bit parallel-load binary counter, the XOR2 and FDM macros
were added to form another bit which increased the length to
five bits.The GMUX macro, a 2-to-1 multiplexer, selects be­
tween the counter and the external address lines.

To translate from FutureNet to LCA, the PIN2LCA program is in­
voked. This program generates an unrouted dilename>.LCA
from the FutureNet's dilename>.PIN. The PIN2LCA software
partitions the design into CLBs and generates each CLB's con­
figuration.

The PIN2LCA performs logic reduction by eliminating unused
logic to maximize CLB utilization. With this design, for exam­
ple, C16BPRD's reset logic is not used, and PIN2LCA elimi­
nates all the reset logic in the C16BPRD macro. Another means
to maximize CLB utilization is by combining macro logic. At
times, this combined logic results in a single CLB which imple­
ments logic from two different macros. For designs not utilizing
all the CLBs, this logic reduction is not required and may actu­
ally hinder placement and delay tradeoffs. If it does produce
delay problems, it is possible to edit the CLBs in XACT.

2·436 ~ Monolithic W Memories ~

Time Division Multiplexing with the LeA Device

At this stage in the design flow, the PIN2LCA software can
generate a P-SILOS simulation file. Since the dilename>.SIM
was generated from an unrouted LCA design file, the simulation
only has unit delays and does not have actual routing delays.
The simulation verifies the logic, but does not give any timing
information. It may be necessary to make changes in OASHTM
depending on the simulation results.

Place and Route Using APR
Once the logic is finalized, the LCA design must be placed and
routed. Monolithic Memories' APR software performs the final
placement of CLBs and interconnect routing. The input to APR
is an unrouted <filename>.LCA, and a routed LCA design file
and report document are the outputs.

At first glance, the APR program seems cumbersome to apply
to every application. However, it can be used to create an effi­
cient design. While the software uses random placement, it
does allow tailoring for specific requirements.

Initially, the multiplexer and counter design did not route com­
pletely. To achieve good placement and 100% routing comple­
tion, several things were tried. Some worked well while others
did not. An overview of how 100% routing completion was
achieved is explained below.

Since this design utilizes only 53% of the LCA device, delay is
a larger concern than CLB utilization. In this case, placement
is critical to achieve an efficient design with the desired de­
lays. The ideal placement would be for the 5-bit counter and 2-
to-1 multiplexer to be placed near the AOOR(4:0), CK, and LO
signals. The four M8-1 macros should be near the 8-bit cluster
of inputs. The remaining M4-1 macro should be placed near the
OUT signal.

In FutureNet, the II0s are assigned pin numbers so that the
signals are clustered into groups. These I/O assignments re­
strict the APR's placement of the signals and are found in the
dilename>.SCP. Other restrictions and options are specified
when invoking the APR software. The options, "-a", "-g", "_e",
and "-k", tailor the placement for this specific design.

The APR's "-a" option specifies the depth of CLB logic levels
which are considered connected. In this design, "-a2" was se­
lected because the C16BPRO and M8-1 macros are implement­
ed in two CLB logic levels.

The "-g" and "_e" options are related. The "-g" option specifies
the number of CLBs that should be grouped together. The "_e"
option determines the number of CLBs in a group which should
be evaluated for all possible placements. Since the C16BPRO
and M8-1 macros contain four to six CLBs, the options, "-e4"
and "-g4", were used. This particular value was selected be­
cause it was the largest possible value which maintained the
e>=g relationship. Avoiding values where e<g insures as much
as possible that the CLBs within each group are placed in the
best possible arrangement. This maintains the groups' integrity.

The "_k" option specifies the number of shapes per group. By
trial and error, "-k6" works well for this design. With "-k6", six of
the best arrangements or shapes were saved for each group of
CLBs. Every combination of shaped group is tried with all six
other grouped shapes and evaluated for best placement. Gen­
erally, the larger values result in better placements, however,
run-time grows exponentially. While larger values of "-k" were
tried, they did not improve the placement significantly.

Running APR with these options and restrictions did not result
in a 100% routed design. Therefore, more application-specific
information was required. Noting that the APR software was not
fully utilizing the high-level macro information, placement could
still be optimized. The APR's report file shows that the CLBs
which comprise C16BPRO or the M8-1 macros were not
grouped together. Instead, the CLBs were randomly spread
over the device. In a constraint file, dilename>.CST, CLBs
from the high-level macros could be grouped together (see Ap­
pendix A). If necessary, the exact CLB placement could be
specified in the same file.

To generate the constraint file, CLBs which implement each ~
high-level macro were identified using the cross-reference file ~
generated by PIN2LCA, dilename>.CRF. The dilename>.CRF
file is organized into three cross-reference sections: macros,
CLBs, and lOBs.

The macro cross-reference section identifies and assigns a
hierarchical symbol number to each macro. The symbol num­
ber is used to generate the default CLB names.

/21-1, \M8-1.0WG

/ Path:
ASSIGNED
SYMBOL NUMBER \USER\THERESA\TOM.OWG(32)

Title: M8-1

The CLB cross-reference section of the dilename>.CRF con­
tains the CLB names. For macros with multiple CLBs, the sys- .
tem assigns default names. The default CLB name consists of
two parts. The first is the macro symbol number as specified in
the macro section and the second number is the signal name.
By grouping CLBs with related symbol numbers, all the CLBs
for a given macro will be placed together.

CLB BO Name = '21-003':

F = signal '21-003', contains:

symbol '26-0R(2)', output signal = '21-003'
symbol '26-ANO(3)', output signal = '26-S0'
symbol '27-0R(2)', output signal = '21-001'
symbol '26-ANO)1)', output signal = '26-S1'

The lOB cross-reference section shows the lOB assignments.
For this design, the assignments are those specified in the Fu­
tureNet's schematic.

lOB P30: Name = '013', Symbol = 'PIN(40),

I = signal '013'

~ Monolithio W Memories ~ 2·437

Time Division Multiplexing with the LCA Device

Optimizing the Design with
Monolithic Memories' XACT
Design Editor System
Monolithic Memories' XACT Design Editor System can increase
resource utilization and performance by manually modifying
the placement and routing. The XACT system provides a
graphic interface to specify the CLB design. All CLB logic func­
tions and connections can be optimized for the designs'
needs. With XACT, the designer can partition the design and
optimize the placement of logic blocks to gain the utilization
and performance required.

The clock line routing was optimized to reduce clock skew. Us­
ing the clock buffer resources, the common clock is driven by
the global clock buffer. To optimize internal routing, "long lines"
were used for signals with large fanouts such as the select
lines for the multiplexers and the LD signal. Use of the "long
lines" minimizes the delay for these control signals. The "long
lines" were selected by manually routing the signal net through
the programmable interconnect points (PIPs).

On the device itself, implementing the 5-bit counter and 2-to-1
multiplexers requires ten CLBs; and the 32-to-1 multiplexer re­
quires twenty-four CLBs, giving a total of thirty-four CLBs. This
design utilizes 53% of the LCA device.

Summary and More Information
For time division multiplexing systems, data selection can be
implemented in a single CMOS device. FutureNet's DASH
schematic capture with Monolithic Memories' LCA macro library
was used to implement a design in an LCA device. Placement
of CLBs and signal routing were performed by Monolithic Mem­
ories' APR software. Optimization, wrich may be required to
improve performance, can be done using Monolithic Memories'
XACT Design Editor System. This is useful for placing and rout­
ing critical signal nets such as clock or control signals. More
information can be found in P-SILOS, FutureNet, and LCA user
guides and handbooks.

This design, developed with an LCA device, is available upon
request. The FutureNet drawing, LCA design and bit pattern
files can be provided for programming the LCA device in an EP­
ROM. Please ask for design XDES07.LCA.

Print World: THERESA.LCA (2064PD48-70), XACT 1.30, 10:15:46 JUL 31, 1987

~D5

2·438 ~ Monolithic W Memories ~

PS

P9

Pl0

Pll

P6

P5

P13

P15

P19

P21

P23

P26

P28

P30

P34

P3

Pl

P47

P45

P43

P40

P3S

P36

Time Division Multiplexing with the LeA Device

..... CK G~LK CLOCK I r-

~){ ~ 6 ~
CK

INV CK~TC 00
C 00 03 XOR

01 02 C3 FOM 0 C4
'--

~C16BPRO Ql C2

~ ~CO
Cl 01

J'ooo..
[~r=V [-

~

4> LO

~ 5E MO 00
GMUX

~
AOOR2 01 5E M3 oir AOOR3

~

~ 5E Ml

..... AOORl 01-)
~

~ 5E M2

~ -J>
AOORO 01 5 M4 -...... AOOR4 01

~-

r ~
..... 00 f-+-~

P14D
00

J'ooo.. ~ 01 01
~

P16C>- ~ 02 02 MS-l
IOUTMl

..... 03 03
~

P20C>- ~ 04 04
..... 05 05
~

P22D---t>
06 06

..... 07 07

-
50r-

r 51
52

P2SD ~ OS f-I- ---00
09 01

~ P27c>--J>
010 02

MS-l
OUTM2

011 03 r---

: P29D--t>
012 04
013 05

~
P33D " 014 06

..... ~ 015 07
V'

'---

50-

f- 31
..... 016 f-I-~

P4D
DO

..... 017 01
~

P2C> ~
01S 02 MS-l ~M3 " 019 03

V'
P4sD

...... 020 04
..... ~ 021 05
V'

P46D " 022 06
..... ~ 023 07
~ -

2Q..r-

~

P44c>--t>
024 ~ DO

..... 025 01

.....
P41~ 026 02 MS-l

IOUTM4 027 03
V'

P39D---t>
028 04

..... 029 05

.....
P37D

..... 030 06
..... ~ 031 07

-
Figure 3. FutureNet Schematic

~ Monolithic W Memories ~

51r-
So
DO

~ 01 M4-1

02 P35
03

~

2·439

Time Division Multiplexing with the LCA Device

Appendix A> Constraint File

; CONSTRAINT FILE GROUPING MACROS IN BLOCKS

DEFINE GROUP CNT GROUP
3-T3 3-T2 CKB
C4 C2 C3 C1 CO
M3 M2;

DEFINE GROUP OUT GROUP
CLB1 45-023;

DEFINE GROUP M1_GROUP
47-S0
19-50 19-51
1J-D03 13-047;

DEFINE GROUP M2 GROUP
47-S1 -
15-S0 15-S1
21-003 21-047;

DEFINE GROUP M3_GROUP
27-S0 27-S1
23-S0 23-S1
36-S0 36-S1;

DEFINE GROUP M4 GROUP
OUTM4 -
42-S0 42-S1
37-047 37-067
39-S0;

2.440 ~ Monolithic m Memories ~

Time Division Multiplexing with the LeA Device

$
$ Si mulati on file for des ign 'TDM. s im' , type' 2064N48-50'
$ Created by PIN2LCA Ver. 1. 01x at 10: 58: 00 JUL 14, 1987

$
! INPUT TDM. s im

GLOBALRESET­
CK.PAD
LD.PAD
ADDRO.PAD
+ 780000
ADDRl.PAD
+ 780001
ADDR2.PAD
+ 780001
ADDR3.PAD
+ 780000
ADDR4.PAD
+ 78000 1
DO.PAD
Dl.PAD
D2.PAD
D3.PAD
D4.PAD
D5.PAD
D6.PAD
D7.PAD
D8.PAD
D9.PAD
DI0.PAD
Dll.PAD
D12.PAD
D13.PAD
D14.PAD
D15.PAD
D16.PAD
D17.PAD
D18.PAD
D19.PAD
D20.PAD
D21.PAD
D22.PAD
D23.PAD
D24.PAD
D25.PAD
D26.PAD
D27.PAD
D28.PAD
D29.PAD
D30.PAD
D31. PAD

· CLK 0 SO 1 Sl $ Ini tial pulse to reset latches
· CLK 0 0 500 1 1000 0 . REP 0

· CLK 0 0 40000 1
· CLK 0 0 40000 0 41000 1 42000 0 . REP 40000

· CLK 0 0 40000 0 42000 1 44000 0 . REP 40000

· CLK 0 0 40000 0 44000 1 48000 0 . REP 40000

· CLK 0 0 40000 0 48000 1 56000 0 . REP 40000

· CLK 0 0 40000 0 56000 1 72000 0 . REP 40000

· CLK 01 10000 40000 0 41000 1

· CLK 00 10001 2000 0 40000 1 41000 0 42000 1

· CLK 0 0 20001 3000 0 40000 1 42000 0 43000 1

· CLK 0 0 30001 4000 0 40000 1 43000 0 44000 1

· CLK 0 0 40001 5000 0 40000 1 44000 0 45000 1

· CLK 00 50001 6000 0 40000 1 45000 0 46000 1

· CLK 00 60001 70000400001460000470001

· CLK 0 0 70001 8000040000 147000048000 1

· CLK 0 0 80001 9000 0 40000 1 48000 0 49000 1

· CLK 0 0 9000 1 10000 0 40000 1 490000 50000 1
· CLK 0 0 10000 1 11000 0 40000 1 500000 51000 1
· CLK 0 0 11000 1 12000 0 40000 1 51000 0 52000 1
· CLK 0 0 12000 1 13000 0 40000 1 52000 0 53000 1
· CLK 0 0 13000 1 14000 0 40000 1 53000 0 54000 1
· CLK 0 0 14000 1 15000 0 40000 1 54000 0 55000 1
· CLK 0 0 15000 1 16000 0 40000 1 55000 0 56000 1
· CLK 0 0 16000 1 17000 0 40000 1 56000 0 57000 1
· CLK 0 0 17000 1 18000 0 40000 1 57000 0 58000 1
· CLK 0 0 18000 1 19000 040000 1 580000 59000 1
· CLK 0 0 19000 1 20000 0 40000 1 590000 60000 1
· CLK 0 0 20000 1 21000 040000 1 600000 61000 1
· CLK 0 0 21000 122000 0 40000 1 61000 0 62000 1
· CLK 0 0 22000 1 23000 0 40000 1 62000 0 63000 1 73000 0
· CLK 0 0 23000 1 24000 0 40000 1 63000 0 64000 1
· CLK 0 0 24000 1 25000 0 40000 1 64000 0 65000 1
· CLK 0 0 25000 1 26000 0 40000 1 65000 0 66000 1
· CLK 0 0 26000 127000 0 40000 1 660000 67000 1
· CLK 0027000128000040000 1 670000680001
· CLK 0 0 28000 1 29000 0 40000 1 68000 0 69000 1
· CLK 0 0 29000 1 30000 0 40000 1 69000 0 70000 1
· CLK 0 0 30000 1 31000 0 40000 1 70000 0 71000 1
· CLK 0 0 31000 1 32000 040000 1 71000 0 72000 1

. MONITOR CK. PAD LD. PAD; ADDR4 .PAD ADDR3. PAD ADDR2. PAD ADDRI. PAD ADDRO. PAD;
+ C4 C3 C2 Cl CO ;
+ DO .PAD Dl.PAD D2 .PAD D3 .PAD D4 .PAD D5 .PAD D6 .PAD D7 .PAD ;
+ D8 .PAD D9. PAD DI0. PAD Dll. PAD D12. PAD D13. PAD D14. PAD D15. PAD;
+ D16. PAD D17 . PAD D18. PAD D19. PAD D20. PAD D2l. PAD D22. PAD D23. PAD;
+ D24. PAD D25. PAD D26. PAD D27. PAD D28 .PAD D29. PAD D30. PAD D31. PAD; OUT. PAD

. TABLE CK. PAD LD. PAD; ADDR4. PAD ADDR3. PAD ADDR2. PAD ADDRI. PAD ADDRO. PAD;
+ C4 C3 C2 Cl CO ;
+ DO. PAD Dl . PAD D2 . PAD D3 . PAD D4 . PAD D5 . PAD D6 . PAD D7 . PAD;
+ D8 .PAD D9. PAD DI0. PAD 011. PAD D12. PAD D13. PAD D14. PAD D15. PAD;
+ D16. PAD D17. PAD 018. PAD D19. PAD D20. PAD D2l. PAD D22. PAD D23. PAD;
+ D24. PAD D25. PAD D26. PAD D27. PAD D28. PAD D29. PAD D30. PAD D31. PAD; OUT. PAD

~ Monolithic W Memories ~

Ell

2·441

Time Division Multiplexing with the LeA Device

P - S I LOS lU.3 OUTPUTS 10:26:22 07-23-87

CL AAAAA CCCCC DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD 0
KD DDDDD 43210 01234567 89111111 11112222 22222233 U

DDDDD .. 012345 67890123 45678901 T
PP RRRRR PPPPPPPP PP ..•••.
AA 43210 AAAAAAAA AAPPPPPP PPPPPPPP PPPPPPPP P
DD DDDDDDDD DDAAAAAA AAAAAAAA AAAMAAA A

PPPPP DDDDDD DDDDDDDD DDDDDDDD D
AAMA
DDDDD

TIME
a 00 00000 00000 10000000 00000000 00000000 00000000 1

500 10 00000 00000 10000000 00000000 00000000 00000000
1000 00 00000 00000 01000000 00000000 00000000 00000000
1500 10 00000 00001 01000000 00000000 00000000 00000000
2000 00 00000 00001 00100000 00000000 00000000 00000000
2500 10 00000 00010 00100000 00000000 00000000 00000000
3000 00 00000 00010 00019000 00000000 OOO~jOOOO 00000000 1
3500 10 00000 00011 00010000 00000000 00000000 00000000 1
4000 00 00000 00011 00001000 00000000 00000000 00000000 1
4500 10 00000 00100 00001000 00000000 00000000 00000000
5000 00 00000 00100 00000100 00000000 00000000 00000000
5500 10 00000 00101 00000100 00000000 00000000 00000000 1
6000 00 00000 00101 00000010 00000000 00000000 00000000
6500 10 00000 00110 00000010 00000000 00000000 00000000
7000 00 00000 00110 00000001 00000000 00000000 00000000
7500 10 00000 00111 00000001 00000000 00000000 00000000
8000 00 00000 00111 00000000 10000000 00000000 00000000
8500 10 00000 01000 00000000 10000000 00000000 00000000
9000 00 00000 01000 00000000 01000000 00000000 00000000 1
9500 10 00000 01001 00000000 01000000 00000000 00000000

10000 00 00000 01001 00000000 00100000 00000000 00000000
10500 10 00000 01010 00000000 00100000 00000000 00000000
11000 00 00000 01010 00000000 00010000 00000000 00000000
11500 10 00000 01011 00000000 00010000 00000000 00000000
12000 00 00000 01011 00000000 00001000 00000000 00000000
12500 10 00000 01100 00000000 00001000 00000000 00000000
13000 00 00000 01100 00000000 00000100 00000000 00000000
13500 10 00000 01101 00000000 00000100 00000000 00000000
l4000 00 00000 01101 00000000 00000010 00000000 00000000
14500 10 00000 01110 00000000 00000010 00000000 00000000
15000 00 00000 01110 00000000 00000001 00000000 00000000
15500 10 00000 01111 00000000 00000001 00000000 00000000
16000 00 00000 01111 00000000 00000000 10000000 00000000
16500 10 00000 10000 00000000 00000000 10000000 00000000
17000 00 00000 10000 00000000 00000000 01000000 00000000 1
17500 10 00000 10001 00000000 00000000 01000000 00000000
18000 00 00000 10001 00000000 00000000 00100000 00000000
18500 10 00000 10010 00000000 00000000 00100000 00000000
19000 00 00000 10010 00000000 00000000 00010000 00000000
19500 10 00000 10011 00000000 00000000 00010000 00000000 1
20000 00 00000 10011 00000000 00000000 00001000 00000000 1
20500 00 00000 10011 00000000 00000000 00001000 00000000 1
21000 00 00000 10100 00000000 00000000 00000100 00000000 1
21500 10 00000 10101 00000000 00000000 00000100 00000000 1
22000 00 00000 10101 00000000 00000000 00000010 00000000
22500 10 00000 10110 00000000 00000000 00000010 00000000
23000 00 00000 lalla 00000000 00000000 00000001 00000000
23500 10 00000 10111 00000000 00000000 00000001 00000000
24000 00 00000 10111 00000000 00000000 00000000 10000000
24500 10 00000 11000 00000000 00000000 00000000 10000000
25000 00 00000 11000 00000000 00000000 00000000 01000000
25500 10 00000 11001 00000000 00000000 00000000 01000000
26000 00 00000 11001 00000000 00000000 00000000 00100000
26500 10 00000 11010 00000000 00000000 00000000 00100000
27000 00 00000 11010 00000000 00000000 00000000 00010000
27500 10 00000 11011 00000000 00000000 00000000 00010000
28000 00 00000 11011 00000000 00000000 00000000 00001000 1
28500 10 00000 11100 00000000 00000000 00000000 00001000
29000 00 00000 11100 00000000 00000000 00000000 00000100
29~00 10 00000 11101 00000000 00000000 00000000 00000100
30000 00 00000 11101 00000000 00000000 00000000 00000010 1
30500 10 00000 11110 00000000 00000000 00000000 00000010
31000 00 00000 11110 00000000 00000000 00000000 00000001
31500 10 00000 11111 00000000 00000000 00000000 00000001
32000 00 00000 11111 00000000 00000000 00000000 00000000
32500 10 00000 00000 00000000 00000000 00000000 00000000 a
33000 00 00000 00000 00000000 00000000 00000000 00000000 a
39000 00 00000 00110 00000000 00000000 00000000 00000000 a
39500 10 00000 00111 00000000 00000000 00000000 00000000
40000 01 00000 00111 01111111 11111111 11111111 11111111
40500 11 00000 01000 01111111 11111111 11111111 11111111
41000 01 00001 01000 10111111 11111111 11111111 11111111 a
41500 11 00001 00001 10111111 11111111 11111111 11111111 a
42000 01 00010 00001 11011111 11111111 11111111 11111111 a
42500 11 00010 00010 11011111 11111111 11111111 11111111 a

2·442 ~ Monolithio m.IFJJ Memories ~

Time Division Multiplexing with the LeA Device

P - S I LOS 1U.3 OUTPUTS 10:26:22 07-23-87

CL AAAAA CCCCC DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD 0
KD DDDDD 43210 01234567 89111111 11112222 22222233 U

DDDDD •. 012345 67890123 45678901 T

pp RRRRR PPPPPPPP PP ••.•.•
AA 43210 AAAAAAAA AAPPPPPP PPPPPPPP PPPPPPPP P

DD DDDDDDDD DDAAAAAA AAAAAAAA AAAAAAAA A

PPPPP DDDDDD DDDDDDDD DDDDDDDD D
AAAAA
DDDDD

TIME
43000 01 00011 00010 11101111 11111111 11111111 11111111
43500 11 00011 00011 11101111 11111111 11111111 11111111
44000 01 00100 00011 11110111 11111111 11111111 11111111
44500 11 00100 00000 11110111 11111111 11111111 11111111
45000 01 00101 00000 11111011 11111111 11111111 11111111
45500 11 00101 00101 11111011 11111111 11111111 11111111
46000 01 00110 00101 11111101 11111111 11111111 11111111
46500 11 00110 00110 11111101 11111111 11111111 11111111
47000 01 00111 00110 11111110 11111111 11111111 11111111 0
47500 11 00111 00111 11111110 11111111 11111111 11111111
48000 01 01000 00111 11111111 01111111 11111111 11111111
48500 11 01000 01100 11111111 01111111 11111111 11111111 0
49000 01 01001 01100 11111111 10111111 11111111 11111111
49500 11 01001 01001 11111111 10111111 11111111 11111111
50000 01 01010 01001 11111111 11011111 11111111 11111111 0
50500 11 01010 01010 11111111 11011111 11111111 11111111 0
51000 01 01011 01010 11111111 11101111 11111111 11111111 EJI 51500 11 01011 01011 11111111 11101111 11111111 11111111
52000 01 01100 01011 11111111 11110111 11111111 11111111
52500 11 01100 01000 11111111 11110111 11111111 11111111
53000 01 01101 01000 11111111 11111011 11111111 11111111 0
53500 11 01101 01101 11111111 11111011 11111111 11111111 0
54000 01 01110 01101 11111111 11111101 11111111 11111111 0
54500 11 01110 01110 11111111 11111101 11111111 11111111 0
55000 01 01111 01110 11111111 11111110 11111111 11111111 0
55500 11 01111 01111 11111111 11111110 11111111 11111111 0
56000 01 10000 01111 11111111 11111111 01111111 11111111 0
56500 11 10000 10100 11111111 11111111 01111111 11111111 0
57000 01 10001 10100 11111111 11111111 10111111 11111111 0
57500 11 10001 10001 11111111 11111111 10111111 11111111 0
58000 01 10010 10001 11111111 11111111 11011111 11111111
58500 11 10010 10010 11111111 11111111 11011111 11111111
59000 01 10011 10010 11111111 11111111 11101111 11111111
59500 11 10011 10011 11111111 11111111 11101111 11111111
60000 01 10100 10011 11111111 11111111 11110111 11111111
60500 11 10100 10000 11111111 11111111 11110111 11111111
61000 01 10101 10000 11111111 11111111 11111011 11111111 0
61500 11 10101 10101 11111111 11111111 11111011 11111111 0
62000 01 10110 10101 11111111 11111111 11111101 11111111 0
62500 11 10110 10110 11111111 11111111 11111101 11111111
63000 01 10111 10110 11111111 11111111 11111110 11111111
63500 11 10111 10111 11111111 11111111 11111110 11111111
64000 01 11000 10111 11111111 11111111 11111111 01111111
64500 11 11000 11100 11111111 11111111 11111111 01111111 0
65000 01 11001 11100 11111111 11111111 11111111 10111111
65500 11 11001 11001 11111111 11111111 11111111 10111111
66000 01 11010 11001 11111111 11111111 11111111 11011111
66500 11 11010 11010 11111111 11111111 11111111 11011111
67000 01 11011 11010 11111111 11111111 11111111 11101111
67500 11 11011 11011 11111111 11111111 11111111 11101111
68000 01 11100 11011 11111111 11111111 11111111 11110111
68500 11 11100 11000 11111111 11111111 11111111 11110111 0
69000 01 11101 11000 11111111 11111111 11111111 11111011 0
69500 11 11101 11101 11111111 11111111 11111111 11111011 0
70000 01 11110 11101 11111111 11111111 11111111 11111101 0
70500 11 11110 11110 11111111 11111111 11111111 11111101
71000 01 11111 11110 11111111 11111111 11111111 11111110
71500 11 11111 11111 11111111 11111111 11111111 11111110
72000 01 00000 11111 11111111 11111111 11111111 11111111
72500 11 00000 00100 11111111 11111111 11111111 11111111
73000 01 00001 00100 11111111 11111111 11111101 11111111
73500 11 00001 00001 11111111 11111111 11111101 11111111
74000 01 00010 00001 11111111 11111111 11111101 11111111
74500 11 00010 00010 11111111 11111111 11111101 11111111
75000 01 00011 00010 11111111 11111111 11111101 11111111
75500 11 00011 00011 11111111 11111111 11111101 11111111 1
76000 01 00100 00011 11111111 11111111 11111101 11111111 1
76500 11 00100 00000 11111111 11111111 11111101 11111111 1
77000 01 00101 00000 11111111 11111111 11111101 11111111 1
77500 11 00101 00101 11111111 11111111 11111101 11111111 1
78000 01 10110 00101 11111111 11111111 11111101 11111111 1
78500 11 10110 10110 11111111 11111111 11111101 11111111 0
79000 01 10110 10110 11111111 11111111 11111101 11111111 0
79500 11 1011'1 10110 11111111 11111111 11111101 11111111 0
80000 01 101~v 10110 11111111 11111111 11111101 11111111 0

~ Monolithic W Memories ~ 2·443

LCA Device Implements
an a-Bit Format Converter
in a PBX Switching Module AN-178

Introduction
In a Private Branch Exchange (PBX) or Central Office (CO),
incoming digitized voice circuits are "switched" or routed to
their appropriate destination. The "switching" takes place while
the data is in serial or parallel format. An eight-bit format conver­
ter circuit, widely used in a variety of PBX and CO architectures,
translates the serial data streams into parallel data streams and
vice-versa.

The eight-bit format converter circuit requires a large number of
register elements. These elements, namely serial shift registers,
can be implemented efficiently in an LCA device due to its high
register content and flexible structure. The LCA M2018 pro­
grammable device contains one hundred configurable register
elements, ninety-nine of which are used in the implementation
of the converter circuit. This circuit is capable of running at 12.5
MHz and 18.5 MHz in a 50-MHz and 70-MHz LCA device,
respectively.

Powerful software tools and circuit uniformity allowed the
design to be laid out and simulated in just two days. However, if
different support logic becomes necessary, PBX vendors are
able to generate a new configuration program in the LCA re­
programmable device. Since these devices are manufactured in
a CMOS technology, a complete PBX system with several LCA
devices can help keep the active power consumption down.
(Please refer to the LCA Design and Applications Handbook­
Reference 3 for basic information regarding structure and pro­
gramming aspects.)

Overview of a PBX
Central Offices (CO) and Private Branch Exchanges (PBX) pro­
vide both telephone and data services. A PBX may be consi­
dered as a localized telephone exchange serving the intercon­
nection requirements of users in office environments. Outgoing
calls are directed out of the PBX and routed through the local
CO to the far destination. In general terms, a PBX or a CO
consists of major blocks shown in Figure 1. Racks of peripheral
equipment modules containing line cards provide access to
telephone units, or to data adapter modules which provide data
communication services. Trunk cards provide high-speed links
to host computers, or other PBXs. Network switching modules
interconnect calling parties to answering parties via digital mUl­
tiplexed links. Control modules containing a Central Processor
Unit (CPU), mass storage and local memory, perform the
"setup" and "tear-down" of each circuit connection, as well as
the monitoring of PBX activities. Central resources are modules
of hardware and software which operate in a time-shared
manner. The central resources include facilities such as ringing
tone generator and message recording modules.

CONTROL

SYSTEM ACCESS}
TERMINAL

TAPE MODULES

}

CENTRAL
RESOURCES

NETWORK {
SWITCHING

MODULES ~--~~ ____ ~ __ +-~ __ ~ ____ ~

PE~~~~~~~[MODULES •••

TERMINAL PHONE

Figure 1. PBX Communication and Control Architecture

2·444 ~ Monolithic W Memories ~

LCA Device Implements an a-Bit Format Converter in a PBX Switching Module

Hierarchy of Channel Multiplexing
in a PBX
The main function of switching modules is to interconnect cir­
cuits between two or more parties such as in a conference call.
A digital telephone unit, or a line card, contains a Coder/De­
coder (CODEC) device. The CODEC device digitizes voice and
transmits it into a Pulse Code Modulated (PCM) data stream on
a common serial data highway at appropriate time intervals,
which are assigned at the start of the call.

Analog voice is sampled at 8 KHz and passes through an eight­
bit analog-to-digital converter. The digitized sample (eight-bit
binary word) is transmitted serially to produce a serial data
stream of (8 x 8 =) 64 Kbps. Thirty-two of these samples or
CODECs are normally connected to a common highway operat­
ing at (32 x 64 =) 2.048 Mbps. Each CODEC is assigned "Serial
Time Slots" of eight-bit duration, and sends its eight bits of data
at the rate of 2.048 Mbps every 8 KHz. Another time slot is
available on a separate highway for the receive data stream.

Therefore, a 2.048 Mbps highway can support thirty-two chan­
nels or voice connections in one direction. However, there are
several ways to combine serial highways for additional voice
connections. One way is to combine four highways into one

high-speed highway of 8.192 Mbps. Further integration is possi­
ble, but the aggregate data rate becomes high and leads to
implementation problems including timing, signal reflection,
and radiation, to name a few.

Another way to integrate channels without increasing the clock
rate is to convert eight serial data highways into a single eight-bit
parallel bus. With this method, the serial clock rate and the
parallel clock rate are the same, 2.048 Mbps. This means that
data throughput on the eight serial highways of 16.384 Mbps is
maintained in the eight-bit parallel bus operating at 2.048 Mbps.
This works by careful alignment of the incoming parallel time
slots to serial time slots on the serial highways. An eight-bit
format converter scheme, sometimes called a "Corner Bender",
is widely used in PBX or CO switching modules. Four of these
parallel buses are combined (see Figure 2) to form a single
parallel system bus that is thirty-two bits wide, yet still operates
at 2.048 Mbps. The multiplexing architecture shown in Figure 2
is used in the Harris 20-20™ Integrated Network Switch (see
Reference 1).

Space switching and/or time slot switching to interconnect dif­
ferent parties is performed either in the serial highway format or
in the parallel data stream format.

SYSTEM PCM BUS 4MHz x 32 BITS

T
FOURTH

MUX
LEVEL

j

T
THIRD
MUX

LEVEL

SECOND
MUX

LEVEL

FIRST
MUX

LEVEL

1
TIMING

--+--"""""---+-T"'""-"""--- BACKPLANE

7 OTHER
GROUPS

PERIPHERAL GROUP BUS

7 OTHER
GROUPS

2 MHz x 1 BIT (32 PORTS)
--~~----~---~~---C~LE~D ___ +-___ ,..... ____ +,. __ BACKPLANE

ANALOG VOICE

TELEPHONY
PERIPHERAL
UNIT

* = TRI-STATE

Figure 2. Multiplexing Levels

~ Monolithic m Memories ~ 2·445

Ell

LCA Device Implements an a-Bit Format Converter in a PBX Switching Module

Description of the
"Corner Bender" Circuit
The circuit consists of eight parallel-to-serial shift registers, and
additional shift registers which provide proportional delays to
synchronize the outputs. The prinCiple of operation is shown in
Figure 3, and the circuit is shown in Figure 4. Parallel data from
the parallel bus is loaded with each clock into one of the eight
shift registers in a rotating pattern. The data then shifts outofthe
shift register with each subsequent clock. After all eight registers
have been loaded, the first register will be empty on the next
clock. New data is loaded into this register at the same clock
edge as the last bit shifts out to the next stage. Thus, a continu-

PARALLEL TIME SLOTS ,

Ii Ii Ii 'I II II y y

T T

E E

x x
67

'01 234567,01 23

ous flow of data through the registers is insured. The data out of
the eight shift registers is skewed in relation to each other as
shown in Figure 3b. The various space slots on the highways
need to be aligned to keep synchronization. This is achieved by
proportionally delaying the outputs. Channel 1 output is delayed
by seven clocks (using a seven-bit serial shift register), channel 2
is delayed by six clocks, etc. Channel 8 output does not go
through any additional delay. The final outputs of the delay
registers are aligned and data is clocked out in a synchronous
fashion. See Figure 3c.

Figure 3a. Parallel Bus (8 Bit), 2.048 Mbyte/sec

2·446

,
ABC 0 E F G H 'A BCD E F G H

I Ii! I BYTE yO I I
, I I I BYTE Y 1

BYTE Y 2

BYTE Y 3

~Y1Ex 5

Figure 3b. After Parallel to Serial Conversion

BYTEy 1

BYTEy 2

BYTEy 3

BYTE x 5

BYTE x 6

SERIAL TlME SLOTS
SERIAL TOM BUSES
EACH 2.048 Mbllslsec

Figure 3c. After Appropriate Time Delay to Synchronize

Figure 3. Principles of "Corner Bending"

l1 Monolithic m Memories l1

LeA Device Implements an a-Bit Format Converter in a PBX Switching Module

Figure 4 also shows the additional circuitry needed to control
the shift registers. A preloadable three-bit counter keeps count
of eight clock pulses. The parallel-to-serial bus conversion can
be "programmed" to start in any register by setting the approp­
riate binary value on the counter preload inputs and applying a
pulseto the sync input. If the loading sequence produced by the
counter is not required, it can be disabled by connecting the
"clock" to "sync" input. At each positive clock edge, the register
loaded will depend upon the data at the counter inputs on the
previous positive clock edge. The 3-to-8 decode circuit produ-

ces load pulses to latch parallel data into the shift registers.
Figure 5 shows the parallel-to-serial conversion data matrix.

The description above shows the conversion of parallel data into
eight streams of serial data. However, the same circuit also
performs serial-to-parallel conversion. A serial eight-bit data
stream on one of the eight inputs appears as an eight-bit parallel
word on the eight outputs. Successive parallel words appearing
at the eight outputs correspond to the serial data on each of the
eight inputs in rotation. See Figure 5.

o/p lEN D1 02 03 SYNC

Y y y t
I 3-BIT 01 ~ HO-8 J I LOAD PULSE I

CLK -------I'-----tl COUNTER g~ A3 DECODE GENERATOR

A_

8_

C-

0-

E_

F-

G-

H_

t·~ ____ ~1+-2+3~4+5~6~7-+8 ____ ~J i
~-Alc;""'IB1""'c""lD-)l""":1':!'1'fF-~~(G H

8-81T SHIFT 0

r---g::~~R~E~G~IS~T~ER~~L~~---+~+-r4-+~
AtB1Cj.olEjF.f II

8-81T SHIFT 0
REGISTER L ~

8-81T SHIFT 0
REGISTER L

8-81T SHIFT 0
REGISTER L

8-81T SHIFT 0
REGISTER L

6-BIT SHIFT 0
REGISTER L

8-BlT SHIFT 0
~---~rt» REGISTER L

DELAY CIRCUITS TO
SYNCHRONIZE TRANSMISSION

-,0 1-81T SHIFT OJ
-po REGISTER

I _,0 2-81T SIIIFT 0,
r-'P' REGISTER ,

I 1 0 3-81T SHIFT 0,
r---t" REGISTER ,

I -,0 4-81T SHIFT 0 I
r-'P' REGISTER I

I _,0 5-81T SHIFT 0'1
r--P' REGISTER

! -,0 7-BlT SHIFT 0,
r-'P' REGISTER ,

Figure 4. 8-Bit Format Converter ("Corner Bender") Circuit

~ fJ/onolithic m Memories ,til

~

o

2·447

LCA Device Implements an a-Bit Format Converter in a PBX Switching Module

CLOCK

DATA
INPUTS

DATA
OUTPUTS

A IAOIA11A2IAJIA4IASIASIA71

8 I 801811821831841851861871

clc~~I~I~I~I~I~lol

Dlool~I~lool~I~lool~1

EI~181~1~1~IBI~I~1

F I FO I Fll F21 F31 F41 F5 IF6 1F7 I

GI~lrnlml~I~I~I~lml

HI~I~I~I~I~I~I~I~I

° HoiGoloIEOIoolcol80lAOI

Hll Gll Fll El 101 I Cl 181 I Al I

PARALLEL TO SER AL CONVERSIO
AO, 80, co, DO, EO, FO, GO, HO = IN(I)O, IN(I)l, IN(I)2, IN(I)3, IN(I)4, IN(I)5, IN(I)S, IN(I)7
Al, 81, Cl, 01, E1, Fl, Gl, Hl = IN(II)O, IN(II)l, IN(II)2, IN(II)3, IN(II)4, IN(II)5, IN(II)6, IN(II)7

SERIAL TO PARALLEL CONVERSION
AO, Al, A2, A3, A4, A5, AS, A7 = IN(I)O, IN(I)l, IN(I)2, IN(I)3, IN(I)4, IN(I)5, IN(I)S, IN(I)7
80,81, 82,83,84, 85,86,87 = IN(II)O, IN(II)l, IN(II)2, IN(II)3, IN(II)4, IN(II)5, IN(II)S, IN(II)7

• IN(I)X ARE THE INPUT 8-81T WORDS

Comparison of Implementation
Techniques

Figure 5. Data Conversion

The "Corner Bender" circuit can be implemented in several
ways. The efficiency of an LCA design can be compared to that
of a design in SSI/MSIIogic devices or Erasable Programmable
Logic devices (EPLDs). Table 1 contains the comparison of
package counts with the different alternatives.

EQUIVALENT CIRCUIT IN SSI/MSI DEVICES

The circuit implemented in 74LSxx devices requires nineteen
packages. Alternatively, sixteen simple PLD devices (such as a
PAL20R8 or a PAL20R4) are required to implement the same
circuit. Since the circuit is register intensive and not designed for
high speed, PLDs are not chosen for this application.

The functionally larger EPLD devices, EP1200 and EP1800, are
more register intensive and contain twenty-eight and fourty­
eight register elements, respectively. Nevertheless, four EP1200
devices, or two EP1800 plus a smaller PLD device, is required to
implement this design.

Parallel in serial out shift Registers 74LS165

Serial in Parallel out shift Registers 74LS164

4-bit counter 74LS161

3 to 8 decoder 74LS138

Three-state buffers 74LS241

EQUIVALENT CIRCUIT IN EPLDs

a) EP1200 28 macro cells each

b) EP1800 48 macro cells each

plus PAL device e.g., 16R4

EQUIVALENT CIRCUIT IN MMI LCA DEVICE

LCA 2018 device 100 macro cell

PACKAGES

8

7

1

1

1

4

2

1

1

The entire Corner Bender circuit fits neatly into a single LCA
2018 device. It uses ninety-nine out of the one hundred available
internal macrocells and demonstrates efficient implementation
of shift registers and small counters. An LSI device from Plessey
(Reference 2) is available to implement the same circuit. How­
ever, it is an NMOS device and limited to speeds of under 2 MHz.

Table 1. Implementation Alternatives for the 8-Bit Format
Converter Circuit "Corner Bender"

2·448 ~ Monolithic m Memories ~

LCA Device Implements an a-Bit Format Converter in a PBX Switching Module

"Corner Bender" Design in an
LCA Device
A count of the register elements in the circuit shows a need of
sixty-four elements for the eight-shift registers, twenty-eight
elements for the delay registers, three elements for the counter,
and four elements for the 3-to-8 decode circuit. Each configura­
ble logic block (CLB) in the LCA device can produce two out­
puts. Hence, only four CLBs are required for the 3-to-8 decode

XACT 1.30, 10:50:36 KAY 5, 1987

circuit. Since, each CLB contains one register element, the total
count of CLBs is therefore ninety-nine. The LCA 2018 contains
one hundred CLBs. Twenty-two inpuVoulput blocks (lOBs)
were used. Figure 6 shows the layout of the design in the LeA
device. The circuit fits into a 68-pin PLCC package.

Print World: fe.lea (2018PC68-70), XAe':

~~~~~~~~~~-L 
1D 
ID 
ID 
ID 
[} 
{[} 

ID 
ID 

~~--------------------------~--------~~ 
e~ eeJ 0 U 

Figure 6. Layout Diagram of "Corner Bender" Circuit on LCA Device of Size 10x10 

~ Monolithic m Memories ~ 2·449 

EI 



LCA Device Implements an a-Bit Format Converter in a PBX Switching Module 

The Monolithic Memories' XAC"pM Design Editor is used to 
create the design by implementing the appropriate logic func­
tions in CLBs and lOBs. An example of a CLB for one bit of the 
eight-bit shift register in this design is shown in Figure 7.lnputA 
is the decoder input and it is ANDed with input B, the data to be 
shifted. To implement the eight-bit shift registers from the one­
bit shift register, eight of the one-bit shift registers were linked 
together so that the output of each register became an input to 
the next register. This is shown in Figure 8 where each CLB 
represents one bit of the eight-bit shift register. 

The three-bit counter and the 3-to-8 decoder in this design were 
implemented in CLBs as shown in Figures 9 and 10. The counter 
is a synchronous binary counter with ripple carry and parallel 
load. The decoder is a standard 3-to-8 decoder. The outputs of 
the counter become inputs to the decoder, whereas the outputs 
of the decoder are used to decode the eight 8-bit shift registers. 

With the XACT Development System, the designer can optimally 
arrange the logic blocks on the LCA device in order to minimize 
net delays between each block. With this in mind, the layout for 
the design is described below: 

Four of the eight-bit parallel-to-serial shift registers were placed 
starting from the top left-hand edge of the LCA device (see 
Figure 7). The three-bit counter (three CLBs) and the 3-to-8 
decoder (four CLBs) were then placed on the following row. The 
next four rows contained the last four parallel-to-serial shift 
registers. This allowed the shift register select lines to have 
minimal delay spread when accessing all eight shift registers. 
The seven serial-to-serial shift registers were placed in the 
remaining CLBs as uniformly as possible. 

The optimum placement and distribution of configured blocks 
in the array is influenced by the performance needs of the 
system. Blocks placed in close proximity can use local intercon­
nection resources which incur short signal propagation delays, 
whereas blocks placed further apart must use either "long lines" 
or other interconnection resources. Manual optimization using 
the delay efficient "long lines" was performed for the most criti­
cal net connections. After routing completion, the longest delay 
between two clock pulses was the delay for the counter to 
change state, the state which is decoded via the 3-to-8 decoder 
and selects the appropriate shift registerto load the parallel data 
(see Figure 7). This delay was 54 ns, 79 ns, and 106 ns, respec­
tively for the 70-, 50-, and 33-MHz versions of the device. The 
delays were measured using the XACT simulation package by 
invoking the timing delay calculator. This translates to a maxi­
mum circuit operating speed of about 18.5 MHz for the 7a-MHz 
version of the device, or 9.43 MHz for the 33 MHz version. 

Although fabricated in a CMOS technology, the inputs to the 
LCA device can be made either TTL or CMOS compatible. For 
high fan-out CMOS or LS TTL-compatible loads, the output 
buffers of the LCA device are capable of driving 4 mA. Moreover, 
each output buffer can be put into a HIGH-Z state for bus-driving 
applications. This features was also used in the design of the 
eight-bit format converter. 

More information about entering a design with the XACT Devel­
opment System is included in the LCA Design and Applications 
Handbook (Reference 3). Information about configuring the 
LCA device is described in the "Configuring the LCA Device" 
applications note. 

x Fa 

~[tlP-x Y Fa 
a FF LATCH 
SET AF 
RES OF BLK: AA 
CLK KC FNOT SRAL8 K 

BA F A 
HH H --

EBI' 
A: DECS_ 
B: INA_ 
c: 
D: 
K: ClKIN 

CLK X: L8SRA-=. 
a Y: 

F=A'B 

Figure 7. One Bit of an 8-Bit Serial- Parallel Shift Register 

Figure 8. CLB Schematic Output for the 8-Bit Shift Register 

2·450 ~ Monolithic W Memories ~ 



LCA Device Implements an a-Bit Format Converter in a PBX Switching Module 

X FGa 

A~ Y F Ga ~ F a x 
a FF LATCH 
SET AF 

~0 r
Y 

RES OF BLK:ED 
CLK KCFNOT DEC12 

C B A F A 

L L L H --
I I I I I} C --B 

C B A G A A: 02 -

lUJc 
B: 01 -H L L H 

I I 
C: 00 -0: 
K: 

F x: DECl 
B G Y: DEC2::: 

F=-Ax-Bx-C 

G=-Ax-BxC 

Figure 9a. Decode Outputs 1 and 2 of 3-to-8 Decoder 

X FGO 
Y F GO 
o FF LATCH 
SET AF 
RES OF 
CLK KCFNOT 

C B A F A 

L H L H IITJJJc 
C BAG 

H H L H 

F=-Ax Bx-C 

G=-AxBxC 

B 

A 

B 
F 
G 

A: 02 
B: 01-
C: 00-
0: -
K: 
x: DEC3 
Y: DEC4::: 

BLK:EE 

DEC34 

Figure 9b. Decode Outputs 3 and 4 of 3-t0-6 Decoder 

Am x FGO B F 
Y F GO cox 
0 FF LATCH 

~0 r
Y 

SET AF 
RES OF BLK: EF 
CLK KCFNOT DEC5S 

C B A F A 

L L H H --
I I I JJ}c 

B 

C B A G A A: 02 --- B: 01 
H L H H 

I I I I I} C 

C: 00-
0: -
K: -- F x: DEC5 

B G Y: DECS::: 

F=Ax-Bx-C 

G=Ax-BxC 

Figure 9c. Decode Outputs 5 and 6 of 3-to-8 Decoder 

Am x FGO B F 
Y F GO C Q X 
0 FF LATCH 

~0 r
Y 

SET AF 
RES DF BLK: EG 
CLK KCFNOT OEC7a 

C B A F A 

L H H H 

I I T.llJc 
B 

C B A G A A: 02 --- B: 01 
H H H H 

I I I I I} C 

C: 00::: 
0: 
K: -- F x: DEC7 

B G Y: DEca::: 

F=AxBx-C 

G=AxBxC 

Figure 9d. Decode Outputs 7 and 8 of 3-t0-8 Decoder 

Figure 9. CLB Configuration of a 3-t0-8 Decoder 

~ Monolithic m Memories ~ 2·451 

EJ 



LCA Device Implements an a-Bit Format Converter in a PBX Switching Module 

X FG a 

~ 
v F G Q 
a FF LATCH a x 
SET AF C V 
RES OF G Bl.K:EA 
CLK KCI'NOT ao K 

X FG a [tGL v F G 0 
a FF LATCH 
SET AF 
RES OF BLK:EB 
CLK KCFNOT K al 

a B A F A aCBA F A 
L H X H --L X L H I I II I} a x H H H --B 

Q C G A: LO -
C B: DO -

H H H - C: al -

H L H X H 

a{g}c 
L H H X H A: LO_ 
H L X L H B: 01 
L H X L H C: ao= 
x x H H H 0: 

CLK K: CLKIN_ -- a x: al -B v: 

EEha 

0: 
CLK K: CLKIN_ 

a x: ao 
G v: alQO_ 

F= Ax B+ -Ax(C@a) 

F= Ax B + -A x-a 
Figure 10b. 2nd Bit of a 3-Bit Counter 

G=axc 

Figure 10a. 1st Bit of a 3-Blt Counter 

X FG a 

~' v F G Q 
a FF LATCH 
SET AF 

BLK: EC RES OF 
CLK KCFNOT K a2 

aCBA F A 
H L H X H --L H H X H 

a{m}c 
A: LD_ H L XL H B: 02 

L H X L H C: al00_ 
x x H H H 0: 

CLK K: CLKIN_ -- a x: 02 -B Y: 

F= AxB + -Ax(C@a) 

Figure 10c. 3rd Bit of a 3-Bit Counter 

Figure 10. CLB Configuration of a 3-Bit Binary Counter with Ripple Carry 

Summary 
The LCA device has achieved a good solution to the principles 
used for multiplexing digitally-encoded voice channels in both 
serial and parallel hierarchies. These hierarchies can accom­
modate thousands of voice circuits in a PBX switching module. 
The detailed design of the eight-bit (parallel-to-serial and serial­
to-parallel) format converter circuit, or Corner Bender, deve­
loped in Monolithic Memories' LCA M2018 device was shown to 
be efficiently implemented. Despite the fast development of the 
system using the XACT Design Editor, the final design was 
programmed and bench tested to verify functional integrity. 

The Corner Bender design is available from Monolithic Memo­
ries upon request. The bit pattern and .LCA file will be provided 
for programming the LCA device in an EPROM. Please ask for 
design XDES05.LCA 

References 
1 ) 

2) 

3) 

"Harris 20-20 Integrated Network Switch", A. Jackson, 
IEEE SAC-3, No.4 July 1985, p561-568. 

MJ1410, 8-bit Format Converter, Data Sheet, Plessey 
Semiconductors. 

Logic Cell Array Design and Applications Handbook, 
Monolithic Memories, 1987. 

2·452 ~ Monolith/om Memories ~ 



Serial Data Link Controller AN-131E 

Functional Description 
This application was first developed by LTT, Conflans Ste. 
Honorine, France. Part of the design, reprinted with courtesy of 
LTT, is used to control a serial data link based upon a specialized 
LSI chip. 

Originally designed with six standard SSI/MSI circuits, this same 
function can now be implemented, not only into a single 
PAL20RA10, but with even more features and better perfor­
mance. The function can be divided into three sub-functions: 

1. Address Decoding 
2. Control Flags 
3. Transmission Speed Selection 

Up to four address lines are allowed (eight were actually used), 
plus two extra lines which are special decoding controls 
(MEM/IO selection, Enable Control ... ). Two flip-flops load flag 
conditions, from the address bus (A 1 and A2), providing hand­
shake between the 6850 UART and the communication lines. 
They have a common clock which also serves as Chip Select 
(CSO) for the UART. 

The UARTTransmit clock (TXCLK) can be directly connected to 
the Receive Clock (CK or RXCLK) or represents the Receive 
Clock value divided by sixteen. This function was performed by 
four "D" Flip-Flops connected as a 4-stage Asynchronous 
Divider. Since each basis cell in a PAL20RA 10 has four Product 
Terms available, this function could be implemented either 
asynchronously or synchronously. In the PAL Design Specifica­
tion example, a 4-bit synchronous divider was used instead of 
the asynchronous circuit shown in the schematic. 

Pin Description 
1. TEST ............. Allows preload function for testing. 
2. SYSRESET ........ Reset line from microprocessor. 
3. A2 ................ Address line from address bus. 
4. A1 ................ Address line from address bus. 
5. HDSHAKE ........ Handshake line (CTS/RTS). 
6. CK ............... External clock. 
7. E ................. Enable line from microprocessor. 
8. AUXDECOD ....... Extra decoding line 

(e.g. board level decoding). 
9. A3 ................ Address line from address bus. 

10. A3 ................ Address line from address bus. 
11. A3 ................ Address line from address bus. ~ 
12. GND .............. Reference power supply ground. ~ 
13. IOE ............... Output enable line. 
14. A6 ................ Address line from address bus. 
15. SPEEDSEL ........ Speed selection line. 
16. DIV4 .............. MSB 4-bit synchronous counter. 
17. DIV3 .............. 3rd stage synchronous counter. 
18. DIV2 .............. 2nd stage synchronous counter. 
19. DIV1 .............. LSB 4-bit synchronous counter. 
20. SCO .............. UART chip select line (CSO). 
21. BLOCREC ........ Bloc receive line. 
22. DIR DIV ........... Direct or divided clock. 
23. /TPH ............. External use flag. 
24. VCC .............. 5 V power supply. 

~ Monolithic W Memories ~ 2·453 



Before 

SYSRESET 

A2 
A1 
A6 

+5V -po-

~ 

~ 

~ 

'---

AS 
A4 
A3 

-
-
1-AUX OECOO 

AO 

E 
RIW 
IRa 

DO 
01 
02 
03 
04 
05 
06 
07 

After 

SYSRESET 
A2 
A1 

CK 

AUXOECOO 
A3 
A4 

AS 

AO 

r--

E :-

R/W 
IRa 

DO 
01 

02 
03 
04 
05 
06 
07 

A6 

2·454 

Serial Data Link Controller 

....... 
v r-!-o a 

r--> 
-
.----

'--1-0 a 

~(CSO) 
h,. ./ a 

L......;~ J 

I 

Lcso RIS~ 
+5V -C CS1 RTS I---

CS2 CTS I---
E oco f---
Rm RXO 
IRa TXO 
DO RXCLK 
01 
02 TXCLK 
03 
04 
05 6850 
06 
07 

'---- CSO RIS~ 
+5V T CS1 RTS 

~ CS2 CTS 
E OCO 
Rm RXO 
IRa TXO 
DO RXCLK 
01 
02 TXCLK 
03 
04 
05 6850 
06 
07 

OIROIV 

(SPEED SELl _ 

" 

HOSHAKE 

OCO 
RXO 
TXO 
CK 

1-----------------1 
I I I 

I I Lr- L~ L~ L~J Q. I 0 I 
I 1 2 3 4 I 

~ 

I Ra~--PRar--~ Ra~--~ Ra~ 
I I 

"1 "1 T T to.. I I .... L ________________ ~ 
NOTE: Asynchronous Divider 

Figure 1. 

TESTE~IEIVCC 
:z 1m-
..! P .. 1m--:: L!. iEl-.. PAL fm Ne :: :: 20RA10 ~ Ne 

..!. ~ NC 

..!. ~ 
r;; ~c 
~ r;;. 

GNO III SlOE 

Figure 2. 

Tph 
OIROIV 
BLOCK REC. 

HO SHAKE 

oeD 
RXO 
TXO 

Monolithic m Memories 



Serial Data Link Controller 

PAL Design Specification 

Title 
Pattern 
Revision 
Author 
Company 
Date 

Serial Data Link Controller 
Link.pds 
A 
Jose Juntas / Kelvin Chow 
Monolithic Memories Inc., Santa Clara, Ca 
3/1/85 

CHIP SE_CH_CNTRL PAL20RA10 

TEST SYSRESET A2 A1 HDSHAKE CK E AUXDECOD A3 A4 A5 GND 
JOE A6 SPEEDSEL DIV4 DIV3 DIV2 DIVl CSO BLOCREC DIRDIV 
/TPH VCC 

EQUATIONS 

/TPH 
/TPH.CLKF 
/TPH.SETF 

DIRDIV 
DIRDIV. CLKF 
DIRDIV. SETF 

/BLOCREC 

CSO 

/DIVl 

/DIVl.CLKF 
/DIV1.SETF 

/DIV2 

/DIV2.CLKF 
/DIV2.SETF 

/DIV3 

/DIV3.CLKF 
/DIV3.SETF 

/DIV4 

/DIV4.CLKF 
/DIV4.SETF 

SPEEDSEL 
SPEEDSEL.CLKF 
SPEEDSEL. SETF 

SIMULATION 

:- A2 
- CSO 
- SYSRESET 

:- 1.1 
- CSO 
- /HDSHAKE 

; Load A2 as flag 
;CLK W/ ADDR. decode 
;global system reset 

;Load speed ratio 
;CLK W/ ADDR. decode 

. ;CLR by CTS/RTS line 

- /DIRDIV ;Contro11ed by speed 
+ HDSHAKE ; option and CTS/RTS 

; line 
- /A6*A5*A4*A3*AUXDECOD*E 

;UART address valid 
:- DIVl ;4-bit synchronous 

;divider LSB 
- CK ;CLK by CK(external) 
- /DIRDIV ;CLR by speed option 

:- /DIV1*/DIV2 
+ DIV1*DIV2 
- CK 
- /DIRDIV 

: - /DIV2*/DIV3 
+ /DIV1*/DIV3 
+ DIV1*DIV2*DIV3 
- CK 
- /DIRDIV 

; 2ND stage of 
;divider 
;CLK by CK(external) 
;CLR by speed option 

; 3RD stage of 
;divider 

;CLK by CK(external) 
; CLR by speed option 

:- /DIVJ*/DIV4 ;4TH stage of 
+ /DIV2*/DIV4 ;divider MSB 
+ /DIV1*/DIV4 
+ DIV1*DIV2*DIV3*DIV4 
- CK ;CLK by CK(external) 
- /DIRDIV ;CLR by speed option 

:- /A1 ;Load speed choice 
- CSO ;CLK W/ ADDR. decode 
_ /HDSHAKE ; CLR by CTS/RTS line 

TRACE ON A1,A2,A3,A4,A5,A6,E, ;signals to be 
- AUXDECOD, SYSRESET, /TPH, HDSHAKE, ; observed 

CSO, SPEEDSEL, DIRDIV, CK, 
DIV1, DIV2, DIV3, DIV4 

SETF SYSRESET,/HDSHAKE ;Reset all regs 

CHECK /SPEEDSEL, /DIRDIV, TPH 
SETF /SYSRESET ,A1,A2 ,A3 ,A4 ,A5 ,/A6 ,HDSHAKE, ;Set decode 

E, AUXDECOD ; condi tion 

CHECK /SPEEDSEL, DIRDIV 

FOR 1:-1 TO 15 DO 
BEGIN 

SETF CK 

SETF /CK 
END 

; Check SPEEDSEL and 
; DIRDIV regs 

;This portion 
;simu1ates divide 
;by four counter 

Simulation Results 

Page 
g g g gg gg gg gg g g gg gg gg gg gg gg 

Al XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
A2 XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
A3 XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
A4 XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
1.5 XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
A6 XXLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL 
E XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
AUXDECOD XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
SYSRESET HHLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL 

/TPH LLLLHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
HDSHAKE LLHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
CSO XXHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
SPEEDSEL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL 
DIRDIV LLLLHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH 
CK XXXXXHHLHH LHHLHHLHHL HHLHHLHHLH HLHHLHHLHH 
DIV1 XLLLLLHHHL LLHHHLLLHH HLLLHHHLLL HHHLLLHHHL 
DIV2 XLLLLLLLLH HHHHHLLLLL LHHHHHHLLL LLLHHHHHHL 
DIV3 XLLLLLLLLL LLLLLHHHHH HHHHHHHLLL LLLLLLLLLH 
DIV4 XLLLLLLLLL LLLLLLLLLL LLLLLLLHHH HHHHHHHHHH 

Page 
gg gg gg g 

A1 HHHHHHHHHH 
A2 HHHHHHHHHH 
A3 HHHHHHHHHH 
A4 HHHHHHHHHH 
A5 HHHHHHHHHH 
1.6 LLLLLLLLLL 
E HHHHHHHHHH 
AUXDECOD HHHHHHHHHH 
SYSRESET LLLLLLLLLL 

/TPH HHHHHHHHHH 
HDSHAKE HHHHHHHHHH 
CSO HHHHHHHHHH 
SPEEDSEL LLLLLLLLLL 
DIRDIV HHHHHHHHHH 
CK LHHLHHLHHL 
DIV1 LLHHHLLLHH 
DIV2 LLLLLHHHHH 
DIV3 HHHHHHHHHH 
DIV4 HHHHHHHHHH 

Monolithic W Memories 2·455 

011 



QAM Encoder in a ZPAL Device AN-166 

The ZPAL PALC20R8Z family consists of four devices: 
combinatorial PALC20L8Z, and registered PALC20R8Z, 
PALC20R6Z, and PALC20R4Z. These devices offer zero 
standby and very low active power dissipation, along with 
traditional architecture and functionality of standard PAL 
devices. These 24-pin devices offer high speed (TPD = 35 ns) 
and are ideal for applications in communications equipment 
and instrumentation, which are typically under severe power 
constraints. 

This note describes one such application in communications 
equipment for Quadrature Amplitude Modulation (QAM) 
encoding and provides a design based on a PALC20R8Z 
device. QAM encoding technique is used in standalone modem 
equipment which uses CMOS devices. Monolithic Memories' 
CMOS ZPAL devices became a natural choice for replacing 
glue logic or any complete function that is being implemented in 
discrete SSI components. 

GAM Encoder 
Data modems use encoders as a means of increasing data 
throughput within a given bandwidth of a channel. Quadrature 
Amplitude Modulation (QAM) gives an input data rate of four 
times the encoding rate, which is the output rate of the 
encoder. The encoding rate determines the channel bandwidth 
required by the output signal. Voice band data modems have 
become popular for use over the switched telephone network 
for interconnecting personal computers to distant computers. 
In these modems the data encoder function is usually 
integrated within the modem chip set. However, higher-speed 
modems for 20-MHz digital radio, satellite up/down links and 
other group band modems implement the encoder as a dis­
crete hardware function due to the speed requirements. A 
PALC20R8Z device is ideally suited for implementing the data 
encoder function because of its ability to implement state 
machines efficiently and its low power consumption. 

The PAL Design Specification (QAM.PDS) file enclosed shows 
the QAM Encoder example implemented using the PALASM@2 
software state machine syntax. 

Modem Encoding Techniques: 
Figure 1 shows the encoder function within a typical modem 
transmitter. Incoming data may be scrambled (to randomize 
the data) and then passed through the encoder. The output 
streams (I, Q) are passed through pulse-shaping filters before 
being multiplied by the sine and cosine carrier frequencies. 

Let us consider the QAM encoding technique as used in the 
voice band data modems. The scheme is also widely used in 
other high-speed applications. Some of the popular modem 
standards for the switched telephone network are Bell 212A 
(for 1200-bps operation), CCITI V.22 (for 1200-bps operation), 
CCITT V.22bis (for 2400-bps operation) and CCITI V.32 (for 
9600-bps operation). 

According to Bell 212A, CCITT V.22 and V.22bis recom­
mendations, full duplex communication over a pair of tele­
phone wires is achieved by separating the bandwidth occupied 
by the signals traveling in opposite directions. (see Figure 2). 

AMPLITUDE 

800 
1200 Hz 2400 Hz 

FREQUENCY - Hz 

Figure 2. Full Duplex Communication by Bandwidth Separation 

The transmit carrier frequency of one modem is 1200 Hz while 
the far-end modem uses 2400 Hz as its transmit carrier fre­
quency. The encoding rate (or symbol rate) for each carrier is 
600 baud (equivalent to transitions per second) and the band-

TO A AND B CHANNELS 
OF OSCILLOSCOPE 

SIN (wet) 

2·456 

TRANSMIT 
DATA 

STREAM 

+ 
OUTPUTR 

COSINE (wet) 

Figure 1. Data Encoder in a Typical Modem Transmitter 

~ Monolithic W Memories l1 



QAM Encoder in a ZPAL Device 

width occupied by the outgoing signal spectrum is about 800 
Hz, centered around the carrier. Since the two bands of trans­
mission do not overlap, no interference takes place between 
the two channels of communications. 

The transmit data throughput in each direction is increased 
from the 600 baud encoding rate by means of encoding two or 
four incoming data bits at a time. This produces a multilevel 
signal which is then used to modulate the carriers. The 
transmit data bit rate is then 1200 bits per second (bps) and 
2400 bps respectively. 

CCITT V.22bis and V.32 recommendation modems employ 
Quadrature Amplitude Modulation (QAM) technique for 
modulating the carrier frequency. The 16-state QAM signal 
constellation can be observed at the I and Q outputs (Figure 1) 
of the encoder. The diagram of Figure 3 is observed by 
connecting the I and Q outputs to the A and B channels of a 
dual channel oscilloscope and turning the timebase to the X-Y 
setting. 

The data stream to be transmitted is divided into groups of four 
consecutive bits called quad bits. The first two bits are 
encoded as a phase quadrant change relative to the quadrant 
occupied by the preceding signal element. See Figure 3 and 
Table 1. The last two bits of each quadbit define the amplitude 
of the signal element in each phase quadrant. The left-hand 
bits in Table 1 are the first of each pair in the data stream as it 
enters the encoder after the data scrambler. 

Bell 212A and CCITT V.22 recommendation modems employ 
the Differential Quadrature Phase Shift Keying (DQPSK) 
technique for modulating the carrier. The data stream to be 
transmitted is divided into groups of two consecutive bits 
called dibits. The dibits are encoded as a phase quadrant 
change relative to the quadrant occupied by the preceding 
signal element. The signal element corresponding to XX01 (YO, 
Y1, X2, X3) in the V.22bis signal constellation (Figure 3) is 
transmitted irrespective of the quadrant occupied. This ensu­
res compatibility with the V.22bis modems operating in a fall­
back mode of 1 ~OO bps. 

SYMBOL 
CLOCK 

INPUT 
DATA 

STREAM 

X3 

QUADRATURE PHASE (Q) 

)( B )( )( )( 

10,11 10,01 11,10 11,11 

)( )( )( A X 
10,10 10,00 11,00 11,01 

IN PHASE 

·3 

)( 
00,01 

)( 

00,11 

C 

-1 

)( ·1 
00,00 

)( -3 
00,10 

)( 
01,00 

)( D 
01,01 

X 
01,10 

X 
01,11 

A, B, C, 0 ARE HALF RATE 
POINTS e.g., 1200 bps 

(I) 

Figure 3. QAM Signal Pattern (YO, Y1, X2, X3) e.g., 2400 
bps (V.22bis) 

FIRST TWO BITS PHASE 
OF QUADBITS OR A QUADRANT 

DIBIT (XO, X1) CHANGE 

00 +90 
01 0 
11 270 
10 180 

Table 1. Relative Quadrant Change for Input (XO, X1) 

VCC 

DIGITAL-TO· 
ANALOG Y AXIS 

CONVERTER QUADRATURE 
PHASE 

COMPONENT 

X AXIS 

IN PHASE 
COMPONENT 

Figure 4. PALC20R8Z Device QAM Encoder 

~ Monolithic m Memories ~ 2·457 

Ell 



QAM Encoder in a ZPAL Device 

Modems in geostationary satellite links use phase encoding 
schemes such as Binary Phase Shift Keying (BPSK) or Dif­
ferential Phase Shift Keying (DPSK). QAM techniques which 
require both phase and amplitude modulation, are traditionally 
used for deep-space satellite links, and digital radio communi­
cation applications. 

PALC20R8Z·based QAM Encoder 
Figure 4 shows a PALC20R8Z device implementing a high­
speed QAM encoder. Four bits of transmit data stream are 
input to the device every symbol clock. For a V.22bis modem, 
the symbol clock rate is 600 baud and the bit rate is 2400 bps. 
However the encoder device can run at several megahertz for 
use in deep-space satellite communications. The design 
utilizes all of the available outputs on the PALC20R8Z. QO and 
10 signals are held in logic high state. The extra inputs on the 
device may be used to control the start-up phase of the 
encoder. 

Figure 5. Phase Quadrant State Diagram 

It is assumed that a quadbit (XO, X1, X2, X3) of incoming 
transmit data is available every· symbol clock. The first two 
bits, XO and X1, are used to compute the phase quadrant of 
the next output symbol. The quadrants are assigned states 
(represented by YO and Y1) and the state transitions (or the 
differential quadrant change) is described using a state 
diagram shown in Figure 5 and Table 1. The state transition 
outputs are latched at the positive edge of the first symbol 
clock. Equations for YO and Y1 could be derived using 
Karnaugh maps (Figure 6) and the reduced equations 
implemented. Alternatively, PALASM 2 software has a state 
machine syntax which can be used to input the state diagram 
directly (see the design file). The Minimize software module of 
PALASM 2 software is then used to reduce the equations. 

Y 
~1 0,Y1 11 00 01 11 10 

00 IL1J 1 
01 1 1 

d 

11 1 Ir 1 
10 1 IL1J 

I 

Karnaugh Map 

for Next NO State 

YO ~1 ,Y1 00 11011 11 10 
00 Il1 j Ir 1 
01 IL1 1 
11111' 1 
10111 Irl 

I 

Karnaugh Map 

for Next N1 State 

Figure 6. Karnaugh Maps for Next States of NO, N1 

The last two bits, X2 and X3, are latched at the same time as 
the new states are computed (see dosign file). The output data 
values, I and Q, are combinatorial functions of YO, Y1, X2, and 
X3. These outputs are latched at the positive edge of the next 
symbol clock. Thus the computational delay through the 
encoder is two symbol clocks. If the processing delay is 
critical to the design, it could be reduced to one symbol clock 
by using a PAL20RA10 device because this device allows 
independent clocking of registers. The phase quadrant state 
could then be latched on the positive edge of the symbol clock 
and the output could be available on the negative edge of the 
clock. 

Figure 7. Photograph of QAM Pattern 

2·458 ~ Monolithic; W Memories ~ 



QAM Encoder in a ZPAL Device 

The values +3, +1, -1, -3 of I and 0 (Figure 3) are represented 
by the three-bit binary words, 111, 101, 011, 001, (12 11 10 or 
02 01 00), respectively. These three-bit values are output 
every symbol. This number scheme allows the use of simple 
digital-to-analog conversion as required in the satellite 
applications. For these high-speed applications the pulse­
shaping filtering and carrier-modulation functions are 
performed in analog domain using operational amplifiers and 
active components. 

The PALC20R8Z device has only eight registered outputs, 
whereas this design needs ten registered outputs (two for the 
phase quadrant state, and eight for the I and 0 outputs). 
Fortunately the 10 and 00 are always "1" (as defined above) 
and hence can be tied to this state at the input to the next 
stage. In this case the eight registers in the PALC20R8Z 
device are sufficient to implement the full encoder function. 

The design file shows an example of using the state machine 
syntax of PALASM 2 software. The OAM encoder is a standard 

Mealy type of state machine. However, to keep the number of 
product terms per output reasonable (less than eight for the 
PALC20R8Z device), it is implemented as a Moore state 
machine followed by the output decode function (see 
appendix). There is a pipeline delay between the new state 
values and their corresponding outputs. The differential 
quadrant change is implemented in the State section of the 
OAM.PDS file whereas output decoding is done in the 
Equations section of the same file. 

In the laboratory verification, the I (10 to 12) and 0 (00 to 02) 
outputs were connected to two digital-to-analog converters. 
The analog outputs were then connected to the A and B 
channels of an oscilloscope and the X-Y pattern was observed 
(see Figure 7). For high data-rate operation (several MHz), the 
PALC20R8Z device encoder together with a data scrambler 
implemented in hardware facilitates a cost-effective solution 
for a modem transmitter. 

~ Monolithio m Memories ~ 2·459 

Ell 



TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
DATE 

QAM Encoder in a ZPAL Device 

QAM ENCODER 
QAM-:-PDS 
A 
RAJ PARIPATYADAR, M. GZOWSKI 
MONOLITHIC MEMORIES INC., SANTA CLARA 
5 April 1987 

CHIP QAM PAL20R8 
CK X3 X2 Xl XO NC NC NC NC NC NC GND 
JOE NC X3A X2A Yl YO I2 Il Q2 Ql NC VCC 

STATE 

MOORE MACHINE 

STATE 0 
STATE-l 
STATE-2 
STATE-3 

:= 
:= 
.-
.-

CSI 
CSl 
CSl 
CSl 

->STATE 1 + CS2 ->STATE 0 + CS3 ->STATE 3 +->STATE 2 
->STATE-2 + CS2 ->STATE-l + CS3 ->STATE-O +->STATE-3 
->STATE-3 + CS2 ->STATE-2 + CS3 ->STATE-l +->STATE-O 
->STATE-O + CS2 ->STATE-3 + CS3 ->STATE-2 +->STATE-l 

Equations for the next states represented by YO Yl 
These outputs are latched on the positive edge of the 
first symbol clock 

STATE 0 
STATE-l 
STATE-2 
STATE-3 

IYO * /Yl 
IyO * Yl 

YO * Yl 
YO * /Yl 

CONDITIONS 
CSl 
CS2 
CS3 
CS4 

/XO * /Xl 
IXO * Xl 

XO * Xl 
XO * /Xl 

EQUATIONS 

; latch values of X2 and X3 on the same symbol clock 

/X3A := IX3 

/X2A := IX2 

The following four outputs are latched on the positive edge 
of the next symbol clock. Therefore the ouput of the whole 
encoder is available after the second symbol clock. 
The value of IO and QO are HIGH and therefore input to the next 
stage may be tied HIGH. 

/I2 := STATE 0 + STATE 1 

2·460 ~ Monolithic m Memories ~ 



QAM Encoder in a ZPAL Device 

III := STATE 0* X3A 
+ STATE-l* X2A 
+ STATE-2*/X3A 
+ STATE=3*/X2A 

IQ2 .- STATE 0 + STATE 3 

IQl := STATE 0* X2A 
+ STATE-l*/X3A 
+ STATE-2*/X2A 
+ STATE-3* X3A 

SIMULATION 

TRACE ON OE XO Xl X2 X3 X2a X3a YO Yl CK 
Il 12 Ql Q2 

SETF 
PRLDF 

CK OE 
X3A X2A IYl 

iPreset polarity and enable output 
IYO 12 Il Q2 Ql 

icheck the state transitions from 
SETF IXO IXl IX2 IX3 ICK 

CLOCKF 
CLOCKF 
CLOCKF 
CLOCKF 

PRLDF 

SETF 
CLOCKF 
CLOCKF 
CLOCKF 
CLOCKF 

X3A X2A IYl 

XO Xl 

PRLDF X3A X2A IYl 

SETF XO IXl 
CLOCKF 
CLOCKF 

istate YO=O Yl=O with input 
iXO=O and Xl=O 
iX2=0 and X3=0 sets the smallest 
ivector amplitude 
ioutput available on the negative 
iedge of clock 

IYO 12 Il Q2 Ql 
icheck the state transitions from 
istate YO=O Yl=O with inputs 
iXO=l and Xl=l 

IYO 12 Il Q2 Ql 
icheck the state transitions from 
istate YO=O Yl=O with inputs 
iXO=l and Xl=O 

PRLDF X3A X2A Yl IYO 12 Il Q2 Ql 
icheck the state transitions from 

CLOCKF istate YO=O Yl=l with inputs 
CLOCKF iXO=l and Xl=O 

PRLDF X3A X2A IYl IYO 12 Il Q2 Ql 
icheck the state transition from 

SETF IXO Xl istate YO=O Yl=O with inputs 
CLOCKF iXO=O and Xl=l 

~ Monolithio m Memories ~ 2·461 



QAM Encoder in a ZPAL Device 

PRLDF X3A X2A Yl /YO I2 Il Q2 Ql 
;check the state transitions from 

CLOCKF ;state YO=O Yl=l with inputs 
;XO=O and Xl=l 

PRLDF X3A X2A /Yl YO I2 Il Q2 Ql 

; check the state transitions from 
CLOCKF ;state YO=l Yl=O with inputs 

;XO=O and Xl=l 

PRLDF X3A X2A Yl YO I2 Il Q2 Ql 
;check the state transitions from 

CLOCKF ;state YO=l Yl=l with inputs 
;xo=O and Xl=l 

PRLDF X3A X2A /Yl /YO I2 Il Q2 Ql 
;In state YO=O Yl=O 

SETF /XO Xl /X2 /X3 ;check the 4 vector amplitudes 
CLOCKF 
CLOCKF 

SETF /X2 X3 
CLOCKF 
CLOCKF 

SETF X2 /X3 
CLOCKF 
CLOCKF 

SETF X2 X3 
CLOCKF 
CLOCKF 

SETF /X2 /X3 
CLOCKF 
CLOCKF 

TRACE OFF 

2-462 ~ Monb/ithio m Memories ~ 



[F) £ [L [Q)@ ~ H ~ ~ $ 0 [ITfU CQ) a <e rti11l ~ Dll i.t it rhl e 
~MOO ~ t1~2 l~@[{ll~@O~a'~a(Q)1ill ~rro«:(o)(tBer AN-171 

The continuing drive for higher communication data rates is 
resulting in the development of data modems complying with 
CCITT specification V.32. This standard uses the Ouadrature 
Amplitude Modulation (OAM) encoding scheme to achieve a 
data rate of 9600 bps while restricting the modulation rate to 
2400 Hz. However, this high rate of transmission is sensitive to 
random errors caused by Gaussian noise on the telephone 
lines. Forward error correction by means of convolution 
encoding and Viterbi decoding improves the bit-error rate 
performance in the presence of white Gaussian noise. The 
CCITT V.32 (see Reference 1) specification provides for the 
optional use of a convolution encoding scheme whenever the 
background noise is high. A PAL20X8A and a PAL20RS8 can 
implement this complex encoder function in a cost-effective 
manner, thereby providing a simple way of implementing the 
transmitter of a V.32 modem. This design, using PAL devices, 
provides a way of implementing a separate modem transmitter 
synchronized only to the transmit clock. The receiver of the 
modem can then be implemented on a separate digital signal 
processing chip synchronized to the receive clock. 

Implementation of the 
\/.32 Convolution Encoder 
Figure 1 shows the position of the encoder function within the 
simplified V.32 modem transmitter. Incoming data is scrambled 
to randomize the data and then passed through the encoder. 
The In-phase and Out-of-phase (I, 0) output data streams are 
passed through pulse-shaping filters before being multiplied with 
the sine and cosine carrier frequencies. If I and 0 values are 
applied to the X and the V axes of an oscilloscope with the time 

base turned to the X-V setting, a signal constellation is 
observed. This signal pattern (photograph in Figure 8) indicates 
the modulation amplitude and the phase of the outgoing 2400 Hz 
carrier frequency. The standard signal constellation for the V.32 
is the OAM scheme and is shown in Figure 2. This scheme 
produces sixteen states or points on the signal constellation 
map. The diagram may be observed by connecting the I and 0 
outputs of the encoder (Figure 1) to the A,B channels of an 
oscilloscope and turning the time base to the X-V setting. The 
optional convolutional encoding scheme specified in the V.32 III 
standard produces thirty-two points in the signal constellation 
(Figure 3). 

The points in Figure 3 are closer to each other than the points in 
the straight OAM scheme depicted in Figure 2, and it may not be 
obvious why the second scheme should give better performance 
in the presence of noise. The convolution encoder, with its 
implicit memory, prevents adjacent (neighbor) points appearing 
in succession. The resulting distance between two successive 
points after convolution encoding is therefore bigger than the 
distance betwe'ln any two points in Figure 2. This translates to a 
more accurate decision of the received state and hence better 
performance under high Gaussian noise. 

We now consider the implementation of this modem encoder 
with convolution encoding. Figure 4 shows the block diagram of 
the full V.32 encoder with convolution encoding. Figure 5 shows 
the implementation of this circuit in two PAL devices, a 
PAL20X8A and a PAL20RS8. The quadrant-change state 
machine and the convolution encoder are implemented in the 
PAL20X8A and the coordinate mapping of the 32-point signal 
constellation is achieved through the PAL20RS8 device. 

CONNECT TO A, B CHANNELS OF 

TRANSMIT 
DATA -

STREAM 

OSCILLOSCOPE FOR 
CONSTELLATION PATTERN 

IN-PHASE 
DATAl 

..... -f--- OUTPUT R 

COSINE (WeI) 

Figure 1. V.32 Convolution Encoder in a Typical Modem Transmitter 

~ fJ/onolithic m I'Remories ~ 2·463 



2·464 

PAL Devices Implement the Full V.32 Convolution Encoder 

QUADRATURE PHASE (0) 

X D X X X 
10,11 10,01 11,10 11,11 

X X X c X 

10,10 10,00 11,00 11,01 

IN PHASE 

-3 

AX 
00,01 

X 
00,11 

-1 

X -1 
00,00 

X -3 
00,10 

X 
01,00 

X 8 
01,01 

3 

X 
01,10 

X 
01,11 

A, 8, C, D ARE HALF RATE 
POINTS e.g., 1200 bps 

Figure 2. QAM Signal Pattern (Y1,Y2,X3,X4) 

OUADRATURE 
PHASE (0) 

11~11 .+ l1~OO 
X X X 

01000 00101 01010 

10~0 10~01 2+ 10~11 10~0 
X X X X X 

00000 01111 00010 01101 00011 

(I) 

-+-X --+-X-+----X ---+-X_-+I __ IN - PHASE 
-4 11001 ·2 11110 I 11010 2 11101 4 (I) 

X X X X X 
00111 01001 00110 01011 00100 

X X -2+ X X 10000 10111 10001 10110 

X X X 
01110 00001 01100 

X -4+ X 11100 11011 

Figure 3. 32-Point Signal Pattern (YO,Y1,Y2,X3,X4) 

~ Monolithic W Memories ~ 



PAL Devices Implement the Full V.32 Convolution Encoder 

X3----------------------------------------------------------------------------~~X3n 

X2 )(2n 

r---------------------------------l 
I 

r----------l 
I I 

X1~ TABLE 1 ~--~+---------~----------------~-------------------------+~IY2n 

XO 
I DIFFERENTIAL I ENCODER Y1n 

I 
I 
I 
I 
I 
I I Y1 (n-1) 

I I 
I I L __________ .J 

INPUT DATA STREAM 

YO I 

I 
I 
I 
I 

----------------~----------------~ 
CONVOLUTION ENCODER 

..-------------------------------- PAL20)(SA ---------------------------------

Figure 4. Full V.32 Convolution Encoder (9600 bps) 

SYMBOLCLK 

SYMBOLCLK 

SIGNAL 
COORDINATE 

MAPPING 

PAL20RSS 

D2} 
01 INTERMEDIATE 10 

STATES 
DO S~~~~L _ 11 

Figure 5. V.32 Convolution Encoder 

TABLE 2 
SIGNAL 

MAPPING 

PAL20RSS . . 

vee 

03 

02 

01 

00 

13 

12 

11 

10 

03 

02 

01 

ao 

13 

12 

11 

10 

~ Monolithic m Memories ~ 2·465 



PAL Devices Implement the Full V.32 Convolution Encoder 

The Encoders in the 
PAL20X8A Device INPUTS 

PREVIOUS 
OUTPUTS 

OUTPUTS 
The scrambled data stream to be transmitted is divided into 
groups of four consecutive data bits. As shown in Figure 4, the 
first two bits arrive in time X1, X2 in each group are first 
differentially encoded into Y1 and Y2, according to Table 1. 

These state transitions are mapped on Karnaugh maps (Figure 
6), and the reduced equations are derived and implemented in 
the PAL20X8A design. The equation for Y1 turns out to be a 
single Exclusive-OR (XOR) function of the previous state of Y1 
and XO. The Karnaugh map for Y2 (Figure 6b) appears to 
indicate a fairly complex function. However, after a number of 
steps of juggling with the Boolean equations, the final equation 
can be expressed as an XOR function of two product terms. 
The PAL20X8 device offers an efficient implementation of this 
equation. 

XO 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

X1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

Y1n-1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

Y2n-1 Y1n Y2n 

0 0 0 

1 0 1 

0 1 0 

1 1 1 

0 0 1 

1 0 0 

0 1 1 

1 1 0 

0 1 0 

1 1 1 

0 0 1 

1 0 0 

0 1 1 

1 1 0 

0 0 0 

1 0 1 

The two differentially encoded bits, Y1 and Y2, are then used 
as input to a systematic convolution encoder, which generates 
a redundant bit YO. The convolution encoder circuit of Figure 4 
contains five XOR functions and this requires the use of a PAL 
device containing XOR elements. The XORs feed into each 
other. Combinatorial values DO and 03 are produced (see 
equations for pin 14 and 23 of the PAL20X8A). Additionally, 
registered values 01 and 02 are generated as intermediate 
delay values. Note that some of the XOR elements had to be 
multiplied out, such that the equations for 02 and YO have only 
1 XOR term in the equation. However, product terms feed the 
two inputs of the XOR gate. This arrangement uses the full 
functionality of the PAL20X8A device. 

Table 1. Differential Encoding for '1.32 Signal PaHem at 9600 bps 

10 x x 

Figure Sa. Kamaugh Map for Y1(n) Figure 6b. Karnaugh Map for Y2(n) 

2-466 ~ Monolithic W Memories ~ 



PAL Devices Implement the Full V.32 Convolution Encoder 

Signal Mapping in PAL20RS8 Device 
rhe extra bit YO and the four information carrying bits Yl, Y2, 
)(2, and X3 are then mapped into the coordinates of the signal 
:llement to be transmitted according to the signal space 
jiagram shown in Figure 3 and listed in Table 2. The coordinate 
Jalues for I and 0 are each represented as a 4-bit binary 
1umber. The values (13,12,11,10) 1100, 1011, 1010, 1001, 
1000, 0111, 0110, 0101, 0100 represent the magnitudes +4, 
t3, +2, + 1, 0, -1, -2, -3, -4 respectively. The values for the 0 
bits have a similar representation. Karnaugh maps (Figure 7) 
are produced for each of the outputs 13 to 10 and 03 to 00, and 
the reduced equations are implemented in the PAL device 
design. These eight output equations are dependent on only 
five outputs, YO, Yl, Y2, X2, and X3, but one of the outputs 
(12) requires nine product terms. A standard PAL device (e.g., 
PAL20R8) has only eight product terms. A PAL device (such 
as PAL20RS8) which has sixteen product terms shared 
between pairs of outputs would be fine. The PAL20RS8 is 
ideally suited to this application because it allows the nine 
product terms required for calculating 12 to be allocated to this 
output (on pin 17) and the other seven product terms to be 
allocated to the neighboring signal 13 (on pin 18). 

Results 
The output of the first PAL20X8A is available after the first half of 
the symbol clock and the final output is available from the 
second PAL20RS8 after the second half of the symbol clock. 
Thus a delay of only one symbol clock is introduced by the full 
encoder. The two PAL device deSigns have been verified and 
the 32-state constellation of Figure 3 was observed on an 
oscilloscope. The encoding rate was 2400 baud, but the PAL 
device design will work at 10 MHz for applications that may 
require this speed. 

Summary 
The full V.32 encoder with convolution encoding has been 
implemented in two PAL devices as shown in Figure 5. Both the 
differential quadrant encoder state machine and the 
convolution encoder fit into the PAL20X8A and the signal co­
ordinate mapping is achieved through the PAL20RS8. This PAL 
device design for the encoder provides a superior way of 
implementing a V.32 modem transmitter synchronized only to 
the transmit clock. 

References 

1. CCID V series of recommendations, Red Book (1984), Vol­
ume VIIl.l. 

(YO) 

0 

1 

CODED INPUTS 

Y1 Y2 X2 

0 0 0 

0 0 0 

0 0 1 

0 0 1 

0 1 0 

0 1 0 

0 1 1 

0 1 1 

1 0 0 

1 0 0 

1 0 1 

1 0 1 

1 1 0 

1 1 0 

1 1 1 

1 1 1 

0 0 0 

0 0 0 

0 0 1 

0 0 1 

0 1 0 

0 1 0 

0 1 1 

0 1 1 

1 0 0 

1 0 0 

1 0 1 

1 0 1 

1 1 0 

1 1 0 

1 1 1 

1 1 1 

X3 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

OUTPUT 
VALUES 

I a 
-4 1 

0 -3 

0 1 

4 1 

4 -1 

0 3 

0 -1 

-4 -1 

-2 3 

-2 -1 

2 3 

2 -1 

2 -3 

2 1 

-2 -3 

-2 1 

-3 -2 

1 -2 

-3 2 

1 2 

3 2 

-1 2 

3 -2 

-1 -2 

1 4 

-3 0 

1 0 

1 -4 

-1 -4 

3 0 

-1 0 

-1 4 

Table 2. Signal State Mapping for V.32, 9600 bps 

~ Monolithic W Memories ~ 2·467 



PAL Devices Implement the Full V.32 Convolution Encoder 

YO,Yl,Y2 YO,Yl,Y2 

X2,X 3 000 001 011 010 110 111 101 100 X2,X 3 000 001 011 010 110 111 101 100 

00 X X X X 00 X x 'X X' 

01 X X X X 01 X X X X 

11 X X X X 11 X X X X 

10 X X X X 10 ~ ~ ~ x-" 

Karnaugh Map for 10 Karnaugh Map for 11 

YO,Yl,Y2 YO,Yl,Y2 

X2,X 3 000 001 011 010 110 111 101 100 X2,X 3 000 001 011 010 110 111 101 100 

00 lex xJ Ix' x X 00 rx Xi I~ ~ 
01 l0 xl 

~ Irxl 01Xj ~ W 0 Irx 

IlllX ~ rx" IW ~~ rx xl I~-
10 [xJ X 10 ex X.J Lx 0 . 'x' 

I I 

Karnaugh Map for 12 Karnaugh Map for 13 

YO,Yl,Y2 YO,Yl,Y2 

X2,X 3 000 001 011 010 110 111 101 100 X2,X 3 000 001 011 010 110 111 101 100 

00 X X X X 00 T 'X' "X ~ 

01 X X X X 01 X X X X 

11 X X x. X 11 X X X X 

10 X X X X 10 -6 ~ ~ ~ 

Karnaugh Map for QO Karnaugh Map for Q1 

YO,Yl,Y2 YO,Yl,Y2 

X2,X 3 000 001 011 010 110 111 101 100 X2,X 3 000 001 011 010 110 111 101 100 

00 (x xJ (x ~ rx' 00 I~ ~ x 1M f----/ 

01 X 'X' 0 01 ex 0 ex ~ xJ 
11 Iix' ,-xJ (x xJ Irx' 11 xl X xl (x 

'--

10 Il(!d x"1 
) I~ lolrx) Irx xl X..J lX 

I I 

Karnaugh Map for Q2 Karnaugh Map for Q3 

Figure 7. Karnaugh maps for outputs 10-13 and QO-Q3 

2·468 ~ Monolithic m /Vfemories ~ 



PAL Devices Implement the Full V.32 Convolution Encoder 

;V.32 trellis encoder PAL#l, 20X8 
;This PAL device performs the qUadrant change based on the first 
;two bits and the the convolution encoding to produce the output yO. 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY 
OATE 

V32 1.POS 
V32-ENCOOER 
A -
RAJ PARIPATYAOAR 
MMI, SANTA CLARA 
APRIL 3 1987 

CHIP TREL1 PAL20X8 

;PINS 

;PINS 

1 
CK 
13 

JOE 

EQUATIONS 

2 
X3 
14 

/00 

3 4 
X2 Xl 

15 16 
/01 /02 

5 
XO 

17 
NC 

6 7 8 9 10 11 
NC NC NC NC NC NC 

18 19 20 21 22 23 
lYOn /Y1n /Y2n X2n X3n /D3 

;These equations implement the differential quadrant encoder 
ion the bits Xo and Xl. The outputs are Y1n and Y2n. 

Y1n := Y1n :+: XO 

Y2n := (XO *Y1n) :+: (X1*/Y2n + /X1*Y2n) 

12 
GNO 

24 
VCC 

;These equations produce the extra output YOn. Intermediate values 
;00,01,02 ANO 03 need to be calculated first. 01 and 02 are 
;registered outputs. 

01 .- YOn 

02 := (00*/01 + /00*01) 
:+ : (Y1n*/Y2n + /Y1n*Y2n) 

YOn := Y1n * YOn :+: 03 

00 YOn*02*/Y2n + YOn*/02*Y2n 

03 02*/Y2n + /02*Y2n 

;The following equations are just registered storage of the bits 
;X2 and X3 

/X2n 

/X3n 

:= /X2 

:= /X3 

;internal node equation 

;internal node equation 

~ Monolithic W Memories ~ 2·469 

Ell 



PAL Devices Implement the Full V.32 Convolution Encoder 

SIMULATION 

TRACE_ON XO Xl Y2n Y1n YOn CK DO 01 02 03 X2n X3n 

SETF 
PRLOF 

SETF 

CLOCKF 
CLOCKF 
CLOCKF 
CLOCKF 

SETF 
PRLDF 

CLOCKF 
CLOCKF 
CLOCKF 
CLOCKF 

SETF 
PRLDF 

CLOCKF 
CLOCKF 

PRLDF 

CLOCKF 
CLOCKF 

SETF 
PRLDF 

CLOCKF 

PRLDF 

CLOCKF 

2-470 

OE :Initialize output-Enable 
01 02 YOn /Y1n /Y2n X2n X3n 

XO /X1 /X2 /X3 

XO Xl 

istate Y1n=0 Y2n=0 with input 
iPRELOAD VALUES ARE OPPOSITE 
iTO THOSE INTENDED, TO GET AROUND 
iA BUG IN PALASM2 V2.2 
icheck the state transitions from 

iXO=l and X1=0 
iX2=0 and X3=0 sets the smallest 
ivector amplitude 
ioutput available on the negative 
iedge of clock 

01 02 YOn /Y1n /Y2n X2n X3n 

/XO Xl 

iCheck the state transitions from 
istate Y1n=0 Y2n=0 with inputs 
iXO=l and X1=1 

P1 02 YOn /Y1n /Y2n X2n X3n 
icheck the state transitions from 
istate Y1n=O Y2n=0 with inputs 
iXO=O and X1=1 

01 02 YOn Y1n /Y2n X2n X3n 

/XO /X1 

icheck the state transitions from 
istate Y1n=1 Y2n=0 with inputs 
iXO=O and X1=1 

01 02 YOn /Y1n /Y2n X2n X3n 
icheck the state transition from 
istate Y1n=0 Y2n=O with inputs 
iXO=O and X1=0 

01 02 YOn /Y1n Y2n X2n X3n 
icheck the state transitions from 
istate Y1n=0 Y2n=1 with inputs 
iXO=O and X1=0 

~ Monolithic m Memories ~ 



PAL Devices Implement the Full V.32 Convolution Encoder 

PRLOF 01 02 YOn Y1n /Y2n X2n X3n 
;check the state transitions from 

CLOCKF ;state Y1n=1 Y2n=O with inputs 
;XO=O and X1=O 

PRLOF 01 02 YOn Y1n Y2n X2n X3n 
;check the state transitions from 

CLOCKF :state Y1n=1 Y2n=1 with inputs 
;Xo=o and X1=O 

~ Monolithic (H1;lJ Memories ~ 2·471 

EJI 



PAL Devices Implement the Full V.32 Convolution Encoder 

iV.32 trellis encoder PAL#2, 20RS8. 
iThis PAL performs the signal mapping onto the 32 
istate constellation according to CCITT V.32, 9600 bps 
ispecification. 

TITLE V32 ENCODER 
PATTERN V32:2.PDS 
REVISION A 
AUTHOR RAJ PARIPATYADAR 
COMPANY MMI, SANTA CLARA 
DATE APRIL 1 1987 

CHIP TREL2 PAL20RS8 

;PINS 1 2 3 4 5 6 7 8 
CLK X3a X2a /Y2 /Y1 /YO NC NC 

;PINS 13 14 15 16 17 18 19 20 
JOE INVSCK IO I1 I2 I3 QO Q1 

EQUATIONS 

I3 := /Y1*/Y2*X3a 
+ /YO*/Y1*X2a*/X3a 
+ /YO*Y2*/X2a 
+ Y1*/Y2*X2a 
+ YO*Y1*/Y2*/X3a 
+ YO*Y1*Y2*/X2a*X3a 
+ YO*/Y1*Y2*/X3a 

I2 := /YO*/Y1*/X2a*/X3a 
+ /YO*/Y1*X2a*X3a 
+ /YO*Y1*Y2*X2a 
+ /YO*Y1*/Y2*/X2a 
+ Y1*/Y2*/X2a*X3a 
+ YO*Y1*Y2*/X3a 
+ YO*Y2*X2a*X3a 
+ YO*/Yl*Y2*X3a 
+ YO*/Yl*/Y2*/X3a 

Il := /YO*Yl 
+ YO*Y2 

IO := YO 

Q3 := /YO*/Yl*/Y2*/X3a 
+ /Yl*/Y2*X2a 
+ /YO*Y2*/X2a*X3a 
+ /YO*Yl*Y2*X3a 
+ Yl*/Y2*/X3a 
+ YO*Yl*/X2a*X3a 
+ YO*Yl*Y2*X2a 

2·472 ~ Monolithio L;l!] Memories ~ 

9 10 11 12 
NC NC SCKIN GND 
21 22 23 24 
Q2 Q3 SCK VCC 

;IN-PHASE OUTPUT. 
;(IO--I3) 

;QUADRATURE OUTPUT 
; (QO-Q3) 



PAL Devices Implement the Full V.32 Convolution Encoder 

+ YO*/Yl*Y2*/X2a 

Q2 := /Yl*/Y2*/X2a*X3a 
+ /YO*Y2*/X2a*/X3a 
+ /YO*Y2*X2a*/X3a 
+ /Yl*Y2*X2a 
+ /YO*Yl*/Y2*X3a 
+ YO*Yl*/X2a*/X3a 
+ YO*Yl*X2a*X3a 
+ YO*/Yl*/Y2*/X2a 

Ql := /YO*/Yl*Y2 
+ /YO*Yl*/Y2 
+ YO*/Yl 

QO := /YO 

INVSCK = /SCKIN 

SCK SCKIN 

SIMULATION 

TRACE~ON YO Yl Y2 X2a X3a CLK 
IO Il I2 I3 QO Ql 

SETF OE /CLK 

SETF /YO /Yl /Y2 /X2A /X3A 
CLOCKF 
SETF /YO /Yl /Y2 /X2A X3A 
CLOCKF 
SETF /ye /Yl /Y2 X2A /X3A 
CLOCKF 
SETF /ye /Yl /Y2 X2A X3A 
CLOCKF 
SETF /ye /Yl Y2 /X2A /X3A 
CLOCKF 
SETF /ye /Yl Y2 /X2A X3A 
CLOCKF 
SETF /YO /Yl Y2 X2A /X3A 
CLOCKF 
SETF /YO /Yl Y2 X2A X3A 
CLOCKF 
SETF /YO Yl /Y2 /X2A /X3A 
CLOCKF 
SETF /YO Yl /Y2 /X2A X3A 
CLOCKF 
SETF /YO Yl /Y2 X2A /X3A 
CLOCKF 
SETF /ye Yl /Y2 X2A X3A 
CLOCKF 

;GENERATE /SYMBOL CLOCK 

;GENERATE SYMBOL CLOCK 

Q2 Q3 

~ Monolithic W Memories ~ 

EJI 

2·473 



PAL Devices Implement the Full V.32 Convolution Encoder 

SETF /YO Yl Y2 /X2A /X3A 
CLOCKF 
SETF /YO Yl Y2 /X2A X3A 
CLOCKF 
SETF /YO Yl Y2 X2A /X3A 
CLOCKF 
SETF /YO Yl Y2 X2A X3A 
CLOCKF 
SETF YO /Yl /Y2 /X2A /X3A 
CLOCKF 
SETF YO /Yl /Y2 /X2A X3A 
CLOCKF 
SETF YO /Yl /Y2 X2A /X3A 
CLOCKF 
SETF YO /Yl /Y2 X2A X3A 
CLOCKF 
SETF YO /Yl Y2 /X2A /X3A 
CLOCKF 
SETF YO /Yl Y2 /X2A X3A 
CLOCKF 
SETF YO /Yl Y2 X2A /X3A 
CLOCKF 
SETF YO /Yl Y2 X2A X3A 
CLOCKF 
SETF YO Yl /Y2 /X2A /X3A 
CLOCKF 
SETF YO Yl /Y2 /X2A X3A 
CLOCKF 
SETF YO Yl /Y2 X2A /X3A 
CLOCKF 
SETF YO Yl /Y2 X2A X3A 
CLOCKF 
SETF YO Yl Y2 /X2A /X3A 
CLOCKF 
SETF YO Yl Y2 /X2A X3A 
CLOCKF 
SETF YO Yl Y2 X2A /X3A 
CLOCKF 
SETF YO Yl Y2 X2A X3A 
CLOCKF 
TRACE OFF 

2·474 ~ Monolithic W Memories ~ 



PLD Devices Implement 
4B3T Line Transcoder AN-175 

Applications of 4B3T Line Coding 
Line coding devices are required in line terminals and line re­
peaters to convert binary data into a proper coded format on the 
transmission lines and vice versa (see Figure 1). 

4B3T line coding is used for the Integrated Services Digital Net­
work (ISDN) in Germany. Also, 4B3T is used on T-carrier trans­
mission lines for two 24-channel DS-1 signals (forty-eight chan­
nels). Because 4B3T coding decreases transmission 
requirements by twenty-five percent, transmission rates for two 
24-channel DS-1 signals are only fifty percent more than one 24-
channel DS-1 signals. The 483T is used on the T148 transmis­
sion line developed by ITT Telecommunication. 

Bipolar Codes 
Bipolar coding is a popular coding scheme over long transmis­
sion lines. Bipolarcodes use three different voltages (+5 V, 0 V, 
and -5 V) to represent logic one (1) and logic zero (0) (see Fig­
ure 2a). Logic-one signals alternate between +5 V and -5 V to al­
low the mean DC level to be integrated to zero volts. Therefore, 
the bipolar code can compensate for DC wander on the trans­
mission lines. However, the bipolar code does not take advan­
tage of using three logic levels. Thus, binary bipolar code is 
called a pseudo-ternary code. 

Ternary Codes 
Ternary code takes advantage of all three logic levels. Each bit 
of the ternary code represents a positive logic one (+), a logic 

LINE TERMINAL 

.--__ -..JL 
NRZIN 

CLK 

NRZOUT 

CLK 

zero (0), or a negative logic one (-) (see Figure 2b). These three 
logic levels are mapped to the three voltage levels. 

On the transmission lines, the power of three (3n) codes are car­
ried using the ternary code and the power of two (2n) codes are 
carried using the binary code. For example, two bits of binary (0, 
1) codes only provide four combinations of data (00, 01, 10, and 
11). But two bits of ternary (-,0, +) codes provide nine combina­
tions of data (00, 0-, -0, --, -+, 0+, +0, +-, and ++). The ternary 
code is more efficient than the binary code because more infor­
mation can be represented on the transmission lines. Three bi­
polar bits are capable of representing eight codes. For ternary 
code, only two bits are required to represent eight codes as ~ 
shown in Table 1. ~ 

Comparison of Binary Codes and 
Ternary Codes 
4B3T is a ternary code which maps four continuous binary bits 
into three ternary bits. To transmit twenty binary data bits, twenty 
bipolar bits are needed. But with ternary code only fifteen bits 
are needed. A twenty-five percent saving on bits is made using 
4B3T line coding on the transmission lines. Without increasing 
the transmission rate, ternary coding carries more information 
than bipolar coding. Four binary bits on the computer system will 
run at the same rate as three ternary bits on the transmission 
lines using the 483T line coding. For example, a group of four bi­
nary bits in a 1 O-MHz computer system. Substituted to a group 
of three ternary bits at 7.5 MHz on a transmission line. 

LINE REPEATER 

BIPOLAR 
SIGNAL (NRZl 

RECEPTION 
UNE 

ENCODER 

Figure 1. Line Coding Devices in a Line Tenninal and a Line Repeater 

o o o 

Figure 2a. Bipolar Codes Figure 2b. Ternary Codes 

~ Monolithic m Memories ~ 2·475 



PLD Devices Implement 4B3T Line Transcoder 

BINARY CODE TERNARY CODE 
CODE (0,1) (-,0, +) 

NUMBER 
B2 B1 BO T1 TO 

0 0 0 0 0 0 

1 0 0 1 0 + 

2 0 1 0 + 0 

3 0 1 1 + + 

4 1 0 0 - 0 

5 1 0 1 - + . 
6 1 1 0 + -
7 1 1 1 - -

Table 1. Eight Codes Represented by Three Bipolar Bits or 
Two Ternary Bits 

4B3T Line Coding 
Four binary bits represent sixteen combinations of data, but 
three ternary bits represent twenty-seven combinations of data. 
Except for all zeros code, the remaining combinations of ternary 
codes can be categorized into three groups: zero, positive, and 
negative accumulated disparity. A zero-accumulated disparity is 
a set of ternary codes that have the same number of positive 
codes and negative codes, e.g., the accumulated disparity of 0-+ 
is zero (0). A positive accumulated disparity is a set of ternary 
codes that have more positive codes than negative codes, e.g., 
the accumulated disparity of the +-+ is positive (+ 1). A negative 
accumulated disparity is a set of ternary codes that have more 
negative codes than positive codes, e.g., the accumulated dis­
parity of the 0-- is negative (-2). The 483T line coding with accu­
mulated disparity is shown in Table 2. Six sets of four binary bits 
have zero-accumulated disparity. The remaining ten sets of four 
binary bits map into words with accumulated disparity. 

Four binary bits can be converted into anyone of four possible 
ternary codes. This is normally represented by four columns, as 
shown in Table 3. Figure 3 is the state diagram of the next col­
umn generation. Four possible columns are generated for next 
ternary codes. The column number of the next word depends on 

-1 ~ -3 

+1 I COL
1
UMN, 

+3 

·2 +2 

o 
+2 

I COL
4
UMN D COL

2
UMN I 

-2 o 

+1 +1 

·1 -, COL
3
UMN , 

-1 

"'--..J 

Figure 3. 4B3T Next Column Generation State Diagram 

the previous column and the current accumulated disparity. If 
the current disparity is zero, the number of the next column is the 
same as the previous one. If the current disparity is positive, the 
column number for the next word is found by adding the current 
disparity. Likewise, if the current disparity is negative, the num­
ber for the the next column is found by subtracting the current 
disparity. In column 1, the next word may only have positive or 
zero disparity since the maximum of -3 negative disparity has 
been reached. Similarly, in column 4, the next word will have 
negative or zero disparity. 

3-BIT TERNARY WORD 
4-BIT (ACCUMULATED DISPARITY) 

BINARY 
WORD POSITIVE ZERO NEGATIVE 

0001 0-+ 

0111 - 0 + 

0100 - + 0 

0010 +-0 

1011 +0-

1110 0+-

1001 +-+ - --

0011 00+ - - 0 

1101 0+0 -0-

1000 +00 0--

0110 - + + - - + 

1010 ++- +--

1111 ++0 00-

0000 +0+ 0-0 

0101 0++ -00 

1100 +++ -+-

Table 2. 4B3T Line Coding with Accumulated Disparity 

The 483T line coding is represented in the four different col­
umns of Table 3 and shows that a 4-bit binary word can be con­
verted to any of four different sets of a 3-bit ternary word. Each 
set of a 3-bit ternary word includes the substituted 3-bit ternary 
code and the column number for the next ternary word. 

2·476 ~ MonolithIc W MemorIes ~ 



PLD Devices Implement 4B3T Line Transcoder 

COLUMN COLUMN COLUMN COLUMN 

4-BIT 
1 2 3 4 

BINARY 3-BIT 3-BIT 3-BIT 3-BIT 
WORD TERNARY . TERNARY . TERNARY * TERNARY . 

WORD WORD WORD WORD 

0001 0-+ 1 0-+ 2 0-+ 3 0-+ 4 

0111 -0+ 1 -0+ 2 -0+ 3 - 0 + 4 

0100 -+0 1 -+0 2 -+0 3 -+0 4 

0010 +-0 1 +-0 2 +-0 3 + - 0 4 

1011 +0- 1 +0- 2 +0- 3 +0- 4 

1110 0+- 1 0+- 2 0+- 3 0+- 4 

1001 + - + 2 + - + 3 +-+ 4 - - - 1 

0011 00+ 2 00+ 3 00+ 4 - - 0 2 

1101 0+0 2 0+0 3 0+0 4 - 0 - 2 

1000 +00 2 +00 3 +00 4 0- - 2 

0110 - + + 2 - + + 3 - - + 2 - - + 3 

1010 + + - 2 ++- 3 + - - 2 + - - 3 

1111 ++0 3 00- 1 00- 2 00- 3 

0000 +0+ 3 0-0 1 0-0 2 0-0 3 

0101 0++ 3 -00 1 -00 2 -00 3 

1100 +++ 4 - + - 1 - + - 2 - + - 3 

* Denotes next new column. 
Table 3. 4B3T Line Coding 

4B3T Line Encoder Implementation 
A 483T encoder converts binary data into two signals: a positive 
ternary signal and a negative ternary signal. These two signals 
generate a three-voltage level signal for the transmission line. 
The 483T encoder divides the incoming binary data stream into 
4-bit blocks. This 4-bit word is converted to a 3-bit ternary word. 
The 4-bit binary word and the number of the column generate a 
ternary word. 

Figure 4 is the block diagram of the 483T encoder. It consists of 
a 4-bit serial-in parallel-out shift register, a 2-bit counter, a 6-bit 
input and an 8-bit output look-up table converter, and two 3-bit 
parallel-in serial-out shift registers. Two Programmable Array 
Logic (PAL) devices and one registered PROM device imple­
ment the 483T encoder (see Figure 5). The first PALC16R6Z 
performs a 4-bit serial-in parallel-out shift register and a 2-bit 
counter. A 4-bit shift register (SR3, SR2, SR1, and SRO) con­
verts the serial data into a 4-bit parallel word. A 2-bit counter pro­
vides the code conversion's clock rate which is one-quarter the 
speed of the serial-in parallel-out shift register's clock rate. The 
63RS481 A implements the 6-input and 8-output look-up table 
converter. The 483T encoding conversion table is shown in Fig­
ure 6. The 4-bit binary word (83,82,81, and 80) and 2-bit cur­
rent column numbers (C1, CO) generate 8-bit output (PT2, PT1, 
PTO, NT2, NT1, NTO, NC1, and NCO). NC1 and NCO are the 
next column numbers. They are fed into the 63RS481A as cur­
rent column numbers for the next operation. The remaining six 
outputs are divided into two groups. One group is the positive 
ternary signals (PT2, PT1, and PTO). The second group is the 

negative ternary signals (NT2, NT1, and NTO). The second 
PALC16R6Z provides two 3-bit parallel-in serial-out shift regis­
ters at three-quarters external clock rate. PT2, PT1, and PTO are 
serialized to generate the positive ternary signal (P483T). Like­
wise, NT2, NT1, and NTO are serialized to produce the negative 
ternary signal (N483T). 

4B3T Line Decoder Implementation 
A 483T decoder detects three continuous pairs of positive ter­
nary signals (P483T) and negative ternary signals (N483T) and 
converts them to 4-bit binary words. Figure 7 is the block dia­
gram of the 483T decoder. It includes a 483T decoding state 
machine and an NRZ data generation. 

A 5-bit state machine generates four inputs for the parallel-in se­
rial-out shift register and a load signal. A PALC22V10 is used for 
the 483T decoding state machine because it has enough prod­
uct terms and flexible outputs. The PALC22V10's output has 
programmable register bypass and programmable output polari­
ty features. 04 generates shift/load Signal for the 4-bit parallel-in 
serial-out shift register (HCT 195). This shift/load signal will be 
assertive low only at every three clock cycles. The remaining 
four register outputs (03, 02, 01, and 00) are parallel inputs for 
the 4-bit parallel-in serial-out shift register (see Figure 8). This 
shift register clocks at four-thirds external clock rate. The decod­
ing state machine diagram is shown in Figure 9. An error flag is 
generated when positive ternary signals and negative ternary 
signals both are high. The error flag also detects three continu­
ous pairs of zero ternary signals. 

~ Monolithic W Memories l1 2·477 

EJI 



PLD Devices Implement 4B3T Line Transcoder 

NRZIN 
CLK 

eo PTO 
P4B3T 

B1 PT1 

B2 
PT2 

B3 

DECODING 
CONVERSION NTO 

TABLE N4B3T 
1/4'CLK NT1 

NT2 

1--____ 3/4'CLK 

(LOAD/SHIFT) 

Figure 4. Block Diagram of 4B3T Line Encoding 

r---------------------------------, 3/4'CLK 

CLK 

MR 

NRZIN 

Figure 5. 4B3T Encoder Implemented by PLD Devices 

2·478 ~ Monolithic W Memories l1 



PLD Devices Implement 4B3T Line Transcoder 

4-BINARY CURRENT TERNARY P4B3T and N4B3T 
NEXT 

CODE COLUMN CODE COLUMN 

BO -- B3 C1 CO TO-T2 PTO - PT2 and NTO - NT2 NC1 NCO 

00 00 

0001 01 0-+ 001 and 010 01 
10 10 
11 11 

00 00 

0111 01 - 0 + 001 and 100 01 
10 10 
11 11 

00 00 

0100 01 - + 0 010and 100 01 
10 10 
11 11 

00 00 

0010 01 +-0 100 and 010 01 
10 10 
11 11 

00 00 

1011 01 +0- 100 and 001 01 
10 10 
11 11 

00 00 
EJ 

1110 01 0+- 010 and 001 01 
10 10 
11 11 

00 +-+ 101 and 010 01 

1e01 01 +-+ 101 and 010 10 
10 +-+ 101 and 010 11 
11 --- ODD and 111 00 

00 00+ 001 and 000 01 

0011 01 00+ 001 and 000 10 
10 00+ 001 and 000 11 
11 --0 000 and 110 01 

00 0+0 010 and 000 01 

1101 01 0+0 010 and 000 10 
10 0+0 010 and 000 11 
11 - 0 - 000 and 101 01 

00 +00 100 and 000 01 

1000 01 +00 100 and 000 10 
10 +00 100 and 000 11 
11 0- - 000 and 011 01 

00 - + + 011 and 100 01 

0110 01 - + + 011 and 100 10 
10 - - + 001 and 110 01 
11 - - + 001 and 110 10 

00 ++- 110 and 001 01 

1010 01 ++- 110 and 001 10 
10 + - - 100 and 011 01 
11 + - - 100 and 011 10 

00 ++0 110andOOO 10 

1111 01 00- 000 and 001 00 
10 00- 000 and 001 01 
11 00- 000 and 001 10 

00 +0+ 101 and 000 10 

0000 01 0-0 000 and 010 00 
10 0-0 000 and 010 01 
11 0-0 000 and 010 10 

00 0++ 011 and 000 10 

0101 01 -00 000 and 100 00 
10 -00 000 and 100 01 
11 -00 000 and 100 10 

00 +++ 111 and 000 11 

1100 01 - + - 010and 101 00 
10 - + - 010 and 101 01 
11 - + - 010 and 101 10 

Figure 6. 4B3T Encoding Conversion Table 

~ Monolithio m Memories ~ 2·479 



PLD Devices Implement 4B3T Line Transcoder 

ERROR 

P4B3T -
4B3T 

QO 
NRZCODE Q1 - DECODING 

Q2 GENERATION 
STATE AND 

I> MACHINE Q3 4-BITSHIFT - 04/LOAD REGISTER - NRZOUT 

N4B3T 

CLK 

413*CLK-:::oo 

Figure 7. Block Diagram of 4B3T Line Decoding 

CLK vcc 

vcc 

MR NC 

P4B3T NC 

N4B3T NC 
HCT195 

NRZOUT NRZOUT 

CLK 

=-
ERROR 

=-

Figure 8. 4B3T Decoder Implemented by a PAL Device and a Shift Register 

2·480 ~ Monolithic W Memories ~ 



PLD Devices Implement 4B3T Line Transcoder 

IP4B3T* 
IN4B3T 

Sl = 00011 
03,02,01,00 

= 0011 
/04=1 

ERROR=O 

AlL 
P4B3T* 
N4B3T 

50 = 00000 
03, 02, 01, 00 

=0000 
104=1 

ERROR = 
P4B3T*NHDB3 

IP4B3T* 
IN4B3T 

S2 = 00111 
03, 02, 01, ao 

= 0111 
/04=1 

ERROR=O 

IP4B3T* 
IN4B3T 

S3 = 01011 
03,02,01, ao 

= 1011 
/Q4= 1 

ERROR =0 

IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

IP4B3T* IP4B3T* 
IN4B3T IN4B3T 

S12 = 01010 
03,02,01,00 

= 1011 
/04=1 

ERROR =0 

IP4B3T* 
IN4B3T 

IP4B3T* IP4B3T* 
IN4B3T N4B3T 

IP4B3T* 

NT' 
IP4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

P4B3T* 
IN4B3T 

IP4B3T* 
IN4B3T 

P4B3T* 
IN4B3T 

IP4B3T* IP4B3T* IP4B3T* 
IN4B3T IN4B3T IN4B3T 

IP4B3T 
N4B3T 

~ 
P4B3T* 
IN4B3T 

- -

'si3 5,4- 's,s '$,6'- ~';";'"" "s18 rs~ 520 ~ 's22 S23 '"'s24 S25 ~-~ 
=11111 =10011 =10000 =11000 =10001 =11101 =11110 =10101 =10111 =11001 = 10110 = 10100 = 11100 =11011 =10010 
03·00 03·00 03·00 03·00 03·00 03·00 03-00 03-00 03·00 03·00 03·00 03·00 03-00 03·00 03-00 
=1111 =0011 =0000 =1000 =0001 =1101 =1110 =0101 =0111 =1001 =0110 =0100 =1100 =1011 =0010 
/04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 /04 = 0 
ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR 

TTTTTTTTTTTTTTT 
d5

P4B3T* JjP4B3T* £4B3T* 
IN4B3T N4B3T IN4B3T 

51 52 53 

Figure 9. 4B3T Decoding State Machine 

~ Monolithic m Memories ~ 

-'--'-
S28 

=11010 
03·00 
= 1010 
/04=0 
ERROR 

T 

2·481 

EI 



2·482 

Title 
Pattern 
Revision 
Author 
Company 
Date 

PLD Devices Implement 4B3T Line Transcoder 

4B3T ENCODER LOGIC1 
EN4B3T1.pds 
A 
Cindy Lee 
Monolithic Memories 
4/2/87 

CHIP EN4B3T1 PAL16R6 

;PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9 PIN10 
CLK MR NRZIN NC NC NC NC NC NC GND 

;PIN11 PIN12 PIN13 PIN14 PIN15 PIN16 PIN17 PIN18 PIN19 PIN20 
JOE CK4 LD CQO CQ1 BO B1 B2 B3 NC VCC 

INPUT SIGNALS 
CLK EXTENAL CLOCK 
MR MASTER RESET 
NRZIN NON-RETURN-ZERO INPUT SIGNAL 
JOE ASSERTIVE LOW OUTPUT ENABLE 

OUTPUT SIGNALS 
CK4 LD : 1/4* EXTERNAL CLOCK AND LOAD SIGNAL 
CQO~ CQ1 : 2-BIT COUNTER STATE VARIABLES 

BO, B1, B2, B3 : FOUR PARALLEL BINARY DATA OUTPUTS 

EQUATIONS 

;THE 16R6 GENERATES: 

;(1) A 4-BIT SERIAL-IN PARALLEL-OUT SHIFT REGISTER 

/BO 

/B1 

/B2 

/B3 

:= /B1 
+MR 

.- /B2 
+MR 

:= /B3 
+MR 

:= /NRZIN 
+MR 

LSB OF 4-BIT PARALLEL OUTPUTS 
; MASTER RESET 

; MSB OF 4-BIT PARALLEL OUTPUTS 

;(2) A 1/4 CLOCK AND LOAD/SHIFT SIGNAL 

/CQO := /CQ1 
+MR 

/CQ1 := CQO 
+MR 

/CK4_LD CQO 
+ CQ1 

LSB OF 2-BIT COUNTER 
MASTER RESET 

MSB OF 2-BIT COUNTER 

1/4 * EXTERNAL CLOCK 
AND A LOAD/SHIFT SIGNAL 

~ Monolithic m Memories ~ 



PLD Devices Implement 4B3T Line Transcoder 

SIMULATION 

TRACE_ON MR CLK NRZIN BO Bl B2 B3 CQO CQl CK4_LD 

SETF MR OE 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF /MR NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF /NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

SETF NRZIN 
CLOCKF CLK 

TRACE_OFF 

i RESET CONDITION 

DISABLE THE MASTER RESET 
SHIFT A POSITIVE NRZ DATA 

SHIFT TWO NEGATIVE NRZ DATA 

SHIFT TWO POSITIVE NRZ DATA 

SHIFT A NEGATIVE NRZ DATA 

SHIFT A POSITIVE NRZ DATA 

SHIFT THREE NEGATIVE NRZ DATA 

SHIFT A POSITIVE NRZ DATA 

SHIFT A NEGATIVE NRZ DATA 

SHIFT THREE POSITIVE NRZ DATA 

~ MonolithicW Memories ~ 

Ell 

2·483 



PLD Devices Implement 4B3T Line Transcoder 

PLE9R8 ; PROM 63RS481A PLE DESIGN SPECIFICATION 
TABLE.PLE CINDY LEE 3/15/87 
6-BIT TO 8-BIT TABLE CONVERTER 
MMI, SANTA CLARA, CA 

iPIN 8 7 6 5 4 3 
AO Al A2 A3 A4 A5 

iADD CO Cl B3 B2 Bl BO 

;PIN 9 10 11 13 14 15 16 17 
; Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 
iDAT PTO PTI PT2 NTO NTI NT2 NCI NCO 

; BO Bl B2 B3 Cl CO 
i--------------------------------------------------------------
PTO := /BO * /Bl * /B2 * /B3 * /Cl * /CO 0 0 0 0 0 0 

+ /BO * /Bl * B2 * /B3 0 0 1 0 X X 
+ BO * /Bl * /Cl 1 0 X X 0 X 
+ BO * /Bl * Cl * /CO 1 0 X X 1 0 
+ BO * /Bl * B2 * Cl * CO 1 0 1 X 1 1 
+ BO * BI * /B2 * /B3 * /CI * /CO 1 1 0 0 0 0 
+ BO * Bl * B2 * B3 * /Cl * /CO 1 1 1 1 0 0 

PTI := Bl * /B2 * /B3 X 1 0 0 x x 
+ /BO * Bl * /B2 * B3 * /Cl * /CO 0 1 0 1 0 0 
+ /BO * Bl * B2 * /B3 * /Cl 0 1 1 0 0 x 
+ BO * /BI * B2 * /B3 * /CI 1 0 1 0 0 x 
+ BO * Bl * /B2 * B3 * /Cl 1 1 0 1 0 X 
+ BO * Bl * /B2 * B3 * Cl * /CO 1 1 0 1 1 0 

+ BO * Bl * B2 * /B3 1 1 1 0 X X 
+ BO * Bl * B2 * B3 * /Cl * /CO 1 1 1 1 0 0 

PT2 := /BO * /Bl * /B2 * /B3 * /Cl * /CO 0 0 0 0 0 0 

+ /BO * /Bl * /B2 * B3 0 0 0 1 X X 
+ /BO * /Bl * B2 * B3 * /Cl 0 0 1 1 0 X 
+ /BO * /Bl * B2 * B3 * Cl * /CO 0 0 1 1 1 0 
+ /BO * Bl * /B2 * B3 * /Cl * /CO 0 1 0 1 0 0 
+ /BO * Bl * B2 0 1 1 X X X 
+ BO * /BI * /B2 * B3 * /Cl 1 0 0 1 0 X 
+ BO * /Bl * /B2 * B3 * Cl * /CO 1 0 0 1 1 0 
+ BO * Bl * /B2 * /B3 * /Cl * /CO 1 1 0 0 0 0 

NTO := /BO * /Bl * B2 * B3 * Cl * CO 0 0 1 1 1 1 
+ /BO * Bl * /B2 * /B3 0 1 0 0 x x 
+ /BO * B1 * /B2 * B3 * /Cl * CO 0 1 0 1 0 1 
+ /BO * Bl * /B2 * B3 * Cl 0 1 0 1 1 X 
+ /BO * Bl * B2 0 1 1 X X X 
+ BO * /B2 * B3 * Cl * CO 1 X 0 1 1 1 
+ BO * Bl * /B2 * /B3 * Cl 1 1 0 b 1 X 
+ BO * Bl * /B2 * /B3 * /Cl * CO 1 1 0 0 0 1 

NTI := /BO * /Bl * /B2 * /B3 * /Cl * CO 0 0 0 0 0 1 
+ /BO * /Bl * /B2 * /B3 * Cl 0 0 0 0 1 X 

2·484 ~ Monolithic W Memories ~ 



PLD Devices Implement 4B3T Line Transcoder 

+ /B1 * /B2 * B3 X 0 0 1 X X 

+ /BO * /B1 * B2 * /B3 0 0 1 0 X X 

+ /BO * /B1 * B2 * B3 * C1 * CO 0 0 1 1 1 1 
+ /BO * B1 * B2 * /B3 * C1 0 1 1 0 1 X 

+ BO * /B1 * /B2 * /B3 * C1 * CO 1 0 0 0 1 1 
+ BO * /B1 * B2 * /B3 * C1 1 0 1 0 1 X 

NT2 := BO * /B1 * /B2 * C1 * CO 1 0 0 X 1 1 
+ BO * /B1 * B2 1 0 1 X X X 

+ BO * B1 * /B2 * /B3 * /C1 * CO 1 1 0 0 0 1 
+ BO * B1 * /B2 * /B3 * C1 1 1 0 0 1 X 

+ BO * B1 * /B2 * B3 * C1 * CO 1 1 0 1 1 1 
+ BO * B1 * B2 * /B3 1 1 1 0 X X 

+ BO * B1 * B2 * B3 * /C1 * CO 1 1 1 1 0 1 
+ BO * B1 * B2 * B3 * C1 1 1 1 1 1 X 

NC1 := /BO * /B1 * /B2 * B3 * C1 0 0 0 1 1 0 
+ /BO * /B1 * B2 * /B3 * C1 0 0 1 0 1 X 

+ /BO * B1 * /B2 * /B3 * C1 0 1 0 0 1 X fJI + /BO * B1 * B2 * B3 * C1 0 1 1 1 1 X 

+ BO * /B1 * B2 * B3 * C1 1 0 1 1 1 X 

+ BO * B1 * B2 * /B3 * C1 1 1 1 0 1 X 

+ /BO * /B1 * /B2 * /B3 * /C1 * /CO 0 0 0 0 0 0 

+ /BO * /B1 * /B2 * /B3 * C1 * CO 0 0 0 0 1 1 
+ /BO * /B1 * B2 * B3 * /C1 * CO 0 0 1 1 0 1 
+ /BO * /B1 * B2 * B3 * C1 * /CO 0 0 1 1 1 0 

+ /BO * B1 * /B2 * B3 * /C1 * /CO 0 1 0 1 0 0 

+ /BO * B1 * /B2 * B3 * C1 * CO 0 1 0 1 1 1 
+ /BO * B1 * B2 * /B3 * CO 0 1 1 0 X 1 
+ BO * /B1 * /B2 * /B3 * C1 * /CO 1 0 0 0 1 0 

+ BO * /B1 * /B2 * /B3 * /C1 * CO 1 0 0 0 0 1 
+ BO * /B2 * B3 * /C1 * CO 1 X 0 1 0 1 
+ BO * /B2 * B3 * C1 * /CO 1 X 0 1 1 0 

+ BO * /B1 * B2 * /B3 * CO 1 0 1 0 X 1 
+ BO * B1 * /B2 * /B3 * /C1 * /CO 1 1 0 0 0 0 

+ BO * B1 * /B2 * /B3 * C1 * CO 1 1 0 0 1 1 
+ BO * B1 * B2 * B3 * /C1 * /CO 1 1 1 1 0 0 

+ BO * B1 * B2 * B3 * C1 * CO 1 1 1 1 1 1 

NCO := /BO * /B1 * /B2 * B3 * CO 0 0 0 1 X 1 
+ /BO * /B1 * B2 * /B3 * CO 0 0 1 0 X 1 
+ /BO * B1 * /B2 * /B3 * CO 0 1 0 0 X 1 

+ /BO * B1 * B2 * B3 * CO 0 1 1 1 X 1 

+ BO * /B1 * B2 * B3 * CO 1 0 1 1 X 1 

+ BO * B1 * B2 * /B3 * CO 1 1 1 0 X 1 

+ /BO * /B1 * /B2 * /B3 * C1 * /CO 0 0 0 0 1 0 

+ /BO * /B1 * B2 * B3 * /CO 0 0 1 1 X 0 

+ /BO * /B1 * B2 * B3 * C1 * CO 0 0 1 1 1 1 

+ /BO * B1 * /B2 * B3 * C1 * /CO 0 1 0 1 1 0 

+ /BO * B1 * B2 * /B3 * /CO 0 1 1 0 X 0 

+ BO * /B1 * /B2 * /B3 * /CO 1 0 0 0 X 0 

+ BO * /B1 * /B2 * /B3 * C1 1 0 0 0 1 X 

+ BO * /B2 * B3 * /CO 1 X 0 1 X 0 

+ BO * /B1 * B2 * /B3 * /CO 1 0 1 0 X 0 

+ BO * B1 * /B2 * /B3 * /CO 1 1 0 0 X 0 

+ BO * B1 * /B2 * B3 * C1 * CO 1 1 0 1 1 1 
+ BO * B1 * B2 * B3 * C1 * /CO 1 1 1 1 1 0 

~ Monolithic m Memories ~ 2·485 



PLD Devices Implement 4B3T Line Transcoder 

FUNCTION TABLE 

BO Bl B2 B3 Cl CO PTO PTI PT2 NTO NTI NT2 NCI NCO 

;BINARY INPUT, COLUMN, OUTPUT NEW COLUMN 
;BO Bl B2 B3 Cl CO, PTO PTI PT2 NTO NTI NT2 NCI NCO 
--------------------------------------------------------

L L L L L L H L H L L L H L 
L L L L L H L L L L H L L L 
L L L L H L L L L ,L H L L H 
L L L L H H L L L L H L H L 

L L L H L L L L H L H L L L 
L L L H L H L L H L H L L H 
L L L H H L L L H L H L H L 
L L L H H H L L H L H L H H 

L L H L L L H L L L H L L L 
L L H L L H H L L L H L L H 
L L H L H L H L L L H L H L 
L L H L H H H L L L H L H H 

L L H H L L L L H L L L L H 
L L H H L H L L H L L L H L 
L L H H H L L L H L L L H H 
L L H H H H L L L H H L L H 

L H L L L L L H L H L L L L 
L H L L L H L H L H L L L H 
L H L L H L L H L H L L H L 
L H L L H H L H L H L L H H 

L H L H L L L H H L L L H L 
L H L H L H L L L H L L L L 
L H L H H L L L L H L L L H 
L H L H H H L L L H L L H L 

L H H L L L L H H H L L L H 
L H H L L H L H H H L L H L 
L H H L H L L L H H H L L H 
L H H L H H L L H H H L H L 

L H H H L L L L H H L L L L 
L H H H L H L L H H L L L H 
L H H H H L L L H H L L H L 
L H H H H H L L H H L L H H 

H L L L L L H L L L L L L H 
H L L L L H H L L L L L H L 
H L L L H L H L L L L L H H 
H L L L H H L L L L H H L H 

2·486 ~ Monolithic W Memories ~ 



PLD Devices Implement 4B3T Line Transcoder 

H L L II L L H L H L H L L H 
H L L H L H H L H L H L H L 
H L L H H L H L H L H L H H 
H L L H H H L L L H H H L L 

H L H L L L H H L L L H L H 
H L H L L H H H L L L H H L 
H L H L H L H L L L H H L H 
H L H L H H H L L L H H H L 

H L H H L L H L L L L H L L 
H L H H L H H L L L L H L H 
H L H H H L H L L L L H H L 
H L H H H H H L L L L H H H 

H H L L L L H H H L L L H H 
H H L L L H L H L H L H L L 
H H L L H L L H L H L H L H 
H H L L H H L H L H L H H L Ell 
H H L H L L L H L L L L L H 
H H L H L H L H L L L L H L 
H H L H H L L H L L L L H H 
H H L H H H L L L H L H L H 

H H H L L L L H L L L H L L 
H H H L L H L H L L L H L H 
H H H L H L L H L L L H H L 
H H H L H H L H L L L H H H 

H H H H L L H H L L L L H L 
H H H H L H L L L L L H L L 
H H H H H L L L L L L H L II 
H H H H H H L L L L L H H L 

---------------------------------------------------------
DESCRIPTION 

THIS REGISTERED PROM (63RS481A) IMPLEMENTS A 6-TO-8 TABLE 
CONVERTER. SIX INPUTS ARE BO, B1, B2, B3 (BINARY INPUTS), 
AND C1, CO (CURRENT COLUMN NUMBER). BECAUSE THESE FOUR 
PARALLEL BINARY INPUTS ARE FROM THE 4-BIT SERIAL-IN 
PARALLEL-OUT SHIFT REGISTER, THIS PROM (63RS481A) MUST 
OPERATE AT A QUARTER OF THE SHIFT REGISTER'S RATE. EIGHT 
OUTPUTS ARE PTO, PT1, PT2, NTO, NT1, NT2, NC1, AND NCO. THE 
PTO, PT1, AND PT2 ARE POSITIVE TERNARY SIGNALS WHICH FORMS 
THREE SERIAL P4B3T SIGNAL THROUGH A 3-BIT PARALLEL-IN 
SERIAL-OUT SHIFT REGISTER. LIKEWISE, NTO, NT1, AND NT2 ARE 
NEGATIVE TERNARY SIGNALS. NC1 AND NCO ARE NEXT COLUMN 
NUMBERS. 

~ Monolithic W Memories ~ 2·487 



2·488 

PLD Devices Implement 4B3T Line Transcoder 

Title 
Pattern 
Revision 
Author 
Company 
Date 

4B3T ENCODER LOGIC2 
EN4B3T2.pds 
A 
Cindy Lee 
Monolithic Memories 
3/5/87 

CHIP EN4B3T2 PAL16R6 

;PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9 PIN1r 
CLK MR PTO PT1 PT2 NTO NT1 NT2 LOAD GND 

;PIN11 PINl2 PINl3 PINl4 PINl5 PINl6 PINl7 PINl8 PINl9 PIN20 
IOE NC NS2 NS1 N4B3T PS2 PSl P4B3T NC VCC 

INPUT SIGNALS 
CLK : EXTERNAL CLOCK 
MR : MASTER RESET 

PTO, PTl, PT2 : THREE POSITIVE TERNARY SIGNALS 
NTO, NTl, NT2 : THREE NEGATIVE TERNARY SIGNALS 

LOAD : LOAD SIGNAL FOR TWO SHIFT REGISTERS 
IOE : ASSERTIVE LOW OUTPUT ENABLE 

OUTPUT SIGNALS 
NS2, NSl NEGATIVE TERNARY SHIFT REGISTER VARIABLES 

N4B3T OUTPUT SIGNAL OF NEGATIVE TERNARY SHIFT REGISTER 
PS2, PSl NPOSITIVE TERNARY SHIFT REGISTER VARIABLES 

P4B3T OUTPUT SIGNAL OF POSITIVE TERNARY SHIFT REGISTER 

EQUATIONS 

:THE 16R6 GENERATES: 
:(1) A 3-BIT PARALLEL-IN SERIAL-OUT SHIFT REGISTER 

FOR POSITIVE TERNARY SIGNAL 

IP4B3T := IPTO * IPSl 
+ lLOAD * IPSl 
+ IPTO * LOAD 
+MR 

IPSl := IPTl * IPS2 
+ lLOAD * IPS2 
+ IPTl * LOAD 
+MR 

IPS2 := IPT2 
+ lLOAD 
+MR 

; SHIFT REGISTER OUTPUT 

;(2) A 3-BIT PARALLEL-IN SERIAL-OUT SHIFT REGISTER 
FOR NEGATIVE TERNARY SIGNAL 

IN4B3T := INTO * INSl 
+ lLOAD * INSl 

; SHIFT REGISTER OUTPUT 

~ Monolithic m Memories ~ 



PLD Devices Implement 4B3T Line Transcoder 

+ INTO * LOAD 
+MR 

INSl .- INTl * INS2 
+ lLOAD * INS2 
+ INTl * LOAD 
+MR 

INS2 := INT2 

SIMULATION 

+ lLOAD 
+MR 

TRACE_ON MR CLK LOAD PT2 PTl PTO P4B3T NT2 NTl NTO N4B3T 

SETF lLOAD MR OE ; RESET CONDITION 
SETF IMR DISABLE MASTER RESET 

SETF LOAD PT2 PTl PTO NT2 NTl NTO LOAD INPUT DATA 
CLOCKF 

SETF lLOAD IPT2 IPTl PTO INT2 INTl NTO SHIFT DATA 
CLOCKF 

SETF PT2 IPTl PTO NT2 INTl NTO SHIFT DATA 
CLOCKF 

SETF LOAD PT2 IPTl PTO NT2 INTl NTO LOAD INPUT DATA 
CLOCKF 

SETF lLOAD PT2 IPTl PTO NT2 INTl NTO SHIFT DATA 
CLOCKF 

SETF IPT2 PTl IPTO NT2 NTl INTO SHIFT DATA 
CLOCKF 

SETF LOAD PT2 IPTl PTO INT2 NTl NTO LOAD INPUT DATA 
CLOCKF 

SETF lLOAD PT2 IPTl PTO INT2 NTl NTO SHIFT DATA 
CLOCKF 

SETF PT2 IPTl PTO INT2 NTl NTO SHIFT DATA 
CLOCKF 

SETF LOAD PT2 PTl IPTO INT2 INTl INTO LOAD INPUT DATA 
CLOCKF 

SETF lLOAD PT2 IPTl IPTO NT2 INTl INTO SHIFT DATA 
CLOCKF 

SETF PT2 IPTl IPTO NT2 INTl INTO SHIFT DATA 
CLOCKF 

~ Monolithic W Memories ~ 2·489 



2·490 

PLD Devices Implement 4B3T Line Transcoder 

SETF LOAD PT2 IPTI IPTO NT2 INTI INTO 
CLOCKF 

SETF lLOAD PT2 IPTI IPTO NT2 INTI INTO 
CLOCKF 

SETF PT2 IPTI IPTO NT2 INTI INTO 
CLOCKF 

LOAD INPUT DATA 

SHIFT DJ..TA 

SHIFT DATA 

~ Monolithic m Memories l1 



PLD Devices Implement 4B3T Line Transcoder 

Title 
Pattern 
Revision 
Author 
Company 
Date 

4B3T DECODER LOGIC 
DE4B3T.pds 
A 
cindy Lee 
Monolithic Memories 
3/18/87 

CHIP DE4B3T PAL22V10 

;PIN1 PIN2 PIN3 PIN4 PIN5 
/CLl< NC MR P4B3T N4B3T 

;PIN7 PIN8 PIN9 PIN10 PIN11 
NC NC NC NC NC 

PIN6 
NC 

PIN12 
GND 

;PIN13 PIN14 PIN15 PIN16 PIN17 PIN18 
NC ERROR NC /Q4 Q3 Q2 

;PIN19 PIN20 PIN21 PIN22 PIN23 PIN24 
Q1 QO NC NC NC VCC 
GLOBAL 

INPUT SIGNALS 
/CLl< ASSERTIVE LOW EXTERNAL CLOCK 
MR MASTER RESET 
P4B3T POSITIVE TERNARY SIGNAL 
N4B3T NEGATIVE TERNARY SIGNAL 

OUTPUT SIGNALS 
ERROR : ERROR FLAG 
/Q4 : ASSERTIVE LOW Q4 SIGNAL WHICH IS A /LOAD SIGNAL 

FOR A SHIFT REGISTER 
Q3, Q2, Q1, QO : 4B3T DECODING STATE VARIABLES 

EQUATIONS 

;ERROR SIGNAL IS GENERATED WHEN P4B3T AND N4B3T SIGNALS BOTH 
;ARE HIGH, OR P4B3T AND N4B3T SIGNALS BOTH ARE LOW AT THE 
iTRANSITION FROM STATE4 TO STATEO. 

ERROR = P4B3T * N4B3T ; P4B3T AND N4B3T ARE HIGH 
+ /Q4 * /Q3 * /Q2 * /Q1 * /QO * /P4B3T * /N4B3T 

;/Q4 IA A ASSERTIVE LOW LOAD SIGNAL. THE FOUR PARALLEL DATA 
iARE LOADED INTO 4-BIT PARALLEL-IN SERIAL-OUT SHIFT REGISTER 
;WHEN LAOD IS LOW, OTHERWISE, THE DATA IS SHIFTED OUT. 

Q4 := /N4B3T * P4B3T * /Q1 * Q3 * /Q4 
+ IN4B3T * /QO * Q2 * /Q3 * /Q4 
+ /N4B3T * /QO * Q1 * Q3 * /Q4 
+ /N4B3T * /Q1 * Q2 * /Q3 * /Q4 
+ N4B3T * /P4B3T * /Q1 * Q3 * /Q4 

~ Monolithic m Memories ~ 

; LOAD SIGNAL 

2·491 



2·492 

PLD Devices Implement 4B3T Line Transcoder 

+ /P4B3T * /Qo * Q2 * /Q3 * /Q4 
+ /P4B3T * /Qo * Q1 * Q3 * /Q4 
+ /P4B3T * /Q1 * /Q2 * Q3 * /Q4 
+ /P4B3T * /Q1 * Q2 * /Q3 * /Q4 
+ /P4B3T * QO * /Q1 * Q3 * /Q4 

GLOBAL.RSTF = MR 

iQ3, Q2, Q1, AND QO ARE THE FOUR BINARY SIGNALS WHICH ARE 
iCONVERTED FROM THTREE TERNARY CODE WORD. 

Q3 

Q2 

Q1 

QO 

:= /N4B3T * P4B3T * /QO * /Q1 * /Q2 
+ /N4B3T * P4B3T * QO * /Q2 * Q3 
+ /N4B3T * QO * Q1 * /Q2 * /Q4 
+ /N4B3T * Q1 * /Q2 * Q3 * /Q4 
+ /N4B3T * P4B3T * Q4 
+ /P4B3T * /QO * /Q2 * Q3 * /Q4 
+ N4B3T * /P4B3T * /QO * Q2 * /Q4 
+ /P4B3T * /QO * Q1 * Q3 * /Q4 
+ N4B3T * /P4B3T * /Q1 * Q2 * /Q4 
+ N4B3T * /P4B3T * /Q1 * Q3 * /Q4 
+ /P4B3T * QO * Q1 * /Q2 * /Q4 

:= /N4B3T * /QO * Q1 * Q3 * /Q4 
+ /N4B3T * P4B3T * Q2 * /Q3 * /Q4 
+ /N4B3T * QO * Q1 * /Q3 * /Q4 
+ N4B3T * /P4B3T * /QO * /Q1 * /Q3 
+ /P4B3T * /QO * Q2 * /Q3 * /Q4 
+ N4B3T * /P4B3~ * /QO * Q2 
+ /P4B3T * QO * Q1 * /Q3 * /Q4 
+ N4B3T * /P4B3T * Q4 

:= /N4B3T * /QO * /Q1 * /Q2 * /Q3 
+ /N4B3T * P4B3T * /QO * /Q1 * Q2 
+ /N4B3T * QO * /Q1 * Q2 * /Q3 
+ /N4B3T * P4B3T * QO * Q1 * /Q2 
+ /N4B3T * P4B3T * Q2 * /Q3 
+ /N4B3T * Q4 
+ /P4B3T * /QO * /Q1 * /Q2 * /Q3 
+ /P4B3T * /QO * Q1 * /Q2 * Q3 
+ N4B3T * /P4B3T * /QO * Q3 
+ /P4B3T * QO * /Q1 * /Q2 * Q3 
+ /P4B3T * Q4 

:= /N4B3T * /P4B3T * /QO * Q1 * Q3 
+ /N4B3T * /QO * /Q1 * /Q3 
+ /N4B3T * /QO * Q1 * Q2 * Q3 
+ /N4B3T * P4B3T * QO * /Q1 * Q3 
+ /N4B3T * P4B3T * /Q1 * Q2 * Q3 
+ /N4B3T * Q4 
+ N4B3T * /P4B3T * /QO * /Q1 
+ /P4B3T * /Q1 * Q2 * /Q3 
+ N4B3T * /P4B3T * QO * Q1 * /Q2 
+ N4B3T * /P4B3T * QO * Q2 * /Q3 
+ /P4B3T * Q4 

~ Monolithic m Memories ~ 

* /Q3 
i MSB OF THE FOUR 
i BINARY SIGNALS 

LSB OF THE FOUR 
BINARY SIGNALS 



PLD Devices Implement 4B3T Line Transcoder 

SIMULATION 

TRACE_ON MR /CLK P4B3T N4B3T /Q4 Q3 Q2 Ql QO ERROR 

iTO RESET WHOLE DEVICES 

SETF MR iSTATE # = Q4(LOAD) Q3 Q2 Ql QO & ERROR 

iTEST VECTOR #1 TO CHECK SO, Sl, S4, S13, AND S16 

SETF /MR P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

iSO = 0 0 0 0 0, ERROR 
iINITIAL CONDITION 

iSl o 0 0 1 1 

;S4 = 0 1 1 0 0 

;S13 = 1 1 1 1 1 

iSl 00011 

iS4 = =0 1 1 0 0 

iS14 = 1 0 0 1 1 

iSl 00011 

;S4 o 1 1 0 0 

iSO = 0 0 0 0 0, ERROR 

iTEST VECTOR #2 TO CHECK Sl, S5, S15, S16, AND S17 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

iSl 00011 

iS5 = 0 1 1 0 1 

iS15 = 1 0 0 0 0 

iSl 00011 

iS5 o 1 1 0 1 

~ Monolithic m Memories ~ 2·493 

Ell 



2·494 

PLD Devices Implement 4B3T Line Transcoder 

5ETF /P4B3T N4B3T 
CLOCKF CLK 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF /P4B3T N4B3T 
CLOCKF CLK 

5ETF P4B3T /N4B3T 
CLOCKF CLK 

;TE5T VECTOR #3 TO 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF P4B3T /N4B3T 
CLOCKF CLK 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF P4B3T /N4B3T 
CLOCKF CLK 

5ETF /P4B3T N4B3T 
CLOCKF CLK 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF P4B3T /N4B3T 
CLOCKF CLK 

5ETF P4B3T /N4B3T 
CLOCKF CLK 

;TE5T VECTOR #4 TO 

5ETF /P4B3T N4B3T 
CLOCKF CLK 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF /P4B3T /N4B3T 
CLOCKF CLK 

5ETF /P4B3T N4B3T 
CLOCKF CLK 

CHECK 

CHECK 

;516 = 1 1 0 0 0 

i51 = 0 0 0 1 1 

;55 = 0 1 1 0 1 

;517 = 1 0 0 0 1 

51, 56, 518, 519, AND 

;51 0 0 0 1 1 

;56 = 0 1 1 1 0 

;518 = 1 1 1 0 1 

i51 0 0 0 1 1 

;56 = 0 1 1 1 0 

;519 = 1 1 1 1 0 

;51 o 0 0 1 1 

;56 = 0 1 1 1 0 

;520 = 1 0 101 

52, 57, 520, 518, AND 

;52 0 0 1 1 1 

;57 = o 0 100 

;520 = 1 0 101 

;52 = 0 0 1 1 1 

l1 Monolithic W Memories l1 

520 

521 



PLD Devices Implement 4B3T Line Transcoder 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

iS7 = 0 0 1 0 0 

iS18 = 1 1 1 0 1 

iS2 = 0 0 1 1 1 

iS7 = 0 0 1 0 0 

iS21 = 1 0 1 1 1 

iTEST VECTOR #5 TO CHECK SO, S2, S7, S8, S22, AND S23 

SETF /P4B3T N4B3T iS2 o 0 1 1 1 
CLOCKF CLK 

SETF /P4B3T /N4B3T iS7 0 0 1 0 0 
CLOCKF CLK 

SETF P4B3T N4B3T iSO 0 0 0 0 0, ERROR 
CLOCKF CL..T{ 

SETF /P4B3T N4B3T iS2 0 0 1 1 1 
CLOCKF CLK 

SETF /P4B3T N4B3T iS8 = 001 o 1 
CLOCKF CLK 

SETF /P4B3T /N4B3T iS14 = 1 0 0 1 1 
CLOCKF CL..l( 

SETF /P4B3T N4B3T iS2 = 0 0 1 1 1 
CLOCKF CLK 

SETF /P4B3T N4B3T iS8 = o 0 1 o 1 
CLOCKF eLK 

SETF /P4B3T N4B3T iS22 11001 
CLOCKF CLK 

SETF /P4B3T N4B3T iS2 0 0 1 1 1 
CLOCKF CLK 

SETF /P4B3T N4B3T iS8 o 0 101 
CLOCKF CLK 

SETF P4B3T /N4B3T iS23 = 1 0 110 
CLOCKF CLK 

SETF /P4B3T N4B3T iS2 = 0 0 1 1 1 
CLOCKF CLK 

~ I'.llonolithio Wn.femories lQ 2·495 



PLD Devices Implement 4B3T Line Transcoder 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T N4B3T 
CLOCKF CLK 

iS8 o 0 101 

iSO = 0 0 0 0 0, ERROR 

;TEST VECTOR #6 TO CHECK S2, S9, S24, S25, AND S23 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

iS2 o 0 1 1 1 

iS9 = 0 0 1 1 0 

iS24 = 1 0 1 0 0 

iS2 o 0 111 

iS9 = 0 0 1 1 0 

iS25 = 1 1 1 0 0 

;S2 o 0 111 

iS9 = 0 0 1 1 0 

iS23 = 1 0 1 1 0 

iTEST VECTOR #7 TO CHECK S3, S10, S16, S26, AND S15 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

iS3 = 0 1 0 1 1 

iS10 01000 

iS16 = 1 1 0 0 0 

iS3 = 0 1 0 1 1 

iS10 01011 

SETF /P4B3T N4B3T iS26 = 1 1 0 1 1 
CLOCKF CLK 

SETF P4B3T /N4B3T iS3 = 0 1 0 1 1 
CLOCKF CLK 

2·496 ~ Monolithic [RIl] Memories ~ 



PLD Devices Implement 4B3T Line Transcoder 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

iS10 o 1 0 0 0 

iS15 = 1 0 0 0 0 

iTEST VECTOR #8 TO CHECK S3, Sll, S27, S28, ~ND S22 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

;S3 = 0 1 0 1 1 

;Sll o 100 1 

;S27 = 1 0 0 1 0 

iS3 = 0 1 0 1 1 

;Sll o 100 1 

;S28 = 1 1 0 1 0 

;S3 = 0 1 0 1 1 

;Sll o 100 1 

;S22 = 1 1 0 0 1 

;TEST VECTOR #9 TO CHECK SO, S3, S12, S13, S28, AND S25 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF /P4B3T N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

;S3 = 0 1 0 1 1 

;S12 01010 

;S13 1 1 1 1 1 

iS3 = 0 1 0 1 1 

;S12 o 1 0 1 0 

iS28 = 1 1 0 1 0 

iS3 = 0 1 0 1 1 

~ MonolilhiCW Memories ~ 2·497 



2·498 

PLD Devices Implement 4B3T Line Transcoder 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T /N4B3T 
CLOCKF CLK 

SETF P4B3T N4B3T 
CLOCKF CLK 

;S12 01010 

;S25 = 1 1 1 0 0 

;S3 01011 

;SO o 0 0 0 0, ERROR 

~ Monolithic m Memories ~ 



PALC22V10 Creates 
Manchester Encoder Circuit AN-167 

Manchester Encoding 
The PALC22V10 has been programmed to give a Manchester 
encoded output for eight digital TTL-level inputs or a bit-serial 
TTL level input. The reason for using such encoding is to 
remove the DC component from a digital waveform prior to 
transmission. If the data were transmitted without encoding, 
'DC wander' could result. 

A transmitted binary signal consists of a series of High and 
Low voltage pulses. If the signal consists of primarily High 
pulses, a mean DC component will exist. If the signal then 
becomes primarily Low pulses, the mean DC component will 
shift, or wander. This can cause transmission problems on 
capacitive lines. A Manchester encoded signal cannot have a 
DC component. 

The principle of Manchester encoding is to introduce phase 
shifting in a carrier wave, which is continuously switching, 
such that logic input changes are represented by a phase shift 

DATA INPUT 

MANCHESTER 1 
ENCODED 

SIGNAL 

of that carrier. If data at the input of an encoder switches from 
a logic High to a logic Low, then a phase shift of 180 degrees 
(equivalent to a polarity shift) is performed. When a Low-to­
High transition occurs at the input, the carrier phase is 
switched back by 180 degrees to the original phase. 

For example, a logic High could be encoded as a zero phase 
shift, and a logic Low as a 180-degree phase shift from a 
reference. The result in the encoded signal is that two 
successive Highs or Lows represent either a positive or 
negative data transition (Figure 1). When the data in the figure ~ 
toggles Low to High the encoded output gives two successive ~ 
High levels as the phase of the carrier shifts by 180 degrees. 
The transition of data from High to Low will generate two 
successive Low outputs in the encoded signal, returning the 
signal to the original phase. 

Figure 1. A Manchester Encoded Signal from a Digital TTL Input 

Applications 
Manchester encoding is applied to local area networks, such 
as Ethernet, and can be used in storage of data on magnetic 
media, or in other transmissions including infrared. Both data 
and clock are imbedded in the Manchester encoded signal. 
Clock information may easily be extracted from the encoded 
waveform by using phase-locked loop techniques, and the 
clock can be used to recover the encoded data. Thus, the data 
can be resynchronized on reception. 

Circuit 
Figure 2 shows a schematic diagram of the Manchester 
encoder circuit. The design has been made to be compatible 
with either serial or parallel data output from standard UART 
(Universal Asynchronous ReceiverlTransmitter) circuits. The 
clock input to the system will come from the clock input to the 
UART circuit, which is typically sixteen times the data rate. 
The divide-by-sixteen circuit will generate a square wave 
output at R3, the original data rate as applied to the UART. This 
signal is available as an output from the system. On a PCB, the 
R3 signal can be used to decode the data. 

~ Monolithic W Memories ~ 2·499 



PALC22V10 Creates Manchester Encoder Circuit 

DIVIDE BY DIVIDE BY 
SIXTEEN EIGHT 

RO R1 R2 R3 RA RB RC 
CLOCK INPUT DIVIDED BY SIXTEEN 

~+-4-~------~~------------------------R3 

MANCHESTER 
ENCODED OUTPUT 

AX 

~~~~~----------~-r-r--------+-------------'---~ 

IDTST
07

os
05
D4 MUX
03

02

01

DO

SER SELECT DO ROY

IRST ________________________________ _____ --.J

Figure 2. Manchester Encoder Circuit

A further counter synchronously clocked is a divide-by-eight
counter with outputs RA, RS and RC. These outputs will select,
in the case of a parallel data input, one of the individual data
lines 00-07. The selected data line is routed through the
multiplexer and applied to the input of an eXclusive-OR (XOR)
gate. One of the inputs to the XOR gate is the data clock rate,
available at the R3 flip-flop output. The function of the XOR
gate has been configured in the PALC22V10 from a 'sum-of­
products' architecture.

The phase encoded signal has been derived at the output of
flip-flop RX. Inverting the data gives a 180-degree phase shift
from the reference established at the R3 output. The selected
data input line determines whether or not phase (polarity)
inversion should take place. If the data input is Low, no
inversion takes place; if High, the reference signal is inverted
to give the required phase shift.

Equations
The general output equation is:

RX := R3*OATA + R3*OATA (= R3 :+: OATA). (1)

The data input is selected by a one-of-eight condition of the
state machine RA, RS, and RC. RA is the clock reference
divided by two, RS is the clock divided by four and RC by eight.

For a parallel input,~~Qis selected to control t~ o~ut
polarity at RX when RA*RS*RC is True, 01 when RA*RS*RC is
True, 02 when RA*RS*RC is True, etc. This procedure
serializes the parallel data. The Manchester encoded signal is
created by this dynamic control of the inverting input to the
XOR configuration through the selected data input.

There is a serial select input to the multiplexer circuit such that
when driven active High, serial data applied to the 00 input will
encode the carrier signal on a bit-by-bit basis. Input lines 01-
07 are ignored when the encoder is used in this mode. The SER
mode should be hard-wired Low for parallel data input.

To enable external handshake to be accomplished in either
serial or parallel mode, a ROY output is available. When a
complete byte or bit is encoded and transmitted to the output
RX, the ROY pin will go High to request more data. Note that the
Manchester encoder does not latch the data; it must remain
valid for the duration of the encoding. The logic circuit required
for the ROY pin is shown as a sum of product terms as applied
to the '0' input of the ROY flip-flop.

The data that is applied to the input is available in a serial form
at the OTST output and can be used for test purposes. OTST is
simply the serialized output of the data input 00-07.

2·500 ~ Monolithic W Memories ~

PALC22V10 Creates Manchester Encoder Circuit

PAL Device Design Considerations
The PALC22V10 was chosen for this application because of
the large number of product terms required to encode the XOR
function. Up to sixteen product terms can be used to create an
XOR function on eight data inputs. The PALC22V1 0 also offers
low power with TTL compatibility, reducing power supply
requirements while increasing reliability.

The flip-flops RO, R1, R2, R3, RA, RB, and RC form a long
binary count chain. The output from R3 forms the reference
phase output which is the clock input divided by sixteen. As
discussed, RA, RB, and RC form a binary state machine to
select 00-07 data inputs individually.

Design Procedure
The following figures show the design procedure used to derive
equations for the binary divide-by-sixteen counter RO-R3. The
Boolean equations have been derived using the PALASM® 2
software operators.

Figure 3 shows the counter states in hexadecimal and binary
formats. Figure 4 shows two Karnaugh maps, the state
assignment and state transition; Figure 4a shows the
hexadecimal value of the current state of the counter, and
Figure 4b shows the next state. For example, the location in
the state assignment map of hex 'A' would be represented by
the next state hex 'B' in the transition map.

State RO R1 R2 R3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

A 0 1 0 1

B 1 1 0 1

C 0 0 1 1

0 1 0 1 1

E 0 1 1 1

F 1 1 1 1

Figure 3. Binary Counter Truth Table. The Conditions of the
Flip-flops RO, Rl, R2, and R3 Are Shown in the Truth
Table with the Hexadecimal Value of the Binary
Weighting

R1 RO

R3 R2 10 11 01 00

10 A B 9 8

11 E F 0 C

01 6 7 5 4

00 2 3 1 0

48. State Assignment Map

R1 RO

R3 R2 10 11 01 00

10 B C A 9

11 F 0 E 0

01 7 8 6 5

00 3 4 2 1

4b. State Transition Map

Figure 4. The State Assignment Map (4a) Shows the Current
Hexadecimal Value in the Appropriate Position in the
Map. The State Transition Map (4b) Shows Next
State. For Example, State A in the Assignment Map
is Shown as B in the Transition Map Because that is
the Next Count in the Sequence

Figure 5 shows the binary weighting of the hexadecimal values
of the flip-flops RO, Rl, R2, and R3 of the transition map. From
this map, individual Karnaugh maps are drawn for each
individual flip-flop, and equations derived by performing
minimization for each flip-flop.

R1 RO

R3 R2 10 11 01 00

10 1101 0011 0101 1001

11 1111 0000 0111 1011

01 1110 0001 0110 1010

00 1100 0010 0100 1000

Figure 5. State Transition Map with the Binary Weighting of
the Hexadecimal Entries. T~e Register Significance
of the Entry is from Left to Right. For Example, 1101
Represents the Binary Weighting of RO Rl IR2 R3

~ Monolithic W Memories ~ 2·501

011

PALC22V10 Creates Manchester Encoder Circuit

Figure 6 shows the Karnaugh maps and the equations for either
true or complement outputs. For true outputs, minimization is
performed on the logic One entries in the map. Where an
inverting buffer is used between the internal flip-flop and the
outside world, minimization is performed on the logic Zero
entries in the map (shown bolder). This is because the internal
flip-flop's output is set High, but the state of the output pin is a
logic Low due to the inverting action of the buffer. With the
output configuration of the PALC22V10, it is possible to
choose either inverted or non-inverted outputs, so either
equation will be suitable.

R1 RO

R3 R2 10 11 01 00

10- ,---,..., ~ 0" 1"'1

11 1 0 0 1

01 1 0 0 1

00 ~ ...L ~ ~-

IRO:= RO (1)
RO :=IRO (2)

6a. Map for Flip-flop RO.

IR2:= R2·R1·RO + IR2·/R1 + IR2·/RO (5)

R2 := IR2·R1·RO + R2·/R1 + R2·1R0 (6)

6c. Map for Flip-flop R2.

1R1 := RO·R1 + IRO·/R1 (3)
R1 := IRO·R1 + RO·/R1 (4)

6b. Map for Flip-flop R1.

IR3 := R3·R2·R1·RO + IR3·/R2
+ 1R3·1R1 + 1R3·1R0 (7)

R3 := IR3·R2·R1·RO + R3·/R2
+ R3·1R1 + R3·1R0 (8)

Gd. Map for Flip-flop R3.

Figure 6. The Kamaugh Map of Figure 5. Broken Down for
Individual Flip-flops RO, R1, R2, and R3.
Minimization is Performed for Each Individual Flip­
flop

The PALASM 2 software operators describing the equation
are:

• logical ANO

+ logical OR

logical inversion

.- registered output equation.

The equations derived for a general counter of length N
become:

ON := ON·ON-1·0N-2· ... 02·01·00

+ ON·ON-1

+ ON·ON-2

+ ON·01

+ ON·OO

using the inverting option, or:

ON .- ON·ON-1·0N-2· ... 02·01·00

+ ON·ON-1

+ ON·ON-2

+ ON·01

+ ON*OO

for the non-inverting option.

This generalized equation requires N + 1 product terms for a
general flip-flop, ON. For example, 07, in a binary count
sequence, will require a summation of eight product terms. The
complete design specification is shown in the PAL device
Oesign Specification of Pattern 04.

Design Results
Figure 7 is an oscilloscope photograph of the outputs of the
programmed device. The top trace is the ROY signal. It goes
High to indicate that a complete data byte has been
transmitted and that the next data byte may ~esented to
the data inputs 00-07. The second trace is OTST, the serial
data stream 00-07 of the parallel data input 00-07. The bottom
trace is the Manchester encoded waveform of the parallel data
input, or RX. The markers show one complete frame of
information.

Figure 7. Oscilloscope Trace of Programmed Device. The
Manchester Encoded Output is RX

2·502 ~ Monolithio m Memories ~

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE
i

PALC22V10 Creates Manchester Encoder Circuit

MANCHESTER ENCODER.
04.
01.
CHRIS JAY.
MMI SANTA CLARA, CA.
17 JULY 19S6.

iTHE PALC22VIO HAS BEEN DESIGNED TO FUNCTION AS A MANCHESTER
iENCODER CIRCUIT. THE BINARY DATA INPUT WILL DETERMINE WHETHER
iTHE TRANSMISSION SIGNAL SHOULD BE IN PHASE WITH A CLOCK
iREFERENCE OR SHIFTED BY ISO DEGREES FROM THAT REFERENCE.
iTHE CHARACTERISTIC OF A MANCHESTER ENCODED SIGNAL IS A
iCHANGE OF PHASE FOR EACH TRANSITION OF THE DATA INPUT.
iASSUMING THAT 'X' IS THE PHASE OF THE CARRIER THAT ENCODES
iA LOGIC LOW INPUT, WHEN THE INPUT DATA TRANSITIONS
iTO A LOGIC HIGH THE PHASE OF THE CARRIER WILL BE SHIFTED
;TO 'X + ISO'. IT WILL CHANGE BACK TO 'x' ONLY WHEN THE
iDATA INPUT TOGGLES FROM A LOGIC HIGH TO A LOGIC LOW.
iTHE KEY FEATURES OF THE ENCODED SIGNAL ARE:

i

1. DATA AND CLOCK FREQUENCY INFORMATION IS
CONTAINED IN THE ENCODED SIGNAL. CLOCK
INFORMATION MAY BE EXTRACTED BY USING A
PHASE LOCKED LOOP IN THE RECEIVER.

2. NO DC COMPONENT IS CONTAINED IN THE
PHASE ENCODED SIGNAL.

;THE APPLICATIONS OF PHASE ENCODED SIGNALS CAN BE IN SHORT
iCOMMUNICATIONS LINKS, SUCH AS ETHERNET OR INFRARED TRANS­
iMISSIONS, OR IN STORAGE ON SOME MAGNETIC MEDIA.

iTHERE ARE EIGHT DATA INPUTS, DO TO D7. DATA PRESENT ON
iTHESE PINS WILL BE ENCODED INTO A BI-PHASE SIGNAL AT THE
iOUTPUT QX, WHEN THE SER (SERIAL) INPUT DATA PIN IS CONFIGURED
iTO A LOGIC ZERO. TO CONVERT A SERIAL DATA STREAM OF LOGIC
iONES AND ZEROS INTO A PHASE ENCODED SIGNAL THE SER INPUT
;IS TIED HIGH, AND THE DATA IS APPLIED TO THE DO INPUT
;OF THE PAL DEVICE. A CLOCK INPUT OF 16 TIMES THE DATA RATE
iIS REQUIRED FOR THE PARALLEL OR SERIAL ENCODING OF THAT
iDATA, SO THE DESIGN MAY BE USED WITH MANY POPULAR UART LSI
iCIRCUITS. THERE IS ONE HANDSHAKE OUTPUT FROM THE DEVICE,
jRDY. THIS SIGNAL GOES HIGH WHEN THE NEXT DATA BYTE OR BIT
iIS REQUIRED TO BE SET UP AT THE INPUT.

~ Monolithic W Memories ~ 2·503

2·504

PALC22V10 Creates Manchester Encoder Circuit

CHIP MANENC PAL22V10
i
iPIN 1 2

CLK /RST

iPIN 7 8
D4 D5

iPIN 13 14
SER RDY

iPIN 19 20
RA R3

GLOBAL

STRING SO '/RC*/RB*/RA'
STRING Sl '/RC*/RB* RA'
STRING S2 '/RC* RB*/RA'
STRING S3 '/RC* RB* RA'
STRING S4 ,

RC*/RB*/RA'
STRING S5

, RC*/RB* RA'
STRING S6

, RC* RB*/RA'
STRING S7

, RC* RB* F.A'

EQUATIONS

GLOBAL.SETF RST

IRO := RO

/R1 := R1* RO
+ /R1*/RO

/R2 := R2* R1* RO
+ /R2*/R1
+ /R2* /RO

IR3 := R3* R2* R1* RO
+ /R3*/R2
+ /R3* /R1
+ /R3* /RO

3 4
DO D1

9 10
D6 D7

15 16
/DTST RC

21 22
R2 R1

RDY -= RC*RB*RA*R3*R2*Rl*RO*/SER
+ R3*R2*R1*RO* SER

5 6
D2 D3

11 12
NC GND

17 18
RB RX

23 24
RO VCC

iGLOBAL TERM
iENABLES RESET.
iSTRING DECLARATIONS.
iENCODE STATE 0
iENCODE STATE 1
iENCODE STATE 2
iENCODE STATE 3
iENCODE STATE 4
iENCODE STATE 5
iENCODE STATE 6
iENCODE STATE 7
iFOR PARALLEL INPUT
iSO SELECTS DO INPUT,
iS1 SELECTS D1 INPUT,
iETC.

,
iSET INITIAL
iCONDITIONS, RESET.
iRO DIVIDES THE CLOCK
iINPUT BY 2.
iR1 DIVIDES THE CLOCK
iBY 4.
i
iR2 DIVIDES THE CLOCK
iBY 8.

i
iR3 DIVIDES THE CLOCK
iBY 16.

iRDY OUTPUT PERFORMS
iA HANDSHAKE OPERATION.
iWHEN HIGH, NEW DATA
iMAY BE APPLIED.

~ Monolithic: m Memories ~

PALC22V10 Creates Manchester Encoder Circuit

/RA := RA* R3* R2* Rl* RO*/SER
+ /RA*/R3* /SER
+ /RA* /R2* /SER
+ /RA* /Rl* /SER
+ /RA* /RO*/SER
+ SER

/RB := RB* RA* R3* R2* Rl* RO*/SER
+ /RB* /R3* /SER
+ /RB* /R2* /SER
+ /RB* /Rl* /SER
+ /RB* /RO*/SER
+ /RB*/RA* /SER
+ SER

/RC := RC* RB* RA* R3* R2* Rl* RO*/SER
+ /RC* /R3* /SER
+ /RC* /R2* /SER
+ /RC* /Rl* /SER
+ /RC* /RO*/SER
+ /RC* /RA* /SER
+ /RC*/RB* /SER
+ SER

/DTST:= SO*DO
+ SI*Dl*/SER
+ S2*D2*/SER
+ S3*D3*/SER
+ S4*D4*/SER
+ S5*D5*/SER
+ S6*D6*/SER
+ S7*D7*/SER

/RX := SO*/R3*DO + SO*R3*/DO
+ SI*/R3*Dl*/SER + SI*R3*/Dl*/SER
+ S2*/R3*D2*/SER + S2*R3*/D2*/SER
+ S3*/R3*D3*/SER + S3*R3*/D3*/SER
+ S4*/R3*D4*/SER + S4*R3*/D4*/SER
+ S5*/R3*D5*/SER + S5*R3*/D5*/SER
+ S6*/R3*D6*/SER + S6*R3*/D6*/SER
+ S7*/R3*D7*/SER + S7*R3*/D7*/SER

iCOUNTER [RA, RB, RC]
iCOUNTS THE NUMBER
iOF BITS TRANSMITTED
iWHEN A BYTE IS
iAPPLIED TO THE
iDa - D7 DATA INPUTS.
iTHE LOGIC CONDITION
iOF THE SELECTED
iINPUT IS MULTIPLEXED
iTO THE RX REGISTERED
iOUTPUT BY THE 'ONE OF
iEIGHT' STATE SELECTOR,
iIN THE DIVIDE BY EIGHT
iCOUNTER RA, RB, RC. FOR
iSERIAL MODE /RA*/RB*/RC
iSELECTS DATA INPUT DO,
iRA*/RB*/RC SELECTS Dl,
iETC., WHILE /SER SELECTS
iPARALLEL OPERATION. IF
iSER IS ACTIVE, SERIAL
iENCODING IS SELECTED.
iTHE SERIAL DATA APPLIED
iTO THE DO INPUT IS
iENCODED. Dl - D7
iINPUTS ARE DESELECTED.
iDa - D7 IS SERIALIZED
iFOR PARALLEL MODE.
iFOR SERIAL MODE, DO ONLY
iIS CLOCKED THROUGH TO
iTHE DTST OUTPUT.
i/DTST OUTPUT IS THE
iSERIALIZED ENCODING
iOF THE DATA INPUT
iDO - D7, OR DO.
;THE RX OUTPUT PROVIDES
;THE MANCHESTER ENCODED
;OUTPUT OF THE REFERENCE
i FREQUENCY , WHICH OCCURS
;AT THE R3 OUTPUT. THE
;PHASE AT R3 IS SHIFTED
iAT THE RX OUTPUT IF THE
iSELECTED DATA INPUT PO­
iLARITY CHANGES. IF /SER
iIS INACTIVE, DO - D7
iINPUTS ARE SELECTED. IF
i/SER IS ACTIVE, ONLY THE
iSERIAL INPUT APPLIED TO
iDO IS SELECTED.

~ Monolithic m Memories ~ 2·505

PALC22V10 Creates Manchester Encoder Circuit

SIMULATION
TRACE ON CLK RO Rl R2 R3 RA RB RC RX

- /DTST ROY DO 01 02 03 04 05
06 07 SER /RST

SETF /CLK RST DO 01 /02 03 04 /05
/06 /07 /SER

SETF RST
CLOCKF CLK
SETF /RST
FOR I := 1 TO 128 DO
BEGIN CLOCKF CLK
END
SETF SER DO
FOR I := 1 TO 32 DO
BEGIN CLOCKF CLK
END
TRACE OFF

,
iTRACE ALL SIGNALS.
,
iSET INITIAL CONDITIONS
;FOR DATA & CONTROL IN­
iPUTS. PARALLEL MODE SET.
iRESET ACTIVE TO
;INITIALIZE THE
;REGISTERS
iCLOCK 8 DATA BITS
;THROUGH TO R3 & RX
iOUTPUTS.
;SET SERIAL MODE VIA
;SERIAL CONTROL PIN.
;CLOCK SYSTEM TO SELECT
iSERIAL OPERATION.

2·506 ~ Monolithic W Memories ~

Peripheral Design

Peripherals are integral to any computer system. They range
from basic keyboards and printers to mass storage disksltapes.
In this section we will focus on mass storage systems such as disk
drives and tape drives.

A typical mass storage subsystem can be thought of in terms of
two major sections: the controller and the storage device. The
controller provides an interface between the host and the storage
device. It may control one or several storage devices at a time.
Common storage devices are disk drives (winchester and floppy)
and tape drives (reel and cartridge).

The discussion that follows will be oriented toward the storage
device being a disk drive although it could just as easily have been
done using tape drives.

Figure 1 shows two configurationsof diskstorage subsystems. In
Figure 1 A the storage device is connected to the host via a string
controller. Communication between the storage device and the
controller is accomplished through standardized interface proto­
cols. Examples of common disk drive interfaces in use today are
SMD (Storage Module Device). ESMD (Enhanced SMD). ESDI
(Enhanced Small Disk Interface). ST506. and SA465. An appli­
cation example of an ESDI interface controller is shown on page
2-509. An intelligent storage device is created when the string
controller function is embedded into the storage device (Figure
1 B). Intelligent storage devices typically communicate to the host
through a host adapter using either SCSI (Small Computer
System Interface) or IPI (Intelligent Peripheral Interface) interface
protocols.

41201

STRING
CONTROLLER

a. String Controller With a Storage Device

INTELLIGENT
STORAGE DEVICE

b. Host Adapter With an Intelligent Storage Device

Figure 1.

Controller

The controller function can be conceptually divided into several
sections: the Host Bus Interface. the Data Buffer. the Kernel and
the Device Interface.

412 02

KERNEL

DATA
BUFFER

Figure 2.

DEVICE
INTERFACE

The Host Bus Interface provides the connections to the host CPU
and main memory. It can serve as either a slave or a master on
the host bus. When the controller is a bus slave. the host CPU
must be able to access the controller. pass commands. and
obtain subsystem status using established host bus protocol.
The controller behaves as a bus master while transferring data in
either direction. or posting status. A bus master must be able to
arbitrate for the host bus and execute the necessary handshake
protocols.

The Data Buffer stores the data being read from or written to the
disk and checks for data integrity. The physical buffer can serve
several purposes: data transfer rate adaptor between the host
and the disk. a temporary storage for data going to the host until
it can be verified error free. and a cache. Depending on the
complexity of the data buffer it may be as small as one byte or as
large as a complete track of data.

Data integrity can be monitored for data transfers from the host as
well as from the disk drive. The sophistication used to monitor
data integrity varies significantly from simple single bit error
detection (parity) to large multiple bit error detection and correc­
tion. The host may elect to transfer data with a parity bit for each
byte. Data error detection and correction schemes are employed
between the controller and the disk drive. As storage densities
have increased. so have the size of the errors. The demand for
more capable error detection and correction codes that can more
accurately detect and correct larger number of bits in error has
increased accordingly.

~ Monolithic W Memories ~ 2·507

Peripheral Design

Such error detection codes as CRC code are satisfactory if the
error occurs in the data transmission channel and the data can be
recovered by retransmission. Data errors caused by media
defects require the capability of both error detection and correc­
tion. As the nature of media errors has changed, so have the error
detection and correction codes being used. Fire Codes and
computer generated codes have been the most popular codes.
Symbol oriented codes, such as Reed-Solomon codes, are
emerging as the solutions for the future.

The Kernel is the brain of the controller and the manager of the
subsystem. Ittranslates commands from the host into commands
for the storage device. It receives requests from the operating
system through the host interface and notifies the host when the
request is completed. To execute the host's request for data, the
kernel may have to access the storage device or it may only have
to access a cache. When accessing the storage device the kernel
sends commands according to the device interface protocols.

The Device Interface communicates directly with the storage
device. Using the particular interface protocols, the device inter­
face sends commands, retrieves status, and transfers data
between the controller and the storage device. The device inter­
faces shown in Figure 3 are predominantly disk and would have
to be changed to accommodate tape drives. An application
example of a tape drive interface controller is shown on
page 2-519.

Storage Device

The storage device can also be divided into several sections: the
Interface & Control, the Servo and the ReadIWrite.

ESMD
SMD
ESDI

ST506 SERVO

A SA465l'-
INTERFACE

"'I v & CONTROL

READ/WRITE

412 03

Figure 3.

The Interface & Control is the brain of the storage device.
It interprets the commands from the controller. It supervises the
servo and the read/write and maintains the device status.

The Servo is responsible for the movement of the media and the
positioning of the read/write heads. For disk drives D.C. brush­
less motors are predominantly used to drive the spindle. Head
positioning is done either with a stepper motor or a voice coil
actuator. In the case of tape drives, the Servo is only responsible
for capstan motor control because the position of the read/write
heads is fixed.

The Read/Write is responsible for storing and retrieving data from
the media. The data encoding method must balance data density
and ease of data recovery. Several Run-Length-Limited (RLL)
coding techniques are in use today .. Winchester disk drives have
used frequency modulation (FM), modified FM (MFM), modified
MFM (MMFM), and are currently using 2,7 to obtain present day
densities. Tape drives employ different RLL codes than disk
drives. The two common codes in use fortape storage are phase
encoding (PE) and group-coded recording (GCR). The applica­
tion note on page 2-541 shows an example of a GCR encoder im­
plemented with PAL devices.

When the storage device is configured with an embedded control­
ler (Figure 4) the Device Interface section ofthe controller and the
Interface & Control section of the storage device are not required.
The Kernel will directly control the storage device.

IPI KERNEL SERVO
SCSI

A J\. BUS
INTERFACE

'I v
DATA READ/WRITE

BUFFER

41204

Figure 4.

PLDs have been used in designs throughout mass storage
subsystems. Applications range from consolidation of random
logic to address decoding, bus arbitration logic to protocol state
machines, and complex encoding and decoding. Application
notes and technical articles are included here to aid designers in
understanding the benefits of implementing different designs with
programmable logic.

2·508 ~ Monolithic m Memories l1

Building an ESDI Translator
Using the M2064 Logic Cell Array AN-179

The ESDI Translator
ESDI is a low-cost, high-performance interface standard suita­
ble for the smaller, high-performance Winchester disk drives
currently being produced. The ESDI interface consists of a
control cable and a data cable. The control cable allows for a
daisy chain connection of up to seven devices (disk or optical
drives) with only the last device being terminated. In our de­
sign, we assumed that the device is a disk drive. The data
cable is attached in a radial configuration (See Figure 1).

HOST
CONTROL

DATA

CONTROLLER

DATA

DATA

DC VOLTAGES -----+--t---1
(RADIAL)

FRAMEGROUND------~----~

TERMINATOR

Note: Maximum number of drives = 7 LAST DRIVE
ONLY

D

Figure 1. Connection Between the Controller and Multiple
Drives

MSB

The ESDI Translator handshakes serial commands from a disk
controller, deserializes the commands and passes the com­
mands to a microcontroller. The command data word structure
is shown in Figure 2.

The Command Function bits define functions to be executed by
the disk drive. These functions are seek, recalibrate, request
status, request configuration, select head group, control, data
strobe offset, track offset, initiate diagnostics, set bytes per
sector and set configuration. Some of these functions, such
as the control function, have modifiers for more detailed func- HI
tional description. Other commands have parameters that con-
tain numbers. For the seek command, the parameter specifies
the cylinder number that the drive will seek to. The request
status and request configuration commands require data from
the disk drive to be transferred back to the disk controller. In
our current design, internal registers A and B in the LCA device
represent the upper and lower bytes of the command respec-
tively.

Figure 3 illustrates the relationships between the disk control­
ler, the ESDI Translator, and the microcontroller. The PROM is
used to store the configuration data for the LCA device. The
DonelProgram (Dip) output is driven LOW when the device is
being configured. Configuration data is read from the PROM
device during configuration. After configuration is complete,
the LCA device drives the DIP pin HIGH to deselect the PROM.
Drive selection, write protection, command completion and
fault detection are also handled by the ESDI Translator.

LSB

I

ODD
PARITY

15114 113 112 111 10 19 1817 161514 13 12 11 10 P

CMD FUNCTION CMD MODIFIER 1 0 0 0 0 0 0
CMD FUNCTION CMD PARAMETER

I'

REGISTER A REGISTER B

Figure 2. Command Data Word Structure

Logic CeIIT" Array and XACP" are trademarks of XILlNX, Inc.

P-SILOSIM is a trademark of SimuCad Corp.

~ Monolithic W Memories ~

0 0 P

P

I

2·509

Building an ESDI Translator Using the M2064 Logic Cell Array

ADDRESS

~I
RESET II on> :RI~ CLOCK

COMMAND DATA

CONFIG/STATUS DATA DATA BUS

TRANSFER REQUEST

TRANSFER ACKNOWLEDGE A(1-0)/CS MICRO

ATTENTION RD
CONTROLLER

DISK COMMAND COMPLETE WR

CONTROLLER WRITE GATE IN INT

READ GATE IN LCA
DRIVE SELECT 0 M2064

9RWESW~HD DRIVE SELECT 1
--<l DRIVE SWITCH 1

DRIVE SELECT 2

DRIVE SELECTED
~ DRIVE SWITCH 2

--c WRITE PROTECT

EXT. CHANGE OF S TS.

READ GATE OUT

WRITE GATE OUT

Figure 3. An ESDI Translator Implemented on the LeA Device

Why Use an LCA Device in an ESDI
Translator
The ESDI interface standard requires more logic functions to
be built into the disk drive than some other interface stan­
dards, such as the ST506 standard. However, the external di­
mensions of a disk drive usually have to conform to an industri­
al standard form factor. Thus, the use of high-density semicus­
tom chips is the logical solution to increase functionality with­
out increasing the external dimensions.

The LCA device is a high-density CMOS integrated circuit
available from Monolithic Memories. Its high gate density al­
lows the implementation of an ESDI Translator in a single chip.
Fifteen standard SSI and MSI chips would be necessary for the
same application. If PLDs are used to implement the ESDI
Translator, more than one would be necessary because a large
amount of logic is required, thus occupying more board space.

A major advantage in using the LCA device is that it can speed
up the design cycle, enabling the manufacturer to have a
shorter time-to-market. Also, many peripheral products are
produced in relatively small quantities aiming at very special­
ized markets. The LCA device, which has no NRE cost, makes
the production of small quantities more economical than the
gate array. Another advantage of the LCA device over other
semicustom chips, such as the gate array, is its reprogramma­
bility feature. The LCA device is RAM-based which can easily
be reprogrammed by the user in the final system. This feature
is especially important in the peripheral products market,
where many products have short life spans.

Design Implementation
The ESDI Translator is responsible for all control interfaces
between the disk controller and the disk drive. An internal
block diagram of the ESDI Translator is shown in Figure 4. It
consists of five major logic building blocks:

• Drive selection

• Read gate/write gate

• Counter/controller

• Shift register and parity generator/checker

• Internal register address decoder

Drive selection on ESDI-compatible drives involves three
signals from the disk controller, Drive Select 0-2. These three
drive select lines are encoded so that up to seven drives may
be connected to the same ESDI port, as shown in Table 1.

On the LCA device, the drive number is selected by connecting
the drive switch pins to either VCC or GND. When the code on
the drive select lines, DSX, equals the code on the drive switch
pins, DSWX, where X may be 0, 1, or 2, the drive is selected
and the Drive Selected signal, DSELD, is asserted. Once the
drive has been selected, serial commands output by the disk
controller will be read by the LCA device. The actual implemen­
tation is shown in Figure 5, using two CLBs and seven lOBs.
BDSO and BDS1 are the names of the CLBs in the current de­
sign. In our design, names that begin with the letter B or Pare
used to designate a CLB or an lOB respectively. SCLK is the
system clock.

2·510 ~ Monolithic m Memories ~

DS21
DSW2

0

0

0

0

1

1

1

1

Building an ESDI Translator Using the M2064 Logic Cell Array

DS11
DSW1

0

0

1

1

a
a
1

1

PARITY
CHECKERI

GENERATOR

MSB

COMMAND DATA
16 BIT SHIFT
REGISTER

1----+--. CONFIG/STATUS DATA

-RD
ADDRESS

LOGIC -WR
-AO,A1/CS

---~----...,..-. DATABUS

TRANSFER REQUEST

TRANSFER ACKNOWLEDGE
ATTENTION

COMMAND COMPLETE

DRIVE SELECT (0·2) -

DRIVE SWITCH (0-2)

DRIVE SELECTED _-----l
READ GATE IN ---------1

WRITE GATE IN ---------1
WRITE PROTECT ---------1

READGATEI
WRITE
GATE
LOGIC

Figure 4. ESDI Translator Internal Block Diagram

DSOI DRIVE
DSWO

0 None

1 Select Drive 1

0 Select Drive 2

1 Select Drive 3
DSO r--",-1.....>.,.-...

a Select Drive 4 DSWO C:::::>-I-I,t...,.."

1 Select Drive 5
DS1 r--"'-......... ,.-...

DSW1 c:::~t--J.t...,.."

INT

EXT. CHANGE
OF STATUS

READ GATE OUT

WRITE GATE OUT

'--____ .=::.=..1

a Select Drive 6

1 Select Drive 7

DSELD

Table 1. Drive Selection
Figure 5. Configuration of the BDSO and BDS1 CLBs to

Provide the Drive Selected Signal

~ Monollthlo W Memories ~ 2·511

EI

Building an ESDI Translator Using the M2064 Logic Cell Array

Figure 6 shows the configurations of the two CLBs as dis­
played on the computer screen by the XACT development soft­
ware. In Figure 6a, the CLB is configured as one function of
four variables. The D flip-flop is not used. The logic representa­
tion, truth table, Karnaugh map, signal names, block name and
Boolean equation are shown.

In Figure 6b, the CLB is configured as one function of three
variables, the output of which is connected to the D flip-flop.
The 0 output of the D flip-flop becomes the output of this CLB.

x :[f[L Y F
Q C Y
SET D
RES Blk:HC
CLK BDSO

DCBA F A A:DSl

HHHH

~ D{e}c

B:DSWO

HLHL C:DSWl

LHLH D:DSO

L L L L K: H _
X:

B F Y:DSELDA

F = -(D@B+A@C)

Figure 6a. Drive Selection Logic Implemented in a
CLB (BOSO)

x
Y Q :~ Q FF
SET D V

RES K Blk:HD
CLK K BDSl

DBA F A:DS2

HHH H
A B:DSELDA

LHL H
IIIJJ}D

C:
D:DSW2

CLK K:SCLK
B X:

Q V: DSELD

F=-(D@A)*B

Figure 6b. Drive Selection Logic Implemented In a
CLB (BOS1)

The LCA device also performs logic functions for the Read
Gate and Write Gate logic blocks. The Read Gate signal allows
data to be read from the disk, and the Write Gate signal allows
data to be written on the disk. These signals from the disk
controller are input to the LCA device as Read Gate In and
Write Gate In. Under normal operating conditions, Read Gate
Out is asserted when Read Gate in is asserted and Write Gate
Out is asserted when Write Gate In is asserted. When both
Read Gate In and Write Gate In are asserted, a write error
condition results and the Attention line is asserted, signalling
the disk controller that an error has occurred. Also, the LCA
device may be used to provide write protection to a disk drive.
When the Write Protect signal is asserted, the Write Gate Out
signal will not be asserted when the Write Gate In signal is
asserted, preventing the write circuitry from being activated.
These logic functions are implemented in two CLBs, BRWGO
and BRWG1, as shown in Figure 7.

DSELD-r----------4
WRGIN -+-----------t-.....
RDGIN

WRPRT

WRGOUT

DSELD ~
RDGIN -r----___ RDGOUT

~

Figure 7. Read Gate/Write Gate Logic Implementation

The Counter/Controller handshakes commands from the disk
controller. It also handshakes status/configuration data to the
disk controller. It is also responsible for generating the Inter­
rupt, Attention and Command Complete signals. Seventeen bit
commands (one bit is parity) are transferred from the disk con­
troller to the LCA device via the Command Data line. The serial
bit transfer is performed using a pair of handshaking signals,
Transfer Request (TREO) and Transfer Acknowledge (TACK).
TREO is asserted by the disk controller when a bit is valid on
the Command Data line, and TACK is asserted by the LCA de­
vice when the command bit has been read. The handshaking
action is shown in Figure 8.

TREQ \ /
~. _-----oJ

CMD ~ VAUD DATA x~_

TACK \'----_~I
Figure 8. Command Data Transfer

A 17-state counter counts the number of command bits shifted
in or shifted out of the data registers. Its implementation is
shOwn in Figure 9. The SHIFT signal is asserted, thus
incrementing the counter, whenever there is a transfer request
and the LCA device is selected. CNT _ 00 is the lowest bit of the
shift register counter. This bit is inverted whenever SHIFT is
asserted unless sixteen bits have already been shifted into the
LCA device (CNT16 asserted, or CKCMD asserted when all
seventeen bits have been shifted in). The DATAOUT signal is
asserted after a Request Status command or a Request
Configuration command has been transferred and the internal
data registers have been loaded with data to be serially shifted
out. Hence, when DATAOUT is asserted, CKCMD is negated
and the counter is enabled.

2·512 ~ Monollthlom Memories ~

Building an ESDI Translator Using the M2064 Logic Cell Array

SHIFT

CKCMD

CNT16 -+-==lJ:

DATAOUT--l---l~C)--L.J i-----i--CKCMD

BCNTS

Figurc 9. 17-Stlltc Counter Implemented in six CLBs

The logic generation of the Attention signal, ATTEN, is shown
in Figure 10. Whenever there is a write fault, WRFL T, a parity
error, PAR ERR, an interface fault, INTFL T, or an external error,
CSTS(Change of Status), the ATTEN signal is asserted. When
both WRGIN and RDGIN signals are asserted and the LCA
device is selected, the WRFL T signal is asserted. The WRFL T
signal is negated when the command transferred to the LCA
device Register A is the Reset command defined by the ESDI
standard, which has a Command Function of 0101 (Control)
and a Command Modifier of 0000 (Reset Attention and
Standard Status). The Command Function and Command
Modifier formats are shown in Figure 2.

Three CLBs, BPGO, BPG1, and BPG2, are responsible for
generating the PARERR signal. BPGO is a multiplexer that
selects the source of the input to the parity generator/checker
(BPG1). If data is being shifted into the LCA device (parity
checker mode), the CMDBITA input is chosen. If data is being
shifted out of the LCA device (parity generator mode), the
RA_Q7 output is chosen. These two signals are also shown in

Figure 11. BPG1 is an odd parity generator/checker. In the
parity checker mode, whenever an odd number of ones are
passed through this CLB, the output is one. This output signal
is connected to BPG2, which inverts the signal and asserts or
negates the PARERR signal accordingly. If parity is correct, an
interrupt is asserted to the microcontroller informing the
microcontroller that a command has been received and is
ready to be read. In the parity generator mode, the output of
BPG1 is the parity bit. BPG1 is clocked by the SHIFT input,
which is asserted whenever there is a transfer request and the
LCA device is selected. BPG1 is reset by the Reset Parity
Generator input, RSTPGEN. This signal is asserted when ei­
ther INT is asserted or an interface fault is detected.

The Interface Fault signal is asserted when the LCA device is
selected and CNTR is negated before seventeen bits have
been transferred. CNTR is asserted after the first command bit
is shifted in and is negated after the seventeenth bit is shifted
out. BINTFL TO is clocked by the system clock, SCLK, and
reset by the RSTCOS signal. The lOB PCSTS is configured as
a buffered input to signal external error conditions.

The microcontroller is able to address four register locations in
the LCA: two data registers, BRGA and BRGB, one error
register, BDMX, and one command complete register, BRC7.
Only three bits in the error register are used. They are bit 0 for
parity error, bit 4 for interface fault and bit 7 for write fault. Only
one bit in the command complete register is used. This is bit 0,
which has a value of zero when the command is completed.
The addresses and contents of the registers are shown in
Table 2.

A1 AO REGISTER
BIT NUMBER

76543210

0 0 REGISTER A

0 1 REGISTER B

1 0
ERROR

REGISTER

1 1
COMMAND

COMPLETE REGISTER

Table 2. Register Addresses and Contents

The LCA device implementation of the registers and multiplexer
is shown in Figure 11. When the interrupt signal is asserted,
the microcontroller reads the two data registers by setting the
A1 and AO address lines appropriately and asserting the RD
signal to the LCA device. These data registers contain the
command that is transferred from the disk controller through
the CMDBITA input. If the command is a request data
command, configuration or status data is written to these two
data registers by the microcontroller. These two bytes, plus a
parity bit that is generated by the parity generator in the LCA
device, are serially transferred to the disk controller over the
Config/Status Data line through RA_Q7. After all seventeen
bits have been transferred, the Command Complete signal is
asserted. If the command is not a request data command, the
microcontroller executes the command and upon completion,
writes a byte of zeros to the command complete register of the
LCA. When the command complete register is written with all
zeros, the Command Complete signal is asserted by the LCA
device.The command complete register may only be written,
not read. The status register contains error bits that are set
when errors are detected. This register may only be read and
not written.

~ Monolithic lRIlI Memories ~ 2·513

EJI

Building an ESDI Translator Using the M2064 Logic Cell Array

PWRGIN L.::">--t---i­
DSELD ---+---1 r+----+----,I../

PRDGIN I:::>--+--r-

RA_OO

RA_01

RA 02
RA=03

RA_~ -r~-r====t-~~::~~
RA_05
RA_Q6 -t----'
RA_07 --'--I"">.n----'

PCMD~~==~ ________ ~

DATAOUT --+-il----r-\

RA_07 --t= ______ -2~~

DSELD r:5=t::[) SHIFT CKCMD RSTCOS

PTREO

SCLK

WRFLT

RSTCOS

PARERR

DSELD-+--t>o--LJ-H--L..-!

CKCMD

SCLK

DSELD --t-r o-.....-~

CNTR SCLK

SCLK RSTCOS
RSTPGEN

PCSTS

SCLK

INTFLT

eSTS

Figure 10. Generation of the Attention Signal by the Four Possible Error Conditions

2·514 ~ Monolithic m Memories ~

Building an ESDI Translator Using the M2064 Logic Cell Array

oeUSOE

007
)--if------------t--L>-----P----L>-t--- 017

"}-l'---,H :>---.--1:>-1'--1-- 016

)-f------1H:>---.--I:H-+_ 015

)--I---------_+-D~..---I:>_+__I- Dl4

')-f---lH ~>---.--L>-I-t- 013

)-f--=--=:..=.--j'--C>--.--L:H-t-- 012

)--I------1H=>--.--L:H-+_ 011

)-f-----------=~_+-I:>-_-L:>_+__+- DID

Figure 11. Registers A, B, Error Register, and Multiplexer

~ MonolIthIc W Memories ~

DATA
BUS

2·515

Building an ESDI Translator Using the M2064 Logic Cell Array

017 -11---...&--r',"""

RS 07

016 -+--1---6--1'"

015 -+-+---6--1""--""

014 -t-t---6--r"""",

013 -t-t------r"""",

012-+-+---4----1""--....

011-+--I--~-r~

OIO-+-+---4----r--....

SHIFT
pess

Figure 11. Registers A, e, Error Register, and Multiplexer (Continued)

2·516 ~ Monolithic W Memories ~

Building an ESDI Translator Using the M2064 Logic Cell Array

Design Considerations
The circuit diagram of the programmed LCA device is shown in
Figure 12. This design implementation uses sixty-three of the
sixty-four CLBs within the LCA. This translates into a 98%
usage. The rightmost column of CLBs contains the multiplexer,
which selects between registers A, B, or the error register to
be placed on the data bus. Registers A and B are placed on the
third and second column from the right end, respectively. The
registers and multiplexer are placed physically close to each
other to simplify routing. The CLBs which execute a particular
function are placed physically next to each other. These
functions include the parity generator/checker, 17-state
counter, read gate/write gate logic, drive selection logic and
error detection logic. The read gate/write gate logic and the
drive selection logic, which require much I/O activity, are
placed in CLBs near the edges of the device.

Another consideration in implementing an LCA design is
routing. Long lines are available for signals that have to travel
a long distance within the LCA device. These lines can also be
used for signals that must have minimal skew between differ­
ent destinations. An automatic routing program is available in
the XACT software package.

Routing requires careful consideration when a design uses a
high percentage of the available CLBs (above 95%). Although
automatic routing is available, designs with high CLB usage
may require point-to-point routing (EDITNET command in
XACT). Some of the techniques that can be used are swapping
input pins, swapping CLBs, and implementing buffers in
unused sections of the CLBs. When swapping input pins, the
designer must be careful because certain functions, such as
the clock input to the flip-flop, may only be input on certain
pins. Swapping CLBs is very simple because the XACT
software provides a command for swapping CLBs, but

sometimes not all of the signals can be successfully rerouted.
Passing a signal through a CLB presents a routing channel that
is not otherwise available. However, a delay is added to the
signal. Usually, a combination of these techniques can be
used to successfully route a high-density design.

The high number of lOBs in the LCA device gives the designer
much flexibility in designing the pinout of the device. In this
design, thirty-five of the lOBs are used. The lOBs that are not
being used for the actual design are not left unused, but are
configured as outputs and are connected to various signals
within the LCA device to provide test points for the LCA device.
This greatly increases the testability of the design once it is
placed on the board.

XACT is used by the designer to define the CLBs and lOBs,
and to perform EDITNET. Alternately, the design may be input
using the schematic capture software offered by Daisy and
Futurenet. In these methods, an automatic place and route
software package divides the design into blocks that may be
implemented in CLBs and lOBs, and routes the CLBs and
lOBs automatically. Once the design has been completed, it may ~
be simulated using the software package P-SILOS. ~

Conclusion
The LCA device provides many advantages to the user. Its
high gate count and I/O capability could potentially replace
several PLDs in many applications, hence reducing board
space. The LCA device is preferred by many customers over
gate arrays because it is reprogrammable 'on-the-fly' and there
are no long design cycles and initial NRE cost of a gate array.
The current design file, XDES15.LCA, is available upon
request. The bit pattern and the .LCA file will be provided for
programming the LCA device in an EPROM.

~ Monolith/om Memories ~ 2·517

Building an ESDI Translator Using the M2064 Logic Cell Array

Figure 12. ESDI Translator LeA Design

2·518 ~ Monolithic W Memories ~

Writing a Tape Drive
Controller in PROSE

Introduction

The increasing complexity of today's computers is requiring in­
creased use of distributed control design techniques. Such a
system might include a 32-bit microprocessor as the Central
Processing Unit (CPU), a 16- or S-bit microcontroller as a periph­
eral controller, and a complex sequencer as a peripheral drive
controller. The new PROSE (PROgrammable SEquencer) de­
vice from Monolithic Memories offers a simple, fast, and effective
method for implementation of peripheral drive controllers.

This article will describe the design of a QIC-02 compatible tape
drive sequencer in the PROSE device. The design requirements
will be outlined, and then the design process will be described in
detail for a section of the design.

QIC·02 Tape Drive

The peripheral to be controlled by our circuit is a 114" streaming
tape drive that operates according to the QIC-02 interface stan­
dard. This standard specifies the command set and resulting tape
drive control sign~ls, as shown in Figure 1.

QIC-02 COMMANO*
COMMAND

07 06 05 04 03 02 01 DO

Invalid Command x x x x x x x x

Read Status 0 0 1 1 1 1 1 1

Beginning of Tape 1 1 0 1 1 1 1 0

Erase Entire Tape 1 1 0 1 1 1 0 1

Initialize Tape 1 1 0 1 1 0 1 1

Write 1 0 1 1 1 1 1 1

Read 0 1 1 1 1 1 1 1

Read File Mark 0 1 0 1 1 1 1 1

Write File Mark 1 0 0 1 1 1 1 1

*The 8 bit commands shown in this table are inverted from the
QIC-02 specification. This is because the PAL device has
been programmed to accept active low signal inputs as
defined by the QIC-02 specification.

Figura 1. QIC--02 Commands

Each command requires a certain sequence of events for execu­
tion. For example, the Erase Tape command requires rewinding
the tape, asserting the Erase and Initialize signals, moving the
tape forward to the end, removing Erase and Initialize, and then
rewinding the tape again. This type of function requires feedback
of current state information, and additional inputs, for next state
selection. This is the basic definition of a sequencer, or state
machine (Figure 2).

Sequencers are a common design element; they include any
digital device which traverses through a sequence of states in an
orderly fashion. A state is a set of values (a count) measured at
different parts of the circuit. State machines are often used for Ell
timing delays, control signal generation, arbitration, event moni-
toring, and multiple condition testing.

Our tape drive sequencer must provide the proper control signals
for the tape drive and then hold them until executed, monitor the
status of the tape drive, and watch for new commands from the
microcontroller. The block diagram of the system is shown in
Figure 3.

The peripheral microcontroller generates the S-bit QIC-02 com­
mands in response to the central 32-bit microprocessor. The
sequencer decodes the command, determining which of the
commands has been sent, and then begins execution of the
command.

Handshaking is performed by a Request signal from the micro­
controller, signifying that a valid command is available, and a
Ready signal from the sequencer, signifying that the command
has been decoded or executed and a new command can be sent
(Figure 4). Upon reset, the PROSE device asserts READY,
informing the peripheral controller that the tape drive is ready to
accept a command. The peripheral controller asserts REQUEST
after issuing a command on the eight-bit data bus. When the
PROSE device detects REQUEST asserted, READY is negated
and the command is decoded. After the command is decoded,
READY is asserted by the PROSE device, at which time RE­
QUEST is negated by the peripheral controller. When REQUEST
is negated, READY is negated by the PROSE device.

INPUTS

41602

COMBINATORIAL
LOGIC

Figura 2. General State Machine.

OUTPUTS

STATE

~ Monolithic W Memories ~ 2·519

Writing a Tape Drive Controller in PROSE

Afterthe PROSE device decodes the command, the command is
executed by outputting the proper drive codes and asserting the
proper signals. After the command has been completed, READY
is asserted by the PROSE device, informing the peripheral
controller that the next command may be issued.

Command Execution

The PROSE device must be reset after power up before any
command execution takes place. This is accomplished by
pulsing the Preset pin low. This places the PROSE device into the
Initialize state. The first command that is issued by the peripheral
controller must be a Select Drive command. If the correct drive
is selected, the PROSE device will enter a Drive Selected state.
A Select Drive command that selects an incorrect drive or any
other command will be ignored. Once in the Drive Selected state,
any command issued will be executed. The drive is unselected
and returned to the Initialize state by issuing a Select Drive
command for a different drive.

The following text describes the execution of each of the OIC-02
commands (see OIC-02 specification for timing diagrams):

Beginning of Tape Command

The Beginning ofTape command code directs the PROSE device
to output the Rewind drive code. This causes the tape drive to
rewind the tape. When BOT (Beginning Of Tape) is asserted by
the tape drive, the Rewind drive code is negated and READY is
asserted. BOT is asserted when the Beginning of Tape hole is
detected by the tape drive.

ONLINE

COMMAND

CPU kr-~ PERIPHERAL
CONTROLLER REQUEST

READY

11

Erase Command

The Erase command code directs the PROSE device to output
the Rewind drive code until BOT is asserted, then assert ERASE
and INITIALIZE. When ERASE is asserted, the tape drive
activates the erase head and moves the tape forward until EaT
(End OfTape) is asserted by the tape drive. EOTis asserted when
the End of Tape hole is detected by the tape drive. When EaT is
asserted, ERASE and INITIALIZE are negated and the Rewind
drive code is output until BOT is asserted. When BOTis asserted,
the Rewind drive code is negated and READY is asserted.

Initialize Command

The Initialize command code directs the PROSE device to assert
INITIALIZE and to output the Rewind drive code. When BOT is
asserted, the Rewind drive code is negated and the Fast Forward
drive code is output. When EaT is asserted, the Fast Forward
drive code is negated and the Rewind drive code is output.
Finally, when BOT is asserted, the Rewind drive code and
INITIALIZE are negated and READY is asserted.

Write File Mark Command

The Write File Mark command directs the PROSE device to
output the Write File Mark drive code. When FM is asserted, the
Write File Mark drive code is negated and READY is asserted.
FM is asserted after the file mark has been written.

EXECUTION

SEQUENCER TAPE
STATUS DRIVE

ill
1f

41603

Figure 3. Peripheral Controller System IncludIng Tape Drive Sequencer.

DATA BUS ___ -JX'-_____ VA_L_ID_C_O_M_M_A_N_D ____ ...JX'-_______ _

READY / ____ -----i

41604

Figure 4. Command Transfer Protocol.

2·520 ~ Monolithic m Memories l1

Writing a Tape Drive Controller in PROSE

Read Command

Priorto issuing the Read command, ONLINE must be asserted by
the peripheral controller. If ONLINE is not asserted when the
Read command code is decoded, the Invalid Command drive
code will be output and the PROSE device will wait for the next
command. When the Read command is issued and ONLINE is
asserted, the PROSE device outputs the Read drive code. Once
the Read drive code has been output, the Read command may be
terminated by either the tape drive or the peripheral controller.
The tape drive terminates the Read command by asserting FM.
FM is asserted when a file mark is detected. When this occurs,
the Read command code is negated and READY is asserted. The
peripheral controller may terminate the Read command by either
negating ONLINE or by issuing a Read File Mark command.
When ONLINE is negated, the Read drive code is negated and
the Rewind drive code is output until BOT is detected, at which
time READY is asserted. When the Read File Mark command is
issued, the Read drive code is negated and the Read File Mark
command is executed.

Read File Mark Command

The Read File Mark command directs the PROSE device to
output the Read File Mark drive code. The Read File Mark code
causes the tape drive to move to the next file mark. When FM is
asserted by the tape drive, the Read File Mark drive code is
negated and READY is asserted. FM is asserted when a file mark
is detected.

Read Status Command

The Read Status command directs the PROSE device to transfer
six bytes of status data to the peripheral controller. After the
command is decoded, the PROSE enables the first byte by
outputting the Status Byte 1 drive code and asserts READY. The
peripheral controller responds by reading the status byte and
asserting REQUEST. When the PROSE device detects RE­
QUEST asserted, READY is negated and the next status byte is
enabled. READY is not asserted until after the peripheral
controller negates REQUEST. The remaining five status bytes
are transferred in a similar manner. After all six bytes are
transferred, READY is asserted.

Write Command

We will look at the Write command in detail as an example of the
design process. Tho Writo command allows the peripheral
controller to write data onto the tape. Data is transferred via the
same eight-bit bus that provides the command code.

Prior to issuing the Write command, Online must be asserted by
the peripheral controller. If Online is not asserted when the Write
command code is decoded, the sequencer will assert the Invalid
Command signal and wait for the next command.

If Online is asserted when the Write command is decoded, the
sequencer will assert the Write signal for the tape drive. Data is
sent from the peripheral controller to the tape drive on the eight­
bit bus, and the data is written onto the tape.

The Write command may be terminated by either the tape drive
or the peripheral controller. The tape drive may cause the Write
commandto beterminated ifthe end of the tape is reached. When
the early warning hole is detected by the tape drive, it asserts
EWH. When this happens, the sequencer must negate the Write
signal and then assert the End of Media signal. It then waits to
decode the next command.

The peripheral controller may terminate the Write command
when all of the data has been written. This may be noted by
negating the Online signal, or by asserting the Request signal.
When Online is negated, the sequencer must negate the Write
signal. It then outputs the Write File Mark signal until the file mark
is activated by the tape drive. Once the file mark is activated, the
sequencer must rewind the tape.

When the Request signal is asserted by the peripheral controller,
the sequencer negates the Write signal. Itthen decodes the new
command, which usually would be a Write File Mark command.

State Diagram Representation ElIJ
All of this complex interaction can be described in a simple state
diagram. State diagrams are the universal language for describ-
ing state machines. The diagrams depict the two major opera-
tions in a state machine: control sequencing and output genera-
tion. Control sequencing is changing from present state to next
state. It can be direct, based only upon present state, or
conditional, based upon present state and input conditions.
Similarly, output generation can be direct, based upon present
state only, or conditional, based upon present state and input
conditions. The former is called a Moore state machine, while the
latter is a Mealy state machine.

Transitions for our tape drive sequencer depend on the state and
conditional inputs, as with the Request and Online inputs during
execution of the Write command. Outputs, .however, will depend
only on the present state; thus, our sequencer will be a Moore
state machine.

The state diagram for a Moore machine is simple to understand.
Each state is represented by a bubble, and each transition is
represented by an arrow. Conditions required for transitions, if
any, are listed next to tho arrows. Outputs associated with oach
state are listed with the state name in the bubble.

Write Command State Diagram

The state diagram for the Write command is shown below.
Thirteen states are shown. The diagram is entered from the top,
from the part of the state diagram that performs command
decoding. WRCMD is the state entered when the Write command
is decoded. In this state the sequencer asserts the Ready signal,
telling the peripheral controllerthat it has decoded the signal. The
sequencer then waits for the peripheral controller to remove the
Request signal before continuing to state WRCMDA, or A for
short.

In state A the sequencer immediately checks to make sure that
Online is asserted before beginning the Write sequence. If it is
not, the Invalid Command signal is output and the sequencer
enters another part of the state diagram (CMDERRA).

~ Monolithic W Memories l1 2·521

Writing a Tape Drive Controller in PROSE

If Online is asserted. the sequencer moves to state B. asserting
the Write signal to the tape drive to allow writing to begin. The
sequencer moves from states B. E. and F and back to B. until the
Write process is interrupted. The tape drive responds by moving
forward and writing the information provided on the eight·bit
data bus.

(COMMAND DECODING)

(DRVSELD)

(BOTCMDA)

41605
Figure 5. Write Command State Diagram.

As described. the Write command can be terminated by either the
tape drive or the peripheral controller. State B checks for
assertion of the EWH (Early Warning Hole) signal from the tape
drive. If asserted. the sequencer immediately negates the Write
signal in state C. and then asserts the EOM (End of Media) signal
to the peripheral drive controller in state D. The sequencer then
goes to the Drive Selected state (DRVSELD) and begins the
command decoding procedure in another part of the state
diagram.

State E checks for assertion of the Request signal. signalling the
end of the data to be written. In this case. the sequencer would
immediately negate the Write signal and go to the Drive Selected
state.

State F checks for removal of the Online signal. If Online is true.
the sequencer moves back to state Band continues writing. If not.
it will move to state G. removing the Write signal. and then state
H. outputting the Write File Mark signal. It then waits in state H
until the File Mark signal is activated by the tape drive. indicating
that the file mark has been written. When File Mark is activated.
the Write File Mark signal is removed in state I. and the sequencer
moves to the Beginning of Tape command sequence to rewind
the tape.

Device Selection

So far. the design has been described and defined without regard
to the implementation methodology. The complete sequencer
can be implemented in several medium·size discrete logic de­
vices. or one large custom circuit.

The best choice is often a programmable logic device. Program·
mabie logic provides the integration of custom logic with the quick
time·to·market of standard products. Especially important in this
application is the ability to adapt to design changes. The QIC-02
specification can be modified to enhance performance or add
features. Of course. any design errors can also be quickly fixed.
even after layout of the PC board.

Programmable logic devices offer the complexity to implement
large designs in few devices. At the same time. software support
tools allow very simple design entry. even of complex designs.
This design will require almost no additional work to describe for
PLD software. Device programmers provide an instant custom
device. and can even test the device immediately after
programming.

Selection of PROSE Device

The PROSE device is selected as the heart of this application.
The primary reason is the number of states required for implem·
entation of the sequencer. We saw that the Write command alone
had thirteen states. although some were transitions to other parts
of the state diagram. There are eight other commands required.
totaling over 100 states. Only the PROSE device provides
enough states in a single programmable chip.

Another requirement in many applications is high speed. The
PROSE device offers a maximum frequency of 30 MHz internally.
At the same time. the PROSE device has enough logic on board
to require very few surrounding logic chips.

2·522 ~ Manol/lhlo W Memories ~

Writing a Tape Drive Controller in PROSE

PROSE Device Description

The PROSE device has the architecture shown in Figure 6. It is
based on a 128x21 PROM array, providing 128 states of 21 bits
each. The 128 states will include the states WRCMD and its
following states from A through I. Eight of the twenty-one bits in
each state are the outputs of the device, providing signals such
as the Write and Ready signals.

The other thirteen bits in each state feed back internally for next
state selection. Six of the feedback signals feed back into a PAL
array, which is also fed by eight external inputs. These external
inputs are the condition inputs, such as the Request and Online
signals, which determine the next stnte. The feedback signals
determine which of these eight inputs will determine the next
branch.

The outputs of the PAL array are two address lines to the PROM
array. Before reaching the PROM array, however, these signals
go through two Exclusive-OR (XOR) gates controlled by feed­
back signals. These gates are used by the software to optimize
the fit of the design within the device, and will be described later.
The other five address lines to the PROM array are fed back
directly from the previous state. Thus, two of the lines can be
changed by input conditions, providing four-way branching capa­
bility from any state.

Expanding Inputs for the PROSE
Device

The PROSE device has a balanced architecture of eight inputs
and eight outputs. However, we already know that we need more
than eight inputs in the design. The eight bits of the command
code from the peripheral controller need to be decoded, along

1(7-0)

MOOE
SOl

OClK
ClK
PIE

416 06

--:....
Xl

~~ 14H2
PAL ARRAY XO 128X21

:=)~ PROM ARRAY

A(~

CS(5-0) XF(1-0)

SHAOOW& r--- SOO
OUTPUT

REGISTERS

6 2 5 .r 13 l'
0(7-0)

Figure 6. PMS14R21 Architecture

with the Request and Online signals, and the sequencer must
monitor the tape drive signals, including the Early Warning Hole
and File Mark signals already mentioned. In addition to these
signals, the sequencer must monitor the End of Tape and Begin­
ning of Tape signals from the tape drive, making a total of fourteen
inputs.

A simple solution is encoding the eight different eight-bit com­
mands into a three-bit command code before reaching the
PROSE device. This can be easily done in almost any 20-pin PAL
device. With a PALdevice as the solution, wecan easily add even
more logic surrounding the sequencer, including drive selection.
Drive selection logic requires that more commands be added to
the original eight, forcing the use of four bits for the encoded
commands. Three of the independent status signals from the
tape drive can also be combined in the PAL device (Beginning of
Tape, End of Tape, and File Mark), providing one Status signal.
(Early Warning Hole remains a separate input.)

The resulting logic block fits easily into a simple PAL20L8 combi- Ell
nato rial 24-pin PAL device (Figure 7). Several versions of this
device are available to choose from, including a CMOS device
offering zero standby power, and high-speed devices at 15
nanoseconds or less propagation delay.

The encoding of the command codes, including drive selection,
is shown in Figure 8. Now we must write the equations for
PALASM 2 software for implementation in a PAL20L8. Writing the
equations for each output is a simple matter; active-low equations
are written where each product term is one of the commands in
which that particular command code bit is zero. For example, the
equation for CC3 is simply the sum of the products defining the
Write, Read, Read File Mark, and Write File Mark commands.
The equation would be:

/CC3 07*/06* 05* 04* 03* 02* 01* DO (Write)

+ /07* 06* 05* 04* 03* 02* 01* 00 (Read)

+ /07* 06*/05* 04* 03* 02* 01* 00 (Read
File Mark)

+ 07*/06*/05* 04* 03* 02* 01* 00 (Write
File Mark)

where / means inversion, • means AND, and + means OR. The
equations can be minimized either by observation or by running
them through the program MINIMIZE in the PALASM 2 software
suite. The full PALASM 2 file can be simulated for design
verification, and then processed to create a JEDEC file for
programming.

416 07

00-07
OSO-OS1

FM
BOT
EOT

CCO-CC3

PAL20L8

STATUS

Figure 7. PAL Encoding Logic Block.

~ Monolithic W Memories ~ 2·523

Writing a Tape Drive Controller in PROSE

Expanding Outputs for the PROSE
Device

The section of the design that we looked at in detail required five
output signals: Ready, Invalid Command, Write, End of Media,
and Write File Mark. Other required outputs include Read, Read
File Mark, Fast Forward, Rewind, Erase, Initialize, and Drive
Selected. These twelve outputs already extend us beyond the
eight outputs available in the PROSE device. In addition, six
Enable Status bits are required, making a total of eighteen
outputs required.

Asimple solution can again be provided by a programmable logic
device, to decode outputs from the PROSE device into the
required output signals. The requirement for many outputs is met
by two PAL devices, the PAL6L 16 and PAL8L 14. However, even
faster solutions are provided by two PLE (PROM as Logic
Element) devices, the PLE5P16 and PLE6P16. These devices
are specialized PROMs, both with sixteen outputs. The PLE5P16
offers the highest speed at 18 ns propagation delay, and provides
an output enable, which can be useful when testing the tape drive
independent of the sequencer logic.

QIC-02 COMMAND
COMMAND

07 06 05 04 03

Invalid Command"" x x x x x

Select Drive 1" 1 1 1 1 1

Select Drive 2" 1 1 1 1 1

Select Drive 3" 1 1 1 1 1

Select Drive 4" 1 1 1 1 a

Read Status a a 1 1 1

Beginning of Tape 1 1 a 1 1

Erase Entire Tape 1 1 a 1 1

Initialize Tape 1 1 a 1 1

Write 1 a 1 1 1

Read a 1 1 1 1

Read File Mark a 1 a 1 1

Write File Mark 1 a a 1 1

In the PLE5P16 we want to decode four outputs from the PROSE
device into fourteen signals. The four signals to be left as direct
outputs from the PROSE device can be the signals used more
often, or those that require higher speed. In this case, Ready,
Drive Selected, Erase, and Initialize are left direct, while the other
signals are decoded through the PLE device. The equations for
the decoding are arbitrary, as long as every signal in asserted by
its own code. (None of these signals are to be asserted at the
same time.) The decoding is shown below.

The generation of the equations is similar to that shown previ­
ously. For example,

STSO = /CD3*/CD2*/CDl* COO

is the decoding for asserting the Enable Status byte a signal.

However, this time PLEASM software is used for design entry.
The design method is equivalent to that for PAL devices in
PALASM software, but the software creates a programming file in
the PROM format.

PAL COMMAND CODE

02 01 DO CC3 CC2 CC1 CCO

x x x 1 1 1 1

1 1 a 1 1 1 a

1 a 1 1 1 1 a

a 1 1 1 1 1 a

1 1 1 1 1 1 a

1 1 1 1 a 1 1

1 1 a 1 a 1 a

1 a 1 1 a a 1

a 1 1 1 a a a

1 1 1 a a 1 1

1 1 1 a a 1 a

1 1 1 a a a 1

1 1 1 a a a a

" If the drive is the incorrect drive number, the four bit command code is 1101
"" Any command code not shown above wi" result in an illegal command code.

Figure 8. PAL Command Codes Table.

2·524 ~ Monolithic W Memories ~

Writing a Tape Drive Controller in PROSE

CD3 CO2 CD1 COO SIGNAL ASSERTED

0 0 0 0 No Command

0 0 0 1 STSO (Enable Status byte 0)

0 0 1 0 STS1 (Enable Status byte 1)

0 0 1 1 STS2 (Enable Status byte 2)

0 1 0 0 STS3 (Enable Status byte 3)

0 1 0 1 STS4 (Enable Status byte 4)

0 1 1 0 STS5 (Enable Status byte 5)

0 1 1 1 EOM (End of Media)

1 0 0 0 RFM (Read File Mark)

1 0 0 1 WFM (Write File Mark)

1 0 1 0 READ (Read Enable)

1 0 1 1 WRITE (Write Enable)

1 1 0 0 FFWD (Fast Forward)

1 1 0 1 RWD (Rewind)

1 1 1 0 ICMD (Invalid Command)

1 1 1 1 No Command

Figure 9. PLE Devico Decoding

PROSE Design Specification

We are now ready to discuss the details of the design specifica­
tion for the PROSE device. The software used is a part of the
PALASM 2 software suite called PROASM for PROSE Assem­
bler. It requires almost no additional work on the part of the
designer; it simply requires a description of the state diagram.
PROASM has the following file format:

• Declaration Section
• State Section
• Conditions Section

Declaration Section

The Declaration Section is the location of the general information
about the design, including the design engineer's name and
company. It provides for device selection; in this case, we are
using the PROSE device, which has the part number PMS 14R21.
It also allows the definition of all of the inputs and output signal
names. Remember, four of the inputs are PAL device outputs
(CCO-CC3), and four of the outputs feed inputs to the PLE device
(CDO-CD3).

TITLE
PATTERN

QIC-02 COMMAND DECODER

REVISION B
AUTHOR KEN WON
COMPANY MMI
DATE JANUARY 19, 1987

; INPUT PIN

;INPUT PIN

;INPUT PIN

1 2 3 4
CLK DCLK /ONLlNE /REQUEST

5 6 7 8 9 10
/CCO /CC1 /CC2 /CC3 STATUS EWH
11 12
SOl GND

:OUTPUT PIN 13 14 15 16 17 18

;OUTPUT PIN

;OUTPUT PIN

State Section

PRESET SDO CD3 C02 COl COO

19 20 21 22
INITIALIZE ERASE DRSELD READY
23 24
MODE VCC

The next part of the design file is the State section. This section
begins with the keyword STATE. The first item required is
selection of either a Moore or a Mealy type state machine. As
discussed previously, a Moore type state machine is required.

STATE
MOORE_MACHINE

Next, several general or default values are specified. First is
selection of the programmable Preset/Enablefunction pin. Either
can be used: in this case, Preset is desired, so the keyword
MASTER_RESET is entered.

MASTER_RESET

Next are global default output values. Global default output
values are the values to be assigned to the outputs when the
design specification does not specify a particular value. This is
not used, so no default output function is entered. However, the
design file can be simplified by specifying a default value for the
outputs (either High or Low), and then only specifying the output
value when it differs from the default value.

Next are global default transitions or branches. Global default
branches are the branches to be taken when no branch is
specified in the design file. This is a method of not only simplifying
the design file, but also guaranteeing thatthere is a transition from
eve'ry state for every input condition. In this design, the default is
chosen to be HOLD STATE; this means that the sequencer will
remain in the same state if no other transition is enabled.

DEFAULT_BRANCH HOLD_STATE

Next is the specification of the state to enter after power-up. The
PROSE device has power-up preset, whereby all twenty-one f1ip­
flops power up into the logic One state. This state is called

~ Monolithic W Memories ~ 2·525

Ell

Writing a Tape Drive Controller in PROSE

POWER_UP. The transition from this state (on the first clock
edge) shows how transition equations are written. The format is

meaning that when in State X, if condition A is true the machine
will transition to state Y. In this design, we want to transition to
state INIT on any condition, so the equation is written

POWER_UP := VCC -> INIT

where VCC means unconditionally.

The first transition in the Write command state diagram requires
two branches. The local default branch is indicated by the + sign,
which is the "otherwise" operator. Thus, from state WRCMD,
we have

WRCMD : = REQ - > WRCMD
+-> WRCMDA

which means "if REO (Request) is true, go to state WRCMD (stay
in the same state), otherwise (if REO is not true) go to state
WRCMDA."

The remaining transition equations are written similarly. In effect,
the arrows in the state diagram are directly transcribed into
arrows in the equations.

WRCMDA : = ONLN -> WRCMDB
+-> CMDERRA

WRCMDB : = EW -> WRCMDC
+-> WRCMDE

WRCMDC : = VCC -> WRCMDD

WRCMDD := VCC -> DRVSELD

WRCMDE := REQ -> DRVSELD
+-> WRCMDF

WRCMDF := ONLN -> WRCMDB
+-> WRCMDG

WRCMDG := VCC -> WRCMDH

WRCMDH := STS -> WRCMDI
+-> WRCMDH

WRCMDI := VCC -> BOTCMDA

Note that the equation for WRCMDH does not need the second
line; the global default transition is to stay in the same state, so it
does not need to be specified here.

Output Definition

The next task is to define the eight outputs for each of these
states. Outputs are defined in the form of an equation. For
example,

means that in state X, output 1 will be High and output 2 will be
Low. If other outputs exist, they will be assigned their default
values.

Output equations for the Write command section are written
according to the state diagram. In all of the Write states, Drive
Selected (DRVSELD) remains active. Thus, in state WRCMD
only Drive Selectod and the Ready signal are active, telling the
peripheral controller that the Write command has been decoded
and is ready to be executed. The resulting output equation for
state WRCMD is

WRCMD.OUTF:= READY*/CD3*/CD2*/CD1*/CDO
/ERASE/INITIALIZE* DRSELD

The other states have similar output equations, translating the
required output signal to the appropriate encoding for the PLE
device to decode.

WRCMDA.OUTF := /READY*/CD3*/CD2*/CD1*/CDO
/ERASE/INITIALIZE* DRSELD

WRCMDB.OUTF := /READY* CD3*/CD2* CD1* COO
/ERASE/INITIALIZE* DRSELD

WRCMDC.OUTF := /READY*/CD3*/CD2*/CD1*/CDO
/ERASE/INITIALIZE* DRSELD

WRCMDD.OUTF := /READY*/CD3* CD2* CD1* COO
/ERASE/INITIALIZE* DRSELD

WRCMDE.OUTF := /READY* CD3*/CD2* CD1* CDO
/ERASE/INITIALIZE* DRSELD

WRCMDF.OUTF := /READY* CD3*/CD2* CD1* CDO
/ERASE/INITIALIZE* DRSELD

WRCMDG.OUTF := /READY*/CD3*/CD2*/CD1*/CDO
/ERASE/INITIALIZE* DRSELD

WRCMDH.OUTF := /READY* CD3*/CD2*/CD1* COO
/ERASE/INITIALIZE* DRSELD

WRCMDI.OUTF := /READY*/CD3*/CD2*/CD1*/CDO
/ERASE/INITIALIZE* DRSELD

Again, if default output values were used, these equations could
be extremely simplified.

Conditions Section

The final section is the Conditions section, designated by the
keyword Conditions. This section defines the conditions used in
the state equations. In this design, the conditions are simply the
inputs to the PROSE device, and are straightforward:

CONDITIONS

ONLN = ONLINE
STS = STATUS
EW = EWH
REQ = REQUEST

Other conditions used in the design file are also placed in this
Conditions section.

2·526 ~ Monolithlo W Memories ~

Writing a Tape Drive Controller in PROSE

Automatic State Assignment

The other sections of the design file are completed in a similar
manner, and the whole design is assembled by PROASM soft­
ware. A key feature of PROASM software, in addition to design
verification, is automatic state assignment. State locations in the
PROM and conditional product terms in the PAL array are used
to the greatest possible efficiency, to provide the best fit of the
logic within the device.

The automatic fitting is easily seen in Figure 10. Each individual
state can branch to one of four locations: these four locations form
a "primary location." For example, the hex addresses 1 A, 3A, 5A,
and 7 A form a primary location, which can be designated by the
smallest address, 1 A.

The software optimizes use of these primary locations to elimi­
nate excessive duplication of states in different primary locations.
For example, the state WRCMD is duplicated in primary location

1A 19 39

RDCMDA RDCMD

79

5

45

43 63 42 62

CMDERRB CMDERRC

416 10

Figure 10. State Assignments for the Six Primary PROM
Locations Used for the Write Command Sequence.

Arrow Indicate Potential State Transitions, to a Set of
Circled Next States. All Next States Must be in the Same

Primary Location.

1 A (hex address 3A) and 19 (hex address 79). This duplication
is necessary because of the branch from WRCMD to either
WRCMD itself or WRCMDA (or A in the shortened form). The
branch cannot be made to the primary location where WRCMD
already exists, because the other three locations have already
been used. Thus, WRCMD must be duplicated in another primary
location which has an open location for state A.

The software then puts the two-way branch from state A in primary
location 5. It then makes use of the other half of the primary
location for the two-way branch from state B. However, when it
then assigns the two-way branch from state F to states B or G, it
must duplicate B in primary location 4 since there is no room left
in its primary location (5) for G.

Note that the software avoids duplication of state DRVSELD,
however. The two-way branch from state E to states DRVSELD
or F is placed in the other half of primary location 4. When
DRVSELD is branched to again from state 0, the same location
can be used.

This duplication avoidance is where the XOR gates are used. To
place a branch in the lower order half of a primary location, the
branch addresses must be 00 or 01. This is accomplished by
making the XOR feedback 00 and allowing a PAL product term to
determine whether the second address bit should be a 1. To use
the higher order half of a primary location (branch addresses 10
or 11), the XOR feedback would be made 10 and again a PAL
product term would be used to determine the other bit. XOR
feedback is also used to determine "right or left side" of a primary
location, or to use a product term that already exists on one side
of the PAL array.

The PROASM software provides detailed implementation re­
sults, showing how the states and product terms were assigned
for every state and transition.

PROSIM SimUlation

The entire sequencer can be simulated by PROSIM software, to
verify the design. This can be done before any parts are
programmed. Simulation results can be added to the program­
ming file to provide automatic testing after programming.

Completed Design

Thecomplete design required less than a week to implement from
scratch. Two days were required to define the application. Only
one day was required to write the PROSE design specification.
Simulation and design checking took an additional day. Only half
a day each were required for the PAL and PLE device designs.
This included revisions to the PAL and PROSE devices to fix
minor design errors. The complete design is shown in Figure 11,
and the design files are shown on the following pages.

~ MonolithIc W MemorIes ~ 2·527

Writing a Tape Drive Controller in PROSE

Conclusion

Programmable logic devices were once the glue logic that tied
together the intelligence of a digital system. Today, advanced
chips such as the PROSE device are capable of implementing
distributed control functions and make up the heart of the control
of the system. With complementary advanced design tools
available with PALASM 2 software, PLDs are an effective ap­
proach to even the most complex tasks.

READY

ONLINE

REQUEST

07
24
23

D6
05

3 22 llJ20

D4
4 21 rn 19

5 co 20 ~ 18
D3

6 ~ 19 8 0..17
02
01

7 :;i 18 16
8 0..17 15

DO 16 14
15 13

The PROSE device has been designed to implement a complex
tape drive sequencer. Design implementation in the PROSE
device is made easy for several reasons, including:

1. Design file requires merely transcription of the state diagram
2. Software automatically optimizes fit
3. Programmability of the device allows design errors to be fixed

quickly

As a result, the complete tape drive sequencer required only four
days to design and implement.

DRVSELD
ERASE
INITIALIZE
STSO
ST81
ST82

24 ST83
23 ST84
22 ST85

4 21 RFM
5 <D20 WFM
6 e; 19 READ
7 ~ 18

COO
8 0..17 WRITE

COl
9

CO2
16 FFWO

10 15 RWO
CD3

11 14 INVO CMO
12 13 EOM

416 11

Figure 11. QIC-02 Command Sequencer

2·528 ~ Monolithic W Memories ~

Writing a Tape Drive Controller in PROSE

THIS PAL OEVICE IS PART OF THE QIC-02 COMMANO SEQUENCER
OESIGN. THE PRIMARY PURPOSE OF THIS PAL OEVICE IS TO ENCOOE
8 BIT COMMANOS INTO 4 BIT COMMANO COOES. IT IS ALSO USEO TO
ENCOOE TAPE ORIVE STATUS SIGNALS ANO SELECT THE ORIVE NUMBER.

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
OATE

QIC-02 COMMANO OECOOER PAL

B
KEN WON
MONOLITHIC MEMORIES
JANUARY 26, 1987

CHIP QIC 02_CMO_PAL PAL20L8

07 06 05 04 03 02 01 00 OSO OSl FM GNO
BOT EOT NC /OSELO /CC2A /STATUS CC3 CC2 CCI ceo NC VCC

EQUATIONS

STATUS

/CCO

/CCI

/CC2

/CC3

OSELO

/EOT*/BOT*/FM

07*06*/05*04*03*02*01*/00
+ 07*06*/05*04*03*/02*01*00
+ 07*/06*/05*04*03*02*01*00
+ /07*06*05*04*03*02*01*00
+ 07*06*05*04*OSELO

07*06*/05*04*03*02*/01*00
+ 07*06*/05*04*03*/02*01*00
+ 07*/06*/05*04*03*02*01*00
+ /07*06*/05*04*03*02*01*00
+ 07*06*05*04*/OSELO

07*06*/05*04*03*02*01*/00
+ 07*06*/05*04*03*02*/01*00
+ 07*06*/05*04*03*/02*01*00
+ 07*/06*05*04*03*02*01*00
+ 07*/06*/05*04*03*02*01*00
+ /07*06*/05*04*03*02*01*00
+ /07*06*05*04*03*02*01*00
+ /07*/06*05*04*03*02*01*00

07*/06*05*04*03*02*01*00
+ 07*/06*/05*04*03*02*01*00
+ /07*06*05*04*03*02*01*00
+ /07*06*/05*04*03*02*01*00

/00*/OSl*/OSO*01*02*03
+ /01*/OSl*OSO*00*02*03
+ /02*OSl*/OSO*00*01*03
+ /03*OSl*OSO*00*01*02

SIMULATION

iASSERT STATUS TO PMS14R21

BOT COMMAND
INITIALIZE
WRITE FILE MARK
READ
SELECT DRIVE

ERASE
INITIALIZE
WRITE FILE MARK
READ FILE MARK
UNSELECT DRIVE

BOT COMMAND
ERASE
INITIALIZE
WRITE
WRITE FILE MARK
READ FILE MARK
READ
READ STATUS
(MINIMIZATION REDUCES
PRODUCT TERMS)
WRITE
WRITE FILE MARK
READ
READ FILE MARK

DRIVE
DRIVE
DRIVE
DRIVE

SELECT
SELECT
SELECT
SELECT

i THIS SIMULATION FILE TESTS THE OUTPUT FOR ALL VALID ANO ONE INVALIO
i COMMAND INPUT

TRACE ON 07 06 05 04 03 02 01 DO FM EOT
SETF 07 06 /05 04 03 02 01 /00
SETF 07 06 /05 04 03 02 /01 DO
SETF 07 06 /05 04 03 /02 01 DO
SETF 07 /06 05 04 03 02 01 DO
SETF 07 /06 /05 04 03 02 01 00
SETF /07 06 05 04 03 02 01 DO
SETF /07 06 /05 04 03 02 01 00
SETF /07 /06 05 04 03 02 01 DO
SETF /07 06 05 04 /03 /02 01 00
SETF EOT
SETF /EOT
SETF BOT
SETF /BOT
SETF FM
SETF /FM
SETF OSl /OSO
SETF 07 06 05 04 03 /02 01 DO
SETF 07 06 05 04 03 02 /01 DO
TRACE_OFF

BOT CCO CCI CC2 CC3 /STATUS /DSELO
iBEGINNING OF TAPE
iERASE
iINITIALIZE
iWRITE
iWRITE FILE MARK
iREAO
iREAO FILE MARK
iREAO STATUS
iINVALIO COMMANO
iASSERT EOT
iNEGATE EOT
iASSERT BOT
iNEGATE BOT
iASSERT FM
iNEGATE FM
iSET ORIVE NUMBER TO 3
iSELECT DRIVE 3
iUNSELECT DRIVE 3

~ Monolithic W Memories l1 2·529

2·530

Writing a Tape Drive Controller in PROSE

THIS IS A SECOND REVISION OF AN APPLICATION FOR THE PROSE DEVICE.
THE ORIGINAL APPLICATION IS CALLED l4R2l.APP. THIS APPLICATION
IMPLEMENTS A QIC-02 COMMAND DECODER USING A PROSE DEVICE, A PAL
DEVICE, AND A PLE DEVICE. THE PROSE DEVICE FILE IS CALLED
CMD_PAL.APP AND THE PLE DEVICE FILE IS CALLED CMD PLE.APP.

TITLE QIC-02
PATTERN
REVISION
AUTHOR
COMPANY
DATE

CHIP

COMMAND DECODER

B
KEN WON
MMI
JANUARY 19, 19B7

PMS14R21

CLK OCLK /ONLINE /REQUEST /CCO /CCI /CC2 /CC3 STATUS EWH SOl GND
PRESET SOO CD3 C02 COl COO INITIALIZE ERASE DRSELD READY MODE VCC
STATE
MOORE MACHINE
MASTER RESET
DEFAULT BRANCH HOLD STATE
POWER_UP :=VCC->INIT·

i@@@@@@ EQUATIONS @@@@@@

;****** DRIVE SELECTION ******
INIT := REQ

DRVSELDA := CONDO

DRVSELDB := CONDl

DRVSELDC := COND2

DRVSELDD := COND3

DRVSELDE := REQ

DRVSELDF := VCC

->

+->
->

+->
->

+->
->

+->
->

+->
->

+->
->

DRVSELDA

INIT
DRVSELDB
INIT
INIT
DRVSELDC
INIT
DRVSELDD
INIT
DRVSELDE
DRVSELDE
DRVSELDF
DRVSELD

;IF /REQUEST IS TRUE, CHECK
; FOR DRIVE SELECTION
;OTHERWISE GOTO INIT

;DRIVE IS SELECTED
;WAIT FOR REQ DEACTIVATED
;THEN GOTO DRVSELDF
;DRIVE SELECTION COMPLETE

INIT.OUTF:= /READY*/CD3*/CD2*/CD1*/CDO*/ERASE*/INITIALIZE*/DRSELD
DRVSELDA.OUTF:= READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*/DRSELD
DRVSELDB.OUTF:= READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*/DRSELD
DRVSELDC.OUTF:= READY*/CD3*/CD2*/CD1*/CDO*/ERASE*/INITIALIZE*/DRSELD
DRVSELDD.OUTF:= READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*/DRSELD
DRVSELDE.OUTF:= /READY*/CD3*/CD2*/CD1*/CDO*/ERASE*/INITIALIZE*/DRSELD
DRVSELDF.OUTF:= READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*/DRSELD
ORVSELD.OUTF:= /READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*DRSELD
;****** COMMAND-DECODING ******
DRVSELD := REQ

CMDDECA := COND3

RDWRCMD := COND2

RDWRCMDA := CONDl

RDWRCMDB := CONDO

FMCMD := CONDO

CMDDECB := COND2

CMDDECC := CONDI

CMDDECD := CONDO

CMDDECE := CONDO

-> CMDDECA

+:...> DRVSELD
-> RDWRCMD

+-> CMDDECB

-> RDWRCMDA

+-> CMDERR
-> FMCMD

+-> RDWRCMDB
-> RDCMD

+-> WRCMD
-> WFMCMD

+-> RFMCMD

-> CMDDECC

+-> DESELDA

-> CMDDECD
+-> CMDDECE
-> INITCMD

+-> ERASECMD
-> BOTCMD

+-> RDSTSCMD

;IF /REQUEST IS TRUE,
; DECODE COMMAND
;OTHERWISE GOTO DRVSELD
;IF CC3 IS TRUE, GOTO
; READ/WRITE DECODING
;OTHERWISE CONTINUE
; COMMAND DECODING
;IF CC2 IS TRUE, GOTO
; READ/WRITE DECODING
;OTHERWISE GOTO CMDERR
;IF CCl IS TRUE, COMMAND
; IS A FILE MARK COMMAND
;OTHERWISE READ OR WRITE
;IF CCO TRUE, COMMAND READ
;OTHERWISE COMMAND IS WRITE
;IF CCO IS TRUE, COMMAND IS
; WRITE FILE MARK
;OTHERWISE COMMAND IS READ
; FILE MARK
;IF CC2 IS TRUE, CONTINUE
; COMMAND DECODING
;OTHERWISE CHECK FOR
; DESELECTING DRIVE
;CONTINUE DECODING COMMAND
;CONTINUE DECODING COMMAND
;IF CCO TRUE, COMMAND INIT
;OTHERWISE COMMAND IS ERASE
;IF CCO TRUE, COMMAND BOT
;OTHERWISE COMMAND IS READ
; STATUS

~ Monollthlem Memories ~

Writing a Tape Drive Controller in PROSE

CMDDECA.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDDECB.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDDECC.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDDECD.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDDECE.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDWRCMD.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDWRCMDA.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDWRCMDB.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
FMCMD.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** DESELECT DRIVE ******
DESELDA CONDl -> DESELDB ;CONTINUE CHECKING FOR

DESELECT COMMAND
+-> DESELDC ;OTHERWISE GOTO DESELDA

DESELDB := CONDO -> CMDERR ;IF CCO IS TRUE, COMMAND
IS INVALID

+-> DESELDD iOTHERWISE DESELECT DRIVE
DESELDC := CONDO -> DRVSELDE ;IF CCO IS TRUE, GOTO DRIVE

SELECTION
+-> CMDERR ;OTHERWISE COMMAND INVALID

DESELDD := REO -> DESELDD ;WAIT FOR REO DEACTIVATED
+-> DESELDE iTHEN GOTO DESELDE

DESELDE := VCC -> INIT ;GOTO DRIVE SELECTION

DESELDA.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
DESELDB.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
DESELDC.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
DESELDD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
DESELDE.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** INVALID COMMAND ******
CMDERR := REO -> CMDERR ;WAIT FOR REO DEACTIVATED

+-> CMDERRA iTHEN OUTPUT INVALID
COMMAND CODE

CMDERRA VCC -> CMDERRB iINVALID COMMAND CODE
CMDERRB := VCC -> CMDERRC ;NEGATE CODE
CMDERRC := VCC -> DRVSELD iGOTO COMMAND DECODING

CMDERR.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDERRA.OUTF:= READY*CD3*CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDERRB.OUTF:= READY*CD3*CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
CMDERRC.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** BOT COMMAND ******
BOTCMD REO -> BOTCMD iWAIT FOR REO DEACTIVATED

+-> BOTCMDA iTHEN REWIND COMMAND CODE
BOTCMDA := STS -> BOTCMP ;WHEN STS IS TRUE, NEGATE

OUTPUT CODE
BOTCMP := VCC -> DRVSELD iGOTO DRVSELD

BOTCMD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
BOTCMDA.OUTF:= READY*CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
BOTCMP.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** INITIALIZE COMMAND ******
INITCMD := REO -> INITCMD

+-> INITCMDA

INITCMDA := STS -> INITCMDB

INITCMDB := VCC -> INITCMDC
INITCMDC := STS -> INITCMDD

INITCMDD := VCC -> INITCMDE
INITCMDE := STS -> INITCMP

INITCMP := VCC -> DRVSELD

iWAIT FOR REO DEACTIVATED
iTHEN OUTPUT REWIND COMMAND

CODE & ASSERT INITIALIZE
;WHEN STS IS TRUE, NEGATE

COMMAND CODE
iASSERT FFWD COMMAND CODE
;WHEN STS IS TRUE, NEGATE

COMMAND CODE
;ASSERT REWIND COMMAND CODE
iWHEN STS IS TRUE, NEGATE
i COMMAND CODE & INITIALIZE

INITCMD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
INITCMDA.OUTF:= READY*CD3*CD2*/CDl*CDO*/ERASE*INITIALIZE*DRSELD
INITCMDB.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*INITIALIZE*DRSELD
INITCMDC.OUTF:= READY*CD3*CD2*/CDl*/CDO*/ERASE*INITIALIZE*DRSELD
INITCMDD.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*INITIALIZE*DRSELD
INITCMDE.OUTF:= READY*CD3*CD2*/CDl*CDO*/ERASE*INITIALIZE*DRSELD
INITCMP.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

~ Monolithic W Memories ~ 2·531

2·532

Writing a Tape Drive Controller in PROSE

;****** ERASE COMMAND ******
ERASECMD := REQ -> ERASECMD ;WAIT FOR /REQ DEACTIVATED

+-> ERASECMDA ;THEN REWIND COMMAND CODE
ERASECMDA := STS -> ERASECMDB ;WHEN STS IS TRUE, NEGATE

COMMAND CODE
ERASECMDB := VCC -> ERASECMDC ;ASSERT ERASE & INITIALIZE
ERASECMDC := STS -> ERASECMDD ;WHEN STS IS TRUE, NEGATE

, ERASE AND INITIALIZE
ERASECMDD := VCC -> ERASECMDE ;OUTPUT REWIND COMMAND CODE
ERASECMDE := STS -> ERASECMDF ;WHEN STS IS TRUE, NEGATE

COMMAND CODE
ERASECMDF := VCC -> DRVSELD ;GOTO DRVSELD

ERASECMD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
ERASECMDA.OUTF:= READY*CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
ERASECMDB.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
ERASECMDC.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*ERASE*INITIALIZE*DRSELD
ERASECMDD.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
ERASECMDE.OUTF:= READY*CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
ERASECMDF.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** READ STATUS COMMAND ******
RDSTSCMD := REQ -> RDSTSCMD ;WAIT FOR REQ DEACTIVATED

+-> RDSTSAA ;THEN NEGATE READY
RDSTSAA := VCC -> RDSTSA ;ENABLE STATUS BYTE 0
RDSTSA := VCC -> RDSTSB ;ASSERT READY
RDSTSB := REQ -> RDSTSC ;WHEN REQUEST IS ACTIVATED,

NEGATE READY
RDSTSC := REQ -> RDSTSC ;WAIT FOR REQUEST TO BE

DEACTIVATED
+-> RDSTSD ;THEN ENABLE STATUS BYTE 1

RDSTSD := VCC -> RDSTSE ;ASSERT READY
RDSTSE := REQ -> RDSTSF ;WHEN REQUEST IS ACTIVATED,

, NEGATE READY
RDSTSF := REQ -> RDSTSF ;WAIT FOR REQ DEACTIVATED

+-> RDSTSG ;THEN ENABLE STATUS BYTE 2
RDSTSG := VCC -> RDSTSH ;ASSERT READY
RDSTSH := REQ -> RDSTSI ;WHEN REQUEST IS ACTIVATED,

NEGATE READY
RDSTSI := REQ -> RDSTSI iWAIT FOR REQ DEACTIVATED

+-> RDSTSJ ;THEN ENABLE STATUS BYTE 3
RDSTSJ := VCC -> RDSTSK ;ASSERT READY
RDSTSK := REQ -> RDSTSL ;WHEN REQUEST IS ACTIVATED,

NEGATE READY
RDSTSL := REQ -> RDSTSL ;WAIT FOR REQ DEACTIVATED

+-> RDSTSM ;THEN ENABLE STATUS BYTE 4
RDSTSM := VCC -> RDSTSN ;ASSERT READY
RDSTSN : = REQ -> RDSTSO ;WHEN REQUEST IS ACTIVATED,

, NEGATE READY
RDSTSO := REQ -> RDSTSO ;WAIT FOR REQ DEACTIVATED

+-> RDSTSP iTHEN ENABLE STATUS BYTE 5
RDSTSP : = VCC -> RDSTSQ ;ASSERT READY
RDSTSQ := REQ -> RDSTSR ;WHEN REQUEST ACTIVATED,

NEGATE READY & COMMAND
RDSTSR := REQ -> RDSTSR ;WAIT FOR REQ DEACTIVATED

+-> DRVSELD ;THEN GOTO DRVSELD

RDSTSCMD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSAA.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSA.OUTF:= READY*/CD3*/CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSB.OUTF:= /READY*/CD3*/CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSC.OUTF:= READY*/CD3*/CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSD.OUTF:= READY*/CD3*/CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSE.OUTF:= /READY*/CD3*/CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSF.OUTF:= READY*/CD3*/CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSG.OUTF:= READY*/CD3*/CD2*CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSH.OUTF:= /READY*/CD3*/CD2*CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSI.OUTF:= READY*/CD3*/CD2*CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSJ.OUTF:= READY*/CD3*CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSK.OUTF:= /READY*/CD3*CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSL.OUTF:= READY*/CD3*CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSM.OUTF:= READY*/CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSN.OUTF:= /READY*/CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSO.OUTF:= READY*/CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSP.OUTF:= READY*/CD3*CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSQ.OUTF:= /READY*/CD3*CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDSTSR.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

~ Monollthlo m Memories ~

Writing a Tape Drive Controller in PROSE

;****** WRITE FILE MARK COMMAND ******
WFMCMD := REQ -> WFMCMD ;WHEN REQUEST DEACTIVATED,

NEGATE READY & COMMAND
+-> WFMCMDA ;OTHERWISE GOTO WFMCMDA

WFMCMDA := VCC -> WFMCMDB ;OUTPUT WFM COMMAND CODE
WFMCMDB := STS -> WFMCMDC iWHEN STS IS ACTIVATED,

NEGATE COMMAND CODE
WFMCMDC := VCC -> DRVSELD ;GOTO DRVSELD

WFMCMD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
WFMCMDA.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
WFMCMDB.OUTF:= READY*CD3*/CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD
WFMCMDC.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** READ FILE MARK COMMAND ******
RFMCMD := REQ -> RFMCMD ;WHEN REQUEST DEACTIVATED,

, NEGATE READY & COMMAND
+-> RFMCMDA ;OTHERWISE GOTO RFMCMDA

RFMCMDA := VCC -> RFMCMDB iOUTPUT RFM COMMAND CODE
RFMCMDB := STS -> RFMCMDC iWHEN STS IS TRUE, NEGATE

COMMAND CODE
RFMCMDC := VCC -> DRVSELD ;GOTO DRVSELD

RFMCMD.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RFMCMDA.OUTF READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RFMCMDB.OUTF = READY*CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RFMCMDC.OUTF = READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD

;****** READ COMMAND ******
RDCMD := REQ -> RDCMD ;WHEN REQUEST DEACTIVATED,

NEGATE READY
+-> RDCMDA ;OTHERWISE GOTO RDCMD

RDCMDA := ONLN -> RDCMDB iIF ONLINEB IS TRUE, OUTPUT
, READ COMMAND CODE

+-> CMDERRA iIF ONLINEB FALSE, OUTPUT
, INVALID COMMAND CODE

RDCMDB := STS -> RDCMDC ;IF FILE MARK IS FOUND,
, NEGATE COMMAND CODE

+-> RDCMDD iOTHERWISE GOTO RDCMDD
RDCMDD ::::: ONLN -> RDCMDE iIF ONLINE IS TRUE, GOTO

RDCMDE
+-> RDCMDF ;OTHERWISE NEGATE COMMAND

, CODE
RDCMDF := VCC -> RDCMDG iOUTPUT REWIND COMMAND CODE
RDCMDG := STS -> RDCMDC ;NEGATE COMMAND CO~E
RDCMDE := REQ -> DRVSELD ;IF REQUEST IS TRUE, GOTO

DRVSELD
+-> RDCMDB ;OTHERWISE GOTO RDCMDB

RDCMDC := VCC -> DRVSELD ;GOTO DRVSELD

RDCMD.OUTF:= READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDA.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDB.OUTF:= /READY*CD3*/CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDC.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDD.OUTF:= /READY*CD3*/CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDE.OUTF:= /READY*CD3*/CD2*CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDF.OUTF:= /READY*/CD3*/CD2*/CDl*/CDO*/ERASE*/INITIALIZE*DRSELD
RDCMDG.OUTF:= /READY*CD3*CD2*/CDl*CDO*/ERASE*/INITIALIZE*DRSELD

;****** WRITE COMMAND ******
WRCMD := REQ -> \iRCMD ;WHEN REQUEST DEACTIVATED,

NEGATE READY
+-> WRCMDA ;OTHERWISE GOTO WRCMD

WRCMDA := ONLN -> WRCMDB ;IF ONLINE IS TRUE, OUTPUT
, WRITE COMMAND CODE

+-> CMDERRA ;IF ONLINE FALSE, OUTPUT
INVALID COMMAND CODE

WRCMDB := EW -> WRCMDC ;IF EWH IS DETECTED,
NEGATE COMMAND CODE

+-> WRCMDE iOTHERWISE GOTO WRCMDE
WRCMDC := VCC -> WRCMDD ;OUTPUT END OF MEDIA

COMMAND CODE
WRCMDD := VCC -> DRVSELD ;GOTO DRVSELD
WRCMDE := REQ -> DRVSELD ;IF REQUEST IS TRUE, GOTO

, DRVSELD
+-> WRCMDF ;OTHERWISE GOTO WRCMDF

WRCMDF := ONLN -> WRCMDB ;IF ONLINEB IS TRUE, GOTO
; WRCMDB

~ Monolithic W Memories ~

Ell

2·533

2·534

Writing a Tape Drive Controller in PROSE

+-> WRCMDG ;NEGATE COMMAND CODE
WRCMDG
WRCMDH

:= VCC -> WRCMDH ;OUTPUT WFM COMMAND CODE
:= STS -> WRCMDI ;IF FM IS ACTIVATED, GOTO

WRCMDI
+-> WRCMDH ;OTHERWISE GOTO WRCMDH

WRCMDI := VCC -> BOTCMDA ;REWIND TAPE

WRCMD.OUTF:= READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDA.OUTF:= /READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDB.OUTF:= /READY*CD3*/CD2*CDI*CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDC.OUTF:= /READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDD.OUTF:= /READY*/CD3*CD2*CDI*CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDE.OUTF:= /READY*CD3*/CD2*CDI*CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDF.OUTF:= /READY*CD3*/CD2*CDI*CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDG.OUTF:= /READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDH.OUTF:= /READY*CD3*/CD2*/CDI*CDO*/ERASE*/INITIALIZE*DRSELD
WRCMDI.OUTF:= /READY*/CD3*/CD2*/CDI*/CDO*/ERASE*/INITIALIZE*DRSELD

;@@@@@@ CONDITIONS @@@@@@

CONDITIONS
CONDO CCO
CONDI CCI
COND2 CC2
COND3 CC3
ONLN ONLINE
STS STATUS
EW EWH
REQ REQUEST

:@@@@@@ SIMULATION INPUT @@@@@@

SIMULATION
TRACE ON /CCO /CCI /CC2 /CC3 /REQUEST /ONLINE CD3 CD2 CDI CDO STATUS ERASE

INITIALIZE READY DRSELD
SETF /CC3 /CC2 /CCI /CCO /REQUEST /ONLINE /STATUS /EWH /PRESET /CLK
SETF PRESET ;RESET DEVICE
CLOCKF CLK ;SELECT DRIVE
SETF /CC3 /CC2 /CCI CCO
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /CC3 /CC2 /CCI /CCO ;INVALID COMMAND
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /CC3 CC2 /CCI CCO ;BOT COMMAND
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF STATUS ;ASSERT STATUS, BOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK

~ Monolithic IFJJl Memories ~

Writing a Tape Drive Controller in PROSE

:)1::'1'1" /(.;(.;j <':C~ CCl /CCO ; ERASE COM.'O\AND
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF STATUS ASSERT STATUS, BOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS ;ASSERT STATUS, EOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS ;ASSERT STATUS, BOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
SETF /CC3 CC2 CCI CCO ;INITIALIZE COM.'o\AND
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF STATUS ;ASSERT STATUS, BOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS ;ASSERT STATUS, EOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS ;ASSERT STATUS, BOT
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
SETF /CC3 CC2 /CCI /CCO ;READ STATUS
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK

~ MonolIthIc W MemorIes ~ 2·535

2·536

Writing a Tape Drive Controller in PROSE

SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
SETF CC3 CC2 /CCl CCO
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /ONLINE
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
SETF CC3 CC2 /CCl CCO
SETF ONLINE
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF /REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK

;READ STATUS BYTE 1

;READ STATUS BYTE 1

;READ STATUS BYTE 2

;READ STATUS BYTE 3

;READ STATUS BYTE 4

;READ STATUS BYTE 5

;READ COMMAND

;NEGATE ONLINEB

;READ COMMAND

~ Monolithic W Memories ~

Writing a Tape Drive Controller in PROSE

SETF STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF ISTATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF CC3 CC2 ICCI CCO
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF IREQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF CC3 CC2 CCI ICCO
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF IREQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF ISTATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF CC3 CC2 ICCI CCO
SETF IONLINE
SETF REQUEST
CLOCK.F CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF IREQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF CC3 CC2 ICCI ICCO
SETF ONLINE
CLOCKF CLK
SETF REQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF IREQUEST
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF IONLINE
CLOCKF CLK
CLOCKF CLK

iFILE MARK FOUND

iREAD COMMAND

iREAD FILE MARK

iREAD COMMAND

iWRITE COMMAND

iNEGATE ONLINEB

~ Monolithic m Memories ~

EJI

2·537

2·538

Writing a Tape Drive Controller in PROSE

CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS
CLOCKF CLK
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
CLOCKF CLK
SETF STATUS
CLOCKF CLK
SETF /STATUS
CLOCKF CLK
CLOCKF CLK
TRACE_OFF

:ASSERT STATUS, BOT

~ Monolithic W Memories ~

Writing a Tape Drive Controller in PROSE

PLE5P16 PLE DESIGN SPECIFICATION
12345 KEN WON 1/27/87
COMMAND CODE DECODER
MMI, SANTA CLARA, CALIFORNIA

STSO /CD3*/CD2*/CD1*CDO ENABLE STATUS BYTE
STSI /CD3*/CD2*CDl*/CDO ENABLE STATUS BYTE
STS2 /CD3*/CD2*CDl*CDO ENABLE STATUS BYTE
STS3 /CD3*CD2*/CDl*/CDO ENABLE STATUS BYTE
STS4 /CD3*CD2*/CDl*CDO ENABLE STATUS BYTE
STS5 /CD3*CD2*CDl*/CDO ENABLE STATUS BYTE
EOM /CD3*CD2*CDl*CDO END OF MEDIA
RFM CD3*/CD2*/CDl*/CDO READ FILE MARK
WFM CD3*/CD2*/CD1*CDO WRITE FILE MARK
READ CD3*/CD2*CD1*/CDO READ
WRITE CD3*/CD2*CD1*CDO WRITE
FFWD CD3*CD2*/CD1*/CDO FAST FORWARD
RWD CD3*CD2*/CD1*CDO REWIND
ICMD CD3*CD2*CD1*/CDO INVALID COMMAND

FUNCTION TABLE

NC CD3 C02 COl COO EOM ICMD RWD FFWD WRITE READ WFM RFM
STS5 STS4 STS3 STS2 STS1 STSO

0
1
2
3
4
5

; ... INPUT / •.•.•••.......••........... OUTPUT .•.•.•..•.•.•.•••.........

LLLLL L L L L L L L L L L L L L L NO COMMAND
LLLLH L L L L L L L L L L L L L H ENABLE STATUS BYTE 0
LLLHL L L L L L L L L L L L L H L ENABLE STATUS BYTE 1
LLLHH L L L L L L L L L L L H L L ENABLE STATUS BYTE 2
LLHLL L L L L L L L L L L H L L L ENABLE STATUS BYTE 3
LLHLH L L L L L L L L L H L L L L ENABLE STATUS BYTE 4
LLHHL L L L L L L L L H L L L L L ENABLE STATUS BYTE 5
LLHHH H L L L L L L L L L L L L L END OF MEDIA
LHLLL L L L L L L L H L L L L L L READ FILE MARK
LHLLH L L L L L L H L L L L L L L WRITE FILE MARK
LHLHL L L L L L H L L L L L L L L READ
LHLHH L L L L H L L L L L L L L L WRITE
LHHLL L L L H L L L L L L L L L L FAST FORWARD
LHHLH L L H L L L L L L L L L L L REWIND
LHHHL L H L L L L L L L L L L L L INVALID COMMAND

DESCRIPTION

THIS PLE DEVICE IS ONE OF THREE DEVICES USED TO IMPLEMENT A QIC-02
COMMAND SEQUENCER. THIS DEVICE DECODES THE OUTPUT CODE FROM THE
PROSE DEVICE TO GENERATE CONTROL SIGNALS. THE OTHER TWO DEVICES ARE
A 20L8 PAL DEVICE AND A 14R21 PROSE DEVICE.

~ Monolithic W Memories l1

Ell

2·539

Notes

2·540 ~ Monolithic W Memories ~

GCR (4B-5B) Encoder/Decoder

One of the more common logic functions performed on serial
data is the data encode/decode function. Usually it is desir­
able to map (encode) the logical bit stream to a physical bit
stream, adjusting for the peculiarities of the particular trans­
mission or storage media.

Noise, bandwidth, and reliability considerations may mean
that a different data format would be desirable when data is
sent along to or stored on a given media. For example, group­
coded recording (GCR) formats take a given number of data
bits and encode them with a larger number of bit's. A 48-58

GCR code would take 4 data bits and encode them into 16
states with 5 new bits. A particular 48-58 code is shown in
Figure 1.

This mapping allows at most two zeros to occur in succes­
sion. Also note that data combinations with more than one
zero at the beginning and end of the word are excluded. This
is necessary to insure that when data words are serialized, no
more than two zeros occur in succession at any point in the
bit stream. Finally, the data combination 11111 is reserved as
a synchronization mark. In tape systems, this results in in­
creased bit density and eases clock synchronization.

4B-5B Code
4-Blt Data 5-Bit Data

o 0 0 0 0 0

000 1 0

o 0 0 o 0 0

o 0 1 0 0 1 1

0 0 0 1 0 1

0 0 1 o 1 o 1

0 0 0 1 0

0 1 1 1 0 1 1

000 1 1 0 1 0

o 0 0 0 o 1

0 0 0 0 0

o 1 1 0 0 1

0 0 1 1 0

1 1 0 1 0 1 0 1

0 0 1 0

0 1 1

03862A·93

Figure 1_ 48-58 Code

~ Monolithic L;Lij] Memories ~ 2·541

Ell

GCR (48-58) Encoder/Decoder

The system diagram in Figure 2 shows how the GCR Encod­
erlDecoder (GCR EID) interfaces to a tape drive and tape con­
troller. Parallel input data is given to the GCR E/D, converted to
the 5-bit format, serialized, and written to the tape. On a read,
the serial data from the tape is parallelized, converted back to
the 4-bit format and output to the output data bus. Additionally,
during a read, two status signals are developed. The first signal,
INV, indicates the presence of an invalid input, i.e., too many
zeros in succession. The second status signal, H, indicates the
detection of the synchronization mark (11111).

The operation modes for the GCR E/D are shown in the Data­
Flow Diagrams of Figure 3. The control signal and operation
functions are indicated for each operation mode. In particular, the
data flow between each bit of the output register is indicated
schematically.

The first mode of operation of the GCR EID is the HOLD
mode. When ENABLE is HIGH, all data operations on the out­
put register are disabled, independent of the two mode con­
trols, M1 and Mo. The output data is simply fed-back to the
register inputs. Thus the register content is retained after the
clock transition.

When the ENABLE input is LOW, the operations indicated by
the M 1 and Mo mode bits are executed on the clock transition.
When M 1 and Mo are both LOW, the SERIAL SHIFT IN mode is
sEillected. In this mode the output register is configured as a
serial shift register. The serial input is consecutively shifted
into the register until all 5 bits from the tape have been stored,
MSB at Y 3 and LSB at SERIAL OUT.

The CONVERT SERIAL INPUT AND LOAD operation is se­
lected when ENABLE is LOW, M1 is HIGH and Mo is LOW.
After the 5 bits of data have been serialized by the SERIAL
SHIFT IN instruction, the 5B code must be converted to a 4B
code. This is accomplished by taking the outputs of the 5
register bits and converting them to 4 bits with combinatorial
logic. On the clock transition, the result is loaded into the Y
register. On the same clock transition that loads the con­
verted data into the Y register, the serial input is loaded into
the serial output register. Because the serial data is being
read continuously, one data bit per clock transition, the con­
version must be done without missing a serial data bit.

The CONVERT PARALLEL INPUT AND LOAD operation is
selected when ENABLE is LOW, M1 is HIGH and Mo is HIGH.
This mode takes the 4 input data bits and converts them to
the 5 bit representation. The result is loaded into the output
register on the clock transition. The LSB of the 5B representa­
tion is loaded into the Y 3 bit of the output register and the
MSB is loaded into the serial output bit. This configuration, in
conjunction with the next instruction, allows the serial data
to be written to the tape drive one bit per clock transition.

The final operation, SERIAL SHin OUT, is selected when
ENABLE is LOW, M1 is LOW and Mo is HIGH. After the CON­
VERT PARALLEL INPUT AND LOAD operation is executed,
the SERIAL SHIFT OUT operation outputs the converted data
to the tape drive. A series of one convert operation followed
by 4 shift operations will transfer a sequence of 5-bits to the
tape drive, one bit per clock cycle.

INPUT DATA BUS

2·542

SERIAL·IN

TAPE
DRIVE SERIAL·OUT

CONTROL STATUS
DATA

MODE ENCODER/DECODER

CONTROLLER ~~:::IN:V~:~~
H

CLK--4-------------------~~

OUTPUT DATA BUS

03862A·94

Figure 2. Typical Tape Storage System

~ Monolithic W Memories ~

ENABLE Ml Mo

X X

o

o

GCR (48-58) Encoder/Decoder

OPERATION DATA· FLOW DIAGRAM

HOLD

[Q~[Q[Q[Q
SERIAL

SHIFT IN

CONVERT
SERIAL INPUT

AND LOAD

CONVERT
PARALLEL INPUT

AND LOAD

SERIAL
SHIFT OUT

Y3 Y2

Y3 Y2

Figure 3. GCR E/D Mode Definitions

~ Monolithic W Memories ~

Yl

Yl

Yo

Yo

Yo

Do

Yo

Yo

SERIAL
OUTPUT

SERIAL
INPUT

SERIAL
OUTPUT

SERIAL
OUTPUT

SERIAL
OUTPUT

SERIAL
OUTPUT

03862A·95

2·543

EI

GCR (4B-SB) Encoder/Decoder

Design Approach (Am PAL 16R6)

The PAL device implementation of the GCR Encoder/Decoder
takes advantage of the multiplexer-like structure of the AND-OR
array. Each valid combination of ENABLE, M1 and Mo selects a
different set of AND terms. In some cases, only one term is
selected (in data steering operations for example). In other
cases, multiple AND terms are selected to implement a com­
binatoriallogic function (the 58-to-48 conversion for example).
This concept, using the control inputs to enable one or more
AND terms, allows the direct implementation of the PAL device
design from the mode Data-Flow Diagrams (with a little Kar­
naugh map help). The K-Maps for the 58-to-48 conversion logic
and the 48-to-58 conversion logic for the Y 3 output are shown in
Figures 4 and 5. Given these maps and the flow diagrams in
Figure 3, the 800lean equations can be constructed for the Y3
output. The resulting equation, in PALASM software format, is
shown in Figure 6.

It is important to note that the equation in Figure 6 is written for
the inverse of the Y 3 output (Y 3)' This is necessary if true data is
desired on the output pin because of the inverting nature of the
output buffer on the PAL device. The inverted form of the equa­
tion is ea~ implemented by selecting the negative version of
the data (Y3 in the hold operation for example) or by grouping
zeros in a combinatorial logic function (see Figures 4 and 5).
Notice that the multiplexer strategy works equally well for active­
LOW or active-HIGH logic functions.

Once the transformation of the Data-Flow Diagrams and
K-Maps to Boolean equations is understood, the interested

2 00 01 1 1 10 V3Y2 00 01 1 1 1 0

00 x x x x 00 x x x X

01 X 1 1 X 01 1 1 1 1

1 1 X 1 1 ~ 1 1 (0 0 X oj
10 ()(0 0 xr- -.....

10 10< 0 0 0))

SOUT =0 SOUT=1

03862A·96

Figure 4. 58-to-48 Conversion K-Map for Y 3 Output

+ EN· M1. Mo· SOUT

+ EN· M1 • Mo· Y3· SOUT

+ EN· M1 • Mo • Y3 • Y2
+ EN· M1 • Mo • D3 • DO
+ EN· M1 • Mo • D1 • DO

reader should be able to construct K-Maps for the other Y out­
puts and, in conjunction with the Data·Flow Diagrams of

Figure 3, write the PALASM software equations for the resulting
logic functions. This exercise will help the reader to fully appreci­
ate the advantages of the Data-Flow Diagram/Multiplexer
method of PAL design. Consult the full PALASM software listing
(Figure 10) for the complete solutions.

It is important to note that the diagrams and equations in Figures
7, 8, and 9 specify the true output for invalid signal (INV), rather
than INV which appears in the system diagram of Figure 2. This
is necessary if the correct data is desired on the output pin and
is due to the inverting nature of the output buffer on the PAL
device.

The INV signal is registered and held until the clear INV flag
input (CIF) is brought LOW, deactivating the flag. Only during a
58-48 conversion operation (M1 = HIGH, Mo = LOW) is the
INV flag activated. Figures 7 and 8 show the INV flag mode
definitions and the intermediate INVALID logic equation
respectively.

In this case, an active-LOW output is desired so the active-HIGH
form of the INV signal is developed internally. Ones are grouped
in the intermediate combinatorial logic function (INVALID) and
the true version of the data is selected. The complete PALASM
software equation for INV is given in Figure 9.

00 01 1 1 1 0

00 1 1 1 '0'
01 1 1 1 0

1 1 ~ 1 1 l@"
10 WV 1 1 ~

03862A·97

Figure 5. 48-to-58 Conversion K-Map for Y 3 Output

;HOLD
;SERIAL SHIFT IN
;SERIAL SHIFT OUT

;CONVERT SERIAL
;INPUT AND LOAD
;CONVERT PARALLEL

;INPUT AND LOAD

Figure 6. PALASM Equation for V3
03862A·98

2·544 ~ Monolithic W Memories ~

GCR (4B-5B) Encoder/Decoder

CIF Ml Mo OPERATION DATA· FLOW DIAGRAM

"0"

0 x X CLEARINV -Q FLAG

INV

HOLD INV -9] FLAG

INV

SETINV Y3 Y2 Yl Yo SOUT
FLAG

INV

Figure 7. INV Flag Mode Definitions

00 01 11 10 Y3Y2 00 01 11 10

00 W 1 1 1

~ KG) 1 1 1

01 1 0 0 1 01 0\ 0 0 0

11 1 0 0 1 11 OJ 0 CD 0

10 ..ill 0 0 ~ 10 lGS 0 0 0 -SoUl = 0 SoUT = 1

INVALID = Y3. Y2 +
Y2.Y1.Yo +
Yo. SO.Ul +
Y3 • Y2 • Yl • Yo· SOUT 03862A·100

Figure 8. Intermediate Equation for INVALID

INV : = CIF. INV + ;HOLD INV FLAG

CIF • Ml • Mo • Y3 • Y2
Cfi!'. Ml • Mo· Yo. SOUT

CIF • Ml • Mo • Y2 • Vi • Yo
CIF· Ml • Mo· Y3 • Y2· Yl • yo· SOUT

+ ;SET INV FLAG IF INVALID IS TRUE

+
+

03862A·101

Figure 9. PALASM Equntion for INV

~ Monolithic: W Memories ~

EJI

2·545

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

GCR (4B-5B) Encoder/Decoder

4B-5B ENCODER/DECODER
PAT003
01
WARREN MILLER
ADVANCED MICRO DEVICES
11/06/87

CHIP ENCO DECO PAL16R6

CK Ml MO D3 D2 Dl DO /EN /CIF'GND
/E· SIN /INV YO Yl Y2 Y3 SOUT /H VCC

EQUATIONS

/SPUT :=

/YO

/Yl

/Y2

/Y3

INV

+
+
+
+
+

:=
t
+
t
t
t
t

:=
t
+
t
t
t

:=
t
+
t
+
t
+

:=
+
+
+
+
+
+

:=
+
+
+
+

EN*/SOUT
/EN*/Ml*/MO*/SIN
/EN*/M1* MO*/YO
/EN* M1*/MO*/SIN
/EN* M1* MO* D3* D1
/EN* M1* MO* D3* DO

EN*/YO
/EN*/M1*/MO*/SOUT
/EN*/M1* MO*/Y1
/EN* M1*/MO*/SOUT
/EN* M1*/MO* Y3* Y2*/YO
/EN* M1* MO*/D3* 01
/EN* M1* MO*/D3* D2* DO

EN*/Y1
/EN*/M1*/MO*/YO
/EN*/M1* MO*/Y2
/EN* M1*/MO*/YO
/EN* M1*/MO* Y3* Y2
/EN* M1* MO*/D2

EN*/Y2
/EN*/M1*/MO*/Y1
/EN*/M1* MO*/Y3
/EN* M1*/MO*/Y1
/EN* M1* MO*/D3*/01*/DO
/EN* M1* MO*/D3* D2*/D1
/EN* M1* MO* D3*/D1* DO

EN*/Y3
/EN*/M1*/MO*/Y2
/EN*/M1* MO*/SOUT
/EN* M1*/MO* Y3* SOUT
/EN* M1*/MO* Y3*/Y2
/EN* M1* MO* D3*/00
/EN* M1* MO* Dl*/DO

/CIF* INV
/CIF* M1*/MO*/Y3*/Y2
/CIF* M1*/MO*/Y2*/Y1*/YO
/CIF* M1*/MO*/YO*/SOUT
/CIF* M1*/MO* Y3* Y2* Y1*

iHOLD
iSERIAL SHIFT IN
iSERIAL SHIFT OUT
iCONVERT SERIAL INPUT AND LOAD
iCONVERT PARALLEL INPUT AND LOAD

iHOLO INV FLAG
iSET INV FLAG IF INVALID TRUE

yo* SOUT

H Y3* Y2* Y1* yo* SOUT
; SIMULATION NOT INCLUDED

Figure 10. PALASM Listing

2·546 ~ Monolithic W Memories ~

Industrial Control

Industrial control can be defined as simply as a basic state
machine: process information is gathered and analyzed, and
outputs feed back to the process to modify it based upon tho
analysis. Thus, PAL device applications are often state
machines.

A very basic industrial control system is a heater thermostat.
Temperature is sensed, compared to a maximum upper or lower
limit, and the heater is either turned on or off. A small state
machine PLD can implement this function.

Much of the circuitry in industrial control applications is analog or
linear. Process information is gathered by sensors, and then the
information is conditioned to eliminate noise. The conditioned
signal is then converted to a digital signal, and processed by a
digital processor. The control outputs are then converted to
appropriate analog signals to modify the process (Figure 1).

Data Acquisition

The sensing part of the system is data acquisition. Data acquisi­
tion is important not only in industrial control applications, but also
in scientific monitoring applications. Data acquisition requires the
capture of analog signals and conversion to useful information
that can be analyzed. This first requires conditioning of the input,
to filter out noise. The signal can then be analyzed with analog
circuitry, but the power of digital microprocessors makes conver­
sion to digital logic more efficient.

More logic is being incorporated into the acquisition circuitry. The
analog circuitry for signal conditioning is a natural addition to a
sensor. Analog-to-digital conversion (AD C) can even be per­
formed in the same unit. Advanced sensors may even incorpo­
rate a microprocessor to provide immediate local analysis of the
data, offloading the central processor. In these applications, PAL
devices can form the glue logic for tho microprocessor.

Data Analysis

Data analysis has been performed in the past by a central
computer. The central computer would have the task of polling all
of the sensors and analyzing the incoming data. However, in a
system where thousands or millions of sensors are active, or
where immediate response to process changes is required, this
system is inefficient.

ANALYSIS

41001

The type of system more commonly used today includes distrib­
uted control and processing (Figure 2). Microcomputers or
programmable controllers can perform low-level processing and
react with control signals immediately. Often single-board com­
puters with added analog conversion circuitry are used.

A LAN connection between a number of intelligent sensors and
processors provides a very efficient system. Simple RS-232 links
connect sensors. Buses such as Multibus or VME bus are
commonly used to connect the boards together. Standards such
as MAP (Manufacturing Automation Protocol) are being devel­
oped for future LAN-based systems, allowing dissimilar devices
to be connected in a network. Fiber-optic links will provide the ~
data reliability over long distances in confined areas required for ~
industrial control.

410 02

Figure 2_

In these areas, standard computer applications for PAL devices
are numerous. Bus interface is another key application area for
communication within distributed systems.

Control

The most critical part of the system is control. The system must
respond to the analyzed information with signals that modify the
process under observation_ In a system such as a nuclear
reactor, immediate and accurate response is the most important
objective.

CONTROLLED
PROCESS

Figure 1.

~ MonolithIc W Memories ~ 2·547

Industrial Control

PID Algorithm

For smooth control, the PID algorithm for analysis and control is
often used. P stands for Proportional: the incoming data is
compared to a reference number, and then the process is
modified in proportion to the difference between the desired and
measured values. For example, a heater thermostat that meas­
ures air temperature of 55 degrees, when its reference value was
set at 65 degrees, would turn on the heater, and reduce the
amount of heat as the temperature got closer to the reference
value.

Proportional analysis alone often causes undershoot or over­
shoot. If the heater works quickly, it can heat the air well past the
reference value. And if it works slowly, it may take a long time to
heat the air back to the reference value.

Forthese reasons, the Integral (I) part of the algorithm is added.
The integral is taken of the difference between the reference
value and measured value; in effect, this measures how long the
measured value has been off from the reference value. Using the
integral prevents undershoot and overshoot.

However, the result can be a control output that causes the
measured value to continue oscillating around the reference
value. For example, if the heater is turned on at 64 degrees and
an air conditioner is turned on at 66 degrees, the temperature will
oscillate rapidly around the reference point of 65 degrees.

For this reason, a Derivative (D) input is used. The derivative
looks at the rate of change of the measured value, and will slow
down the response if the measured value is rapidly approaching
the reference value.

The complete PID algorithm is

OUT '" Kp x ERR + Ki x JERR + Kd x dERR/dt,

combining present, past, and future input considerations. Selec­
tion of the proper constants allows the control response to be both
rapid and smooth.

The PID algorithm requires mathematical processing capabili­
ties, similar to those used in digital signal processing (see the
section on Digital Signal Processing, page 2-283).

Control circuitry is also combining analog and digital logic. Smart
power ICs can perform logic functions while receiving and send­
ing high-power signals. These ICs can perform simple functions
like overvoltage protection, cutting off a circuit if the power surges.

Applications

Applications for industrial control systems are varied, and include
the following:

• Factory Automation
Automated distribution centers
Power grid monitoring and control

• Motor Control
Robots
Engine testing
Torque control

• Transportation
Air traffic control
Subway system control

• Automotive Electronics
• Satellite Communication
• Simulators

Performance Requirements

The key requirement of industrial control systems is the need for
real-time processing. An air-traffic control system cannot be
allowed to slow down if overloaded. During overloading in real
systems, the information provided on display screens is reduced,
instead of completely losing all information on a plane.

An interrupt handling system is more efficient than a standard
polling system. Many 1/0 are required, with high DAC and ADC
accuracy. For data analysis, a large memory and good memory
management is important. Workstations with a high 1/0 speed
are often used for central industrial controllers.

PAL Device Usage

Most of the circuitry in an industrial control application is analog
or linear. Only the analyzer is primarily digital logic. The analyzer,
whether local or central, uses a standard computer architecture.

Programmable logic devices, especially CMOS PLDs, are used
in industrial control much as they are used in other computer
applications. High speed is important in real-time control applica­
tions involving a large amount of data.

CMOS PAL Devices

Because of the harsh environment often found in factories or
around motors, CMOS technology is required. Specifications for
the industrial range CMOS ZPAL family are guaranteed over a
wider temperature range, and a wider supply voltage range. In
addition, CMOS inputs are less sensitive to noise fluctuations.
The lower power consumed by all CMOS PAL devices allows a
smaller power supply, important in the small areas controllers
often must be placed. Also, it is easierfor a battery to back upthe
power supply for critical operations. The reduced heat is good for
enclosed areas, and allows CMOS devices to be placed closer
together, even in surface-mounted devices, to save room.

The erasability of CMOS PAL devices allows changes to refer­
ence values, PID control constants, or other process control
changes. Erasability also allows easy field service upgrades or
repair.

PAL Device Applications

PAL devices find applications in all levels of industrial control,
from the low-level sensing equipment to the mainframe analysis
computers.

Low-Level Applications

Low-level data acquisition and response circuitry can be based
on an individual state machine PLD. For example, stepper

2·548 ~ Monolithic IFJFJ] Memories ~

Industrial Control

motors are often used for mechanical valves. Asingle PAL device
can be programmed to convert enable, direction, and stepping
information into the appropriate signals to hold or step the motor
(page 2-550).

Another example is shaft encoding (page 2-558). Shaft encoders
convert the position of a rotating shaft into a digital signal. The
position is sensed optically, and the digital information is encoded
into position, speed, and direction signals.

More complex applications may be handled by dedicated state
machine PLDs, including the PROSE device or the Am29PL 141.

Medium-Range Applications

Dedicated microcontrollers can be used in medium-range appli­
cations, such as small controllers linked to a central computer.
These applications require the intelligence of a microcontroller
but not a complete microprocessor-based computer system. In
these applications, PAL devices form the glue logic between the
microcontroller and its surrounding chips.

High-End Applications

Dedicated local computers and central data processing comput­
ers are the high-end applications for PLDs. Here, microproces­
sors are the brains of the system and PLDs perform many of the
support functions.

Microprocessor support is a key area of application (see the
section titled Microprocessor-Based Systems, page 2-131). This
is especially true of distributed control systems, where several
microprocessors perform local processing. A standard architec­
ture can be modified for different areas of the process by program­
ming the PAL devices differently. PAL devices also allow the local
controllers to take up less space.

Another key application area is bus interface for distributed
systems (see the section titled Bus Interface, page 2-325). Either
synchronous or asynchronous buses may be used.

Since industrial controllers are usually interrupt-driven for effi­
cient response, interrupt logic forms another potential application
area for PAL devices.

Digital signal processing is often performed in the analysis
section of the industrial controller, usually in a central processor.
The applications would not require the speed or complexity of
most DSP applications, but would use similar circuitry. See the ~
section titled Digital Signal Processing. ~

~ Monollthlo W Memories ~ 2·549

Stepper Motor Controllers

Functional Description
Stepper motors and linear actuators are used in a variety of
applications requiring precise rotational and/or linear move­
ment. Examples are printers, floppy disk drives, mechanical
valves, etc. Stepper motors are two-phase permanent magnet
motors which provide discrete angular movement every time the
polarity of a winding is changed. In linear actuators the angular
movement is converted to linear movement via a load screw. In
essence, they are dc motors without brushes, where the user
provides commutation with external logic.

v+---+--*--+----~~
In these examples, the control and drive circuitry for such a
motor is implemented digitally using PAL devices.

Circuit Operation
One type of drive circuit, unipolar drive, is shown in Figure 1. Two
drive sequences are given in Tables 1 a and 1 b. Angular rotation
is achieved by saturating the transistor drivers in the sequence
shown in the appropriate table (full or half step). Now, assume
the circuit of Figure 1 is connected to a stepper motor designed
for 7.50 steps. By following the step sequence of Table 1a (full
step), the shaft will rotate 7.5 0 each time the state is changed. If
the sequence of Table 1 b is followed, a3.75° (half-step) rotation
will result for each change of state. For both step sequences, the
direction can be reversed by stepping backwards through the
table (step 4-3-2-1-4-etc.).

Table 1a

FULL STEP SEQUENCE

CLOCKWISE I
ROTATION •

CLOCKWISE'
ROTATION t

STEP

1

2

3

4

1

STEP

1

2

3

4

5

6

7

8

1

QO Q1 Q2

1 a 1

1 a a
a 1 a
a 1 1

1 a 1

Table 1b

HALF STEP SEQUENCE

QO Q1 Q2

1 a 1

1 a a
1 a a
a a a
a 1 a
a 1 a
a 1 1

a a 1

1 a 1

Q3

a
1

1

a
a

Q3

a
a
1

1

1

a
a
a
a

2·550 ~ Monolithic IHiD Memories ~

Figure 1

1
COUNTER­
CLOCKWISE
ROTATION

t
COUNTER­
CLOCKWISE
ROTATION

AN-145

Stepper Motor Controllers

PAL Device Implementation • Enable/Disable inputs to enable stepping in either section.

In this application, one PAL 16R4 can be used to provide the logic
levels required to drive two stepper motors in the full step mode.
Due to the high current drive required (100-400 mA/phase),
external inverting high current buffers must be used (ULN 2001
or equivalent). In the design, the following features are provided
within the PAL device:

EXT CLOCK
(DETERMINES
STEP RATE)

MOTOR A
CONTROLS

MOTOR B
CONTROLS

VCC

(E inputs).

• Select clockwise or counter-clockwise rotation.

• Set the motor to logic state step 1.

A block diagram/pinout is shown in Figure 2.

MOTOR A

~~r-~------VCC

MOTOR B

'-------<~-----VCC

Figure 2

A function table for each motor control section is given below.

CLOCK E1 E2 S

X 1 X X

X X 1 X

1 0 0 1

1 0 0 0

1 0 0 0

The full step sequence (Table 1a) can be simplified from 4
outputs to 2 outputs since 01 = 00 and 03 = 02. The sequence
can then be expressed as follows:

00n+1 = 1, 01 n+1 = 0, 02n+1 = 1, 03n+1 = 0
when E1 = 1 or E2 = 1:

00n+1 = OOn' 01 n+1 = 01 n' 02n+1 = 02n, 03n+1 = 03

D FUNCTION

X Hold motor in current position

X Hold motor in current position

X Set outputs to step 1 levels

0 Step motor clockwise

1 Step motor counter-clockwise

D=O

STEP 00 02
1 1 1

2 1 0

3 0 0

4 0 1

1 1 1

~ Monolithic m Memories ~

D = 1

00
1

0

0

1

1

02
1

1

0

0

1

2·551

Stepper Motor Controllers

The step sequences can be converted to equations by use of a
Karnaugh map.

Factor in E1 and E2:

"-v-"
o

"-v-"
o

OOn+1 = E1 . E2 . 02n • 5 + E1 . E2 • 02n • D

02n+1 = fj. E2' OOn' 5 + 8· E2' OOn' D

Express the set function as an equation:

OOn+1 = E1 . E2' S 02n+1 = E1 . E2 . S

Express the hold function (when E1 or E2 = 1)

OOn+1 = OOn • E1 + OOn • E2

02n+1 = 02n • E1 + 02n • E2

Combining all the above:

These equations make up the first design file.

Conclusion
Although this example could be used "as is" in a stepper motor
application, the programmability of PAL devices could allow for
any desired modifications. Changes tathe circuit might include:

1. Drive only one stepper motor, using a PAL16R6. The other
flip-flops could be used as a programmable counter, allowing
for different speed settings.

2. Drive only one stepper motor, using the extra inputs and
outputs to handle other circuit functions.

3. Drive only one stepper motor, using a PAL16R6. The other
flip-flops could be used as a 4-bit position counter.

4. The substitution of a PAL 16R8, and another inverting buffer
would allow the driving and control of four stepper motors.

5. Reprogram for half-step operation. This is done in the second
design example.

OOn+1 := Ei . E2' S + OOn' E1 + OOn' E2 + 8· E2· 02n ' i5 + 8 . E2· 02n' D

01 n+1 := OOn+1

Q2n+1 := E1 . E2' S + 02n • E1 + 022' E2 + 8 . E2· OOn' 5 + Ei· E2· OOn' D

Q3n+1 := 02n+1

2·552 ~ Monolithic m Memories ~

Stepper Motor Controllers

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

STEPPER MOTOR CONTROLLER
P7015
1. 00
DAVE SACKETT
DEVOE COMPANY, INDIANAPOLIS, INDIANA
02/23/81

CHIP SMC PAL16R4

CLK /EIA /E2A SA DA /EIB /E2B SB DB GND /OC
/Q3B /QIB /Q2B /QOB /Q2A /QOA /Q3A /QIA VCC

EQUATIONS

QOA .= QOA*/EIA
QOA* +

+ SA *
+ /Q2A*

Q2A* +

/E2A
EIA* E2A
EIA* E2A* DA
EIA* E2A*/DA

QIA = /QOA
QIA.TRST = VCC

Q2A .= Q2A*/EIA
+ Q2A* /E2A

EIA* E2A
EIA* E2A* DA
EIA* E2A*/DA

+ SA *
+ QOA*
+ /QOA*

Q3A = /Q2A
Q3A.TRST = VCC

QOB·= QOB*/EIB
+ QOB* /E2B
+ SB * EIB* E2B
+ /Q2B* EIB* E2B* DB
+ Q2B* EIB* E2B*/DB

QIB = /QOB
QIB.TRST = VCC

Q2B . =
+
+
+
+

Q2B*/EIB
Q2B* /E2B

EIB* E2B
EIB* E2B* DB
EIB* E2B*/DB

SB *
QOB*

/QOB*

Q3B = /Q2B
Q3B.TRST VCC

SIMULATION

SETF OC EIA E2A SA EIB E2B SB
CLOCKF CLK

; HOLD
;HOLD
;STEP
; LOAD
; LOAD

;HOLD
;HOLD
;STEP
; LOAD
; LOAD

IF NOT El
IF NOT E2
1 IF SET
/Q2A IF COUNTER-CLOCKWISE

Q2A IF CLOCKWISE

IF NOT El
IF NOT E2
1 IF SET

QOA IF COUNTER-CLOCKWISE
/QOA IF CLOCKWISE

;HOLD IF NOT El
;HOLD IF NOT E2
;STEP 1 IF SET
;LOAD /Q2B IF COUNTER-CLOCKWISE
;LOAD Q2B IF CLOCKWISE

;HOLD
;HOLD
;STEP
: LOAD
; LOAD

IF NOT El
IF NOT E2
1 IF SET

QOB IF COUNTER-CLOCKWISE
/QOB IF CLOCKWISE

~ Monolithic W MemorIes ~ 2·553

2·554

Stepper Motor Controllers

CHECK QOA /QIA Q2A /Q3A QOB /QIB Q2B /Q3B

SETF /EIA /E2A /EIB /E2B
CLOCKF CLK
CHECK QOA /QIA Q2A /Q3A QOB /QIB Q2B /Q3B

SETF EIA E2A /SA /DA EIB E2B /SB DB
CLOCKF CLK
CHECK QOA /QlA /Q2A Q3A /QOB QIB Q2B /Q3B

CLOCKF CLK
CHECK /QOA QIA /Q2A Q3A /QOB QlB /Q2B Q3B

CLOCKF CLK
CHECK /QOA QIA Q2A /Q3A QOB /QIB /Q2B Q3B

CLOCKF CLK
CHECK QOA /QIA Q2A /Q3A QOB /QIB Q2B /Q3B

CLOCKF CLK
CHECK QOA /QIA /Q2A Q3A /QOB QIB Q2B /Q3B

CLOCKF CLK
CHECK /QOA QIA /Q2A Q3A /QOB QIB /Q2B Q3B

SETF DA /DB
CLOCKF CLK
CHECK QOA /QIA /Q2A Q3A /QOB QIB Q2B /Q3B

SETF /EIA /EIB
CLOCKF CLK
CHECK QOA /QIA /Q2A Q3A /QOB QlB Q2B /Q3B

SETF EIA /E2A EIB /E2B
CLOCKF CLK
CHECK QOA /QlA

SETF SA SB
CLOCKF CLK

/Q2A Q3A /QOB QlB Q2B /Q3B

CHECK QOA /QIA /Q2A Q3A /QOB QlB Q2B /Q3B

iDESCRIPTION
,
iTHIS PAL16R4 PROVIDES THE LOGIC LEVELS REQUIRED TO DRIVE TWO
iSTEPPER MOTORS IN THE FULL STEP MODE.
,
iTHE FOLLOWING OPERATIONS MAY BE PERFORMED FOR EACH STEPPER
;MOTOR CONTROLLER INDIVIDUALLY:

CLK

x
x
C
C
C

/El

H
X
L
L
L

/E2

X
H
L
L
L

S

x
X
H
L
L

D·

x
x
X
L
H

OPERATION

HOLD MOTOR IN CURRENT POSITION
HO~D MOTOR IN CURRENT POSITION
SET OUTPUTS TO STEP 1 LEVELS
STEP MOTOR CLOCKWISE
STEP MOTOR COUNTER-CLOCKWISE

~ MonolithIc W MemorIes ~

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

Stepper Motor Controllers

DUAL STEPPER MOTOR CONTROLLER
P7094
1.00
COLI/SACKETTE
MONOLITHIC MEMORIES
12/07/82

CHIP DUAL SMC PAL16R8

CLK /ENA SETA ROTA MODEA /ENB SETB ROTB MODEB GND
/OC /SWIB /SW2B /SW3B /SW4B /SW4A /SW3A /SW2A /SWIA VCC

EQUATIONS

SWIA:= SWIA */ENA
+ /SW2A */SW4A* ENA* ROTA* MODEA
+ SW3A * ENA* ROTA*/MODEA
+ /SW2A*/SW3A * ENA*/ROTA* MO~EA
+ SW4A* ENA*/ROTA*/MODEA
+ ENA * SETA

SW2A
*/SW3A

*/ENA
* ENA* ROTA* MODEA*/SETA

SW4A* ENA* ROTA*/MODEA*/SETA
/SW4A ENA*/ROTA* MODEA*/SETA

SW2A:=
+/SWIA
+
+/SWIA
+ SW3A * ENA*/ROTA*/MODEA*/SETA

SW3A:=
+/SWIA

SW3A */ENA

+ SW2A
+ /SW2A
+ SWIA
+

SW4A:=
+ /SW2A*/SW3A
+ SWIA
+/SWIA */SW3A
+ SW2A

/SW4A ENA* ROTA* MODEA
* ENA* ROTA*/MODEA

/SW4A ENA*/ROTA* MODEA
* ENA*/ROTA*/MODEA

ENA * SETA

SW4A*/ENA
* ENA* ROTA* MODEA*/SETA
* ENA* ROTA*/MODEA*/SETA
* ENA*/ROTA* MODEA*/SETA
* ENA*/ROTA*/MODEA*/SETA

SWIB:= SWIB */ENB
+ /SW2B */SW4B* ENB* ROTB* MODEB
+ SW3B * ENB* ROTB*/MODEB
+ /SW2B*/SW3B * ENB*/ROTB* MODEB
+ SW4B* ENB*/ROTB*/MODEB
+ ENB * SETB

SW2B:=
+/SWIB
+
+/SWIB
+

SW2B
*/SW3B

*/ENB
* ENB* ROTB* MODEB*/SETB

SW4B* ENB* ROTB*/MODEB*/SETB
/SW4B ENB*/ROTB* MODEB*/SETB

SW3B * ENB*/ROTB*/MODEB*/SETB

~ Monolithic IFJJ] Memories l1

;HOLD SWIA:D~SABLE
;HALF-STEP ~TR CW
iFULL-STEP MTR CW
;HALF-STEP MTR CCW
:FULL-STE? MTR CCW
;SET A TO STEP 1

;HOLD SW2A:D!SABLE
iHALF-STEP MTR CW
:FULL-STEP MTR CW
;HALF-STEP MTR CCW
;F~LL-STEP MTR CCW

:HOLD SW3A:DISABLE
iHALF-STEP MTR CW
;FULL-STEP MTR CW
;HALF-STEP MTR CCW
;FULL-STEP MTR CCW
;SET A TO STEP 1

;HOLD SW4A:DISABLE
iHALF-STEP MTR CW
;FULL-STEP MTR CW
;HALF-STEP MTR CCW
:FULL-STEP MTR CCW

;HOLD SWIB:DISABLE
;HALF-STEP MTR CW
:FULL-STEP MTR CW
iHALF-STEP MTR CCW
iFULL-STEP MTR CCW
;SET B TO STEP 1

iHOLD SW2B:DISABLE
iHALF-STEP MTR CW
;FULL-STEP MTR CW
;HALF-STEP MTR CCW
;FULL-STEP MTR CCW

2·555

E1I

SW3B:=
+/SWIB
+ SW2B
+ /SW2B
+ SWIB
+

Stepper Motor Controllers

SW3B */ENB
/SW4B ENB* ROTB* MODEB

* ENB* ROTB*/MODEB
/SW4B ENB*/ROTB* MODEB

* ENB*/ROTB~/MODEB
ENB * SETB

;HOLD SW3B:DISABLE
;HALF-STEP MTR CW
;FULL-STEP MTR CW
;HALF-STEP MTR CCW
;FULL-STEP MTR CCW
;SET B TO STEP 1

SW4B:= SW4B*/ENB ;HOLD SW4B:DISABLE
+ /SW2B*/SW3B
+ SWIB
+/SWIB */SW3B
+ SW2B

SIMULATION

SETF OC ENA SETA ENB SETB
CLOCKF CLK
CHECK SWIA /SW2A SW3A /SW4A

SETF /SETA ROTA MODEA /SETB
CLOCKF CLK

* ENB* ROTB* MODEB*/SETB ;HALF-STEP MTR CW
* ENB* ROTB*/MODEB*/SETB ;FULL-STE? MTR CW
* ENB*/ROTB* MODEB*/SETB ;HALF-STEP MTR CCW
* ENB*/ROTB*/MODEB*/SETB ;FULL-STEP MTR CCW

SWIB /SW2B SW3B /SW4B

/ROTB MODEB

CHECK SWIA /SW2A /SW3A /SW4A /SWIB /SW2B SW3B /SW4B

CLOCKF CLK
CHECK SWIA /SW2A /SW3A SW4A /SWIB SW2B SW3B /SW4B

SETF /ENA /ENB
CLOCKF CLK
CHECK SWIA /SW2A /SW3A SW4A /SWIB SW2B SW3B /SW4B

SETF ENA ENB
CLOCKF CLK
CHECK /SWIA /SW2A /SW3A SW4A /SWIB SW2B /SW3B /SW4B

CLOCKF CLK
CHECK /SWIA SW2A /SW3A SW4A /SWIB SW2B /SW3B SW4B

CLOCKF CLK
CHECK /SWIA SW2A /SW3A /SW4A /SWIB /SW2B /SW3B SW4B

CLOCKF CLK
CHECK /SWIA SW2A SW3A /SW4A SWIB /SW2B /SW3B SW4B

CLOCKF CLK
CHECK /SWIA /SW2A SW3A /SW4A SWIB /SW2B /SW3B /SW4B

CLOCKF CLK
CHECK SWIA /SW2A SW3A /SW4A SWIB /SW2B SW3B /SW4B

SETF /ENA /ROTA /MODEA /ENB ROTB /MODEB
CLOCKF CLK
CHECK SWIA /SW2A SW3A /SW4A SWIB /SW2B SW3B /SW4B

SETF ENA ENB

2·556 ~ Monolithic W Memories ~

Stepper Motor Controllers

CLOCKF CLK
CHECK /SWIA SW2A SW3A /SW4A SWIB /SW2B /SW3B SW4B

CLOCKF CLK
CHECK /SWIA SW2A /SW3A SW4A /SWIB SW2B /SW3B SW4B

CLOCKF CLK
CHECK SWIA /SW2A /SW3A SW4A /SWIB SW2B SW3B /SW4B

CLOCKF CLK
CHECK SWIA /SW2A SW3A /SW4A SWIB /SW2B SW3B /SW4B

iDESCRIPTION
iCLK /OC /EN SET ROT MODE SW1-SW4 COMMENTS
---,

X H X X X X Z HI-Z
C L H X X X HOLD HOLD MOTOR POSITION
C L L H X X 1 SET MOTOR POSITION TO STEP 1 Ell C L L L H H SW PLUS 1 HALF-STEP MOTOR CLOCKWISE
C L L L H L SW PLUS 2 FULL-STEP MOTOR CLOCKWISE
C L L L L H SW MINUS 1 HALF-STEP MOTOR COUNTERCLOCKWI
C L L L L L SW MINUS 2 FULL-STEP MOTOR COUNTERCLOCKWI

---,

~ Monolithic [FJJ] Memories l1 2·557

Shaft Encoders

The trend away from analog systems to digital numerical control
systems focuses new attention on instruments that convert the
analog output of position-sensing devices into digital format.

The recording of the position of moveable parts of a machine
requires high accuracy and noise immunity which can be
attained through shaft encoder circuits of the type used in speed
controllers and optical position-sensing devices.

Principles of Shaft Encoding
Most commonly used are opto-electrical encoders. The advan­
tages of this type of circuit are direct shaft-to-digital encoding, a
minimum number of power supplies, low power requirements,
low cost and high speed.

Optical encoders measure shaft rotation by detecting the light
which passes through a rotating code disc and a fixed slit.

It consists of a number of light sources and sensors whose paths
are interrupted by a disc that has transparent and opaque areas.

By using various concentric patterns, the shaft position can be
defined. Light shines through the disc onto sensors. A sensor
turns on when the light passes through its corresponding trans­
parent part of the disc giving an output that depends on the
opacity of the segment. The combined output of all the segments
is digital information representing the disc and the shaft position.

- An absolute encoder has a number of concentric tracks on the
code disc, which provide parallel readout of shaft angle with­
out counting pulses. The code patterns on the disc are a kind
of storage.

Thus, the readout is also present after a power interruption.

- Incremental encoders, which will be described here, have a
single code track on the disc. Angular position is determined
by counting pulses produced by the modulated light falling
onto the photodetectors.

Direction sensing is obtained by the use of quadrature signals
which are provided by appropriate phasing of the paths.

.-------oVCC

lIGHT SENSOR

I--------<JA

Ra tUOUT

'-------0 GND

AN-144

CIRCUIT WHICH PRODUCES MODULATED
OUTPUT SIGNALS USING LIGHT SENSORS

(PHOTO DIODES)

~--~~T

Thus, if power is interrupted an incremental encoder must have
its zero position reestablished.

The two signals from the light sensors have to be amplified and
converted into digital format using Schmitt triggers.

ANALOG-I AMPLIFIER 1 ... ---··1 ff ~DIGITAl
The two signals are out of phase by a quarter of a period. The
direction of movement can be determined by which signal leads
or lags the other.

Out of this phase relationship the shaft encoder produces
information about direction and speed for a following up/
down-counter.

To avoid random discrepancies during switching operations
shaft encoders should be built using synchronous clocked
circuitry.

The diagram below shows a typical circuit diagram for shaft
encoding.

ClK PHIO

UP

ENCODER

DOWN

2·558 ~ Monolithic m Memories ~

Shaft Encoders

The phase relationship of the two signals PHIO and PHI90 is
determined by the four registers, and their outputs are encoded.

The underlying principle of the above circuit is the time delay
between the clock pulses for the two signals PHIO and PH190.

S1 = PHIO at elK S2 = PHIO at elK + 1
S1 = PHI90 at elK S4 = PHI90 at elK + 1

A transition in PHIO or PHI90 from l to H or vice versa causes a
change in the data stored in the registers, which is encoded for
direction sensing.

The logic equations for the encoder circuitry are given below

PHIO leads PH190: S1 • S2· S3· /S4

PHIO lags PH190:

+/S1 • /S2 • /S3· S4
+ S1 • /S2 • /S3 • /S4
+/S1 • S2· S3· S4

/S1 • /S2· S3· /S4
+ S 1 • S2· /S3· S4
+ S1 • /S2· S3· S4
+/S1 • S2· /S3 • /S4

CLK III III I I III I III I I II I I I II II I

PHIO

PHI90---.......

UP

PHIO LEADS PHI90 BY 90°

p~~~--------------------

PHIO LAGS PHI90 BY 90°

PHIO-----'

PHI90

UP = HIGH -------------------

DOWN

When the shaft rotates in a clockwise direction, the input PHIO
leads the input PHI90 by 90° and the logic will generate pulses
only at the UP-output.

On the other hand, when the shaft's rotation is counterclockwise

the input PHIO lags the input PHI90 by 90°. In this case, four
pulses per square wave are presented at the DOWN-output. Note
that both the UP and DOWN outputs of the counter are normally
held high.

To ensure that no shaft encoder transition is missed, the clock
frequency should be at least 8xNxS, where N is the number of
pulses produced by the encoder for each shaft revolution and S
is the maximum speed in revolutions per second to be expected.

Most commonly elK frequencies in the range of 1 MHz are used
for optimum circuit operation.

Synchronous two-channel shaft encoders as described above
are relatively insensitive to encoder phase errors. They use no
temperamental Mono-Flops and can detect any illegal transition
states generated by the circuit.

Interference on the input lines is ignored if it occurs between two
clock cycles. Random noise on both input lines results in one UP
count for each DOWN count so that in the end the digital infor­
mation remains unchanged. Hence synchronous shaft encoders
are extremely useful in electrically noisy environments.

The PAL Device Applications are examples of such circuits
using a single PAL device each.

CLK-----,.

PHIO­

PHI90

SET

6C
CLK

PHIO_

PH190_

X4-

SET

6C
CLK

PHIO-

PH190-

X4

DATA+LD
SET

6C

+

PAL
16R8

PAL
20X10

SHAFT ENCODER #1

UP
74193

1--=':":"':":_"'1 UP/DOWN
COUNTER

SHAFT ENCODER #2

COUNT

74697
I--....::;U:.;../D=--__ I UP/DOWN

COUNTER

SHAFT ENCODER #3
WITH INTERNAL 4-BIT
UP/DOWN COUNTER

00-03

00-03

00-03

~ Monolithic W Memories ~ 2·559

EJI

2·560

ShaH Encoders

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

SHAFT ENCODER No. 1
P7097
1.00
WILLY VOL DAN
MONOLITHIC MEMORIES
09/09/82

CHIP SEI PAL16R4

CLK PHIO PHI90 X4 NC NC NC NC /SSET
/OC DOWN NC S4 S3 S2 Sl NC UP VCC

EQUATIONS

/Sl .= /PHIO
+ SSET

/S2 := /Sl
+ SSET

/S3 .= /PHI90
+ SSET

/S4 .= /S3
+ SSET

/DOWN Sl* S2* S3*/S4* PHIO* PHI90
+ /Sl*/S2*/S3* S4*/PHIO*/PHI90
+ Sl*/S2*/S3*/S4* PHIO*/PHI90
+ /Sl* S2* S3* S4*/PHIO* PHI90

DOWN.TRST = VCC

/UP - /Sl*/S2* S3*/S4*/PHIO* PHI90
+ Sl* S2*/S3* S4* PHIO*/PHI90
+ Sl*/S2* S3* S4* PHIO* PHI90
+ /Sl* S2*/S3*/S4*/PHIO*/PHI90

UP.TRST = VCC

SIMULATION

SETF OC SSET
CLOCKF CLK
CHECK /S4 /S3 /S2 /Sl UP DOWN

SETF /SSET /PHIO /PHI90
CLOCKF CLK
CHECK /S4 /S3 /S2 /Sl UP DOWN

CLOCKF CLK
CHECK /S4 /S3 /S2 /Sl UP DOWN

SETF PHI90
CLOCKF CLK

GND

~ Monollthlo m Memories ~

;CHECK FOR PHIO
;INITIALIZE Sl=L

;CHECK FOR Sl
;INITIALIZE S2=L

;CHECK FOR PHI90
;INITIALIZE S3=L

iCHECK FOR S3
iINITIALIZE S4=L

;PHIO LEADS PHI90
;PHIO LEADS PHI90
;PHIO LEADS PHI90
;PHIO LEADS PHI90

iPHI90 LEADS PHIO
;PHI90 LEADS PHIO
iPHI90 LEADS PHIO
iPHI90 LEADS PHIO

PAL16R4

Shaft Encoders

CHECK /54 53 /52 /51 /UP DOWN

CLOCKF CLK
CHECK 54 53 /52 /51 UP DOWN

5ETF PHIO
CLOCKF CLK
CHECK 54 53 /52 51 /UP DOWN

CLOCKF CLK
CHECK S4 53 52 51 UP DOWN

5ETF /PHI90
CLOCKF CLK
CHECK S4 /53 52 51 /UP DOWN

CLOCKF CLK
CHECK /54 /53 52 51 UP DOWN

5ETF /PHIO
CLOCKF CLK
CHECK /54 /53 52 /51 /UP DOWN

CLOCKF CLK
CHECK /54 /53 /52 /51 UP DOWN

5ETF PHI90
CLOCKF CLK
CHECK /54 53 /52 /51 /UP DOWN

CLOCKF CLK
CHECK S4 53 /52 /51 UP DOWN

5ETF PHIO
CLOCKF CLK
CHECK 54 53 /52 51 /UP DOWN

CLOCKF CLK
CHECK 54 53 52 51 UP DOWN

5ETF /PHI90
CLOCKF CLK
CHECK S4 /53 52 51 /UP DOWN

CLOCKF CLK
CHECK /54 /53 52 51 UP DOWN

5ETF /PHIO
CLOCKF CLK
CHECK /54 /53 52 /SI /UP DOWN

CLOCKF CLK
CHECK /54 /53 /52 /51 UP DOWN

~ Monolithic W Memories ~ 2·561

5ETF PHI90
CLOCKF CLK

Shaft Encoders

CHECK /54 53 /52 /51 /UP DOWN

CLOCKF CLK
CHECK 54 53 /52 /51 UP DOWN

5ETF PHIO
CLOCKF CLK
CHECK 54 53 /52 51 /UP DOWN

CLOCKF CLK
CHECK 54 53 S2 SI UP DOWN

5ETF /PHI90
CLOCKF CLK
CHECK 54 /53 52 51 /UP DOWN

CLOCKF CLK
CHECK /S4 /S3 S2 SI UP DOWN

5ETF /PHIO
CLOCKF CLK
CHECK /S4 /S3 S2 /SI /UP DOWN

CLOCKF CLK
CHECK /S4 /53 /52 /SI UP DOWN

SETF SSET
CLOCKF CLK
CHECK /S4 /S3

5ETF /5SET
CLOCKF CLK
CHECK /S4 /S3

CLOCKF CLK
CHECK /S4 /S3

5ETF PHIO
CLOCKF CLK

/S2 /51 UP DOWN

/52 /SI UP DOWN

/52 /SI UP DOWN

CHECK /54 /53 /52 SI UP /DOWN

CLOCKF CLK
CHECK /S4 /S3 52 SI UP DOWN

5ETF PHI90
CLOCKF CLK
CHECK /S4 53 S2 SI UP /DOWN

CLOCKF CLK
CHECK S4 53 52 51 UP DOWN

5ETF /PHIO

2·562 ~ Monollthlo W Memories ~

Shaft Encoders

CLOCKF CLK
CHECK 54 53 52 /51 UP /DOWN

CLOCKF CLK
CHECK 54 53 /52 /51 UP DOWN

5ETF /PHI90
CLOCKF CLK
CHECK 54 /53 /52 /51 UP /DOWN

CLOCKF CLK
CHECK /54 /53 /52 /51 UP DOWN

5ETF PHIO
CLOCKF CLK
CHECK /54 /53 /52 51 UP /DOWN

CLOCKF CLK
CHECK /54 /53 52 51 UP DOWN

5ETF PHI90
CLOCKF CLK
CHECK /54 53 52 51 UP /DOWN

CLOCKF CLK
CHECK 54 53 52 51 UP DOWN

5ETF /PHIO
CLOCKF CLK
CHECK 54 53 52 /51 UP /DOWN

CLOCKF CLK
CHECK 54 53 /52/51 UP DOWN

5ETF /PHI90
CLOCKF CLK
CHECK 54 /53 /52 /51 UP /DOWN

CLOCKF CLK
CHECK /54 /53 /52 /51 UP DOWN

5ETF PHIO
CLOCKF CLK
CHECK /54 /53 /52 51 UP /DOWN

CLOCKF CLK
CHECK /54 /53 52 51 UP DOWN

5ETF PHI90
CLOCKF CLK
CHECK /54 53 52 51 UP /DOWN

CLOCKF CLK
CHECK 54 53 52 51 UP DOWN

l1 Monolithic W Memories l1

EJI

2·563

2·564

SETF /PHIO
CLOCKF CLK

Shaft Encoders

CHECK S4 S3 S2 /Sl UP /DOWN

CLOCKF CLK
CHECK S4 S3 /S2 /Sl UP DOWN

SETF /PHI90
CLOCKF CLK
CHECK S4 /S3 /S2 /Sl UP /DOWN

CLOCKF CLK
CHECK /S4 /S3 /S2 /Sl UP DOWN

;DESCRIPTION:

;THIS PAL16R4 IMPLEMENTS A TWO CHANNEL SHAFT ENCODER OF THE
;TYPE USED IN SPEED CONTROLLERS AND OPTICAL DEVICES.

;BOTH THE "UP" AND "DOWN" OUTPUTS OF THE PAL DEVICE ARE
;NORMALLY HIGH.
,
;WHEN THE SIGNAL AT THE "PHIO" INPUT LEADS THE SIGNAL AT THE
;"PHI90" INPUT, THE "DOWN" OUTPUT ALTERNATES BETWEEN HIGH AND
;LOW LEVELS AT HALF THE "CLK" FREQUENCY RATE. ALSO, WHEN THE
;SIGNAL AT THE "PHIO" INPUT LAGS THE SIGNAL AT THE "PHI90"
;INPUT, THE "UP" OUTPUT ALTERNATES BETWEEN HIGH AND LOW
;LEVELS AT HALF THE "CLK" FREQUENCY RATE.
,
;THE SHAFT ENCODER FEATURES THE CONFIGURATION AND OUTPUT
;POLARITY TO DRIVE AN 74S193 TYPE UP/DOWN COUNTER.

;THIS DESIGN WITH GLITCH-FREE OUTPUTS WILL BE EXTREMELY
;USEFUL IN ELECTRICALLY NOISY ENVIRONMENTS. THE PINOUT IS
;GIVEN AS A FIRST PROPOSAL AND CAN BE CHANGED ACCORDING TO
;THE PC BOARD LAYOUT.

~ MonolithIc W MemorIes ~

Shaft Encoders

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

SHAFT ENCODER No. 2
P7098
1.00
WILLY VOLDAN
MONOLITHIC MEMORIES
09/09/82

CHIP SE2 PAL16R8

CLK PHIO PHI90 X4 NC NC NC NC /SSET GND
/OC UD NC S4 S3 S2 Sl NC COUNT VCC

EQUATIONS

/Sl := /PHIO
+ SSET

/S3 := /PHI90
+ SSET

/S2 := Sl
+ SSET

/S4 := S3
+ SSET

/COUNT .= Sl* S2*/S3* S4
+ /Sl*/S2* S3*/S4
+ /Sl* S2*/S3*/S4*
+ SI*/S2* S3* S4*
+ Sl* S2* S3*/S4
+ /Sl*/S2*/S3* S4
+ /Sl* S2* S3* S4*
+ SI*/S2*/S3*/S4*

IUD := /Sl* S2*/S3* S4
+ /SI* S2* S3* S4
+ /Sl* S2* S3*/S4
+ SI* S2* S3*/S4
+ SI*/S2* S3*/S4
+ SI*/S2*/S3*/S4
+ Sl*/S2*/S3* S4
+ /SI*/S2*/S3* S4

SIMULATION

SETF OC SSET
CLOCKF CLK
CHECK /Sl /S2 /S3 /S4

SETF /SSET /PHIO /PHI90 /X4
CLOCKF CLK

X4
X4

X4
X4

CHECK /Sl S2 /S3 S4 COUNT UD

iCHECK FOR PHIO
iINITIALIZE Sl=L

iCHECK FOR PHI90
iINITIALIZE S3=L

iCHECK FOR /SI
iINITIALIZE S2=L

iCHECK FOR /S3
iINITIALIZE S4=L

iTHIS OUTPUT ALTERNATES
iBETWEEN HIGH AND LOW WITH
;HALF OR QUARTER THE
iCLK FREQUENCY

iTHIS OUTPUT DETERMINES
;IF SIGNAL PHIO LEADS
iOR LAGS SIGNAL PHI90

PAL16R8

~ MonolithIc miD MemorIes ~ 2·565

EJI

5ETF PHIO
CLOCKF CLK

Shaft Encoders

CHECK 51 52 /53 54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 /53 54 /COUNT UD

5ETF PHI90
CLOCKF CLK
CHECK 51 /52 53 54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 53 /54 COUNT UD

5ETF /PHIO
CLOCKF CLK
CHECK /51 /52 53 /54 COUNT IUD

CLOCKF CLK
CHECK /51 52 53 /54 /COUNT UD

5ETF /PHI90
CLOCKF CLK
CHECK /cl 52 153 /54 COUNT IUD

CLOCKF CLK
CHECK 151 52 153 54 COUNT UD

5ETF PHIO
CLOCKF CLK
CHECK 51 52 /53 54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 153 54 ICOUNT UD

5ETF PHI90
CLOCKF CLK
CHECK 51 /52 53 54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 53 154 COUNT UD

5ETF /PHIO
CLOCKF CLK
CHECK /51 152 53 154 COUNT IUD

CLOCKF CLK
CHECK /51 52 53 154 ICOUNT UD

5ETF /PHI90 X4
CLOCKF CLK
CHECK /51 52 /53 /54 COUNT IUD

2·566 ~ Monolithic: W Memories ~

Shaft Encoders

CLOCKF CLK
CHECK /51 52 /S3 54 /COUNT UD

5ETF PHIO
CLOCKF CLK
CHECK 51 52 /S3 S4 COUNT IUD

CLOCKF CLK
CHECK 51 /52 /S3 54 /COUNT UD

5ETF PHI90
CLOCKF CLK
CHECK SI /S2 S3 S4 COUNT IUD

CLOCKF CLK
CHECK SI /S2

SETF /PHIO
CLOCKF CLK
CHECK /51 /52

CLOCKF CLK
CHECK /51 52

5ETF /PHI90
CLOCKF CLK
CHECK /51 52

CLOCKF CLK
CHECK /51 52

5ETF PHIO
CLOCKF CLK

S3 /S4 /COUNT UD

S3 /S4 COUNT IUD

53 /54 /COUNT UD

/53 /54 COUNT IUD

/53 54 /COUNT UD

CHECK Sl 52 /53 S4 COUNT IUD

CLOCKF CLK
CHECK 51 /52 /53 54 /COUNT UD

5ETF PHI90
CLOCKF CLK
CHECK 51 /52 53 54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 53 /54 /COUNT UD

5ETF 55ET
CLOCKF CLK
CHECK /51 /52 /53 /54 COUNT IUD

5ETF /55ET /PHIO /PHI90 /X4
CLOCKF CLK
CHECK /51 52 /53 54 COUNT UD

SETF PHI90

~ Monollthlo W Memories ~ 2·567

Shaft Encoders

CLOCKF CLK
CHECK /51 52 53 54 COUNT IUD

CLOCKF CLK
CHECK /51 52 53 /54 COUNT IUD

5ETF PHIO
CLOCKF CLK
CHECK 51 52 53 /54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 53 /54 /COUNT IUD

5ETF /PHI90
CLOCKF CLK
CHECK 51 /52 /53 /54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 /53 54 COUNT IUD

5ETF /PHIO
CLOCKF CLK
CHECK /51 /52 /53 54 COUNT IUD

CLOCKF CLK
CHECK /51 52 /53 54 /COUNT IUD

5ETF PHI90
CLOCKF CLK
CHECK /51 52 53 54 COUNT IUD

CLOCKF CLK
CHECK /51 52 53 /54 COUNT IUD

5ETF PHIO
CLOCKF CLK
CHECK 51 52 53 /54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 53 /54 /COUNT IUD

5ETF /PHI90
CLOCKF CLK
CHECK 51 /52 /53 /54 COUNT IUD

CLOCKF CLK
CHECK 51 /52 /53 54 COUNT IUD

5ETF /PHIO X4
CLOCKF CLK
CHECK /51 /52 /53 54 COUNT IUD

CLOCKF CLK
CHECK /51 52 /53 54 /COUNT IUD

2·568 ~ Monolithic W Memories l1

SETF PHI90
CLOCKF CLK

Shaft Encoders

CHECK lSI S2 S3 S4 COUNT IUD

CLOCKF CLK
CHECK lSI S2 S3 IS4 ICOUNT IUD

SETF PHIO
CLOCKF CLK
CHECK SI S2 S3 IS4 COUNT IUD

CLOCKF CLK
CHECK SI IS2 S3 IS4 ICOUNT IUD

SETF IPHI90
CLOCKF CLK
CHECK Sl IS2 IS3 IS4 COUNT IUD

CLOCKF CLK
CHECK Sl /S2 IS3 S4 ICOUNT IUD

SETF IPHIO
CLOCKF CLK
CHECK lSI IS2 IS3 S4 COUNT IUD

CLOCKF CLK
CHECK lSI S2 IS3 S4 ICOUNT IUD

SETF PHI90
CLOCKF CLK
CHECK lSI S2 S3 S4 COUNT IUD

CLOCKF CLK
CHECK lSI S2 S3 IS4 ICOUNT IUD

SETF PHIO
CLOCKF CLK
CHECK Sl S2 S3 IS4 COUNT IUD

CLOCKF CLK
CHECK Sl IS2 S3 IS4 ICOUNT IUD

; DESCRIPTION
,
;THIS PAL16R8 IMPLEMENTS A TWO CHANNEL SHAFT ENCODER OF THE
;TYPE USED IN SPEED CONTROLLERS AND OPTICAL DEVICES.
,
;THE "COUNT" OUTPUT OF THE PAL DEVICE IS NORMALLY HIGH. DURING
;SHAFT ENCODING THIS OUTPUT ALTERNATES BETWEEN HIGH AND LOW.
,
;INPUT "X4" SELECTS BETWEEN HALF (X4=H) OR QUARTER (X4=L) CLK
;FREQUENCY OF THE "COUNTER" OUTPUT.

~ MonollthlcmmDMemorles ~

EJI

2·569

2·570

Shaft Encoders

:OUTPUT "UD" DETERMINES WHETHER SIGNAL PHIO LEADS (UD=H) OR
:LAGS (UD=L) SIGNAL PHI90.
,
:THE SHAFT ENCODER FEATURES THE CONFIGURATION AND OUTPUT
:POLARITY TO DRIVE A 74S697 TYPE UP/DOWN COUNTER.
,
:THIS DESIGN WITH GLITCH-FREE OUTPUTS WILL BE EXTREMELY USEFUL
:IN ELECTRICALLY NOISY ENVIRONMENTS. THE PINNING IS GIVEN AS
:A FIRST PROPOSAL AND CAN BE CHANGED ACCORDING TO THE PC-BOARD
: LAYOUT.

~ Monolithic W Memories ~

Shaft Encoders

TITLE SHAFT
PATTERN
REVISION
AUTHOR
COMPANY
DATE

ENCODER No. 3 (WITH INTERNAL 4-BIT UP/DOWN COUNTER)
P7099
1.00
WILLY VOLDAN
MONOLITHIC MEMORIES
09/09/82

CHIP SE3 PAL20Xl0

CLK PHIO PHI90 X4 /LD NC 03 02 01 DO /SSET
GND /OC DOWN S4 S3 S2 Sl Q3 Q2 Q1 QC UP VCC

EQUATIONS

/Sl := /PHIO
+ SSET

/S2 -= /Sl
+ SSET

/S3 -= /PHI90
+ SSET

/S4 -= /S3
+ SSET

/DOWN -= Sl* S2* S3*/S4* PHIO* PHI90* X4
+ /Sl*/S2*/S3* S4*/PHIO*/PHI90* X4

:+: Sl*/S2*/S3*/S4* PHIO*/PHI90
+ /Sl* S2* S3* S4*/PHIO* PHI90

/UP -= /Sl*/S2* S3*/S4*/PHIO* PHI90
.+ Sl* S2*/S3* S4* PHIO*/PHI90

: + : Sl*/S2* S3* S4* PHIO* PHI90* X4
+ /Sl* S2*/S3*/S4*/PHIO*/PHI90* X4

/QO .= /SSET* LD*/DO
+ /SSET*/LD*/QO

: +: /SSET*/LD* UP*/DOWN
+ /SSET*/LD*/UP* DOWN

/Ql -= /SSET* LD*/Dl
+ /SSET*/LD*/Ql

:+: /SSET*/LD* UP*/DOWN*/QO
+ /SSET*/LD*/UP* DOWN* QO

/Q2 -= /SSET* LD*/D2
+ /SSET*/LD*/Q2

:+: /SSET*/LD* UP*/DOWN*/QO*/Ql
+ /SSET*/LD*/UP* DOWN* QO~ Ql

/Q3 .= /SSET* LD*/D3
+ /SSET*/LD*/Q3

:+: /SSET*/LD* UP*/DOWN*/QO*/Ql*/Q2

;CHECK FOR PHIO
;INITIALIZE Sl=L

;CHECK FOR Sl
;INITIALIZE S2=L

;CHECK FOP PHI90
;INITIALIZE S3=L

;CHECK FOR S3
;INITIAL~ZE S4=L

;PHIO LEADS PHI90:COUNT=F/2
;PHIO LEADS PHI90:COUNT=F/2
;PHIO LEADS PHI90:COUNT=F/4
;PHIO LEADS PHI90:COUNT=F/4

;PHI90 LEADS PHIO:COUNT=F/4
;PHI90 LEADS PHIO:COUNT=F/4
;PHI90 LEADS PHIO:COUNT=F/2
;PHI90 LEADS PHIO:COUNT=F/2

;LOAD DO (LSB)
;HOLD QO
; DECREMENT
; INCREMENT

;LOAD 01
;HOLD Ql
; DECREMENT
; INCREMENT

;LOAD 02
;HOLD Q2
; DECREMENT
; INCREMENT

;LOAD 03 (MSB)
;HOLD Q3
; DECREMENT

~ Monolithic m Memories ~ 2·571

EJI

Shaft Encoders

+ /55ET*/LD*/UP* DOWN* 00* 01* 02

5IMULATION

5ETF OC 55ET /PHIO /PHI90
CLOCKF CLK
CHECK /51 /52 /53 /54 03 02 01 00

5ETF /55ET LD D3 /D2 Dl /DO
CLOCKF C:'K
CHECK Q3 /02 01 /00

5ETF /LD /X4
CLOCKF CLK
CHECK /51 /52 /53 /54 UP DOWN 03 /02 01 /00

5ETF PHIO
CLOCKF CLK
CHECK 51 /52 /53 /54 UP DOWN 03 /02 01 /00

CLOCKF CLK
CHECK 51 52 /53 /54 UP /DOWN 03 /02 01 /00

5ETF PHI90
CLOCKF CLK
CHECK 51 52 53 /54 UP DOWN 03 /02 /01 00

CLOCKF CLK
CHECK 51 52 53 54 UP DOWN 03 /02 /01 00

SETF /PHIO
CLOCKF CLK
CHECK /51 52 53 54 UP DOWN 03 /02 /01 00

CLOCKF CLK
CHECK /51 /52 53 54 UP /DOWN 03 /02 /01 QO

5ETF /PHI90
CLOCKF CLK
CHECK /51 /52 /53 54 UP DOWN 03 /02 /01 /00

CLOCKF CLK
CHECK /51 /52 /53 /54 UP DOWN 03 /02 /01 /00

SETF PHIO
CLOCKF CLK
CHECK 51 /52 /53 /54 UP DOWN 03 /02 /01 /00

CLOCKF CLK
CHECK 51 52 /53 /54 UP /DOWN 03 /02 /01 /00

5ETF PHI90
CLOCKF CLK

;INCRE~ENT

2·572 ~ Monolithic W Memories ~

PAL20X10

Shaft Encoders

CHECK 51 52 53 /54 UP DOWN /03 02 01 00

CLOCKF CLK
CHECK 51 52 53 54 UP DOWN /03 02 01 00

5ETF /PHIO
CLOCKF CLK
CHECK /51 52 53 54 UP DOWN /03 02 01 00

CLOCKF CLK
CHECK /51 /52 53 54 UP /DOWN /03 02 01 00

5ETF X4 /PHI90
CLOCKF CLK
CHECK /51 /52 /53 54 UP DOWN /03 02 01 /00

CLOCKF CLK
CHECK /51 /52 /53 /54 UP /DOWN /03 02 01 /00

5ETF PHIO
CLOCKF CLK
CHECK 51 /52 /53 /54 UP DOWN /03 02 /01 00

CLOCKF CLK
CHECK 51 52 /53 /54 UP /DOWN /03 02 /01 00

5ETF PHI90
CLOCKF CLK
CHECK 51 52 53 /54 UP DOWN /03 02 /01 /00

CLOCKF CLK
CHECK 51 52 53 54 UP /DOWN /03 02 /01 /00

5ETF /PHIO
CLOCKF CLK
CHECK /51 52 53 54 UP DOWN /03 /Q2 Ql QO

CLOCKF CLK
CHECK /51 /52 53 54 UP /DOWN /03 /02 01 00

5ETF /PHI90
CLOCKF CLK
CHECK /51 /52 /S3 S4 UP DOWN /03 /02 01 /00

CLOCKF CLK
CHECK /SI /52 /S3 /54 UP /DOWN /03 /02 01 /00

5ETF PHIO
CLOCKF CLK
CHECK 51 /52 /S3 /54 UP DOWN /Q3 /02 /01 QO

CLOCKF CLK
CHECK SI 52 /53 /54 UP /DOWN /03 /02 /01 00

~ Monolithic W MemorIes ~ 2·573

Shaft Encoders

5ETF PHI90
CLOCKF CLK
CHECK 51 52 S3 /54 UP DOWN /03 /02 /01 /00

CLOCKF eLK
CHECK 51 52 S3 54 UP /DOWN /03 /02 /01 /00

5ETF /PHIO
CLOCKF CLK
CHECK /Sl S2 S3 S4 UP DOWN 03 02 01 00

CLOCKF CLK
CHECK /Sl /S2 S3 S4 UP /DOWN 03 02 O~ 00

5ETF /PHI90
CLOCKF CLK
CHECK /Sl /S2 /S3 S4 UP DOWN 03 02 01 /00

5ETF SSET /PHIO /PHI90
CLOCKF CLK

SETF /SSET LD /D3 D2 /Dl DO
CLOCKF CLK
CHECK /03 02 /01 00

5ETF /LD /X4
CLOCKF CLK
CHECK /Sl /S2 /S3 /S4 UP DOWN /03 02 /01 QO

5ETF PHI90
CLOCKF CLK
CHECK /Sl /S2 S3 /S4 UP DOWN /03 02 /01 00

CLOCKF CLK
CHECK /Sl /S2 S3 S4 /UP DOWN /03 02 /01 00

5ETF PHIO
CLOCKF CLK
CHECK Sl /52 53 S4 UP DOWN /03 02 01 /00

CLOCKF CLK
CHECK 51 52 S3 S4 UP DOWN /03 02 01 /00

5ETF /PHI90
CLOCKF CLK
CHECK Sl S2 /53 S4 UP DOWN /03 02 01 /00

CLOCKF CLK
CHECK Sl S2 /53 /S4 /UP DOWN /03 02 01 /00

5ETF /PHIO
CLOCKF CLK
CHECK /51 52 /S3 /S4 UP DOWN /03 02 01 00

2·574 ~ MonollthloW Memories ~

CLOCKF CLK
CHECK /51 /52

5ETF PHI90
CLOCKF CLK
CHECK /51 /52

CLOCKF CLK
CHECK /51 /52

5ETF PHIO
CLOCKF CLK

Shaft Encoders

/53 /54 UP DOWN /03 02 01 QO

53 /54 UP DOWN /03 02 01 00

53 54 /UP DOWN /03 02 01 00

CHECK 51 /52 53 54 UP DOWN 03 /02 /01 /00

CLOCKF CLK
CHECK 51 52 53 54 UP DOWN 03 /02 /01 /00

5ETF /PHI90
CLOCKF CLK
CHECK 51 52 /53 54 UP DOWN 03 /02 /01 /00'

CLOCKF CLK
CHECK 51 52 /53 /54 /UP DOWN 03 /02 /01 /00

5ETF X4 /PHIO
CLOCKF CLK
CHECK /51 52 /53 /54 UP DOWN 03 /02 /01 QO

CLOCKF CLK
CHECK /51 /52 /53 /54 /UP DOWN 03 /02 /01 00

5ETF PHI90
CLOCKF CLK
CHECK /51 /52 53 /54 UP DOWN 03 /02 01 /00

CLOCKF CLK
CHECK /51 /52 53 54 /UP DOWN 03 /02 01 /00

5ETF PHIO
CLOCKF CLK
CHECK 51 /52 53 54 UP DOWN 03 /02 01 00

CLOCKF CLK
CHECK 51 52 53 54 /UP DOWN 03 /02 01 00

5ETF /PHI90
CLOCKF CLK
CHECK 51 52 /53 54 UP DOWN 03 02 /01 /00

CLOCKF CLK
CHECK SI S2 /S3 /S4 /UP DOWN 03 02 /01 /00

SETF /PHIO
CLOCKF CLK

~ Monollthlo m MemorIes ~

EI

2·575

Shaft Encoders

CHECK /51 52 /53 /54 UP DOWN 03 02 /01 00

CLOCKF CLK
CHECK /51 /52 /53 /54 /UP DOWN 03 02 /01 00

5ETF PHI90
CLOCKF CLK
CHECK /51 /52 53 /54 UP DOWN 03 02 01 /00

CLOCKF CLK
CHECK /51 /52 53 54 /UP DOWN 03 02 01 /00

5ETF PHIO
CLOCKF CLK
CHECK 51 /52 53 54 UP DOWN 03 02 01 00

CLOCKF CLK
CHECK 51 52 53 54 /UP DOWN 03 02 01 00

5ETF /PHI90
CLOCKF CLK
CHECK 51 52 /53 54 UP DOWN /03 /02 /01 /00

CLOCKF CLK
CHECK 51 52 /53 /54 /UP DOWN /03 /02 /01 /00

5ETF /PHIO
CLOCKF CLK
CHECK /51 52 /53 /54 UP DOWN /03 /02 /01 00

5ETF LD /D3 /D2 /Dl DO
CLOCKF CLK
CHECK /03 /02 /01 00

5ETF /D3 /D2 Dl DO
CLOCKF CLK
CHECK /03 /02 01 00

5ETF /D3 D2 /Dl DO
CLOCKF CLK
CHECK /03 02 /01 00'

5ETF /D3 D2 Dl DO
CLOCKF CLK
CHECK /03 02 01 00

5ETF D3 /D2 /Dl DO
CLOCKF CLK
CHECK 03 /02 /01 00

5ETF D3 /D2 D1 DO
CLOCKF CLK
CHECK 03 /02 01 00

2·576 ~ Monolithic W Memories ~

SETF D3 D2 /D1 DO
CLOCKF CLK
CHECK 03 02 /01 00

SETF D3 D2 D1 DO
CLOCKF CLK
CHECK 03 02 01 00

; DESCRIPTION
,

Shaft Encoders

;THIS PAL20X10 IMPLEMENTS A TWO CHAN~E~ SHAFT ENCODER WI~H AN
;INTERNAL 4-BIT UP/DOWN CO~~TER.

;BOTH THE "UP" AND "DOWN" OUTPUTS OE' ':'HE PAL DEVICE ARE NORMA:::":SY
;HIGH.

;WHEN THE SIGNAL AT THE "PHIO" INPUT ~EADS THE SIGNAL AT THE
;"PHI90" INPUT, THE "DOWN" OUTPU~ ALTERNATES BETWEEN HIGH AND
;LOW LEVELS AND THE COUNTER WILL COUNT DOWN. WHEN THE SIGNAL
;AT THE "PHIO" INPUT LEADS THE SIG~A:::" AT THE "PHI90" INPUT,
;THE "UP" OUTPUT ALTERNATES BETWEEN HIGH AND LOW LEVELS AND
;THE COUNTER WILL COUNT UP.
,
;INPUT "X4" SELECTS BETWEEN HALF (X4=H) OR QUARTER (X4=L) CLK
;FREQUENCY OF THE COUNTER OUTPUTS.
,
;THE INTERNAL 4-BIT SYNCHRONOUS COUNTER HAS COUNT UP, COUNT DOWN
;CAPABILITIES. ALSO, THE COUNTER CAN PARALLEL LOAD AND HOLD DATA
;INDEPENDENTLY OF THE SHAFT ENCODER SECTION. THE REGISTERS ARE
;SYNCHRONOUSLY INITIALIZED WHEN /SSET IS HELD LOW.
;
;THE CONTROL INPUTS PROVIDE THESE OPERATIONS WHICH OCCUR
;SYNCHRONOUSLY AT THE RISING EDGE OF THE CLOCK.

~ MonolIthIc m MemorIes ~ 2·577

Notes

2·578 ~ Monolithic W Memories ~

Military Applications

Monolithic Memories/Advanced Micro Devices is a major partici­
pant in the Command, Communication and Control (0) military
marketplace. Applications include programmable obsolescence
solutions, surface mount designs, radar systems, missile guid­
ance, aircraft graphic processors, microprocessor support logic,
state-machine designs, military computer hardware, redundant
solutions for backup systems, and reconfigurable hardware using
Logic Cell Arrays.

Programmable products offer an excellent solution to military ob­
solescence difficulties. The dynamics of the semiconductor in­
dustry has shortened product life cycles, creating a sunset tech­
nology market. Programmable products offer a quick, low-cost
replacement for obsolete parts, through direct pin compatibility or
board emulation.

MMIIAMD has long been a leader in military bipolar PAL, PROM
and FIFO products. We will soon be introducing military zero­
power CMOS PAL devices and military CMOS Logic Cell Arrays.
With pin and function compatible PAL products offered in both
bipolar and CMOS technologies, Monolithic Memories offers

backup systems (redundant solutions) in case of a failure with the
original design. So, whether the customer needs high-speed
bipolar or low-power CMOS, we will be the only company offering
both technologies for the military marketplace.

Surface mount technology is an assembly technique when circuit
boards are assembled with components bonded to metal pads on
the board surface, instead of being inserted into through-holes
like conventional Dual In-line packages (DIP). Surface mount
components can be mounted on both sides of a circuit board,
doubling the functional density. This lowers cost by reducing the
number or size of boards required. The military need for smaller
or denser-packed systems make surface mounting a must. We ~
meet this challenge offering a full line of products in surface mount ~
packaging, including Cerpack (W) and Leadless Chip Carriers
(LCC).

For more information on military products and applications, see
the military datasheet section (page 5-415).

~ Monolilhic W Memories ~ 2·579

Military Applications

M2018

M2064 74 Configurable IlOs

PAL32VX10 100 Configurable Logic

58 Configurable 1I0s Blocks (CLBs)

AmPAL22V10 32 Inputs 64 Configurable Logic 1-16 PT/CLB Output

10 Outputs Blocks (CLBs) 1800 Gate Equivalent

8-16 PT/Output 1-16 PT/CLB Output TIL or CMOS Input

22 Inputs 1200 Gate Equivalent Levels

10 Outputs
Async. ReseVSync. TIL or CMOS Input Registered/Direct

8-16 PT/Output
Preset Levels Inputs

Async. ReseVSync.
Sync. ReseVAsync. Registered/Direct 174 Registers

Preset On Chip Clock Gen. Preset Dual Feedback Inputs
Register Bypass Registered Inputs 122 Registers Asynch. SeVRes. Inputs

Polarity On Chip Clock Gen. Three-State

Preload
Register Bypass Security Features
J-K, S-R, D or T Async. SeVRes. Inputs

Three-State Rip Flops Three-State
Security Fuse Polarity Security Features

Preload
Three-State
Security Fuse

FUNCTIONALITY

PAL20S10
PAL20RS10
PAL20RS8

PAL20RA10 PAL20RS4

20 Inputs 20 Inputs

PAL20L8 10 Outputs 10 Outputs

PAL20L10 PAL20R8 4 PT/Output 1-16 PT/Output

PAL20X10 PAL20R6 Async. Clock PTSharing

PAL20X8 PAL20R4 Async. SeVReset Polarity

PAL16L8 PAL20X4
Register Bypass Preload

PAL16R8 20 Inputs
Polarity Three-State

PAL16R6 20 Inputs
Preload Security Fuse

PAL16R4
8 Outputs Three-State

10 Outputs 8 PT/Output Security Fuse
4 PTlOutput Three-State

16 Inputs XOR Security Fuse
8 Outputs Preload
8 Product Terms Three-State
per Output Security Fuse
Three-State
Security Fuse

Note: PT = Product Term
41701

Figure 1. Military Configurable Architectures

2·580 ~ Monolithic W Memories ~

Radiation Hardness

Spurred on by America's Strategic Defense Initiative, military
equipment manufacturers are looking for radiation hardened
parts to put into strategic weapon and space systems. It has been
stated that some level of radiation tolerance will be required in up
to 50% of all military applications by 1990. Due to this increased
need for radiation-resistant integrated circuits, MMI and AMD
have embarked on a program to determine what radiation dose
rates its products will withstand, and to provide increasingly
radiation-tolerant products.

The Galileo probe to Jupiter was bombarded with 100,000 rads
(Si) within a one hour period. In contrast, the earth's surface
absorbs 0.1 rads in a year. Military aircraft must withstand a
minimum of 2,500 rads total dose. A nuclear explosion
emits transient- ionizing radiation of at least 109 rads (Si) per
second. Radiation dosage and type varies greatly with the envi­
ronment. Table 1 shows radiation dosages and semiconductor
tolerances.

Radiation effects can be divided into two major categories;
natural space effects and man-made nuclear effects.

Space radiation consists mainly of cosmic rays and charged
particles in radiation belts (Figure 1). Cosmic rays from the sun,
made up of protons and nuclei, cause single event upsets (SEU).
A SEU occurs when a high-energy particle passes through an in­
tegrated circuit, changing an internal logic state.

438 01

REFERENCES

MAX. SPACE REQUIREMENT -

JUPITER SATELLITE PROBE-

STRATEGIC WEAPONS REQUIREMENT -
AIRCRAFT REQUIREMENT -

90% FATAL HUMAN EXPOSURE -

RADIATION SICKNESS -

CANCER TREATMENT -

MEDICAL X·RAYS -

AIRLINE TRAVEL -

EARTH SURFACE -

POWER PLANT RELEASE -

Radiation belts around planets, such as the VanAllen Belt circling
the earth, carry trapped protons and electrons. These charged
particles accumulate overtime in CMOS devices, causing thresh­
old voltago shifts. In oxide-isolated bipolar circuits this ionizing
radiation (total dose) will cause an increase in leakage current.

A nuclear explosion irradiates a large neutron fluence and high
energy gamma rays (Figure 2). Neutron radiation damages the
semiconductor lattice structure, creating recombination sites for
minority carriers, which decreases bipolar transistor current gain.
Neutrons induce no change to CMOS devices, which are
majority-carrier structures.

Nanoseconds after a nuclear blast, short, high-intensity electro- B
magnetic pulses lash out. Difficult to stop, these gamma rays
generate huge numbers of holes and electrons, causing large
currents, destroying both bipolar and CMOS circuits. CMOS is
especially susceptible due to its inherently low latch-up sensitivity
of 108 rads per second.

Emerging technologies and process improvements will make the
basic military hardness requirements for semiconductor devices
a reality (Table 2). Gallium Arsenide (GaAs) products now meet
a no-upset dose rate of 5 X 1011 rads per second and a total dose
of 108 rads. While junction-isolated bipolar devices also meet in­
herently high dose rates of up to 10'0 rads/second and total doses

TECHNOLOGIES

108 .- GALLIUM ARSENIDE

107

- JUNCTION ISOLATED BIPOLAR
106 - OXIDE ISOLATED CMOS
.- OXIDE ISOLATED BIPOLAR

10 5
- SILICON ON SAPPHIRE (SOS)

104 .- STANDARD BULK CMOS

10 3 - NMOS

10-2

TOTAL DOSE
RADs (Si)

Table 1. Radiation Perspectives

~ Monolithic: W Memories ~ 2·581

Radiation Hardness

Natural

Cosmic Rays

• Protons and Nuclei
• Causes Single Event Upsets (SEUs)

Charged Particles

• Electrons and Protons Found in Radiation Belts
• Accumulated Ionizing Radiation Over lime (Total Dose)

Measured in rads (Si)

• Causes Accumulation of Trapped Charges -) Shifting
Threshold Voltages in CMOS

• Increases Leakage Currents in Bipolar

25,000 MIL"---"s - - - - - - - - -
....- .c5 VAN ALLEN BELT ---

(PROTONS AND ELECTRONS) "

250 MILES-------------

, "

438 03

Figure 1. Space Effects

Nuclear Effects
Man-Made

Neutrons

• Neutron Fluence Measured in Neutrons Per Square
Centimeter

• Damages Lattice Structure -) Decreases Gain
• Affects Bipolar More Than CMOS

Gamma Rays

• Transient-Ionizing Radiation (Dose Rate) Measured in
rads (Si) Per Second

• High Energy Photons of 109 rads Per Second
• Causes Large Photocurrents -) Increases Supply Current
• Results in Latch-Up and Permanent Damage from Burn-Out
• Difficult to Shield Against
• Ruins CMOS

438 04

NUCLEAR EFFECTS

NUCLEAR EXPLOSION

(

A. NEUTRONS
B. GAMMA RAYS
c. LATCH·UP AND BURN·OUT

,~
~

Figure 2. Nuclear Effects

2-582 ~ MonolithIc W Memories l1

Radiation Hardness

of up to 107 rads, radiation-hardened CMOS circuits are not far
behind with a typical dose rate of 10 '0 rads/second and a total
dose of 106 rads (Table 3).

Process changes to improve the radiation tolerance of CMOS
devices are not without penalties. Guard rings reduce latch-up
sensitivity and leakage paths, but decrease circuit density. Thin­
ner gate oxides increase radiation resistance but cause reliabil­
ity problems due to hot electron effects. A dry oxide process
produces less defects but increases manufacturing time. Done
correctly, these sacrifices will produce a marketable
radiation-hardened CMOS process.

RADIATION TYPE AIRCRAFT NUCLEAR SPACE

Dose Rate
with no upset 10s 10" -
(rads/second)

Dose Rate
with no latch-up 10'0 10'2 -
(rads/second)

Total Dose
(rads (Si)) 2500 5000 106

Neutron Fluence
(neutrons/square 100 10'3 -
centimeter)

Single Event Upset
involving electrons - 10-10 -
(bits/square
centimeter)

Single Event Upset
involving protons - - 10-14

(bits/square
centimeter)

Table 2. Basic Military Hardness Requirements

At Monolithic Memories, radiation data has been obtained for
neutron fluence and dose rate effects. Products representing
bipolar junction and oxide-isolated processes passed neutron
irradiation levels of up to 10'3 neutrons per square centimeter
(Table 4). Dos9 rate data obtained on the junction-isolated
products showed recovery in fifty to seventy microseconds from
a one microsecond pulse of 2 X 10'0 rads (Si) per second (Table
5). MMI and AMD will move from radiation testing towards new
radiation-tolerant designs and processes as the need for radia­
tion-hardened products increases.

Space Effects

ECL­
ffi­

Lsl'2L-

10'2 - GaAs

10"

10'0 :::: ~~g~~g;
-NMOS

109 - PMOS
-CMOS

107 - MOST DISCRETE DEVICES

DOSE RATE
(RADs/S)

Table 3. Typical Ionizing Dose Rate Upset Levels

438 02

~ Monollthlo W Memories ~ 2·583

Radiation Hardness

PASSED PASSED
DATASHEET FUNCTIONAL UP TO

PRODUCT DESCRIPTION PROCESS LIMITS UP TO (neutrons/cm2)

(neutrons/cm2)

PAL16R4AM 20 Pin, 30 ns Junction Isolated 4.5 X 1013 1 x 1014

PAL Device Diffused Bipolar

PAL16R4BM 20 Pin, 20 ns Shallow-Junction Isolated 4.5x1013 1 x 1014

PAL Device Implanted Bipolar

PAL16R4DM 20 Pin, 15 ns Oxide Isolated 4.5 x 1013 1 x 1014

PAL Device Bipolar

PAL20R4AM 24 Pin, 30 ns Junction Isolated 8 x 1013 1 x 1014

PAL Device Diffused Bipolar

PAL20RA10M 24 Pin, Junction Isolated 9.6x1013 1 x 1014

Asynchronous Diffused Bipolar
PAL Device

PAL32R16M 1500 Gate, 40 Pin Junction Isolated 1 x 1014 1 x 1014

MegaPALTM Device Diffused Bipolar

53S1681 16K PROM Junction Isolated 4.5 x 1013 4 X 1013

Diffused Bipolar

53RA1681A 16K Registered Junction Isolated 8 x 1013 1 x 1014

PROM Diffused Bipolar

53S3281 32K PROM Junction Isolated 1 x 1014 1 x 1014

Diffused Bipolar

Table 4. Neutron Bombardment Data

2·584 ~ MonolIthIc W Memories ~

Radiation Hardness

PRODUCT DESCRIPTION PROCESS DOSE RATE PHOTOCURRENT
(rads/second) (amps)

PAL12H6M 20 Pin Small Junction Isolated 2.6 x 10'0 4.2
PAL Device Diffused Bipolar

PAL14H4M 20 Pin Small Junction Isolated 2.1 x 10'0 3.9
PAL Device Diffused Bipolar

PAL10L8M 20 Pin Small Junction Isolated 2.5 x 10'0 4.2
PAL Device Diffused Bipolar

PAL12L6M 20 Pin Small Junction Isolated 2.2 x 10'0 3.B
PAL Device Diffused Bipolar

PAL14L8M 24 Pin Small Junction Isolated 1.2 x 10'0 3.6
PAL Device Diffused Bipolar

PAL16L6M 20 Pin Small Junction Isolated 2.3 x 10'0 4.0
PAL Device Diffused Bipolar

PAL16L8M 20 Pin Standard Junction Isolated 2.5 x 10'0 5.3
PAL Device Diffused Bipolar

PAL16R8M 20 Pin Standard Junction Isolated 1.9 x 10'0 5.3
PAL Device Diffused Bipolar

PAL16R6M 20 Pin Standard Junction Isolated 2.4 x 10'0 5.7
PAL Device Diffused Bipolar

PAL16R4M 20 Pin Standard Junction Isolated 2.1 x 10'0 5.6
PAL Device Diffused Bipolar

PAL20L10M 24 Pin Exclusive-OR Junction Isolated 2.1 x 10'0 6.7
PAL Device Diffused Bipolar

PAL20X10M 24 Pin Exclusive-OR Junction Isolated 1.9 x 10'0 5.9
PAL Device Diffused Bipolar

PAL20X8M 24 Pin Exclusive-OR Junction Isolated 2.1 x 10'0 5.B
PAL Device Diffused Bipolar

Table 5. Transient Upset Test Data

~ Monollthlo W Memories ~ 2·585

Notes

2·586 ~ Monolllhic W Memories ~

Article Reprints

Article Reprints
Programmable Logic Device Preserves Pins, Product Terms (PAL32VX1 0) .. 2-589

PLD Programmability Extends its Sway Over Complex I/O (PALC29M/MA 16) ... 2-593

PROSE Devices Simplify State Machine Design (PMS14R21) ... 2-601

Designing a State Machine With a Programmable Sequencer (PMS14R21) ... 2-607

FPCs and PLDs Simplify VME Bus Control (Am29PL141) .. 2-619

Fuse-Programmable Chip Takes Command of Distributed Systems (Am29PL 141) .. 2-633

PAL Device Buries Registers, Brings State Machines to Life (AmPAL23S8) .. 2-639

Programmable Event Generator Conquers Timing Restraints (Am2971) .. 2-644

Wait-State Remover Improves System Performance (PAL22V1 0) ... 2-648

PLDs Implement Encoder/Decoder for Disk Drives (PAL22V10) .. 2-651

Mixing Data Paths Expands Options in System Design (PAL22V1 0) .. 2-660

Programmable Logic Chip Rivals Gate Arrays in Flexibility (PAL22V1 0) ... 2-670

XOR PLDs Simplify Design of Counters and Other Devices (PAL20X1 0) ... 2-676

The PAL20RA 10 Story -The Customization of a Standard Product (PAL20RA 10) .. 2-683

PLDs Abound: RAM-Based Logic Joins In ... 2-699

Introduction to Programmable Array Logic ... 2-702

Logical Alternatives in Supermini Design .. 2-711

Conference Proceedings
New PAL Device Architecture Extends Design Flexibility (PAL32VX1 0) .. 2-719

PROSE Architecture and Design Methodology (PMS14R21) ... 2-724

Blazing Fast PAL Devices Enable New Application Areas (PAL 16R8-1 0, PAL10H20P/G8) 2-730

~ Monolithic W Memories ~ 2·587

Notes

2·588 ~ Monolithic W Memories ~

DESIGN APPLICATIONS

Programmable logic Device
Preserves Pins, Product Terms
Chris Jay
Monolithic Memories Inc., 2175 Mission College Blvd., Santa Clara, CA 95054; (408) 970-9700.

Programmable-logic devices continue to evolve, re­
sponding to designers' demands for improved per­
formance, functionality, and flexibility. Among the
newest is the PAL32VXIO, a programmable-array
logic (PAL) device that enhances the architecture
of the earlier PAL22V 10. The result is a more flexi­
ble general-purpose device.

As a functional and architectural superset of the
22VIO, the 32VXIO can be programmed to carry
out any function that its predecessor can. It also

adds two features: regis­
ters that can be buried

Buried registers and
exclusive-OR gates
make this PAL device
a sound foundation
on which to build
state machines that
conserve I/O pins.

for designing state ma-
chines, and exclusive­
OR (XOR) gates for
counter and JK func­
tions (ELECTRONIC
DESIGN, Jan. 8, p. 45).

The number of inputs
to the fuse array of the
latest programmable-
array logic (PAL) de­

vice has been increased to 32 by the addition often
buried feedback paths. A macrocell output pro­
grammed as an input accesses the chip's feedback
path, which is buried within the fuse array.

As a result, buried state machines can be config­
ured in the device. Any logic design calling for
many input pins can be configured with dedicated
input pins and any of the of macrocell I/O pins
(Fig. 1). This option leaves pins free for configuring
outputs as inputs, and other Boolean functions may
be realized in buried registers. Thus, functionality
of the macrocell need not be lost.

The macrocell's XOR gate (denoted by the X in
the part number) simplifies state-machine design
because it promotes gate product-term economy.
This economy is the ability to create complex state­
machine designs without exhausting the limited
number of product terms in each macrocell.

For example, there are ten D-type registers in the
32VXlO, one in each of its ten macrocells. The
XOR input to each register and no more than three

Reprinted with permission from Electronic Design,
Vol. 35, No. 13 (May 28. 1987). Copyright 1987 Hayden Publishing Co., Inc.

product terms transform a D-type register to a JK
register. Once the JK register is configured, subset
functions like the T (toggle) and an SR (set-reset)
may be derived.

The macrocell's product-term economy can be a
result of the hold state inherently defined in the JK
truth table-a function not offered by the D-type
register alone (see the table). For a D-type register
to hold its contents in a "set" state during several
states, additional product terms must hold that
condition until it is relaxed. In many tasks, apply­
ing product terms as holding functions could ex­
haust the limited supply in a given cell and compro­
mise a state-machine design.

A practical task for the hold function is in a line­
sync generator. The blanking and line-sync pulses
are programmed as JK functions, and a hold condi­
tion is invoked for their active duration.

The XOR gate also influences the output polari­
ty of a logic signal. Active-high or -low logic signals
may be created at the output pins. In PAL devices
without polarity control, the output can be inverted
by applying DeMorgan's Theorem to a sum-of­
products architecture. This approach, however,
brings with it the added baggage of more product
terms. For example, one term containing N literals
(Boolean variables) is inverted by creating the sum
of N negated literals, with each negated literal us­
ing a product term.

Each of the 32 VX lO's ten macrocells is config­
ured around a sum-of-products and XOR input to a
D-type register, which is clocked from a dedicated
input pin. Each macrocell can be programmed for a
combinational or registered output. One product
term, associated with the control to bypass the reg­
ister, selects the path dynamically, if needed.

Typically, the registers are programmed as a re­
fresh counter for dynamic RAM. When a host mi­
croprocessor must access the RAM for read and
write cycles, its address-line outputs bypa.ss the reg­
isters, which contain the current refresh count for
the RAMs. Instead, the outputs address the memo­
ry inputs directiy. Afterwards, the address outputs

~ Monolithio W Memories ~

Ell

2·589

Programmable Logic Device Preserves Pins, Product Terms

from the registers are enabled again to refresh the RAM.
In fast video applications, a similar philosophy is in ef­

fect. The host microprocessor bypasses the contents of
the video-memory address counter to update the video
RAM. It is important, though, that any counter-incre­
ment signal be disabled, when the registers are bypassed;
an active clock input would overwrite any contents of the
D-type registers. In a video RAM system, this might not
be a disadvantage, but for dynamic-RAM arrays, over­
writing a refresh counter could lead to loss of data.

One product term might also dynamically influence
the logic signal's output polarity. With a registered out­
put, a dedicated register-out put-polarity multiplexer se­
lects either a Q or Q output, routing the selected signal to
the output pin. One programmable polarity fuse selects
the required path. This fuse does not affect the program­
mable polarity associated with combinational outputs.

The global product terms from the fuse array are dedi­
cated to resetting the ten registers synchronously and also
presetting them asynchronously. The action of these two
product terms can be selected by the programmable-po­
larity multiplexer for individual registered cells.

For instance, for a registered output, the asynchro-

Clock input

Fuse

nous-preset gate can be programmed to a synchronous­
reset gate or vice versa. The single product-term input to
the XOR gate can select the output polarity for either
combinational or registered outputs.

The second added feature of the new PAL device, its
conversion of an internal D-type register to a JK-register
cell, is demonstrated by five Boolean equations formed
from a sum of products:

Q:=Q*J+Q*I((l)
Q:= Q <J+Q * K(2)
Q := Q :+: Q * J +Q * K (3)
Q:= Q:+: Q * J+Q * K (4)
Q:= Q :+: Q * j+Q * 1(5)

where the Boolean operators are:

for an inversion;
:+: for an XOR operation;
+ for an OR operation;
* for an AND operation; and
:= is the state-machine operator "becomes equal to"

Note that all five Boolean equations have true or com-
plement conditions for either J or K; and a mixture of J

and I(or j and K functions.
Three of the equations require
the XOR function. Moreover, J
and K active-high conditions
can be used in equation 3 only
with an XOR operator.

Register bypass control The Boolean operators are
compatible with the Palasm as­
sembler-support software. Pa­
lasm is a computer-aided
(CAD) tool that generates pro­
gramming information for
PAL devices. The Boolean ex­
pression information describes
the operation of the device to be
programmed.

Register bypass

R Multiplexer

>-if-+-+-+-i D Q

Feedback from input pin

Register
polarity
control

1. Each of the ten macrocells in Monolithic Memories' PAL32VX10 PAL device
is driven by an exclusive-OR gate. a feature that promotes frugal use of
product terms. For example, the gates reduce the number of terms needed
to implement JK registers. The macrocells can also feed output and input
signals back to buried registers. As a result, designing state machines with
the device is easier.

2·590 ~ Monolithic W Memories ~

A good design specification
done by a CAD tool like Pa­
lasm should come with a com­
plete comment field to describe
the function of the Boolean
equations. Palasm accepts a
comment field in the descrip­
tion of a logic-design file. When
a semicolon precedes a state­
ment, Palasm ignores that
statement during the assembly
process.

The functional description of
the logic circuits is in terms of
Boolean statements. A later
version of Palasm will accept

Programmable Logic Device Preserves Pins, Product Terms

state-machine logic descriptions on a higher level. Then,
designers will be able to deal with logic statements con­
taining JK functions without describing them as a series
of a sum of products, as is now the case.

The ability to create subsets of a JK register gives the
logic designer more flexibility to design sequential-logic
circuits. One of the subset functions, for example, is the
toggle (T) flip-flop, which lends itself to counter applica­
tions. Binary counters require that the contents of any
general register, QN' remain in a hold state until the prod­
uct term of all the lesser significant registers goes to a log­
ic high. Then the register must change state or toggle after
the arrival of the next clock pulse. The T function may be
created by tying the J and K inputs together and treating
this composite as the T input. A hold state is maintained
when T = 0, and a change of state results when T = I.

The application of the toggle function to binary
counters can be developed by considering a general regis­
ter QN in a binary count sequence, where the lesser signifi­
cant registers are QN.I' QN-2" . ·QI' Qo' Using equation 3,
the JK description for a general register is given as

QN:= QN:+: K * QN+J * ON (6)

A hold condition must apply when the product term of
all lesser significant registers is a logic zero, or:

QN-I * QN-2 * .. ·QI * Qo = 0

and a toggle condition must apply when

QN-I * QN-2 * .. ·QI * Qo = I

This develops to

J = K = QN-I * QN-2 * .. ·QI * Qo (7)

which represents the T input to a toggle register. Substi­
tuting equation 7 into 6 leads to

QN:= QN:+: QN * (QN-I * QN-2" ·QI * Qo)

+ON
* (QN-I • QN-2 * .. ·QI * Qo) (8)

Substituting equation 7 into 6 for J and K inputs leads
to

Because (QN + ON) = I, equation 9 reduces to

QN := QN (hold QN)

:+: QN-I * QN-2 * .. ·QI * Qo (toggle QN) (10)

Equation 10 is a general equation for a register in a bi­
nary counter. Only two product terms are used because
the XOR gate makes it possible to invoke the toggle func­
tion as a JK subset. Without the XOR gate, the general
equation for register N would be

QN:=QN

* QN-I >I< QN-2 * .. ·QI * Qo (toggle QN)

+ QN * ON-I (hold QN)

+ QN * ON-i (hold QN)

+ QN * QI (hold QN)

-+- QN * Qo (hold QN) (11)

Equation II requires N product terms as hold func­
tions. This means that for a lO-bit counter, the most sig­
nificant register, Q9. would need nine individual product
terms as hold functions and one additional product term
for a toggle function.

Three-state control

Pixel
clock Memory

address 0

Fuse
Resel array

and
Clock global
~nable interconnectivlty Memory

input address 6

Write
Line sync

To video

State 0
line-sync
circuitry

Blank

State 1 Line
flyback

control to
video-shift

State 2 register

Enabie Counter
State Enable
Input Q Output

To enable-
frame

counter

2. Thanks to its easy implementation of the JK func­
tion and its subsets, the 32VX10 makes a compact
line-address counter and line-sync generator for
video tasks.

~ Monolithic: W l'IIemorles ~ 2·591

Programmable Logic Device Preserves Pins, Product Terms

In contrast, equation 10 makes use of the XOR func­
tion, requiring one product term to hold and one product
term to toggle. No matter how significant the register in
the count sequence, the inclusion of an XOR function in
the equation eliminates large numbers of product terms.
The advantage of the XOR gate increases for a lO-bit, up­
down counter because the required number of product
terms doubles. Q9 would normally need 20 product terms
but with an XOR gate, only three do the job.

A practical outcome of configurable JK and T registers
is the design of a line-sync generator circuit for control­
ling a video RAM, and for synchronizing line-display in­
formation to a CRT interface (Fig. 2). Memory-address
outputs MAo through MA6, which are derived from an
internal counter, drive the address inputs to the video
RAM. One complete line of video information is dis­
played and surrounded by line-sync and blanking pulses
from two macrocells programmed as JK registers.

The internal memory-address counter is programmed
to address an 80-character screen and then issue an ac­
tive-high blanking pulse. The line-sync pulse goes active­
high when the counter reaches a decimal count of 79 (4F
hex) and is turned off at a decimal count of 103 (67 hex).
The blanking pulse is negated and the counter returns to
zero after reaching a decimal count of 107 (6B hex).

The JK functions for turning on line-sync and blanking
pulses come from decoding the count equations. The
blanking pulse overlaps the line-sync pulse to give front

JK function using change of states

JKStcte J K Q N QN,l Functrlon JK Output

1 0 0 0 0 Reset Hold

2 0 0 1 1 Set Hold

3 1 0 0 1 Set Q:= High

4 1 0 1 1 Set Q:= High

5 0 1 0 0 Reset Q:=Low

6 0 1 1 0 Reset Q:=Low

7 1 1 0 1 Set Toggle

8 1 1 1 0 Reset Toggle

JK 1.

Q 2.

11 Dl 01 00 3.

1 I siR I R I s I 4.

o I sis I r I r I
Q = Q :+: /Q'J+Q'K

/Q = /Q :+: /Q'J + Q'K

Q = /Q :+: /Q'/J +Q'/K

and back porches to the video line-scan signal. Also, be­
cause the host shares access to the video memory, it can
update video information. In that case, a Write (WR) is
driven low to produce three-state video-address outputs.

When at work, the microprocessor can change the con­
tents of the video RAM during frame- or line-signal fly­
back periods to avoid displaying random data during ac­
tive display periods. To make such changes possible, the
WR input can be derived from a smaller combinational
PAL device that decodes the microprocessor's address
lines and maps the video RAM into its address space.

An asynchronous reset input (RST) powers up the
PAL to a known state. With its Count Enable Input
(CEI) and Output (CEO) signals, the device can cascade
with other circuitry, such as a frame-sync generator and a
video-shift register.

The memory-address counters are programmed as T
flip-flops; line-sync, blanking and CEO functions as JK
registers. An Enable-State Input (ENST) enables input
states 0 through 2 as count enable inputs in preference to
the CEI signal. When in the low state, ENST qualifies in­
put states 0 through 2 as active-high count-enable inputs.

To complement the line-sync generator design, the
32VX 10 is programmed as a 7-bit video-shift generator.
Seven registers shift video data and three are pro­
grammed as a 3-bit counter to control loading and shift­
ing of video data in the shift register. When all are high,
counter output states 0 through 2 cause the shift register
to load and the line-sync generator to increment.

For the example circuit, another 32VX1O is pro­
grammed to support the line-sync generator. As with the
other 32VX lOs, the frame-sync output is programmed as
a JK function. The internal counter accesses row-charac­
ter information as well as the contents of the video RAM.
The 32VX 10 video-shift register accepts dot information
from the character generator and supplies a parallel-to­
serial output for the video display. Any parallel-to-serial
output format can be handled by the 32VX 1 O.

Readers interested in the PAL design specifications
may contact the author for further details.O
Chris Jay, logic-cell-array applications manager with
Monolithic Memories, has been with the company since
1983. Three years were spent as a field-application engi­
neer in Northern Europe. Before that, he workedfor Texas
Instruments in Bedford, England and Fairchild Camera
and Instrument in Bristol, England, performing logic de­
sign and applications engineering, respectively. Jay earned
a BSc (honors) degree from Essex University in Coulches­
ter, ElJgland in 1977.

2·592 ~ Monolithic W Memories ~

PLD Programmability
Extends Its Sway Over
Complex 1/0

Electrically erasable CMOS parts, the
densest 24-pin SLIM PALs yet, reach

new heights in architectural flexibility

Om Agrawal, Product Planning Manager
Fares Mubarak, Senior Test Engineer
Field-Programmable Logic Division

Advanced Micro Devices, Inc., Sunnyvale, CA

T wo electrically erasable PAL
devices being introduced here
by Advanced Micro Devices

offer by far the greatest flexibility of
any programmable array logic
(PAL) device to date. Several fea­
tures contribute to the adaptability
of these CMOS ICs-the highest yet
number of product terms (188 and
178) of any 24-pin PAL; the opti­
mization of one device, the AmPAL-
29M16, for synchronous designs and
the other, the AmPAL29MAI6, for
asynchronous and glue logic applica­
tions; and the convenience of some
11,000 electrically programmable
and erasable interconnecting cells
(see Figs. 1 and 2).

But the most distinctive enhance­
ment is the programmable input and
output bidirectionality of each de­
vice's 16 I/O logic macrocells (1/0-
LMs). Until now, some program­
mable logic devices (PLDs) have

Reprinted from ELECTRONIC PRODUCTS Magazine-Vol. 29. No. 24. May 15. 1987

had output macrocells, but none has
had input macrocells, let alone the
1/ 0 type. The I/ 0 pin on each I/ 0-
LM can in addition be configured as
combinatorial, as an edge-triggered
register, or as a transparent latch.

What's more, on 8 of the 16 I/O
pins, the associated 8 register/
latches can serve independently of
the pins as programmable buried
state registers. Current 40-pin
CMOS EPLDs have only half that
number. These internal registers
offer designers an extra eight flip­
flops for such jobs as keeping track
of flags or generating timing and con­
trol signals.

The 11,000 or so interconnecting
elements are electrically erasable
(E2) cells that define what each
PAL device can do. They connect all
array inputs to the programmable
AND-OR array, and they configure
the architecture of the I/OLMs. The

645 Stewart Ave .• Garden City. NY 11530· © 1987 Hearst Business Communications. Inc.

~ Monolithic ~ Memories l1

DI

2·593

PLD Programmability Extends Its Sway Over Complex I/O

user programs these cells by charg­
ing and discharging them, so that de­
sign changes ca~ be made quickly­
far faster than for ultraviolet-light
erasable PLDs, or EPLDs.

The record number of product
terms, 16 macro cells, and horde of
E2 cells make the two newcomers
the densest 24-pin SLIM PAL de­
vices available, whether bipolar or
CMOS. The ICs are five to six times
denser than industry-standard, first­
generation 20- and 24-pin EPLDs
and E2PLDs and twice as dense as
second-generation 24-pin parts. In
(nct, these CMOS PALs are denser
even than 4O-pin bipolar PLDs.

Their 35-ns max input-to-output
propagation delay and external clock
frequency of 20 MHz max fixes the

new CMOS devices in the medium
speed range expected of bipolar
units. Maximum active power dissi­
pation is 120 rnA. Each comes in two
logic levels-CMOS HC and CMOS
HCT logic for TTL systems. (The
trademark PAL belongs to Mono­
lithic Memories.)

From what follows, it will become
clear that the basic I/O logic macro­
cell structure is the same for both the
synchronous 29M16 and asynchro­
nous 29MA16. Differences arise,
though, in the I10LM control mech­
anisms-their clocking, resetting
and presetting, and output enabling.
Also, the distribution of the product
terms between logic and control
functions is different for the two
PALs. The testing and debugging

Fig. 1. The architecture of the synchronous AmPAL29M16 P programmable
logic device derives much of its flexibility from Its 16 bidirectional input and
output logic macrocells. The macrocells may use eIther one or two clocks,
and each controls the output of on average 11 logic product terms.

DOUBLE FEEDBACK SINGLE FEEDBACK

features, though, are identical. In
conclusion, an application of the
29M16 will be outlined-the use of
nearly a dozen of these packages to
build a 32-bit direct memory access
(DMA) controller.

1/0LM with a difference
The flexibility of the I/O and stor­

age elements of these parts lends
them the look more of a gate array
than a PAL device (see Figs. 1 and
2). Eight of the I10LMs have single
feedback to the AND/OR array, and
eight have dual feedback. Single
feedback comes from either the I/ 0
pin or the storage element, dual feed­
back comes from both.

It's when an I/O pin is used for
input that its associated storage ele­
ment can be turned to use as a buried
register or latch. As many as all eight
of the dual-feedback I10LMs can
be devoted to user-programmable
buried-state register !latches. These

DOUBLE FEEDBACK
CLOCK/LE ,--__ .J,.."-__ ~

/ I/O 110" / 110
,--_____ -J,.."-______ ~, ,r---.J,.."----~,

DOUBLE ~EDBACK
"--------~vr--------------J

SINGLE FEEDBACK
~--";';'~""vr---.J

DOUBLE FEEDBACK

2·594 ~ Monolithic W Memories ~

PLD Programmability Extends Its Sway Over Complex 1/0

are helpful for both synchronous and
asynchronous state-machine designs.

The presence, number, and pro­
grammability of the E2 cells within
the I/ OLMs is the most significant
architectural variable of these PAL
devices. (Second-generation PLDs
had three to four times fewer archi­
tectural cells.) Is the macrocell to be
an input or an output? An edge-trig­
gered D flip-flop or a transparent
latch? What are the macrocell's
clocking, feedback, and output­
enable schemes and output polarity?
What if it frees up a buried state
register?

Programming the E2 cells
All these decisions are made by

programming the E2 cells. Single­
feedback macrocells have nine E2
cells, dual-feedback macrocells have
eight. In its virgin, erased (charged
or disconnected) state, an E2 cell's
value is 1. In its programmed (dis­
charged or connected) state, it is a o.

Both synchronous and asynchro­
nous I10LMs contain a configurable
storage-element cell and five multi­
plexers-two 2: 1 mul tiplexers for se­
lecting I/O and feedback path and
three 4: 1 multiplexers for selecting
output path, clock, and output en­
able (see Fig. 3).

Whether a macrocell is to be an
input or output and the nature of
its storage element (edge-triggered
register or transparent latch) is set
by E2 cells S2 and S3. In its virgin
state, the I10LM is an output cell
and the storage element is an edge­
triggered register. It can be changed
by the user to an input latch or regis­
ter or output latch by appropriate
programming of 8 2 and S3.

The polarity (active high or active
low) of the cell's output and its se­
quential (registered or latched) or
combinatorial nature are determined
by 8 0 and Sl. With both of these
cells in the erased (charged) state,
for example, the output is set to be

Fig. 2. The 16//0 macrocells in the asynchronous AmPAL29MA16 can each
be allotted its own product-term-driven clock. The PAL's need for more
control terms leaves an average of 7 logic product terms per macrocell.

SINGLE FEEDBACK

active low and combinatorial.
By programming, or discharging,

cell 8 0 , the designer makes the out­
put go active high. The OR-gate out­
put bypasses the storage element
and feeds the output-path selection
multiplexer directly.

On the other hand, by program­
ming 8 1 , the designer makes the out­
put sequential (registered/latched).
The Q output of the storage element
passes through the 4: 1 multiplexer
to an inverting output buffer and is
fed back to the AND array inter­
nally. This configuration is particu­
larly useful for state machine de­
signs. Programming both 8 0 and 8 1
results in an active-high, sequential
output.

The feedback multiplexer for the
I10LMs with single feedback is con­
trolled by yet another E2 cell (88).

This separate control of the feedback
multiplexer makes for the ultimate
in flexibility in state machine design.
Each I10LM, with registered, com­
binatorial or latched outputs, choice
of polarity, and dual feedback, has
12 possible output configurations.

~~ ____ ~~-J~~~~ ____ ~~~

CLOCK/LATCH ENABLE

INPUTS DE/INPUT

~~------~--~vr--~------~-J

SINGLE FEEDBACK

~ Monolithio W Memories l1 2·595

EJI

PLD Programmability Extends Its Sway Over Complex I/O

The timing needs of synchronous
state machines are much simpler
than those of asynchronous and glue
logic-hence the difference in the
two PALs' clocking, output-enable,
and preset/set arrangements and
in the number of product terms as­
signed to logic and control.

For synchronous state-machine
design, the flexibility of one or two
synchronous clocks, preferably with
polarity control, is often needed for
individual macrocells. It is impor­
tant for designing single-, dual-, or
quadruple-state machines with a var-

synchronous clock. Some newer syn­
chronous CMOS erasable PAL de-
vices offer dual clocks, but the two
are selectable for a bank of 8 regis­
ters at a time, rather than for 16
macrocells individually. Thus, they
are limited to, at most, two different
state machines, each with an eight­
register maximum.

In addition, these PAL devices us­
ually have two separate clock pins.
So, if the designer needs a single­
state machine with up to 16 registers,
the second clock pin is wasted.

iable number of state registers. Pro- Better clocking
grammable clock polarity offers the The 29M16s alleviate these draw-
ability to trigger certain groups, or backs. Each 1I0LM has a 4:1 pro-
banks, of registers on one edge and grammable clock-selection mecha-
other groups on the opposite edge. nism selected by two E2 cells, S4 and
The result is faster internal state S5. For addressing synchronous
machines. logic, the 29M16 has one dedicated

Early PAL devices had a single CLK/LE (latch enable) pin and

Fig. 3. The I/O logic macrocell, in either the synchronous AmPAL29M16 gate
array (with input gates shaded yellow) or the asynchronous AmPAL29MA16
(inputs on yellow background at far left), depends for its functionality on how
the erasable S cells configure the multiplexers and storage cell.

one CLK/LE/I (input) pin. For
macrocells configured as registers,
these pins are clock pins; for latches,
they're latch-enable pins.

Either the clock or latch-enable
pin may be selected to trigger each
storage element on either the rising
or trailing edge. With this, system
designers can implement up to a
quadruple-state machine, with each
meant to have a different number of
registers.

Also, since the device offers 16
I/OLMs with input register/latches,
the PAL is applicable to pipelined
systems with eight input latches and
eight output registers. The dual­
clock capability allows the PAL to
run with synchronous or asynchro­
nous inputs. The clocks' program­
mable polarity allows the internal
state machine to run at twice the
speed of the external clock.

Further, since only one pin is ded­
icated as a clock/latch enable, a sin­
gle state machine need not waste the

VCC -----------------~~
COMMON OE---­

INDIVIDUAL OE-o-

INDIVIDUAL -0-
ASYNC

PRESET P0-?i
•

P3. P7. OR pud
COMMON

ClOCK/lE ---L-
INDIVIDUAl~
ClOCKIlE~

INDIVIDUAl-o­
ASYNC
RESET

2·596

TO AND+-­
ARRAY+--

TO AND+-­
ARRAY+--

COMMON OE -----------------~~

DE FOR {
BANKS OF 4

MACRDCEllS

ASYNC
PRESET

PRODUCT TERM Po

ClOCK/lE ---...--+1

ClOCK/lElI ---+--+1

ASYNC
RESET

TO AND:====~-----i ARRAY

TOAND:::::::::~<j1-----~~--~~/~8~DE~D~ICA~TE~D~F~EE~DB~AC~K __ ~)
ARRAY-----.o-o..J I

1/0 CELL CONFIGURATION
FEEDBACK PATH SELECTION

KEY TO MULTIPLEXER FUNCTIONS

C OUTPUT PATH SELECTION
D CLOCK SELECTION

~ Monolithic W Memories ~

OUTPUT ENABLE SELECTION
STORAGE ELEMENT CONFIGURATION

PLD Programmability Extends Its Sway Over Complex 1/0

second clock pin. It can be an extra
input.

While one or two synchronous
clocks with programmable polarity
are sufficient for synchronous state
machines, asynchronous and glue
logic applications have more de­
manding clockl la tch requirements.
They call for more flexible PAL de­
vices with combinatorial outputs and
feedback and with edge-triggered
registers and transparent latches
having individual clock/latch-enable
capability (preferably with pro­
grammable polarity).

In addition, they require individ­
ual control of reset and preset and
output-enable product terms, as well
as slightly fewer product terms per
output. Further, for asynchronousl
glue logic applications, the clock-se­
lection and output-enable schemes
should be independent.

The 29MA16 addresses these
needs with up to 16 product-term­
driven asynchronous clockllatch-en­
able controls. Each of these controls
is a product term driven from the
AND-OR array as a function of cer­
tain input signals. These, in turn,
are controlled by the user according
to the application.

Like its synchronous counterpart,
each I/OLM of the asynchronous
29MA16 has a 4:1 multiplexer for
clock selection. Unlike the other,
however, it allows the user to select
from either a common synchronous
clock/latch enable or an individual
clock driven by a product term.

Preset and reset
The synchronous 29M16 uses

common asynchronous reset and
preset controls for all registered or
latched inputs and outputs. When
the product term for asynchronous
preset is asserted, all the registerl
latches are immediately loaded with
a high, independent of the clock.
Conversely, when the asynchronous
reset product term is asserted, all the
registerllatches are immediately
loaded with a low, independent of
the clock. Actual output depends on
the macrocell polarity.

The asynchronous 29MA16, on
the other hand, offers individual
asynchronous reset and preset con­
trol for ('nch of its storage elements.

This feature, plus the individual
clock capability, makes it easy for
the device to replace a large amount
of glue logic.

As in all PAL devices, the size,
organization, and distribution of the
internal product terms of the 29M16
and 29MA16's AND-OR array de­
termine its logic capability. Both
PAL devices can have 29 inputs, of
which 24 issue from the 110 logic

macrocells (8 from I/OLMs with
single feedback and 16 from 1/ OLMs
with dual feedback), 1 comes from
the I/OE pin, and 3 are dedicated.
The 29MA16 adds a fourth dedi­
cated input, but the 29M16 instead
has the CLK/LE/I pin.

Of the 29M16's 188 product terms,
all of 176 are logic terms and 12 are
control terms. The 176 logic product
terms are distributed among the 16

PALs move to ever-greater flexibility

Important gauges of a PAL device's flexi­
bility are the number and complexity of
its input! output logic macrocells. With
the introduction of its electrically eras­
able, CMOS-based AmPAL29M16 and
AmPAL29MA16, Advanced Micro Devices
has brought more flexibility than ever to
programmable logic devices.

First-generation, bipolar fuse-pro­
grammable PAL devices had at most
eight outputs fixed at the factory as
either registered or combinatorial with
active high or low polarity. The second
generation improved on this somewhat
by adding 10 programmable outputs con­
figurable as registered or combinatorial
and active high or low.

Although some second-generation
CMOS EPROM-based PLDs offer as many
as 16 logic cells, these can be configured
only as outputs. Further, these outputs
lack a transparent-latch capability, a re­
quirement for both asynchronous and
synchronous designs.

Architectural flexibility also extends to
features such as variable product terms,
varying the number of product terms per
output, and programmable buried states.
Variable product terms, first introduced
in bipolar PAL devices like the AmPAL-
22V10, help the device match the appli­
cation. Programmable buried states use
internal storage elements for state-ma-

. chine design; until now, PAL devices
lacked independent buried states. Such
elements were used only in conjunction
with I/O pins. Consequently, when an
I/O pin was an input, its associated stor­
age element was wasted.

At first, PAL devices were produced

l1 A'1onolithic: mill P.1emories ~

with fuse-based bipolar technology; they
could not be reprogrammed. Next genera­
tion EPROM-based PLDs (or EPLDs) are
reprogrammable, as are the still newer
electrically erasable PLDs (ElPLDs).

To be erased, EPLDs must be in ex­
pensive windowed ceramic packages
through which they're exposed to ultra­
violet light for a lengthy time. Easier to
reprogram, PPLDs fit in inexpensive
plastiC packages.

Complete testability is another sig­
nificant advantage of El technology. Un­
like bipolar and EPLDs, which require
additional testing circuitry, El devices
use only the array and its operating cir­
cuitry to make DC, AC, and functional
tests.

Finally, a PAL device must meet the
specific demands ot combinatorial, syn­
chronous, and asynchronous applica­
tions. While some CMOS PLDs have at­
tempted to address the broad range ot
applications with a "one-size-fits-all"
approach, this has limitations. The device
tends to have extra features that show
up in overhead while not providing others
that are key. The result is expensive and
less than optimal.

2·597

PLD Programmability Extends Its Sway Over Complex 1/0

RAM CHIP ENABLE

INITIALIZE

DECREMENT
COUNTERS

DATA BUS

32

LOAD

RAM WRITE ENABLE

RAS, CAS, R/W

ENABLE. INCREMENT
POINTERS

LOAD

16 14

ENABLE

INCREMENT

DECREMENT

'-----LoAD

'-----+ ZERO
(WAILZER)

DECREMENT

'-----LOAD

'-----~ZERO
(BRST _ZER)

ZERO
(CNUER)

Fig. 4. This multichannel 32-bit DMA controller is built
from 11 AmPAL29M16s, one AmPAL16L8, a 16 x 16-bit
RAM, and an 8-bit command register.

'-----+ RAM ADDRESS

'------.... DATA ENABLE AND LATCH

'--------+- LOAD COUNTERS AND POINTERS

'----------TO BUS

On both devices, three of the in­
puts to this multiplexer come from
ground, Vee, and the IIO-enable pin.
On the synchronous 29M16, the
fourth input to the multiplexer is
driven by the two AND-XOR prod­
uct terms already mentioned as be­
ing common for a bank of four
1I0LMs. In synchronous state ma­
chines, this arrangement allows the
110 pins to be controlled in groups
of four. The AND-XOR product
term control also allows for program­
mable polarity, a useful feature for
bus-control applications.

1I0LMs, as was shown in Fig. 1. The
eight II OLMs with dual feedback
have eight product tenus each, while
of those with single feedback, four
have 12 product terms and four have
16. The average is 11 product terms
per output.

This variable distribution of prod­
uct terms, as well as the number of
product terms per output, allows
more complex functions-such as
specialized counters and more com­
plex state machines-to be imple­
mented in a single device.

Of the 29M16's 12 control terms,
two are used as common asynchro­
nous reset and preset, and eight are
output-enable product terms-one
pair of common AND-XOR product
terms per bank of four registers. The
remaining two are used for observa­
bility in testing and for preload of

2·598

the device's storage element.
As for the 29MA16, its smaller

total of 178 product terms is divided
into only 112 logic terms and all of
66 control terms. The logic product
terms are also distributed in a var­
iable fashion (see Fig. 2 again);
the average is 7 product terms per
output. Of the control terms, four
are distributed to each of the 16
1I0LMs, and the remaining two are
for observability and preload.

Output enable control
The II a pin for both new devices

may be configured as a dedicated (or
permanently disabled) input, a dedi­
cated output, or dynamically con­
trolled. This flexibility results be­
cause the connection from the II 0-
LM to its 110 pin is controlled by a
4:1 multiplexer.

~ Monolithic [MiD Memories ~

On the 29MA16, this fourth input
is driven by an individual product
term from the AND-OR array. Such
individual product-term control
gives users maximum flexibility in
configuring the II a pins.

Both the parts have built-in fea­
tures to simplify testability and sys­
tem-level debugging. These include
a preload and a power-up reset for
testability and an observability
product tenu for debugging and for

PLD Programmability Extends Its Sway Over Complex 1/0

tracing buried state registers.
When the observability product

tenn is asserted, it suppresses the
combinatorial output data, prevent­
ing the data from appearing on the
110 pin. It then presents the con­
tents of the register/latches on the
output pin for each of the logic mac­
rocells.

The built-in power-up reset ini­
tializes the registerllatches to a
known state, a feature that simpli­
fies state machine designs. A secur­
ity cell in both devices protects the
logic against unauthorized copying.

A multichannel DMA controller
The AmPAL29MI6/29MAI6 are

suitable for applications ranging
from glue and general-purpose logic
replacement to synchronous and
asynchronous state machines. Fairly
complex Mealy and Moore state ma-

/
INITIALIZE

a::
N

g

GO

WAIT-zER

Q WAIT-ZER
~----.

chines can be readily designed, and
the 110 latches support double pipe­
lined systems.

Figure 4 is the block diagram of a
direct memory access (DMA) con­
troller built for the 32-bit 68020 mi­
croprocessor. It is a simple, four­
channel, single-cycle, 32-bit mem­
ory-to-memory data-transfer design.

The 68020 processor accommo­
dates memory blocks and peripheral
widths ranging from 8 to 32 bits on
its system bus. It also imposes cer­
tain connectivity requirements on
slave devices: 8-bit devices must go
to the uppermost 8 bits of the data
bus, while 16-bit devices must con­
nect to the data bus's upper word.

Consequently, issues related to the
data width for the DMA operation
are the data-transfer size (8, 16, or
32 bits), the data-funneling scheme
(for packing and unpacking data

KEY

to support a flexible data-transfer
scheme) , and block size.

The DMA logic comprises two ad­
dress pointers (one for source and
one for destination); a 32-bit data
latch; burst, wait, and block-length
counters; an 8-bit command register;
a 16 x 16-bit RAM; and the DMA
sequence controller. This design uses
a total of 11 CMOS AmPAL29MI6s
-9 to implement pointers, latch, and
counters and the remaining couple in
the sequence controller.

The two pointers have a width of
30 bits divided into an upper 16-bit
segment register field and a lower
14-bit offset register field. The 16-
segment register field allows data to
be transferred in 64-K segments,
each segment being a maximum of
16-K blocks (or 64-K words, with 4
words in each block).

The task of segment register main­
tenance comes under CPU control.
Thus, if the data to be transferred
spans a segment boundary, the CPU
must break up the transfer into two
separate operations and set up seg­
ment registers for it.

The 14-bit offset register's value
is loaded into the RAM locations by
the CPU before the DMA operation
begins. In this example the DMA

BRSLZER = BURST COUNTER AT ZERO
CNLZER = BLOCK COUNTER AT ZERO
WAILZER = WAIT COUNTER AT ZERO
DSACK = DATA ACKNOWLEDGED
BG = BUS GRANTED
RS = READ STATE
WS = WRITE STATE

Fig. 5. The state diagram of the DMA controller's
operation shows that it will cycle continuously
through the read and write states until some other
bus arbiter is granted control of the bus.

DSACK c5
SACK

~8~ 'S, -.8
l' BG.BRST ZER.CNUER ,

WS] ~8
~K

~ Monolithio W Memories ~ 2·599

PLD Programmability Extends Its Sway Over Complex I/O

transfers only long words, so the
least significant address bits Al and
Ao are stuck-at-zeroes. The offset
register is incremented after every
DMA read/write cycle unless the
command register says not to.

A 32-bit data latch temporarily
holds the long-word data fetched
from the source. During destination
writes, this becomes the source for
the data. The burst, wait, and block
count registers are each of them 14-
bit decrementers.

The burst register counts down af­
ter every DMA read/write cycle. At
zero, the data and address buses are
relinquished by the DMA controller
for a number of cycles defined in the
wait register.

The 14-bit block counter decre­
menter, whose value is loaded into
RAM locations by the CPU, keeps
track of the number of long words
transferred in each current DMA cy­
cle. The counter is loaded with a
value by the CPU before each new
DMA operation and is decremented
by the DMA control logic at each
transfer. A count of zero indicates
the end of current DMA operation.

2·600

The control sequencer
The DMA control sequencer has

three jobs. It handles loading both
the pointers and the registers from
the RAM locations. It controls the
DMA read/write cycles. And it con­
trols the interfaces to the CPU (han­
dling of burst and wait registers) and
the memory.

Because of I/O limitations in the
sequence, the buried registers asso­
ciated with inputs implement the
state sequence. The output-enable
structure enhances the individual
110 control of every macrocell, and
the clock scheme is used by trigger­
ing on both edges of the system clock
to improve the DMA read/write cy­
cle throughput.

According to the state diagram for
the DMA sequence controller (see
Fig. 5), the device stays in the idle
state until a DMA operation is
started by the CPU's writing the
GO bit in the command register.
The controller then loads the point­
ers and the counter registers from
the RAM locations and requests
the bus. After the bus is granted, it
initiates memory-to-memory data

~ Monolithic W Memories l1

transfers-read followed by write
cycles. (One memory-to-memory
transfer cycle is a single operation.)

DMA preemption
The DMA preemption is per­

formed in write state WS3 • When
the external arbiter signals that the
bus is needed by another potential
bus master (by negating bus grant),
the DMA controller gives up the bus
and enters the bus-request state. It
stays there until the bus control re­
turns to the DMA controller.

. In state WS3 , if the block counter
reaches value 0, then it returns to the
idle state. If the burst length has
reached zero, but the counter value
is not zero, then it goes to the wait
state until the wait register value
reaches zero. Then it transfers to the
"load burst register" state. In state
WS3 , however, if both the counter
and burst-register values are not
zero, and if no other bus arbiter
needs the bus, the controller contin­
ues memory-to-memory data trans­
fers until it is done. 0

PROSE Devices Simplify
State Machine Design

A bipolar device combines a PAL device for conditional branching
with a PROM device for storing system control functions to make
the design of small state machines easier.

Control logic is required in a broad range of ap­
plications-from low-level control of custom

bit-slice microprocessors, to bus arbitration and
timing generation in conventional microprocessors,
to special-purpose needs like data encryption and
decryption. Even though these applications vary in
complexity, they all require a sequential-type device
(a state machine, for example) that provides for se­
quences of output signals based upon state tran­
sitions and that includes some capability for
branching. More complex sequencers provide capa­
bility for looping and subroutining.

Possible candidates for control logic range from
Programmable Array Logic (PAL) devices, to the
more complex Field Programmable Logic Se­
quencer (FPLS) devices, to instruction-based
microprogram controllers that rely on on-chip
memory for expanded subroutine capabilities.
While FPLS and PAL devices have limited product
terms for many state-machine applications, the
other microprogram controllers are sometimes
more complex than required. For applications re­
quiring control functions that small and medium
state machines can represent, the Prose device from
Monolithic Memories Inc (MMI) can facilitate con­
trollogic.

Combining a PAL device for conditional branch­
ing and a PROM for storing the control functions

Nick Schmitz
Schmitz is a product planning manager for program­
mable logic devices at Monolithic Memories Inc (San­
ta Clara, CA).

Reprinted from the April 1, 1987 edition of Computer Design
Copyright 1987 by PennWell Publishing Company.

• o
Q

• o
o

of the system, Prose is intended to function as a
programmable sequencer (Prose = PROgrammable
SEquencer). It offers a maximum of 128 states and
up to four-way branching. A bipolar device oper­
ating at up to 25 MHz, Prose functions as a Moore
state machine. Under certain conditions, a Mealy
state machine can also be modeled with Prose.

Working faster and simpler
Custom microprocessors, such as those built with
bit-slice components, require control logic in the
form of multiple Ie microinstruction memories
and sequencers to generate addresses for those
memories. For complicated sets of instructions
with many states and complex branching and
subroutines, a microprogram controller makes
sense. But in situations in which a more limited set
of instructions and instruction transitions is re­
quired, the single-chip Prose device is faster as well

~ Monolithio m Memories ~ 2·601

EJI

PROSE Devices Simplify State Machine Design

Prose in a classic traffic-controller application

Consider a four·way intersection. Foreach direc·
tion (N, S, E and W), there are two sets of

lights: one for the forward direction (F) and one for
left turns (L). Each set has three lights: red (R), yel·
low (Y) and green (G). For each of the four direc·
tions, there are also two detectors (D): a left turn
detector and a forward detector.

In the master diagram for traffic·flow control (a),
each box represents a set of states generated by
the controller in response to the input conditions.
For instance, DO NL is executed given the input
conditions N LD "'SLD (N LD and not SLD).

Four Prose devices, a counter and an encoder
are used to implement this controller (b). The in·
puts to this controller are the six outputs of the en·
coder and the carry out (CO) signal from the
counter. The outputs are the control Signals to the
lights themselves. The encoder simply passes the
NLD, SLD, ELD and WLD signals. It generates two
new signals, NSD and EWD, as follows:

NSD=NLD+NFD+SLD+SFD
EWD=ELD+ EFD+WLD+WFD

Prose devices 1 through 3 generate the 24 out·
puts that control the traffic lights, while Prose 4
preloads the counter. Note that all four Prose de·
vices receive the CO signal from the counter. CO
tells the Prose devices when the preloaded
number of cycles has been completed so they can
generate the next state. The counter is used to
conserve states in the Prose devices; that is, the
devices simply cycle back to the same state until
the desired number of cycles has been completed
or until some condition detected by the sense de·
tectors warrants jumping out of the loop early.

as simpler. For instance, when an ALU is used only
for a mUltiply or filtering operation, Prose devices
reduce chip count but can also generate the required
instructions faster than the more complex micro­
program controller. Prose devices can also be used
for addressing the data memory to fetch the
operands for the filtering operation.

Consider also the case of a video controller. For
scanning purposes, counters that operate in various
sequences and count lengths are required. But in­
stead of implementing these as actual counters, the
sequences involved can be unlocked and imple­
mented as state-machine transitions. And there's
an advantage beyond the mere economy of parts. A
count can be set or initiated and then left to poll
various external hardware conditions while the mi­
croprocessor performs other operations.

(b)
l F
EAST

l F
WEST

l F
NORTH

r-"--~rI NORTH lEFT

f----'.-~!>-I SOUTH lEFT
f----'.--~~NORTH FORWARD
f----'.--~~SOUTH FORWARD

l F
SOUTH

Memory and bus arbitration applications offer
further opportunities for using Prose devices. If
two processors or other devices vie for memory ac­
cess, a simple Prose state machine can implement
the logic for deciding which device gets the bus
and/or access to memory. In such a case, the heavy
artillery of a microprogram controller and memory
isn't required.

As a sequencer for signal-processing applica­
tions, Prose state machines offer speed and suffi­
cient functionality without the overkill of a com­
plex microsequencer paired with dedicated mem­
ory. For simple algorithms, such as those involved
in performing a fast Fourier transform, Prose de­
vices can control the set of vectors that are mul­
tiplied and added in the process. Via the instruction
sets to the devices, Prose can control the operation

2·602 ~ Monolithic IFIll Memories ~

PROSE Devices Simplify State Machine Design

(PRELOAD 110) (PRELOAD 110)

NLG NFG "

Consider a block such as DO NL. As we enter
this block, we have just completed flow in the east­
west direction. The previous state has generated
the preload for the counter so that as we enter the
block DO NL with NLO* ISLO, the counter begins
the count. Suppose that we have preloaded 110
and count down. On the count following 000, CO
goes high, and this tells the Prose devices to
branch to another state. Figure (c) is a state transi­
tion diagram for DO NL. The state "NLG NFG" re­
cycles until CO or INLO occurs. Figure (d) shows
the details of DO NLSL; Figure (e) shows DO NFSF.
These diagrams reflect all basic transition types in
the controller. There are four blocks of the type DO
NL, two of the type DO NLSL, and two of the type
DO NFSF. In addition, there's one other block, ALL
REDS, that contains only one state: all outputs red.
So, from counting the possible states of the sys­
tem according to branch type, we have 15 one-way
branches, 10 two-way branches, a three-way
branches, and 4 four-way branches, resulting in 31
of the 128 PROM locations used.

INLD+CO ~
b

/CO*NLD

L...-N_FG_S_FG----lD lEWD

CO*EWD ~

This application uses four Prose devices-three
for generating signals to control the lights and one
for controlling the counter for state minimization.
Although outputs are different, all four devices use
the same inputs and execute the same transition
table and thus can be considered to be in the same
state, or to be generating a single state with a
wider output word. This usage demonstrates how
the Prose device can be expanded in width. When
programming the devices, state transition and
condition equations are identical and can be
copied. Only the output equations are unique to
each and must be programmed separately.

(c)

(e)

of the ALUs or multipliers and can control memory
access when separate Prose devices are used. A
Prose device is well suited to relatively simple oper­
ations that don't involve complicated decision
making. For complex digital signal processing op­
erations, a programmable DSP device may be bet­
ter, but it's not likely to be as fast as the dedicated
hardware approach.

In peripheral control, the simple state-machine
approach can be efficient. Consider the case of run­
length-limited code. Both encoding and decoding
can be translated into state sequence diagrams,
which examine the serial data stream as it's read,
and can then be readily programmed into a Prose
device.

Industrial control and robotics also require sim­
ple control functions. Tasks such as mechanical po-

I NLY NFG

INLD*SLD

NLY SLG I

j
(PRELOAD 110)

ICO*SLD

SLGSFG 0
j co + ISLD

SLY SFY I

I NFY SFY

(d)

(PRELOAD 110)

NLG SLY I

j (PRELOAD 110)

ICO *NLD

NLGNFG 0
! co + INLD

NLY NFY I

sitioning of a robot arm, simple decision making,
calculating a trigonometric function and displaying
several digits usually don't require a high-power
microsequencer with stacks and pointers and mi­
croprogram memory. What's required instead is a
device that can store a limited number of states and
allows simple branching upon conditions.

Control logic alternatives
A registered PAL device is a simple state machine
and can be effectively used for simple control func­
tions, such as counters, dynamic RAM controllers,
interrupt controllers and certain types of video con­
trollers. Combining a PAL device with memory
such as a PROM, as MMI has done in Prose, gives
the device much more powerful control capability.

Another alternative for control logic is the FPLS,

~ Monolithic W Memories ~ 2·603

PROSE Devices Simplify State Machine Design

Prose as a bus arbiter

Prose can be handy in applications that require
bus arbitration. Consider, for example, two

microprocessors and refresh circuitry that require
access to a block of dynamic RAMs (a).

(3)

CC(O-2) ICCACK(O-2)

The arbiter, which is a Prose device, receives re­
quests for access via condition codes CC(2-0). The
device may also receive a synchronous initializa­
tion request, liS, which is intended to reset the sys­
tem to an initial state. From these input signals,
the arbiter must generate signals to control the ac­
cess to the DRAMs. Thus it must generate ac­
knowledge signals for the requesting devices­
condition code acknowledge signals-/CCACK(2-
a)-and IRAS (row address strobe) and ICAS
(column address strobe) for the memories them­
selves and MCS for row/column multiplexer con­
trol. With this set of input and output signals, the

which has programmable AND and OR arrays as
well as JK or clocked-RS flip-flops with internal
registered feedback that allow sequencing and con­
figurable I/O pins. FPLS devices have a fixed
number of product terms that can be shared be­
tween input logic, state transitions and output func­
tions, dictated by the application needs. Because
the Prose device has dedicated resources-the PAL
and PROM arrays-these applications trade-offs
aren't required. While not characteristic of the ar­
chitecture, some FPLS sequencers operate at dif­
ferent speeds depending on the logic functions
implemented; for example, as the complexity of the
logic functions increases, speed decreases. With the
Prose device, however, operation speed is a con­
stant. For many applications, FPLS devices and
Prose devices are complementary; a design engineer
should be able to use both, choosing the right de­
vice for the application.

Finally, some recently introduced instruction-

Prose device can precisely control the access to
memory.

Once access is granted, a complete memory cy­
cle requires five clock cycles. Three clocks are re­
quired for access; two are required for DRAM
precharging. IRAS is asserted from the second cy­
cle to the end of the fourth, while ICAS is asserted
from the third cycle to the end of the fourth. (Row
and column addresses are asserted, as shown,
prior to the assertion of IRAS and ICAS.) Both IRAS

CC2'/IS

CCO*/CCI'/CC2'/IS
CCI'/CC2'/IS

based machines, similar to a PROM under control
of a microsequencer, offer another option for con­
trollogic. These machines are sophisticated devices
with ample states for state machines, but they're
too complex for simple control applications. More­
over, user adaptability and customization is lim­
ited. Because they're powerful and have sufficient
outputs, these machines can easily implement
counter-type state machines. But they offer a
limited choice of combinations of input literals for
condition testing. While such devices form a power­
ful microprogram controller/sequencer for gener­
ating addresses, they don't provide a single-chip
solution, and in many cases they're far more power­
ful than the application requires.

Prose device overview
The major building blocks in the Prose device are
the PAL array, the PROM array, and the shadow
and output registers. In brief, the PAL array gener-

2·604 ~ Monolithic: W Memories ~

PROSE Devices Simplify State Machine Design

and ICAS are removed during the fifth and the first
cycle for DRAM precharging.

The sequences of memory clock cycles with
their associated control signals can be viewed as a
set of state transitions (b). The condition codes,
CC(2-0), are assigned as follows: CC2 is a refresh
required; CC1 is a request from Processor 1; and
CCO is a request from Processor 2. A refresh cycle
differs from a regular memory cycle only in that
ICAS isn't asserted.

As shown in the transition diagram, A1 cycles
upon itself if IS is H (or active low signal /IS is L),
or if there's no request. If there's a refresh request
and IS is L, the transition A1 to B1 occurs, initiating
the cycle of states B1 through B5. This acknow­
ledges the refresh request and generates the tim­
ing required to carry out the refresh operation.
Note that any time liS occurs, the next transition is
to A1. The same is true for the loops C1 through C5
(processor 1) and 01 through 05 (processor 2).
Note also that at B5 if there's no request (and IS is
L), the next transition is to A1. But if IS is Land C2
is still true (another refresh request), the next tran­
sition will be to B1. Furthermore, if CC± is L (no
refresh request), IS is L, but CC1 is H (processor 1
request), the transition will be to C1 directly.
Similarly, if IS, CC2 and CC1 are all L, and CCO is H,
the transition will be directly to state 01. The tran­
sition diagram shows a similar relationship of tran­
sitions in the loops C1 through C5 and 01 through
05. There are 16 states, including 1 three·way, 12
two·way, and 3 four·way states, which the Prose
device can easily accommodate.

Prose can also handle more complex configura­
tions. Suppose there are four devices competing

for bus and memory access. A problem arises in
simply expanding the diagram (c) to accommodate
the extra device. Doing this directly would require
that A1 be a five·way branch. But the Prose is
limited to four-way branching.

(c)

PROCESSOR 1 PROCESSOR 2 REFRESH I/O PORT

This difficulty is easily avoided, however, by in­
serting another state, A2, between A1 and the tran·
sition sequences for two of the requesting
devices. Thus A2 serves as the embarkation point
for these transitions. Here, the condition codes are
CC3 (refresh), CC2 (processor 1), CC1 (processor 2)
and the CCO (an I/O port). CC3 has the highest
priority; CCO has the lowest. Note, however, that
01 through 05 are the five clock cycles forthe refresh
circuit. A refresh request always gets the highest
priority but, since speed of execution isn't crucial for
the refresh request, it's reached via A2. That is, the
refresh request is never ignored, but it's adequate to
service it through A2, allowing faster servicing (by one
clock cycle) of processor 1 or processor 2 requests.
A 1 goes toA2 forCC3*/lS + CCO*/CC2* ICC1 * IIS;A2
goes to 01 forCC3 *IIS. This configuration requires
no one·way, 16 two·way, 1 three·way, and 5 four·way
states-easily handled by Prose.

ates the branch address bits for the memory (128
words x21 bits), which stores the system's next
state addresses, device outputs and control func­
tions. The shadow register is used for programming
and diagnosis, and the output register provides syn­
chronous operation and registered feedback.

The PAL array is a 14H2-type: it has 14 comple­
mentary inputs and two active high outputs. Each
of the two outputs is a sum of eight product terms.
Eight of the inputs, from an external source, are
used for encoding of conditions for branch selec­
tion. The other six inputs, from internal feedback
from the PROM, are used for selection of the con­
ditions that determine branching when decisions
are involved in state transitions.

the PROM array itself for partially determining the
next location to be addressed, and six are condition­
select bits to the PAL array. They're used for prod­
uct term selection/enabling. The remaining two
bits are inputs to the exclusive OR gates. They're
used to determine address bits A6 and AS when
branching isn't involved.

The PROM consists of 128 21-bit words or loca­
tions, each of which can be viewed as a state, or as
containing state-related information. Eight bits at
each location are intended as outputs. The other 13
bits are intended as feedback: five are feedback to

When no branching is involved, CS(5-0) select no
condition in the PAL array, so that no product
term is wasted, and the PAL outputs are
Xl = X2 = O. Thus XFl and XFO are used to select
the higher-order address bits-A6 and AS, in this
case-and product terms are conserved for use
when real conditional selection (branching) is in­
volved. When conditional branching is involved,
no more than four branches can be from one loca­
tion, and all branch states will be in the same prima­
ry location but in different 4uadrants. That is,
address bit A(4-0) will be the same, and the condi­
tions will toggle A6 and AS to determine the exact

~ Monolithic W Memories ~ 2·605

EJJ

PROSE Devices Simplify State Machine Design

I (0·7)

PAL
ARRAY
14H2

CS (0·5) XF (0·1) A (0·4)

MODE
SOl

OCLK
CLK
IF

A6

AS

quadrant location of each of the possible next
states.

For diagnostic purposes, a shadow register
breaks the data path. Data can be shifted in or out
serially. The shadow register and the output register
are operated by different clocks, so that data may
be shifted without affecting device operation and
spoiling data. This lets data (in this case, test vec­
tors) be shifted into the shadow register and clocked
onto the output register. A normal operation can
then be performed, after which the data can be
loaded onto the shadow register and shifted out to
be analyzed. In addition, a multiplexer to the shad­
ow register lets the register contain data from the
output register or from the previous shadow regis­
ter contents.

Internally, programming of the Prose device
takes place via the shadow register, is completely
transparent to the user and is done individually for
each half of the device. For programming the PAL
part of the device, a certain pattern of data is shift­
ed into the shadow register with Vee raised to the
programming supervoltage and the preset/enable
pin also raised to the supervoltage afterwards. Indi­
vidual fuses in the PAL device are blown and se­
lected by the appropriate pattern.

Programming of the PROM is accomplished in
similar fashion. Vee is raised to the supervoltage
value; SOl is raised to the supervoltage afterwards.
The bit pattern in the shadow register determines
which fuse is to be blown.

Software support
Prose state machines are fully supported by new
programs in the Palasm suite-Proasm for assem­
bly and Prosim for simulation. To program the
Prose device, the user inputs a list of state names,
transitions and conditions that cause transitions to
subsequent states. When progamming a Moore ma­
chine, the user also inputs a list of expected outputs
for each state, and when programming a Mealy ma-

PROM
ARRAY

128 x 21

SHADOW &
OUTPUT REGISTERS

Q (0·7)

SOO

In the Prose device, the PAL ar­
ray processes inputs to produce
two decision variables that ac­
cess the PROM array, which
generates outputs from the ma­
chine and the next data address.
Support logic is provided for
serial scan access and diagnosis.

chine, the user inputs a list of outputs expected for
each path to each state. (For a Moore state ma­
chine, the outputs depend only on the state. For a
Mealy machine, outputs depend on the inputs also.)

User input to Palasm 2 (for state-machine entry)
consists of four sections: declaration, state, equa­
tions and simulation. The declaration section speci­
fies the type of Prose device to be programmed.
Currently, there's just one device in the family.

The state section specifies the state transitions
and the output details. The user specifies the type of
state machine-Moore or Mealy-and the various
defaults that should be used when the next state or
the outputs can't be determined from the equa­
tions. Furthermore, the user specifies state transi­
tions and outputs via equations. The transition
equations specify transitions from each current
state. The output equations specify the outputs for
each state, in the case of a Moore state machine, or
the outputs expected upon the transition from one
state to another, in the case of a Mealy state ma­
chine. For the Moore machine, there's only one set
of outputs for each state, but for the Mealy ma­
chine, the outputs depend on the path to the state.
The last section, the simulation section, contains in­
structions that tell the software how to simulate ac­
tual operation of the state machine and, therefore,
how to test the device once it's programmed. CD

2·606 ~ Monolithic W Memories ~

Designing a
state machine

with a
programmable

sequencer
Programmable-array-Iogic and

PROM combo provides a convenient
approach to state-machine design

for local intelligent control

Frank Lee, Product Planning and Applications
Monolithic Memories, Inc., Santa Clara, CA

Reprinted from ELECTRONIC PRODUCTS Magazine-February 1, 19870, AR·160
645 Stewart Ave., Garden City, NY 11530· © 1987 Hearst Business Communications, Inc.

I n the abstract, a computer, or at
least parts of a computer, can be
defined by a state-machine di­

rected-transition graph (see Fig. 1) .
A state machine is a small, locally
controlled machine-not intended
for a complete computation of a com­
plex program.

Experts generally divide state ma­
chines into two basic classifications:
algorithmic and synchronous-se­
quential machines. Algorithmic rna·
chines include the subcategoriel
called Turing machines, Post ma­
chines, and finite machines, which
primarily describe the specific algo­
rithm used in programming the com­
puter. A basic difference between a
synchronous sequential state ma­
chine and an algorithmic machine is
the presence or absence of stop
states. A start state, of course, must
be present in all machines or else
they will not be initiated.

A stop state in an algorithmic ma­
chine (like a Turing) occurs when
it has finished executing an algo­
rithm. In a synchronous sequential
machine, however, to achieve a stop
state, the machine must branch to it­
self-a type of wait state-until an­
other operation is ready. The only
time a synchronous sequential state
machine may be actually halted is
for an error or illegal command that
forces it into looping on itself uncon­
ditionally. But once in such a state,
the state machine theoretically can't
exit from it. The machine must be
reset and started over again.

Implementing a state machine
Although devices such as PAL,

PLA, and FPLS arrays can be used
to implement such a state machine, a
programmable sequencer (PROSE)
device, designated PMS14R21, is a
convenient, flexible, and economical
way. It consists of a combination
of a special PAL and a registered
PROM that are optimized for use
in local, intelligent-control state-

~ MonolithIc W Memories ~ 2·607

Designing a State Machine with a Programmable Sequencer

START
RESET

abed

(a)

Fig. 1. Parts of a computer can be represented by a graph of a state machine
showing Its directed transitions between states. An algorithmic machine (a)
has stop staters), whereas a synchronous machine (b) does not.

PROM ARRAY
(128x21)

ADDRESS
FEEDBACK

SHADOW AND
OUTPUT REGISTERS SDO

13

FB(0·12)

Fig. 2. The PMS14R21 programmable se­
quencer has a special PAL array Joined to
a registered PROM by two OR gates.

OUTPUTS

Q(0·7)

machine design (see Fig. 2).
The introduction of the PROSE

device is a significant advance in the
design of fuse-programmable state
machines of small to middling size.
The PAL array serves to select tran­
sition conditions, and the PROM
stores the state assignments. Also,
two exclusive-OR gates help reduce
the total number of states and prod­
uct terms a state machine would
need. One terminal (1/ E) can be

programmed to receive an asynchro­
nous initialization signal (one that
resets all registe~s to the high state)
or an output enable (via an architec­
tural fuse); others, to enable fault
diagnosis. A power-up reset feature
is also provided.

Each PROSE device has eight in­
puts, eight outputs, up to 128 states,
and up to a four-way branching ca­
pability. Many local control func­
tions can be done faster than on a

2·608 ~ Monolithic W Memories ~

good many other state machines.
Also, timing restraints on external
devices are greatly relaxed. Perhaps
most important of all, the PROSE
device provides a small, single-pack­
age solution to s~te-machine design
(for example, 24-pin, 3-in. Skinny­
DIPs and 28-pin plastic leaded chip
carriers) .

Moore and Mealy models
Two categories of state-machine

models are generally implemented:
the Moore and the Mealy state ma­
chines. The Moore machine's out­
puts depend only on the state; they
are independent of inputs. A Mealy
machine's outputs, however, depend
on both the state and the machine's
inputs. The Mealy, therefore, is a
superset of a Moore state machine.

A true Mealy state machine is too
versatile to be defined in a general
architecture. A Moore machine is
much easier to define and simpler
to implement. The simpler the state
machine is, the faster it will be. On
the other hand, for most applica­
tions, the outputs of a state machine
depend somehow on the inputs as
well as on the state.

The PROSE device can support
the Moore model. Fortunately, the
Mealy model can also be supported,
provided that the PROSE device's
output pattern can be pipelined by
one clock cycle. Also, the number of

Designing a State Machine with a Programmable Sequencer

combinations of patterns in the sub­
sequent states, and the state thus
pipelined, must not exceed four.

Controlling a state machine
Naturally, a state machine must

include a control system in addition
to the operating portion outlined so
far. The control system determines
the next state on the basis of the cur­
rent state plus a combination of in­
puts to the control system. Of course,
based on its state, the operating part
of the system determines the outputs
of the machine.

The number of inputs, to a certain
extent, determines the number of
conditions (as inputs or combina­
tions of input literals) from which
the state machine can select. It can
also determine whether encoding the
conditions is necessary, which then
becomes part of any external delay.
A small, local, intelligent, arbitration
unit may have as few as three to four
states to as many as 30 to 40 states.
A highly intelligent controller can
have thousands of states. However,
a state machine generally has a rela­
tively small number of states to
which branching occurs, because the
latter states will eventually loop to
each other (except maybe for the few
starting states).

Conditional branching needed
Because a state machine switche~

its states on the basis of both the
current condition and inputs, fre­
quently conditional branching is
necessary, sometimes to more than
two next states. Four-way branching
is common. If more than four-way
branching is required, up to 16-way
branching can be carried out by two
cycle:: of four-way branches (see
Fig. 3).

But in applications that operate
on single-cycle instructions, such a
branch-fanout tree may not be de­
sirable. Such single-cycle multiple
branching can be done provided the
machine allows losing a cycle for the
fanout and has enough product terms
to perform the branching on all the
conditions. (A PAL or PLA device
has a limited number of available
product terms.)

Similarly, the number of outputs

FIg. 3. A state fanout tree of up to a
16-way branch can be carrIed out In
two cycles of four-way branches.
ThIs operation requIres the state ma­
chine to lose a cycle for the fanout
and to have enough product terms
available to perform the branchIng
for all the conditions.

determines whether encoding of op­
erations control is necessary and
how many operations are possible.
Again, decoding of control signals
externally will mean extra delay. In
a single-device state machine, since
a limited number of pins is available,
the ratio of the number of outputs to
the number of inputs is very critical.
This ratio determines the applica-

~ Monollthlo W MemorIes ~

tion range of the device.
The PROSE state machine uses a

PAL array, designated 14H2, instead
of a simple condition multiplexer, to
avoid limiting the choice of possible
transition conditions to just one in­
put at a time. Rather, input literals
at any time can be combined so that
transition-condition encoding is not
needed. The eight inputs (10 to 17)
to the PAL device are condition sig­
nals. Together with the six addi­
tional inputs (CSo to CS5), which
carry condition-select feedback sig­
nals, they determine the next state.
These feedback signals serve only to
select the conditions for branching.

The six condition-select feedback
signals to the PAL array simplify the
selection of the transition conditions.
Also, combinations of conditions to
minimize product terms can be em­
ployed. Since the output registers
are all initialized to high states, and
the next state after an initialization
has to be known (state 127 for this
device), all product terms in the
PAL array must be disabled with
this pattern (all high) to perform
unconditional branching. Therefore,
this pattern is reserved for disabling
all product terms for unconditional
branching.

The 14 PAL inputs are comple­
mented internally to help program
two eight-product-term OR gates at
each of two active-high outputs (Xo
and Xl) . The conditions controlling
the next states must fit within these
limits. The outputs of the PAL feed
exclusive-OR (EXOR) gates, which
help conserve the need for state and
product terms.

To perform an unconditional, or
one-way branch, to save a product
term, Xo and Xl are at 00. For ex­
ample, the new PROM address has
A::; and Ao equal to 10 (binary). Ac­
cordingly, the EXOR feedback sig­
nals XF 0 and XF 1 are programmed
as 102 to force the EXOR outputs to
10 unconditionally.

For initialization, the CSo to CS5
feedback pattern for an uncondi­
tional branch is 111111. Thus, the
operational feedback of CSo to CS5
to the PAL must contain at least
one O-that is, patterns like 111111,
llX1X1, or XX1XXX should not

2·609

Designing a State Machine with a Programmable Sequencer

AS

AS

A6
r-____________________ ~A~ ________________________ ~

A6 = 0 A6 = 1

0 1 2 3 4 5 6 7 64 65 66 67 68 69 70 71

8 9 10 11 12 13 14 15 72 73 1(7~ 75 76 77 78 79

16 17 18 19 1(20) 21 22 23 80 81 82 83 (84) 85 86 87
AS = 0

24 25 26 27 28 29 30 31 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 96 97 98 99 100 101 102 103

40 41 42 43 44 45 46 47 104 105 106 107 108 109 110 111

48 49 50 51 (52) 53 54 55 112 113 114 115 ~1~ 117 118 119
AS = 1

56 57 58 59 60 61 62 63 120 121 122 123 124 125 126 127

(a)
A6

r---------------------~A~------------------------~
A6 = 0

0 1 2 3 4 5 6

AS = 0
8 9 10 11 12 13 14

16 17 18 19 :(20- -~ 22

24 25 26 27 28 29 30

0 1 2 3 4 5 Y
8 9 10 11 12 Y 14

1 16 17 18 19 I~~ 21 22
AS = 1

24 25 26 27 28 29 30

(b)

1 PRIMARY LOCATION

be used to select any product term.

Organization of the PROM array
The PROM array is a fuse-pro­

grammable array of 128 locations by
21 outputs. Eight primary outputs
are directly available (Qo to Q7)'
The actual functions are defined by
the user. In addition, 13 more out­
puts serve as feedback signals to help
determine the next state. All the out­
puts are registered at the rising edge

A6 = 1

7 0 1 2 3 4 5 6 7

15 JL. ~ (j0' 11 12 13 14 15

23 16 .A7 18' 1!1'~ ~O"' 21 22 23

3y K"4 25 26 'V 28 29 30 31

"7 0 1 2 ~4 5 6 7

15 8 9 10 11 ~12 13 14 15

23 16 17 18 19 ~2~) 21 22 23

31 24 25 26 27 28 29 30 31

Fig. 4. An absolute address map (a)
and a primary location map (b) show
how a location within each of four
PROM quadrants has the same pri­
mary location. If two states branch
to the same state (c), that state
would have to be duplicated if all the
resulting next states exceed four.

of the CLK input signal.
The primary locations in the

PROM are addressed by five inputs,
Ao to At, which are fed back directly
from the PROM registered outputs
to the PROM array. These 5 bits de­
termine the next primary location.

Therefore, 32 primary locations
define the states. The remaining two
address inputs to the PROM (bits
A;; and An), which the PAL array
and the exclusive-OR gates generate,
address four PROM quadrants, in
each of which branching can be per­
formed to any of its 32 primary lo­
cations (see Fig. 4a).

2·610 ~ Monolithic W Memories ~

Potentially, each of the 128 loca­
tions thus addressed could define a
difTerent state. In actuality, the num­
ber implemented is usually fewer.
For example, some states may need
to be duplicated in difTerent primary
locations. Consider a state A whose
next states will be B, C, and D, and
a state E whose next states will be
D, F, and G. Although one next state,
D, is common to the two conditional
transfers, putting B, C, D, F, G with­
in the same primary location (within
the four quadrants) is impossible,
since a primary location can accom­
modate only four next states in all
(see Fig. 4b). Therefore, two pri­
mary locations must be occupied
with the state D and its clone.

Another example requiring dupli­
cation of states occurs even when a
state A branches to states Band C,
and state D branches to states C, E,
and F-state C being common (see
Fig. 4c). Although the total number
of next states is four, if insufficient
product terms are available, the
states of A and D may still need to
be duplicated to achieve that result.

In the worst case, if every next
state had to be duplicated because
of incompatible combinations, or if
all states had four-way branches, the
PROSE state machine could stilI ac­
commodate 32 states. Each state
would have to be pointed to a differ­
ent primary location.

Registers for the PROM
To conserve tenninal pins, the 13

bits of feedback signals from the 21-
bit output register are buried within
the PROSE chip (see Fig. 5). What
is called a shadow register, together
with a diagnostic-an-chip (DOC)
scheme, enables testing various parts
of the chip, including the buried-sig­
nal conditions.

The shadow and output registers
(see Fig. 6a) are operated by differ­
ent cIocks-DCLK and CLK, re­
spectively-in several modes with
the MODE and SDI signals (see
Table 1). The output registers can
multiplex data from the shadow reg­
ister (to receive a test vector) or
from the PROM array (to receive a
test result). Similarly, the shadow
register can multiplex data from the

Designing a State Machine with a Programmable Sequencer

output register (for the test result) ;
the previous shadow-register bits (to
shift in a test vector and/ or shift
out a test result); and from the cur­
rent shadow-register bits (as just a
hold operation).

The DOC-register concept also
solves the programming issues for
the PROSE device. A pattern in the
shadow register identifies the fuse
to be blown (sec Fig. 6b). Bits PTo
to PT 2 select one product term out
of eight from each of the PAL's sum
of terms. Of these, bits CSo to CS5
and 10 to 17 select one input to the
PAL array. The bit labeled O/P se­
lects a sum term, and the bit T/C
selects either the true or complemen­
tary value of the input selected.

Similarly, the fuse to be blown in
the PROM is identified by the pat­
tern in the shadow register (see Fig.
6c). Ao to As is the absolute address
for the PROM array, and OAo to
OA4 selects 1 bit out of the 21 bits
in a PROM word.

Applications abound
The PROSE device is designed to

be used as a general-purpose state
machine for controlling equipment
or for data manipulation. The 128
states and four-way branch capabili­
ties make it possible to be used as a
high-speed memory or bus arbitra­
tor, a video-RAM arbitrator, an in­
dustrial traffic controller, a signal~
processor sequencer, a sequencer for
mass storage or communications, a
data encoder and decoder, and for
many other applications. For exam­
ple, the PROSE state machine can
implement the run-length-limited

Sj.1 (FROM PREVIOUS BIT) OJ (NORMAL DATA)

~ 1 !
10 ox 11

SOl

SHADOW REGISTER
MULTIPLEXER

MODE

1
t SHADOW

REGISTER DClK

1
~
I 0

OUTPUT REGISTER
MULTIPLEXER

ClK OUTPUT REGISTER

1
Q.

I

Fig. 5. The block diagram for a diagnostic register bit includes both a shadow
register and an output register. Thus a test vector and the test result can be
shifted in and out of the shadow register without corrupting the output flow.

code, designated 2,7 RLL (see Table
2). It is popular in mass-storage
equipment and can increase the ca­
pacity of such a device by approxi­
mately 50%.

In any mass-storage media, a min­
imum separation of at least one zero

between adjacent logic ones is re­
quired. In the 2,7 RLL coding/de­
coding system, at least two zeros
must exist between any two adjacent
ones. (Thus encoded patterns like
11 or 101 are illegal because there
are fewer than two zeros between ad­
jacent ones.)

Table 1. Functions of the Diagnostic Registers Since the distance between ones
determines the flux transition fre­
quency on the magnetic media, a
minimum of two zeros between ad­
jacent ones means that flux transi­
tions are at least three bit intervals
apart. Therefore, the encoded flux
density becomes 3/X (a binary 100
in the space X, the minimum on the
medium between transitions). Other
schemes like MFM, however, require
a density of 2/X (a binary 10 in the
minimum space X). Accordingly,
since three encoded bits occupy the
space on the media that carried 2
bits before encoding, the encoded

Shadow Output
register register

MODE SOl ClK DClK (SREG) (OREG) Operation

L X C . hold OREG.~PROM normal

H X C . hold OREG.~SREG; load from SREG

L X . C SREG;~SREG;-1 hold shift SREG
SREGo~SDI

H L C SREG;~OREG; hold load to SREG

H H . C hold hold no operation

L = zero C = clock pulse (Iow-to-high transition)
H = one • = stable clock or high-to-Iow transition
X = don't care i = bit number

~ Monolithic W Memories ~ 2·611

Designing a State Machine with a Programmable Sequencer

density is 3/2, or 1.5-times the orig­
inal density. (Additionally, to syn­
chronize data, a maximum of seven
zeros can be present between any two
adjacent ones.)

Starting from the INIT, or reset
state, the encoder/ decoder first car­
ries out a three-way branch-to per­
form encoding if the signal ENC is
received, or to perform decoding if
the signal DEC is received, or else
to itself. Once the state machine
starts, it continues on its own and
will be stopped when the machine
receives a reset signal at the initiali­
zation input pin.

Thus, in its initial state, the
PROSE machine loops on itself until
a control signal, CT 1, goes low. Then
a signal CT 0 must be set to com­
mand either an encode or decode
operation. An instruction (/ CT 0/
CT 1), therefore, forces a jump to
Aoo, which starts the encoding op­
eration of the state machine (see
Fig. 7a). Data inputs serially, before
encoding, as M, and outputs encoded
serially via Q6'

The Q7 port provides an output
for decoding; it is not used during
encoding. Therefore, in the states in

Table 2
An IBM 2,7 RLL Code Table

Input pattern Output pattern
000 000100
10 0100
010 100100
0010 00100100
11 1000
011 001000
0011 00001000

which encoding is performed, the la­
bels OX and IX in Fig. 7b refer to the
output bits of Q7 and Q6' respec­
tively, where X (for the Q7 output)
is a don't-care condition.

With PROSE running at twice the
uncoded data rate and employing a
four-stage pipeline, if the input pat­
tern for M is

1111111100011000101
01011 ,

the encoded data output at Q() will be

1000100010001000000100100000010
00100010001001000 ...

Similarly, the instruction (lCTo/
CT 1) forces a jump to Co 0' which
starts the decoding operation. Dur-

ing decoding, Q6 is not used, but
now Q7 is the decoded serial data
output. Therefore, the labels for the
output pattern of Q are either OX
or IX, where again X stands for a
don't care.

For example, if the input pattern
before decoding is the serial data in­
put N:

1000100010001000000100100000010
0010001000100 ... ,

the output pattern at Q 7 will be

11111111000110001010

with each bit appearing twice, since
all legal data is clocked twice.

In a practical design, if erratic pat­
terns occur in the decoded data
stream, the encoder/decoder should
neither correct the data nor stop, but
should make an intelligent guess at
the error's probable nature and con­
tinue without holding up the data
stream. However, in this example,
illegal patterns have been made to
enter an error state, because this sit­
uation is much easier to follow for
illustration purposes.

10 11 12 13 14 15 16 17 18 19 20

(a)

~----~V~------~A~-----------,V,------------~~--------~V~--------~~
PROM ARRAY OUTPUT PATTERN PAL ARRAY XOR

ADDRESS FEEDBACK FEEDBACK
FEEDBACK

BIT 0 10 11 12 13 14 15 16 17 18

(b)

(e)

2·612

~~--------~v~--------------~------~v,--------~
PRODUCT·TERM CONTROL UNUSED PAL ARRAY

CODE FEEDBACK

14 15 16 17 18

~-----,v,------~~~----~v~------~

PROM ARRAY UNUSED PROM DATA
ADDRESS BIT CODE

FEEDBACK

19 20

~
MOST·

SIGNIFICANT
PROM ADDRESS BITS

Fig. 6. Bit assignments for the shadow and output registers during normal operation (a) are
quite different from the shadow and the output registers during PAL array programming (b)
end from the shadow and the output registers during PROM array programming (e).

~ Monolithic W Memories l1

Designing a State Machine with a Programmable Sequencer

One three-way branch (lNIT), 53
two-way branches, and 15 uncondi­
tional branches occur in the 2,7
RLL. The three-way branch will oc­
cupy three quadrants of one primary
location. The 53 two-way branches
can be merged into 40 two-way
branches and placed into 20 primary
locations merely by combining with
two identical next states. The 15 un­
conditional branches can be merged
into 8, which will occupy two pri­
mary locations. Thus, the total num­
ber of occupied primary locations is
1 + 20 + 2 = 23, which is well under
the maximum of 32. This state-mini­
mization approach is primitive and
merges out only the states whose sets
of next states are the same or subsets
of other remaining states.

The PMS14R21 PROSE state ma­
chine will be available in April for
$25.95 each in quantities of 100. D

FROM INIT.
e51

FROM C32.
C53. Cll ---,

(b)

+

C30 C31 C32 C33

FROM E40. [41. E31' E42'

E21' E32. Ell. E22. E45

ERR (FOR ILLEGAL
PATIERN)

INIT IRESET STARTUP STATE)

JCTI'JCTO ! JCTI'CTO

ERR +-..... ---4~-.... - ----4_---l

(c)

Fig. 7. The state-machine diagrams of a
2,7 RLL encoder (a) and Its decoder (b)
are a typical example of the possible ap­
plication of the PMS14R21 device.

~ Monolithic W Memories ~ 2·613

2·614

Designing a State Machine with a Programmable Sequencer

; THE DESIGN FILE

; The following specification was written in the P ALASM® 2 for­
; mat, and can be compiled using the P ALASM 2 and PROASM™
; software packages developed by Monolithic Memories.

; There are two corrections to the said article:
; 1) Table 2, the output pattern for input 010 is 100100.
; 2) Table 2 (same table), the output pattern for input 0010 is

00100100.

; This specification was written by Frank Lee with help from
; Jo-NingTa

; Header

Title
Pattern
Revision
Author
Company
Date

; Chip

14R21.G17
27r11.eg
03
Frank Lee
MMI
3/6/87

CHIP PROSE-27RLL PMS14R21

; Pin Definition

CLK DCLK CTO CT1 N M NC NC NC NC SDI GND
II SDO Q7 Q6 NC NC NC NC NC NC MODE VCC

; String Definition

; Used in section on output patterns
STRING CQS '/Q7*Q6'
STRING SQ6 ' IQ7* Q6'
STRING SQ7' Q7* IQ6'

; State machine type: Moore machine, output pattern is dependent
; on current state only.
; Feature or architecture pin is used as reset (or initialization) pin.
STATE MOORE_MACHINE MASTER_RESET

; This design spec starts with description for state transitions, fol­
; lowed by output patterns, and conditions for the branches.

; State transitions
; Power-up state

; The PROSE device is initialized to alII's. On the first clock, it will
; perform unconditional branch to state INIT

~ Monolithic m Memories ~

Designing a State Machine with a Programmable Sequencer

POWER UP: = VCC -> INIT

; The PROSE will stay at INIT until there is a command for it to
; start encoding (condition ENC) or decoding (DEC). AOO is the
; starting state for encoding and COO is the starting state for de­
; coding.

INIT := ENC -> AOO + DEC -> COO +-> INIT

; Encoder design

; AOO,AIO, ... ,BOO, ... are states for the encoder, as defined in fig. 7.
; EIN is defined in the condition section. It is the same as input M.
; VCC is an always-true condition.
; AOO will branch to All on EIN, else to AIO

AOO := EIN - > All +-> AIO
; AIO : always branches to A20

AIO := VCC -> A20
All := VCC -> A21
A20 := EIN - > A31 +-> A30
A21 := EIN - > A33 +-> A32
A30 := VCC -> A40
A31 := VCC -> A41
A32 := VCC -> AOO
A33 := VCC -> BOO
A40 := EIN -> A51 +-> A50
A41 :=EIN->A53+->A52
A50 := VCC - > AOO
A51 :=VCC->A60
A52 := VCC - > AOO
A53 := VCC - > BOO
A60 := EIN -> A71 +-> A70
A70 :=VCC->A20
A71 := VCC -> A20
BOO := EIN -> BII +-> BIO
BIO := VCC - > B20
BII := VCC - > B21
B20 := EIN -> A31 +-> A30
B21 :=EIN->A33+->A32

; Decoder design
; COO,CIO, ... ,DOO, ... ,EOO, ... are states for the decoder, as defined in
; fig. 7.
; DIN is defined in the condition section. It is the same as input N.
; COO will branch to CII on DIN, else to CIO
COO:= DIN -> CII +-> CIO
CIO:= DIN -> C21 +-> C20

; ERR is the error state for an illegal encoded pattern received.

CII:= DIN -> ERR +-> C22
C20:= DIN -> C31 +-> C30
C21:= DIN -> ERR +-> C32
C22 := DIN -> ERR +-> C33

~ Monolithic W Memories l1

EJI

2·615

2·616

Designing a State Machine with a Programmable Sequencer

C30 := DIN -> C41 +-> C40
C31 : = DIN .:.-> ERR + - > C42
C32 := DIN -> ERR +-> DOO
C33 :=DIN->C43+->EOO
C40 := DIN -> C50 +-> ERR
C41 :=DIN->ERR+->C51
C42 :=DIN->ERR+->C52
C43 :=DIN->ERR+->C53
CGO := DIN -> ERR +-> C60
C51 :=DIN->ERR+->COO
C52 := DIN -> C61 +-> EOO
C53 :=DIN->ERR+->DOO
C60 := DIN -> ERR +-> C70
C61 := DIN -> ERR +->C71
C70 := DIN -> ERR +-> EOO
C71 := DIN -> ERR +-> DOO
DOO := DIN -> DII +-> DIO
DIO := DI1'-T --> D21 +-> D20
DII := DIN -> ERR +-> D22
D20 := DIN -> C31 +->C30
D21 := DIN -> ERR +-> C32
D22 := DIN -> ERR +-> C33
EOO := DIN -> Ell +->EIO
EIO : = DIN -> E21 +-> E20
Ell :=DIN->ERR+->E22
E20 : = DIN -> E31 +-> E30
E21 : = DIN -> ERR +-> E32
E22 := DIN -> ERR +-> E33
E30 :=DIN->E41+->E40
E31 := DIN -> ERR +-> E42
E32 := DIN -> ERR +-> E43
E33 :=DIN->E45+->E44
E40 := DIN -> C50 +-> ERR
E41 := DIN -> ERR +-> C51
E42 :=DIN->ERR+->C52
E43 := DIN -> DII +-> DIO
E44 := DIN -> Ell +-> EIO
E45 := DIN -> ERR +->C53

; Error stay until initialized
ERR := VCC - > ERR ;STA Y UNTIL RESET

; <state>.OUTF refers to the output pattern for the <state>.
; CQS, SQ6, and SQ7 are output patterns. CQS means output bits
; 6 and 7 are all O's. SQ6 means output bit 6 is I and output bit
; 7 is O. SQ7 means output bit 7 is I and output 6 is O. In all
; cases, output bits 0-5 are all don't cares as far as this design
; is concerned.

~ Monolithic W Memories ~

Designing a State Machine with a Programmable Sequencer

INIT.OUTF = CQS
AOO.OUTF : = CQS
AIO.OUTF := CQS
Al1.0UTF := CQS
A20.0UTF:= SQ6
A21.0UTF : = SQ6
A30.0UTF : = CQS
A31.0UTF : = CQS
A32.0UTF : = CQS
A33.0UTF:= CQS
A40.0UTF : = CQS
A41.0UTF : = CQS
A50.0UTF : = CQS
A51.0UTF : = CQS
A52.0UTF : = SQfl
A53.0UTF : = CQ8
A60.0UTF : = CQS
A 70.0UTF : = SQ6
A 71.0UTF : = CQS
BOO.OUTF : = CQS
BIO.OUTF:= SQ6
Bl1.0UTF : = SQ6
B20.0UTF : = CQS
B21.0UTF : = CQS
COO.OUTF : = CQS
CIO.OUTF : = CQS
Cl1.0UTF : = CQS
C20.0UTF : = CQS
C21.0UTF : = CQS
C22.0UTF : = CQS
C30.0UTF : = CQS
C31.0UTF : = CQS
C32.0UTF : = CQS
C33.0UTF : = CQS
C40.0UTF : = CQS
C41.0UTF : = CQS
C42.0UTF : = CQS
C43 OUTF : = CQS
C50.0UTF : = CQS
C51.0UTF : = CQS
C52.0UTF : = CQS
C53.0UTF : = CQS
C60.0UTF : = CQS
C61.0UTF : = CQS
C70.0UTF:= CQS
C71.0UTF : = CQS
DOO.OUTF: = CQS
DIO.OUTF: = SQ7
Dl1.0UTF: = SQ7
D20.0UTF: = SQ7
D21.0UTF: = SQ7
D22.0UTF: = SQ7

~ Monolithic W Memories ~

EJI

2·617

2·618

Designing a State Machine with a Programmable Sequencer

EOO.OUTF: = CQS
EIO.OUTF : = SQ7
El1.0UTF: = SQ7
E20.0UTF: = SQ7
E21.0UTF: = SQ7
E22.0UTF: = SQ7
E30.0UTF: = SQ7
E31.0UTF: = SQ7
E32.0UTF: = SQ7
E33.0UTF : = SQ7
E40.0UTF : = SQ7
E41.0UTF : = SQ7
E42.0UTF : = SQ7
E43.0UTF : = SQ7
E44.0UTF : = SQ7
E45.0UTF:= SQ7
ERR.OUTF : = CQS

CONDITIONS
; The conditions for state transitions

ENC = ICTl" ICTO ; encode command
DEC = ICTl" CTO ; decode command
ErN = M ; encoder input (original NRZ data)
DIN = N ; decoder input (encoded data)

; SIMULATION
; Simulation vectors not_shown here

~ Monolithic W Memories ~

FPes and PLDs simplify
VME Bus control

Designer's Guide to
VME Bus Control-Part 1

By using fuse-programmable controllers (FPCs) and
PLDs, you can implement VME Bus control in your
computer system with a minimum of hardware. Just
a few chips per plug-in module, and a bus arbiter,
can perform all bus-control functions. This article,
Part 1 of a 2-part series, describes the bus-arbitration
process and control functions and shows you how to
implement the VME Bus protocol in an FPC. Part 2
will describe the implementation of slave controllers,
discuss interrupt handling, and provide tools for pro­
gramming the FPC.

Arthur Khu, Advanced Micro Devices

Until recently, you needed many ICs-sequencers, mi­
croprogrammed contr('ll "Itores, and other MSIILSI
chips-to implement V J Jus control in a computer
system. Now, however, you can use a minimum of
hardware to handle the bus's intermodule communica­
tion functions. Just a few fuse-programmable control­
lers (FPCs) and programmable-logic devices (PLDs)
relieve the CPU of all bus-control functions.

A typical VME Bus-based computer system com­
prises one or more master modules (eg, CPU boards),
one or more slave modules (eg, cache/memory boards),
a bus arbiter, and interrupt-handling circuitry. A mas­
ter initiates a data transfer to a slave by requesting
control of the data bus from the bus arbiter. Once bus
control has been granted to a master, the master and
slave exchange control signals according to predefined

Reprinted from EDN. October 2.1987
© 1987 CAHNERS PUBLISHING COMPANY
a Division of Reed Publishing USA.

protocols that guarantee an orderly transfer of data
between the communicating modules. The interrupt­
handling circuitry services all interrupt requests.

By using the streamlined design in Fig 1, you can
implement most intermodule communication in a VME
Bus-based system by using just two types of VLSI
devices: the Am29PL141 fuse-programmable device
and the AmPAL22VlO programmable-logic device. For
the remainder of the bus-control functions, you'll need
some bus-arbitration circuitry, which must occupy a
particular slot on the VME Bus backplane, but which
can reside on the same board with the bus master of
highest priority.

When you design VME Bus control into your system,

Fig I-You can implement VME Bus control in a computer system
by using just a few fuse·programmable controllers (FPCs) and
programmable·logic devices.

~ Monolithio W Memories ~ 2·619

FPCs and PLDs Simplify VME Bus Control

You can implement V ME Bus control in
your computer system by embedding the
bus -control functwns in state machines that
comply with the V ME Bus protocol,

your first step is to consider the VME Bus protocols.
These protocols specify the steps your circuitry must
take to perform any bus-related operation, such as the
transfer of data between two modules. You can describe
these protocols by means of flow diagrams that show
how the various interface signals reflect the interac­
tions between the communicating modules. Fig 2, for
example, shows how the priority bus arbiter resolves
simultaneous bus requests from two modules that use
the same request line.

Next, you analyze the flow diagrams to pick out the
functions that can be incorporated into FPCs or PLDs,
and you define state machines for those functions. You
can describe the state machines abstractly, by Boolean
logic equations, or diagrammatically, by means of
standard flow-chart symbols (eg, rectangles to repre­
sent processes and diamonds to represent control-flow
decisions). Finally, you must write programs for the
state machines in a high-level or assembly language.
You repeat this process to design each of the four main
types of VME Bus controllers: bus arbiters, masters,
slaves, and interrupt handlers.

Before any master module can perform a data trans­
fer, it must request control of the data bus from the bus
arbiter; the arbiter must check to see whether the bus
is free and must resolve any contention between two
masters of equal priority. For example, consider a
priority-option bus arbiter implemented on a single
PLD. The arbiter will monitor the four bus-request
lines (BRQ-3) and assign the highest priority to BRa.

As the flow diagram (Fig 2) shows, the arbiter
grants the bus to the requesting module that's using
the highest active request line, which is BRI in this
example. To enable your bus arbiter to resolve simulta­
neous bus requests from two or more modules that use
the same request line, you must daisy-chain the associ­
ated bus-grant signal to all the devices using that
request line. Therefore, the arbiter must be in the first
slot of the VME Bus system. The module that's closest
to the bus arbiter will have the highest priority: If it
requests the bus, it will receive the bus grant and lock
out any modules farther down the chain (Listing I),
The AND/OR array of the PLD processes all bus
requests in parallel, so that priority arbitration is
complete in only one clock cycle.

Priority arbitration options
Sometimes, the arbiter must force the current bus

master to relinquish control of the bus; this situation
occurs, for example, when a bus master of higher

LISTING 1
IF (/BBSY'(BAO+BA1+BA2+BA3)) THEN "if bus not busy and a

BEGIN " request line is active •
IF (BR3) THEN "II BR3 is active. grant n

BG31N := 1 ; • bus to device on 8A3 "
IF (!BR3'BR2) THEN "activate bus grant

BG21N := 1; " daisy chain 2
IF (/BA3'/BA2'BA1) THEN "il8Rl is active and BA3"

8GlIN := 1; " and 8R2 are not. then"
" grant bus to device •

IF (/8A3'/BR2'/BA1'BAO) THEN
BGOIN:= 1 ;

" using request line 1
"BAO·3 and BGOIN to
" BG31N are active low "

END;

IF (!BBSY'BG1IN) THEN "il BGllN is asserted in response to a request·
8G11N := 1; ·over line BR1. then continue asserting BG1IN·

·until requesting device drives BBSY active "

LISTING 2
IF (8BSY'(BRO+BR1+BR2+BR3)) THEN

BEGIN
IF (BR3'(/(MASTER[1:0) .. 3))) THEN

.' BelR: .. 1; . "assert BelR if MASTEA < > 3"
IF (lBR3'BA2'(/(MASTER[1:0) = 3))) THEN

BelR:= 1;
IF (MASTER[1:0) .. 0) THEN

8elR:= 1;
END;

priority initiates a bus request. The arbiter examines
the priorities of both the current bus master and the
new requester. Ifthese conditions meet the predefined
bus-clear conditions, the arbiter asserts the bus-clear
signal (BCLR).

In the design in Fig 1, the bus arbiter keeps track of
the current bus master's priority by recording the
bus-request line that was used to gain control of the
bus. For example, if the current bus master used BR2 to
gain control of the bus, it sets two output registers
called BUB-Master to the binary value 2. Either of the
two following conditions will activate BCLR:

o The value in Bus-Master is 2, 1, or 0 and the
active bus request line is 3 or 2.

• The value in BUB-Master is 0, and any bus­
request line is active.

When the value in Bus~aster is 3, the arbiter will
not honor any bus requests until the Bus Busy line
(BBSY) is high. Listing 2 gives the logical expression of
these conditions. Once having asserted BCLR, the
arbiter holds this line in the active state until the
current bus master releases BBSY.

Be sure to define the BCLR in such a way that
uninterruptible devices can use bus-request line 3,
which has the highest priority. Devices that temporari-

2·620 ~ Monolithic W Memories ~

FPCs and PLDs Simplify VME Bus Control

LOCATED IN SLOT 2

MASTER B

DRIVE (DEVICE
WANTS BUS) HIGH

REOUESTER B I

L. DETECT (DEVICE
WANTS BUS) HIGH
DRIVE Erlff LOW

I

r--"'" I ARBITRATIUN I
~~:::S~

LOCATED IN SLOT 1

I MASTER A REOUESTER A

DRIVE (DEVICE
WANTS BUS) HIGH

L DETECT (DEVICE
WANTS BUS) HIGH
DRIVE BRf LOW

~

t
DETECT smm LOW
DRIVE BBg), LOW t I

RELEASE BI'H

I
DRIVE (DEVICE

GRANTED BUS) HIGH

t
DETECT (DEVICE DETECT SG11N HIGH

GRANTED BUS) HIGH I
""0'" 0+ '"Nse'''

DRIVE (DEVICE
WANTS BUS) LOW -y

DETECT (DEVICE

~:tET:S~~~fW

ARBITER I

l
DETECT Si1i LOW
DRIVE BGHN LOW

I

+
DETECT easy LOW
DRIVE SGITN HIGH

I

I 1 __ -,

, t
DRIVE (DEVICE DETECT BSSY HIGH

GRANTED BUS) LOW 1
~------------~I , + DRIVE SGm~ LOW

DETECT (DEVICE t I
GRANTED BUS) LOW

DETECT BG1TN LOW
DRIVE SG10UT LOW

I
BGTiN sGTOUf

DETECT :r:"'O-,-,N-L-OW------<((DAISY CHAIN «
DRIVE 8BSY LOW t ~I ----------~--------------------~
RELEASE i31'H r: MASTER B HAS ~ DETECTtBBSY LOW

DRIVE (DEVICE GRANTED I CONTROL OF DATA· DRIVE BG11N HIGH

~
us),HIGH L..~~R~..J I

t ~ i3GTOU'f DETECT BGTiN HIGH + _____ --"
DETECT (DEVICE GRANTED t« DAISY CHAIN <~ DRIVE BoTolfI' HIGH

BUS) HIGH DETECT BGITN HIGH

PERFORM DA~A TRANSFERS t t DETECT (DEVICE WANTS

DRIVE (DEVICE WANTS ---"DRIVE (g~~h~°6'RANTED
BUS) LOW BUS) LOW

DETECT ~DJ~I~~~RANTED t-----_-R-E-LE....Ir om

Fig 2-Flow diagrams help you define the VME Bus protocols. This flow diagram illustrates how the bus arbiter chooses between requesters
that have the same priority level.

;4 Monolithic W Memories ~ 2·621

EJI

FPCs and PLDs Simplify VME Bus Control

LISTING 3
DEVICE "MASTER" (Am29PL141) ·specify the device to use"

DEFINE
"define the test conditions"

bus_request - to "master request Input
bus_grant - t1 "bus grant In line
dtack - t2 "data transfer acknowledge line"
addr_strobe - t3 "check address strobe bus line "
: : : : : : : : 'other test conditions "

"define the control outputs"
offJtate - OOOOllh "off state
as - 8000IIh "16th bit - 1 : address strobe "
busmaster • 4000111 "15th bit • 1 : inform master •
arb_teq • 20001h "14th bit - 1 : drive BRn line "
bbsy • 1000111 "13th bit • t : drive BBSY line •

·slgnals going to the bus ere gated thru in'Vertlng hlgh-currant
bus driver; these include AS.ARB_REQUEST. and BBSY

slgnal1 • 0001lh ; ·other control signals
"FPC assembler format is • <Iabel:output.statement; >. with label
optional"

BEGIN
·walt for a bus request to be asserted high" ® start: off-Btate • while (not bus--.!equest)walt

else goto pl(geLbus) ;
© bus_granted "assert BBSY and BUSMASTER signals·

: bbsy+busmaster
• II (addr_slrobe • 1) then

goto pl(bus~ranted) ;
@ -AS{L) must be HIGH before continuing; this means previous bus

master Is not driving the bvs anymore ."
·other statements"

"BUS ACQUISITION microcode subroutine: the control output
ARB_REQUEST Is asserted (BRn line) until the IBGINn algnal
Is received active LOW; if the bus request lina from the master
goes LOW before the bus is granted (e.g .• mastsr cancel. bus
request). then tum off the ARB_REQUEST output and return
to the walt state START ® get_ bus: arb_request

arb_request

Off_state

END. "end of source code"

cpu MOOUlE
(MASTER)

• if (bus-9rant • 0) then
goto pl(bus.-granted) ;

• il (bus_request) then
goto pl(geL.bus) ;

• if (not bUSJequest) then
gOlo pl(start) ;

FPC~141

Fig 3-You can implement the requester logic far a master mOOule
in an FPC. The FPC handles all bus-acquisition and data-transfer
protocols.

ly can be suspended to accommodate interrupts and
higher-priority operations should be assigned to bus­
request line O. The BCLR conditions will vary with
your application, but you can modify them just by
redefining the high-level logic expressions.

Master modules
The master modules of VME Bus systems initiate all

data transfers over the bus. A system can have one
master (the CPU unit) or several (multiple processors,
DMA controllers). A master module must control the
bus before it can perform any data transfers. Most of
the bus-control logic resides in the requester section of
the module; this section handles bus acquisition and
communication with other master or slave devices in
the system.

You can microprogram all the requester functions
into a single FPC, which serves as the interface be­
tween the master device and the VME Bus (Fig 3). The
FPC's microprogram handles the bus-acquisition proto­
col. Upon receiving the bus-grant signal from the
arbiter, the microprogram informs the master device
that it has control of the bus and may initiate a data
transfer. After completing the transfer, the master
device releases the bus-request signal, thus causing the
FPC to free the bus by releasing the BBSY signal. The
FPC may also relinquish control of the bus at the
request of the bus arbiter.

In designing your application, you need to extract the
bus-acquisition phase of the requester from the flow
diagram in Fig 2 and translate this information into a
state diagram (Fig 4), from which you must write the
corresponding FPC assembler source code. Listing 3
gives an example of this code.

FPC-controlled data transfers
Once a master module becomes the bus master (that

is, once it gains control of the bus), it can begin
transferring data to a slave module. A data-transfer
flow diagram (Fig 5) shows the necessary handshaking
signals for transferring 32-bit data between master and
slave. The state diagram for the master module's FPC
(Fig 4) combines the bus-acquisition (requester) and
data-transfer-control functions of the master module.
An FPC assembler (which the manufacturer ofthe FPC
provides) simplifies the task of microprogramming this
state machine into an FPC.

Handling unanswered data-transfer requests
To prevent bus lockups, which malfunctioning slave

devices may cause, you should implement a bus-time­
out (BTON) option in the master module by writing a
microcode routine that uses the 6-bit counter in the
master's FPC; (Listing 4 gives an example of such a
routine.) The bus-time-out option permits a bus master
to abort a data-transfer cycle ff the slave does not
respond within n microseconds.

At the start of every data-transfer operation, the
FPC microprogram loads a value into the 6-bit counter,
tests for the data-transfer acknowledge signal
(DTACK), decrements the counter and tests it for zero,

2·622 ~ Monolithic W Memories ~

FPCs and PLDs Simplify VME Bus Control

r---------------,

ACTIVATE BBSY
INFORM MASTER
LT MASTER BUS

~.---------------------------~----~BLOCKBUSGRANTOUT
DRIVE BR HIGH

LATCH ADDRESS
ONTO BUS
DRIVE LWOIm LOW FOR
32-8IT DATA TRANSFERS
DRIVE IleK HIGH
TO INOICAT1i A
DATA-TRANSnR CYCLE

CHECK IF SEQUENTIAL
TRANSFER CYCLE

NO ORIVEIIIISYHIGH
(1m MUST BE
RELEASED 30 nSEC
BEFORE IJlBV
RELEASE CWOIm.
lACK
DEACTIVATE MASTER­
GRANTED-BUS
SIGNAL

Fig 4-You can derive detailed Blate·machine diagram. from your flow diagrams. In this diagram for a master reque8ter, the
bus-acquisition phase is surrounded by a dashed line. Note the close carrespornience between the state diagram and the assembly-language
program in Luting 3.

~ Monolithic W Memories l1 2·623

Ell

FPCs and PLDs Simplify VME Bus Control

I MASTER MODULE'

ADORESS THE SLAVE

PRESENT ADDRESS
PRESENT ADDRESS MODIFIER
DRIVE LWO"AD LOW
DRIVE lACK HIGH
DRIVE AS LOW

1
SPECIFY DATA DIRECTION

DRIVE MUTE LOW ,
SPECIFY DATA WIDTH

WAIT UNTIL DTACl< HIGH AND
srnR HIGH (INDICATES
THAT PREV10US SLAVE IS

SLAVE MODULE

l
PROCESS ADDRESS

RECEIVE ADDRESS
RECEIVE ADDRESS MODIFIER
RECEIVE lWOAO LOW
RECEIVE lA'CK HIGH
RECEIVE AS LOW
IF ADDRESS IS VALID

FOR THIS SLAVE
THEN GENERATE DEVICE SELECT
ELSE TAKE NO FURTHER ACTION NO LONGER DRIVINO DATA DUS)

DRIVE~ LOl&...;.------11
STORE DATA

RECEIVE Wl'\Jf£ LOW
RECEIVE O~I LOW
RECEIVE O~. LOW
LATCH DATA FROM DATA

LINES 000-3'
WRITE DATA INTO

SELECTED DEVICE

1 .lr----------RE;~~:~;~C~~~~R
TERMINATE CYCLE

RECEIVE OTA'CR LOW
IF LAST CYCLE THEN

RELEASE ADDRESS AND
ADDRESS MODIFIER LINES
RELEASE DATA LINES
RELEASE LW01\O
RELEASE lACK

DRIVE oso., HIGH
DRIVE AS HIGH

I
END TERMINATION

IF LAST CYCLE THEN
RELEASE O-SO:!
RELEASE1Jl

ELSE GO TO ADDRESS THE SLAVE

I
ACKNOWLEDGE TERMINATION

RECEIVE AS, OSo., HIGH
RELEASE OYACK

Fig 5-This flow diagram shows the signals you'll need to perform
a S2-bit data tronsfer once a master has acquired control of the
bus.

The bus-time-out option permits a bus
master to abort a data-transfer cycle if a
slave does not respond within a speciJted
time,

,..-------------_ •. __•. _ .. ------------,

LISTING 4
"Begin transfer: Bus time out loop contains Instructions 1 and
2, If count reg Is loaded with 63 and FPC Is running at 20 MHz,
then total time before bus times out is (63+1)'2'50 ns "

walLloop: OSO + OSI , if (DTACK .. 0) then "1"
goto pl(lransfer_complele) :

OSO + OSI , while (creg < > 0) "2"
loop to pl(waiLloop) :

OSO + OSl • if (creg - 0) then
golo pl(bus_time_out)

transfer_complete: "goto 10 Ihis seclion if handshaking signal
was received"

bus_lime_oul: "execule this seclion when counter is 0"
B1O_slgnal, ' , , . , , , "aclivale bus time out signal"

and finally loops back to the instruction that tests
DTACK. As soon as DTACK is detected, the program
branches to the section of code that handles a normal
data-transfer operation.

If the counter value reaches zero, however, the
microprogram must branch to a section of code that can
handle situations in which data-transfer requests are
not completed; such situations are, of course, entirely
dependent on the user and the application. To calculate
the time that will elapse before the program generates
a bus-time-out signal, multiply the number of instruc­
tions in the time-out loop by the system cycle time by
the initial value (plus 1) that the program has loaded
into the count register. EDN

Author's biography
Arthur Khu, a product planning engi­
neer for Advanced Micro Devices
(Sunnyvale, CAY, is responsible for re­
search and definition of advanced pro­
grammable-logie-device architectures.
He holds a BS in Math/Computer Sci­
ence and an MS in Computer Science
from Santa Clara University. In his
spare time, Art enjoys racquetball and
astronomy.

2·624 ~ Monolithic W Memories ~

FPCs and PLDs
implement VME Bus

Designer's Guide to

slave controllers

By using fuse-programmable controllers (FPCs) and
PLDs, you can implement VME Bus control in your
computer system with a minimum of hardware. Part
1 (October 2, pg 187) of this 2-part serieR described
the bus-arbitration process and control functions and
showed how to implement the VME Bus data-transfer
protocol in an FPC. This second and final part de­
scribes the implementation of similar controllers for
slave modules and interrupt handlers, and it pro­
vides tools for programming the FPC.

Arthur Khu, Advanced Micro Devices

When you offload a system's bus-control functions from
the CPU to a hardware bus controller, you considerably
reduce the time these functions require, thereby im­
proving the data-transfer rate over the bus. You can
substantially reduce the cost and chip count of such a
bus controller by implementing the bus-control logic in
VLSI devices SllCh as fuse-programmable controllers
(FPCs) and programmable logic devices (PLDs).

The VME Bus protocol requires that all data trans­
fers over the bus be initiated by a master module. Your
system can include several master modules, such as
CPUs or DMA controllers; a bus-a'rbiter module arbi­
trates simultaneous data-transfer requests from two or
more masters. No data transfer can take place until the
requesting master has been given control of the bus by
the bus arbiter.

VME Bus Control-Part 2

LATCH_DATA
STORLDATA
PRESENLDATA

Fig I-This device controller, which is implemented with an FPC
and a PLD, handles data-transfer and interrupt protocols for a slave
device in a VME Bus system,

Because a slave can't initiate a data transfer, your
system must include an interrupt mechanism that al­
lows a slave to request service from a master. You cw'
implement such a mechanism in your system by design­
ing a slave subsystem like the one in Fig 1. This slave
subsystem comprises a slave module and a slave inter­
rupt controller. The slave interrupt controller, which
consists of an Am29PL141 FPC and an AmPAL22VlO
PLD, serves as the interface between the slave subsys-

~ Monolithic W Memories ~ 2·625

FPCs and PLDs Implement VME Bus Slave Controllers

tern and the VME Bus structure. Once the master has
initialized the slave, it can issue commands to the slave.
The slave performs these tasks in the background,
leaving the master free to continue its own operations.
When the slave is ready to return the status or result of
a task to the master, it issues an interrupt request.

The VME Bus single-cycle data-transfer protocol
defines the interactions between master and slave con­
trollers (Fig 2). When the master drives the address
strobe (AS) low, the slave controller latches the address
presented on the bus, and a separate address-decoding
unit on the slave board decodes the address. If the
address is not valid (ie, if it's not in the range associated
with this slave), the slave takes no further action.
However, if the address selects this slave subsystem,

. I MASTtfI MODULE •

Fig 2-The ,lave controller recognize, ita own addre" and receives
a data word from the bus master in this flow diagram for single-cycle
transfer.

The interrupt controller for a slave device
implements the interrupt protocol in
hardware.

2·626 ~ Monolithic m Memories ~

FPCs and PLDs Implement VME Bus Slave Controllers

F----------:]
I
I

DATA STfl081! HJGIi .' t
SUBROUTINE

r - -'- - -'- .:-,._._.,

J I.
I
I
I
r
I
I
I
I
I

11

I I
LL~ I

0---11 ~~. I I
I L READ-MOOIFY-WRITE' J ___ ~~.9&..-__ _

--. ...".~.Iof •... ~~. .. I _ ...•. ~_ ... ,_J

!
~ J \~W~A~IT~F~O~R~C~O-M--P~LE~T~IO~N-'
J OF INTERRUPT-SERVICE
] ROUTINE

I INTERRUPT CYCLE
1 .. _____ ----

Fig 3-This ,tate-machine diagram for Fig 1', slave controller is derivedfrom the flow diagram in Fig 2. The state machine hasfour modes,
which handle interrupts as well as single, block, and read-modify-write data transfers.

~ Monolithic W Memories ~ 2·627

EJI

FPCs and PLDs Implement VME Bus Slave Controllers

The VME Bus protocol requires that all
data transfers over the bus be initiated by
a master module.

the slave looks for signals from the master that specify
whether a read or a write operation should take place.
After presenting or storing data, the slave controller
drives the data-transfer-acknowledge signal (DTACK)
low to inform the master of the successful transfer.

From the VME Bus-protocol flow diagrams (Fig 2),
you can derive a state diagram (Fig 3) for the slave­
controller state machines; Fig 4 shows the resulting
timing pattern for the slave controller. You can develop
microcode for the slave controller's single-cycle transfer
mode from the state diagram and the timing pattern.
Use the address-modifier lines (AMo.5) to specify the
other three slave operating modes (sequential, or block,
transfers; read-modify-write transfers; and interrupt
r.ycle). To recognize these special modes, the slave
controllers on each slave board constantly monitor the
six address-modifier lines.

When the code presented on the address-modifier
lines specifies a block-transfer operation, the master
retains control of the bus throughout the operation by

elK

holding AS and BBSY low. For a block transfer, bus
arbitration takes place only once, before the start of the
operation; for single-cycle transfers, bus arbitration
takes place before the transfer of each word. A block
transfer, therefore, takes less time than does the corre­
sponding number of single-word transfers.

At the start of a block-transfer operation, all the
slaves load the address presented on the bus into their
address counters and decoders, but only the slave
whose memory range encompasses the decoded address
responds to the data-transfer request. As each word
transfer is completed, all the slaves increment (or
decrement) their address counters and decode the new
address. This procedure is necessary because the mem­
ory block being transferred may reside on more than
one slave memory board.

In the slave subsystem in Fig 1, the PLD decodes
control signals from the bus and slave board and sends
two signals, OPERo and OPERI, to the slave's FPC. The
FPC decodes these two signals, along with inputs from

, I I I ,I I. I , .1, .1 . I

Fig 4-You'U need to genemte a timing diagmm for each of the slave controller's operating modes. This diagram shows the timing for a
single-cycle data transfer.

2·628 ~ Monolithic m Memories ~

FPCs and PLDs Implement VME Bus Slave Controllers

the slave, bus, and address-decoding units on the slave
board, to determine which of the four possible slave
operating modes to execute. The four modes, which are
designated by binary codes, specify the following oper­
ations:

• (00) Perform a single-cycle transfer
• (01) Perform a sequential-cycle transfer
• (10) Perform a read-modify-write cycle
• (11) Perform an interrupt cycle.

If OPERo and OPER 1 are both high, the FPC operates
as an interrupter by branching to an interrupt subrou­
tine (Fig 3).

When the slave requests an interrupt, the FPC
generates an interrupt-request signal and waits for the
interrupt-acknowledge signal (lACK) and daisy-chain
signal (lACKIN). When the data strobes become ac­
tive, the PLD reads a 3-bit value from the address bus
(AI-3); this value indicates which interrupt-request line
was acknowledged. The PLD decodes these three bits
to determine whether their value matches its own

GETBUS

I I I I I I I I
\:-:::: DEVICE DRIVES INTERRUPT. REQUEST LINE lOW

I I I I I I I I I

request level; if it finds no match, no further action
occurs. Hit does find a match, however, the PLD routes
a valid signal to the FPC, indicating that the interrupt
handler has acknowledged the slave's interrupt re­
quest. The FPC then signals the slave board to put its
status or identification byte on the data bus for the
interrupt handler to use as an interrupt vector. The
slave FPC waits in a loop until the interrupt handler
drives the lACK signal high to signify that interrupt
service is complete.

Besides containing master, slave, and bus-arbiter
modules, a VME Bus system usually has an interrupt­
handler module that handles external 110 or special
system events (time-out or overflow errors, for exam­
ple). You can reduce the. logic complexity of the inter­
rupt-handler module in your system by offloading some
of the initial interrupt-recognition tasks to an inter­
rupt-handling preprocessor (lRP). You can use a PLD
as the IRP, programming it to preprocess interrupt
requests, obtain control of the bus, and handle hand-

I.

ACKNOWlEDGE INTERRUPT lEVEL 6 (110)

Fig 5-The interrupt.handling preprocessor monitors the seven VME Bus interrupt-request lines (TJt;;), identifies the interrupting device,
and tells the interrupt handler when to begin servicing the interrupt. This timing diagram shows the signal states that exist before and during
the transfer of the identification and status bytes from the slave-interrupt subsystem to the interrupt handler.

~ Monolithic: W Memories ~ 2·629

Ell

FPCs and PLDs Implement VME Bus Slave Controllers

When the slave module is in block-transftr
mode, bus arbitration takes place only once
before the start of the operation.

-------- .--------

shaking signals (such as interrupt-acknowledge sig­
nals). Only when the IHP latches the interrupt vector
will control pass to the interrupt-handler module.

To define interrupt-request processing, bus acquisi­
tion, and the interrupt vector's transfer phase, you'll
have to use logic equations written in high-level Boole­
an notation. In the design in Fig 1, the PLD monitors
seven interrupt-request lines and four data-transfer
control inputs, and it sends 10 control signals to the
interrupt handler and the VME Bus drivers. The PLD
monitors all interrupt-request lines according to the
following logic equation:

IF (lRl + IR2 + IR3 + IR4 + IR5 +
IR6 + IR7) THEN

BR3: = l;

"THIS INTERRUPT HANDLER USES"
"THE BR3 REQUEST LINE"

(1)

If any interrupt-request line is active, the PLD asserts
BR3 to initiate the bus-acquisition phase.

The next step is to wait for the bus-grant-in signal.
Only when BGIN3 is active will BBSY be active. The
logical expression of this condition is given in the
following equations:

IF (BR3*/BG3IN) THEN
BR3: = l;

(2)

IF (BR3*BG3IN + BBSY*/SERVICE_DONE) THEN (3)
BBSY: = 1;

Eq 2 continually asserts BR3 as long as BG3IN is not
active; Eq 3 asserts BBSY only when request line BR3
and BG3IN are active, or if service is not complete after
the IHP asserts BBSY.

When the IHP is the bus master, it puts the 3-bit

Development tools help you program FPCs
The Am29PL141 is a single-chip fuse-programma­
ble controller (FPC) that can implement state ma­
chines and distributed control functions. You can
express and functionally verify these state ma­
chines and functions by using three FPC-develop­
ment tools provided by the manufacturer: an ·as­
sembler, a test-vector generator, and a simulator.
These development tools, which are written in C,
run on an IBM PC or compatible computer under
MS-DOS. Source code for the programs is avail­
able, so you can port the software to other
systems.

The FPC has a control store that's resident in
its PROM; the store is 64 words long and 32 bits
wide. Instructions such as jumps, loops, and sub­
routine calls in the PROM control store are condi­
tionally executed by' the 20-MHz internal seq­
uericer. Each 32-bit instruction is partitioned into
the following format:

BITS: 1 5 1 3 6 16
FIELD: OE OPCODE POL TEST DATA OUTPUT

The output field contains the 16 control outputs
that the FPC generates when it executes an in­
struction. The upper eight output bits are con­
trolled by the output enable (OE) bit; they may

be high, low, or disabled. The lower eight output
bits are always enabled. The op-code field speci­
fies which of the 29 possible instructions the FPC
will execute if the condition selected by the test

7b prwlram the Am29PLUl FPC to Implement VME Bu.­
control functiolU. Y()U can use the assembler, ust-vector genera·
tor, and simulator provided by the FPC's manufacturer. The"
development tools, which are written in C. Tun on an IBM PC or
compatible computer under MS·DOS.

2·630 ~ Monolithic W Memories ~

FPCs and PLDs Implement VME Bus Slave Controllers

interrupt-line-acknowledge value on the bus and as­
serts the data strobes. Upon receipt of the DTACK
signal from the interrupter, the IHP strobes the status
byte from the bus into a register on the interrupt­
handler card. The IHP then informs the interrupt
handler that a status/identification byte is ready and
that the handler should begin servicing the interrupt.
The IHP resolves interrupt priorities within a single
clock cycle because all interrupt/input signal lines are
processed in parallel by the logic array in the PLD.
Listing 1 shows how you'd express the procedure in a
logic-description language.

As you can see from Listing 1, ifboth the IR7 and the
BBSY signals are active in section 1, then the 3-bit
value generated by the IHP will be binary 111 (decimal
7), regardless of the state of the other interrupt lines.
In section 2, if IR1 and BBSY are active and the other
six control signals are inactive, then the 3-bit output
value will be binary 001 (decimal 1). In section 2, IR1 is
the highest priority line that is active.

The remaining interrupt-preprocessing steps com­
plete the transfer of the interrupt-vector byte; this
transfer is described logically in the following

field is true. The polarity bit (POL) determines
whether a high input or a low input represents
true for the test input selected. You can use the
data field as an argument for the op-code field.
For example, if you want the FPC to jump (op
code 25) to location 34 (22HEX) when the second bit
in the test field is high (true), you put the follow·
ing 32-bit word into the control store (though
you'll also have to define the OE bit and the
output bits):

OE 11001 0 010 100010 OUTPUT

The assembler simplifies system design by al­
lowing you to use a high-level language. Instead
of specifying the bit patterns shown above, you
can write the following section of code:

OUTPUT, IF (T2 = 1) THEN
GOTO PL (34)j

The assembler translates this statement into the
appropriate bit patterns; when the FPC executes
the instruction, it generates the bit pattern de­
fined by the symbol OUTPUT .

. Every microinstruction written in assembly
language follows this format:

LISTING 1
IF (BaSy) THEN

BEGIN,
(1) IF (IR7) THEN

1NTFt{2:O) : .. 7 :

IF UIR7·IRS} THEN
INTR[2:») : .. 6 i

IF UIR7' /lRS'IRS) THEN
INTR[2:O) : • IS :

"IA1 was active
,,3-b!t value acknowledging
Interrupt line 7

"IRe actIYe. IR11nact1ve
"acknowledge Interrupt line 6"
"IRS highest priority "
"Interrupt line active

.': 'If"

(2) IF UIR7'/lR6'/IR5'/JR4'J1~'/IR2'IR1) THEN
INTR(2:O] : - 1 : "acknowledge Interrupt Une. 1"

END:

IF (BBSY) THEN
BEGIN
lACK := 1: "begin interrupt acknowleclge clai~y"

(X) IF (DTACK) THEN "chain; if clevice ~ends clata "
LATCH_STATUS := 1:. "transfer acknowledge (DTACK)

"signal, then latch the status

END:
IF (lACK) THEN

AS:= 1: "as8ert the adclres~ strobe gignal to inform the
interrupter that the interrupt acknowleclge
level i8 ready"

< LABEL: > OUTPUT, STATEMENT j

The label field, which is optional, simplifies the
writing of subroutine calls and conditional branch
instructions, which you can express in IF·THEN·
ELSE, WHILE-DO, or COMPARE forms. Once
you've written all the instructions with the editor
and translated them to executable form with the
assembler, you can cause the assembler to gener­
ate a JEDEC fuse map.

Before physically programming the PROM con­
trol store that you've designed, you can test your
design with the help of the test-vector generator
and simulator. The test-vector generator prpduces
test vectors, from a user-generated truth table,
and converts them into a JEDEC-standard test­
vector file that the simulator can use.

The simulator. 'performs two important func­
tions: It verifies the control flow of your design,
and it checks the fuse map that the assembler
generates. By using the simulator's interactive
mode, you can inspect, modify, or preset any of
the internal registers in the FPC. The simulator
also has single-stepping and break-point features
so that you can trace the operation of your design
in detail.

(4)

~ Monollthlo W Memories l1 2·631

An interrupt-handling preprocessor can off­
load some of the initial interrupt-recogni­
tion tasks of your system)s interrupt-han­
dler module.

Once the assertion of the DTACK signal indicates the
successful transfer of the 8-bit status or identification
byte, the IHP instructs the interrupt-handler module
to begin the interrupt-service routine. This instruction
from the IHP is logically defined as follows:

IF (BBSY*LATCH_STATUS + BBSY* (5)
START_SERVICE*/SERVICE_DONE) THEN

START_SERVICE: = 1;

This definition states that the IHP constantly asserts
the START_SERVICE signal until the interrupt han­
dler generates a SERVICE_DONE signal, at which
point the IHP drives START_SERVICE low. The logic
described above generates the timing diagram shown in
Fig 5.

Development tools simplify controller design
Development tools provided by FPC and PLD manu­

facturers simplify the task of programming these de­
vices as VME Bus controllers. Once you've analyzed the
bus protocols and converted these into state-machine
diagrams, you can write assembly-language programs
and high-level logic equations to describe the state
machines. The assembler and logic software will then
process these programs and equations to fit into the
FPC or PLD. For a summary of the programming tools
available for the Am29PL141 FPC, see box, "Develop­
ment tools help you program FPCs." EDN

Author's biography
Arthur Kim, a product planning engi­
neer for Advanced Micro Devices
(Sunnyvale, CAY, is responsible for re­
search and definition of advanced pro­
grammable-logie-device architectures.
He holds a BS in Math/Computer Sci­
ence and an MS in Computer Science
from Santa Clara University. In his
spare time, Art enjoys racquetball and
astronomy.

2·632 ~ Monolithic IFJlI Memories l1

Fuse-Programmable Chip Takes
Command of Distributed Systems

The first fuse-programmable controller
eliminates bulky and expensive designs, freeing distributed

intelligence to carve out a greater niche for itself.

I
n much the same way that cars and highways

. spawned the suburbs, standard microprocessor
. buses and add-on boards have distributed pro­

cessing intelligence, revolutionizing the design of
digital systems. Breaking systems into independent
modules shortens the design cycle, eases upgrades,
and accelerates fault diagnosis. But despite these ad­
vantages, an essential element has been missing: a
one-chip controller geared specifically to the needs of
distributed intelligence.

Without that critical ingredient, engineers have
been forced to turn to less than optimal solutions.
One approach relies on boards packed with as many
as 35 SSI and MSI devices. Another tack is to go with
a powerful-yet costly- VLSI chip. Alternatively, a
programmable logic device can be pressed into ser­
vice, but such circuitry lacks the computing power to
control peripherals.

The missing element, a fuse-programmable con­
troller chip, is now here. By mixing intelligence and
control, the Am29PLI41 stakes out new territory for
distributed systems. The 20-MHz IC combines for the
first time all of the elements of an intelligent micro­
code controller. Its powerful sequencing logic.steps
through the controller's 64-by-32-bit pipelined
PROM. That fuse-programmable memory stores a
user-defined microprogram drawn from a set of 29

Om Agrawal and Oeepak Mithani
Advanced Micro Devices Inc., 901 Thompson Pl.,
P.O. Box 3453, MS 47, Sunnyvale, CA 94088;
(408) 749-2903.

~ with permlssial fran Electoric Desig1, VoI.33, No.24,
eq,yngt Hayden P\.bll:lhh,;l Co., nc.., 1985.

microinstructions, including a repertoire of jumps,
multiple branches (or case statements), and sub­
routine calls. All can be executed conditionally, de­
pending upon the outcome of one of eight tests. In
addition, a serial shadow register on the 28-pin chip
helps designers diagnose system troubles right down
to a particular IC. (In the past, expediency often dic­
tated that complex trouble-shooting be avoided for
as long as possible.)

Four basic blocks

The controller comprises four main functional
blocks. Three of them- the microaddress control
logic, condition code selector, and microinstruction
decoder-form the cornerstone of the controller, the
address sequencer. The fourth is a microprogram
memory (64 by 32 bits) with a pipelined register and
serial shadow register (Fig. 1).

For the most part, the elements of the address
sequencer are fairly typical. Nevertheless, the way in
which they are organized and connected, as well as
the instruction set, make the chip unique. For ex­
ample, the microaddress control portion of the
sequencer contains one register for counting loops
and another for stacking subroutine return address­
es. Yet either register can be employed to double the
capacity of the other. Consequently, the chilJ can nest
two levels of loop counting or two levels of subroutine
branching (the instruction set reflects those abili­
ties). And the high degree of interaction between ele­
ments, particularly within the microaddress control
logic, makes necessary a highly sophisticated micro-

Electronic Design' October 17. 1985

~ Monolithio m Memories ~ 2·633

2·634

Fuse-Programmable Chip Takes Command of Distributed Systems

instruction set.
The microaddress control logic is the brain of the

address sequencer, since it generates the addresses
that access the microinstructions. At any time, the
address that is called depends on the preceding in­
struction and the outcome of any conditional tests.

Within the control logic, a program-counter multi­
plexer supplies the PROM's 6-bit address. The multi­
plexer takes the address from a microprogram
counter, incremented program counter, branch con­
trollogic, or subroutine register. Because the pro­
gram counter contains the address of the currently
executing instruction, that instruction is executed
again when the program counter is selected as the
address source. As a result, the counter plays a fun­
damental role in tallying loops and executing "wait
until true" instructions.

The incrementer holds the next address in the
sequence, and is the expected source when no jumps
are executed and no branch or subroutine conditions
exist. When conditional statements like "if ...
then ... else" and multiple branches pass the re­
quired tests, or when unconditional jumps are exe­
cuted, the branch control logic supplies the address.
Finally, when the program calls a subroutine, the
subroutine register supplies the necessary address.

A multiplexer selects one of three address sources.
If only one stack level is needed, the value stored in
the subroutine register is chosen. When the count
register feeds the subroutine register, however, it
furnishes an additional stack level. The third source,
the incrementer, supplies the subroutine's return
addresses.

Doing double duty

If not needed for a second subroutine level, the
count register can, among other functions, execute it­
erative loops and time external events. To accom­
plish the former, the controller loads the register
with the number of iterations to be run. Each iter­
ation decrements the register until it reaches zero.
The zero-detection logic associated with the counter
'informs the chip's microinstruction decoding logic
when the register "bottoms out."

Using the same logic, an instruction can be re­
peated a set number of times. Repeated executions of
the same instruction is a simple way to insert wait
states and, therefore, build an interface to different
microprocessors and peripherals.

The count register is loaded from any of four
sources: a decrementer, for normal loops; an instruc-

tion field; the subroutine register; and the branch­
control logic. The last derives a 6-bit value from a
data field in a microinstruction.

The branch-control logic, a powerful block within
the sequencer, calculates the 6-bit value either by ap­
plying the microinstruction data field directly or by
using it to mask the chip's six test inputs, To through
T 5. In the second case, the masked input actually be­
comes the branch address. Moreover, either the data
field or masked test value serves as both a branch ad­
dress and a count value.

The same control logic also compares the masked
test inputs to a constant in a microinstruction field.
The outcome of this check affects a flip-flop. The lat­
ter's condition itself becomes a factor in deciding
conditional branch and subroutine instructions. If a
match occurs, the flip-flop is set. Alternatively, the
flip-flop remains unchanged if there is no match.
Because the flip-flop does not change when there is
no match, it is particularly useful for comparing
ASCII characters and other 6-bit fields, as well as for
successively checking the chip's test inputs.

Controlling conditions

A set flip-flop is one of the eight aforementioned
tests that fulfills a conditional branch or subroutine.
Through its condition-code selection logic, the con­
troller is able to check each of its six test input lines,
as well as the Condition Code input. Further, an
exclusive-OR gate within the selection logic switches
the meaning, or interpretation, of a test result. In
other words, with no external hardware, a test condi­
tion can be asserted either when a match occurs or
when one does not.

The final component of the chip's sequencer sec­
tion is the microinstruction decoder. That pro­
grammable logic array generates the IC's internal
control signals based on the microinstruction being
executed and the test results reported by the con­
dition-code logic.

The IC's fourth functional block comprises the
fuse-programmable microprogram memory, pipe­
lined register, and serial shadow register. The pipe­
line register is 32 bits wide, and stores the micro­
instruction being run. The next address is calculated
by the sequencer and its contents is fetched from the
microprogram memory. The upper 16 bits of the
pipeline's output remain within the chip to sequence
addresses and control internal functions.

Only the 16 low-order bits link to the outside, as
user-defined control lines. Of these, the upper byte is

~ Monolithic W Memories ~

Fuse-Programmable Chip Takes Command of Distributed Systems

Am29PL 141
fu programmable

controller

Test Inputs.
To-T,

Condition
Code

Condition
code

&election
logic'
r-

MICro.nstM:tlo-;;­
decoding logiC'

...,

r-----------------,

I

I

I.4ICfoaddress
control logiC'

L _____ _

r
I
I
I

L

_ ___ .J

1. The 20-MHz Am29PL 141 is the first complete microprogrammable controller chip, making it an important
building block for distributed processing systems. lis powerful sequencing logic steps the controller through
its pipelined PROM. The fuse-programmable memory is 64 by 32 bits.

l1 Monolithic W Memories 11 2·635

2·636

Fuse-Programmable Chip Takes Command of Distributed Systems

put in the high-impedance state by setting a micro­
instruction's Output Enable bit to O. Moreover, chips
can be cascaded readily if more than 16 control bits
are needed (Fig. 2).

The serial shadow register, also 32-bits wide, sim­
plifies device- and system-level diagnostics. It can be
loaded in parallel with the contents of the pipelined
register or loaded serially from the Serial Data Input
pin. On the other hand, the serial register can also
load the pipeline or shift data out serially. It also may
simply hold the data sent to it.

To check out the chip, an instruction is shifted
serially into the shadow register and then loaded in
parallel into the pipeline. Doing so forces the instruc­
tion to be executed, and its results transferred back

from the pipeline into the shadow register. From
there it is shifted out for diagnosis. If all the shadow
registers in a system are tied together, a series diag­
nostic loop is created that isolates a problem down to
a single chip.

The shadow 'use

A separate fuse must be blown to set up the serial
shadow register. When that is done, four pins are
redefined to handle diagnostics. Specifically, the
Condition Code and Zero lines and Output Data Bits
6 and 7 become, respectively, the Serial Data In
(SDI), Serial Data Out (SDO), Diagnostic Clock
(DCLK), and Mode control lines.

The strength of any controller-and the advantage

Condition Code o----1~----------_,

(From system)

r------

Upper
16 bits of

micrOinstruction I

~~.

I

I
I
I

I
I
I
I
I
I

~
~
~

L _____ _

Reset

(To system) (To system)

l
I
I

~
I
I
I
I
I

2. When an application calls for more than 16 control bits, two or more chips can be
cascaded horizontally. The lower 16 bits of each of the chip's 32-bit microinstructions
(of which there are 29) serve to control a system's components. Eight of these 16 con­
trol bits can be put into a high-impedance state under microinstruction control; the oth­
er B bIts are always enabled.

~ Monolithic W Memories ~

Fuse-Programmable Chip Takes Command of Distributed Systems

of a microprogrammed system that employs it-lies
in an engineer's ability to specify the sequence in
which microinstructions are executed. To ensure
that ability, the controller executes all the basic
high-level constructs required for structured micro­
programming. Its 29 op codes include sequential in­
structions, conditional instructions, dual branching
forks, and multibranching case statements. Iterative
executions, like For, While, When, and Until, round
out the set. In addition, Jump, Jump to Subroutine,
Loop, and Compare instructions allow designers to
store very complex algorithms in the chip's 64-word
memory.

Instruction formats fall into two categories. The
first is for general microinstructions; the second is
for the chip's Compare instructions. The latter com­
pare a 6-bit test input to a masked constant. The
Compare instructions are well-suited for character
searches, as well as key searches in a look-up table.

A single-precision, floating-point peripheral board

12

12

(2 J Arn29PL 141
controllers

To- T!I

Condillon
Codu

To reglst"r file

(Fig. 3) presents a good example of the part that the
controller plays in a distributed system. As a micro­
programmed design, the peripheral serves as an add­
on math accelerator card that plays with different
hosts and buses. The controller orchestrates the ac­
tions of the floating-point processor, and various reg­
isters, register files, and memory chips.

Simple arithmetic

The processor is simple to use, partly because it in­
curs no pipeline delays. It conforms to IEEE and oth­
er industry standards, and takes only a single clock
cycle to add, subtract, or multiply. It needs five cycles
to divide, using the Newton-Raphson method that in­
verts one of the factors and multiplies. In operation,
to divide X by Y the chip fetches the approximate in­
verse of Y from a PROM-based table and multiplies
it by X. One or two iterations of this method increase
the initial accuracy.

The floating-point board works with a microword

Address

(2)
Dual·access
register Illes
(Am29334)

32

Operand S

Fl081lng-polnt
processor
(Am29325)

Status Final Result

32

3. In a typical application, the controller oversees the workings of a floating-point pro­
cessor board. Host instructions sent to the FIFO and instruction registers initiate sub­
routines in the controller that generate the signals that run the board. Two controllers
arc employed to supply the necessary number 01 control signals_

~ Monolithio W Memories ~ 2·637

2·638

Fuse·Programmable Chip Takes Command of Distributed Systems

of at least 25 bits, 9 more than available with one con­
troller. Thus the design employs two controller chips.
The floating-point processor requires five command
bits. Three are instructions and two select the input
source. It also needs three control bits to enable its
trio of data registers. Two other chips (each a dual­
access four-port r~gister of 64 words by 18 bits) tem­
porarily store commands. They accept 12 register ad­
dress bits (6 for source and 6 for destination) from
the host or the controller's microprogram memory.

Data passes to and from the host through input
and output registers on the board, which call for
their own enable signals. Another bit is needed to ad­
vance the FIFO instruction register. One is necessary
to enable and another to select a status word. (The
floating-point chip supplies status information,
which is available to the controller through its test
inputs as well as to the host through the register file.)
Seven control bits are left for miscellaneous tasks.

Operation begins when at least one 16-bit instruc­
tion is loaded from the host into the peripheral's
FIFO register. The instruction consists of a 4-bit op
code, a 6-bit source-register address, and a 6-bit ad­
dress for the second source register, which also stores

4. loading an instruction into the FIFO starts the pe­
ripheral and activates the controller, which loads an
external instruction register and decodes the op
code field. The op code initiates a subroutine in the
controller, issuing the proper control signals, ad­
vancing the FIFO register, and loading the next
instruction.

the results. Until an instruction is received, the con­
troller is in the wait state (Fig. 4). When an instruc­
tion arrives, however, the FIFO's Empty signal acti­
vates the controller, which then reads the command
from the FIFO into a separate instruction register.
The controller also loads the instruction's op code in­
to its test inputs. It then masks the two unused test
bits and jumps to a subroutine that performs the
operation specified by the op code. After completing
it, the controller advances the FIFO register to load
the next instruction.

The peripheral executes up to 16 op codes. The first
eight are single-cycle operations and identical to
those of the floating-point processor. They consist of
addition, subtraction, multiplication, and format
conversion instructions. The remaining op codes are
used to load, store, and divide data, and a multiple cy­
cle instruction multiplies and accumulates values.
The four remaining op codes can be defined by the
user to implement application-related operations.

Software and hardware tools are a necessary part
of such projects as the foregoing peripheral. The soft­
ware assembles high-level microprograms and a
JEDEC output file that specifies the fuse pattern to
be burned into the PROM array. Currently, a pro­
gram called Fuse Formatter, which runs on the IBM
PC personal computer, lets designers enter hexadeci­
mal code that corresponds to PROM data. From that
code, the program creates a file that is downloaded
directly to one of several PROM programmers. The
latter blow the corresponding fuses in the micro­
program memory and are the only required hard­
ware tools. 0

Om Agrawal is the product planning manager for
programmable logic devices at A MD. He has designed
16- and 32-bit minicomputers, and is the coauthor of a
book on high·speed memory systems. Agrawal holds a
PhD in electrical engineering and computer science
from Iowa State University. He also received an MBA
from the University of Santa Clara.

As a senior product marketing engineer for the
company's microprocessor division, Deepak Mithani,
designs and markets bipolar microprocessors. He
earned a BSEE from India's Maharaja Sayajirao
University and an MSEE from the University of
Wisconsin.

~ Monolithic W Memories ~

PAL Device Buries Registers,
Brings State Machines to Life

Om Agrawal and Kapil Shankar
Advanced rv1icro Devices he., 901 ThorT'pson Pt., P.O. Box 3453, Sumyvc:ie, CA 94088; (408) 732·2400.

Designers who build state machines from pro­
grammable logic devices (PLDs) must develop
good juggling skills. The job usually takes a careful
balancing of the I/O pins, the product terms, and
the registers that store states and output bits. But
because these resources all are limited in a PLD,
performance and compactness often have to be sac­
rificed in favor of the desired function.

Ideally, state-machine designers need a PLD
with buried, or internal, state registers, compact

Housed in a 20-pin
DIP, the smallest PAL
device to date for
building state ma­
chines sports registers
that save 110 pins, yet
it is easy to test.

packaging and high
speed. Buried registers
free valuable I/O pins; a
small package saves
precious board space;
and high operating
speed speaks for itself.

Approaching the
ideal is the AmPAL-
23S8, the first 20-pin
programmable array
logic (PAL) device de­

signed specifically for building state machines and
sequencers. Its architecture is more flexible than
any 24- or 28-pin PAL device or programmable
logic array (PLA). For example, it .has 14 edge­
triggered, D-type flip-flops (Fig. I). That alone
compares favorably with 24-pin bipolar PAL de­
vices, which have up to 10 registers, and with 24-
and 28-pin PLAs, which have 12 to 14 registers.
Only 40-pin PAL devices with 16 registers surpass
the new chip.

As significant is the fact that of the chip's regis­
ters, six hO.ld buried state bits. By definition, the
buried registers do not merely free I/O pins: In­
deed, they actually enhance the chip's value as a
state machine. Driven by the chip's AND-OR
array the buried state registers, along with the eight
registers dedicated to I/O pins, make possible a
wide range of states and outputs.

Moreover, the buried state bits can be easily
accessed, controlled, and observed. Although the

Reprinted by permission of Electronic Design, July 1986. Ail rights reserved.

first two attributes are common among PAL de­
vices, the third has always presented problems. The
23S8 is the first chip whose product-term array
makes the buried state registers observable.

Of the other eight registers, four serve in output
logic macrocells and four store output states. Each
macrocell contains three main blocks (Fig. 2). On.e
block is the register, a rising-edge-triggered flip­
flop sharing asynchronous reset and synchronous
preset inputs with all the other flip-flops. The other
two blocks are multiplexers, one of them selecting
from one of four output paths, the other from one of
two feedback paths.

The logic chip is small, fast, and easy to program.
Packaged in a 0.3-in. DIP, it is half the width of
28- and 40-pin PAL and PLA type devices. More­
over, it comes in 33- and 28.5-MHz versions, with
propagation delays of 20 and 25 ns, respectively.
The faster version is an ideal companion for new
8-MHz, 16-bit microprocessors, as well as for
16-MHz, 32-bit units. Even at 28.5 MHz, the new
chip is faster than existing bipolar PLA-based se­
quencers, which operate from 20 to 25 MHz. It also
beats equivalent-density PAL devices operating at
or below 25 MHz.

Programming takes place by blowing reliable
and fast platinum silicide fuses, and using available
software packages. Like all PAL devices, the 23S8's
fusible AND-OR array is a direct measure of its
capability. With 6200 fuses, it is three to six times

Distribution of logiC product terms

Flip-flops

Location Number AND gates ORed

Macroce~s
2 8
2 10

Output pils 2 8
2 12

&lied 2 6

enternel) 2 8

registers 2 10

~ Monolithic W Memories ~ 2·639

EI

Inputs

elK

2·640

PAL Device Buries Registers, Brings State Machines to Life

the size of standard 20-pin bipolar PAL dt;vices. In fact, it
is larger than all other bipolar PLDs except for the 40-pin
chips, which are three to four times as large and have
some 8000 fuses. The new chip's fuse array handles all 14
registers, with 6 to 12 logic products for each output, and
up to 23 inputs-9 of them dedicated, 8 for feedback, and

Four
output

registers
with

polarity
control

1. The AmPAL23S8 Is the first 20-pln PAL device de­
signed specifically for building state machines
and sequencers. It contains 14 registers, 6 of
them burled and requiring no 110 pins, 4 dedi­
cated to output macrocells, and 4 storing output
bits. The states of the burled registers are easily
observed, which simplifies debugging.

6 for the buried states.
The number and distribution of the chip's product

terms are two other measures of its capability. It has alto­
gether 135 product terms for logic and control functions.
Moreover, the AND array that drives the 14 flip-flops is
variably distributed (see the table).

The distribution of the 124 logic product terms helps
adapt the chip to system requirements, while optimizing
its internal resour~es. (Of the II other terms, 8 control
output, the remaining 3 control preset, reset, and observ­
ability, respectively.) For additional flexibility in de­
signing powerful state machines, the chip can trade off the
product terms of its buried registers.

OBSERVABllITY CLOSE UP

The chip's observable product term is generated by the
AND-OR array, along with an ability to preload the
buried registers. Observability helps check a buried regis­
ter's state, so that a designer can monitor any register dur­
ing debugging.

Under control either of a single pin or of a combination
of six input signals, the observable product term drives a
set of inverting buffers. In normal operation, the buffers
also serve the four dedicated output registers and two of
the four macrocells. When activated, therefore, the ob­
servable product term disables signal flow from those reg­
isters and macrocells and simultaneously connects the six
buried registers to their respective I/O pins.

Flexibility in configuring a state machine derives from
the independent control of output and feedback multi­
plexers. Each output macrocell has three fuses, two to
determine the output path and one the feedback path. The
fuses can configure the macrocells in eight ways: a combi­
natorial or a registered output with either an I/O pin or a
registered feedback. Each of those four variations offers
either active high or active low outputs.

In the output path, fuse SI determines whether the out­
put is active high or active low. The output-nature fuse,
S2, selects sequential or combinatorial operation. When
both of those fuse!> are intact, a flip-flop's Q pin passes
through an inverting buffer, making the output active low
and registered.

On the other hand, programming or blowing S I renders
the output term active high; blowing S2 causes the output
to bypass the register, making it combinatorial. A combi­
natorial output with feedback can, moreover, provide
more than one level of ORing logic. Finally, fuse S) con­
trols the feedback path, sending either the flip-flop's Q
output or the I/O pin back into the array.

Controlling each output's enable line through a prod­
uct term from the AND array creates further options by
transforming an I/O into a dedicated input, a dedicated
output, or a dynamically controlled I/O pin. A designer
can thus adjust the number of input and output pins, and
have the dynamic I/O capability required by most buses.

~ Monolithic LJJFJI Memories ~

PAL Device Buries Registers, Brings State Machines to Life

Each output enahle produl.:t term is further assul.:iated
with an individual pularity fuse. This polarity fuse alluws
designers tu mudify a wntrul signal tu enahle uutputs us­
ing De Morgan's theurem, whil.:h is espel.:ially useful fur
bus control applil.:atiuns.

r-.----------- ----,
Macrocell

2. Each programmable macrocell has three main
blocks: a rising-edge-triggered Ootype flip-flop,
on output multiplexer, and a feedback multi­
plexer. The output multiplexer selects from one of
four output sources; the feedback multiplexer
feeds either on 1/0 pin or the flip-flop's Q output
into the programmable AN~-OR array.

AS D-----------____ ~

A2-A21 ===============::::::1
MREQ

RFCLK

RMC

Initialize

The I.:hip\ high speed and buried state registers make it
an ideal fuundatiun fur a f1exible and fast dynamic RAM
I.:untroller that meets the I.:omplex requirements of the lat­
est mil.:ruprul.:essors. Even at a 16-M Hz processor clock
rate it I.:an become a controller with few or nu wait states
that might otherwise haw to be built from scratch.

There is, fur example, no ready-made cuntroller that
I.:an take advantage of dynamic bus sizing the auto­
matic adjustment to the amuunt of data movable in une
bus cycle. Nur can any off-the-shelf unit handle misal­
igned data, that is, when an operand falls outside its
proper memury buundaril's. Bus sizing and data align­
ment are features of the recently arrived Motorola 6X020
and the [ntel X03X6, both 32-bit microprocessors. But a
I.:untruller able to perform the two functions can be built
around twu 23SXs, one for timing and arbitration logic
and the uther for dat<! sizing and alignment (Fig. 3).

The timing and arbitratiun chip arbitrates among
present, refresh, and CPU cycles; executes read or write,
read-modify-write, and refresh cycles; and asserts inter­
face signals. The chip first arbitrates bet ween the proces­
sur's Memury Request (MREQ) and Refresh Request
(RFCLK) signals. It gives priority to the cycle currently
heing exel.:uted, follows this with the refresh I.:ycle, and
I.:uncludes with the processor 9c1e. Both intermittent and
burst-mode r::fresh schemes are therefore possible.

The design's timing relationships and arbitration re­
quirements define a state-machine diagram (Fig. 4). The

To dynamiC RAM
address lines

al.:tual state machine

'"---------..... -oRASo-RAS.

AmPAL23S8 0 0-03 t-----------+o CASo-CAS3

employs five of the six
available buried regis­
ters. The sixth register
is a nag and so acts as a
small, independent state
machine. Either of two
soft ware packages
Cupl from Personal
CAD Systems [nc.'s
Assisted Technology
Division (San Jose,
Calif.) or Abel from
Data [/0 Corp. (Red­
mond, Wash.) easily
deseribes the state oper­
ations. (Cupl is the lan­
guage used in this par­
tieular example.)

A,,-A t

Sllo-SIZt

PTR,,-PRT t

R/W

13 -1. ~~dd:I:~nS~~~~ 0.1-----------+0 WE
I.-I. 0.-0.1-----------+0 DSACKo-DSACK t '

1,-1.

ClockD-------....

3. Two 2358s lie at the heart of on advanced dynamic RAM controller that
compares well in Its data-transfer features-such as dynamic bus sizing and
handling misaligned data-with recent 32-blt microprocessors. One of the two
main PAL devices controls the timing and arbitration of the memory cycles;
the other sizes and aligns data transfers.

~ Monolithic W Memories ~

No arhitration takes
place during the exe­
I.:ution of a I.:yde, whil.:h
is indil.:ated hy a state
other than O. The tim­
ing and arhitration I.:hip
stores any refresh re­
quest and responds to it

al

!, ,:',' ~', ' ',I

2·641

PAL Device Buries Registers, Brings State Machines to Life

later, continuing to follow the current cycle through its
various states. Thus the current state automatically takes
priority, and no other cycle is started until the current one
is complete.

At the end of the cycle, at state 0, the timing and arbi­
tration chip arbitrates between MREQ (a CPU cycle)
and RFCLK. In thl3 small independent state machine,
the buried register flag, 85, latches RFCLK, which may
last no longer than one clock cycle. When RFCLK is
high, 8~ toggles to state I and stays there until the refresh
cycle is executed. Then it toggles back to state ° to be
ready for the next RFCLK.

During refresh cycles, the timing and arbitration chip
asserts the Refresh signal (RFSH), which supplies the re­
freshed row address to the memory address bus. The chip
also generates the Rowand Column Address Enable
Lines, ROWADD and COLADD, which multiplex ad­
dresses onto the memory bus. At state 16, the chip re­
moves ROWADD and asserts RFSH; state 17 asserts the
Row Address Strobe signal (RAS) and refreshes all
memory banks before removing RAS and RFSH. Re-

Proe ... or eycl.

,iREO, B .. ARSEL", ~:D_S~~j).,
RASo-RAS,

moving RFSH increments an external I O-bit refresh-row­
address counter (AmPAL22Y 10) to the :lext row.

If no refresh request is pending during state 0 and
MREQ is asserted, a processor cycle begins and the ma­
chine jumps to state I. Otherwise the machine stays in
state 0 and polls for either a refresh or processor cycle.

The PAL chip responds to the processor's signall{MC
to execute a read, a write, or a read-modify-write cycle,
with the internal register~ controlling timing for the dif­
ferent cycles. If, for instance, the memory consists of
4 Mwords, organized as four equal banks of 32-bit words,
the chip asserts a RAS signal for each bank-RASo
through RAS 3•

The strobe signal being asserted depends on address­
select signals ADSELo and ADSEL

"
which in most sys­

tems are the high bits of the processor's address bus. After
asserting the proper strobe, the machine jumps to state 2
to manipulate the address-handling signals. For instance,
to multiplex addresses, ROWADD and COLADD are
again asserted.

In state 2, the timing and arbitration chip removes
ROWADD and asserts COL­
ADD, along with SIG, the refer­
ence that tells the data-sizing and

R.'r.,h eycl. alignment chip that a processor cy-
cle is in progress. SIG syn­
chronizes the two 23S8s and in­
structs the data-sizing and
alignment PAL to send a column­
address strobe (CAS) to memory.

SIG. cOlAoo. ROWADD

The state machine remains in
state 2 for an extra-cycle, and then
moves to state 4 to allow time to ac­
cess the data. There it decides,

2·642

R.ed end
writ. cycle

SIG

RAS. RFSH, ROWADD

Note: When signal designations appear
above and below a line, the upper Indicates
Inputs and the lower. outputs.

4. A state diagram for the timing and arbitration chip reflects Its oper­
ation for selecting and orchestrating the memory cycles. The chip
walts In state 0 to handle either a processor cycle or a refresh cycle;
the latter takes priority over any but a cycle currently In progress. The
chip performs refresh, read, write, and read-modIfy-write cycles.

~ Monolithic W Memories ~

based on processor signal RMC,
whether to execute a read, a write,
or a read-modify-write cycle. Be-
fore completing a read or write ac­
cess, the timing and arbitration
chip removes RAS and waits for
one more cycle to allow for the
RAS precharge time. Simulta­
neously, it switches back to ROW­
ADD from COLADD in prepara­
tion for the next processor cycle,
and disables SIG.

When the RMC signal requests
a read-modify-write cycle, the
timing and arbitration chip auto­
matically lengthens the cycle. It
holds RAS until DSACK and WE
signals have been asserted, and
only then completes the cycle.

The data-sizing and alignment
chip works only during a CPU cy-

PAL Device Buries Registers, Brings State Machines to Life

c1e. It creates WE for the write and read-modify-write cy­
cles, and it accepts SIG, which synchronizes the chip's
different states (Fig. 5) with those of the timing and
arbitration chip.

Four of the data-sizing and alignment chip's buried
state registers generate its state-machine function. The
machine starts polling in state 0 and stays there until it re­
ceives SIG, the start of a processor cycle.

The 68020 has a 32-bit maximum data width and a
data bus divided intu four byte-wide segments, each inde­
pendently controlled by a CAS signal from the data­
sizing and alignment chip. The processor can therefore
read and write byte-wide data over any segment.

The four CAS signals, CASo to CAS), strobe the col­
umn address from the high- to low-order memory bytes.
The signals also allow the microprocessor to read and
write across the low-low, low-middle, high-middle, and
high-high bytes of a 32-bit data port. The data-sizing and
alignment chip must assert all four CAS signals for a
32-bit port; only CAS2 and CAS) are needed to supply a
16-bit port's low- and high-byte strobes; while for an 8-bit
port, CAS) is enough.

Read-modily-wrile
cycle

Read and
wrole cycl ••

Note: Where signal deSignations
appear above and below a line
the upper mdlcates Inputs and
Ihe lower. outputs.

DSACK'
CAS'

'Oulputs Independent
01 RW and RMC

5. The data-sizing and alignment chip works only
during a processor cycle and waits In staJe a until
one is requested. II the processor calls tor a read
or a write cycle, the chip asserts DSACK, CAS,
and, 'or a write cycle, WE. For a read-modify-write
cycle, II asserts two DSACK signals, one each tor
the read and write segments.

The data-sizing and alignment chip asserts the CAS
signals in state 1, and selects them according to the size of
the port in use, the width of the data being moved, and
how the data aligns with the port. Coding on input pins
PRTo and PRT I shows the port size; signals SIZo and
SIZI from the microprocessor show data width; and the
microprocessor's least-significant address bits, Ao and
Alo give the alignment.

THE PROCESSORS PREFERENCE

The size of the port dictates the amount of data that can
be transferred in anyone cycle. Based on the PRT signals
the state machine asserts DSACK signals, which ac­
knowledge the CPU and tell it how much data it can
move, since it will always try to move as much as possible.
The state machine synchronizes the acknowledgment
timing, asserts the required CAS signals, and holds them
until the read, write, or read-modify-write cycle is com­
plete.

A read cycle's DSACK signal is asserted in state I and
remains until the end of the cycle at state 4. A write cycle
is identical, except for the additional WE signal. But a
read-modify-write cycle requires two DSACK signals,
one for reading, the other for writing. The first DSACK is
the same as that for a read or a write cycle; the second
DSACK occurs in state 8 and remains until state II, with
a delayed WE asserted in state 8 by an internal 4-bit
counter. 0

Om Agrawal is product planning manager for pro­
grammable logic devices at Advanced Micro Devices.
He has designed J6-bit and 32-bit minicomputers and
is co-author of a book on high-speed memory systems.
He holds a PhD in electrical engineering and computer
science from Iowa State University and an MBA from
the University of Santa Clara.

Kapil Shankar is a senior product planning engineer
for programmable logic and memory devices, and has
designed advanced graphics systems. He has an MS in
computer and systems engineering and an ME in elec­
trical power engineering, both from Rensselaer
Polytechnic Institute.

~ Monolithic W Memories ~ 2·643

Programmable Event Generator
Conquers Timing Restraints

Bruce Threewitt, Manager, Product Planning
Advanced Micro Devices, Sunnyvale, CA

When it comes to generating
complex, high-resolution dig­
ital waveforms, Advanced

Micro Devices' Am2971 picks up
where older parts leave off. Precise
time delays once required the use of
either a hybrid structure consisting
of an analog delay line combined
with digital logic or costly counters
driven by high-frequency clocks. On
the one hand, analog delay lines have

=x==
::x=
::x= --+A2

+5V
PROGRAMMABLE

+ 5 V INTERNAL CLOCK

Am2971
PROGRAMMABLE

EVENT GENERATOR

CLKOUT T 11
TTl Pll
GND GND FlTR CLK/X 1 X 2

<II'F ;J:

short enough tap-to-tap time delays,
or resolutions, to be usable for han­
dling the tighter timing relation­
ships of dynamic and static RAMs.
However, those lines cannot also ac­
commodate the longer total delays
needed by these devices.

On the other hand, the desired
waveforms can be obtained digitally
from the outputs of one or more
binary counters. But to achieve reso­
lutions of 10 ns, counters must be
driven with 100-MHz clock frequen­
cies, which are difficult to distribute
around a board.

The programmable event genera­
tor (PEG) a monolithic IC, offers

a more elegant solution for the prob­
lem of generating complex high­
speed timing wa\'eforms (see Fig.
1). Applications for the PEG (see
box, "A new PEG in the designer's
tool box") range from simply cor­
recting the clock skew that results
from distributing a clock signal on
a backplane to generating complex
state-machine timing. The PEG's 12
output lines can be programmed by

EVENT EVENT
0 1

I

7'..

* x
I

I •
•
•

EVENT i
2 I

I
I

X

X

&

I
EVENT

31

I

Fig. 1. In response to a logic tran­
sition on its trigger (TRIG) input, the
PEG will generate 12 simultaneous
user-programmed timing waveforms
on its To to T" output lines,

the user to assume either a logic­
high or a logic-low level within each
of 32 time slots or events. The fre­
quency of these events-that is, the
frequency of the output waveforms
-is also programmable. But it is the
precision and resolution of these
waveforms that is the PEG's claim
to fame (see Fig. 2).

Internal operation
The PEG is an edge-triggered

logic device that generates a pre­
programmed digital waveform in
response to a triggering signal. It
consists of four basic blocks: a next­
address and event store, a start-ad-

Reprinted by permission of Electronic Products. July 1,1986.

2·644 ~ Monolithic m Memories ~

Programmable Event Generator Conquers Timing Restraints

dress store, an oscillator and clock­
control block, and control logic (see
Fig. 3). A total of 623 user-program­
mable platinum-silicide fuses, simi­
lar to those used in AMD's bipolar
PROMs and programmable array
logic devices, are located throughout
these blocks.

When the PEG's fuses are being
programmed, the 12 timing-tap out­
puts (To to T 11) are used as fuse­
address inputs. A thorough descrip­
tion of the procedure for program­
ming the PEG can be found on its
data sheet, so for the purpose of
understanding what goes on inside
the chip, let's assume that it has al­
ready been programmed.

An output-timing sequence is ini­
tiated by a logic transition at the
TRIG input. Two user-program­
mable fuses are located in the trig­
ger-polarity block. One of them is a
polarity-select fuse, which when un-

Fig. 2. Tap-to-tap resolution of an
analog delay line (a) is not indepen-
dent of its total delay time. However,
the PEG's 12 programmable output
waveforms (b) are independent of
one another. Resolutions down to
10 ns can be easily obtained.

TTL VCC

FLTR TRIG

CLKOUT

CLK/X 1 Tll

A2 TIO

Al Am2911 T 9
PEG

AO T 8

TO T 7

T 1 T 6

T 2 T 5

T3 T 4

PLL GND PLL VCC

programmed will cause the timing
sequence to start during a negative
transition of the TRIG input. If it
is programmed, the sequence starts
when a positive transition occurs.

The second fuse in this block is
used to define the end of a timing
sequence. If this fuse is left unpro­
grammed, the timing sequence i~
stopped on the trailing edge of TRIG
pulse. Otherwise if the second fuse
is programmed, the end of the tim­
ing sequence is defined by the stop
bits as programmed by the user into
the next-address/event generator
functional block.

Customized waveforms
A transition at the TRIG input

latches three address bits, Ao to A 2 ,

which are decoded by the start-ad­
dress store, which serves as an 8 x
5-bit mapping PROM. Each of its
eight addresses represents a differ-

INPUT

(b)

INTERNAL CLOCK
f c = 100 MHz (MAX

TRIG

T y

)

TAP 1

TAP 2

TAP 3

TAP 4

TAP 5

(a)

RESOLUTION
(JOnsMIN) ~

x

xx

SKEW (1 ns MAX)---.

. Z = 0, 1,2,

T Z

x, Y

X =
n =

... 11

Y = Z
0, 1. 2 . .. 31

INPUT

TAP 1

TAP 2

TAP 3

TAP 4

TAP 5

EVENT
n

" 1--
I

ent starting point for the 12 output
waveforms. For example, three dif­
ferent addresses in this store could
be used to initialize output wave­
forms that implement the read-,
write-, and page-mode timing se­
quences of a dynamic RAM.

The five bits of each address are
used to select one of thirty-two 18-
bit locations from the next-address
and e\'ent store (also a PROM).
Each 18-hit string contains three
groups of information. The first 5
bits define the next address of the
desired timing sequence. The next
12 hits define the logic levels on each
of the timing-output lines (To to
T 11)' The 18th bit is a sequence-stop
bit. As the timing sequence pro­
gresses from the first to the thirty­
second event-store address, the out­
put lines will produce 12 independent
waveforms.

The assumption so far is that the

I RESOLUTION

T01AlDUAY~

EVENT EVENT EVENT
n + 1 n + 2 n + 3

t/ "--
/

" i/

PULSE WIDTH
(20 ns MIN)

~ Monolithic W MemorIes ~ 2·645

Programmable Event Generator Conquers Timing Restraints

AO

FLTR ~---;::::::J...--±"_-,

CLK!X 1 -----I~

X2-;---+t...::~~~
CLKOUT _f-o----.....

stop-function fuse has not been
programmed. If it has, the timing
sequence will no longer stop on the
trailing edge of the TRIG pulse. The
end of a timing sequence will instead
be defined by the stop bit. When a
timing sequence encounters a stop
bit, the entire sequence comes to a
halt, and the 12 timing-output lines
remain at their current logic level.

Each of the timing-waveform out­
puts has a minimum useful cycle
time of 40 ns (or 20 ns per change).
When the PEG is operating at its
maximum internal-clock frequency
(fe = 100 MHz), the outputs must
be programmed to remain un­
changed for at least two clock pe­
riods for each change of logic level.
That is, although an output can only
change a minimum of every 20 ns,
the timing resolution between events
among taps may be as low as 10 ns.
When the PEG's internal clock is
programmed to operate at 50 MHz or
slower, the timing waveform can be
programmed to change once each
clock period. And its clock-frequency
range is low enough-from 7 to 20
MHz-for the user to drive the
PEG's CLK input from the system
clock via an internal clock input pin.

Alternatively, the designer may
opt for crystal control by connecting
a 7 to 20-MHz crystal to the XI and
X2 inputs of the PEG. And thanks
to the five fuses within the oscil1ator
and clock-control block, the user can
also set the frequency of the output

START·
ADDRESS

STORE
~8 x 5 BITS MUX

DECODER
N~~TDAr;tJfS 12

STORE
(32 x ;8 BITS) REGISTER

NEXT ADDRESS

STOP BIT

i~TERNAL ClOC~ f c

Fig. 3. The PEG consists of four basic blocks: a next-address and event store,
a start-address store, an oscillator and clock-control block, and control logic.

waveforms. Four of these fuses are
used to select fe.

When an external crystal is used,
the PEG's internal phase-locked loop
(PLL) will treat the crystal's fre­
quency as an input-reference fre­
quency, flo and wil1 multiply it by a
programmable value (1, 5, 10, %, %,
or 1%) to obtain the desired value of
fo (see Fig. 4). Also an output-clock
frequency, fo, is available on the
CLKOUT pin. This output clock­
whose frequency is either % or ~o
of the internal-clock frequency­
may be used to synchronize the out-

A new PEG In the
designer's tool box

Designers no longer have to grap­
ple with low-resolution analog de­
lay lines or costly timing logic
when high-speed waveforms are
needed. The Am2971 program­
mable event generator, trade­
marked PEG, from Advanced Mi­
cro Devices has 12 output lines
that can produce and accurately
place logic transitions as short as
20 ns, with a minimum waveform­
to-waveform resolution of 10 ns.

puts of the PEG with the remainder
of the system. And speaking of sys­
tems, the PEG comes in very handy
for generating the specialty cycles
offered by today's DRAMs.

DRAM-timing application
Typically, the system designer

must use more than one analog de­
lay line and some external logic to
produce the multiple CAS pulses
needed for the page-mode cycles of
some DRAMs. Timing designs using
high-speed clocks and counters are
equally cumbersome in this case.
Once again, the PEG chip offers a
streamlined solution because it can
readily generate the multiple CAS
pulses.

Another job for the PEG comes
about as a re~;ult of the use of multi­
plexed address lines on high-density
DRAM boards. Because the many
address lines present a relatively
large capacitive load to the multi­
plexer, significant time delays are
introduced in the address-timing
waveforms.

Typical1y, a signal provided by the
system switches one or more ad­
dress-multiplexer ICs. This signal
must be accurately timpd to change
state after time interval 1 in Fiy. 5.
The performance of the indi\·idllal
DRAM-and ultimatply of thl' pntirp
memory system in which it resiril's­
depends on reducinl-r interval 2 as
much as posflihlp. Int('l"\·al 1 is 11) to
20 ns in most standard DRAM spe-

2·646 ~ Monolithic WMemorles ~

Programmable Event Generator Conquers Timing Restraints

Am2971

CLKlXI X2

x

D

r"
X IS A 7 TO 20·~hz A HUT

PARALLEL·RESONANT CRYSTAL

1--­
I
I
I
I

CLK'XI 'Iii --~~

X2 --+---+
I

CLKO~: '10'

PLL

X5

X10

.;-10

MUX
.;-1

~-""':""-~.;-2

L .;-4

-,
I
I
I
I

REGISTER

• • •

(a) OSCILLATOR
AND

CLOCK CONTROL
Fig. 4. The PEG can be clocked by
an external crystal (a) or by the sys­
tem clock. On-chip programmable
clock-control logic (b) enables the
user to set the internal-clock fre­
quency, fe.

cifications. Thus, a resolution of 10
to 15 ns is desirable for the DRAM­
timing waveforms-an easy job for
the PEG.

What's more, the PEG can be used
to generate the necessary timing
waveforms for multi-array mem­
ories too. In video-DRAM systems,
for example, the rising edge of the
transfer-enable signal, TRG, must
be accurately placed relative to the
rising edge of the serial-port clock
siSl'nal, SC. When the PEG is used to
generate both waveforms, the de­
signer has full control over the reso-

(b) L

lution between the rising edges of
the TRG and SC signals.

More events and/or channels
In some applications, 12 output

channels are sufficient but more than
32 event states are necessary. These
additional states can be obtained by
connecting two PEGs as shown in
Fig. 6. After PEG 1 has cycled
through its 32 states, its To line
triggers PEG 2. The second PEG
will then begin its timing sequence
at the start address specified by PEG
1. If necessary, the clock frequency
of PEG 2 may be changed by using
the clock output of PEG 1 as the
clock input to PEG 2. Otherwise, the
internal c1oc~s and TRIG polarities

~~~ ----------------------~~ __ V_A_LlD_DA_TA ____ _J~ 
Fig. 5. In this DRAM delayed-write cycle, interval 1 must be kept to within 10 
or 15 ns, and interval 2 must be as short as possible. When mounted on the 
same DRAM memory board, the PEG could be used to generate the RAS, 
CAS, and WE signals. 

~ Monolithic miD Memories ~ 

PEG 2 

12 

Fig. 6. By connecting two PEGs, de­
signers can obtain timing waveforms 
that consist of more than 32 events. 

of the two PEG chips are indepen­
dently programmable. 

If the waveforms must be nested, 
one of the output taps of PEG 2 can 
be used to remove the TRIG signal 
from PEG 1. PEGs can also be par­
alleled for applications in which 32 
event states are sufficient but more 
than 12 output channels are needed. 
For example, when 12 to 24 channels 
are needed, the designer can simply 
drive two PEG chips with the same 
input signals and use as many of the 
output lines as necessary. 0 

2·647 

EJI 



Wait-State Remover Improves 
System Performance 

T he trends toward faster micropro­
cessors and denser dynamic ran­
dom-access memories have 

sparked a conflict. New-generation mi­
croprocessors require machine cycle 
times of 150 to 250 ns (Table I). But 
traditionally as DRAM density increases, 
cycle times slow. Needed is a way to 
combine high performance with zero­
wait-state operation. 

Although hardware-intensive cache 
schemes can work, they are very costly. 
It is possible, however, to improve sys­
tem performance with little additional 
hardware by substituting enhanced­
page- and static-column-mode cycles for 
regular memory cycles, thus cutting 
down the number of wait states. The 
resulting system would be especially 
useful for small systems and subsystems 
with space restrictions. 

Our design incorporates a DRAM such 
as the Am90C256, a CMOS device that 
offers uninterrupted serial or random ac­
cess to 512 bits of data, or the 
Am90C257, which combines dynamic 
storage and static decode to nearly dou­
ble sequential access rates. These de­
vices provide extended-page and static­
column access modes at a small increase 
in cost. These modes permit data access 
times of 40 to 60 ns, enabling the mem­
ory controller to remove wait states for 
several processor cycles. 

The only additional hardware is an 
AmPAL22V 10, a 24-pin programmable 
logic device that offers an ANDIOR logic 
structure for custom programming, 22 
inputs, and 10 outputs with 12 product 
terms each to provide timing and arbitra­
tion for extended-page-mode and refresh 
cycles. Also needed are two devices to 
latch and compare row addresses and a 
counter to track the extended-page­
mode cycles' time out. 

Usually, microprocessors perform a 

Reprinted with permission of VLSI, 
November 1986, Vol. VII, No. 11 

Am29843 
latch 

A9·A17 Am29809 

9 Comparator 

MREQl 

ClK 

CACK 

STIENS 

ClK 

IlE 

RFClK 

TOUT 

MATCH 

From DRAM 

controller 

AmPAl22V10 

Arbiter 

ClK 

SlOCl 

FSTCl 

RFSCl 

CYCFLAGl 

FIGURE 1. Wait state remover arbitration scheme. 

number of continuous accesses in a lo­
calized address range to fill up the in­
struction pipeline or to store or retrieve 
data. Our scheme is based upon this 
locality of memory access, somewhat 
similar to cache schemes. It involves 
performing an extended-page-mode (or 
a static-column/ripple-mode) access cy­
cle, instead of a regular memory cycle. 
The time required for the data to be read 
or written for this cycle is the same as for 
a regular memory cycle. The cycle's 
row address is stored and then compared 
to that of the subsequent cycle. This row 
address would be the same for a local-

ized access cycle within the same row of 
up to 512 (for a 256K) or 1054 (for a 1M 
DRAM) column addresses. 

If the row address is the same, the 
system performs a fast-access, en­
hanced-page-mode cycle that requires 
only the column address and no proces­
sor wait state. If the addresses are differ­
ent, the current extended-page-mode cy­
cle is completed, and a fresh cycle is 
performed at the new row address. Com­
pleting the previous cycle and initiating 
a new one adds 20 to 40 ns to the normal 
cycle, depending on the speed of the 
DRAM controller. Usually, one wait-

2·648 ~ Monolith/em Memories ~ 



Wait-State Remover Improves System Performance 

state processor cycle provides additional 
time of 50 to 125 ns, enough to squeeze 
in this overhead and not cause further 
wait states. 

Because row addresses can be com­
pared during the same time interval as 
the address decoding and generation of a 
memory request or select, this action 
does not increase cycle time. The result 
is a regular cycle speed with one (or two) 
wait states for random memory accesses 
at different row addresses and fast, no­
wait-state cycles for localized accesses 
at the same row address. Depending on 
the program, execution speed can in­
crease 5% to 20%. 

The AmPAL22VIO also acts as a tim­
er and arbiter for the extended-page­
mode and refresh cycles (Figure I and 
Table 2). Its refresh-cycle counter. runs 
at 16 f.l.S. But the DRAM controller does 
not perform a refresh every time it re­
ceives a request: because the page-mode 
cycle can be extended up to 75 f.l.s to 
allow the most CAS-only fast cycles, 
refreshes at 16-f.l.s intervals would dis­
rupt operation. Instead, the arbitration 
scheme is designed so that, during an 
extended-page-mode cycle, the memory 
controller counts up to four refresh re­
quests before performing the refresh 
cycles. 

Description 01 Circuit 
And Booloan Logic 

For the sake of clarity, the circuit 
diagram shows a general-purpose arbi­
tration interface, not a complete DRAM 
controller. It can be either integral to a 
PAL-based DRAM controller or linked to 
a VLSI DRAM controller, depending on 
the user's needs. 

For 256K DRAMs, an Am29843 with 
9-bit latches stores a 9-bit row address. 
The arbiter PAL controls the latch-enable 
signal, LE. A 9-bit Am29809 compares 
the stored row address with that of the 
current cycle directly from the processor 
on address lines A9-A 17. If the address­
es match, the Am29809 sends a MATCH 
signal to the arbiter PAL. The arbiter PAL 
also receives the memory-request 
(MREQ) signal from the address-decod­
ing circuitry (not shown here). 

Of the AmPAL22VIO's two counters, 
the refresh counter is free running and 
generates refresh requests (RFCLK) at 

Processor Cycle time (n8) 

o walt 

8088/8086 (8 MHz) 500 

8088/8086 (10 MHz) 400 

80286 (8 MHz) 250 

80286 (10MHz) 200 

80386 (8 MHz) 188 

68020 (16 MHz) 188 

68020 (20M Hz) 150 

TABLE 1. Microprocessor cycle times. 

INPUTS 
MREQ 
MATCH 
TOUT 
RFCLK 
CACK 

OUTPUTS 
CYCFLAG 
SLOG 
FSTC 
RFSC 
RCTO 
RCT1 

ICYCFLAG: = IMREQ' CYCFLAG ' RCT1 ' RCTO 
+ ICYCFLAG ' /TOUT' (RCT1 + RCTO) 
, (MREQ + MATCH) 

ISLOC: = IMREQ ' CYCFLAG ' SLOC ' FSTC 
, RFSC ' RCT1 ' RCTO 
+ IMREQ' ICYCFLAG' IMATCH' SLOC 
, FSTC ' RFSC ' RCT1 ' RCTO 

+ ISLOC ' CACK 

IFSTC: = IMERQ' ICYCFLAG ' MATCH' SLOC 

IRCT1: = (RCT1 ' IRCTO + IRCT1 ' RCTO) 
, RFCLK 
+ CT' RFSC 
, (lRCT1 ' IRCTO + RCT1 ' RCTO) 
+ IRFCLK ' (lCT + IRFSC ' IRCT1 

IRCTO: = RFCLK' RCTO 
+ CT' RFSC' RCTO 
+ IRFCLK ' (lCT + IRFSC) , IRCTO 

CT: = IRFSC 

TABLE 2. Listing of equations for arbiter. 

1 walt 

625 

500 

375 

300 

250 

250 

200 

2 walts 

750 

600 

500 

400 

313 

313 

250 

; Assert for RIW 
; Unasser1 based 
; on 3 conditions 

; Start extended 
; cycle 
; Row address not 
; matched new 
; extended cycle 
; Hold till complete 

; Match CAS only 
; fast cycle 

; Count up 

; Count down 

; Hold count 

; Count up 
; Count down 
; Hold count 

fixed 16-f.l.s intervals. The counter for 
the extended-page-mode cycle is con­
trolled by the arbiter PAL, which starts 
the counter by sending a signal (CYC­
FLAG). On completion of the 75-f.l.s tim­
ing count, the counter sends a time-out 
signal, TOUT, to the arbiter, forcing it to 
complete the current cycle and remove 
the CYCFLAG signal. If the arbiter re­
quires a new extended-page-mode cycle 

at a different row address before this 
timeout, it resets the counter by remov­
ing the CYCFLAG signal. So the counter 
starts when CYCFLAG is high and stops 
or resets when CYCFLAG is low. 

The arbiter's operation is quite sim­
ple. It uses registers SLOC, FSTC, and 
RFSC as flags to indicate a cycle request 
to the memory controller. SLOC requests 
the initiation of an extended-page-mode 

~ Monolithic m Memories ~ 2·649 



2·650 

Wait-State Remover Improves System Performance 

cycle. This new cycle continues, even 
after l'Ompletion of a data transfer, as 
long as CYCFLA(i is high. FSTC requests 
the initiation of a fast CAS-only cycle at 
the same row address at which an ex­
tended-page-mode cycle is in progress, 
meaning that CYCFLA(i must be high for 
the FSTC signal to be asserted. 

The third RFSC requests the initiation 
of a refresh cycle. All cycle requests for 
new slow extended-page-mode cycles, 
fast CAS-only extended-page-mode cy­
cles, and refresh cycles are arbitrated on 
the basis of inputs MREQ and MATCH, 
and status feedbacks of CYCFLAG and 
(RCTO, RCT)). a counter to keep track of 
number of refresh requests. A new cycle 
request is arbitrated only when no cur­
rent cycle request is active. indicated by 
SLOe. FSTC, and RFSC being low. 

When CYCFLA(J is low. the DRAM 
controller should complete the existing 
extended-page-mode cycle (usually by 
deactivating both RAS and CAS signals to 
the memory). As shown in the Boolean 
equations. CYCFLAG goes low if at least 
one of the following three conditions is 
encountered: 

I. Extended-page-mode cycle timeout 
(TOUT) high. 

2. Refresh count up to four (RCTO= I 
and RCT) = I). 

J. New cycle at a different row ad­
dress MREQ and MATCH. 

This allows arbitration to begin afresh 
for a new cycle. Because CYCFLAG is 
generated for each new extended-page­
mode cvcle. it is also used as a latch­
enable ~ignal for the 9-bit row-address 
latch. 

The counter made by register RCTO 
and RCT) remembers refresh requests 
made during an extended-page-mode 
cycle. It counts up by one upon receiv­
ing each RFCLK. to the maximum of 
four: it counts down by one when a 
refresh cycle is executed. An extra regis­
ter. CT. monitors refresh-cycle execu­
tion by detecting the rising edge of the 
refresh-cycle request RFSC. CT and RFSC 
low indicate the refresh cycle's comple­
tion, and this is used to decrement 
counter RCTO, RCT). The refresh cycles 
are repeated. and no memory cycles are 
allowed, until this counter is reset to 
urn. 0 

~ Monolithic W Memories ~ 



PLDs Implement Encoder I Decoder 
for Disk Drives 

By using software to define programmable 
logic devices as run-length-limited encode/ 
decode systems, you can design disk-drive 
systems that have 50% I1wre data-storage 
capacity than drives that implement the 
MFM code. 

Arthur Khu and Rudy Sterner, 
Advanced Micro Devices Inc 

When you're designing a disk-drive system, you can 
implement run-length-limited (RLL) 2,7 encoding/de­
coding circuitry in your design by using only three 
programmable-logic devices (PLDs) and two shift reg­
isters. You design the encoder and decoder as state 
machines and use the timing diagrams to determine 
what the timing and control signals must be. 

To create a disk controller with encoding/decoding 
features, you can use three AmPAL22VlO PLDs and a 
disk controller such as the Am9580/Am9582 chip set 
(Fig 1). The Am9580 hard-disk controller and the 
Am9582 disk-data separator perform all the general 
disk-control functions. The PLDs have appropriate 
architectures for implementing the encoding and decod­
ing state machines. Further, you can reprogram the 
PLDs to implement higher density ratios for data 
encoding, and you can increase your system's speed 
simply by using faster PLDs. 

An RLL code is a code in which the number of zeros 
between ones-the run length-is definite. The "2,7" 

Reprinted by permission of EON, September 18,1986. 

designation means that the code for the binary data 
string has at least two and at most seven zeros separat­
ing the ones. RLL codes increase the density of data 
stored on a disk by reducing the number of recorded 
pulses (ones) necessary to represent a given amount of 
data. This reduction allows the disk-drive circuitry to 
pack the ones closer together, increasing the amount of 
data on the disk. 

In comparison with the (de facto) industry-standard 
approach, MFM, the RLL 2,7 code increases by 50% 
the amount of data you can store on a disk drive (see 
box, "RLL 2,7 code vs MFM code"). In addition, RLL 

Fig J-A complete disk controller requires only two VLSI ICs, a 
PLD-based encoding/decoding system, and a drive interface. The 
hard-disk controller and the disk-data separator provide generic 
disk-drive control, and the PLDs provide RLL 2,7 encoding and 
decoding, which increases disk storage capacity. 

~ Monolithio W Memories ~ 2·651 

EJII 



PLDs Implement Encoder I Decoder for Disk Drives 

TABLE 1 - RLL 2,7 CODING RULES 

DATA 2,7 CODE 

10 1000 

11 0100 

000 100100 

010 001000 

011 000100 

0010 00001000 

0011 00100100 
------

2,7 decoding circuitry recovers quickly from code-de­
tection errors. 

As Table 1 shows, RLL 2,7 encoding circuitry trans­
lates seven data strings into 2,7 code. You can break 
any binary nun-return-tu-zero (NRZ) data string into 
combinations of the seven data strings. To obtain the 

decoded data string, the circuitry matches the 2,7 code 
patterns with the seven 2,7 code strings in Table 1. 

Because 2,7 code strings have variable lengths (they 
can be 2, 3, or 4 bits long), your design will need control 
logic that controls the output from the encoder/decoder 
as translation takes place. Encoding and decoding state 
machines (Figs 2 and 3) implement this control logic 
from the code in Table 1 (see box, "Convert RLL 2,7 
code to a state machine"). The encoding state machine 

KEY: 
DATA BIT TO 
CODE 

J(01)-2 LOOK·AHEAD BITS 
00_2.7 CODE FOR 

DATA BIT 0 

AMC-IF ADDESS MARK 

00 ......... ~.I~~~~~il~~ODUCED 

(a) NOTE: STATES 0, 3, 4, AND 5 ARE USED ~OR ADDRESS· MARK GENERATION 

TO CODE 00101100 .. 

CODE CYCLE To T, T, 

CURRENT STATE 0 2 0 

BIT TO CODE BIT TO CODE BiT TO CODE 

CONTENTS ""''' 0",."","-" ''''''-0",. ""''''' ! OF 4·BIT 
INPUT ~1101111r-
SHIFT 
REGISTER 
INREG 

2·BIT LOOK·AHEAD 2·BIT LOOK·AHEAD 

SHIFT IN A NEW BIT SHIFT IN A NEW BIT 
BEFORE GOING TO BEFORE GOING TO 
CYCLE T, CYCLE T, 

2,7 CODE TO 
LOAD INTO OUTREG 00 00 

(b) 

NEXT 2 0 
STATE 

Fig 2-The encoder state machine (a) descl'ihes the tmns/ation of inpilt data into RLL 2,7 code. The first two cycles ill the encoding of the 
data string ()()J()/ J()() (b) dell/()lIstmte hoI(' the ellcoder delermilles Ihe correcl code by e.raminillg bolh the bit to be encoded and the next two 
(/ook·ahead) bits. 

2·652 ~ Monolithic W Memories ~ 



PLDs Implement Encoder/Decoder for Disk Drives 

produces two 2,7 code bits for each data bit received. 
The decoding state machine, on the other hand, pro­
duces one data bit for every two bits of 2,7 code. The 
clocking scheme in these encoding/decoding state ma­
chines is simpler than the familiar table-look-up meth-

During decoding) circuitry matches the 
RLL 2)7 code pattenls with the seven RLL 
2) 7 code strings to obtain the corresponding 
decoded data string. 

od, which requires suspended operation during encod­
ing and decoding. 

You can implement both of these encoding/decoding 
2,7 state machines with one PLD device (lei) and two 
shift registers (lNREG and OUTREG) (Fig 4>. To 

KEY: 
2,cODE BITS TO DECODE 

!QlQQj-2·CODE·BIT LOOK·AHEAD 
, -DECODED DATA BIT 

00 -2 CODE BITS TO 
-0- DECODE; NO NEED 

" ~~~~~~~'~~T~A~T 
00-2 CODE BITS TO DECODE 

AMF-ACTIVATE ADDRESS· 
MARK· FOUND SIGN 

(a) NOTE: STATES O. 3. 5. AND 6 ARE US!'D WHEN DETECTING ADDRESS MARKS 

TO DECODE 00100010 ... 

DECODE CYCLE S, 

CURRENT 
0 3 2 STATE 

2 CODE BITS TO DECOOE 2 CODE BITS TO DECODE 2 CODE BITS TO OECODE 

t t ~ CONTENTS ""''-~ """ ~~~IAL ~, 10 1 01 0 ~ ~ERIAL 
OF 4·BIT OUT IN 
INPUT t t SHIFT 
REGISTER 2·CODE·BIT LOOK·AHEAD 2·CODE·BIT LOOK·AHEAD 

INREG 

SHIFT IN TWO NEW CODE SHIFT IN TWO NEW CODE 
BITS BEFORE GOING BITS BEFORE GOING 
TO CYCLE S, TO CYCLE S, 

DECODED DATA 
BIT TO LOAD 0 , 
INTO OUTREG 

(b) 
NEXT 3 2 STATE 

Fig 3-This decoder state machine (a) represents the translation of RLL 2,7 code into an output data stream. To determine the correct output 
data, the decoder examines four code bits-two bits to be decoded and two look-ahead bits, as shown in the example in b. 

l' Monolithic W Memories l' 2·653 



PLDs Implement Encoder/Decoder for Disk Drives 

Because the RLL 2)7 code contains two bits 
for every one bit of data) the timing cir­
cuitry divides the clock signal for the coded 
data) producing a data clock. 

synchronize the encoder/decoder with the hard-disk 
controller, you use two other PLDs (lCz and IC3) to 
provide clock-generation and address-mark-control 
logic. IC I is a AmPAL22VlO, which has sufficient 
capacity to implement the two state machines. ICz, also 
an AmPAL22VlO, utilizes the PLD's large capacity and 
programmable output cells to implement the address­
mark-control circuitry. An AmPAL16HD8 (lCI), which 
is sufficient for implementing the clock circuitry and the 
random logic, completes the design. 

2. The encoding state machine begins in state zero; the 
first four bits of the data to be encoded are in the shift 
register INREG. For the data stream in the figure, the 
encoder, beginning in the first cycle (To) reads the first 
bit in the stream as 0 and sees that the next two bits 
(the look-ahead bits) in INREG are 0 andl, respective­
ly. According to the state diagram, the encoder pro­
duces a 00 output because, as Table 1 shows. input data 
starting with 001 translates to a character string that 
starts with 00. The encoder then enters state 2, shifts 
the encoded 0 out of INREG, and shifts in the next 
(fifth) bit of the data to be encoded. 

To understand the state-machine implementation of 
the RLL 2,7 encoder, consider the state machine in Fig 

2·654 

RLL 2,7 code vs MFM code 
Although the RLL 2,7 and MFM ,....-------------------------, 

coding methods can both in­
crease a disk drive's capacity, 
RLL 2,7 code is more compact. 
A disk drive that implements 
the RLL 2,7 code can, therefore, 
store 50% more data than can a 
drive that implements the MFM 
code. 

On the magnetic medium in 
the disk drive (hard-disk or flop­
py-disk drives), binary data ap­
pears as a change in flux (repre­
senting a one) or as no change in 
flux (representing a zero). Be­
cause the disk density is limited 
by the minimum distance be­
tween flux transitions, the maxi­
mum data density depends on 
how the data is encoded. 

MFM is an RLL code with the 
designation 1,3;1,2;1. RLL 2,7 
code (its full designation is 
2,7;1,2;3) allows a minimum of 
two zeros between each one, and 
MFM code allows a minimum of 
one zero. RLL 2,7 code can 
store as much as 50% more data 
in a given number of flux 
changes than can MFM code; 
therefore, RLL 2,7 code can 
store as much as 50% more data 
on a given section of magnetic 

DATA 1100110011 

MFM 
11 lOCO 1 lOCO 1 1 
1 r-l n r-l r-
LJ L-...J L-..J LJ 
I I I I I I I I I I I 

C CLOCK PULSE 
MINIMUM FLUX­
TRANSITION SPACING 

OATA 1 1 0 0 1 1 0 0 1 1 RLL 2.7 
CODE 01000010010000100100 

0000100100 

:=J "------'~ 
1

01000000 

I I I I I I I I I I I I I I I I I I 

1 

/ ITYOF MFM 
.ililr-

J L...J L...J 
I I I I I I I I I I I I I I I I I I I I I 

• 

Fig A-Data storage that's 50% more dense is the principal advantage of RLL 2,7 code 
over the de facto standard MFM code. Because it needs fewer transitions to describe 
data, the RLL 2,7 code takes up only 67% of the disk storage space that MFM code 
occupies. 

medium. 
Consider the example in Fig 

A. The data stream 1100110011 
is represented by eight transi­
tions in MFM code, and by five 
transitions in RLL 2,7 code. 
When the disk drive uses the 
minimum distance between tran­
sitions to record the RLL 2,7 

code, the RLL 2,7 code takes 
67% of the space that the MFM 
code takes, so it has space avail­
able to store 50% more data. In 
most applications, the actual 
storage increase is between 35% 
and 40%, because some disk 
space is reserved for sector and 
data-field markers. 

~ Monolithic W Memories ~ 



PLDs Implement Encoder/Decoder for Disk Drives 

In the second cycle (TI) of the encoding process, the 
encoder sees that the data bit is 0 and the two look­
ahead bits are 1 and 0, respectively. According to the 
state diagram, when the encoder is in state 2 and sees 
OlD, its output is 00. As before, the encoder then moves 
to the next state (in this case, state 0) and shifts a new 
bit into INREG. The rest of the encoding process 
proceeds similarly. 

The decoding process is similar to the encoding 
process. The decoder, which is described as a state 
machine (Fig 3), accepts two input bits in RLL 2,7 
format and sees the next two coded bits as look-ahead 
bits. In contrast to the encoder, the decoder produces 
one output bit for every two input bits. 

To implement this encoder and decoder circuitry with 

Am9582 <: DRIVE CONTROL 
DISK-DATA 

PLDs, you can use PLD-design tools such as CUPL 
from Personal CAD Systems Inc (San Jose, CAl and 
Abel from Data I/O Corp (Redmond, WA). These 
software tools include syntaxes that you can use to 
describe state machines as weB as general logic equa­
tions. 

To control the rate at which IC I (in Fig 4) receives 
data and code, IC t and IG, implement the timing signals 
shown in Fig 5. Three signals (Read, Write, and 
Code_Clock) from the hard-disk controller and disk­
data separator form the basis of the timing signals. 

First, the timing circuitry produces a clock signal, 
RrLClk, from the Code_Clock signal that originates at 
the disk-data separator's FDDAM output. Because the 
RLL 2,7 code contains two bits for everyone bit of 

-
) .... DRIVE 

SEPARATOR 
READ INTERFACE ~ DRIVE 

WRITE 

FDDAM - LOAD 
RG WG 

+ /') -
OUTREG 

CODE DATA I 4-BIT SHIFT REGISTER I A 

SHIFT~ t, J f 
IC. AMC AMC 

IC. 
AmPAL22Vl0 AmPAL22Vl0 

RLL 2.7 COMPLT 
ADDRESS-MARK 

ENCODER RD CLK GENERATOR 
READ WRITE r- AMF DECODER DETECTOR 

i 

f4 
4 

~-BIT SHIFT REGISTER ~ 

AMF II SHIFT IN 

INREG 

Am9580 
DATA CODE 

HARD-DISK t---
RD CLK CONTROLLER IC, ~LATCH AmPALt6HD8 

GLUE LOGIC 
CODE CLOCK 

CONTROL SIGNALS 

CODE CLOCK 
A 

K 2.7 CODe TO FROM DRIVE INTERFACE 
BINARY DATA .... I AMC 

Fig 4-The encoding/decoding circuitry ineludes Ihree F'1.D.~. IC, impll'lI/rllls IiII' rllclldillrl (11111 t/1'I·otiin.'l sill II' 1/I11('hi"I·.~. 1(', monilors f(', 
and provides special timing and input signals. IC.1 implell/ellts gille /o,Qic (jlll/lill/illg Sir/lIllls. 

~ Monol/lhlo W Memories ~ 2·655 



PLDs Implement Encoder IDecoder for Disk Drives 

Before the disk-drive system can decode data 
on the disk) it must synchronize itself with 
the disk)s data clock to find out when the 
data bits begin. 

data, the timing circuitry divides the clock signal for 
the coded data (Code_Clock), producing a data clock 
signal, RcLClk. The timing circuitry then uses Code_ 
Clock and RcLClk to control the timing of shift­
register control signals ShifLOut and ShifLln. 

Because the timing circuitry loads and shifts data 
produced by IC I at the points indicated on the timing 
diagram in Fig 5, the only clock signal that IC I requires 
to code or decode data in INREG is the RcLClk signal. 

To control the transfer of data and code, the ShifLln 
signal latches data or code into INREG, and the 
ShifLOut signal controls the output of OUTREG. For 
example, when encoding data, the encoder produces 
two bits of code on each rising edge of RcLClk. Because 

To obtain the equations you need to program the 
PLDs, examine the timing diagrams. The timing dia­
grams show that the state-machine design requires 
only a few timing signals to implement the controller. 

2·656 

Convert RLL 2,7 code to a state machine 
You can use a simple algorithmic r------------------------------, 
procedure to convert a code 
table to an encoding state ma­
chine. For each row of the code 
table, you create a simple 2-
state expression for the conver­
sion of the data into the code. 
Then you combine the expres­
sions into one state machine for 
the entire table. 

For the code in Table 1 of the 
accompanying article, you con­
sider each data bit and the asso­
ciated pair of bits of RLL 2,7 
code. For example, the first row 
of the table contains two data 
bits: one, which is associated 
with the code 10, and zero, 
which is associated with the 
code 00. The state machine for 
this row begins in state zero 
(which is arbitrarily assigned) 
and changes state when it sees 
that the first data bit is a one 
and the next bit (the look-ahead 
bit) is a zero. This change of 
state, which appears graphically 
in Fig Aa, results in the out­
put 10. 

Note that the state machine 
must evaluate the look-ahead 
bit. If this bit is a one instead of 
a zero, the input data will be 11, 
corresponding to the second row 
of the table, so your state ma­
chine must generate a 01. For 

DATA TO 
CODE 

START 

G1l0J 
o 10 

00 

1 

1 
00 

(8) STATE TRANSITION FOR 
2,7 DATA ROW 10 

t 
(e) ENCODE DATA ROW 11 \ 
USING THE SAME PROCEDURE \ 

(b) DATA ROW 10 IS 
COMPLETELY CODED (d) COMBINE THE STATE 
BY THIS STATE MACHINES FOR DATA 
MACHINE ROWS 10 AND 11 

Fig A-Creating a state machine from a code table is a 2-part process. First, you 
create a simple state machine for each TOW in the table, and then you combine the state 
machines into one state machine for the whole table. 

this code table, no more than 
two look-ahead bits are neces­
sary for encoding any data bit. 

If the state machine is in state 
one, and the input data is zero, 
the state machine produces a 00 
output and returns to state zero 
(Fig Ab.) Note that the data bit 
encoded in this state is the look­
ahead bit from the previous 
state and that no look-ahead bit 
is necessary for encoding be­
cause the zero is the last bit in 
data row 10. 

You use this procedure to cre­
ate state machines for the other 
table rows as well. Fig Ac, for 
example, contains the state ma­
chine for data row 11. Because 
all the state· machines have the 
same beginning state (state 
zero), you can combine them to 
form the complete encoding 
state machine. Furthermore, the 
state machines may share other 
states, as shown in the combina­
tion of the two data rows 
(Fig Ad). 

~ MonolithIc W MemorIes ~ 



PLDs Implement Encoder/Decoder for Disk Drives 

the Load signal is nigh at the same time that HcLClk is 
high, the bits are loaded into the ,;hift register. Because 
tht> frequency of Shift-Out is twice that of RcLClk, 
Shift-Out shifts bt·th encoded bits out before the next 
encoded bits are IfJaded. Shift-In presents the next 

. data bit to the encoder at the same time that the second 
encoded bit is shifted out, starting the next encode 
cycle. 

Before the disk-drive system can decode data on the 
disk, it must synchronize itself with the data clock from 
the disk and find out when the data bits begin. To assist 
the circuitry in synchronization and initialization, you 
can place synchronization signals, as well as a marker 
indicating the beginning of data, at the beginning of the 
RLL code. When the RLL circuitry reads these pat­
terns, it's ready to decode RLL data. 

READ DECODE WRITE ENCODE 

CODE CLOCK CODE CLOCK 

nD CLK RD ClK 

LOAD lOAD ~ 
( /lOAD 2-81T CODE 

SHIFT OUT SHIFT OUT ~ 
lOAD ONE DECODED· JATA BIT SHIFT OUT SECOND 81T 

nEAD J WRITE -.J 
/JHIFT IN TWO NEW CODE BITS 

SHIFTIN~ 

SHIF, IN ONE N~ DATA~~ 

SHIFTIN~ 

INREG AND OUTREG lOAD WHEN lOAD AND SHIFT ARE HIGH, 
THEY SHIFT WHEN lOAD IS lOW AND SHIFT IS HIGH 

LOGIC EOUATIONS 

RD ClK= RD_ClK (A REGISTERED SIGNAL FROM IC,) 
SHIFT IN = READ",CODEClOCK.WRITE·RDClK 
SHIFT _OUT = READ' RD_ClK.WRITE"CODE. CLOCK 
lOAD = READ·WRITE·RD_ClK 

CODE. CLOCK. CODE-RATE CLOCK SIGNAL FROM FDDAM PIN 
ON Am9582 DISK-DATA SEPARATOR 

READ,WRITE . READ WRITE MODE SIGNALS FROM Am9580 
HARD-DISK CONTROllER 

RD_ClK DATA-RATE CLOCK DERIVED FROM CODE-CLOCK 

SHIFT _IN COMBINATORIAL SIGNAL FROM IC, 

SHIFLOUT, lOAD COMBINATORIAL SIGNALS FROM IC, 

Fig 5-The timing signals (rom ICz and ICJ control the loading and shiNing of code and data in the INREG and Ol'TREG r(qisIt'I"s, .Yoll' 
Ihallhe cluck and shlj1ing signal~ fur the cuded hits have tU1ce the frequency ofthuse jiJr Ihe data bits, a sitllalion Ihal c()rrl'spollds 10 Ihl' 2: J 
density ratio belu'een code and dala, 

~ Monolithic W Memories l1 2·657 

E1I 



PLDs Implement Encoder IDecoder for Disk Drives 

If the decoder detects any pattern before it 
detects the address marker) the circuit resets 
itself and begins the initialization sequence 
anew. 

o DETECTED 
ASl

l 
CODE RECOVERS 
COMPLETELY 

4 
Eo 

DATA 0 

CODE 00 

CODE 
DETECTED 00 

DECODED 
DATA 0 

CURRENT 0 

NEXT 3 ~STATEOF 
DECODING 
MACHINE 

E, 

0 

00 

00 

0 

3 

0 

E2 E3 E4 Es 

1 0 1 0 

10 00 10 00 

1111 00 10 00 

0 0 1 0 

a 0 3 2 

0 3 2 0 

LSTART 
ERROR 
RECOVERY 

E6 E7 

0 0 

00 10 

00 10 

a 0 

0 3 

3 0 

E. Eg 

1 1 

01 00 

01 00 

1 1 

0 4 

4 0 

Fig 6-The ability to recover from an error is a useful feature of 
RLL 2,7 code. An error at cycle E, results in incorrectly translated 
dala until the machine recovers ful/y. 

The synchronization field comprises a series of pat­
terns that allow the phase-locked loop in the disk-data 
separator to synchronize to the frequency of the incom­
ing data. These patterns represent the maximum fre­
quency input. For RLL 2,7 code, that input is 100100, 
because this code has the fewest permissible zeros 
between ones. Using the highest possible frequencies 
minimizes the synchronization time, so the patterns are 
completed quickly. 

A marker that follows the synchronization field indi­
cates the beginning of data. This marker, the address 
mark, must be distinct from all other code words. For 
example, you can use a pattern that violates the code 
rule.s, such as a string of zeros (this string is called "dc 
erase" because it removes all flux transitions from the 
recording medium). Alternatively, you can use a pat­
tern that obeys the code rules but is not a defined code 
pattern. In the examples in this article, the pattern 
00000100 identifies the beginning of data. Although this 
pattern is not a defined code word, it doesn't violate the 
RLL 2,7 code rules as long as it's preceded by no more 
than two zeros in a row. 

When the 100100 pattern is synchronizing the circuit­
ry, the circuitry produces the R<LClk signal, which is 
in phase with the pattern. In order for the decoder to 
operate properly, the R<LClk signal must rise with the 
first one in the pattern and fall with the second one. 
However, because of the repetitive nature of the pat­
tern, the circuitry could produce a falling edge of 
R<LClk on the first one in the pattern and a rising edge 
on the second one, in which case the circuitry would not 

be in synchronization with the beginning of the data. 
The encoding circuitry resolves this synchronization 

problem by inserting the pattern "0100" eight times 
between the synchronization field and the address 
mark. The phase-locked-loop system locks onto the 
0100 pattern, and the R<LClk control circuitry in IC2 

sets itself to decode the data correctly. 
To put the synchronization and marker data into the 

RLL 2,7 code on the disk, you must design the RLL 2,7 
encoder to produce the signals. When the signal WG 
(from the hard-disk controller IC3) goes high, the data is 
encoded to all zeros. The encoder translates the zeros 
as the synchronization pattern 100100, which is then 
stored on disk. 

Next, the address-mark-control (AMC) signal from 
the hard-disk controller sets an internal latch in IC2, 

producing the output Am....Latch, which forces IC3 to 
put ones in the INREG register. The encoding circuitry 
codes the ones as the string 0100. After the eighth 0100 
pattern, IC2 sets the Complt signal high. On sensing 
Complt, IC I writes the address mark. 

The encoding circuitry must have the first four data 
bits in INREG by the time the address mark is written. 
IC I writes two patterns for the address mark. At the 
start of the second address-mark pattern, IC I sets AMF 
(Address Mark Found) High and resets Am....Latch low. 
The assertion of AMF signals the hard-disk controller 
to begin shifting data into INREG for encoding. Be­
cause four R<LClk cycles occur while the address-mark 
pattern is being written, the first four bits are shifted 
into INREG by the time the second address mark is 
written. 

The decoder circuit has two safeguards that prevent 
it from identifying the address-mark pattern incorrect­
ly. First, the decoder must detect at least five 0100 
patterns before it acknowledges the address-mark pat­
terns. Second, ifit detects any pattern before it detects 
the address mark, the circuit resets itself and begins 
the initialization sequence. 

IC2 implements these two safeguards by monitoring 
the RLL code that IC I decodes. When the hard-disk 
controller asserts the RG and AMC signals, IC2 sets 
Com pIt and Am....Latch low. IC2 sets Complt high when 
it detects the fifth consecutive 0100 pattern, enabling 
IC I to detect the address mark. If the input to IC I is 
anything other tHan a 0100 pattern or an address mark, 
IC2 sets Complt low, and the initialization begins anew. 

If IC I successfully detects the address-mark pattern, 
it sets AMF high. The assertion of AMF causes IC2 to 
set Am....Latch high, thus enabling the output of OUT-

2·658 ~ Monollthlo m MemorIes ~ 



PLDs Implement Encoder/Decoder for Disk Drives 

:{EG to send decoded data to the hard-disk controller. 
<\llLLatch remains high as long as RG is high. 

RLL 2,7 encoding also provides for error recovery. 
Whenever a disk-driYe system reads code from a disk, 
:he read/write heads or the transmission cables can 
!ause transmission errors. One of the properties of 
RLL 2,7 code is that any single-bit error (for example, a 
~oded one detected as a zero) will correct itself after a 
run of at most 16 correctly detected bits. 

In short, whenever a 2-bit pattern doesn't match any 
')f the expected patterns for a particular state of the 
decoding circuitry, the decoding state machine returns 
to state zero and generates a zero as a translation for 
the erroneous code bits. Then the decoder shifts the 
next two code bits into the INREG register and contin­
ues decoding from state zero. 

In such cases, the decoding state machine can cor­
rectly decode coded data, but it may not recover 
immediately upon returning to state zero. As Fig 6 
shows, although the code bits that the decoder detects 
may be valid, the decoded data is incorrect because the 
error has forced that state machine into the wrong 
state. In this example, the decoder doesn't recover until 
6 code bits later (in cycle E6), when it again falb into 
the correct state and accurately decodes the data. EDN 

Authors' biographies 
Arthur Khu is a product planning en­
gineer at Advanced Micro Devices Inc 
(Sunnyvale, CA). lie is involved ill the 
research and development of architec­
tures for advanced programmable-logic 
devices, and he has developed a gener­
al logic compiler for advanced PLDs. 
Art holds a BS in MathlComputer Sci­
ence and an MS in Computer Science 
from Santa Clara University. He lists 
racquetball and astronomy among his 
interests. 

Rudolph J Sterner, an engineer at Ad­
vanced Micro Devices Inc (Sunnyvale, 
CA), is engaged in the development of 
disk-drive-related products. Prior to 
his two years at AMD, Rudy worked 
at IMI Corp and Sperry Corp. He 
holds a BSEE from San Jose State 
University, and in his spare time he 
enjoys photography. 

~ Monolithic W Memories ~ 

Ell 

2·659 



Mixing Data Paths Expands 
Options in System Design 

Chip designers are creating powerful CPUs and peripherals 
with 16- and 32-bit parts. Mixing these with 8-bit parts 
overcomes limitations imposed by established designs, 
incomplete families, and software incompatibility. 

by Mark S. Young and 
James R. Williamson 

Integrating 16- and 12-bit peripherals and CPUs 
into 8-bit designs, at the simplest level, means 
separating the control and data paths from new 
peripherals and the systems. Mixing different data 
path widths and control protocols, however, makes 
possible major improvements in function, perfor­
mance, and cost. 

The price/performance curve of VLSI chips, for 
example, allows designers to obtain more and bet­
ter functions for the same amount of money every 
year. Alternately, the functionality of a device can 
remain constant while the price falls. 

Moreover, these new devices with wider data paths 
can extend the life of older designs. For example, 
many of the most popular personal computers today 
use the 8088 microprocessor and, therefore, are con­
strained to an 8-bit data path. Designers of add-on 
accessories for these personal computers prefer t'he 

Mark S. Young is a product planning engineer at 
Advanced Micro Devices. Inc (Sunnyvale. Calif). He 
holds a BA in computer science from the University 
of California at Berkeley. 

James R. Williamson is an applications engineer ut 
AMD. He holds a RS in electrical engineering from 
the California State Polytechnic University. Pomonu. 

Reprinted by permission of Computer Design. January 1985. 

newer 16-bit peripherals. These peripherals will let 
users preserve their software investments, improve 
performance, and stave off obsolescence. 

Mixing different data path widths can also enhance 
new designs. For example, it is less expensive to us~ 

an 8-bit bus in a new design because the memory 
requirements are generally cheaper. Only half as 
many dynamic RAMs are necessary for the same 
number of kilobytes of memory. In addition, an 
8-bit bus needs much less control and support logic. 
Designers can mix smaller data path peripherals with 
wider data path CPUs. This allows them to introduce 
systems based on the newer, more powerful 32-bit 
CPUs even before 32-bit peripherals are available. 

Designers can use this mixing method to obtain 
wider data paths from existing designs until a new 
system design is warranted. They can also use parts 
in unexpected applications. For example, cost­
conscious terminal manufacturers might want to use 
the Am8052/8152A chip set (the 8052 is an advanced 
CRT controller and the 8l52A is a video system con­
troller) in new terminals based on the relatively 
inexpensive 8051 microprocessor. Mixing the 8-bit, 
single-chip microprocessor with the l6-bit CRT con­
troller allows designers to maximize the cost/perfor­
mance ratio of the terminal. 

Mixed data path widths can improve bus utiliza­
tion as well. A 16-bit peripheral in a 32-bit system 
only occupies half the data bus for data transfers. 
If the designer mixes the data paths correctly, how­
ever, the l6-bit peripheral could transfer data as 

2·660 ~ MonolithleW Memories ~ 



Mixing Data Paths Expands Options in System Design 

WMT U~TI\. PERIPHERAL TAKES BUS 
IoIAKE SURE WEt.tORY ACKNOWL£DGE IS 
POOT ASSEl'TED 

READ I~ UP!'ER BYTE; AO - '; 
W NT FOR IoIEMORY ACKNOWLEDGE 
ISSUE AD STROBE. 

W NT FOR Iot6IORY ACl<PII:1NLfDGE 
TOClOAWAY 

READ IN THE LOWER BYTE; AO - ~ 
WNT FOR IoIEIoIORY ACKNOW\.EOOE. 
ISSUE RO STAOIIE. 

STROBE IN DATA TO PERIPHERAl 
DEASSERT WAIT 
WNT FOR SUCESSFUL READ IDS) 

Thr ,llIle rllII' l"untrul diaj!ram fur a Ill', rna,ln ft·;" I 
lIpt'ralilln ilh"lrall" the runlml 'l'IIUl'IIfl' l'lIlplll~l'" 
h) Ihr 11/ 16~hil hu, l"Ilntrul IUj!il". 

32-bit chunks and improve bus efficiency by 100 per­
cent for that peripheral. 

Two central concerns stem from mixing devices 
that communicate over different-sized buses. The 
first problem results when two devices communicate 
on a "common" data bus, Consider, for example, 
a 32-bit system utilizing 8- and 16-bit peripherals. 
Overcoming the mismatched data paths requires 
some form of controlled multiplexing/demultiplexing 
of the different data paths, In addition, extra con­
trol signals for partitioning the 32-bit word into 8-, 
16-, and 32-bit chunks may be required. 

Many 16-bit CPU-based systems that use 8-bit 
peripherals normally use just the lower 8 bits of the 
data bus to transfer data to and from the peripheral. 
This method does not work in systems using 16-bit 
peripherals and 8-bit CPUs, however, and it tends 
to break down in systems with 8-bit peripherals hav­
ing bus master capability. 

A bus multiplexing method involves multiple 
transfers when taking data from or adding data to 
a mismatched data bus. For example, before a 16-bit 
peripheral can transfer data over an 8-bit bus, the 
16-bit data must be divided into two 8-bit chunks. 
It is then transferred sequentially. First, the lower 
8 bits are transferred out on the bus. Then, in the 
next transfer cycle, the upper 8 bits of the 16-bit 
word are sent out. The major difference in the oppo­
site case-a bus read operation from an 8-bit bus 
to a 16-bit device-is that the first byte read from 
the system must be latched. Once the second byte 
has been fetched, the 16-bit peripheral reads in the 
assembled 16-bit (2-byte) word. Additional provi­
sions may be needed when the 16-bit peripheral only 
wants to access a single byte. 

The other major problem in mixed data path 
transfers is the actual data read/write operation. The 
nature of the mUltiple transfer forces designers to 
guarantee that the stretched transfer will occur and 
that it will not be interrupted. Two aspects of stretch­
ing the transfer cycle from or to ti1e peripheral illus­
trate the complexity of this problem. 

The first case, when the peripheral is the bus 
master, is the simplest. A 16-bit peripheral holds ih 
data available for what normally would be two com­
plete bus transfer cycles. This function can be per­
formed when the transfer acknowledge signal to the 
peripheral is delayeu. If the data was latched instead 
of holding the peripheral in a multiple word transfer, 
however, the device could try to send the next 16-bit 
data word and its "new" address. The procedure 
of latching the data and releasing the peripheral 
should not be used, therefore, bet:ause it may inter­
fere with the addressing of the remaining (pending) 
8-bit transfer. 

Whenever a device acts as a bus slave to a CPU 
that cannot access the device's natural word width 
in a single operation, a different constraint appears. 
The sequence must be set up so the peripheral cannot 
obtain the bus while the CPU is in the middle of a 
slave read/write operation. In a typical system, the 
CPU is the last device in the interrupt queue. It is 
possible for the peripheral to become bus master 
between the first and second read operations and in­
validate the results of the first read operation in a 
realtime system. This is because an 8-bit CPU would 
have to perform two consecutive read operations to 
examine a 16-bit peripheral control register. 

This function can be handled two different ways. 
If the CPU has a bus lock instruction, as in the iAPX 
family of CPUs, the programmer must use one of 
these instructions before the CPU accesses the 
peripheral. Alternately, the CPU needs to disable 
the arbitration logic while it is performing the unin­
terruptible access with the 16-bit peripheral. 

Crucial cycle 
The uninterruptible word transfer cycle is crucial 

for maintaining the integrity of the data transferred. 
When either the CPU or a peripheral on the bus 
makes an access using the 8/16-bit control logic, it 
.must complete the larger device's word access before 
relinquishing the bus. If this requirement is not met, 
a transfer's integrity can be violated easily by some 
other device. This interrupts the transfer, and cor­
rupts or aborts the multiplexing sequence. 

To illustrate this point, consider a system consist­
ing of an 8-bit CPU and several 8- and 16-bit periph­
erals. Assume one of the peripherals is executing a 
block transfer of 16-bit data onto the 8-bit bus. If 
the CPU interrupted the transfer in order to poll the 
peripheral during a half-word transfer, two undesir­
able events would occur. Either the Illultiplexing 

~ Monolithic W Memories ~ 

EJI 

2·661 



Mixing Data Paths Expands Options in System Design 

sequence would be damaged irreparably when the 
CPU polled the peripheral, or the CPU would read 
garbage from the peripheral. 

Designing the control interface to allow mixing 
of 8- and 16-bit peripherals requires attention to the 
data and control flow. During a write dperation, the 
data is written out sequentially: the lower byte comes 
before the upper byte (or vice versa). The read oper­
ation differs only bel:ause the data bus is 8 bits and 
because it' forgets the last byte transferred; it knows 
the current byte only. Hence, the interface requires 
that one of the bytes be latched un:ilthe full 16-bit 
word has been assembled. 

The slave mode of operation works almost the 
same as t he peripheral bus master mode. The single 
exception is the slave write operation. When the 
interface is defined, the designer must make a con­
scious choice about which byte (upper or lower) to 
latch during peripheral read operations (or con­
versely, slave peripheral write operations). Onl:e this 
dedsion has been made, the CPU must always access 
the latched data byte firs"t (during a slave write) and 
then access the non-latl:hed byte to I:omplete the 
transfer. This restriction is minor, requiring no extra 
software overhead. It could affect the ease of the 
programmer's coding if not handled properly, how­
ever. For example, if the programmer used a com­
piler to generate'the software for the system, extra 
care may be nel:essary to ensure the compiler gener­
ates the correct addres~ing sequence. 

An alternative solution would be to latch both the 
upper and lower data bytes. In this case, however, 
the cost of the interface would increase, as would 
the complexity, with no appreciable gain. The con­
trol flow in these designs derives from two differ-

ent sources: the state control flow itself and the 16-bit 
peripheral interfacing with the 8-bit bus. A state dia­
gram can be used to specify how uninterrupted word 
transfers will occur and how the upper and lower 
byte address is generated. 

In addItIOn, the specific bus timing of the periph­
eral and the data bus must be examined to quantify 
the statel:ontrol flow. These timing specifics also 
provide information on data latching, read/write 
control strobes, and addres~ing to and from the 
peripheral. The state control flow is divided into four 
operations: bus master read, bus master write, slave 
read, and slave write. 

For a bus master read/write operation from a 
l6-bit peripheral device operating on an 8-bit bus, 
four control signals must be generated by the 
8/16-hit control unit: address bit 0 (AO), peripheral 
hold (WATT), bus read (RD), and bus write (WR). 
The AO line is generated by the 8/ 16-bit control logic 
to indicate which byte is to be transferred in bus 
master modes only. Otherwise, the AO generated by 
the system is used to indicate which byte is being 
accessed. The WAIT line holds up the peripheral 
during transfers. The RD and WR lines are required 
to indkate successive transfer I:ycles on the bus. 

Hidden transfers 
The peripheral's signals will only strobe active 

once because it does not know that two transfers are 
being executed. The slave transfer flows are almost 
identical, except the CPU is generating the bus sig­
nals and the transfer directions are reversed (ie, a 
bus write goes into the, peripheral). 

For this 16- to 8-bit data flow example, the data 
on the upper byte only needs to be latched when data 

5TATEFLOWEOUIVAlENT5 50 51 51 52 53 53 53 54 
I T, I T2 I Tw Tw Tw Tw T3 I 

CLU ~ 

As8052~ 

05 805, -~L-_7__-;-,---___::__----.Jr----

UPPER BYTE TRANSFER ----, 
'---+-~ 

LOWER BYTETRAN5FER -----+,---:----'"'... __ +-__ ----Jr--
In addililln 10 a shill' now 
diagram. a liming diagram 
can be used III desl'ribl' such 
dala read/wrill' opl'ralillns as 
a masler bus read. 

MFMACK ____ --"-\.:..i -<-/--J 
'---__ -..J1 ,'-------

AD L.-J 

s~w~----~> 
CPo -----...-___ -' 

Im-'--

2·662 ~ Monolithic W Memories ~ 



Mixing Data Paths Expands Options in System Design 

"'2M2 
' ......................... . 

0110015 

0011101 V-----,..I1 

The 16·to 32·blt conversation logic diagram Indicates 
the complexity or the bus and tunnel logic control. It 
must convert between dltrerent signal conventions 
and polarities as well as generate extra functions and 
bus arbitration control signals. 

is heing read (as hus master) or wrillen (as a hus 
slave). An interface to handk this operation need~ 
10 latch data coming from the X-hit data hus into 
the peripheral, it also needs to act as transceiver 
whell the peripheral is sending data out to the system. 
A device with a docked, tri-state output that has an 
X-bit wide latch in one direction and a tri-state tran .. -
ceiver in the other direction would he ideal for 
accomplishing such a.l interface. 

The Am2952 8-hit bidirectional flO port provides 
a good enough match to the logic and allows the 
upper data bus latch and upper data tramceiver chip .. 
to be combined on one Ie. It provides two X-bit 
docked flO ports, each with tri-state output con­
trols and individual docks and latch enables. An 
Am2949 bidirectional bus transceiver completes the 
.logic required for the data path function. 

The state flow control requires logic that can move 
sequentially from state to state, hold in a particular 
state, and be reset or initialized back to a predefined 
state. Depending on the number of states required 
(generally less than 16 distinct .. tatcs for a design of 
this complexity), a 3- or 4-bit counter should he able 
to solve the problem nicely. 

Considerable bus control logic is required to gen­
erate the data path flow logic and the bus control 
signals. This is espedally true if the peripherals and 
CPUs use different signal conventions (eg, when AS, 
OS, and R/W use address latch enable, RD, and 
WR). Conversion from one signal convention to 

anothL'r, change .. in .. ignal polarity, and provi'iioll 
for extra functions c.,uch as generating AO) requin: 
a lot of 10giL- synthesis ahility. If the peripheral ha .. 
bus mastL'" capahility, such additional information 
as bu~ arhitration <.:ontrols must he fed into the next 
state determination logic in order to dedde what con­
t wi sequence to follow. 

Customized interface minimizes cost 
An X/16-hit wntrol interfa<.:e hetweenthe AmX()52 

CRT cont roller and an X-bit CPU provid\.· .. a good 
exampk of how <.:ustOllli/ing a general inte .. fa<.:e L'an 
reduce costs. (The CRT controller i .. desi~ned with 
a 16-hit data intcrfa<.:e.) ThL' on hoard DMA unit 
f'ct<.:hes data from "YSlelll mcmory and the CPU polio, 
the CRT conii"OlIer's internal statu .. ami control 
registers. Because the CRT con!roller does not 
modify system memory. however, a hm ma~tcr write 
operation is unne<.:e~sary. Thus. there i., no rea~OJl 
to generate a system write control signal (WR). 

In addition, the control and display information 
must he aligned on word houndaries. This require­
ment rdieves the Hlln-hit wntrollogi\.: from funnding 
the hytes and performing odd/even hytL' transfer ... 
It also saves control input .. from thL' CRT controller 
hecause all tramf'crs arc words; that is, no need 
exists for upper and lower data strobes or hyte high 
enahle inputs. 

The hu .. master read l>perations an: standard In-hit 
data transfers divided into two X-hit t ram fer ... The 
CPU's slave accesses arc either pointer writes (to 
select the desired control/statu .. register) or If.-bit 
data read/write operations. (Pointer writL' operations 

C~ 
"'>I! 

I ht' ,Ialt' mal'hin,' and Iht' hu, and lalch "(lnlrnl, 
ha\t' III ht- "lIuplt'd in ordt'r 10 Iran,frr data btt~t't'n 
the II· and H,·hil hu'ot',. Thi~ Krnrralilt'd machint i~ 
dt',iKnrd ~ith Ihr a"umplion Ihal Iht prriphrral ha~ 
hu, ma,It'r ,·apahilil~. If Ihi, h nnl Iht' ,·a!'oC'. Iht' 
dr,iKn ran ht' li!rrall~ ,implifird. 

~ Monollthlo m Memories ~ 2·663 



2·664 

Mixing Data Paths Expands Options in System Design 

Am80S2 

Am2949 

are a~tually X-bit or~rations be~<llise only the lower 
X bits of the data form t he re~dster address.) The bus 
master read operation ~an be represented by a state 
flow diagram or a timing diagram. Con~eptually, 
state flow diagrams are easier 10 understand, but tim­
ing diagrams usually ~onvey more information. 
Other state flow diagrams ~an be derived directly 
from the timing diagrams of the CRT controller to 
X-bit interfa~e. 

Simplifications allow synthesis on one device 
Two spe~ial .:lHlditions must be met in the state 

machine implemented in the XlI6 interface. Fir;;t, 
before a new transfer cycle is attempted (when the 
state machine is waiting in the initial state. SO). 
memory acknowledge (MRDy) must be inactive. 
This prevents interference from the last transfer. 

The second special ~ondition o~~urs when the 
CRT controller asserh the R/W line to indkate a 
write operation. Although the CRT ~ontroller docs 
not write data into system memory. when it updates 
the upper X bits of the 24-bit address lat~h the R/W 
line indkates a write operation (in conjunction with 
AS). The CRT controller is nol actually performing 
a ~ystem data write. only an address latch update. 
The state machine. therefore, must not start a hus 
sequence if the R/W line is held active low hy the 
CRT controller during a hus master operation. 

These simplifications in design allow the CRT con­
troller to X-bit CPU control interface to he synthe­
sized in a single AmPAI.22VIO programmahle logk 
array device. In addition, the hus control 'iignal'i an' 
converted from AS. J)S, and R/W to R() and WR, 
The minimum CRT controllcr and hus (ontrol sig­
nal<. that mmt hc generared are RD, AO, ()S, and 
R/W. Although the CRT controller use" ()S and 
R/W as inpuh during a hu" ma"ter operation. the 

I~ i "10 
I'" -' -u u u 

essvs eLK 

iiUSAcK Cs 10!>2 ", 

Thc logic "or conlrol and 
dala Iran,rcr hch\l'cn an 
Am8052 and II-bil CPL' ha, 
Ihe l'onlrot inlcrt'al'c 
implcmenlt'd in an 
Aml'Al.22\'10, 

PAl. devke mu"t (on vert the CPU RD and \"R "ig­
nals to DS and t/W for slave 110 operatiol1'>. 

The signals AO and RD arc generated by the con­
trollogk when the CRT ~ontroller i" performing a 
read a~cess to system. The WAIT (or not READY) 
signal to the CRT controller must also be generated 
by the controllogk. The data flow controls require 
six additional controls to load and strobe the lat~h, 
and to enable tram~eivers to pa"" data to and Irolll 
the X-bit bus. Theoretkally, 4 more bits (outputs) 
arc required to represent all the control "tates needed 
to manipulate the 81 16-bit control logic This means 
the design appears to need 14 output logi~ unils in 
a PAL devke to perform the required task. 

Reducing the 14 output ~ells to the JO ~ells .nail­
able in the PAL devke require" a doser look al the 
timing and output switching fun~tions. The AO and 
RO control lines arc in effe~t part of the system bus 
control and. therefore, cannot he multipk\ed easily. 
The DS and R/W lines to the CRT ~ontrolkr are 
also fixed be~ause they must be \'alid througllllut the 
entire transfer ~yde as well. 

This le.l\es 6 of the 10 output logic ~ells of the 
PAl. devke to represent the rl'maining 10 identified 
control lines. This method of minimi/ation ill\ohcs 
careful state synthesis, analysis l,f the signal s\\'it~h­
ing fun~tion~ during the transfers, and utili/ation 
of several ~ontrol pins on the CRT l'ontroller. By 
using the BRH), B:\(,~I. Bt\C~(), ('S, and C () 
inputs to the PAl. de\'i~e, we can redul'e the num­
ber of unique states requin:t! to H instead of 15. This 
redu~es the number of logic cells required for the 
state ma~hine from 4 to J bits. 

At this stage, the de"ign requires sevenl'ontrol sig, 
nals to manipulate the data transfer register~ ant! 
WAIT line. The two lat~h enables (CFs and CDld 
on the AIll2952 bit!ire~tional 1/0 port ~an be 

~ Monollthlo W Memories ~ 



Mixing Data Paths Expands Options in System Design 

permanently enabled. By controlling the clock signal 
to the latches, the controb required for three pins 
can be reduced to one. The interface control state 
machine will only usc the correct side of the dual 
latches on the bidirectional I/O port, 

The AmS052 CRT controller helps comiderably 
with its own control bus interface. Two signah 
provided by the CRT controller, tHEN and RBEN, 
switch the data transceivers in the correct direction 
regardless of the t~pe of data tramfer (as a bus 
master or bus sla\'C). When the controller is a bus 
master performing a read operation, or when it is 
a bus slave undergoing a write operation, therefore, 
the RBIN signal i., strobed to obtain the correct 
polarity. By ming this line, two of the remaining 
six control lines can be eliminated (REN on the 
Am2949 and aE.,s on the Am2952). Although the 
TBEN line performs a similar function, it does not 
function correctly in a \6- to H-bit multiplexed 
bus environment. 

Two of the remaining control lines (ot,s on the 
Am2952 and 10 on the bidirectional bus transceiver) 
must be generated by individual celh in the PAL 
device. The two clock enable~ on the Am2952 arc 
permanently enabled. The two Am2952 clocks are 
tied together to minimi/e the amount of logic re­
quired in the PAL device used to generate clock 
strobes to the latche .... 

This leaves the design with three 10giL' ceiL" and 
four output functiom (the WAIT line to the CRT 
controller and the 3 state bits). Careful analysis of 

the state flows and timing diagrams indicates that 
the WAIT line is only asserted in 4 of the H state .... 
A clever assignment of state number." to the state 
flow sequence allow.,> the WAIT line to he ahsorbed 
into the 3 state encoding hits. The logie equations 
for the Am PAU2Y 10 device can he derived directly 
from the timing Jiagrams. 

An unusual problem might occur when a periph­
eral device operates as a hus slave on a smaller data 
bus, such as a 16-bit peripheral to H-bit CPU. During 
the first slave write operation, the chip sclect CS i ... 
enabled hy the bu ... master making the acce ... s. No 
actual data-just the data latch-is strobed into the 
peripheral, however. After the first byte of data ha" 
been written, the second access cau.se ... the full 16-bit 
data to be strobed into the peripheral. 

I f the designer is using a common CS function to 
both the peripheral and the 8/\6-bit control logic, 
the controller logic must be designed not to glitch 
or strobe any of the control lines to the peripheral 
(it must prevent OS, R/\V from being enabled, for 
example). For some peripheral devices, glitches on 
the control lines might cause the register to be written 
accidentally onto a register that will be overwritten 
in the next write cycle anyway. With other periph­
erals this might be a catastrophic event. Many 
devices acting as bus slaves have write recovery time 
requirements (ie, a certain minimum interval beiween 
consecuti\ e write operations). Glitches on the con­
trollines might force the next (and final) write oper­
ation to he delayed-or cause a violation of the 

.no HQct+-t-t--t-t------------j 

RESET 

~£SH 

RBI--++-1H---+j 
WiR"1--++-1H---+! 

~ Monolithic W MemorIes l1 

Thl' data hus and l"untrul 
intrrfal"l' hl'hnl'n an lI·hit 
SOli II {"I'll and a HI-hit 
Am95111 UMA l'untrulll'r IISl'S 
an AmPAUn'W fur 
l'untrul, and a 74LSI61 fur 
statl' sl'ljlll'nl"in!: alun!: "ith 
a hidin'l·tiunal 1/0 purt 
and transl'l'iH'r. 

Ell 

2·665 



Mixing Data Paths Expands Options in System Design 

device specifications. Glit~hcs might cvade allY ~pc­
cial addressing/register aCle~sing schell1L' U~l'd ill t hl' 
peripheral. This might occur, for exampk. if thl' 
slave device require~ the u~er to writl' the addrl'~~ 
of the register that was accessed ill1ll1l'diat~ly before 
the register was written. In this case, glitclll" or u~e­
less control strobes could wreck thl' ~equence. 

The problem ean also be solved by using two line~. 
In this solution, one of thc lines would go to the 
peripheral device and tile other would connl'ct to the 
S/16-bit controller. The chip Sl'll'ct to the pl'ripheral 
is activated each time a slavc rl'ad llCClIrs (for both 
upper and lower byte a,:l'es,cs), or whcn a ~Iave writl' 
operation occurs and thc unlatchcd X-bit data is 
being written. The chip select function to thc 8/16-bit 
controller is chosen each timc thc pcriphcral is 
selected normally (for slavc rcad/writcs on both 
upper and lower 8-bit data transfers). This problem 
is bypassed completely whcn two scparate chip selcct 
functions are used: one for loading up the Am2952 
latch during a slave write/read and one to strobe the 
Am8052 controller into action when it is necdcd by 
the S-bit CPU. 

Bus conversion maximizes flexibility 
A data bus and control intcrfacc to an XOXX X-bit 

microprocessor and Am9516 16-bit DMA controllcr 
can be created using four devices: an AmPAL22VIO 
for the control block, a 74L5161 counter for the state 
sequencer, an Am2952 bidirectional 110 port,'and 
an Am2949 bidirectional transceiver. 

This design incorporatc~ ccrtain ~implification~. 
The DMA controllcr requirc~ word acccsscs only 
during command chaining and for slavc rcgiqcr ac­
cesses. Thc 8/ 16-bit data tramfcr interfacc for bu~ 
master opcrations (ic, DMA data transfcr functiom) 
is handled automatically as a programmabll' option. 
During slavc writc opcration" thc first bytc output 
to thc DMA controllcr must havc an odd addrc,~ 
amI thc following,ccond bytc an l'vcn addrcs~. Con­
n:rsely, during a slave rcad cycll', thl' first bytc rl'ad 
froll1 the DMA controller must be at an even addres~ 
and the second at the next highl'r odd addre~~. 

Furthermore, for hll'. Illa~tl'r operatiolls, thl' ,y~­
tem must use the latched addre" line AO (LAO) from 
thl' AmPAL22VIO a, it, ,oil' AO, Becau~e thl' logic 
is already availahle, the ,ystem dol'~ not ha\e to pro­
vide thi, function. LAO now heconll'~ thl' "y~telll ad­
dre~s bit 0 with full 24-mA dri\e capahility, 

Ikciding on a meam for \.'ontrolling the fllnneling 
of the data stream-that is, tran'forlllillg J(l-bit data 
into X-hit data and vice \wsa-\\as thl' first step in 
deriving this exampll'. As Illentioned earlier, ~illlply 
dividing each 16-hit access into two X-hit data trans­
fer cycll'~ present" one way nf doing thi~. On nut­
going acce"es (16-hit path from the \)\IA controller) 
during thl.' first cycll', thl.' uppl'r half nf thl.' 16-hit 
path i,s latched whill' thl' lowl.'r half pa~Sl'~ through 

PIN 
CK = 1 IRD = 23 
S10:21 = 2:4 IWR = 22 
AO = 5 LAO = 21 
ISH = 6 IDS = 20 
ALE = 7 IRW = 19 
HLDA = 8 IWAIT =18 
IBW = 9 IA = 17 
READY = 10 18 = 16 
RESET = 11 IC = 15 

10 = 14: 
BEGIN 

IF (RESETI THEN ARESET( I: 
This section defines the Wiggles when the Am9516 IS bus master 

IF (HLDAI THEN ENABLE( I: 
IF (lSI2: ' HLDAI THEN BEGIN 

IF (Sill' ISIOII THEN 
LAO =ICK BW+/BW"AO" 

ALE + I 8W ' LAO " IALE 
ELSE 

LAO = BW + IBW AO' 
ALE + IBW • LAO • IALE 

END: 
IF (HLDAI THEN 

(CASEI (SI2:011 
BEGIN 

11 BEC.IN 
RD = IRW' OS 
A = IBW ' IRW ,. ICK 
ViR = IBW • RW OS 
C = IBW RW 
WAIT = 1 

END: 
21 BEGIN 
RD = IRW - OS 
B = BW 
A = IBW IRW 
WR = IBW • RW ' OS 
C = IBW ' RW 
WAIT = IBW 

END: 
31 BEGIN 
RD = IRW ' OS ' B 
B = BW • CK 
A = IBW " RD 
WR = IBW • RW • OS 
C = IBW ' RW 
WAIT = BW 

END: 
51 BEGIN 
RD = IRW ' OS 
A = IBW • ICK 
WAIT = BW 

END: 
6) BEGIN 
RD = IRW • OS 
A = 181'1 

END: 
1i BEGIN 
RD = IRW ' OS 
A = RD 

END: 
END: 

ThiS secllon defines the wlggels when the 8088 IS bus mister 
BEGIN 

END, 

LAO= AO 'ALE SEL + LAO ' .' ALE ' SEL 
B = LAO ' WR ' SEL 
A = ILAO ' WR ' SEL 
OS = A + ILAO ' RD ' SH 
C = ILAO ' RD ' SEL 
o = LAO ' RD ' SEL 
END: 

rhi, 1'1.1'1. !'ill' impleml'nls an inlrrfan behH'en Ihe 
lI·hil 11111111 and Ihl' 16-bil Am9SltI. 

2·666 ~ Monollthlo W Memories ~ 



Mixing Data Paths Expands Options in System Design 

Programming the PAL and the counter 

In writing the Programming Language for Program­
mable Logic (PLPL) file to control the operation of 
the AmPAL22V10 and the 74LS161 counter, the 
inputs to the PAL device from the counter are as­
signed SO, S1, and S2, respectively. Then, it is pos­
sible to apply a "sculptured design" technique to 
the entire timing diagram (see figure in Panel, "A 
matter of timing") by using the Case statement from 
PLPL. By assigning combinatorial equations to only 
one binary partition or column at a time (Case), the 
designer can ignore all other aspects of the design 
for the time being and generate simple equations 
directly from the timing waveforms. 

During clock time T1 of the Am9516's word read 
cycle the state of the 74LS161 (SO, S1, S2) is cleared 
to 000 by the assertion of address latch enable 
(ALE). LAO is the only output control Signal from the 
CAT controller asserted during this period. This sig­
nal is handled as a special case, however. During 
tirnd T2 of the DMA controller's word read cycle, 
the AD and WAIT outputs from the CRT controller 
must be asserted. This time partition corresponds 
to the state inputs S2, S 1, SO = 001. Therefore, the 
first Case equations are 

CASE (S[2:0]) 
BEGIN 
1) BEGIN 

RD = IRW·DS ; Transform Control 

WAIT=1 

END; 

; Signals IRW and OS 
; into Intel IRD 

: Assert Walt 
; unconditionally 

During time T2 of the DMA controller's byte read 
cycle, A is the only additional output not already 

a tri-state buffer onto the 8-bit bus. During the sec­
ond cycle, the tri-state buffer is turned off and the 
previously latched half of the data is driven onto the 
bus. On incoming accesses (8-bit path to lo-bit path), 
the process is reversed. 

The control mechanisms that perform this cycling 
depend on the WAIT and R/W signals passing to 
and from the DMA controller, and on the ability 
to enable or disable the latches and transceivers selec­
tively. The Am2952 bidirectional I/O port was 
chosen because of its dual registers and its flexible 
control. The AmPAL22V to device was chosen to 
match the required number of contro[ pins and func­
tions. Since the complexity of this design require, 
the use of all of the PAL's I/O pins for control func­
tions, however, it was necessary to use a 74LSI61 
counter to provide the ~tate sequencer function. 

Programming with PLPL 
It has long been the logic designer's "art" to merge 

the often very different concepts and notations of tim­
ing information with Boolean logic. Yet, the evolu-

accounted for in the Case statement. This signal 
allows a byte of data to flow through the bidirec­
tional bus transceiver into the DM/>. controller 
during byte read operations. Some additional con­
straints are placed on this signal, however: it must 
only be asserted in time T2 on byte read operations 
(the BfW input) and it must be delayed~y a half 
clock period from the rising edge of T2 (CK Signal). 
Thus the Case statement becomes 

CASE (S[20]) 
BEGIN 
1) BEGIN 

RD= IRW·DS 
A= IBW·/RW·/CK 

WAIT= 1 

END; 

; enable the 
, receiver 

Finally, by examining the last time T2 elements 
(VTA and C) during the DMA controller'S byte write 
cycle, the remaining terms in Case 1 are derived. 
With the exception of LAO, the remaining equations 
were developed in the same fashion. Clearly, this 
"sculptured" technique is a very simple and 
methodical means for arriving at the Boolean re­
quirements for a logic block. 

As the PLPL listing shows, the signal LAO was 
handled slightly differently from the previously dis­
cussed method. The number of product terms gen­
erated via the Case statement made this approach 
necessary. The number exceeded the upper limit 
(16 terms) for a programmable logic array. As a prac­
tical matter, therefore, it was necessary to optimize 
this signal manually. However, it should be noted 
that this step will not be necessary once the fully 
optimized version of PLPL becomes available. 

tion of a syntax to fully express this art has taken 
a long time_ AMD recently developed such a language 
for programming the AmPAL22VIO, however. 

"Programming I.anguage for Prograll1mabk 
Logic," or PLPL, allows the designer to specify a 
design using multiple input formals. This specifica­
tion flexibility supports the variety of design 
approaches necessary 10 express different design 
problems efficiently. These formats range from sim­
ple sum-of-products Bookan equations to high level 
constructs. PLPI. also supports the input specifil'a­
tions for many types of AND/OR based devices, in­
cluding all of the current AM D programmable logic 
array and PROM device\. 

PI.Pl. is block structured, and inL"iudes the high 
level language comtructs If-Then-Else, Ca~e, and 
For; all familiar to many programmers of the C and 
Pascal languages. Macro\, functions, l'onstant\, and 
variable\ Jllay also be used in PI.P!.. The languagl' 
also facilitates usc, clarity, and self-doculllentation. 

Such current programmable logic technology and 
associated programming languu~"'" a\ PLPL allow 

~ Monolithio W Memories ~ 

Ell 

2·667 



Mixing Data Paths Expands Options in System Design 

A matter of timing 

The complex AmPAL22V10design used the accom­
panying timing diagram to correspond to the 
desired waveforms. They are partitioned by the 
respective binary state (or count) from the counter. 

The desired timing requirements during the 
period when the DMA controller is bus master 
appears below. During time n, address latch 
enable (ALE) is asserted by the DMA controller to 
denote the beginning of the cycle; a short time later, 
an address is driven onto the bus. This address is 
valid at the falling edge of ALE. The control Signal 
LAO (latched AO), therefore, must be valid at this 
time, as well. In this phase of the cycle, it must also 
be high to enable the odd byte from memory to be 
loaded into the bidirectional 1/0 port. In addition, 
the assertion of ALE performs the function of reset­
ting the 74LS161 counter to 0000 in order to syn­
chronize the cycle. 

During time T2, the DMA controller will assert its 
OS Signal. Tbe timing for this signal, in conjunction 
with the RIW signal (asserted in T1) must be trans· 

Am9516 
CLOC~ 

formed into an 8088-equivalent Ffo signal. During 
a word read cycle, this AD signal also must be arti­
ficially negated and then reasserted to accomplish 
a double byte read. At the same time, the DMA con­
troller must be "parked" in order to multiplex or 
assemble a word. Thus, the WAIT signal is also 
asserted at time T2. During time TW (S2, S1, 
SO = 010), the receiver clock enable control Signal 
B must be asserted in order to allow the next sys­
tem clock's rising edge to strobe the upper byte into 
the bidirectional 110 port. This is accomplished dur­
ing the next TW period (S2, S1, SO = 011). 

During the remainder of the word read cycle, R5 
is negated and then reasserted after LAO has been 
forced low to address the even byte. A is then 
asserted to allow both the previously latched upper 
byte and the current lower byte to be dr~_n_onto 
the DMA controller's pins. And finally, the WAIT sig­
nal is negated, allowing the DMA controller to finish 
its read cycle by strobing in the 16 bits of command 
data on its data pins. 

ALE _Jl'--______________ --' 
DATA lATCHED 

LAO~ 
IRD----, 

sw"""\ 

IB---~ 

Do to DII 
DATA IN 

LATCHED Ao 

/ 

IA-------------, ,-----, 
~----~I I~ ___ ~ 

IWR _________________________________________ --, ,---

'---_----'I 
I C·-------------------------------------------------------, 

r 

~~~------------------~ 
So

highly organized application-oriented control blocks
to be formed easily. These tools can conceptually
raise the designer above the details of the design at
the logic level and directly translate the necessary
response characteristics from a timing diagram_

This approach can be referred to as a "sculptured
design" technique because it is analogous to the way
solid stone is formed according to an artist's image.
Raw logic can be transformed directly into useful con­
trol functions from the desired timing information.

LJ LJ

The AmPAL22VIO is, in essence, a fuse-program­
mable gate containing up to 22 inputs and 10 out­
puts. It can define and program that architecture of
each output on a pin by pin ba~is. Thus, I he designer
is free to optimize the design mix between registered
and combinatorial functions as needed.

The AmPAL22VIO is programmed by opening fus­
able links in any or all of its IO output macrocells,
as well as in its AND gate array. The AND gate struc­
ture is very similar to other PAL devices; therefore

2·668 ~ Monolithic W Memories ~

Mildng Data Paths Expands Options in System Design

It Jllo\vs the same powerful, yet fJmiliar feJtures.
However, it is the AmPAL22VIO's 10 output logic
manocells that give the designer substantial new
design freedom. Moreover, at each macrocell out­
put is a tri-state output buffer controlled by a
separate output-enable AND gate.

These macrocells provide the AmPAL22V lO's key
features. They can be configured to make Jny or all
of the I/O pins act either in sequence or in combi­
nation and have either active-high or active-low char­
acteristics. Furtherinore, the output enables can
individually control the direction of the pins so they
act as outputs, inputs, or bidirectional ports.

A number of trade-oils and limitations are appar­
ent in a design that so dramatically affects the input
and output of the system. The most obvious limita­
tion stem~ from under utilization of 16-bit periph­
erals on an 8-bit bus-the speed of all 110 operations
are cut in half. As a result, bus utilization will
increase if the l6-bit peripheral represents a signifi­
CJnt factor of the bus use. A CRT controller such
as the Am8052 might usc 5 to 10 percent of the bu~
bandwidth for display information when using 16-bit
[/0. Converting to 8-bit [/0 would double bus use
to 10 to 20 percent. Another factor that might affect
the bus usage is the efficiency of the 8- to [6-bit con-

version control logic. If the state machine designed
to perform the 8/J6-bit (or 16/32-bit) conversion is
improperly designed, extra transfer overhead might
be introduced. This might mean a sequentiai transfer
of two 8-bit values would take twice as long a single
16-bit transfer.

The design constraints might limit the use of the
peripheral to byte-only operations during data trans­
fers (as in the design using the DMA Am9516 con­
troller), and slow it down by a factor of two during
command operations. For such a DMA device as the
Am95l6, the extra time required for command fetch­
ing is not usually a significant portion of bus time.

System designers will have to weigh the cost of
the extra overhead on a case-by-case basis. The ben­
fits may well justify these limitations-particularly
when the bus is self-limiting, but the device charac­
teristics allow for value-added de~igns. In addition
to bus degradation for certain configurations, extra
logic and design effort ~re involved. Most interface~
outside a system's immediate family require some
kind of extra interface logic, however. By manipulat­
ing the signals and incorporating them into program­
mable logic devices such as the AmPAL22V \0 device,.
therefore, most of this logic i~ free.

~ Monolithio W Memories l1 2·669

EI

Programmable Logic Chip
Rivals Gate Arrays in Flexibility

Hanging a user-customized macrocell at each output of an LSI-level
fuse-programmable array Ipgic gives it the flexibility of a gate array.
The result: Less hardware is needed for high-level functions.

Designers of semicustom les have long appre­
ciated the in-house programming capabilities of
programmable array logic devices. But gate arrays,
with their LSI densities and wider opportunities for
customization, are an inviting alternative, even if
they must be sent out for metal-mask processing.
Which approach should
the designer use?

An agonizing choice be­
tween convenience and
versatility is no longer
necessary. The first fuse­
programmable chip capa­
ble of implementing LSI
circuits blends the advan­
tages of both types. The
result is more cost­
effective designs with
higher-level functions
than previous pro­
grammable logic devices
offered and a shorter
turn-around time than is
possible with gate arrays.

The new chip, the
AmPAL22V10, can be
thought of as a fuse­
programmable gate array,
since at twice the density of previous programmable
array logic devices, it replaces the equivalent of log­
ic circuits having 500 to 1000 gates (see "Blending
Programmable Logic and Gate Arrays," p. 97). In

Brad Kitlon, Section Manager
David LawI, Managing Director
Warren Miller, Section Manager
Advanced Micro Devices Inc.
901 Thompson Place, PO Box 3453
Sunnyvale, Calif. 94088

Reprint with permlulon 'rom ELECTRONIC DESIGN

fact, because of its flexible, programmable architec­
ture, the chip spans the breadth of standard SSI,
MSI, and present-generation PAL devices, often ac­
complishing what could not be practically done with
several such chips.

Designers program the 22VlO by opening fusable
links in any or all of its 10
output macrocells, as well
as in its AND-gate array,
developing the needed log­
ic functions. Though the
AND-gate structure
makes the unit similar to
other PAL devices, the
chip's 10 output logic mac­
rocells afford a substan­
tial new degree of design
freedom (Fig. 1).

What's more, at the
chip's output pins are 10
three-state output buff­
ers, each fed by a mac­
rocell and controlled
through a separate out­
put-enable AND gate.

The macrocells provide
the 22V10's key features:
They can be configured to

make any or all of the 110 pins act either sequen­
tially or combinatorially and have either active
highs or active lows. Additionally the Output En­
able can individually control the 110 terminals to
act as output pins, input pins, or bidirectional ports.
Thus the designer can readily change the chip's ar­
chitecture.

Within the array, each AND gate is fed by the
true and complementary levels of the chip's 12 input
lines, one of which doubles as a clock line. Also, each
AND gate is fed by the true and complementary
levels of the 10 feedback outputs from the output

2·670 ~ Monolithio m Memories ~

Programmable Logic Chip Rivals Gate Arrays in Flexibility

Semicustom ICs: Programmable Logic

logic macrocells.
Each of the AND gates therefore has 44 inputs,

and there are a total of 132 AND gates in the array.
The result is over 5800 fuses that can be pro­
grammed to perform the desired function.

A total of 120 of the input AND gates are distrib­
uted to drive 10 OR gates, forming the logical part
of the AND array. In addition, one AND gate is
assigned to control each of the 10 three-state out­
puts, and the remaining two gates activate synchro­
nous register presets and asynchronous register
resets.

The array itself consists of 10 AND-gate macro­
cells (five similar pairs), each logically ORing the
outputs of anywhere from 8 to 16 AND gates. The
AND gates are distributed so that the two out­
ermost macrocells in the array logically OR to­
gether eight AND gates. The next two outermost
macrocells logically OR together 10 AND gates; the

elKII,

Programmable
AND
array

(44 X 132)

AND-gate
macrocell

AND-gate
macrocnll

AND-gate
macrocell

Preset

U--T"'I...<'--I AND-gale 10
macroeell

AND-ga'.
macroee"

Reset

1. A IU8e-programmable LSI device combine. the efficiency
01 programmable logic arrays with the flexibility 01 gate
arrays. Ten user-definable output macrocella allow the
designer to I8t the logic outputs individually lor one 01 lour
conligurations. Thoy can even be used as input. or
dynamically controlled 110.

next, 12 AND gates; and so on, traveling inward
along the array. In other words, moving toward the
array's center, two AND gates are added to succes­
sive pairs of macrocells, ending with the two inner­
most macrocells, each ORing 16 AND gates apiece.

The variable distribution of AND gates is partic­
ularly useful when implementing counting, ex­
clusive-OR functions, and complex state machines.
For example, a 10-bit binary counter has only one
AND gate on the LSB but requires an additional
gate for each succeeding bit, for a total of 10 AND
gates to implement the MSB. Should a hold, parallel
load, or specialized function also be desired, the
MSB requires even more AND gates.

To program the array into its familiar sum-of­
products Boolean function, a designer blows the cor­
responding fuse links. Those links initially con­
nected the chip's pins and their complements to all
132 of the 44-input AND gates. As mentioned, the
designer can also program any OR-gate output to be
a dedicated input or a dynamically controlled 110
pin. This is possible because the connection from an
output macrocell to its output pin is through a
three-state output buffer and is controlled by an
output-enable AND gate. Turning off the connec­
tion turns the output pin into an input. Otherwise
the pin remains connected to the output macrocell,
fed by the OR gate.

An output with a difference

The chip's output section is where it appears more
like a gate array than a PAL device. The output
macrocells allow the designer, by individually set­
ting the outputs to be either sequentially or combi­
natorially and either active high or active low, to
program either the true or complementary version
of a logical term-whichever makes the most effi­
cient use of the chip's AND array and fits the chip
to the application. Furthermore, independent con­
trol over the active state helps the designer conform
to common logic conventions, thus avoiding con­
fusion and error.

For example, certain functions, such as chip se­
lects and resets, tend to be active low. The output
macrocells avoid contradictions with convention by
inverting outputs, individually changing them when
necessary to conform. Finally, by individually
selecting either sequential or combinatorial out­
puts, the macrocells impart to the chip the capacity
for implementing more functions than is possible
with existing PALs.

The macrocell (Fig. 2a) contains three main logic
blocks: a rising-edge-triggered D-type flip-flop
with asynchronous reset and synchronous preset in­
puts, a four-to-one output-path selection multiplex­
er, and a two-to-one feedback-path selection multi-

~ Monolithic W Memories l1 2·671

EI

2·672

Programmable Logic Chip Rivals Gate Arrays in Flexibility

plexer. Two fuses arl' imlll'dded in each rna('ro('(,ll to
control the four possible output ('on figurations: I{"
selects sequential or combinatorial opl'ration; P" se­
lects active low or al'tin' high.

With both fusl's intact. the output is sequential
and active low (Fig. 2b). The Q output of the flip­
flop passes to an inverting output buffl'r. and the Q
output feeds back to the AND array internally. This
configuration is particularly suitable for state­
machine designs. Alternativcly. by programming
(blowing) P". tht' designer can make thl' output ac­
tive high.

On the other hand. by programming only R". the
designer makes thl' output combinatorial and active
low. For this scheme. the OR-gate output bypasses
the flip-flop and feeds the inverting output buffer
directly. At the same time. the feedback multiplexer
paSSl'S the output back into the array (Fig. 2c).

By programming both fuses, the designer makes
the output combinatorial and active high, and,
again. the feedback multiplexer passes the output
back to the array. This configuration serves best for
"glue" logic and for generating complex control
functions.

Finally, when the device is programmed in the
combinatorial configuration, the programmable
Output Enable can be used to transform an output
pin into a dedicated input or a dynamically con­
trolled 110 terminal. Once enabled as a dedicated

input. however, a pin's output function is sacrificed.
This capahility is extremely valuable when par­
titioning functions into the device. The limitation is
no longer the numbers of input devices, but the total
number of device pins. Lastly, as a dynamically con­
trolled 110, the pin serves both functions, meeting
most bus requirements.

Intelligent use

One of the most challenging jobs in designing
microprocessor systems is installing intelligent pe­
ripheral controllers-that is, controllers that can
transfer data themselves and so unburden the pro­
cessor from inefficient polling operations. One solu­
tion is to build a custom intelligent controller from
scratch using the 22VlO (Fig. 3). This controller gov­
erns data flowing between a microprocessor and up
to eight peripheral devices, all conforming to the
Small Computer Systems Interface standard (SCSI,
the ANSI X3T9.2/82-2).

The interface consists of an 8-bit bidirectional
data port (DB7-DBu); three control outputs­
Acknowledge (ACK), Select (SEL), and Reset
(RST); and five control inputs-Request (REQ),
Control/Data (C/O), Messtlge (MSG), Busy (BSY),
and Input/Output (I/O). There are additional
signals, unrelated to the SCSI standard. They in­
clude several microprocessor controls, such as ad­
dress lines AI and A2 for setting the data's desti-

Blending programmable logic and gate arrays

Centered on a fuse-programmable AND array, the
architecture of a PAL (programmable array logic)
device offers designers a powerful, instantly mod­
ifiable logic building block. As a result, PAL devices
are used in a wide variety of applications, ranging
from microprocessor-based systems to supermini­
computers.

Since gate arrays are not programmed in house,
they have a much slower turnaround time and higher
cost. Yet gate arrays' simple logic structure makes
them easier to customize than PAL devices, and their
larger size makes for denser logic structures.

A gate array's simpler structure can be a draw­
back, however. For example, typical gate arrays are
based on just two- or three-Input gates; therefore, to
implement complex functions, they often require
many gate levels, which results in slow logic struc­
tures. In contrast, PAL devices, like memories, make
more efficient use of their silicon area and can be
configured into fast logic structures. Consequently,
even with a slight overhead for programming cir­
cuitry, PAL densities are beginning to rival those of
gate arrays.

However, innovative circuit techniques and an
oxide-isolated bipolar process team up in the
AmPAL22V10 r.nd combine the advantages of PAL

devices and gate arrays. For example, the pro­
grammable output macrocells are designed to add
only one Schottky diode in the delay path. As a
result, the chips selected for high speed have a worst­
case input-to-output propagation delay and setup
timp of only 25 ns, as well as a worst-case c1ock-to­
output delay of a speedy 15 ns, over the commercial
temperature range. Also, the oxide-isolated process
fits the chip's ability to implement complex func­
tions into a 24-pin, O.3-in.-wide package.

For convenience, a feature called Preload loads the
chip's internal registers with an arbitrary value, so
that the designer can perform a complete post­
programming functional test. In fact, Preload is a
necessity for testing state machines, where the suc­
cessive states depend on past and present values, as
well as on the inputs. Without Preload, complex and
sometimes impossible sequences would have to be
entered before the first test could be performed.

What's more, platinum silicide fuse technology
makes programming faster and increases reliability,
and a well-controlled melting rate yields large, sta­
ble, nonconductive gaps. Address circuitry, much like
that of a PROM, blows one fuse at a time, and pro­
gramming is done with an algorithm that is easily
adapted to a wide variety of available machines.

~ Monolithic W Memories ~

Programmable Logic Chip Rivals Gate Arrays in Flexibility

Semicustom ICs: Programmable Logic

nation, read and write controls (lORD and IOWR),
Interrupt Request (lNTREQ), Chip Select
(CSSCSI), System Clock (SYSCLK), and buffer and
latch enables (BE and LE) for passing bus data be­
tween the processor and its peripherals.

In operation, the controller assigns one of eight
peripheral devices to be a master by activating SEL
and at the same time sends the master's address to
the SCSI data port.. From then on, when a device
notifies the controller that it needs to transfer ei­
ther a command or data, the controller interrupts
the host processor. In turn, the processor reads the
controller's status register to determine which de­
vice is requesting service and the type of request it
is making. After its status register is read, the con­
troller removes thE' interrupt request and carries
out the required transfer.

Meanwhile the selected device issues a BSY
signal, letting the other devices Know that the bus is
in use. The data transfer is managed by the hand­
shake signals ACK and REQ, and the processor ac­
tivates RST as needed by pulling both WR and RD
low at the same time.

I
I
I

Matching the chip to its application starts with
an assessment of the available resources against
those needed to do the job. In general, that means
establishing that the chip has enough input and
output pins and product terms to accommodate the
logic functions required by the application.

As to the pinouts, the 10 outputs required by the
application do, in fact, match the 10 available on the
chip. Four of the pins are used for the bidirectional
data bus and the rest are dedicated outputs. As for
inputs, the SCSI controller requires 11, which the
chip more than satisfies with its total of 12.

Next the designer develops the product terms
needed tf) execute the controller's job and compares
the number and size of the required terms with the
number available from the chip. The resulting con­
troller equations (see Table 1) number 10, and these
nestle neatly into the chip's 10 available AND-gate
macrocells. Also, thE' maximum number of terms in
anyone equation-in this case, those making up the
acknowledgment function-is only 6, compared
with the chip's capacity of 8 to 16. Thus the control­
ler function fits easily into a single programmable

110.

L _________________ ~
(I)

(b) (c)

2. Elch of 10 output mlcrocell. (I) Ire independently fu.e-progrlmmed for one of four
configurltion •. Fu.e Rn control. whether the output. Irl .equentill or combinltorill, Ind
fu.e Pn determine. whether they Ire Ictive high or Ictive low. With no fu.e. blown, the
output i •• equentill Ind Ictive low (b). Blowing only Rn giv •• I combinltorill Ictive-Iow
output, Ind blowing only Pn give. I .equentill Ictive-hlgh output. Finllly, blowing both
fu.e. chlnge. the output to combinltorill Ind Ictive high (c).

~ Monolithic m Memories ~ 2·673

2·674

Programmable Logic Chip Rivals Gate Arrays in Flexibility

Semicustom ICs: Programmable Logic

logic array, as can more complicated micro­
processor peripheral interfaces.

The 22VlO's real power, however, becomes appar­
ent when it is needed to fill an application that
appears to demand more than the chip's resources
can deliver. Insufficient input or output pins or
product terms are frequent shortcomings of many
devices whl'n thl' job is very formidable. With its
highly versatile I/O architecture, however, the
22VI0 can accommodatl' conditions that would
make chips even larger than itself inadequate.

Table 1. Peripheral controller equations
Combinatorial ~uallon.

BE ~ CS • AD • A2 • A,

LE = CS • WA • A2

03 - A, • C + A, • ACK

02 ~ A, • M + A, • SEL

0, - A, • B + A, • AST

Do = A, • I + A, • A

S~u.ntial ~uallon.

INTAEO = A • (I • C • M + J • C • M + I • C • M + ICM)

ACK~CS' WA' A2 • A, • 03+ A' ACK • (CS • WR • A2 • A,) +
A' CS • AD • A2 • A,

SEL = CS • WA • A2 • A, • 02 + B' SEL • (CS • wi>. • A2 • A,)

AST = AD' WA + CS • WA • A2 • A, • 0, +
AST • (CS • WA • A2 • A,)

SYSCLK
CSSCSI

IOWA
lORD

A,
A,

INTAEO
Data 3
Data 2
Data 1
Data 0

Data 7-0

cs
WR
AD

A,
A,

iNT
_03

_0,
0,
Do

BE

l
lE

BE

- Octal
buffer

Ac"i<
SEL
RST f--

R
C
M
BI---
I

LE

OE
B

Octal ~~DB latch ,-DBa

3. The problem 0' deligning an intelligent peripheral
controller il limplj'ied by the 22V10'. flexible 1/0 .tructure.
With the 'reedom to allign different architecture. to
different pinl, the deligner can make beller ule 0' the
chip'l input and output pin. and product term •.

For example, one of the most complicated func­
tions to perform with a digital computer is floating­
point arithmetic, Dr more specifically the nor­
malizing of numbers in the process. As a result, no
standard MSI or LSI logic for normalization exists.
Yet the programmable array is well-suited to inte­
grating at least part of this complicated logic func­
tion.

Normalization is necessary because a floating­
point number is represented in two parts: a man­
tissa and an exponent. The mantissa is a fractional
number that is adjusted, or normalized, so that a
binary 1 always occupies the most significant bit. To
normalize a floating-point number without chang­
ing its value, a compensating adjustment must be
made to the exponent. In effect, the exponent, a
power of two, is incremented for each bit position
that the mantissa is shifted to the left.

Because the process of normalization can be very
costly if done wholly in parallel, it is more efficient
to process a number one byte at a time. Further­
more, because of the function's complexity, it is rea­
sonable to partition the normalization unit into two
units: an execution unit, which acts on the incoming
data, and a control unit, which directs the execution
unit. Thus the two units together form a byte-wide
floating-point normalization (EFN) unit, with the
programmable logic array making up the execution
unit (Fig. 4).

The design of the execution unit breaks up log­
ically into the four main instruction categories; De­
tect, Normalize, Merge, and Shift. Detect tests the
incoming data for a binary one in any bit position.
When such a nonzero byte appears, a flag, F,
informs the control unit and tells it to begin the
normalization process. Next, the Normalize com­
mand determines the number of bit positions to
shift the incoming byte, in order to put its first bit
in the most significant position. Then the Shift com­
mand adjusts the input data to the left by the spec­
ified number of bit positions, filling the lower bits
with Os. Finally, the Merge command adds in the
full numbers' remaining bits, adjusting them so
that the entire number is intact and shifted.

From the beginning, even before the equations of
the execution unit have been fully developed, it ap­
pears that the resources of the programmable array
will be insufficient for the job (see Table 2). Four­
teen input pins are needed, against the chip's 12,
and 12 output pins are needed, whereas the chip has
only 10. Nevl'rtheless, a closer look at the execution
unit equations, with an eyl' toward consolidating
I/O pins and funetions, turns up paths around the
seeming shortages.

Om' "prohll'm" that proves not to be one is the
numllt'r of outputs. Although they number 13, not

~ Monollthlo W Memories ~

Programmable Logic Chip Rivals Gate Arrays in Flexibility

Semicustom ICs: Programmable Logic

all are active at the same time. For example, the
outputs Vo- Vz, which specify the number of shift
positions as a three-bit binary number, are active
only when no other outputs are. Thusthey can share
their output circuitry with other signals, relieving
the output shortage.

However, combining the shift outputs with other
terms creates a product-term deficiency. Yet, again,
careful observaticll reveals a solution. One way to
reduce the product terms of a function is to illvert it,
using the programmahle array's output macrocell.
The most likely ca!1didate for such a reduction is the
function with the most product terms. Although
there are several, the best, because it is relatively
removed functionally from the others, is the detec­
tion flag, F. Its function is given by:

F = D,+Dt;+D,,+Dt+D;j+Dz+DI+Do

where D, throu~h Do are input data bits, which, if
any are high, indicate a nonzero byte.

Table 2. Allocation of chip resources
Inpul plna Output plna

Number Nam .. Number Namaa Product t.rm.

Initial elK. F (detection flag).
require- 14 Or-Do. 12 V2-VO. 114 required
ments 14-10 R7-Ra

When De Morgan's theorem is applied, the long
OR string of active-high data reduces to a single
AND term, saving a total of seven product terms.
Still, two input pins must be found for the pro­
grammable array to fully incorporate the logic of
the execution unit. Since De Morgan's t.heorem can­
not minimize the logic any further, the only answer
is to locate any product terms that underuse the
chip's resources, combine them, and lend their out­
put pins to the cause by making them 110 pins.

Examination of thi' instruction input specifica­
tion (see Table 3) reveals that during Detect only
three of the five instruction inputs are necessary,
freeing the two others to be used as outputs. There­
fore instruction bits 10 and II can share the outputs
that were previously dedicated to shift bits Vo and
Vb thus meeting the execution unit's final require­
ments in a single chip.D

Table 3. Instruction definitions
--

Resources 12

Final
require- 12
menta

None

elK.
Or-Do.
14-12.
ItNt.
10 No

Function unit
clock (50 ns)

(eLK)

10

12

-

None 120 available

Delect
ItNt. Normalize
10No.
R7N 2. 108 required
Ra/F.

Merge
Shift

Re-Rt

Data input (100 ns).

0'1
00

Instructions.
1.-10

Values.

B~~~~I~Z~~~~(~-r~tl Status B~N V,-Vo
(detection execution

control unit flag and unit
others)

~~ I>

BFN functional unit

Result output.
R,-Ro

Inatruction
cod. (14-10)

OOXXX
OOXXX

01N2N2NO
10N2NtNo

Exponent Input

1

Exponent
adjustment
functional

unit

I
Exponent output

4. Flolting-point Irithmetic ia a hardware-intenlive proce.. that, lor the mOlt part, hal
delied integration. Yet by partitioning the talk I into ImaUer piecel, a deligner can
Ipply the power 01 the programmable array to the job. The chip'l lIexibility
contributel to ita lucce,,'ul implementltion al a lIoating-point execution unit, even
though itl relourcel may leem inlufficient.

~ Monolithic W Memories ~

O.tectlon
'lag

0
1
X
X

2·675

EJI

XOR PLDs Simplify Design of
Counters and Other Devices

XOR PLDs) unique architecture is better
suited than that of conventional AND-OR
PLDs to certain applications. Once you un­
derstand the basic theory behind their oper­
ation) you can easily configure them to per­
form the tasks of such devices as binary
counters and video shift registers.

Chris Jay, Monolithic Memories Inc

Many designs-notably high-speed counters for ac­
cessing memories, for counting events, or for sequential
control in high-speed processor systems-require state

INOUTS, FEEDBACK AND 1/0

(a)

" /
INOUTS, FEEDBACK AND 1/0

(b)

..
:>

machines that step through their sequence of operation
by a binary count. XOR PLDs are ideal devices for
these types of jobs, but they are rarely considered for
such applications-perhaps because design engineers
don't understand their useful, but unusual, architec­
ture.

Like the more sophisticated of today's conventional
devices (Fig la), exclusive-OR (XOR) versions have a
registered architecture (Fig Ib). The distinguishing
features of the latter are two pairs of product terms
(multiple-input AND gates), which drive two summing
terms (OR gates), which in turn feed two inputs of an
XOR gate. The combinational XOR gate's output con­
nects directly to the D input of the register. (For a
theoretical discussion of the advantages of XOR PLDs
over AND-OR PLDs, see box, "Principles of XOR PLD
operation. ")

CLOCK
I--..l

~ I---l b

fGl b
~
)---I

.A

<
".

CLOCK OC

~ ~D-~ -t:S--J
. -

< ...

Fig I-You can easily distinguish between a conventionai AND-OR PLD (a) and an XOR PLD (b). The latter has an XOR gate preceding the
register.

Reprinted from EON, May 28,1987
© 1987 CAHNERS PUBLISHING COMPANY
a Division of Reed Publishing USA.

2·676 ~ Monolithic W Memories ~

XOR PLDs Simplify Design of Counters and Other Devices

The distinguishing features of an XOR
PLD are two pairs of product terms) which
drive two summing terms) which in turn
feed two inputs of an X OR gate.

The applications described here make use of MMI's
20X8A and 20X1OA PAL devices. These 24-pin XOR
PLDs have an improved 22.2-MHz clock and worst-case
propagation delay of 30 nsec compared with older,
12.S-MHz, SO-nsec parts.

XOR PLDs bring benefits to counters
The prime use of XOR PLDs is in counters. Fig 2a

shows the pinouts and Fig 2b the Palasm logic equa­
tions of a 1O-bit, loadable, up/down counter. You can
design such a counter into a single 20X1OA PAL device.
The counter has ten registers, QO through Q9, capable
of binary, up/down counting. The up control is high for
an up count and low for a down count. Registers Ql
through Q8load synchronously through data inputs Dl
through D8; the loading i~ enabled by an active-low /LD
input (see box, "Palasm notational conventions"). Be­
cause of a pin limitation of the package, Q9loads via the

10-BIT EVEN BOUNDARY lOAOABlE /00

UPIDOWN COUNTER
/01

ClK VCC

up/down-control pin. This pin (the D9 input during
loading) controls the counter's up- or down-counting
mode. QO is always loaded with a logic low.

A counter larger than 10 bits requires two or more
XOR PLDs. Unlike MSI counters, which come with
carry-in and carry-out pins, you must incorporate in
your design provisions for cascading XOR PLDs. When
cascading two XOR PLDs, you must provide a carry­
out-enable signal from the least significant counter to
the count-enable input of the most significant counter.

When the least significant counter has reached its
maximum count, it should enable the most significant
counter to increment its count after the next rising
edge of the clock pulse. However, time delays arising
from the time needed to decode and propagate the
Carry signal could slow the system down. To avoid this
delay, your design should generate a look-ahead-carry
output.

Fig 2b

OO*/LO : COUNT
+ LO ;LOAO
:+: GNO + GNO

/Ol*/LO HOLO
+ /Ol*LO LOAO
:+: OO*/LO*UP COUNT UP
+ lOOt/LOt/UP COUNT ~OWN

/02 :~ /Q2*/LO HOLD

lO QO + /02*LO LOAO
:+: OO*Ol*/LO*UP COUNT UP
+ /OO*/Ol*/LO*/UP COUNT OOWN

01 Q1 /03 :- /03*/LO HOLD
+ /03*LO LOAD
:+: 00*01*02*/LO*UP COUNT UP

02 Q2 + /00*/01*/Q2*/LO*/UP COUNT DOWN

/04 := /04*/LO HOLO

03 Q3
+ /04*LO LOAD
:+: 00*01*02*03*/LO*UP COUNT UP
+ /00*/01*/02*/03*/LO*/UP COUNT ~OWN

04 PAL Q4 /05 :- /OS*/LO HOLO
+ /OS*LO LOAD

20X10A : +: 00*01*Q2*03*04*/LO*UP COUNT UP

05 Q5
+ /QO*/01*/02*/03*/04*/LO*/UP COUNT DOWN

/06 :- /06*/LO HOLO
+ /06*LO LOAD

06 Q6 : +: 00*01*02*Q3 *04*QS*/LO*UP COUNT UP
+ /00 * /Q1* /02 */03 */04 * /05* /LO* /UP COUNT ~OWN

07 Q7 /07 :- /07*/LO HOLO
+ /07*LO LOAO
:+: 00*01*02*03*04*OS*06*/LO*UP COUNT UP

08 Q8 + /00*/01*/02*/03*/04 */OS*/06*/LO*/UP COUNT ~OWN

/OS /OS*/LO HOLD

UP (09) Q9 + /OS*LO LOAO
: +: 00*01*02 *03 *04 *OS*06*07 * /LO*UP COUNT UP
+ /00*/01*/Q2*/03*/04 */OS*/Q6*/07*/LO*/UP COUNT DOWN

GNO OE /09 /09*/LO HOLD
+ /UP*LO LOAD
:+: 00*01*02*03*04*OS*06*07*OS*/LO*UP COUNT UP
+ /QO* /01*/Q2 */03 */04 * /Os* /06* /07 */OS * /LO* /UP COUNT OOWN

Fig 2a-This diagram shows the pin designations for a 20XlOA XOR PLD configured as a lO·bit, loadable, up/down counter. This design is
not cascadable.

~ Monolithic W Memories ~ 2·677

EJI

('

XOR PLDs Simplify Design of Counters and Other Devices

Principles of XOR PLD operation
The configuration of an exclu­
sive-OR (XOR) PLD simplifies
counters and other state ma­
chines that progress through a
binary-encoded counting se­
quence. You do not, of course,
necessarily need a PLD with
XOR gates to design a binary
counter; you can use the simpler,
sum-of-products (SOP) architec­
ture of a conventional PLD (see
Fig la in the main text) to
implement the logic equations
that define a binary-count
sequence.

However, the conventional
PLD requires a larger number
and AND gates, or product
terms, for a counter's higher­
order registers than does an XOR
PLD. The Boolean equations that
follow prove this point. They are
required for a generalized
binary-count sequence and are
rendered in Palasm notation (see
box, "Palasm, notation conven­
tions").

If QO is the least significant
register, then

/QO:= QO

This is a straightforward binary
function-divide by 2. If Ql is
the nest significant register, it
requires, the Boolean sum of two
product terms:

/Ql := QO*Ql + /QO*/Ql

For register Q2 the equation
becomes

/Q2 ;= Q2*Ql *QO + /Q2*/Ql +
/Q2*/QO

which requires three product

2·678

terms. From ageneralized counter
with N registers, the Nth regis­
ter, QN, requires N+ 1 product
terms:

/QN:= QN*Q(N-l)* ... Ql*QO
+ /QN*/Q(N-l)

+ /QN*/QNl
+ /QN*/QO

For example, the most signifi­
cant register is a lO-bit counter,
Q9, would require the summing
of 10 product terms, using 10
AND gates, in a convential
AND-OR PLD. Consequently,
although you can write abstract
counter equations for AND-OR
PLDs, you may not be able to
find a real PLD with enough
product terms to embody those
equations.

An XOR PLD, on the other
hand, uses its product terms
more economically; no matter
how significant the weighting of
the register in a binary counter,
each register requires only two
product terms.

Before delving into the de­
tailed Boolean equations that
support the preceding contention,
you should get a feel for the
logic underlying the XOR PLD.
Consider that, in a binary-count
sequence, the polarity of a
register's output toggles one
clock period after the state in
which all of the less significant
registers were a logic one.

Next, imagine that you have a
2-input XOR gate driving a reg­
ister. The output of the register
is fed back to one XOR input;
the other input sees a product

~ Monolithic W Memories ~

term comprising all the less-sig­
nificant digits. The XOR gate
will hold the register in its
existing state until the product
terms of the less-significant
digits go True, whereupon the
XOR gate will toggle the output
of the register.

The following is a generalized
equation for a register (QN) in a
binary-count sequence using the
XORPLD:

QN:= QN :+: Q(N-l)*Q(N-2)*
... Q2*Ql*QO

You can consider the term
Q(N-l)*Q(N-2)* ...
Q2*Ql*QO as a Carry input to
register QN.

When Q(N-l) * Q(N-2) * ...
Q2 *Q 1 *QO = 0, the register QN
is in a hold condition, and QN's
output feeds back through the
fuse array and the XOR gate and
loads into itself. Only when

Q(N-l)*Q(N-2)* ...
Q2*Ql*QO = 1

will the XOR function invert the
polarity of QN and strobe the
inverted state into the register in
synchronicity with the rising
edge of the next clock pulse.

XOR PLDs Simplify Design of Counters and Other Devices

Unlike MSI counters) which come with
carry-in and carry-out pins) you must in­
corporate in your design provisions for cas­
cading XOR PLDs.

The logic in the least significant counter can decode
the penultimate count and feed the D input of a
carry-output-enable register, When the counter incre­
ments to the final count, the carry-output-enable signal

is then clocked into the carry-output-enable register.
The propagation of the carry-output-enable signal to
the next counter stage is therefore coincident with the
generation of the output of the ultimate count from the

U/~o-------------,---,

01 02 03 04 05 06 07 08 09 010011 012 013 014 015

UP

CLKo-...... l---D
LO i.D. : .. . PAL20Xl0A

00 01 02 03 04 05 06 07 08 09 010 011 012 013014015 016017

ov
Fig 3cr-Unlike the counter illustmted in Fig 2a, this counter uses a look-ahead-carry-out technique. Provision of this signal renders
the counter cascadable.

Fig 3b

CEBEO I" UP'/OO '01'02 '03 '04 'OS '06 '01'08 '/LD
• /UP'00'/01'/OZ'/03'/04 '/05 '/06'/01'/08'/LD

/00 's OO'/LD
+ LD

101 '" /Ol'/LO
+ /Ol'LO

,+, OO'/LO'UP
• /OO'/LO'/UP

102 ,s /02'/LO
+ /02'LO ,+, OO'Ol'/LO'UP
• /OO'/Ol'/LO'/UP

/03 ,= /03'/LO
+ /03'LO
,., 00'Ol'02'/LO'UP
• /00'/01'/02'/LO'/UP

/04 '" /04'/LO
+ /04'LO I.' 00'Ol'02'03'/LO'UP
+ /00'/01'/02'/0)'/LO'/UP

/05 '" /OS'/LO
• /OS'LO
1·,00'Ol'OZ'03'04'/LO'UP
+ /00'/01'/OZ'/03'/04'/LO'/UP

/06 I" /06'/LO
• /06'LO ,+, 00'Ol'OZ'03'04'OS'/LO'UP
+ /00'/01'/OZ'/03'/04'/OS'/LO'/UP

/01 '" /07'/LO
+ /07'LO ,+, 00'Ol'OZ'03'04'OS'06'/LO'UP
+ /00'/01'/02'/03'/04 '/OS'/06'/LO' /UP

/OH '" /08'/LO
+ /08'LO I., 00'Ol'02'03'04'OS'06'01'/LO'UP
+ /00'/01'/OZ'/03' /04 '/05'/06' /01'/LO' /UP

Fig 3c

C~BEO :. UP'OO '01'02 '0) '04 'OS '06 '01'08' ILO'CEI
• /UP'/OO'/Ol'/OZ'/O) '/04' /05' /06'/07
'/08' /LO'CEI

/00 1= /OO'/LO'/CCI

/01

/OZ

/OJ

/04

/05

/06

/01

/08

t OO'/Lo'cer
1+ I LO'/OO

1= /Ol'/LO
/OI'LO
OO'/LO'UP'C~1
/OO'/LD'/UP'CEI

1= /OZ'/LO
+ /D2*lD ,+, OO'Ol'/LO'UP'CEI

/OO'/Ol'/LO'/UP'CEI

1= /O)'/LO
+ /O)'LO
,t, OO'Ol'OZ'/LO'UP'CEI
+ /OO'/Ol'/OZ'/LO'/UP'CCI

1= /04'/LO
• /04'LO
1'1 OO'Ol'OZ'O)'/LO'UP'CEI
+ /OO'/OI'/OZ'/O)'/LO'/UP'CCI

1= /OS'/LO
+ /OS'LO
It: 00'Ol'02'O)'04'/LO'UP'CEI
• /00'/01*/02'/0)'/04 '/LO' /UP'CEI

I· /06'/LO
+ /06'LO
1'1 OO'Ol'OZ'O) '04 'OS'/LO'UP'CEI

/00' /Ol'/OZ '/0) '/04 '/05 '/LO' /UP'CEI

I" /01'/LO
+ LO
I + I OO'OI'OZ'O) '04 '05'06' /LO'UP'CEI
+ /00' /OI'/OZ' /0)' /04 '/05' /06' /LO' /UP'C~1

1= /08'/LO
+ LO
,., 00'01'02'0)'04 'OS'06'Ol'/LO'UP'CEI
• /00'/01'/02'/0)' /04 '/05 '/06' /Ol'/LO'/UP'CEI

~ Monolithic IRiDMemorles ~ 2·679

XOR PLDs Simplify Design of Counters and Other Devices

registers in the least significant counter. By anticipat­
ing the ultimate count in this fashion, this scheme
avoids the propagation delay involved in decoding the
final count.

The counter designs specified by the sets of logic
equations presented in Figs 3b and 3c use this
look-ahead-carry-out technique. The designs are cas­
cadable, 9-bit up/down counters; Fig 3c's specification
generates both Carry and Borrow signals on a look­
ahead basis. You can use these specifications to create
an IS-bit counter by routing the Carry/Borrow output
(CEBEO) of the first up/down counter to the count­
enable input (CEI) of the second up/down counter (Fig
3a). These counters are capable of clocking at rates as
high as 22.2 MHz.

To cascade more than two counters for high-speed
counting, your design would require a composite carry­
enable output to the more significant counters in the
chain. You would need to generate a look-ahead-carry
output from only the least significant counter; higher­
order counters in the chain would require a count­
enable output generated from the ultimate, or final,
count rather than the penultimate count. Fig 4a shows
a technique for cascading more than two counters in a
synchronous-count chain. Depending upon the avail a-

Palasm notation conventions
For consistency with the design spercifications,
the text of this article uses the Palasm notational
conventions for Boolean operators instead of the
classical symbols. Palasm is MMl's PAL assem­
bler, which converts Boolean-logic equations into
fuse maps for PLDs. (Ed Note: Readersfamiliar
with other PLD compilers may be more used to
the C-!anguage conventions used in Cup! and
Abel. One compiler, logIC from Kontron, allows
you, thankfully, to choose your ownfavorite sym­
bol set.)

• / represents a logical inversion.
• * represents a logical AND.
• + represents a logical OR.
• = represents a logical equality.
• :+: represents an exclusive- OR (X OR.
• := represents the state-machine operation

"Becomes equal after the rising edge of a
clock pulse."

bility of input pins, you could incorporate the required
gates into the PLD itself, as Fig 4b shows.

XOR PLDs have many applications outside of binary
counting. The example of a video shift register shows
how video applications can benefit from the
programmable-polarity feature of the XOR gate.

Fig 5a shows a typical video system using the
PAL20XSA. Fig 5b gives the PLD design specification.
An XOR PLD, when functioning as a video-shift regis­
ter, loads row data, in parallel, from a character ROM
or RAM. A control input to the XOR PLD (reverse

CLOCKo-.-------------~----------------------~--------------------~

(a)

CLOCKo-------.-------------__ --------------~~------------~

CEOb-_-OI

(b)

Fig 4-You can cascade two or more XOR·PLD counters in a synchronous·count chain with either external (a) or internal (6) logic.

2·680 ~ Monolithic W Memories ~

XOR PLDs Simplify Design of Counters and Other Devices

DOT
CLOCK

REV

CURS

PAL20XBA
VIDEO SHIFT

REGISTER

00

RESET

VIDEO

(al

PAL VIDEO
CONTROL

CS MPU
DATA 00-07

Fig 5a-XOR PLDs suit other applications besides counters. The
device's programrrw.ble output polarity is a vital part of this design,
which uses an XOR PLD as a video shift register that incorporates a
cursor control_

Fig 5b

/00 : ~ /DO*LD*/REV*/CURS*/RST LOAD DO
+ DO*LD*REV*/CURS*/RST LOAD INVERSE OF DO
:+: /Ol*/LD*/CURS*/RST SHIFT FROM 01
+ RST RESET 00 LOW

CURSOR LOW CLEARS /00
/01 :- /Dl*LD*/REV*/CURS*/RST LOAD 01

+ Dl*LD*REV*/C'JRS*/RST LOAD INVERSE OF 01
:+: /02*/LD*/CURS*/RST SHIFT FROM 02
+ RST CURSOR LOW CLEARS /01

RESET CLEARS 01
/02 :- /D2*LD*/REV*/CURS*/RST LOAD 02

+ 02 *LD*REV*/CURS*/RST LOAD INVERSE OF 02
: +: /03 */LD*/CURS*/RST SHIFT FROM 03
+ RST CURSOR LOW CLEARS /02

RESET CLEARS 02
/03 : - /03 *LD*/REV*/CURS*/RST LOAD 03

+ D3*LD*REV*/CURS*/RST LOAD INVERSE OF 03
: +: /04 */LD*/CURS*/RST SHIFT FROM 04
+ RST RESET CLEARS 03

CURSOR LOW CLEARS /03
/04 :- /D4*LD*/REV*/CURS*/RST LOAD 04

+ D4*LD*REV*/CURS*/RST LOAD INVERSE OF 04
:+: /OS*/LD*/CURS*/RST SHIFT FROM 05
+ RST CURSOR LOW CLEARS /04

RESET CLEARS 04
/05 : - /DS*LD*/REV*/CURS*/RST LOAD 05

+ DS*LC*REV*/CURS*/RST LOAD INVERSE OF 05
:+: /06*/LD*/CURS*/RST SHIFT FROM 06
+ RST CURSOR LOW CLEARS /05

RESET CLEARS 05
/06 :- /D6*LD*/REV*/CURS*/RST LOAD 06

+ D6*LD*REV*/CURS*/RST LOAD INVERSE OF 06
: +: /07*/LD*/CURS*/RST SHIFT FROM 07
+ RST CURSOR LOW CLEARS /06

/07 :- /D7*LC*/REV*/CURS*/RST
RESET CLEARS 06
LOAD 07

+ D7*LD*REV*/CURS*/RST LOAD INVERSE OF 07
: +: /LD*/CURS*/RST SHIFT HIGH INTO /07
+ RST RESET CLEARS 07

The XOR PLD series has manyapplica­
tions outside of binary counting.

w

PAL VIDEO
REFRESH
COUNTER

AD

LINE
SYNC

• MPU
AiD ADDRESS

video, or REV) determines whether or not the data
loaded into the register is to be inverted. Therefore,
the XOR PLD can supply normal-video or reverse-video
information.

This design also incorporates a cursor control, which,
when active, sets all of the register's outputs high. The
design also has a reset line to clear all the registers.
When you release the load input, the clock input will
serially clock the data out of register QO as a video-data
stream. The clock input to the PLD determines the dot
rate of the video information and must come from an
external dot-rate generator.

The Palasm logic-equation files presented in this
article omit comments, pin definitions, and device­
simulator specifications because of space limitations. If
you want the entire Palasm file, you may call the author
at (408) 970-9700. I!Dr.I

Author's biography
Chris Jay is applications manager at Monolithic Memories
Inc (Santa Clara, CAY, where he has worked for four yea/·s.
He previously worked for Fairchild a1ld Texas Instruments
in the UK. Chris obtained a ESc in electronics from Essex
University in England, and he is a member of the Institllte
of Electrical Engineers, Loudon. His hobbiesi1lclude pho­
tography, electronics, and traveling.

~ Monolithic W Memories l1 2·681

Notes

2·682 ~ Monolithic W Memories l1

rhe PAL20RA 1 0 Story­
rhe Customization of a
Standard Product

A mong the greatest challenges one faces when design­
ing with the new generation of 32-bit, high­
performance microprocessors is maintaining both

byte and word addressability within the microprocessor's
32-bit-wide word format and accommodating both high­
and moderate-speed memory components and peripherals in
the same system_ Consider this example: Motorola's 32-bit
microprocessor, the MC68020, has a feature known as dy­
namic bus sizing. This feature helps maintain both byte and
word addressability within the microprocessor's 32-bit word
format. The microprocessor has internal logic that manipu­

of both asynchronous and synchronous operation. A prod­
uct from Monolithic Memories, Inc., the PAL20RAlO, pro­
vides what we believe is an elegant, single-chip solution to
these problems.

The PAL20RAIO is one of the most recently developed
members of Monolithic's programmable array logic
product family. As with all other PAL devices, it contains
an array of programmable links that the user can configure
to implement a variety of logic functions. The PAL20RAlO
is unusual in that the customer not only can configure the
internal logic transfer function but also can implement logic

functions to control the clock,
the output enables, and the

AR-157

lates and directs words smaller
than 32 bits. However, the
MC68020 requires additional ex­
ternallogic to handle 8- and
16-bit memory arrays and pe­
ripherals and to maintain byte
addressability of 32-bit memory
arrays. Consider this as

A new, registered, asynchronous
PAL device originated with suggestions

set and reset operations for each
register. In addition, the

from the manufacturer's user can configure the outputs
to be registered or nonregistered,
and active high or active customers.

well: The MC68020 is available in both 12-MHz and
16.7-MHz speed grades. The 16.7-MHz speed translates into
6O-ns machine cycles and, consequently, into 90-ns memory
cycles. Thus, the MC68020 can keep up with many of
today's fastest memories. Moreover, in systems that use
both fast memories and slower, low-cost bulk ones, the
16.7-MHz version can interface with the slower memories
without holding back the faster ones. But to do this, the
MC68020 must insert wait states to extend the memory cycle
for the slower memories.

Both design problems call for additional circuitry-that
is, some "glue" logic. And because the MC68020 employs
asynchronous control signals and the memories need syn­
chronous control, the additional circuitry must be capable

Copyright © 1986 Tho Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from IEEE MICRO,
10662 los Vaqueros Circle, los Alamitos, CA 90720.

low. We will discuss
these features, as well as a universal port interface adapter
application, in greater detail later in this article.

PLDs and the semicustom market
Programmable logic devices, or PLDs, fit between stan­

dard logic and customer-designed circuits and thus are con­
sidered semicustom circuits, along with gate arrays and
standard cells. PAL products are a type of PLD. Discus­
sions of semicustom integrated circuits often center on
technological issues: process capabilities, device speed and
power dissipation, number of available gates, and so on.
But the customization of a device involves more than just
meeting the customer's functional requirements. The device

~ Monolithic m Memories ~ 2·683

EJI

The PAL20RA 1 0 Story-The Customization of a Standard Product

Table 1.
Logic devices rated by various selection

criteria.

Standard Gate Standard Full
Criterion logic PLDs arrays cells custom

Sourcing and
availability 1 3 4 4

Performance 5 3 3 1

Space
efficiency 5 4 2 2

Ease of
design· 2 2 4 4

Ease of design
changes 2 4 4

Design
cost" 3 4 5

Time to
market 2 3 4 5

System-level
mfg. cost 5 3 3 2

• With the exception of standard logic, this means ease of use of the design
tools, i.e., ease of understanding the design tool concepts, ease of doing the re­
quired input, etc .
•• Design cost is the sum of the NRE (non-recurring engineering) costs and such
non-recurring manufacturing costs as masking, test vector generation, etc.,
that are part of the product development cycle.

should also meet the customer's requirements for price,
availability, risk, ease of use, and support. Only when all of
these requirements have been met has a device been truly
customized.

Within this definition, even standard 7400 series logic
might be considered customized. It meets most customers'
requirements for low cost, availability, low risk, and high
ease of use, and it provides just about any desired function.

PLDs and gate arrays-semicustom
alternatives and trade"offs

The PLD was first conceived as a replacement for dis­
crete TTL logic designs. Customers wanted higher integra­
tion than that possible with standard SSIIMSI logic, but
they could not find the functions they wanted in standard
LSI circuits and did not want to pay for fully customized
ones. The PLD provided a new option-semicustom
LSI-that had the advantages of SSIIMSI availability and
many of the advantages of fully customized LSI without
such drawbacks as high cost and long development time.

Today, gate arrays are rapidly becoming competitive in
the same applications as PLDs. However, PLDs provide
several advantages ovcr gate arrays that make them much
more amenable to customer needs for many applications.

The primary advantages of PLDs are their immediate
availability, the lower risk they entail, and their lower over­
all cost per application. A design engineer, upon completing
his design, can immediately customize a PLD to his specifi­
cations. If he discovers that he has made a mistake in his
design, he can correct it and program another device. Since
he customizes a part just before it is used, he undertakes no
risk in committing to a particular design. If he needs to
make a change, he can program a part from inventory to
the new specification-no parts are wasted. He can program
the new part in minutes.

According to a survey that appeared in the January 12,
1984, issue of EDN, the two greatest disadvantages of gate
arrays are their high development cost and the lack of sec­
ond sources for them. PLDs, ill contrast, have an extremely
low development cost and offer multiple sources. The short,
simple development cycle for PLDs translates into easier
use, lower costs, shorter time to market, and greater flex­
ibility. Table I rates standard, semicustom, and full-custom
integrated circuits according to various criteria used in
choosing an IC for a design. A "1" indicates the best
choice; a "4" indicates the worst.

Dataquest, a market research firm, lists in the December
28, 1984, issue of its Nielsen Dataquest Research Newsletter
(liGate Array Impact on the ASIC Marketplace," by Katy
Guill and Andy Prophet) five needs of the gate array user,
all of which are met efficiently by PLDs. The first is for
quick delivery of prototype units. With PLDs, prototypes
are available in minutes once the design is complete. The
second need i~, for easy-to-use design automation tools that
require a minimum amount of time to learn. PLD software
tools include assemblers and higher-level languages that en­
able a design engineer to automatically convert whatever de­
scription he has created into a fuse plot. The PLD can then
be programmed as easily as a PROM.

The third need is for prototype units that work the first
time. PLDs, being standard parts, are fully tested during
production and can be quickly verified after customization.
If a design error has been made, the design can be quickly
modified and another prototype can be programmed in
minutes. Using personal-computer-based software and a
standard programmer, the design engineer can ~tay at his
own desk and proceed to alter his design on the PC, and
then instantly download the new design to the programmer
and the new device. The device can then be dropped into
the target application and the design verified. The ease with
which PLDs can be verified encourages experimentation
with designs.

A fourth need is for low development and production
costs. PLDs have extremely low development costs-only
the up-front costs of the software and programmer. Their
design cost consists simply of the design engineer's time.
The production costs for PLDs are driven down by the mul­
tiple sourcing and high-volume production characteristic of

2·684 ~ Monolithic W Memories ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

standard products. Gate arrays provide neither of these
advantages.

The fifth need is for convenient design centers and train­
ing. The PLO design center is very convenient indeed-the
engineer's personal computer. Our company, Monolithic
Memories, offers tutorial aids in several formats. Moreover,
the standard nature of the PLO makes it easier to under­
stand and use than the more customized and thus less
"friendly' gate array.

There are many other factors that influence the choice of
semicustom device technology, of course, such as architec­
tural efficiency. The ease of use of the PLO unfortunately
leaves it much less efficient architecturally than other forms
of semicustom logic. In a gate array, the user constructs log­
ic functions using two-input NANO gates. In a PLO, the
user constructs logic functions using higher-level macrocells.
Naturally, there will be more wasted silicon in the PLO, al­
though its optimized macrocell and efficient fuse array will
still provide an effective structure. It is the gate array's very
architectural efficiency that is the source of its high develop­
ment cost, since that efficiency derives from computerized
trial-and-error routing and a custom mask, both of which
are expensive.

Figure 1 gives the 1985 sales volume for various types of
ICs and estimates the 1990 volume for them. All types show
healthy growth. Because standard cells are starting at a low
level and because they are expected to become very popular
as the IC market matures, they are expected to show the
highest growth rate. Linear arrays, though relatively new
and technologically difficult, should also show impressive
growth. PLOs and gate arrays should also show very
healthy growth, with the growth in PLOs (367 percent) ex­
ceeding that in gate arrays (234 percent). Part of the greater
growth of PLOs is attributable to their ease of use, but part
is also attributable to the ease with which they can be repro­
grammed-for circuit designs that are likely to change, pro­
grammable logic is the only practical solution.

It is very difficult to directly compare PLO cost and gate
array cost-one is comparing apples and oranges. PLOs
have a minimal development cost and a standard unit cost.
Gate arrays, on the other hand, have a large development
cost and a small unit cost. Moreover, it is very difficult to
determine the PLO architecture that is equivalent to a par­
ticular g:lte array and vice versa. Currently available PLOs
such as Monolithic's MegaPAL devices have as many as
5000 four-input NANO-gate equivalents. However, a
5000-gate gate array probably cannot replace a 5000-gate­
equivalent PLO exactly, and such a PLO cannot replace a
5000-gate gate array exactly. Such replacement is very
application-dependent. A MegaPAL array, for example, is
limited to 64 inputs and 32 outputs. If a gate array has more
inputs and outputs, the MegaPAL device cannot replace it.
And if the gate array cannot duplicate a feature of the
MegaPAL array-such as its large fan-in on its ANO gates,
for example-then the gate array cannot replace MegaPAL
array. Even at lower gate densities, comparisons remain
application-dependent.

._ ..••... _ .. _------_._-,

1985

.. _ .. --_00. _____ ---------

Figure 1. Growth of the worldwide application.specific
Ie market from 1985 to 1990. Dollars are in millions.
(Source: Integrated Circuits Engineering Corp.)

For purposes of providing a general idea of the cost effi­
ciencies over volume of gate arrays and PLDs, we can com­
pare them as if they did have one-to-one equivalency, how­
ever. The nonrecurring engineering, or NRE, charge for a
gate array can vary from $15,000 to $75,000, depending on
complexity and design methodology. If a gate array has a
$35,000 NRE charge and a $1.00 unit cost, its cost per unit
drops almost inversely with volume, as shown in Figure 2.
Now let us examine a specific type of PLD, the PAL device.
If a PAL device costs $5.00 for a single unit and drops in
price with volume according to standard pricing curves, it
shows a more steady decline in price with volume (the PAL
plot in Figure 2). The crossover point in this comparison is
almost at 100,000 units. The graph shows quantatively the
reasons why gate arrays become cost-effective over larger
volumes, but it leaves out several other factors, induding
gate equivalencies, risk, and time to production.

Let us compare the design and production costs for PLDs
and gate arrays. For a PLD, design cost means the design
engineer's time, as we mentioned above. This is already a
committed cost. However, for a gate array, design cost can

~ flJonollthic W Memories ~ 2·685

The PAL20RA 1 0 Story-The Customization of a Standard Product

1'40
$30

$20

$10

1K
units

··----------------1

10K
units

lOOK
units

Figure 2. PLD (pAL and HAL device) cost per unit
vs. gate array cost per unit. The break-even point
for PAL devices and gate arrays occurs at about
100,000 units.

be a sum of several factors. The time a designer spends on a
computer to create a design can be very expensive, and the
software he needs to create and test the design can also be
expensive. Production costs for both types of device include
not just the cost of the silicon but also the cost of masks,
fabrication, and labor. And if a device does not work as ex­
pected, the entire process must be repeated.

With a PLD, the only purchase cost is that for the silicon
itself. The PLD is mass-produced, so all the supporting
design efforts-fabrication, test generation, and reliability
enhancements-are spread over time and many devices. The
result is much lower cost to the user.

For high-volume, fixed applications, a PAL device can be
replaced with a mask-programmed hardwired array logic, or
HAL, device. The HAL device replaces the fuses of the
PAL circuit with a final mask step that permanently
metallizes the logic connections. This alternative is an ex­
cellent match for the volume applications that are attractive
to gate arrays. The HAL circuit combines the lower unit
cost of the mask-programmed logic device with the pro­
totyping capabilities of the PAL circuit. It offers advantages
unmatched by any other form of semicustom logic. Assum-

Figure 3. The basic PAL consists of two
arrays-a fuse-programmable AND array
and a fixed OR array. This arrangement

follows the sum-of-products format
familiar to the design engineer who uses

Boolean logic.

r-·-·-------·- .-.... --- .. -...... -.. -. -... -.- ... ". --........ -.. ----.--.. ---. -.- -... _ .. _-._ .. ---.
, n rANDl ~.1o'Rl "!. _
; Inputs ---r---~~ Outputs

l_. ______ ._. P~~ndeusct __ .. __ . __

r-­
i

"
r I

I
I
I
j

l. __ _
Figure 4. Two-input AND array with four AND
gates. An input (in or lin) is disconnected from an
AND gate when the fuse associated with that input
is blown.

~ ~·ANDarray

tv tv
OR array

Iy Y
Figure 5. An "x" indicates an intact fuse. The two­
input AND array with four AND gates (product
lines) from Figure 4 is shown along with a two­
output OR array. Note that the AND array is user­
programmable, whereas the OR array is hardwired.

2·686 ~ Monolithic W Memories ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

ing an NRE charge for a HAL device of $5000 and a unit
cost of $2.00, we can plot the relationship of the HAL
device to the PAL and gate array (sec Figure 2 again).

PAL devices-historical background
PAL devices were introduced by Monolithic Memories in

1978. They consist of two arrays of logic gates. The first
array consists of AND gates that form Boolean products of
the inputs, and the second array consists of OR gates that
sum these products (sec Figure 3). Hypothetically, there are
n inputs to the AND array and m outputs from the OR
array. The AND array consists of p AND gates (and p prod­
uct terms), and all n device inputs, both inverted and non­
inverted, are potential inputs to any of the p AND gates. In
an unprogrammed PAL device, every device input is actu­
ally connected to every AND gate. A device input ceases to
be an input to a particular AND gate if the fuse that con­
nects that input to the gate is blown. Fuses are blown ac­
cording to a fuse map that is generated by the user via soft­
ware. Figure 4 shows a simple two-input array with four
AND gates. Figure 5 shows a simplified notation for this
circuit-an" x" is used to indicate that a fuse is intact, and
a single line is used to represent all lines of connection with
an AND gate. (Note that the use of the single line does not
imply the connection of those lines to each other.) Figure 5

'PU

also shows a two-output OR array that uses the same con­
ventions for intact fuses and lines of connection. Most PAL
devices have a considerably greater number of inputs, prod­
uct terms, and outputs than shown here. but this example
illustrates the general PAL structure.

The arrangement of the AND and OR gates follows the
sum-of-products format familiar to the design engineer who
uses Boolean logic to express his logic requirements. As
implied above, the engineer can program the AND array in
a PAL device by using links similar to those used in a
PROM circuit. He opens the particular links needed to con­
figure the logic to the user's specification.

Before discussing the PAL20RAlO in particular, we
should note the differences between PAL devices and other
PLDs. Most PLDs consist of an AND array followed by an
OR array. This is also the architecture of memory devices,
including bipolar PROMs. In a PROM, the AND array is
fixed and completely decodes the inputs. The OR array is
programmable and holds the information at each decoded
location, or the word at every address (Figure 6a).

The first PLD was developed by Signetics and is called a
field-programmable logic array, or FPLA. The FPLA is an
implementation of the general PLD logic combination-an
AND array followed by an OR array-in which fuses are
used for interconnections in each array. The FPLA allows
both arrays to be programmed (Figure 6b) and thus pro-

PAL DEVICE PROM
16\yoRDSI4BITS 4 IN ... OUT-16 PRODUCTS .. IN'" OUT-16 PRODUCTS

'0

7 7 ~ 7 OR ARRAY

.v .V V rv (P~OGRAMMABlE)
7 7 OR AR~AY

V IV IV IV ~
7 ~ 7 7 7 OR AR~AY

IV V [V '1'1 ~
.....,
::::: '}-f-1--1 -I-:::::

.......
F=:

r-----CI--r-'
:::::
:::::
=:

I-- F
~ ~-+-, f-r :::::

F:
F=:
f=:

:::::
:::::

:::::rc -I---" r-- ~ f-
:::::

F:
F=:

:::::
:::::rc 1--1--1 f-t :::::

:::::
:::::
=:
:::::
:::::
=:

(----:::::
:::::

===).- 1--- I~f-
f----I--: (----

:::::
f-cf--i ~f-:::::-

- r--- ===).-, I
1--11---- f-- f-i-

Hf-~ l--
:::::

H- I--H -f----HI----:::::

HI--=:
'-'

f--'r--- (----F:
F=:

-I---' H
:::::

l-c t f--'I- (----:::::

r--- f---lr-----C 1--11--(----:::::

-l-- -f-; f-:I--1--:::::
,; :::::

f=:
I F:

AND ARRAY
(FIXED)

AND ARRAY
(PROGRAMMABLE)

AND ARRAY Y (rAOGRAMMA8LEI

OJ 02 0, 0 0

(a) (b) (c)

Figure 6. PROM AND·OR array (a)-the AND array is fixed to decode the address, whereas the OR array
is programmable for the stored data; field· programmable logic array, or FPLA (b)-both the AND array and
the OR array are programmable; PAL device (c)-the AND array is programmable whereas the OR array is
fixed. The PAL device offers much of the flexibility of the FPLA along with the low cost and easy program·
mability of the PROM.

~ MonolIthIc m MemorIes l1 2·687

III

The PAL20RA 1 0 Story-The Customization of a Standard Product

I

0123 4567 BiIO II 12131415 1617181V 20212223 24252627 28293031

0
r-- J I

2
3 19 4
5 ~ 1 6 r--7

~ ...
8 - J 9

10)----,
II

""'" 18 12 r--
!-' t"

1

13 ,.......,
14
15

3
--t> ,

18 ~
17

~~
18

""" IV
20 ./ 21
22
23

4 .. A

24

~
25
26

""" 27
28

~
29 r--'
30
31 ~

5 .. ~ ..
32

I~
33
34

~ 15 35

M
-36 ~

37
38
39

6 •

40~
41

~ 14
42

""" 43

~
~ 44 ./ 45

46
47,..---,

7
48

J 4V
50

13 51 """ 52
~

1
53
54
55

8
--t~ 1It .. ,

56

l 57
~ 58

12 59

""" 60
I--/'

1
61 ~ 82
63

g • .A ----<1> \I -..
o I 23 4567 IV!O II 12131415 1617111V 20212223 242521127 !1I2V3D31

Figure 9. PAL16R4 logic diagram. This device has four registered outputs with a single (synchronous)
clock.

2·688 ~ MonolithIc mill MemorIes ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

Figure 10. History of the speed im­
provements and power consumption

reductions for devices in the Medium
PAL family.

New product development
New product ideas in semiconductor companies come

from a variety of sources-from customers and those in
direct contact with them to design engineers who have
ingenious ideas about how to add features without
adding cost, power, or timing delays. Since customers
are usually willing to describe the product that would be
ideal for them, they are often a good source of ideas.
Product ideas usually pass through the following steps.

First, the idea is generated. Typically this is in response
to a limitation in a current product and is an evolutionary
step. Revolutionary ideas such as the original PAL
concept are rare and usually come from approaching
old problems in a new way. If the idea is a customer's
suggestion, it is usually reported to the factory in a
trip report.

The idea, whether generated internally or by a cus­
tomer, is next submitted to a group typically consisting of
representatives from product planning (including some­
one from the product area into which the idea falls,
whose job is to examine such ideas), marketing, design,
and product engineering. The group discusses the new
idea and responds to it; it either drops the idea, giving
reasons for doing so, approves it for further considera­
tion, or asks for more details.

If a product idea is approved for further consideration,
a member of the product planning group carries out
market swveys and analyses. He contacts customers,

Speed
tpO,ns

20-pin: PAL 16L8, PAL 16R4, PAL 16R6, PAL 16R8

60
20A-4

50

40

30

20

10

50 100 150

Power, mA

15/180
200 .

10/180

200 250

often in person, and locates third-party market studies
and research. He analyzes internal capabilities and seeks
out information about products that could compete with
the proposed product. At most companies, the result of
his efforts is a new product approval document consisting
of a description of the product and its applications, alter­
natives to the product, a discussion of the market for the
product, and a marketing strategy for it.

If the product is approved by all the representatives in
the group, it is assigned to design engineering. The
design engineer is free to use whatever tools he chooses
within the definition set out for him. This definition in­
cludes such items as performance requirements but rarely
specifies the process technology. It is often modified as
new requirements arise.

Design engineering is finished with the product only
after it has been successfully produced on the production
line. It is then released to product engineering, which
takes on full responsibility for the product for its lifetime.
Product engineering is typically involved before this point,
however, making sure the product is progressing well and
problems are being eliminated qUickly.

The final step is release to the marketplace. For most
companies, release to market means sending out data
sheets and samples to the field once production quan­
tities have become available. For programmable products
such as PAL devices, software and programmer support
must also be in place.

~ MonolIthIc W MemorIes l1 2·689

The PAL20RA 1 0 Story-The Customization of a Standard Product

Figure 7. Some of the
first PAL devices
from Monolithic

Memories.

Figure 8. The first
registered PAL

devices.

10L8

vides a great deal of flexibility. However, its programming
circuitry and fuses lead to a large, slow, power-consuming
device and make programming expensive and difficult.

In 1977, John Birkner of Monolithic Memories got the
idea of taking the FPLA architecture and hard wiring the
OR array, leaving only the AND array programmable (Fig­
ure 6c). The result was called a PAL circuit, PAL being the
acronym for programmable array logic. (Monolithic Memo­
ries has since registered PAL as a trademark describing its
products.) A PAL device offers higher speed and consumes
less power than an FPLA. The first PAL devices were de­
signed so that engineers could program them just like 512 x
4 PROMs, using phantom fuses to fill in beyond the 512
fuses in the actual devices. Thus, engineers could program
them on widely available, inexpensive programmers.

The first family of PAL devices included both combina­
torial and registered devices. Combinatorial devices consist
of just a programmable AND array followed by an OR
array, with no registers or other macrocells. They are fairly
simple and provide little more than a varying number of
inputs and outputs (see Figure 7). Registered devices, on the
other hand, provide clocked registers for the outputs and
allow the previous output state to be stored and used for
determining the next state. These types of devices are much
more challenging. A register allows the device to be used as
a state machine, one in which the outputs depend not only
on the present inputs but also on the previous state.

12L8 14L4 18L2

16R4 16R8

Since a state machine can be implemented in a variety of
forms, the registered PAL architecture is difficult to define.
To do so, one must specify the total number of registers,
whether a register can feed its output back into the logic
array, the nature of the control of the output enable follow­
ing the register, and common register features such as preset
and clear functions. These specifications have a major influ­
ence on the potential applications of the device.

Monolithic's original registered PAL product family,
whose members were designed to be used as state machines,
is the Medium 20 family, where Medium describes the logic
density and 20 is the number of pins. The family consists of
four devices, all with 16 complemented inputs to the AND
array and eight outputs from the OR array. They have vary­
ing numbers of registers-zero, four, six, or eight-which is
reflected in the part numbers, PALl6L8, PALl6R4,
PALl6R6, and PALl6R8 (see Figure 8). The 16R4 directly
implements Mealy state machines, whereas the 16R8 directly
implements Moore state machines. In the 16L8, 16R4, and
16R6, combinatorial outputs are enabled by individual
product terms from the AND array. The product term
enables allow the combinatorial outputs to function as in­
puts. These inputs, along with feedback from the registers
and eight dedicated inputs, provide the 16 inputs to the
AND array. The logic diagram of the PALl6R4 is shown in
Figure 9.

The architecture of this family has proven capable of

2·690 ~ Monolithic W Memories ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

(Top view)

Figure 11. 7474 dual D.type flip.flop. Note the two
separate clocks that allow asynchronous operation of
the registers.

handling a remarkable percentage of what customers re­
quire in programmable logic. The improvements customers
typically request are higher speed and lower power con­
sumption. We have made progressive improvements in
speed, to a lO-ns propagation delay in the Medium 20D
Series and a 6-ns one in the ECL PAL Ie. We have also re­
duced power consumption without sacrificing speed. The
20B-4 Series requires one fourth the power of the original 20
Series yet provides the same speed. With a propagation de­
lay of 35 ns, the 20B-4 devices have a maximum supply cur­
rent of 55 rnA, compared to 180 mA for the original parts
at the same speed. CMOS mask-programmed versions re­
quiring zero standby power are also available. Figure IO
shows the history of speed and power consumption im­
provements in the Medium 20 family.

While we have been making these improvements, we have
also introduced new families with higher logic densities and
the 40- and 84-pin MegaPAL families. We have added new
features to these families, including additional logic capabil­
ities such as exclusive-OR gates, arithmetic feedback, pro­
grammable output polarity, product term sharing, register
bypassing, and register preloading. We made these
enhancements in response to specific customer needs, and
they have opened new applications for programmable logic.

Most of these new features were simply extensions of the
original PAL concept. The original PAL family was a
breakthrough, a new alternative offering completely new
advantages in semicustom logic. In building on this family,
we concentrated on speed and power improvements and not
on finding revolutionary new architectures. However, the
PAL20RAlO, which we will discuss shortly, is another
breakthrough concept. It did not derive from extensions to

the original idea but arose as a new response to the needs of
customers using PAL devices.

The PAL20RAIO
The PAL20RAlO was first proposed at an internal

Monolithic Memories conference in 1981. The original con­
cept was described as an "unstructured PAL" having inde­
pendent programmable clock, reset, and set controls on
each flip-flop. Until then, all PAL devices had been struc­
tured-or synchronous-in architecture; all transitions on
register outputs occurred simultaneously in response to the
rising edge of the clock signal. The proposed ability to con­
trol the clock independently for each flip-flop would enable
the engineer to create asynchronous logic within a PAL
chip.

The idea was proposed by Harry Hughes, who was then a
field applications engineer, or FAE, in Great Britain. FAEs
are the company representatives who have primary contact
with customers; they have responsibilities ranging from
helping existing customers with complex design problems to
introducing Monolithic Memories to potential customers.
As the primary customer contact, they are quite familiar
with real user needs.

The concept of the unstructured PAL circuit had origi­
nated with several European customers. They had been
using the Medium 20 PAL Series in large quantities.
However, the application logic they had been integrating
had not always fitted well in PAL devices. They had often
had sections of individual 7474 flip-flops mixed among ran­
dom logic. A 7474 device (see Figure II) consists of two in­
dependent D-type flip-flops, each with its own data input
and complementary outputs, and clock, preset, and clear. A
standard PALl6R8 has eight of these D-type flip-flops but
only one clock and no preset and clear functions. Thus, in­
tegrating the collection of 7474s and the glue logic had re­
quired the customer to convert a mu1ticlock design into a
single-clock one. This had been difficult or impossible to do
with standard products.

The customer requested an independent clock, set
(preset), and reset (clear) for each flip-flop. Since the FAE
had found other customers requesting similar architectures,
he proposed the device. He took the I6R810gic diagram
and added the four control terms, as shown in Figure 12.
He described the concept at Monolithic's FAE conference in
July of 1981.

FAE conferences are held to foster technical exchange be­
tween the factory and the field. Problems are identified and
ideas are discussed. Now held every six months, these con­
ferences are critical for planning future product directions.

After it had been presented at the FAE conference, the
unstructured PAL circuit was discussed within the factory.
For an idea to go somewhere, factory discussion must pro­
duce a business plan for the product that describes it com;.)
pletely and estimates the profits that can be expected from
it. New product ideas must pass several stages of analysis
and approval. (See "New product development," at left.)

~ Monolithic W Memories ~ 2·691

Ell

The PAL20RA 1 0 Story-The Customization of a Standard Product

I 0123 4567 891011 12131415 161:1819 2021222324252627 28293031

0
,....

I --j 19 2

~~
3
4

t:-- '--' -..r-5
6
7 ~

~
8

,....
9 --j 18 10

~
II I-12 ./ -vo--
13
14 I- -
15 I--

3 ...
-t~ ,..

Figure 12. Harry Hughes' modification of the PAL16R810gic diagram. To illustrate his proposal for a new device,
he added four product terms (heavy lines) to control the enable, set, reset, and clock.

2·692

The major problem with the unstructured pAL circuit
was its inherent lack of testability. The power its architec­
ture gives the customer also demands that the customer use
it carefully. For example, the minimum setup time required
before the register can be clocked must be carefully con­
sidered when the clock signal is a complex product term.
Data must be made available to a flip-flop early enough so
that even the minimum time to activation of the clock satis­
fies the setup time required. This required delay can be very
difficult to calculate, especially if the clock term is under the
control of another asynchronous register. All of the internal
asynchronous signals must be handled with care to prevent
invalid combinations.

These and other testability issues caused great concern
and led to several unique solutions. Internal test features
were added, including the ability to test both DC and AC
characteristics on unprogrammed devices and even the abili­
ty to test programming characteristics without affecting the
fuses in the actual array. Two external pins were given dedi­
cated functions: one is an output enable that allows the
device to be disabled during board-level testing; the other is
for register preloading, which allows the user to gain access
to the flip-flops without going through the fuse array.

The final, approved product was called the 20FFIO at
first. It had 20 array inputs and 10 outputs, and enough
new features to earn it the name "Feature Freak"-the
source of the "FF" in the designation. HoweverL a name
must uniquely identify a product and must do so in terms
the customer can recognize. The "FF" for "feature freak"
was unique but not very meaningful to the customer, so this
part of the name was changed to RA, for "registered asyn-

':chronous," and the new device became the 20RAIO.
The approval document for the device described its archi­

tecture, which is shown in Figure 13. The clock, set, and
reset are controlled by product terms, as shown in Hughes'

original sketch of the unstructured PAL circuit (see Figure
12 again).

A compromise was made for the output enable. An exter­
nal output enable is required for most applications, especial­
ly for disabling the device during board-level testing. But an
internal (asynchronous) output enable for independent
enabling of the flip-flops is needed, too. One solution
would have been an external enable pin for each output, but
that would have been a highly inefficient use of external
pins. The solution that was used is an enable signal that is
the product of the external common enable pin and an in­
ternal independent product term. Thus, the enable can be
activated either externally (in common) or internally (asyn-

I­
I
I
I
I
I
I
I
I
I
I

PL OE

Q

Figure 13. The PAL20RA10 output cell. Note the
separate product terms that control the set, reset,
enable, and clock. Note also the output enable that
can be controlled either externally (synchronously)
or internally (asynchronously).

~ Monolithic W Memories ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

I ..

..... D S. J I II II I, I' " 10 n U H II)..n It H .
,

I -tx=

chronously), satisfying both the design engineer, who wants
the internal enable, and the test engineer, who wants the ex­
ternal control.

Another relatively new feature was implemented in this
circuit-programmable polarity. This allows the output
polarity to be either active low or active high. The design
engineer can then write logic equations either way, allowing
his software to match the sense of an equation to the actual
device. This enables the designer to fit more logic into a
single PAL circuit.

The problem of how many registered and combinatorial
outputs to provide had been solved in previous devices by
offering a family of combinations. The solution to this

Figure 14. Logic diagram
for the complete
PAL20RAI0 cir-
cuit-AND array, OR ar­
ray, and asynchronous
registered outputs.

problem for the PAL20RAlO came somewhat by accident.
The situation of set and reset going active simultaneously
had to be dealt with. We decided that allowing this situation
to result in bypassing of the register provided a beneficial
new feature. If both the set and reset product terms are
activated, the register becomes transparent and the output
becomes combinatorial. Because of this feature, the logic
designer can decide at programming time how many
registers he wants (from zero to ten) and on which outputs
he would like them. This architectural flexibility is unique
within programmable logic.

These features are shown in the logic diagram in Figure
14. However, though they describe exactly what the user en-

~ Monolithic W Memories ~ 2·693

The PAL20RA 1 0 Story-The Customization of a Standard Product

counters, they do not actually exist within the device itself.
The logic diagram is only a logical equivalent to the actual
layout of the circuit.

The first thing to note about the actual design is that the
programmable AND array and following OR array com­
mon to all PAL circuits are actually implemented as an OR
array and a following NAND array! This type of logic is

. required because of the architecture of the circuitry that
senses the ones and zeroes in the programmable array. Opti­
mized for bipolar PROMs, this circuitry senses current
flowing from one or more of the transistors in a column of
the array. Since it senses current if at least one of the tran­
sistors is on, the logic is equivalent to an OR gate. Thus, the
programmable array must be an OR array, as it is in a
PROM. To create the logic of a PAL device, we placed a
logical NAND array after the programmable OR array,
creating an OR-NAND structure, that is, an inverted prod­
uct of sums, which by Boolean arithmetic is equivalent to a
sum of products.

To maintain the flexibility of the 20RAlO, we had to
make various trade-offs. One example is the output drive.
The original proposal specified an output drive of 32 mAo
We lowered this to 8 mA to reduce the power requirements.

Although standard 24-pin products were running as fast
as 25 ns, the highest speed we could guarantee on the
PAL20RAlO was 30 ns. This slight decrease in speed was
due to the additional features of the device-a combina-

Figure 15. PAL20RAI0
die photo.

to rial output signal travels through the polarity control,
register bypass multiplexer, and output buffer before it
reaches an output pin. Monolithic Memories has been pro­
gressively improving its process capabilities, and the part is
being transferred to a faster process to increase its speed.

Beyond speed, the fabrication process used for the
PAL20RAlO created no specific limitations. The process
was the workhorse of the bipolar efforts at Monolithic
Memories at the time. It is a standard junction-isolated
bipolar process, optimized for high speed (see "Process
technology," at right). Extensive experience with the process
results in high manufacturing yields and high reliability and,
as a result of these, lower costs. In fact, the greatest effect
of the process on the product is probably in the cost. The
PAL20RAlO process is well understood and provides excel­
lent results for what it costs.

A die photograph of the 20RAlO is shown in Figure 15.
The various blocks are outlined. The die had to meet a cus­
tomer requirement-that it fit into a 24-pin, 300-mil-wide
SKINNYDIP package. The additional features had in­
creased the die's width, yet to fit into this package it had to
be less than 140 mils wide. Some squeezing of the layout
during the final stages of design allowed this requirement to
be met.

The PAL20RAlO is much more than a die, however. It
also requires programming and software support. Program­
ming support is the one critical service Monolithic Memories

2·694 ~ Monolithic W Memories ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

does not provide, and thus it depends on the major PLD
programer manufacturers for it. But to be able to support a
product at market release, the programmer manufacturers
must be provided with the programming specification for
the product months before it is released. Monolithic there­
fore keeps in close contact with these manufacturers.

Software support is provided by Monolithic Memories
through its PAL assembler software package, PALASM 2.
PALASM 2 takes Boolean logic equations, tests them
against expected outputs, and converts them to a fuse map
for a PAL device. A description of this fuse map can then

be downloaded to a programmer in a standard JEDEC
format for customization of the chip.

Software support is a critical part of the product because
it is through software that the customer implements his de­
sign. A designer wants the conversion from what he knows
to be the required logic to what a PAL programmer can
understand to be as simple and easy as possible. PALASM 2
allows the designer to express his function with Boolean
equations. It then uses that input to configure output
polarity, register bypassing, and all the other configuration
features.

c·--·--..,
i Process technology

The process used for the PAL20RAlO is a junction­
isolated one. A cross section of the 20RAlO is shown in
Figure A. NPN transistors are separated from one an­
other by junctions.

The process is a washed-emitter one. In this process, a
layer of nitride (SiJ N4) is used as a mask. This mask layer
defines the size of the emitter and the emitter contact and
allows the emitter and the emitter contact to be the same
size. In other processes, the emitter is usually made larger
than the emitter contact to guarantee good contact.
When formed at the same tiine, however, they can be
the same size and still maintain proper contact. This

Fuse (cross section)

=?,rC
(top view)

allows the emitter to become the minimum feature size of
the design, providing a smaller overall die size than the
die size that could be provided by a standard process.

A programming fuse is located between an emitter and
a product line that in turn leads to a collector (Figure B) ;
driving a large current through this fuse opens its narrow
neck and causes it to change from a very low resistance
to a very high one. The process does not cause the fuse
to explode, as some claim; it merely severs the greater
part of the connection. This change opens the link be­
tween the emitter and the product line.

Figure A. Cross section of the
PAL20RAIO-NPN transistors
are separated from one another
by junctions.

Figure B. Location of the pro­
gramming fuse in the
PAL20RAIO.

~ Monollthlo m Memories ~ 2·695

The PAL20RA 1 0 Story-The Customization of a Standard Product

The new features of the PAL20RAlO required that some
new syntactical conventions be added to the PALASM 2
software package. In addition to the standard logic transfer
functions, the designer has to be able to specify several nov­
el architectural situations. For example, he has to be able to
specify register bypassing in either of two ways: implicitly or
explicitly. He specifies bypassing implicitly by writing a
combinatorial logic equation using an " = " sign instead of
the ": =" sign, which is reserved for registered outputs. He
specifies bypassing explicitly by activating the set and the
reset on the flip-flop simultaneously, causing the register to
be bypassed and the output to be combinatorial.

The control terms are described by dot operators such as
"term.set." We selected dot operators for the same reason
they are used in popular word processing programs-they

ADDRESS BUS (A31-o)

A31-0

rarely occur in natural language and can therefore be given
special significance.

Third-party software is available that allows other forms
of input such as schematic entry. ABEL from Data I/O
Corporation and CUPL from Assisted Technology both
provide high-level support for PLDs.

As we asserted earlier, true customization of the
PAL20RAlO involves much more than matching the func­
tion to the customer's requirements. Speed and power con­
sumption must be acceptable, design support for the device
must be available, pricing must be reasonable, product
availability must be high, and quality must be high. The
PAL20RAlO has been in full production for well over a
year, and to the good fortune of Monolithic Memories all of
these requirements have been met. Moreover, FAEs are ex-

+5V

2 LSB

CLKI~----~-------------------.I

ECS~-------------------------'I

2·696

ASr--------------------------.1

SIZ11--------------------------.1

SIZO 1--------------------------.1

68020

32-BIT
MICRO­

PROCESSOR

i5SACK1
DSACKO~--~~--~i5SACK1

031-0 I5SACKO FROM OTHER
VOPORT

32 DATA BUS (031-0) ADAPTORS

32

~ Monolithic miD Memories ~

The PAL20RA 1 0 Story-The Customization of a Standard Product

cited about teaching customers about a product that
originated with one of their own members. In fact, the
20RAlO was the first product proposed by an FAE to go
into production at Monolithic Memories. Market accep-
tance has been beyond expectations, and as a result FAEs are
being brought even further into the product planning process.

The PAL20RAlO is the first member of a new family of
devices; new products are in various stages of proposal, de­
sign, and production. A 20-pin spin-off, the PALl6RA8, is
now in full production. A higher-speed version is in design.
A version in a 40-pin DIP was considered, but since
20RAlO outputs operate independently, the higher density
and resulting larger package were difficult to justify. Two
24-pin, 300-mil-wide parts can do more in less board space
than one 4O-pin, 6OO-mil-wide device.

I

.

.

CS3

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ADDRESS

B. 16. OR 32

CS2 ':IIJ:~:;E
ADDRESSABILITY

CS1

eso

DATA

Figure 16. A
PAL20RA10 used
as a universal port
interface adapter
for a Motorola
MC68020 32.bit
microprocessor. It
generates logic that
maintains both
byte and word ad·
dressability within
the 68020's 32-bit.
wide word format
and that makes
possible the use of
both high. and
moderate.speed
components and
peripherals in a
single system.

The PAL20RAIO-an
application example

To demonstrate the capabilities of the PAL20RAI0 and
the PALASM-based design process, we present an applica­
tion that uses the PAL20RAlO as a universal port interface
adapter for a Motorola MC68020 microprocessor (Figure
16). This example should help demonstrate the features we
described above and point out how easily the 20RAlO can
be customized to a particular user's application.

The design engineer began this design by considering the
large blocks: the microprocessor, the memory, and the I/O.
Now, near the end of the design, he needs to place some
glue logic between the microprocessor and the 110 ports.
He is open to anything from standard to full-custom logic,
and he considers each alternative.

Because he is very unsure of the finality of the design, he
does not want to commit himself to a major development
effort. Therefore, he rules out full-custom logic and stan­
dard cells. He may be able to make a gate array work, but
he does not have time to work with a foundry in specifying
the design nor time to wait for the foundry to deliver the
part. In fact, he would like to have the part immediately.
Moreover, since his design is not yet proven, he cannot jus­
tify the high cost of a gate array development effort.

He could use off-the-shelf ICs easily enough, but he does
not want to take up that much space on his board. He has a
limited amount of room with which to work. He could use
standard LSI devices, but none provide the functions he re­
quires. Thus, he arrives at the programmable logic device as
the logical alternative.

As we said above, in this design the PAL20RAlO func­
tions as an asynchronous universal port interface adapter
for a 32-bit microprocessor, the MC68020. Among the
greatest challenges the engineer faces when designing with
the new generation of 32-bit, high-performance micropro­
cessors is maintaining both byte and word addressabi'lity
within the microprocessor's 32-bit-wide word format and
accommodating both high-speed and moderate-speed mem­
ory components and peripherals in a single system.

The MC68020 has a dynamic bus sizing feature that helps
solve the first of these two problems-it has internal logic
that manipulates and directs words smaller than 32 bits.
However, it needs external logic to handle 8- and 16-bit
memory arrays and peripherals. It even needs such logic to
maintain byte addressability of 32-bit memory arrays. This
external logic must be able to decode the transfer size con­
trol signals from the MC68020 so it can generate memory
chip selects and handshake back to the microprocessor with
the port size acknowledge signal. The PAL20RAlO is well
suited to this task.

External logic also helps the MC68020 solve the second of
the two problems. The 16.7-MHz speed of the MC68020
version used here translates into 6O-ns machine cycles and
9O-ns memory cycles, and therefore the MC68020 can keep
up with many of today's fastest memories. But it may have
to work with slower bulk memories as well. To do this with­
out slowing down the high-performance memories, the

~ Monolithic W Memories ~ 2·697

The PAL20RA 1 0 Story-The Customization of a Standard Product

Table 2.
DIP switch settings used in the universal port
interface adapter to choose the data bus port

size.

Position Data bus
PSI PSO port size

L L No port present
L H 8-bit
H L 16-bit
H H 32-bit

68020 must be able to insert wait states into the memory cy­
cles of the slower memories. The 20RAlO can help the
68020 do this by intercepting microprocessor memory access
requests and, when needed, generating control signals to the
microprocessor requesting wait states.

In this design the PAL20RAlO functions as a universal
port interface adapter. Both blocks of external logic we al­
luded to in the previous two paragraphs are implemented in
a single PAL20RAlO. The asynchronous capabilities of this
PAL circuit are required by this design because the
MC68020 provides asynchronous control signals that must
be processed by the PAL device between clock signals. On
the other hand, the synchronous capabilities of the 20RAlO
are needed for generating memory control signals. An inter­
nal PAL state machine must be synchronous with the sys­
tem clock. Therefore, neither a combinatorial (i.e., asyn­
chronous only) nor registered (i.e., synchronous only) PAL
device will fill the bill. The PAL20RAIO's unique combina­
tion of features allows it to provide a single-chip solution.

The PAL20RAlO used here generates the byte data select
signals (UUD, UMD, LMD, and LLD) and the current port
size select signals (DSACKO and DSACKl) and performs
wait state generation. The designer selects the data bus port
size and the number of wait states by setting DIP switches
(Tables 2 and 3).

T
he PAL20RAlO is a breakthrough product. It does
not merely extend existing capabilities; it adds novel
and highly useful features. It is also the first product

produced by our company that originated with a customer.
Its technical and market performance has exceeded our ex­
pectations and has proven to us the wisdom of listening to
customers. As a result, we have devised ways of listening to
them even better. ~

Questions about this article can be directed to Marc A.
Baker, Strategic Marketing, Programmable Products Divi­
sion, Monolithic Memories, Inc., 2175 Mission College
Blvd., Santa Clara, CA 95054.

Table 3.
DIP switch settings used in the universal port

interface adapter to choose the number of wait
states.

Position Number of
WSI WSO wait states

L L 0
L H I
H L 2
H H 3

Marc Baker is a strategic marketing engineer at Monolithic
Memories, Inc., where he is responsible for the merchandis­
ing and document literature for programmable products.
He holds a BSEE from Stanford. '

Vince Coli is Monolithic Memories' strategic marketing
manager in the Programmable Products Division. He was
one of the original authors of MMI's handbook on pro­
grammable devices. He holds a MSEE from Santa Clara
University.

2·698 ~ Monolithic W Memories ~

PLDs Abound: RAM·Based Logic Joins In
CMOS Logic Cell Arrays, only recently available from more than one source, are almost
as useful as small gate arrays, but don't cany the risk of commiting a design to silicon.

By Marc A. Baker
and Chris Jay

Product Applications
Monolithic Memories Inc.

Santa Clara, Calif.

T he rise of advanced CMOS tech­
nology has dramatically affected
the PLD market. Although not

as fast as bipolar devices, CMOS prod-

the circuit by deselecting its chip se­
lect input. Large EPROM devices
may store three or four configura­
tions, and tying the higher-order ad­
dresses to DIP switches allows the
user to select one of a given number
oflogic functions. Thus one card may
carry a large EPROM and an LCA,
allowing for some degree of de­
ferred design.

The LCA is actually a PLD, but its dense CMOS RAM
enables designers to configure logic cells within

the device and to specify 110 blocks.

ucts are gradually approaching the per­
formance that was expected of bipolar
about two years ago.

The logic designer gains two signifi­
cant benefits from the latest in
CMOS: greater densities for more
complex logic, and reduced power con­
sumption at low clocking rates. Since
cutting power consumption means
smaller power supplies and heat
sinks, both factors reduce the size of
electronic equipment.

Most CMOS parts can be backed up
by batteries, making them useful for
RAM-based devices such as the Logic
Cell Arra)! (LCA).

Dual-layer metal, advanced twin­
well CMOS has produced a program­
mable logic device that can extend the
PLD into the area of low-end gate
arrays.

Any custom or semi custom device
must be tested, and PLDs are no ex­
ception. But since they are only func­
tionally configured, functional testing
offers a high degree of reliability.
Such testing can be done with the pro­
grammer, immediately after pro­
gramming. Production volumes can
be taken care of simply by using an
automatic handler.

An alternative to user program­
ming is factory programming: Manu­
facturers can furnish factory pro-

gramming or can create custom masks
for hard-wired versions of the pro­
grammed pattern.

PLDs also are less expensive than
other alternatives. Examining chip
price alone, both mass-produced SSI
devices and custom parts look very
good. But other costs, such as inven­
tory handling and non-recurring engi­
neering (NRE) charges must be taken
into account.

One way to estimate the cost of
such items as inventory, testing and
board space is to add about $1 per
chip. Thus, if five SSI chips cost only
25 cents each, they actually cost the
user $1.25 each, or $6.25. Those five
devices can therefore be economical­
ly replaced by a $5 PLD. Today,
many PLDs cost less than the devices
they'll replace, and prices will con­
tinue to drop.

A gate array can replace multiple
PLDs, but creating a gate array de­
mands a large NRE charge for, say,
producing masks and generating test
programs. The NRE charges for a
large gate array, including design
costs, masks, a possible design fix
and test programs, can be tens of
thousands of dollars. A PLD has no
NRE charges.

With the LCA, testability becomes
an interesting issue-since the de­
vice is RAM based, test programs can
be loaded into it. Once configured for
testing, test vectors may be applied

Although the LCA is based on a dense
RAM architecture, the array itselfis not a
conventional RAM-based device. Actual­
ly, it's a PLD, but the dense CMOS RAM
enables the designer to configure logic
cells ,within the device and to specify I/O
blocks. The interconnected logic cells,
called CLBa (configurable logic blocks)
and lOBs (input/output blocks) allow com­
plex circuits to be constructed on-chip.
And the LCA's battery backup powers
down to save data.

IMPLEMENTATION COST COMPARISON
Cost PLD SSI Gate Array

Price Medium Very low Low

Inventory & Medium Medium Medium
Handling

NRE None None Very High

Design Time/ Low Low Medium-High
Equipment

Design Medium Medium High
Changes

Test Very Low Very Low High

Quantity Required Low-Medium High Low
Per Application

Its dense architecture enables
complex VLSI functions to be pro­
grammed in the cell array. Also, the
random glue logic that would other­
wise ride on system cards is incorpo­
rated into the array. Because the
LCA is RAM based, it must be config­
ured on power-up from a non-volatile
source. Configuration data can .De
read from a CMOS EPROM on a
byte-wide basis. When the reading is
done, the EPROM is switched out of SSI chips stili cost the least per unit. But since more are needed, circuit size can be limiting.

Gate arrays cost less than PLDs, but their high NRE can make the difference In the long run.

Copyright. 1987 by CMP Publications, Inc., 600 Community Drive. Manhasset. NY 11030.
Reprinted with permission from Electronic Engineering Times.

~ Monollthlo W Memories ~ 2·699

PLDs Abound: RAM-Based Logic Joins In

to determine if the logic cells and 110
blocks are functioning properly. For
example, when configuring an LCA
with buried diagnostic shift regis­
ters, serial diagnostic data may be
shifted through the system to a seri­
al output port, where the data would
be available for analysis. When a
complete system is configured for di­
agnostic testing, internal nodes that
were previously inaccessible become
available via a serial diagnos'tic
scan loop.

When the LCA serves as part of a
larger system, it can be initialized
with buried shift registers perform­
ing functional tests on the system
itself. Once testing is complete, the
LCA can be set up for the required
function.

Suppliers
In 1978, only two suppliers were

producing PLDs. Now there are more
than a dozen, with several sources
for the most popular parts. Higher­
volume production and second sourc­
ing alleviate concerns with factory­
programmed devices, like gate
arrays. Control of the design is re-

er PALs are in the works for line
encoding/decoding, terminal adapter
interfaces, CRC error correction,
frame synchronization and other ap­
plications.

Since the LCA is reconfigurable, it's
possible to modify the logic after de­
sign. In telecommunications, that
means that functions can be changed to
accommodate different communica­
tions standards and protocols, or both,
without resorting to separate logic cir­
cuits for each.

Tomorrow's Market
Tomorrow's market will be driven

more by users rather than suppliers.
Applications beyond computers will
be found, and engineers will push for
the required technology. Moreover,
users will drive product definitions.
Software will be an integral part of
the design solution and will require
more adaptation to a user's design
environment. An important factor in
the increasing role of the user in the
PLD market is the fact that PLDs are
becoming part of up-front system de­
sign, not just last-minute replace­
ments of discrete logic.

New settings for PLDs in high-speed

Specific Parts
Users are also demanding more ap­

plication-specific PLDs. At first ap­
pearing to be redundant, applica­
tion-specific PLDs are devices whose
architecture is aimed at a particular
application. Such architectures may
boast bus interface controllers, sig­
nal generators and decoders. True,
these devices are limited to specific
tasks, but will serve better than
their generic kin. Suppliers are tak­
ing risks in pursuing limited mar­
kets, but the clear winner is the user
who will soon have devices tailored
to his needs.

Recently, there's been an explosion
in the number of PLD architectures
and the amount of support software.
The first PLDs were programmed by
manually encoding the individual
fuses, which then had to be blown.
Later, software was supplied that
automatically converted Boolean
equations into programming pat­
terns. Now, software can use a num­
ber of design descriptions (equations,
schematic capture, truth tables, etc.)
and can simulate the design and cre­
ate test vectors in addition to the pro­
gramming pattern.

Since the device is RAM based, test programs can be
loaded into it, and vectors can be applied to see if the
logic cells and 110 blocks are functioning properly.

A number of support packages are
on hand to give the engineer the
CAD facilities that ensure a success­
ful design. Most of these packages
play on an IBM-PC and start with
assemblers that convert Boolean
equations into fuse plots suitable for
programming into the PLD.

turned to the customer.
In addition, the customer has

choices not only in silicon but in ser­
vice and support. Manufacturers have
varying types of quality control, test
procedures, reliability verification,
software and technical support, price
ranges and delivery capabilities. As a
recent survey in EE Times showed,
these issues are very important. Qual­
ity control was the primary thing want­
ed in a supplier, and software support
was the second most important issue.

Telecom Applications
Because CMOS devices are not power

hungry, they are welcomed in telecom­
munications.

Low power consumption in modems,
fax machines and the like means more
features and more functions without an
increase in size.

Further, in central switching sta­
tions, units must be kept compact
because many line interface cards
are likely to placed in one rack, and
many racks might share one cabinet.

The LCA can put its talents to good
use in telecommunications, includ­
ing time-division multiplexing, line
encoding/decoding and corner bend­
ing circuits. Also, zero-standby-pow-

2-700

processors, superminis and military
equipment are fueling advances in bi­
polar speeds. In the past, the fastest
digital systems could not employ pro­
grammable logic, hut today's PLDs are
matching and surpassing their speed­
iest rivals.

CMOS technology is being forced
to meet the demands of telecom­
munications, as well as adapt to in­
dustry and instrumentation. Such
equipment calls for low power and
immunity to temperature, power and
noise fluctuations. CMOS promises
to meet those needs, although most
CMOS PLDs today simply

More complex devices require
greater levels of software support, so
state machine entry is made possible
by many PLD languages. PLD assem­
blers usually need not only Boolean
literacy from system designers but also a
detailed understanding of device architec­
ture. State machine entry does not require
such a high degree of understanding, so
for these applications the logic designer
can often use a descriptive rather than a
mathematical language.

User-friendly software tends to make
an architecture transparent, and state
machine entry ensures rapid turnaround.
SmaIl PLD designs can be turned around

Users are also demanding more application-specific
PLDs. At first appearing to be redundant, application­

specific PLDs are devices whose architecture is
aimed at a particular application.

match low-power bipolar specs. To­
morrow's CMOS PLDs will offer the
zero standby power, wider operating
conditions and dc characteristics of
standard CMOS products.

in minutes, and more complex devices in
several hours.

The software of tomorrow will be
more responsive to users' needs, allow­
ing for a multitude of design descrip-

~ Monolithic IRIFJI Memories ;t

PLDs Abound: RAM·Based Logic Joins In

tions while not limiting the implemen­
tation to a particular device. Along
with device independence will come the
ability to handle multiple devices, with
workstations offering the highest level
of support.

Programming equipment must also do
more than just generate waveforms. Ad-

en by manufacturers, tomorrow's will
be guided more by the needs of the
logic designer. As new applications
arise, pressure will be put on both
technology and architecture. Commu­
nication with the customer will as­
sume new importance, since it defines
the right combinations. In addition,

Just as today's market is driven by manufacturers,
tomorrow's will be guided by designers. As needs arise,

pressure will be on technology and architecture.

vanced programmers will provide many
test features, including complete func­
tional testing. Or, programmers will be
linked to more sophisticated testers.

PLD suppliers are increasing the
quality of their products, while adding
test features to verify that quality.
Power-up, reset and register preload­
ing simplify testing, but the program­
mer must be able to take advantage of
them.

Just as today's PLD market is driv-

software from third-party vendors
will make programmable logic more
at home across the board.

PLDs will continue to be used along­
side discrete logic, fixed LSI functions,
and gate arrays. But as the market
matures, the benefits of the PLD over
other options will become greater. In
time, programmable logic will continue
to enjoy a higher growth rate than the
overall IC industry. ..

~ Monolithic m Memories ~ 2·701

Introduction to
Programmable Array Logic

A look at the architectural differences
between PALs and other programmable logic devices

PROGRAMMABLE LOGIC devices are
integrated circuits that hardware designers
can program to perform specific logic
functions. Most PLD functions are avail­
able from many vendors and in several
technologies with different speed, power,
and cost options. As with standard 7400
chips, PLDs are available off your local
distributor's shelf. PLDs offer one distinct
advantage over standard 7400 discrete
logic: They are user-programmable.

Most PLDs consist of two arrays of
logic gates-an AND array followed by an
OR array. The input signals to a PLD must
first pass through an array of AND gates
where combinations of the input signals
are formed. Each group of AND com­
binations is called a minterm in Boolean
algebra or a product line in PLD nomen­
clature. Then the product lines ate
summed in an array of OR gates. The in­
put buffers generate both the true and
complement of the input signals.

Three basic types of AND/OR array­
based PLDs exist: programmable read­
only memories (PROMs), programmable
logic arrays (PLAs), and programmable
array logic (PAL) devices. The types are
distinguished by the programmability of
their arrays.

In a PROM, the AND array is fixed and
the OR array is programmable. In a PLA,
both arrays are programmable. PAL
devices have a programmable AND array
and a fixed OR array. I will compare the
PAL device to the PLA and PROM and
then examine the architecture of some
commonly used PAL devices. For a brief
history of the PAL device, see the text box

Vincent 1. Coli

"Evolution of PALs" by John Martin
Birkner on page 208.

PROMs
While most people think of PROMs as
devices for storing fixed programs and
memory, the PROM is also ideal for logic
applications requiring less than 10
inputs-especially when many product
lines are required. PROMs designed as
logic devices are usually referred to as
PLEs (programmable logic elements).

Figure I shows the PROM's fixed­
AND/programmable-OR arrays. For a
discussion of notation used to describe
PLD devices, see the text box "PLD
Notation Panel" on page 210. Every input
combination is available in the AND ar­
ray, whether that combination of inputs is
required or not. Since the AND array is
hard-wired, it is not possible to perform
logic minimization between input com­
binations.

The OR array is programmed to select
the AND gate combinations (or product
lines). Since every OR gate is connected
to each product line, outputs may share
product lines. For those familiar with
memory design, the fixed-AND array is
often called the address decoder, while the
programmable-OR array stores the mem­
ory bits. Another way of looking at this
is that PROMs store the logic transfer
function as a lookup table in memory.

The advantage of PROMs is that every
input combination can be decoded. The
disadvantage is that the number of input
pins available is restricted because the ar­
ray size must be doubled for each addi-

Reprinted with permission from the January 1987 issue of BYTE magazine.
Copyright (i:) by McGraw-Hili, Inc., New York 10020. All rights reserved.

tional input. The arithmetic works like
this: A PROM with n inputs and m out­
puts requires an OR array of 2" lines deep
by m lines wide. For example, a PROM
with 10 inputs and 8 outputs requires an
OR array of 210 by 8 or 8192 fuse loca­
tions. An 11th input would require that the
array size be doubled to 16,384. Cost and
performance constraints limit PROMs to
13 inputs and 8 outputs. PROMs designed
specifically for logic applications feature
either 5 or 6 inputs and 16 outputs.

PLAs
The PLA structure offers the highest level
of flexibility because both arrays are pro­
grammable. Figure 2 shows the PLA's
programmable-AND/programmable-OR
structure. Because their OR arrays are
programmable, PLAs, like PROMs, can
share product terms among outputs. For
example, one product line would be saved
if two outputs required the same input
combination (i.e., product line).

Programmability in the AND array
removes the restriction found in PROMs
that the AND array must be large enough
to provide all possible input combinations.
This works because, statistically, only a

(,(JIIlilllll'''

Vincent J. Coli is a strategic marketing
manager for Monolithic Memories Inc.
(2175 Mission College Blvd., Santa Clara,
CA 95054). He has worked with the PAL
products for the past six years lVith MMI.
Vincent holds a B.S. in chemical engi­
neering and an M.S. in electrical engi­
neering.

2·702 ~ MonolithIc W MemorIes ~

Introduction to Programmable Array Logic

The Evolution of PALs

C omputers used to be constructed
from SSI, MSI, PROM, and RAM

chips connected in jigsaw-puzzle fashion
on many printed circuit boards plugged
into a connector backplane. The com­
puter designer's task was to build a func­
tional unit such as a processor, disk con­
troller, 110 controller, or memory board.
If the design overflowed onto another
board, connectors and ribbon cables had
to be added. This made the design more
expensive and sometimes risky due to
noise coupling. The name of the game
was to get it all on one board.

Mixing and Matching TTL Chips
Designers who had studied switching
theory, information theory, Boolean
algebra, and Quine-McCluskey mini­
mization at college soon found that their
textbooks would not be of much use.
They learned that the practical art of
computer design did not consist of op­
timizing an architecture with an or­
thogonal instruction set. It consisted of
mixing and matching the collage of exist­
ing TTL chips onto a single board until
an approximation of the design goal was
reached. They did not design state­
control sequence logic from top-down
state·graph theory, but rather. slapped
down a 74174 hexadecimal register and
some 7400 NAND gates. Control-logic
design theories usually consisted of
following signal lines around the logic
schematic until, through superhuman
powers of concentration, designers
achieved clarity.

Designers found the information they
needed in the catalogs of young semi­
conductor companies in California.
Arizona. and Texas. A favorite was The
ITL Databook by Texas Instruments.
Most logic designers believed that
74-series TTL parts found in this book
would be second-sourced and could be
"designed in."

A processor design would begin with
the block diagram consisting of an ALU,
data path and register file, microprogram
memory and sequencer, and then a small
and obscure block called "control logic."
It might have been a small block on the
diagram, but the control logic usually
represented the majority of the chip
count.

The control logic consisted of SSIIMSI
gates and flip-flops connected together in
random fashion, and there seemed to be
no way to reduce it. The control logic
also represented the area of highest
design errors and was easily recognizable

John Martin Birkner

on the printed circuit board as the area
with all the "cuts and jumpers." The
engineering change notice (ECN) was the
standard remedy for such errors and was
a constant source of agony between
manufacturing and engineering. Manu­
facturing would use yellow wires to stand
out on the green PC board. Engineering
would use green jumper wires to camou­
flage embarrassing mistakes.

The engineering manager would "pilot
release" the current revision PC board
as soon as the green wire count was low
enough to pacify manufacturing. The
design engineers would then flee to the
next design. where they were expected
to cram even more functions onto the
single PC board to beat the competition's
new threat.

I was convinced that there must be a
better way to build computers. So, in
1975. I packed my bags and headed for
Silicon Valley. I remember seeing the first
single-chip microprocessor systems on
the market. They had one microcomputer
chip surrounded by a sea of over 100
SSIIMSI chips. The new LSI chips
needed either some good planning so that
they could talk to each other or some
good "glue chips" to hook them up.

The PROM. pioneered by Harris and
Monolithic Memories. showed some
promise as a universal and general­
purpose glue logic element. Applications
like memory-address decoding began
showing up for the 32-word by 8-bit
PROM. National Semiconductor pio­
neered the programmable logic array
(PLA) in a 14-in. 8-out. 96-product-term,
24-pin fat (0.6 inch wide) DIP. bench­
marked for 96-character EBCDlC-to­
ASCII conversion.

Intersil made a field programmable
logic array, or FPLA, in the National pin­
out, but with about half the product terms
at 48. Signetics increased the package
pins to 28. making the J6-in. 8-out.
48-product-term 82SI00 FPLA. These
first attempts at providing the computer
designer with LSI glue were met with
mild enthusiasm. The new glue chips
were too big (fat DIPs) and were slow.
expensive, and hard to use.

Monolithic Memories was the first
company to take advantage of the bipolar
fuse-link PROM technology to make
some fast little FPLAs, as we first called
them. We put them in industry-standard
20-pin skinny (0.3 inch) DIPs, for
minimum PC board area. We also re­
duced the two programmable arrays down
to one for 35-ns high-speed operation and

lower cost. We mimicked the TTL data­
sheet specs down to the same ter­
minology, graphics, and printing style to
make the computer design engineer
secure in replacing old 74-series TTL
chips. We added programmable three­
state output enable for 110 pin allocation.
We added output registers with feedback
for direct implementation of state­
machine control logic from state graphs.

We designed the programming algo­
rithm to be compatible with existing
PROM programmers, making low-cost
programming possible. The first PAL
programming module had a PAL in it.
This presented a chicken-and-egg prob­
lem that we solved by emulating with
some PROM and SSI chips. The first
PAL to be programmed was, of course,
the pattern for the PAL programmer
module. I headed the project. specified
the design, and sold the customers. H. T.
Chua provided a clever and ingenious cir­
cuit design.

New Design Methodology
The new chips required a new design
methodology. Actually, it was the same
method that we learned in school, so we
had to drag out our old textbooks and
relearn Boolean logic and top-down state­
machine design. We showed the designer
how to "design your own chip" using
Boolean logic equations. We wrote the
first silicon compiler, PALASM (PAL
Assembler), and published the FOR­
TRAN source in the PAL Handbook
(available from McGraw-Hili), along
with numerous design examples.

The PAL chips replaced SSIIMSI chips
at a chip-count reduction of 5 to I. Data
General gambled on the new single­
sourced chips by designing them into the
MV8000 computer (see The SOIlI ()f a
New Machine by Tracy Kidder).

Apple put six PAL chips in the Macin­
tosh. Soon the PAL chips were no longer
single-sourced, as National Semiconduc­
tor, Texas Instruments. Advanced Micro
Devices, and others joined in licensing
the now-patented PAL chips from MMI.
Now you can find these chips every­
where. Look at the PC expansion boards
in this magazine; you can recognize PAL
chips by their easy-to-read part-number
system (e.g .. PALl6L8 and PALl6R8).

John Manin Birkner is president ofStruc­
tured Design Inc. and coim'entor of the
programmable array logic (PAL) device.
He can be contacted at 988 Brrant Wa\',
Sunnyvale, CA 94087. . .

~ lfIIonollthlc W lfIIemorles ~ 2·703

2·704

Introduction to Programmable Array Logic

PLD Notation Panel

i==D- A
'
B

' C

TTL AND GATE SYMBOL

PLD REPRESENTATION

PROGRAMMED (OPEN)

FUSE LINK7

ABC/~

i< t I D-A'B

L"" .. <o '''''''' FUSE LINK

Figure A: Differences in the logic
notation for a TTL AND gate and a
PLD AND gate.

Figure B: The partially programmed
product fine to implement A*B.

INPUT LINES

INPUT ~
BUFFER \

1'0.:------.

PRODUCT { A. B
LINES

NONINVERTED7
(TRUE) PATH

~-----r;-~~

INVERTED
(COMPLEMENT) PATH

Figure C: Portion of the PLD array programmed to implement A*B.
Having all fuses intact in the second product lille causes a logic zero to be
input to the second AND gate, which does not contribute to the sum at the
OR gate.

Lf€=D-1
A A

FUSE - LINK
BLOWN

FUSE - LINK
NOT BLOWN

Figure D: nIl' PAL device implementation of the function IOutput = A*B
+ IA*B. The standard combinatorial logic diagram of the function IOwput
= A*IB + IA*B is shown in the inset to figure D abo!'e.

~ MonolIthIc W MemorIes l1

B ecause PLD structures are much
different from ordinary TTL gates,

new logic notations were developed for
them. Figure A shows the logic
convention adopted for a three-input
AND gate. The PLD representation for
an AND gate is called a "product line."
Note that the three vertical lines are the
inputs (A, B, and C), which are con­
nected to the AND gate inputs through
fuse links. An unprogrammed (or closed)
fuse link is represented by an X at the
intersection of an input line with a
product line. If you wanted to disconnect
one of those inputs from AND gate C,
for example, you would remove the
appropriate X from the point of inter­
section for the C input line with the
product line to signify a programmed (or
open) fuse link. This product line, which
now implements the A*B function. is
shown in figure B.

Since every input is available to every
product line in a PLD, it is convenient
to show the input lines as long lines
running vertically through the array.
Also, two input lines are associated with
each input pin because both input
polarities are available in a PLD. There­
fore. the input buffer is shown with both
a noninverted (true) and inverted (com­
plement) output path; each path is hard­
wire connected (shown as a dot) to an
input line.

Figure C shows a portion of a PLD
array illustrating the input lines and
buffers. Notice that an OR gate is added
to the structure. All the fuse links in the
lower product line are left intact. leaving
the product line in a logic low (since true
inputs are ANDed with complements).
while appropriate fuse links in the upper
product line are programmed to imple­
ment the A*B function from figure B.

It is common to implement two or
more levels of logic gates such as an
AND/OR/invert circuit in a PLD. For
example, consider the following function
implemented in a PAL device:

/Output = A*IB + /A*B.

Shown in figure D are the standard com­
binatorial logic diagram (see inset) and
the PAL logic equivalent for this
function.

Notice the details added to figure D
that magnify the programmed fuse link
for B in the upper product line. This
magnification details each fuse link and
its associated diode for a bipolar PAL
device. A CMOS PAL device is similar,
except an ultraviolet cell would substitute
for the fuse link.

Introduction to Programmable Array Logic

limited number of product terms is re­
quired in any equation. Eliminating
redundant combinations with logic
minimization techniques, such as Kar­
naugh maps, can reduce the required
number of product terms even more.
Thercillre. almost any combination of in­
puts can be decoded in a PLA.

PLAs were the first products offered
specifically for logic applications. Due to
programming limitations, early PLAs
were available only in mask-programmed
versions. Just like on a ROM, a logic
designer would indicate on the vendor's
PLA AND/OR logic map where the de­
sired connections were to be made. The
vendor would then tool up a custom metal
mask tllr the PLA to implement the
custolller's logic. Today, most PLAs are
user-programmable. However. mask-pro­
grammed PLA structures are used often
in the control section of LSIIVLSI stan­
dard logic chips. such as microprocessors,
and offered in standard-cell libraries.

In the world of engineering, there are
always compromises. The facts reveal that
a performance and silicon-die size penalty
must be realized to provide the flexibility
of programming both arrays. PAL devices
are generally 5 to 10 nanoseconds faster
than PLAs at the same power level and
save the silicon area required to program
and verify the second array. It turns out
that the flexibility of a programmable-OR
array is not required for most PLD ap­
plications, but it can be useful for com­
plex state-machine and sequencer applica­
tions.

Because of the long history of PLAs,
their nomenclature can be a little confus­
ing. Early vendors of user-programmable
PLAs called their products FPLAs to
highlight their "field programmability"
and to distinguish FPLAs from factory
mask-programmed PLAs. Just as ROMs
and PROMs could be easily distinguished,
so could PLAs and FPLAs. However,
since most of the PLAs offered today are
programmed by the customer, many ven­
dors have dropped the F prefix and sim­
ply call them PLAs. Furthermore, PLAs
designed for sequencer applications are
called PLSs (programmable logic se­
quencers).

PAL Devices
Figure 3 shows the programmable­
AND/fixed-O R array structure of a PAL.
As with the PLA, having the AND array
programmable lets the user program only
the desired input combinations. But fix­
ing the OR array requires that certain
product lines be tied to specific outputs­
typically, eight product lines per output.

Many people use PAL and PLD synony­
mously. Several PLD vendors add an E
prefix to PLD, to come up with EPLD,

which signifies ultraviolet erasable PLDs.
Just as there are PROMs and EPROMs.
now there are PLDs and EPLDs.

The name HAL (hard array logic),
refers to mask-programmed, or ROM,
versions of PAL devices. If the volume of
devices needed were large, converting a
design to a HAL might be appropriate
once the design is thoroughly debugged
with the PAL.

While all PAL devices are characterized
by a programmable-ANDlfixed-OR array
structure, there is a whole line of PAL
devices with different options. They come
with varying numbers of inputs and out­
puts. They might have feedback paths
from the output back to the array. Some
of these pins can be programmable I/O

2"
PRODUCT

LINES

\

13

7

IV

" INPUTS

12 II

~ ~ 7

IV IV

.....
AND ARRAY (FIXED)

pins. They can have active-high or active­
low outputs, or the output polarity might
be programmable via an XOR gate and a
fuse. Some come with registers at their
outputs and are good for making sequen­
tial circuits. Let's look at two commonly
used PAL devices: the 16L8 and the 16R8.

The PAL16L8
One popular combinatorial PAL is the
PAL16L8 (figure 4). Notice how the pins
on the left side and bottom of the logic
diagram (pins I to 9 and pin 11) are used
for inputs and the pins on the right (pins
12 to 19) are available as outputs. Pins 12
and 19 can be used only as outputs, but
six of the outputs (pins 13 to 18) are also

(,(JIIlilllll'ti

PROM

10

~ 7 OR ARRAY
(PROGRAMMABLE I

IV ~

J

• FUS - INK CROSSPOINT CONNECTION X E L

•• FIXED CONNECTION
03 02 01 00
'--------v-----

m OUTPUTS

Figure 1: A simplified diagram of the jixed-ANDlprogrammable-OR array
structure of the PROM. Figures in this article are reprinted from Monolithic
Memories' PAL Handbook (3rd ed.) with permission from Monolithic Memories.

~ Monolithic W Memories ~ 2·705

Ell

2·706

Introduction to Programmable Array Logic

PLA
4 IN-4 OUT-16 PRODUCTS

13 10

~ ~ 7 7 ~ 7 OR ARRAY

V rv V V (PROGRAMMABLE)

~

\ J
~

AND ARRAY (PROGRAMMABLE)

x -FUSE-LINK CROSSPOINT CONNECTION

Figure 2: A simplified diagram of a PLA showing that both arrays are
programmable.

available as inputs via the feedback line
connection after the inverting output buf­
fer. This feature, called programmable
I/O, lets the user program each of these
six pins to be either an input or output.
I'll discuss programmable I/O in more
detail later on. Now the PAL16L8 part­
numbering scheme should be a little more
obvious; 16 signifies the maximum
number of potential inputs (10 dedicated
inputs and 6 programmable I/O), while 8
signifies the number of outputs and L
signifies the output type, which is active
low for this PAL part type.

Refer to the logic diagram in figure 4
and you'll see that the vertical lines run­
ning through the array, numbered 0
through 31, are the input lines. Notice that
each input or 110 pin is associated with

two input lines; one input line is connected
to the true (or noninverted) sense of the
input buffer, while the other input line is
connected to the complement (or inverted)
sense. This allows availability of both
input-signal polarities to the array.

The horizontal lines running through
the array, numbered 0 through 63, are the
product lines. You can think of each of
these product lines as an AND gate with
32 inputs, which corresponds to the total
number of input lines. Actually, both the
true and complement of every input signal
are connected via fuses to each product
line before the device is programmed.
This is the programmable-AND array in
the PAL structure. To program the array,
the user selects different combinations of

cOlltillued

~ Monolithic W Memories ~

Introduction to Programmable Array Logic

PAL
4 IN-4 OUT-16 PRODUCTS

12 10

~ 7 , 7 7 OR ARRAY

IV V IV IV (FIXED)
~

\ J
V'

AND ARRAY (PROGRAMMABLE)

-x -FUSE LINK CROSSPOINT CONNECTION

• ,FIXED CONNECTION

Figure 3: A simplified diagram showing the programmable-AND/fixed-OR arra.,>,
structure of a PAL device.

input signals by disconnecting, via the
blown fuse, the unwanted input signals in
a product line. In total, 2048 fuses are
available in this PAL device (64 product
lines by 32 input lines).

Notice that each output pin has eight
product lines associated with it. The lower
seven product lines of each group are
summed at the OR gate, while the upper
product line is connected to the inverting
output buffer. The lower seven product
lines and the OR gate provide the sum­
of-products logic power for the PAL
device. The OR gate determines whether
any of the product lines are active, or true,
and then the output buffer inverts the
signal from the OR gate for output. Note
that a product line with all fuses left in­
tact will not affect the sum at the OR gate,

since the logical result of each input
ANDed with its complement is false.

Programmable 110
This upper product line associated with
each output controls the three-state logic
in the output huffer. When this product
line is active, or true, the output is enabled
and the sum-of-products logic determines
the output state. However, when this prod­
uct line is inactive, or false, the output is
disabled with the three-state buffer in the
high-impedance state. This lets the out­
put pin drive a three-state bus just like a
74S240 octal buffer. Furthermore, since
most PAL devices feature an output drive
capability of 24 milliamperes, they are
quite handy for bus interfacing.

COlllillllcd

~ Monolithic W Memories ~

EJI

2·707

I

o 1 2 3

0

1
3
4
5
6
7

~

'''"'' ~: S. NOTE: 10
LOWER 7 H

8 P
LINE

M

'" I
o

GO TO 13
OR GATE I;
3

L

INPU~ 16
17
18

UFFER 19
20
21
22
23

4
..
~

24
25
26

~~
29

1~
5 ;;,

32
33

Ii
37
38
39

6 L

40
41
42

H
45
46
47

7
.2

48
49
so
~~
53
54
55

8 ::>
56
57
58
59
60
61

U
9 -:>

Introduction to Programmable Array Logic

INPUT LINES (0-31)

4567 8 91011 12131415 16171819 20212223 24252627 28293031

~
PIN
NUMB

19
ERS

<t-
__ THREE-STATE PRODUCT LINE

4567 891011 12131415 16171819 20212223 24252627 28293031

~7-WIDEORG ATE

'" 18

"-LINVERTI NG
STATE THREE-

<: OUTPUT

\.FEEDBBA~:F~: TH

~
17

~
16

~
IS

~
14

~
13

~

~ 12

~
11

I

0 1 2 3

I 'O"'::_~E_s_~_I~_~_~ __ ~
Figure 4: The actual logic diagram of the combinatorial PAU6L8. The fuse links are not sholl'n so that (/ logic designer
may place an X at those point.\' where a fuse should be left illfact.

2·708 ~ Monolithic WMemorles ~

Introduction to Programmable Array Logic

The three-state product line, along with
the feedback path on six of the outputs,
makes the programmable 110 feature
work. The pin is an input to the AND ar­
ray when all the fuses in the three-state

I

LOCK~
0

1
3
4
5
6
7

~

9
S 10

PR DoueT g f
I

BU

'" '" I
o

'" w
z
::::;

I­
U
:J
Cl
o
a:
"-

LINES 13
14
15

J
2

NPU~ 16
17
18

FFER 19
20
21

22
23

4 ..
2

24
25
26
27
28
29
30
31

5 ..
.2

32
33
34
35
36
37
38
39

6
~

40
41
42
43
44
45
46
47

7 >
48
49
50
51
52
53
54
55

8 ":)

56
57
58
59
60
61
62
63

9 =>

01 23 4567 891011

enable product line are left intact. while
the pin is an output when all the fuses are
programmed. Note that a product line will
always be true, regardless of input com­
binations, when all fuses are pro-

INPUT LINES 10-31)

12131415 16171819 20212223 24252627 28293031

o I 2 3 4 5 6 7 8 9 10 II 12 13 1415 16171819 20 ZI 2223 24252627 28293031
NOTE FUSE LINKS

NOT SHOWN

J-o.

J-o.

grammed. The programmable I/O feature
lets the user allocate pins for input or out­
put as required by the application.

An even higher level of flexibility i~
possible if you let the logic in the product

PIN
NUMBER

.......

~~ ./

<
0

IS-WIDE FLIP-

~
OR GATE

~
.......

'\ REGISTER
FEEDBACK INVERTING > a
BUFFER THREE -

<- STATE
OUTPUT
BUFFER

~

A ./

> a

So.

~ "" A ./

> a

<

.......
-;.. ./

~ ~ > a

~

,....

~

~
./

"
~

~
./

> a

<-
J-oo

q~
./

<:: ~
"2 OUTP UT ENABLE

Figure 5: 77le actual logic diagram oj the PAU6R8. Notice the D-t.\pe flip-flops lit the olitpl/tS.

~ Monolithic W Memories ~ 2·709

2·710

Introduction to Programmable Array Logic

line determine the pin's direction. This is
done by programming a condition in the
product line for which the pin will be an
output. You can use this feature to allocate
available pins for 110 functions or to pro­
vide bidirectional transfer for operations
such as shifting and rotating data.

The PALl6L8 is used in applications
such as complex decoders. encoders,
multiplexers. comparators, and replace­
ment of SSIIMSI random logic. Another
way of viewing this is that the PALl6L8
programmable AND array contains 2048
fuses.)ou can program these fuses to
create almost any configuration of up to
250 AND. OR. and inverter gates, which
is roughly 250 equivalent gates.

PALs with Registered Outputs
and Feedback
The structure of registered PALs is similar
to that of the PALl6L8 except for the ad­
dition of the registered outputs. In the
PALl6R8, each of the eight registers is ac­
tually a D (data) flip-flop that is clocked
on the rising edge (see figure 5). The
clock signal (pin I) is shared by all eight
flip-flops. Each OR gate sums eight prod­
uct lines and is the D input to the flip-flop.
The Q output from the flip-flop is avail­
able both for feedback into the PAL array
and for output from the device. Either
polarity of the feedback signal is available.

This feedback lets the PAL device
"remember" the previous state, and it can
alter its function based upon that state.
Thus, registered PAL devices are ideal for
implementing single-chip state sequencers
and state machines.

Conclusion
PROMs are limited in the number of in­
puts they can handle, since every input
combination is made available. They are
useful for applications that require a large
number of product terms but few inputs.

PLAs are the most flexible of the
AND/OR array PLDs with both arrays
programmable. This flexibility makes
them slower, since the signal has to prop­
agate through two programmable arrays.
PAL devices with their programmable­
AND/fixed-OR array structure can ac­
commodate more inputs than PROMs
because, statistically, not every input com­
bination is required. With only one array
programmable, they are faster than PLAs.

PAL devices with registered outputs are
particularly useful for building sequential
circuits. PAL devices also can provide
feedback, altering the function of a given
state based on the condition of the im­
mediately prior state. The overriding ad­
vantage of all PLDs, however, is the in­
tegration of multiple functions onto a
single programmed circuit to save board
space and reduce chip count and cost. •

~ Monolithic W Memories ~

Logical Alternatives in
Supermini Design

lJecoming the technology of choice in superminicomputer
iesign, programmable array logic mixes with alternative
[Jevices to meet desi~n constraints.

-T~'
- .

II II

by Bradford S. Kitson and
B. Joshua Rosen

r--

T
T I

Programmable array logic devices have been a
driving force behind the latest generation of 32-bit
superminicomputer designs. These supermini­
computers range from redesigns of existing archi­
tectures that reduce cost or overcome packaging
limitations, to designs requiring ultrafast turn­
around, to high performance architectures speci­
fied to take full advantage of such devices.

Sup.erminicomputers designed with program­
mable array logic (PAL®) include the VAX~111730

Bradford S. Kitson is section manager in product
planning and applications for programmable IOl!,ic
devices at Advanced Micro Devices, 901 Thompson
PI, Sunnyvale, CA 94088. He holds a BS in electrical
engineerinl!, and computer science from the University
of California at Berkeley.

B. Joshua Rosen is manager of processor desil!,n at
Dataflow Systems Corp, 42 Nagol!, Park, Acton, MA
01720. He was manager of processor development at
Computervision Corp, Bedford, MA, when this article
was written. He holds a BA in physics from Lawrence
University and an MSEE from Northwestern
University.

-

-
...
T J
I .. IT .. T
IT II J I

from Digital Equipment Corp, the MV/8000 and
MV/HXXX) from Data General, and Computervision's
APU· (analytic processing unit). A reimplementa­
tion of the original v AX-I 11780, the VAX-I 11730 sup­
piies 25070 of the performance in 10070 of the board
space. Programmable array logic was chosen by
the MV /8000 designers to allow the shortest possible
design cycle and to catch up with their competitors.
The MV /10000 upgrades performance of the
MV/8000. The Computervision APU was designed
for high performance with PAL devices in mind,
and provides excellent examples of how to use such
devices to their fullest.

Logic Design Alternatives
Although by no means the only option, pro­

grammable array logic has become the technology
of choice in superminicomputer design. Logic
design alternatives (Fig 1) include standard prod­
ucts (fixed-function devices), semi-custom
(programmable logic, gate arrays, and standard
cells), and fully-custom logic devices. In supermini­
computer design, the primary alternatives are stan­
dard products, gate arrays, and PAL devices. The
best choice for any given function depends upon
the design alternative capabilities, the design con­
straints, and the function actually being
implemented.

--

Reprinted with pormission of COMPUTER DESIGN

~ Monolithic [R1;1J Memories l1 2·711

Logical Alternatives in Supermini Design

Fig 1 Basic categories of digital logic present designers "ith
trade-off opportunities. Standard products fit where cost is a
major concern; custom and semio{:ustom products can be used
where high diversity is desirable.

Via fuse programming, a PAL device allows the
designer to construct a custom device or group of
devices that precisely implement a desired func­
tion. In contrast, fixed-function transistor­
transistor logic (TIL) small scale integration!
medium scale integration (SSIIMSI) alternatives
seldom seem to fit any application in the desired
way. Thus, the SSIIMSI designer usually pays
penalties via extra logic levels in the critical path
and an increased package count. Gate arrays allow
custom devices to be created via mask program­
ming. However, designers using a gate array mmt
finalize architecture early in the design cycle. Any
errors will require a mask change, which can take
months.

In most cases, the best choice is a combination of
the alternatives and probably includes some
memory as well. Typically, the six basic design con­
straints are performance (speed), cost, density
(packaging), power dissipation, reliability, and
design turnaround. Assigning a priority to these
constraints will usually define the logic alternative
that a machine is based on. Actual implementation
trade-offs are made at the function level. The three
basic functional portions of a design are data path,
control path, and interface.

Standard Products Have Their Place
Standard products are defined as devices created

for a wide market. Examples of standard products
are TTL SSIIMSI, fixed instruction set metal oxide
semiconductor (MOS) microprocessors, and micro­
programmable large scale integration (LSI) building
blocks. These devices are usually multiple sourced
and produced in high volume, resulting in lower
individual devic(; costs. In a design where cost is the
main concern, and performance, power dissipation,
density, and design turnaround are of little or no
importance, standard products are probably the
best choice. In a design such as a superminicom-

puter, where these other considerations have a high
priority, inherent disadvantages limit standard
product use.

While SSIIMSI devices offer fast individual gates,
on a system level their density, power dissipation,
and reliability characteristics are not as good as
those of the alternatives. In addition, design turn­
around characteristics are inadequate because
changes usually require printed circuit (PC) boards
to be laid out again. In most superminicomputers,
therefore, SSIIMSI gates are used only in selected
critical path functions that require one or two gate
levels (at the expense of density and power dissipa­
tion), and in interface applications, such as bus
buffers, latches, registers, and transceivers.

Standard LSI products (mostly bipolar) offer
exceptional performance, power dissipation, density,
and reliability characteristics, but their inflexible
architectures limit their application range. Super­
minicomputer designers rely on proprietary, highly
complex architectures to differentiate their designs
from those of their competitors, and LSI imposes
an architecture. Therefore, applications are limited
to general purpose, well-defined functions in the
data path, such as parallel multipliers and arith­
metic logic units (ALUS) that can benefit from their
high performance characteristics.

Gate Arrays Are "Cast in Concrete"
Semi-custom gate arrays are defined by inte­

grated circuit (IC) manufacturers as large arrays of
unconnected gates. End users specify how gates are
interconnected with actual interconnection occurring
at the metal-mask layer of the IC process. The main
advantages of gate arrays are high density and the
ability to customize a design, while primary dis­
advantages are cost and design turnaround. Each
custom device is single sourced and low volume;
therefore they are not cost-effective unless the
application is density limited or the volume is very
high. Gate arrays can adversely affect design turn­
around because the system designer must design
both the IC and the system in which the IC is used.
In addition, any change in the gate array requires
new masks and a delay for each mask iteration.

By using gate arrays only where the design can be
defined early, designers minimize these turnaround
disadvantages. They then hedge their bets by sur­
rounding the gate arrays with logic that can correct
any design bug(s) discovered l~ter on. As in LSI,
what is "cast in concrete" is usually the data path.
However, gate arrays allow more of the data path
to be integrated because the device can be optimized
for specific design requirements. A proprietary
l6-bit ALU slice might be a typical gate array.

Gate arrays are also used to interface multiple
onboard buses together as data path "glue."
Control-path and interface applications, however,
tend to be too likely to change. Therefore, control

2·712 ~ Monolithic W Memories ~

Logical Alternatives in Supermini Design

path functions are based on implementation tech­
niques such as writable-control-store (\Yes). Inter­
face applications frequently require changes
because of the need to interface one designer's
board to another's. Consider the critical timing
between a cache, an instruction fetching unit, and
multiple register-files. The exception handling
capability required for typical operations, such as a
cache miss, can be an indeterminant problem
affecting all of the above-mentioned functional
units in the system. Should a bug occur in the cache
unit, the interface section of all other units will have
to be changed to accommodate the correction.

PAL Structure Paves the Data Path
Combining simplicity and flexibility, the basic

PAL structure is a fuse-programmable AND gate
array that drives fixed connection OR gates, allow­
ing logic to be implemented in sum-of-products
(AND-OR) Boolean form.

By selectively blowing the appropriate fuses, a
PAL device can implement any logic function as
long as the number of inputs or AND gates required
does not exceed the number provided in the device

chosen. In the AmPALl6R4, for example, the true
and complement version of each of the 16 inputs is
connected via fuses to each of the 64 AND gates in
the device (Fig 2). PAL devices provide additional
features, such as programmable input/output (110)
pins and registered outputs with internal feedback
that further enhance their ability to implement
logic functions efficiently. Programmable I/Os are.
especially useful for trading off the number of
device outputs for inputs to fit the exact number
required by the logic functions being implemented.
Internal registered feedback is desirable when
implementing complex state machine designs.

Programmable logic devices, like gate array, are
semi-custom devices. Created by the Ie manufac­
turer, they are alterable by fuse programming for a
specific application. Designed specifically for logic­
oriented applications, PAL devices enable designers
to create custom devices with fast turnaround time.
PAL devi.ces compare favorably to alternative
devices in terms of performance, cost, density,
power dissipation, and reliability. They fall behind
gate arrays and LSI in density and power dissipa­
tion, and behind SS/IMSI in individual device cost.

;X>--t---+--i<:=>! INPUT/OUTPUT

INPUTS

CP

:»----p----+--jcc:;>! INPUT/OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

Fig 2. As a fuse programmable AND
gate array that drives fixed OR gates,
programmable array logic im­
plements logic in sum-of.product
Boolean forms.

INPUT/OUTPUT

~--.---. ;'O--....,..---K::>I INPUT/OUTPUT

~ Monolithic W Memories ~ 2·713

Logical Alternath.fes in Supermini Design

(Note however, that PAL devices are cheaper on a
system basis.)

Performance and density characteristics of PAL
devices have led to significant applications in the
data paths of superminis where they are used along
with LSI and/or gate arrays. These devices serve to
"glue" the LSI and the "cast in concrete" gate
arrays into the system. If necessary, the design turn
around capability that they display can be used to
optimize the data path architecture and, in some
cases, fix a bug in a gate array by reprogramming the
PAL devices around it. Typical data path functions
for the devices include barrel shifters, masking,
code conversion, and multiple bus interface.

Design turnaround becomes especially beneficial
in the control path and interface portions of a
design. Most control path functions are highly ran­
dom and are prone to change and/or error While
WCS allows design changes to be made by rewriting
microcode, PAL devices permit changes that cannot
be made in microcode, or would adversely affect
system performance. For instance, one supermini­
computer manufacturer has established the rule
that a gate array can be used in the control path
only if eight or more PAL devices are necessary for
the same function. In interface design, from a den­
sity standpoint, PAL devices allow the interface to
merge with the data path "glue" function. Since
the interface is just as likely to change as the

8 LSBs

PAL

Fig 3 Multiplier calculates 56-bit x 56-bit product. Partial
product generation logic uses seven 8 x 8 slices to form 8 x
56·blt multiplication array. Carry·save adders implement
3·to·2 counting techniques to form two operands that are
summed In a lookahead "LV.

control path, but without the benefit of wes, design
turnaround becomes a factor. If one board's
designer needs to change the interface, the designs
of many other boards are impacted. Updates on all
boards can be easily made by reprogramming one
or more PAL devices. These devices can also pro­
vide the drive capability required by this appli­
cation area.

Designing with PAL Devices in Mind
Trade-offs among PAL devices and other digital

logic alternatives were key factors in Computervi­
sion's APU design. In conjunction with standard
products, such as ALUs, LSI multipliers, and
memory devices, PAL devices were used to create a
patented architecture not feasible in standard TTL
SSI/MSI.

Designed as a very high speed 32-bit supermini­
computer for engineering applications, the Com­
putervision APU is twice as fast as competitive
designs, yet occupies the same board space. Its
designers, instead of merely replacing TTL SSI/MSI
with PAL devices, used PAL as customizable logic
building blocks. This allowed them to implement
powerful logic functions in a minimum of space.

The APU processor board set is divided into four
modules. The parser/sequencer contains an instruc­
tion processor that fetches and decodes instruc­
tions in parallel with the execution unit. The
control processor performs address and integer
computations and the floating point pipe (FPP) per­
forms both scalar and vector floating point opera­
tions. The cache/address translation unit contains
a 256-slot area page table entry cache and a
16K-byte memory cache.

Approximately 25070 of the chips in the APU board
set are in PAL. Since the APU is the first implemen­
tation of the new CPU architecture, many design
aspects are subject to change as the architecture
evolves. PAL devices permit designers to rapidly
modify hardware to fit the architecture needs. and
to implement feature and performance enhance­
ments with minimal impact on the development
schedule.

Ability to generate a very large number of custom
I.Cs (over 200 different PAL codes are used in the
APU), significantly reduces the processor's size
while increasing overall performance. This means
that, although the APU and Digital Equipment
Corp's VAX-II 1750, a gate array-based machine,
consume exactly the same amount of board space,
the APU is more than twice as fast. In fact, the
APU'S Fortran performance is substantially faster
than that of the VAX-111780, a machine that con­
sumes 5.2 tim'es as much board space as the APU.

Designed as a high speed arithmetic extension to
the APU execution engine, the APU FPP, unlike
comparable machines, is an integral part of the

2·714 ~ Monollthlo W Memories ~

Logical Alternatives in Supermini Design

internal architecture and not an optional add-on.
As a result, the FPP not only accelerates scalar and
vector floating point arithmetic, but also performs
byte, word, double-word, and quad-word string
operations. In addition, it serves to enhance the
performance of important non floating point
instructions such as Procedure Call and Return. A
total of 79 PAL devices are used for both control­
and data-path applications on the FPP board.

Counter Solves Multiplication
Problem

The heart of the FPP is the multiplier section
(Fig 3). Double-precision floating point multiplica­
tion requires the calculation of a 56-bit x 56-bit
product. Unfortunately, 56 x 56 parallel multipliers
do not exist on silicon. From a cost/performance
standpoint, the best solution is to use a number of
small multipliers to build an intermediate sized par­
allel multiplier and then produce a large product
(56 x 56) in multiple cycles.

Partial product generator FPP logic uses seven
Am25S558 8 x 8 multiplier slices to implement an 8 x
56-bit multiplication array. Each multiplier chip
produces a 16-bit product. In general, the 8 most
significant bits (MSBS) of each partial product gen­
erator must be added to the 8 least significant bits

INPUIS OUIPUIS
000 00
001 01

FALUo

010 01
011 10
100 01
101 10
110 10
III 11

lal

f'ig4 Carry-save adders use 3-to-2
counting techniques to recode any
three equally weighted bits into a
2-bit field (a). Sixteen PAL unils
form triple 3-to-2 counters (b) to
reduce the three multiplication
operands to two intermediate
results. FALUI

PAl

PBI

(LSBs) of the next higher slice to generate the full
64-bit partial product. Exceptions are the 8 MSBs
and LSBS.

This technique also requires the ability to accu­
mulate partial products with the partial products
from previous cycles. Thus, each cycle must be
accompanied by two additions: the partial product
summation and the intermediate product accumu­
lation. While this can be done by following the
multipliers with two levels of lookahead adders,
usually 74S1815, the resulting nanocycle time is
approximately three times longer than the partial
product generation time of the 8 x 8 multipliers.
Modifying this scheme, however, by adding reg­
isters between each level of logic, the pipeli.ne
multiplier reduces the nanocycle time to near the
propagation delay time of the multiplier chips plus
the clock to output time of the multiplier register
plus the setup time of the intermediate result reg­
ister. This scheme has two disadvantages: increased
pipe latency, caused by the two extra levels of
pipelining, and a high parts count.

Still another technique involves replacing one
level of the pipe and one level of lookahead adders
with carry-save adders between the partial product
generators and the pipeline registers. Carry-save
adders are used to implement a technique that is
called 3-to-2 counting. As seen in Fig 4(a), any

TBii

fA!

FBI

FAz

FBz

FA]

'Ibl

~ Monolithic W Memories ~ 2·715

Ell

Logical Alternatives in Supermini Design

Without adding pipe latency, the APU
is able to accumulate partial products
at a rate of 8 x 56 bits every 112 ns.

combination of 3 equally weighted bits can be
recoded into a 2-bit field.

This makes it possible to reduce the three oper­
ands generated by the multiplication process (high
and low partial products and 64-bit intermediate
product) into only two operands which may then
be summed together in a single look ahead ALU.
The 3-to-2 recoding requires no-carry propagate
logic and is therefore very fast. Only one level of
pipelining is required because of the 3-to-2
counter's speed, resulting in both a reduced parts
count and a reduced pipe latency.

In the APU floating point engine, 16 AmPAL16R6S,
programmed as triple 3-to-2 counters, are used to
reduce the three multiplication operands to two
intermediate results [Fig 4(b)]. The registered PAL
outputs are connected to the input buses of the
Mantissa ALU that is also used for floating point
addition and subtraction. The Mantissa ALU then
calculates the next intermediate product in parallel
with the partial products calculations occurring in
the 8 x 8 multipliers. This intermediate product and
the new partial products are recoded by the 3-to-2
counter PAL devices to form the next pair of inter­
mediate results. This process continues until the
complete 56 x 56 product is generated. Thus, with­
out adding pipe latency, the APU is able to accumu­
late partial products at a rate of 8 x 56 bits every
112 ns, which coincides with the basic nanocycle
machine time.

Barrel Shift, a 3·Level
Implementation

The APU'S barrel shifter performs left shift, right
shift, and rotate operations of ° to 63 bits in a
single microcyc\e. Used mainly for floating point
prescale and normalize operations, the barrel
shifter (Fig 5) is implemented in three stages: the
word rotater, nibble shifter, and bit shift and mask
logic. It is controlled by associated prescale,
leading zero detect, and mask control logic.

Prescale logic converts the signed difference pro­
duced by the exponent arithmetic units based on
the comparisons of the two operand exponents,
into an absolute shift distance. This shift distance
is then used to right shift (prescale) the smaller
operand Mantissa of a floating point add or sub­
tract operation. The leading zero detect logic deter­
mines the left shift distance required to produce a
left-justified (normalized) result. Mask control
logic converts rotated data to shifted data by mask­
ing off the appropriate leading or trailing bits to

implement right or left shifts. These three sections
are implemented in PAL.

Implementing the 3-level, 64-bit barrel shifter in
MSI requires the use of Am25SlO 4-bit shifters. The
first level is the word rotater which performs a cir­
cular rotate of 0, 16,32 or 48 bits. Although imple­
mentation is simple, the MSI solution requires 16
packages. The second level is the nibble shifter,
essentially identical to the word rotater but wired
to rotate 0, 4, 8, or 12 bits. The final barrel shifter
stage requires not only bit rotate but also leading
and trailing bit masking and sticky bit computation
(ie, the logical OR of the masked-out bits). An MSI
solution requires not only the 16 packages pf
AM25SI0S, used in each preceding level, but also 16
AND gate packages for masking, with another 16
AND packages for the sticky bit computation. Con­
trol logic for the mask operation requires as much
logic as the entire shift path. A more practical solu­
tion consists of building separate left and right

EXPONENT
ALU OUTPUT

64 BIT
INPUT DATA

64 BIT
OUTPUT DATA

Hg 5 Implementation of 64-bit "Nearest Neighbor Shifter"
is in three stages: word rotater, nibble shifter. and bit shift and
mask logic. Control derives from associated prescale, leading
lero detect, and mask control logic.

2·716 ~ Monolithic mLij] Memories ~

Logical Alternatives in Supermini Design

SHrTl

DAO

DA;
ItAu

DAj

itA!

ItAI

Fij(6 Word rolalion, firsl lenl of 3-Ie\eI ,hiflt'r, l'on,i,l,
of eighl PAL units, each programmed as Iwo 4-bil rolators_
II performs a l'ircular rotate of O. 16. 32. or 48 bils.

-C-::---{>
~-{>

~--{>

li;-V

OJ

06

Fij(7 :'iibble ,hifler make, lip Sl'l'ond Il'HI of barn'l
shifler, II is wired to rotate II. 4, 8. or 12 bil,.

Wi

Wi

shifter~, 48 package~ apiece, and not implementing
a sticky bit at all.

Implemented in PAL, a 64-bi~ rotater and shifter
with sticky bit computation requires considerably
fewer packages than a unidirectional \ISI ~hifter.
The word rotater consists of dght idelllical PAL
devices programmed as two 4-bit rotaters/package
(Fig 6). The nibhk shifter require~ four Am25SIOs
and eight PAL devices progran1med as 6-bit wide,
4-place shifter~ (Fig 7). The bit shift and mask logic
requires 16 PAL devices in the data path and two
PAL devices in the control path. (Fig 8).

To implement the masking function required for
shifting, a technique called "Nearest Neighbor
Shifting" (U:S. patent pending, Compu[ervision
Corp) is used. Each shift and mask PAL device has
an enable input from one mask control PAL unit.
In addition, each shift and mask PAL device is also

~ Monolithic: W Memories l1

E1I

2·717

2·718

Logical Alternatives in Supermini Design

~Hfru·-v

LSHff ~---{:>r--

~-~------~4+~~

01 --{>_--..--l-Fl=H=t=:i...J
DI --{>~ ___ L---'LJ-t-t~t;--i ~

~--t>--+++-HR~+=LJ

Fig 8 Hi! shift and mask logic for barrel shifter requires 16
PAL devices in the data path and two PAL devices in the
control path. Each shift and mask PAL device has an enable
input from one mask control PAL device and is connected to
enable inputs of its left and right neighbors. The M-bit
masking operation requires on I) 16 control lines.

MASK
CONTROL 1-----.-1

PAL

Fig I) "'Oeare~t 'Ol"iJ,(hhnr" inten'onnectinn is IIsed tn
implement maskinJ,(function fnr shiftinJ,(. A mask cnntrol 1'\\

dl',ke determines if all 4 hits are tn he masked; enahles frnm
thl' adjan'nt slice determine if the I'H devin' is at shift
houndar).

connected to the enable inputs from its left and
right-hand neighbors (Fig 9). The mask control
PAL input determines if all 4 bits from the slice
should be masked off. Enables from the adjacent
slice determine if a PAL unit is at a shift boundary.
If only one of the neighboring slices is disabled, the
shift and mask PAL unit masks off from 0 to 3 of
the bits adjacent to the disabled slice, depending on
the bit-rotation distance. In this way, the 64-bit
masking operation can be implemented with only
16 control lines as opposed to at least 64 for an
SSI/\ISI solution.

In addition to performing the final shift and
mask operation, the bit-shifter PAL unit also com­
putes the logical OR of the masked-out bits at each
slice position. The~e outputs are then logically
oRed to generate a sticky bit. The extra hardware
required is less than two SSI packages. The entire
PAL barrel shifter requires 38 devices to implement
64-bit rotation, left shifting, right shifting, and
sticky bit accumulation. An MSI-based left/right
shifter, without sticky bit computation, requires a
minimum of 96 parts. In addition, the logic re­
quired for implementing the prescalc and normal­
ize operations is significantly reduced through the
~se of PAL devices.

~ Monolithic W Memories ~

New PAL® Device Architecture
Extends Design Flexibility CP-155

Introduction
The introduction of Programmable Array Logic (PAL®) devices
by Monolithic Memories in the late 1970s marked the beginning
of rapid growth for the programmable logic device market. By
offering fast turn development of user-defined circuit functions
and significant package count reduction, programmable logic
devices (PLDs) solved such system design problems as time to
market, system size and cost, and the cost of making design
changes.

First generation PLDs, such as the PAL 16LB, PAL 16R4, PAL 16R6,
and PAL 16RB, offer relatively simple, single-function architec­
tures. Designers choose either devices with combinatorial out­
puts, registered outputs, or a combination of both, to solve their
specific design tasks.

While simple architectures still offer the fastest operating
speeds, more universal architectures have emerged among
second generation PAL devices, which allow more user defini­
tion of the device configuration. The universal "macrocell"
approach allows users to reduce the number of different parts in
a system and enjoy considerable flexibility in defining the final
PLD architecture.

All of these devices enable logic designers to combine the tasks
of several SSI devices into a single PLD. System functions in the
form of small state machines or simple data flow machines are
possible in a single PLD. But the ability of designers to build
significant "systems-on-a-chip" has been somewhat hampered
either by a lack of device flexibility or the inability to make full
use of the logic power of the PLD. This has kept the benefits of
PLDs inaccessible to some designers. The'purpose of this paper
is to describe some of the key features of a new PAL device
which opens up a whole range of possibilities by removing many
of these limitations.

The PAL32VX1 0
The new PAL32VX10 takes the synchronous logic approach
used by the PAL22V10. Judicious improvements to the macro­
cell provide logic power far greater than anything currently
available in 24 pins. This is accomplished while maintaining a 25-
ns propagation delay (tPD) with only 1 BO-mA current drain.

The PAL32VX10 shares some of the features of the PAL22V10,
such as varied product term distribution, and can emulate any
PAL22V10 function. It is therefore appropriate to describe the
individual features of the PAL32VX10 by contrasting them with
the corresponding more limited options in the PAL22V10. The
key features to be discussed are:

1) Dual Feedback
2) Programmable Flip-Flops
3) Register Bypass Scheme

After discussing these features we can look at the overall power
provided by the integration of these features into a single PLD.

Adapted from a paper presented at Northconl86

PAL'" is a registered trademark of Monolithic Memories.

Dual Feedback
The feedback scheme used in the PAL22V10 (Figure 1a) pro­
vides two sources for the feedback signal, only one of which is
used at any given time. When the flip-flop is used, the feedback
signal is taken from the output of the flip-flop itself; when the
flip-flop is bypassed, the feedback signal comes from the output
pin, allowing for bidirectional signal flow.

There are two basic limitations in this approach. The first is the
fact that registered outputs cannot be made bidirectional. One
could add a separate feature allowing such an option (Figure
1 b), but such an improvement by itself provides an incremental
benefit. The second limitation, which is substantial from the Ell
standpoint of device utilization, is the fact that if an output is
needed as an input, the output macrocell for that pin is com-
pletely wasted.

(a) As It Currently Exists

(b) A Possible, But Marginal Improvement

Figure 1. PAL22V10 Feedback Selection Scheme

The approach taken in the PAL32VX10 is to provide two com­
pletely independent feedback lines: one from the flip-flop, and
one from the output pin (Figure 2). That this solves the first
limitation is obvious; the output can always be disabled and used
as an input without interfering with the signal being fed back
from the flip-flop.

~ Monolithic m Memories ~ 2·719

New PAL® Device Architecture Extends Design Flexibility

Figure 2. PAL32VX10 Dual Feedback Scheme

But the benefits go far beyond that. Using the output pin per­
manently as an input does not require that the macrocell be
wasted: the flip-flop can be "buried", allowing internal state
machines to be built. This removes the second limitation of the
PAL22V10 scheme. Alternatively, the macrocell can be used as
an input register by feeding the input into the flip-flop, and then
using the flip-flop feedback to drive other logic in the device.
This same approach can also be used when the pin is used as an
output, allowing the flip-flop to be loaded directly from its output
pin.

Thus the thirty-two inputs to the array consist of twelve dedi­
cated inputs, ten output pin feedback inputs, and ten flip-flop
feedback inputs.

Programmable Flip-Flops
PAL devices have traditionally been equipped with D-type flip­
flops for data synchronization and state machines. D-type flip­
flops work quite well for many state machines, but in many other
cases, J-K or T-type flip-flops would allow for implementation of
more complex state machines. Yet offering alternative products
with other dedicated types of flip-flops would unnecessarily
overpopulate the product family, complicating the designer's
device selection and inventory tasks.

The ideal solution is to have a single device which can have each
flip-flop individually programmed to define its type. And, as will
be seen, it is sometimes beneficial to be able to change types "on
the fly". These capabilities have been provided in the PAL32VX1 O.

T-type flip-flops
As an example, the classic application involving T-type flip-flops
is in the design of binary counters. When a D-type flip-flop is
used, the Boolean equations have to account for each time the
device output is to be a logic 1. This means that the nth bit of the
counter requires n product terms:

Qn+:= /Qn*Qn-1* .. .*Q1
+ Qn'/Q1
+ Qn'/Q2

+ Qn'/Qn-1

By using a T-type flip-flop, one only has to determine when the
flip-flop output should toggle. The nth bit toggles only when all
lower order bits are "1 ". This can be expressed as

"Qn should HOLD UNLESS all lower order bits are HI."

The UNLESS operator can be implemented by an Exclusive-OR
(XOR) gate:

Qn+:= On :+: (Qn-1·Qn-2· .. .*Q1)

This requires two product terms (one on each input of the the
XOR gate), regardless of which bit of the counter is being
defined.

So by providing an XOR gate with Q fed back to one input, the
combination XOR gate/D-type flip-flop acts as a T-type flip-flop.
A sum of products on the other XOR input provides the Toggle
signal.

J-K flip-flops
The classic formula for a J-K flip-flop is

Q+ := J'/Q + /K·Q.

This expression can be directly implemented in a D-type flip­
flop, providing /K fits within the available product terms. If this is
not the case, or if finding /K is inconvenient, another formulation
is needed. We know that by the definition of a J-K flip-flop,

Q should HOLD UNLESS:
the output is a and we SET to 1;
the output is 1 and we RESET to 0;
we are toggling (JK = 11).

The above conditions for "not holding" can be plugged into a
Karnaugh map and minimized to give the following expression:

Q+ := Q :+: (J' /Q + K·Q).

Here, with the help of the XOR gate, a J-K flip-flop is imple­
mented directly in terms of J and K, instead of /K. Again, this is
done by feeding Q to one input of the XOR gate, and by ~Ring
several product terms into the other XOR input. These terms are
divided between J terms and K terms; J terms are ANDed with
/Q, while K terms are ANDed with Q.

So we can implement J-K, T, and D-type flip-flops by using the
XOR gate in combination with a D-type flip-flop. By setting one
XOR input to Q,/Q, 1, ora, wecan implementJ-K,/J-/K, J-/K, or
/J-K flip-flops. The other XOR input provides a sum of products
for J and K. Of course, since S-R flip-flops are a subset of J-K
flip-flops, they can be implemented in the same fashion.

Reconfigurable flip-flops
This is a step in the right direction, but one can do more.
Consider the design of a loadable counter. This is a situation
where a T-type flip-flop is preferred when counting, but aD-type
is better when loading. A T-type configuration can be converted
to D-type, however, if the LOAD control input is used to disable
the XOR input containing Q.

Thus by making the XOR input a product term, instead of a
dedicated single input, the flip-flop type can be changed on the
fly to allow each particular function to be implemented as effi­
ciently as possible. Note that PLDs which provide programma­
ble flip-flops without the XOR control product term cannot have
their flip-flops altered once configured. So, for instance, adding
a LOAD feature to a counter then requires twice as many extra
product terms as required with a reconfigurable flip-flop.

All of these considerations have been accommodated in the
PAL32VX10 (see Figure 3). The single XOR product term pro­
vides control of the flip-flop type, foreither permanent or recon­
figurable flip-flops. From eight to sixteen product terms are
available as 0 or T inputs, or to be divided between J and K in­
puts. Some of the possible configurations are shown in Figure 4.

2·720 ~ Monolithic m Memories ~

New PAL® Device Architecture Extends Design Flexibility

Figure 3. The PAL32VX10 Programmable Flip-Flop

EJI

D Register with liD J-K Register with liD

T Register with liD Buried Register with Dedicated Input

Figure 4. A Few Selected Flip-Flop Configurations

~ Monolithio Ilii11 Memories ~ 2·721

New PAL® Device Architecture Extends Design Flexibility

Register Bypass
The two primary second-generation PLDs, the PAL20RA 10 and
the PAL22V10, have different ways of bypassing their flip-flops.
The PAL22V10 has a single fuse which configures the output
permanently (see Figure Sa). Once the configuration is chosen, it
cannot be changed. On the other hand, the PAL20RA 10 bypasses
its flip-flop by activating both SET and RESET simultaneously
(see Figu re 5b). This can be done dynam ically, but since the SET
and RESET affect the contents of the flip-flop, one cannot, for
instance, clock data into the flip-flop, change to combinatorial,
and then change back to look at the flip-flop; the data in the
flip-flop will have been lost.

The PAL32VX10 eliminates this restriction by using a product
term to control the bypass multiplexer (see Figure 5c). While the
output is combinatorial, the flip-flop is unaffected. This makes it
possible to use the flip-flop in macrocells that are sometimes
combinatorial.

(a) The PAL22V10 Scheme

(b) The PAL20RA10 Scheme

(c) The PAL32VX10 Scheme

Figure 5. Register Bypass Schemes

The Complete Macrocell
This has not been an exhaustive description of all of the features
of the PAL32VX10 macrocell, a summary of which is shown in
Figure 6. This paper has .merely highlighted the more revolu­
tionary capabilities. The complete macrocell is shown in Figure
7. All of the elements work together to offer unparalleled flexibil­
ity, without compromising the performance of the device.

An application will serve to illustrate the power afforded by all of
these features operating in concert. It is beyond the scope of this
paper to describe the details; a brief description will suffice here.

Programmable registered or combinatorial outputs

Dual Independent feedback paths allow I/O with combinatorial
or feedback register outputs

Programmable flip-flops allow J-K, S-R, T or D types

Programmable output polarity

Register set and register reset can be asynchronous or
synchronous

Automatic register preset on power up

Varied product term distribution

Up to 16 product terms per output

Figure 6. Features of the PAL32VX10

Figure 7. The Complete PAL32VX10 Macrocell

A PDP-11 Floating-Point
Coprocessor Controller
This device monitors a PDP-11 bus for instructions that should
be sent to a coprocessor. As shown in Figure 9, it provides the
PDP instruction decode, an instruction tracking state machine
which provides various wait states for operand fetching, and
coprocessor instruction encoding. The 3-bit state machine is
not needed externally; thus it is buried, and the output pins
provide additional inputs. Reset capability and a test feature for
examining the buried flip-flops are included.

This application takes advantage of the varied product term
distribution, the buried flip-flops, and J-K, T, and D-type flip­
flops. To implement the same application without a PAL32VX10
would require:

1 PAL22V10
1 PAL16R4
1 PAL14H4

Of course, since we are talking about replacing several PAL
devices with another PAL device, the number of discrete TTL
chips that are being replaced is very large indeed.

2·722 ~ Monolithic W Memories ~

New PAL® Device Architecture Extends Design Flexibility

Summary
COPROCESSOR CONTROLLER

01 - r-~ INSTRUCTION ~ INSTRUCTION TRACKING
FLOATING

POINT

F1

F2

F3

The PAL32VX10 provides significantly increased flexibility as a
result of a few carefully placed improvements, The addition of
another feedback line, an XOR gate, and a few other enhance­
ments allows full utilization of the device. The utilization can be
further optimized through the ability to represent the desired
functions in the most compact form possible. These capabilities
combine to form the most versatile 24-pin PLD available to date.

OPCODE
DECODE

t
115-10

DATA

CONTROL

S STATE INSTRUCTION
r---

~ MACHINE ENCODE 1---

DECODE 1 i STATE ",

IFETCH RESET 115-10

PAL32VX10

Figure 8. Coprocessor Controller

1
liCK

(2)

2
11

(3)

3
12

(4)

4
13

(5)

5
14

(S)

S
15

(7) AND
LOGIC

7 ARRAY
IS

(9)

8
17

(10)

9
18

(11)

10
19

(12)

11
110

(13)

13
111

(1S)

l1 Monolithic m Memories ~

23
1/01
(27)

22
1/02
(2S)

21
1/03
(25)

20
1/04
(24)

19
1/05
(23)

18
I/OS
(21)

2·723

PROSE Architecture and
Design Methodology CP-157

Introduction
With increasing density and functionality, programmable logic
devices are being used for such specialized applications as
state machines. The PROSE (PROgrammable SEquencer)
PMS 14R21 device is the first device developed for state ma­
chine design which integrates the hardware and software as­
pects into a new design methodology. On a single device, the
PROSE architecture combines the advantages of both PROM
and PAL elements for implementing internal state sequencing
functions, and provides a powerful device for designing state
machines. These architectural features also lend themselves
easily to the requirements of software design tools (such as
PALASM@2 software) for providing an easy-to-use, high-level
state machine design syntax.

The PROSE design methodology offers high functionality and
ease of use along with the traditional advantages of program­
mable logic devices, such as instant customizability, fast turn­
around time, low development cost and reduced real estate
requirements.

State Machine
A state machine is defined as a digital logic system which tra­
verses through a sequence of states in an orderly fashion. The
state is a set of values measured at various points in the digital
system. This state value is typically stored in a set of storage
registers. A simple model of a state machine is shown in Figure 1.
It consists of three basic elements: storage registers, next
state decoder, and output decoder.

Figure 1. General Model of a State Machine

The storage registers perform the functions of storing present
state of the state machine as well as the present output infor­
mation (in which case it is also referred to as the pipeline regis­
ter). The next state decoder decodes the present state of the
machine along with the present input conditions and generates
the next state of the machine. Typically it is combinatorial logic
in PAUPLA-based state machines and is a PROM in microcoda­
ble sequential state machines.

The output decoder determines the outputs of the machine from
the present state of the machine and the input conditions. It is
not mandatory to have an output decoder as the outputs can
also be generated directly by the registers.

Adapted from a paper presented at Electro/87.

Sequential state machines are usually classified into two
types depending upon their output generation. In Mealy type
state machines, outputs are a function of the present state
and input conditions. The output decoder takes the present
state and input conditions, decodes them and generates the
outputs. In Moore type state machines, outputs are strictly a
function of the state of the machine. Thus, the Moore machine
usually requires a simpler output decoder to decode the
present state only, or none at all in a case where the storage
registers can be used to provide these outputs directly.

As transitions to the next state are dependent upon the
present state and input conditions, the operation of a Mealy
machine can be emulated by a Moore machine, provided that
one cycle delay is allowed between input conditions and output
generation.

State Machine Representation
The first step in the design methodology requires converting
the design problem into its state diagram representation. The
state diagram shown in Figure 2 consists of state identifiers,
input conditions and the outputs generated. The states are
represented by bubbles, with arrows indicating transitions to
other states. The input conditions as well as outputs gene­
rated are associated with these transitions.

INPUTS
OUTPUTS

~
NPUTS

INPUTS STATE B OUTPUTS
OUTPUTS

~~~ ~~ 
OUTPUTS STATE E ~. ~ 
~ 

OUTPUTS 

Figure 2. A Typical State Diagram 

There are two major operational requirements for state ma­
chines as shown in Figure 3. 

• Control sequencing 

• Output generation 

Control sequencing is changing from one state to another in a 
state machine. If the transition from the present state to the 
next state is dependent upon the present state, it is direct 
control sequencing. If the transition from the present state to 
the next state is dependent upon the present state and tho 
input conditions, it is called conditional control sequencing. 

2·724 ~ Monolithio W Memories ~ 



PROSE Architecture and Design Methodology 

As mentioned earlier. the output generation can be based upon 
the present state for a Moore type of state machine. or the 
present state and inputs for a Mealy type of state machine. 
The state diagram representation includes both the control 
sequencing and output generation representations. 

DIRECT 
CONTROL 

SEQUENCING 
(BASED UPON 

PRESENT 
STATE) 

CONDITIONAL 
CONTROL 

SEQUENCING 
(BASED UPON 

PRESENT 
STATE AND 

INPUTS) 

AVAILABLE: 
INPUTS 
PRESENT STATE 

GENERATE: 

MOORE 
MACHINE 

(BASED UPON 
PRESENT 

STATE) 

OUTPUTS 
NEXT STATE 

MEALY 
MACHINE 

(BASED UPON 
PRESENT' 

STATE AND 
INPUTS) 

Figure 3. Instruction Execution in State Machines 

The design process involves converting the hardware problem 
to this state machine representation. The system design is 
analyzed for its signal logic and timing requirements. The out­
puts generated are based upon the system signal logic re­
quirements. and the state transitions depend upon the system 
timing requirements of these signals. 

Traditional Microprogrammable 
Sequencers 
Traditional high-end microprogram mabie sequencers fit this 
general model of state machines. They use simple clocked 
D-type registers as pipeline registers as shown in Figure 4. 
Typically they do not have an output decoder and allow only 
Moore machine implementations. 

Figure 4. Traditional Mlcroprogrammable Sequencer 

For the next state decoder. microprogrammable sequencers 
use a PROM array. Each location of the PROM functions as a 
state. PROMs have been traditionally used for this purpose 
because of their familiarity and relative ease of use. This 
PROM is addressed by the pipeline register field storing the 
present state. The PROM data bits are inputs to the pipeline 
register which are loaded at every clock cycle. The PROM data 
consists of the next state (branch). output logic values. and 
an instruction op-code. 

Output generation in microprogram mabie sequencers is the di­
rect transfer of PROM data to the output field of the pipeline 
register on every clock cycle. 

For direct control sequencing. next state values from the PROM 
are loaded into the pipeline registers at every clock cycle. rep­
resenting a state transition. In most microprogram mabie se­
quencers. a binary counting mechanism is also added to the 
state registers. This allows the PROM to be addressed with a 
state counter. This is effectively control sequencing with serial 
binary state numbers. The PROM next state value is used only Ell 
when a non-serial branch is required. A branch select multiplex-
er is used to select between this serial count and the branch for 
the next state of the machine. 

For conditional control sequencing an input condition testing 
multiplexer is used. Usually it tests for one of the inputs at logic 
high or low. Based on this input condition. the branch select 
multiplexer is controlled. providing conditional branching. 

The instruction op-code stored in the PROM for every state 
controls the sequencer operation for that state. It decides be­
tween direct and conditional control sequencing. It also decides 
the input condition to be tested. These instruction op-codes are 
stored in the data form and are decoded just before execution. 
Extra hardware is required to decode these instruction op­
codes and generate internal multiplexer control signals. This 
slows down the device operation by the time required to decode 
the instructions. 

The combination of instruction op-codes. output. and next state 
values is called the instruction microcode. The design process 
requires writing instruction microcode based upon the state 
diagram. This approach to a microprogrammable sequencer. 
though popular. imposes several restrictions on the state ma­
chine operation as the instruction op-codes are predefined and 
fixed. These fixeu op-codes can only perform certain opera­
tions and the state machine deSign is usually modified to fit 
those restrictions. This means that the sequencer operation is 
usually not optimal for the system design problem. 

For example. condition testing. which is restricted to one input 
testing only. may not fit a design requiring simultaneous testing 
of two signals. The branching is also restricted to a two-way 
branch. For multi-way branching. a microprogrammable 
sequen.:er requires multiple cycles which could disrupt the 
system signal timing requirements. In some devices further 
dedicated hardware is added to improve the functionality of the 
sequencer. Such hardware is usually under the control of in­
struction op-code and provides features such as testing more 
than one input or branching to more than one next state. 

~ Monolithic W Memories ~ 2.725 



PROSE Architecture and Design Methodology 

CS5-CSO 1 A4-AO 

128x21 
PROM ARRAY 

MODE----4-----~----~~~ 

SOl ----4-----~----~---.·1 SHADOW AND 

DClK OUTPUT SDO 
ClK REGISTERS 

F----4-----~----_+~·1 

Q7-oo 

Figure 5. A Block Diagram for the PROSE Device 

PROSE Device Architecture 
The PROSE device 'arChitecture is very similar to this model of a 
state machine, Its architecture (Figure 5) is optimized to per­
form the functions of a sequential state machine as represent­
ed in the model, For the storage registers, the PROSE device 
provides a set of twenty-one pipeline registers. These registers 
are used to store the present state and the outputs generated 
by the machine. This is similar to the microprogrammable 
sequencers. Beyond this however, the similarity ends. The 
architecture of the PROSE device has been defined specially to 
optimize its functionality. 

The next state decoder in the PROSE device consists of a 
PROM. This PROM stores the next state, outputs and branch 
control information. The output generation is similar to micro­
programmable sequencers, and is a direct transfer of PROM 
data to the output field of the pipeline register. There are eight 
outputs in the PROSE PMS14R21 device. 

Control Sequencing 
Direct control sequencing in the PROSE device is implemented 
by the PROM. The depth of the PROM is 128, allowing up to 128 
states. Seven bits (AO-A6) of the pipeline register's next state 
field are used to address the PROM to provide the state transi­
tion capa.bility. For direct control sequencing the next state val­
ues from the PROM are loaded into the pipeline register's next 
state field, for a state transition. 

Conditional Control Sequencing 
For conditional control sequencing, a combinatorial PAL array is 
provided, All of the eight conditional inputs 10-17 are direct in­
puts to this PAL array, This PAL array provides two major ad­
vantages over microprogram mabie sequencers: 

• It allows selection of a combination of input signals for condi­
tion testing. This is very useful for many system designs which 
require testing of a combination of two or more signals at partic­
ular logic levels. This capability is not available in most 
microprogram mabie sequencers. 

• It allows multiple condition testing for multiple branching. 
Microprogrammable sequencers require more than one cycle 
to implement multiple branching on multiple conditions. A four-

way branch can be implemented in the PROSE device in a sin­
gle cycle without disrupting the system timing requirements. 

Conditional control sequencing also requires present state 
information for allowing state-dependent conditional 
branching. The state bits AO-A6 are not used as inputs to the 
PAL array to provide the state information. An easier way to 
provide state information to this PAL array is to use ex1ra bits 
from the pipeline registers and PROM as its inputs. These six 
bits, CSO-CS5, form the condition select field, which allows 
user-definable bit combinations to be used for any state. This 
optimizes the use of the PAL array product terms, since the 
same bit combinations can be used for testing the same input 
conditions for different states. 

Branching 
To implement branching, the two outputs of this PAL array, XO 
and XI, are XORed with the two most significant bits of the 
state address (XF1 and XFO) from the pipeline register. This 
gives a capability of inverting state bits A5 and A6 depending 
upon the condition testing in the PAL array. This conditional 
change of next state address provides a four-way branch cap­
ability. 

For direct control sequencing, no product term in the PAL array 
is selected. The programmable array outputs XI and XO are at 
logic low level, allowing next state bits A6-AO to decide the nex1 
state directly. The conditional select bits, CS5-CSO, should not 
select any product terms from the programmable array for 
states with direct control sequencing. 

For a two-way branch, either X1 or XO is asserted HIGH on con­
ditional inputs. This causes a branch to a location where the bit 
value of A6 or A5 respectively is inverted. 

For three-way and four-way branches both X1 and XO are 
asserted high depending on multiple condition inputs. The se­
quencer branches to locations where the bit values of A6 and 
A5 are 00, 01, 10, and 11. The PROSE device allows up to a 
four-way branch, which is sufficient for most deSigns. 

In the PROSE device, the next state decoder has been effec­
tively partitioned into a PROM and a PAL device, to utilize the 
efficiencies of the two for control sequencing and conditional 
testing respectively. 

2·726 ~ Monolithic: W Memories ~ 



E 
ca .. 
D) 
ca 
Q 

N 

N. 

o. 

". 

Ii! N E 
" " u g 

PROSE Architecture and Design Methodology 

0 - "' i ! c 
2 '" 
~ ; ~Ia !;:;1:;~ ;:/ :! ~ 

r-

~ ~~ ~I~ 
n~ l:l l n n II n n l n§ n~ l§ n~ n~ l~ ~~h III III III III I III ~ III III III III .111 III III ~ III III III III I ~ 

1J31SI031J MOCW~S ::lI1S0NOWIC 

I I I I I I I I I I I I I I I I 

~ 0 0 8 0 0 C3 ~ Cl g 0 0 0 0 0 0 0 0 0 0 0 

: 

-+-'" +- '+ -t, + +-

'" '" '" U U U 

~ 7 ~ 7 , 7 

I'tI 

loti ~ 
l. 1 I. 1. I. 1 

- ..,~ 

SS3 

~ ~ :; ~ ~ C :il-

I I I I 

'-------l 

J I~ ;c 

C\ /j '" U 

~ 7 
~ 

~ ~ 
l. 1 I. 1 l. 1 

E -

~ Monolithic W Memories ~ 

'" U 

~ 7 

> 
I. 1. 

-

'" U 

~~ 

loti 
I. 1 

- ::~ 
Q 
III 

: 

Rt 

2·727 



PROSE Architecture and Design Methodology 

PROSE Device Programming 
Figure 7a shows the state diagram representation of direct con­
trol sequencing; Figure 7b shows conditional control sequenc­
ing. Similarly, output generation can be represented as shown 
in Figures 7c and 7d for both Mealy and Moore machines. The 
next step in the PROSE device design process is to convert 
these state diagram 'representations into a textual entry form. 

A. Direct Control 
Sequencing 

STATEA := VCC -> STATE B 

B. Conditional Control 
Sequencing 

STATEC := 11 -> STATED 
+111 -> STATEE 

C. Moore Machine 
STATEA.OUTF:= 01 

01 

02 

~. 
11/ -- ~1 

G~v ~T~EV 

D. Mealy Machine 
STATEA.OUTF:= 11 ->01 

11 
01 

Figure 7. State Machine Operations and PALASM 2 Software 

The instruction/operation mechanism of the PROSE device, 
however, is slightly different from the microprogrammable se­
quencers. Tl'le PROSE device uses PALASM 2 software for pro­
gramming, which allows easy textual constructs that have a 
direct relationship to the hardware operation. The instruction is 
divided into two distinct segments: one for control sequencing 
and one for output generation. 

Control Sequencing Instruction 
The format for control sequencing instruction is as follows: 

(present_state) 

+ 

+ 

+-> 

(condition_1) -> nex,-state_name_1 

(condition_2) -> next_state_name_2 

(condition_3) -> nex,-state_name_3 

default_state_name_ 4 

Based upon the state diagram, for each present state, transi­
tions/branches to other states can be entered. These transi­
tions take place in the PROM of the device. The conditional. 
inputs can also be described in the condition field of the instruc-

tion syntax. This is the condition testing done in the PAL array 
of the PROSE device. For each present state a maximum of 
four branch states can be provided, which is the device archi­
tecture limit. The logic values of next states differ from each 
other by the most significant two bits only. PALASM 2 software 
automatically assigns these logic values to the state names 
while minimizing state locations in the PROM. PALASM 2 soft­
ware also assigns the values to the conditional select field while 
ensuring the optimization of PAL array product terms. 

Output Generation Instruction 
The output generation instruction syntax is as follows: 

(present_state).OUTF 

+-> 

(condition_1) -> (outpu,-value_1) 

(default_output_ value) 

The present state is the state where the outputs need to be 
generated. The default output value is the logic level of the 
outputs at the present state which is also the syntax for a 
Moore machine implementation. PALASM 2 software also al­
lows a Mealy machine implementation using the constructs for 
generation of conditional outputs. As the architecture of the 
PROSE device allows only Moore machine implementation, 
PALASM 2 software automatically converts the Mealy machine 
description to the Moore machine equivalent. 

After the conversion of state diagram to textual input is com­
pleted, PALASM 2 software combines information about the 
control sequencing and output generation for each present 
state. These constructs have a direct relationship with the 
state diagram representations as well as the PROSE device 
architecture. This allows an integrated design where system 
design requirements represented by the state diagrams have a 
direct relationship with the device hardware operation. 

In the PROSE device, this combination of control sequencing 
and output generation is equivalent to th'e instruction op-code 
of a microprogram mabie sequencer. In microprogram mabie se­
quencers, the instruction op-codes are stored as data, and are 
decoded before execution. PROSE device instructions do not 
require decoding as they are stored in the device in logic form. 
This speeds up the operation of the PROSE device. The cycle 
time of the PROSE device is 25 MHz, which is better than most 
other single-pipe lined sequencers. 

Figures 7a, b, c and d also show the direct PALASM 2 software 
text representations of the state diagrams. These text files are 
compiled to generate the JEDEC fuse maps for programming 
the PROSE device. The procedure is identical to that used to 
program any other PLDs. PALASM 2 software also supports 
software simulation of device operation, which helps in design 
debugging before actual programming of the parts. 

The PROSE device incorporates the Diagnostics-On-ChipTM 
(DOCTM) testing capability with a serial shadow register. This 
serial shadow register can be used to conduct diagnostics 
such as walking-1 or walking-O tests. It can also be used for 
testing the PROM array by shifting in a test vector and loading 
it to the pipeline register. The pipeline register data for the next 
clock cycle is then checked for verification. Part of the DOC 
circuitry is also used for programming, but this is transparent 
to the users. 

2·728 ~ Monolithic W Memories ~ 



PROSE Architecture and Design Methodology 

PMS14R21 

Figure 8. DIP Pin Configuration 

Summary 
With continuing advances in technology, new devices are 
being introduced which are tailored to specific system design 
requirements. The PROSE device is one such device, with an 
architecture optimized for state machine design. It combines a 
PROM array and a PAL array on a single device, and utilizes 
the functional advantages of both for control sequencing and 
conditional testing respectively. This combination offers higher 
functionality over the traditional approach of microprogramma­
ble sequencers for state machines. It also offers a newer 
design methodology where software instructions are split into 
control sequencing and output generation instructions. These 
instructions are directly related to hardware requirements, 
unlike the instruction op-codes of traditional microprogramma­
ble sequencers, which sometimes require design compromis­
es. The PROSE device also offers extensive simulation, thus 
offering a complete solution. 

;t1 A'Ionolithlc W Memories ~ 2·729 



Blazing Fast PAL® Devices Enable 
New Appl icalion Areas 

CP-156 

The PAL 16R8-1 0 Series from Monolithic Memories is the fastest 
TTL programmable logic family, and the ECL PAL devices from 
Monolithic Memories are the fastest programmable logic devices 
of any technology. 

Do these devices simply drop into the same applications as 
previous versions? No! These high-speed PAL devices offer 
several advantages, including speed, that open up whole new 
applications for programmable logic devices. 

PAL16L8-10 PAL16R8-10 

The World's Fastest PAL Devices 
PAL 16R8·1 0 Series 
Let's look at the products under discussion. The PAL 16R8-10 
Series is comprised of the four most popular PLDs i'n the 
industry today; the PAL 16L8, PAL 16R8, PAL 16R6, and PAL 16R4. 
The architectures (Figure 1) consist of sixteen inputs and eight 
outputs, with zero to eight flip-flops on the outputs. Although 
very simple compared to some of the latest high-density devices 
from Monolithic Memories, these architectures are very power­
ful, and handle the majority of today's PLD applications. 

PAL 16R6-10 PAL16R4·10 

Figure 1. The Four Devices Comprising the PAL16R8·10 Series. Each Has Eight Product Terms per Output. 

The speed of the PAL 16R8-1 0 Series is 10 nanoseconds (ns) 
maximum from input to output on any combinatorial path. The 
registered paths offer a 10-ns setup time and only 8 ns from 
clock input to data output. This translates into a maximum clock 
frequency (fMAX) of 1/(10ns + 8 nS),or55.5 MegaHertz (MHz), if 
external feedback is used from the flip-flop. 

ClK 
1---------- ----, 
I I 
I I 

REGISTER 1---+_ 
I 
I I L _______________ ~ 

I· ~u -I 

fMAX no feedback; 1/(tsu + th) or 1/(twh + twl) 

It is important to differentiatethis number from another common 
fMAX calculation, the maximum flip-flop toggle rate. The toggle 
rate is limited by the greater of the data setup time or the clock 
widths high and low. The toggle rate specification for the 
PAL 16R8-10 Series is 62.5 MHz. However, this specification is 
unrealistic since it does provide for feedback. It is a more 
representative path that provides the 55.5-MHz specification 
(Figure 2). ClK 

r---------- ---, 
I .... - .......... (SECOND CHIP) 

REGISTER I 
I 
I 

I I L ______________ ~ 

l-tsU-j-tClK-I-tsu-1 
fMAX external; 1/(tCLK + tsu) 

Figure 2. Alternative Methods of Measuring fMAX. A More Realistic Path Is the Second One, Including External Feedback. 
Adapted from a paper presented at Electro/S? 

2·730 ~ Monolithic m Memories ~ 



Blazing Fast PAL Devices Enable New Application Areas 

~CL PAL Devices 
he PAL 10H20P8 from Monolithic Memories was the first ECL 
'AL device. This device is combinatorial, with twenty inputs and 
ight outputs. A sequential device followed, the PAL 10H20G8, 

with the same number of inputs and outputs, but having the 
added feature of output latches (Figure 3). 

PAL10H20P8 

VCC3 VCC3 

VCC2 VCC2 

Figure 3. The ECL PAL Devices. On the Left Is the PAL 10H20P8 Combinatorial Device, 
and on the Right Is the PAL10H20G8 Latched Device. 

P~L10H20G8 

The PAL 10H20P8 and PAL 10H20G8 have combinatorial propa­
gation delays of only 6 ns, faster than any other PLDs. The 
latched version has a setup time of 4.5 ns and a latch-to-output 
delay of only 2.5 ns. This provides a maximum frequency of over 
142 MHz. 

In this graph of speed vs. power, performance characteristics 
closer to the lower left are desired. The first PAL devices, 
introduced by Monolithic Memories in the late 70s, were in the 
35-ns range, and consumed 180 mA. Technology improvements 
allowed the introduction of the first 25-ns devices in 1983. In 
early 1985 the first 15-ns devices were released, with half-power 
versions at 25 ns and quarter-power versions at 35 ns. Last year 
Monolithic Memories introduced its industry-leading 1 D-ns 
PAL 16R8-1 0 Series, along with the ECL devices. 

History of Speed Developments 
A short history of speed improvements in bipolar PAL devices 
shows how these devices compare to earlier versions (Figure 4). 

III 
c:: 

~ 50 
...J 
W 
o 
z 
o 40 

~ 
(!) 
« c.. 
o 
a: 30 
c.. 
.... 
::J 
c.. .... 
g 20 

~ 
.: 
::J 

~ 10 -

~--------- PAL 16R8A-4 SERIES 
55/50 

r--------PAl16R88-4 SERIES 
35/55 

~------PAl 16R8A-2 SERIES 
35/90 

~------ PAL 16R88-2 SERIES 
25/90 

,..------PAl16R8H-15 SERIES 
15/90 

'"-PAL16R8 SERIES (1979) 
35/180 

PAL16R8A SERIES (1983) 
25/180 

PAL16R88 SERIES (1985) 
15/180 

PAL16R8-10 SERIES (1986) 
10/180 

r ECl :~2~~1986) 

OL-____ ~ ____ ~ ____ ~~ ____ ~ ____ ~ ____ ~ 
50 100 150 200 250 300 350 

SUPPLY CURRENT - mA 

Figure 4. Speed vs. Power for Monolithic Memories Bipolar PAL Families. The Year of Introduction Is Noted. 
The PAL 16R8-10 Series and the ECL PAL Devices Offer the Highest Performance In the Industry. 

~ Monolithic W Memories ~ 2·731 

EJI 



Blazing Fast PAL Devices Enable New Application Areas 

New High·Performance Applications 
The raw speed of these new devices allows their use in new 
high-performance applications. As microprocessors reach 20 
MHz and beyond, 50 MHz logic is required for peripheral and 
memory interface. Additionally, high-speed static RAMs 
require high speeds in the select logic. 

One application area for these high-speed PAL devices is high­
resolution graphics, including counters for screen refresh, 
generation of line frame and video information, and micropro­
cessor interface. High-speed digital processing requires 10-ns 
PAL devices for data pipeline applications and on-the-fly 
instruction decoding. High-speed minicomputers require very­
high-speed state machines, and 55.5-MHz PAL devices are an 
efficient solution. 

Speeds Up Fastest Discrete Designs 
PAL devices have always been used to replace discrete logic, 
thereby reducing chip count, inventory, and board area; 

I MC6800 

4/ 
VMA 02 A 0 

r--p...-r-« I 
PROM 

1 

~ ....... 
3/ 

...... 
-

rC P-
PROM 

2 

~ 

~ 

RIW 

I 

I 

simplifyi'ng board design and layout; and adding extensi\ 
design flexibility. Now PAL device speed has broken a 
important barrier; the PAL 16R8-1 0 Series allows PAL devicE 
to speed up a discrete logic design, even one built with th 
fastest available devices. 

Comparison to FAST Logic 
The following example compares the PAL 16R8-10 Series tc 
FAST logic in a combinatorial discrete logic design. Thr 
design is an interface between a MC6800 microprocessor anc 
memory elements. Debouncing for the reset switch is alsc 
required. 

The discrete logic implementation is shown in Figure 5. Eighl 
discrete chips are required. However, since FAST logic does 
not include 8-input AND gates, three additional chips will be 
required, making a total of eleven chips using FAST logic. The 
worst-case path delay is 27.6 ns. 

RESET ",,'1~ 
.... 
.... 

4 L 

G I 

.IRAM1 
--,;: 1.8 ~ .... 

.... .... 

4) ..... 

2/ I '138 
"'7 

8El Etr VUA ~245 

2.732 

Figure 5. Memory Interface Built with Discrete Logic. Eleven 
FAST Logic Chips Are Required. The Worst-Case 
Path Delay Is 27.6 ns. 

~ Monolithic W Memories ~ 



Blazing Fast PAL Devices Enable New Application Areas 

Figure 6 shows the same design implemented in a PAL 16L8-10. 
One device replaces eleven chips, and the new worst-case path 
delay is now only 20 ns. 

RESET 14---+----------. 

AO·A15 1----7'---+---1 

MC6S00 
MICROPROCESSOR 

821-----.... 1 

VMA 1------1 
00-07 

Figure 6. Same Memory Interface Implemented in a PAL 
Device. Only One Chip Is Required, and the Delay 
Is Only 20 ns Maximum. 

An example of a sequential circuit (Figure 7) is a simple dice 
game, providing two die readouts on LEOs. The discrete logic 

design requires seven chips. The worst-case path for FAST logic 
has a maximum frequency of 27.5 MHz. 

Figure 7. Simple Dice Game Constructed from Discrete 
Gates. Seven Chips Are Required, with a 
Maximum Frequency of 27.5 MHz. 

~ Monolithic W Memories ~ 

CLOCK 
GEN 
AND 

BUTION 

2·733 

EI 



Blazing Fast PAL Devices Enable New Application Areas 

The entire design can be implemented in one PAL 16R8-10 
(Figure 8). The worst-case path has a maximum frequency of 
55.5 MHz, over twice as fast as the discrete logic version. In 
addition, power requirements remain almost the same: almost 
170 milliAmps (mA) for the FAST version, and 180 mA maximum 

for the PAL device. A half-power version of the PAL device will 
require 47% less power than FAST logic while still providing 
higher speed. Of course, the greatest benefit is a 7:1 chip count 
reduction, reducing size and cost while increasing reliability. 

ROLL +5 V 

-L 
r---------------~----~ G-----------4 

2K 

PAL16R8-10 

1200 

2900 

1200 

120{1 

1200 

2900 

1200 

120{1 

Figure 8_ The Same Dice Game Implemented In a 
PAL 16R8-10, Only One Chip Is Required, and the 
Speed Is Doubled, with Little Increase in Power 
Requirements. 

The PAL 16R8-10 Series devices can also be compared to FAST 
MSI functions on a one-to-one basis. For example, the clock-to­
output time of a standard 74F374 octal register is 10 ns, vs. only 
8 ns for the PAL 16R8-1 O. 

A straightforward combinatorial example is a simple 3:8 decoder 
with three-state outputs, the 74F538. This device has a maximum 
propagation delay of 17 ns, while the PAL 16L8-1 0 can implement 
the same function at only 10 ns, 41% faster. 

Of course, PAL devices add the additional capability of doing 
custom variations of these functions, if needed. For example, 
with the substitution of a registered PAL16R8-10 in the 74F538 
example, control storage functions such as load and clear can 
be added. 

Even faster discrete logic families have been announced that 
improve upon the speeds of FAST logic. Many of these families 
even use CMOS technology. But the fastest devices announced 
are at 100 MHz, equivalent to the combinatorial speed of the 
PAL16R8-10 Series. And the PAL16R8-10 Series is available 
now, providing thousands of functions through its programma­
bility. We saw in the memory interface example that the high­
performance logic families are not as complete as earlier 
families. PAL devices can replace this logic, or complement it 
with additional functions. 

We have shown that the PAL 16R8-10 Series creates a new 
application area for programmable logic: the design of higher 
performance solutions than any discrete logic implementations. 
Speed-critical discrete logic designs are now open to replace­
ment by programmable logic. 

2·734 ~ Monolithic W Memories ~ 



Blazing Fast PAL Devices Enable New Application Areas 

Elimination of PC Board Noise 
This capability may be arriving just in the nick of time. Discrete 
logic is today achieving speeds that challenge printed circuit 
board layout. The fast switching speeds can create noise and 
crosstalk that can bring the high-performance board crashing 
down. Note the new high-speed CMOS logic families that 
require new pinouts and extra grounds because of switching 
noise. 

Integrating this logic into programmable logic eliminates not 
just discrete chips but all those noisy and troublesome connec­
tions between them. Putting the PC traces into silicon eliminates 
crosstalk and signal distortions caused by transmission line 
reflections, and improves the reliability of the board. In high­
speed systems, the length of the interconnect can approach the 
signal wavelength, causing ringing in the connection line. This 
ringing can cause a false signal value to appear on an input tied 
to the ringing line, orcan even befed back into the source device 
if feedback is used from the output. 

Improved Speed 
The reduction in interconnect afforded by PAL devices, with the 
accompanying reduction in inductance and time delays, even 
increases system speed. In high-speed logic systems, each 
12-inch length of interconnect wiring introduces a time delay of 
approximately 2 ns, about an entire gate delay. These delays 
sloY' down the system and can cause glitches and signal errors. 
Thus, integration of high-speed logic into PAL devices improves 
not just reliability, but also speed. 

Technology Advantages 
Two other advantages of the PAL 16R8-1 0 Series, lower cost and 
reduced signal noise. are a result of the technology used to 
achieve its high speed. Speed improvements in semiconductor 
devices come about primarily through size reductions and 
reduced capacitance. Capacitance, since it stores charge, slows 
down devices as they have to charge and discharge capacitive 
elements. 

The 25-ns devices were achieved through the reduction of 
lateral geometries in a junction-isolated process. This produced 
lower collector-base capacitance and therefore provided higher speed. 
The 15-ns devices used the same junction-isolated process, but 
a reduced epitaxial layer produced the higher speeds. 

Oxide-Isolated Process 
For the 10-ns devices, Monolithic Memories used a completely 
new oxide-isolated process to increase the speed to record 
levels. Oxide-isolation allows the transistors to be placed closer 
together (Figure 9). This greatly reduces lateral geometries 
while reducing the parasitic capacitance between circuit ele­
ments, providing much higher speed. 

Figure 9. Basic Transistor Isolation Structure in Oxide­
Isolated Process. A Fully Recessed Oxide Region 
Separates Transistors, Allowing Smaller 
Geometries and Higher Speed. 

The process utilizes a walled-base technology. It features 1.5-
micron design rules and dual-layer metallization. The isolation 
technology uses a combination of high-pressure oxidation to 
form a fully-recessed oxide through the epitaxial layer, and a 
diffused guard band. This technology avoids any contact 
between the channel stop and the buried layer. 

Unique Needs of Programmable Logic 
Programmable logic devices have unique process needs because 
of the high voltages incurred during programming. The oxide­
isolation technique is especially useful because of its excellent 
insensitivity to substrate injection, which occurs when small 
transistors are driven into hard saturation during programming. 

Lower Manufacturing Costs 
Another requirement for programmable products is a good 
high-current beta so that emitter size can be minimized. The 
NPN transistors in this process have been measured to have a 
beta of higher than 20 at an emitter current of 30 mA.ln addition, 
a reduction in the required fusing current allowed smaller transis­
tors in the programming array. Separation of the current sources 
for programming and normal operation improves the speed­
power product. These features add reliability to the product 
while reducing die size. 

High Yield 
The walled diffusions improve yield by reducing manufacturing 
tolerance requirements. In addition, the process is insensitive to 
threshold problems. The result of these techniques is a high­
yielding, reliable process that produces both the 10-ns TTL PAL 
devices and the 6-ns ECl PAL devices. 

Smaller die size and high yields result in a much lower cost of 
manufacturing. Thus, once the process is mature, it can produce 
faster products at the same or less cost than earlier technologies. 
This can be seen with the 15-ns devices, which now are cost­
competitive with any other technology, including CMOS. 

Many users of ICs claim that it is impossible tofind products that 
combine three elusive qualities: good, fast, and cheap. The 
advanced technology used in the high-speed PAL products 
allows them to fit'all three requirements well. 

~ Monolithic m Memories l1 2·735 

Ell 



Blazing Fast PAL Devices Enable New Application Areas 

Reduced Noise 
The process also provides other important advantages, lower 
capacitance and reduced noise. An enhanced base doping 
allows lower resistance without higher capacitance. Oxide­
isolated transistors provide much lower input and output 
capacitance levels than that provided by earlier technologies. 
The input capacitance is typically only 2 picoFarads (pF), while 
the output capacitance is only 4 pF. 

Elimination of False Logic Switching 
lower capacitance allows your system to operate with cleaner 
switching signals between devices, providing a much more 
reliable system. This is critical in high-speed systems where fast 
rise and fall times can cause signal fluctuations. 

Guard rings limit the susceptibility of the inputs and outputs to 
voltage undershoots and overshoots. Bipolar Schottky circuitry 

is designed with nonlinear input and output impedances. I 
high-speed systems, undershoots in particular can play havo 
with false logic states, if the guard rings do not prevent them. 

New Synchronization Applications 
Another key advantage of the PAL 16RB-1 0 Series, only indirectl 
related to speed, is its excellent resistance to metastabilit" 
Metastability is a failure that occurs when required minimun 
setup times are violated. The PAL 16RB-10 Series is less suscep 
tible to metastability, and recovers faster, than any other Pl[ 
and most other forms of logiC. This subject is discussed in detai 
in Session 3 of Electro/B? on Metastability. 

Metastability characteristics are explicitly specified in thE 
PAL16RB-10 Series datasheet (Figure 10). For example, at 21· 
MHz clock frequency and ?-MHz data input frequency, a 
metastability failure will occur only once in ten years. 

Metastability Characteristics Over Operating Conditions 

SYMBOL PARAMETER TEST CONDITIONS 
COMMERCIAL 

UNIT MIN TYP MAX 

P Poisson process rate 0.B5 1.05 ns-1 

k MTBF constant O.B 1.0 ps-1 

tMET Minimum recovery time in asynchronous mode MTBF = 10 years fd = (1/3)f d=3 20 30 ns 

fMET Maximum frequency in asynchronous mode MTBF = 10 years fd = (1/3)f d=3 21 26 MHz 

Figure 10. Guaranteed Metastability Characteristics for the 
PAL 16R8-10 Series. The High Resistance to 
Metastability Allows New Use in Synchronization 
Applications. 

Thus, a PAL 16RB-10 Series device can be used as a synchronizer 
circuit, a new application that doesn't even require its program­
mability. Almost every digital system must at some point handle 
incoming signals that are not synchronized to the system clock 
rate, and any such system will encounter metastability. Using 
the PAL 16RB-10 Series devices at the interface provides the 
lowest possible failure rate. 

Lower Metastability Means Higher 
Speed 
For applications using the PAL 16RB-1 0 Series as a synchronizer, 
the lower metastability rate means higher clock speed. For a 
given desired MTBF, the maximum clock rate is limited by the 
susceptibility to metastability failure. The reduced metastability 
rate for the PAL 16RB-1 0 Series allows a higher clock speed, with 
no reduction in MTBF. 

ECL Provides Highest Speed 
The two Eel PAL devices, the PAL 1 OH20PB and PAL 1 OH20GB, 
provide the fastest PlDs. 10KH Eel technology also eliminates 

many of the noise problems encountered with high-speed TTL 
boards since the internal switching voltage range is less than 
one volt, and it is often a good alternative to high-speed TTL. 
Eel design techniques achieve high speed by not allowing the 
bipolar transistors to saturate when they are on. Thus, there is no 
storage time delay caused by switching in and out of saturation. 

The elimination of saturated transistors means that current is 
always flowing in Eel devices. This is the cause of high power 
consumption in Eel circuits. However, the Eel PAL devices 
consume only 210 and 225 mA for the PAL 1 OH20PB and 
PAL 10H20GB, respectively. This is only minimally higher than 
the standard power consumption of TTL programmable logic 
circuits. 

New PLD Applicationn in ECl Systems 
However, these devices do not just speed up programmable 
logic. These devices are fully 10KH compatible and meant to be 
used in 10KH systems. They open up new applications for 
programmable logic in the highest performance Eel systems. 

2·736 ~ Monolithic W Memories 11 



Blazing Fast PAL Devices Enable New Application Areas 

:CL MSI/LSI Functions 
iince the ECl market is smaller than the TTL market, fewer 
unctions are available in ECl than TTL. This is true on all levels, 
rom SSI and MSI through VlSI. ECl PAL devices provide a 
lexible solution that can implement functions not found in fixed 
:Cl logic. Future ECl PAL devices will provide higher density 
md becapableof implementing the most complex lSI functions. 

)ystems are built with ECl technology primarily for high 
)erformance, and ECl PAL devices must also be high perfor­
nance. Future ECl PAL devices will improve speeds down to 
.he 3 to 4-ns range and be able to compete effectively with the 
,peed of fixed ECl logic. 

The Speed Challenge of CMOS 
Technology 
CMOS technology is quickly encroaching on bipolar speeds. In 
fact, Monolithic Memories has CMOS mask-programmable 
devices (ZHAl™ devices) that are even faster than their bipolar 
equivalents. However, CMOS has not yet reached the best 
bipolar speeds, and is not likely to in the near future. Even if we 
exclude ECl from the comparisons, bipolar has a two-generation 
speed advantage over CMOS technology. 

The fastest CMOS PlDs available today are at 25 ns, while 25-ns 
bipolar devices have been available for years and are currently 
being shipped in huge volumes. 15-ns CMOS is in development, 
but bipolar is already at 10 ns and moving further down the scale. 

Although recent CMOS developments have been rapid, CMOS 
is not expected to pass bipolar speeds, only to get closer. As 
geometries are reduced, CMOS has to contend with short­
channel effects and hot-electron trapping as scaling increases 
the electric field. Bipolar has fewer problems during reduced 
scaling. 

Speed vs. Density 
Many vendors of high-density CMOS PlDs claim that they have 
surpassed bipolar speeds if examined at a per-gate basis. That 
claim is relevant only if the high densities are required. Even gate 
array applications are relatively low in density, with over half 
below the 2000-gate level. Additionally, the largest application 
area for semicustom arrays is random logic, efficiently met by 
the PAL architecture. And even in those cases where greater 
density than a single PAL device is required, two PAL 16R8-10 
Series devices back-to-back have a combined delay of only 
20 ns, still faster than any CMOS PlD of any density. 

Some industry observers have raised an issue of speed vs. 
density, asking which one will win out in the long run. But these 
two attributes do not compete; they are usually required at 
different times in different applications, and thus both areas will 
develop in their own market areas. 

Gate Array Performance 
Gate arrays and other forms of semicustom logic are demon­
strating very high performance, even in CMOS. The sub­
nanosecond gate delays of these devices, even when input and 
output delays are taken into account, cannot be matched by 
programmable logic. For the ultimate in speed, a more custom­
ized design is better, with full custom offering the highest speed. 

Programmable logic competes with other high-performance 
semicustom solutions in applications where the additional 
advantages of zero NRE, instant customization, ease of design 
changes, inexpensive and easy-to-use software, standardization, 
low cost, second sourcing, and other issues weigh in favor of 
programmable logic. 

Studies of gate arrays show that clock frequencies for systems 
using gate arrays are about equal to microprocessor frequen­
cies; around 8-12 MHz, moving to 16 MHz. But furtt:ler studies 
show that 76% of users require at least one very-high-speed 
(twice the clock frequency) combinatorial path through the Chip. 

Since programmable logic offers only one speed through the 
chip, the device speed must match the speed of the fastest 
required path. This is one reason why high-speed PAL devices 
are required even if system clock rates are low. 

CMOS PlDs can be erasable, a feature bipolar cannot match. 
Although not erased very often in customer applications, 
erasability adds to the testability of the device during manufac­
turing. Also, CMOS programmable cells are smaller than bipolar 
fuses, allowing a smaller die size. These advantages of CMOS 
will allow it to dominate, in the long term, the PlD market areas 
that do not require high speed. 

Usable Speed 
Just as semicustom arrays offer a greater percentage of "usable 
gates" than PlDs, or gates used vs. gates provided, PlDs can 
offer more "usable speed" than semicustom arrays. Although 
typical gate speeds in custom devices can be below 1 ns, that 
speed is not relevant if the design and simulation tools do not 
provide the accuracy required to guarantee proper timing. 

Since most of a PAL device is fixed logic, guaranteed maximum 
delays through the device can be specified for any custom 
design. In addition, minimum delays for the PAL 16R8-10 Series 
are specified in the datasheet for the first time, allowing accurate 
system timing. Tools such as PlDMaster from Daisy Systems 
provide PAL device simulation in a board-level environment. 
PlDMaster can even help partition designs to take full advan­
tage of device speeds. 

The PAL device has another advantage over other custom logic 
that provides the ultimate in timing simulation-a device can be 
programmed and immediately dropped into a circuit, to check 
timing. All of these advantages mean that designers can use 
more of the PAL device's speed than that of other custom logic, 
giving a PAL device an edge even at equivalent specs. 

~ Monolithic W Memories ~ 2·737 



Blazing Fast PAL Devices Enable New Application Areas 

CMOS Advantages 
CMOS has several advantages over bipolar, depending on the 
technology used. In fact, CMOS technology has opened up 
more new applications for programmable logic than any other 
development, because of several unique characteristics. It can 
be lower in power. can be erasable, and can be smaller. Some of 
these advantages are important in some cases but not important 
in others. 

low power is an important advantage, but Monolithic Memories 
h<1S been producing half- and quarter-power versions of its 
products in bipolar. simply by increasing the resistor values. Our 
PAL 1 6R8B-4 Series devices at 35 ns and only 55 mA are lower in 
power than many competing CMOS devices at similar speeds. 
The upcoming PAL16R8H-15 Series at 15 ns and 90 mA will 
achieve even greater efficiencies. As top bipolar speeds improve, 
the half-power and quarter-power versions will continue at the 
highest-performance CMOS speed levels. 

CMOS power specifications are often only stated at standby, 
with the device not operating. Operating power for CMOS rises 
dramatically with increasing input frequency and can surpass 
even medium-power bipolar devices (Figure 11). For high-speed 
applications. CMOS has not shown a power advantage over 
bipolar. 

POWER 
CONSUMPTION 

CMOS 

HALF 
r---------~~------------- POWE~ 

BIPOLAR 

QUARTER 

~--~~------------------- POWER 
BIPOLAR 

OPERATING FREQUENCY 

Figure 11. Power Consumption vs. Operating Frequency for 
CMOS and Low-Power Bipolar PAL Devices. 
CMOS Devices Can Consume as Much Power as 
Bipolar Circuits at High Speeds. Thus, for Hlgh­
Speed Applications, CMOS Loses One of Its Key 
Advantages Over Bipolar. 

Bipolar's Place in Market 
BipolarTTl and ECl PAL devices will continue to dominate th 
large part of the PlD market that requires high speed. Bipola 
will even be dominant in the low-cost part of the market for year 
to come. 

Record Speeds and 'New Applications 
The 10-ns PAL16R8-10 Series and the 6-ns ECl PAL device~ 
provide record speeds for programmable logic, using advance( 
process technology. Future plans call for 7.5-ns TTL and 3 t( 
4-ns Eel PAL devices. The speed and technology open ney, 
applications for PAL devices, including: 

• Highest-performance computers and digital processing 

• High-speed microprocessor and memory support 

• Speeding up the fastest discrete logic designs 

• Component integration, eliminating noise and delays from 
device interconnect lines 

• Process technology advantages of lower cost and reduced 
noise 

• Wide range of lSI functions to complement high-speed TTL 
and ECl discrete logic families 

• Synchronization circuits for low metastability rates 

All of these new applications show that these new PAL devices 
are not just faster devices for the same sockets, but rather open 
up whole new applications for programmable logic devices. 

2· 738 ~ Monolithic W Memories ~ 



Blazing Fast PAL Devices Enable New Application Areas 

Bibliography 
Sing Wong, Johnny Chen, Kit Gordon, and Scott Graham, 
Monolithic Memories, Inc., "A 7.8-Nanosecond TTL PAL 
Device," Proceedings of the 1986 Bipolar Circuits and Tech­
nology Meeting, September 11-12,1986. 

Steve Zollo, "Fastest Programmable logic Has 10-ns Propa­
gation Delay," Electronics, April 14,1986. 

*Kenneth Chan, Monolithic Memories, Inc., "ECl Technol­
ogy Suits High-Speed logic Systems," EON, January 1986. 

Ken Marrin, "Advances in CMOS and ECl Process Technol­
ogy Yield Powerhouse ICs," Computer Design, December 
1986. 

* Kenneth Chan, Monolithic Memories, Inc., "High-Density 
Interfaces Aren't Superfluous Anymore," Computer Design, 
September 1,1986. 

Roderic Beresford, "A Profile of Current Applications of Gate 
Arrays and Standard-Cell ICs," VLSI Systems Design, Sep­
tember 1985. 

*Danesh M. Tavana, Monolithic Memories, Inc., "Metastabil­
ity," 1984. 

lindsay Kleeman and Antonio Cantoni, "On the Unavoidabil­
ity of Metastable Behavior in Digital Systems," IEEE Trans­
actions on Computers, January 1987. 

*Monolithic Memories, PAL/PLE Device Handbook, Fifth 
Edition, 1986 

Fairchild, FAST Data Book, 1985. 

* Available from Monolithic Memories. Inc. 

~ Monolithic W Memories ~ 2·739 

EJI 



North American _________ _ 
ALABAMA .............................................................. (205) 882-9122 
ARIZONA ............................................................... (602) 242-4400 
CALIFORNIA, 

Culver City ........................................................ (213) 645-1524 

San Diego ......................................................... 619 560-7030 
Newport Beach ................................................ !714! 752-6262 

San Jose ........................................................... 408 452-0500 
Woodland Hills ................................................. (818) 992-4155 

CANADA, Ontario, 

M,7;~~·aie·::::::::::::::::::::::::::::::::::::::::::::::::::::::::!~ ~~! ~~tg~~g 
COLORADO .......................................................... (303) 741-2900 
CONNECTICUT .................................................... (203) 264-7800 
FLORIDA, 

Clearwater ........................................................ (813) 530-9971 
Ft Lauderdale ................................................... (305) 776-2001 

~~~bnodu;~.~.:: :::: ::::::::::: :::: :::: ::::::: :::: ::::::::::::::: :::::: !~g~! ~~~:g:5f 
GEORGIA .. (404) 449-7920
ILLINOIS,

Chicago ... (312) 773-4422
Naperville ... (312) 505-9517

INDIANA .. !317! 244-7207
KANSAS ... 913 451-3115
I.~ARYLAND ... 301 796-9310
MASSACHUSETTS .. !617! 273-3970
MINNESOTA .. , 612 938-0001
MiSSOURI ... 913 451-3115
NEW JERSEY ... (201) 299-0002
NEW YORK,

Liverpool ... (315) 457-5400
Poughkeepsie .. (914) 471-8180
Woodbury ... (516) 364-8020

NORTH CAROLlNA .. (919) 878-8111
OHIO,

Columbus .. (614) 891-6455
Dayton ... (513) 439-0470

OREGON ... (503) 245-0080
PENNSYLVANIA, .

Allentown .. (215) 398-8006
Willow Grove .. (609) 662-2900

SOUTH CAROLINA .. (803) 772-6760
TEXAS,

Austin .. (512) 346-7830

~~~~~o·ri·::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: !~~~! ~~~:~g~~ 
~~s~H6~g!J'.~.:::::::::::::::::::::::::::::::::::::::::::::::::::::: ~~~~! ~g~:g~gg 
International __________ _ 
BELGIUM, Bruxelles ....... TEL ............................. (02) 771-91-42 

FAX ............................. (02) 762-37-12 
. TLX ............................................. 61028 

FRANCE, Paris ................ TEL ............................ (1) 49-75-10-10 
FAX ............................ (l) 49-75-10-13 
TLX ........................................... 263282 

WEST GERMANY, 
Hannover area ............ TEL .............................. (0511) 736085 

FAX .............................. (0511) 721254 
TLX ........................................... 922850 

Munchen ...................... TEL .............................. (089) 4114170 
FAX ................................ (089) 406490 
TLX ........................................... 523883 

Stuttgart ....................... TEL ........................... (0711) 62 3377 
FAX .............................. (0711) 625187 
TLX ........................................... 721882 

HONG KONG ................... TEL ............................. 852-5-8654525 
FAX ............................. 852-5-8654335 
TLX .......................... 67955AMDAPHX 

ITALY, Milan .................... TEL ................................ (02) 3390541 
................................ (02) 3533241 

FAX ................................ (02) 3498000 
TLX ........................................... 315286 

JAPAN, 
Kanagawa .................... TEL ................................. 462-47-2911 

FAX ................................. 462-47-1729 

International (Continued) _______ _ 
Tokyo ........................... TEL ............................... (03) 345-8241 

FAX ............................... (03) 342-5196 
TLX ........................ J24064AMDTKOJ 

Osaka ........................... TEL ................................. 06-243-3250 
FAX ................................. 06-243-3253 

KOREA, Seoul ................. TEL .............................. 82-2-784-7598 
FAX ............................. 82-2-784-8014 

LATIN AMERICA, . 
Ft. Lauderdale ............. TEL ............................. (305) 484-8600 

FAX ............................ (305) 485-9736 
TEL ................. 5109554261 AMDFTL 

NORWAY, Hovik .............. TEL .................................. (02) 537810 
FAX .................................. (02) 591959 
TLX ........................................... :. 79079 

SINGAPORE .................... TEL ................................... 65-2257544 
FAX .................................. 65-2246113 
TLX ....................... RS55650 MMI RS 

SWEDEN, 
Stockholm .................... TEL .............................. (08) 733 03 50 

FAX .............................. (08) 733 22 85 
TLX ............................................. 11602 

TAIWAN ............................ TLX ............................. 886-2-7122066 
FAX ............................. 886-2-7122017 

UNITED KINGDOM, . 
Manchester area ......... TEL .............................. (0925) 828008 

FAX .............................. (0925) 827693 
TLX ........................................... 628524 

London area ................ TEL .............................. (04862) 22121 
FAX .............................. (0483) 756196 
TLX ........................................... 8591 03 

North American Representatives __ _ 
CANADA 
Burnaby, B.C. . 

DAVETEK MARKETING ................................. (604) 430-3680 
Calgary, Alberta . 

VITEL ELECTRONICS .................................... (403) 278-5833 
Kanata, Ontario 

VITEL ELECTRONICS .................................... (613) 592-0090 
Mississauga, Ontario. 

VITEL ELECTRONICS .................................... (416) 676-9720 
Quebec 
ID:~"bEL ELECTRONICS .................................... (514) 636-5951 

IN6~~rMOUNTAIN TECH MKGT ................... (208) 888-6071 

ELECTRONIC MARKETING 
'O~~NSULTANTS, INC ..................................... (317) 253-1668 

LORENZ SALES .............................................. (319) 377-4666 
KANSAS 
Merriam 

LORENZ SALES .............................................. (913) 384-6556 
Wichita 

LORENZ SALES .............................................. (316) 721-0500 
KENTUCKY 

ELECTRONIC MARKETING 
CONSULTANTS, INC ..................................... (317) 253-1668 

MICHIGAN 
MI~J~D~r'CK ASSOCIATES ........................... (313) 644-5040 

LORENZ SALES .............................................. (314) 997-4558 
NEBRASKA 

LORENZ SALES .............................................. (402) 475-4660 
NEW MEXICO 

THORSON DESERT STATES ....................... (505) 293-8555 
NEW YORK 

NYCOM, INC .................................................... (315) 437-8343 
OHIO 
Centerville 

DOLFUSS ROOT & CO .................................. (513) 433-6776 
Columbus 

DOLFUSS ROOT & CO .................................. (614) 885-4844 
Strongsville 

DOLFUSS ROOT & CO .................................. (216) 238-0300 
PENNSYLVANIA 

DOLFUSS ROOT & CO .................................. (412) 221-4420 
UTA~ 

R MARKETING ............................................... (801) 595-0631 

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance 
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, 
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein. 

~ 
Adv.nc.d Micro Devices. Inc. go1 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA 

.. Tel: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450 
~ APPUCATIONS HOTUNE TOLL FREE: (800) 222·9323 • (408) 749-5703 

<l:l 1988 Advanced Mao Devices, Inc. 

8-41/M-8/88-1 Printed In USA 



Notes 

~ Monolithic IFJJI Memories ~ 



Notes 

it1 Monolithic IFJJ] Memories ~ 



Notes 

l1 Monolithic W Memories ~ 



Notes 

~ Monolithic W Memories ~ 



Notes 

~ Monolithic W Memories l1 



Notes 

~ Monolithic W Memories ~ 



Notes 

~ Monolithic W Memories ~ 



Notes 

~ Monolithic W MemorIes ~ 



I 
10-pin Combinatorial 7TL/CMOS PAL Devices 

I PRODUCT PINS TECHNOLOGY tpo(ns) Icc(mA) DESCRIPTION PAGE 

IAmPAL18P8 20 TIL 15,25 55,90,180 20-pin superset 5-202 
PAL16P8 20 TIL 25 180 Programmable polarity 5-17 
lAm/PAL 16L8 20 TIL, ECMOS 10,15,25,35,55 0.1, 45, 90, 180 Standard 5-26,5-184 
·'PAL10H8 20 TIL 35 90 Simple combinatorial 5-56 
~PAL 1 OL8 20 TIL 35 90 Simple combinatorial 5-56 
I PAL 12H6 20 TIL 35 90 Simple combinatorial 5-56 
iPAL12L6 20 TIL 35 90 Simple combinatorial 5-56 
PAL 14H4 20 TIL 35 90 Simple combinatorial 5-56 

: PAL 14L4 20 TIL 35 90 Simple combinatorial 5-56 
: PAL 16H2 20 TIL 35 90 Simple combinatorial 5-56 I PAL 16L2 20 TIL 35 90 Simple combinatorial 5-56 
PAL16C1 20 TIL 40 0 Simple combinatorial 5-56 

I 
I 
20-pin Registered 7TL/CMOS PAL Devices 

I PRODUCT PINS TECHNOLOGY fMAX(MHz) Icc(mA) DESCRIPTION PAGE 

i AmPAL23S8 20 TIL 33,28.5 200 Buried registers 5-169 

I 
PAL16RA8 20 TIL 20 170 Asynchronous 5-11 
PAL16RP8 20 TIL 25 180 Programmable polarity 5-17 
PAL16RP6 20 TIL 25 180 Programmable polarity 5-17 
PAL16RP4 20 TIL 25 180 Programmable polarity 5-17 
Am/PAL16R8 20 TIL,ECMOS 58, 40, 28.5, 18, 11 0.1, 45, 90, 180 Standard 5-26,5-184 
Am/PAL16R6 20 TIL, ECMOS 58, 40, 28.5, 18, 11 0.1, 45, 90, 180 Standard 5-26,5-184 
Am/PAL16R4 20 TIL, ECMOS 58, 40, 28.5, 18, 11 0.1, 45, 90, 180 Standard 5-26,5-184 
PAL16X4 20 TIL 14 225 Arithmetic 5-51 

I Sequencers 

I PRODUCT PINS TECHNOLOGY f',1AX(MHz) 'cc(mA) DESCRIPTION PAGE 
--_._- --- -_ ... _---- -------------

PMS14R21 24 TIL 30,25 210 PROSE Sequencer 5-315 
PLS167 24 TIL 33 200 Programmable Logic Seq. 5-331 
PLS168 24 TIL 33 200 Programmable Logic Seq. 5-331 
PLS105 24 TIL 37 200 Programmable Logic Seq. 5-331 
Am29PL141 28 TIL 20 450 Fuse Prog. Controller 5-339 
Am2971 24 TIL 85 310 Prog. Evont Genera~or 5-365 

ECl PAL Devices 

PRODUCT PINS TECHNOLOGY fr,1Ax/tpo 'cc(mA) DESCRIPTION PAGE 
. -_. 

PAL 1 OH20EV/EG8 24 ECL10KH 125 MHz 220 Reg istered/latch ed 5-381 
PAL 1 0020EV/EG8 24 ECL100K 125 MHz 220 Registered/latched 5-381 
PAL 10H20G8 24 ECL10KH 6 ns 225 Latched 5-382 
PAL10H20P8 24 ECL10KH 6 ns 210 Combinatorial 5-386 

, Logic Cell Array 

PRODUCT PINS TECHNOLOGY fMAX(MHz) Icc(mA) DESCRIPTION PAGE 
.. - . .. .. -- ._----

M2064 48,68 RAM CMOS 70,50,33 5 Logic Coil Array 5-483 
M2018 68,84 RAM CMOS 50,33 5 Logic Coli Array 5-483 

(Continued on front cover) 




