AMI 6800 Microprocessors

S6800 Microprocessors

The following Data Sheets cover AMI's full family of 6800 Microprocessor circuits. For specific information on applications, product availability and ordering information, please contact the nearest AMI sales office listed in the back of this brochure. Or call David Gellatly, Manager, Microprocessor Product Marketing, at (408) 246-0330.

S6800 Microprocessing Family Selection Guide

Part No.	Description	Input/ Output	Power Supply (V)	Process	Package	See Page
S6800	Processor (8-bit)	TTL	+5V	N-SiGate	40 PIN	18
S6810	RAM (128 x 8)	TTL	+5V	N-SiGate	24 PIN	36
S6830	ROM (1024 x 8)	TTL	+5V	N-SiGate	24 PIN	40
S6820	Peripheral Inter- face Adaptor	TTL	+5V	N-SiGate	40 PIN	44
S6850	Asynchronous Com- munications Interface	TTL	+5V	N-SiGate	24 PIN	56
S6860	Digital Modem	TTL	+5V	N-SiGate	24 PIN	66
S2350	Synchronous Receiv- er/Transmitter	TTL	+5V	N-SiGate	40 PIN	84
S6834	Eraseable and Electrically Reprogrammable ROM (512 x 8)	TTL	+5, -12	P-SiGate	24 PIN	93
S4021	RAM (4096 x 1)	TTL	±5V,+12V	N-SiGate	22 PIN	99

S6800 Support Literature

Assembly Language Programming Manual (\$15) Hardware Reference Manual (\$15) 6800 Simulator Manual NCSS Timesharing Users Guide Guide to Standard MOS Products

Future Products

S6831 Read Only Memory, $2048 \ge 8 - a$ mask programmable MOS memory, organized to be compatible with the S6800 MPU. The data, address, and control lines match those of the MPU, all signal levels are TTL compatible and it operates on a +5V power supply.

S6800 Microprocessing Family

S6800 Microprocessor (MPU) – an 8-bit parallel processor, with the ability to address up to 65K bytes of memory, and execute instructions in 2 microseconds. It is manufactured using N-channel MOS technology and operates on a single +5V power supply. All inputs and outputs are TTL compatible. The MPU has six internal registers, four types of vectored interrupts and 72 basic instructions. The basic instructions can be used in different addressing modes to save instruction execution time and memory space.

S6810 Static Read/Write Memory, 128 x 8 – an N-channel MOS memory designed and organized to be compatible with the S6800 MPU. Its data, address and control line organization and functions match those of the MPU, all signal levels are TTL compatible and no clocks or refreshing are needed. There are two versions of this memory: S6810 with 1.0 μ sec maximum access time, and S6810-1 with 575 nsec. maximum access time.

S6830 Read Only Memory, 1024×8 – an N-channel MOS mask programmable read only memory that is used for storing the S6800 MPU operating programs. Like the S6810 RAM, this ROM has data, address, and control line organization that is compatible with that of the MPU. Its signal levels are TTL compatible and it can be accessed in a maximum of 575 nsec.

S6820 Peripheral Interface Adapter (PIA) -a general purpose programmable interface circuit that

provides the means for most any kind of peripheral device or circuit to communicate with the S6800 MPU. The PIA has two 8-bit input/output ports for communicating with the peripherals and the MPU can program either port to send or receive data. Each port has two control lines associated with it. These also can be programmed by the MPU to handle interrupt and handshake routines with the peripherals.

S6850 Asynchronous Communication Interface Adapter (ACIA) – a general purpose communications interface that allows an asynchronous serial communications device to transmit data to and receive data from a S6800 microcomputer system. The ACIA can be programmed for handling different word lengths at various data rates; it also has parity generation and checking capability. For interfacing with the S6860 modem, the ACIA provides three status and command lines.

S6860 Modem – A 0-600 bps digital modem providing the necessary modulation, demodulation and supervisory controls to implement a serial data communications link over a voice grade channel. The modem is fully compatible with the S6800 micro-computer system, interfaces directly with the S6850 ACIA, and can be used in a wide variety of standalone modems, data communication terminals, I/O interfaces, and other data handling systems. N-channel silicon gate technology permits the modem to operate on a single +5V power supply and its inputs and outputs are TTL.

S6800 SYSTEM COMPATIBLE COMPONENTS

S2350 Universal Synchronous Receiver/Transmitter (USRT) – a general purpose communications interface that allows a high speed synchronous communications device to transmit data to and receive data from a S6800 microcomputer system. It connects to the peripheral device via separate serial transmit and receive lines and to the S6800 system data and address bus through a S6820 PIA.

The USRT has separate internal receiver and transmitter sections, which can be clocked by two separate clocks. It has the capability to handle different word lengths, generate and check parity and other conditions, detect sync during receive, and send a fill character during transmit operation.

S4021 Random Access Memory, 4096 x 1 - an N-channel Si-gate dynamic RAM for large volume low cost read/write storage. This memory has TTL compatible inputs and outputs, that can be easily interfaced to the S6800 system bus, access times as low as 200 nsec, and it operates on a single clock/ chip-enable signal.

S6800 Microcomputer Systems

LSI FAMILY

The AMI S6800 Microprocessing Family is a series of matched MOS large scale integrated circuits for building microcomputer systems. In the same way as individual logic elements and subsystem functions in SSI and MSI* families are building blocks for random logic circuits, so the AMI S6800 LSI circuits are a family of building blocks for microcomputer systems.

The LSI family, however, is also very different from SSI/MSI. With LSI, the hardware designer can deal with whole subsystems, instead of individual logic elements: his design task is much simpler and faster; the functional complexity of the final system can be greatly increased, while its physical size is reduced.

Another difference relates to applications. Because a microcomputer system can be programmed, whereas a random logic circuit generally cannot, the LSI family is primarily used for different applications than those of SSI/MSI. It certainly overlaps the SSI/MSI applications, because LSI microcomputers can be used advantageously in direct replacement of random logic circuits (they can be programmed to perform the same functions), but the most important applications of microcomputers are in the areas where random logic circuits cease to be practical. A microcomputer can typically perform tasks that would require extremely complex and space consuming random logic circuits, because programming gives the microcomputer a whole order of added capability.

AMI S6800

The AMI S6800 Microprocessing Family hardware includes a microprocessor, ROM and RAM memories, and data input/output circuits. These components may be assembled in a building block manner into a very simple microcomputer system, or into any of progressively more complex systems, which can be used in many general or special purpose applications. The important feature of the S6800 family is that within any system all components are directly compatible in signal functions, circuit performance characteristics, and logic levels. All operate on a single +5V power supply. It remains to the user to integrate the microcomputer into his own large system and to program it for a specific task. The task may be either simple or complex and either general in purpose or highly specialized for one application.

To facilitate system design and programming, AMI will provide a comprehensive set of reference documents, design and programming aids, a program library, and other applications support. For example, AMI will make available a comprehensive hardware and software reference manual, a S6800 program assembler, and a simulator. Such design and programming support is a continuing and expanding effort at AMI.

BASIC S6800 MICROCOMPUTER SYSTEM

A basic system built with the S6800 components is shown in Figure 1. In this system the S6800 Microprocessor (MPU) is supported by over 1K bytes of memory and controls one input/output interface circuit. The 1024-byte ROM is used to store the operating program, the 128-byte RAM provides working storage for the MPU, and the Peripheral Interface Adapter (PIA) provides two independently programmable 8-bit input/output ports for communicating with two peripheral devices.

The S6800 system is bus oriented. Eight lines form the data bus and 16 more lines make up the address bus. The MPU controls the bus and all other devices – the memories and the PIA – attach to the busses and wait for instructions from the MPU to supply or receive data. In the basic system, Figure 1, the MPU uses address lines A2, A13, and A14 to select one of the three devices on the bus and the Read/Write and Valid Memory Address lines to instruct the devices to receive or send data to the MPU. When communicating with the PIA, address lines A0 and A1 are used to select among the two peripheral devices A and B; the CA1, CA2, CB1, and CB2 lines can be used to send out control signals to the peripherals, or receive interrupts.

The basic system is a complete microcomputer, which can be used for a large variety of applications. It is simple but versatile, because it can be easily reprogrammed by changing the ROM. The user must provide only the two-phase clock signal source, a powerup/restart circuit, and a single +5V power supply to complete the hardware.

^{*}SSI and MSI – small scale and medium scale integration.

EXPANDING THE S6800 SYSTEM

The basic system can be altered or expanded in many different ways. For example, the S6850 Asynchronous Communication Interface Adapter (ACIA) can be substituted for the PIA, to enable the microcomputer to interface with a telecommunications modem. Or, additional memory can be added – either RAM or ROM – to expand the processing capability of the MPU. In general, the system can be expanded in a modular manner, by adding onto the bus as many as ten devices out of the S6800 family. These can be any combination of memory or input/output interface circuits. In this manner a system of nearly any complexity and configuration can be assembled. (Systems with more than ten devices on the bus require the addition of address and data bus buffers to operate at full speed.)

By building your microcomputer from the S6800 family of devices, you take advantage of the compatibility of the devices. They all conform to the bus discipline, all are compatible in load levels, and the entire

system runs on a common system clock. In effect, you eliminate most all circuit design, save for the simple clock and power-up/restart circuits. Because you are dealing with only a small number of integrated circuits, circuit layout is simple and the entire microcomputer can be located on a single circuit card.

In some special purpose applications you may need to attach your own interface devices to the bus. As a result, more circuit design will be required, but you will find the S6800 MPU easy to work with. It has features that allow it to be used in many different systems. For example, by using the Halt, Three State Control, and Data Bus Enable lines you can easily design a direct memory access system, in which either the MPU or a peripheral device can read or write into the RAM and utilize the bus on a priority basis. You can also design a multiprocessor system, in which several MPUs can be attached to the same bus and share processing assignments, as well as memory space.

S6800 MICROCOMPUTER SYSTEMS

S6800 INPUT/OUTPUT

One of the most important advantages that any S6800 system has to offer is its input/output versatility. In any computer system, large or small, the CPU internal functions are determined by the architecture of the computer and the user usually has little opportunity or need to alter them. On the other hand, the I/O configuration is almost always determined by the user and subject to change as peripherals are added or other system alterations are introduced. The I/O configuration is important to the user because it can affect the efficiency of the CPU itself, it determines the ease and speed with which peripherals can interact with the system, and determines the thruput rate of the system.

Therefore, the efficiency and versatility with which a CPU can handle its I/O — both in hardware and software — is an important criteria and is of particular concern to the user. It is in this area of I/O that the S6800 MPU excels.

• In a S6800 system, the MPU relegates most of the I/O control to such I/O interfaces as the PIA or ACIA. Each of these circuits is programmable and can interface with peripheral devices without directly involving the MPU. For example, the MPU can preprogram a PIA to either output data to the MPU or to receive it. Thereafter, the PIA circuits assume all functions of interfacing with the peripherals and the MPU never has to look at the interface until service is required. It must service interrupts from the PIA, but never needs to wait for input data to become available or for output data to be accepted. This relieves the MPU of its I/O functions, makes it more efficient in its primary task of data processing, and significantly increases system thruput.

• The I/O interfaces and memory are both located in the same address space within the S6800 system. The MPU can access any I/O device the same as a memory location — with address lines, instead of separate I/O control lines. Therefore, it can manipulate data in the I/O interface registers with the same programmed instructions as it uses for memory locations. This adds flexibility and increases system efficiency.

• The S6800 Instruction Set complements the above I/O addressing capability with specific instructions that can be used to access memory as well as I/O circuit registers and perform directly various manipulations on the data.

S6800 INSTRUCTION SET

The S6800 MPU has a set of 72 basic instructions, listed in alphabetical order in Table 1. These include binary and decimal arithmetic functions, as well as logical, shift, rotate, load, store, branch, interrupt, and stack manipulation functions. Most of the instructions have several variations and most can be used with several memory addressing modes (see Table 2). Thus, the total complex of instructions available to the programmer actually is 197.

An instruction can be from one to three bytes long, depending on the addressing mode used with the instruction. The first byte always contains the operation code, which designates the kind of operation the MPU will perform. In single byte instructions no memory address is required, because the operation is performed on one of the internal MPU registers. In multiple byte instructions the second and third byte can be the operand, or a memory address for the operand. Formats for multiple byte instructions are shown in Table 2.

A noteworthy feature of the S6800 MPU is that some of the instructions can operate directly on any memory location. In other computer systems it is common that the processor fetches an operand from memory, stores it in the accumulator, then executes the operation in the ALU, and finally writes the result back into the memory. The S6800 is able to accomplish the same with only a single instruction, because it operates with any external location in the same manner as with an internal register. For example, it can directly increment or decrement the contents of a memory location. Because the MPU addresses I/O devices just like a memory location, it can do the same with registers inside the PIA or ACIA. The ASL, ASR, LSR, and ROL are other examples of instructions which operate in this manner.

TABLE 1 S6800 MICROPROCESSOR INSTRUCTION SET

ABA	Add Accumulators	INC	Increment
ADC	Add with Carry	INS	Increment Stack Pointer
ADD	Add	INX	Increment Index Register
AND	Logical And	IMD	Iumn
ASL	Arithmetic Shift Left	JMF	Jump
ASR	Arithmetic Shift Right	JSK	Jump to Subfourne
		LDA	Load Accumulator
BCC	Branch if Carry Clear	LDS	Load Stack Pointer
BCS	Branch if Carry Set	LDX	Load Index Register
BEQ	Branch if Equal to Zero	LSR	Logical Shift Right
BGE	Branch if Greater or Equal Zero	NEG	Negate
BGT	Branch if Greater than Zero	NOP	No Operation
BHI	Branch if Higher	o D A	
BIT	Bit Test	ORA	Inclusive OR Accumulator
BLE	Branch if Less or Equal	PSH	Push Data
BLS	Branch if Lower or Same	PUL	Pull Data
BLT	Branch if Less than Zero	ROL	Rotate Left
BMI	Branch if Minus	ROR	Rotate Right
BNE	Branch if Not Equal to Zero	RTI	Return from Interrupt
BPL	Branch if Plus	RTS	Return from Subroutine
BRA	Branch Always	CD 4	
BSR	Branch to Subroutine	SBA	Subtract Accumulators
BVC	Branch if Overflow Clear	SBC	Subtract with Carry
BVS	Branch if Overflow Set	SEC	Set Carry
		SEI	Set Interrupt Mask
CBA	Compare Accumulators	SEV	Set Overnow
CLC	Clear Carry	SIA	Store Accumulator
CLI	Clear Interrupt Mask	SIS	Store Stack Register
CLR	Clear	SIX	Store index Register
CLV	Clear Overflow	SUB	Subtract
СМР	Compare	SWI	Software Interrupt
СОМ	Complement	TAB	Transfer Accumulators
CPX	Compare Index Register	TAP	Transfer Accumulators to Condition Code Reg.
		TBA	Transfer Accumulators
DAA DEG	Decimal Adjust	TPA	Transfer Condition Code Reg. to Accumulator
DEC	Decrement	TST	Test
DES	Decrement Stack Pointer	TSX	Transfer Stack Pointer to Index Register
DEX	Decrement Index Register	TXS	Transfer Index Register to Stack Pointer
FOP	Exclusive OP	WAT	Wait for Interrupt
LOK		WAI	

S6800 MICROCOMPUTER SYSTEMS

FIGURE 3 PROGRAM ACCESSIBLE REGISTERS

MPU REGISTERS:

Accumulators A and B - Two separate 8-bit accumulators that are used to hold operands and results of operations in the ALU.

Index Register – A 16-bit register used for memory address storage in Indexed Addressing operations.

Program Counter – A 16-bit register that holds the current program instruction address. Once the initial program starting address is loaded into the program counter, it is incremented under control of the MPU hardware.

Stack Pointer - A 16-bit register used for storage of the next available location in an external push-down/pop-up stack.

Condition Code Register — An 8-bit register that stores certain results of operations in the ALU. These bits are used as testable conditions for the conditional branch instructions. In addition, one bit position stores the interrupt mask bit and the two high order bits are unused.

MEMORY REGISTER:

EXTERNAL STACK

The MPU uses a push-down/pop-up stack that can be located anywhere in RAM and be of any convenient size. It is accessed with the stack pointer address and has several uses. First, it always stores the MPU register contents following an interrupt and return addresses during subroutine execution. Second, it can also be used by the programmer to store data during program execution.

S6800 MICROCOMPUTER SYSTEMS

TABLE 2 MEMORY REFERENCE INSTRUCTION FORMATS*

Instruction in which the operand immediately follows the op code. The operand is one byte for all accumulator operations and two bytes for index register or stack register operations.

Direct Addressing

	ADDRESS
OPCODE	0-255

A two byte instruction in which the address of the operand is contained in the second byte of the instruction. This instruction allows direct addressing of operands within the first 256 memory locations (usually a RAM location).

Extended Addressing

A three byte instruction in which the op code is followed by two bytes containing the full 16-bit memory address. This instruction can be used for addressing all 65,536 memory locations.

A two byte instruction whose second byte is an unsigned number, which is added to the contents of the index register. The resulting 16-bit address is then used to address the memory. The contents of the index register remain unaltered after the addition.

Relative Addressing

00.0005	RELATIVE
UPLODE	ADDRESS

A two byte instruction whose second byte is a signed 2's complement number which is added to the program counter. The resulting address is used to access the memory. This instruction allows the addressing of any memory location within a range of 129 bytes forward and 125 bytes back of the address contained in the program counter at the start of the instruction.

(Accumulator and Implied Addressing – These instructions operate directly on an MPU internal register and therefore are not concerned with memory addressing. They always are single byte instructions.)

* Instructions listed in Table 1 represent the operation codes only; in most cases they are followed by an operand or address, in the format shown in this table.

S6800 MICROPROCESSOR

The S6800 Microprocessor (MPU) is an 8-bit parallel processor. It contains an 8-bit arithmetic unit (ALU), two 8-bit accumulators, one condition code register, and three 16-bit address storage registers, all of which are available for program use (see Figure 4). In addition, there are the following non-accessible registers: a 16-bit address incrementer/decrementer, an 8-bit temporary register and an 8-bit instruction register. There is also an instruction decode ROM and cycle control logic, interrupt and restart logic, bus control and halt logic, and a timing generator.

Within the MPU all data and address transfers between the registers, as well as to and from the ALU, are made across three internal 8-bit busses. The first is a data bus, the second is an address bus for the low order bits, and the third is an address bus for high order bits.

The MPU communicates with its external memory and all I/O devices across an 8-bit bidirectional data bus, D0 through D7, and 16 address lines, A0 through A15. The MPU can be disconnected from either bus by two control signals DBE and TSC.

MPU Operating Cycle. Instructions are executed within the MPU in incremental time periods (MPU cycles), each consisting of one $\phi 1$ clock period and one $\phi 2$ clock period. When the MPU is operating on a 1 MHz input clock, each MPU cycle is 1 microsecond long. It takes a minimum of two MPU cycles to execute an instruction.

During the $\phi 1$ period the MPU typically outputs a memory address to access (fetch) one 8-bit program instruction or data byte and then, during $\phi 2$, loads the byte into an internal register. During the next $\phi 1$ period the MPU executes the associated internal operation with the ALU and the registers. With this fetch-execute sequence an instruction may be completed in only two MPU cycles, or may require as many as 12. While the MPU is executing successive cycles, it is also common for it to overlap functions. For example, during any given clock period the MPU may be executing one instruction in the ALU or registers; while at the same time a fetch is being performed with the address in the program counter.

These internal operations of the MPU, as well as the output of address, data, and control signals, are all managed by the instruction decode and control logic. For example, to perform the execute part of any instruction, the control logic circuits generate signals that cause the ALU to perform addition, subtraction, or some Boolean logic function. These signals can also cause the contents of one register to be transferred into another, a register to be simply incremented or decremented, or some other similar function to occur. Such ALU and register operations are used to execute all of the S6800 instructions.

Memory Addressing Modes. During the fetch part of any MPU cycle a memory address is required in order to access a particular location in the external memory. This address is normally stored in the program counter. The program counter is 16 bits wide and therefore, can address any one of a maximum of 65,536 bytes.

At the beginning of a program sequence the MPU is initialized and the beginning address is loaded into the program counter. From there on the program counter is incremented automatically, so that at the end of any instruction cycle it stores the next instruction address. If the program contains an instruction to branch or jump to a different memory location, the op code must be followed by two bytes which load the new address into the program counter. There are, however, addressing techniques with which the jump can be accomplished by fetching only one new address byte out of the memory. These are related to the memory addressing instructions listed in Table 2.

TABLE 3 HARDWARE REGISTERS (NOT ACCESSIBLE BY PROGRAM)

Instruction Register – 8-bit register used to receive and store all program instructions input into the MPU (via the data bus lines D0-D7).

Temporary Register – 8-bit register typically used to store the high order address bits prior to their output from the MPU onto the external address bus lines A8-A15. **Incrementer** - 16-bit auxiliary address register, used by the MPU internal control logic, in conjunction with the program counter, to maintain and output the current program address.

S6800 MICROCOMPUTER SYSTEMS

FIGURE 4 BLOCK DIAGRAM OF S6800 MICROPROCESSOR

S6800 MICROCOMPUTER SYSTEMS

For example, if the destination of a branch is within 129 locations forward of 125 locations back of the current program counter contents, Relative Addressing can be used. In this mode only the op code and one signed 8-bit byte is fetched from the memory and is added to the program counter contents.

In Indexed Addressing, a single byte is added to the contents of the index register and the result is trans-

ferred into the program counter. Thus, the above addressing variations can be used to reduce the number of bytes that need be fetched to generate a new address. This reduces the number of MPU cycles and speeds up program execution.

The various addressing modes can also be used in a similar manner to generate the source or destination addresses for data.

TABLE 4S6800 INTERRUPTS

Nonmaskable Interrupt (NMI) – initiated by a low-going signal on the $\overline{\text{NMI}}$ line to the MPU; always interrupts the MPU – even while another interrupt is being processed and the interrupt mask bit is set. Therefore, NMI can be considered to the highest priority interrupt. It causes the following sequence of events:

1. At the completion of the instruction being executed, the contents of the program accessible registers (Figure 3) are stored in the stack.

2. The interrupt mask bit is set.

3. Starting with its next cycle, the MPU accesses locations FFFC and FFFD in the memory and loads the contents into the program counter.

Interrupt Request (IRQ) – initiated by a logic low signal on the \overline{IRQ} line; interrupts the MPU as long as the interrupt mask bit is not set. It causes the following sequence of events:

1. At the completion of the instruction being executed, the interrupt mask bit is tested. If the bit is set the interrupt must wait; if it is not set, contents of the program accessible registers are stored in the stack.

2. The interrupt mask bit is set.

3. Starting with the next cycle, the MPU accesses locations FFF8 and FFF9 in the memory and loads the contents into the program counter.

Software Interrupt (SWI) – initiated by the SWI instruction and causes the following sequence of events:

1. Contents of the program accessible registers are stored in the stack.

2. The interrupt mask bit is set.

3. Starting with the next cycle, the MPU accesses locations FFFA and FFFB in the memory and loads the contents into the program counter.

Reset - initiated by a positive going edge on the RESET line to the MPU. It causes the following sequence of events:

1. All program accessible registers are cleared and other circuits in the MPU are initialized.

2. The interrupt mask bit is set.

3. Starting with the next cycle, the MPU accesses locations FFFE and FFFF in the memory and loads the contents into the program counter.

Wait (WAI) — an instruction that causes the MPU to stop all processing and wait for a hardware interrupt. This instruction is not an interrupt in itself because it does not cause branching to any memory address, however, it does cause contents of the program accessible registers to be stored into the stack, in preparation for an interrupt. Interrupts. The S6800 MPU can be interrupted by any of several signals and program instructions, each of which initiates a different sequence in the MPU. Including the Reset signal, there are four interrupts – three hardware interrupts (signal lines connected to the MPU) and one software interrupt (SWI instruction). Each is described separately in Table 4.

All interrupts are vectored – they cause the MPU to automatically access a predetermined location in the memory and fetch a branch address of the routine or program to which the MPU is to go to service the interrupt. All interrupts except Reset also cause the contents of each program accessible MPU register (with the exception of the stack pointer) to be transferred to the external stack and thus be saved for later processing. The IRQ interrupt is also maskable - it cannot interrupt the MPU as long as bit 4 in the condition code register is set.

APPLICATIONS

The following five figures show various S6800 applications and system interconnections. Because the specific applications of microcomputers are so many and diverse, the figures are intended as general models for systems, in which the particular combination of devices, details of their interconnections, and control line utilization are left up to the user. Refer to the following data sheets for details about each device in the S6800 family.

FIGURE 5 DATA COMMUNICATIONS SYSTEM

S6800 MICROCOMPUTER SYSTEMS

FIGURE 6 DATA ACQUISITION SYSTEM

FIGURE 7 TRAFFIC CONTROL SYSTEM

16

S6800 MICROCOMPUTER SYSTEMS

FIGURE 8 CRT DISPLAY SYSTEM

FIGURE 9 SCHEMATIC DIAGRAM FOR INTERCONNECTING S2350 USRT TO THE S6800 MPU

8-BIT MICROPROCESSOR

ABSOLUTE MAXIMUM RATINGS

DC (STATIC) CHARACTERISTICS ($V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to + 70°C unless otherwise noted)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage (Normal Operating Levels) Logic \$\phi_1,\$\phi_2\$	V _{IH} V _{IHC}	+ 2.4 V _{CC} -0.3		V _{CC} V _{CC} +0.1	Vdc
Input Low Voltage (Normal Operating Levels) Logic $\phi 1, \phi 2$	V _{IL} V _{ILC}	-0.3 -0.1	_	+ 0.4 +0.3	Vdc
Clock Overshoot/Undershoot – Input High Level – Input Low Level	v _{os}	V _{CC} -0.5 -0.5		V _{CC} +0.5 +0.5	Vdc
Input High Threshold Voltage Reset, NMI, Halt, IRQ, Data	V _{IHT}	+ 2.0	_		Vdc
Input Low Threshold Voltage Reset, NMI, Halt, IRQ, Data	V _{ILT}	-	-	+ 0.8	Vdc
Input Leaf age Current ($V_{in} = 0$ to 5.25 V, $V_{CC} = 5.25V$) Logic* ϕ_1, ϕ_2	I _{in}			2.5 100	μAdc
Three-State (Off State) Input Current $(V_{in} = 0.4 \text{ to } 2.4 \text{ V}, V_{CC} = \text{max})$ Data A0-A15, R/W	I _{TSI}			10 100	μAdc
Output High Voltage ($I_{Load} = -100 \mu Adc, V_{CC} = min$)	VOH	+ 2.4	_	_	Vdc
Output Low Voltage (I _{Load} = 1.6 mAdc, V _{CC} = min)	VOL	_	_	+ 0.4	Vdc
Supply Current, $V_{CC} = 5.25V$	ICC	_	112	225	mA
Capacitance** (Vin = 0, T _A = 25°C, f = 1.0 MHz) Logic Data, TSC $\phi 1, \phi 2$ A0-A15, R/W	C _{in} C _{out}		_ 120 _	10 15 160 12	pF pF

*Except IRQ and NMI, which require 3 k Ω pullup load resistors for wire-OR capability at optimum operation.

**Capacitances are periodically sampled rather than 100% tested.

AC (DYNAMIC) CHARACTERISTICS ($V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to + 70°C unless otherwise noted)

Characteristic	Symbol	Min.	Тур	Max.	Unit
Frequency of Operation	f	0.1	_	1.0	MHz
Clock Timing for 1-MHz Operation (Figure 1) (C _{clock} = 200 pF) Cycle Time	t _{cyc}	1.0	_	10	μs
Clock Pulse Width (Measured at V _{CC} -0.3 V) ϕ_1 ϕ_2	PW _{¢H}	430 450		4500 4500	ns
Total ϕ 1 and ϕ 2 UP Time	t _{ut}	940	-	_	ns
Rise and Fall Times $\phi_{1,\phi_{2}}$ (Measured between 0.3 V and V_{CC} -0.3 V)	t _r , t _f	5.0	_	50	ns
Delay Time or Clock Overlap (Measured at 0.5 V)	td	0	. –	9100	ns
Overshoot/Undershoot Duration	t _{os}	0		40	ns

READ/WRITE TIMING

Figures 2 and 3, f = 1.0 MHz, Loading = 130 pF and one TTL Load except VMA and BA Loading = 30 pF and one

Characteristic	Symbol	Min.	Тур	Max.	Unit
Read/Write Setup Time from MPU	T _{ASR}		100	300	ns
Address Setup Time from MPU	TASC	_	200	300	ns
Memory Read Access Time $t_{cyc} - (T_{ASC} + T_{DSU} + t_r)$	TACC	_		575	ns
Data Setup Time	T _{DSU}	100	—	_	ns
Address Setup Time from MPU for VMA	T _{VSC}	-	150	300	ns
Data Hold Time	T _H	10	30		ns
Enable High Time for DBE Input	T _{EH}	470	— ,	<u> </u>	ns
Data Setup Time from MPU	T _{ASD}	-	150	200	ns

FIGURE 1 – CLOCK TIMING WAVEFORM

AMERICAN MICROSYSTEMS, INC.

OCTOBER, 1974

FIGURE 2 - READ DATA FROM MEMORY OR PERIPHERALS

FIGURE 3 - WRITE DATA IN MEMORY OR PERIPHERALS

INTERFACE DESCRIPTION

Label	Pin	Function
Ø1 Ø2	(3) (37)	Clocks Phase One and Phase Two $-$ Two pins are used for a two-phase non-overlapping clock that runs at the V _{CC} voltage level.
RESET	(40)	$\overline{\text{Reset}}$ — This input is used to reset and start the MPU from a power down condition, resulting from a power failure or an initial start-up of the processor. If a positive edge is detected on the input, this will signal the MPU to begin the restart sequence. This will start execution of a routine to initialize the processor from its reset condition. All the higher order address lines will be forced high. For the restart, the last two (FFFE, FFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset before the MPU can be interrupted by $\overline{\text{IRQ}}$.
	· · ·	Reset must be held low for at least eight clock periods after V _{CC} reaches 4.75 volts (Figure 4). If Reset goes high prior to the leading edge of $\emptyset 2$, on the next $\emptyset 1$ the first restart memory vector address (FFFE) will appear on the address lines. This location should contain the higher order eight bits to be stored into the program counter. Following, the next address FFFF should contain the lower order eight bits to be stored into the program counter.

VMA

Valid Memory Address – This output indicates to peripheral devices that there is a valid address on the address bus. In normal operation, this signal should be utilized for enabling peripheral interfaces such as the PIA and ACIA. This signal is not three-state. One standard TTL load and 30 pF may be directly driven by this active high signal.

AMERICAN MICROSYSTEMS, INC.

(5)

Label	Pin	Function
A0 •	(9)	Address Bus – Sixteen pins are used for the address bus. The outputs are three-state bus drivers capable of driving one standard TTL load and 130 pF. When the output is turned off, it is essentially an open circuit. This permits the MPU to be used in DMA applications.
A15	(25)	
TSC	(39)	Three-State Control – This input causes all of the address lines and the Read/Write line to go into the off or high impedance state. This state will occur 500 ns after TSC = 2.4 V. The Valid Memory Address and Bus Available signals will be forced low. The data bus is not affected by TSC and has its own enable (Data Bus Enable). In DMA applications, the Three-State Control line should be brought high on the leading edge of the Phase One Clock. The ϕ_1 clock must be held in the high state and the ϕ_2 in the low state for this function to operate property. The address hug will then be available for other devices to directly address.
		memory. Since the MPU is a dynamic device, it can be held in this state for only 5.0 μ s or destruction of data will occur in the MPU.
D0	(33)	Data Bus — Eight pins are used for the data bus. It is bi-directional, transferring data to and from the memory and peripheral devices. It also has three-state output buffers capable of driving one standard TTL load at 130 pF.
D 7	(26)	
DBE	(36)	Data Bus Enable — This input is the three-state control signal for the MPU data bus and will enable the bus drivers when in the high state. This input is TTL compatible; however in normal operation, it can be driven by the phase two clock. During an MPU read cycle, the data bus drivers will be disabled internally. When it is desired that another device control the data bus such as in Direct Memory Access (DMA) applications, DBE should be held low.
R/W	(34)	Read/Write – This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or Write (low) state. The normal standby state of this signal is Read (high). Three-State Control going high will turn Read/Write to the off (high-impedance) state. Also, when the processor is halted, it will be in the off state. This output is capable of driving one standard TTL load and 130 pF.
HALT	(2)	$\overline{\text{Halt}}$ — When this input is in the low state, all activity in the machine will be halted. This input is level sensitive. In the halt mode, the machine will stop at the end of an instruction, Bus Available will be at a one level, Valid Memory Address will be at a zero, and all other three-state lines will be in the three-state mode. Transition of the Halt line must not occur during the last 250 ns of phase one. To insure single instruction operation, the Halt line must go high for one Phase One Clock cycle.
BA	(7)	Bus Available – The Bus Available signal will normally be in the low state; when activated, it will go to the high state indicating that the microprocessor has stopped and that the address bus is available. This will occur if the Halt line is in the low state or the processor is in the WAIT state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers will go to their off state and other outputs to their normally inactive level. The processor is removed from the WAIT state by the occurrence of a maskable (mask bit I = 0)or nonmaskable interrupt. This output is capable of driving one standard TTL load and 30 pF.

Label	Pin	Function
ĪRQ	(4)	Interrupt Request – This level sensitive input requests that an interrupt sequence be gener- ated within the machine. The processor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts may occur. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes the MPU to branch to an interrupt routine in memory. The Halt line must be in the high state for interrupts to be recognized.
		The IRQ has a high impedance pullup device internal to the chip; however a 3 k Ω external resistor to V _{CC} should be used for wire-OR and optimum control of interrupts.
NMI	(6)	Non-Maskable Interrupt – A low-going edge on this input requests that a non-mask interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the NMI signal. The interrupt mask bit in the Condition Code Register has no effect on \overline{NMI} . The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away in the stack. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFFC and FFFD. An address loaded at these locations causes the MPU to branch to a non-maskable interrupt routine in memory.
		$\overline{\text{NMI}}$ has a high impedance pullup resistor internal to the chip; however a 3 k Ω external

resistor to V_{CC} should be used for wire-OR and optimum control of interrupts. Inputs \overline{IRQ} and \overline{NMI} are hardware interrupt lines that are acknowledged during $\phi 2$ and will start the interrupt routine on the $\phi 1$ following the completion of an instruction.

AMERICAN MICROSYSTEMS, INC.

24

INTERRUPTS – As outlined in the interface description the S6800 requires a 16-bit vector address to indicate the location of routines for Restart, Non-maskable Interrupt, and Maskable Interrupt. Additionally an address is required for the Software Interrupt Instruction (SWI). The processor assumes the uppermost eight memory locations, FFF8 – FFFF, are assigned as interrupt vector addresses as defined in Figure 5.

After completing the current instruction execution the processor checks for an allowable interrupt request via the \overline{IRQ} or \overline{NMI} inputs as shown by the simplified flow chart in Figure 6. Recognition of either external interrupt request or a Wait for Interrupt (WAI) or Software Interrupt (SWI) instruction causes the contents of the Index Register, Program Counter, Accumulators and Condition Code Register to be transferred to the stack as shown in Figure 7.

FIGURE 5 MEMORY MAP FOR INTERRUPT VECTORS

Ve	ctor	Description		
MS	LS	Description		
FFFE	FFFF	Restart		
FFFC	FFFD	Non-maskable Interrupt		
FFFA	FFFB	Software Interrupt		
FFF8	FFF9	Interrupt Request		

FIGURE 6 - MPU FLOW CHART

FIGURE 7 – SAVING THE STATUS OF THE MICROPROCESSOR IN THE STACK

AMI.

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit registers available for use by the programmer.

Program Counter – The program counter is a two byte (16bits) register that points to the current program address.

Stack Pointer – The stack pointer is a two byte register that contains the address of the next available location in an external push-down/pop-up stack. This stack is normally a random access Read/Write memory that may have any location (address) that is convenient. In those applications that require storage of information in the stack when power is lost, the stack must be non-volatile.

Index Register — The index register is a two byte register that is used to store data or a sixteen bit memory address for the Indexed mode of memory addressing.

Accumulators – The MPU contains two 8-bit accumulators that are used to hold operands and results from the arithmetic logic unit (ALU).

Condition Code Register – The condition code register indicates the results of an Arithmetic Logic Unit operation: Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C), and half carry from bit 3 (H). These bits of the Condition Code Register are used as testable conditions for the conditional branch instructions. Bit 4 is the interrupt mask bit (I). The unused bits of the Condition Code Register (b6 and b7) are ones.

FIGURE 8 – PROGRAMMING MODEL OF THE MICROPROCESSOR

MPU ADDRESSING MODES

The S6800 eight-bit microprocessing unit has seven address modes that can be used by a programmer, with the addressing mode a function of both the type of instruction and the coding within the instruction. A summary of the addressing modes for a particular instruction can be found in Figure 9 along with the associated instruction execution time that is given in machine cycles. With a clock frequency of 1 MHz, these times would be microseconds.

DIRECT ADDRESSING

OP CODE	ADDRESS 0-255
---------	------------------

Two byte instructions with the address of the operand contained in the second byte of the instruction. This format allows direct addressing of operands within the first 256 memory locations.

EXTENDED ADDRESSING

	ADDRESS	ADDRESS	
OF CODE	HIGHER	LOWER	

Three byte instructions with the higher eight bits of the operand address contained in the second byte and the lower eight bits of address contained in the third byte of the instruction. This format allows direct addressing of all 65,536 memory locations.

ACCUMULATOR ADDRESSING (ACCX)

A single byte instruction addressing operands only in accumulator A or accumulator B.

IMPLIED ADDRESSING

OP CODE

OP CODE

Single byte instruction where the operand address is implied by the instruction definition (i.e., Stack Pointer, Index Register or Condition Register).

IMMEDIATE ADDRESSING

OP CODE	IMMEDIATE OPERAND	
HIGHER	IMMEDIATE OPERAND	IMMEDIATE OPERAND LOWER

Two or three byte instructions with an eight or sixteen bit operand respectively. For accumulator operations the eight bit operand is contained in the second byte of a two byte instruction. For Index Register operations (e.g. LDX) sixteen bit operand is contained in the second and third byte of a three byte instruction.

INDEXED ADDRESSING

Two byte instructions where the 8 bit unsigned address contained in the second byte of the instruction is added to the sixteen bit Index Register resulting in a sixteen bit effective address. The effective address is stored in a temporary register and the contents of the Index Register are unchanged.

RELATIVE ADDRESSING

Two byte instructions where the relative address contained in the second byte of the instruction is added to the sixteen bit program counter plus two. The relative address is interpreted as a two's complement number allowing relative addressing within a range of -125 to +129 bytes of the present instruction.

AMI.

S6800 8-BIT MICROPROCESSOR

FIGURE 9 - S6800 INSTRUCTION SET

		Addressing Mode]	Condition Reg
		Implied	Immediate	Direct	Extended	Indexed Relative	Boolean/Arith	5 4 3 2 1 0
Instruction	Mnemonic	OP MC PB	OP MC PB	ОР МС РВ	ОР МС РВ	OP MC PB OP MC PB	Operation	HINZVC
Load accumulator Load stack pointer	LDAA LDAB LDS		86 2 2 C6 2 2 8E 3 3	96 3 2 D6 3 2 9E 4 2	B6 4 3 F6 4 3 BE 5 3	A6 5 2 E6 5 2 AE 6 2	$ \begin{array}{c} M \rightarrow A \\ M \rightarrow B \\ M \rightarrow SP_{H}, (M + 1) \\ \rightarrow SP_{i} \end{array} $	$ \begin{array}{c} \bullet & \uparrow & \uparrow & R \\ \bullet & \bullet & \uparrow & R \\ \bullet & \bullet & 9 & \uparrow & R \\ \bullet & \bullet & 9 & \uparrow & R \\ \bullet & \bullet & 9 & \uparrow & R \\ \end{array} $
Load index	LDX		CE 3 3	DE 4 2	FE 5 3	EE 6 2	$ \begin{array}{c} \rightarrow Sr_{L} \\ M \rightarrow X_{H}, (M+1) \\ \rightarrow X_{I} \end{array} $	••9 ‡ R•
Store stack	STAA STAB STS	-		97 4 2 D7 4 2 9F 5 2	B7 5 3 F7 5 3 BF 6 3	A7 6 2 E7 6 2 AF 7 2	$ \begin{array}{c} A \rightarrow M \\ B \rightarrow M \\ SP_H \rightarrow M, SP_L \rightarrow \end{array} $	$ \begin{array}{c} \bullet & \bullet & \uparrow & \uparrow & R \\ \bullet & \bullet & \uparrow & \uparrow & R \\ \bullet & \bullet & \uparrow & R \\ \bullet & \bullet & 9 & \uparrow & R \\ \end{array} $
pointer Store index register	STX			DF 5 2	FF 6 3	EF 7 2	$(M+1)$ $X_{H} \rightarrow M, X_{L} \rightarrow$ $(M+1)$	••9 ‡ R •
Transfer accumu- lators	TAB TBA	16 2 1 17 2 1					$\begin{array}{c} A \rightarrow B \\ B \rightarrow A \end{array}$	• • ‡ ‡ R • • • ‡ ‡ R •
Transfer Acc. to cond. reg. Transfer cond. reg.	ТАР	06 2 1					$A \rightarrow CCR$	Note 12
to Acc. Transfer stck ptr to	TPA	07 2 1					$CCR \rightarrow A$	• • • • • •
index Transfer index to	TSX	30 4 1					$SP + 1 \rightarrow X$	
stck ptr Pull data	TXS PULA	35 4 1 32 4 1					$\begin{array}{c} X - I \rightarrow SP \\ SP + 1 \rightarrow SP, M_{SP} \\ \rightarrow A \end{array}$	
	PULB	33 4 1					$SP + 1 \rightarrow SP,$ MSP $\rightarrow B$	•••••
Push data	PSHA	36 4 1					$A \rightarrow M_{SP}, SP - 1$ $\rightarrow SP$ $B \rightarrow M_{SP}, SP - 1$	
	PSHB	37 4 1					\rightarrow SP	
Add accumulators Add	ABA ADDA ADDB	1B 2 1	8B 2 2 CB 2 2	9B 3 2 DB 3 2	BB 4 3 FB 4 3	AB 5 2 EB 5 2	$A + B \rightarrow A$ $A + M \rightarrow B$ $B + M \rightarrow B$	$\begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ $
Add with carry	ADCA ADCB		89 2 2 C9 2 2	99 3 2 D9 3 2	B9 4 3 F9 4 3	A9 5 2 E9 5 2	$\begin{array}{c} A + M + C \rightarrow A \\ B + M + C \rightarrow B \end{array}$	$\begin{array}{c} \uparrow \bullet \uparrow $
Subtract accumulators Subtract	SBA SUBA SUBB	10 2 1	80 2 2 C0 2 2	90 3 2 D0 3 2	B0 4 3 F0 4 3	A0 5 2 E0 5 2	$ \begin{array}{c} \mathbf{A} - \mathbf{B} \rightarrow \mathbf{A} \\ \mathbf{A} - \mathbf{M} \rightarrow \mathbf{A} \\ \mathbf{B} - \mathbf{M} \rightarrow \mathbf{B} \end{array} $	$\begin{array}{c} \bullet & \bullet & \uparrow & \uparrow & \uparrow & \uparrow \\ \bullet & \bullet & \uparrow & \uparrow & \uparrow & \uparrow \\ \bullet & \bullet & \uparrow & \uparrow & \uparrow & \uparrow \\ \bullet & \bullet & \uparrow & \uparrow & \uparrow & \uparrow \end{array}$
Subtract with carry	SBCA SBCB		82 2 2	92 3 2 D2 3 2	B2 4 3 F2 4 3	A2 5 2 F2 5 2	$ \begin{array}{c} A - M - C \rightarrow A \\ B - M - C \rightarrow B \end{array} $	
Increment	INCA INCB INC	4C 2 1 5C 2 1			7C 6 3	6C 7 2	$A + 1 \rightarrow A$ $B + 1 \rightarrow B$ $M + 1 \rightarrow M$	
Increment stack pointer	INS	31 4 1					$SP + 1 \rightarrow SP$	••••
reg. Decrement	INX DECA DECB DEC	08 4 1 4A 2 1 5A 2 1			7A 6 3	6A 7 2	$X + 1 \rightarrow X$ $A - 1 \rightarrow A$ $B - 1 \rightarrow B$ $M - 1 \rightarrow M$	• • • • • • ‡ 4 • • ‡ ‡ 4 • • ‡ ‡ 4 • • ‡ ‡ 4 • • ‡ ‡ 4 •
Decrement stack pointer	DES	34 4 1					$SP - 1 \rightarrow SP$	••••
Decrement index register Complement (1's)	DEX COMA COMB COM	09 4 1 43 2 1 53 2 1			73 6 3	63 7 2	$\begin{array}{c} X - 1 \rightarrow X \\ \hline A \rightarrow A \\ \hline B \rightarrow B \\ \hline M \rightarrow M \end{array}$	
Complement (2's)	NEGA NEGB NEG	40 2 1 50 2 1			70 6 3	60 7 2	$00 - A \rightarrow A$ $00 - B \rightarrow B$ $00 - M \rightarrow M$	• • ‡ ‡ 1 2 • • ‡ ‡ 1 2 • • ‡ ‡ 1 2
Decimal adjust accumulator	DAA	19 2 1						• • • • • • 3

OP = Operation Code

MC = Number of MPU Cycles

PB = Number of Program Bytes

		Addressing Mode						Condition Reg	
		Implied	Immediate	Direct	Extended	Indexed	Relative	Boolean/Arith	5 4 3 2 1 0
Instruction	Mnemonic	ОР МС РВ	ор мс рв	ОР МС РВ	ор мс рв	ОР МС РВ	ор мс рв	Operation	H 1 N Z V C
Logical and	ANDA		84 2 2	94 3 2 D4 3 2	B4 4 3	A4 5 2		$A \bullet M \to A$	• • ‡ ‡ R •
Inclusive or	ORAA		C4 2 2 8A 2 2 CA 2 2	D4 3 2 9A 3 2 DA 3 2	BA 4 3 FA 4 3	E4 5 2 AA 5 2 EA 5 2			
Exclusive or	EORA EORB		88 2 2 88 2 2 C8 2 2	DA 3 2 98 3 2 D8 3 2	B8 4 3 F8 4 3	A8 5 2 E8 5 2 E8 5 2		$A \bigoplus M \to B$ $B \bigoplus M \to B$	• • ‡ ‡ R • • • ‡ ‡ R •
Shift left arithmetic	ASLA ASLB ASL	48 2 1 58 2 1			78 6 3	68 7 2		$ \begin{array}{c} A \\ B \\ C \\ M \end{array} \begin{array}{c} \bullet & \bullet \\ \bullet$	• • ‡ ‡ 6 ‡ • • ‡ ‡ 6 ‡ • • ‡ ‡ 6 ‡
Shift right arithmetic	ASRA ASRB	47 2 1 57 2 1			77 6 3	(7, 7, 2)		A B b7 b0 C	$ \begin{array}{c} \bullet \bullet \ddagger \ddagger 6 \ddagger \\ \bullet \bullet \bullet \ddagger 6 \ddagger \\ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet $
Shift right logical	ASR LSRA LSRB	44 2 1 54 2 1			74 6 2	67 7 2		$ \begin{array}{c} A \\ B \\ 0 \rightarrow \hline \\ b7 \\ b7 \\ b0 \\ C \end{array} $	$ \begin{array}{c} \bullet \mathbf{R} \ddagger 6 \ddagger \\ \bullet \mathbf{R} = 6 = 6 \\ \bullet \mathbf{R} = 6 \\ $
Rotate left	LSR ROLA ROLB	49 2 1 59 2 1			74 6 3	64 7 2		$ \begin{array}{c} A \\ B \\ \hline \\ C \\ C$	$\begin{array}{c} \bullet \bullet$
Rotate right	ROL RORA RORB ROR	46 2 1 56 2 1			79 6 3	69 7 2 66 7 2		$ \begin{array}{c} M \\ A \\ B \\ M \\ C \end{array} \begin{array}{c} 0 \\ b7 \end{array} \begin{array}{c} 0 \\ b7 \end{array} \begin{array}{c} 0 \\ b0 \end{array} $	• +
Compare accumu- lators Compare	CBA CMPA CMPB	11 2 1	81 2 2 C1 2 2	91 3 2 D1 3 2	B1 4 3 F1 4 3	A1 5 2 E1 5 2		A – B A – M B – M	
Compare index register Test (zero or	СРХ		8C 3 3	9C 4 2	BC 5 3	AC 6 2		X _H - M, X _L - (M+1)	• • 7 \$ 8 •
minus)	TSTA TSTB TST	4D 2 1 5D 2 1			7D 6 3	6D 7 2		A - 00 B - 00 M - 00	● ● ↓ ↓ R R ● ● ↓ ↓ R R ● ● ↓ ↓ R R
Bit test	BITA BITB		85 2 2 C5 2 2	95 3 2 D5 3 2	B5 4 3 F5 4 3	A5 5 2 E5 5 2		A ● M B ● M TEST	• • ‡ ‡ R • • • ‡ ‡ R •
Branch Branch if carry	BRA						20 4 2		• • • • • • •
clear Branch if carry	BCC						24 4 2	C = 0	•••••
set Branch if overflow	BCS						25 4 2	C = 1	
clear Branch if overflow	BVC						28 4 2	$\mathbf{V} = 0$	
set Branch if equal to	BVS						29 4 2	V = 1	
Zero Branch if greater	BCF						21 4 2	$\Sigma = 1$ N \oplus V = 0	
Branch if greater	BGT	, , 					2E 4 2	$Z + (N \oplus V) = 0$	• • • • • •
Branch if less	BLT						2D 4 2	$N \oplus V = 1$	
Branch if less than	BLE						2F 4 2	$Z + (N \oplus V) = 1$	
Branch if not equal to zero	BNE						26 4 2	Z = 0	
Branch if minus	BMI						2B 4 2 2A 4 2	N = 1 $N = 0$	
Branch if higher	BHI						22 4 2	C + Z = 0	••••
or same	BLS						23 4 2	C + Z = 1	• • • • • •

OP = Operation Code

MC = Number of MPU Cycles

PB = Number of Program Bytes

		Addressing Modes						Condition Reg.	
		Implied	Direct	Immediate	Extended	Indexed	Relative	Boolean/Arith	5 4 3 2 1 0
Instruction	Mnemonic	ор мс рв	ор мс рв	ор мс рв	ор мс рв	ор мс рв	ор мс рв	Operation	HINZVC
Branch to subroutine Jump to subroutine Jump Return from subroutine Return from interrupt Software interrupt Wait for interrupt No operation	BSR JSR JMP RTS RTI SWI WAI NOP	39 5 1 3B 10 1 3F 12 1 3E 9 1 02 2 1			BD 9 3 7E 3 3	AD 8 2 6E 4 2	8D 8 2	$\begin{cases} See \\ Special \\ Operations \end{cases}$	Note 10
Clear Clear carry Clear interrupt mask Clear overflow Set carry Set interrupt mask Set overflow	CLRA CLRB CLR CLC CLI CLV SEC SEI SEV	4F 2 1 SF 2 1 OC 2 1 OC 2 1 OE 2 1 OD 2 1 OF 2 1 OB 2 1			7F 6 3	6F 7 2		$00 \rightarrow A$ $00 \rightarrow B$ $00 \rightarrow M$ $0 \rightarrow C$ $0 \rightarrow I$ $0 \rightarrow V$ $1 \rightarrow C$ $1 \rightarrow I$ $1 \rightarrow V$	• R S R R • R S R R • R S R R • • • • R • • • • R • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Operation Code (Hexadecimal):

Number of MPU Cycles;

Arithmetic Plus;

Boolean AND;

Arithmetic Minus;

Boolean Inclusive OR;

Number of Program Bytes;

CONDITION CODE SYMBOLS:

- Н Half-carry from bit 3;
- Interrupt mask I
- Negative (sign bit) Ν
- Zero (byte) Ζ
- V Overflow, 2's complement
- С Carry from bit 7
- R Reset Always
- S Set Always
- Test and set if true, cleared otherwise \$
- Not Affected

Boolean Exclusive OR; M Complement of M;

LEGEND:

OP

MC

PB

+

.

Ð

MSP

- Transfer Into; **_**
- 0 Bit = Zero;
- 00 Byte = Zero;

Note - Accumulator addressing mode instructions are included in the IMPLIED addressing.

Contents of memory location pointed to by Stack Pointer;

CONDITION CODE REGISTER NOTES:

(Bit set if test is true and cleared otherwise)

- (Bit V) Test: Result = 10000000? 1
- (Bit C) Test: Result = 00000000? 2
- 3 (Bit C) Test: Decimal value of most significant BCD Character greater than nine? (Not cleared if previously set.)
- Test: Operand = 10000000 prior to execution? 4 (Bit V)
- Test: Operand = 01111111 prior to execution? (Bit V) 5
- 6 (Bit V) Test: Set equal to result of N @ C after shift has occurred.
- (Bit N) Test: Sign bit of most significant (MS) byte = 1? 7
- 8 (Bit V) Test: 2's complement overflow from subtraction of MS bytes?
- 9 (Bit N) Test: Result less than zero? (Bit 15 = 1)
- (All) 10 Load Condition Code Register from Stack. (See Special Operations)
- (Bit I) Set when interrupt occurs, if previously set, a Non-Maskable Interrupt is required to exit the wait state. 11
- 12 (ALL) Set according to the contents of Accumulator A

SPECIAL OPERATIONS

AMERICAN MICROSYSTEMS, INC.

32

AMI.

S6800 8-BIT MICROPROCESSOR

SPECIAL OPERATIONS

SYSTEMS OPERATION

To demonstrate the great versatility of the functional building block concept, a typical system configuration is shown. This configuration will demonstrate how easily a basic system may be upgraded and expanded for a number of different applications.

The Microprocessing Unit (MPU) may be configured with a Read Only Memory (ROM), Random Access Memory (RAM), a Peripheral Interface Adapter (PIA), restart circuitry and clock circuitry to form a minimum functional system (Figure 10). Such a system can easily be adapted for a number of small scale applications by simply changing the content of the ROM.

TWO-PHASE CLOCK CIRCUITRY AND TIMING-The MPU requires a two-phase non-overlapping clock which has a frequency range as high as 1 MHz. In addition to the two phases, this circuit should also generate an enable signal E, and its complement \overline{E} , to enable ROMs, RAMs, PIAs and ACIAs. This Enable signal and its complement is obtained by ANDing $\phi 2$ and VMA (Valid Memory Address).

CHIP SELECTION AND ADDRESSING-The minimum system configuration permits direct selection of the ROM, RAM, ACIA and PIA without the use of special TTL select logic. This is accomplished by simply wiring the address lines A13 and A14 to the Enable or chip select lines on the memories and PIA. This permits the devices to be addressed as follows:

Device	A14	A13	Hex Addresses
RAM	0	0	0000-007F
PIA	0	1	2004–2007 (Registers)
ROM	1	1	600063FF

Other addressing schemes can be utilized which use any combination of two of the lines A10 through A14 for chip selection.

PERIPHERAL CONTROL-All control and timing for the peripherals that are connected to the PIA is accomplished by software routines under the control of the MPU.

RESTART AND NON-MASKABLE INTERRUPT-Since this basic system does not have a nonvolatile RAM, special circuitry to handle loss of power using NMI is not required. Circuitry is, however, required to insure proper initialization of the MPU when power is turned on. This circuit should insure that the Restart signal is held low for eight $\phi 1$ clock cycles after the V_{CC} power supply reaches a voltage of approximately 4.75 volts DC. Also, in order to insure that a PIA or ACIA is not inadvertently selected during the power-on sequence, Three-State Control (TSC) should be held high until the positive transition of Restart.

HALT-The Halt line is tied to V_{CC} and will automatically place the MPU in the run state when power is turned on. This signal may be used to halt the MPU if a switch is used to tie the line to ground for HALT and to V_{CC} for RUN.

AMI

S6800 8-BIT MICROPROCESSOR

FIGURE 10 - MINIMUM SYSTEM CONFIGURATION

 128×8 STATIC READ/WRITE MEMORY

FUNCTIONAL DESCRIPTION

The S6810 is a static 128 x 8 Read/Write Memory designed and organized to be compatible with the S6800 Microprocessor. Interfacing to the S6810 consists of an 8 Bit Bidirectional Data Bus, Seven Address Lines, a single Read/Write Control line, and six Chip Enable lines, four negative and two positive.

For ease of use, the S6810 is a totally static memory requiring no clocks or cell refresh. The S6810 is fabricated with N channel silicon gate technology to be fully DTL/TTL compatible with only a single +5 volt power supply required.

S6810 128X8 STATIC READ/WRITE MEMORY

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC}	-0.3 to +7.0V
Input Voltage V _{in}	-0.3 to +7.0V
Operating Temperature Range TA	0 to +70°C
Storage Temperature Range T _{stg}	–55 to +150°C

DC (STATIC) CHARACTERISTICS ($V_{CC} = 5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to + 70°C unless otherwise noted)

Characteristic	Symbol	Min.	Typ.	Max.	Unit	Condition
Input High Voltage(NormalOperatingLevels)	V _{IH}	2.4		5.25	v	
Input Low Voltage(NormalOperating Levels)	VIL	-0.3	_	0.4	V	
Input Current (A _n , R/W, E _n , \overline{E}_n) (V _{in} = 0 to 5.25 V)	I _{in}	-	-	2.5	μA	
Input High Threshold Voltage	VIHT	2.0			V	
Input Low Threshold Voltage	V _{ILT}	-	—	0.8	v	
Output High Voltage (IOH = -100μ A)	VOH	2.4	_	—	V	
Output Low Voltage (IOL = 1.6 mA)	VOL	-	-	0.4	V	
Output Leakage Current (D0 – D7) (V_0 = 2.4 V, E = 0.4 V, E = 2.4 V)	ILIH		-	10	μA	
Output Leakage Current (D0 – D7) ($V_0 = 0.4 V$, $E = 0.4 V$, $\overline{E} = 2.4 V$)	ILOL	_	-	10	μA	
Supply Current ($V_{CC} = 5.25V$)	ICC		-	130	mA	
Input Capacitance	CIN			7.5	pF	$f = 1.0MHz, T_A = 25^{\circ}C$
Output Capacitance	COUT		—	15	pF	

AC (DYNAMIC) CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ Volt } \mp 5\%, T_A = 0^{\circ} \text{C to} + 70^{\circ} \text{C})$

Characteristic		Symbol	Min.	Max.	Unit
Address Setup Time		tAS	30	_	ns
Address Hold Time		tAH	0	·	ns
Chip Enable Pulse Width	S6810 S6810-1	tCS	800 400	· <u> </u>	ns

S6810 128 × 8 STATIC READ/WRITE MEMORY

READ CYCLE

(All timing with $t_r = t_f = 20$ ns, Load of Figure 1)

Characteristic		Symbol	Min.	Max.	Unit
Read Cycle Time	S6810 S6810-1	^t cyc(R)	1000 575		ns ns
Output Enable Delay Time	S6810 S6810-1	tED	_	400 300	ns ns
Output Disable Delay Time	S6810 S6810-1	tDD	10 10	200 150	ns ns
Read Access Time	S6810 S6810-1	t _{acc}	<u> </u>	1000 575	ns ns

WRITE CYCLE

(All timing with $t_r = t_f = 20$ ns, Load of Figure 1)

Characteristic		Symbol	Min.	Max.	Unit
Write Cycle Time	S6810 S6810-1	t _{cyc} (W)	1000 500		ns ns
Write Pulse Width	S6810 S6810-1	twp	800 400	-	ns ns
Write Pulse Hold Time	S6810 S6810-1	tWH	1000 500		ns ns
Data Setup Time	S6810 S6810-1	tDS	500 300		ns ns
Data Hold Time	S6810 S6810-1	tDH	0	_	ns

S6810 128X8 STATIC READ/WRITE MEMORY

TIMING CHARACTERISTICS

FIGURE 1 – AC TEST LOAD

S6830

 1024×8 READ ONLY MEMORY

FUNCTIONAL DESCRIPTION

The S6830 is a mask programmable read only memory organized 1024 words x 8 bits for application in byte organized systems. The S6830 is totally bus compatible with the S6800 microprocessor. Interfacing to the S6830 consists

of an 8 bit three-state data bus, four mask programmable chip selects and ten address lines.

The S6830 is a totally static memory requiring no clocks. Access time is compatible with maximum data rates in a S6800 microprocessor system. The device operates from a single +5 volt power supply and is fabricated with N channel silicon gate technology.

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Supply Voltage VCC		-0.3 to +7.0V
Input Voltage V _{in}		-0.3 to +7.0V
Operating Temperature Range TA		0 to +70°C
Storage Temperature Range Tstg	/	-55 to +150°C

NOTE: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC (STATIC) CHARACTERISTICS

 $(V_{CC} = +5 \text{ Volt } \pm 5\%; T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C})$

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Unit
Input High Voltage (Norm. Op. Levels)	V _{IH}	2.4	5:25	Vdc
Input Low Voltage (Norm. Op. Levels)	VIL	-0.3	0.4	Vdc
Input Current ($V_{in} = 0$ to 5.25 V)	I _{in}	—	2.5	μAdc
Input High Threshold Voltage	V _{IHT}	2.0	_	Vdc
Input Low Threshold Voltage	V _{ILT}	—	0.65	Vdc
Output High Voltage (IOH = -100μ A)	V _{OH}	2.4		Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL		0.45	Vdc
Output Leakage Current ($V_{OH} = 2.4 \text{ V}, \overline{E} = 0.4 \text{ V}, \overline{E} = 2.4 \text{ V}$)	ILOH	_	10	μAdc
Output Leakage Current ($V_{OH} = 0.4 V, E = 0.4 V, \overline{E} = 2.4 V$)	ILOL	-	10	μAdc
Supply Current (V _{CC} @ 5.25V)	ICC	_	130	mAdc

CAPACITANCE

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input Capacitance	C _{in}	_	_	7.5	pF	f = 1.0 MHz
Output Capacitance	Cout		·	15	pF	$T_A = 25^{\circ}C$

S6830 1024 × 8 READ ONLY MEMORY

AC (DYNAMIC) CHARACTERISTICS

 V_{CC} = +5 Volt ± 5%; T_A = 0°C to +70°C

READ CYCLE (All timing with $t_r = t_f = 20$ ns, Load of Figure 1)

Characteristic	Symbol	Min.	Max.	Unit
Read Cycle Time	t _{cyc} (R)	575	_	ns
Output Enable Delay Time	tED		300	ns
Output Disable Delay Time	tDD	10	150	ns
Read Access Time	t _{acc}	-	575	ns

READ CYCLE TIMING

FIGURE 1 – AC TEST LOAD

AMI

The first card is an identification card, the following 34 cards

are data cards, and the final card contains the chip enable code.

Card format is as follows:

CUSTOM PROGRAMMING

Programming the S6830 is most accurately and economically accomplished by submitting a deck of 36 punched cards to AMI. On these cards the contents of memory and chip enable inputs are to be specified.

First Card

Col. $1 - 11$	Product Name (1K x 8 NROM)
12 – 19	Blank
20 - 60	Customer Name
61 – 72	Blank
73 – 75	Customer ID – number assigned by AMI marketing
76	Hyphen
77 — 78	Card number (01) in decimal
79 - 80	Total number of cards (36) in decimal

Card 2

Col. 1 – 11	Blank
12	Hexidecimal equivalent for MS (most significant) Character of byte "O" of program
13	Hexidecimal equivalent for LS Character of byte "O" of program

Example: If binary character is 1011 0010, the most significant bits (1011 or "B") is punched into column 12 and the least significant bits (0010 or "2") is punched into column 13.

Hex equivalent for byte "1"
Hex equivalent for each successive byte in the program
Blank.
Card sequence number. (02) in decimal

Cards 3 through 35

Continue through the entire program as described for card 2.

Card 36

Col. $1 - 11$	Blank
12	E3 Chip Enable Code $(1 = True, 0 = False)$
13	E2
14	E 1
15	EO
16 - 76	Blank
77 – 78	Card sequence number (36) in decimal

- Two Programmable Data Direction Registers
- Four Individually-Controlled Interrupt Input Lines; Two Usable as Peripheral Control Outputs
- Disable Capability
- CMOS Compatible Peripheral Lines

AMI.

S6820 PERIPHERAL INTERFACE ADAPTER (PIA)

FUNCTIONAL DESCRIPTION

The S6820 Peripheral Interface Adapter provides the universal means of interfacing peripheral equipment to the S6800 Microprocessing Unit (MPU). This device is capable of interfacing the MPU to peripherals through two 8-bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.

The functional configuration of the PIA is programmed by the MPU during system initialization. Each of the peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the over-all operation of the interface.

The PIA interfaces to the S6800 MPU with an eight-bit bidirectional data bus, three chip select lines, two register select lines, two interrupt request lines, read/write line, enable line and reset line. These signals, in conjunction with the S6800 VMA output, permit the MPU to have complete control over the PIA. VMA may be utilized to gate the input signals to the PIA.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V_{CC} Input Voltage V_{in} Operating Temperature Range T_A Storage Temperature Range T_{stg}

-0.3 to +7.0V -0.3 to +7.0V 0 to +70°C -55 to +150°C

NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC (STATIC) CHARACTERISTICS ($V_{CC} = 5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to + 70°C unless otherwise noted)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage (Normal Operating Levels)	VIH	+2.4	—	V _{CC}	Vdç
Input Low Voltage (Normal Operating Levels)	V _{IL}	-0.3	-	+0.4	Vdc
Input High Threshold Voltage All Inputs Except Enable	V _{IHT}	+2.0			Vdc
Input Low Threshold Voltage All Inputs Except Enable	V _{ILT}	-	—	+0.8	Vdc
Input Leakage Current (Vin = 0 to 5.0 Vdc) R/W, Reset, RS0, RS1, CS0, CS1, CS2, CA1, CB1, Enable	I _{in}	_	1.0	2.5	μAdc
Three-State (Off State) Input Current (V _{in} = 0.4 to 2.4 Vdc, V _{CC} = max) D0-D7, PB0-PB7, CB2	ITSI		2.0	10	μAdc
Input High Current PA0-PA7, CA2 (VIH = 2.4 Vdc)	IIH	100	250		μAdc
Input Low Current PA0-PA7, CA2 (VIL = 0.4 Vdc)	IIL	_	1.0	1.6	mAdc
Output High Voltage $(V_{CC} = \min, I_{Load} = -100 \ \mu Adc,$ Enable Pulse Width < 25 μs)	V _{OH}	+2.4	-		Vdc
Output Low Voltage (V _{CC} = min, I _{Load} = 1.6 mAdc)	VOL		—	+0.4	Vdc
Output High Current (Sourcing) (VOH = 2.4 Vdc) (VOH = 1.5 Vdc, the current for driving other than TTL, e.g.,	IOH	-100	-1000		μAdc
Darlington Base) PB0-PB7, CB2	Tee	-1.0	-2.5		mAdc
(V _{OL} = 0.4 Vdc)	IOL	1.0	_	-	mAdc
Output Leakage Current (Off State) IRQA, IRQB	I _{off}	_	1.0	10	μAdc
Supply Current	I _{CC}	_	56	112	mA
Input Capacitance	C _{in}				pF
$(V_{in} = 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$ D0-D7, PA0-PA7, PB0-PB7, CA2, CB2 R/W, Reset, RS0, RS1, CS0, CS1, $\overline{CS2}$, CA1, CB1 Enable		 		10 7.0 20	
Output Capacitance ($V_{in} = 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz}$)	C _{out}		-	10	pF

AMI.

S6820 PERIPHERAL INTERFACE ADAPTER (PIA)

AC (DYNAMIC) CHARACTERISTICS Loading = 30 pF and one TTL load for PA0-PA7, PB0-PB7, CA2, CB2 = 130 pF and one TTL load for D0-D7, IRQA, IRQB

(V_{CC} = 5.0V \pm 5%; T_A = 0°C to + 70°C unless otherwise noted)

READ TIMING CHARACTERISTICS (Figure 1)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Delay Time, Address valid to Enable positive transition	TAEW	180	_		ns
Delay Time, Enable positive transition to Data valid on bus	TEDR	—	-	395	ns
Peripheral Data Setup Time	TPDSU	300	-		ns
Data Bus Hold Time	THR	10	-		ns
Delay Time, Enable negative transition to CA2 negative transition	T _{CA2}	-	-	1.0	μs
Delay Time, Enable negative transition to CA2 positive transition	T _{RS1}	_		1.0	μs
Rise and Fall Time for CA1 and CA2 input signals	t _r , t _f		-	1.0	μs
Delay Time from CA1 active transition to CA2 positive transition	T _{RS2}	_	_	2.0	μs
Rise and Fall Time for Enable input	trE, tfE	_		25	μs

FIGURE 1 - READ TIMING CHARACTERISTICS

WRITE TIMING CHARACTERISTICS (Figure 2)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Enable Pulse Width	TE	0.470	_	25	μs
Delay Time, Address valid to Enable positive transition	TAEW	180		_	ns
Delay Time, Data valid to Enable negative transition	TDSU	300	-	_	ns
Delay Time, Read/Write negative transition to Enable positive transition	TWE	130	·	-	ns
Data Bus Hold Time.	T _{HW}	10	_	-	ns
Delay Time, Enable negative transition to Peripheral Data valid	TPDW	-	-	1.0	μs
Delay Time, Enable negative transition to Peripheral Data valid, CMOS (V _{CC} - 30%) PA0-PA7, CA2	TCMOS		-	2.0	μs
Delay Time, Enable positive transition to CB2 negative transition	T _{CB2}	-	—	1.0	μs
Delay Time, Peripheral Data valid to CB2 negative transition	TDC	0	—	1.5	μs
Delay Time, Enable positive transition to CB2 positive transition	T _{RS1}	-	_	1.0	μs
Rise and Fall Time for CB1 and CB2 input signals	t _r , t _f	_	-	1.0	μs
Delay Time, CB1 active transition to CB2 positive transition	T _{RS2}	-	-	2.0	μs

FIGURE 2 - WRITE TIMING CHARACTERISTICS

AMI.

S6820 PERIPHERAL INTERFACE ADAPTER (PIA)

INTERFACE DESCRIPTION

MPU/PIA INTERFACE

Pin	Label	Function
 (33) (32) (31) (30) (29) (28) (27) (26) 	D0 D1 D2 D3 D4 D5 D6 D7	Bi-Directional Data – The bi-directional data lines (D0-D7) allow the transfer of data between the MPU and the PIA. The data bus output drivers are three-state devices that remain in the high-impedance (off) state except when the MPU performs a PIA read operation. The Read/Write line is in the Read (high) state when the PIA is selected for a Read operation.
(25)	E	Enable – The enable pulse, E, is the only timing signal that is supplied to the PIA. Timing of all other signals is referenced to the leading and trailing edges of the E pulse. This signal will normally be a derivative of the S6800 ϕ 2 Clock. The E pulse is used to condition the interrupt/control lines CA1, CA2, CB1, and CB2. At least one E pulse must occur from the inactive edge to the active edge of the input signal to set the interrupt flag, when the lines are used as inputs.
(21)	R/W	Read/Write – This signal is generated by the MPU to control the direction of data transfers on the Data Bus. A low state on the PIA Read/Write line enables the input buffers and data is transferred from the MPU to the PIA on the E signal if the device has been selected. A high on the Read/Write line sets up the PIA for a transfer of data to the bus. The PIA output buffers are enabled when the proper address and the enable pulse E are present.
(34)	RESET	Reset – The active low Reset line is used to reset all register bits in the PIA to a logical zero (low). This line can be used as a power-on reset and as a master reset during system operation.
(22) (24) (23)	CS0 CS1 CS2	Chip Select – These three input signals are used to select the PIA. CS0 and CS1 must be high and $\overline{CS2}$ must be low for selection of the device. Data transfers are then performed under the control of the Enable and Read/Write signals. The chip select lines must be stable for the duration of the E pulse.
(36) (35)	RS0 RS1	PIA Register Select — The two register select lines are used to select the various registers inside the PIA. These two lines are used in conjunction with internal Control Registers to select a particular register that is to be written or read. The Register select lines should be stable for the duration of the E pulse while in the read or write cycle.

(38)	ĪRQĀ
(37)	ĪRQB

Interrupt Request – The active low Interrupt Request lines (IRQA and IRQB) act to interrupt the MPU either directly or through interrupt priority circuitry. These lines are "open source" (no load device on the chip) and are capable of sinking a current of 1.6 mA from an external source. This permits all interrupt request lines to be tied together in a wire-OR configuration.

Each Interrupt Request line has two internal interrupt flag bits that will cause the Interrupt Request line to go low. Each flag bit is associated with a particular peripheral interrupt line. Also four interrupt enable bits are provided in the PIA which may be used to inhibit a particular interrupt from a peripheral device.

Servicing an interrupt by the MPU is accomplished by a software routine that, on a prioritized basis, sequentially reads and tests the two control registers in each PIA for interrupt flag bits that are set.

The Interrupt Flag is cleared (zeroed) as a result of an MPU Read Peripheral Data Operation.

PIA/PERIPHERAL INTERFACE

Pin Label Function Section A Peripheral Data - Each of the peripheral data lines can be programmed (2)PA0 (3) PA1 to act as an input or output. This is accomplished by setting a "1" in the corresponding (4) PA2 Data Direction Register bit for those lines which are to be outputs. A "0" in a bit of the Data Direction Register causes the corresponding peripheral data line to act as an input. (5) PA3 (6) During an MPU Read Peripheral Data Operation, the data on peripheral lines programmed to PA4 (7) PA5 act as inputs appears directly on the corresponding MPU Data Bus lines. In the input mode (8) PA6 the internal pullup resistor on these lines represents a maximum of one standard TTL load. (9) **PA**7 The data in Output Register A will appear on the data lines that are programmed to be out-

puts. A logical "1" written into the register will cause a "high" on the corresponding data line while a "0" results in a "low". Data in Output Register A may be read by an MPU "Read Peripheral Data A" operation when the corresponding lines are programmed as outputs. This data will be read properly if the voltage on the peripheral data lines is greater than 2.0 volts for a logic "1" output and less than 0.8 volt for a logic "0" output. Loading the output lines such that the voltage on these lines does not reach full voltage causes the data transferred into the MPU on a Read operation to differ from that contained in the respective bit of Output Register A.

(10)	PB0	Section B Peripheral Data – The peripheral data lines in the B Section of the PIA can
(11)	PB1	be programmed to act as either inputs or outputs in a similar manner to PAO-PA7. How-
(12)	PB2	ever, the output buffers driving these lines differ from those driving lines PAO-PA7. They
(13)	PB3	have three-state capability, allowing them to enter a high impedance state when the peripher-
(14)	PB4	al data line is used as an input. In addition, data on the peripheral data lines PB0-PB7 will
(15)	PB5	be read properly from those lines programmed as outputs even if the voltages are below 2.0
(16)	PB6	volts for a "high". As outputs, these lines are compatible with standard TTL and may also be
(17)	PB7	used as a source of up to 1 milliampere at 1.5 volts to directly drive the base of a transistor switch.

Pin	Label	Function
(40) (18)	CA1 CB1	Interrupt Input – Peripheral Input lines CA1 and CB1 are input-only lines that set the interrupt flags of the control registers. The active transition for these signals is also programmed by the two control registers.
(39)	CA2	Peripheral Control – The peripheral control line CA2 can be programmed to act as an interrupt input or as a peripheral control output. As an output, this line is compatible with standard TTL; as an input the internal pullup resistor on this line represents one standard TTL load. The function of this signal line is programmed with Control Register A.
(19)	CB2	Peripheral Control – Peripheral Control line CB2 may also be programmed to act as an interrupt input or peripheral control output. As an input, this line has high input impedance and is compatible with standard TTL. As an output it is compatible with standard TTL and may also be used as a source of up to 1 milliampere at 1.5 volts to directly drive the base of a transistor switch. This line is programmed by Control Register B.
(1)	GND	Ground
(20)	V _{CC}	+5 Volts ± 5%

AMERICAN MICROSYSTEMS, INC.

AMI.

APPLICATION INFORMATION

INITIALIZATION

A low reset line has the effect of zeroing all PIA registers. This will set PAO-PA7, PBO-PB7, CA2 and CB2 as inputs, and all interrupts disabled. The PIA must be configured during the restart program which follows the reset.

REGISTER ADDRESSING

There are six locations within the PIA accessible to the MPU data bus; two Peripheral Registers, two Data Direction Registers, and two.Control Registers, Selection of these locations is controlled by the RS0 and RS1 inputs together with bit 2 in the Control Register, as shown in Table 1.

		Control Register Bit		
RS1	RS0	CRA-2	CRB-2	Location Selected
0	0	1	X	Peripheral Register A
0	0	0	X	Data Direction Register A
0	1	x	X	Control Register A
1	0	X	1	Peripheral Register B
1	0	X	0	Data Direction Register B
1	1	X	X	Control Register B

TABLE 1 – INTERNAL ADDRESSING

X = Don't Care

DATA DIRECTION REGISTERS (DDRA and DDRB)

The two Data Direction Registers allow the MPU to control the direction of data through each corresponding peripheral data line. All Data Direction Register bits set at "0" configure the corresponding peripheral data line as an input; all "1s" result in an output.

CONTROL REGISTERS (CRA and CRB)

The two Control Registers (CRA and CRB) allow the MPU to control the operation of the four peripheral control lines CA1, CA2, CB1 and CB2. In addition they allow the MPU to enable the interrupt lines and monitor the status of the interrupt flags. Bits 0 through 5 of the two registers may be written or read by the MPU when the proper chip select and register select signals are applied. Bits 6 and 7 of the two registers are read only and are modified by external interrupts occurring on control lines CA1, CA2, CB1 or CB2. The format of the control words is shown in Table 2.

TABLE 2 - CONTROL WORD FORMAT

	7	6	5	4	3	2	1	0
CRA	IRQA1	IRQA2	CA2	Con	trol	DDRA	CA1	Control
						Access		
	7	6	5	4	3	2	1	0
CRB	IRQB1	IRQB2	CB2	Con	trol	DDRB	CB1	Control
						Access		

Data Direction Access Control Bit (CRA-2 and CRB-2) - Bit 2 in each Control register (CRA and CRB) allows selection of either a Peripheral Interface Register or the Data Direction Register when the proper register select signals are applied to RS0 and RS1.

Control of CA1 and CB1 Interrupt Input Lines (CRA-0, CRB-0, CRA-1, and CRB-1) – The two lowest order bits of the control registers are used to control the interrupt input lines CA1 and CB1. Bits CRA-0 and CRB-0 are used to enable the MPU interrupt signals \overline{IRQA} and \overline{IRQB} , respectively. Bits CRA-1 and CRB-1 determine the active transition of the interrupt input signals CA1 and CB1 (Table 3).

AMI.

CRA-1 (CRB-1)	CRA-0 (CRB-0)	Interrupt Input CA1 (CB1)	Interrupt Flag CRA-7 (CRB-7)	MPU Interrupt Request IRQA (IRQB)
0	0	↓ Active	Set high on ↓ of CA1 (CB1)	Disabled – \overline{IRQ} remains high
0	1	↓ Active	Set high on ↓ of CA1 (CB1)	Goes low when the interrupt flag bit CRA-7 (CRB-7) goes high
1	0	↑ Active	Set high on ↑ of CA1 (CB1)	Disabled $-\overline{IRQ}$ remains high
1	1	↑ Active	Set high on ↑ of CA1 (CB1)	Goes low when the interrupt flag bit CRA-7 (CRB-7) goes high

TABLE 3 - CONTROL OF INTERRUPT INPUTS CA1 AND CB1

NOTES: 1. \uparrow indicates positive transition (low to high)

- 2. \downarrow indicates negative transition (high to low)
 - 3. The Interrupt flag bit CRA-7 is cleared by an MPU Read of the A Data Register, and CRB-7 is cleared by an MPU Read of the B Data Register.
 - 4. If CRA-0 (CRB-0) is low when an interrupt occurs (Interrupt disabled) and is later brought high, IRQA (IRQB) occurs on the positive transition of CRA-0 (CRB-0).

Control of CA2 and CB2 Peripheral Control Lines (CRA-3, CRA-4, CRA-5, CRB-3, CRB-4, and CRB-5) – Bits 3, 4, and 5 of the two control registers are used to control the CA2 and CB2 Peripheral Control lines. These bits determine if the control lines will be an interrupt input or an output control signal. If bit CRA-5 (CRB-5) is low, CA2 (CB2) is an

interrupt input line similar to CA1 (CB1) (Table 4). When CRA-5 (CRB-5) is high, CA2 (CB2) becomes an output signal that may be used to control peripheral data transfers. When in the output mode, CA2 and CB2 have slightly different characteristics (Tables 5 and 6).

CRA-5 (CRB-5)	CRA-4 (CRB-4)	CRA-3 (CRB-3)	Interrupt Input CA2 (CB2)	Interrupt Flag CRA-6 (CRB-6)	MPU Interrupt Request IRQA (IRQB)
0	0	0	↓ Active	Set high on ↓ of CA2 (CB2)	Disabled $-\overline{IRQ}$ remains high
0	0	1	↓ Active	Set high on \downarrow of CA2 (CB2)	Goes low when the interrupt flag bit CRA-6 (CRB-6) goes high
0	1	0	↑ Active	Set high on ↑ of CA2 (CB2)	Disabled – IRQ remains high
0	1	1	↑ Active	Set high on ↑ of CA2 (CB2)	Goes low when the interrupt flag bit CRA-6 (CRB-6) goes high

FABLE 4 – CONT	ROL OF CA2 AND	CB2 AS	INTERRUPT	INPUTS
	CRA5 (CRB5) is low		

NOTES: 1. ↑ indicates positive transition (low to high)

2. \downarrow indicates negative transition (high to low)

3. The Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB-6 is cleared by an MPU Read of the B Data Register.

4. If CRA-3 (CRB-3) is low when an interrupt occurs (Interrupt disabled) and is later brought high, IRQA (IRQB) occurs on the positive transition of CRA-3 (CRB-3).

			CA2				
CRA-5	CRA-4	CRA-3	Cleared	Set			
1	0	0	Low on negative transition of E after an MPU Read "A" Data operation.	High on an active transition of the CA1 signal			
1	0	1	Low immediately after an MPU Read "A" Data operation.	High on the negative edge of the next "E" pulse.			
1	1	0	Low when CRA-3 goes low as a result of an MPU Write in Control Register "A".	Always low as long as CRA-3 is low.			
1	1	1	Always high as long as CRA-3 is high	High when CRA-3 goes high as a result of a Write in Control Register "A".			

TABLE 5 – CONTROL OF CA2 AS AN OUTPUT CRA-5 is high

TABLE 6 -- CONTROL OF CB2 AS AN OUTPUTCRB-5 is high

			CB2				
CRB-5	CRB-4	CRB-3	Cleared	Set			
1	0	0	Low on the positive transition of the first E pulse following an MPU Write "B" Data Register operation.	High when the interrupt flag bit CRB-7 is set by an active transition of the CB1 signal			
1	0	1	Low on the positive transition of the first E pulse following an MPU Write "B" Data Register operation.	High on the positive transition of the next "E" pulse.			
1	1	0	Low when CRB-3 goes low as a result of an MPU Write in Control Register "B".	Always low as long as CRB-3 is low. Will go high on an MPU Write in Control Register "B" that changes CRB-3 to "one".			
1	1	1	Always high as long as CRB-3 is high. Will be cleared when an MPU Write Con- trol Register "B" results in clearing CRB-3 to "zero".	High when CRB-3 goes high as a result of an MPU write into control register "B".			

Interrupt Flags (CRA-6, CRA-7, CRB-6, and CRB-7) -The four interrupt flag bits are set by active transitions of signals on the four Interrupt and Peripheral Status lines when those lines are programmed to be interrupt inputs. These bits cannot be set directly from the MPU Data Bus and are reset indirectly by a Read Peripheral Data Operation on the appropriate section.

AMI

S6820 PERIPHERAL INTERFACE ADAPTER (PIA)

BASIC SYSTEM CONFIGURATION

The Microprocessing Unit (MPU) may be configured with a Read Only Memory (ROM), Random Access Memory (RAM), a Peripheral Interface Adapter (PIA), restart circuitry and clock circuitry to form a minimum functional system (Figure 3). Such a system can easily be adapted for a number of small scale applications by simply changing the content of the ROM.

TWO-PHASE CLOCK CIRCUITRY AND TIMING—The MPU requires a two-phase non-overlapping clock which has a frequency range as high as 1 MHz. In addition to the two phases, this circuit should also generate an enable Signal E, and its complement E, to enable ROMs, RAMs, PIAs and ACIAs. This Enable signal and its complement is obtained by ANDing ϕ 2 and VMA (Valid Memory Address).

CHIP SELECTION AND ADDRESSING-The Minimum system configuration permits direct selection of the ROM, RAM,

FIGURE 3. MINIMUM SYSTEM IMPLEMENTATION

ACIA and PIA without the use of special TTL select logic. This is accomplished by simply wiring the address lines A13 A14 to the Enable or chip select lines on the memories and PIA. This permits the devices to be addressed as follows:

Device	A14	A13	Hex Addresses
RAM	0	0	0000-007F
PIA	0	1	2004-2007 (Registers)
ROM	1	1	600063FF

Other addressing schemes can be utilized which use any combination of two of the lines A10 through A14 for chip selection.

PERIPHERAL CONTROL-All control and timing for the peripherals that are connected to the PIA is accomplished by software routines under the control of the MPU.

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

FUNCTIONAL DESCRIPTION

The S6850 Asynchronous Communications Interface Adapter (ACIA) provides the data formatting and control to interface serial asynchronous data communications to bus organized systems such as the S6800 Microprocessing Unit.

The S6850 includes select enable, read/write, interrupt and bus interface logic to allow data transfer over an eight bit

bi-directional data bus. The parallel data of the bus system is serially transmitted and received by the asynchronous data interface, with proper formatting and error checking. The functional configuration of the ACIA is programmed via the data bus during system initialization. Word lengths, clock division ratios and transmit control through the Request to Send output may be programmed. For modem operation three control lines are provided. These lines allow the ACIA to interface directly with the S6860 0-600 bps digital modem.

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC}	-0.3 to +7.0V	Operating Temperature Range T_A	0 to +70°C
Input Voltage V _{in}	-0.3 to +7.0V	Storage Temperature Range T _{stg}	55 to +150°C

NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC (STATIC) CHARACTERISTICS ($V_{CC} = 5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to + 70°C unless otherwise noted)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Input High Voltage (Normal Operating Levels)	V _{IH}	+2.4	_	V _{CC}	Vdc
Input Low Voltage (Normal Operating Levels)	VIL	-0.3	-	+0.4	Vdc
Input High Threshold Voltage All Inputs Except Enable	V _{IHT}	+2.0		_	Vdc
Input Low Threshold Voltage All Inputs Except Enable	V _{ILT}	-	-	+0.8	Vdc
Input Leakage Current (V _{in} = 0 to 5.0 Vdc) R/W, RS, CS0, CS1, CS2, Enable	I _{in}		1.0	2.5	μAdc
Three-State (Off State) Input Current ($V_{in} = 0.4$ to 2.4 Vdc, $V_{CC} = max$) D0-D7,	ITSI	-	,2.0	10	μAdc
Output High Voltage $(I_{Load} = -100 \mu Adc,$ Enable Pulse Width < 25 μs)All Outputs Except IRQ	VOH	+2.4		-	Vdc
Output Low Voltage (I _{Load} = 1.6 mAdc) Enable Pulse Width < 25 μs	V _{OL}	_	-	+0.4	Vdc
Output Leakage Current (Off State) IRQ	ILOH		1.0	10	μAdc
Supply Current	ICC		56	100	mA
Input Capacitance ($V_{in} = 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz}$)	Cin	4			pF
D0-D7		<u> </u>	—	10	
R/W, RS, CS0, CS1, CS2, RXD, CTX, CRX, CTS, DCD Enable			_	10	·
Output Capacitance ($V_{in} = 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz}$)	Cout	_	-	10	pF

AMERICAN MICROSYSTEMS, INC.

NOVEMBER 1974

57

S6850

S6850 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA) ION INTERFACE ADAPTER (ACIA)

AC (DYNAMIC) CHARACTERISTICS

Loading = 130 pF and one TTL load for D0-D7 = 20pF and 1 TTL load for $\overline{\text{RTS}}$ and TXD = 100pF and 3K Ω to V_{CC} for $\overline{\text{IRQ}}$. (V_{CC} = 5.0V ± 5%; T_A = 0°C to + 70°C unless otherwise noted)

READ TIMING CHARACTERISTICS (Figure 1)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Setup Time, Address valid to Enable positive transition	TAEW	180	-	_	ns
Setup Time, Enable positive transition to Data valid on bus	T _{EDR}	_	-	395	ns
Data Bus Hold Time	T _{HR}	10	-		ns
Rise and Fall Time for Enable input	t _{rE} , t _{fE}		-	25	μs

FIGURE 1 – READ TIMING CHARACTERISTICS

RITE TIMING CHARACTERISTICS (Figure 2)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Enable Pulse Width	TE	0.470	-	25	μs
Setup Time, Address valid to Enable positive transition	TAEW	180	-	_	ns
Setup Time, Data valid to Enable netative transition	T _{DSU}	300		_	ns
Setup time, Read/Write negative transition to Enable positive transition	TWE	130	-		ns
Data Bus Hold Time	T _{HW}	10	_		ns

FIGURE 2 - WRITE TIMING CHARACTERISTICS

S6850 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

TRANSMIT/RECEIVE CHARACTERISTICS (Figure 3)

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Clock Frequency					
÷ 1 mode	fc			500	KHz
$\div 16 \text{ mode}$	C			800	KHz
\div 64 mode				800	KHz
Clock Pulse Width, Low State	PWCL	600			nsec
Clock Pulse Width, High State	PWCH	600			nsec
Delay Time, Transmit Clock to Data Out	T _{TDD}			1.0	µsec
Set up Time, Receive Data	TRDSU	500			nsec
Hold Time, Receive Data	TRDH	500			nsec
Delay Time, Enable to IRQ Reset	T _{IRQR}			1.2	µsec
Delay Time, Enable to $\overline{\text{RTS}}$	T _{RTS}			1.0	µsec

FIGURE 3 - TRANSMIT/RECEIVE TIMING

S6850 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

MPU/ACIA INTERFACE

Pin	Label	FUNCTION
(22)	D0	ACIA BI-DIRECTIONAL DATA LINES-The bi-directional data lines (D0-D7) allow for
(21)	D1	data transfer between the ACIA and the MPU. The data bus output drivers are three-state
(20)	D2	devices that remain in the high-impedance (off) state except when the MPU performs an
(19)	D3	ACIA read operation. The Read/Write line is in the read (high) state when the ACIA is
(18)	D4	selected for a read operation.
(17)	D5	
(16)	D6	
(15)	D7	
(14)	E	ACIA ENABLE SIGNAL—The Enable signal (E) is a high impedance TTL compatible input that enables the bus input/output data buffers and clocks data to and from the ACIA. This signal will normally be a derivative of the S6800 ϕ 2 clock.
(13)	R/W	READ/WRITE CONTROL SIGNAL —The Read/Write line is a high impedance input that is TTL compatible and is used to control the direction of data flow through the ACIA's input/output data bus interface. When Read/Write is high (MPU Read cycle), the ACIA output driver is turned on and a selected register is read. When it is low, the ACIA output driver is turned off and the MPU writes into a selected register. Thus, the Read/Write signal is used to select the Read Only or Write Only registers within the ACIA.
(8)	CS0	
(10)	CS1	
(9)	CS2	CHIP SELECT SIGNALS —These three high impedance TTL compatible input lines are used to address an ACIA. A particular ACIA is selected when CS0 and CS1 are high and $\overline{CS2}$ is low. Transfers of data to and from ACIA are then performed under the control of Enable, Read/Write, and Register Select.
(11)	RS	REGISTER SELECT SIGNAL —The Register Select line is a high impedance input that is TTL compatible and is used to select the Transmit/Receive Data or Control/Status registers in the ACIA. The Read/Write signal line is used in conjunction with Register Select to select the Read Only or Write Only register in each register pair.
(7)	ĪRQ	INTERRUPT REQUEST SIGNAL —Interrupt request is a TTL compatible, open drain active low output that is used to interrupt the MPU. The Interrupt Request remains low as long as the cause of the interrupt is present and the appropriate interrupt enable within the ACIA is set.

ACIA/MODEM OR PERIPHERAL INTERFACE

Pin	Label	FUNCTION			
(4)	CTX	TRANSMIT CLOCK-The Transmit Clock is a high impedance TTL compatible input			
		used for the clocking of transmitted data. The transmitter initiates data on the negative			
		transition of the clock. Clock frequency of 1, 16, or 64 times the data rate may be selected.			

S6850 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

Pin	Label	FUNCTION
(3)	CRX	RECEIVE CLOCK —The Receive Clock is a high impedance TTL compatible input used for synchronization of received data. (In the \div 1 mode, the clock and data must be synchronized externally.) The receiver strobes the data on the positive transition of the clock. Clock frequency of 1, 16, or 64 times the data rate may be selected.
(2)	RXD	RECEIVED DATA —The Received Data line is a high impedance TTL compatible input through which data is received in a serial NRZ(Non Return to Zero) format. Synchronization with a clock for detection of data is accomplished internally when clock rates of 16 or 64 times the bit rate are used. Data rates are in the range of 0 to 500 Kbps when external synchronization is utilized.
(6)	TXD	TRANSMIT DATA —The Transmit Data output line transfers serial NRZ data to a modem or other peripheral device. Data rates are in the range of 0 to 500Kbps when external synchronization is utilized.
(24)	<u>CTS</u>	CLEAR-TO-SEND —This high impedance TTL compatible input provides automatic control of the transmitting end of a communications link via the modem's "clear-to-send" active low output by inhibiting the Transmitter Data Register Empty status bit (TDRE).
(5)	RTS	REQUEST-TO-SEND —The Request-to-Send output enables the MPU to control a peripheral or modem via the data bus. The active state is low. The Request-to-Send output is controlled by the contents of the ACIA control register.
(23)	DCD	DATA CARRIER DETECTED —This high impedance TTL compatible input provides automatic control of the receiving end of a communications link by means of the modem "Data-Carrier-Detect" or "Received-Line-Signal Detect" output. The DCD input inhibits and
		initializes the receiver section of the ACIA when high. A low to high transition of the Data Carrier Detect initiates an interrupt to the MPU to indicate the occurrence of a loss of carrier when the Receiver Interrupt Enable (RIE) is set.
(12)	V _{CC}	+5 volts ± 5%
(1)	GND	GROUND

S6850 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

APPLICATION INFORMATION

INTERNAL REGISTERS—The ACIA has four internal registers utilized for status, control, receiving data, and transmitting data. The register addressing by the R/W and RS lines and the bit definitions for each register are shown in Figure 4.

FIGURE 4 – DEFINITION OF ACIA REGISTERS

	BUFFER ADDRESS				
	RS ● R/W	RS ●R/W	$\overline{\mathbf{RS}} \bullet \overline{\mathbf{R}} / \overline{\mathbf{W}}$	RS ● R/W	
Data Bus Line Number	Transmit Data Register (Write Only)	Receiver Date Register (Read Only)	Control Register	Status Register (Read Only)	
0	Data Bit 0*	Data Bit 0*	Clk. Divide Sel. 1 (CR0)	Rx Data Reg. Full (RDRF)	
<i>,</i> 1	Data Bit 1	Data Bit 1	Clk. Divide Sel. 2 (CR1)	Tx Data Reg. Empty (TDRE)	
2	Data Bit 2	Data Bit 2	Word Sel. 1 (CR2)	Data Carrier Det. (DCD)	
3	Data Bit 3	Data Bit 3	Word Sel. 2 (CR3)	Clear-to-Send (CTS)	
4	Data Bit 4	Data Bit 4	Word Sel. 3 (CR4)	Framing Error (FE)	
5	Data Bit 5	Data Bit 5	Tx Control 1 (CR5)	Receiver Overrun (OVRN)	
6	Data Bit 6	Data Bit 6	Tx Control 2 (CR6)	Parity Error (PE)	
7	Data Bit 7***	Data Bit 7**	Rx Interrupt Enable (CR7)	Interrupt Request (IRQ)	

Notes:

- * Leading bit = LSB = Bit 0
- ** Unused data bits in received character will be "0's."
- *** Unused data bits for transmission are "don't care's."

AMI.

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

ACIA STATUS REGISTER-Information on the status of the ACIA is available to the MPU by reading the ACIA Status Register. This Read Only register is selected when RS is low and R/W is high. Information stored in this register indicates the status of: transmitting data register, the receiving data register and error status and the modem status inputs of the ACIA.

Receiver Data Register Full (RDRF) [Bit 0] – Receiver Data Register Full indicates that received data has been transferred to the Receiver Data Register. RDRF is cleared after an MPU read of the Receiver Data Register or by a Master Reset. The cleared or empty state indicates that the contents of the Receiver Data Register are not current. Data Carrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE) [Bit 1]—The Transmit Data Register Empty bit being set high indicates that the Transmit Data Register contents have been transferred and that new data may be entered. The low state indicates that the register is full and that transmission of a new character has not begun since the last write data command.

Data Carrier Detect ($\overline{\text{DCD}}$) [Bit 2] – The Data Carrier Detect bit will be high when the $\overline{\text{DCD}}$ input from a modem has gone high to indicate that a carrier is not present. This bit going high causes an Interrupt Request to be generated if the Receiver Interrupt Enable (RIE) is set. It remains high until the interrupt is cleared by reading the Status Register and the data register or a Master Reset occurs. If the $\overline{\text{DCD}}$ input remains high after Read Status and Read Data or Master Reset have occurred, the $\overline{\text{DCD}}$ Status bit remains high and will follow the $\overline{\text{DCD}}$ input.

Clear-to-Send ($\overline{\text{CTS}}$) [Bit 3] – The Clear-to-Send bit indicates the state of the Clear-to-Send input from a modem. A low $\overline{\text{CTS}}$ indicates that there is a Clear-to-Send from the modem. In the high state, the Transmit Data Register Empty bit is inhibited and the Clear-to-Send status bit will be high. Master Reset does not affect the Clear-to-Send status bit.

Framing Error (FE) [Bit 4] – Framing error indicates that the received character is improperly framed by the start and stop bit and is detected by the absence of the 1st stop bit. This error indicates a synchronization error, faulty transmission, or a break condition. The framing error flag is set or reset during the receiver data transfer time. Therefore, this error indicator is present throughout the time that the associated character is available.

Receiver Overrun (OVRN) [Bit 5] – Overrun is an error flag that indicates that one or more characters in the data stream were lost. That is, a character or a number of characters were received but not read from the Receiver Data Register

(RDR) prior to subsequent characters being received. The overrun condition begins at the midpoint of the last bit of the second character received in succession without a read of the RDR having occurred. The Overrun does not occur in the Status Register until the valid character prior to Overrun has been read. The RDRF bit remains set until Overrun is reset. Character synchronization is maintained during the Overrun condition. The overrun indication is reset after the reading of data from the Receive Data Register. Overrun is also reset by the Master Reset.

S6850

Parity Error (PE) [Bit 6] – The parity error flag indicates that the number of highs (ones) in the character does not agree with the preselected odd or even parity. Odd parity is defined to be when the total number of ones is odd. The parity error indication will be present as long as the data character is in the RDR. If no parity is selected, then both the transmitter parity generator output and the receiver parity check results are inhibited.

Interrupt Request (\overline{IRQ}) [Bit 7]—The IRQ bit indicates the state of the \overline{IRQ} output. Any interrupt that is set and enabled will be indicated in the status register. Any time the \overline{IRQ} output is low the IRQ bit will be high to indicate the interrupt or service request status.

CONTROL REGISTER-The ACIA control Register consists of eight bits of write only buffer that are selected when RS and R/W are low. This register controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send modem control output.

Counter Divide Select Bits (CR0 and CR1)—The Counter Divide Select Bits (CR0 and CR1) determine the divide ratios utilized in both the transmitter and receiver sections of the ACIA. Additionally, these bits are used to provide a Master Reset for the ACIA which clears the Status Register and initializes both the receiver and transmitter. Note that after a power-on or a power-fail restart, these bits must be set High to reset the ACIA. After resetting, the clock divide ratio may be selected. These counter select bits provide for the following clock divide ratios:

CR1	CR0	Function
0	0	÷ 1
0	1	÷16
1	0	÷64
1	1	Master Reset

S6850 ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

Word Select Bits (CR2, CR3, and CR4)—The Word Select bits are used to select word length, parity, and the number of stop bits. The encoding format is as follows:

CR4	CR3	CR2	Function
0	0	0	7 Bits + Even Parity + 2 Stop Bits
0	0	1	7 Bits + Odd Parity + 2 Stop Bit
0	1	0	7 Bits + Even Parity + 1 Stop Bit
0	1	1	7 Bits + Odd Parity + 1 Stop Bit
1	0	0	8 Bits + 2 Stop Bits
1	0	1	8 Bits + 1 Stop Bit
1	1	0	8 Bits + Even Parity + 1 Stop Bit
1	1	1	8 Bits + Odd Parity + 1 Stop Bit

Word length, Parity Select, and Stop Bit changes are not double-buffered and therefore become effective immediately.

Transmitter Control Bits (CR5 and CR6)-Two Transmitter Control bits provide for the control of the Transmitter Buffer Empty interrupt output, the Request-to-Send output and the transmission of a BREAK level (space). The following encoding format is used:

CR6	CR5	Function
0	0	RTS = low, Transmitting Interrupt Dis- abled
0	1	$\overline{\text{RTS}}$ = low, Transmitting Interrupt Enabled
1	0	$\overline{\text{RTS}}$ = high, Transmitting Interrupt Disabled
1	1	$\overline{\text{RTS}}$ = low, Transmitting Interrupt Disabled and Transmits a BREAK level on the Trans- mit Data Output.

Receiver Interrupt Enable Bit (RIE) (CR7)–Interrupts will be enabled by a high level in bit position 7 of the Control Register (CR7). Interrupts caused by the Receiver Data Register Full being high or by a low to high transition on the Data Carrier Detect signal line are enabled or disabled by the Receiver Interrupt Enable Bit.

TRANSMIT DATA REGISTER (TDR)-Data is written in the Transmit Data Register *during* the peripheral enable time (E) when the ACIA has been addressed and RS \cdot R/W is selected. Writing data into the register causes the Transmit Data Register Empty bit in the status register to go low. Data can then be transmitted. If the transmitter is idling and no character is being transmitted, then the transfer will take place within one bit time of the trailing edge of the Write command. If a character is being transmitted, the new data character will commence as soon as the previous character is complete. The transfer of data causes the Transmit Data Register Empty (TDRE) bit to indicate empty.

RECEIVE DATA REGISTER (RDR)—Data is automatically transferred to the empty Receive Data Register (RDR) from the receiver deserializer (a shift register) upon receiving a complete character. This event causes the Receiver Data Register Full bit (RDRF) (in the status buffer) to go high (full). Data may then be read through the bus by addressing the ACIA and selecting the Receiver Data Register with RS and R/W high when the ACIA is enabled. The non-destructive read cycle causes the RDRF bit to be cleared to empty although the data is retained in the RDR. The status is maintained by RDRF as to whether or not the data is current. When the Receiver Data Register is full, the automatic transfer of data from the Receiver Shift Register to the Data Register is inhibited and the RDR contents remain valid with its current status stored in the Status Register.

OPERATIONAL DESCRIPTION

From the MPU Bus interface the ACIA appears as two addressable RAM memory locations. Internally, there are four registers; two read-only and two write-only registers. The read-only registers are status and receive data, and the write only registers are control and transmit data. The serial interface consists of serial transmit and receive lines and three modem/peripheral control lines.

During a power-on sequence, the ACIA is internally latched in a reset condition to prevent erroneous output transitions. This power-on reset latch can only be released by the master reset function via the control register; bits b_0 and b_1 are set "high" for a master reset. After master resetting the ACIA, the programmable control register can be set for a number of options such as variable clock divider ratios, variable word length, one or two stop bits, parity (even, odd, or none) and etc.

TRANSMITTER-A typical transmitting sequence consists of reading the ACIA status register either as a result of an interrupt or in the ACIA's turn in a polling sequence. A character may be written into the Transmitter Data Register if the status read operation has indicated that the Transmit Data

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

Register is empty. This character is transferred to a shift register where it is serialized and transmitted from the Tx Data output preceded by a start bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character and will occur between the last data bit and the first stop bit. After the first character is written in the data register, the status register can be read again to check for a Transmit Data Register Empty condition and current peripheral status. If the register is empty, another character can be loaded for transmission even though the first character is in the process of being transmitted. This second character will be automatically transferred into the shift register when the first character transmission is completed. The above sequence continues until all the characters have been transmitted.

MI

RECEIVER-Data is received from a peripheral by means of the Rx Data input. A divide by one clock ratio is provided for an externally synchronized clock (to its data) while the divide by 16 and 64 ratios are provided for internal synchronization. Bit synchronization in the divide by 16 and 64 modes is obtained by the detection of the leading mark-to-space transition of the start bit. False start bit deletion capability insures that a full half bit of a start bit has been received before the internal clock is synchronized to the bit time. As a character is being received, parity (odd or even) will be checked and the error indication will be available in the status register along with framing error, overrun error, and receiver data register full. In a typical receiving sequence, the status register is read to determine if a character has been received from a peripheral. If the receiver data register is full, the character is placed on the 8-bit ACIA bus when a Read Data command is received from the MPU. The status register can be read again to determine if another character is available in the receiver data register. The receiver is also double buffered so that a character can be read from the data register as another character is being received in the shift register. The above sequence continues until all characters have been received.

S6850

65

FUNCTIONAL DESCRIPTION

The S6860 is a 0-600 bps Digital Modem circuit designed to be integrated into a wide range of equipment utilizing serial data communications.

The modem provides the necessary modulation, demodulation and supervisory control functions to implement a serial data communications link, over a voice grade channel, utilizing frequency shift keying (FSK) a bit rates up to 600 bps. The S6860 can be implemented into a wide range of data handling systems, including stand alone modems, data storage devices, remote data communication terminals and I/O interfaces for minicomputers.

N-channel silicon gate technology permits the S6860 to operate using a single voltage supply and be fully TTL compatible.

The modem is compatible with the S6800 microcomputer family, interfacing directly with the Asynchronous Communications Interface Adapter (ACIA) to provide low-speed data communications capability.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC}	ge $T_A = 0$ to $70^{\circ}C$	7.0V Operating Temperature Range T _A	0 to 70°C
Input Voltage V _{IN}	T_{STG} – 50 to 150°C	7.0V Storage Temperature Range T _{STG}	– 50 to 150°C
Input Voltage VIN	¹ STG - 50 to 1	Storage Temperature Range TSTG	- 50 10 1

NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC (STATIC) CHARACTERISTICS

(V_{CC} = 5.0V ± 5%, T_A = 25°C unless otherwise noted.)

SYMBOL	CHARACTERISTIC	MIN	ТҮР	MAX	UNIT
v _{IH}	Input High Voltage, All inputs Except Crystal	2.0	_	v _{CC}	Vdc
v _{IL}	Input Low Voltage, All inputs Except Crystal	-0.3		0.8	Vdc
V _{IN}	Crystal Input Voltage (Crystal Input Driven from an External Reference, Input Coupling Capacitor = 200 pF, Duty Cycle = 50 ± 5%)	1.5	—	2.0	V _{p-p}
I _{IN}	Input Current (V_{IN} = GND) All Inputs Except RXCAR,TXDATA, \overline{TD} , TST, \overline{RI} , \overline{SH} \overline{RI} , \overline{SH} Inputs	_	_	-0.2 -1.6	mAdc
ЧL	Input Leakage Current (V _{IN} = 0 to 5.0 Vdc)	—	—	1.	μAdc
V _{OH1}	Output High Voltage, All Outputs Except ANPH and TXCAR (I _{OH1} = -0.04 mAdc, Load A)	2.4	_	v _{CC}	Vdc
V _{OL1}	Output Low Voltage, All Outputs Except ANPH and TXCAR (I _{OL1} = 1.6 mAdc, Load A)	-0.3	_	0.4	Vdc
I _{OH2}	Output High Current, ANPH (V _{OH2} = 0.8 Vdc, Load B)	0.3		_	mAdc
V _{OL2}	Output Low Voltage, ANPH $(I_{OL2}) = 0$, Load B)	-0.3		0.3	Vdc
C _{IN}	Input Capacitance (f = 0.1 MHz)	-	5.		pF
c _{OUT}	Output Capacitance (f = 0.1 MHz)	_	10	-	pF
v _{co}	Transmit Carrier Output Voltage (Load C)	0.20	0.35	0.50	V(RMS)
v _{2H}	Transmit Carrier Output 2nd Harmonic (Load C)	-25	-32		dB
I _{DD}	V _{CC} Supply Current (All Inputs at GND & All Outputs Open)		30	65	mAdc

AC (DYNAMIC) CHARACTERISTICS

(Loading is as shown in Figure 1 unless otherwise noted.)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNIT
t _r t _f	Input Transition Times, All Inputs Except Crystal (Operating in the Crystal Input Mode; from 10% to 90% Points)			1.* 1.*	μs
t _r t _f	Input Transition Times, Crystal Input (Operating in External Input Reference Mode)			30 30	ns
t _r t _f	Output Transition Times, All Outputs Except TXCAR (From 10% to 90% Points)	-	_ _	5. 5.	μs

*Maximum Input Transition Times are ≤ 0.1 x Pulse Width or the specified maximum of 1.0 μ s, whichever is smaller.

AMI.

MODEM/TERMINAL INTERFACE

PIN	LABEL	FUNCTION
(2)	TXDATA	Transmit Data – Serial data transferred to the modem via the ACIA for transmitting to the receiving terminal.
(8)	TXBRK	Transmit Break – Used to signal the remote modem to stop transmitting data.
		A Transmit Break (low) greater than 34 ms forces the modem to send a continuous space signal for 233 ms. Transmit Break must be initiated only after $\overline{\text{CTS}}$ has been established. This is a negative edge sense input. Prior to initiating $\overline{\text{TXBRK}}$ this input must be held high for a minimum of 34 ms.
(24)	RXDATA	Receive Data – The data resulting from demodulating the Receive Carrier signal. A high level is a mark.
(3)	RXBRK	Receive Break – Upon receipt of a continuous 150 ms space, the modem automatically clamps the Receive Break output high. This output is also clamped high until Clear-to-Send is established.
(9)	BRKR	Break Release – The Receive Break output (clamp high condition) can be removed by holding the Break Release signal low for at least 20 μ s after receiving a minimum 150 ms space signal.
(20)	DTR	Data Terminal Ready – Enables the modem function when low. When \overline{DTR} is held high for 34 ms minimum, a disconnect is initiated and will occur 3 sec. later.
(23)	CTS	Clear-to-Send – A low on the \overline{CTS} output indicates the Transmit Data input has been unclamped from a steady Mark, thus allowing data transmission.
(16)	ST	Self Test — With this input at a low level, the demodulator is switched to the modulator frequency and demodulates the transmitted FSK signal. Channel establishment, which occurred during the initial handshake, is not lost during self test. The Mode Control output changes state during Self Test, permitting the receive filters to pass the local Transmit Carrier.

ST	SH	RI	MODE
Н	L	Н	Н
Н	Н	L	L
L	L	H	L
L	H	L	H

(18)	TST	Test Clock – A high in	nput signal decreases the modem test time.	This input must be low for normal
		operation.		

(11) FO Frequency Output – A test signal is output to decrease modem test time. The signal is a square wave at the transmit frequency.

S6860 DIGITAL MODEM

EXTERNAL MODEM INTERFACE

PIN	LABEL	FUNCTION
(12)	v _{CC}	+ 5 Volts ± 5%
(1)	GND	Ground
(22)	ESD	Enable Space Disconnect – When $\overline{\text{ESD}}$ is strapped low and $\overline{\text{DTR}}$ is pulsed to initiate a disconnect, the modem transmits a space for either 3 s or until a loss of threshold is detected, whichever occurs first. If $\overline{\text{ESD}}$ is strapped high, data instead of a space is transmitted. A disconnect occurs at the end of 3 s.
(5)	ELS	Enable Long Space Disconnect – A strapping option which, when low, will automatically hang up the phone upon receipt of a continuous space for 1.5 s.
(6)	ESS	Enable Short Space Disconnect – A strapping option which, when low, will automatically hang up the phone upon receipt of a continuous space for 0.3 s. ESS and ELS must not be simultaneously strapped low.
(13)	XTAL	Crystal $-$ A 1.0 MHz crystal is required to use the on-chip oscillator. A 1.0 MHz square wave can also be applied to this pin to satisfy the clock requirements. Crystal parameteres are as follows:

Mode:	Parallel
Frequency:	1.0 MHz ± 0.1%
Series Resistance:	750 ohms max
Shunt Capacitance:	7.0 pF max
Temperature:	0 – 70°C
Test Level:	1.0 mW
Load Capacitance:	13 pF

When using the 1.0 MHz crystal, external parasitic capacitance, including crystal shunt capacitance, must be ≤ 9 pF at the crystal input.

(14) RXRATE Receive Data Rate – The demodulator has been optimized for signal-to-noise performance at 300 bps and 600 bps. The Receive Data Rate input must be low for 0-600 bps and should be high for 0-300 bps.

MODEM/DATA COUPLER INTERFACE

PIN LABEL

FUNCTION

(15) MODE Mode – Indicates the Originate (high) or Answer (low) status of the modem. This output changes when a Self Test (\overline{ST}) signal is applied.

AMI.

MODEM/DATA COUPLER INTERFACE (Continued)

PIN	LABEL	FUNCTION		
(19)	RI	Ring Indicator – The modem function will recognize the receipt of a call from the CBT if at least 20 cycles of the 20 - 47 Hz ringing signal (low level $\geq 50\%$ of the duty cycle) are present. The CBS \overline{RI} signal must be level-converted to TTL according to the EIA RS-232 specification before interfacing it with the modem function. The receipt of a call from the CBS is recognized if the \overline{RI} signal is present for at least 51 ms. This input is held high except during ringing. A \overline{RI} signal automatically places the modem function in the Answer Mode.		
(21)	SH	Switch Hook – Interfaces directly with the CBT type Data Coupler and via the EIA RS-232 level conversion for the CBS type. An \overline{SH} signal automatically places the modem function in the Originate Mode.		
		\overline{SH} is low during origination of a call. The modem will automatically hang up 17 s after releasing \overline{SH} if the handshaking routine has not been accomplished.		
(4)	ANPH	Answer Phone – Upon receipt of Ring Indicator or Switch Hook signal and Data Terminal Ready, the Answer Phone output goes high ($[SH + RI] \bullet DTR$). This signal drives the base of a transistor which activates the Off Hook and Data Transmission control lines in the data coupler. Upon call completion, the Answer Phone signal returns to a low level.		
(7)	TD	Threshold Detect – This input is derived from an external threshold detector. If the signal level is sufficient, the $\overline{\text{TD}}$ input must be low for 20 μ s at least once every 32 ms to maintain normal operation. An insufficient signal level indicates the absence of the Receive Carrier; an absence for less than 32 ms will not cause channel establishment to be lost; however, data during this interval will be invalid.		
		If the signal is present and the level is acceptable at all times, then the threshold input can be low permanently.		
		Loss of threshold for 51 ms or longer results in a loss of Cler-to-Send. The Transmit Carrier of the originate modem is clamped off and a constant Mark is transmitted from the answer modem.		
(17)	RXCAR	Receive Carrier – The FSK input to the demodulators. The local Transmit Carrier must be balanced or filtered out prior to this input, leaving only the Receive Carrier in the signal. The Receive Carrier must also be hard limited. Any half cycle period greater than or equal to $429 \pm 1.0 \mu$ s for the low band or $235 \pm 1.0 \mu$ s for the high band is detected as a space.		

S6860 DIGITAL MODEM

MODEM/DATA COUPLER INTERFACE (Continued)

PIN LABEL

FUNCTION

(10) TXCAR

Transmit Carrier - A digitally synthesized sine wave derived from a 1.0 MHz crystal reference (see Figure 2). Frequency characteristics are given in the following table.

MODE	DATA	FREQUENCY	TOLERANCE*
Originate	Mark	1270 Hz	- 0.15 Hz
Originate	Space	1070 Hz	- 0.09 Hz
Answer	Mark	2225 Hz	- 0.31 Hz
Answer	Space	2025 Hz	- 0.71 Hz

*The reference frequency tolerance is not included.

The proper output frequency is transmitted within 3.0 μ s following a data bit change with no more than 2.0 μ s phase discontinuity. The typical output level is 0.35 V (RMS) into a 100K-ohm load impedance.

The second harmonic is typically 32 dB below the fundamental (see Figure 3).

TIME (0.2 ms/DIV)

FIGURE 3 TRANSMIT CARRIER FREQUENCY SPECTRUM

OPERATIONAL DESCRIPTION

A typical configuration showing the S6860 modem and associated interconnections is shown in Figure 4. The transmit data is presented in serial format to the modulator for conversion to FSK signals for transmission on the telephone line. The modulator output is buffered before driving the line.

The incoming FSK signal from the remote modem is filtered to remove extraneous signals such as the local Transmit Carrier. This filtering can be either a bandpass which passes only the desired band of frequencies or a notch which rejects the known interferring signal. The desired signal is then limited to preserve the axis crossings and fed to the demodulator where the data is recovered from the received FSK carrier.

The Supervisory Control provides the necessary commands and responses for handshaking with the remote modem, along with the interface signals to the data coupler and communication terminal. If the modem is a built-in unit all input-output (I/O) logic need not be RS-232 compatible. However, if the modem is a stand-alone unit the computer-modem I/O interface must conform to the EIA specification. Line driver and receiver modules must be used to provide the required interface.

S6860 DIGITAL MODEM

Originate Mode

When a Switch Hook (SH) command is received, modem function is placed in the Originate Mode. If the Data Terminal Ready input is enabled (low) the modem will provide a logic high output at Answer Phone. The modem is now ready to receive the 2225 Hz Transmit Carrier signal from the remote answering modem. It will continue to look for this signal until 17 s after SH has been released. Disconnect occurs if the handshaking routine is not established.

Upon receiving 2225 \pm 100 Hz for 150 ms at an acceptable amplitude, the Receive Data output is unclamped from a Mark condition and data reception can be accomplished. 450 ms after receiving a 2225 Hz signal, a 1270 Hz signal is transmitted to the remote modem. 750 ms after receiving the 2225 Hz signal, the Clear-to-Send output is taken low and data can now be transmitted as well as received.

Answer Mode

Automatic answering is first initiated by a receipt of a Ring Indicator (RI) signal from the Data Coupler. This can be either a low level for at least 51 ms as would come from a CBS data coupler, or at least 20 cycles of a 20 - 47 Hz ringing signal (low level $\geq 50\%$ of the duty cycle) as would come from a CBT data coupler. The presence of the Ring Indicator signal places the modem in the Answer Mode; If the Data Terminal Ready line is low, indicating the communication terminal is ready to send or receive data, the Answer Phone output goes high. This output is designed to drive a transistor switch which will activate the Off Hook (OH) and Data Transmission (DA) relays in the data coupler. Upon answering the phone the 2225 Hz Transmit Carrier is turned on.

The originate modem at the other end detects this 2225 Hz signal and after a 450 ms delay (used to disable any echo suppressors in the telephone network) transmits a 1270 Hz signal which the local answering modem detects, provided the amplitude and frequency requirements are met. The amplitude threshold is set external to the modem chip. If the signal level is sufficient the $\overline{\text{TD}}$ input should be low for 20 μ s at least once every 32 ms. The absence of a threshold indication for a period greater than 51 ms denotes the loss of Receive Carrier and the modem begins hang-up procedures. Hang-up

will occur 17 s after \overline{RI} has been released provided the handshaking routine is not re-established. The frequency tolerance during handshaking is \pm 100 Hz from the Mark frequency.

After the 1270 Hz signal has been received for 150 ms, the Receive Data is unclamped from a Mark condition and data can be received. The Clear-to-Send output goes low 450 ms after the receipt of carrier and data is transmitted to the answer modem.

Automatic Disconnect

A space frequency of 150 ms or greater duration on the line causes the modem to clamp the Receive Break high. This condition exists until a Break Release command is issued at the receiving station. Upon receipt of a 0.3 s space, with Enable Short Space Disconnect at the most negative voltage (low), the modem automatically hangs up. If Enable Long Space Disconnect is low, the modem requires 1.5 s of continuous space to hang up. Automatic Disconnect only occurs if the Enable Space Disconnect option is specified.

Initiate Disconnect

In order to command the remote modem to automatically hang up, a disconnect signal is sent by the local modem. This is accomplished by pulsing the normally low Data Terminal Ready into a high state for greater than 34 ms. The local modem then sends a 3 s continuous space and hangs up provided the Enable Space Disconnect is low. If the remote modem hangs up before 3 s, loss of Threshold Detect will cause loss of Clear-to-Send, which marks the line in Answer Mode and turns the carrier off in the Originate Mode.

If $\overline{\text{ESD}}$ is high the modem will transmit data until hangup occurs 3 s later. Transmit Break is clamped 150 ms following the Data Terminal Ready interrupt.

INPUT/OUTPUT FUNCTIONS

Figure 5 shows the I/O interface for the S6860 modem.

S6860 DIGITAL MODEM

POWER-ON RESET

Power-on reset is provided on-chip to insure that when power is first applied the Answer Phone output is in the low (inactive) state. This holds the modem in the inactive or idle mode until a \overline{SH} or \overline{RI} signal has been applied. Once power has been applied, a momentary loss of power at a later time may not be of sufficient time to guarantee a chip reset through the power-on reset circuit.

To insure initial power-on reset action, the external parasitic capacitance on $\overline{\text{RI}}$ and $\overline{\text{SH}}$ should be < 30 pF. Capacitance values > 30 pF may require the use of an external pullup resistor to V_{CC} on these inputs in addition to the pullup devices already provided on chip.

TIMING DIAGRAMS

Timing diagrams for Originate, Answer, Initiate Disconnect and Automatic Disconnect are shown in Figures 6, 7, 8 and 9 respectively. Timing delay variations are given in Tables I and II.

S6860 DIGITAL MODEM

C C	ALL RECEIVED	_				
RING INDICATOR	CBS			<u></u>		
RING INDICATOR	๛ฬิบท			·····		ter a la fatta construir de la fatta fatta construir de la fatta fatta construir de la fatta fatta fatta fatta
MODE { ORIGINATE ANSWER		ANSWER (LOW)				
DATA TERMINAL READY	ON (LOW)					
ANSWER PHONE		-	2225 Hz	. 900 ms		- 2025 Hz or 2225 Hz
TRANSMIT CARRIER		\sim	\sim		\sim	······
		450 m	s	1270 Hz, 300 ms	1	070 Hz or 1270 Hz
RECEIVE CARRIER				\sim	$h \sim h$	m
THRESHOLD DETECT	OFF (HIGH)			, , , , , , , , , , , , , , , , , , , 	1 1	
CLEAR-to-SEND				450 ms		ON (LOW)
TRANSMIT (MARK DATA SPACE	CLAMPED AT MAR	K				UNCLAMPED
RECEIVE MARK				- 150 ms - 150 ms -		
		CLAMPED			UNCLA	MPED
		FICU	DE 7 ANIGW	ED MODE		

S6860 DIGITAL MODEM

· ·		
RING INDICATOR	HIGH	
RING INDICATOR	CBS HIGH	
MODE	ANSWER (LOW)	
DATA TERMINAL	ON (LOW)	
READY		
ANSWER PHONE		
TRANSMIT CARRIER	CONTINUOUS SPACE - 1070 Hz O2 = EEE = 1070 Hz	
RECEIVE CARRIER		
THRESHOLD DETECT		
CLEAR to SEND	ON (LOW)	
CLEAN-10-SEND		
TRANSMIT { MARK SPACE	CLAMPED AT MARK	
	UNCLAMPED	
RECEIVE ARK	UNCLAMPED	
·	FIGURE 9 AUTOMATIC DISCONNECT – LONG OR SHORT SPACE	

S6860 DIGITAL MODEM

TABLE 1 ASYNCHRONOUS INPUT PULSE WIDTH AND OUTPUT DELAY VARIATIONS

Due to the asynchronous nature of the input signals with respect to the circuit internal clock, a delay variation or input pulse width requirement will exist. Time delay A is the maximum time for which no response will occur. Time delay B is the minimum time required to guarantee an input response. Input signal widths in the cross hatched region (i.e., greater than A but less than B) may or may not be recognized as valid.

For output delays, time A is the minimum delay before an output will respond. Time B is the maximum delay for an output to respond. Output signal response may or may not occur in the cross hatched region (i.e., greater than A but less than B).

^{*}DIGITAL REPRESENTATION

TABLE 1 OUTPUT DELAY VARIATIONS (continued)

INPUT PULSES

SPACE

RXDATA

S6860 DIGITAL MODEM

TABLE 1 OUTPUT DELAY VARIATIONS (Continued)

OUTPUT DELAYS

TABLE 2 TRANSMIT BREAK AND DISCONNECT DELAYS

Function Description	Min	Max	Unit
TXBRK (Space Duration)	232	235	ms
Space Disconnect (Space Duration) ($\overline{\text{DTR}}$ = High, $\overline{\text{ESD}}$ and $\overline{\text{TD}}$ = Low)	3010	3023	ms
Loss of Carrier Disconnect (Measured from positive edge of $\overline{\text{CTS}}$ to negative edge of ANPH, with $\overline{\text{RI}}$, $\overline{\text{SH}}$, and $\overline{\text{TD}}$ = High)	16965	17034	ms
Override Disconnect (Measured from positive edge of \overline{RI} or \overline{SH} to negative edge of ANPH with \overline{TD} = High)	16916	17101	ms

S6860 DIGITAL MODEM

S6860 DIGITAL MODEM

S6860 DIGITAL MODEM

UNIVERSAL SYNCHRONOUS RECEIVER/TRANSMITTER (USRT)

FUNCTIONAL DESCRIPTION

The S2350 Universal Synchronous Receiver Transmitter (USRT) is a single chip MOS/LSI device that totally replaces the serial to parallel and parallel to serial conversion logic required to interface a word parallel controller or data terminal to a bit-serial, synchronous communication network.

The USRT consists of separate receiver and transmitter sections with independent clocks, data lines and status. Common with the transmitter and receiver are word length and parity mode. Data is transmitted and received in a NRZ format at a rate equal to the respective input clock frequency. Data messages are transmitted as a contiguous character stream, bit synchronous with respect to a clock and character synchronous with respect to framing or "sync" characters initializing each message. The USRT receiver compares the contents of the internal Receiver Sync Register with the incoming data stream in a bit transparent mode. When a compare is made, the receiver becomes character synchronous formatting a 5, 6, 7, or 8 bit character for output each character time. The receiver has an output buffer register allowing a full character time to transfer the data out. The receiver status outputs indicate received data available (RDA), receiver overrun (ROR), receive parity error (RPE) and sync character

S2350 USRT

received (SCR). Status bits are available on individual output lines and can also be multiplexed onto the output data lines for bus organized systems. The data lines have tri-state outputs.

The USRT transmitter outputs 5, 6, 7, or 8 bit characters with correct parity at the transmitter serial output (TSO). The transmitter is buffered to allow a full character time to respond to a transmitter buffer empty (TBMT) request for data. Data is transmitted in a NRZ format changing on the positive transition of the transmitter clock (TCP). The character in the transmitter fill register is inserted into the data message if a data character is not loaded into the transmitter after a TBMT request.

TYPICAL APPLICATIONS

- Computer Peripherals
- Communication Concentrators
- Integrated Modems

- High Speed Terminals
- Time Division Multiplexing
- Industrial Data Transmission

ABSOLUTE MAXIMUM RATINGS

Ambient temperature under bias Storage temperature	0°C to + 70°C -65°C to +150°C
Positive voltage on any pin with respect to GROUND	+7 vol
Power dissipation	-0.3 voi 0.75 wat

DC (STATIC) CHARACTERISTICS*

 $(V_{CC} = 5.0V \pm 5\%; T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter	Min.	Max.	Unit	Condition
V _{IH}	Input High Voltage	2.0	V _{CC}	Volt	
V _{IL}	Input Low Voltage	- 0.5	+0.8	Volt	
IIL	Input Leakage Current		10	μа	$V_{IN} = O_{TO} V_{CC}$ Volts
V _{OH}	Output High Voltage	2.4		Volts	I _{OH} = -100µa
VOL	Output Low Voltage	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	+0.4	Volts	I _{OL} = 1.6ma
CIN	Input Capacitance		10	pf	$V_{IN} = 0$ Volt
COUT	Output Capacitance		12	pf	$\int f = 1.0 \text{ MHZ}$
ICC	VCC Supply Current		100	ma	No Load V _{CC} = 5.25volt

*Electrical characteristics included in this advanced product description are objective specifications and may be subject to change.

AC (DYNAMIC) CHARACTERISTICS ($V_{CC} = 5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to $\pm 70^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Min.	Max.	Unit	Condition
TCP, RCP	Clock Frequency	DC	500	KHz	

Input Pulse Widths

РТСР	Transmit Clock	900	nsec	$C_L = 20 pf$
P _{RCP}	Receive Clock	900	nsec	1TTL Load
P _{RST}	Reset	500	nsec	
PTDS	Transmit Data Strobe	200	nsec	
PTFS	Transmit Fill Strobe	200	nsec	
PRSS	Receive Sync Strobe	200	nsec	
$P\overline{CS}$	Control Strobe	200	nsec	
PRDE	Receive Data Enable	400	nsec	Note 1
PSWE	Status Word Enable	400	nsec	Note 1
PRR	Receiver Restart	500	nsec	

Switching Characteristics

T _{TSO}	Delay, TCP Clock to Serial Data Out		700	nsec	
T _{TBMT}	Delay, TCP Clock to TBMT Output		1.4	µsec	
T _{TBMT}	Delay, $\overline{\text{TDS}}$ to TBMT		700	nsec	
T _{STS}	Delay, SWE to Status Reset		700	nsec	
T _{RDO}	Delay, SWE, RDE to Data Outputs		400	nsec	1TTL Load
T _{HRDO}	Hold Time SWE, RDE to Off State		400	nsec	C _L = 130 pf
T _{DTS}	Data Set Up Time \overline{TDS} , \overline{TFS} , \overline{RSS} , \overline{CS}	0		nsec	
T _{DTH}	Data Hold Time TDS	700		nsec	
T _{DTI}	Data Hold Time $\overline{\text{TFS}}$, $\overline{\text{RSS}}$	200		nsec	
T _{CNS}	Control Set Up Time NDB1, NDB2, NPB, POE	0		nsec	
T _{CNH}	Control Hold Time NDB1, NDB2, NPB, POE	200		nsec	
T _{RDA}	Delay $\overline{\text{RDE}}$ to $\overline{\text{RDA}}$ Output	700		nsec	
T _{CNS} T _{CNH} T _{RDA}	Control Set Up Time NDB1, NDB2, NPB, POE Control Hold Time NDB1, NDB2, NPB, POE Delay RDE to RDA Output	0 200 700		nsec nsec nsec	

NOTE 1: Required to reset status and flags.

TIMING WAVEFORMS

87

TRANSMITTER TIMING DIAGRAM

RECEIVER TIMING DIAGRAM

S2350 USRT

- -

PIN DEFINITIONS

Pin	Label	Function
(1)	GND	Ground
(2)	V _{CC}	+5 VOLTS ±5%
(14)	RESET	MASTER RESET A VIH initializes both the receiver and transmitter. The Transmitter Shift Register is set to output a character of all logic 1's. FCT is reset to V_{OL} and TBMT set to V_{OH} indicating the Transmitter Holding Register is empty.
		The receiver status is initialized to a V_{OL} on RPE, SCR, and RDA. The sync character detect logic is inhibited until a RR pulse is received.
(15)	D0	DATA INPUTS Data on the eight data lines are loaded into the Transmitter Holding Register
(16)	D1	by $\overline{\text{TDS}}$, the Transmitter Fill Register by $\overline{\text{TFS}}$, and the Receiver Sync Register by $\overline{\text{RSS}}$. The
(17)	D2	character is right justified with the LSB at D0. For word lengths less than 8 bits, the unused
(18)	D3	inputs are ignored. Data transmission is LSB first.
(19)	D4	
(20)	D5	
(21)	D6	
(22)	D7	
(38)	TDS	TRANSMIT DATA STROBE A V_{IL} loads data on D0-D7 into the Transmitter Holding Register and resets TBMT to a $V_{OL}.$
(24)	TFS	TRAMSMIT FILL STROBE A V_{IL} loads data on D0-D7 into the Transmitter Fill Register. The character in the Transmitter Fill Register is transmitted whenever a new character is not loaded in the allotted time.
(23)	RSS	RECEIVER SYNC STROBE A VIL loads data on D0-D7 into the Receiver Sync Register. SCR is set to V_{OH} whenever data in the Receiver Shift Register compares with the character in the Receiver Sync Register.
(9)	TBMT	TRANSMIT BUFFER EMPTY A V _{OH} indicates the data in the Transmitter Holding Register has been transferred to the Transmitter Shift Register and new data may be loaded. TBMT is reset to V_{OL} by a V_{IL} on TDS. A V_{IH} on RESET sets TBMT to a V_{OH} . TBMT is also multiplexed onto the RD7 output (26) when SWE is at V_{IL} and \overline{RDE} is at V_{IH} .
(6)	TSO	TRANSMITTER SERIAL OUTPUT Data entered on D0-D7 are transmitted serially, least significant bit first, on TSO at a rate equal to the Transmit Clock frequency, TCP. Source of the data to the transmitter shift register is the Transmitter Holding Register or Transmitter Fill Register.
(36)	ТСР	TRANSMIT CLOCK Data is transmitted on TSO at the frequency of the TCP input in a NRZ format. A new data bit is started on each negative to positive transition (V_{IL} to V_{IH}) of TCP.

Pin	Label	Function								
(26) (27) (28) (29) (30) (31) (32) (33)	RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0	RECEIVED DATA OUTPUTS RDO-RD7 contain data from the Receiver Output Region selective status conditions depending on the state of \overline{SWE} and \overline{RDE} per the follow table:					utput Register the following			
()		(34) (35) (33)	(32)	(31)	(30)	(39)	(28)	(27)	(26)
		SWE RD	Ē RD0	RD1	RD2	RD3	RD4	RD5	RD6	RD7
		V _{IL} V _{II}	X	Х	Х	Х	Х	Х	X	Х
		V _{IL} V _{II}	I RDA	ROR	RPE	SCR	VOL	VOL	FCT	TBMT
		V _{IH} V _{II}	, DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
		V _{IH} V _{II}	I X	X	Х	Х	Х	Х	Х	X
(35)	RDE	DB0 LSB of Receiver Output Register DB7 MSB of Receiver Output Register The two unused outputs are held at VOL in the output status condition. RECEIVE DATA ENABLE A VIL enables the data in the Receiver Output Register onto								
(7)	FCT	RDA to the FILL CHAR Fill Register	VOL condit ACTER TR has been tra	tion. RANSMIT	TED A to the Tr	VOH on ansmitter	FCT ind	icates dat	a from th	ne Transmitter
		For Kegister has been transferred to the Transmitter Shift Register. FCT is reset to V_{OL} when data is transferred from the Transmitter Holding Register to the Transmitter Shift Register, or on the trailing edge (VIL to VIH) of the SWE pulse, or when RESET is VIH. FCT is multiplexed onto the RD6 output (27) when SWE is at VIL and RDE is at VIH.								
(25)	RSI	RECEIVER SERIAL INPUT Serial data is clocked into the Receiver Shift Register, least significant bit first, on RSI at a rate equal to the Receive Clock frequency RCP.								
(37)	RCP	RECEIVE CLOCK Data is transferred from RSI input to the Receiver Shift Register at the frequency of the RCP input. Each data bit is entered on the positive to negative transition $(V_{IH} \text{ to } V_{IL})$ of RCP.								

AMI.

Pin	Label	Function
(12)	RDA	RECEIVED DATA AVAILABLE A V _{OH} indicates a character has been transferred from the Receiver Shift Register to the Receiver Output Register.
		RDA is reset to VOL on the trailing edge (VIL to VIH transition) of RDE, by a VIL on RR or a VIH on RESET.
		RDA is multiplexed onto the RDO output (33) when SWE is VIL and RDE is VIH.
(8)	SCR	SYNC CHARACTER RECEIVED A V_{OH} indicates the data in the Receiver Shift Register is identical to the data in the Receiver Sync Register.
		SCR is reset to a V _{OL} when the character in the Receiver Shift Register does not compare to the Receiver Sync Register, on the trailing edge (V _{IL} to V _{IH} transition) of \overline{SWE} , by a V _{IL} on \overline{RR} or a V _{IH} on RESET.
		SCR is multiplexed onto the RD3 output (30) when \overline{SWE} is a V _{IL} and \overline{RDE} is V _{IH} .
(34)	SWE	STATUS WORD ENABLE A VIL enables the internal status conditions onto the output data lines RD0-RD7.
		The trailing edge of \overline{SWE} pulse resets FCT, ROR, RPE, and SCR to V_{OL} .
(11)	ROR	RECEIVER OVERRUN A V _{OH} indicates data has been transferred from the Receiver Shift Register to the Receiver Output Register when RDA was still set to V_{OH} . The last data in the Output Register is lost.
		ROR is reset by the trailing edge (V_{IL} to V_{IH}) of \overline{SWE} , a V_{IL} on \overline{RR} , a V_{IH} on RESET or a V_{OL} to V_{OH} transition of RDA.
		ROR is multiplexed onto the RD1 output (32) when \overline{SWE} is V_{IL} and \overline{RDE} is V_{IH} .
(10)	RPE	RECEIVER PARITY ERROR A VOH indicates the accumulated parity on the received character transferred to the Output Register does not agree with the parity selected by POE.
		RPE is reset with the next received character with correct parity, the trailing edge (VIL to V_{IH}) of \overline{SWE} , a V_{IL} on \overline{RR} or a V_{IH} on RESET.
		RPE is multiplexed onto the RD2 output (31) when SWE is VIL and RDE is VIH.
(13)	RR	RECEIVER RESTART A VIL resets the receiver section by clearing the status RDA, SCR, ROR, and RPE to VOL. The trailing edge of \overline{RR} (VIL to VIH) also puts the receiver in a bit transparent mode to search for a comparison, each bit time, between the contents of the Receiver Shift Register and the Receiver Sync Register. The number of data bits per character for the comparison is set by NDB1 and NDB2. After a compare is made SCR is set to VOH, the sync character is transferred to the Receiver Output Register, and the receiver enters a word synchronous mode framing an input character each word time.
		NOIE: Parity is not checked on the first sync character but is enabled for every succeeding character.

AMERICAN MICROSYSTEMS, INC.

01

Pin	Label	Function				
(39)	NDB1	NUMBER DATA BITS and NDB2. The number o	The number of Data Bits f data bits does not include	per character are determined by NDB1 the parity bit.		
		NDB2	NDB1	CHARACTER LENGTH		
		VIL	VIL	5 Bits		
		VIL	V _{IH}	6 Bits		
		VIH	V _{IL}	7 Bits		
		V _{IH}	V _{IH}	8 Bits		
		For character lengths less to VOL. Data is always rig	than 8 bits, unused inputs a ght justified with D0 and RI	are ignored and unused outputs are held D0 being the least significant bits.		
(3)	NPB	NO PARITY BIT A V_I checking of parity in the r	H eliminates generation o eceiver. With parity disable	f a parity bit in the transmitter and d, the RPE status bit is held at V_{OL} .		
(4)	POE	PARITY ODD/EVEN A parity. A VIL forces odd	VIH directs both the trans parity operation. NPB must	mitter and receiver to operate with even be VIL for parity to be enabled.		
(5)	\overline{CS}	CONTROL STROBE A Control Register. For stat	VIL loads the control input ic operation, \overline{CS} can be tied	s NDB1, NDB2, POE, and NPB into the directly to ground.		

S6834 512 X 8 BIT ERASEABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY

- Fast Access Time 575 ms Max.
- Pin Configuration Similar to the S6830 1K x 8 Bit ROM
- High Speed Programming Less than 1 Minute for all 4096 Bits
- Programmed with R/W, CS and V_{PROG} Pins
- Completely TTL Compatible Excluding the VPROG Pin

FUNCTIONAL DESCRIPTION

The S6834 is a high speed, static, 512×8 bit, erasable and electrically programmable read only memory designed for use in bus-organized systems. Both input and output are TTL compatable during both read and write modes. Packaged in a 24 pin hermetically sealed dual in-line package the bit pattern can be erased by exposing the chip to an ultra-violet light source through the transparent lid, after which a new pattern can be written.

TYPICAL APPLICATIONS

Three-State Data I/O

Mature P-Chan Process

Static Operation - No Clocks Required

Standard Power Supplies +5V and -12V

- ROM Program Debugging
- Code Translation
- Microprogramming
- Look-up Tables
- Random Logic Replacement
- Programmable Waveforms
- Character Generation
- Electronic Keyboards

S6834 REPROGRAMMABLE READ ONLY MEMORY

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin relative to VSS except	ot th	ie V	/р	RO	GĨ	oin		•			•	•	•	•		•								+0.3 to -20V
Voltage on the VPROG pin relative to V	SS				•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	• '	•	+0.3 to -60V
Operating Temperature	•		•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		0° C to $+70^{\circ}$ C
Storage Temperature (programmed) .			•	•		•		•	•	•	•	•	•		•	•	•	•		•	•	•	_	-55°C to +85°C
Storage Temperature (unprogrammed)	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		-55°C to 150°C

NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC (STATIC) CHARACTERISTICS (V_{CC} = +5.0V ± 5%, V_{GG} = -12.0V ± 5% T_A = 0 - 70°C unless otherwise noted).

SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT
v _{IL}	INPUT VOLTAGE LOW		0.8	v
v _{IH}	INPUT VOLTAGE HIGH	V _{CC} -2.25	V _{CC} +.3	v
V _{OL}	OUTPUT VOLTAGE LOW		0.4	v
	I_{OL} = 1.6 ma			
v _{OH}	OUTPUT VOLTAGE HIGH	2.4		v
	$I_{OH} = 40 \ \mu a$			
ILI	INPUT LEAKAGE CURRENT		10	μa
ILO	OUTPUT LEAKAGE CURRENT		20	μa
	CS = 5V			
IGG	V _{GG} SUPPLY CURRENT		45	ma
I _{CC}	V _{CC} SUPPLY CURRENT		50	ma
PD	POWER DISSIPATION		750	mw

NOTE: Program input V_{PROG} may be tied to V_{CC} during the Read.

AC (DYNAMIC) CHARACTERISTICS (Loading is as shown in Figure 1 unless otherwise noted).

SYMBOL	CHARACTERISTIC	MIN	MAX (6834) (6834–1)		UNIT
T _{ACC}	ACCESS TIME		575	750	ns
T _{CO}	CHIP SELECT TO		300	400	ns
T _{DD}	CHIP DESELECT TO OUTPUT DELAY		250	325	ns

S6834 REPROGRAMMABLE READ ONLY MEMORY

+5V +5V ±5% Vін VIL 1.8K ADDRESS 16K v_{ss} v_{cc} VPROG TYPE 1 IN914 OR EQUIV. VIL ٧r GND $\overline{\text{CS}}$ VGG tdd THREE-STATE (HIGH Z) vон ۷он (HIZ 12V ±5% VOL Vol 130 DATA

FIGURE 1 – TEST CONDITIONS

FIGURE 2-READ CYCLE TIMING WAVEFORMS

PROGRAM CHARACTERISTICS (R/W G_{nd}, Program pulse rise and fall time (10% to 90%) are both at 1µs max).

SYMBOL	CHARACTERISTICS	MIN	MAX	UNIT
T _{AS}	ADDRESS SET UP TIME	10		μs
T _{CSS}	CHIP SELECT SET UP TIME	10		μs
T _{DS}	DATA SET UP TIME	10		μs
T _{AH}	ADDRESS HOLD TIME	10		μs
T _{CSH}	CHIP SELECT HOLD TIME	10		μs
T _{DH}	DATA HOLD TIME	10		μs
T _{PWL}	PROGRAM PULSE WIDTH	3	5	ms
T _{PWH}	PROGRAM PULSE WIDTH HIGH	500		μs
V _{PROG}	PROGRAM AMPLITUDE	55	-50	v
IPROG	PROGRAM CURRENT		35	ma
T _{WS}	WRITE SET UP TIME	10		μs
T _{WH}	WRITE HOLD TIME	5	· · · ·	μs
T _{RS}	READ SET UP TIME	10		μs

S6834 REPROGRAMMABLE READ ONLY MEMORY

FIGURE 3 - PROGRAMMING CYCLE TIMING WAVEFORMS

FIGURE 4 – READ/PROGRAM/READ CYCLE TIMING WAVEFORM

S6834 REPROGRAMMABLE READ ONLY MEMORY

INTERFACE DESCRIPTION

Pin	Label	Function
(2) (3) (4)	D0 D1 D2	Data Lines – with the R/W line selected for Read (V_{IH}), the Data Lines (D0 through D7) are set to reflect the contents of the selected memory location. When the R/W line is set for Write (V_{IL}), the Data Lines are input to the addressed location of the 6834 when V_{PROG} is
(5) (6) (7) (8) (9)	D3 D4 D5 D6 D7	present. The Data Bus output drivers are three-state devices that remain in the high impedance (off) state whenever CS is in the V_{IH} state.
(14)	R/W	Read/Write – When this input line is set to V_{IH} , the device is in the Read mode, a low (V_{IL}) signal puts it into the Write mode.
(15)	CS	Chip Select – This input line must be set to V_{IL} for a Read or Write operation to be performed. When it is High (V_{IH}) the output data bus is set to a high-impedance three-state condition.
(11)	V _{PROG}	Program – In the Write mode, a programming pulse ($-50V \text{ dc}$) at this input causes the data at the Data Lines to be stored in the selected address. This pin should be tied to V_{CC} for normal Read operations.
(24) (23) (22) (21) (20) (19) (18) (17) (16)	A0 A1 A2 A3 A4 A5 A6 A7 A8	Address Lines – These lines select the 8 bit word in memory for Read or Write operation.

S6834 REPROGRAMMABLE READ ONLY MEMORY

CONTROL FUNCTION TRUTH TABLE

CS	R/W	VPROG	MODE	OUTPUTS
0	0	V _{PROG}	Write	Active Data Inputs
0	1	V _{CC}	Read	Active
1	X	Х	Standby	Floating

OPERATION

Initially, and after each erasure, all bits of the 6834 are in the LOW state (output 0 volts) Data is stored by selectively programming a HIGH into the desired bit locations. The R/W input pin 14 is used to select the desired mode of operation. When the R/W input is LOW, the chip is in the write enable mode of operation. The outputs $(0_1 - 0_8)$ are disabled (floating) with the corresponding pins becoming the data inputs $(0_1 \rightarrow D_{IN 1} \text{ etc.})$. The word address is selected in the same manner as in the read mode. Data to be programmed is presented 8 bits in parallel and after the address and data are set up a programming pulse (VP = -50 volts) is applied. VPROGwrites the data into the memory array. Writing may be inhibited by deselecting the chip with the CS input at a LOW during the write cycle. This feature allows true "on board" programming in bus organized systems where the R/W and VPROG inputs are common and the device to be programmed is selected by means of the chip select input as during read operations.

The amount of program energy required to insure memory retention may be defined as a function of the number of program pulses (N) times the program pulse width (t_{pw}) (N x $t_{pw} \ge 60$ msec). This means if a 3 ms pulse is used, 20 program pulses are required, and if a 5 ms pulse is used 12 program pulses are required.

The read operation is accomplished by a HIGH at the R/W input with the program input connected to V_{SS} potential. True data (data out = data in) is valid after the address is stable. The CS input will disable (float) with the outputs when HIGH to allow capability with bus organized systems.

Erasure is accomplished by exposing the array to a high intensity ultra-violet light source (such as, Ultra-Violet Products, Inc. Lamp Model S52 or UVS-54) for a period of 7 to 10 minutes. The clear optical lid should be approximately one inch away from the lamp tubes.

S4021-4 S4021-3 **S4021-**2

4096 X 1 RANDOM ACCESS MEMORY NOVEMBER, 1975

FUNCTIONAL DESCRIPTION

The AMI S4021 series of dynamic RAM memories is designed for applications where high performance, low cost, high reliability and large bit storage are required. The S4021 is a 4096 word by 1 bit array fabricated with N-channel silicon gate technology. The design uses the single transistor approach to achieve high performance and packing density for lower cost.

All addresses and control inputs are TTL compatible except for the chip enable clock (CE). All decoding is done on chip utilizing low power dynamic design techniques and key control input signals have on-chip registers which latch the present state on the chip and provide ease of use in a typical system.

The information read out is non-destructive. Refresh is accomplished by sequencing through the lower order addresses $(A_0 - A_5)$ every 2 ms. This can be done in a single burst mode or by spacing the refresh cycles by 31.25 microseconds.

TYPICAL APPLICATIONS

- Main Frame Memory
- Buffer Memory
- Add-on Memory
- Peripheral Storage
- Terminals
- Controllers, etc.

OPERATION

CHIP ENABLE (CE)

The chip enable input is the only clock input to the circuit and with few exceptions is the master signal to which all other timing is related. It is also the only input which is not TTL compatible, requiring a high voltage input signal. (*) When the chip enable input is in the low state the circuit conditions itself, by precharging all internal dynamic nodes, for the subsequent address cycle. This is the low current or standby mode for the device and is the clock condition for which the S4021 dissipates minimum power. When the chip enable input is in the high state and all other inputs properly addressed the device will execute a read or write cycle. The clock high portion of a cycle is the operating segment, during which the device dissipates the maximum power dissipation. The S4021 however, typically, dissipates a low thirty (30) milliamps during the clock high portion of a cycle.

(*) Nominally to 12 volt transitions.

CHIP SELECT (\overline{CS})

The chip select input determines which devices in an array will actually execute the read or write cycle. This input controls the data-in, data-out and read/write circuitry on the device enabling or disabling these functions depending on its state. With the proper timing as set out in the timing tables, when chip select is in the low state the device is activated and may execute any designated cycle. When chip select is in the high state the output buffer is in its tri-state mode and the data-in buffer is inhibited from accepting new data. The chip select input buffer is fully TTL compatible and an on-chip register is provided for this input so its state may be stored during a cycle execution. The chip select input may be placed in the low state permanently (wire grounded) thereby continuously selecting a particular device; in this mode of operation it is the chip enable input which will determine when the device executes a read or write cycle.

ADDRESS $(A_0 - A_{11})$

The address inputs to the device collectively determine which memory bit will be read from or written into. By using an address map one can determine precisely which bit inside the device is being addressed; this being helpful when constructing test programs. The address inputs are all fully TTL compatible and also each input is provided with on-chip register so the address can be stored for one execution cycle, the details of this timing is in the timing diagrams.

READ/WRITE (R/\overline{W})

The read/write input controls the mode in which the circuit operates, that is, whether the circuit will execute a read or write cycle. With the proper timing applied to the device and the read/write input in the high state the device will execute a read cycle; with the read/write input in the low state the device will execute a write cycle. Note that the read/write input can make a transition during one chip enable cycle thereby executing a read-modify-write. The read/write input is also fully TTL compatible, however, this input is not supplied with an on-chip register for data storage; this is done in order to assure operation of the device in the read-modify-write mode.

DATA-IN (DI)

The data-in terminal is the input where the data is written into the device. This input also is not provided with an on-chip register and therefore the timing of this signal to the device is critical. This input is fully TTL compatible and can be driven from standard TTL circuits without the use of pullup resistor.

DATA-OUT (\overline{DO})

The three state output buffer provides for direct TTL compatibility with the total capability of driving two TTL loads. The output in the deselected state is in the high impedance of floating mode. Data valid is always preceeded by the output precharging to a low state. Data-out is inverted with respect to the data-in terminal.

REFRESH

Memory refresh must be performed every two milliseconds by cycling through the 64 combinations of the lower order addresses A_0 through A_5 . This operation can take place with read/write (R/W) in either of its two configurations, however, care must be taken to deselect the device (\overline{CS} in the high state) if the refresh is accomplished in the write mode. The status of the higher order addresses A_6 through A_{11} is don't care during a refresh cycle. It is important to note that the two millisecond refresh rate is guaranteed over the full temperature range of 0°C to 70°C still air ambient.

NOTE: A refresh cycle cannot be prematurely aborted in order to accommodate system interrupts or other higher priority commands. Once the clock (CE) comes high for a refresh cycle the entire cycle must be completed.

ABSOLUTE MAXIMUM RATINGS

Voltage on any Pin Relative to Substrate	-0.3V to +20V
Operating Temperature Range	.0°C to 70°C
Storage Temperature	-65°C to +150°C

COMMENT: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and is applicable to short duration transient voltages and is not intended to cover those conditions where the device is exposed to voltages equal to or greater than an absolute maximum rating for extended periods. Subjecting the device to voltages equal to or greater than the absolute maximum ratings for extended periods may have a hazardous affect upon the device reliability.

D.C. OPERATING CHARACTERISTICS: Unless otherwise stated, the D.C. characteristics are valid over the voltage ranges of: $V_{DD} = +12V \pm 5\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$ and $V_{SS} = 0$ Volts

Symbol	Parameters	Test Condition		Limits		Unite
Symbol	Tarameters		Min.	Typ*	Max.	Units
V _{IH}	High level input voltage (all inputs except chip enable)		2.4		v _{cc}	Volts
v _{IL}	Low level input voltage		0(1)		0.6	Volts
V _{IH(CE)}	High level input voltage for chip enable clock		V _{DD-} 0.6		V _{DD} +1.0	Volts
V _{IL(CE)}	Low level input voltage for chip enable clock		0(1)		0.6	Volts
ТA	Operating free air temperature		0		70	°C
V _{OH}	High level output voltage	$I_{OH} = 2.0 \text{ mA}$	2.4		V _{CC}	Volts
V _{OL}	Low level output voltage	$I_{OL} = 3.2 \text{ mA}$	V _{SS}		0.4	Volts
I _{DD1}	Operating V _{DD} supply current after transient	$V_{BB} = -4.75V, V_{DD} = 12.6V$ $V_{CE} = V_{DD} + 1.0, V_{CC} = 5.25V$ $T_A = 0^{\circ}C$ All inputs 5.25V		28	45	mA
IDD2	Standby V _{DD} supply current after transient	V _{CEL} = 0.6V D.C.			500	μA
I _{DD3}	V _{DD} supply transient with positive CE transition	Nominal condition		85		mA
IDD4	V _{DD} supply transient with negative CE transition	Nominal condition		60		mA
I _{DD5}	Average current from	$V_{DD} = 12.6V, V_{BB} = -4.75V,$				
	V _{DD} supply	$V_{SS} = 0$ (duty cycle = 70%) $V_{CE} = 0.6$ to 13.6V		30	45	mA
IBB	Supply current for V _{BB} supply	$V_{DD} = 12.6V, V_{BB} = 5.25V, V_{CE} = 13.6V, V_{SS} = 0V$			100	μA
ICC	Average current from V _{CC} supply	V _{CC} = 5.25V duty cycle = 70% from TTL loads			4	mA
II	Input leakage on all pins except CE	$V_{in} = 0.4 \text{ to } 5.25 \text{V}$			10	μA
II(CE)	Input leakage on CE	V _{in} = 0.4 to 13.6V			10	μA
IOL	Output leakage current	$\frac{V_{out}}{CS} = 0 \text{ to } 5.25V$ $\overline{CS} = 2.4V, CE = 13.6V$			10	μA

*All typical values are measured in a still air ambient of 25°C (room temperature).

NOTE (1): Minimum low levels on all inputs may be as negative as the value specified in the "Absolute Maximum Ratings" for a period of time not to exceed thirty (30) nanoseconds.

S4021 - 4/4021 - 3/4021 - 2 RANDOM ACCESS MEMORY

A.C. OPERATING CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{DD} = \pm 12V \pm 5\%$, $V_{CC} = \pm 5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$ COMMON READ/WRITE CYCLE TIMING

Semibol	Demonster	S40	21-4	S402	21-3	S40	Unito	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
^t C	Cycle Time	400		430		470		ns
^t CEH	Chip Enable High	230	4000	260	4000	300	4000	ns
^t CEL	Chip Enable Low	130		130		130		ns
t _R , t _F	Rise Time		20		20		20	ns
tAS	Address Set Up	0		0		0		ns
^t AH	Address Hold	150		150		150		ns
tCSS	Chip Sel. Set Up	0		0		0		ns
^t CSH	Chip Sel Hold	150		150		150		ns
^t REF	Refresh Cycle Time		2		2		2	ms

READ CYCLE TIMING

Symbol	Densmarken	S40	21-4	S40	21-3	S402	Unite	
	rarameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
tRWS	Read Set Up	0		0		0		ns
^t RWH	Read Hold	40		40		40		ns
tACC1	Access Time from Address		200		250		300	ns
^t ACC2	Access Time from Chip Enable High		180		230		280	ns
^t OH	Output Hold	0		0		0		ns

WRITE CYCLE TIMING

Sumbol	D	S40	21-4	S40	21-3	S402	Linita	
Symbol	Symbol Farameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
twpw	Write Pulse Width	180		190		200		ns
^t RWC	Write Set Up	210		220		240		ns
^t DS	Data Set Up	0		0		0		ns
^t DH	Data Hold	40		40		40		ns

CAPACITANCE

Symbol	Demonstrate		TI-ite		
	Parameters	Min.	Typ.	Max.	Units
C _{AD}	Address Capacitance		5	7	pf
C _{CE}	CE Capacitance	1	17	25	pf
C _{IN}	DIN and R/W Capacitance		5	8	pf
COUT	DOUT Capacitance		4	6	pf

All measurements made with a Boonton meter or equivalent at 25°C ambient temperature.

S4021-4/S4021-3/S4021-2 RANDOM ACCESS MEMORY

READ CYCLE TIMING

WRITE CYCLE TIMING

S4021 - 4/4021 - 3/4021 - 2 RANDOM ACCESS MEMORY

Symbol	Parameter	S4021-4		S4021-3		S4021-2		
		Min.	Max.	Min.	Max.	Min.	Max.	Units
^t C	Cycle Time	580		640		710		ns
t _{CEH}	Chip Enable High	410		470		540		ns
^t CEL	Chip Enable Low	130		130		130		ns
t _R , t _F	Rise Time and Fall Time		20		20		20	ns
tAS	Address Set Up	0		0		0		ns
t _{AH}	Address Hold Time	150		150		150		ns
tCSS	Chip Select Set Up	0		0		0		ns
t _{CSH}	Chip Select Hold	150		150		150		ns
tRWS	Read Set Up Time	0		0		0		ns
twpw	Write Pulse Width	180		190		200		ns
^t RWC	Write Pulse Set Up	210		220		240		ns
t _{DS}	Data Set Up	0		0		0		ns
^t DH	Data Hold Past Chip Enable	40		40		40		ns
^t ACC1	Access Time From Address	200		250		300		ns
^t ACC2	Access Time From Chip Enable High	180		230		280		ns
^t DV	Output Data Valid Past Write Set Up	0		0		0		ns

A.C. OPERATING CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{DD} = +12V \pm 5\%$; $V_{CC} = +5V \pm 10\%$; $V_{BB} = -5V \pm 10\%$; $V_{SS} = 0V$ READ-MODIFY-WRITE CYCLE TIMING

NOTE: (1) The falling edge of the read/write signal for the write cycle portion is 20 ns. (2) All timing is measured between 10% and 90% points **READ-MODIFY-WRITE: TIMING DIAGRAM**⁽²⁾

S4021-4/S4021-3/S4021-2 RANDOM ACCESS MEMORY

TYPICAL PERFORMANCE CHARACTERISTICS

AMI®

S4096-3/S4096-2/S4096-1 4096 X 1 RAM

4096 X 1 RANDOM ACCESS MEMORY OCTOBER 1975

FEATURES

- Fast Access Time 250/300/350 nsec (max)
- Fast Read or Write Cycle 375/425/475nsec
- Fast Read Modify Write Cycle 520/600/675nsec
- Low Power Dissipation 400 MW Operating (Typ) 6MW Standby (Typ)
- All Inputs TTL Compatible

- Three State TTL Compatible Output
- On-Chip Latches for Addresses, Chip Select, and Data-In
- Refresh Period 2 msec
- 16 Pin Dip
- N-Channel Silicon Gate Technology
- Industry Standard Pinout

FUNCTIONAL DESCRIPTION

The AMI S4096 series of dynamic N-Channel MOS RAM's are designed for applications where high performance, low cost and large bit storage are desired such as in mainframe, add-on, buffer memories and peripheral storage. The S4096 is a 4096 word by 1 bit array fabricated with selective oxidation N-Channel silicon gate technology. The S4096 has the same memory array structure and uses the identical process as the S4021, AMI's 22 Pin 4K RAM. The S4096 uses a single transistor cell design to achieve higher performance and smaller die size for low cost.

All inputs are TTL compatible, and the output is threestate TTL compatible. The two low voltage clocks are Row Address Strobe (\overline{RAS}) and Column Address Strobe (\overline{CAS}) which latch the six row address bits and six column address bits respectively. These twelve bits are multiplexed onto the six address pins. This technique permits packaging of the S4096 in a standard 16 Pin dual-in-line package. In addition, the S4096 has on chip buffers for easy interfacing and optimal input levels for maximum noise immunity and two chip select methods that allows the user to achieve maximum flexibility in selecting the speed/power characteristics most beneficial to his memory system.

The information read out is non-destructive (NDRO). Refresh of the entire memory is accomplished by performing one active cycle on each of the 64 row addresses every 2 ms.

TYPICAL APPLICATIONS

Mainframe Memories, Buffer Memories, Add-On Memories, Minicomputers, Peripheral Storage, Terminals, Controllers, etc.

ADDRESSING

Addressing the cell location is accomplished by multiplexing the 12 address bits onto the 6 address pins. The 6 row address bits are strobed and latched by the Row Address Strobe (\overline{RAS}) into the on-chip row buffers. Similarly, the 6 column address bits are, at a later time, strobed and latched by the Column Address Strobe (\overline{CAS}) into the on-chip column buffers. Chip Select signal is latched by \overline{CAS} and therefore has no impact on system access or cycle time.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register. The data is strobed into the register by a combination of WRITE and CAS. The last of these signals making its negative transition is the strobe for the Data In register. This flexibility in timing permits several options in the write timing. In a write cycle, if the WRITE input is activated at the beginning of a cycle, then the Data In is strobed by \overline{CAS} and the set-up and hold time are referenced to this signal. In this instance the output will unconditionally go to a logic 1 at access time. If the cycle were a read-modify-write cycle, the WRITE input would not go to a logic 0 until after access time. But, because \overline{CAS} is already at a logic 0, the Data In is strobed in by \overline{WRITE} and the set-up and hold time are referenced to it. The only other timing constraint in write-type cycles besides Data In set-up and hold time is that both WRITE and CAS be at a logic 0 for a sufficient time to accomplish the write.

At the beginning of a memory cycle the state of the Data Out latch and buffer depends on the previous memory cycle. If during the previous cycle the chip was unselected, the output buffer will be in its open-circuit condition. If the previous cycle was a read or read-modify-write cycle and the chip was selected, then the output latch and buffer will contain the data read from the selected cell. This output data has the same polarity (not inverted) as the input data. If the previous cycle was a write cycle and the chip was selected, then the output will remain high. Regardless of the state of the output it will remain valid until \overline{CAS} goes negative. At that time the output will unconditionally go to its open-circuit state. It will remain open circuit until access time. At access time the toutput will assume the proper state for the type of cycle performed. If the chip is unselected, it will not accept a WRITE command and the output will remain in the open-circuit state.

INPUT/OUTPUT LEVELS

All inputs, including the two address strobes, are TTL compatible. The high impedance, low capacitance (< 10 pF) input characteristics simplify input driver selection by allowing use of standard logic elements rather than specially designed driver elements. The three-state output buffer is a low impedance to V_{CC} for a logic 1 and a low impedance to V_{SS} for a logic 0. The separate V_{CC} pin goes to the output buffer only and allows it to be powered from the supply voltage of the logic to which the chip is interfaced.

POWER DISSIPATION/STANDBY MODE

Most of the circuitry used in the S4096 is dynamic and draws only AC power. Power dissipation is therefore a function of operating frequency. Worst case power is less than 440 mW at a 500 nsec cycle time. To reduce the overall system power the Row Address Strobe (\overline{RAS}) must be decoded and supplied to only the selected chips. The \overline{CAS} must be supplied to all chips (to turn off the unselected outputs). But those chips that did not receive a \overline{RAS} will dissipate only the standby power. If the \overline{RAS} is decoded and supplied to the selected chips, then the Chip Select input of all chips can be a logic 0. The chips that receive a \overline{CAS} but no \overline{RAS} will be unselected (output open-circuited) regardless of the Chip Select input. Thus, the standby mode of the chip is implemented when \overline{RAS} is high regardless of the state of \overline{CAS} .

REFRESH

The S 4096 is refreshed by performing a memory cycle at each of the 64 row addresses every 2 milliseconds or less. Any read or read-modify-write cycle refreshes the selected row regardless of the state of the Chip Select. A write cycle can be used to refresh the selected row but the chip must be unselected, or the addressed cell will be written with new information.

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin Relative		Operating Temperature Range	$0^{\circ}C$ to + $70^{\circ}C$
to Substrate	– 0.3V to + 20V	Storage Temperature	-65° C to $+150^{\circ}$ C

COMMENT: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC & OPERATING CHARACTERISTICS

 $T_A = 0^\circ - 70^\circ C$, $V_{DD} = +12V \pm 5\%^{(1)}$; $V_{CC} = +5V \pm 10\%^{(1)}$, $V_{BB} = -5V \pm 10\%^{(1)}$, $V_{SS} = 0V^{(1)}$

SYMBOL	PARAMETER	MIN	LIMITS TYP	MAX	UNITS	COMMENTS
V _{IL}	Input Low Voltage.All Inputs	- 1.0		0.6	v	See Note 1
V _{IH}	Input High Voltage All Inputs except RAS, CAS,	2.4		V _{CC} + 1	v	See Note 1
V _{IHC}	Input High Voltage: RAS, CAS	3.0		V _{CC} + 1	v	See Note 1
v _{OL}	Output Low Voltage			0.4	V	$I_{OL} = 2.0 \text{ mA}$
V _{OH}	Output High Voltage	2.4		v _{cc}	v	$I_{OH} = -3.0 \text{ mA}$, See Note 6.
I _{IL}	Input Leakage Current			10	μA	See Note 4
I _{OL}	Output Leakage Current for High Impedance State			10	μA	See Note 5
IDDA	Average V _{DD} to V _{SS} Current Active Mode			35	mA	See Note 8
I _{DDS}	Average V _{DD} to V _{SS} Current, Standby Mode			2	mA	RAS at V _{IHC} , CAS, CS DON'T CARE
I _{CC}	V _{CC} Supply Current			10	μA	$\overline{\text{CS}} = 2.4\text{V}$ $\overline{\text{RAS}}, \overline{\text{CAS}} = \text{DON'T CARE}$
I _{BB}	V _{BB} Supply Current			75	μA	

CAPACITANCE

SYMBOL	PARAMETER	MAX	UNITS
с _с	RAS, CAS, CS Capacitance	10	pF
C _{IN}	Address, \overline{CS} , D_{IN} and \overline{WRITE} Capacitance	7	pF
C _{OUT}	D _{OUT} Capacitance	8	pF

AMERICAN MICROSYSTEMS, INC.

 $(1,1,2,\dots,n_{n-1}) \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1$

S4096 - 3/S4096 - 2/S4096 - 1 4096 X 1 RAM

AC OPERATING CHARACTERISTICS

```
T_A = 0^\circ - 70^\circ C, V_{DD} = +12V \pm 5\%, V_{CC} = +5V \pm 10\%, ^{(4, 6)} V_{BB} = -5V \pm 10\%, ^{(1)} V_{SS} = 0V^{(1)}
```

		S4096-3		S4096–2		S4096-1		
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
t _{RAC} (7)	Access Time from RAS		250		300		350	nsec
^t CAC	Access Time from CAS		140		165		200	nsec
^t C(R)	Read Cycle Time	375		425		475		nsec
^t C(W)	Write Cycle Time	375		425		475		nsec
^t C(RMW)	Read Modify, Write Cycle Time	520		600		675		nsec
^t OFF ⁽³⁾	• Output Buffer, Turn-Off Delay	0	60	0	80	0	100	nsec
t _{RP}	RAS Precharge Time	125		125		125	-	ns
t _{RCL}	RAS to CAS Lead Time	70	110	90	130	110	150	ns
tCPW	CAS Pulse Width	140		170		200		ns
t _{AS}	Address Set-Up Time	0		0		0		ns
t _{AH}	Address Hold Time	60		80		100		ns
t _{RCS}	Read Command Set-Up Time	0		0		0		ns
t _{RCH}	Read Command Hold Time	0		0		0		ns
t _{WCH} (2)	Write Command Hold Time	110		130		150		ns
^t CRL	CAS to RAS Lead Time	- 40	+ 40	- 45	+ 45	- 50	+ 50	ns
t _{DS}	Data In Set-Up Time	0		0		0		ns
t _{DH}	Data In Hold Time	110	· · ·	130		150		
t _T	Rise and Fall Times	5	50	5	50	5	50	ns
t _{REF}	Time Between Refresh		2.0		2.0		2.0	ms
t _{MOD}	Modify Time	0	10	0	10	0	10	ns

NOTES:

- 1. All voltages referenced to V_{SS}.
- 2. Write Command Hold Time is important only when performing normal random write cycles.. During read-write or read-modify write cycles, the Write Command Pulse Width is the limiting parameter.
- 3. Depends upon output loading.
- 4. All device pins at 0 volts except V_{BB} at 5 volts and pin under test which is at + 10 volts.
- 5. Output disabled by chip select input.
- 6. Output voltage will swing from V_{SS} to V_{CC} independent of differential between V_{SS} and V_{CC}
- 7. Assumes t_{RCL} is minimum.
- 8. Typical V_{DD} current at 1.0 MHz cycle rate.

AMERICAN MICROSYSTEMS, INC.

S4096-3/S4096-2/S4096-1 4096 X 1 RAM

WRITE CYCLE TIMING

AMERICAN MICROSYSTEMS, INC.

AMI.

111

S4096 - 3/S4096 - 2/S4096 - 1 4096 X 1 RAM

READ - MODIFY - WRITE TIMING

AMERICAN MICROSYSTEMS, INC.

3800 Homestead Road, Santa Clara, Ca. 95051/Telephone: (408) 246-0330, TWX: 910-338-0018 Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale. AMI makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with AMI for current information

AMI. Sales Offices

DOMESTIC

Western Area

1104 Highland Avenue Suite I Manhattan Beach, California 90266 Tel: (213) 379-2452

3031 Tisch Way Suite # 202 San Jose, CA 95128 Tel: (408) 249-4550

Central Area

500 Higgins Road Elk Grove Village, Illinois 60007 Tel: (312) 437-6496

725 S. Central Expressway Suite C-5 Richardson, Texas 75080 Tel: (214) 231-5721

29200 Vassar Avenue Suite # 214 Livonia, Michigan 48152 Tel: (313) 478-9339

Fox Meadows Office Building 3030 Harbor Lane North Suite # 101 Minneapolis, Minnesota 55441 Tel: (612) 559-9004

24200 Chagrin Blvd. Suite #352 Cleveland, Ohio 44122 Tel: (216) 292-6947

England

AMI Microsystems Ltd. 108A Commercial Road Swindon, Wiltshire Tel: Swindon 31345

France

AMI Microsystems S.A.R.L. 124, Avenue de Paris F-94300 Vincennes Tel: 374 00 90

Italy

AMI Microsystems S.p.A. via Pascoli 60 I-20133 Milano Tel: 29 37 45

Eastern Area

20 Robert Pitt Drive Room # 212 Monsey, New York 10952 Tel: (914) 352-5333

1420 Providence Turnpike Room # 220A Norwood, Massachusetts 02062 Tel: (617) 762-0726

Altamonte Centre 249 No. Maitland Avenue Suite # 317 Altamonte Springs, Florida 32701 Tel: (305) 830-8889

Axewood East Butler & Skippack Pikes Suite # 3A Ambler, Penn. 19002 Tel: (215) 643-0217

INTERNATIONAL

West Germany

AMI Microsystems GmbH D-8 Muenchen 80 Rosenheimer Strasse 30 Suite # 237 Tel: 48 30 81

Japan

AMI Japan Ltd. Daiwa Bank Building 1-6-21, Nishi Shimbashi Minato-ku, Tokyo 105 Tel: (501) 2241

TERMS OF SALE

1. ACCEPTANCE: THE TERMS OF SALE CONTAINED HEREIN APPLY TO ALL QUOTATIONS MADE AND PURCHASE ORDERS ENTERED INTO BY ALL QUOTATIONS MADE AND PURCHASE ORDERS ENTERED INTO BY THE SELLER. SOME OF THE TERMS SET OUT HERE MAY DIFFER FROM THOSE IN BUYER'S PURCHASE ORDER AND SOME MAY BE NEW. THIS ACCEPTANCE IS CONDITIONAL ON BUYER'S ASSENT TO THE TERMS SET OUT HERE IN LIEU OF THOSE IN BUYER'S PURCHASE ORDER. SELLER'S FAILURE TO OBJECT TO PROVISIONS CONTAINED IN ANY COMMUNICATION FROM BUYER SHALL NOT BE DEEMED A WAIVER OF THE PROVISIONS OF THIS ACCEPTANCE. ANY CHANGES IN THE TERMS CONTAINED HEREIN MUST SPECIFICALLY BE AGREED TO IN WRITING BY AN OFFICER OF THE SELLER BEFORE BECOMING BIND ING ON FITHER THE SELL FROM THE BUYER. All orders or contracts must ING ON EITHER THE SELLER OR THE BUYER. All orders or contracts must be approved and accepted by the Seller at its home office. These terms shall be applicable whether or not they are attached to or enclosed with the products to be sold or sold hereunder. Prices for the items described above and acknowledged hereby are firm and not subject to audit, price revision, or price redetermination.

2. PAYMENT:

(a) Unless otherwise agreed, all invoices are due and payable thirty (30) days from date of invoice. No discounts are authorized. Shipments, deliveries, and performance of work shall at all times be subject to the approval of the Seller's credit department and the Seller may at any time decline to make any shipments or deliveries or perform any work except upon receipt of payment or upon terms

 (b) If, in the judgment of the Seller, the financial condition of the Buyer at any time does not justify continuation of production or shipment on the terms of payment originally specified, the Seller may require full or partial payment in advance and, in the event of the bankruptcy or insolvency of the Buyer or in the event any proceeding is brought by or against the Buyer under the bankruptcy or insolvency laws, the Seller shall be entitled to cancel any order then outstanding and shall receive reimbursement for its cancellation charges.

(c) Each shipment shall be considered a separate and independent transaction, and payment therefor shall be made accordingly. If shipments are delayed by the Buyer, payments shall become due on the date when the Seller is prepared to make shipment. If the work covered by the purchase order is delayed by the Buyer, payments shall be made based on the purchase price and the percentage of completion. Products held for the Buyer shall be at the risk and expense of the Buyer.

- TAXES: Unless otherwise provided herein, the amount of any present or future 3. sales, revenue, excise or other taxes, fees, or other charges of any nature, imposed by any public authority, (national, state, local or other) applicable to the products covered by this order, or the manufacturer or sale thereof, shall be added to the purchase price and shall be paid by the Buyer, or in lieu thereof, the Buyer shall provide the Seller with a tax exemption certificate acceptable to the taxing authority.
- F.O.B. POINT: All sales are made F.O.B. point of shipment. Seller's title passes 4. to Buyer, and Seller's liability as to delivery ceases upon making delivery of material purchased hereunder to carrier at shipping point, the carrier acting as Buyer's agent. All claims for damages must be filed with the carrier. Shipments will normally be made by Parcel Post, Railway Express, Air Express, or Air Freight. Unless specific instructions from Buyer specify which of the foregoing methods of shipment is to be used, the Seller will exercise his own discretion.
- DELIVERY: Shipping dates are approximate and are based upon prompt receipt from Buyer of all necessary information. In no event will Seller be liable 5. for any re-procurement costs, nor for delay or non-delivery, due to causes beyond its reasonable control including, but not limited to, acts of God, acts of civil or military authority, priorities, fires, strikes, lock-outs, slow-downs, shortages, factory or labor conditions, errors in manufacture, and inability due to causes beyond the Seller's reasonable control to obtain necessary labor, materials, or manufacturing facilities. In the event of any such delay, the date of delivery shall, at the request of the Seller, be deferred for a period equal to the time lost by reason of the delay.

In the event Seller's production is curtailed for any of the above reasons so that Seller cannot deliver the full amount released hereunder, Seller may allocate production deliveries among its various customers then under contract for similar goods. The allocation will be made in a commercially fair and reasonable manner. When allocation has been made, Buyer will be notified of the estimated quota made available.

PATENTS: The Buyer shall hold the Seller harmless against any expense or loss 6. resulting from infringement of patents, trademarks, or unfair competition arising from compliance with Buyer's designs, specifications, or instructions. The sale of products by the Seller does not convey any license, by implication, estoppel, or otherwise, under patent claims covering combinations of said products with other devices or elements.

Except as otherwise provided in the preceding paragraph, the Seller shall defend any suit or proceeding brought against the Buyer, so far as based on a claim that any product, or any part thereof, furnished under this contract constitutes an infringement of any patent of the United States, if notified promptly in writing and given authority, information, and assistance (at the Seller's expense) for defense of same, and the Seller shall pay all damages and costs awarded therein against the Buyer. In case said product, or any part thereof, is, in such suit, held to constitute infringement of patent, and the use of said product is enjoined, the Seller shall, at its own expense, either procure for the Buyer the right to continue using said product or part, replace same with non-infringing product, modify it so it becomes non-infringing, or remove said product and refund the purchase price and the transportation and installation costs thereof. In no event shall Seller's total liability to the Buyer under or as a result of compliance with the provisions of this paragraph exceed the aggregate sum paid by the Buyer for the allegedly infringing product. The foregoing states the entire liability of the Seller for patent infringement by the said products or any part thereof. THIS PROVISION IS STATED IN LIEU OF ANY OTHER EXPRESSED, IMPLIED, OR STATUTORY WARRANTY AGAINST INFRINGEMENT AND SHALL BE THE SOLE AND EXCLUSIVE REMEDY FOR PATENT INFRINGEMENT OF ANY KIND.

- INSPECTION: Unless otherwise specified and agreed upon, the material to be 7. furnished under this order shall be subject to the Seller's standard inspection at the place of manufacture. If it has been agreed upon and specified in this order that Buyer is to inspect or provide for inspection at place of manufacture such inspection shall be so conducted as to not interfere unreasonably with Seller's operations and consequent approval or rejection shall be made before shipment of the material. Notwithstanding the foregoing, if, upon receipt of such material by Buyer, the same shall appear not to conform to the contract, the Buyer shall immediately notify the Seller of such conditions and afford the Seller a reasonable opportunity to inspect the material. No material shall be returned without Seller's consent. Seller's Return Material Authorization form must accompany such returned material.
- WARRANTY: The Seller warrants that the products to be delivered under this purchase order will be free from defects in material and workmanship under 8. normal use and service. Seller's obligations under this Warranty are limited to replacing or repairing or giving credit for, at its option, at its factory, any of said products which shall, within one (1) year after shipment, be returned to the Products which shall, within one (1) year after shipment, be returned to the Seller's factory of origin, transportation charges prepaid, and which are, after examination, disclosed to the Seller's satisfaction to be thus defective. THIS WARRANTY IS EXPRESSED IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, STATUTORY, OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-LAR PURPOSE, AND OF ALL OTHER OBLIGATIONS OR LIABILITIES ON THE SEL EDIS THE SELLER'S PART, AND IT NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR THE SELLER ANY OTHER LIA-BILITIES IN CONNECTION WITH THE SALE OF THE SAID ARTICLES. This Warranty shall not apply to any of such products which shall have been repaired or altered, except by the Seller, or which shall have been subjected to misuse, negligence, or accident. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by Seller.

It is understood that if this order calls for the delivery of semiconductor devices which are not finished and fully encapsulated, that no warranty, statutory, expressed or implied, including the implied warranty of merchantability and fitness for a particular purpose, shall apply. All such devices are sold as is where is.

GENERAL:

(a) The validity, performance and construction of these terms and all sales hereunder shall be governed by the laws of the State of California.

(b) The Seller represents that with respect to the production of articles and/ or performance of the services covered by this order it will fully comply with all requirements of the Fair Labor Standards Act of 1938, as amended, Williams-Steiger Occupational Safety and Health Act of 1970, Executive Orders 11375 with 104 Coverse 200 and 2 and 11246, Section 202 and 204. (c) In no event shall Seller be liable for consequential or special damages.

(d) The Buyer may not unitarely make changes in the drawings, designs or specifications for the items to be furnished hereunder without Seller's prior consent.

Except to the extent provided in Paragraph 10, below, this order is not

subject to cancellation or termination for convenience. (f) Buyer acknowledges that all or part of the products purchased hereunder may be manufactured and/or assembled at any of Seller's facilities, domestic or foreign. (g) In the event that the cost of the products are increased as a result of

increases in materials, labor costs, or duties, Seller may raise the price of the products to cover the cost increases

(h) If Buyer is in breach of its obligations under this order, Buyer shall remain liable for all unpaid charges and sums due to Seller and will reimburse Seller for all damages suffered or incurred by Seller as a result of Buyer's breach. The remedies provided herein shall be in addition to all other legal means and remedies available to Seller.

GOVERNMENT CONTRACT PROVISIONS: If Buyer's original purchase order 10. indicates by contract number, that it is placed under a government contract, only the following provisions of the current Armed Services Procurement Regulation are applicable in accordance with the terms thereof, with an appropriate sub-stitution of parties, as the case may be - i.e., "Contracting Officer" shall mean "Buyer", "Contractor" shall mean "Seller", and the term "Contract" shall mean this order:

> 7-103.1, Definitions; 7-103.3, Extras; 7-103.4, Variation in Quantity; 7-103.8, Assignment of Claims; 7-103.9, Additional Bond Security; 7-103.13, Renegotiation; 7-103.15, Rhodesia Bond Security; 7-103,13, Henegotiation; 7-103,15, Rhodesia and Certain Communist Areas; 7-103,16, Contract Work Hours and Safety Standards Act – Overtime Compensation; 7-103,17, Walsh-Healey Public Contracts Act; 7-103,18, Equal Oppor-tunity Clause; 7-103,19, Officials Not to Benefit; 7-103,20, Covenant Against Contingent Fees; 7-103,21, Termination for Convenience of the Government (only to the extent that Buyer's contract is terminated for the convenience of the government); 7-103,22, Authorization and Consent; 7-103,23, Notice and Assistance Regarding Patent Infringement: 7-103,23 Notice and Assistance Regarding Patent Infringement; 7-103.24, Responsibility for Inspection; 7-103.25, Commercial Bills of Lading Covering Shipments Under FOB Origin Contracts; 7-103.27, Listing of Employment Openings; 7-104.4, Notice to the Government of Labor Disputes; 7-104.11, Excess Profit; 7-104.15, Examination of Records by Comptroller General; 7-104.20, Utilization of Labor Surplus Area Concerns.

構実設