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24-pin Combinatorial TTL/CNVIOS PAL Devices

PRODUCT PINS TECHNOLOGY top(ns) loc(mA) DESCRIPTION PAGE
AmPAL22XP10 24 TTL 20, 30, 40 90, 180, 210 XOR gate 5-271
PAL20S10 24 TTL 35 240 Product term steering | 5-103
AmPAL22P10 24 TTL 15,25 105, 210 24-pin superset 5-291
Am/PAL20L10 24 TTL 15, 20, 25, 30 105, 165, 210 10 outputs 5-113, 5-306
PAL20L8 24 TTL, ECMOS 15, 25, 35, 45 0.1, 105, 210 Standard 5-122
PALEL16 24 TTL 25 90 Wide output 5-141
PAL8L14 24 TTL 25 90 Wide output 5-141
PAL12L10 24 TTL 40 100 Simple combinatorial | 5-147
PAL14L8 24 TTL 40 100 Simple combinatorial | 5-147
PAL16L6 24 TTL 40 100 Simple combinatorial | 5-147
PAL18L4 24 TTL 40 100 Simple combinatorial | 5-147
PAL20L2 24 TTL 40 100 Simple combinatorial | 5-147
PAL20C1 24 TTL 40 100 Simple combinatorial | 5-147

24-pin Registered TTL/CMOS PAL Devices

PRODUCT PINS TECHNOLOGY fuax (MHZ) Iec(mA) DESCRIPTION PAGE
AmPALC29MA16 24 EE CMOS 20,15 120 Advanced Async. Macro| 5-209
AmPALC29M16 24 EE CMOS 20, 15 120 Advanced Macrocell 5-231
PAL32VX10 24 TTL 25,22 180 J-K, varied terms 5-70
Am/PAL22V10 24 TTL, E CMOS 40, 33, 28.5, 20, 18 90, 180 Versatile 5-79, 5-249
PAL22RX8 24 TTL 28.5 210 J-K flip-flops 5-87
PAL20RA10 24 TTL 20 200 Asynchronous 5-95
AmPAL20XRP10 24 TTL 30, 22, 14 105, 180, 210 XOR gate & polarity 5-271
AmPAL20XRP8 24 TTL 30, 22, 14 105, 180, 210 XOR gate & polarity 5-271
AmPAL20XRP6 24 TTL 30, 22, 14 105, 180, 210 XOR gate & polarity 5-271
AmPAL20XRP4 24 TTL 30, 22, 14 105, 180, 210 XOR gate & polarity 5-271
PAL20RS10 24 TTL 20 240 Product term steering 5-103
PAL20RS8 24 TTL 20 240 Product term steering 5-103
PAL20RS4 24 TTL 20 240 Product term steering 5-103
PAL20X10 24 TTL 22 180 XOR gate 5-113
PAL20X8 24 TTL 22 180 XOR gate 5-113
PAL20X4 24 TTL 22 180 XOR gate 5-113
AmPAL20RP10 24 TTL 37,25 105, 210 Programmable polarity | 5-291
AmPAL20RP8 24 TTL 37,25 105, 210 Programmable polarity | 5-291
AmPAL20RP6 24 TTL 37,25 105, 210 Programmable polarity | 5-291
AmPAL20RP4 24 TTL 37,25 105, 210 Programmable polarity | 5-291
PAL20R8 24 TTL, ECMOS 37,25, 20, 15 0.1, 105, 210 Standard 5-122
PAL20R6 24 TTL, ECMOS 37,25, 20,15 0.1, 105, 210 Standard 5-122
PAL20R4 24 TTL, ECMOS 37,25, 20, 15 0.1, 105, 210 Standard 5-122
PAL32R16 40 TTL 16 280 MegaPAL™ device 5-158

(Continued on back cover)
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In late 1987, the two programmable logic market leaders, Monolithic Memories and Advanced Micro
Devices, merged into one great company. We combined our strong traditions of customer service
and innovation to offer you the best line of programmable logic devices. The 7988 Data Book
presents the technical specifications on the entire product line. The separate 7988 Handbook
presents all of the necessary support material, whether you are accustomed to using MMI or
AMD products.

AMD/MMI has the products, manufacturing capacity and technology to perpetuate the leadership
in the programmabile logic field which we pioneered. In the 1988 Data Book you will notice that we
not only have the broadest programmable logic line, but we also have the industry’s most
comprehensive CMOS programmable logic line. We think that you will find the Data Book and
Handbook informative and useful. If you have any comments or questions on the books or the
product line, please contact us.

Gl h

Cyrus Tsui

Vice President
Programmable Logic Division
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Description

This 1988 PAL Device Handbook/Data Book is your complete guide to all programmable logic
devices (PLDs) from Monolithic Memories and Advanced Micro Devices. The merger of the two
companies provides a greater wealth of products and services for you. Note that all PLDs which
were in production before the merger are still being produced.

The PAL Device Handbook/Data Book is organized into two volumes and six easy-to-use sections:

PAL Device Handbook

Section 1: Introduction
Includes an overview of the PLD product family.

Section 2: Applications
Includes detailed application examples. The first few chapters provide tutorials in PLD design.
The application notes are grouped by application area.

PAL Device Data Book

Section 3: Programming and Quality
Includes information on PLD software programs, programming information, PLD technology and
quality discussions, and package information.

Section 4: PALASM 2 Software User Documentation
Includes complete documentation for PALASM 2 software.

Section 5: Data Sheets
Includes specifications for all PLDs from the combined company. PAL devices formerly from MMI
are under “PAL Devices,” while PAL devices formerly from AMD are under “AmPAL Devices.”

Section 6: Appendices
Includes quick reference information.

If you have any questions or comments on PLDs or any other products, please contact your most
convenient AMD/MMI sales offics, listed at the end of each book.
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AmPAL16RED 5-183 AmPAL22XP10-20  5-286 PAL16R6A-4 5-43
AmPAL16R6L 5-197 AmPAL22XP10-30L 5-286 PAL16R6B 5-31 PALC16L.8Q-25 5-33
AmPAL16R6Q 5-197 AmPAL22XP10-30  5-286 PAL16REB-2 5-35 PALC16L8Z-25 5-50
AmPAL16R8 5-197 AmPAL22XP10-40L 5-286 PAL16R6B-4 5-39 PALC16R4Q-25 §-33
AmPAL16R8A 5-197 PAL16R8D 5-29 PALC16R4Z-25 5-50
AmPAL16R8AL 5-197 AmPAL2388-20 5-169 PAL16R8A 5-37 PALC16R6Q-25 5-33
AmPAL16R8B 5-197 AmPAL2388-25 5-169 PAL16R8A-2 5-41 PALC16R6Z-25 5-50
AmPAL16R8D 5-183 PAL16R8A-4 5-43 PALC16R8Q-25 5-33
AmPAL16RSL 5-197 AmPALC29M16-35 5-231 PAL16R8B 5-31 PALC16R8Z-25 5-50
AmPAL16R8Q 5-197 AmPALC29M16-45 5-231 PAL16R8B-2 5-35 PALC20L8Z-35 5-133
AmPALC29MA16-35 5-210 PAL16R8B-4 5-39 PALC20R4Z-35 5-133
AmPAL18P8A 5-202 AmPALC29MA16-45 5-210 PAL16RA8 5-11 PALC20R6Z-35 5-133
AmPAL18P8AL 5-202 PAL16RP4A 5-17 PALC20R8Z-35 5-133
AmPAL18P8B 5-202 M2018 5-483 PAL16RP6A 5-17 PALC20L8Z-45 5-133
AmPAL18P8L 5-202 M2064 5-483 PAL16RP8A 5-17 PALC20R4Z-45 5-133
AmPAL18P8Q 5-202 PAL16X4 5-51 PALC20R6Z-45 5-133
PALGL16A 5-141 PALC20R8Z-45 5-133
AmPAL20L10AL 5-306 PALSL14A 5-141 PAL18L4 5-147 PALC22V10H-25 5-79
AmPAL20L10B 5-306 PALC22V10H-35 5-79
AmPAL20L10-20 5-306 PAL10H8 5-56 PAL20GC1 5-147
AmPAL20RP4A 5-3086 PAL10H20G8 5-382 PAL20L2 5-147 PLS105-37 5-331
AmPAL20RP4AL 5-306 PAL10H20EV/EG8  5-381 PAL20L10A 5-113 PLS167-33 5-331
AmPAL20RP4B 5-306 PAL10H20P8 5-386 PAL20L8A 5-128 PLS168-33 5-331
AmPAL20RP6A 5-306 PAL10L8 5-56 PAL20L8A-2 5-130
AmPAL20RP6AL 5-306 PAL20L8B 5-125 PMS14R21 5-315
AmPAL20RP6B 5-306 PAL12H6 5-56 PAL20L8B-2 5-126 PMS14R21A 5-315
AmPAL20RP8A 5-306 PAL12L6 5-56 PAL20R4A 5-128
AmPAL20RP8AL 5-306 PAL12L10 5-147 PAL20R4A-2 5-130
AmPAL20RP8B 5-306 PAL20R4B 5-125
AmPAL20RP10A §-306 PAL14H4 5-56 PAL20R4B-2 5-126
AmPAL20RP10AL  5-306 PAL14L4 5-56 PAL20R6A 5-128
AmPAL20RP10B 5-306 PAL14L8 5-147 PAL20R6A-2 5-130
AmPAL20XRP4-20  5-286 PAL20R6B 5-125
AmPAL20XRP4-30L 5-286 PAL16C1 5-56 PAL20R6B-2 5-126
AmPAL20XRP4-30  5-286 PAL16H2 5-56 PAL20R8A 5-128

:' Monolithic m Memorles ﬂ X



Notes

xiv &\ Monolithic liliﬂ Memorles &\



PAL Device Handbook

itroduction [T
__ appiications [IEN




Introduction

Table of Contents

What is a PLD?

1-1

What Advantages do PLDs

Product Overview

Have Over Other Implementations?

1-1
1-4

PAL Devices

1-7

Nomenclature

1-7
1-7

Programmable Sequencers
LCA Devices

Eﬂ Monalithic m Aemories E

1-19
1-20




Introduction

The Programmable Array Logic device, commonly known as the
PAL®device, was invented at Monolithic Memories over 12 years
ago. The concept forthis revolutionary type of device sprang forth
as a simple solution to the shortcomings of discrete TTL logic.

The successfully proven PROM technology which allowed the
end user to “write on silicon” provided the technological basis
which made this kind of device not only possible, but very popular
as well.

The availability of design software made it much easier to design
with programmable logic. As designers were freed from the
drudgery of low-level implementation issues, new complex de-
signs were easier to implement, and could be completed more
quickly.

This chapter outlines some basic information essential to those
who are unfamiliar with Programmable Logic devices (PLDs).
Theinformation may also be usefultothose who are current users
of programmable logic. The specific issues which need to be
addressed are:

« Whatis a PLD?

+ What other implementations are possible?

» What advantages do PLDs have over other
implementations?

What is a PLD?

In general, a programmable logic device is a circuit which can be
configured by the user to perform a logic function. Most “stan-
dard” PLDs consist of an AND array followed by an OR array,
either (or both) of which is programmable. Inputs are fed intothe
AND array, which performs the desired AND functions and
generates product terms. The productterms are then fed into the
OR array. In the OR array, the outputs of the various product
terms are combined to produce the desired outputs. There are
three fundamental types of standard PLD: the PROM, the PAL
device, and the PLS device.

PROMs
PROMs are usually thought of as memory elements. However,

the PROM has a fixed AND array (which decodes the memory
address) followed by a programmable OR array (Figure 1). For

each of a given set of input combinations (addresses), it gener-
ates a value which has been programmed into the device.
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Figure 1. PROM Array Structure
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Introduction

PAL Devices

The PAL device has a programmable AND array followed by a
fixed OR array (Figure 2). The fact that the AND array is -
programmable makes it possible for the devices to have many
inputs. Thefactthatthe OR array is fixed makes the devices small
(which means less expensive) and fast.

PLS Devices

The PLS (Programmable Logic-based sequencer) devices are
based on the standard PLA architecture (Figure 3), where both
the AND and the OR arrays are programmable. This arrange-
ment allows for greater overall flexibility. The architecture is a bit
more costly in terms of die size and speed, so for simple logic
functions, a PAL device is usually more cost effective. However,
this architecture is very effective for sequencers, where the
flexibility allows larger state machines than might fit in a PAL
device.

Other PLDs

In addition to the basic sum-of-products PLDs, some more
complex PLDs dedicated to sequencing are available, most
notably the PROSE™ device and the Am29PL141. Their archi-
tectures are described elsewhere in the handbook, but their fun-
damental benefits are the same as those of the more traditional

In practice, the distinctions between architectures are not as
significant as the differences between the types of functions to be
performed. For this reason, this handbook is organized primarily
into discussions about PAL devices and discussions about se-
quencers, whether those sequencers be implemented in PAL
devices, PLS devices, or one of the dedicated sequencers.

What Other Implementations Are
Possible?

There are essentially four alternatives to programmable logic:

« Discrete Logic

+ Gate Arrays

« Standard Cell Circuits
« Full Custom Circuits

Discrete Logic

Discrete logic, or conventional TTL logic, has the advantage of
familiarity; hence its popularity. It is also quite inexpensive when
only unit cost is considered. The drawback is that the implemen-
tation of even a simple portion of a system may require many units
of discrete logic. There are "hidden” costs associated with each
unitthat goes into a system, which can render the overall system
more expensive.

PLDs.
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Designing with discrete chips can also be very tedious. Each
design decision directly affects the layout of the board. Changes
are difficultto make. Thedesignis also moredifficultto document,
making it harder to debug and maintain later. These items all
contribute to a long design cycle when discrete chips are used
extensively.

Gate Arrays

Gate arrays have been increasing in popularity. The attractive-
ness of this solution lies in the device's flexibility. By packing the
functions into the device, a great majority of the available silicon
is actually used. Since such a device is customized for an
application, it would seem to be the optimum device for that
application.

However, one also pays substantial development costs, espe-
cially in the case of a design which needs changes after silicon
has already been processed. Even though the unit costs are
generally quite low for gate arrays, the volumes required to make
their use worthwhile excludes them as a solution for many
designers. Thisfact, added to the long design cycle and high risk
involved, make this solution practical for only a limited number of
designers.

Standard Cell Circuits

Standard cell circuits are quite similar to gate arrays, their main
advantage being that they consist of a collection of different parts
of circuits which have already been debugged. These circuits are

Is

then assembled and collected to perform the desired functions.
This can ideally lead to reduced turnaround from conception to
implementation, and a much more efficient circuit.

The drawback is that even though the individual components of
the circuit have been laid out, a complete layout must still be per-
formedto arrangethe cells. Instead of just customizing the metal
interconnections, as is done in a gate array, the circuit must be
developed from the bottom up. Development costs can be even
higherthan forgate arrays, and despite the standard cell concept,
turnaround time oftentends to be longerthan planned. Again, the
volume must be sufficiently high to warrant the development
costs.

Full Custom Circuits

Full custom designs require that a specific chip be designed from
scratch to perform the needed functions. The intent is to provide
a solution which givesthe designer exactly what is needed forthe
application in question; no more and no less. Ideally, not asquare
micron of silicon is wasted. This normally results in the smallest
piece of silicon possible tofitthe needs of the design, which inturn
reduces the system cost. Understandably, though, development
costs and risks for such adesign are extremely high, and volumes
must be commensurately high in order for such a solution to be
of value.
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Figure 3. PLA Array Architecture

;' onolithic m Memories I'l 1-3




Iritroduction

e e — —— ————

What Advantages do PLDs Have Over
Other Implementations?

As user-programmable semicustom circuits, PLDs provide a
valuable compromise which combines many of the benefits of
discrete logic with many of the benefits of other semicustom
circuits. The overall advantages can be found in several areas:

Ease of design
Performance
Reliability
Cost savings

e o o

Ease of Design

The support tools available for use in designing with PLDs greatly
simplify the design process by making the lower-level implemen-
tation details transparent. In a matter of one cr two hours, a first
time PLD user can learn to design with a PAL device, program it,
and implement the design in a system.

The design support tools consist of design software and a
programmer. The design software is used in generating the
design; the programmer is used to configure the device. The
software provides the link between the higher-level design and
the low-level programming details.

Allof the available design software packages (of which Monolithic
Memories’' PALASM® software is the most widely used) perform
essentially the same tasks. The designis specified with relatively
high-level constructs; the software takes the design and converts
it into a form which the programmer uses to configure the PLD.
Most software packages provide logic simulation, which allows
one to debug the design before actually programming a device.
The high-level design file also serves as documentation of the
design. This documentation can be even easier to understand
than traditional schematics.

Depending on the capabilities desired, a device programmer can
cost anywhere from under $1,000.00 to around $15,000.00 for a
high-volume production programmer. Many PLD users do not
find it necessary to purchase a programmer; it is often quite cost
effective and convenient to have either the manufacturer or an
outside distributor do the programming for them. Fordesign and
prototyping, though, it Is very helpful to have a programmer; this
allows one to implement designs immediately.

The convenience of programmable logic lies in the ability to
customize a standard, off-the-shelf product. PLDs can be found
in stock to suit a wide range of speed and power requirements.
The variety of architectures available also allows a choice of the
proper functionality for the application athand. Thus adesigncan
be implemented using a standard device, with the end result
essentially being a custom device. If a design change is needed,
it is a simple matter to edit the original design and then program
a new device, or, in the case of reprogrammable CMOS devices,
erase and reprogram the old device.

Board layout is vastly simplified with the use of programmable
logic. PLDs offer great flexibility in the location of inputs and
outputs on the device. Since larger functions are implemented
inside the PLD, board layout can begin once the inputs and

outputs are known. The details of what will actually be inside the
PLD can be worked out independently of the layout. In many
cases, any needed design changes can be taken care of entirely
within the PLD, and will not affect the PC board.

Performance

Speedisoneofthe main reasonsthat designers use PALdevices.
The TTL PAL devices presently on the market can provide equal
or better performance than the fastest discrete logic available.
ECL PAL devices extend the benefits of programmable logic to
the even higher-speed realm of ECL logic. Today's fastest PAL
devices are being developed on the newest technologies to gain
every extra nanosecond of performance.

Performance cannot come strictly at the expense of power
consumption. Since PLDs can be used to replace several
discrete circuits, the power consumption of a PLD may well be
less than that of the combined discrete devices. As more PLDs
are developed in CMOS technology, the option for even lower
power becomes available, including zero standby power devices
for systems which can tolerate only minute standby power con-
sumption.

Rellability

Reliability is an area of increasing concern. As systems getlarger
and more complex, the increase in the amount of circuitry tends
to reduce the reliability of the system; there are "more thingsto go
wrong”. Thus a solution which inherently reduces the number of
chips inthe system will contribute to higher reliability. Aprogram-
mable logic approach can provide device quality levels up to 50
parts per million (ppm), while also providing a more reliable
solution due to the smaller number of devices required.

With the reduction in units and board space, PC boards can be
laid out less densely, which greatly improves the reliability of the
board itself. This also reduces crosstalk and other potential
sources of noise, making the operation of the system cleaner and
more reliable.

Cost

For any design approach to be practical, it must be cost effective.
Cost is almost always a factor in considering a new design or a
design change. But the calculation of total system cost can be
misleading if not all aspects are considered. Many of the costs
can be elusive or difficult to measure. For example, it is difficult
to quantify the cost of market share lost due to late product
introduction.

The greatest savings over a discrete design are derived from the
fact that a single PLD can replace several discrete chips. Board
space requirements can drop by 25% or more when PLDs are
used. Figure 4 illustrates some of the costs of the various
solutions discussed so far, with many of the factors that may not
always be considered included for comparison. These involve
such items as inventory costs, inspection costs, test costs, board
materials costs, and of course the very costly time spent design-
ing and debugging such systems, and isolating and replacing
units which fail. With each design change, the cost of a custom
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Unit NREs/ Purchase Design Gate Count | Engineering Design Cost
Cost Development Costs Volume Flexibility per Device Design Turnaround of Each
Range For Best Time Time Design Change
Economics
PLDs: BLANK Low-Med None 5K-200K Med 200-2K 1/2 Week Short Very Low
(1-10 Days)
PLDs: FACTORY Low-Med Low 10K—-200K Med 200-2K 3-10 Moderate Med
PROGRAMMED Weeks (8-10 Wks.)
DISCRETE LOGIC Low-Med None 1K-10K Low 10-30 1 Week Short Med
(1-10 Days)
GATE ARRAYS Low Med-High 10K-200K Med-High 1K-10K 1240 Long High
Weeks (3-9 Mos.)
STANDARD CELLS Low High 100K-300K Med-High 1K-10K 26-52 Long High
Weeks (6-12 Mos.)
FULL CUSTOM Very Low High 200K and Up High 1K-60K 1-2 Yrs. Long High
(6-12 Mos.)

Figure 4. Cost and Design-time Comparisons
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Introduction

solution rises dramatically, while that of a user-customizable
approach is minimal. The relationship between the various
alternatives is summarized in Figure 5.

Another economic benefitofthe use of PLDs is thatwhen one PAL
device is used in several different designs, as is often the case,
the user has not committed that device to any one of the particular
designs until the device has been programmed. This means that
inventory can be stocked for several different designs in the form
of one device. As requirements change, the parts can be
programmed to fit the need. And in the case of reprogrammable
CMOS devices, one is not committed even after programming.

There is also a cost-effective PLD solution for high-volume
production. Justas a ROMis aPROMwhich has been hard-wired
for mass production, HAL® (Hard Array Logic) devices can be
produced in high volumes for extra cost savings. This mask-
programmed version can be produced in high volume with
unparalleled quality. In addition, in the event that production
quantities for your system show an unexpected increase, the
equivalent PAL or ProPAL™ devices (in-factory programmed
PAL devices) can be quickly obtained and programmed in your
factory, by Monolithic Memories, or through distribution to cover
the temporary shortage. More details on HAL and ProPAL
devices are provided on page 3-104 of the Data Book.

One final subtle cost issus is derived from the ease with which a
competitorcan copy a design. PLDs have a unique feature called
a security fuse, whose purpose is to protect a design from being
copied. By using secured PLDs extensively in a system, one can

COsT

PROGRAMMABLE
LOGIC

STANDARD

safely avoid having one's system easily deciphered. The added
design security provided by this feature can buy extra market
time, forcing competitors to do their own original design work
rather than copying the designs of others.

Summary

Programmable logic provides the means of creating semi-custom
designs with readily available standard components. There is a
wide variety of PLDs; PAL devices are most widely used, and
perform well for basic logic and some sequencing functions.
Other dedicated sequencers provide the circuitry required to
implement more complex designs.

By assuming some of the attributes of gate arrays, programmable
logic provides the cost savings of any other semicustom device,
without the extra engineering costs, risks, and design delays.
Reliability is also enhanced as quality increases and board
complexity decreases.

The design tasks are greatly simplified due to the design tools
which are now available. Design software and device program-
mers allow top-down high-level designs, with a minimum of time
spent on actual implementation issues. Simulation allows some
design debug before a device is programmed.

For all of these reasons, programmable logic has become, and
will continue to be, the design methodology of choice among
digital systems designers.

PRODUCTS

WEEKS

1 I I
MONTHS YEARS

DEVELOPMENT TIME

Figure 5. Development Cost vs Time for Alternative Logic
Implementations

1-6 &\ Monolithic li.lill Memories &\



Produci Overview

Introduction

Monolithic Memories and Advanced Micro Devices offer a wide
variety of PLDs, implemented in a variety of technologies. Inthis
section, we will briefly discuss the device families, and look at the
various architecture, speed, and power options. More specific
device information can be found in the individual data sheets in
Section 5. Discussions on some of the special architectural fea-
tures of many of the devices can also be found in their respective
datasheets.

There are three basic PLD areas addressed by Monolithic
Memories’ devices:

« PAL devices—general purpose
» Programmable sequencers—state machines
- LCA™ devices—high density

The largest application area is that covered by the PAL devices.
There is a wide variety of PAL devices, ranging from simple
devices that address general logic design problems to more
sophisticated devices that deal with more complex problems.

There is also a series of sequencers which are not PAL devices,
featuring architectures particularly well suited to sequencing
operations. While there are PAL devices that work well as state
machines in addition to their other applications, these dedicated
sequencers have given up some of their generality to provide
optimal state machine solutions.

The final area covered is that of high-density design, addressed
by the LCA devices. The LCA device takes the approach of a
programmable gate array to provide a PLD with many usable
gates.

Design software radically simplifies the design of any circuit in a
PLD. PALASM software s usedfor allof the PLDs exceptthe LCA
devices. The LCAdevices make use of XACT™ softwareforlogic
configuration. The PALASM software documentation is in
Section 4; XACT software is discussed more fully on

page 3-17 of the Data Book.

PAL Devices
PAL devices are available in three different technologies:

« TTL
« CMOS
+ ECL

The CMOS devices often provide the same functions as the TTL
devices, and can be used in the same sockets, with the added
benefit of lower power. Thus the TTL and CMOS devices will be
discussed together, followed by a summary of specific CMOS
issues. ECL devices require completely different design consid-
erations, and cannotbe interchanged with TTLor CMOS devices.
They will therefore be discussed separately.

PAL devices generally have a mnemonic naming scheme, which
provides some basic information about the devices' capabilities.

Because Monolithic Memories and Advanced Micro Devices
recently merged, there are presently two slightly different naming
conventions in use. Some devices were originally Monolithic
Memories' devices; some were Advanced Micro Devices’; some
devices were produced by both companies before the merger. In
order to minimize the confusion after the merger, the old device
names are being maintained. Thetwo naming conventions willbe
discussed separately. Throughout this handbook, “AmPAL”
designates products originally from Advanced Micro Devices.

Note that all products that Monolithic Memories and Advanced
Micro Devices were producing before the merger are still in
production.

Monolithic Memories Nomenclature

Monolithic Memories originally set the PAL device naming stan-
dard. An example of an older device nameis shown in Figure 1.

As devices have become faster, and as CMOS has become
available, it has become necessary to change the way we
describe the performance of newer devices. While the conven-
tion is slightly different, it does make it easier to see exactly what
the speed grade and power level of a device are. An example of
such a new device is shown in Figure 2.

Advanced Micro Devices
Nomenclature

The Advanced Micro Devices nomenclature follows the Mono-
lithic Memories nomenclature with a few modifications. Atypical
older device name is shown in Figure 3.

Advanced Micro Devices also found the need to medify the
nomenclature with the advent of faster devices and CMOS
devices. An example of a newer device is shown in Figure 4.

The relationship between a device and its name will become
apparent in the Tables following.

The package designators also differ. A cross reference for com-
mercial packages is shown in Table 1.

MONOLITHIC| ADVANCED
PACKAGE MEMORIES |MICRO DEVICES
Plastic DIP N P
Plastic SKINNYDIP® NS P
Ceramic DIP J D
Ceramic SKINNYDIP Js D
PLCC~20-pin NL J
PLCC from 24-pin DIP, FN J
JEDEC
PLCC from 24-pin DIP NL -
PLCC from 28-pin DIP FN J
LCC L L

Table 1. Package Designators

l‘rl Monolithic E.Eﬂ Memories l‘rl 1.7
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PAL 1
PAL _J

NUMBER OF INPUTS

ARCHITECTURE

6

8 A =2
_‘-— POWER LEVEL
SPEED GRADE

NUMBER OF QUTPUTS

Notes:

ECL devices also have either ‘10H' or '100’ following ‘PAL’ to
indicate the ECL family compatibility.

The number of inputs includes feedback, if feedback exists.
The architecture code varies. It is usually mnemonic, and the

meanings of each code will be listed in each of the following
sections.

(OR FLIP-FLOPS) 402 01

The speed grade indicates the propagation delay. Ingeneral, the
speeds are as follows:

blank: 35 ns (Note that —~2 and —4 devices are slower)
A: 25 ns
B: 15 ns
D: 10 ns

The power level can be one of three designators:
blank: ‘full power’, 180-240 mA

-2: ‘half power’, 90-105 mA
—4: 'quarter power’, 45-55 mA

Figure 1. Monolithic Memorles Nomenclature for Older Products

PAL C 16 L 8 Q -25
PAL J ' —I-— SPEED GRADE

TECHNOLOGY

NUMBER OF INPUTS

ARCHITECTURE

Notes:
The technology designator can be one of four codes:
blank =TTL
C =CMOS
10H = 10KH ECL
100 = 100K ECL

The number of inputs includes feedback, if feedback exists.

POWER LEVEL

NUMBER OF OUTPUTS
(OR FLIP-FLOPS) 402 02

The architecture code varies. It is usually mnemonic, and the
meanings of each code will be listed in each of the following
sections.

The power level can be one of four designators:

blank: ‘full power’, 180-240 mA
H: ‘half power', 90-105 mA
Q: ‘quarter power’, 45-55 mA
Z: ‘zero power’, <0.1 mA standby current

Figure 2. New Monolithic Memories Nomenclature
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— S s
AmPAL 16 L 8 A L
AmPAL ——— T— POWER LEVEL
NUMBER OF INPUTS SPEED GRADE
ARCHITECTURE NUMBER OF QUTPUTS
402 03 (OR FLIP-FLOPS)

The speed grade indicates the propagation delay. Ingeneral, the

Notes: speeds are as follows:
The number of inputs includes feedback, if feedback exists. blank: 35 ns

A: 25 ns
The architecture code varies. It is usually mnemonic, and the B: 15ns
meanings of each code will be listed in each of the following D: 10 ns

sections. n
The power level can be one of three designators:

blank: ‘full power’, 180-240 mA
L: ‘half power’, 90-105 mA
Q: ‘quarter power’, 45-55 mA

Figure 3. Advanced Micro Devices Nomenclature for Older Products

AmPAL C 22 XP 10 =30 L

AmPAL _I-_ POWER LEVEL
TECHNOLOGY
SPEED GRADE
NUMBER OF INPUTS
NUMBER OF OUTPUTS
402 04 ARCHITECTURE oo | (OR FLIP-FLOPS)
Notes: The speed grade indicates the propagation delay in nano-
seconds.

The technology designator can be one of two codes:
The power level can be one of three designators:
blank = TTL
C =CMOS blank: ‘full power’, 180-240 mA
L: ‘half power’, 90—105 mA
The number of inputs includes feedback, if feedback exists.

The architecture code varies. lt is usually mnemonic, and the
meanings of each code will be listed in each of the following
sections.

Figure 4. New Advanced Micro Devices Nomenclature
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AMD/MMI Programmabile Logic Product
Cross Reference Guide

As a merged company, the combined PLD offerings of AMD/MMI
providethe PLD userthe broadest line of PLDs available from one
supplier. The combined product offering also contains a number
of devices for which each of the original separate companies had
equivalent devices.

This is a guide to the devices that are equivalent and can be
directly substituted (with exceptions as noted in the comments

section).

These are the only products which are direct substitutes for each
other, or which we will be encouraging customers to use as

alternate parts.

TTL and CMOS PAL Devices

TTLPAL devices are used more widely by far than devices made
with any other technology. They provide very high speed without
the design requirements of ECL. CMOS devices provide the
benefits of reduced power consumption and erasability. Each
CMOS device is either TTL compatible, or has a TTL-compatible
version.

The available devices can be generally placed into four functional
groups:

« Simple combinatorial
« Simple registered

« Sequencer

» Asynchronous

AMD MMI
COMMENTS
Part Number Speed/Power Part Number | Speed/Power
AmPAL16R8D 10/180 PAL16R8D 10/180
AmPAL16R6D 10/180 PAL16R6D 10/180
AmPAL16R4D 10/180 PAL16R4D 10/180
AmPAL16L8D 10/180 PAL16L8D 10/180
AmPAL16R8B 15/180 PAL16R8B 15/180
AmPAL16R6B 15/180 PAL16R6B 15/180
AmPAL16R4B 15/180 PAL16R4B 15/180
AmPAL16L8B 15/180 PAL16L8B 15/180
AmPAL16R8AL | 25/90 PAL16R8B-2 25/90
AmPAL16R6AL | 25/90 PAL16R68B-2 25/90
AmPAL16R4AL | 25/90 PAL16R4B-2 25/90
AmPAL16L8AL | 25/90 PAL16L8B-2 25/90
AmPAL16R8A 25/180 PAL16R8A 25/180 AMD—20-ns t
AmPAL16R6A 25/180 PAL16R6A 25/180 AMD—20-ns t
AmPAL16R4A 25/180 PAL16R4A 25/180 AMD—20-ns t,
AmPAL16L8A 25/155 PAL16L8A 25/180
AmPAL16R8Q 35/45 PAL16R8B-4 35/55
AmPAL16R6Q | 35/45 PAL16R6B-4 35/55
AmPAL16R4Q 35/45 PAL16R4B-4 35/55
AmPAL16L8Q 35/45 PAL16L8B-4 35/55
AmPAL16R8L 35/90 PAL16R8A-2 35/90
AmPAL16R6L 35/90 PAL16R6A-2 35/90
AmPAL16R4L 35/90 PAL16R4A-2 35/90
AmPAL16L8L 35/80 PAL16L8A-2 35/90
AmPAL16R8 35/180 PAL16R8A-2 35/90 Note that the MMI part requires half the power
AmPAL16R6 35/180 PAL16R6A-2 35/90 (90 mA I..) of the AMD part (180 mA)
AmPAL16R4 35/180 PAL16R4A-2 35/90
AmPAL16L8 35/180 PAL16L8A-2 35/90
AmPAL18P8L 35/90 PAL10H8 35/90 The 18P8L can replace any of the MMI parts,
AmPAL18P8L 35/90 PAL12H6 35/90 but the reverse is not necessarily true.
AmPAL18P8L 35790 PAL14H4 35/90
AmPAL18P8L 35/90 PAL16H2 35/90
AmPAL18P8L 35/90 PAL10L8 35/90
AmPAL18P8L 35/90 PAL12L6 35/90
AmPAL18P8L 35/90 PAL14L4 35/90
AmPAL18P8L 35/90 PAL16L2 35/90
110 &\ Monolithic m Memories &\
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Simple Combinatorial Devices

These PAL devices provide simple combinatorial functions
quickly and efficiently.. There is a wide selection of devices,
allowing the user to choose the right device for the given
application.

There are five basic characteristics that differentiate these
devices:

« The number of inputs

+ The number of outputs

+ The number of product terms per output
» The speed: propagation delay

+ Power consumption

The AmPAL22XP10 has built-in exclusive-OR gates on each
output.

In addition to the devices that are purely combinatorial, there are
also registered devices with flip-flops that can be bypassed to
give a combinatorial device. Although these devices are not
listed in Table 2, they can be used as combinatorial devices. The
best example is the PAL22V10, which is widely used as a com-
binatorial device.

A summary of the architecture codes for these types of devices
is shown in Table 2.

The combinatorial devices are listed in Table 3, with their logic,
speed, and power characteristics.

Several pf the device's have inte'rnz:xl feedback, which routgs CODE MEANING EXAMPLE
output pins back as inputs. This is generally coupled with
programmable three-state capability, so that the output pins can H Active-HIGH outputs PAL10H8
be used as outputs, inputs, or bidirectional pins. L Active-LOW outputs PAL16L8
P Programmable output polarity PAL16P8
Most of the devices have fixed output polarity. The AmPAL18P8, c Complementary outputs PAL16Ct
AmPAL22P10, PAL16P8, PAL20S10, and AmPAL22XP10 all XP ExlcluitsVlve-OR gate, prog. AmPAL22XP10
; polar
have programmable output polarity. S Product term steering PAL20S10
The PAL20S10 has a feature called “product term steering”,
which allows product termsto be allocated betweenoutputs. This Table 2. Comblnatorlal Architectures
is described more fully on page 5-103 of the Data Book.
STANDBY
PRODUCT SPEED I DATA SHEET
DEVICE NAME INPUTS OUTPUTS TERMS/OUTPUT (t,, in ns) (mf\) PAGE NO.
PALSL14A 8 14 1 25 90 5-141
PAL6L16A 6 16 1 25 90 5-141
PAL10H8 10 8 2 35 90 5-56
PAL12H6 12 6 2,4 35 90 5-56
PAL14H4 14 4 4 35 90 5-56
PAL16H2 16 2 8 35 90 5-56
PAL10LS 10 8 2 35 90 5-56
PAL12L6 12 6 24 35 90 5-56
PAL14L4 14 4 4 35 90 5-56
PAL16L2 16 2 8 35 90 5-56
PAL16C1 16 2 16 40 90 5-56
PAL16L8D 16* 8 7 10 180 5-29
AmPAL16L8D 10 180 5-183
PAL16L8B 15 180 5-31
AmPAL16L8B 15 180 5-197
PALC16L8Z-25 25 0.1 5-50
PALC16L8Q-25 25 45 5-33
PAL16L8B-2 25 90 5-35
AmPAL16L8AL 25 90 5-197
PAL16L8A 25 180 5-37
AmPAL16L8A 25 155 5-197
i PAL16L8B-4 35 55 5-39
AmPAL16L8Q 35 45 5-197
PAL16L8A-2 35 90 5-41
AmPAL16L8L 35 80 5-197
AmPAL16L8 35 155 5-197
PAL16L8A-4 55 50 5-43

Table 3. Simple Combinatorial PAL Devices

:l Monolithic m Memorles z'
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STANDBY
PRODUCT SPEED lee DATA SHEET
DEVICE NAME INPUTS OUTPUTS TERMS/OUTPUT (t,, In ns) (mA) PAGE NO.
PAL16PBA 16" 8 7 25/30** 180 5-17
AmPAL18P8B 18* 8 8 15 180 5-202
AmPAL18PBAL 25 90 5-202
AmPAL18P8A 25 180 5-202
AmPAL18P8Q 35 55 5-202
AmPAL18P8L 35 90 5-202
PAL12L10 12 10 2 40 100 5-147
PAL14L8 14 8 2,4 40 100 5-147
PAL16L6 16 6 2,4 40 100 5-147
PAL18L4 18 4 4,6 40 100 5-147
PAL20L2 20 2 8 40 100 5-147
PAL20C1 20 2 16 40 100 5-147
PAL20L8B 20" 8 7 15 210 5-125
PAL20L8B-2 25 105 5-126
PAL20L8A 25 210 5-128
PALC20L8Z-35 35 0.1 5-133
PAL20L8A-2 35 105 5-130
PALC20L8Z-45 45 0.1 5-133
AmPAL20L10B 20* 10 3 15 210 5-306
AmPAL20L10-20 20 165 5-306
AmPAL20L10AL 25 105 5-306
PAL20L10A 30 165 5-113
PAL20S10 20 10 0-16t1 35 240 5-103
AmPAL22P10B 22" 10 8 15 210 5-306
AmPAL22P10AL 25 105 5-306
AmPAL22P10A 25 210 5-306
AmPAL22XP10-20 22" 10 2/61 20 210 5-286
AmPAL22XP10-30L 30 105 5-286
AmPAL22XP10-30 30 180 5-286
AmPAL22XP10-40L 40 105 5-286
* Includes feedback 1 Has an exclusive-OR gate
** Depending on polarity 1t Product term steering

Table 3. Simple Combinatorial PAL Devices (Continued)
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Simple Registered Devices

A basic registered device is generally equivalent to a combinato-
rialdevice with registers onthe outputs for signal synchronization.
All such devices have feedback from the flip-flops back into the
array as inputs, so that they can also be used for very fast small
state machines. The differentiating characteristics of these de-
vices are:

+ The number of inputs

The number of outputs

The number of flip-flops

The number of product terms per output
The speed: maximum clock frequency
Power consumption

Most of these devices have dedicated clock and output enable
pins. On devices such as the PAL16R4, which have some
dedicated combinatorial outputs, only the registered outputs are

The simpler devices all have active-LOW outputs. The
PAL16RP8 family, PAL22V10, AmPAL22RP10 family,
AmPAL22XRP 10 family, PAL20RS10 family, and the PAL32R16
have programmable polarity.

The PAL20RS 10 family and PAL32R16 have product term steer-
ing, as was discussed above for the PAL20S10.

The outputs of the PAL32R16 can also be programmed to be
combinatorial in banks of eight. In addition, the PAL32R16 has
multiple clock, enable, and TTL-level preload pins.

The PAL22V10 has two programmable initialization product
terms: a synchronous preset term and an asynchronous reset
term. These terms control all flip-flops.

A summary of the architecture codes for these types of devices
is shown in Table 4. The devices are summarized in Table 5.

controlled by the enable pin; the combinatorial outputs have
programmable three-state functions. CODE MEANING EXAMPLE
The PAL22V10, AmPAL22RP10 family, and AmPAL22XRP10 -
family have programmable three-state outputs, With these fami- R Registered outputs PAL16R8
lies, the clock pin may also be used as a logic input if desired X Exclusive-OR gates PAL16X4
! ’ RP Registered with prog. pola[ity PAL16RP8
The PAL16X4 has extra bit-pair decoding circuitry which makes \F}S ssgzzﬁ;ed with term steering Am;ﬁtgg{:}%o
it especially well suited to arithmeticoperations. Thisis discussed
more fully on page 2-53 in the combinatorial logic section. Table 4. Reglstered Architectures
STANDBY
PRODUCT SPEED I DATA SHEET
DEVICE NAME INPUTS OUTPUTS | FLIP-FLOPS| TERMS/OUTPUT ((f,,,, In MHz) (mi\) PAGE NO.
PAL16R8D 16" 8 8 8 55 180 5-29
AmPAL16R8D 55 180 5-183
PAL16R8B 37 180 5-31
AmPAL16R8B 40 180 5-197
PALC16R8Z-25 285 0.1 5-50
PALC16R8Q-25 285 45 5-33
PAL16R8B-2 25 90 5-35
AmPAL16R8AL 285 90 5-197
PAL16R8A 25 180 5-37
AmPAL16R8A 28.5 180 5-197
PAL16R8B-4 16 55 5-39
AmPAL16R8Q 18 45 5-197
PAL16R8A-2 16 90 5-41
AmPAL16R8L 18 90 5-197
AmPAL16R8 18 180 5-197
! PAL16R8A-4 11 50 5-43
PAL16R6D 16* 8 6 8 55 180 5-29
AmPAL16R6D 55 180 5-183
PAL16R6B 37 180 5-31
AmPAL16R6B 40 180 5-197
PALC16R6Z-25 28.5 0.1 5-50
PALC16R6Q-25 285 45 5-33
PAL16R6B-2 25 90 5-35
AmPAL16R6AL 285 920 5-197
PAL16R6A 25 180 5-37
Table 5. Simple Registered PAL Devices
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SPEED | STANDBY
PRODUCT (fax lee DATA SHEET
DEVICE NAME INPUTS OUTPUTS | FLIP-FLOPS | TERMS/OUTPUT | In MHz) (mA) PAGE NO.
AmPAL16R6A 285 180 5-197
PAL16R6B-4 16 55 5-39
AmPAL16R6Q 18 45 5-197
PAL16R6A-2 16 90 5-41
AmPAL16R6L 18 90 5-197
AmPAL16R6 18 180 5-197
PAL16R6A-4 1 50 5-43
PAL16R4D 16* 8 4 8 55 180 5-29
AmPAL16R4D 55 180 5-183
PAL16R4B 37 180 5-31
AmPAL16R4B 40 180 5-197
PALC16R4Z-25 28.5 0.1 5-50
PALC16R4Q-25 28.5 45 5-33
PAL16R4B-2 25 90 5-35
AmPAL16R4AL 28,5 90 5-197
PAL16R4A 25 180 5-37
AmPAL16R4A 28.5 180 5-197
PAL16R4B-4 16 55 5-39
AmPAL16R4Q 18 45 5-197
PAL16R4A-2 16 90 5-41
AmPAL16R4L 18 90 5-197
AmPAL16R4 18 180 5-197
PAL16R4A-4 1 50 5-43
PAL16X4 16* 8 4 8t 14 225 5-51
PAL16RP8A 16* 8 8 8 25" 180 5-17
PAL16RP6A 16* 8 6 8 25" 180 5-17
PAL16RP4A 16" 8 4 8 25* 180 5-17
PAL20R8B 20* 8 8 8 37 210 5-125
PAL20R8B-2 25 105 5-126
PAL20R8A 25 210 5-128
PALC20R8Z-35 20 0.1 5-133
PAL20R8A-2 16 105 5-130
PALC20R82-45 15.3 0.1 5-133
PAL20R6B 20" 8 6 8 37 210 5-125
PAL20R6B-2 25 105 5-126
PAL20R6A 25 210 5-128
PALC20R6Z-35 20 0.1 5-133
PAL20R6A-2 16 105 5-130
PALC20R62Z-45 153 0.1 5-133
PAL20R4B 20" 8 4 8 37 210 5-125
PAL20R4B-2 25 105 5-126
PAL20R4A 25 210 5-128
PALC20R4Z-35 20 0.1 5-133
PAL20R4A-2 16 105 5-130
PALC20R4Z-45 156.3 0.1 5-133
Table 5. Simple Registered PAL Devices (Continued)
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S
SPEED |STANDBY
PRODUCT (Fax lee DATA SHEET
DEVICE NAME INPUTS OUTPUTS | FLIP-FLOPS | TERMS/OUTPUT | In MHz) (mA) PAGE NO.

PAL20RS10 20" 10 10 0-16tt 20 240 5-103

PAL20RS8 20" 10 8 0-161t 20 240 5-103

PAL20RS4 20" 10 4 0-16tt 20 240 5-103
AmPAL22V10-15 22* 10 0-10§ 8-16§8 40 180 5-249

PALC22V10H-25 333 90 5-79
AmPAL22V10A 28.5 180 5-260

PALC22V10H-35 20 90 5-79
AmPAL22V10 18 180 5-260
AmPAL20RP10B 22* 10 10 8 37 210 5-306
AmPAL20RP10AL 25 105 5-306
AmPAL20RP10A 25 210 5-306
AmPAL20RP8B 22+ 10 8 8 37 210 5-306
AmPAL20RP8AL 25 105 5-306
AmPAL20RP8A 25 210 5-306
AmPAL20RP6B 22" 10 6 8 37 210 5-306
AmPAL20RP6AL 25 105 5-306
AmPAL20RP6A 25 210 5-306
AmPAL20RP4B 22* 10 4 8 37 210 5-306
AmPAL20RP4AL 25 105 5-306
AmPAL20RP4A 25 210 5-306

PAL32R16 32* 16 16§ 0-161t 16 280 5-158

* Includes feedback
** With polarity fuse intact
1 Has an exclusive-OR gate

1t Product term steering

§ Flip-flops can be bypassed
§§ Has varied product term distribution

Table 5. Simple Registered PAL Devices (Continued)

PAL Devices as Sequencers

Several registered PAL devices have added features that make
them particularly well suited to state machine applications.

The basic differentiating aspects of these devices are:

The number of inputs

The number of outputs

The number of flip-flops

The type of flip-flop possible (D, T, J-K, S-R, latch,
and/or buried)

The number of product terms per output

The speed: maximum clock frequency

Power consumption

The PAL20X10 series, AMPAL20XRP10 series, PAL22RX8, and
PAL32VX10 all have an exclusive-OR gate that makes it possible
to designwith D, T, J-K, or S-Rf{lip-flops. Since the PAL20X10has
fewer product terms, it is best for counter-like applications. The
AmPAL20XRP10 series, PAL22RX8 and PAL32VX10 have more
product terms, for much more sophisticated state machines.

The AmPAL23S8 has six extra flip-flops that are permanently
buried in addition to eight output flip-flops. The PAL32VX10 and
AmPALC29M16 also have flip-flops that canbe buried if they are
not needed at the outputs. An output pin canbe used as an input
if its flip-flop is buried. All of these devices are ideal for applica-
tions incorporating internal state machines as part of the overall
design.

The PAL22RX8, PAL32VX10, and AmPAL23S8 have global
preset and reset control, making system initialization much
easier.

The AmMPALC29M16 is an electrically erasable device thathas an
unusually flexible architecture. Almost all pins can be used as
inputs or outputs; both inputs and outputs can be registered,
latched, or combinatorial. There are two pinsthat can be used as
clocks. Global preset and reset functions are also provided.
Several of the flip-flops can be buried to provide internal state
machines. This device is HC and HCT compatible.

A summary of the architecture codes for these types of devices
is shown in Table 6.

The PAL devices best suited to state machine applications are
listed in Table 7.
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CODE MEANING EXAMPLE

X Exclusive-OR gates PAL20X10

XRP | Exclusive-OR gates, prog. polarity | AmPAL20XRP10
RX Registered, exclusive-OR gates PAL22RX8

S Sequencer AmPAL23S8

M Advanced macrocell AmPALC29M16
VX Varied term distribution, XOR gate | PAL32VX10

Table 6. State Machine Architectures

STAND
SPEED BY
FLIP-FLOP PRODUCT (fax l.e | DATASHEET

DEVICE NAME INPUTS | OUTPUTS | FLIP-FLOPS | TYPES | TERMS/OUTPUT| in MHz) | (mA) | PAGENO.

PAL20X10A 20" 10 10 D,TJK,SR 2/2% 22.2 180 5-113

PAL20X8A 20" 10 8 D,TJK,SR 221 222 180 5-113

PAL20X4A 20" 10 4 D,TJK,SR 212t 22.2 180 5-113
AmPAL20XRP10-20 22" 10 10 D,TJK,SR 2/6t 30.3 210 5-286
AmPAL20XRP10-30L 22.2 105 5-286
AmPAL20XRP10-30 22.2 180 5-286
AmPAL20XRP10-40L 14.3 105 5-286
AmPAL20XRP8-20 22* 10 8 D,TJK,SR 2/6, 8t 30.3 210 5-286
AmPAL20XRP8-30L 22.2 105 5-286
AmPAL20XRP8-30 22.2 180 5-286
AmPAL20XRP8-40L 14.3 105 5-286
AmPAL20XRP8-20 22* 10 6 D, TJK,SR 2/8, 8t 30.3 210 5-286
AmPAL20XRP6-30L 22.2 105 5-286
AmPAL20XRP6-30 22.2 180 5-286
AmPAL20XRP6-40L 14.3 105 5-286
AmPAL20XRP4-20 22* 10 4 D.TJK,SR 2/6, 8t 30.3 210 5-286
AmPAL20XRP4-30L 22.2 105 5-286
AmPAL20XRP4-30 22.2 180 5-286
AmPAL20XRP4-40L 143 105 5-286

PAL22RX8A 22 8 8§ D,TJK,SR 1/8t 28.5 210 5-87
AmPAL23S8-20 23* 8 14§ D,B¢ 6-12§§ 33 200 5-169
AmPAL23S8-25 28.5 200 5-169
AmPALC29M16-35 29" 16 16§ D,B,LO 8-16§§ 20 120 5-231
AmPALC29M16-45 15 120 5-231

PAL32VX10A 32* 10 10§ D,T.JK,SR, 1/8-16% 25 180 5-70

PAL32VX10 B0 22.2 180 5-70

* Includes feedback

t Has an exclusive-OR gate
§ Some flip-flops can be bypassed

§§ Has varied product term distribution

¢ B=flip-flops are or can be buried; L=latched outputs possible

Table 7. State Machine PAL Devices
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Asynchronous PAL Devices

Several PAL devices have been designed for applications that
require asynchronous control of flip-flops. The simplest devices
are the PAL20RA10 and the PAL16RA8. These devices essen-
tially consist of several flip-flops driven by a programmable AND
array and a fixed OR array. Thus the D-type flip-flops have
individually programmable clock, set, and reset lines. They also
have programmable polarity, and the flip-flops can be bypassed
to give combinatorial outputs.

These devices are also usefulfor replacing randomdiscrete logic.
Each flip-flop is independent; the clocks can be gated if desired,
as can the set and reset lines. This provides for flexibility both
when replacing random gates and when designing logic that is
asynchronous in nature.

The AmPALC29MA16 combines some of the advantages of the
AmPALC29M16 with the advantages of the PAL20RA10. Most of
the AmPALC29M16 macrocell is preserved, except that each
flip-flop is given a programmable clock, set, and reset line. Each
output also has individual three-state control. This device is
electrically erasable, and is HC and HCT compatible.

A summary of the architecture codes for these types of devices
is shown in Table 8. The asynchronous devices available are
summarized in Table 9.

CODE MEANING EXAMPLE
RA Registered, asynchronous PAL20RA10
MA Asynchronous macrocell AmPALC29MA16

Table 8. Asynchronous Architectures

CMOS PAL Devices

PAL devices have recently become available in CMOS technol-
ogy, providing performance competitive with that of many bipolar

devices, but with reduced power consumption. The functions of
these devices have been discussed above, along with the TTL
devices. The particular characteristics of the CMOS versions are
discussed below.

Zero-Power vs Low-Power

Two basic types of CMOS PAL devices are available: those that
dissipate essentially no power when in a quiescent state, and
faster devices which draw a nominal amount of current even
when quiescent. Devices are thus classified as "zero-power” or
“low-power”, The low-power devices still require far less current
than their bipolar equivalents.

Thebasicdifference between zero-power and low-power devices
is the wake-up circuitry used in the zero-power devices. Any time
a signal changes, the device wakes up in order to respond to the
signal. After the transition is complete, the device goes “back to
sleep”, as long as no other signals are changing. This wake-up
circuitry exacts a slight speed penalty, usually about 5 ns, butin
applications where minimal power dissipation is crucial, the
benefits of zero-power operation greatly outweigh the extradelay.

The PALC16R8Z family actually has a “turbo product term”. This
product term allows the device to operate either in zero-power or
low-power mode. Since this choice has been provided by a
product term, it is actually possible to have a device idle in zero-
power mode, and then switch into low-power mode for faster
operation. This is particularly appropriate for devices that tend to
operate in bursts, with idle periods between bursts.

HC vs HCT

CMOS devices can be characterized as being HC and/or HCT
compatible. HC-compatible devices have outputs that swing
“rail-to-rail”, or from ground to VCC. They also have an input
threshold which is about 2.5 V. These devices are normally used
when driving other CMOS devices.

PRODUCT SPEED | STANDBY DATA SHEET
DEVICE NAME INPUTS OUTPUTS | TERMS/OUTPUT | (t,, in ns) I (MA) PAGE NO.
PAL16RA8 16* 8 30** 170 5-11
PAL20RA10-20 20" 10 20" 200 5-95
PAL20RA10 30" 200 5-97
AmPALC29MA16-35 29* 16 4-12tt 35 120 5-209
| AmPALC29MA16-45 45 120 5-208

* Includes feedback
** With polarity fuse intact
1t Has product term steering

Table 9. Asynchronous PAL Devices
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HCT-compatible devices have TTL-level output voltages; that is,
a VOH of about 3.5 V and a VOL of about 0.5 V. The input
threshold is usually adjustedto 1.5 V, whichis the threshold of TTL
devices. These devices are more suitable for a mixed TTL and
CMOS system.

Roughly speaking, HC and HCT devices can be interchanged.
However, since HCT outputs do not swing rail-to-rail, if they drive
another CMOS device, that device will draw more power. HCT
outputs are faster, have more drive, and are more latch-up
immune. Theinputthreshold is less critical, and is important only
in very touchy situations.

Note that some devices are both HC and HCT compatible. This
meansthatthey have aquick, high drive outputrisetoa TTLVOH,
and then a slower rise to VCC, ultimately providing rail-to-rail
levels. This is illustrated in Table 10.

UV Erasable vs Electrically Erasable

CMOS PAL devices come in one of two basic technologies:

« UV erasable
« Electrically erasable

UV-erasable devices use EPROM tachnology in implementing
the array. They can be erased by exposure to ultraviolet light ifthe
device is packaged in awindowed package. These packagesare
more expensive, so the devices are also available in lower-cost
plastic packages. UV-erasable devices in plastic packages are
not erasable, and are thus referred to as “One-Time Program-
mable”, or OTP devices.

Electrically erasable devices can be erased by providing the
appropriate signals to the device. No window is required in the
package, and the erase time is much faster than the erase time
of UV-erasable devices. Erasure is implemented by the device

INPUT Voo Vou programmer as a portion of the overall programming algorithm.
FAMILY THRESHOLD (V) V) V) .
Summary of CMOS PAL Devices
HC 25 0 Vee
HCT 1.5 0.5 3.5 The PAL devices available in CMOS have been described along
HCHCT 1.5 0 3.5 -> Vee with their bipolar counterparts in the preceding pages. They are
summarized in Table 11, along with their power, compatibility, and
Table 10. CMOS/TTL Compatibility erasability characteristics,
SPEED |STANDBY DATA SHEET
DEVICE NAME INPUTS | OUTPUTS |(t,, Inns)| I, (mA) |COMPATIBILITY | ERASABILITY | PAGE NO.
PALC16L8Z-25 16* 8 25 0.1/45** HCHCT uv 5-50
PALC16R8Z-25 16* 8 25 0.1/45** HCHCT uv 5-50
PALC16R6Z-25 16* 8 25 0.1/45** HCHCT uv 5-50
PALC16R4Z-25 16* 8 25 0.1/45** HCHCT uv 5-50
PALC16L8Q-25 16* 8 25 45 HCT uv 5-33
PALC16R8Q-25 16* 8 25 45 HCT uv 5-33
PALC16R6Q-25 16* 8 25 45 HCT uv 5-33
PALC16R4Q-25 16* 8 25 45 HCT uv 5-33
PALC2018Z-35 20* 8 35 0.1 HC/MHCT uv 5-133
PALC20L8Z-45 20* 8 45 0.1 HC/HCT uv 5-133
PALC20R8Z-35 20* 8 35 0.1 HCMHCT uv 5-133
PALC20R8Z-45 20* 8 45 0.1 HCHCT uv 5-133
PALC20R6Z-35 20* 8 35 0.1 HCHCT uv 5-133
PALC20R6Z-45 20* 8 45 0.1 HC/HCT uv 5-133
PALC20R4Z-35 20* 8 35 0.1 HC/HCT uv 5-133
PALC20R4Z-45 20* 8 45 0.1 HCHCT uv 5-133
PALC22V10H-25 22* 10 25 90 HCT uv 5-79
PALC22V10H-35 22* 10 35 90 HCT uv 5-79
AmPALC29M16-35 29* 16 35 120 HCHCT EE 5-231
AmPALC29M16-45 29* 16 45 120 HC/HCT EE 5-231
AmPALC29MA16-35 29* 16 35 120 HCHCT EE 5-209
AmPALC29MA16-45 29* 16 45 120 HC/HCT EE 5-209

* Includes feedback
** With turbo term

Table 11. Summary of CMOS PAL Devices
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ECL PAL Devices

For a long period of time, PLDs were available only for TTL-
compatible systems. More recently, however, PAL devices have
been introduced which address the users of ECL logic.

Two basic families of ECL logic are addressed by the ECL PAL
devices. These families differ in their voltage ranges and the
compensation builtinto the circuitry (Table 12). These differences
also affect noise margins and thresholds. Refertopage 3-150for
more information on ECL design.

The ECL PAL devices presently have a 6-ns propagation delay;
the differences between the devices can be found in the architec-
tures. The PAL10H20P8 and PAL10H20G8 are simpler devices
which are compatible with other 10KH logic; the former is a
combinatorial device with programmable polarity, the latter has
output latches. Both devices have product term steering for
added flexibility in allocating logic resources. These features are
described in more detail on page 5-382.

The PAL10H20EV/EGS8 and PAL10020EV/EG8 are 10KH and
100K compatible options of the same device, respectively. These
devices have more product terms than the first two devices, and
have outputs that can be programmed as combinatorial or regis-
tered/latched. These devices also have global reset and preset
controls.

A summary of the architecture codes for these types of devices
is shown in Table 13. The ECL PAL devices and their basic
characteristics are summarized in Tables 14 and 15.

Programmable Sequencers

Many PAL devices can be used to design very fast, efficient
sequencers. Optimal among these devices are the PAL32VX10
andthe AmPAL23S8. However, there are additional devices with
entire architectures dedicated to the task of sequencing.

Since these devices are primarily intended for use as state
machines, the important characteristics to be evaluated are:

« The number of inputs

» The number of outputs

« The number of states that can be implemented

« The number of branches available from any state
* The speed: maximum clock frequency

» Power consumption

The programmable sequencers available are shown in Table 16.

The PMS14R21 (also known as the PROSE™ device) actually
consists of a PAL device for branching, followed by a PROM to
store the states. This device also has the Diagnostics-On-Chip™
(DOC™) testability circuitry, allowing the device to be inserted
into aserial scan path. Thisis described more thoroughly onpage
3-123 of the testability section.

The PLS105, PLS167, and PLS168 are based on the standard
PLS architecture, where boththe AND array andthe OR array are
programmable. S-R flip-flops are used to minimize the need for
specifying ‘HOLD’ conditions. There is also a “complement
array”, which makes it easier to define default state transitions.

FAMILY Vee COMPENSATION CODE MEANING EXAMPLE
10KH -5.2V+5% Voltage P Combinatorial, prog. polarity | PAL10H20P8
100K -4.5V £ 0.3V Voltage, temperature G Latched outputs PAL10H20G8
EG Latched or combinatorial PAL10H/10020EG8
EV Registered or combinatorial | PAL10H/10020EV8
Table 12. 10KH ECL vs 100K ECL
Table 13. ECL PAL Device Architectures
PRODUCT SPEED DATA SHEET
DEVICE NAME INPUTS | OUTPUTS | FLIP-FLOPS | TERMS/OUTPUT | (t, orf,. ) |l (mA)| PAGE NO.
PAL10H20P8 20" 8 0 0-8tt 6ns 210 5-385
PAL10H20G8 20" 8 8§ 0-8tt 6ns 225 5-382
PAL10H20EV/EGS8 20* 8 8§ 8-12§§ 125 MHz 220 5-381
* Includes feedback § Flip-flops can be bypassed
tt Has product term steering  §§ Has varied product term distribution
Table 14. 10KH-Compatible PAL Devices
PRODUCT SPEED DATA SHEET]
DEVICE NAME INPUTS | OUTPUTS | FLIP-FLOPS | TERMS/OUTPUT (fund I (mA)| PAGE NO.
PAL10020EV/EGS 20* 8 8§ 8-12§§ 125 MHz 220 5-381
* Includes feedback § Flip-flops can be bypassed
§§ Has varied product term distribution
Table 15. 100K-Compatible PAL Devices
d‘?l Monolithlc m Memorles :l 1.19
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The PMS14R21, PLS105, PLS167, and PLS168 are all sup-
ported by PALASM software, using aconvenient entry formatthat
has been optimized for state machines. This essentially makes
it possible to transfer a state diagram directly to a design file
without the need for manuatlogictransformations or calculations.

The Am29PL141 Fuse Programmable Controller (FPC) is an in-
struction-based sequencer. This is especially convenient for de-
signers who are more comfortable using instruction-based de-
vices. The design is implemented more as microprocessor
program mightbe written. Indeed, the architecture itself, which is
described in more detail on page 5-339, resembles that of a
simple processor. This device has its own assembler which is
used to reduce the sequencer "program” into a file that can be
used to program the device.

The Am2971 is a Progammable Event Generator. It is a versatile
timing device that can be used as a digital substitute for analog
delay lines or as a general-purpose user-programmable timing/
waveform generator.

LCA Devices

Large-scale designs are now possible with the introduction of the
Logic Cell Array (LCA) devices. These devices can be thought of

as programmable gate arrays, and provide an efficient, cost-
effective means of implementing dense designs within a single
PLD.

Unlike other PLDs, which are non-volatile, LCAdevices make use
of static RAMtechnology. This makesthem easyto develop, easy
to test and debug, and reprogrammable.

There is an entire family of support software and hardware
packages available to aid in the design of LCA applications.
These are described in more detail on page 3-17.

The architecture of an LCA device resembles that of a gate array
more closely than a traditional PLD. It has an array of Configur-
able Logic Blocks (CLBs) that can be connected via a variety of
interconnect resources. There are also Input/Output Blocks
(IOBs) for transferring the signals on and off the chip.

The main features that distinguish one LCA device from another
are:

» The number of I/O pins

» The number of Configurable Logic Blocks

» The speed: internal maximum toggle frequency
+ Power consumption

The available devices are summarized in Table 17.

STATES BRANCHES SPEED lee DATA SHEET
DEVICE NAME INPUTS | OUTPUTS (MAX) PER STATE (fux IN MH2) | (MA) PAGE NO.
PMS14R21A 8 8 128 4 30 210 5-315
PMS14R21 25 210 5-315
PLS105-37 16 8 <64* * 37 200 5-331
PLS167-33 14 6 <128* * 33 200 6-331
PLS168-33 12 8 <1028* " 33 200 5-331
Am29PL141 6 16 64 2 20 450 5-339
Am2971 6 14 N/A N/A 85 310 5-365
* Depends highly on state diagram topology. May be limited by number of product terms or number of flip-flops.
Table 16. Programmable Sequencers
SPEED STANDBY DATA SHEET
DEVICE NAME 1/0 PINS CLBs [(INTERNAL TOGGLE| I . (mA) PAGE NO.
fuax I MH2)

M2064-70 58 64 70 5 5-483

M2064-50 50 5 5-483

M2064-33 33 5 5-483

M2018-50 74 100 50 5 5-483

M2018-33 33 5 5-483

Table 17. LCA Devices
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Beginner’s Guide

Introduction

This section is intended as a beginner’s introduction to PLD
design, although experienced users may find it agood review. We
will take a step-by-step approach through two very simple de-
signs to demonstrate the basic PLD design implementation
process.

By “beginner”, we mean a logic designer who is just beginning to
use programmable logic. You may have a lot of experience with
discrete digital logic, or you may have just graduated from
college. We assume a basic understanding of digital logic,
although there is a logic reference on page 6-1 should you
need a refresher. Some computer experience is helpful, but not
essential.

Through this effort, you will be introduced to PALASM software
and to the concept of device programming. Because of the
simplicity of the designs, we will be using PAL devices, but the
implementation concepts will be applicable to all of Monolithic
Memories' and Advanced Micro Devices' PLDs.

Only enough detail of the software will be presented to allow you
to implement the examples. This will also give you enough
information to understand most of the other design examples in
this handbook. More software details can be found in the actual
software documentation in section 4.

To keep the discussion simple, we will make some assumptions
about the system being used to process your designs. We will
assume anIBM PC/XT™ orcompatible system with one hard disk
and one floppy drive, running PC-DOS™ or MS-DOS™ version
2.1 or higher. The installation procedure for the software will be
described for this setup. The procedures for other setups and
machines are not radically different; details can be found in the
PALASM software documentation, section 4.

We will also take no significant shortcuts for these examples,
even though there may be times when we could. Inthis way, you
can gain a better understanding of exactly what is happening as
you implement your design.

We willtalk about device programming, describing all of the steps
that are necessary to program a PLD. However, due to the wide
variety of programmers available, we will notget down ta the level
of detail that tells you exactly which buttons to push. Although we
will get as close as we can, we must defer the details to your
programmer manual.

As we work the design examples, we will, of course, have to
choose devices into which to put the designs. However, we will
not dwall here on the parameters that go into choosing a device.
This is covered more thoroughly in the rest of this section.

Installing PALASM Software

Before we actually start implementing a design, we must install
PALASM software. If you already have the software installed, you
may disregard this discussion. The procedure described here will
allow you to install the software package onto an IBM PC/XT or
compatible with a hard disk and at least one floppy drive.

After you have turned on the computer and allowed it to boot up,
you can install the software by placing disk #1 into drive A, and

typing:
A:PAL2INST<CR>

If you are new to the PC, <CR> is the ‘RETURN" key on the right
side of the keyboard.

The program will ask you which disk you wish to install the
programs on. Enter the disk name, or just hit <CR> if installing
ontodisk C. The installation program creates directories for all of
the programs. If you presently have an older version of PALASM
software installed in a similar directory structure, the installation
program will warn you that the contents of the directories will be
changed. Otherwise, it will start installing.

Note that the installation procedure may modify two files which
are used when the computer boots up: AUTOEXEC.BAT and
CONFIG.SYS. These changes should not affect any other
programs you run.

The installation program will then give you a choice of programs
to install; hit

1<CR>

to install the software. The installation program will ask you to
insert various disks as it installs the programs. The disks are
labelled, so this should be a simple procedure. Afterthe software
has been installed, reboot the system by holding down
<CTRL><ALT><DEL>

atthe sametime. This only needs to be done after installation. In
the future when you turn the computer on, the computer will boot
automatically.

You can now call up the menu by typing

PALASM<CR>

Now you need to install the editor or word processing program

you wish to use. You may use any editor you wish, as long as it
can generate a clean ASCI! text file. In addition, you need to

u Monolithic m Memorles :l 2-1




Beginner's Guide

install a communication program; any one will do. A simple one
called PC2 is provided with the PALASM software. You caninstall
these programs by hitting

<Fé6>

When the setup screen comes up, hit the down-arrow key until it
gets to the line that says “Editor". Enter the directory path and
program name for the editor you wish to use. For example, if you
use WordStar™, and you have the program located in the
directory called “WS” on disk C, then enter

C:\ws\ws
Add enough spaces to delete whatever was there before.

This takes you into the next field. Here you need to enter the
filetype of your editor, which will be either .COM or .EXE.

Once this is complete, for the WordStar example, the line should
now look like:

C:\ws\ws .com

Hit <CR> again to get to the next field. Here you enter the name
of your communication software. If you wish to use PC2, then

type

\PALASM\SUPL\PC2

(adding spaces to delete what was there befors.)
<CR>

.EXE

If you are not using PC2, thenreplace “PC2" withthe name of your
program. This procedure works regardless of the editor or
communication software you wish to use. When you are
finished, hit

<ESC>
to get back to the menu.

You are now ready to start.

Constructing a Combinatorial Design
—Basic Gates

The first example we wili try is a very simple combinatorial circuit
consisting of all of the basic logic gates, as shownin Figure 1. This
willbe helpful forthose designs where you are integrating random
logic into a PAL device to save space and money.

Ascanbe seenfromthefigure, there will be six separate functions
involving atotal of twelve inputs. Itisimportanttobearin mindthat
programmable logic provides a convenient means of implement-
ing designs. With a real design, some work would be required
before this point to conceptualize the design, but due to the
simplicity of these circuits, we are already in a position to start the
implementation.

A Dc B
Cc —
b I r—1—c¢
F —
e T— ) > >——+—H
| —
J I b L
K —i
M —]
N T ——) »——+1—o0
P —
eI — N o>o—
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Figure 1. The Baslc Logic Gates

Building The Equations

We will start by generating Boolean equations. The first function
to be generated is an inverter. This is specified according to
Figure 1 as:

B=/A

Here the “equals” sign ('=") is used to assign a function to output
B. Theslash (/') is used to indicate negation, since itis impossible
to put a bar over a letter in an ASCl! file. Thus this equation may
be read:

B is TRUE if NOT A is TRUE

The next function is a simple AND gate. As shownin Figure 1, we
can write

E = C*D

Here we use the “equals” sign again, but this time we have
introduced the asterisk (**’) to indicate the AND operation. This
equation may be read:

E is TRUE if C AND D are TRUE

The third function is an OR gate, which may be written:

H=F + G

The “plus” sign (‘+') is used to specify the OR operation here.
Because of the sum-of-products nature of logic as implemented
in PLDs, itis often easy to place product terms on separate lines,

which improves the readability. We may rewrite this equation as:

H=F
+ G

This equation may be read:

H is TRUE if F OR G is TRUE
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For the moment, we will assume that we have active-HIGH
outputs on our device. The functions we have generated so far
have essentially been active-HIGH functions. Attimes we wishto
generate active-LOW functions; the next two functions are
active-LOW functions that we wish to implement in an
active-HIGH device.

When we talk in terms of an active-HIGH or an active-LOW
device, the real questionis whetherthere is an extrainverter atthe
output. An active-HIGH device has an AND-OR structure; an
active-LOW device has an AND-OR-INVERT structure which
inverts the function at the output (see Figure 2).

a. AND-OR Structure

b. AND-OR-INVERT Structure

403 02
Figure 2. Active HIGH vs. Active LOW

NAND and NOR gates could be generated very simply in an
active-LOW device, because we would justhavetogenerate AND
and OR functions, and let the output inverter generate their
complements. However, given that we wish to implement these
functions in an active-HIGH device, we must invoke DeMorgan's
theorem, as shown in Figure 3.

/(X*Y) = /X + /Y
/(X +Y) = /X*/Y
Figure 3. DeMorgan’s Theorem
PALASM software has the capability of applying DeMorgan’s
theorem to functions, so we may generate our NAND function by
writing:
L = /(I*J*K)
or, if preferred,
L=/1
+ /3
+ /K

Likewise the NOR function may be specified as

0=/
+ N)

or

O = /M*/N

Finally, an exclusive-OR (XOR) gate may be specified either as

where :+: represents the XOR operation, or more explicitly as

R = P*/Q
+ /P*Q

We have now specified all of the functions in terms of their
Boolean equations. The equations are summarized in Figure 4.

B=/A
E = C*D

H=F
+ G

L=/1
/3
+ /K

+

0 = /M*/N

P*/Q
+ /P*Q

ol
[

Figure 4. Basic Gates Equations

Understanding the Logic Diagram

Wae will use a PAL12H6 for this function, since it has all of the
resources needed to implement all of these functions. A portion
of the logic diagram for this device is shown in Figure 5. The full
logic diagram for this device can be found on page 5-62.

The logic diagram shows all of the logic resources available in a
particular device. In each device, inputs are provided in true and
complementversions, as shownin Figure 5. Thesedrive whatare
often called “input lines”, which are the vertical lines in the logic
diagram. These input lines can then be connected to product
terms. The name “product term” is really just a fancy name for an
AND gate. However, PLDs provide very wide gates, whichcanbe
cumbersome to draw. To save space, the product terms are
drawn as horizontal lines with asmall AND gate symbolatone end
to indicate the function being performed.

So we see that in the PAL12H6, there are twelve inputs and six
outputs. Four of the outputs, on pins 14 through 17, have two
product terms connected to the OR gates. The outputs on pins
13 and 18 have four product terms connected to the OR gates.
Thus pins 13 and 18 can be used to implement more complex
functions than the other four outputs.

Although you really do not need to be concerned with the actual
implementation of these functions inside the PAL device, you may
be curious. Figure 6 shows howtheinverterandthe AND gate are
implemented in the PAL12H6. An ‘X’ indicates a connection. A
product term that is not used is indicated by an ‘X’ in the small
AND gate.

n Monolithic m Memories n 2-3




Beginner’'s Guide

PRODUCT

}—
-
ey

012 3\4 567 89 1213 1617 2021 24252627 28293031

TRUE AND INPUT
COMPLEMENT LINES
INPUTS
. 403 03
Figure 5. A Portlon of a Loglc Dlagram
A L i : E
E
c | L
B
403 04

Figure 6. Implementation of NOT, AND Gates
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Building the Design File

Oncethedesignhasbeenconceptualized, the design file mustbe
generated. This can be done with any editor program. The only
requirement is that the editor produce a clean ASClII file. Most
word processing programs have this capability, so you can use
your favorite program. Any hidden control characters for format-
ting may cause problems when assembling; thus only “non-
document” or “clean” modes should be used, The filename is
usually given the extension ‘.PDS' {for PAL device Design Speci-
fication), although this is not required.

We now know exactly what our functions are going to be. We
have twelve inputs, six outputs, and the NAND function requires
three product terms. Note that if we had specified

L = /(I*J*K)
instead of

L=/I
+ /3
+ /K

forthe NAND gate, it would not be as obvious how many product
terms would be needed.

We are now in a position to create the design file. First you need
to enter the PALASM menu. This menu will fet you perform all of
the tasks you need, including editing your design file. Callup the
menu by typing

PALASM <CR>

When prempted, hit any key to bring the menu onto the screen.
Enter the file name of the design file you wish to create in the field
called “Input PDS file". The cursor should be there when the
menu appears on the screen. Then hit

<CR>

This will take you to the filetype field, which should already say
“.PDS". Werecommendthatyou use“.PDS"for all of your design
files. Hit

<CR>

again. At this time, the menu will say that the file cannot be
opened; this is just because you have not actually created the file
yet, sothera is no need to be concerned. You can now create your
design file by hitting

<F3>

This will call up your editor, and you can begin building the file.
Wae start with what is called the DECLARATION SECTION. This

section allows you to document your design, and also provides
some definitions for the assembler.

The first step is to provide some documentation information. This
is done with six keywords:

TITIE (The title of your design goes here)

PATTERN (The pattern name or number goes here)
REVISION (Thae revision number or level goes here)
AUTHOR  (Your name goes here)

COMPANY (Your company name goes here)

DATE (The date of creation or modification goes here)

This is followed by the CHIP declaration, which tells the assem-
bler which device is being used and what the pin names are going
to be. We do this by typing:

CHIP  (any name goes here) (the device type goes here)
(the pin list goes here)

Thus, we can create the declaration section for our design as
shown in Figure 7.

TITLE Basic gates

PATTERN P0000

REVISION A

AUTHCR Stateyour Namehere
COMPANY Name of your Co., Inc.
DATE 7/22/87

CHIP GATES PAL12H6
ACDFGI JKMGND
NPBEHROLQVCC

Figure 7. The Daclaration Section

Note that the pin list has all pins in order, from pin 1 to pin 20,
including VCC and GND. You can see that the inputs were
assigned to pins 1-12 and 19, whereas the outputs have been
assigned to pins 13-18. Of course these assignments must be
made knowing which pins are inputs and outputs, as per the logic
diagram. Knowing that the NAND gate requires three product
terms, we assigned this function to pin 18, since it can provide up
to four product terms.

Wa can make the pin list easier to read by adding the pin numbers
as comments. Anything following a semicolon (;) Is treated as a
comment, and ignored by the processor. This helps make the
design file more readable. The pin list with commaents is shown
in Figure 8. Notice how much easier it is to read.

CHIP GATES PAL12H6

1

}PINS 7 8 9 10
J K M GND

1 2 3 4 5 6
A CDF G I
;PINS 11 12 13 14 15 16 17 18 19 20
N P BEHIROTL Q VCC

Figure 8. PIn List with Comments
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Next we enter the equations. This section begins with the
keyword

EQUATIONS

after which all of the equations are entered, exactly as shown in
Figure 4. Note that the equations may be defined in any order, not
necessarily in the order presented in the pin list.

The fact that this is an active-HIGH device does have some
bearing on the way the file is built. This is discussed atlength on
page 6-19 and in the software documentation; we will need to
address the issue again below, when we do an active-LOW
design. For now, suffice itto say that the design as specified here
will work correctly for an active-HIGH device.

Finally, add comments to the equations to document the design.
Liberal commenting is encouraged to make it easier for you and
others to understand your design in the future.

The equation section, with comments, is shown in Figure 9.

EQUATIONS
B=/A ;inverter
E = C*D ;AND gate
H=F ;OR gate
+ G
L=/I ;NAND gate after applying
+ /3 ; DeMorgan’s theorem
+ /K
O = /M*/N ;NOR gate after applying
; DeMorgan’s theorem
R = P*/Q ;XOR gate, expanded
+ /P*Q

Figure 9. The Equation Section

When you have completed the file, save the file and get out of the
editor.

Generating a JEDEC File

Once the design file has been entered, you can assemble the
designto getaJEDEC file. We have two purposes here: to make
sure there are no basic mistakes in the file, and to generate a
JEDEC file for programming.

To start processing, hit

<F5>

This gives you a choice of processing options on the right of the
screen. To run all of the processing steps automatically, hit

6

The first program will now run, as evidenced by the file scrolling
up the bottom of the screen. If there are any errors, they will
appear on the screen and in an error file. These errors will be
syntactical in nature; typos, misspelled words, missing declara-
tions, malformed expressions.

Once the first program has been run with no errors, the equations
are minimized. It is a good practice to run the expander and
minimizer for all designs. Minimization may allow you to fit a
design into a smaller device. It also improves the testability of
your design. More complicated designs may have to be ex-
panded and minimized.

Afterthe minimization has been performed, the JEDEC file will be
generated. If there are any reported errors, it will likely be
because you requested some function that the part you chose
could not provide. Some examples are:

« Active-HIGH equations in an active-LOW device

» Too many product terms

» Registered equations in a device that has no registers
Since you have used the “autorun” featurs, the simulation pro-
gram will automatically be run. Since we have not specified the
simulation yet, this will generate an error. Ignore the error
message for now.
When processing is complete, hit
<ESC>
to get back to the main menu.

If there were any errors during processing, you can see what they
were by viewing the run-time log. This is done by hitting

<F7>

to get a choice of things to view. To view the run-time log, hit
1

You can scroll down until you find any errors and make a note of
what needs correcting. Onceyou have foundthe error(s), youcan
get back to the menu by hitting

<ESC><ESC>

Any corrections should be made by editing the design file. After
making any changes, the design needs to reprocessed.

2-:6 ﬂ Monolithic m Memories :l



Beginner's Guide

The JEDEC file will have the samae file name as your design file,
except that it will have the extension '.JED'. The program also
creates an ‘xplot’ file (with file extension . XPT') which relates the
final design implementation to the logic diagram of the PLD being
used. The xplot file is usually not needed, but it confirms the
physical implementation of the gates. Figure 10 shows a portion
of the xplot for this design; the inverter and the AND gate are
shown. You can see how this relates to the logic diagram by
referring back to Figure 6.

You may view the complete xplot file by hitting
<F7><PgDbn><1>
To return to the main menu after inspecting the xglot file, hit

<ESC>

42 0000 0000 0000 0000 0000 0000 0000 0000
43 0000 0000 0000 0000 0000 0000 0000 0000
44 0000 0000 0000 0000 0000 0000 00CO 0000
45 0000 0000 0000 0000 0000 0000 0000 0000
46 0000 0000 0000 0000 0000 0000 0000 0000
47 0000 0000 0000 0000 0000 0COO 0000 COO0O

51 XXXX XXXX XXO00 XXO00 XX00 XX00 XXXX XXXX
52 0000 0000 0000 0000 0000 0000 0000 0000
53 0000 0000 0000 0000 0000 0000 0000 0000
54 0000 0000 0000 0000 0000 0000 COOO 00CO
55 0000 0000 0000 0000 0000 0000 COCO 0000

Figure 10. A Portion of an Xplot

Simulating the Gates

After you have verified that your design file is correct, it is time to
verify that the design itself is correct. This is done by simulating
the design. Simulation provides away foryouto see whetheryour
design is working as you expect it to. You provide a series of
commands, or events, which are then simulated by the software.
If requested, the software can tell you if the simulation matches
what you expect, and, if not, where the problems are.

The simulation section is the last part of the design file. It is not
required, but is invariably helpful both in debugging the design,
and in generating what can eventually be used as a portion of a
test vector sequence. It is introduced by the keyword:

SIMULATION

The events to be simulated are specified by placing legic levels
an pins of interest. Any pins not specifically mentioned will either

maintain their present level, or, if no level was ever defined,
remain undefined. The SETF command is used to set levels.

We can start by simulating the inverter. To prove that the inverter
works as expected, first we wish to set input AHIGH to verify that
the output goes LOW. This is done with the statement:

SETF A

Since all we did here was set A HIGH, all other inputs are still
undefined. However, this is enough to determine the output for
signal B.

The simulator will calculate the value for B and put it in the output
file (tobe discussed later), but it is helpful to write what you expect
Bto be. !f the simulator calculates a result that is different from
whatyou expect, it will alert you, and place a marker in the cutput
file to tell you where the problem is. You can do this with the
CHECK statement. Since A is HIGH here, we expect B to be
LOW. To verify that B is indeed LOW, use the statement:

CHECK /B

Note that CHECK statements are not required for simulation.
However, without them, you must examine the simulation output
to see if the design functicned correctly.

Wa also need to verify that when Agoes LOW, B goes HIGH, as
expected. This can be done with the pair of statements:

SETF /A
CHECK B

We have now fully exercised the inverter. However, the standard
outputfile forthe simulator, calledthe history file, tracks all signals
on the device, in increasing pin order. From Figure 8, this would
be in the order

ACDFGIJKMNPBEHROLQ

Instead, we may wish to place related signals near each other.
We can do this with the TRACE_ON and TRACE_OFF com-
mands. These commands cause a second output file to be
generated, which will only show signals and events as deter-
mined by the TRACE_ON command.

In our case, we would like to have the output of the gate appear
right after its inputs, so that the workings of the gate can be easily
examined. This can be done with the command:

TRACEONABCDEFGHIJKLMNOPQR

At the end of the simulation, the TRACE_OFF command is used
to end the special trace.

Note that both a history file and atrace file willnow be generated.
The history file will have the simulation results in increasing pin
order; the trace file will have the signals in the order requested
with the TRACE_ON command.
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Now we can exercise all of the other gates in the circuit. The full

simulation section is shown in Figure 11.

SIMULATION

TRRCEONABCDEFGHIJKLMNOPGQR

;look at the inverter

SETF A

CHECK /B
SETF /A
CHECK B

;look at AND gate
SETF /C /D

CHECK /E

SETF D

CHECK /E

SETF C /D

CHECK /E

SETF D

CHECK E

;lock at OR gate
SETF /F /G
CHECK /H

SETF G

CHECK H

SETF F

CHECK H

SETF /G

CHECK H

;look at NAND gate
SETF /I /J /K
CHECK L

SETF K

CHECK L

SETF J /K

CHECK L

;lock at NOR gate
SETF /M /N

CHECK ©

SETF N

CHECK /O

SETF M

CHECK /0

SETF /N

CHECK /O

;look at XOR gate
SETF /P /Q
CHECK /R

;set A HI

;verify that B is LO
sset A LO

sverify that B is HI
send of inverter trace

:set C, D LO

;sverify E 1O

+C stays 1O, D goes HI
;E should stay LO

;set C HI, D 1O

;E should stay LO

;C stays HI, D goes HI
+E should now be HI
;end of AND gate trace

;set F, G LO

;sverify H LO

:F stays 1O, G goes HI
2H should go HI

;G stays HI, F goes HI
;H should stay HI

;F stays HI, G goes LO
;H should stay HI
;end of OR gate trace

;IJK = 000

;sverify L HI

;IJK = 001

;L should still be HI
;IJK = 010

;L should still be HI
;IJK = 011

;L should still be HI
;IJK = 100

;L should still be HI
;IJK = 101

;L should still be HI
;I0K = 110

;L should still be HI
;I0K = 111

;L should go LO

send of NAND gate trace

;set M, N LO

sverify O HI

;M stays 1O, N goes HI
;0 should go 1O

;M, N now both HI

;0 should stay LO

M stays HI, N goes LO
;0 should stay LO
;end of NOR gate trace

;set P, Q LO

;verify R LO

;P stays 1O, Q goes HI
;R should go HI

snow P HI, Q LO

;R should stay HI
sboth inputs HI

;R should go LO

send of trace

Figure 11. The Simulation Section

This completes the simulation. The entire design file is shown in
Figure 21 at the end of this section. You can now run the
simulation to make sure that your design is correct.

Running the Simulator

After adding the simulation, the file needs to be reprocessed. Do
this again by hitting

<F5>

and then hitting

6

This completely reprocesses the file and runs the simulation.

Each of the events specified in the simulation section of the
designfile is executed. The resulting outputs are calculated, and,
if CHECK statements are used, the calculated outputs are com-
pared to the expected outputs. If the two values do not match,
then you are expecting an output that the circuit is not generating.
This means either that the expected values are wrong, or that
there is a problem with the circuit itself. In eithercase, the design
file must be modified to fix the problem, and then the file should
be completely reprocessed.

The main output of the simulator is the history file. In addition, a
tracefile willbe generatedif the TRACE_ON statement was used,
asin the example above. These files will have the same name as
your original design, except that the extension for the history file
is .HST and that for the trace file is . TRF'.

You may look at the history and trace files with your editor, or print
them outfor closer analysis. Note thatthe history file contains the
results of every signal and every event in increasing pin order,
whereas the trace file contains signals in the order specifically re-
quested by the TRACE_ON commands.

It is usually easier to look at the simulation output as waveforms.
To generate the waveforms, hit

<F7>

To see the waveforms for the trace file, hit

6

Once the waveforms are on the screen, you may scroll around
using the arrow keys. The vertical bar cursor will help you line up
events.

After you are through examining the file, hit

<ESC>

to get out of the waveform generator, and then,

<ESC>

to get back to the main menu.
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This makes it much easier to debug your design. You can look at
the entire simulation in the history file, or break it up into manage-
able bits in the trace file.

The simulator also converts the simulation results into test
vectors, and appends the vectors to the JEDEC file. This gives
you two JEDEC files; one with vectors and one without. The new
file has the same name as your original design file, but with the
extension '.JDC’. This file can be used with programmers that
provide functional tests.

Constructing a Registered Design—
Basic Flip-Flops

Next we will do a very simple registered design: we will be
designing all of the basic flip-flop types (Figure 12). We will
conceptualize the design by reviewing briefly the behavior of the
D-type flip-flop. We willthen present the results for T, J-K, and S-
R flip-flops. More detail on these flip-flop types can be found in
the logic reference, on page 6-8.

Rememberthat the devices we willbe using only have D-type flip-
flops. Thus we will be emulating the other flip-flops with D-type
flip-flops.

CLR
CLK

D pCa DT
pQ DC

J
T TCaq T
D pQ TC

]

]
J gco JKT
K KpQ JKC

]

1
s sCa SRT
R RpQ SRC

PR

403 06

Figure 12. Basic Flip-Flops

Building the D-Type Flip-Flop
Equations

A D-typeflip-flop merely presents the input data atthe output after
being clocked. Its basic transfer function can be expressed as

DT :=D

where we have used pins DT (“D True”) and D as shown in
Figure 12.

Note the use of ‘=’ here instead of '=". This indicates that the
output is registered for this equation. The difference is illustrated
in Figure 13.

D DT
b. DT=D
D 0D @Q DT
CLK
403 07 a DT:=D

Figure 13. Registered vs. Combinatorial Equations

We can also generate the complement signal (named DC) with
the statement

DC := /D

As per Figure 12, we want to add synchronous preset and clear
functions to the flip-flops. This can be done with two input pins,
called PR and CLR. To add thess functions to the true flip-flop
signal, we add /CLR to every product term and add one product
term consisting only of PR. Likewise, for the complement
tunctions, we add /PR to every product term, and add one product
term consisting only of CLR. This is shown in Figure 14.

DT := D*/CLR
+ PR

DC := /D*/PR
+ CLR

Figure 14. D-Type Flip-Flops with Clear and Presst
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Inthis way, when clearing the flip-flops, the active-HIGH flip-flops
have no product terms true, and go LOW; the active-LOW flip-
flops have the last product term true, and will therefore go HIGH.
The reverse will occur for the preset function.

There is still one hole in this design: what happens if we preset
and clear atthe same time? As it s right now, both outputs will go
HIGH. This makes no sense since one signal is supposed to be
the inverse of the other. To rectify this, we can give the clear
function priority over the preset function. We can do this by
placing /CLR on every product term for the true flip-flop signal.
The results are shown in Figure 15.

DT := D*/CIR
+ PR*/CLR

DC := /D*/PR
+ CIR

Figure 15. D-Type Filp-Fiops with Clear Priority
Building the Remaining Equations

The same basic procedure can be applied to all of the other flip-
flops. The equations are shown in Figure 16.

EQUATIONS

semulating all flip-flops with D-type flip-flops

DT := D*/CLR
+ PR*/CLR

DC := /D*/PR
+ CLR

TT := T*/TT*/CLR

soutput is D if not clear
;or 1 if preset and not clear at the same time

joutput is /D if not preset
;or 1 if clear

;go HI if toggle and not clear

+ /T*TT*/CLR ;stay HI if not toggle and not clear

+ PR*/CLR ;go HI if preset and not clear at the same time
TC := T*/TC*/PR ;go HI if toggle and not preset

+ /T*TC*/PR ;stay HI if not toggle and not preset

+ CLR ;go HI if clearing
JKT := J*/JKT*/CLR ;go HI if J and not clear

+ /K*JKT*/CLR ;stay HI if not K and not clear

+ PR*/CLR ;go HI if preset and not clear at the same time
JKC := /J*/JKC*/PR ;go HI if not J and not preset

+ K*/JKC*/PR sstay HI if K and not preset

+ CLR ;go HI if clear
SRT := S*/CLR :go HI if set and not clear

+ /R*SRT*/CLR ;stay HI if not reset and not clear

+ PR*/CLR ;go HI if preset and not clear at the same time
SRC := R*/PR ;go HI if reset and not preset

+ /S*SRC*/PR ;stay HI if not set and not preset

+ CLR ;go HI if clear

Figure 16. Flip-Flop Equations Section

210

l‘rl Monolithlc m Memorles I‘:l



Beginner’s Guide

CLK

CLR

T%FF

PR

=T [AT]*/CLR
+M*[IT]*CLR
+PRYCLR

Figure 17. Feedback In the Equation for TT

Notice thatin some of the equations above, the output signal itself
shows up in tha equations. Thisisthe way in whichfeedbackfrom
the flip-flop can be used to determine the next state of the flip-flop.
An equivalent logic drawing of the TT equation is shown in
Figure 17.

Completing the Design File

We are now in a position to select a device and complete the
davice file. The device used will be a PAL16R8, which is actually
an active-LOW device. The logic diagram for this device can be
found on page 5-47. The implications of an active-LOW device
are discussed more fully on page 6-19. For now, suffice it to say
that one way of implementing active-LOW logic is to declare
outputs in the pin list with a slash (/') in front of them. This
essentially defines them as ‘negative’ or ‘inverted’ pins.

The declaration section is built up just like the last one, and is
shown in Figure 18.

TITLE Basic flip-flops
PATTERN P0001
REVISION A

AUTHCR Stateyour Namehere
COMPANY Nameofyour Co., Inc.
DATE 7/22/87

CHIP Flip-flops PAL16R8

JPINS 1 2 3 45 6 7 8 9 10
CIK J K T PR CLR D 8 R GND

;PINS 11 12 13 14 15
OE /SRC /SRT /DC /DT

;PINS 16 17 18 19 20
/TC /TT /JKC /JKT VCC

Figure 18. Basic Flip-Flops Declaration Section

Notice that this device has aclock and anoutput enable pin, called
CLK and OE, respectively. The input and output pins are named
1s shown in Figure 12. The output pins are all defined with
slashes, to indicate that they are inverted pins.

The design can now be processed by hitting
<F5>

and then hitting

6

This will tell you whether there are any basic problems with your
design. You can correct any mistakes by editing the file and then
reprocessing.

Simulating the Flip-Flops

After processing the design and correcting any mistakes, we can
write the simulation. We have all of the simulation instructions we
need, except for one new instruction which simplifies manipula-
tionof the clock signal. ltis possibleto use SETF instructions with
the clock pin, but then each clock transition would require two
instructions: one to set the clock HIGH, and one to bring it
back LOW.

Instead, wa can use the CLOCKEF instruction. This pulses aclock
pin in one instruction. Of course, registered outputs will not
change state until after the rising edge of the clock signal. Since
we have named the clock pin CLK, we can clock this device with
the instruction

CLOCKF CLK
We can simulate the true D-type flip-flop as follows:

SETF D ;set the D input HI

CLOCKF CLK ;clock the device

CHECK DT ;verify that the output went HI
SETF /D ;set the D input LO

CLOCKF CLK ;clock the device

CHECK /DT :verify that the output went LO

Before we actually simulate any registered design like this, two
items must be initialized: the clock and the output enable pin (OE).
Since the CLOCKEF statement executes a HIGH-LOW pulse on
the clock pin, we must first make sure that the clock is set LOW

2\ monotithic BB Memories £ 2-11
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tobegin with. We must also enable the outputs, which is done by SETF CLR /PR ;set the clear pin
setting the OE pin LOW. These tasks can be accomplished with CLOCKF CLK ;clear the circuit

the statement:

SETF /CLK /OE

;make sure the clear function worked
CHECK /DT DC /TT TC /JKT JKC /SRT SRC
SETF /CIR ;jremove the clear signal

Woe also need to initialize the flip-flops. Atthe same time we can
verify that the CLR function is working correctly: We are now in a position to simulate the entire circuit. Athorough

simulation is shown in Figure 19.

SIMULATION

TRACE_ON CLR PR D DT DC T TT TC JK JKT JKC SR SRT SRC
;initialize the circuit

SETF CLR /PR ;set the clear pin
CLOCKF CLK ;clear the circuit

;make sure the clear function worked
CHECK /DT DC /TT TC /JKT JKC /SRT SRC

SETF /CIR ;remove the clear signal
;check out the preset function

SETF PR ;set the preset pin
CLOCKF CLK ;jpreset the circuit

CHECK DT /DC TT /TC JKT /JKC SRT /SRT

SETF /PR ' ;remove the preset signal
;verify that clear has priority

SETF PR CIR ;set both clear and preset
CLOCKF CLK

CHECK /DT DC /TT TC /JKT JKC /SRT SRC

SETF /PR /CLR ;remove both preset, clear

;disable all flip-flop inputs for now
SETF /D /T /3 /K /S /R

;check out D-type flip-flops

SETF D :set the D input HI from LO

CLOCKF CLK ;clock the device

CHECK DT /DC ;verify that the true output went HI
;and the complement went LO

SETF D shold a HI

CLOCKF CLX

CHECK DT /DC ;verify that state maintained

SETF /D ;set the D input IO from HI

CLOCKF' CLK ;clock the device

CHECK /DT DC ;verify that the true output went LO
;and complement went HI

SETF /D shold a 1O

CLOCKF CLK

CHECK /DT DC ;verify that state maintained

;check out T-type flip-flops

SETF /T shold a 1O

CLOCKF CLK

CHECK /TT TC ;true output should still be IO
;complement output HI

SETF T ;toggle from a LO

CLOCKF CLK

CHECK TT /TC ;both outputs should have changed state

Figure 19. Flip-Flop Simulation Sectlon

2-12
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SETF /T ;hold a HI
CLOCKF CLK
CHECK TT /TC ;both outputs should have held their state
SETF T ;toggle from a HI
CLOCKEF CLK
CHECK /TT TC ;both outputs should have changed state
;check out J-K flip-flops
SETF /J /K ;hold a 1LO
CLOCKF CLK
CHECK /JKT JKC ;both outputs should have held their state
SETF J /K ;set a HI
CLOCKF CLK
CHECK JKT /JKC soutputs should have changed
SETF /J /K ;hold a HI
CLOCKF CIK
CHECK JKT /JKC ;both outputs should have held their state
SETF /J K ;jreset a LO
CLOCKF CLK
CHECK /JKT JKC ;outputs should have changed
CLOCKF CLK ;reset an output that is already LO
CHECK /JKT JKC ;make sure that the outputs didn’t change
SETF J K ;toggle from a LO
CLOCKF CLK
CHECK JKT /JKC ;verify that outputs changed
SETF J /K ;set an output that is already HI
CLOCKF CLK
CHECK JKT /JKC ;make sure the outputs didn’t change
SETF J K ;toggle from a HI
CLOCKF CLK
CHECK /JKT JKC ;verify that outputs changed
;check out S-R flip-flops
SETF /S /R ;hold a LO
CLOCKF CLK
CHECK /SRT SRC ;both outputs should have held their state
SETF S /R ;set a HI
CLOCKF CLK
CHECK SRT /SRC ;outputs should have changed
SETF /S /R ;hold a HI
CLOCKF CLK
CHECK SRT /SRC ;both outputs should have held their state
SETF S /R ;set an output that is already HI
CLOCKF CLK
CHECK SRT /SRC ;make sure the outputs didn’t change
SETF /S R ;reset a LO
CLOCKF CLK
CHECK /SRT SRC ;outputs should have changed
CLOCKF CLK ;jreset an output that is already LO
CHECK /SRT SRC ;make sure that the outputs didn’t change
TRACE_OFF
Figure 19. Flip-Flop Simulation Section (Conf'd.)
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The file can now be simulated in the same manner as the basic
gates design. The simulation resuits can be viewed either by
examining the history or trace file, or by generating waveforms.
The complete design file is shown in Figure 22 at the end of this
section.

Programming a Device

After simulating the design, and verifying that it works, itis time to
program a device. There are several steps to programming, but
the exact operation of the programmer naturally depends on the
type of programmer being used. We will be as explicit as we can
here, but you will need to refer to your programmer manualfor the
specifics.

The firstthing that must be done after turning the programmer on
is to select the device type. This tells the programmer what kind
of programming data to expect. The device type is usually
selected either from a menu or by entering a device code. Your
programmer manual will have the details.

Next a JEDEC file must be downloaded. To transfer the JEDEC
file from the computer to your programmer, you will need to
provide a connection, as shown in Figure 20. This is normally
done with an RS-232 cable connected between the
programmer’s port and a serial port on the computer (usually
COM1).

403 09

Figure 20. A Connector Must Be Provided Between the
Computer and the Programmer

If your programmer can perform functionaltests, and you wish for
those tests to be performed, you should download the “.JDC’file;
otherwise you should download the '.JED’ file.

To download data, the programmer must first be set up to receive
data. The programmer manual will tell you how to do this. The
data can then be sent from the computer by hitting

<F4>

This sets up communication between the computer and the
programmer. Whichever communication program is installed will
be invoked. This is used to transmit the JEDEC file to the
programmer. The details below assumeyou are using PC2;if not,
follow the instructions for your program to accomplish the same
steps.

Before actually sending the data, you must verify the correct com-
munication protocol. Check to make sure you know what protocol
the programmer is expecting; then hit the <F2> key on the
computer. This allows you to set up the baud rate, data bits, stop
bits, and parity.

Oncae the protocol has been set up, hit the <F1> key. You will be
asked forthe file name; enter the name of the JEDEC file you wish
to use, The computer will then announce that it is sending the
data, andtellyouwhenitisfinished. Note thatjustbecauseitsays
it has finished sending data does not mean that the data was
received. Your programmer will indicate whether or not data was
received correctly.

Once the data has been received, the programmer is ready to
program adevice. Place a device in the appropriate socket, and
follow the instructions for your programmer to program the
device. This procedure programs and verifies the connections in
the device, and, if a .JDC'’ file was used, will perform a functional
test.

The programmer will announce when the programming proce-
dure has been completed. You may then take the device and plug
it into your application.

If you have actually programmed one of the examples that we
created above, you naturally don’t have a board into which you
can plug the device. If you do have a lab setup, you may wish to
play with the devices to verify for yourself that the devices perform
just as you expected them to.

You will find much more detail on many issues that were not
discussed in this section in the remaining sections of this hand-
book. This section should have provided you with the basic
knowledge you need to understand the remaining design ex-
amples in this book, and to start your own designs.

2-14
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TITLE Basic gates

PATTERN P0000

REVISION A

AUTHOR Stateyour Namehere
COMPANY Nameofyour Co., Inc.
DATE 7/22/87

CHIP GATES PAL12H6

JPINS 1 2 3 4 5 6 7 8 9 10
A CDUVF G I J K M GND

;PINS 11 12 13 14 15 16 17 18 19 20
N P B EHIRUOTL Q VCC

EQUATIONS
B = /A ;inverter
E = C*D ;AND gate
H=F ;CR gate
+ G
L=/I ;NAND gate after applying DeMorgan’s theorem
+ /3
+ /K
0 = /M*/N ;NOR gate after applying DeMorgan’s theorem
R = P*/Q ;XOR gate, expanded
+ /P*Q
SIMULATION

TRACEONABCDEFGHIJKLMNOPQR

;look at the inverter

SEIF A ;set A HI
CHECK /B ;verify that B is 1O
SETF /A ;set A IO
CHECK B ;verify that B is HI

;end of inverter trace

;look at AND gate

SETF /C /D ;set C, D LO

CHECK /E ;verify E LO

SETF D ;C stays LO, D goes HI
CHECK /E ;E should stay 1O
SETF C /D ;set C HI, D IO

CHECK /E ;E should stay 1O
SETF D ;C stays HI, D goes HI
CHECK E ;E should now be HI

;end of AND gate trace

;look at OR gate

SETF /F /G ;set F, G ILO

CHECK /H ;verify H LO

SETF G ;F stays LO, G goes HI
CHECK H +H should go HI

SETF F ;G stays HI, F goes HI
CHECK H ;H should stay HI

SETF /G ;F stays HI, G goes LO
CHECK H ;H should stay HI

;end of OR gate trace

Figure 21, Complete Baslc Gates Design File
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2-16

;look at NAND gate
SETF /I /J /K
CHECK L

SETF K

CHECK L

SETF J /K
CHECK L

SETF K

CHECK L

SETF I /J /K
CHECK L

SETF K

CHECK L

SETF J /K
CHECK L

SETF K

CHECK /L

;look at NOR gate
SETF /M /N

CHECK O

SETF N

CHECK /0

SETF M

CHECK /0O

SETF /N

CHECK /O

;look at XOR gate
SETF /P /Q

CHECK /R

SETF Q

CHECK R

SETF P /Q

CHECK R

SETF Q

CHECK /R

TRACE_OFF

;IJK = 000

sverify L HI

;IJK = 001

+L should still be HI
;IJK = 010

;L should still be HI
;IJK = 011

;L should still be HI
;IJK = 100

+L should still be HI
;IJK = 101

;L should still be HI
;IJK = 110

;L should still be HI
;I0K = 111

;L should go IO

;end of NAND gate trace

;set M, N LO

;verify O HI

;M stays 10, N goes HI
;0 should go LO

;M, N now both HI

;0 should stay LO

;M stays HI, N goes IO
;0 should stay LO

;end of NOR gate trace

;set P, Q 1O

;verify R LO

;P stays 1O, Q goes HI
;R should go HI

;now P HI, Q 1O

;R should stay HI
;both inputs HI

;R should go LO

;end of trace

Figure 21. Complete Basic Gates Design File (Cont'd.)
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TITLE Basic flip-flops
PATTERN P0001

REVISION A

AUTHCR Stateyour Namehere
COMPANY Nameofyour Co., Inc.
DATE 7/22/87

CHIP Flip-flo PAL16R8
;PINS 1 2 3 4 5 6 7 8 9 10
CIK J K T PR CLR D S R GND
sPINS 11 12 13 14 15

OE /SRC /SRT /DC /DT

;PINS 16 17 18 19 20
/TC /TT /JKC /JKT VCC

EQUATIONS

semulating all flip-flops with D-type flip-flops

DT := D*/CLR ;joutput is D if not clear

+ PR*/CLR ;or 1 if preset and not clear at the same time
DC := /D*/PR ;output is /D if not preset

+ CLR ;or 1 if clear

TT := T*/TT*/CLR ;go HI if toggle and not clear
+ /T*IT*/CIR ;stay HI if not toggle and not clear
+ PR*/CLR ;go HI if preset and not clear at the same time

TC := T*/TC*/PR ;go HI if toggle and not preset
+ /T*TC* /PR ;stay HI if not toggle and not preset
+ CLR ;go HI if clearing

JKT := J*/JKT*/CLR
+ /K*JKT*/CLR
+ PR*/CLR

JKC := /J*/JKC*/PR
+ K*JKC*/PR
+ CLR

SRT := S*/CLR
+ /R*SRT*/CLR
+ PR*/CLR

SRC := R*/PR
+ /S*SRC*/PR
+ CLR

;go HI if J and not clear
;stay HI if not K and not clear
;go HI if preset and not clear at the same time

;go HI if not J and not preset
;stay HI if K and not preset
;go HI if clear

;go HI if set and not clear
;stay HI if not reset and not clear
;go HI if preset and not clear at the same time

;go HI if reset and not preset
;stay HI if not set and not preset
;go HI if clear

Figure 22. Complete Basic Flip-Flops Design File
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SIMULATION

TRACE ON CLR PR D DT DC T TT TC JK JKT JKC SR SRT SRC
sinitialize the circuit

SETF CLR /PR ;set the clear pin
CLOCKF CLK ;clear the circuit

;make sure the clear function worked
CHECK /DT DC /TT TC /JKT JKC /SRT SRC

SETF /CLR ;remove the clear signal
;check out the preset function

SETF PR ;set the preset pin
CLOCKF CLK ;preset the circuit

CHECK DT /DC TT /TC JKT /JKC SRT /SRT

SETF /PR ;jremove the preset signal
;verify that clear has priority

SETF PR CLR ;set both clear and preset
CLOCKF CLK

CHECK /DT DC /TT TC /JKT JKC /SRT SRC

SETF /PR /CIR ;remove both preset, clear

;disable all flip~flop inputs for now
SETF /D /T /J /K /S /R

;check out D-type flip-flops

SETF D ;set the D input HI from LO

CLOCKF CILK ;clock the device

CHECK DT /DC ;verify that the true output went HI and the complement went 1O
SETF D ;hold a HI

CLOCKF CLK

CHECK DT /DC ;verify that state maintained

SETF /D ;set the D input IO from HI

CLOCKF CLK ;clock the device

CHECK /DT DC ;verify that the true output went LO and complement went HI
SETF /D thold a 1O

CLOCKF CLK

CHECK /DT DC ;verify that state maintained

;check out T-type flip-flops

SETF /T shold a 1O

CLOCKF CLK

CHECK /TT TC ;true output should still be 1O, complement output HI
SETF T ;toggle from a LO

CLOCKF CLK

CHECK TT /TC ;both outputs should have changed state
SETF /T shold a HI

CLOCKF CLK

CHECK TT /TC ;both outputs should have held their state
SETF T ;toggle from a HI

CLOCKF CLK

CHECK /TT TC ;both outputs should have changed state

Figure 22. Complete Basic Flip-Flops Design File (Cont'd.)
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;check out J-K
SETF /J /K
CLOCKF CLK
CHECK /JKT JKC

SETF J /K
CLOCKF CLK
CHECK JKT /JKC

SETF /J /K
CLOCKF CLK
CHECK JKT /JKC

SETF /J K
CLOCKF CLK
CHECK /JKT JKC

CLOCKF CLK
CHECK /JKT JKC

SETF J K
CLOCKF' CLK
CHECK JKT /JKC

SETF J /K
CLOCKEF' CLK
CHECK JKT /JKC

SETF J K
CLOCKF CLK
CHECK /JKT JKC

;check out S-R
SETF /S /R
CLOCKF CIK
CHECK /SRT SRC

SETF S /R
CLOCKF CLK
CHECK SRT /SRC

SETF /S /R
CLOCKF CLK
CHECK SRT /SRC

SETF S /R
CLOCKF CLK
CHECK SRT /SRC

SETF /S R
CLOCKF CLK
CHECK /SRT SRC

CLOCKF CLK
CHECK /SRT SRC

TRACE OFF

flip-flops
s;hold a IO

;both outputs should have held their state
;set a HI

joutputs should have changed

shold a HI

;both outputs should have held their state
;reset a IO

;outputs should have changed

;reset an output that is already LO
smake sure that the outputs didn’t change

;toggle from a IO
;verify that outputs changed
;set an output that is already HI
;make sure the outputs didn’t change
;toggle from a HI
;verify that outputs changed
flip-flops
shold a 1O
;both outputs should have held their state
;set a HI
;outputs should have changed
;hold a HI
;both outputs should have held their state
;set an output that is already HI
;make sure the outputs didn’t change
;reset a IO
;outputs should have changed

;reset an output that is already LO
;make sure that the outputs didn’t change

Figure 22. Complete Basic Flip-Fiops Design File (Cont'd.)
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Programmable logic devices (PLDs) are used in digital systems
design for implementing a wide variety of logic functions. These
logicfunctions range from simple random logic replacement (dis-
cussed earlier in the Beginner's Guide to PLDs on page 2-2) to
complex control sequencers (discussed in the subsequent sec-
tions). Programmable logic devices offerthe multiple advantages
of low cost, high integration, ease of use, and easier design
debugging capability not available in other systems design op-
tions. These are describedin the introduction (on page 1-1)tothis
handbook. In the following discussion we will detail the PLD
design process.

Most PLDs have an AND-OR array structure with programmable
connections in either or both ofthe arrays. Aprogrammable array
implies that the connections can be programmed by the user.
PLDs are classified depending on which of the two arrays is
programmable or fixed. The popular PAL (Programmable Array
Logic) devices have a programmable AND array and a fixed OR
array. PAL devices are used for a wide variety of combinatorial
and registered logic functions. PROM (Programmable Read-
Only Memory) devices—used often as memory and seldom as
logic—have a fixed AND array and a programmable OR array.
Both arrays are programmable in PLS (Programmable Logic Se-
quencer) devices. These devices are used for special state
machine applications discussed cnpage 2-117. In addition, there
are other programmable logic devices that combine program-
mable arrays with dedicated logic for providing optimal function-
ality for a specific system application. The PROSE (PROgram-
mable SEquencer) device is one such device, with its architec-
ture optimized for state machine designs. A discussion of the
various PLD architecturesisincluded on page 1-7. In this discus-
sion we will also examine the various design constraints to be
considered when selecting the correct architecture for a given
application.

All digital logic can be efficiently reduced to two fundamental
gates,AND and OR, provided boih true and complement versions
of all input signals are available. Such logic is generally built
around what is known as the sum-of-products (AND-OR) form.
Please see page 6-1 for details on sum-of-products form and
Boolean logic. Programmable logic devices are ideal for imple-
menting such two-stage logic in the AND and OR arrays.

Various process technologies offer many design options for
PLDs. The connections in the programmable arrays can be fuse-
based, commonly used in both ECL and TTL bipolar technolo-
gies, E/EEPROM cell-based in UV-EPROM and EEPROM
CMOS technologies and RAM cell-based in CMOS RAMtechnol-
ogy. ECL PLDs are used for very high-speed designs (greater
than 125 MHz bandwidth), while CMOS is used for low-power
designs. Bipolar TTL fuse-based PLDs cover the vast midrange
>f applications and are the most popular PLDs. The selection of
-echnology is mostly dependent upon the system speed and
>ower constraints. Most design engineers are familiar with these

constraints, which not only dictate the technology of PLDs but of
all other logic used in a system. In the following discussion, we
will assume TTL fuse-based technology for simplicity. A detailed
discussion of the technology is included on page 3-130.

Designing with PLDs involves the use of design software and a
device programmer (Figure 1). The design software eliminates
the need to identify every connection to be programmed for
implementing the desired sum-of-products logic. The design
process begins with the creation of a design file which specifies
the desired function. The function is typically represented by its
sum-of-products form and can be derived directly from the timing
diagram and/or truth tables. Occasionally Karnaugh maps and
state diagrams are also used. The design file is then assembled
to produce the “JEDEC" file. The JEDEC file gets its name from
the fact that it is an approved JEDEC standard for specifying the
state of every connection on the device. Simulation canthenbe
performed. Ifthe design is correct, the JEDEC file is downloaded
into a device programmer for programming the connections on
the device. The device can then be plugged into the PC board
where it will function. The entire procedure can often be per-
formed with the designer never having to leave the desk. Most
programmers interface to personal computers, so that the design
file can be edited, assembled, simulated, and downloaded, and
the device programmed, all in one place.

S

DESIGN
FILE

1

PLD DESIGN
SOFTWARE

——

JEDEC
FILE

————

404 01

Figure 1. PLDs are Designed using Software
and a Device Programmer
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The first stage in a PLD design process (Figure 2) is the concep-
tualization of a design problem; the second is the selection of the
correctdevice; thethird is the implementation of the design, which
also includes simulating the design with test vectors; and finally,
the actual programming and testing on a system board. We will
take a simple design example and go through the various stages
of this design process.

CONCEPTUALIZE A
DESIGN PROBLEM

l

Conceptualizing a Design

The first step in the PLD design process is also required for any
SSI/MSI design. An advantage of PLDs is that at this stage the
designer needs to be concerned only with the required logic
function. With SSI or MSI, various device logic limitations must
be accounted for before the design can be started. Clearly a
designer needs to develop a brief and complete functional de-
scription, based upon the system design requirements.

We will take the example of a simple address decoder circuit
required for a 68000 microprocessor. The microprocessor has 24
address lines along with separate read and write signals. It

requires some ROM to store the boot-up code as well as some
%Eelflg; RAM for storing and executing programs. The purpose of the
address decoder circuitry is to select one of the memory ad-
l dresses at atime. The RAMs and ROMs are assigned addresses
on the 68000 microprocessor address space. The address
IMPLEMENT decoder circuit has to select one of the RAMs or ROMs for a
DESIGN specific range of addresses, called the address space. This
selection is accomplished by asserting the specific chip-select
l signal for the RAM or ROM when the microprocessor accesses
one of the addresses in the address space. There is additional
PR%ESAM circuitry in a typical microprocessor system for addressing /0
l PROM 1 000000-OFFFFF
PROM 2 100000-1FFFFF
TEST
PLD | __DRAM1 | 200000-2FFFFF
l DRAM 2 300000-3FFFFF
DRAM 3 400000-4FFFFF
PLUG PLD DRAM 4 500000-5FFFFF
INTO BOARD
404 02
600000-7FFFFF
404 03
Figure 2. Programmable Logic Device Design Process
Figure 3. Memory Address Map
i TOP
RESET ¢
BUTTON
BOTTOM
INIT
INTERFACE ROMCS1
LoGIC ~= PROM1 }—»
RW } READ
ROMCS2 ONLY
—>» RESET AS > » PROM2
RAMCS
L N p EEE
_DRAMZ
153000 DRAM I 5‘/%,?%&
CONTROLLER
MICROPROCESSOR A
| [ o o
Do-16
404 04

Figure 4. Microprocessor to Memory Interface
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devices (such as disk controllers). These devices also require
that chip-select signals be asserted when the microprocessor
addressesthem. Figure 3 shows an example address mapfora
68000 microprocessor.

Figure 4 showsthecircuitdiagram. The address signals fromthe
68000 microprocessor are inputstotheinterface logicblock. The
outputs generated are ROMCS1, ROMCS2, and RAMCS. The
generation of signals for selecting device [/Osis similarand is not
shown here for the sake of simplicity. Other systeminputs tothe
interface are the address strobe signal generated by the 68000
microprocessor as well as the read/write signal. The truth table
for generating the outputs is shown in Figure 5. This truth table
is derived from the memory address map and the functional de-
scription of the design.

ADDRESSES

HEX SIZE A23 | A22 | A21 | SIGNAL
00000-OFFFF | 1Mbytes 0 0 0 |[ROMCS1
10000-1FFFF | 1Mbytes 0 0 1 | ROMCS2

20000-2FFFF | 1Mbytes 0 1 0 | RAMCS
30000-3FFFF | 1Mbytes 0 1 1 RAMCS
40000-4FFFF | 1Mbytes 1 0 0 | RAMCS
50000-5FFFF | 1Mbytes 1 0 1 RAMCS

Figure 5. Truth Table for Chip-Select Signals
Device Selection Considerations

Thefirsttaskforthe designeristoidentify the design problemand
classify it as a combinatorial function or a registered function,

depending upon whether or not registers are required. In most

cases, this decision depends upon the functional nature of the

problem. Sometimes timing and logic considerations can also

dictate the use of registers; this willbe discussed later. Registers

are usually not required for such simple combinatorial functions

such as encoders, decoders, multiplexers, demultiplexers, ad-

ders, and comparators. Registers are required, however, for

functions such as counters, timers, control signalgeneration, and
state machines. Noregisters are required for this simple address
decoding example.

Abrieflook atthe places where various architecturalfeatures are
used will help us select a device for our design example. Based
on historic record of usage and architectural functionality, PLDs
canbeclassified intothree basic application segments. Figure 6
shows the optimal placement of PAL, PLS, and PROSE/FPC
(Fuse Programmable Controller) devices for these three seg-
ments; combinatorial designs, simple registered designs and
complexregistered (sequencer) designs. Thisclassification also
shows the available functionality and device speeds. These are
rough estimates that most designers implicitly assume and de-
velop with experience. These estimates vary drastically among
different designers, based on personal preferences and experi-
ence. They have been included here to provide acomplete road
map for device selection and should be considered strictly as a
rule of thumb.
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= FUNCTIONALITY —————

STATE MACHINES/

SEQUENCERS,
COMPLEX SPEED
REGISTERED PROSE/FPC
DESIGNS DEVICES
404 06

FUNCTIONALITY —————>

Figure 6. Various PLD Design Options

Based on thess criteria, the best choice for our combinatorial
design would be a PAL device. Thetask now is to select a PAL
device forimplementingthe desired function. The mainfunction-
specific selection considerations are shown in Figure 7. These
items are applicable to most designs. There are other function-
specific issues which need addressing when selecting adevice;
these willbe discussed inthe later sections of the book, whenwe
address advanced designs.

Number of Input pins
Number of output pins
Number of VO pins

Device speed

Device powerrequirements
Number of registers (if any)
Number of product terms
Outputpolarlty control

NGO hWN A

Figure 7. General Device Selection Consideratlons

The first resource that must be provided in a PLD is the number
of pins needed for the basic logic function. This consists of the
number of input and output pins. Many PLDs have internal
feedback, which allows the generated output signalto be reused
as an input. The same feedback also allows the pin to be used
asadedicatedinput, if required. This is especially useful forfitting
various designs with different input/output requirements on the
same device. The I/O pin capability of certain PLDs can also be
very usefulforcertain bus applications and will be discussed later.
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Figure 8 and 9 show the pin resources available on various
combinatorial and registered PLDs. The task is as simple as
counting the number of input, output and I/O pins required by the
design and picking a PLD from the table which has the requisite
number of pins. We will pick a PAL16L8 for our design, since it
has sufficient pin resources.

The nextselectionissue isthe device speed. The mostimportant
timing consideration for combinatorial PLDs is the propagation
delay (t,,,) of signals from the input to the output of the device. For
registered PLDs, the important timing consideration isthe device
clocking frequency. This clocking frequency (shown in Figure 9)
is in turn determined by sum of the register setup time (t_ ), and
clock-to-output propagation delay (t,,). Most systems impose

DEVICE TOTAL DEDICATED DEDICATED 1o LOGICAL SPEED GRADES
NUMBER INPUT OUTPUT PINS PRODUCT t,,INns
OF PINS PINS PINS TERMS/
OUTPUT
TTL
10H8 20 10 8 - 2 35
10L8 20 10 8 - 2 35
12H6 20 12 6 - 2-4 35
12L6 20 12 6 - 2-4 35
14H4 20 14 4 - 4 35
14L4 20 14 4 - 4 35
16H2 20 16 2 - 8 35
16L2 20 16 2 - 8 35
16C1 20 16 2 - 16 40
16L8 20 10 2 6 7 10, 15, 25,35
16P8 20 10 2 6 7 25
16RA8 20 8 - 8 4 20,30
18P8 20 10 - 8 8 15,25
6L16 24 6 16 - 1 25
8L14 24 8 14 - 1 25
12L10 24 12 10 - 2 40
14L8 24 14 8 - 2-4 40
16L6 24 16 6 - 2-4 40
18L4 24 18 4 - 4-6 40
20L2 24 20 2 - 8 40
20C1 24 20 2 - 16 40
20L8 24 14 2 6 7 15,25, 35
20L10 24 12 2 8 3 15, 20, 25, 35
20RA10 24 10 - 10 4 20,30
20S10 24 12 2 8 8-18 35
22P10 24 12 - 10 8 15,25
22XP10 24 12 - 10 8 20,30, 40
22RX8 24 14 - 8 8 25
22V10 24 12 - 10 8-16 15,25, 35
32vX10 24 12 - 10 8-16 25,30
CMOS
cie6L8 20 10 2 6 7 25
c20L8 24 14 2 6 7 35,45
C22V10 24 12 - 10 8-16 25,35
C29M16 24 5 - 16 8-16 35,45
C29MA16 24 5 - 16 4-12 35,45
ECL
10H20P8 24 12 - ’ 8 ’ 4-8 6
Figure 8. Combinatorial PLDs with Pin Resources and Speed Requirements
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DEVICE TOTAL DEDICATED DEDICATED o] LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT foax
TTL
16R8 20 8 8 - 8 55.5,37, 25, 16
16R6 20 8 6 2 8 55.5,37, 25, 16
16R4 20 8 4 4 8 55.5,37, 25, 16
16RP8 20 8 8 - 8 22.2
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 222
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23S8 20 9 4 4 8-12 33.3,28.5
20R8 24 12 8 - 8 37,25, 16
20R6 24 12 6 2 8 37, 25,16
20R4 24 12 4 4 8 37, 25,16
20X10 24 10 10 - 4 222
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 222
20RP10 24 10 10 - 8 37,25
20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25
20XRP10 24 10 10 - 8 30,22.2,14
20XRP8 24 10 8 2 8 30,22.2, 14
20XRP6 24 10 6 4 8 30,22.2,14
20XRP4 24 10 4 6 8 30,22.2, 14
20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2
20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40, 28.5, 18
32VX10 24 12 0-10 10-0 8-16 25,222
32R16 40 16 16 - 8-16 16
CMOS
C16R8 20 8 8 - 8 28.5
C16R6 20 8 6 2 8 28.5
C16R4 20 8 4 4 8 285
C20R8 24 12 8 - 8 20,15.3
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,15.3
c22v1io 24 12 0-10 10-0 8-16 33.3,20
C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20,15
ECL
10H/020EV/G8 24 12 0-8 8-0 8-12 125
10H20G8 24 12 0-8 8-0 4-8 N.A.
(Latched)
Figure 9. Registered PLDs with Pin Resources and Speed Requirements
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ADDRESS ADDRESS
— DECODING —# MEMORY ACCESS TIME —————#~——— DECODING —#
TIME TIME
e 10ns »le 220ns ole 10ns ——»
240 ns

404 10

READ /WRITE CYCLE TIME

Figure 10. System Timing Requirements

some timing restrictions on the internal logic functions. These
restrictions will determine the necessary t,, (for combinatorial
devices) or f,,,, {for registered devices). Details on clocking
frequency are provided on page 2-64.

In our design example, the PLD will primarily perform address
decoding. The critical system timing constraint is determined by
the read/write cycle time of the microprocessor and the memory
access time available (Figure 10). Most microprocessors allow
anywhere from 10 to 35 ns for address decoding. Thatis, 10-35
ns after the address is available, the correct memory chip-select
signal should be asserted. In our design example the available
cycle time of 240 ns and memory access time of 220 ns leaves
barely 10 ns for address decode time. From the table in
Figure 8, we can check the propagation delay and select the
appropriate speed of PAL16L8 for our design, which ist, =10 ns.

We have already briefly discussed the types of applications
where registers are needed. Sometimes the consideration of
system timing can affect whether or not registers are needed.
Davices with registers can hold a signal stable for the long
durations required by the addressed peripheral or memory.
Howaever, this slows the initial response or access time of the
device since the chip select must wait for the setup time before the
rising edge of the clock cycle. Devices without registers provide
fast access time but hold the signal valid only as long as the input
conditions are valid. In most address decoders, the address
signals are kept asserted by the microprocessor until the read/
write cycle is completed. In this case, the registers are not
required for holding the signals asserted.

The remaining two general design considerations are the number
of product terms and output polarity. We will discuss these two as
we implement the design in the next section.

Implementing a design

Implementing a design (Figure 11) requires the creation of a
design file. This design file is called the PAL device Design
Specification (PDS) in the PALASM 2 software package. Details
of PALASM 2 software can be found in section 4 of this handbook.
The design file contains three types of information.

1. Basic bookkeeping information
2. Design syntax
3. Simulation syntax

The first section provides documentation information, along with
the name of the device selected, and the signal names. All ofthe
signal names are assigned to pins and are defined as inputs or
outputs. The Declaration Section contains the signal names in
the ascending order of pin numbers. Figure 12 shows the pin
assignments of the signals used in our example. Signals which
are used as I/Os are assigned as outputs and are used as both
inputs and outputs in the sum-of-products logic explained later.

Once the design file is complete, it is then assembled and
simulated. Once it passes assembly and simulation, the resultant
JEDEC file is downloaded to a device programmer for configuring
the device.

I SELECT DEVICE |

e —
) 1
i CREATE DESIGN FILE CREATE DESIGN FILE :
H WRITE BOOLEAN WRITE STATE H
! LOGIC EQUATIONS MACHINE !
H .
: | | :
1} [}
) l 1
L} [}
L 1
H :
: ASSEMBLE :
H DESIGN FILE !
1 H
1 l 1}
1 1
H :
H SIMULATE 1
! THE DESIGN !
H H
1 1
1 1
1 1
1 1
1 1
H No H
H H
= s
L

! YES !
1 1
1 )
1 DOWNLOAD i
! JEDEC FILE !
: H
g )

PROGRAM PLD

Figure 11. Implementing a Design
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Title M68000_ADDRESS_DECODER
Pattern P8000

Revision A

Author ENGINEER

Company MMI SUNNYVALE, CALIFORNIA
DATE 07/21/87

CHIP DECODER PAL16L8

A22
ROMCS2

NC A23 A21

OE ROMCS1

RAMCS INIT NC

NC GND
NC VCC

BOTTOM AS RW
NC NC

Figure 12. Declaration Section of a Design File

Design Syntax

As shown in Figure 11, there are two options available to the
designer for expressing the design. Thefirstis through traditional
Boolean logic equations; the second is through a state machine
syntax. The Boolean logic equations are the only option for
combinatorial designs and can also be efficient for some regis-
tered designs. The Boolean equations can be derived from a
combination of the functional description, the truth table and/or
the timing diagrams (Figure 13). The state machine approach is
idealfor large registered control designs, and can be derived from
the functional description, state table, state diagram and/or the
timing diagram (Figure 14). The latter approach can alsobe used
with PROSE and PLS devices, and will be discussed in a later
section on state machine design.

Boolean Logic Equations

Boolean equations are used to represent the sum-of-products
logic form (see page 6-1 for a logic design review). The Boolean
equations are ideally suited for representing the two-level
AND-OR logic available in most PLDs.

A conventional approach to the design is to convert the design
problem to its discrete logic implementation. Such random SSI
and MSI logic can be easily implemented in PLDs (see the
Beginner's Guide, page 2-2). This usually involves converting to
sum-of-products Boolean logic form. This approach can be a
chore, and much effort can be saved by implementing a design
with PLDs in a sum-of-products form right from the start. This
essentially means that the designer does not have to design
around the limitations of fixed SSI and MSI functions. A direct
implementation of a design in sum-of-products formin a PLD can
also yield a faster circuit.

Boolean equations can be directly derived from the truth table or
timing diagram (Figure 13). The truth table is used more often in
simple combinatorial designs. The timing diagram method is
used more often in registered control designs. We will first
discuss the truth table method and then discuss the details of the
timing diagram method. The state-machine-based registered
design approach will be discussed on page 2-101.

In addition to specifying the logic function, the Boolean equations
in the design file help document the design. There is no need to
draw outan equivalent schematic. This allows design modularity;
the schematic can just show a block for a particular PLD.
Separate supporting documentation (the design file) provides the
details without cluttering the drawing.

Truth-Table-Based Design

The requirements for our particular design example can be easily
converted to a truth table format (Figure 15). This truth table is
based upon the functional description of the design, and is
derived from the address map (Figure 3) and the truth table
(Figure 5).

FUNCTIONAL
DESCRIPTION

|
L !

)
i
1
)
:
:
:
i
, I TRUTH TABLE l TIMING DIAGRAM |
)
.
)
)
)
)
:

| |
:

| LOGIC EQUATIONS |
b c e en l. ____________________ J
ASSEMBLE
404 13 DESIGN FILE

Figure 13. Writing Boolean Logic Equations
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N 2ot 1
) )
H FUNCTIONAL i
! DESCRIPTION !
1 )
1 )
H i
E 3 l H
! I STATE DIAGRAM | I STATE TABLE | | TIMING DIAGRAM l :
) )
: | | :
) L}
: | :
' 1
H STATE MACHINE FILE H
1 1
) L}
L e e e l _______________________________ 4
ASSEMBLE
DESIGN FILE 404
Figure 14. State Machine Dsecription
OUTPUT GENERATED
A23 | A22 A21 | INIT AS RW ROMCS1 | ROMCS2 | RAMCS
0 0 0 1 0 1 0 1 1
0 0 1 1 0 1 1 0 1
0 1 0 1 0 X 1 1 0
0 1 1 1 0 X 1 1 0
1 0 0 1 0 X 1 1 0
1 0 1 1 0 X 1 1 0

Figure 15. Truth Table for the Address Decoder

There are three additional input signals in this design example.
The first, RW, is generated by the microprocessor, and distin-
guishes between read and write cycles. Since the ROM data is
only for reading, the ROMCS1 and ROMCS2 signals are asserted
only when RW is high (when the microprocessor attempts to read
the ROM) and are not asserted for the write cycle. On the other
hand, RAMCS is generated for both read and write cycles and the
state of signal RW is “don’t care™.

The second additional signal, AS, is the address strobe signal
generated by the microprocessor, and is asserted only when the
address lines carry a valid address. All of the chip select signals
need to be gated with the AS signal to ensure that they are only
generated for valid addresses, and no spurious chip selects are
generated.

The last signal is the INIT signal, which is a system initialization
signal. This signal is used to initialize the microprocessor for a
“warm boot,” and none of the chip selects is allowed when this
INIT signal is asserted.

Wiriting Boolean equations from the above logic is very straight-
forward. The output signal names, along with their polarity, are

2-28

assigned to sum-of-product equations, which are based upon
inputs and their polarities.

/ROMCS1 = /A23 * /A22 * /A21 * INIT * /AS * RW
- /ROMCS2 = /A23 * /A22 * A2l * INIT * /AS * RW
/RAMCS = /A23 * A22 * /A21 * INIT * /AS

+ /A23 * A22 * A21 * INIT * /AS

+ A23 * /A22 * /A21 * INIT * /AS

+ A23 * /A22 * A2l * INIT * /AS

Figure 16. The Implementation in Boolean Equations

Theequations are derived directly from the truthtables. Eachone
of the AND equations uses up one product term of the device as
shown in Figure 16. One device selection consideration is to
ensure that all the outputs have sufficient product terms to
accommodatethe desired function. The device we have selected
for this design is the popular PAL16L8D. This device has
sufficient inputs, outputs, and product terms, and has the requi-
site speed for the design.
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This brings us to the issue of output polarity. Suppose we had to
generate active-HIGH outputs. Inthatcase the output equations
for the ROMCS1 signal would be :

ROMCS1 = /A23 * /A22 * /A21 * INIT * /AS * RW

As the PAL16L8 has active-LOW outputs only, this equation’s
output polarity needs to be inverted to be able to fit the device.
Using DeMorgan's theorem for Boolean logic we get:

/RCMCS1 = A23 + A22 + A21 + /INIT + AS + /RW

This equation requires a large number of product terms (six).
Some signals are efficient and use fewer product terms in their
true form, while others are more efficient in their inverted form.
This poses no problems until the signals exceed the device limit
of 8 product terms provided by the PAL16L8 and other standard
PAL devices. In suchcases, an output polarity control is required.
The PAL16RP8 family provides just the control for fitting the
required number of product terms on the device. The device
selection issues of productterms and output polarity also apply to
registered designs. A detailed discussion of output polarity is
included on page 6-15.

Timing-Diagram-Based Design

Until now, we have discussed a PLD design using truth tables as
the primary design vehicle. Inthis section we will attempta design
using a timing diagram as a design vehicle.

Eatlier in the address decoder design we mentioned the INIT
signal. This INIT signalis essentially an initialization signal for the
_entire system, and can be generated by the PAL16L8. Note that
the PAL16L8D used for decoding still has several unused outputs
left, one of which can be used to generate the INIT signal. The
INIT signal is used internally (via feedback) for disabling the chip
selects during initialization. Externally it can be used to initialize
othersystem signals. This INIT signalis generated from aRESET
switch connected to the inputs of the PAL16L8 device as shown
in Figure 17.

To avoid unwanted initialization, the RESET switch must be
debounced. Thatis, we want the INIT signal to remain HIGH until
the switch actually contacts the bottom side. Once the bottom
side is hit, INIT should be asserted active LOW. Once asserted,
it should stay LOW and not change until the top side is hit again.
The timing requirements of the debounce circuitry are shown in
Figure 18. Signals TOP and BOTTOM are inputs to the program-
mable logicdevice. These signals are activatedwhenthe RESET
switch touches the top and the bottom contacts, respectively.

VCcC

RESET — PAL DEVICE
i TOP DEBOUNCE
CIRCUIT
BOTTOM PAL16LS

404 17

Figure 17. RESET Switch for System Initialization

We can formulate the equations by looking at the timing require-
ments of the debounce circuitry shown in Figure 18. The idea is
to identify the key elements of this timing diagram. The arrows in
Figure 18 show the critical events. The first arrow shows the
normal state of all the pins when the RESET switch is not
asserted. Subsequent arrows show each event in the timing of
the INIT signal, depending upon the movement of the switch.

RESET
SWITCH

TOP
BOTTOM

INIT

bt bt ts

Figure 18. Timing Diagram for the Debounce Switch

The logic level of the signals at each critical event carries useful
logic information for deriving Boolean equations. This logic
information for each event is converted into direct Boolean
equations as shown in Figure 19 below. For example, at instant
1the INITsignalremains HIGH as long as the TOP signal remains
LOW,; this is converted to INIT = /TOP * BOTTOM.
1. Normal state INIT = /TOP
2. Switch travels

from TOP to BOTTOM

INIT = TOP * BOTTICM * INIT

3. Switch contacts /INIT = /BOTTOM

BOTTOM

4. Switch travels
form BOTTOM to TOP

/INIT = /INIT * BOTTOM * TOP

5. Normal State Again

Figure 19. Boolean Logic at Every Instant of Timing

Since we are working with an active-LOW device, we can com-
bine the two active-LOW events into one equation:

/INIT = /BOTTOM
+ /INIT * BOTTOM * TOP

Minimizing, this becomes:

/INIT = /BOTTOM
+ /INIT * TOP

This can also be done by way of a truth table and Karnaugh map.

l‘rl Monolithic m Memories Il
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——— E——— — A
TOP BOTTOM INIT- INIT+
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 X
0 0 0 X

Figure 20. Truth Table of INIT logic

Here TOP or BOTTOM will be LOW if contacted. Note that both
TOP and BOTTOM can not be contacted at the same time. The
truth table of Figure 20 yields the Karnaugh map shown in Figure
21. Grouping the zeros (because the PAL16L8 offers active-LOW
outputs) yields the Boolean equation identical to the one derived
from the timing diagram.

ITOP
/BOTTOM
/RESET 00 o1 11 10

AARE
1€®y1 404 21

Figure 21. Karnaugh Map of INIT Signal Logic

There is essentially no difference between the truth table and
timing diagram techniques for writing Boolean logic. A careful
analysis will indicate that we implicitly assumed atruth table inthe
timing diagram example also. Some designers prefer to make a
separate truth table (at least in the first few PLD designs), while
others prefer to design directly from timing diagrams. While the
truth table method allows a more optimal utilization of product
terms, the timing diagram method is easier to visualize as it
retains the design perspective. In both cases the logic should be
minimized by the design software to ensure that the design is
testable. Refer to page 3-108 for a discussion on testability.

Most experienced designers understand the tradeoffs for device
selection. They implicitly go through the steps of design concep-
tualization and device selection, explained earlier. They typically
draw a block around the logic being designed, with the previous
knowledge that it would fit a PLD which has sufficient inputs,
outputs, I/Os and product terms. Now that we have selected a
device and implemented the design, the next step is design
simulation.

Simulation

Design simulation is an integral part of the design process, as
shown in Figure 22. The purpose is to exercise all of the inputs
and test the response of outputs to verify that they will work as
desired in the system. These are essentially test vectors which
designate the state of every input on the device; the outputs are

then checked for an appropriate response. The simulation test
vectors identify any flaws in the design equations which could
affectthe logical operation of the devices programmed. Thus the
simulation vectors serve as a design debugging tool.

Simulation test vectors will eventually make up part of a larger set
of test vectors called “functional test vectors”. These functional
test vectors are used to exercise a real device after programming
to identify any individual devices which are defective. Other
means of identifying defective devices, such as signature
analysis, are also available. Allofthese are discussed indetailon
page 3-128. In this section we will strictly focus on simulation
vectors.

Simulation is included in the design file along with the logic
equations. There is little standardization in these simulation
expressions among various PLD design software packages,
although most of them rely on test vectors to exercise the logic.
PALASM 2 software offers an advanced event-driven capability
that retains a closer design perspective than simulation vectors.
Details of PALASM 2 simulation syntax are included on page
4-137.

The simulation vectors or events can be directly derived from the
truth table and the timing diagram of the design. The logic level
andfunctions of all signals canbe expanded and rewrittenin atest
vector form by the software. For example, the truth table for the
address decoder example discussed earlier can be easily rewrit-
ten as shown in Figure 23.

ASSEMBLE
DESIGN FILE

j

SIMULATE THE
DESIGN WITH
SIMULATION VECTORS

FiX NO
ERRORS

YES

DOWNLOAD JEDEC
FILE TO THE DEVICE
PROGRAMMER

PROGRAM PLD
FUSE MATRIX

-
1

)

1

1

)

1]

| PROGRAM
! THEPLD
:
'
)
H
1
.

404 22

Figure 22. Device Simulation and Programming
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A23  A22 A21 TOP BOTTOM AS RW ROMCS1 ROMCS2 RAMCS INIT
0 0 0 0 1 1 1 H H H H
0 0 0 0 1 0 1 L H H
0 0 1 0 1 1 1 H H H H
0 0 1 0 1 0 1 H L H H
0 1 0 0 1 1 X H H H H
0 1 0 0 1 0 X H H L H
0 1 0 1 1 X H H H H
0 1 1 0 1 0 X H H L H
1 0 0 0 1 1 X H H H H
1 0 0 0 1 0 X H H L H
1 0 1 0 1 1 X H H H H
1 0 1 0 1 X H H L H
1 0 1 X X H H H H
1 0 1 1 1 X X H H H H
1 0 1 1 0 1 X H H H L
1 0 1 1 1 1 X H H H L
1 0 1 0 1 1 X H H H H

Figure 23. Truth Table Used to Derlve Simulation Vectors

These are essentially the simulation vectors which will allow us to
define the inputs to the device and check the outputs of the
device. The PALASM 2 syntax for these simulation vectors is
shown in Figure 24.

Thers is a direct relationship between the truth table vectors of
Figure 23 and the simulation shown in Figure 24. The simulator
then interprets the design file and generates the output logic
levels and/or waveforms, which can be checked by the designer.

Once the simulation is complete, the design file can be as-
sembled to generate the JEDEC file. In the preceding discus-
sions we have assumed prior knowledge of the design file
assembly. The procedure for assembly varies with different
software packages and is covered for the PALASM 2 software
package in the Beginner's Guide (page 2-6).

:' Monolithic m Memories :‘
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SETF /A23 /A22 /A21
CHECK ROMCS1 ROMCS2

SETF /AS

CHECK ROMCS1 ROMCS2
SETF AS

SETF /RW /AS

CHECK ROMCS1 ROMCS2
SETF RW AS

SETF /A23 /A22 A21
SETF /AS

CHECK ROMCS1 ROMCS2
SETF AS

SETF /RW /AS

CHECK ROMCS1 ROMCS2
SETF RW AS

SETF /A23 A22 /A2l
SETF /AS

CHECK ROMCS1 ROMCS2
SETF AS

SETF /RW /AS

CHECK ROMCS1 ROMCS2
SETF RW AS

SETF /A23 A22 A21
SETF /AS

CHECK ROMCS1 ROMCS2
SETF AS

SETF /RW /AS

CHECK ROMCS1 ROMCS2
SETF' RW AS

SETF A23 /A22 /A2l
SEIF /AS

CHECK ROMCS1 ROMCS2
SETF AS

SETF /RW /AS

CHECK ROMCS1 ROMCS2
SETF RW AS

SETF A23 /A22 A21
SETF /AS

CHECK ROMCS1 ROMCS2
SETF AS

SETF /RW /AS

CHECK ROMCS1 ROMCS2
SETF RW AS

SETF TOP

SETF /BOTTOM

CHECK ROMCS1 ROMCS2
SETF BOTTOM

CHECK ROMCS1 ROMCS2
SETF TOP

CHECK ROMCS1 ROMCS2

/TOP BOTTOM AS RW
RAMCS INIT

; READ CYCLE VALID ROMCS1 ADDRESS
RAMCS INIT

; WRITE TO ROMCS1 NOT POSSIBIE
RAMCS INIT

; SET UP ROMCS2 ADDRESS
; READ CYCLE VALID ROMCS2 ADDRESS
RAMCS INIT

; WRITE TO ROMCS2 NOT POSSIBLE
RAMCS INIT

SET UP RAMCS ADDRESS
READ CYCLE VALID RAMCS ADDRESS
RAMCS INIT

’
’

; WRITE CYCLE VALID RAMCS ADDRESS
RAMCS INIT

SET UP RAMCS ADDRESS
READ CYCLE VALID RAMCS ADDRESS
RAMCS INIT

,
’

; WRITE CYCLE VALID RAMCS ADDRESS
RAMCS INIT

RERD CYCLE VALID RAMCS ADDRESS
RAMCS INIT

; SET UP RAMCS ADDRESS
;

; WRITE CYCLE VALID RAMCS ADDRESS
RAMCS INIT

; SET UP RAMCS ADDRESS
; READ CYCLE VALID RAMCS ADDRESS
RAMCS INIT

; WRITE CYCLE VALID RAMCS ADDRESS
RAMCS INIT

; RESET SWITCH TRAVELING DOWN
; RESET HITTING BOTTOM

; RESET TRAVELING TO TOP
RAMCS INIT

; RESET HITTING TOP
RAMCS INIT

Figure 24. PALASM 2 Software Simulation for Address Decoder
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DOWNLOAD JEDEC
FILE TO DEVICE
PROGRAMMER

.......... E s

PROGRAM PLD
FUSE MATRIX

|

TEST PLD WITH
SIMULATION AND
OTHER TEST VECTORS

PROGRAM SECURITY
FUSE IF DESIRED

404 25

I USE ON A BOARD I

PROGRAM
PLD
PERFORMED BY
DEVICE PROGRAMMERS
TEST
PLD

Figure 25. Device Programming and Testing

Device Programming and Testing

Once the design simulation is completed, the final step is device
programming and testing (Figure 25). Programmers are avail-
able from a variety of vendors. It is important to note that
Menolithic Memories qualifies programmers upon verifying that
the algorithms used by the programmers_are correct and that
other basic criteria are met. When purchasing a programmer,
check that the programmer is qualified for the devices you intend
to use.

There are two types of programmer available; menu-driven or
device code based. The menu-driven programmer directly indi-
cates the part type being programmed, whereas the latter type
requires the user to enter the device code before programming.

;' Monolithic ﬁ.ﬁﬂ Memories l‘rl

Oncathe JEDEC fusefile has been downloaded, the programmer
can program the device; the PLD is then ready for use. The
programmer also verifies the connections after the programming
cycle. Programmers also provide the capability of reading a
previously programmed device and creating duplicates of that
device.

Testing PLDs

Thetesting of PLDs can be performed by the device programmer
or by other test equipment. For a manufacturing environment
where high yields are required, device testing is critical. This
subject merits a separate discussion and has been included on
page 3-128. After testing is complets, the device security cells
may be programmed if desired to secure the design from copying.
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Combinatorial Logic Design

In this section we will take a detailed look at several aspects of
combinatorial logic design. Most combinatorial design applica-
tions can be easily segmented into five major fields.

+ Encoders and Decoders

+ Multiplexers

« Comparators

« Adders and Arithmetic Logic
« Latches

We will not only focus on the design methodology for these func-
tions, but will also explore further function-specific PLD selection
requirements. Generalized designs will be developed, which can
be customized later to suit specific system applications. Ways of
optimizing the design will also be discussed.

Encoders and Decoders

Two of the most important functions required in digital design are
encoding and decoding. The encoding and decoding of data are
used extensively in digital communications as well as in periph-
erals. Both these areas use various complex encoding and de-
coding techniques, which are described in more detail on pages
2-357 and 2-507. Most of these techniques are extensions of the
simple encoding and decoding techniques often used in other
digital designs. In this discussion we will focus on simple encod-
ing and decoding techniques.

Encoders

Abinary code of n bits can be used to represent 2" distinct pieces
of coded data. A simple combinatorial encoder is a circuit which
generates n bits of output information based upon one of the 2
unique pieces of input data information. This encoding of infor-
mation is controlled by other independent control signals in a
typical digital circuit.

An illustration of a typical encoder is shown in Figure 1. The
design methodology typically followed is based on truth tables
(Figure 2), from which the Boolean equations are directly derived
forthe design. The same generic device selection considerations
discussed in the section on PAL device design methodology
apply for encoder and decoder designs.

A —
B —f - ¢
ENCODED
INPUTS ENCODER OUTPUTS
¢ — — ¢,
D o
405 01

Figure 1. A Block Diagram of an Encoder
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INPUTS OUTPUTS
A B c D 2 c,
1 0 0 0 L L
0 1 0 0 L H
0 0 1 0 H L
0 0 0 1 H H

Figure 2. Truth Table of a Typical Encoder

The Boolean equations can then be optimized using Karnaugh
maps or the PALASM 2 software minimizer.

The resulting Boolean equations are:

c0O=/A*/B* C* /D
+/A* /B*/C* D

Cl=/A* B* /C* /D
+ /A * /B * /C* D

The complete PALASM 2 design file (including the simulation) for
this simple encoder design is shown in Figure 3.

A Priority Encoder

Let us take another look at the encoder example of Figure 2. In
this example it is assumed that only one of the inputs A, B, C or
D is asserted HIGH at any one time. If two of the inputs are
asserted HIGH simultaneously, a conflict would be created. Tore-
solve this, a priority needs to be assigned to each of the inputs.
Such a priority assignment is used to select a particular element
when several inputs are asserted simultaneously. Each inputis
assigned a priority with respect to the other inputs. The output
code generated is the code assigned to the highest priority
input asserted.

Thus, a priority encoder is a combinatorial circuit block similar to
ageneral encoder, except that the inputs are assigned a priority.
Such priority encoders are used often in state machine applica-
tions, where they detect the occurrence of the highest priority
event. They are also used for microprocessor interrupt control-
lers, where they detect the highest priority interrupt. Another use
for priority encoders is in bus control, where they are used in
arbitration schemes for allowing selective access to the bus.

The model of a priority encoder is shown in Figure 4. The four
input signals are A, B, C and D. These are to be encoded as LL,
LH, HL and HH outputs. Let us assign priority to D over C, C over
B, and BoverA. The next design step would be to modify the truth
table (Figure 5) to reflect these priorities.
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TITLE SIMPLE_ENCODER

PATTERN ENCODE.PDS

REVISION 0l

AUTHOR JOE ENGINEER

COMPANY MONOLITHIC MEMORIES, INC.
DATE 8/20/87

This is an example of a simple encoder. The output Cl and CO
are generated based upon inputs A, B, C and D. The function
truth table is following:

:

i

; A B C D co Cl
; 1 0 0 0 L L
i 0 1 0 0 L H
H 0 0 1 0 H L
H 0 0 0 1 H H
CHIP ENCODER PAL16H2

A B C D NC NC NC NC NC GND

NC NC NC NC CO0 C1 NC NC NC VCC

EQUATIONS

Cl=/A* B* /C* /D
+ /A * /B* /C* D

CO=/A*/B* C* /D
+ /A * /B * /C* D

*

SIMULATION

TRACE_ON

SETF ~ A /B /C /D
CHECK /CO0 /Cl

SETF /A B /C /D
CHECK /CO0 Cl

SETF /A /B C /D
CHECK €0 /Cl

SETF /A /B /C D
CHECK CO0 C1

Figure 3. PALASM 2 File for a Simple Encoder

INPUTS OUTPUTS

A B c D | ¢ c,
A 1t ol oot |
— 0 1 0 0 L H
| omem [0 AEEERER AN
o] — 0 0 0 1 H H

—W C1
D— X 1 0 L H Priority
405 04 X X 1 0 H L Assignments

X X 1 H H

Figure 4. A Four-Input Priority Encoder Block Diagram Figure 5. Priority Encoder Truth Table
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The Boolean equations, directly derived from the truth table, are: These equations can be further optimized by the design software
to the following:
Cl= /A* B* /C* /D CO

= /A* /B* C* /D
+ /A% /B*/C* D + /A*x /B* /C* D Cl=D+ /C *B
+ B *x /C * /D + c* /D CO=D+C
+ D + D
Although a priority encoder is a purely combinatorial function,
output registers are frequently used to hold the output signal
stable for longer durations. An example of a registered 16-input
priority encoder is shown in Figure 6.
TITLE 16 INPUT REGISTERED PRIORITY ENCODER
PATTERN P7090
REVISION 01
AUTHOR J. ENGINEER
COMPANY MONOLITHIC MEMORIES, INC.
DATE 8/20/87

CHIP IN_PRTY PAL20R4

:DESCRIPTION

;THE 16 INPUT REGISTERED PRIORITY ENCODER ACCEPTS SIXTEEN ACTIVE-LOW INPUTS
;(I0-I15) TO LOAD THE BINARY WEIGHTED CODE OF THE PRIORITY ORDER INTO THE
;OUTPUT REGISTER (Q3-Q0) ON THE RISING EDGE OF THE CLOCK (CLK). A PRIORITY
;IS ASSIGNED TO EACH INPUT SO THAT WHEN TWO INPUTS ARE SIMULTANEOUSLY
;ACTIVE, THE INPUT WITH THE HIGHEST PRIORITY IS LOADED INTO THE OUTPUT
;REGISTER. THEREFORE THE HIGHEST PRIORITY INPUT (I0=H) PRODUCES HHHH IN
;THE OUTPUT REGISTER AND THE LOWEST PRIORITY INPUT (Il15=H) PRODUCES LLLL IN
; THE OUTPUT REGISTER.

i
;OPERATIONS TABLE

; /0C CLK I15-I0 Q3-Q0 OPERATION

; H X X 2 HI-Z

H L C 10 =H 15 I0 INTERRUPT (HIGHEST PRIORITY INPUT)
H L c Il =H 14 I1 INTERRUPT

; L c Il =H 13 I2 INTERRUPT

; L Cc I1 =H 12 I3 INTERRUPT

H L Cc I1 =H 11 I4 INTERRUPT

H L c Il =H 10 15 INTERRUPT

H L [of Il =H 9 I6 INTERRUPT

H L Cc 11 =H 8 I7 INTERRUPT

i L C Il =H 7 I8 INTERRUPT

H L C I1 =H 6 I9 INTERRUPT

H L [o Il = 5 I10 INTERRUPT

H L [o 11 = 4 I11 INTERRUPT

H L [o I1 = 3 I12 INTERRUPT

; L c Il = 2 I13 INTERRUPT

H L [o 11 = 1 I14 INTERRUPT

H L [o Il =H 0 115 INTERRUPT (LOWEST PRIORITY INPUT)
H

H

CLK I0 Il I2 I3 14 I5 16 I7 I8 1I9 GND
/0C I10 I11 I12 Q3 Q2 Q1 Q0 I13 Il4 I15 VCC

EQUATIONS

/Q0 := /10* I1

+ /10*%/I1%/12*% 13

+ /I0*/I1*/12%/13%/14% 15

+ JI0%/I1%/12%/13%/14*%/I5%/16* 17

+ /I0%/I1*%/12%/13%/T4*/I5%/16*/17+/18% 19

+ /I0%/I1*/12%/13%/T4*/I5%/16%/17*/18%/19*%/110*% 111

+ /I0%/I1*%/12%/13%/14%/I5%/16*%/17*/18*%/19*%/110%/111%/112% I13

+ /I0*/I1%/T12%/13%/14%/I5%/16%/17*/18%/19%/110%/TI11%/112%/I13%/TI14*115

Figure 6. A 16-Input Registered Prlority Encoder Design File
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/QLl := /I0*/I1* I2

/I0*/I1*/12% 13

/I10%/11*%/12%/13%/14*/15% 16

/I0*%/I1*/12%/13%/T14*/15%/16% 17
/I0%/11*/12%/I3%/14%/I5%/16%/17*/18*/19*% 110
/I0%/I1%/12%/13%/T14*%/15%/16*/I7*/18%/19%/110*% I11
/I0%/I1*/12%/13%/14*/I5%/16%/17%/18*/19%/110%/I11*/112%/I13* 114
/I0%/I1*/12%/13%/T14%/I5%/16%/17*%/18%/19*%/110*/111*/112%/T113%/114*115

ok

/Q2 := /I0*/I1*/12*/13* 14

/I0%/I1*/12%/13*%/14% I5

/I0%/11*/12%/I3%/14*/15% 16

/I10%/I1*/12%/13%/T4%/I5%/16% 17
/I10%/11*%/12%/13%/14*/15%/16*/17*/18*%/19*/110%/I11* 112
/10%/11*%/12%/13%/T14%/I5%/16*/17*/18%/19%/110%/I11*/I112% I13
/I0%/I1*/12%/13%/T14%/15%/16%/1T*/18%/19%/T10%/I11%/112%/113* 114
/10%/I1%/12%/13%/T4*%/165%/16%/17%/18%/I10%/110*/I11%/112%/I13%/I14*115

N

/Q3 := JI0*/11*/12%/I13*/14*%/15*%/16*/17* 18
/I0%/11%/12%/13%/14*/15*%/16*/17*/18* 19
/I0*%/I1*/12%/13*/14*/I5*%/16*/17*/I8*%/19% 110
/I0*/I1*/12%/13*/14*/15%/16*/17*/18*/19%/110* I11
/I0*/I1%/12%/13*%/14*/15%/16*%/17*/I8*/19%/110*/TI11* I12

/I0* /I */I2%/13*%/14*/15*%/16*/17*/18*%/19*%/110%/I11*/I112* 113
/I0*/I1*/12%/13%/14*/I5*%/16%/17*/IB*/19%/I10*/I11*/I12*%/113* 114
/I0%/I1*/12%/13%/14%/15*%/16*/17*/18%/19%/110*/I11*/112*/113*/114*1I15

A+l

; SIMULATION NOT INCLUDED HERE

Figure 6. A 16-Input Registered Prlority Encoder Design File (Cont'd.)
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INPUT SELECT LINES OUTPUT LINES
A B (o] D Q Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Qic Q11 Q12 Q13 Q14 Q15
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0o 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 [V 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 0o 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 0o 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1 1 o] 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1 1 1 [¢] 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0o 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0o 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Flgure 7. The Truth Table of an Active-LOW 4-to-16 Decoder
Decoders

A decoder performs the reverse function of an encoder. It
converts an n-bit code to one of its 2" unique items. It is a
combinatorial circuit designed such that at most one of its several
outputs will be asserted based upon the unique input codes.

Adecoder may have as many outputs asthere are possible binary
input selection combinations. As shown in the truth table
(Figure 7), only one output may be asserted at any time. When
a new combination is applied, another output is asserted and the
original output is returned to its non-asserted state.

The Boolean logic equations can be directly derived from thetruth
table shown in Figure 7. The procedure isthe same as explained
inthe previous section on PLD design methodology on page 2-27.
The Boolean equations derived are shown in Figure 8.

/Q0 = /D * /C * /B * /A
/Q1 = /D * /C* /B* A
/Q2 = /D * /C* B * /A
/Q3 = /D* /C* B* A
/Q4 =/D* C* /B * /A
/Q5 =/D* C* /B* A
/Q6 = /D* C* B* /A
/Q1 =/D* C* B* A
/Q8 = D* /C*x /B * /A
/Q9 = D* /C* /B* A
/Q10 = D * /C* B * /A
/Qll = D* /C* B* A
/Q12 = D* C* /B * /A
/013 = D* C* /B* A
/Ql4 = D* C* B* /A
/015 = D* C* B=* A

Figure 8. Decoder Boolean Logic Equations

Notice from the truth table that there is no combination of inputs
that wiil send all the outputs to their non-asserted state. Many
designs actually need to be able to make alloutputs inactive. This
canbe done simply by putting enable lines in all of the output AND
gates. Many such design modifications can be easily added once
the basic Boolean equations have been derived, instead of
redoing the truth table. Figure 9 shows the PALASM 2 software
design file of one such 4-to-16 decoder withthe enable function.

Probably the most commonly used decoders are the address
decoders required by most microprocessors and bus interfaces.
These also constitute the most common application of PLDs in
digital designs. The design considerations for address decoders
have been covered earlier in the PLD Design Methodology
section, page 2-23. Later we will develop a general Boolean
equation for an address decoder circuit when we discuss range
decoders.
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Title 4tol6 Decoder
Pattern 4-16DEC.PDS
Revision A

Author Mehrnaz Hada
Company Monolithic Memories, Santa Clara, CA
Date 1/9/85

CHIP Decoder PAL6L16

Q0 Q1 Q2 A B C D EN1 EN2 Q3 Q4 GND
Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 vCcC

iThe 4 to 16 decoder decodes four binary encoded inputs
;into one of 16 mutually exclusive outputs, whenever the
;two enable lines EN1 and EN2 are high. When one or both
;of the enable lines are low the outputs are all set to

shigh values.

EQUATIONS

/Q0 = /D*/C*/B*/A* EN1* EN2 ;iDecode 0000
/Q1 = /D*/C*/B* A* EN1* EN2 ;Decode 0001
/Q2 = /D*/C* B*/A* EN1* EN2 ;Decode 0010
/Q3 = /D*/C* B* A* EN1* EN2 ;Decode 0011
/Q4 = /D* C*x/B*/A* EN1* EN2 ;Decode 0100
/Q5 = /D* C*/B* A* EN1* EN2 ;Decode 0101
/Q6 = /D* C* B*/A* EN1* EN2 ;Decode 0110
/Q7 = /D* C* B* A* EN1* EN2 ;Decode 0111
/Q8 = D*/Cx/B*/A* ENl1* EN2 ;Decode 1000
/Q9 = D*/C*/B* A* ENl* EN2 ;Decode 1001
/Ql0 = D*/C* B*/A* ENl* EN2 ;Decode 1010
/Ql1 = D*/C* B* A* EN1* EN2 ;Decode 1011
/Ql2 = D* C*/B*/A* EN1* EN2 ;Decode 1100
/Q1l3 = D* C*/B* A* EN1* EN2 ;Decode 1101
/Q14 = D* C* B*/A*x EN1* EN2 ;Decode 1110
/Q1l5 = D* C* B* A* ENl1* EN2 ;Decode 1111
SIMULATION

TRACE_ON D B C A Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q11 Q12 Q13 Q14 Q15

SETF /D /C /B /A EN1 EN2
SETF A
SETF B

SETF C

SETF D

SETF /D

SETF /C

SETF /B

SETF /A

SETF /EN1

SETF ENl /EN2
SETF /EN1

TRACE_OFF

;Set outputs to high

;Set outputs to high
;Set outputs to high

Figure 9. Design Flle of Four-to-Sixteen Decoder with Enable

Encoder/Decoder Device Salection Consliderations

The general device selection considerations are listed in
Figure 10. Based upon the number of inputs and outputs
required, a device can be selected from the table in Figure 11 for
combinatorial devices or Figure 12 for registered devices.

.

Number of Input Pins
Number of Output Pins
Number of I/0 Pins

Device Speed

Device Power Requirements
Number of Registers
Number of Product Terms
Output Polarity Control

Figure 10. General Encoder/Decoder Device Selection

Conslderations
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DEVICE TOTAL DEDICATED | DEDICATED Vo LOGICAL SPEED GRADES
NUMBER INPUT OUTPUT PINS PRODUCT t,, IN s
OF PINS PINS PINS TERMS/
OUTPUT
TTL
10H8 20 10 8 - 2 35
10L8 20 10 8 - 2 35
12H6 20 12 6 - 2-4 35
12L6 20 12 6 - 24 35
14H4 20 14 4 - 4 35
14L4 20 14 4 - 4 35
16H2 20 16 2 - 8 35
16L2 20 16 2 - 8 35
16C1 20 16 2 - 16 40
16L8 20 10 2 6 7 10, 15, 25, 35
16P8 20 10 2 6 7 25
16RA8 20 8 - 8 4 30
18P8 20 10 - 8 8 15, 25
6L16 24 6 16 - 1 25
8L14 24 8 14 - 1 25
12110 24 12 10 - 2 40
14L8 24 14 8 - 24 40
16L6 24 16 6 - 2-4 40
18L4 24 18 4 - 46 40
20L2 24 20 2 - 8 40
20C1 24 20 2 - 16 40
20L8 24 14 2 6 7 15, 25, 35
20L10 24 12 2 8 3 15, 20, 25, 30
20RA10 24 10 - 10 4 20, 30
20810 24 12 2 8 8-16 35
22P10 24 12 - 10 8 15,25
22XP10 24 12 - 10 8 20, 30, 40
22RX8 24 14 - 8 8 25
22V10 24 12 - 10 8-16 15, 25, 35
32VX10 24 12 - 10 8-16 25, 30
cMos
c16L8 20 10 2 6 7 25
c20L8 24 14 2 6 7 35, 45
C22V10 24 12 - 10 8-16 25, 35
C29M16 24 5 - 16 8-16 35, 45
C29MA16 24 5 - 16 412 35,45
ECL
10H20P8 24 12 . 8 4-8 6

Figure 11. Combinatorial Programmable Logic Devices
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DEVICE TOTAL DEDICATED DEDICATED vo LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCYIN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fax
TTL
16R8 20 8 8 - 8 65.5,37,25, 16
16R6 20 8 6 2 8 65.5,37,25,16
16R4 20 8 4 4 8 55.5,37,25, 16
16RP8 20 8 8 - 8 222
16RP6 20 8 6 2 8 222
16RP4 20 8 4 4 8 222
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23s8 20 9 4 4 8-12 33.3,28.5
20R8 24 12 8 - 8 37,25, 16
20R6 24 12 6 2 8 37,25,16
20R4 24 12 4 4 8 37,25, 16
20X10 24 10 10 - 4 222
20X8 24 10 8 2 4 222
20X4 24 10 4 6 4 222
20RP10 24 10 10 - 8 25,37
20RP8 24 10 8 2 8 25,37
20RP6 24 10 6 4 8 25,37
20RP4 24 10 4 6 8 25,37
20XRP10 24 10 10 - 8 30,22.2, 14
20XRP8 24 10 8 2 8 30,22.2, 14
20XRP6 24 10 6 4 8 30,22.2, 14
20XRP4 24 10 4 6 8 30,22.2, 14
20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2
20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40,285, 18
32vX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16
CMOS
C16R8 20 8 8 - 8 285
C16R6 20 8 6 2 8 285
C16R4 20 8 4 4 8 285
C20R8 24 12 8 - 8 20, 15.3
C20R6 24 12 6 2 8 20, 15.3
C20R4 24 12 4 4 8 20,15.3
c22vio 24 12 0-10 10-0 8-16 33.3,20
C29M16 24 5 - 16 8-16 20,15
C29MA16 24 5 - 16 4-12 20, 15
ECL
10H/020EV/G8 24 12 0-8 8-0 8-12 125
10H20G8 24 12 0-8 8-0 4-8 NA
(Latched)
Figure 12. Registered Programmable Logic Devices
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Encoders typically require a large number of inputs and fewer
outputs, whereas decoders typically require a large number of
outputs and fewer inputs. We can see from these tables that the
PAL device for the priority encoder application (Figure 6) should
be the PAL20R4 and for the decoder application (Figure 7) it
should be the PAL6L16.

Another important device selection consideration for encoders
and decoders is the number of product terms required for a
design. A careful selection of code values (and priority assign-
ments in priority encoders) can often reduce the required number
of product terms. This can sometimes determine whether or not
a design fits a device successfully. Figure 13 shows the truth
tables of two simple partial 3-to-2 encoders. The product terms
required for the two designs are different due to the different
assignment of encoded bits.

INPUTS OUTPUTS INPUTS OUTPUTS

A B C| X X ||]A B C | X X

1 0

Multiplexers

A multiplexer (sometimes referred to as a data selector) is a
special combinatorial circuit, widely used in digital design. It is
designed to gate one of several inputs to a single output. The
input selected for connection to the output is controlled by a
separate set of select inputs.

The traditional use of a multiplexer is for “time division multiplex-
ing” in data communication, when gating several data lines to a
single data transmission line for short intervals of time. The data
received is then demultiplexed by using a demultiplexer, de-
scribed earlier.

The design methodology employed for multiplexer design is the
truth-table approach. As an example, we can look at a three-
input-to-one-output (3:1) multiplexer, which uses two select sig-
nals Aand B. Based on these two select bits, the data on one of
the three inputs is sent to the output. The truth table is shown in
Figure 14.

1 0o 0 0 1 0 0 1
0 1 0 0 1 0 1 0 1 0
0 0 1 1 0 0 0 1 1 1

X1=/A* /B* C X1 =/A* B* /C
+ /A * /B* C
X0 =/A* B* /C X0 = A * /B * /C

+/Aa* /B* C

Figure 13. Two Encoders With Different Product Term
Requirements

Another way of looking at a decoder is as a logic function which,
depending upon the select code applied, connects one datainput
to the selected outputs. Also known as a Demultiplexer, a
decoder essentially connects an input to one of 2" outputs based
upon n select code bits. The reverse logic function, which
combines data from multiple sources to an output signal, is called
a multiplexer and is discussed next.

SELECT INPUTS OUTPUT
B A nco ner ne2 o1Y
0 0 0 X X 0
0 0 1 X X 1
0 1 X 0 X 0
0 1 X 1 X 1
1 0 X X 0 0
1 0 X X 1 1

Figure 14. Truth Table for a Three-to-One Multiplexer

Deriving the Boolean equation from this truth table is a straight-
forward task. Inthis case no further minimizationis possible. The
Boolean equation is:

/01Y = /B * /A * /I1CO
/B * A * /IlC1
B * /A * /IlC2

+ + 0

The complete PALASM 2 design file for this design example
showing four such three-to-one multiplexers is shown in
Figure 15.
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TITLE QUAD 3:1 MULTIPLEXER
PATTERN P7074

REVISION 0l

AUTHOR COLI/VOLPIGNO

COMPANY MONOLITHIC MEMORIES, INC.
DATE 8/20/87

;DESCRIPTION

;THIS IS AN EXAMPLE OF A QUAD 3-TO-1 MULTIPLEXER USING A PALl14L4. SELECT
;LINES A,B ARE ENCODED IN BINARY, WITH A REPRESENTING THE LSB. THE OUTPUTS
;(Y) ARE ALL HIGH IF THE SELECT LINES ARE BOTH HIGH (B,A=H).

OPERATIONS TABLE:

INPUT OUTPUTS

SELECT

B A Y

L L co
L H Cl
H L c2
H H H

e Se ve me me S me v me we we e e

i
CHIP QUAD_MUX PAL14L4

I1C0 I1C1 I1C2 I2CO0 I2Cl I2C2 I3CO I3Cl I3C2 GND
I4C0 I4Cl I4AC2 04Y 03Y 02Y Oly B A VCC

EQUATIONS

/01Y = /B*/A * /I1CO ; SELECT INPUT 1CO
+ /B* A * /IlCl ;SELECT INPUT 1C1
+ B*/A * /I11C2 ;SELECT INPUT 1C2

/02y = /B*/A * /12C0 ;SELECT INPUT 2CO
+ /B* A * /I2C1 ; SELECT INPUT 2Cl1
+ B*/A * /I2C2 ;SELECT INPUT 2C2

/03Y = /B*/A * /I3CO ;SELECT INPUT 3CO
+ /B* A * /I3Cl ;SELECT INPUT 3Cl
+ B*/A * /I3C2 ;SELECT INPUT 3C2

/04Y = /B*/A * /I4C0 ;SELECT INPUT 4CO
+ /B* A * /I4Cl ;SELECT INPUT 4Cl
+ B*/A * /IA4C2 ; SELECT INPUT 4C2

; SIMULATION NOT INCLUDED HERE

Figure 15. Quad 3:1 Multiplexer
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The equations derived in the above example can be easily
generalized for other multiplexers. The symbol for a general
2"-inputs-to-one-output multiplexer is shown in Figure 16 where
n select lines are used.

INPUTS

MULTIPLEXER  |——y
OUTPUT

LB

So Sy Sn-1
INPUT SELECT LINES

405 16

Figure 16. General Model of a 2"-to-1 Multiplexer

The Boolean equations are:

n=2
Y = /S1*/S0*(I0)
+ /S1* SO* (I1)
+ S1*/S0* (I2)
+ S1* S0* (I3)
n=3

/82% /81%/S0% (10)
/S2%/S1% SO* (I1)
/S2* S1%/S0* (12)
/S2% S1* SO* (I3)
S2%/S1%/S0* (14)
$2%/S1% SO* (I5)
S2% S1%/S0% (16)
S2% S1* SO0* (I7)

o+

Multiplexer Device Selection Considerations

Multiplexers typically require more inputs than outputs, so the
devices with a large number of inputs and I/Os are usually more
useful. Careful consideration must also be given to the number
of product terms available on each output.

Js‘i Monolithic m Memories ;1

Several multiplexers are often used simultaneously to route
multiple address and data bits, under the control of the same
select lines. In such cases, multiple devices can be cascaded
when the number of inputs and outputs exceeds device limits.
Cascading is also possible for large multiplexers that do not fit in
a single device. In such cases, the select bits should also be
judiciously selected for each PLD, to minimize the number of
product terms.

Another common trick for designing a multiplexer is to connect a
number of outputs together and control the output enables using
the select bits to multiplex data. This multiplexing technique is
used extensively in DRAM controllers for multiplexing address
signals. Timing considerations for such designs include the
output enable and disable times, which should be carefully
selected to avoid output contentions.

Comparators
A comparator is a combinatorial circuit designed primarily to

compare the relative magnitude of twobinary numbers. Figure 17
shows the truth table for a two-bit comparator.

INPUTS OUTPUTS

A B EQL LES GTR
A, A, B, B, A=B A<B A>B
o 0 0 0 1 0 0
o o 0 1 0 1 0
o o 1 0 0 1 0
o o 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 o o0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

Figure 17. Truth Table for a Comparator

A basic comparator compares two numbers only for equality,
and generates the EQL signal {indicating A=B). An extension,
called a magnitude comparator, also generates the LES signal
(indicating A<B) and GTR signal (indicating A>B). Based on this
truth table, the equations for the three output signals EQL, LES
and GTR can be easily derived. These equaticns can then be
optimized by using Boolean algebra, Karnaugh maps or the
minimization routine available with PALASM 2 software.
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The final Boolean equations are:

EQL = /A2 * /Al * /B2 * /Bl
+ /A2 * Al * /B2 * Bl
+ A2 * /Al * B2 * /Bl
+ A2 * Al * B2 * Bl

LES = /A2 * /Al * /B2 * Bl
+ /A2 * /Al * B2 * /Bl
+ /A2 * /Al * B2 * Bl
+ /A2 * Al * B2 * /Bl
+ /A2 * Al * B2 * Bl
+ A2 * /Al * B2 * Bl
= /Al * B2 * Bl
+ /A2 * /Al * Bl
+ /A2 * B2

GIR = /A2 * Al * /B2 * /Bl
+ A2 * /Al * /B2 * /Bl
+ A2 * Al * /B2 * /Bl
+ A2 * /Al * /B2 * Bl
+ A2 * Al * /B2 * Bl
+ A2 * Al * B2 * /Bl

Al * /B2 * /Bl
A2 * Al * /Bl
A2 * /B2

+ + 1

Comparator Device Selection Considerations

The number of product terms needed is directly related to the
number of bits compared. For LES (less than) and GTR (greater
than) functions, the number of product terms required depends
upon the number of bits in the two operands compared, as wellas
their value. The LES and GTR equations can be rewritten as
follows:

1ES = B2 * /A2
+ (B2 :+: /A2) * Bl * /Al

GTR

- A2 * /B2
(A2 :+: /B2) * Al * /Bl

+

These equations can then be extended for a general comparison
of n-bit comparands as follows:

1ES = Bn * /An
+ (Bn :+: /An) * Bn-1 * /An-1
+ (Bn :+: /An) * (Bn-1 :+: /An-1) * Bn-2 *
/An-2
+ ..
+ ..
+ ..
+ (Bn :+: /An) * (Bn-1 :4: /An-1) ..
(B2 :+: /A2) * B1 * /A1
GTR = An * /Bn
+ (An :+: /Bn) * An-1 * /Bn-1
4+ (An :+: /Bn) * (An-1 :+: /Bn-1) * An-2 *
/Bn-2
+ .
+ .
+ .
+ (An :+: /Bn) * (An-1 :4: /Bo-1) ..

(A2 :+: /B2) * Al * /Bl

The total number of product terms required for an n-bit compari-
sonis 2"-1, Comparators require a large number of product terms
and devices that offer many product terms can be used very ef-
fectively. Figure 18 shows alist of devices that offer many product
terms. It also includes registered devicss, since registers are
sometimes used to hold the comparator output signals asserted
for long durations.

DEVICE TOTAL DEDICATED DEDICATED 1’0 LOGICAL SPEED GRADES
NUMBER INPUT OUTPUT PINS PRODUCT t,,INns
OF PINS PINS PINS TERMS/
OUTPUT
TTL
16C1 20 16 2 - 16 40
20C1 24 20 2 - 16 40
20810 24 12 2 8 8-16 35
22V10 24 12 - 10 8-16 25,35
32VX10 24 12 - 10 8-16 25,35
CMOS
Cc22v10 24 12 - 10 8-16 25,35
C29M16 24 5 - 16 8-16 35, 45
C29MA16 24 5 - 16 4-12 35, 45
Figure 18. PLDs With Large Numbers of Product Terms
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— — — — E— —
As is obvious from these equations, comparators require exclu- PAL16X4, which offers exclusive-OR functions. An example of a
sive-OR functions, and can also be efficiently implemented inthe four-bit comparator implemented on a PAL16X4 is shown in
Figure 19.
PAL16X4 PAL DESIGN SPECIFICATION
P7031 BIRKNER/COLI 07/12/81

BETWEEN LIMITS COMPARATOR/REGISTER
MMI SUNNYVALE, CALIFORNIA

. CLK LOAD CLEAR B0 Bl B2 B3 NC /OC2 GND
/0C1 /NE /EQ A3 A2 Al AO /LT /GT VCC

;DESCRIPTION

;THE DEVICE CONTINUOUSLY COMPARES THE BUS VALUE (B3-B0) WITH THE VALUE OF
;THE REGISTER (A3-A0) AND REPORTS THE STATUS ON OUTPUTS LT, EQ, NE, AND GT:

LT INDICATES THAT B IS LESS THAN A
EQ INDICATES THAT B IS EQUAL TO A
NE INDICATES THAT B IS NOT EQUAL TO A
GT INDICATES THAT B IS GREATER THAN A

* % ¥ *

i STATUS BUS REG

;/0Cl1 /OC2 CLK LOAD CLEAR LT EQ NE GT B3-B0 A3-A0 OPERATION

; H X X X X X X X X X Z REG HI-2

; X H X X X 2 2 2 2z X X STATUS HI-2

; L X X L L X X X X X A READ REG

3 X X Cc H L X X X X B B LOAD REG

i X X [of L L X X X X X A HOLD

3 X X (o} X H X X X X X L CLEAR REG

i X L X L L STATUS B A COMPARE

H

IF(OC2) LT = (A3*/B3) ;B3=L, A3=H
+ (A3:*:B3) * (A2*/B2) :B2=L, A2=H
+ (A3:*:B3) * (A2:%*:B2) * (Al*/Bl) ;Bl=L, Al=H
+ (A3:*:B3) * (A2:*:B2) * (Al:*:Bl) * (AO*/BO) ;BO=L, AO=H

IF(OC2) GT = (/A3*B3) ;B3=H, A3=L
+ (A3:*:B3) * (/A2*B2) ;B2=H, A2=L
+ (A3:*:B3) * (A2:*:B2) * (/Al*Bl) ;Bl=H, Al=L
+ (A3:*:B3) * (A2:%:B2) * (Al:*:Bl) * (/A0*BO) ;BO=H, AO=L

IF(OC2) EQ = (A3:*:B3) * (A2:*:B2) * (Al:*:Bl) * (AO:*:B0) ;COMPARE EQUAL

IF(OC2) NE = (A3:+:B3) + (A2:+:B2) + (Al:+:Bl) + (AO:+:B0) ;NOT EQUAL

/A3 := (/A3)*/LOAD ;HOLD REG A3
+ (/B3)* LOAD ;LOAD REG A3
+ CLEAR ;CLEAR REG A3
/A2 1= (/A2)*/LOAD ;HOLD REG A2
+ (/B2)* LOAD ;LOAD REG A2
+ CLEAR ;CLEAR REG A2
/Al := (/Al)*/LOAD ;sHOLD REG Al
+ (/Bl)* LOAD ;LOAD REG Al
+ CLEAR ;CLEAR REG Al
/A0 := (/A0)*/LOAD ;HOLD REG AO
+ (/B0)* LOAD ;LOAD REG A0
+ CLEAR ;CLEAR REG A0

Figure 19. PAL16X4 Based Four-Bit Comparator
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FUNCTION TABLE

CLK /OCl /0C2 LOAD CLEAR B3 B2 Bl BO A3 A2 Al A0 LT EQ NE GT

; CONTROL BUS REG

H /0c OPERATIONS BBBB ARAA --STATUS--- COMMENTS

;CLK 1 2 LOAD CLEAR 3210 3210 LT EQ NE GT (HEX VALUES)
C LX X H XXXX LLLL X X X X CLEAR REG
C LX H L LLLL LLLL X X X X LOAD REG (0)
X LL L L LLLL LLLL L H L L COMPARE (0 EQ 0)
X LL L L LLLH LLLL L L H H COMPARE (1 GT 0)
X L X L L XXXX LLLL X X X X READ REG (0)
C L X X H XXXX LLLL X X X X CLEAR REG
C LX H L LHLH LHLH X X X X LOAD REG (5)
X L L L L LLLL LHLH H L H L COMPARE (0 LT 5)
X L L L L LHLH LHLH L H L L COMPARE (5 EQ 5)
X L L L L HHHH LHLH L L H H COMPARE (F GT 5)
X LX L L XXXX LHLH X X X X READ REG (5)
C L X X H XXXX LLLL X X X X CLEAR REG
C LX H L HLHL HLHL X X X X LOAD REG (A)
X LL L L LHLL HLHL H L H L COMPARE (4 LT A)
X LL L L HLHL HLHL L H L L COMPARE (A EQ A)
X LL L L HLHH HLHL L L H H COMPARE (B GT A)
X LX L L XXXX HLHL X X X X READ REG (A)
C LX X H XXXX LLLL X X X X CLEAR REG
C LX H L HHHH HHHH X X X X LOAD REG (F)
X L L L L HHHL HHHH H L H L COMPARE (L LT F)
X LL L L HHHH HHHH L H L L COMPARE (F EQ F)
X LX L L XXXX HHHH X X X X READ REG (F)
C LX L L XXXX HHHH X X X X HOLD (F)
X HX X X XXXX 2222 X X X X TEST HI-2Z (/0Cl=H)
X XH X X XXXX XXXX Z 2 2 2 TEST HI-2 (/0C2=H)

Figure 19. PAL16X4 Based Four-Bit Comparator (Cont'd.)

The values of the comparands themselves affect the number of
productterms used. When the comparison is made with compar-
ands which are power-of-two numbers, the number of product
terms required can be reduced drastically. This essentially relies
on the fact that when the lower bits of a comparand are all zeros
only the highest bit needs to be compared, requiring only one
product term. For example in a two-bit comparator, if A1 is zero
andA2isone, the equation forthe greater-than functionbecomes
very simple and requires only one product term:

GIR = /B2

The general equation for the GTR signal can also be simplified
when comparing a number B to a fixed power-of-two comparand
A with p least significant zeros.

A = 000010000 .. 00
n p 1
GIR =

/B * /Ba-1 .. * /BpHl * /Bp

This general GTR equation can also be considered as an equa-
tion for comparing a number to a range of numbers extending
fromzeroto numberA. Infactthistrickis used very often by many
system designers for address decoder functions. In PLD Design
Methodology (page 2-22) the ROMCS1 signal is one such signal
which is generated for the address range from (000000) hex to
(OFFFFF) hex. Forthis design n=23, the comparand A=(0FFFFF
+ 1)=100000 and p=21. Substituting in the general equation we
get the same address decoder Boolean logic equation.

ROMCS1 = /A23 * /A22 * /A21

As such designs require few product terms and no XOR gates,
they are efficiently implemented on standard combinatorial PLDs.
Alist of such standard combinatorial PLDs is shown in Figure 20.
A general form of range comparators with two boundary compar-
ands will be discussed later.
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DEVICE | TOTAL DEDICATED DEDICATED Vo LOGICAL SPEED GRADES
NUMBER INPUT OUTPUT PINS PRODUCT t,,INns
OF PINS PINS PINS TERMS/
OUTPUT
TTL
16L8 20 10 2 6 7 10,15, 25, 35
16P8 20 10 2 6 7 25
18P8 20 10 - 8 8 15,25
20L8 24 14 2 6 7 15, 25, 35
20L10 24 12 2 8 3 15, 20, 25, 30
20810 24 12 2 8 8-16 35
22P10 24 12 - 10 8 15,25
22XP10 24 12 - 10 8 20, 30, 40
22RX8 24 14 - 8 8 25
22V10 24 12 - 10 8-16 25,35
32VX10 24 12 - 10 8-16 25,30
CMOS
C16L8 20 10 2 6 7 25
caoLs 24 14 2 6 7 35, 45
c22v10 24 12 - 10 8-16 25,35
C2sM16 24 5 - 16 8-16 35, 45
C29MA16 24 5 - 16 4-12 35,45

Figure 20. Standard Combinatorial PLDs with Sum-of-Products Logic

The third output signal is the EQL signal. The EQL Boolean
equation tells us whether the two numbers are identical. Such
information is useful not only in address decoders, but also in
digital signal processing designs. This equation requires a large
number of product terms. A closer examination reveals that it is
essentially an exclusive-OR function.

EQL = /A2 * /B2 * (/A1 * /Bl + Al * Bl)
+ A2 * B2 * (/A1 * /Bl + Al * Bl)
EQL = (Al :*: Bl) * (A2 :*: B2) ; Exclusive-NCR

; function

Inverting this:

/EQL = (Al :+: Bl) + (A2 :+: B2) ; Exclusive-OR
; function

This equation can be extended to give a general equation for
:qual-to comparison for two n-bit comparands.

'EQL = (An :+: Bn)
(An-1 :+: Bn-1)
(An-2 :+: Bn-2)
(An-3 :+: Bn-3)

+ 4+ o+ 4+

(Al :+: Bl)

This inverted equation is implementable in the sum-of-products
form of the exclusive-OR functions, and can be easily expanded
to the following:

/EQL = Al * /Bl + /A1 * Bl
+ A2 * /B2 + /A2 * B2
+ A3 * /B3 + /A3 * B3
+ ..
+ .
+ An * /Bn + /An * Bn

This gives us a general sum-of-products form of a comparator
equation which is easily implemented in PAL devices. An n-bit
comparator requires 2n product terms. An eight-bit comparator
is implemented in the design shown in Figure 21. This design
uses the PAL16C1, which is specifically designed for comparator
applications, and provides a large number of product terms
connected to EQL and /EQL (NE) outputs. Allof the devices that
have a large number of product terms are illustrated in Figure 18,
and would be appropriate for such designs.

zl Monolithic Eﬁﬂ Memorles zl
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Title Octal_Comparator

Pattern OctComp.pds

Revision A

Author Mehrnaz Hada

Company Monolithic Memories Inc., Santa Clara,CA
Date 1/29/85

;The octal comparator establishes when two B-bit data
;strings (A7-A0) and (B7-B0) are equivalent (EQ=H) or not
;jequivalent (NE=H).

CHIP OctalCom PAL16C1

A7 A0 BO Al Bl A2 B2 A3 B3 GND
A4 B4 A5 B5 EQ NE A6 B6 B7 VCC

EQUATIONS

NE = AO*/BO + /AO* BO ;A0 :+: BO
+ Al*/Bl1 + /Al* Bl ;A1 :+: Bl
+ A2*/B2 + /A2* B2 ;A2 :+: B2
+ A3*/B3 + /A3* B3 ;A3 :4: B3
+ A4*/B4 + /A4* B4 ;A4 :+: B4
+ AS5*/B5 + /AS5* BS ;A5 :+: B5S
+ A6*/B6 + /A6* B6 ;A6 :+: B6
+ A7*/B7 + /A7* B7 ;A7 :4: B7

SIMULATION

TRACE_ON A7 A6 A5 A4 A3 A2 Al AO0 NE
B7 B6 B5 B4 B3 B2 Bl B0

SETF A7 /A6 /AS /A4 /A3 /A2 /Al /AO ;A7=H, B7=L
/B7 /B6 /BS /B4 /B3 /B2 /Bl /B0
A6

SETF /A7 ;A6=H, B6=L
SETF /A6 AS ;AS5=H, B5=L
SETF /A5 A4 ;A4=H, B4=L
SETF /A4 A3 ;A3=H, B3=L
SETF /A3 A2 ;A2=H, B2=L
SETF /A2 Al ;Al=H, Bl=L
SETF /Al AO ;A0=H, BO=L
SETF /A7 /A6 /A5 /A4 /A3 /A2 /Al /AO ;A7=L, B7=H
B7
SETF /B7 B6 ;A6=L, B6=H
SETF /B6 BS ;AS5=L, B5=L
SETF /B5 B4 ;A4=L, B4=H
SETF /B4 B3 1A3=L, B3=H
SETF /B3 B2 ;A2=L, B2=H
SETF /B2 Bl ;Al=L, Bl=H
SETF /Bl BO ;A0=L, BO=H
SETF /B0 ;Test all L's
SETF A7 A6 AS A4 A3 A2 Al AO ;Test all H's
B7 B6 BS B4 B3 B2 Bl BO
SETF /A7 A6 /A5 A4 /A3 A2 /Al AO ;Test even ones
/B7 B6 /BS5 B4 /B3 B2 /Bl B0
SETF A7 /A6 A5 /A4 A3 /A2 Al /AO ;Test odd ones

B7 /B6 B5 /B4 B3 /B2 Bl /B0
TRACE_OFF

Figure 21. Octal Comparator Design Example
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Note that the EQL equation, as well as GTR and LES equations,
rely upon the XOR function. Often the logic represented by the
equations is implemented in two or more devices. There are
several PAL devices that provide dedicated XOR capability, and
can efficiently implementthe logic. These devices, listed in Figure
22, can be used for comparator applications. The PAL32VX10
and the PAL22RX8 offer an architecture with a multiple number
of product terms on one side of the XOR gate, which allows a
number to be compared against multiple comparands. The de-

sign example in Figure 19 shows the XOR implementation of the
LES, GTR and EQL functions.

Let us analyze these equations further. The LES and GTR
outputs indicate whether one number is greater than or less than
another. In fact, these equations can also be judiciously com-
bined to get a comparison of a range of numbers such as
A > X > B. Such range comparisons are very useful for address
decoder circuits.

DEVICE TOTAL DEDICATED DEDICATED o] LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fuax
TTL
16X4 20 8 4 4 8 14
20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2
top =
22XP10 24 12 - 10 8 20, 30, 40
20XRP10 24 10 10 - 8 30, 22.2, 14
20XRP8 24 10 8 2 8 30,22.2, 14
20XRP6 24 10 6 4 8 30,222, 14
20XRP4 24 10 4 6 8 30, 22.2, 14
22RX8 24 14 0-8 8-0 8 28.5
32vX10 24 12 0-10 10-0 8-16 25,22.2

Figure 22. PAL Devices with XOR Capability for Comparators
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Range Decoders

Range decoders implemented as address decoders are one of
the most commonly used applications of PLDs in digital systems.
Agood example is the address decoder illustrated earlieron page
2-22, in the PLD Design Methodology section. Range decoders
compare a number (address) to a given range of comparands
(addresses). One way to arrive at the range decoder Boolean
equations is to use the traditional truth table approach. Another
way is to use the Boolean equations generated earlier in the
comparator section for greater-than and less-than functions. To
decode a range of three-bit numbers from B to A, we must
compare another number X such that A>X>B. The Boolean
equations for the GTR (A>X) and LES (B<X) functions are
illustrated below:

GIR = A3 * /X3
+ (A3 :+: /X3) * A2 * /X2
+ (A3 :+: /X3) * (A2 :4: /X2) * Bl * /X1

IES = X3 * /B3
+ (X3 :+: /B3) * X2 * /B2
+ (X3 :+: /B3) * (X2 :+: /B2) * X1 * /Bl

Combining these two equations can give us a range signal which
willbe asserted only whenAis greaterthan X and Xis greaterthan
B. The combined Boolean equation follows:

RANG = ( A3 * /X3
+ (A3 :+: /X3) * A2 * /X2
+ (A3 :+: /X3) * (A2 :4: /X2) * Al * /X1 )
*
( X3 * /B3
+ (X3 :+: /B3) * X2 * /B2
+ (X3 :+: /B3) * (X2 :4: /B2) * X1 * /Bl )

Using Boolean algebra we get the following equation:

(A2 :+: /X2) * Al * /X1 * X2 * /B2
(X2 :+: /B2) * A2 * /X2 * X1 * /Bl

RANG =

(A3 :4: /X3) * (X3 :+: /B3) *
+ (A3 :+: /X3) * (X3 :+: /B3) *
4+ (A3 :+: /X3) * (A2 :+: /X2) * Al * /X1 * X3 * /B3
+ (X3 :+: /B3) * (X2 :+: /B2) * A3 * /X3 * X1 * /Bl
+ (A3 :+: /X3) * A2 * /X2 * X3 * /B3
+ (X3 :+: /B3) * A3 * /X3 * X2 * /B2

The general equation for n-bit comparands can also be obtained by extending these equations.

RANG = ( An * /Xn
+ (An :+: /Xn) * An-1 * /Xn-1
+ (An :+: /Xn) * (An-1 :+: /Xn-1) * An-2 * /Xn-2
+ ..
+ ..
+ (An :+: /Xn) * (An-1 :4: /Xn-1) .. (A2 :+: /X2) * Al * /X1)
*
(Xn * /Bn
+ (Xn :+: /Bn) * Xn-1 * /Bn-1
+ (Xn :+: /Bn) * (Xn-1 :+: /Bn-1) * Xn-2 * /Bn-2
+ .
+.
+ ..
+ (Xn :+: /Bn) * (Xn-1 :+: /Bn-1) .. (X2 :4: /B2) * X1 * /Bl)
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The number of product terms required is clearly very large and
can easily exceed one hundred for an eight-bit range comparator.
Most microprocessors have addresses which exceed 16 bits. In
order to fit the design on a PAL device, one commonly used
technique is to select the address range defined by Aand B such
thatthe range extends from address B+1to A-1, where Aand B+1
are power-of-two numbers. Because the address space is
aligned on the power-of-two boundaries, a number of bits of the
address comparands willbe zero. Whenimplementedin Boolean
equations, this substantially reduces the numberof product terms
required.

The maximum number of product terms required for a three-bit
range decoder shown above, with any comparand values, is 28.
Ifthe address is chosen from 2to 3, resultingin A=4 and B=1, then
only one product term will be required.

RANG = /X3 * X2

Similarly for a range from one to five, B = 1 and A = 6 (a multiple-
of-two), and the number of product terms required is only two.

RANG = /X3 * X2
+ X3 * /X2

Thus a careful selection of range boundaries allows such logic
functions to be implemented easily in PLDs. Such reduction in
logic obviously also holdstrue for discrete implementations. Most
address decoders are designed with address ranges with
boundariesthat are power-of-two numbers, and require few prod-
uct terms for implementation.

For a power-of-two address range, the comparand Awould be a
power-of-two; 2, 4 or 8. These are numbers whose least signifi-
cant bits are all zeros. Similarly, comparand B will be a power-of-
two number (minus one); 1, 3, and 7. These are numbers whose
least significant bits are allones. Substitutingthese inthe general
equation for range comparators we arrive at:

A = 0000100000000000
n p 1

B = 0000000000011111
n q 1

RANG = /Xn * /Xn-1 *.* /Xp *(Xp-1 + Xp-2 + .. +Xq)

This is a general equation for a power-of-two range comparison.
In the example on page 2-22, the ROMCS2 signal addresses the
range from 100000 to 1FFFFF, in which case B=OFFFFF and
A=2FFFFF. Here n=23, p=22 and q=21. The address decode
equation for the ROMCS2 signal can be arrived at by substituting:

0OMCS2 = /A23 * /A22 * A2l

This is the same equation as was found from the truth table.
Such designs are very common for address decoder applica-
ions. These do not require any XOR gatses, and can be imple-

nented in standard combinatorial PLDs with only sum-of-prod-
icts logic. Alist of such PLDs is shown in Figure 20.

Adders/Arithmetic Circuits

Digital systems are designed to carry out a variety of arithmetic
instructions on binary numerical data. A good example is the
ALU (Arithmetic Logic Unit) used in all digital computers. The
basic function of an ALU is that of an adder performing addition
on two binary numbers. A binary adder takes two inputs, adds
them, and generates the binary sum. A full adder is a one-bit
adder with carry-in and carry-out; this is the basic building block
of any adding circuit. The truth table of such an adder is shown
in Figure 23.

INPUTS OUTPUTS
A B Cw Y Cour
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 23. Truth Table for a Full Adder

This truth table is then used to form the Boclean equations in the
manner described earlier.

Y= A* /B * /Cin
+ /A * /B* Cin
+ A* B* Cin
+ /A * B * /Cin

Cout = A * Cin

+A*B
+ B * Cin

Bigger binary adders can be made by cascading these full
adders. Each carry-out is directed to carry-in for the next stage.
Such adders are known as Ripple Adders.

Combinatorial PAL devices are ideal for this purpose, since they
also provide internal feedback. Thus one strong consideration in
such designs is the internal feedback capability of the device, in
addition to other general device selection considerations.

These ripple adders have an advantage in that they can be
cascaded to any length possible. But since the carry-out from the
least significant bit has to travel all the way to the highest
significant bit, this can take a long time, making such large adders
inefficient. Adders with built in carry-look-ahead circuitry can
save time by simultaneously generating the carry-in signal for all
of the bits.

l:l Monolithic m Memorles :l
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Rewriting the equations for a full adder from above gives:
Y0 = A0 :+: BO :+: Cin

where the carry-out signal is:

CO = A0 * BO + (AO + BO) * Cin

Extending these equations for an n-bit carry-look-ahead adder,
we can directly get the following equations:

Y0 = A0 :4: BO :+: Cin
Y1l = Al :+: Bl :+: CO
where

CO = A0 * BO
+(A0 + BO) * Cin

Y2 = A2 :4: B2 :+: Cl
where

Cl = Al * Bl
+(Al + Bl)* (A0 * BO)
+(Al + B1)* (A0 + BO) * Cin

Y3 = A3 :4+: B3 :+: C2
where

C2 = A2 * B2
+(A2 + B2)* (Al * Bl)
+(A2 + B2)* (Al + Bl)* (A0 * BO)
+(A2 + B2)* (Al + Bl)* (A0 + BO) * Cin

In general
¥n = An :+: Bn :+: Cn-1

and Cn-1 = An-1 * Bn-1
+(An-1 + Bn-1)* (An-2* Bn-2)
+
+ .
+(An-1 + Bn-1)* .. * (A0 + B0O) * Cin
and finally the carry-out is:
Cn = An * Bn
(An + Bn) * (An-1 * Bn-1)
(An + Bn) * (An-1 + Bn-1) * (An-2 * Bn-2)

+ 4N

(An + Bn) * .. * (A0 + BO) * Cin

These equations are essentially a combination of the traditional
generate and propagate logic for ALU design.

Adder Device Selectlon Considerations

The number of product terms required for implementing a carry-
look-ahead adder is enormous. The carry-out function alone for
a four-bit carry-look-ahead adder requires over 36 product terms
in the sum-of-products form. For asingle-level AND-OR implem-
entation the number of product terms required for the most
significant bit Y3 is 28. This will not fit into any of the available
standard combinatorial devices. A PLD with this many product
terms per output will not only be slow, but will also allow very low
silicon utilization.

Special circuitry, known as bit-pair decoding, has been provided
onthe PAL16X4to allow implementation of such functions with up
to six productterms. Designed primarily for arithmeticoperations,
the PAL16X4 device has an architecture which implements three
different stages of logic. The firstis the bit-pair decoding between
an input and a feedback. The second is the standard AND-OR
array logic. The third is the XOR gate provided on selected
outputs.

Although adders are strictly a combinatorial function, the
PAL16X4 provides four registered outputs. Not only are these
registers used for storing the result, but they are also used
temporarily to hold one of the two operands being added. The
other operand is provided directly at the inputs. To keep the
discussion simple we will not discuss how the first operand is
loaded into the registers. This load function can be implemented
by using an extra product term on each output.

The logic trick lies in the bit-pair decoding function. All of the bits
of the firstoperand in the registers (A) and the second operand at
the inputs (B) are bit-pair decoded. Asillustrated in Figure 24, the
results of this bit-pair decoding are A + B, A + /B, /A + B, and
/A + /B. These outputs are then fed to the AND array as inputs.

—- BIT-PAIR
INPUT I DECODING
1

1
AT t—) >—+— As+B

FEEDBACK

__________ 4 405 24

Figure 24. Bit-Pair-Decoding Function
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Sixteen AND combinations of these four inputs can then be
formed on every product term of the AND-OR array. These are
shown in Figure 25, and include the standard true and comple-
ments of both the bits as well as XOR, XNOR and various other
combinations. This bit pair decoding essentially provides an extra
two-level AND-OR logic level before the AND-OR array. The cost
as well as extra propagation delay of the extra logic level is
minimal, since the array size does not increase.

The equations forthe adder can obviously benefit from multi-level
logic. The bit-pair decoding is used to implement the first two

levels of logic. The next level of logic is implemented in the
standard AND-OR array. Every product term of this AND-OR
array can combine one of the sixteen possible functions of
different inputs/feedbacks of the device.

The product terms are then combined together through an OR
gate to implement the CARRY-OUT function, shown in Figure 26.
For adder outputs YO0, Y1, Y2, and Y3, the product terms are
combined through the XOR gate, as shown in Figure 27. This
XOR gate on the outputs is the final logic level on the device.

>l

@

PRODUCT TERMS

0

405 25

UUQJUUQUUUUUUUUDU

Flgure 25, Sixteen Possible Input Logic Combinations
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CARRY-OUT= Aj3* Bj
(Az+Ba) " A2"B>
(A3+B3) " (A2+B2) " A1" By
(Az+Bg) " (A2+B2) " (A1+B1) " Ao " Bo
(As+Ba) *(A2+8B2) “ (A1+B1) * (Ao * Bo) *Cin

405 26

Figure 26. Implementation of CARRY-OUT Function
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00 0 0 0D Om @ D@ 0
T S
CTIICIC T I << ICIC < <1< 01O
Y3 = Aj3+:B3
+:{{A2* By)

+(A2+Bp) " (A" By)
+(A2+Bp) " (A1+B4) * (Ag” Bo) 105 27
+(A2+B2) * (A1+B1) * (Ao* Bo) *Cin)

Figure 27. Relationship Between Adder Boolean Equation and PAL16X4 Device Logic
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Thus the most significant bit of the output can be implemented Figure 28 illustrates an example of one such adder, which also
using only five product terms; the carry-out function can be includesthe logic required forfoading the registers with one of the
implemented using only six product terms. All of this is possible operands.

because the PAL16X4 offers a modified programmable array with
hardware dedicated to bit-pair decoding atthe inputs and an XOR
gate at the outputs.

PAL16X4 PAL DESIGN SPECIFICATION
PNEW J. ENGINEER 9/15/87
ADDER

MMI SUNNYVALE, CALIFORNIA

CLK LOAD ADD B0 Bl B2 B3 NC NC GND
CIN NC NC A3 A2 A1 A0 G P VCC

;DESCRIPTION

;THE DEVICE FUNCTIONS AS AN ADDER. IT FIRST STORES ONE OPERAND IN THE FOUR-
;BIT OUTPUT REGISTER UNDER THE CONTROL OF LOAD SIGNAL. USING FEEDBACK AND A
;SECOND OPERAND AT THE INPUTS, IT ADDS THE TWO UNDER CONTROL OF SIGNAL ADD.
;THE RESULTS ARE STORED BACK IN THE OUTPUT REGISTERS. THE DEVICE ALSO
;GENERATES THE PROPAGATE AND GENERATE SIGNALS WHICH ALLOW A NUMBER OF
;SIMILAR DEVICES TO BE CASCADED.

IF(VCC) P = (A3 + B3) ; PROPAGATE SIGNAL
* (A2 + B2)
* (Al + B1)
* (A0 + BO)
IF(VCC) G = (A3*B3) ; GENERATE SIGNAL
+ (A3 + B3) * (A2*B2)
+ (A3 + B3) * (A2 + B2) * (Al*Bl)
+ (A3 + B3) * (A2 + B2) * (Al + Bl) * (A0*BO)

CARRY0.EQU ADD * CIN

CARRY1.EQU ADD * (AO*B0)
+ ADD * (A0 + BO)

»

CIN

CARRY2.EQU ADD * (Al*Bl)
+ ADD * (Al + Bl) * (AO*BO)
+ ADD * (Al + Bl) * (A0 + BO) * CIN

CARRY3.EQU ADD * (A2%*B2)
+ ADD * (A2 + B2) * (Al1*Bl) «
+ ADD * (A2 + B2) * (Al + Bl) * (AO*BO
+ ADD * (A2 + B2) * (Al + Bl) * (A0 + BO) * CIN
/A3 := (/A3)*/LOAD * /ADD ;HOLD REG A3
+ (/B3)* LOAD ;LOAD °~ REG B3
+ (A3:*:B3)*AD ;ADD A3 AND B3
:+: CARRY3
/A2 := (/A2)*/LOAD * /ADD ;HOLD REG A2
+ (/B2)* LOAD ;LOAD REG B2
+ (A2:*:B2)*ADD ;ADD A2 AND B2
:+: CARRY2
/Al := (/Al)*/LOAD * /ADD ;HOLD REG Al
+ (/Bl)* LOAD ;LOAD REG Bl
+ (Al:*:Bl1)*ADD ;ADD Al AND Bl
:+: CARRY1
- /A0 := (/A0)*/LOAD * /ADD ;HOLD REG A0
+ (/BO)* LOAD ; LOAD REG BO
+ (AO:*:B0)*ADD ;ADD A0 AND BO
:+: CARRYO

FUNCTION TABLE

; NOT INCLUDED HERE

Figure 28. A Four-Bit Adder Implemented in a PAL16X4
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Latches

PAL devices are often used to implement latches. One of the
most common uses for latches is as temporary storage for data
or addresses. PLD-based latches are often used in address
decoders to assert the decoded signal for long durations. These
latches are also very useful for asynchronous digital designs, and
are used often for control and arbitration functions.

A latch is essentially a simple combinatorial circuit in which the
output is a function of inputs and feedback. The most commonly
used latch is the D-type latch. When the control signal latch-
enable (LEN) is HIGH, the latch is in the “transparent mode” and
the input signal /D is available at the outputs. When the LEN
signal is LOW, the input data is latched on the outputs and is
retained until LEN goes back HIGH. In atypical address decoder,
the input will be a combination of various address signals,
decoded as explained earlier for range comparators. The latch-
ing signal in most microprocessors is called AS (address strobe)
or ALE (address latch enable).

The truth table for a latch can be derived directly from this
functional description, and is shown in Figure 29.

INPUTS OUTPUTS
/D LEN n
0 1 0
1 1 1
X 0 /Q  (previous)

Figure 29. Truth Table of a Simple Latch

The Boolean equations for this latch can be directly derived from
the truth table:

/Q = /D * LEN
+ /Q * /LEN

The logic implementation for this latch is shown in Figure 30.

[3}
LEN
s
405 30
Figure 30. A Transparent Latch
Hazards

Even when a combinatorial circuit has been designed correctly,
it may still have erroneous outputs due to *hazards”. Hazards
exist because physical circuits do not behave ideally. Combina-
torial complementary output functions based on the same inputs

are prime candidates for such hazards. Astheinputchanges, the
two outputs will not respond simultaneously and change state at
the same instant. Although this will not change the steady-state
output of the circuit, it may cause a spurious pulse or a “glitch”.
Such hazards are even more dangerous in latches, where the
glitch can cause incorrect data to be latched.

There are two types of hazards, static and dynamic. Static
hazards occur when the steady-state output of combinatorial
logic is not supposed to change due to an input transition, but a
momentary change does occur. Such a glitch can be further
classified as a static 1 or a static 0 hazard as shown in Figure 31.

]

STATIC 0 HAZARD STATIC 1 HAZARD

405 31
Figure 31. Static Hazards

Dynamic hazards involve situations where the the steady-state
output is supposed to change due to an input transition. The
hazard occurs when the transient output changes several times
before settling. Figure 32 shows dynamic hazards.

405 32
Figure 32. Dynamic Hazards

A Karnaugh map is a very good way of detecting hazard condi-
tions. When trying to detect a static 0 or static 1 hazard, only the
mapping of the zeros and the ones, respectively, are required.
For example, the latch equations in Figure 30 can be mapped to
a Karnaugh map shown in Figure 33. The relationship between
the Karnaugh mapping and the Boolean equation product terms
is also illustrated.

DLEN
- 00 o1 1 10
o COVERING
HAZARD
0 0 0 y
- e
N \
1 1) ) - 1}
- ’
5. L STATIC 1
B*LEN—(D) HAZARD.

v - 405 23

Figure 33. Karnaugh Map for Transparent Latch Deslgn
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The possibility of a hazard exists when the signal LEN changes.
Initially, when D and LEN are HIGH, the output Q is also HIGH.
When LEN switches to LOW, it is possible for the output to go
LOW momentarily. This is because when LEN goes LOW the first
product term is disabled, and to maintain the output HIGH the
second product term should be enabled exactly at the same
instant. Due to the uneven gate delays or routing conditions on
the board, these two events will not take place simultaneously.
This is a static 1 hazard. It can also be identified directly in the
Karnaugh map by the two adjacent but disjoint sets of ones,
grouped together to form a product term each.

The hazard conditions can be easily avoided in the PLDs by
providing an extracover productterm. This producttermis shown
with a dotted line in the Karnaugh map. This third product term
will keep the output asserted during the transition of the LEN
signal, when the control changes fromthe first product term tothe
second. The modified Boolean equation is shown above.

/Q = /D * LEN
+ /Q * /LEN
+ /D * /Q (Cover product term)

Devices on which latches are implemented need to provide

outputfeedback. Alldevices with I/O pins provide this necessary

feedback. The only other consideration for selecting a device

would be the provision of sufficient number of product terms for

addressing the needs of glitch-free and testable design.

Acomplete latch design implemented in a PAL20L10 is shown in
Figure 34. Although the design is now glitch-free, the cover
product term introduces further complications in the testability of
this circuit. This design does not have the additional circuitry to
address the testability requirements. Details on designing for
testability are discussed on page 3-108.

TITLE CLEAN OCTAL LATCH
PATTERN P7096

REVISION A

AUTHOR VINCENT COLI

COMPANY MONOLITHIC MEMORIES, INC.
DATE 03/10/83

CHIP OCT_LAT PAL20L10

G NC DO D1 D2 D3 D4 D5 D6 D7 NC GND
/0C NC Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 NC vCC

;DESCRIPTION

;THIS PAL16L8 IMPLEMENTS AN 8-BIT LATCH FUNCTION WITH THREE-STATE OUTPUTS.
;THE LATCH PASSES EIGHT BITS OF DATA (D7-D0) TO THE EIGHT OUTPUTS (Q7-Q0)

;WHEN LATCH ENABLE IS TRUE (G=HIGH).
;IS FALSE (G=LOW).

THE DATA IS LATCHED WHEN LATCH ENABLE
THE OUTPUTS WILL BE DISABLED (HI-Z) WHEN OUTPUT ENABLE

;IS TRUE (/OC=TRUE) REGARDLESS OF ANY OTHER INPUTS.

;/0C G D7-DO0  Q7-Q0 COMMENTS
O
; H X X z HI-Z

;i L L X Q LATCH OUTPUT
;L H D D LOAD LATCH

;THIS DESIGN SHOWS HOW TO IMPLEMENT A

"CLEAN" LATCH SINCE THERE ARE NO

;OUTPUT GLITCHES AS THE DEVICE CHANGES STATE.

Figure 34. Clean Octal Latch Design

;' Monolithic m Memories :'
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EQUATIONS

/Q0

QO0.TRST =

/Q1

Q1.TRST =
/92

+ 4+ 0

Q2.TRST =
/Q3

+ + 0

Q3.TRST =
/Q4

Q4.TRST =
/Q5

+ + 1

Q5.TRST =
/Q6

+ 4+ 0

Q6.TRST =
/Q7

Q7.TRST =

= G*/D0
+  /G*/Q0
+ /D0*/Q0

= G*/Dl
+  /G*/Q1
+ /D1*/Q1

G*/D2
/G*/Q2
/D2*/Q2

G*/D3
/G*/Q3
/D3*/Q3

=  G*/D4
+  /G*/Q4
+ /D4*/Q4

G*/D5
/G*/Q5
/D5*/Q5

G*/D6
/G*/Q6
/D6*/Q6

= G*/D7
+  /G*/Q7
+ /D7*/Q7

;LOAD LATCH (QO0)
;LATCH OUTPUT
;COVER ALWAYS HIGH

;OUTPUT ENABLE

; LOAD LATCH (Q1)

;s LATCH OUTPUT
;COVER ALWAYS HIGH
;OUTPUT ENABLE
;LOAD LATCH (Q2)

; LATCH OUTPUT
;COVER ALWAYS HIGH
;OUTPUT ENABLE

; LOAD LATCH (Q3)
; LATCH OUTPUT

;COVER ALWAYS HIGH
;OUTPUT ENABLE
;LOAD LATCH (Q4)

; LATCH OUTPUT
;COVER ALWAYS HIGH
;OUTPUT ENABLE

; LOAD LATCH (Q5)

; LATCH OUTPUT
;COVER ALWAYS HIGH
;OUTPUT ENABLE
;LOAD LATCH (Q6)
;LATCH OQUTPUT
;COVER ALWAYS HIGH
;OUTPUT ENABLE

; LOAD LATCH (Q7)

; LATCH OUTPUT
;COVER ALWAYS HIGH

;OUTPUT ENABLE

; SIMULATION NOT INCLUDED HERE

HAZARD

HAZARD

HAZARD

HAZARD

HAZARD

HAZARD

HAZARD

HAZARD

Figure 34. Clean Octal Latch Design (Cont'd.)
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Registered Logic Design

In the previous section we discussed combinatorial designs, called flip-flops. A bank of these flip-flops forms a register,
circuits whose outputs are totally independent of any system although individualflip-flops are often called registers. Monolithic
clock. In this section we will discuss sequential circuits, where Memories and Advanced Micro Devices offer a number of PLDs
outputs store their previous values until a new clock is applied. which provide registered outputs. The table in Figure 1 lists all of
The storage elements which retain the previous output values are the PLDs which provide registered outputs.
DEVICE TOTAL DEDICATED DEDICATED /0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fuax
TTL
16R8 20 8 8 - 8 55.5, 37, 25, 16
16R6 20 8 6 2 8 55.5, 37, 25, 16
16R4 20 8 4 4 8 55.5, 37, 25, 16
16RP8 20 8 8 - 8 222
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 22.2
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23S8 20 9 4 8-12 33.3,28.5
20R8 24 12 8 - 8 37,25, 16
20R6 24 12 6 2 8 37,25, 16
20R4 24 12 4 4 8 37,25, 16
20X10 24 10 10 - 4 22.2
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 222
20RP10 24 10 10 - 8 37,25
20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25
20XRP10 24 10 10 - 8 30,222, 14
20XRP8 24 10 8 2 8 30,22.2, 14
20XRP6 24 10 6 4 8 30,222, 14
20XRP4 24 10 4 6 8 30,22.2, 14
20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2
20RA10 24 10 0-10 10-0 4 33, 20
22RX8 24 14 0-8 8-0 8 285
22V10 24 12 0-10 10-0 8-16 40, 28.5, 18
32vVX10 24 12 0-10 10-0 8-16 25,222
32R16 40 16 16 - 8-16 16
PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 ‘33
PLS105 28 16 8 - Total 48 37

Figure 1. Registered PLDs
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L R R N
DEVICE TOTAL DEDICATED | DEDICATED vo LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fns
CMOS
C16R8 20 8 8 - 8 285
C16R6 20 8 6 2 8 285
C16R4 20 8 4 4 8 285
C20R8 24 12 8 - 8 20,153
C20R6 24 12 6 2 8 20,15.3
C20R4 24 12 4 4 8 20,153
C22V10 24 12 0-10 10-0 8-16 33.3,20
C29M16 24 5 . 16 8-16 20, 15
C29MA16 24 5 . 16 412 20, 15
ECL
10H20EV/EGS 24 12 08 8-0 8-12 125
10020EV/EGS 24 12 08 8-0 8-12 125

Figure 1. Reglistered PLDs (Cont'd.)

Before we discuss purely registered designs, let us take a look at
designs which combine both registered and combinatorial por-
tions. Registered and combinatorial outputs are often mixed on
asingledevice. There canbe two distinct designs, one registered
and one combinatorial (often glue logic) combined on a single
device for higher integration. There may also be a design
requirement where registered outputs need to be decoded using
combinatorial logic.

There are a number of devices which provide both registered and
combinatorial outputs. Some devices provide programmable

register bypass, which allows outputs to be programmed as
registered or combinatorial. Figure 2 shows a list of PLDs with
both registered and combinatorial outputs. Figure 3 shows a list
of PLDs with programmable register bypass.

In most design software packages the output registers are
signified by the “:=" assignment symbol, as opposed to the “="
signforacombinatorial output. This helps easily identify registers
in each equation. In devices which provide outputs configurable
as either registered or combinatorial, this sign is also used by the
software to configure the outputs.

2-62
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DEVICE TOTAL DEDICATED DEDICATED 1o LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fux
TTL
16R6 20 8 6 2 8 55.5, 37,25, 16
16R4 20 8 4 4 8 55.5, 37,25, 16
16RP6 20 8 6 2 8 22.2
16RP4 20 8 4 4 8 222
16RA8 20 8 0-8 8-0 4 20
16X4 20 8 4 4 8 14
23s8 20 9 4 4 8-12 333,285
20R6 24 12 6 2 8 37,25, 16
20R4 24 12 4 4 8 37, 25, 16
20X8 24 10 8 2 4 22.2
20X4 24 10 4 6 4 22.2
20RP8 24 10 8 2 8 37,25
20RP6 24 10 6 4 8 37,25
20RP4 24 10 4 6 8 37,25
20XRP8 24 10 8 2 8 30,22.2, 14
20XRP6 24 10 6 4 8 30, 22.2, 14
20XRP4 24 10 4 6 8 30,22.2, 14
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2
20RA10 24 10 0-10 10-0 4 33, 20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40, 28.5, 18
32VX10 24 12 0-10 10-0 8-16 25,22.2
32R16 40 16 16 - 8-16 16
CMOS
C16R6 20 8 6 2 8 285
C16R4 20 8 4 4 8 285
C20R6 24 12 6 2 8 20, 15.3
C20R4 24 12 4 4 8 20, 15.3
c22v10 24 12 0-10 10-0 8-16 33.3, 20
C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20,15
ECL
Latched
10H20G8 24 12 0-8 8-0 4-8 N.A. (latch)
10H/020EGS 24 12 0-8 8-0 8-12 N.A. (latch)
10H/020EV8 24 12 0-8 8-0 8-12 125

Figure 2. PLDs with Both Registered and Combinatorial Qutputs
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DEVICE TOTAL DEDICATED DEDICATED /0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT | .
TTL
16RA8 20 8 0-8 8-0 4 20
2388 20 9 4 4 8-12 33.3,285
20RA10 24 10 0-10 10-0 4 33, 20
22RX8 24 - 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40, 28.5, 18
32VX10 24 12 0-10 10-0 8-16 . 25,222
32R16 40 16 16 - 8-16 16
CMOS
C22v10 24 12 0-10 10-0 8-16 33.3,20
C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15
ECL
Latched
10H20G8 24 12 0-8 8-0 4-8 N.A. (latch)
10H/020EG8 24 12 0-8 8-0 8-12 N.A. (latch)
10H/020EV8 24 12 0-8 8-0 8-12 125

Figure 3. PLDs with Programmable Register Bypass

General Device Selection
Considerations

The same set of general device selection considerations dis-
cussed inthe PLD design methodology section (page 2-21) apply
to registered designs. The list of items which must be considered
is repeated in Figure 4 for convenience. A device can be
conveniently selected from the table of registered PLDs
(Figure 1) based upon the specific input and output requirements.

. Number of input pins
Number of output pins

. Number of IO pins

. Device speed

Device power requirements
. Number of registers

. Number of product terms

. Output polarity control

ONOUAWN

Figure 4. General Device Selection Considerations

Maximum Frequency

Forregistered designs, speed is a parameter which needs careful
consideration. Most combinatorial designs use the propagation
delay (tp ) for ensuring that enough time is allowed for the data
fromtheinputs to appear atthe outputs. Inregistered designsthe
effects of the clock must be taken into account. This is reflected

in the maximum frequency (f,,,,) parameter. The flexibility inher-
entin PLD design provides a choice of configurations from which
different f,,,, parameters can be calculated.

In the first type of design, the PLD is used for a stand-alone
registered design. In order to decide the next logic level of the
registers, the present logic level needs to be available at the
inputs of the registers before they are clocked (Figure 5). Under
these conditions the clock period is limited by the internal delay
from the flip-flop outputs through the internal feedback and logic
to the flip-flops inputs (t, +t.c). For this configuration:

f.=1/(t,, + t,) : designated the internal £,,,, .

CLK

\4

LOGIC > REGISTER

406 01

fuax  INTERNAL: 1/t g+ ter)
Figure 5. Internal f,,,,
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The second type of system configuration is when a number of
logic devices with registers, including PLDs, are clocked with a
commonclock. Thisis probably the most prevalent configuration.
In this case the registered outputs are sent off-chip back to the
device inputs or to the inputs of a second device. The slowest
path required to set up an input (Figure 6) is the sum of the clock-
to-output delay and the input setup time for the external signals
{t,, +1c)- The same speed grade devices are typically clocked
together, which means that the e and o of all the devices will
usually be the same.

Thus for this configuration:

fmx = 1/ (tl\l + tCLI()

This f,,,4 is the maximum frequency when external feedback is
used or when several equivalent-speed devices are used. This
fuax is designated the external f,,,,. The tables for registered
devices show this f,,,, parameter.

The third type of design is a simple data path application. In this
case, input data is presented to the flip-flop and clocked; no
feedback is employed (Figure 7). Inthis case, the period is limited
by the sum of data setup time and data hold time (t, +,).
However, the minimum clock period (1., +1,, ) is usually a stricter
limit. Thus the third f,,., designated “f no feedback” will be
the lesser of:

MAX’ MAX'

1/ (t,, +t) 1/ (t,, + tg)

Flip-flop Types

There arefourbasictypes of flip-flops; S-R, J-K, T and the popular
D-type. Details on the various types of flip-flops are provided in
the logic reference (page 6-8). In this section we will assume that
the reader is familiar with these flip-flops.

Almost all registered PLDs provide the basic D-type flip-flops.
D-type flip-flops are the simplest to design with and will be used
throughout this section. Some PLDs provide the capability of
configuring output registers as either D, T, J-K or S-R. Contigur-
able flip-flops in some cases can reduce the number of product
terms required for certain designs. The effect of the configurable
flip-flops will be discussed wherever relevant.

Synchronous vs Asynchronous

Registered designs can be easily classified into two categories;
synchronous and asynchronous. In synchronous designs the
clock inputs of all the registers are tied together to a common
clock. This is the most commonly used type of registered design.
With asynchronous designs, the flip-flops’ clock inputs may not be
tiedtogether, and the clocks may be gated oreven driven by other
flip-flops. We will first discuss synchronous registered designs
and then asynchronous registered designs.

CLK

LOGIC

———)> (SECOND CHiP)
REGISTER

-

e

tok ———bd—lw—ﬁl

f max EXTERNAL: 1{tg+ toik)

408 02
Figure 6. Externalf,,,
CLK
\4
N Loaic | REGISTER -
406 03 !‘ to ‘!

fmax NO FEEDBACK: {tgy+ th) OR 1/(twn + tw)
Figure 7. f,,, with No Feedback
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Synchronous Registered Designs

Synchronous registered designs are used for two major func-
tions: data handling and control. Registered synchronous de-
signs for data handling include counters and shift registers. There
are various types of counters, among them binary counters,
modulo counters, Johnson counters, and Gray-code counters.
These counters are differentiated by the sequence of values
through which the counter travels. A binary counter is the
simplest form of a counter, and is used most often for data
functions. Any system requiring a regular count uses a binary
counter. Modulo, Gray-code and Johnson counters are also used
for control.

Allcounters are actually subsets of alarger class of digital designs
called state machines. State machines are discussed in detail in
the next chapter of this handbook.

Counters

Counters are the most commonly used sequential circuits. Aset
of registers which cycles through a predetermined, unvarying
saequence is called a counter. Ageneral model of a synchronous
counter is illustrated in Figure 8. This shows a common clock to
all the flip-flops, whose outputs are fed back to a combinatorial
logic array called the next-state (count) decoder. The next count
is generated by this logic based upon the present count and
control inputs. Most PLDs use the standard sum-of-products
form of array for this logic.

The relationship between a four-bit counter and its signal timing
diagram is illustrated in Figure 9. The counters can also be
represented by state diagrams (Figure 10). The state diagrams
are bubble-and-arrow diagrams, with each bubble representing a
count value and each arrow a transition from one count to the
next. More detail on state diagrams is given in the next chapter
on state machine design. For counters, the state diagrams are a
convenient representation tool and will be used in the discussion
when necessary.

CLK

COMBINATORIAL
LOGIC
CONTROL
INPUTS NEXT
. STATE M
* | couny | ¢
DECODER

-
M » OUTPUTS

FLIP-
FLOPS

=

Figure 8. General Model of a Counter

STATE 0 1 2 3 4 5 6 7 8
(COUNT)

406 04
10 11 12 13 14 15 0 1 2 3
406 05

Figure 9. Timing Diagram of a Four-bit Binary Counter
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STATE 10
1010

STATE 9
1001

408 06

STATE 0
0000

SIXTEEN STATES NUMBERED FROM 0-15

STATE 8
1000

STATE 1
0001

STATE 2
0010

Figure 10. State Diagram of a Four-bit Blnary Counter

STATE 6
0110

STATE 4
100

oI

Binary Counters

Let us examine a four-bit binary counter. The truth table (also
called the transition table) for such a counter is givenin Figure 11.
The table lists the next state values of all the output registers
based upon their present values.

PRESENT STATE NEXT STATE
X3 X2 X1 Xo X3 X2 X1 Xo
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0
1 0 1 o] 1 0 1 1
1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0

Figure 11. The Truth Table for a Four-bit Binary Counter
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We derive Boolean equations for each bit directly from the above
truth table by collecting all the product terms where outputs are
asserted HIGH (ones). This yields:

X3 := /X3 * X2 * X1 * X0
+ X3 % /X2 * /X1 * /X0
+ X3 * /X2 * /X1 * X0
+ X3 % /X2 * X1 * /X0
+ X3 * /X2 * X1 * X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * XO
+ X3 * X2 * X1 * /X0
X2 := /X3 * /X2 * X1 * X0
+ /X3 * X2 * /X1 * /X0
+ /X3 * X2 * /X1 * X0
+ /X3 * X2 * X1 * /X0
+ X3 * /X2 * X1 * X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 x X1 * /X0
X1l := /X3 * /X2 * /X1 * X0
+ /X3 * /X2 * X1 * /X0
+ /X3 * X2 * /X1 * X0
+ /X3 * X2 * X1 * /X0
+ X3 * /X2 * /X1 * X0
+ X3 * /X2 * X1 * /X0
+ X3 * X2 * /X1 * X0
+ X3 * X2 * X1 * /X0
X0 := /X3 * /X2 * /X1 * /X0
+ /X3 * /X2 * X1 * /X0
+ /X3 * X2 * /X1 * /X0
+ /X3 * X2 * X1 * /X0
+ X3 * /X2 * /X1 * /X0
+ X3 * /X2 * X1 * /X0
+ X3 * X2 * /X1 * /X0
+ X3 * X2 * X1 * /X0

These Boolean equations are for devices with active-HIGH
outputs. These equations can be inverted for devices with active-
LOW outputs. The Boolean equations for active-LOW devices
can alsobedirectly derived fromthe truth table by collecting allthe
product terms where the active-LOW outputs (zeros) are
asserted.

Manipulating the equations with Boolean algebra we obtain the
Boolean logic equations:

X0 := /X0

X1 := X1 :+: X0

X2 1= X2 :+: (X1 * X0)

X3 = X3 :+: (X2 * X1 * X0)

Similarly for active-LOW output devices
(since /(A :+:B) = /A +: B):

These equations could also be obtained from the Boolean equa-
tions developed for an adder in the combinatorial design section
on page 2-54.

Rewriting the equations for an adder:
X0 = AO :+: BO :+: Cin

X1 = Al :+: Bl :+: CO
;where
CO = AO * BO +(A0 + BO) * Cin

X2 = A2 :+: B2 :+: Cl
;where
Cl = Al * Bl +(Al + Bl)* (A0 * BO)
+(Al + B1)* (A0 + BO) * Cin

X3 = A3 :+4: B3 :+: C2
;where
C2 = A2 * B2 +(A2 + B2)*(Al * Bl)
+(A2 + B2)* (Al + Bl)*(AO * BO)
+(A2 + B2)* (Al + Bl)*(AO + BO) * Cin

Assuming one of the operands in the adder is the number itself
and the second operand is one (X3-X0 = A3-AQ, B3-BO = 0001
and Cin = 0) we get the following equations for a counter:

X0 := /X0

X1 := X1 :+: X0

X2 := X2 :+: (X1 * XO0)

X3 := X3 :+: (X2 * X1 * X0)

These are of course the same equations as the ones derived
directly from the truth table. The equations for a binary counter
are very regular. The general equation for an n-bit binary counter
can be directly expressed:

Xn := Xn #+: (Xn=1* Xn-2 ... X0)

For devices with active-LOW outputs the general Boolean equa-
tions can be derived by inverting both sides of the equation:

/Xn :=/Xn 4 (Xn=1"* Xn-2 ... X0)

These equations represent a binary UP counter. Counting
backwards for a DOWN counter, the Boolean equations can be
similarly generated, either from the truth table or from the adder
Boolean equations. The general equation for a DOWN
counter is:

Xn := Xn +: (/Xn=1 * /Xn-2 ... /X0)

This equation is for active-HIGH outputs. For active-LOW output
devices the Boolean equation for a DOWN counter is:

/Xn :=/Xn 4+ (/Xn-1"* /Xn-2 ... /X0)

A four-bit binary counter which combines both UP and DOWN
capability is illustrated in Figure 12. This design is implemented
in a registered PLD and requires at least six product terms for the
most significant output bit. The design logic has been imple-
mented in sum-of-products form. It uses a control input (UP)
which selects between the “count up” and “count down” product
terms, allowing the counter to count up or down.

/X0 := X0

/X1 1= /X1 :+: X0

/X2 := /X2 :+: (X1 * XO0)

/X3 = /X3 :+: (X2 * X1 * X0)
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Further control functions can be added to these counter equa- another input signal (LOAD). When the LOAD signalis HIGH the
tions directly either at thetruth-table stage orin the equations. For counter is loaded with the input data, and when the LOAD signal
example, a load data function is required in most counters. This is LOW the counting is resumed.

allows registers to be loaded with a count under the control of

Title 4Bit_Counter

Pattern 4cnt.pds

Revision B

Author Mehrnaz Hada, Bill Hollon, Ali Sebt
Company Monolithic Memories Inc. Santa Clara, CA
Date 1/14/85

CH1P 4BitCoun PAL16RP4

CLK UP AI BI CI DI CLR LOAD NC GND
/OC NC NC D C B A NC NC VCC

;The 4-bit counter counts up or down and has the clear and
;load capability. The clear operation overrides count and
;load. The counter counts up when CLR=low, LOAD=low, and
;UP=high. It counts down whenever CLR=low, LOAD=low, and

;UP=1low
EQUATIONS
A := /A*/B*/C*/D*/UP*/LOAD*/CLR ;When CLR=1, A=0.
+ /A* B* C* D* UP*/LOAD*/CLR ;Else it will count
+ A* B* /UP*/LOAD*/CLR ;UP or DOWN.
+ RA*/B* D* /LOAD* /CLR
+ A* /C* UP*/LOAD*/CLR
+ A% C*/D* /LOAD* /CLR
+ LOAD*/CLR* Al ;New value is loaded
;when LOAD=1, CLR=0,
B := /B*/C*/D* /UP*/LOAD* /CLR ;When CLR=1, B=0.
+ /B* C* D* UP*/LOAD*/CLR ;Else it will count.
+ B* C*/D* /LOAD* /CLR
+ B*/C* UP*/LOAD*/CLR
+ B* D*/UP*/LOAD* /CLR
+ LOAD*/CLR* BI ;New value is loaded
swhen LOAD=1, CLR=0.
C = /C*/D*/UP* /LOAD* /CLR ;When CLR=1, C=0.
+ /C* D* UP*/LOAD*/CLR ;Else it will count.
+ C*/D* UP*/LOAD*/CLR
+ C* D*/UP*/LOAD*/CLR
+ LOAD* /CLR* CI ;New value is lcaded
;when LOAD=1, CLR=0,
D : /D* /LOAD* /CLR ;Count

+ i

LOAD*/CLR* DI ;New value is loaded
;when LOAD=1, CLR=0.

Figure 12. Design File for a Four-bit Counter
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SIMULATION

TRACE_ON AI BI CI DI LOAD CLR UP A B C D

SETF LOAD /CLR AI BI CI DI OC
CLOCKF CLK

SETF CLR
CLOCKF CLK

SETF /CLR UP /LOAD

FOR I:= 1 TO 16 DO
BEGIN

CLOCKF CLK
END

SETF LOAD /CLR /UP AI BI CI DI

CLOCKF
SETI /LOAD
FOR I:= 1 TO 16 DO
BEGIN
CLOCKF CLK
END

SETF LOAD CLR AI /BI CI /DI
CLOCKF CLK

SETF /0OC

TRACE_OFF

;Load all registers
;to HIGH and count up

;Clear all registers

;Start Counting up

;Count up 16 clock
;cycles

;Load all registers
;to HIGH and count
;down

;Count down 16 clock
;cycles

;Test setting LOAD
;and CLR on at the
;jsame time.

Figure 12. Design File for a Four-bit Counter (Cont'd.)

Binary Counter Daevice Selection Consliderations

One major device selection consideration is the logic require-
ment. The binary counter Boolean equations make use of
exclusive-OR functions in the output. In most of the registered
PLDs shown in Figure 1, the XOR functions are implemented in
their sum-of-products logic form. This usually requires a large
number of product terms. We have seen a design example for a
four-bit UP/DOWN binary counter which requires up to six prod-
uct terms. Most standard PAL devices provide eight product
terms per output. However, for larger counters, a large number
of product terms is required. Figure 13 shows a list of PLDs which
provide mere than eight product terms per output.

Some PLDs provide a dedicated XOR gate on the outputs (Figure
14). This allows an AND-OR-XOR implementation of the Boolean
logic, and consequently requires fewer product terms. A nine-bit
binary counter design is illustrated in Figure 15. This design has
been implemented in the PAL20X10, which provides an XOR
gate. This design cannot be implemented in standard PAL
devices.

Cascadlng Binary Counters

Situations are occasionally encountered in digital system designs
where very long counters are required. Few PLDs provide
greater than ten outputs to implement such counters. Binary
counters can be easily cascaded into two or more devices to
construct such large counters. The design of long countersisvery
simple. These are designed as simple binary counters with a
count enable control. The less significant counters generate an
extra output signal at the penultimate count. These signals are
ANDed together to form the ccunt enable signal for the higher-
order counter. For a down counter the reverse scheme is
implemented.

Cascading counters is a lot simpler than cascading adders
because the carry-look-ahead circuitry is not required. The only
thing toremember is thatthe more significant countertoggles only
when the penultimate count of all of the less significant counters
is reached.

Notice that the nine-bit counter has a built-in mechanism for cas-
cading. This count enable output signalis represented by CO and
is easily implemented in the PLD. This is just another example
of how such modifications are easy to handle in a PLD design,
unlike standard SSI/MSI designs.
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DEVICE TOTAL DEDICATED | DEDICATED ) LOGICAL | SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT | FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fuax
TTL
2358 20 9 4 4 8-12 333,285
20RS10 24 10 10 - 8-16 19.2
20RS8 24 10 8 2 8-16 19.2
20RS4 24 10 4 6 8-16 19.2
2210 24 12 0-10 10-0 8-16 40,285, 18
32VX10 24 12 0-10 10-0 8-16 25,22.2
PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 33
PLS105 28 16 8 - Total 48 37
cMos
Cc22V10 24 12 0-10 10-0 8-16 33.3,20
C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 412 20,15
ECL
10H20EV/EGS 24 12 0-8 8-0 8-12 125
10020EV/EGS 24 12 0-8 8-0 8-12 125

Figure 13. Registered PLDs with More Than Eight Product Terms Per Output

DEVICE TOTAL DEDICATED | DEDICATED Vo LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT | FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fuax
TIL
16X4 20 8 4 4 8 14
20X10 24 10 10 - 4 222
20X8 24 10 8 2 4 222
20X4 24 10 4 6 4 22.2
20XRP10 24 10 10 - 8 30,222, 14
20XRP8 24 10 8 2 8 30,22.2, 14
20XRP6 24 10 6 4 8 30,22.2, 14
20XRP4 24 10 4 6 8 30,22.2, 14
22RX8 24 14 08 8.0 8 285
32VX10 24 12 0-10 10-0 8-16 25,222

Figure 14. Registered PLDs for Binary Counter Design with XOR Gate Output
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Title 9BitCounter

Pattern 9BitCnt.pds

Revision A

Author Mehrnaz Hada

Company Monolithic Memories Inc., Santa Clara, CA
Date 1/28/85

:The 9-bit synchronous counter has parallel load, increment,
;and hold capabilities. The carry out pin (/CO) shows how to
;implement a carry out using a register by anticipating one
;count before the terminal count if counting and the terminal
jcount if loading.

;Operations Table

H /0C CLK /LD D8-DO QB8-Q0 Operation
: H X X X 4 HI-Z

H L L X X Q Hold

; L C L D D Load

H L (o] H X Q PLUS 1 Increment
i

CHIP 9BitCoun PAL20X10

CLK DO D1 D2 D3 D4 D5 D6 D7 D8 /LD GND
/0C /CO Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 vCC

EQUATIONS

/Q0 := /LD*/Q0 ;Hold QO
+ LD* /D0 ;Load DO (LSB)
:+: /LD ;Count

/Q1 := /LD*/Ql ;Hold Q1
+ LD*/D1 ;Load D1
:+: /LD* QO ;Count

/Q2 := /JLD*/Q2 ;Hold Q2
+ LD*/D2 ;Load D2
:+: /LD* QO0* Ql ;Count

/Q3 := /LD*/Q3 ;Hold Q3
+ LD*/D3 ;Load D3
i+: /LD* QO* Q1* Q2 ;Count

/Q4 := /LD*/Q4 :Hold Q4
+ LD*/D4 ;Load D4’
:+: /LD* QO* Ql* Q2* Q3 ;Count

/Q5 := /LD*/Q5 ;Hold Q5
+ LD*/D5 ;Load D5
:+: /LD* QO0* Q1* Q2* Q3* Q4 ;Count

/Q6 := /LD*/Q6 ;Hold Q6
+ LD*/D6 ;Load D6
:+: /LD* QO* Ql* Q2* Q3* Q4* Q5 ;Count

Q7 := LD*/Q7 ;Hold Q7

/ + /LD‘/D7 ;Load D7
:+: /LD* QO* Q1* Q2* Q3* Q4* Q5* Q6 ;Count

/QB := /LD*/Q8 ;Hold Q8
+ LD*/D8 ;Load D8 (MSB)
:+:; /LD* QO* Ql* Q2* Q3* Q4* Q5* Q6* Q7 ;Count

CO := /LD*/Q0* Ql* Q2* Q3* Q4* Q5* Q6* Q7* Q8 ;Carry out

;(Anticipate Count)
+ LD* DO* D1* D2* D3* D4* D5* D6* D7* D8 ;Carry out
; (Anticipate Load)
Figure 15. Deslign File for a Nine-bit Counter
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TRACE_ON /OC /LD D8 D7 D6 D5 D4 D3 D2 D1 DO
/CO Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO

SETF OoC LD /D8 /D7 /D6 /D5 /D4 /D3 /D2 /D1 /DO

CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LD /D8
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LD /D8
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LD /D8
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LD /D8
CLOCKF CLK

SETF /LD
CLOCKF CLK

SETF LD /D8
CLOCKF CLK

SETF /LD
CLOCKF CLK

TRACE_OFF

/D7

/D7

/D7

/D7

D7

/D6 /D5 /D4 /D3 /D2 /Dl DO

/D6 /D5 /D4 /D3 D2 D1 DO

/D6 /D5 /D4 D3 D2 D1 DO

/D6 /D5 D4 D3 D2 D1 DO

D6 D5 D4 D3 D2 D1 DO

;Load

; Increment

;Load

;Increment

;Load

;Increment

;Load

;Increment

;Load

;Increment

;Load

;Increment

Figure 15. Design File for a Nine-bit Counter (Cont'd.)
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I
Fiip-flop Selection

Until now, all of the designs have been implemented in devices
with D-type flip-flops. What happens if the counter design is
implemented in a device which allows both J-K and T-type
registers? The Boolean logic equations for such a design can be
derived from the truth table. This requires advance knowledge of

the functionality of the J-K and T-type registers. For the J-K
register the output is asserted when the J input goes HIGH, and
the output is unasserted when the K input goes HIGH. Toggle
type registers require the Tinput to be asserted for every change
in the output level.

PRESENT STATE NEXT STATE
X3 X2 X1 X0

X3 X2 X1 Xo D J K T D J K T D J K T D J K T
o 0 0 © o 0 o0 O o 0 o0 o0 o 0 0 o© 1 1 0 1
o 0 0 1 o o0 o0 O 0o 0 o0 o© 1 1 0 1 o 0 1 1
o 0 1 0 o 0 o0 O o 0 0 o© 1 o 0 o0 1 1 0 1
0 0 1 1 o 0 o0 O 1 1 0o 1 o o0 1 1 0o o0 1 1
0 1 0 © o o0 o0 O 1 0o 0 o0 o o0 o0 0 1 1 o 1
0 1 0o 1 o o0 o0 O 1 0o 0 o0 1 1 0 1 0 0 1 1
0 1 1 0 0o o0 o0 O 1 0o 0 © 1 0o 0 O 1 1 0 1
0 1 1 1 1 1 0o 1 0o o 1 1 0 0 1 1 o o0 1 1
1 o 0 © 1 o 0 O 0 0 o0 © 0O 0 0 O 1 1 o 1
1 0 o0 1 1 0o o 0 o o0 0 O 1 1 0o 1 o 0 1 1
1 0o 1 0 1 o 0 O o 0 0 o0 1 0o 0 o0 1 1 0 1
1 0o 1 1 1 0o o0 o 1 1 0 1 0 0 1 1 o 0 1 1
1 1 0 0 1 0o 0 o0 1 0o 0 O 0O 0 o0 o 1 1 0 1
1 1 0 1 1 0o o0 0 1 0O 0 o© 1 1 0 1 o o 1 1
1 1 1 0 1 0 o0 o0 1 o 0 o0 1 0 0 o0 1 1 0 1
1 1 1 1 o 0o 1 1 o o 1 1 0 0 1 1 o o 1 1

Figure 16. Truth Table for D, J-K and T-type Fiip-flops

Figure 16 shows the truthtable for both a J-K and aT-type register
implementation for a binary counter. Deriving and optimizing the
equations from the table, we get the following results:

X3-J = /X3 * X2 * X1 * X0
X3-K = X3 * X2 * X1 * X0
X2-J = /X2 * X1 * X0
X2-K := X2 * X1 * X0
X1-J := /X1 * X0

X1-K := X1 * X0

X0-J := /X0

X0-K := X0

X3-T := X2 * X1 * X0

X2-T := X1 * X0

X1-T := X0

X0-T :=1

As wecan see from these equations, the number of product terms
used for J-K and T-type implementations is smaller than the
number of product terms required for a D-type implementation
(Figure 12).

Which flip-flop is most efficient depends on the relative number of
transitions or holds required. As a counter traverses from one
count (state) to another, every output either makes a “transition”
(changes logic level) or “holds” (stays at the same logic level).
Small counters in general require more transitions and fewer
holds. As the designs get larger, the higher-order bits require
fewer transitions and more holds.

D-type flip-flops use up product terms only for active transitions
from logic LOW levelto HIGH level, and for logic HIGH level holds
only. J-Kand T-type flip-flops use up product terms for both LOW-
to-HIGH and HIGH-to-LOW transitions, but eliminate hold terms.
Generally, the requirements of transition and hold terms depends
upon the count sequence selection. D-type flip-tlops are more
efficient for small designs. Conversely J-K and T-type flip-flops
can be more efficient for large designs, which require more hold
terms.

A comparison of product term requirements of 2-, 3-, 4- and 5-bit
binary counters can be representative for other types of counters
and state machines. The table in Figure 17 shows the transition
terms and the hold terms required for these counters. For aJ-K
type flip-flop implementation, after optimizing, total productterms
required are 4, 6, 8, and 10 respectively. The D-type implemen-
tation requires 3, 6, 10, and 15 respectively, and is relatively less
efficient for large counters.
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EEE——
BINARY COUNTER TRANSITIONS HOLDS D PRODUCT | J-KPRODUCT T PRODUCT
TERMS TERMS TERMS
2-Bit 6 2 3 4 1
3-Bit 14 10 6 6 1
4-Bit 30 34 10 8 1
5-Bit 62 98 15 10 1

Figure 17. Product Term Requirements for Configurable Flip-flops

There areanumber of PLDs which offerthe capability of program-
mable D, J-K and T-type registers. Figure 18 shows a list of all
PLDs which offer configurable flip-flops. The J-K and T-type flip-

flops are constructed from a basic D-type flip-flop using an extra
XOR gata per flip-flop.

DEVICE TOTAL DEDICATED DEDICATED e} LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT .
TTL
22RX8 24 14 0-8 8-0 8 285
32VX10 24 12 0-10 10-0 8-16 25,222

Figure 18. Registered PLDs with Configurable Flip-flops

Modulo Counters

The number of unique states a counter traverses is generally
referred to as the modulus. Atypical n-bit binary counter has a
maximum modulus of 2". It is often necessary to introduce signal
delays into the logic design to meet timing requirements. This
makes it possibleto allow for bus-skew, accesstime or differential
propagation delays between devices along two different signal
paths. Atypical example of this is the introduction of wait states
to allow foraccesstimes of different memory elements. Counters
and delay lines are commonly used to introduce the delay.
Counters in PLDs have the added advantage of programmability
to select the required delay. Such applications where precise
timing duration control is required usually use modulo counters
with a non-power-of-two modulus. Other applications of modulo
counters include waveform generators and arbiters.

PRESENT STATE NEXT STATE
Q3 Q2 Q1 Qo Q3 Q2 a1 Qo
0 0 o0 0 0->1 o o © 1
0 0 o0 1 1->2 0o 0 1 0
0 0 1 0 2->3 0 0 1 1
0 0 1 1 3->4 0 1 o 0
0 1 0 0 4->5 0 1 ] 1
0 1 o] 1 5§->86 0 1 1 0
0 1 1 0 6->7 0 1 1 1
0 1 1 1 7->8 1 o 0 o
1 0 0 0 8->9 1 [V ] 1
1 o 0 1 9->0 o 0 0 o

A good example of a modulo counter is a BCD counter. Such a
counteris usefulin applications where the computer’s outputs are
generated using a decimal system. While a four-bit binary
counter can count up to sixteen, the BCD counter terminates the
count at the modulus of 10.

Modulo counters can be designed in a variety of ways. One direct
wayisto usethe truthtabletoimplementacountto amodulus and
directly derive the equations from it. The truth table for a BCD
count (from zero to nine) is shown in Figure 19.

Now let us consider what happens if the device accidentally
powers up in one of the count values from ten to fifteen. These
are illegal counts (states) and, for a good design, a mechanism
must be built into the equations to allow it to recover back into a
legal state. What we actually need is to consider the truth table
in Figure 20 in conjunction with the one in Figure 19 for deriving
the Boolean equations.

PRESENT STATE NEXT STATE

Q3 Q2 Q1 Qo Q3 Q2 Q1 Qo
1 0 1 0 10->0 o0 0 0 O
1 0 1 1 11->0 o0 0 0 O
1 1 0o 0 12->0 o 0o o0 O
1 1 0 1 13->0 0o o0 0 o
1 1 1 0 14->0 0o o 0o o0
1 1 1 1 15->0 0o o0 0 O

Figure 19. Truth Table for a BCD Counter

ﬂ Monolithic m Memories :‘

Figure 20. Truth Table for lilegal State Recovery to
Count Zero
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A state diagram for the BCD counter is shown in Figure 21. For
active-LOW outputs, the Boolean equations can be derived
directly from the truth table and optimized using Karnaugh maps

or the PALASM 2 software minimizer.

The Boolean equation for Q3 is:

/93 1= /Q3
+ /Q3
+ /03
+ /Q3
+ /03
+ /Q3

+ o+ A+ o+
©
w

* /Q2
* /Q2
* /Q2
* /Q2

LR
~
Lo}
(%)

*
*
*
*
*
*
*
*
*
*
*
*
*
*

/Q1 * /Q0
/1 * Q0
Q1 * /Q0
Ql * Q0
/Q1 * /Q0
/Q1 * Q0
* /Q0
* Q0
* /Q0
Q1L * Q0
* /Q0
* QO
* /Q0
* Q0

The equation can be reduced to the following:

/Q3 := /Q3 * /Q2

+/Q3 * /Q1
+ /Q2 * Q0
+ Q3 * Q1
+ Q3 * Q2

Similar Boolean equations can be generated for Q2, Q1 and Q0.
Figure 22 shows the circuit diagram of a loadable dual BCD
counterimplemented in a PAL16R8. Figure 23 shows the design
file for such a counter.

CEA
LDA

CLOCK

406 07

INPUT

FOUR- }— Qo

BIT [— Q4
BCD f—— @,
L] count

—Q,

BUFFERS

Q,

BIT |— 05

BCD Qg

406 08

Figure 22. Circuit of a Dual BCD Counter
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TITLE DUAL BCD COUNTER.
PATTERN 00

REVISION 0l.

AUTHOR CHRIS JAY.

COMPANY MMI SANTA CLARA, CA.
DATE 17 JULY 1987

CHIP BCD PAL16RS8

; THE PAL16R8 HAS BEEN PROGRAMMED AS A DUAL BINARY
;CODED DECIMAL COUNTER. REGISTERS MAY BE LOADED FROM
;DATA INPUTS DO - D3, THE LDA ENABLES DATA ON

;D0 - D3 TO BE SYNCHRONOUSLY LOADED INTO Q4 - Q7.
;LDB ENABLES DATA ON DO - D3 TO BE LOADED INTO
JREGISTERS Q0 - Q3. TWO COUNT ENABLE INPUTS CEA
;AND CEB ENABLE A BINARY CODED DECIMAL COUNT IN
;BOTH COUNTERS. THE COUNTERS RESET IF POWERED UP
;IN A HEXADECIMAL STATE, SO IF USED IN A STAND
;ALONE MODE THE COUNTERS WILL NOT LOCK UP INTO
;AN INVALID STATE.

;PIN 1 2 3 4 5

CLK /LDA CEA DO D1
;PIN 6 7 8 9 10
D2 D3 CEB /LDB GND
;PIN 11 12 13 14 15
/OE Q0 Q1 Q2 Q3
;PIN 16 17 18 19 20
Q4 Q5 Q6 Q7 vee

STRING RESA ;RESET FROM HEX

'Q5*Q7 + Q6*Q7"

STRING RESB 'Q1*%Q3 + Q2*Q3"' ; STATES
EQUATIONS ;
/Q0 := QO0*/LDB*CEB ;COUNT EQUATION
+ RESB ;RESET FROM ILLEGAL STATE
+ /DO*LDB*/CEB ;LOAD DO
+ /Q0*/CEB*/LDB ;HOLD Q0
/Q1 1= Q3*/LDB*CEB ;COUNT EQUATION
+ Q0*Ql*/LDB*CEB ;
+ /Q0*/ Q1*/LDB*CEB :
+ RESB ;RESET FROM ILLEGAL STATE
+ /D1*LDB*/CEB ;LOAD D1
+ /Q1*/CEB* /LDB JHOLD Q1
/Q2 1= Q3*/LDB*CEB ;COUNT EQUATION
+ /Q0*/Q2* /LDB*CEB i
+ /Q1*/Q2* /LDB*CEB 3
+ Q0* Q1*Q2*/LDB*CEB ;
+ RESB ;RESET FROM ILLEGAL STATE
+ /D2*LDB*/CEB ;LOAD D2
+ /Q2* /CEB*/LDB ;HOLD Q2
/Q3 1= /Q3*/Q0* /LDB*CEB ;COUNT EQUATION
+ Q0*/Q2*/LDB*CEB ;
+ /Q1*/Q3* /LDB*CEB ;
+ RESB ;RESET FROM ILLEGAL STATE
+ /D3*LDB*/CEB ;LOAD D3
+ /Q3*/CEB*/LDB ;HOLD Q3
7
/Q4 1= Q4*/LDA*CEA ;COUNT EQUATION
+ RESA ;RESET FROM ILLEGAL STATE
+ /DO*LDA*/CEA ;LOAD DO
+ /Q4*/CEA* /LDA ;HOLD Q4

Figure 23. Design File for a Duatl BCD Counter
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L

/Q6

+ o+

/Q7

+ 4+ o+l

STMULATION
TRACE_ON

Q7*/LDA*CEA
Q4*Q5*/LDA*CEA
/Q4*/Q5* /LDA*CEA
RESA
/D1*LDA*/CEA
/Q5*/CEA* /LDA

Q7*/LDA*CEA
/Q4*/Q6* /LDAXCEA
/Q5*/Q6* /LDAXCEA
Q4*Q5*Q6* /LDA*CEA
RESA

/D2*LDA* /CEA

/Q6* /CEA* /LDA

/Q7*/Q4* /LDA*CEA
Q4*/Q6*/LDA*CEA
/Q5*/Q7*/LDA*CEA
RESA
/D3*LDA*/CEA
/Q7*/CEA* /LDA

CLK Q4 Q5 Q6 Q7
00 Q1 Q2 Q3 LDA
LDB DO D1 D2 D3
CEA CEB OE

;PRLDF Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

SETF /CLK OE

CLOCKF CLK

SETF /CLK OE DO D1 D2 /D3
SETF LDA LDB /CEA /CEB
CLOCKF CLK

SETF /LDB /LDA

CLOCKF CLK

SETF CEA /LDA

FOR I :=1 TO 10 DO
BEGIN CLOCKF CLK
END

SETF /CEA CEB /LDB
FOR I := 1 TO 10 DO
BEGIN CLOCKF CLK

END

SETF /CEB LDB /D0 D1 /D2 D3
CLOCKF CLK

SETF /LDB

CLOCKF CLK

SETF LDB DO D1 /D2 D3
CLOCKF CLK

SETF /LDB

CLOCKF CLK

SETF LDB /DO /D1 D2 D3
CLOCKF CLK

SETF /LDB

CLOCKF CLK

SETF LDB DO /D1 D2 D3
CLOCKF CLK

SETF /LDB

CLOCKF CLK

SETF LDB /DO D1 D2 D3
CLOCKF CLK

SETF /LDB

CLOCKF CLK

SETF LDB DO D1 D2 D3
CLOCKF CLK

SETF /LDB

CLOCKF CLK

TRACE_OFF

;COUNT EQUATION

H

;RESET FROM ILLEGAL STATE
;LOAD D1
;HOLD Q5

;COUNT EQUATION
i

;RESET FROM ILLEGAL STATE
; LOAD D2
;HOLD Q6

i
; COUNT EQUATION
i

i

;RESET FROM ILLEGAL STATE
;LOAD D3

;HOLD Q7

TRACE ALL SIGNALS

;SET DATA INPUTS SELECT
;REGISTERS Q0 - Q3 PERFORM
; SYNCHRONOUS LOAD.

;SELECT REGISTERS Q4 - Q7
; PERFORM SYNCHRONOUS LOAD.
;ENABLE Q4 - Q7 AS A BCD

; COUNTER, CLOCK FOR 10
;CLOCK CYCLES

;ENABLE Q0 - Q3 AS A BCD
;COUNTER, CLOCK FOR 10
;CYCLES

i
; LOAD ILLEGAL STATES
;TO TEST COUNTER RESET

Figure 23. Design File for a Dual BCD Counter (Cont'd.)
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— I
Modulo Counter Device Selection Conslderations

We have illustrated a counter which counts from zero to a fixed
modulus. The same technique can be applied for acounter which
counts down from a maximum power-of-two number to a fixed
modulus, or even a counter which counts from one modulus to
another. The important considerations will be the number of
product terms used.

The registered PLDs used for modulo counters are similar to the
ones selected for other counters. Since the counts used are
binary, devices with J-K or T-type flip-flops or XOR gates will help
optimize the number of product terms used. The product term
usage also depends upon the modulus selected. Generally a
powaer-of-two or a multiple-of-two modulus will require fewer

Another factor for flip-flop selection is the illegal states. D-type
flip-flops are generally better suited for illegal state recovery than
the J-K or T-type flip-flops. This is because when no productterm
is asserted, the D-typeflip-flops resetto zero. Designers using J-
K or T-type flip-flops must design-in illegal state recovery.

Caertain devices allow the use of a synchronous RESET product
term for modulo counters. The idea is to use a minimal number
of product terms to build a binary counter which counts up to a
power-of-two number. However, this counter is RESET to zero
using the synchronous RESET product term when the desired
modulusis reached. ltthenbegins counting afreshfromzero, and
the procedure is repeated. Similar operation can also be
achieved with a synchronous PRESET product term for a down
counter. Figure 24 shows a table of ali the PLDs that provide the

product terms. RESET and PRESET product terms.

DEVICE TOTAL DEDICATED DEDICATED /0 LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT foax
TTL
16RA8 20 8 0-8 8-0 4 20
2388 20 9 4 4 8-12 33.3, 285
20RA10 24 10 0-10 10-0 4 33,20
22RX8 24 14 0-8 8-0 8 28.5
22V10 24 12 0-10 10-0 8-16 40, 28.5, 18
32VX10 24 12 0-10 10-0 8-16 25,222
CMOS
Cc22v10 24 12 0-10 10-0 8-16 33.3, 20
C29M16 24 5 - 16 8-16 20, 15
C29MA16 24 5 - 16 4-12 20, 15
ECL
10H20EV/EG8 24 12 0-8 8-0 8-12 125
10020EV/EGS8 24 1? 0-8 8-0 8-12 125
Figure 24. PLDs Which Provide RESET or PRESET Product Terms
n Monolithic m Memorles ﬂ 2-79
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Using synchronous RESET and PRESET product terms allows
the counter to recover from illegal states. Notice that the logic
product terms in the counter are designed for a complete binary
count. If the counter powers up in any illegal state (as shown in
Figure 25), it will continue the count until the terminal count and
return to zero, where the correct modulo count will begin. This
illegal state recovery will take an unpredictable number of clock
cycles, and you may wish to design a more systematic recovery
system.

Cascading Modulo Counters

For large modulo counters, the technique of generating Boolean
equations from the truth tables is very tedious and time consum-
ing. Another approach for designing modulo counters is to divide
itinto two smaller modulo counters. In addition to simplifying the
design, this approach usually helps optimize the number of
product terms.

SYNCHRONOUS
RESET PRODUCT]
TERM ASSERTED

LEGAL
STATES

As an example, a modulo-360 counter can be directly imple-
mented with nine register bits. However, instead of implementing
this as a straight 9-bit counter, we can implement this as two
counters: one four-bit counter (counting from zero to 14) and
another five-bit counter (counting from zero to 23). Together the
two counters count up to 360. Shown in Figure 26 the terminal
count output MOUT is asserted when the count reaches 360.

The design requires nine inputs, nine outputs, one clock pin, one
LOAD pin, one RESET and one MOUT (module output signal)
pin. Note that no extra flip-flops or pins were needed. Obviously,
the count values of this counter are not the same as a straight
modulo-360 counter. Actually, this is what contributes to the
optimization of the number of product terms used. The PLPL
design file of this counter is shown in Figure 27.

ILLEGAL STATES

406 09
Figure 25. A BCD Counter Using Synchronous RESET Product Term
Q24 (4) (3) (2) (1) (O Q15 (3) (2) (1) (0)
A A 4 4 s 4 4 4 &
| |
=
— M_OUT
A @4) 5w A (30) ——
LOAD MODULO 24 MODULO 15
RST § BITS 4 BITS
CLK r
AMPALVI0
406 1t

Figure 26. A Modulo-360 Counter in PAL22V10
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DEVICE MODULO_360_COUNTER (PAL22V10)

PIN CLK =1 RST = 2

LOAD = 3

A[8:0] = 4:11,13

Q24[4:0) = 18:14

Q15(3:0] = 22:19

M_OUT = 23; "ASSERTED WHEN COUNT REACHES 360"
BEGIN

IF (RST) THEN ARESET() ; "COUNTER INITIALIZATION"

IF (LOAD) THEN BEGIN
Q24(4:0) := A[8:4] ; "INITIALIZATION COUNT"
Q15{3:0) := A[3:0] ; "INITIALIZATION COUNT"
END;
ELSE BEGIN
IF (Q24[4])*/Q24[3]1* Q24[2]* Q24(1])* Q24(0]*
Q15(3]1* Q15[2])* Q15[1)*/Q15{0)) THEN M OUT = 1;
CASE (Q24[4:0)) BEGIN "MODULO 24"
#B00000) BEGIN
Q15(3:0] := Q15(3:0] ;
Q24[4:0]) := §B000OOL1 ;
END ;

#B00001) BEGIN
Q15[3:0]) := Q15(3:0] ;

Q24[4:0]) #B00010 ;
END ;
#B00010) BEGIN
Q15({3:0] := Q15{3:0] :
Q24[4:0]) := #B00OO1l1 ;
END ;
$B00011) BEGIN
Q15[3:0)] := Q15[3:0) ;
Q24[4:0) := $B00100 ;
END ;
#B00100) BEGIN
Q15({3:0] := Q15[3:0]) ;
Q24[4:0] := #B00101 ;
END ;
#B00101) BEGIN
Q15(3:0] := Q15[3:0] ;
Q24[4:0] := #B00110 ;

END ;

#B00110) BEGIN
Q15[3:0) := Q15(3:0]) ;
Q24(4:0} := #B00111 ;
END ;

#B00111) BEGIN
Q15[3:0) := Q15([3:0] ;
Q24[4:0] := $B01000 ;

END ;

#B01000) BEGIN
Q15[3:0] := Q15[3:0] ;
Q24[4:0] := #B01001 ;

END ;

$B01001) BEGIN

Q15[3:0) := Q15[3:0] ;
Q24{4:0] := #B01010 ;
END ;
#B01010) BEGIN
Q15{3:0] := Q15(3:0] ;
Q24[4:0]) := $B01011 ;

END ;

#B01011) BEGIN
Q15[3:0] =
Q24[4:0]) :

= Q15(3:0] ;
= #B01100 ;
END ;

Figure 27. Design File of a Modulo-360 Counter
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END.

END
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#B01100) BEGIN

Q15[3:0} := Q15[3:0])
024[4:0] := #B01101 ;
END ;
#B01101) BEGIN
Q15[3:0) := Q15{3:0]
Q24([4:0) := #B01110 ;
END ;
#B01110) BEGIN
Q15[3:0] := Q15{3:0]
Q24[4:0] := $BO111l1 ;
END ;
#B01111) BEGIN
Q15[3:0] := Q15(3:0]
Q24[4:0] := #B10000 ;
END ;
$B10000) BEGIN
Q15({3:0] := Q15(3:0]
Q24[4:0) := #B10001 ;
END ;
#B10001) BEGIN
Q15(3:0) := Q15(3:0])
Q24[4:0) := #B10010 ;

END ;
#B10010) BEGIN

Q15[3:0]
Q24[4:0]

END ;

#B10011) BEGIN

Q15(3:0] :

Q24[4:0) := #B10100 ;
END ;
$B10100) BEGIN
Q15(3:0] := Q15([3:0]
Q24[4:0) := #B10101 ;
END ;
#B10101) BEGIN
Q15{3:0] := Q15(3:0]
Q24[4:0] := #B10110 ;

END ;
#B10110) BEGIN

Q15[3:0]} :
Q24[4:0)

END ;

#B10111) BEGIN

non

Q24[3:0] := #B0000O ;
CASE (Q15[3:0]

END ;

END ;
END ;

#B0000)
#B0001)
$B0010)
$B0011)
$B0100)
#B0101)
$B0110)
$B0111)
$B1000)
$B1001)
#B1010)
#B1011)
#B1100)
#B1101)
#B1110)

BEGIN

015[3
Q15(
Q1s{
Q15|
Q15[
Q15[
Q15
Q1s(
Q15[
Q15(
Q15[

wwwwwwwwuu

OOOOOOOOOOO

;

3

.

3

Q15(3:0] ;
#B10011

Q15(3:0) ;

i

.
H

Q15{3:0] ;
$B10111 ;

“MODULO 15"
Q15(3:0])
Q15(3:0)
Q15{3:0]
Q15(3:0])

]
)
)
)
] .
]
!
]
]
]
]

o e se se a0 u

#B0001 ;
#B0010 ;
#B0011 ;

#B0100
#B0101
#B0110
#B0111
#B1000
#B1001
#B1010
#B1011
#B1100
#B1111
#B1110
#B0000O

Figure 27. Deslign Flle of a Modulo-360 Counter (Cont'd.)
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TEST_VECTORS

IN CLK RST LOAD A[B:0] ;

ouT Q24(4:0] Q15(3:0] M_OUT ;
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Figure 27. Design File of a Modulo-360 Counter (Cont'd.)

PLS Devices for Modulo Counters

Monolithic Memories offers afamily of PLS devices. PLS devices also provide a complement array term which is very useful for
provide programmable AND and programmable OR arrays. designing modulo counters. The available PLS devices are listed
These devices offer S-R type output and buried flip-flops. They in Figure 28,

DEVICE TOTAL DEDICATED | DEDICATED Vo LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz
PINS OUTPUT fuax
L
PLS105 28 16 8 - Total 48 37
PLS167 24 14 6 - Total 48 33
PLS168 24 12 8 - Total 48 33

Figure 28. PLS Devices
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The complement array is an OR array term, the complement of
which is fed back as an input to the AND array of the device
(Figure 29). The complement term can be used for both illegal
state recovery and programmable modulo counter designs.

lllegal State Recovery

For any counter going through a sequence of legal counts
(states), at least one product term is always active as long as the
counter never needs to hold a count; such terms determine the
nextlegal state. Whenthe counter powers up in any invalid state,
none of the product terms for deciding the next state will be active.
When none of the product terms connected to the complement
array is active, the complement array is asserted.

The complement array is usually connected to all of the product
terms of the counter. Thus when the count is legal, the comple-
ment array output is always LOW (Figure 30). When the counter
is in an illegal state, the complement array detects it and is

asserted HIGH. This signalcan then be usedto reset the registers
to some legal state. One advantage of the complement array is
thatitallows recovery to any state predetermined by the designer.

Programmable Modulus Counter

The complement array term can instead be used for designing
programmable modulus counters. Acounter isimplemented with
the device registers. Ditferent product terms are programmed
with different modulus values. These product terms are underthe
control of input signals. At any one time only one of the product
terms is kept active. The complement array is connected to all
such terminal count product terms. Since all of these product
terms are LOW the complement array is initially HIGH and is used
as a count enable for the counter. When the count reaches the
terminal value the complement array term goes LOW disabling
the normal count product terms. Simultaneously the terminal
count product term becomes active, resetting the counter to
begin counting afresh.

DEVICE _{>

INPUTS _E>

STATE
(COUNT)

COMPLEMENT

FEEDBACK

/_ ARRAY TERM

U U0

L&

D> o Uk
D

DO—° | 8ens

E >—R C

| 406 1

Figure 29. The Architecture of the Complement Array Term
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— e R E—

DEVICE [
INPUTS
P

—=

HIGH WHEN IN AN
ILLEGAL STATE

3

HIGH WHEN IN
LEGAL STATE
é’%%'é RECOVERY PRODUCT
PRODUCT TERM WHICH RESETS
OUTPUT/STATE REGISTERS

TERMS
DEVICE
§ Q- |> OUTPUTS

STATE
REGISTERS

R Q
406 12 |

Figure 30. Complement Array for lllegal State Recovery

9y 99

DEVICE [

INPUTS

"

NORMAL COUNT

W / PRODUCT TERMS

STATE (COUNT)

COUNT ENABLE GOES LOW
WHEN MODULUS 1S REACHED

LOW WHEN COUNTING,
eoe e HIGH AT MODULUS
PRODUCT TERMS
WITH DIFFERENT ve
COUNT VALUES
PROGRAMMED

DEVICE
s a OUTPUTS

STATE
REGISTERS

]

Figure 31. Programmable Modulo Counter Using Complement Array Term
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Counters with Encoding

Until now we have discussed counters which generate binary
output sequences. Most peripherals require a predetermined
sequence of control signals. Custom control sequences can be
generated by decoding the binary sequence with combinatorial
logic. Figure 32 shows a general model of a counter with

COMBINATORIAL
LoGic \J\

combinatorial outputdecoding circuitry. This combinatorial circuit
modifies the counter bits and generates output signals in the
manner required for peripheral timing and control. Since these
circuits require extra combinatorial logic, they are not very efti-
cient. They are also more susceptible to hazards and output
glitches.

cLocK .
l—————»
! outpuT | » OUTPUTS
CONTROL
N ————] . v DECODER | * -
. . Fup- | ¢
. STATE . .
» | oEcopEr| FLOPS | .

406 14

Figure 32. Counter with an Output Decoder

It is possible to have a different output coding for a four-bit
counter, as shown in Figure 33. This code, called Gray code,
allows only one output bit to toggle for each new count value. This

BINARY CODE GRAY CODE

X3 X2 X1 Xo G3 G2 G1 GO
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

Figure 33. Generating Gray Code from a Binary Code

code can be easily derived from a four-bit binary counter code
(also shown in Figure 33) using an output decoder.

Wecan derive the Boolean equations for the combinatorial output
decoder from the truth table. The equations are:

G3 = X3

G2 = X3 :4+: X2
Gl = X2 :+: X1
GO = X1 :+: X0

A more efficient and easier technique for generating control
signals is to implement the decode circuitry before the registers.
This alternative is shown in Figure 34. This essentially generates
a non-standard counter with state values which are not a binary
progression. It can also be considered to be a counter where the
product terms for a binary count and encoding the outputs have
been combined.

Many different codes can be generated using such techniques.
We will limit ourselves to the ones which are most commonly
used: Gray-code counters and Johnson counters.

COMBINATORIAL

£ X

CLK

CONTROL T
—_— |—>
INPUTS NEXT | OUTPUT rad
1
STATE | *PRE" E i E QUTPUTS
DECODER ! DECODER -,
1

406 15

Figure 34. Counter with Combined Next State Generation and Output Encoding Circuit
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Gray-Code Counters

Gray-code counters are often used in digital designs for control
timing functions. The primary advantage of Gray-code counters
stems from the characteristic that only one output bit changes
value for every clock cycle. These output signals can then easily
be decoded using a combinatorial decoder without any risk of
hazards. Gray-code counters are used extensively as system
clocks, since the different output bits provide different clock
phases without the risks of hazards. Gray-code is also used in
high-speed data communication applications, where data is
transmitted from one part of the system to another, and where the
error susceptibility increases with the number of bit changes
between adjacent numbers in a sequence. These are also used
for such specialized applications as shaft encoders and real-time
process control.

The implementation of a Gray-code counter is very simple. A
truth table can be derived from the transition table as is done for
a binary counter. The Boolean equations can then be directly
derived from the truth table. The truth table for the Gray-code
counter is shown in Figure 35.

PRESENT STATE NEXT STATE
X3 X2 X1 Xo X3 X2 X1 Xo
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 1
0 [o] 1 1 0 0 1 0
0 0 1 0 o] 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 0 1 0 1
0 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 0 0 1
1 0 0 1 1 o 0 0
1 o] 0 0 0 0 0 0

Figure 35. Truth Table for a Four-bit Gray-code Counter

The Boolean logic equations for a Gray-code counter are:

X3 = /X3
X3
X3
X3
X3
X3
X3
X3

X2 := /X3
/X3
/X3
/X3
/X3
X3
X3
X3

X1 := /X3
/X3

/X3

/X3

X3

X3

X3

X3

X0 := /X3
/X3

/X3

/X3

X3

X3

X3

X3

* F X ¥ X ¥ ¥ X * % * X ¥ * H * *O% % O * F X A

* * * F * A * *

X2
X2
X2
X2
X2
/X2
/X2
/X2

/X2
/X2
/X2

X2
X2
X2
/X2

/X2
/X2
X2
X2
X2
X2
/X2
/X2

*
*
*
*
*
*
*
*

* ¥ F X H * ¥ * % A X ¥ ¥ F N

* ok F % F ¥ ¥ *

/X1
/X1
/X1
X1
X1
X1
X1
/X1

/X1
/X1
X1
X1
/X1
/X1
X1
X1

*
*
*
*
*
*
*
*

* Ok Rk %k ¥ % % * % Ok F K N * H

* X X * * H F* X

/X0
/X0
X0
X0
/X0
/X0
X0
X0

/X0
/X0
X0
X0
/X0
/X0

X0
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Johnson Counters

A Johnson counter is part of a family of counters known as “ring
counters.” These counters are used for special applications
where code symmetry is desired. Ring counters are also often
used for timing purposes, since all of the outputs are essentially
a series of pulses. This code symmetry also allows use of the
fewest possible product terms with a D-type register. Devices
such as the Logic Cell Array (LCA), which provide a small amount
of logic per cell, can implement Johnson counters very easily.

Johnson counters are also known as circular-shift counters. The
sequence for afive-stage Johnson counter is shown in Figure 36.
As can be seen in the truth table, the counter first fills up with 1's
from left to right and then itfills up with zeros again. Note fromthe
output sequence that only one of the Johnson counter bits
changes for every clock period, like the Gray-code counter. One
major advantage of the Johnson counter is that it can be readily
decoded with small two-input NAND gates and hence is suitable
for high-speed applications.

Note that the five-stage sequence has a table of 10 legal states
and 22 illegal states (Figure 37). In general, an n-bit Johnson
counter will produce a modulus of 2n. Figure 38 shows the state
diagram of the five-bit counter.

Legal States
PRESENT STATE NEXT STATE
Q4 Q3 Q2 Q1 Qo Q4 Q@3 Q2 Q1 Qo
0o 0 0 o0 O 1 0o o0 0 O
o o o0 o 1 0o o o o0 O
o o0 o0 1 1 o o o0 o 1
0 0 1 1 1 o o o0 1 1
0 1 1 1 1 o o 1 1 1
1 1 1 1 1 0o 1 1 1 1
1 1 1 1 0 1 1 1 1 1
1 1 1 0 o0 1 1 1 1 0
1 1 o 0 o 1 1 1 [ ]
1 o 0 0 o 1 1 0o o0 o©0

Figure 36. Five-bit Johnson Counter Truth Table

The implementation of a Johnson counter is relatively straight-
forward, and is the same regardless of the number of stages.
When D-type flip-flops are used, the Q output of each flip-flop is
connected to the D input of the following stage. The single
exception isthe Q output of the last stage, which is complemented
and connected to the D input of the first stage.

lllegal States

PRESENT STATE NEXT STATE

Q4 Q3 Q2 Q1

[9]
o

Q4 Q3 Q2 Q1 Qo

e i e I S ST G e W e N e NeNoRe ReRe Re Ro N e)

_4 4 200000001444 a 221210000
-~ 000+ 441000+ 2 200002420
O4 204+ 400 220200 =+~-00 200~
4t 0440401012020 20200200
C0OO0OO0O0O0DO0EOO0O0O0COO0OO0OO0O0O0O0O0OO
CO00O0O0O0OOO0O00O00O00DO0O0O0O0O OO
OC0OO0O0DO0O0O0O0OO0OO0O0O0O00OO0O0O0O0OOOO
0OO0O00O0O000O00DO0O0O0O0O0O0OOOO0OOO
OCOO0OO0OO0OO0O0OO0O0O0DO0OO0O0OO0OCOOOOOOO

Flgure 37. lllegal States for a Five-bit Johnson Counter

406 16

Figure 38. State Diagram of a Flve-bit Johnson Counter

One disadvantage of the counter is the number of invalid (or
illegal) states. The invalid states increase exponentially with the
length of the counter. The bigger the counter becomes, the
greater are its chances of entering an illegal state. Johnson
counters are very susceptible to illegal states, and can “hang up”
very easily. Noise orimproper use can cause this counter to end
upinanillegal state. Therefore a design withillegal state recovery
circuitry is always recommended.
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Figure 39 shows a nine-bit Johnson counter which can be derived and one clock pin. The design incorporates the product terms
by directly extending the design of afive-bit Johnson counter. The required for illegal state recovery. The PLPL design file for this
design file adds a LOAD function; it requires nine input pins, nine counter is shown in Figure 40.
output pins, one RESET pin, one LOAD pin, one invalid status pin
Lo D Q 0 Q D Q D Q D Q D Q D Q ) Mo Q
D D p D
a
CLK o o . ¢ o \ . o 408 17

Figure 39. Block Dlagram of a NIne-bit Johnson Counter
DEVICE NINE_BIT_ JOHNSON_COUNTER (AmPAL22V10)

PIN CLK
RST
A[8:0
Q(8:0
VF
LOAD

3:11

14:21,23

22 "VALID STATE FLAG"
13 ;

"mnNe=

0o

BEGIN

IF (RST) THEN ARESET(Q[8:0

] "COUNTER INITIALIZATION"
IF (LOAD) THEN Q[8:0]) := A[8

) i
:0)] ; "LOAD NEW VALUE"

ELSE BEGIN
CASE (Q[8:0])
BEGIN
#B000000000) Q[8:0) := #B100000000 ;
#B100000000) Q[8:0] := #B110000000 ;
#B110000000) Q[8:0) := #B111000000 ;
#B111000000) Q[8:0] := #B111100000 ;
#B111100000) Q[8:0] := #B111110000 ;
#B111110000) Q[8:0] := #B111111000 ;
#B111111000) Q[8:0) := #B111111100 ;
#B111111100) Q[8:0) := #B111111110 ;
#B111111110) Q[8:0) := #B111111111 ;
#B111111111) Q[8:0] := #B0O11111111 ;
#B011111111) Q[8:0] := #B001111111 ;
#B001111111) Q[8:0] := #B0O00111111 ;
#B000111111) Q[8:0] := #B000011111 ;
#B000011111) Q[8:0] := #B00000111l ;
#B000001111) Q[8:0) := #B00000011l ;
#B000000111) Q[8:0] := #B0O00000O11 ;
#B000000011) Q[8:0] := #B0000000OL ;
#B000000001) Q(8:0} := #B00000000O ;
END ;
END ;
CASE (Q[8:0])
BEGIN

#B000000000) VF
#B100000000) VF
#B110000000) VF
#B111000000) VF
#B111100000) VF
#B111110000) VF
#B111111000) VF
#B111111100) VF
#B111111110) VF
#B111111111) VF
#B011111111) VF
#B001111111) VF
#B000111111) VP
#B000011111) VF
#B000001111) VF
#B000000111) VF
#B000000011) VF
#B000000001) VF
END ;

LU L T N [ T (1 A 1 O { O I | R [ 1}

e e S S e el el

END.
Figure 40. Daslgn Filo for a Nino-bit Johnson Counter
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TEST_VECTORS

IN CLK RST LOAD A[8:0]};

ouT Q(8:0]) VF;

BEGIN

" L

"CRO

"LSA ARAAAA A Q
"WTD 876543210 8 7
X1X XXXXXXXXX L L
co01 111111111 HH
CO00 XXXXXXXXX L H
CO0O0 XXXXXXXXX LL
CO00 XXXXXXXXX L L
co01 1010101001 HL
CO0O0 XXXXXXXXX LL
CO00 XXXXXXXXX HL
co01 111111110 HH
CO00 XXXXXXXXX HH
CO00 XXXXXXXXX L B
C01 00000O0O0CO12 L L
CO00 XXXXXXXXX LL
END.

crrEDmroeoontnoone o

Q O vh
543210 F"
LLLLLL H; "RESET"
HHHHHH H; "LOAD"
HHHHHH H; "COUNT"
HHHHHH H;
HHHHHH H; "COUNT"
LHLHLH L; "LD INVALID ST"
LLLLLL H; "INVALID ST"
LLLLLL H; "RECOVERY"
HHHHHL H; "LOAD"
HHHHHH H; "COUNT"
HHHHHH H;
LLLLLH H;
LLLLLL H;

Figure 40. Deslign File for a Nine-bit Johnson Counter (Cont'd.)

Shift Registers

A Shift Register is a special digital circuit often used as a primary
building block in digital computer systems. ltis closely related to
a ring counter, lts fundamental usage is for temporary data
storage and bit-wise data manipulation for advanced arithmetic
and multiplication operations. Shift registers are also frequently
used in communications, for converting parallel byte-wide data
from the microprocessor to a serial data bit-stream for transmis-
sion. An example of a serial data link controller on page 2-453
shows such a shift register design. Shift registers are also used
in graphics systems for serializing parallel data for use by the
display monitor. Anumber of examples of video shift registers are
included in the graphics section (page 2-257).

The fundamental purpose of a shift register (Figure 41) is to shift
datafrom one flip-flop to another. There are severaltypes of shift
registers. They are classified by the way in which incoming data
is received (parallel or serial), and how outgoing data is transmit-
ted (parallel or serial).

CONTROL

SIGNALS

Inthe following example, we will discuss a simple universal shifter
which provides both serial and parallel input and output functions.
Depending upon the control signals 10 and I1, the data is shifted
from one flip-flop to another in the left or the right direction. These
inputs also control when the new parallel data is loaded onto the
registers. When shifting left or right, serial data can be received
and transmitted on serial pins LIRO and RILO. Since the flip-flop
outputs appear on the output pins at all times, the parallel output
data is always available. The truth table is shown in Figure 42.

The Boolean logic equations can be directly derived from the truth
table, and are shown in the PAL device design file in Figure 43.

Shift registers can be modified to suit various system design
requirements. This universal shift register can be used for serial
in/serial out, parallel in/parallel out, serial in/parallel out and
parallel in/serial out functions.

PARALLEL DATA IN
Do Dy D, Dy Dy Dg Dg Dy

bbbl by

LEFT SERIAL DATA ,
IN AND OUT (LIRO)

SHIFT REGISTER

RIGHT SERIAL DATA
OUT AND IN (RILO)

EEXEEEEE

Qo @ Q2 Q3 Q4 Q5 Qg &7

408 18

PARALLEL DATA OUT

Figure 41. A Shift Register Block Dlagram
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Q7 Q6 Qs Q4 Q3 Q2 Q1 Qo I 10

Q7 Q6 Q5 Q4 Q3 Q2 Qt Qo 0 0  ;Retain Data
RILO Q7 Q6 Qs Q4 Q3 Q2 Q1 0 1 ;Shift Right
Q6 Q5 Q4 Q3 Q2 Q1 Qo LIRO 1 0 ;Shift Left
D7 D6 D5 D4 D3 D2 D1 Do 1 1 :Load Data

Figure 42. The Truth Table for a Universal Shift Register

TITLE UNIVERSAL_SHIFT_REGISTER
PATTERN SHIFT.PDS

REVISION 01

AUTHOR JOE ENGINEER

COMPANY MONOLITHIC MEMORIES, INC.
DATE 09/12/87

CHIP UNIV_SHI PAL20X8

CLK 10 DO D1 D2 D3 D4 D5 D6 D7 1I1 GND

/0C RILO Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 LIRO VCC
; DESCRIPTION
;THIS PAL DEVICE IS AN 8-BIT SHIFT REGISTER WITH PARALLEL LOAD AND

;HOLD CAPABILITY. TWO FUNCTION SELECT INPUTS (I0,Il) PROVIDE ONE OF
;FOUR OPERATIONS WHICH OCCUR SYNCHRONOUSLY ON THE RISING EDGE OF THE

;CLOCK (CLK). THESE OPERATIONS ARE:

H /0C CLK Il 1I0 D7-D0O Q7-Q0 OPERATION

; H X X X X Z HI-Z

; L [ L L X L HOLD

H L C L H X SR(Q) SHIFT RIGHT
; L C H L X SL(Q) SHIFT LEFT
i L C H H D D LOAD

;THO OR MORE OCTAL SHIFT REGISTERS MAY BE CASCADED TO PROVIDE LARGER
;SHIFT REGISTERS. RILO AND LIRO ARE LOCATED ON PINS 14 AND 23
;RESPECTIVELY, WHICH PROVIDES FOR CONVENIENT INTERCONNECTIONS WHEN
;TWO OR MORE OCTAL SHIFT REGISTERS ARE CASCADED TO IMPLEMENT LARGER

; SHIFT REGISTERS.

EQUATIONS

/Q0

/Q1

/Q2

/Q3

/Q4

/Q5

+ o+

o+ 40

+ 4+

It

+ + +

+
+:
+

+ 4+ 40

JI1*/10%/Q0

/11*% 10%/01
I11*/10*/LIRO
I1* 10+*/DO

/I1%/10%/Q1
J/I1* 10%/Q2
11*/10%/Q0
I1* 10%/D1

/I1%/10%/Q2
/I1% 10*/Q3
I1*/I0%/Q1
I1* 10%/D2

/T11%/10%/Q3
/I11% 10%/04
11*/10%/Q2
I1* 10*/D3

/I1%/10%*/Q4
/I1* 10%/05
11*/10%/Q3
I1* 10%/D4

/11*/10%/Q5
/I1% 10*/Q6
11*/10%/Q4
I1* I0*/D5

;HOLD QO
;SHIFT RIGHT
;SHIFT LEFT
;LOAD DO

;HOLD Q1
;SHIFT RIGHT
i SHIFT LEFT
;LOAD D1

;HOLD Q2
;SHIFT RIGHT
;SHIFT LEFT
;LOAD D2

;HOLD Q3
;SHIFT RIGHT
;SHIFT LEFT
; LOAD D3

;HOLD Q4
;SHIFT RIGHT
;SHIFT LEFT
;LOAD D4

;HOLD Q5
;SHIFT RIGHT
;SHIFT LEFT
;LOAD DS

Figure 43. Octal Shift Register Design File
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/Q6 = /11%/10%/Q6
/11% 10*/Q7
11%/10%/Q5
11* 10*/D6

+ 4+ 4+ 0

/Q7 1= /I1*/10%/Q7
/I1* 10*/RILO
I1*/10*/Q6
I1* 10+*/D7

+ o+ 4|

/LIRO = /!
LIRO.TRST = /
/

I

/RILO
RILO.TRST

; SIMULATION NOT SHOWN HERE

;HOLD Q6
;SHIFT RIGHT
;SHIFT LEFT
; LOAD D6

;HOLD Q7
;SHIFT RIGHT
;SHIFT LEFT
;LOAD D7

;LEFT IN RIGHT OUT

;RIGHT IN LEFT OUT

Figure 43. Octal Shift Register Design File (Cont'd.)

Barrel Shifters

In most data processing systems, some form of data shifting or
rotation is necessary. In typical computer systems, the shifter is
located at the output of the ALU, and usually requires a single-
cycle shift and add function (Figure 44). For such applications as
floating-point arithmetic or string manipulation, ordinary shift
registers are inefficient, since they require n clock cycles foran n-

bit shift.
< INPUT DATA BUS >
REGISTER
FILE
SHIFT
DISTANCE

CLK

406 19

< OUTPUT DATA BUS >

Figure 44. Typical ALU Architecture

Aspecialized shift register, called a “barrel shifter,” is used to shift
(or rotate) data by any number of bits in a single clock cycle. The
name “barrel shifter” is used because of the circular nature of the
shift operation. The storage registers on the output of the shifter
are used in this architecture to pipeline the data operation,
increasing throughput. The three-state buffer on the output
registers is also useful for providing an interface to the data bus.

The design of a barrel shifter proceeds inthe same manneras a
regular shift register. The truth table is drawn, and the Boolean
equations are then written based upon the truth tables. An eight-
bit barrel shifter requires at least eight data inputs, eight regis-
tered data outputs, three control lines to specify the shift distance,
a clock input and an output enable that controls the three-state
buffer on the register output.

Figure 45 shows the block diagram for an eight-bit registered
barrel shifter, while Figure 46 shows the truth table. The regis-
tered barrel shifter requires atotal of 14 inputs and 8 outputs. This
tunction can be easily implemented in an AmPAL22V10. Figure
47 shows the PLPL design file for this eight-bit barrel shifter
function.

7 Dg Ds Dy D3 Dz Dy Do

H,H.H,H,

sq —>
le— RST
S AmMPAL22V10
S2 > b— OE
CLK ——>f

EEEEEEE

Q7 Qs Q5 Q4 Q3 Q2 Q) Q

406 20

Figure 45. Block Diagram of an Eight-bit Barrel Shiiter
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o

S2 S1 SO Q7 @6 Q5 Q4 Q@3 Q2 Q1 Qo
0o 0 O D7 D6 D5 D4 D3 D2 D1 Do
0 0 1 De D5 D4 D3 D2 D1t Do D7
0 1 0 Ds D4 D3 D2 D1 DO D7 Ds
0 1 1 D4 D3 D2 DI DO D7 D6 D5
1 o o D3 D2 D1 Do D7 D6 D5 D4
1 [ D2 D1 Do D7 D6 D5 D4 D3
1 1 0 Dt Do D7 D6 D5 D4 D3 D2
1 1 1 Do D7 D6 D5 D4 D3 D2 Dt

Figure 46. Truth Table for an Eight-bit Barrel Shifter

DEVICE  EIGHT_BIT BARREL SHIFTER
PIN CLK =1
D [7:0) = 2:9 /Q[7:0] =
SEL2 =13 SEL1 =
OE = 14 RSY =
BEGIN
IF (RST) THEN ARESET();

(PAL22V10)

23:16
11
15;

SELO 10

"SHIFTER INITIALIZATION"

IF (OE) THEN ENABLE(Q{7:0]); "ENABLE OUTPUTS"
IF (/SEL2 * /SELl * /SEL0O) THEN Q[7:0] := D[7:0];
IF (/SEL2 * /SEL1 * SELO) THEN Q[7:0) := D[6:0]), D[7);
IF (/SEL2 * SEL1 * /SELO) THEN Q[7:0) := D[5:0], D[7:6];
IF (/SEL2 * SELl * GELO) THEN Q[7:0] := D[4:0), D[7:5];
IF ( SEL2 * /SELl * /SEL0O) THEN Q{7:0] := D[3:0], D[7:4);
IF ( SEL2 * /SEL1 * SELO) THEN Q[7:0] := D[2:0], D[7:3);
IF ( SEL2 * SELl1 * /SELO) THEN Q[7:0] := D[1:0], D[7:2);
IF ( SEL2 * SEL1 * SELO) THEN Q[7:0]) := D[O], D[7:1];

END.

"FUNCTION TABLE SPECIFICATION"

TEST_VECTORS

IN CLK RST D[7:0) SEL2 SEL1 SELO;

I_O OE;

ouT Q(7:01];

BEGIN

"CLK RST D[7:0] SEL2 SEL1 SELO OE Q[7:0] *

" "

(o4 1 00000000 1 0 1 0 22222222;

[o 0 11111111 0 1 ] 1 HHHHHHHE;

o] 1 XXXXXXXX X X X 1 LLLLLLLL;

(o 0 XXXXXXXX X X X 0 2222222%;

[of 0 00000000 0 0 0 1 LLLLLLLL;

[ 0 11111111 0 0 0 1 HHHHHHHH;

(o 0 01111111 1 0 0 1 HHHHLHHH;

C 0 01111111 0 1 0 1 HHHHHHLH;

C 0 01111111 1 1 0 1 HHLHHHHH;

END

Figure 47. Design File for an Eight-bit Barrel Shifter

Gray-code, Johnson Counter and Shift Register Device
Selection Considerations

Gray-code counters, Johnson counters and shift registers are not
very logic-intensive; the number of product terms required is
minimal. The D-type flip-flops provide the most efficient imple-
mentations, allowing these designs to be easily implemented in
most PAL devices.

Since Gray-code counters are often used as system clocks, very
high speed PAL devices provide the highest resolution clocks.

Barrel shifters are very logic-intensive and require many product
terms, since datafrom allthe inputs needs to be accessible at any
output. Registered PLDs with a large number of product terms
are ideal for barrel shifters. Large barrel shifters can also be
partitioned into a number of PLDs.

l:l Monolithic m Memories :l
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Asynchronous Registered Designs

Until now we have discussed strictly synchronous registered
designs, where a common system clock is used. In asynchro-
nous registered designs, a common clock is not used. The
register clock may be generated by the output of another register,
orby alogical combination of various other signals. Such designs
are usually slow for such applications as timing generation,
because when the output of one register is used to clock another,
multiple delays are encountered before all the register outputs
stabilize. On the other hand, designs can be very fast for
asynchronous applications such as bus arbitration and control,
where a fast response to a bus signal can be provided without
waiting for a common system clock.

Although asynchronous designs are easier to visualize, they
present larger problems in implementation. Combinatorial haz-

ard conditions can cause false clocking of registers, destroying
the logic intended by the designer. The designer also needs fo
worry about race conditions when clocking a number of registers
simultaneously. Careful design analysis is strongly recom-
mended before implementing any asynchronous design.

Ripple counters are probably the easiest examples of such
asynchronous designs. Figure 48 shows the logic diagram of a
five-bit binary ripple counter. These counters clearly have the
advantage of design simplicity. The output from one stage is fed
as the clock to the next stage. However, this results in a slower
counting rate, since the clock signals need to propagate through
all five registers before the next count is reached.

The ripple counter design illustrated below is implemented in a
PAL20RA10. Figure 49 shows the design file for this counter.

RESET CK SET
Femmmmcmmm—m——e
1} —-
; ]
H 1L ] [ 111 [1
! RDY S RDY s RDY S RDY S RDY S
:
)
i @ a @ a 2 Q 2 a a a
: l l
1}
L}
) r= r=
1 [} '
H P LTI 1Q Q; ) Q Qo
fTT R EEGGLETREEREREE LR NE i
EXTRA CIRCUIT REQUIRED
FOR MODULO 20 COUNTER
Figure 48. A Five-bit Ripple Counter 406 21

TITIE Dual 5-Bit Counter

PATTERN Upcount.pds

REVISION 01

AUTHOR  Joe Engineer

COMPANY Monolithic Memories, Inc.

DATE 11/12/87

CHIP Upcount PAL20RA10

PL CKA CKB ENA ENB NC NC NC NC NC INIT GND
OE QB4 OB3 QB2 QB1 QB0 QA4 QA3 QA2 QAl QA0 VCC

EQUATIONS
; The First Counter

/Qn4 := QA4 * /ENA ; Toggle if lower MSB
is zero
+ /QA4 * ENA ; Hold count
QA4 .CLKF = /QA3 ; Toggle
QA4 .RSTF = INIT ; Initialize
QA4.TRST = VCC
/QA3 := QA3 * /ENA ; Toggle when QA2 zero
+ /QA3 * ENA ; Hold count
OA3.CLKF = /QA2 ; Toggle
OA3.RSTF = INIT ; Initialize
QA3.TRST = VCC

Figure 49. Deslign File for a Five-bit Ripple Counter
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/QR2 := QA2 * /ENA ; Toggle when QAl zero
+ /QA2 * ENA ; Hold count

QA2 .CLKF = /QAl ; Toggle

QA2 .RSTF = INIT ; Initialize

QA2 .,TRST =- VCC

/QA1 := QA1 * /ENA ; Toggle when QAO zero
+ /QAl * ENA ; Hold count

QAl.CLKF = /QAO ; Toggle

QAl1.RSTF = INIT ; Initialize

QAl.TRST = VCC

/QAO t= QA0 * /ENA ; Toggle LSB
+ /QARO * ENA ; Hold count

QAOQ.CLKF = CKA ; Toggle

QAO .RSTF = INIT ; Initialize

QAO0,TRST = VCC

; The Second Counter

/QB4 := QB4 * /ENB ; Toggle if lower MSB is zero
+ /QB4 * ENB ; Hold count

QB4 .CLKF = /QB3 ; Toggle

QB4.RSTF = INIT ; Initialize

QB4.TRST = VCC

/QB3 := QB3 * /ENB ; Toggle when QB2 zero
+ /QB3 * ENB ; Hold count

QB3.CLKF = /OB2 ; Toggle

QB3.RSTF = INIT ; Initialize

QOB3.TRST = VCC

/QB2 := QB2 * /ENB ; Toggle when QBl zero
+ /QB2 * ENB ; Hold count

QB2.CLKF = /OBl ; Toggle

QB2 .RSTF = INIT ; Initialize

QB2.TRST = VCC

/QB1 := QBl * /ENB ; Toggle when QBO zero
+ /OBl * ENB ; Hold count

QOB1.CLKF = /QBO ; Toggle

OB1.RSTF = INIT ; Initialize

OB1.TRST = VCC

/QBO := QB0 * /ENB ; Toggle LSB
+ /QBO * ENB ; Hold count

QBO.CLKF = CKB ; Toggle

QBO.RSTF = INIT ; Initialize

QBO.TRST = VCC

SIMULATION

TRACE ON /PL QA4 QA3 QA2 QAl QAO QB4 QB3 QB2 (OBl QBO

SETF PL INIT /CKA /CKB /OE
SETF INIT CKA CKB

SETF /INIT /CKA /CKB

CHECK /QR4 /QA3 /QA2 /QAl /QAO
CHECK /QB4 /QB3 /QB2 /QB1 /QBO

Figure 49. Design File for a Five-bit Ripple Counter (Cont'd.)
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SETF CKA CKB

CHECK /QA4 /QA3 /QA2 /QAl

CHECK /QB4 /QB3 /QB2

SETF /CKA /CKB

SETF CKA CKB
CHECK /QA4 /QA3

/QA2

CHECK /QB4 /QB3 /QB2

SETF /CKA /CKB

SETF CKA CKB
CHECK /QA4 /QA3

/QA2

CHECK /QB4 /QB3 /QB2

SETF /CKA /CKB

SETF CKA CKB

CHECK /QA4 /QA3
CHECK /QB4 /QB3
SETF /CKA /CKB

SETF CKA CKB

CHECK /QR4 /QA3
CHECK /QB4 /QB3
SETF /CKA /CKB

TRACE_OFF

QA2
QB2

QA2
QB2

QA0

/QB1 QBO

QA1 /QAO
QB1 /QBO

oAl
QB1

QA0
QBO

/QA0
/QBO

/QAL
/QB1

/QAl
/QB1

QA0
QBO

Figure 49. Deslgn File for a Five-bit Ripple Counter (Cont'd.)

There are additional independent SET and RESET controls inthe
PAL20RA10 which can be used to restart the count. If a modulo
counteris desired, these SET and RESET signals can be used as
described above. Figure 48 shows the implementation of a
modulo-20 counter which is RESET when output bits Q4 and Q2
are both HIGH. Since the RESET is implemented with a product
term, the extra AND gate shown can be implemented directly
within the PAL device.

Asynchronous Desligns Device Selection Considerations

The device selection for asynchronous designs is easy. As the
clock signals require logic, only PLDs which allowimplementation
of Boolean logic on the clock signals are useful. Figure 50 shows
alist of devices which provide programmable clock signals. They
also provide programmable SET and RESET product terms, and
the capability of bypassing the register.

DEVICE TOTAL DEDICATED DEDICATED I]o] LOGICAL SPEED GRADES
NUMBER INPUT REGISTERED PINS PRODUCT FREQUENCY IN
OF PINS PINS OUTPUT TERMS/ MHz

PINS OUTPUT foax

TTL

16RA8 20 8 0-8 8-0 4 20

20RA10 24 10 0-10 10-0 4 33,20

CMOS

C29MA16 24 5 - 16 4-12 20, 15

Figure 50. Programmable Logic Devices for Asynchronous Designs
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Other Applications of
Registered PLDs

Registered PLDs are used for a number of miscellaneous appli-
cations which are not covered by the synchronous and asynchro-
nous design applications discussed upto now. Inthe subsequent
discussion we will cover a few of these applications:

+» Frequency dividers
+ Addressable registers

Frequency Dividers

Standard synchronous counters provide the basic capability of
dividing an input frequency. Asingle register of a PAL device will
let us divide by two. If we stack these registers, a binary counter
provides symmetrical division by 2,4,8,16, etc. This divider has
been a standard for years, and the PAL device has always been
an excellent choice for such applications.

One unique application of PAL devices is for dividing input
frequencies by odd numbers. This has been dene historically by
designing a counter which cycles modulo an odd number, and
decoding the specific states of the counter. The disadvantage of
this approach is that the cutput is not symmetrical and the duty
cycle is not 50%.

Let’s examine a simple divide-by-five counter. This counter can
be implemented using three flip-flops that start at zero and reset
at four, resulting in a five-state counter. The table in Figure 51
shows the outputs of the three individual! flip-flops.

Present State Next Stata

Q2 Q1 Qo Q2 Q1 Qo

State zero to one.
State one to two.

State two to three.
State three to four.
State four to zero.

O =20 -0
o000
(=R =
OO0 =20 —

0000
O—-+~=00

Figure 51. Truth Table for a Five-bit Counter

The Boolean equations are:

Q2 := /Q2 * Q1 * Q0  ;MSB bit
ol := /01 * QO + Q1 * /QO
Q0 := /g2 * /Q0 ;LSB bit

The waveforms for this divider are shown in Figure 52. Notice that
the Q2 output goes HIGH for one state and that this outputis one-
fifth of the input frequency, but it is a 20% duty cycle. Q1 is active
fortwo states; it provides the same frequency, but with a 40% duty
cycle. If we want a 50% duty cycle we are going to have to divide
a state in half.

To provide the 