

### 0.6 Micron CMOS Gate Array Data Book

AMI's products are intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements or high reliability applications such as military, medical life-support or lifesustaining equipment, are specifically not recommended without additional processing by AMI for such application.
Printed in U.S.A.

Table of
Contents
General Introduction ..... ix
Section 1 - Selection Guide ..... 1-1
Section 2 - Introduction to Core \& Pad Logic, with Library Characteristics ..... 2-1
Section 3 - Core Logic ..... 3-1
Section 4 - Pad Logic ..... 4-1
Section 5 - Digital Soft Megacells ..... 5-1
Section 6 - Memories ..... 6-1
Section 7 - Sales Information ..... 7-1

## Selection Guide

# Library Characteristics 

Section 2

# Core Logic Section 3 

## Pad Logic <br> Section 4

Megacells
Section 5

Memories
Section 6

## GENERAL INTRODUCTION

AMERICAN MICROSYSTEMS, INC.

# AMI6G 0.6 micron CMOS Gate Array 

## American Microsystems, Inc. - Making ASICs Easier for More Than a Quarter Century

American Microsystems, Inc. (AMI) pioneered the development of the world's first custom MOS ICs in 1966. With more experience than any other ASIC vendor, you can be assured that when you bring your ASIC development project to AMI, you are working with a dependable team that has the depth of experience to provide you with an optimum solution, on time and on budget.
The vision shared by all employees at AMI is expressed in our mission statement:
We will satisfy your customers by producing products that meet or surpass their quality, reliability, cost and delivery needs.
AMI strives to realize this vision by offering a range of products and services aimed at improving cycle time, reducing overall design cost, achieving world-class reliability, and designing to customer need. AMI provides a full range of gate array, standard cell, and mixed-signal ASICs, ASIC design software and services, and modular foundry services. AMI's Standard Products division offers mask-programmable ROMs, waveplex wireless products and Mask Programmable Systems Devices (MPSDs). AMI's multichip products division specializes in multichip solutions.
AMI is a corporation whose headquarters and ASIC design and manufacturing operations are located in a 492,000 square foot facility in Pocatello, Idaho; the Standard Products division is also headquartered in Pocatello. AMI has a software R\&D facility in Twain Harte, California, and owns a subsidiary, AMI (Phillippines), Inc., located in a 64,000 square foot facility in Manila, Philippines, for electrical testing of AMI's products.

## Markets

- Communications
- EDP
- Consumer
- Military
- Industrial
- Automotive
- Medical


## Sales and Distribution

- Eight full-service sales and technical support offices located in key markets throughout North America.
- Eight additional satellite offices in secondary markets.
- Six technical service centers located in San Jose, Los Angeles, Boston, Portland, Dresden, and Tokyo, which offer customers a full range of digital ASIC design resources and services.
- 44 sales representative offices throughout North America, with more than 110 outside salespeople.
- AMI's standard product offerings are available through 74 distributor's offices in the United States and Canada.
- In Europe, AMI is represented by distributors or sales representatives in the United Kingdom, Germany, France, Italy, Spain, Netherlands, Belgium, Israel, Sweden, and Denmark. AMI maintains a technical service center in Dresden, Germany.
- In addition to a sales office in Tokyo, Japan, AMI is represented by distributor/sales representatives in that country and in Singapore, Taiwan, Australia, Hong Kong, and India.


## AMI6G 0.6 micron CMOS Gate Array

## Products

## ASICs

- Mixed-signal, standard cell, and gate array ASICs. AMI's ASIC products are supported with a library of more than 500 digital cells and megacells, designed in the company's 0.6 and 0.8 micron CMOS process technologies and compatible with all popular industry-standard CAE environments.


## Mask Programmable ROMs (read-only memories)

- AMI's ROMs offer capabilities from 16 megabits to 16 kilobits, response times as fast as 90 nanoseconds, and require only a 3 to 5 volt power supply. Design flexibility is afforded by multiple user-definable control pins and a variety of packaging options.


## ASIC Design Software

- ACCESS Design Tools ${ }^{\top M}$ software-for optimizing ASIC design at customer sites. AMI's ACCESS product line includes Design Analyzer ${ }^{T M}$ and Pattern Analyzer ${ }^{T M}$ softare, as well as the company's NETRANS ${ }^{\text {M }}$ FPGA-to-ASIC conversion software for use at customer sites, and NETRANSplus ${ }^{\text {TM }}$ for fast system prototyping with FPGAs.


## Multichip Solutions

- Manufacturing and testing multichip solutions with one or more IC's, combined with other electrical components, in various combinations of substrates, interconnects, and package form factors.


## Services

## PLD/ASIC Conversions

- NETRANS/PALTRANS™_the first fully automated PLD-to-ASIC conversion service offered by an ASIC vendor.
- NETRANSplus ${ }^{T M}$-the first fully automated ASIC-toFPGA conversion service offered by an ASIC vendor to provide quick-turn prototyping.


## ASIC Test

- NETSCAN ${ }^{\top}$ __AMI's automated ASIC test-pattern generator software for increasing fault coverage.
- NETTAG ${ }^{\text {™ }}$-AMI's automated JTAG insertion tool for boundary scan testing.


## ASIC Design

- Design Analyzer, Gate Gobblerr${ }^{\text {TM }}$, Five-Corner Logic Simulator ${ }^{T M}$, and Accolade ${ }^{T M}$ cell-compiler software-for optimizing customers' ASIC design and swiftly tailoring logic functions to customers' specific requirements.


## Foundry/Marketing

- Advanced CMOs technology- brings low power consumption, high noise immunity, and high circuit densities to digital and analog/digital ASICs
- Feature sizes as small as 0.6 micron (drawn), and as large as 5 micron (drawn).
- Process modularity -enables automated fabrication steps to be variously combined in ways tailored to meet the specific manufacturing requirements of analog, digitial, and mixed-signal devices.
- "Flexible factory" -provides a diversity of fabrication processes and schedule options to meet customer requirements.
- Long term support of mature processor.


## Corporate Headquarters

American Microsystems, Inc.
2300 Buckskin Road
Pocatello, Idaho 83201
Phone: (208) 233-4690
Fax: (208) 234-6796

## SECTION 1 SELECTION GUIDE

## AMIGG 0.6 micron CMOS Gate Array

Simple Gates
Name Description Page
AA21 2-input AND gate ..... 3-1
AA22 2-input AND gate ..... 3-2
AA31 3-input AND gate ..... 3-3
AA32 3-input AND gate ..... 3-4
AA41 4-input AND gate ..... 3-5
AA42 4-input AND gate ..... 3-6
EN21 2-input exclusive NOR gate ..... 3-118
EO21 2-input exclusive OR gate ..... 3-120
EO31 3-input exclusive OR gate ..... 3-122
NA21 2-input NAND gate ..... 3-164
NA22 2-input NAND gate ..... 3-165
NA31 3-input NAND gate ..... 3-166
NA32 3 -input NAND gate ..... 3-167
NA41 4-input NAND gate ..... 3-168
NA42 4-input NAND gate ..... 3-169
NA51 5-input NAND gate ..... 3-170
NA52 5-input NAND gate ..... 3-171
NA61 6-input NAND gate ..... 3-172
NA81 8 -input NAND gate ..... 3-173
NO21 2-input NOR gate ..... 3-174
NO22 2-input NOR gate ..... 3-175
NO31 3-input NOR gate ..... 3-176
NO32 3 -input NOR gate ..... 3-177
NO41 4-input NOR gate ..... 3-178
NO42 4-input NOR gate ..... 3-179
NO51 5 -input NOR gate ..... 3-180
NO52 5 -input NOR gate ..... 3-181
OR21 2-input OR gate ..... 3-196
OR22 2-input OR gate ..... 3-197
OR31 3-input OR gate ..... 3-198
OR32 3-input OR gate ..... 3-199
OR41 4-input OR gate ..... 3-200
OR42 4-input OR gate ..... 3-201

AMIGG 0.6 micron CMOS Gate Array

## Complex Gates

Name Description Page
AN11 Two 2-input ANDs into 2-input NOR ..... 3-7
AN21 2-input AND into 2-input NOR ..... 3-8
AN31 2-input AND into 3-input NOR ..... 3-9
AN41 3-input AND into 2-input NOR ..... 3-10
AN51 2-input AND and 3-input AND into 2-input NOR ..... 3-11
AN61 Two 3-input ANDs into 2-input NOR ..... 3-12
AN71 3-input AND into 3-input NOR ..... 3-13
AN81 Two 2-input ANDs into 3-input NOR ..... 3-14
AN91 2-input AND and 3-input AND into 3-input NOR ..... 3-15
ANA1 Two 3-input ANDs into 3-input NOR ..... 3-16
ANB1 Three 2-input ANDs into 3-input NOR ..... 3-17
ANC1 Two 2 -input ANDs and 3 -input AND into 3 -input NOR ..... 3-18
AND1 2-input AND and two 3-input ANDs into 3-input NOR ..... 3-21
ANE1 Three 3-input ANDs into 3-input NOR ..... 3-20
AU11 One-Bit full adder ..... 3-21
ON11 Two 2-input ORs into 2-input NAND ..... 3-182
ON21 2-input OR into 2-input NAND ..... 3-183
ON31 2-input OR into 3-input NAND ..... 3-184
ON41 3-input OR into 2-input NAND ..... 3-185
ON51 2-input OR and 3-input OR into 2-input NAND ..... 3-186
ON61 Two 3-input ORs into 2-input NAND ..... 3-187
ON71 3 -input OR into 3 -input NAND ..... 3-188
ON81 Two 2-input ORs into 3-input NAND ..... 3-189
ON91 2-input OR and 3-input OR into 3-input NAND ..... 3-190
ONA1 Two 3-input ORs into 3-input NAND ..... 3-191
ONB1 Three 2-input ORs into 3-input NAND ..... 3-192
ONC1 Two 2-input ORs and 3-input OR into 3-input NAND ..... 3-193
OND1 2-input OR and two 3-input ORs into 3-input NAND ..... 3-194
ONE1 Three 3-input ORs into 3-input NAND ..... 3-195

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Inverting Drivers

Name Description Page
INV1 Inverter ..... 3-128
INV2 Inverter ..... 3-129
INV3 Inverter ..... 3-130
INV4 Inverter ..... 3-131
INV5 Inverter ..... 3-132
INV6 Inverter ..... 3-133
Internal 3-State Drivers
ITA1 Internal non-inverting tri-state buffer ..... 3-134
ITA2 Internal non-inverting tri-state buffer ..... 3-135
ITB1 Internal inverting tri-state buffer ..... 3-136
ITB2 Internal inverting tri-state buffer ..... 3-137
ITD1 Internal inverting tri-state buffer ..... 3-138
ITD2 Internal inverting tri-state buffer ..... 3-139
ITE1 Internal inverting tri-state buffer ..... 3-140
ITE2 Internal inverting tri-state buffer ..... 3-141
Clock Drivers

IID1Non-inverting clock driver3-124
IID2 Non-inverting clock driver ..... 3-125
IID4 Non-inverting clock driver ..... 3-126
IID6 Non-inverting clock driver ..... 3-127
IBF1X3 Non-inverting, CMOS input clock-driver pad ..... 4-82
IBF7X3 Non-inverting, TTL input clock-driver pad ..... 4-83
IIF1X5 Non-inverting, CMOS clock-driver, second ring ..... 4-84
Muxes and Decoders
DC24 2:4 Line decoder ..... 3-29
DC38 3:8 Line decoder ..... 3-30
MX21 2:1 Digital multiplexer ..... 3-156
MX212 2:1 Digital multiplexer ..... 3-157
MX41 4:1 Digital multiplexer ..... 3-158
MX81 8:1 Digital multiplexer ..... 3-160
MXI21 Inverting 2:1 Digital multiplexer ..... 3-162
MXI212 Inverting 2:1 Digital multiplexer ..... 3-163

AMIGG 0.6 micron CMOS Gate Array Sequential Logic

| Name | Description Page |
| :---: | :---: |
| DF001 | D-type F/F without set and reset. Output is Q .........................3-32 |
| DF011 | D-type F/F with active low reset. Output is Q .........................3-34 |
| DF021 | D-type F/F with active low set. Output is Q ............................3-36 |
| DF031 | D-type F/F with active low set and reset. Output is Q ...............3-38 |
| DF041 | D-type F/F without set and reset. Output is QN ......................3-40 |
| DF051 | D-type F/F with active low reset. Output is QN .......................3-42 |
| DF061 | D-type F/F with active low set. Output is QN ..........................3-44 |
| DF071 | D-type F/F with active low set and reset. Output is QN .............3-46 |
| DF101 | D-type buffered F/F with active low set. |
|  | Output is Q and QN .........................................................3-48 |

DF111 D-type buffered F/F with active low reset.
DF121 D-type buffered F/F with active low set and reset. Output is $Q$ and QN ..... 3-52
DF1F1 D-type buffered F/F without set and reset. Output is Q and QN ..... 3-54
DF201 D-type mux scan F/F without set and reset. Output is Q ..... 3-56
DF211 D-type mux scan F/F with active low reset. Output is Q ..... 3-58
DF221 D-type mux scan $F / F$ with active low set. Output is $Q$ ..... 3-60
DF231 D-type mux scan F/F with active low set and reset. Output is Q ..... 3-62
DF401 D-type buffered mux scan F/F with active low set. Output is Q and QN ..... 3-64
DF411 D-type buffered mux scan F/F with active low reset. Output is Q and QN ..... 3-66
DF421 D-type buffered mux scan F/F with active low set and reset. Output is Q and QN ..... 3-68
DF4F1 D-type buffered mux scan F/F without set and reset. Output is Q and QN ..... 3-70
DFA01 D-type F/F without set or reset. Output is Q Transmission gate equivalent of DF001 ..... 3-72
DFA11 D-type F/F with active low reset. Output is Q Transmission gate equivalent of DF011 ..... 3-74
DFA21 D-type F/F with active low set. Output is Q Transmission gate equivalent of DF021 ..... 3-76

# AMIGG 0.6 micron CMOS Gate Array 

Name Description PageDFA31 D-type F/F with active low set and reset. Output is QTransmission gate equivalent of DF0313-78
DFA41 D-type F/F without set and reset. Output is QN Transmission gate equivalent of DF041 ..... 3-80
DFA51 D-type F/F with active low reset. Output is QN Transmission gate equivalent of DF051 ..... 3-82
DFA61 D-type F/F with active low set. Output is QN Transmission gate equivalent of DF061 ..... 3-84
DFA71 D-type F/F with active low set and reset. Output is QN Transmission gate equivalent of DF071 ..... 3-86
DFB01 D-type buffered F/F with active low set. Output is Q and QN. Transmission gate equivalent of DF101 ..... 3-88
DFB11 D-type buffered F/F with active low reset. Output is Q and QN. Transmission gate equivalent of DF111 ..... 3-90
DFB21 D-type buffered F/F with active low set and reset. Output is $Q$ and $Q N$. Transmission gate equivalent of DF121 ..... 3-92
DL001 D-type latch without set and reset. Output is Q ..... 3-94
DL011 D-type latch with active low reset. Output is Q ..... 3-96
DL021 D-type latch with active low set. Output is $Q$ ..... 3-98
DL031 D-type latch with active low set and reset. Output is Q ..... 3-100
DL041 D-type latch without set or reset. Output is QN ..... 3-102
DL051 D-type latch with active low reset. Output is QN ..... 3-104
DL061 D-type latch with active low set. Output is QN ..... 3-106
DL071 D-type latch with active low set and reset Output is QN ..... 3-108
DL631 D-type buffered latch without set and reset Output is Q and QN ..... 3-110
DL641 D-type buffered latch with active low reset Output is Q and QN ..... 3-112
DL651 D-type buffered latch with active low set Output is Q and QN ..... 3-114
DL661 D-type buffered latch with active low set and reset Output is Q and QN ..... 3-116
JK011 JK-type F/F with active low reset. Output is Q ..... 3-142
JK021 JK-type F/F with active low set. Output is Q ..... 3-144
JK031 JK-type F/F with active low set and reset Output is Q ..... 3-146
JK051 JK-type F/F with active low reset. Output is QN ..... 3-148

## AMIGG 0.6 micron CMOS Gate Array

Name Description Page
JK061 JK-type F/F with active low set. Output is QN ..... 3-150
JK071 JK-type F/F with active low set and reset. Output is QN ..... 3-152
JKBB1 JK-type F/F with buffered active low set and reset. Output is Q and QN ..... 3-154
SLFA1 Multiplexed scan latch D-type F/F without set and reset. Output is Q ..... 3-202
Power Cells
CVDD Core cell resistive tie-up to core $V_{D D}$ bus ..... 3-27
CVSS Core cell resistive tie-down to core $\mathrm{V}_{\mathrm{SS}}$ bus ..... 3-28
Special Core Cells
BL02 Tri-state bus latch ..... 3-21
BR02 Tri-state bus receiver ..... 3-24
BR04 Tri-state bus receiver ..... 3-25
BR06 Tri-state bus receiver ..... 3-26
TD02 Time delay cell, non-inverting ..... 3-204
TD03 Time delay cell, non-inverting ..... 3-205
TD08 Time delay cell, non-inverting ..... 3-206

## AMIGG 0.6 micron CMOS Gate Array

## Input Drive Pieces

Name Description Page
IDCI3 Inverting CMOS input buffer piece ..... 4-1
iDCR0 non-buffered, resistive analog interface input piece ..... 4-2
IDCS3 non-inverting, CMOS Schmitt trigger input buffer piece ..... 4-3
IDCX3 non-inverting, CMOS-level input buffer piece ..... 4-4
IDPX3 non-inverting, PCI-level input buffer piece ..... 4-5
IDQC0 crystal oscillator input receiver piece ..... 4-6
IDQC3 crystal oscillator input receiver piece w/ non-inverting, CMOS clock input ..... 4-7
IDQS3 crystal oscillator input receiver piece w/ non-inverting, CMOS Schmitt trigger clock input ..... 4-8
IDTS3 non-inverting, TTL Schmitt trigger input buffer piece ..... 4-9
IDTX3 non-inverting, TTL input buffer piece ..... 4-10
Pull Pieces
PLD3 active pull-down buffer piece ..... 4-11
PLP3 programmable pull-up/pull-down buffer piece ..... 4-12
PLU3 active pull-up buffer piece ..... 4-13
Output Drive Pieces
ODCSIP04 CMOS inverting P-channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 4 mA ..... 4-14
ODCSIP08 CMOS inverting P-channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 8 mA ..... 4-15
ODCSIP12 CMOS inverting P-channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 12 mA ..... 4-16
ODCSXE04 CMOS tri-statable non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 4 mA ..... 4-17
ODCSXE08 CMOS tri-statable non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 8 mA ..... 4-18
ODCSXE12 CMOS tri-statable non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 12 mA ..... 4-19
ODCSXE16 CMOS tri-statable non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 16 mA ..... 4-20
ODCSXE24 CMOS tri-statable non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 24 mA ..... 4-21
ODCSXX04 CMOS non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 4 mA ..... 4-22

AMIGG 0.6 micron CMOS Gate Array
Name Description PageODCSXX08CMOS non-inverting buffer piece$\mathrm{w} /$ slew rate control output, 8 mA4-23
ODCSXX12 CMOS non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 12 mA ..... 4-24
ODCSXX16 CMOS non-inverting buffer piece w/ slew rate control output, 16 mA ..... 4-25
ODCSXX24 CMOS non-inverting buffer piece w/ slew rate control output, 24 mA ..... 4-26
ODCXIP01 CMOS inverting P-channel open drain buffer piece, 1 mA ..... 4-27
ODCXIP02 CMOS inverting P-channel open drain buffer piece, 2 mA ..... 4-28
ODCXIP04 CMOS inverting P-channel open drain buffer piece, 4 mA ..... 4-29
ODCXIP08 CMOS inverting P-channel open drain buffer piece, 8 mA ..... 4-30
ODCXXE01 CMOS tri-statable non-inverting buffer piece, 1 mA ..... 4-31
ODCXXE02 CMOS tri-statable non-inverting buffer piece, 2 mA ..... 4-32
ODCXXE04 CMOS tri-statable non-inverting buffer piece, 4 mA ..... 4-33
ODCXXE08 CMOS tri-statable non-inverting buffer piece, 8 mA ..... 4-34
ODCXXE12 CMOS tri-statable non-inverting buffer piece, 12 mA ..... 4-35
ODCXXE16 CMOS tri-statable non-inverting buffer piece, 16 mA ..... 4-36
ODCXXE24 CMOS tri-statable non-inverting buffer piece, 24 mA ..... 4-37
ODCXXX01 CMOS non-inverting buffer piece, 1 mA ..... 4-38
ODCXXX02 CMOS non-inverting buffer piece, 2 mA ..... 4-39
ODCXXX04 CMOS non-inverting buffer piece, 4 mA ..... 4-40
ODCXXX08 CMOS non-inverting buffer piece, 8 mA ..... 4-41
ODCXXX12 CMOS non-inverting buffer piece, 12 mA ..... 4-42
ODCXXX16 CMOS non-inverting buffer piece, 16 mA ..... 4-43
ODCXXX24 CMOS non-inverting buffer piece, 24 mA ..... 4-44
ODPSXE24 PCI non-inverting tri-state buffer piece $\mathrm{w} /$ slew rate control output ..... 4-45
ODTSXE04 TTL tri-state output buffer piece $\mathrm{w} /$ slew rate control output, 4 mA ..... 4-51
ODTSXE08 TTL tri-state output buffer piece $\mathrm{w} /$ slew rate control output, 8 mA ..... 4-52
ODTSXE12 TTL tri-state output buffer piece $\mathrm{w} /$ slew rate control output, 12 mA ..... 4-53

## AMIGG 0.6 micron CMOS Gate Array

Name Description PageODTSXE16
TTL tri-state output buffer piece w/ slew rate control output, 16 mA ..... 4-54
ODTSXE24
TTL tri-state output buffer piece $\mathrm{w} /$ slew rate control output, 24 mA ..... 4-55
ODTSXN04 TTL non-inverting N -channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 4 mA ..... 4-46
ODTSXN08 TTL non-inverting N -channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 8 mA ..... 4-47
ODTSXN12 TTL non-inverting N -channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 12 mA ..... 4-48
ODTSXN16 TTL non-inverting N -channel open drain buffer piece w/ slew rate control output, 16 mA ..... 4-49
ODTSXN24 TTL non-inverting N -channel open drain buffer piece $\mathrm{w} /$ slew rate control output, 24 mA ..... 4-50
ODTSXX04 TTL non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 4 mA ..... 4-56
ODTSXX08 TTL non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 8 mA ..... 4-57
ODTSXX12 TTL non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 12 mA ..... 4-58
ODTSXX16
TTL non-inverting buffer piece
TTL non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 16 mA ..... 4-59
ODTSXX24 TTL non-inverting buffer piece $\mathrm{w} /$ slew rate control output, 24 mA ..... 4-60
ODTXXE01 TTL tri-statable non-inverting buffer piece, 1 mA ..... 4-68
ODTXXE02 TTL tri-statable non-inverting buffer piece, 2 mA ..... 4-69
ODTXXE04 TTL tri-statable non-inverting buffer piece, 4 mA ..... 4-70
ODTXXE08 TTL tri-statable non-inverting buffer piece, 8 mA ..... 4-71
ODTXXE12 TTL tri-statable non-inverting buffer piece, 12 mA ..... 4-72
ODTXXE16 TTL tri-statable non-inverting buffer piece, 16 mA ..... 4-73
ODTXXE24 TTL tri-statable non-inverting buffer piece, 24 mA ..... 4-74
ODTXXN01 TTL non-inverting N -channel open drain buffer piece, 1 mA ..... 4-61
ODTXXN02 TTL non-inverting N -channel open drain buffer piece, 2 mA ..... 4-62
ODTXXN04 TTL non-inverting N -channel open drain buffer piece,4 mA4-63

## AMIGG 0.6 micron CMOS Gate Array

Name
ODTXXN08
Description
Page
TTL non-inverting N-channel open drain buffer piec....................................................................................................
8 mA4-64
ODTXXN12 TTL non-inverting N -channel open drain buffer piece, 12 mA ..... 4-65
ODTXXN16 TTL non-inverting N -channel open drain buffer piece, 16 mA ..... 4-66
ODTXXN24 TTL non-inverting N-channel open drain buffer piece, 24 mA ..... 4-67
ODTXXX01 TTL non-inverting output buffer piece, 1 mA ..... 4-75
ODTXXX02 TTL non-inverting output buffer piece, 2 mA ..... 4-76
ODTXXX04 TTL non-inverting output buffer piece, 4 mA ..... 4-77
ODTXXX08 TTL non-inverting output buffer piece, 8 mA ..... 4-78
ODTXXX12 TTL non-inverting output buffer piece, 12 mA ..... 4-79
ODTXXX16 TTL non-inverting output buffer piece, 16 mA ..... 4-80
ODTXXX24 TTL non-inverting output buffer piece, 24 mA ..... 4-81
Power Pad Cells
PP6GXBG $\mathrm{V}_{\mathrm{SS}}$ power pad for core and pad cells ..... 4-85
PP6GXBP $V_{D D}$ power pad for core and pad cells ..... 4-86
PP6GXCG $V_{S S}$ power pad for input buffers and core cells only ..... 4-87
PP6GXCP $V_{D D}$ power pad for input buffers and core cells only ..... 4-88
PP6GXPG $\mathrm{V}_{\text {SS }}$ power pad for output buffers only ..... 4-89
PP6GXPP $V_{D D}$ power pad for output buffers and core cells only ..... 4-90
Special Pad Cells
PORA Power-on-reset ..... 4-91
ODQFE20M Crystal oscillator ..... 4-92
ODQFE99K Crystal oscillator ..... 4-93
ODQTE60M Crystal oscillator ..... 4-94

## SECTION 2 INTRODUCTION TO CORE \& PAD LOGIC WITH LIBRARY CHARACTERISTICS

## AMIGG 0.6 micron CMOS Gate Array

## Description

AMI's "AMI6Gx" series of $0.6 \mu \mathrm{~m}$ gate arrays exploits a proprietary power grid and track routing architecture on a compact design to provide one of the highest performance, cost effective array products available today.

## Features

- Excellent performance:
-500 MHz maximum toggle rate on clocked flip-flops ( $\mathrm{T}_{\mathrm{J}}$ $=135^{\circ} \mathrm{C}$ )
-215 ps delay ( $\mathrm{FO}=2$; L=2mm) for a 2-input NAND gate.
- 130 ps delay ( $\mathrm{FO}=2$; L=0mm) for a 2-input NAND gate.
- Operating temperatures range from -55 to $125^{\circ} \mathrm{C}$ :

Few competing products allow this range.

- Clock Tree Synthesis:

AMI supports Clock Tree Synthesis for the default clocking methodology. In this methodology, clock drivers are placed by the Place and Route tool to minimize clock skew and latency effects on circuit performance. Parameterized clock buffers called CLKBUF and CLKBUFN are provided to model the clock trees before layout. AMI is able to match the simulation parameters of the CLKBUF prelayout models with a physical clock tree during layout.

## - User-designed pad cells:

AMI allows the user to design pad cells by piecing together predefined components.

## - Cost driven architecture:

- Offers both 2 and 3 level metal interconnect to provide the lowest user cost for the number of gates and pads required.
- Extensive library for quick design:
- Complete primary cell and I/O library.
- Synchronous single port RAM compilers with over 2000 compiled RAM sizes from $32 \times 1$ to 2 Kx 32 bits.
- Megacells include processors, peripherals, and datapath synthesizers.
- 100\% compatible with AMI's proven ASIC Standard Library.
- 1 to $\mathbf{2 4} \mathrm{mA}$ drive per single I/O cell:

Slew rate limiting available for $4,8,12,16$, and 24 mA drive. Custom configurations for I/O drive up to 96 mA can be supported.

- Wide range of packaging:

Full QFP and PLCC line, BGAs and PGAs, individual die. Burn-in capability as required.

- Automatic Test Program Generation:

Includes scan macros (NETSCAN ${ }^{\text {M }}$ ) for high fault coverage.

- JTAG Boundary Scan macro support
- Full operating voltage range from 2.7 V to 5.5 V
- ESD protection > 2kV; latchup > 100 mA
- Power dissipation:
$2.7 \mu \mathrm{~W} / \mathrm{MHz} /$ gate $\left(\mathrm{FO}=1 ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\right.$ )

Characteristics
AMIGG 0.6 micron CMOS Gate Array

## AMI6Gx Gate Array Family Overview

| PART NUMBER ${ }^{2}$ | USABLE GATES ${ }^{1}$ |  | BOND PADS | I/O CELLS |
| :---: | :---: | :---: | :---: | :---: |
|  | 2LM | 3LM |  |  |
| AMI6G4 | 1.39 | 1.85 | 44 | 52 |
| AMI6G16S | 7.32 | 8.29 | 100 | 100 |
| AMI6G33S | 15.8 | 18.9 | 144 | 144 |
| AMI6G41S | 19.6 | 23.8 | 160 | 160 |
| AMI6G70S | 33.9 | 42.0 | 208 | 208 |
| AMI6G106S | 51.9 | 65.3 | 256 | 256 |
| AMI6G150S | 73.2 | 93.0 | 304 | 304 |
| AMI6G202S | 98.9 | 126.4 | 352 | 352 |
| AMI6G333 | 164.2 | 212.0 | 384 | 452 |
| AMI6G471 | 232.3 | 301.4 | 456 | 536 |
| AMI6G603 | 300.0 | 390.5 | 520 | 608 |
| AMI6G713 | 352.8 | 460.0 | 564 | 660 |
| AMI6G876 | 435.0 | 569.0 | 624 | 732 |
| AMI6G1046 | 521.0 | 682.4 | 684 | 800 |
| AMI6G1210 | 603.0 | 791.0 | 736 | 860 |

Note 1: Exact usable gate count will vary depending on design interconnect and macro selection. Note 2: The AMI6GS series has AMI's proprietary enhanced I/O for tighter pad pitches.

## AMIGG 0.6 micron CMOS Gate Array

FIGURE 1: GATE ARRAY ARCHITECTURE


Separately configured power busses for I/O and core [note 3]

## Architectural Overview

Some important elements of the AMI6Gx gate array family are:

- [Note 1] 2 or 3 level metal interconnect selectable.
- [Note 2] Two p-channel and two n-channel transistors per site (or cell). Sites are arrayed in a sea-of-gates structure that can allow interconnect routing over active sites. Also, p-channel transistors are sized larger than the stronger n-channel transistors in each cell to provide better matched rise times and fall times.
- [Note 3] Four separate power busses for I/O cells to allow separate supplies for output buffers, input buffers, and mixed $V_{D D}$ levels all on an individual I/O cell basis. Two separate power busses for core logic (not shown).
- Each I/O cell can be configured as $5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}, 3 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or signal I/O.
- [Note 4] Each I/O cell has selectable drive from 1 mA to 24 mA . All $1 / O$ cell logic can be built in the $1 / O$ cell prebuffer. Level shifting ( 3 V to 5 V or 5 V to 3 V ) may require the use of a few core gates.


## AMIGG 0.6 micron CMOS Gate Array

## Product Applications

The Gate Array's extended temperature and voltage operation range make it well suited for telecom, industrial, and military applications. The low cost structure also makes it ideal in computer and office automation ASIC requirements.

FPGA OR PAL CONVERSION: Using NETRANS ${ }^{\text {TM }}$ AMI can convert netlists from most gate array, FPGA, and PAL devices to a more cost and performance effective AMI6X design for volume production.
2ND SOURCE EXISTING PRODUCTS: Netlist conversion capabilities from AMI allow a competitive alternate supply with AMI6X components for current high volume designs.

NEW DESIGN CAPTURE: AMI6X design is supported by many popular 3rd party software platforms, as well as AMI's Enhanced Design Utilities ${ }^{\text {TM }}$ (EDU) environment.

PROCESS UPGRADE: Designs done in AMI's $1.25 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}$, and $0.8 \mu \mathrm{~m}$ ASIC products can easily be upgraded to the AMI6X family. The AMI ASIC Standard Library provides a common netlist design base.
ADDING CUSTOM BLOCKS: AMI specializes in adding custom logic to ASIC designs. Simple analog functions are also possible.

## ASIC Design Tools and Methodology

AMI6X and other AMI ASIC families are supported on many front-end design environments:

- Cadence ${ }^{\text {TM }}$
- Mentor Graphics®
- Synopsys® ${ }^{\circledR}$
- Viewlogic ${ }^{\circledR}$
- Intergraph ${ }^{\circledR}$
- Compass® ${ }^{\circledR}$
- Verilog ${ }^{\circledR}$ simulation
- IKOS® simulation accelerator (AMI's sign-off simulator)

AMI has maintained critical proprietary software tools to ensure a tight, well coupled design to our silicon process. This methodology includes our expert-system design analysis tools, AMI's Enhanced Design Utilities (EDU), a software support methodology that covers the complete set of wafer processing possibilities, and a dedicated, experienced engineering staff that can assist at any level of the design process.

## AMI Design Flow

AMI will supply an AMI6X design kit which includes a cell library containing symbols, simulation models and software for design verification, timing calculations, and netlist generation. For pre-layout timing simulations, capacitance and resistance values derived from statistical

FIGURE 3: ASIC DESIGN FLOW


AMERICAN MICROSYSTEMS, INC.

# AMIGG 0.6 micron CMOS Gate Array 

## AMI Design Flow (cont.)

averages of known layouts are used. Once actual layout is completed by AMI, a post-layout interconnect capacitance and resistance table will be supplied for final validation of device timing.
Figure 3 shows a typical design flow for a new design.
Working with an AMI design center, the customer is responsible for capturing and verifying the design using the AMI ASIC Standard Library. He is also responsible for creating the test vectors that will eventually serve as the logical part of the manufacturing test. Software aids such as logic synthesis, megacells, automatic test program generation, netlist rule checkers, etc. can greatly speed up this process. (A fault coverage check of the test vector set is optional and can be done as an additional service.)

When the design is received by the factory, the "Design Start Package" is reviewed by AMI engineers. This start package, which is completed by the customer, contains the device specification, netlist, pinlist file, critical timing paths, and test vectors. The design is pre-screened on the Enhanced Design Utilities (EDU) and then resimulated on

IKOS, AMI's sign-off simulator. The results are compared to the customer's simulation from the third-party CAE tool.
Once the design has passed the initial screening it is then ready for placement and routing. The layout proceeds by first placing memory and megacells, assigning priority to critical paths, and designing the distribution and buffering of clocks. Next, the layout is completed with automatic place-and-route on the balance of the circuit.

After layout has been completed the interconnect data is extracted from the physical layout to be fed back to the sign-off simulator for final circuit verification. This post layout interconnect data can be sent to the customer for final validation on his simulator. When the post-layout simulation has been completed and approved by the customer the design is then released for mask and wafer fabrication.

The test program is developed in parallel using internal automatic test program generation software. Prototypes can then be tested before they are shipped.

FIGURE 4: DESIGN ENVIRONMENT WITH THIRD PARTY SOFTWARE


## AMIGG 0.6 micron CMOS Gate Array

## Memory Compiler Library

| Memory Compiler | Size |  | Increment | Comments |
| :---: | :---: | :---: | :---: | :---: |
| SRAM (single-port, synchronous, self-timed) | TBD | TBD | TBD | preliminary version available |

Note: Other SRAM and ROM compilers are available for standard cell or embedded array design approaches. Contact an AMI Design Center for details about these other product offerings.

Figure 4 outlines a typical software environment when using third party tools. AMI uses EDIF to speed ports between various software products.
AMI's Enhanced Design Utilities Tools are intended to be used interactively at each stage of the design. EDU software is a set of design analysis tools that check both the design and test vectors for correctness and compatibility with in-house ASIC testers, and analyze the design for inefficiencies and possible flaws that could cause problems in manufacturing the device.

## The Design Library

AMI provides a robust collection of building blocks for the AMI6X family. A broad range of primary cells is complemented with memory cell compilers and useful megafunctions. With such broad, US-based design talent, AMI can quickly design specific cells that customers need to add an edge in customization.

## The AMI ASIC Standard Library

The AMI ASIC Standard Library contains a rich set of core and configurable pad cells which allow great flexibility in building competitive devices for customer applications. The library is portable across all AMI's gate array and standard cell families.

## Memory Compilers

The AMI6X family includes the memory compiler shown above. Each of the thousands of possible memory blocks is optimized precisely to the customers' parameters.
Upon supplying the cell specification to AMI, the customer can receive an accurate simulation timing specification overnight by facsimile and a full simulation model for any AMI supported software environment within five working days.

## Digital Soft Megacells

The AMI6X gate array and standard cell families support soft megacells that are compatible with many popular functions. These megacells are functionally and logically compatible with the stand-alone products.
A soft megacell is defined only at the functional schematic level. Each instance of the megacell will have
exactly the same functional definition; however, the physical mask layout will be different depending on other functions being used, the place-and-route tools, and process technology. The megacell becomes part of the design netlist, requiring back annotation of interconnect capacitance after place-and-route for final verification.
Because AMI's soft megacells are defined at the gate level, simulation models are more accurate than that of behavioral models. Since our soft megacells use AMI's ASIC Standard Library they have the advantages of design flexibility, portability, and a path for future cost reduction by process migration.
AMI's selection of soft megacells include Core Processors and Peripherals which duplicate the function of industry standard parts. In addition AMI offers FIFOs and Datapath megacells which are developed using synthesizers. These products are listed in the following tables.

## Core Processors and Peripherals

The Core Processor and Peripheral megacells are designed to duplicate the function of industry standard, stand-alone parts. Detailed functional information can be found in any standard device datasheet.

## AMI's Innovative Pad Piece Methodology

The AMI6X standard libraries provide an innovative new approach to IO pad cell design. By choosing from a vast array of input, output, and pullup/pulldown pad piece cells, the ASIC designer can literally create thousands of different IO cell configurations simply by making the appropriate schematic or HDL connections. In addition, AMI conversion libraries can easily migrate netlist designs from previous technologies that use ASIC STD pad cells. AMI's Enhanced Design Utilities Tools flatten pad cells to their functional (fundamental) pad-piece blocks. Custom configurations are arrived at simply by "swapping out" the pieces. Pad-piece design benefits AMI customers by drastically reducing the need to request and wait for workstation simulation models of IO pad cells that would not yet exist. For detailed information of pad piece usage see AMI applications note Pad Pieces (4401035).

## AMIGG 0.6 micron CMOS Gate Array

## Core Processors

| Name | Function |
| :--- | :--- |
| MG29C01 | 4-bit microprocessor slice |
| MG29C10 | Microprogram controller/sequencer |
| MG65C02 | 8-bit microprocessor |
| M8042 | 8-bit slave microcontroller |
| M8048 | 8-bit microcontroller |
| M320C25 | 16-bit digital signal processor |
| M320C50 | 16-bit digital signal processor |
| MG80C85 | 8-bit microprocessor |
| MGMC51 | Core processor, 8051 compatible |
| MGMC511 | MGMC51 with ICE port |
| MGMC51FB | Core processor, 8051FB compatible |
| MGMC51SD | Reduced function MGMC51 |
| M320C25 | Digital Signal Processor |
| M320C50 | Digital Signal Processor |

## Peripherals

| Name | Function |
| :--- | :--- |
| MG1468C18 | Real-time clock |
| M16C450 | UART |
| M6402 | UART |
| M6845 | CRT controller |
| M765A | Floppy disk controller |
| M8251A | Communication interface USART |
| M8253 | Programmable interval timer |
| M82530 | Serial communications controller |
| MG82C37A | Programmable DMA controller |
| MG82C50A | Asynchronous comm. element |
| MG82C54 | Programmable interval timer |
| MG82C55A | Programmable peripheral interface |
| MG82C59A | Programmable interrupt controller |
| M8490 | SCSI controller |
| M85C30 | Serial communications controller |
| M8868A | UART |
| M91C36 | Digital data separator |
| M91C360 | Digital data separator |
| MFDC | Floppy disk controller |
| MGI2CSL | I $^{2}$ C Serial bus slave transceiver |
| MI2C | I $^{2}$ C Bus Interface |

## FIFOs

The AMI6X library supports both latched-based and dualport ram based FIFOs. The latch-based FIFO has a fallthrough architecture and is applicable when the FIFO size is limited. For large sizes the RAM based FIFO is appropriate.
FIFOs

| Name | Function |
| :--- | :--- |
| MGFxxyyC1 | Fall-through FIFO |
| MGFxxxyyyD | Synchronous FIFO |
| MGFxxxxyyE | Asynchronous FIFO |

## Datapath

AMI also supports the complex datapath logic functions listed here. These functions are synthesized from an input set of design parameters. They can be optimized for either minimum delay, minimum gate count or can be designed to meet a specified delay. Contact AMI for the size range and parameter set for any desired functions.
These logic synthesizers produce soft megacell schematics in the ASIC Standard Library, and a schematic symbol for incorporation and simulation with the design netlist.

## Datapath

| Name | Function |
| :--- | :--- |
| MGAxxyyDv | Adder |
| MGAxxyyEv | Adder-subtractor |
| MGBxxyyAv | Barrel/arithmetic shifter |
| MGBxxBv | Barrel shifter |
| MGBxxyyCv | Arithmetic shifter |
| MGCxxAv | 2-function binary comparator |
| MGCxxBv | 6-function binary comparator |
| MGDxxAv | Decrementer |
| MGIxxAv | Incrementer |
| MGIxxBv | Incrementer/decrementer |
| MGMxxyyDv | Signed/unsigned multiplier |
| MGMxxyyEv | Multiplier-accumulator |
| MGSxxyyAv | Signed/unsigned subtractor |

## Ordering information

With each megacell, AMI supplies schematics and test vectors on the requested EDA tool. To order a megacell, use the Digital Soft Megacell order form. Contact the factory for information on the delivery of soft megacells on various EDA tools or for information on specific speeds and sizes of particular Datapath megacells.

## AMI6G 0.6 micron CMOS Gate Array

## DC Specifications

Operating Specifications

| Parameter |  | Minimum | Maximum | Units |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ Supply Voltage |  | 2.7 | 5.5 | Volts |
| Ambient Temperature | - Military | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |
|  | - Commercial | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| CMOS Input Specifications (4.5V<VDD $<5.5 \mathrm{~V} ; 0^{\circ} \mathrm{C}<\mathrm{T}<70^{\circ} \mathrm{C}$ ) |  |  |  |  |
| Vil | Low Level Input Voltage |  | $0.3 * V_{\text {DD }}$ | Volts |
| Vih | High Level Input Voltage | $0.7 * V_{\text {DD }}$ |  | Volts |
| lil | Low Level Input Current |  | -1.0 | $\mu \mathrm{A}$ |
| lih | High Level Input Current |  | 1.0 | $\mu \mathrm{A}$ |
| lil | Input Pull-Up Current | -30 | -110 | $\mu \mathrm{A}$ |
| lih | Input Pull-Down Current | 30 | 140 | $\mu \mathrm{A}$ |
| Vt- | Schmitt Negative Threshold | $0.2^{*} V_{\text {DD }}$ |  | Volts |
| Vt+ | Schmitt Positive Threshold |  | $0.8 * V_{\text {DD }}$ | Volts |
| Vh | Schmitt Hysteresis | 1.0 |  | Volts |
| TTL Input Specifications ( $4.5 \mathrm{~V}<\mathrm{VDD}<5.5 \mathrm{~V} ; 0^{\circ} \mathrm{C}<\mathrm{T}<70^{\circ} \mathrm{C}$ ) |  |  |  |  |
| Vil | Low Level Input Voltage |  | 0.8 | Volts |
| Vih | High Level Input Voltage | 2.0 |  | Volts |
| lil | Low Level Input Current |  | -1.0 | $\mu \mathrm{A}$ |
| lih | High Level Input Current |  | 1.0 | $\mu \mathrm{A}$ |
| lil | Input Pull-Up Current | -30 | -110 | $\mu \mathrm{A}$ |
| lih | Input Pull-Down Current | 30 | 140 | $\mu \mathrm{A}$ |
| Vt- | Schmitt Negative Threshold | 0.7 |  | Volts |
| Vt+ | Schmitt Positive Threshold |  | 2.1 | Volts |
| Vh | Schmitt Hysteresis | 0.4 |  | Volts |

## AMIGG 0.6 micron CMOS Gate Array

Output Operating Specifications $\left(4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V} ; 0^{\circ} \mathrm{C}<\mathrm{T}<70^{\circ} \mathrm{C}\right)$

| Driver | Vol <br> Maximum | Voh <br> Minimum | lol <br> Maximum | Ioh <br> Maximum |
| :---: | :---: | :---: | :---: | :---: |
| 1 mA Driver | 0.5 | 2.4 | 1.0 | -1.0 |
| 2 mA Driver | 0.5 | 2.4 | 2.0 | -2.0 |
| 4 mA Driver | 0.5 | 2.4 | 4.0 | -4.0 |
| 8 mA Driver | 0.5 | 2.4 | 8.0 | -8.0 |
| 16 mA Driver | 0.5 | 2.4 | 16.0 | -16.0 |
| 24 mA Driver | 0.5 | 2.4 | 24.0 | -24.0 |

Vol = Low Level Output Voltage given in Volts
Voh $=$ High Level Output Voltage given in Volts
|ol = Low Level Output Current given in mA
loh $=$ High Level Output Current given in mA

## Absolute Maximum Ratings

| Parameter | Minimum | Maximum | Units |
| :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$, Supply voltage | -0.3 | 6.0 | Volts |
| Input pin voltage | -0.3 | $\mathrm{~V}_{\mathrm{DD}}+0.3$ | Volts |
| Input pin current |  | -10.0 | 10.0 |
| mA |  |  |  |
| Storage temperature | - Plastic packages | -55 | 125 |
|  | - Ceramic packages | -65 | 150 |
| ${ }^{\circ} \mathrm{C}$ |  |  |  |
| Lead temperature |  |  | 300 |
| ${ }^{\circ} \mathrm{C}$ |  |  |  |
|  |  | ${ }^{\circ} \mathrm{C}$ for 10 sec. |  |

Note that these specifications are to indicate levels where permanent damage to the device may occur. Functional operation is not guaranteed under these conditions. Further, operation at absolute maximum conditions for extended periods may adversely affect the long term reliability of the device.

## AMIGG 0.6 micron CMOS Gate Array

DC Characteristics
( $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$, Typical Process)



 Characteristics

## AMI6G 0.6 micron CMOS Gate Array

## DC Derating Information

The DC Characteristics on page 2-11 can be derated to obtain values at other operating conditions using the formula:

$$
I_{D C} * K_{P D C} * K_{V D C} * K_{T D C}
$$

where $I_{D C}$ is a value from the current curves on page 11 . $\mathrm{K}_{P D C}$, the $D C$ process derating coefficient; $\mathrm{K}_{\mathrm{VDC}}$, the DC voltage derating coefficient; and $K_{T D C}$, the DC temperature derating coefficient, are described below. Due to the ESD protection structures, the N -channel driver has a different set of coefficients for $\mathrm{K}_{\text {PDC }}$ and $\mathrm{K}_{\text {TDC }}$ -

## DC Variations with process ( $\mathrm{K}_{\mathrm{PDC}}$ )

DC variations with process are given as fixed constants determined at the limits of acceptable manufacturing of the process. These are described below where WCS is the "Worst Case Speed" fabrication, TYP is the "Target" fabrication, and WCP is the "Worst Case Power" fabrication.

|  | N-Channel Output Driver (Vol = 0.5V) |  |  |  | N-Channel Pull-Down Device (Vol = 0.5V) |  |  |  | All P-Channel (Voh = 2.4V) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Process | WCS | TYP | WCP | WCS | TYP | WCP | WCS | TYP | WCP |  |  |
| K PDC $^{2}$ | 0.59 | 1.00 | 1.25 | 0.63 | 1.00 | 1.19 | 0.74 | 1.00 | 1.27 |  |  |

DC Variations with Voltage ( $\mathrm{K}_{\mathrm{VDC}}$ )

|  | All N-Channel (Vol = 0.5V) |  |  | All P-Channel (Voh = 2.4V) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | 4.5 | 5.0 | 5.5 | 4.5 | 5.0 | 5.5 |
| $\mathrm{~K}_{\mathrm{VDC}}$ | 0.98 | 1.00 | 1.01 | 0.80 | 1.00 | 1.20 |

DC variations with temperature for the N -Channel output driver ( $\mathrm{K}_{\text {TDC }}$ )


DC variations with temperature for all other N-Channel and P-Channel devices


## AMIGG 0.6 micron CMOS Gate Array

## Delay Derating Information

The propagation delays listed in the data sheets are for typical temperature, $25^{\circ} \mathrm{C}$; typical supply voltage, 5.0 V ; and typical processing conditions. To calculate the delay at other conditions (including $V_{D D}$ equals 3.0 V ) the following equation can be used:

$$
T_{p d x}=T_{p d x}(t y p) * K_{p} * K_{V} * K_{T}
$$

where $T_{p d x}(t y p)$ is given in the data sheets. $K_{B}$ the process derating coefficient; $K_{T}$, the temperature derating coefficient; and $\mathrm{K}_{\mathrm{V}}$, the supply voltage derating coefficient, are described below.

## Delay Variations with Temperature ( $\mathrm{K}_{\mathrm{T}}$ )

Delay varies linearly with temperature. The following formulas and common operating points can be used.

| Temp | $\mathbf{K}_{\mathbf{T}}$ |
| :---: | :---: |
| $-55^{\circ} \mathrm{C}$ | 0.84 |
| $-25^{\circ} \mathrm{C}$ | 0.90 |
| $0^{\circ} \mathrm{C}$ | 0.94 |
| $25^{\circ} \mathrm{C}$ | 1.00 |
| $70^{\circ} \mathrm{C}$ | 1.09 |
| $100^{\circ} \mathrm{C}$ | 1.16 |
| $125^{\circ} \mathrm{C}$ | 1.22 |


| Temp. Range | $\mathrm{K}_{\mathrm{T}}$ Formula |
| :---: | :---: |
| $-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ | $\mathrm{K}_{\mathrm{T}}=1.0-\left(25-\mathrm{T}_{\mathrm{J}}{ }^{\circ} \mathrm{C}\right)^{*} 2.12 \times 10^{-3}$ |
| $25^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$ | $\mathrm{K}_{\mathrm{T}}=1.0+\left(\mathrm{T}_{\mathrm{J}}{ }^{\mathrm{C}} \mathrm{C}-25\right)^{*} 2.12 \times 10^{-3}$ |

Where $\mathrm{T}_{\mathrm{J}}{ }^{\circ} \mathrm{C}$ is the temperature at the silicon junction.

## Delay Variations with Process ( $\mathrm{K}_{\mathbf{P}}$ )

Delay variations with process are given as fixed constants determined at the limits of acceptable manufacturing of the process. These are described below.

| Derating Coefficient (K $\mathbf{K}_{P}$ ) | Process Variation Point |
| :---: | :---: |
| 1.35 | Delay increase due to "Worst Case Speed" (WCS) fabrication |
| 1.00 | Typical delay; Fabrication target |
| 0.74 | Delay reduction due to "Worst Case Power" (WCP) fabrication |

## Delay Variations with Voltage ( $\mathrm{K}_{\mathrm{V}}$ )

Delay varies nonlinearly with voltage. Some common operating points and a characteristic curve are shown.

| $\mathbf{V}_{\mathbf{D D}}$ | $\mathbf{K}_{\mathbf{V}}$ |
| :---: | :---: |
| 2.7 V | 1.65 |
| 3.0 V | 1.47 |
| 3.3 V | 1.34 |
| 4.5 V | 1.07 |
| 4.75 V | 1.03 |
| 5.0 V | 1.00 |
| 5.25 V | 0.97 |
| 5.5 V | 0.95 |



## AMIGG 0.6 micron CMOS Gate Array

## Interpreting the Data Sheet

The figure below shows a typical data sheet and points out the main features of the data sheet. Not shown is a schematic which accompanies some of the more complex cells.
Delay Characteristics $\qquad$
Description
AA21 is a 2-input gate which performs the logical AND function.

Equivalent Gates:
. 1.5
Bolt Syntax:...........................Q .AA21 A B:
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | mA |
| EQL $_{\mathrm{pd}}$ | 4.8 | Eq-load |

See page 2-14 for power equation.
Delay Characteristics:
Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  | 19 (max) |  |  |  |  |  |
|  |  |  | 1 | 5 | 10 | 14 | 1.29 |
|  |  |  | 0.26 | 0.52 | 0.77 | 0.77 |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

A description of data sheet features are as follows.
LIBRARY TYPE: Designates the feature size and library type such as standard cell or gate array.
CELL NAME: AMI's cell name.
DESCRIPTION: A brief sentence about the function of the cell.
LOGIC SYMBOL: Shows a picture of the symbol as it may appear in the workstation design kits.
TRUTH TABLE: A boolean table showing the output logic levels as a function of the input logic levels.
Types of logic levels found in the logic tables are as follows:
$H=\quad$ High level steady state,
$\mathrm{L}=\quad$ Low level steady state,
$\uparrow=\quad$ Transition from low level to high level,
$\downarrow=\quad$ Transition from high level to low level,
$X=\quad$ Any level including transitions,
$\mathrm{NC}=$ No change in output level for a given set of input levels,
$\mathrm{IL}=\quad$ The output level is unknown for this set of illegal input levels,
Z= High impedance level,
UN= Undriven node or input,
$Q(n)=$ The level of $Q$ before an active transition on the affecting node, and
QN(n)=The level of QN before an active transition on the affecting node.
PIN LOADING: A table of cell input loads in units of equivalent loads (the input load normalized to the input load of an NA21, 2-input NAND gate).
EQUIVALENT GATES: Equivalent gates for the cell is defined as the cell area normalized to the area of the NA21.
BOLT SYNTAX: BOLT (Block Oriented Logic Translator) is an AMI proprietary netlist format. This line shows the BOLT syntax for the cell. One example of the use of BOLT is as a design interface from the workstation design kits to AMI.
POWER CHARACTERISTICS: Power for the cell can be described in three parts. The first part is the power dissipated due to the leakage current across the channels and through the formed diodes. The second part is due to the switching voltage across loads on the internal nodes of the cell. Finally, the third part is due to the switching voltage across a load that a cell is driving.
The power characteristics table provides the static leakage current for a junction temperature of $85^{\circ} \mathrm{C}$, and the dissipative load for all the switching nodes in the cell in terms of equivalent loads. The load that a cell drives can be calculated by adding up input loads and adding to it the estimated load from the Load Estimation table on page 2-17. Below are equations for calculating the power dissipation.

## Core Cells and Input Buffers

POWER $=\left(\right.$ Static $\left.I_{D D}\right) V_{D D}+(0.038 E-12) E Q L_{p d} V_{D D}^{2} f+(0.038 E-12) E Q L_{I} V_{D D}{ }^{2} f$
Output Buffers
POWER $=\left(\right.$ Static $\left.I_{D D}\right) V_{D D}+(0.038 E-12) E Q L_{p d} V_{D D}{ }^{2} f+C_{o l} V_{D D}{ }^{2} f$
where:
Static $I_{D D}=$ static leakage current of the cell
$V_{D D}=$ operating voltage
$E Q L_{p d}=$ load of the switching nodes in the cell
$f \quad=$ frequency of operation
$\mathrm{C}_{\text {ol }}=$ load in farads on the output buffer
$E Q L_{1}=$ load of the driven interconnect and driven input pins
The frequency term of the power equation dominates, making the static current term insignificant. However, the term can be used to find the standby current. Characteristics

## AMIGG 0.6 micron CMOS Gate Array

Generally, three types of buffers (input, output, and bidirectional) may be assembled using pad piece cells. Calculating power characteristics for pad pieces is dependent on the desired buffer type. The power dissipated by a buffer is the cumulative power dissipated by its component pad pieces.

- ID pieces use the input buffer equation. (The input and output buffer equations are described on the previous page.)
- Output pieces use the output buffer equation. Note that $\mathrm{C}_{\mathrm{OL}}$ does not include any PADM pin loading of ID or PL pad piece cells that may be connected to the OD piece.
- PL pieces use the output buffer equation. $\mathrm{C}_{\mathrm{OL}}$ does not include any PADM pin loading of ID or OD pad piece cells that may be connected to the PL piece.

DELAY CHARACTERISTICS: This table contains delay data for the various input to output paths in the cells. The table below explains each column in the delay characteristics. AMI models the effects of input slew as well as output resistive and capacitive loading for a particular cell's path delay. The delay on the data sheets represents a typical load on the inputs of the cell. More accurate timing can be obtained using one of AMI's workstation kits. Contact your sales representative or the factory for details.

## Explanation of Columns in the Delay Characteristics Table

| Column Name | Explanation |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { Delay }(\mathrm{ns}) \\ & \text { From } \quad \text { To } \end{aligned}$ | Names the two pins that identify the path for the delay |  |
| Parameter | Mnemonic for the propagation delay or timing parameter whose value can be obtained from the values listed under the number of equivalent loads column. |  |
|  | $\mathrm{t}_{\text {PLH }}$ | Input to output propagation delay for a rising edge on the output |
|  | $\mathrm{t}_{\mathrm{PHL}}$ | Input to output propagation delay for a falling edge on the output |
|  | $\mathrm{t}_{\mathrm{ZH}}$ | High impedance to high level delay |
|  | $\mathrm{t}_{\mathrm{ZL}}$ | High impedance to low level delay |
|  | $t_{\text {HZ }}$ | High level to high impedance delay |
|  | tLz | Low level to high impedance delay |
|  | $\mathrm{t}_{\text {su }}$ | Input setup time with respect to clock |
|  | $t_{\text {h }}$ | Input hold time |
|  | $\mathrm{t}_{\mathrm{w}}$ | Input pulse width |
| Number of Equivalent Loads | The first row of values in this column contains five equivalent loads over the range of allowed loading for the cell (output buffer loading is in picofarads). The last value in the row on the right has the word "max" in parenthesis to indicate that this is the maximum load that the cell can drive ${ }^{1}$. The rest of the rows contain delay values for each of the parameters corresponding to given loads in the first row. To find the delay for a cell, add up the loads of all the inputs that the cell is driving, then add the estimated interconnect load from the Load Estimation table on page 2-16. Finally, look up the value for the desired timing parameter corresponding to the load on the cell. Interpolation may be used for values in between load columns. Again, more accurate delays can be achieved by obtaining an AMI workstation kit. |  |

Notes:1. Due to differing capabilities of logic simulators, the delay modeling implementation will vary and in some cases will still use the linear model. Consult the factory about modeling for some specific workstation kits and simulators. Loads beyond the maximum load are an extrapolation of the model and therefore their accuracy is not guaranteed.

## AMIGG 0.6 micron CMOS Gate Array

Interconnect Load Estimation Table

| Die <br> Size <br> (in mils) | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{6}$ | $\mathbf{9}$ | $\mathbf{1 2}$ | $\mathbf{2 0}$ | $\mathbf{5 0}$ | $\mathbf{8 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fan Out (Equivalent Loads) |  |  |  |  |  |  |  |
| 400 | 0.6 | 1.8 | 3.4 | 4.9 | 6.3 | 10.0 | 22.6 | 34.2 |
| 450 | 0.5 | 1.7 | 3.2 | 4.6 | 6.0 | 9.5 | 21.5 | 32.6 |
| 400 | 0.5 | 1.6 | 3.0 | 4.4 | 5.7 | 9.0 | 20.4 | 31.0 |
| 350 | 0.5 | 1.5 | 2.8 | 4.1 | 5.4 | 8.5 | 19.2 | 29.2 |
| 300 | 0.4 | 1.4 | 2.7 | 3.9 | 5.0 | 7.9 | 18.0 | 27.3 |
| 250 | 0.4 | 1.3 | 2.4 | 3.5 | 4.6 | 7.3 | 16.6 | 25.1 |
| 200 | 0.3 | 1.1 | 2.2 | 3.2 | 4.2 | 6.6 | 15.0 | 22.8 |
| 150 | 0.3 | 1.0 | 1.9 | 2.8 | 3.6 | 5.8 | 13.2 | 20.0 |
| 100 | 0.2 | 0.8 | 1.6 | 2.3 | 3.0 | 4.8 | 11.0 | 16.7 |

## AMI6G 0.6 micron CMOS Gate Array

## Packaging

The AMI6X family can be packaged in a variety of popular packages.
New packages are in development which will extend the package offering. Some special packages or packaging requirements can be supplied if requested. More details on special packages are available from an AMI sales representative.

Available Packages
( ) = Lead time required

| Package Type | Pin Count |
| :--- | :--- |
| Plastic Quad Flatpack (PQFP) | $44,52,64,80,100,120,128,144,160,184,208,240,256,304$ |
| Thin Quad Flatpack (TQFP) | $32,44,48,64,80,100,120,128,144,160,176,(208)$ |
| Metal Quad Flatpack (MQUAD®) | $128,144,208$ |
| Power Quad 2 (PQ2) | $128,144,160,208,304$ |
| Ceramic Quad Flatpack (CQFP) | $40,44,52,64,84,100,132,144,172,196,256,352$ |
| Plastic Leaded Chip Carrier (PLCC) | $20,28,32,44,52,68,84$ |
| Ceramic Leaded Chip Carrier (JLDCC) | $28,44,52,68,84$ |
| Ceramic Leadless Chip Carrier (CLCC) | $20,24,28,32,36,40,44,48,52,68,84$ |
| Ceramic Pin Grid Array (CPGA) | $65,68,69,84,85,101,109,121,132,145,155,177,181,208,225,257$, <br> 299,476 |
| Ball Grid Array (BGA) | $(121),(169), 208,225,(256), 313,(352), 388$ |

## SECTION 3 CORE LOGIC

5. 

AA21

AMIGG 0.6 micron CMOS Gate Array

## Description:

AA21 is a 2-input gate which performs the logical AND function.


Equivalent Gates:
2.0

Bolt Syntax:
Q.AA21 A B;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\text {pd }}$ | 4.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay ( ns ) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{tPLH}^{t_{\text {PHL }}} \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 0.77 \end{aligned}$ |

[^0]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

AA22 is a 2-input gate which performs the logical AND function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | Q |  | Equivalent |
|  |  | L | L | L |  | Load |
|  |  | L | H | L | A | 1.0 |
|  |  | H | L | L | B | 1.0 |
|  |  |  | H | H |  |  |

Equivalent Gates: 2.0

Bolt Syntax: Q .AA22 A B;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 5.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.78 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AA31

## AMI6G 0.6 micron CMOS Gate Array

## Description:

AA31 is a 3-input gate which performs the logical AND function.


Equivalent Gates:
2.0

Bolt Syntax:...........................Q .AA31 A B C;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\mathrm{pd}}$ | 6.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & t_{p L H} \\ & t_{p p H} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 0.80 \end{aligned}$ |

[^1]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

AA32 is a 3-input gate which performs the logical AND function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | Q |  | Equivalent |
|  | L | X | X | L |  | Load |
|  | X | L | X | L | A | 1.0 |
|  | X | X | L | L | B | 1.0 |
|  | H | H | H | H | C | 1.0 |

Equivalent Gates: 3.0

Bolt Syntax:
Q .AA32 A B C;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\mathrm{pd}}$ | 8.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 0.82 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AA41

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AA41 is a 4-input gate which performs the logical AND function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
| $-\quad-Q$ | L | X | X | X | L |  | Load |
| AA41 | $x$ | L | X | X | L | A | 1.0 |
| -8 | X | X | L | X | L | B | 1.0 |
| - AA41 | X | X | X | L | L | C | 1.0 |
|  | H | H | H | H | H | D | 1.0 |

Equivalent Gates:
3.0

Bolt Syntax:
Q.AA41 A B C D;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\mathrm{pd}}$ | 7.8 | Eq-load |

See page 2-14 for power equation

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.55 \\ & 0.83 \end{aligned}$ |

[^2]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

AA42 is a 4-input gate which performs the logical AND function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
|  | L | X | X | X | L |  | Load |
|  | X | L | X | X | L | A | 1.0 |
|  | X | X | L | X | L | B | 1.0 |
|  | X | X | X | L | L | C | 1.0 |
|  | H | H | H | H | H | D | 1.0 |

Equivalent Gates: 3.0

Bolt Syntax: Q .AA42 A B C D;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\mathrm{pd}}$ | 8.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Input | Q | $\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 1.57 \\ & 0.85 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AN11

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN11 is an AND-NOR circuit consisting of two 2-input AND gates into a 2-input NOR gate.


Equivalent Gates:
2.0

Bolt Syntax:...........................Q .AN11 A B C D;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL $_{\mathrm{pd}}$ | 5.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.14 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.37 \end{aligned}$ | $\begin{aligned} & 1.03 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 0.60 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN21 is an AND-NOR circuit consisting of one 2-input AND gate into a 2 -input NOR gate.


Equivalent Gates:
2.0

Bolt Syntax:
Q.AN21 A B C;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL $_{\text {pd }}$ | 5.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.18 \\ & 0.11 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 0.59 \end{aligned}$ |

[^3]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN31 is an AND-NOR circuit consisting of one 2-input AND gate into a 3-input NOR gate.


## Equivalent Gates:

 2.0Bolt Syntax: Q .AN31 A B C D;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| EQL $_{\mathrm{pd}}$ | 6.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.14 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 1.46 \\ & 0.48 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN41 is an AND-NOR circuit consisting of one 3-input AND gate into a 2-input NOR gate.


Equivalent Gates:
2.0

Bolt Syntax:
Q .AN41 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.2 | nA |
| EQL $_{\text {pd }}$ | 6.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.64 \end{aligned}$ |

[^4]AN51

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN51 is an AND-NOR circuit consisting of one 3-input AND gate and one 2-input AND gate into a 2-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | Q |  | Equivalent Load |
| A AN51 |  | H | H | X | X | L | A | 1.0 |
| $\mathrm{C} \longrightarrow \square \mathrm{Q}^{\text {a }}$ | X | X | X | H | H | L | B | 1.0 |
| $\mathrm{D} \square$ |  | All other | comb | nation |  | H | C | 1.0 |
| E |  |  |  |  |  |  | D | 1.0 |
|  |  |  |  |  |  |  | E | 1.6 |

Equivalent Gates:
3.0

Bolt Syntax:
Q.AN51 A B C D E;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | $n A$ |
| EQL $_{p d}$ | 7.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PPLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.68 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN61 is an AND-NOR circuit consisting of two 3-input AND gates into a 2-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Equivalent <br> Load |
| $\frac{A}{B} \longrightarrow$ AN6 | H | H | H | X | X | X | L | A | 1.0 |
| $C \square \square$ | X | X | X | H | H | H | L | B | 1.0 |
| E |  | All | er co | nbina | ons |  | H | C | 1.0 |
| F |  |  |  |  |  |  |  | D | 1.0 |
|  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  | F | 1.0 |

Equivalent Gates:..................3.0
Bolt Syntax:
Q.AN61 A B C DEF;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\mathrm{pd}}$ | 8.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.69 \end{aligned}$ |

[^5]AN71

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN71 is an AND-NOR circuit consisting of one 3-input AND gate into a 3-input NOR gate.


Equivalent Gates:
3.0

Bolt Syntax:
Q.AN71 A B C D E;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{j}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 8.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.68 \end{aligned}$ |

[^6]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN81 is an AND-NOR circuit consisting of two 2-input AND gates into a 3-input NOR gate.


Equivalent Gates:..................3.0
Bolt Syntax:
Q.AN81 A B C D E;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.8 | $n A$ |
| EQL $_{\text {pd }}$ | 8.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 0.14 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 0.49 \end{aligned}$ |

[^7]AN91

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AN91 is an AND-NOR circuit consisting of one 3-input AND gate and one 2-input AND gate into a 3-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ <br> AN91 | A | B | C | D | E | F | Q |  | Equivalent Load |
| $\frac{B}{C}$ | H | H | H | X | X | X | L | A | 1.0 |
| $\square$ - | X | X | X | H | H | X | L | B | 1.0 |
| $E>0 \text { Q }$ | X |  |  |  | X | H | L | C | 1.0 |
|  |  | All 0 | her co | mbina | ions |  | H | D | 1.0 |
|  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  | F | 1.0 |

Equivalent Gates:
3.0

Bolt Syntax:
Q .AN91 A B C D E F;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.8 | $n A$ |
| EQL $_{\text {pd }}$ | 9.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.34 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 0.69 \end{aligned}$ |

[^8]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ANA1 is an AND-NOR circuit consisting of two 3-input AND gates into a 3-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | Q |  | Equivalent <br> Load |
|  | H | H | H | X | X | X | X | L | A | 1.0 |
|  | X | X | X | H | H | H | X | L | B | 1.0 |
|  | X | X | X |  | X | X | H | L | C | 1.0 |
|  |  |  | othe | comb | natio |  |  | H | D | 1.0 |
|  |  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  |  | F | 1.0 |
|  |  |  |  |  |  |  |  |  | G | 1.5 |

Equivalent Gates:
.4 .0
Bolt Syntax:
Q.ANA1 A B C DEFG;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.8 | $n A$ |
| EQL $_{\text {pd }}$ | 13.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 0.72 \end{aligned}$ |

[^9]ANB1

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ANB1 is an AND-NOR circuit consisting of three 2-input AND gates into a 3-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANB1 | A | B | C | D | E | F | Q |  | Equivalent Load |
| $\begin{array}{\|l\|} \mathrm{A} \\ \hline \end{array}$ | H | H | X | X | X | X | L | A | 1.0 |
| C $\square$ | X | X | H | H | X | X | L | B | 1.0 |
| $D \sim$ | X | X | X |  |  | H | L | C | 1.0 |
| E |  | All 0 | her co | mbina |  |  | H | D | 1.0 |
| F |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  | F | 1.0 |

Equivalent Gates:
3.0

Bolt Syntax:
Q.ANB1 A B C D E F;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| EQL $_{\mathrm{pd}}$ | 8.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {pLH }} \\ & t_{p \mathrm{l}} \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 0.50 \end{aligned}$ |

[^10]
## AMI6G 0.6 micron CMOS Gate Array

## Description:

ANC1 is an AND-NOR circuit consisting of one 3-input AND gate and two 2-input AND gates into a 3-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | Q |  | Equivalent Load |
|  | H |  | H | X | X | X | X | L | A | 1.0 |
|  | X | X | X | H | H | X | X | L | B | 1.0 |
|  | X |  | X | X |  | H | H | L | C | 1.0 |
|  |  |  | othe | comb | nation |  |  | H | D | 1.0 |
|  |  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  |  | F | 1.0 |
|  |  |  |  |  |  |  |  |  | G | 1.5 |

Equivalent Gates:
.4 .0
Bolt Syntax:
Q .ANC1 A B C D E F G;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\mathrm{pd}}$ | 11.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.37 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 0.73 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AND1 is an AND-NOR circuit consisting of two 3-input AND gates and one 2-input AND gate into a 3-input NOR gate.


Equivalent Gates:
4.0

Bolt Syntax:
Q.AND1 A B C DEFGH;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| EQL $_{\mathrm{pd}}$ | 12.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 0.86 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 1.72 \\ & 0.74 \end{aligned}$ |

[^11]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ANE1 is an AND-NOR circuit consisting of three 3-input AND gates into a 3-input NOR gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | Equivalent Load |
|  | A | B | C | D | E | F | G | H | 1 | Q | A | 1.0 |
|  |  | H | H | X | X | X | X | X | X | L | B | 1.0 |
|  |  | X | X | H | H | H | X | X | X | L | C | 1.0 |
|  |  | X | X | X | X | X | H | H | H | L | D | 1.0 |
|  |  |  |  | other | com | binat | ons |  |  | H | E | 1.0 |
|  |  |  |  |  |  |  |  |  |  |  | F | 1.0 |
|  |  |  |  |  |  |  |  |  |  |  | G | 1.0 |
|  |  |  |  |  |  | $\checkmark$ |  |  |  |  | H | 1.0 |
|  |  |  |  |  |  |  |  |  |  |  | 1 | 1.0 |

Equivalent Gates: 5.0

Bolt Syntax: $\qquad$ Q.ANE1 A B C DEFGHI;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | $n A$ |
| EQL $_{\text {pd }}$ | 15.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 1.81 \\ & 0.77 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

AU11 is a combinational one-bit full adder.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cl | A | B | S | CO |  |  |
|  | L | L | L | L | L |  | Equivalent |
| C ${ }^{\text {a }}$ | L | L | H | H | L |  | Load |
| AU11 | L | H | L | H | L | A | 4.0 |
| $s$ | L | H | H | L | H | B | 4.1 |
| B | H | L | L | H | L | Cl | 3.0 |
|  | H | L | H | L | H |  |  |
|  | H | H | L | L | H |  |  |
|  | H | H | H | H | H |  |  |

Equivalent Gates:
7.0

Bolt Syntax:
CO S .AU11 A B CI;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 23.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| A | S | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.68 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 1.37 \end{aligned}$ |
| B | S | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 1.44 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.69 \\ & 1.21 \end{aligned}$ | $\begin{aligned} & 1.98 \\ & 1.38 \end{aligned}$ |
| Cl | S | $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.88 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 1.20 \end{aligned}$ | $\begin{aligned} & 1.82 \\ & 1.32 \end{aligned}$ |
| A | CO | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & \hline 0.97 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 1.34 \end{aligned}$ |
| B | CO | $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & \hline 0.46 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.88 \end{aligned}$ | $\begin{aligned} & \hline 0.97 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 1.21 \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 1.34 \end{aligned}$ |

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Cl | CO | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 1.44 \\ & 1.16 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

BLO2 is a tri-state bus latch that stores the final binary level on the bus when left undriven.

| Logic Symbol | Truth Table | Pin Loading |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | N/A |  |
|  |  |  |  |

Equivalent Gates: 2.0

Bolt Syntax:
IO .BL02;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| $E Q L_{\mathrm{pd}}$ | 10.3 | Eq-load |

See page 2-14 for power equation.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

BR02 is a non-inverting bus receiver with a single output to be used as the output of tri-state busses.


Equivalent Gates:
2.0

Bolt Syntax:
Q .BR02 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | $n A$ |
| EQL $_{\text {pd }}$ | 5.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.37 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.76 \end{aligned}$ |

[^12]BRO4

## AMIGG 0.6 micron CMOS Gate Array

## Description:

BR04 is a non-inverting bus receiver with a single output to be used as the output of tri-state busses.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | $\frac{\mathrm{Q}}{\mathrm{~L}}$ |  | Equivalent <br> Load |
|  | H | H | A | 2.0 |

## Equivalent Gates:

3.0

Bolt Syntax: $\qquad$ Q.BR04 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\mathrm{pd}}$ | 11.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 4 | 19 | 35 | 51 | 67 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 0.74 \end{aligned}$ |

[^13]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

BR06 is a non-inverting bus receiver with a single output to be used as the output of tri-state busses.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | Q |  | Equivalent <br> Load |
|  | H | H | A | 2.0 |

Equivalent Gates: 4.0

Bolt Syntax:
Q .BR06 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 15.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 6 | 28 | 52 | 75 | 99 (max) |
| A | Q | $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & \hline 0.91 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.79 \end{aligned}$ |

[^14]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

CVDD is the resistive tie-up to the core $V_{D D}$ bus for all cell inputs.
Equivalent Gates:
1.0

Bolt Syntax: $\qquad$ Q.CVDD;


## AMIGG 0.6 micron CMOS Gate Array

## Description:

CVSS is the resistive tie-down to the core $\mathrm{V}_{\mathrm{SS}}$ bus for all cell inputs.
Equivalent Gates:
1.0

Bolt Syntax:...........................Q .CVSS;


DC24

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DC24 is a two-to-four line decoder/demultiplexer with active low enable.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | S1 | So | QON | Q1N | Q2N | Q3N |  | Equivalent |
|  | H | X | X | H | H | H | H |  | Load |
|  | L | L | L | L | H | H | H | S0 | 3.1 |
|  | L | L | H | H | L | H | H | S1 | 3.1 |
|  | L | H | L | H | H | L | H | EN | 1.0 |
|  | L | H | H | H | H | H | L |  |  |

Equivalent Gates:
8.0

Bolt Syntax:...........................Q0N Q1N Q2N Q3N .DC24 EN S0 S1;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 11.0 | nA |
| EQL $_{\mathrm{pd}}$ | 27.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 4 | 6 | 8 (max) |
| Sx | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.83 \end{aligned}$ |
| EN | QN | $t_{\text {PLL }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.42 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.70 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.82 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.95 \end{aligned}$ |

[^15]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

DC38 is a three-to-eight line decoder/demultiplexer with active low enable.


Equivalent Gates:
20.0

Bolt Syntax: ...........................Q0N Q1N Q2N Q3N Q4N Q5N Q6N Q7N .DC38 EN S0 S1 S2;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 26.3 | $n A$ |
| EQL $_{\text {pd }}$ | 59.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 2 | 4 | 5 | 7 (max) |
| Sx | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 1.05 \end{aligned}$ |
| EN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.96 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 1.09 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 1.21 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

DC38

## AMIGG 0.6 micron CMOS Gate Array

| Truth Table |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EN | S2 | S1 | So | Q0N | Q1N | Q2N | Q3N | Q4N | Q5N | Q6N | Q7N |
| H | X | X | X | H | H | H | H | H | H | H | H |
| L | L | L | L | L | H | H | H | H | H | H | H |
| L | L | L | H | H | L | H | H | H | H | H | H |
| L | L | H | L | H | H | L | H | H | H | H | H |
| L | L | H | H | H | H | H | L | H | H | H | H |
| L | H | L | L | H | H | H | H | L | H | H | H |
| L | H | L | H | H | H | H | H | H | L | H | H |
| L | H | H | L | H | H | H | H | H | H | L | H |
| L | H | H | H | H | H | H | H | H | H | H | L |

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF001 is a static, master-slave D flip-flop without SET or RESET. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table | Pin Loading |
| :---: | :---: | :---: |
|  | $D$ $C$ $Q$ <br> $H$ $\uparrow$ $H$ <br> $L$ $\uparrow$ $L$ <br> $X$ $L$ $N C$ <br> NC = No Change |  Equivalent <br> Load <br> D 1.0 <br> C 3.1 |

Equivalent Gates:
6.0

Bolt Syntax:...........................Q.DF001 C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.1 | nA |
| EQL $_{\text {pd }}$ | 17.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.88 \end{aligned}$ |
| Min C Width | High | $\mathrm{t}_{\text {w }}$ | 0.50 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.55 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.45 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

[^16]DF001
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic




## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF011 is a static, master-slave D flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol <br>  <br>  <br> - <br> - <br> - | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | RN | D C | Q |  | Equivalent |
|  | L | X X | L |  | Load |
|  | H | L $\uparrow$ | L | D | 1.0 |
|  | H | H $\uparrow$ | H | C | 3.1 |
|  | H | X L | NC | RN | 1.0 |
|  |  | NC = No C | ange |  |  |

Equivalent Gates:
Bolt Syntax:...........................Q .DF011 C D RN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.9 | nA |
| EQL $_{\mathrm{pd}}$ | 23.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 1.46 \\ & 0.87 \end{aligned}$ |
| RN | Q | $t_{\text {PHL }}$ | 0.32 | 0.39 | 0.47 | 0.55 | 0.63 |
| Min C Width | High | $t_{w}$ | 0.52 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.68 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.66 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.52 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.44 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.37 |  |  |  |  |

[^17]
## AMIGG 0.6 micron CMOS Gate Array

## Schematic Logic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF021 is a static, master-slave D flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates: 7.0

Bolt Syntax: $\qquad$ Q.DF021 C D SN;

## Power Characteristics::

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 6.6 | nA |
| EQL $_{\mathrm{pd}}$ | 18.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.98 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 1.09 \end{aligned}$ |
| SN | Q | $t_{\text {PLH }}$ | 0.19 | 0.33 | 0.47 | 0.61 | 0.74 |
| Min C Width | High | $t_{\text {w }}$ | 0.60 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.56 |  |  |  |  |
| Min SN Width | Low | $t_{\text {w }}$ | 0.64 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.52 |  |  |  |  |
| Min D Hold |  | $t_{n}$ | 0.00 |  |  |  |  |


| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |
| Min SN Setup |  |  | 3 | 6 | 8 | 11 (max) |  |  |
| Min SN Hold | $\mathrm{t}_{\mathrm{su}}$ |  |  |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic


C


AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF031 is a static, master-slave D flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{j}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 27.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 1.16 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.87 | 0.98 | 1.12 | 1.25 | 1.37 |
| SN | Q | $t_{\text {PLH }}$ | 0.22 | 0.34 | 0.48 | 0.62 | 0.76 |

DF031

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.66 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.71 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.86 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.81 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.55 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.49 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.37 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

RN $\Theta-$
SN $\Theta$


C


## AMI6G 0.6 micron CMOS Gate Array

## Description:

DF041 is a static, master-slave D flip-flop without SET or RESET. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates:
6.0

Bolt Syntax:
QN .DF041 C D;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.1 | nA |
| EQL $_{\text {pd }}$ | 17.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay ( ns ) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 1.46 \\ & 0.64 \end{aligned}$ |
| Min C Width | High | $t_{\text {w }}$ | 0.99 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.56 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.45 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |

[^18]AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic


$C \rightarrow-C N$

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF051 is a static, master-slave D flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates: 7.0

Bolt Syntax:
QN .DF051 C D RN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.9 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 23.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 0.64 \end{aligned}$ |
| RN | QN | $\mathrm{t}_{\text {PLH }}$ | 0.78 | 0.97 | 1.25 | 1.52 | 1.75 |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.93 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.68 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.66 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.52 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  |  | Number of Equivalent Loads |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |
| Min RN Setup |  | 1 | 3 | 6 | 8 | 11 (max) |  |
| Min RN Hold | $t_{\text {su }}$ | 0.44 |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Schematic Logic



C


## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF061 is a static, master-slave D flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates:
7.0

Bolt Syntax:
QN .DF061 C D SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 6.6 | $n A$ |
| EQL $_{\text {pd }}$ | 18.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.47 \\ & 0.64 \end{aligned}$ |
| SN | QN | $t_{\text {PHL }}$ | 0.43 | 0.53 | 0.66 | 0.78 | 0.88 |
| Min C Width | High | $t_{\text {w }}$ | 1.13 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.56 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.42 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.52 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |

DF061
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array



Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMI6G 0.6 micron CMOS Gate Array

## Description:

DF071 is a static, master-slave D flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates: 9.0

Bolt Syntax:
QN .DF071 C D RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| EQL $_{\text {pd }}$ | 27.0 | Eq-load |

See page 2-14 for power equation.
Delay Characteristics:
Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.47 \\ & 0.64 \end{aligned}$ |
| RN | QN | $\mathrm{t}_{\text {PLH }}$ | 0.71 | 0.94 | 1.20 | 1.45 | 1.70 |
| SN | QN | $t_{\text {PHL }}$ | 0.62 | 0.73 | 0.86 | 1.01 | 1.18 |

DF071
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 1.20 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.71 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 1.44 |  |  |  |  |
| Min SN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.62 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.55 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.49 |  |  |  |  |
| Min RN Hold |  | $t_{\text {h }}$ | 0.37 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

RN $\leftrightarrows$
SN $\oplus$


C
 CN

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF101 is a static, master-slave D flip-flop. SET is asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.


Equivalent Gates: 8.0

Bolt Syntax: Q QN .DF101 C D SN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 8.0 | nA |
| EQL $_{\mathrm{pd}}$ | 24.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 1.09 \end{aligned}$ | $\begin{aligned} & 1.47 \\ & 1.24 \end{aligned}$ |
| C | QN | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 1.69 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.98 \\ & 1.10 \end{aligned}$ |
| SN | Q | $t_{\text {PLH }}$ | 0.66 | 0.91 | 1.18 | 1.46 | 1.73 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.29 | 0.46 | 0.60 | 0.73 | 0.86 |

DF101
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.71 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.58 |  |  |  |  |
| Min SN Width |  | $t_{\text {w }}$ | 0.45 |  |  |  |  |
| Min D Setup |  | $t_{\text {su }}$ | 0.54 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

SN

D


C


C


AMI
AMERICAN MICROSYSTEMS, INC.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

DF111 is a static, master-slave D flip-flop. RESET is asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | RN | D C | Q QN |  | Equivalent |
| D D - | L | X X | L H |  | Load |
| C ${ }^{\text {c }}$ | H | L $\uparrow$ | L H | D | 1.0 |
| $\overline{\mathrm{P}}$ Q ${ }^{\text {- }}$ | H | H $\uparrow$ | H L | C | 3.2 |
| R | H | X L | NC NC | RN | 1.0 |
|  | NC = No Change |  |  |  |  |

Equivalent Gates: 8.0

Bolt Syntax: ...........................Q QN .DF111 C D RN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 7.3 | $n A$ |
| EQL $_{\text {pd }}$ | 28.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | o |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 1.09 \end{aligned}$ | $\begin{aligned} & 1.38 \\ & 1.22 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 1.52 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.80 \\ & 1.26 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.84 | 1.06 | 1.20 | 1.35 | 1.51 |
| RN | QN | $t_{\text {PLH }}$ | 0.46 | 0.70 | 0.95 | 1.21 | 1.47 |

DF111

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{w}$ | 0.62 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.68 |  |  |  |  |
| Min RN Width |  | $t_{w}$ | 0.66 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.52 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.44 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.36 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



C


## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF121 is a static, master-slave D flip-flop. SET and RESET are asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SN RN | D | C | Q | QN |  |  |
|  | L L | X | X | IL | IL |  | Equivalent |
|  | L H | X | X | H | L |  | Load |
|  | H L | X | X | L | H | D | 1.0 |
|  | H H | L | $\uparrow$ | L | H | C | 3.2 |
|  | H H | H | $\uparrow$ | H | L | SN | 2.0 |
|  | H H | X | L | NC | NC | RN | 2.1 |
|  | IL = IIIegal |  |  | = N | Change |  |  |

Equivalent Gates: 10.0

Bolt Syntax:
Q QN .DF121 C D RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.8 | nA |
| EQL $_{\mathrm{pd}}$ | 31.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay ( ns ) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 1.19 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 1.64 \\ & 0.96 \end{aligned}$ | $\begin{aligned} & 1.92 \\ & 1.08 \end{aligned}$ |
| SN | Q | $t_{\text {PLH }}$ | 0.79 | 1.08 | 1.34 | 1.58 | 1.81 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.31 | 0.47 | 0.61 | 0.74 | 0.89 |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.81 | 0.98 | 1.15 | 1.31 | 1.46 |
| RN | QN | tplH | 1.17 | 1.38 | 1.63 | 1.89 | 2.16 |

DF121

## AMIGG 0.6 micron CMOS Gate Array

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.71 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.70 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.95 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.60 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.54 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.36 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF1F1 is a static, master-slave D flip-flop without SET or RESET. Outputs are buffered and change state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | C |  |  |  | Equivalent |
| - $\mathrm{D}^{\mathrm{D}}$ - Q- |  |  | X | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |  | D | Load 1.0 |
| DF1F1 |  |  |  | H |  | C | 3.0 |
| - ${ }^{\text {Q }}$ |  |  |  | NC | NC |  |  |
|  |  |  |  | Chan |  |  |  |

Equivalent Gates: 7.0

Bolt Syntax:
Q QN .DF1F1 C D;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 6.6 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 22.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 1.21 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 1.75 \\ & 1.09 \end{aligned}$ |
| Min C Width | High | $\mathrm{t}_{\text {w }}$ | 0.60 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.55 |  |  |  |  |

AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min D Setup | $\mathrm{t}_{\mathrm{su}}$ | 0.46 |  |  |  |  |
| Min D Hold | $t_{\text {h }}$ | 0.00 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic


C
 CN

## AMI6G 0.6 micron CMOS Gate Array

## Description:

DF201 is a static, master-slave, multiplexed scan D flip-flop without SET or RESET. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C | D | SD | SE | Q |  | Equivalent |
|  |  | $\uparrow$ | H | X | L | H |  | Load |
|  |  | $\uparrow$ | L | X | L | L | C | 3.1 |
|  |  | $\uparrow$ | X | H | H | H | D | 1.0 |
|  |  | $\uparrow$ | X | L | H | L | SD | 1.0 |
|  |  | L | X | X | X | NC | SE | 2.1 |
|  |  |  |  | = N | Chan |  |  |  |

Equivalent Gates:
Bolt Syntax:...........................Q .DF201 C D SD SE;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{j}=85^{\circ} \mathrm{C}\right)$ | 6.6 | $n A$ |
| EQL $_{\text {pd }}$ | 25.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.89 \end{aligned}$ |
| Min C Width | High | $t_{\text {w }}$ | 0.54 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\text {w }}$ | 0.77 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min SD Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 0.87 |  |  |  |  |
| Min SE Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates. (continued on next page)

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF211 is a static, master-slave, multiplexed scan D flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates:
10.0

Bolt Syntax:
Q .DF211 C D RN SD SE;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| EQL $_{\text {pd }}$ | 32.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.82 \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 0.92 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.34 | 0.41 | 0.49 | 0.57 | 0.65 |

DF211
AMERICAN MICROSYSTEMS, INC
AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.55 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.85 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.68 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min SD Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 0.87 |  |  |  |  |
| Min SE Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.35 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic




## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF221 is a static, master-slave, multiplexed scan D flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | D | SD | SE | SN | Q |  | Equivalent |
|  | $\uparrow$ | H | X | L | H | H |  | Load |
|  | $\uparrow$ | L | X | L | H | L | C | 3.2 |
|  | $\uparrow$ | X | H | H | H | H | D | 1.0 |
|  | $\uparrow$ | x | L | H | H | L | SD | 1.0 |
|  | X | X | X | X | L | H | SE | 2.1 |
|  | L | X | X | X |  | NC | SN | 2.1 |
|  |  |  | $N C=N$ | Cha |  |  |  |  |

Equivalent Gates: 10.0

Bolt Syntax:
Q .DF221 C D SD SE SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.0 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 29.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.61 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 1.17 \end{aligned}$ |
| SN | Q | $t_{\text {PLH }}$ | 0.22 | 0.35 | 0.49 | 0.63 | 0.77 |

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $\mathrm{t}_{\text {w }}$ | 0.59 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.89 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.43 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.89 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.89 |  |  |  |  |
| Min SD Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 0.99 |  |  |  |  |
| Min SE Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.19 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.12 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF231 is a static, master-slave, multiplexed scan D flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading | Equivalent Load |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | D | RN | SD | SE | SN | Q |  |  |
|  | $\uparrow$ | H | H | X | L | H | H |  |  |
|  | $\uparrow$ | L | H | X | L | H | L |  |  |
|  | $\uparrow$ | X | H | H | H | H | H | C | 3.1 |
|  | $\uparrow$. | X | H | L | H | H | L | D | 1.0 |
|  | X | X | L | X | X | H | L | RN | 2.2 |
|  | X | X | H | X | X | L | H | SD | 1.0 |
|  | X | X | L | X | X | L | IL | SE | 2.1 |
|  | L | X | H | X | X | H | NC | SN | 2.0 |
|  | NC = | No Ch | nge |  | $=11 \mathrm{leg}$ | al Co | dition |  |  |

Equivalent Gates: 12.0

Bolt Syntax:
Q .DF231 C D RN SD SE SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.8 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 35.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 1.14 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.82 | 1.00 | 1.13 | 1.25 | 1.36 |
| SN | Q | $t_{\text {PLH }}$ | 0.21 | 0.35 | 0.48 | 0.62 | 0.76 |

DF231
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.65 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.94 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.87 |  |  |  |  |
| Min SN Width | Low | $t_{\text {w }}$ | 0.81 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.94 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.94 |  |  |  |  |
| Min SD Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 1.07 |  |  |  |  |
| Min SE Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.36 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

$\mathrm{RN} \leftrightarrow$
SN $\leftrightarrows$


AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF401 is a static, master-slave, multiplexed scan D flip-flop. SET is asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.


Equivalent Gates: 11.0

Bolt Syntax:...........................Q QN .DF401 C D SD SE SN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 9.5 | nA |
| EQL $_{\mathrm{pd}}$ | 33.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & \hline 0.63 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 1.20 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 1.44 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.64 \\ & 0.96 \end{aligned}$ | $\begin{aligned} & 1.83 \\ & 1.06 \end{aligned}$ |
| SN | Q | $\mathrm{t}_{\text {PLH }}$ | 0.66 | 0.89 | 1.14 | 1.51 | 2.01 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.32 | 0.49 | 0.63 | 0.77 | 0.90 |

AMERICAN MICROSYSTEMS, INC.
DF401

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.74 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.89 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.45 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.89 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.89 |  |  |  |  |
| Min SD Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 0.99 |  |  |  |  |
| Min SE Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.19 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.12 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF411 is a static, master-slave, multiplexed scan D flip-flop. RESET is asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.


Equivalent Gates: 11.0

Bolt Syntax: ...........................Q QN .DF411 C D RN SD SE;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.8 | nA |
| EQL $_{\mathrm{pd}}$ | 37.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $t_{\text {PLL }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.38 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 1.11 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 1.27 \end{aligned}$ |
| C | QN | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 1.03 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 1.79 \\ & 1.30 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.90 | 1.05 | 1.22 | 1.39 | 1.53 |
| RN | QN | $t_{\text {PLH }}$ | 0.48 | 0.73 | 0.97 | 1.22 | 1.50 |

## AMI6G 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.63 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.85 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.67 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min SD Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $t_{\text {su }}$ | 0.86 |  |  |  |  |
| Min SE Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.35 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF421 is a static, master-slave, multiplexed scan D flip-flop. SET and RESET are asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | D | RN | SD | SE | SN | Q | QN |  | Equivalent |
|  | $\uparrow$ | H | H | X | L | H | H | L |  | Load |
|  | $\uparrow$ | L | H | X | L | H | L | H | C | 3.1 |
|  | $\uparrow$ |  | H | H | H | H | H | L | D | 1.0 |
|  | $\uparrow$ | X | H | L | H | H | L |  | RN | 2.2 |
|  | X | X | L | X | X | H | L |  | SD | 1.0 |
|  | $x$ | X | H | X | X | L | H |  | SE | 2.1 |
|  |  | X | L | X | X | L | IL |  | SN | 2.0 |
|  |  | X | H | X | X | H |  |  |  |  |
|  | NC = No Change |  |  |  | IL = Illegal Condition |  |  |  |  |  |

## Equivalent Gates:

 13.0Bolt Syntax: ...........................Q QN .DF421 C D RN SD SE SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 10.2 | nA |
| EQL $_{\text {pd }}$ | 40.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.77 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & \hline 1.14 \\ & 1.11 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 1.25 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.70 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 1.11 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.80 | 1.02 | 1.19 | 1.35 | 1.50 |
| RN | QN | $t_{\text {PLL }}$ | 1.18 | 1.43 | 1.64 | 1.90 | 2.18 |
| SN | Q | $t_{\text {PLH }}$ | 0.86 | 1.10 | 1.35 | 1.59 | 1.86 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.31 | 0.47 | 0.61 | 0.75 | 0.88 |

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{w}$ | 0.72 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.95 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.96 |  |  |  |  |
| Min SN Width | Low | $t_{\text {w }}$ | 0.62 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.95 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.95 |  |  |  |  |
| Min SD Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 1.07 |  |  |  |  |
| Min SE Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.49 |  |  |  |  |
| Min RN Hold |  | $t_{\text {h }}$ | 0.37 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DF4F1 is a static, master-slave, multiplexed scan D flip-flop without SET or RESET. Outputs are buffered and change state on the rising edge of the clock.


Equivalent Gates: 9.0

Bolt Syntax:
Q QN .DF4F1 C D SD SE;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.0 | nA |
| EQL $_{\mathrm{pd}}$ | 30.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 1.25 \end{aligned}$ |
| C | QN | $\begin{aligned} & \text { tpLL } \\ & t_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 0.82 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.77 \\ & 1.09 \end{aligned}$ |


| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.61 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.77 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.77 |  |  |  |  |
| Min SD Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 0.87 |  |  |  |  |
| Min SE Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA01 is a static, master-slave D flip-flop without SET or RESET. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF001.


Equivalent Gates: 6.0

Bolt Syntax:..........................Q .DFA01 C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\mathrm{pd}}$ | 17.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 0.44 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.71 \end{aligned}$ |
| Min C Width | High | $t_{\text {w }}$ | 0.44 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.48 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.47 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic




AMI

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA11 is a static, master-slave D flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF011.


Equivalent Gates:..................8.0
Bolt Syntax:..........................Q .DFA11 C D RN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{j}=85^{\circ} \mathrm{C}\right)$ | 5.8 | $n A$ |
| EQL $_{\text {pd }}$ | 19.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 0.51 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.69 \end{aligned}$ |
| RN | Q | $t_{\text {PHL }}$ | 0.32 | 0.40 | 0.49 | 0.57 | 0.65 |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.50 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.55 |  |  |  |  |
| Min RN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.29 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.49 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.14 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.21 |  |  |  |  |

[^19]DFA11
AMERICAN MICROSYSTEMS, INC.
AMIGG 0.6 micron CMOS Gate Array
Schematic Logic

RN $\Theta$
D


## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA21 is a static, master-slave D flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF021.


Equivalent Gates:
6.0

Bolt Syntax: ...........................Q .DFA21 C D SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| EQL $_{\mathrm{pd}}$ | 18.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 0.90 \end{aligned}$ |
| SN | Q | $\mathrm{t}_{\text {PLH }}$ | 0.27 | 0.41 | 0.55 | 0.70 | 0.83 |
| Min C Width | High | $t_{\text {w }}$ | 0.43 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.56 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.67 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |

DFA21
AMERICAN MICROSYSTEMS, INC.
AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |
|  |  |  | 1 | 3 | 6 | 8 |
| Min SN Setup |  |  | 0.29 |  |  |  |
| Min SN Hold | $t_{\mathrm{h}}$ |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

Logic Schematic

SN




## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA31 is a static, master-slave D flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF031.


Equivalent Gates:
8.0

Bolt Syntax:
Q .DFA31 C D RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| EQL $_{\text {pd }}$ | 20.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 0.91 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.38 | 0.55 | 0.65 | 0.76 | 0.90 |
| SN | Q | $t_{\text {PLH }}$ | 0.28 | 0.40 | 0.55 | 0.70 | 0.83 |

## AMIGG 0.6 micron CMOS Gate Array

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.54 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.57 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.42 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.78 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.15 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.21 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.29 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.15 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

RN
$\Theta-$
SN $\qquad$
D



C
 CN

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA41 is a static, master-slave D flip-flop without SET or RESET. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF041.


Equivalent Gates: 6.0

Bolt Syntax: QN .DFA41 C D;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | $n A$ |
| EQL $_{\text {pd }}$ | 17.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.73 \end{aligned}$ |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.72 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.48 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.47 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

[^20]
## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic



AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA51 is a static, master-slave D flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF051.


Equivalent Gates:
8.0

Bolt Syntax:........................... QN .DFA51 C D RN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| EQL $_{\mathrm{pd}}$ | 19.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $t_{\text {PLH }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.37 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.91 \end{aligned}$ |
| RN | QN | $t_{\text {PLH }}$ | 0.19 | 0.33 | 0.47 | 0.60 | 0.75 |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.91 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.55 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.65 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.49 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.14 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.21 |  |  |  |  |

[^21]DFA51

## AMIGG 0.6 micron CMOS Gate Array

## Schematic Logic

RN $\Theta$


## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA61 is a static, master-slave D flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF061.


Equivalent Gates:
6.0

Bolt Syntax:
QN .DFA61 C D SN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| EQL $_{\text {pd }}$ | 18.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.69 \end{aligned}$ |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.49 | 0.58 | 0.67 | 0.76 | 0.86 |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.77 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.56 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.51 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

## AMI6G 0.6 micron CMOS Gate Array

| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |
|  |  |  | 1 | 3 | 6 | 8 |
| Min SN Setup |  |  | 0.29 |  |  |  |
| Min SN Hold | $t_{h}$ |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

Logic Schematic

SN $\square$

D

C
 CN

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFA71 is a static, master-slave D flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock. Transmission gate equivalent of DF071.


## Equivalent Gates:

 8.0Bolt Syntax: ........................... QN .DFA71 C D RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 20.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.77 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.89 \end{aligned}$ |
| RN | QN | $t_{\text {PLH }}$ | 0.19 | 0.32 | 0.46 | 0.60 | 0.73 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.51 | 0.68 | 0.80 | 0.92 | 1.06 |

## AMI6G 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.90 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.57 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.77 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.63 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.15 |  |  |  |  |
| Min RN Hold |  | $t_{\text {h }}$ | 0.22 |  |  |  |  |
| Min SN Setup |  | $t_{\text {su }}$ | 0.29 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.15 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

RN $\_$
SN $\_$


CB

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFB01 is a static, master-slave D flip-flop. SET is asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock. Transmission gate equivalent of DF101.

|  | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SN | D | C | Q | QN |  | Equivalent |
|  | L | X | X | H | L |  | Load |
|  | H | L | $\uparrow$ | L | H | D | 1.0 |
|  | H | H | $\uparrow$ | H | L | C | 3.1 |
| $\bar{Q}{ }^{-}$ | H | X | L | NC | NC | SN | 2.1 |
|  |  | NC $=$ | o C | ange |  |  |  |

Equivalent Gates: 8.0

Bolt Syntax:
Q QN .DFB01 C D SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| EQL $_{\mathrm{pd}}$ | 25.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.52 \\ & 1.04 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 1.48 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.73 \\ & 1.20 \end{aligned}$ |
| SN | Q | $t_{\text {PLL }}$ | 0.64 | 0.89 | 1.15 | 1.42 | 1.70 |
| SN | QN | tPHL | 0.40 | 0.56 | 0.72 | 0.87 | 0.99 |

DFBO1
AMERICAN MICROSYSTEMS, INC

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.54 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.46 |  |  |  |  |
| Min SN Width |  | $t_{\text {w }}$ | 0.51 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.11 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

SN $\qquad$
D


C


AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFB11 is a static, master-slave D flip-flop. RESET is asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock. Transmission gate equivalent of DF111.


Equivalent Gates:..................8.0
Bolt Syntax:...........................Q QN .DFB11 C D RN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 7.3 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 24.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & \hline 0.59 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & \hline 0.88 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 1.05 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & \hline 0.84 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 1.28 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.28 | 0.47 | 0.60 | 0.74 | 0.89 |
| RN | QN | $\mathrm{t}_{\text {PLH }}$ | 0.58 | 0.81 | 1.07 | 1.33 | 1.57 |

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.62 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.43 |  |  |  |  |
| Min RN Width |  | $t_{\text {w }}$ | 0.39 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.15 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.21 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

RN $\qquad$


C
 CN

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DFB21 is a static, master-slave D flip-flop. SET and RESET are asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock. Transmission gate equivalent of DF121.


Equivalent Gates: 10.0

Bolt Syntax: Q QN .DFB21 C D RN SN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.8 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 25.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 1.03 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 1.00 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.96 \end{aligned}$ | $\begin{aligned} & 1.38 \\ & 1.09 \end{aligned}$ | $\begin{aligned} & 1.63 \\ & 1.26 \end{aligned}$ |
| SN | Q | $t_{\text {PLH }}$ | 0.72 | 0.93 | 1.17 | 1.42 | 1.66 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.38 | 0.54 | 0.69 | 0.83 | 0.98 |
| RN | Q | $\mathrm{t}_{\mathrm{PHL}}$ | 0.29 | 0.43 | 0.59 | 0.72 | 0.84 |
| RN | QN | $t_{\text {PLH }}$ | 0.67 | 0.93 | 1.16 | 1.40 | 1.65 |

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $\mathrm{t}_{\text {w }}$ | 0.59 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.57 |  |  |  |  |
| Min RN Width | Low | $\mathrm{t}_{\text {w }}$ | 0.47 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.63 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.56 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.15 |  |  |  |  |
| Min RN Hold |  | $t_{\text {h }}$ | 0.22 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.29 |  |  |  |  |
| Min SN Hold |  | $t_{n}$ | 0.15 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic

RN $\leftrightarrows$
SN $\qquad$


C


## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL001 is a single-phase, unbuffered D latch with active low gate transparency and without SET or RESET.


Equivalent Gates:
3.0

Bolt Syntax:...........................Q .DL001 D GN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\text {pd }}$ | 8.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| D | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.82 \end{aligned}$ |
| GN | Q | $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 0.52 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 0.73 \end{aligned}$ |
| Min GN Width | Low | $t_{\text {w }}$ | 0.50 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.44 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic


$\mathrm{GN} \rightarrow-\mathrm{G}$

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL011 is a single-phase, unbuffered D latch with active low gate transparency. RESET is active low.


Equivalent Gates: 4.0

Bolt Syntax:
Q .DL011 D GN RN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 12.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 1.54 \\ & 0.83 \end{aligned}$ |
| GN | Q | $t_{\text {PLH }}$ | $\begin{aligned} & 0.61 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 1.62 \\ & 0.74 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.25 | 0.32 | 0.40 | 0.48 | 0.55 |
| Min GN Width | Low | $t_{\text {w }}$ | 0.62 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.81 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.53 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.39 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

[^22]
## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL021 is a single-phase, unbuffered D latch with active low gate transparency. SET is active low.


Equivalent Gates:
.4 .0
Bolt Syntax:
Q .DL021 D GN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{j}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\mathrm{pd}}$ | 9.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 1.05 \end{aligned}$ |
| GN | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.97 \end{aligned}$ |
| SN | Q | $\mathrm{t}_{\text {PLH }}$ | 0.20 | 0.33 | 0.47 | 0.60 | 0.74 |
| Min GN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.57 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.65 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.57 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.17 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.
(continued on next page)



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL031 is a single-phase, unbuffered D latch with active low gate transparency. RESET and SET are active low.


Equivalent Gates:
4.0

Bolt Syntax:
Q .DL031 D GN RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 11.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.61 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.70 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.82 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 1.10 \end{aligned}$ |
| GN | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.61 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 0.88 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 0.97 \end{aligned}$ |
| SN | Q | $\mathrm{t}_{\text {PLH }}$ | 0.19 | 0.32 | 0.45 | 0.59 | 0.73 |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.46 | 0.63 | 0.74 | 0.86 | 1.00 |

AMERICAN MICROSYSTEMS, INC.

AMIGG 0.6 micron CMOS Gate Array

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min GN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.62 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.26 |  |  |  |  |
| Min SN Width | Low | $t_{\text {w }}$ | 0.80 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.61 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.16 |  |  |  |  |
| Min SN Hold |  | $t_{\text {h }}$ | 0.19 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.58 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.12 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



$\mathrm{GN} \rightarrow$

AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL041 is a single-phase, unbuffered D latch with active low gate transparency and without SET or RESET.


Equivalent Gates:
3.0

Bolt Syntax:
QN .DL041 D GN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{j}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\text {pd }}$ | 8.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| D | QN | $\begin{aligned} & t_{\mathrm{pLLL}} \\ & t_{\mathrm{p}} \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.34 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 0.70 \end{aligned}$ |
| GN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 1.33 \\ & 0.77 \end{aligned}$ |
| Min GN Width | Low | $\mathrm{t}_{\text {w }}$ | 0.92 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.92 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

[^23]DL041

Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL051 is a single-phase, unbuffered D latch with active low gate transparency. RESET is active low.


Equivalent Gates:
5.0

Bolt Syntax:
QN .DL051 D GN RN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\text {pd }}$ | 14.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 1.12 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 1.24 \end{aligned}$ |
| GN | QN | $\mathrm{t}_{\mathrm{PLH}}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 0.54 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 1.21 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 1.34 \end{aligned}$ |
| RN | QN | $\mathrm{t}_{\text {PLH }}$ | 0.37 | 0.65 | 0.87 | 1.12 | 1.40 |
| Min GN Width | Low | $t_{w}$ | 0.63 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.60 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.53 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.41 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

[^24]
## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic



AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL061 is a single-phase, unbuffered $D$ latch with active low gate transparency. SET is active low.


Equivalent Gates: 4.0

Bolt Syntax: QN .DL061 D GN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | $n A$ |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 12.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From Delay | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.72 \\ & 1.07 \end{aligned}$ |
| GN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.67 \\ & 1.20 \end{aligned}$ |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.30 | 0.45 | 0.60 | 0.73 | 0.86 |
| Min GN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.55 |  |  |  |  |
| Min SN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.39 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.55 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

[^25]DL061
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic




## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL071 is a single-phase, unbuffered $D$ latch with active low gate transparency. RESET and SET are active low.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | L | X | X | IL |  | Equivalent |
|  | L | H | X | X | L |  | Load |
|  | H | L | X | X | H | D | 1.0 |
|  | H | H | X | H | NC | GN | 2.0 |
|  | H | H | L | L | H | SN | 1.0 |
|  | H | H | H | L | L | RN | 1.0 |
|  | NC = No | Chang |  |  | IL = Illegal |  |  |

Equivalent Gates:
5.0

Bolt Syntax:
QN .DL071 D GN RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.1 | nA |
| EQL $_{\mathrm{pd}}$ | 13.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | o |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & \hline 0.78 \\ & 0.62 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.82 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 1.09 \end{aligned}$ | $\begin{aligned} & 1.77 \\ & 1.25 \end{aligned}$ |
| GN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 1.04 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 1.17 \end{aligned}$ | $\begin{aligned} & 1.68 \\ & 1.29 \end{aligned}$ |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.27 | 0.46 | 0.59 | 0.73 | 0.88 |
| RN | QN | $t_{\text {PLH }}$ | 0.68 | 0.90 | 1.16 | 1.43 | 1.67 |

DL071

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min GN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.62 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.26 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.50 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.58 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.16 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.20 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.59 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL631 is a single-phase, buffered D latch with active low gate transparency and without SET or RESET.


Equivalent Gates:
5.0

Bolt Syntax:...........................Q QN .DL631 D GN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 5.1 | $n A$ |
| EQL $_{\text {pd }}$ | 15.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 1.66 \\ & 1.26 \end{aligned}$ |
| D | QN | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 1.12 \end{aligned}$ |
| GN | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.78 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.77 \\ & 1.20 \end{aligned}$ |
| GN | QN | $t_{\mathrm{PLLH}}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.57 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 1.31 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.57 \\ & 1.23 \end{aligned}$ |

## AMIGG 0.6 micron CMOS Gate Array

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min GN Width | High | $t_{\text {w }}$ | 0.00 |  |  |  |  |
| Min GN Width | Low | $t_{w}$ | 0.54 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.49 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



GN
 G

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL641 is a single-phase, buffered D latch with active low gate transparency. RESET is active low.


Equivalent Gates: 5.0

Bolt Syntax:
Q QN .DL641 D GN RN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.1 | nA |
| EQL $_{\mathrm{pd}}$ | 15.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pH}} \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.67 \\ & 1.25 \end{aligned}$ |
| D | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 1.40 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 1.23 \end{aligned}$ |
| GN | Q | $t_{\text {tpLL }}{ }_{\text {tpl }}$ | $\begin{aligned} & 0.72 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 0.86 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.75 \\ & 1.14 \end{aligned}$ |
| GN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 1.31 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 1.55 \\ & 1.30 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.46 | 0.65 | 0.80 | 0.95 | 1.08 |
| RN | QN | $t_{\text {PLH }}$ | 0.56 | 0.77 | 1.01 | 1.27 | 1.54 |

# AMIGG 0.6 micron CMOS Gate Array 

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min GN Width | High | $t_{\text {w }}$ | 0.00 |  |  |  |  |
| Min GN Width | Low | $t_{\text {w }}$ | 0.64 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.46 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.64 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 1.21 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMI6G 0.6 micron CMOS Gate Array

## Description:

DL651 is a single-phase, buffered $D$ latch with active low gate transparency. SET is active low.


Equivalent Gates: .5.0
Bolt Syntax: Q QN .DL651 D GN SN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| EQL $_{\text {pd }}$ | 16.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 1.18 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 1.78 \\ & 1.45 \end{aligned}$ |
| D | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 1.33 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 1.58 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.90 \\ & 1.17 \end{aligned}$ |
| GN | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 1.08 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 1.11 \end{aligned}$ | $\begin{aligned} & 1.61 \\ & 1.24 \end{aligned}$ | $\begin{aligned} & 1.89 \\ & 1.35 \end{aligned}$ |
| GN | QN | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 1.52 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 1.78 \\ & 1.29 \end{aligned}$ |
| SN | Q | $t_{\text {PLH }}$ | 0.52 | 0.73 | 1.01 | 1.29 | 1.54 |
| SN | QN | $t_{\text {PHL }}$ | 0.34 | 0.54 | 0.68 | 0.82 | 0.96 |

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min GN Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.00 |  |  |  |  |
| Min GN Width | Low | $t_{w}$ | 0.59 |  |  |  |  |
| Min SN Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.46 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.59 |  |  |  |  |
| Min D Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.22 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic


$\mathrm{GN} \rightarrow-\mathrm{G}$

## AMIGG 0.6 micron CMOS Gate Array

## Description:

DL661 is a single-phase, buffered D latch with active low gate transparency. RESET and SET are active low.


Equivalent Gates: 6.0

Bolt Syntax:..........................Q QN .DL661 D GN RN SN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 6.6 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 18.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 1.08 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 1.18 \end{aligned}$ | $\begin{aligned} & 1.58 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.82 \\ & 1.46 \end{aligned}$ |
| D | QN | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 1.16 \end{aligned}$ | $\begin{aligned} & 1.84 \\ & 1.31 \end{aligned}$ |
| GN | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.38 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 1.64 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.92 \\ & 1.38 \end{aligned}$ |
| GN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.77 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 1.24 \end{aligned}$ | $\begin{aligned} & 1.77 \\ & 1.37 \end{aligned}$ |
| SN | Q | $\mathrm{t}_{\text {PLH }}$ | 0.46 | 0.69 | 0.95 | 1.21 | 1.46 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.32 | 0.51 | 0.65 | 0.79 | 0.92 |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.85 | 0.96 | 1.12 | 1.24 | 1.35 |

## AMIGG 0.6 micron CMOS Gate Array

| From ${ }^{\text {Delay }}$ | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 5 | 10 | 14 | 19 (max) |
| RN | QN | $\mathrm{t}_{\text {PLH }}$ | 0.76 | 1.00 | 1.25 | 1.51 | 1.77 |
| Min GN Width | High | $\mathrm{t}_{\text {w }}$ | 0.00 |  |  |  |  |
| Min GN Width | Low | $\mathrm{t}_{\text {w }}$ | 0.68 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.28 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.55 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.63 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.20 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.20 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.66 |  |  |  |  |
| Min RN Hold |  | $t_{\text {h }}$ | 0.12 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic




## AMIGG 0.6 micron CMOS Gate Array

## Description:

EN21 is a 2-input gate which performs the logical exclusive NOR (XNOR) function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | Q |  | Equivalent |
|  |  | L | L | H |  | Load |
| A $\rightarrow$ |  | L | H | L | A | 2.0 |
| $B \rightarrow>-Q$ |  | H | L | L | B | 2.0 |
| EN21 |  |  | H | H |  |  |

Equivalent Gates:..................3.0
Bolt Syntax:...........................Q .EN21 A B;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.9 | $n A$ |
| EQL $_{\text {pd }}$ | 7.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 0.77 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates ,

EN21

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic



LOGICAL


## AMIGG 0.6 micron CMOS Gate Array

## Description:

EO21 is a 2-input gate which performs the logical exclusive OR (XOR) function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | B | Q |  | Equivalent |
|  |  | L | L | L |  | Load |
|  |  | L | H | H | A | 2.0 |
| EO21 |  | H | L | H | B | 2.0 |
|  |  |  | H | L |  |  |

Equivalent Gates: 3.0

Bolt Syntax: Q.EO21 A B;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.4 | nA |
| EQL $_{\mathrm{pd}}$ | 7.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & \hline 0.66 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 0.66 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic



LOGICAL


## AMI6G 0.6 micron CMOS Gate Array

## Description:

EO31 is a 3-input gate which performs the logical exclusive OR (XOR) function.


Equivalent Gates:
5.0

Bolt Syntax:
Q.EO31 A B C;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.7 | nA |
| EQL $_{\text {pd }}$ | 17.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 1.16 \\ & 0.86 \end{aligned}$ | $\begin{aligned} & 1.38 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.63 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.93 \\ & 1.19 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

Logic Schematic


## AMIGG 0.6 micron CMOS Gate Array

## Description:

IID1 is a non-inverting clock driver with a single output.


Equivalent Gates: 2.0

Bolt Syntax:
Q.IID1 A;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | $n A$ |
| EQL $_{\text {pd }}$ | 3.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.19 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 0.74 \end{aligned}$ |

[^26]
## Description:

IID2 is a non-inverting clock driver with a single output.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | Q |  | Equivalent <br> Load |
|  | H | H | A | 1.0 |

Equivalent Gates:
2.0

Bolt Syntax:
Q .IID2 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | $n A$ |
| EQL $_{\text {pd }}$ | 5.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.76 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IID4 is a non-inverting clock driver with a single output.


Equivalent Gates:
3.0

Bolt Syntax:
Q .IID4 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\text {pd }}$ | 11.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 4 | 19 | 35 | 51 | 67 (max) |
| A |  |  | 0.22 | 0.44 | 0.66 | 0.88 | 1.09 |
|  | Q |  | 0.25 | 0.37 | 0.50 | 0.62 | 0.73 |

[^27]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

IID6 is a non-inverting clock driver with a single output.


Equivalent Gates:
4.0

Bolt Syntax:
Q .IID6 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| EQL $_{\text {pd }}$ | 15.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 6 | 28 | 52 | 75 | 99 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.28 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 0.79 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

INV1 is an inverter which performs the logical NOT function.


Equivalent Gates: 1.0

Bolt Syntax:
Q.INV1 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 0.7 | nA |
| EQL $_{\mathrm{pd}}$ | 1.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.10 \\ & 0.07 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.21 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.34 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.62 \end{aligned}$ |

[^28]INV2

## AMIGG 0.6 micron CMOS Gate Array

## Description:

INV2 is an inverter which performs the logical NOT function.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | Q |  | Equivalent <br> Load |
|  | H | L | A | 2.0 |

## Equivalent Gates: <br> 1.0

Bolt Syntax:..........................Q .INV2 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 1.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| A | Q | $t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 0.07 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 0.56 \end{aligned}$ |

[^29]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

INV3 is an inverter which performs the logical NOT function.


Equivalent Gates:
2.0

Bolt Syntax:
Q .INV3 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 2.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.08 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Description:

INV4 is an inverter which performs the logical NOT function.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | Q |  | Equivalent Load |
|  | H | L | A | 4.2 |

Equivalent Gates:
2.0

Bolt Syntax:
Q.INV4 A;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\mathrm{pd}}$ | 2.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 4 | 19 | 35 | 51 | 67 (max) |
| A | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.10 \\ & 0.07 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.54 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

INV5 is an inverter which performs the logical NOT function.


Equivalent Gates: 3.0

Bolt Syntax:
Q.INV5 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 4.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 5 | 24 | 44 | 63 | 83 (max) |
| A | Q | $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 0.09 \\ & 0.07 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.55 \end{aligned}$ |

[^30]INV6
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

INV6 is an inverter which performs the logical NOT function.


## Equivalent Gates: <br> 3.0

Bolt Syntax: ...........................Q .INV6 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 4.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 6 | 28 | 52 | 75 | 99 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.10 \\ & 0.07 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.54 \end{aligned}$ |

[^31]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITA1 is a non-inverting internal tri-state buffer with active low enable.

| Logic Symbol | Truth Table | Pin Loading |  |
| :---: | :---: | :---: | :---: |
|  | EN A Q <br> $H$ $X$ $Z$ |  | Equivalent Load |
|  | L L L | A | 1.0 |
|  | L $H$ $H$ | EN | 1.6 |
|  | Z = High Impedance | Q | 1.3 |

Equivalent Gates: 2.0

Bolt Syntax:
Q .ITA1 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\text {pd }}$ | 6.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 16 | 30 | 45 | 60 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 0.98 \end{aligned}$ | $\begin{aligned} & 3.69 \\ & 1.70 \end{aligned}$ | $\begin{aligned} & 5.44 \\ & 2.42 \end{aligned}$ | $\begin{aligned} & 7.16 \\ & 3.14 \end{aligned}$ |
| EN | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.11 \\ & 0.20 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 1.77 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 3.54 \\ & 1.61 \end{aligned}$ | $\begin{aligned} & 5.27 \\ & 2.33 \end{aligned}$ | $\begin{aligned} & 7.00 \\ & 3.06 \end{aligned}$ |

[^32]AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITA2 is a non-inverting internal tri-state buffer with active low enable.


## Equivalent Gates: <br> 4.0

Bolt Syntax:...........................QN .ITA2 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\text {pd }}$ | 14.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 36 | 70 | 105 | 140 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PPHL}} \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & 1.58 \\ & 0.92 \end{aligned}$ | $\begin{aligned} & \hline 2.94 \\ & 1.46 \end{aligned}$ | $\begin{aligned} & 4.35 \\ & 2.03 \end{aligned}$ | $\begin{aligned} & \hline 5.69 \\ & 2.61 \end{aligned}$ |
| EN | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 0.06 \\ & 0.17 \\ & 0.15 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 2.71 \\ & 1.34 \end{aligned}$ | $\begin{aligned} & 4.11 \\ & 1.90 \end{aligned}$ | $\begin{aligned} & 5.45 \\ & 2.47 \end{aligned}$ |

[^33]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITB1 is an inverting internal tri-state buffer with active low enable.


Equivalent Gates:
2.0

Bolt Syntax:
QN .ITB1 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL $_{\mathrm{pd}}$ | 5.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 16 | 30 | 45 | 60 (max) |
| A | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & 1.92 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 3.76 \\ & 1.64 \end{aligned}$ | $\begin{aligned} & 5.55 \\ & 2.37 \end{aligned}$ | $\begin{aligned} & 7.32 \\ & 3.11 \end{aligned}$ |
| EN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.11 \\ & 0.22 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 1.86 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 3.67 \\ & 1.66 \end{aligned}$ | $\begin{aligned} & 5.47 \\ & 2.40 \end{aligned}$ | $\begin{aligned} & 7.23 \\ & 3.13 \end{aligned}$ |

[^34]ITB2
AMERICAN MICROSYSTEMS, INC.
AMIGG 0.6 micron CMOS Gate Array

## Description:

ITB2 is an inverting internal tri-state buffer with active low enable.


## Equivalent Gates: <br> . 4.0

Bolt Syntax:
QN .ITB2 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\text {pd }}$ | 12.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 36 | 70 | 105 | 140 (max) |
| A | QN | $\begin{aligned} & \text { tpLL } \\ & t_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 0.70 \end{aligned}$ | $\begin{aligned} & 2.90 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 4.31 \\ & 1.81 \end{aligned}$ | $\begin{aligned} & 5.68 \\ & 2.36 \end{aligned}$ |
| EN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 0.06 \\ & 0.16 \\ & 0.09 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 0.77 \end{aligned}$ | $\begin{aligned} & 2.79 \\ & 1.33 \end{aligned}$ | $\begin{aligned} & 4.20 \\ & 1.88 \end{aligned}$ | $\begin{aligned} & 5.59 \\ & 2.42 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITD1 is an inverting internal tri-state buffer with active high enable.


Equivalent Gates:
2.0

Bolt Syntax:
QN .ITD1 A E;
Power Characteristics:

| Parameter | Value | Units |
| :---: | :---: | :---: |
| Static $\left.\mathrm{ImD}^{( } \mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL ${ }_{\text {pd }}$ | 5.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 16 | 30 | 45 | 60 (max) |
| A | QN | $\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pH}} \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & 1.96 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 3.77 \\ & 1.63 \end{aligned}$ | $\begin{aligned} & 5.58 \\ & 2.36 \end{aligned}$ | $\begin{aligned} & 7.33 \\ & 3.10 \end{aligned}$ |
| E | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 0.18 \\ & 0.03 \\ & 0.25 \\ & 0.14 \end{aligned}$ | $\begin{aligned} & 1.90 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 3.76 \\ & 1.60 \end{aligned}$ | $\begin{aligned} & 5.69 \\ & 2.33 \end{aligned}$ | $\begin{aligned} & 7.65 \\ & 3.07 \end{aligned}$ |

[^35]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITD2 is an inverting internal tri-state buffer with active high enable.

| Logic Symbol | Truth Table | Pin Loading |  |
| :---: | :---: | :---: | :---: |
| E | E A QN <br> L X Z |  | Equivalent Load |
| 1TD2 | H L H | A | 3.0 |
|  | H H L | E | 2.5 |
| $A-Q^{2} Q N$ | Z = High Impedance | QN | 2.7 |

Equivalent Gates: 4.0

Bolt Syntax: QN .ITD2 A E;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.9 | $n A$ |
| EQL $_{\text {pd }}$ | 13.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 36 | 70 | 105 | 140 (max) |
| A | QN | $\begin{aligned} & \text { tpLH } \\ & t_{p} \end{aligned}$ | $\begin{aligned} & 0.18 \\ & 0.11 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 2.90 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 4.31 \\ & 1.78 \end{aligned}$ | $\begin{aligned} & 5.73 \\ & 2.35 \end{aligned}$ |
| E | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 0.04 \\ & 0.66 \\ & 0.09 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 2.85 \\ & 1.21 \end{aligned}$ | $\begin{aligned} & 4.25 \\ & 1.77 \end{aligned}$ | $\begin{aligned} & 5.67 \\ & 2.32 \end{aligned}$ |

[^36]AMI

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITE1 is a two-phase inverting internal tri-state buffer.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EN | EN | E | A | QN |  | Equivalent |
| A-So- Q | H | L | X | Z |  | Load |
| ITE1 | L | H | L | H | A | 1.0 |
|  | L | H | $\mathrm{H}$ | L | E | 0.4 |
| $A-O \sim Q$ | L | L | X | IL | EN | 0.5 |
| EN | H | H | X | IL | QN | 1.3 |
|  |  | $\mathrm{IL}=$ |  |  |  |  |

Equivalent Gates: 1.0

Bolt Syntax:
QN .ITE1 A E EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 0.7 | nA |
| EQL $_{\text {pd }}$ | 2.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 16 | 30 | 45 | 60 (max) |
| A | QN | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & 1.79 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 3.46 \\ & 1.53 \end{aligned}$ | $\begin{aligned} & 5.14 \\ & 2.23 \end{aligned}$ | $\begin{aligned} & 6.79 \\ & 2.92 \end{aligned}$ |
| EN | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{zH}} \end{aligned}$ | $\begin{aligned} & 0.04 \\ & 0.24 \end{aligned}$ | 1.76 | 3.43 | 5.10 | 6.75 |
| E | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.15 \end{aligned}$ | 0.84 | 1.54 | 2.23 | 2.92 |

[^37]ITE2

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ITE2 is a two-phase inverting internal tri-state buffer.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | E | A | QN |  | Equivalent |
|  | H | L | X | Z |  | Load |
|  | L | H | L | H | A | 2.0 |
|  | L | H | H | L | E | 0.9 |
|  | L | L | X | IL | EN | 1.1 |
|  | H | H |  | IL | QN | 2.5 |
| IL = Illegal |  |  |  |  |  |  |

## Equivalent Gates:

 2.0Bolt Syntax: $\qquad$ QN .ITE2 A E EN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL $_{\text {pd }}$ | 5.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 26 | 50 | 75 | 100 (max) |
| A | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.11 \end{aligned}$ | $\begin{aligned} & 1.47 \\ & 0.70 \end{aligned}$ | $\begin{aligned} & 2.89 \\ & 1.28 \end{aligned}$ | $\begin{aligned} & 4.31 \\ & 1.86 \end{aligned}$ | $\begin{aligned} & 5.68 \\ & 2.46 \end{aligned}$ |
| EN | QN | $\begin{aligned} & t_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.19 \end{aligned}$ | 1.45 | 2.85 | 4.28 | 5.66 |
| E | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.12 \end{aligned}$ | 0.71 | 1.30 | 1.88 | 2.46 |

[^38]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

JK011 is a static, master-slave JK flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table | Pin Loading |
| :---: | :---: | :---: |

Equivalent Gates: 11.0

Bolt Syntax:..........................Q .JK011 C J K RN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 8.8 | nA |
| EQL $_{\mathrm{pd}}$ | 34.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 1.08 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.33 | 0.79 | 0.48 | 0.56 | 0.64 |


| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{w}$ | 0.68 |  |  |  |  |
| Min C Width | Low | $\mathrm{t}_{\mathrm{w}}$ | 0.90 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 0.67 |  |  |  |  |
| Min J Setup |  | $\mathrm{t}_{\text {su }}$ | 0.90 |  |  |  |  |
| Min J Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min K Setup |  | $\mathrm{t}_{\text {su }}$ | 0.80 |  |  |  |  |
| Min K Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.44 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.37 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



AMI

## AMIGG 0.6 micron CMOS Gate Array

## Description:

JK021 is a static, master-slave JK flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table | Pin Loading |
| :---: | :---: | :---: |

Equivalent Gates: 11.0

Bolt Syntax: Q .JK021 C J K SN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 9.5 | nA |
| EQL $_{\text {pd }}$ | 31.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay ( ns ) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 1.20 \end{aligned}$ | $\begin{aligned} & 1.04 \\ & 1.29 \end{aligned}$ |
| SN | Q | tpLH | 0.20 | 0.33 | 0.46 | 0.61 | 0.74 |

AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.78 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.90 |  |  |  |  |
| Min SN Width | Low | $t_{\text {w }}$ | 0.74 |  |  |  |  |
| Min J Setup |  | $\mathrm{t}_{\text {su }}$ | 0.90 |  |  |  |  |
| Min J Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min K Setup |  | $\mathrm{t}_{\text {su }}$ | 0.73 |  |  |  |  |
| Min K Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.14 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

JK031 is a static, master-slave JK flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RN | SN | J | K | C | $Q(\mathrm{n}+1)$ |  |  |
|  | L | L | X | X | X | IL |  | Equivalent |
|  | L | H | X | X | X | L |  | Load |
|  | H | L | X | X | x | H | J | 1.0 |
|  | H | H | L | L | $\uparrow$ | NC | K | 1.0 |
|  | H | H | L | H | $\uparrow$ | L | C | 3.2 |
|  | H | H | H | L | $\uparrow$ | H | SN | 2.0 |
|  | H | H | H | H |  | $\overline{\mathrm{Q}(\mathrm{n})}$ | RN | 2.1 |
|  |  | $\mathrm{IL}=$ | egal |  |  | No Change |  |  |

Equivalent Gates: 12.0

Bolt Syntax:
Q .JK031 C J K RN SN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 10.2 | nA |
| EQL $_{\text {pd }}$ | 37.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | Q | $\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PPLL }} \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & \hline 0.94 \\ & 1.21 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 1.33 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.97 | 1.19 | 1.33 | 1.44 | 1.54 |
| SN | Q | $t_{\text {PLH }}$ | 0.22 | 0.36 | 0.50 | 0.64 | 0.78 |

JK031
AMERICAN MICROSYSTEMS, INC.

## AMI6G 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.80 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.91 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 1.06 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.95 |  |  |  |  |
| Min J Setup |  | $t_{\text {su }}$ | 0.91 |  |  |  |  |
| Min J Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min K Setup |  | $t_{\text {su }}$ | 0.82 |  |  |  |  |
| Min K Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.37 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.
Logic Schematic


## AMIGG 0.6 micron CMOS Gate Array

## Description:

JK051 is a static, master-slave JK flip-flop. RESET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates: 11.0

Bolt Syntax: $\qquad$ QN .JK051 C J K RN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 8.8 | nA |
| EQL $_{\mathrm{pd}}$ | 34.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 1.62 \\ & 0.71 \end{aligned}$ |
| RN | QN | $t_{\text {PLH }}$ | 0.90 | 1.16 | 1.41 | 1.66 | 1.93 |



| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $t_{\text {w }}$ | 1.06 |  |  |  |  |
| Min C Width | Low | $t_{\text {w }}$ | 0.90 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 0.67 |  |  |  |  |
| Min J Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.90 |  |  |  |  |
| Min J Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min K Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.80 |  |  |  |  |
| Min K Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.44 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.37 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



AMERICAN MICROSYSTEMS, INC.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

JK061 is a static, master-slave JK flip-flop. SET is asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.


Equivalent Gates: $\qquad$ 11.0

Bolt Syntax: ........................... QN .JK061 C J K SN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 9.5 | nA |
| EQL $_{\text {pd }}$ | 31.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  | 11 (max) |  |  |  |  |  |
|  |  |  | 1 | 3 | 6 | 8 | 1.35 |
| C | QN |  | 0.60 | 0.86 | 1.10 | 0.62 |  |
|  |  |  | 0.27 | 0.36 | 0.49 | 0.61 | 0.72 |
| SN | QN |  | 0.50 | 0.64 | 0.76 | 0.87 | 0.98 |

## AMI6G 0.6 micron CMOS Gate Array



Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMI6G 0.6 micron CMOS Gate Array

## Description:

JK071 is a static, master-slave JK flip-flop. SET and RESET are asynchronous and active low. Output is unbuffered and changes state on the rising edge of the clock.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RN | SN | J | K | C | QN( $\mathrm{n}+1$ ) |  |  |
|  | L | L | X | X | X | IL |  | Equivalent |
|  | L | H | X | X | X | H |  | Load |
|  | H | L | X | X | X | L | J | 1.0 |
|  | H | H | L | L | $\uparrow$ | NC | K | 1.0 |
|  | H | H | L | H | $\uparrow$ | H | C | 3.2 |
|  | H | H | H | L | $\uparrow$ | L | SN | 2.0 |
|  | H | H | H | H | $\uparrow$ | $\overline{\mathrm{QN}(\mathrm{n})}$ | RN | 2.1 |
|  |  | $\mathrm{IL}=$ | Illegal |  |  | No Change |  |  |

Equivalent Gates: 12.0

Bolt Syntax: $\qquad$ QN .JK071 C J K RN SN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 10.2 | nA |
| EQL $_{p d}$ | 37.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| C | QN | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 1.36 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 1.61 \\ & 0.71 \end{aligned}$ |
| RN | QN | $t_{\text {PLH }}$ | 0.86 | 1.10 | 1.35 | 1.61 | 1.87 |
| SN | QN | $t_{\text {PHL }}$ | 0.65 | 0.82 | 0.96 | 1.12 | 1.30 |


| From | To | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3 | 6 | 8 | 11 (max) |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 1.33 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.91 |  |  |  |  |
| Min RN Width | Low | $t_{\text {w }}$ | 1.57 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.96 |  |  |  |  |
| Min J Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.91 |  |  |  |  |
| Min J Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min K Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.82 |  |  |  |  |
| Min K Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{\text {h }}$ | 0.37 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

JKBB1 is a static, master-slave JK flip-flop. SET and RESET are asynchronous and active low. Outputs are buffered and change state on the rising edge of the clock.


Equivalent Gates: 12.0

Bolt Syntax:
Q QN .JKBB1 C J K RN SN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 11.7 | nA |
| EQL $_{\text {pd }}$ | 42.2 | Eq-load |

See page 2-14 for power equation.
Delay Characteristics:
Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 1.11 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 1.28 \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 1.41 \end{aligned}$ |
| C | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.03 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.81 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 2.03 \\ & 1.22 \end{aligned}$ |
| RN | Q | $\mathrm{t}_{\text {PHL }}$ | 0.91 | 1.18 | 1.35 | 1.51 | 1.69 |
| RN | QN | $t_{\text {PLH }}$ | 1.32 | 1.56 | 1.80 | 2.05 | 2.31 |
| SN | Q | $t_{\text {PLH }}$ | 0.97 | 1.25 | 1.51 | 1.77 | 2.03 |
| SN | QN | $\mathrm{t}_{\text {PHL }}$ | 0.32 | 0.48 | 0.62 | 0.76 | 0.89 |

JKBB1
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $\mathrm{t}_{\mathrm{w}}$ | 0.87 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.91 |  |  |  |  |
| Min RN Width | Low | $t_{w}$ | 1.12 |  |  |  |  |
| Min SN Width | Low | $t_{w}$ | 0.68 |  |  |  |  |
| Min J Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.91 |  |  |  |  |
| Min J Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min K Setup |  | $\mathrm{t}_{\mathrm{su}}$ | 0.82 |  |  |  |  |
| Min K Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min RN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.48 |  |  |  |  |
| Min RN Hold |  | $t_{h}$ | 0.36 |  |  |  |  |
| Min SN Setup |  | $\mathrm{t}_{\text {su }}$ | 0.18 |  |  |  |  |
| Min SN Hold |  | $t_{h}$ | 0.13 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



## AMI6G 0.6 micron CMOS Gate Array

## Description:

MX21 is a two-to-one digital multiplexer.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Logic Symbol

MX21} \& \multicolumn{4}{|l|}{Truth Table} \& \multicolumn{2}{|l|}{Pin Loading} <br>
\hline \& S \& 10 \& 11 \& Q \& \& Equivalent <br>
\hline \& L \& L \& X \& L \& \& Load <br>
\hline \& L \& H \& X \& H \& 10 \& 1.0 <br>
\hline \& H \& X \& L \& L \& 11 \& 1.0 <br>
\hline \& H \& X \& H \& H \& S \& 2.2 <br>
\hline
\end{tabular}

Equivalent Gates: 3.0

Bolt Syntax:
Q.MX21 10 I1 S;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| $\mathrm{EQL}_{\text {pd }}$ | 10.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Ix Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 1.06 \end{aligned}$ |
| S | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.88 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & 1.56 \\ & 1.18 \end{aligned}$ |

[^39]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

MX212 is a two-to-one digital multiplexer.


Equivalent Gates:
4.0

Bolt Syntax: $\qquad$ Q .MX212 10 II S;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\mathrm{pd}}$ | 11.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Ix Input | Q | $\begin{aligned} & t_{\text {pLH }} \\ & t_{0} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.81 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.32 \\ & 1.07 \end{aligned}$ |
| S | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 1.19 \end{aligned}$ |

[^40]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

MX41 is a four-to-one digital multiplexer.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 11 | 12 | 13 | S1 | So | Q |  | Equivalent |
|  | L | X | X | X | L | L | L |  | Load |
|  | H | X | X | X | L | L | H | 10 | 1.0 |
|  | X | L | X | X | L | H | L | 11 | 1.0 |
|  | X | H | X | X | L | H | H | 12 | 1.0 |
|  | X | X | L | X | H | L | L | 13 | 1.0 |
|  | X | X | H | X | H | L | H | So | 3.2 |
|  | X | X | X | L | H | H | L | S1 | 3.2 |
|  | X | X | X | H | H | H | H |  |  |

Equivalent Gates:..................8.0
Bolt Syntax:...........................Q .MX41 I0 I1 I2 I3 S0 S1;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.1 | nA |
| EQL $_{\text {pd }}$ | 26.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Ix Input | Q | $\begin{aligned} & t_{p L H} \\ & t_{p \mathrm{l}} \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.88 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.31 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 1.50 \end{aligned}$ | $\begin{aligned} & 1.74 \\ & 1.62 \end{aligned}$ |
| Any Sx Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 1.05 \end{aligned}$ | $\begin{aligned} & 1.19 \\ & 1.34 \end{aligned}$ | $\begin{aligned} & 1.44 \\ & 1.53 \end{aligned}$ | $\begin{aligned} & 1.68 \\ & 1.70 \end{aligned}$ | $\begin{aligned} & 1.93 \\ & 1.87 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic



AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

MX81 is an eight-to-one digital multiplexer.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| MX81 | S2 | S1 S0 | Q | 10 | 1.0 |
| - $\mathrm{S}^{\text {S2 }}$ | L | L L | 10 | 11 | 1.0 |
| -S0 | L | L H | 11 | 12 | 1.0 |
| $\sqrt{17}$ | L | H L | 12 | 13 | 1.0 |
| - ${ }^{16}$ | L | H H | 13 | 14 | 1.0 |
| - $1130-$ | H | L L | 14 | 15 | 1.0 |
| - 12 | H | L H | 15 | 16 | 1.0 |
| $\begin{aligned} & -10 \\ & \hline \end{aligned}$ | H | H L | 16 | 17 | 1.0 |
|  | H | H H | 17 | So | 5.5 |
|  |  |  |  | S1 | 3.1 |
|  |  |  |  | S2 | 2.1 |

Equivalent Gates: 20.0

Bolt Syntax: $\qquad$ Q.MX81 IO I1 I2 I3 I4 I5 I6 I7 S0 S1 S2;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 13.2 | nA |
| EQL $_{\text {pd }}$ | 57.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Ix Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 1.30 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 1.44 \end{aligned}$ | $\begin{aligned} & 1.97 \\ & 1.62 \end{aligned}$ |
| Any Sx Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 1.20 \end{aligned}$ | $\begin{aligned} & 1.47 \\ & 1.40 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 1.55 \end{aligned}$ | $\begin{aligned} & 1.98 \\ & 1.68 \end{aligned}$ | $\begin{aligned} & 2.29 \\ & 1.82 \end{aligned}$ |

[^41]
## AMIGG 0.6 micron CMOS Gate Array

## Logic Schematic



## AMIGG 0.6 micron CMOS Gate Array

## Description:

MXI21 is an inverting two-to-one digital multiplexer.


Equivalent Gates: 4.0

Bolt Syntax: .............................QN .MXI21 10 I1 S;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\text {pd }}$ | 12.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Ix Input | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.76 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 0.86 \end{aligned}$ | $\begin{aligned} & 1.55 \\ & 0.98 \end{aligned}$ |
| S | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & 1.38 \\ & 0.97 \end{aligned}$ | $\begin{aligned} & 1.66 \\ & 1.11 \end{aligned}$ |

[^42]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

MXI212 is an inverting two-to-one digital multiplexer.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S | 10 | 11 | QN |  | Equivalent |
|  | L | L | X | H |  | Load |
|  | L | H | X | L | 10 | 1.0 |
|  | H | X | L | H | 11 | 1.0 |
|  | H | X | H | L | S | 2.1 |

Equivalent Gates:
5.0

Bolt Syntax: $\qquad$ QN .MXI212 10 It S;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\mathrm{pd}}$ | 14.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Ix Input | QN | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.79 \\ & 0.61 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 0.99 \end{aligned}$ |
| S | QN | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.86 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 0.99 \end{aligned}$ | $\begin{aligned} & 1.61 \\ & 1.10 \end{aligned}$ |

[^43]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA21 is a 2-input gate which performs the logical NAND function.


Equivalent Gates: 1.0

Bolt Syntax: Q.NA21 A B;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL $_{\mathrm{pd}}$ | 1.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.10 \\ & 0.12 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.34 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.57 \end{aligned}$ |

[^44]NA22

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA22 is a 2-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A-2$ | $\frac{\mathrm{A}}{\mathrm{~L}}$ | B | Q |  | Equivalent Load |
| NA22 | L | H | H | A | 2.0 |
| $A-g^{2}-Q$ | H | L | H | B | 2.0 |
| NA22 |  | H | L |  |  |

Equivalent Gates:
Bolt Syntax:...........................Q .NA22 A B;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\mathrm{pd}}$ | 3.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.09 \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.57 \\ & 0.52 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA31 is a 3-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | Q |  | Equivalent |
|  | L | X | X | H |  | Load |
|  | X | L | X | H | A | 1.0 |
|  | X | X | L | H | B | 1.0 |
|  | H |  | H | L | C | 1.0 |

Equivalent Gates:
2.0

Bolt Syntax: $\qquad$ Q .NA31 A B C;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 3.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.14 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.28 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 0.64 \end{aligned}$ |

[^45]NA32

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA32 is a 3-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | Q |  | Equivalent |
|  | L | X | X | H |  | Load |
|  | X | L | X | H | A | 2.0 |
|  | X | X | L | H | B | 2.0 |
|  | H | H | H | L | C | 2.0 |

Equivalent Gates:
3.0

Bolt Syntax:
Q .NA32 A B C;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\mathrm{pd}}$ | 5.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 4 | 7 | 10 | 14 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.11 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 0.18 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.53 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA41 is a 4-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
|  | L | X | X | X | H |  | Load |
|  | X | L | X | X | H | A | 1.0 |
|  | X | X | L | X | H | B | 1.0 |
|  | X | X | X | L | H | C | 1.0 |
|  | H | H | H | H | L | D | 1.0 |

Equivalent Gates: 2.0

Bolt Syntax:
Q .NA41 A B C D;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\mathrm{pd}}$ | 4.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 2 | 4 | 5 | 7 (max) |
| Any Input | Q | $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.57 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.70 \end{aligned}$ |

[^46]
## AMI6G 0.6 micron CMOS Gate Array

## Description:

NA42 is a 4-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
|  | L | X | X | X | H |  | Load |
|  | X | L | X | X | H | A | 2.0 |
|  | X | X | L | X | H | B | 2.0 |
|  | X | X | X | L | H | C | 2.0 |
|  | H | H | H | H | L | D | 2.0 |

## Equivalent Gates: <br> 4.0

Bolt Syntax:
Q .NA42 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 5.8 | nA |
| EQL $_{\text {pd }}$ | 8.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & \hline 0.11 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 0.18 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 0.37 \end{aligned}$ | $\begin{aligned} & \hline 0.31 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & \hline 0.38 \\ & 0.59 \end{aligned}$ |

[^47]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA51 is a 5-input gate which performs the logical NAND function.


Equivalent Gates:
3.0

Bolt Syntax:
Q .NA51 A B C DE;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.7 | nA |
| EQL $_{\text {pd }}$ | 5.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 2 | 3 | 5 | 6 (max) |
| Any Input | Q | $t_{\text {PLH }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.16 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.80 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA52 is a 5-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | Q |  | Equivalent |
|  | L | X | X | X | X | H |  | Load |
| $8={ }^{2} 0-Q$ | X | L | X | X | X | H | A | 1.0 |
| E NA52 | x | x | L | X | X | H | B | 1.0 |
| A $=2$ | X | x | X | L | X | H | C | 1.0 |
| $0=0$ | X | X | X | X | L | H | D | 1.0 |
| NA52 | H | H | H | H | H | L | E | 1.0 |

Equivalent Gates:..................4.0
Bolt Syntax:
Q .NA52 A B C D E;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 5.8 | $n A$ |
| EQL $_{\text {pd }}$ | 11.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 5 | 7 | 9 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PPL}} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & \hline 0.44 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.76 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.80 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA61 is a 6-input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | Q |  | Equivalent |
|  | L | X | X | X | X | X | H |  | Load |
|  | X | L | X | X | X | X | H | A | 1.0 |
|  | X | X | L | X | X | X | H | B | 1.0 |
|  | X | X | X | L | X | X | H | C | 1.0 |
|  | X | X | X | X | L | X | H | D | 1.0 |
|  | X | X | X | X | X | L | H | E | 1.0 |
|  | H | H | H | H | H | H | L | F | 1.0 |

## Equivalent Gates:

5.0

Bolt Syntax: Q.NA61 A B C D E F;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 6.6 | nA |
| EQL $_{\mathrm{pd}}$ | 17.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $t_{\text {PLL }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.40 \\ & 0.64 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.89 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.95 \end{aligned}$ |

[^48]NA81

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NA81 is an 8 -input gate which performs the logical NAND function.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | H | Q |  | Equivalent |
|  | L | X | X | X | X | X | X | X | H |  | Load |
|  | X | L | X | X | X | X | X | X | H | A | 1.0 |
|  | X | X | L | X | X | X | X | X | H | B | 1.0 |
|  | X | X | X | L | X | X | X | X | H | C | 1.0 |
|  | X | X | X | X | L | X | X | X | H | D | 1.0 |
|  | X | X | X | X | X | L | X | X | H | E | 1.0 |
|  | X | X | X | X | X | X | L | X | H | F | 1.0 |
|  | X | X | X | X | X | X | X | L | H | G | 1.0 |
|  | H | H | H | H | H | H | H | H | L | H | 1.0 |

Equivalent Gates:
6.0

Bolt Syntax: $\qquad$ Q .NA81 A B CDEFGH;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 8.0 | nA |
| EQL $_{\text {pd }}$ | 16.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.68 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.78 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.86 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 1.03 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO21 is a 2-input gate which performs the logical NOR function.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | Q |  | Equivalent |
|  | L | L | H |  | Load |
|  | L | H | L | A | 1.0 |
|  | H | L | L | B | 1.0 |
|  | H | H | L |  |  |

Equivalent Gates:
1.0

Bolt Syntax: $\qquad$ Q .NO21 A B;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.2 | $n A$ |
| EQL $_{p d}$ | 2.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.19 \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & \hline 0.67 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & \hline 0.93 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 0.37 \end{aligned}$ |

[^49]N022
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO22 is a 2 -input gate which performs the logical NOR function.


## Equivalent Gates: <br> 2.0

Bolt Syntax: ...........................Q .NO22 A B;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.4 | nA |
| EQL $_{\text {pd }}$ | 4.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \overline{t_{\text {PLH }}} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.14 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0.35 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 0.33 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO31 is a 3-input gate which performs the logical NOR function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | Q |  | Equivalent |
|  | L | L | L | H |  | Load |
|  | H | X | X | L | A | 1.0 |
|  | X | H | X | L | B | 1.0 |
|  | X | X | H | L | C | 1.0 |

Equivalent Gates:
2.0

Bolt Syntax:
Q .NO31 A B C;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| EQL $_{\mathrm{pd}}$ | 4.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PPL}} \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 0.09 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 1.13 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 0.31 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO32 is a 3-input gate which performs the logical NOR function.


## Equivalent Gates: 3.0

Bolt Syntax:
Q .NO32 A B C;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.5 | nA |
| EQL $_{\text {pd }}$ | 7.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 4 | 7 | 10 | 13 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.17 \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 0.11 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.21 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.25 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO41 is a 4-input gate which performs the logical NOR function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
|  | L | L | L | L | H |  | Load |
|  | H | X | X | X | L | A | 1.0 |
| A $=8$ | X | H | X | X | L | B | 1.0 |
| ¢ $=$ - | X | X | H | X | L | C | 1.0 |
|  | X |  |  | H | L | D | 1.0 |

Equivalent Gates:
2.0

Bolt Syntax:
Q .NO41 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.4 | nA |
| EQL $_{\text {pd }}$ | 5.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 2 | 4 | 5 | 7 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 0.09 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 1.54 \\ & 0.26 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

N042
AMERICAN MICROSYSTEMS, INC.

AMIGG 0.6 micron CMOS Gate Array

## Description:

NO42 is a 4-input gate which performs the logical NOR function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
|  | L | L | L | L | H |  | Load |
|  | H | X | X | X | L | A | 1.0 |
| A $=02-Q$ | X | H | X | X | L | B | 1.0 |
| $\mathrm{B}=\mathrm{d} \quad \mathrm{NO} 4$ | X | X | H | X | L | C | 1.0 |
|  | X | X | X | H | L | D | 1.0 |

## Equivalent Gates: <br> 4.0

Bolt Syntax: $\qquad$ Q .NO42 A B C D;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 4.4 | nA |
| EQL $_{\text {pd }}$ | 11.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.52 \end{aligned}$ |

[^50]AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO51 is a 5-input gate which performs the logical NOR function.

| Logic Symbol | Truth Ta |  |  |  |  |  | Pin Loading | Equivalent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | Q |  |  |
| A | L | L | L | L | L | H |  | Load |
| $\mathrm{C} \Rightarrow \mathrm{O}-\mathrm{Q}$ | H | X | X | X | X | L | A | 1.0 |
| - NO51 | X | H | X | X | X | L | B | 1.0 |
| A $=8$ | X | X | H | X | X | L | C | 1.0 |
| $\bigcirc=0-Q$ | X | x | X | H | X | L | D | 1.0 |
| NO51 | x | x | x | X | H | L | E | 1.0 |

Equivalent Gates: 3.0

Bolt Syntax:
Q .NO51 A B C D E;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{j}=85^{\circ} \mathrm{C}\right)$ | 3.0 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 7.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 2 | 3 | 5 | 6 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & \hline 0.72 \\ & 0.14 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & 1.39 \\ & 0.21 \end{aligned}$ | $\begin{aligned} & 1.71 \\ & 0.25 \end{aligned}$ |

[^51]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

NO52 is a 5-input gate which performs the logical NOR function.

| Logic Symbol | Truth Ta |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | Q |  | Equivalent |
|  | L | L | L | L | L | H |  | Load |
| ${ }^{A} \square^{2}-0$ | H | X | X | X | X | L | A | 1.0 |
| $0=$ | X | H | X | X | X | L | B | 1.0 |
| A NOS2 | X | X | H | X | X | L | C | 1.0 |
| C $=0-Q$ | X | X | X | H | X | L | D | 1.0 |
| NO52 | X | X | X | X | H | L | E | 1.0 |

Equivalent Gates: 4.0

Bolt Syntax:
Q .NO52 A B C D E;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.7 | nA |
| EQL $_{\mathrm{pd}}$ | 13.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 5 | 7 | 9 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.37 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.50 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ON11 is an OR-NAND circuit consisting of two 2-input OR gates into a 2-input NAND gate.


Equivalent Gates:
2.0

Bolt Syntax:
Q .ON11 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 5.6 | Eq-load |

See page 2-14 for power equation.
Delay Characteristics:
Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & \mathrm{t}_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.74 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 0.66 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ON21 is an OR-NAND circuit consisting of one 2-input OR gate into a 2-input NAND gate.


Equivalent Gates:
2.0

Bolt Syntax:
Q.ON21 A B C;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 4.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 6 | 8 | 11 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 0.12 \end{aligned}$ | $\begin{aligned} & 0.34 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.61 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ON31 is an OR-NAND circuit consisting of a 2-input OR gate and two direct inputs into a 3-input NAND gate.


Equivalent Gates:
2.0

Bolt Syntax:
Q .ON31 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{p d}$ | 4.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.64 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ON41 is an OR-NAND circuit consisting of one 3-input OR gate into a 2 -input NAND gate.


Equivalent Gates:
2.0

Bolt Syntax:
Q .ON41 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.5 | nA |
| EQL $_{\text {pd }}$ | 6.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.16 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 0.34 \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 1.49 \\ & 0.52 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

Description:
ON51 is an OR-NAND circuit consisting of one 3-input OR gate and one 2-input OR gate into a 2-input NAND gate.


Equivalent Gates:
3.0

Bolt Syntax:
Q .ON51 A B C D E;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\mathrm{pd}}$ | 9.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.59 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & \hline 1.03 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & \hline 1.28 \\ & 0.56 \end{aligned}$ |

[^52]AMIGG 0.6 micron CMOS Gate Array

## Description:

ON61 is an OR-NAND circuit consisting of two 3-input OR gates into a 2-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Equivalent <br> Load |
| A | L | L | L | X | X | X | H | A | 1.0 |
| $C$ Co | X | X | X | L | L | L | H | B | 1.0 |
| ${ }_{\text {D }}^{\text {E }}$ |  | All | er co | mbina | ons |  | L | C | 1.0 |
| F |  |  |  |  |  |  |  | D | 1.0 |
|  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  | F | 1.0 |

Equivalent Gates:
. 3.0
Bolt Syntax:
Q.ON61 A B C DEF;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| EQL $_{\mathrm{pd}}$ | 9.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 0.61 \end{aligned}$ |

[^53]AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ON71 is an OR-NAND circuit consisting of one 3-input OR gate into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Equivalent <br> Load |
| \| A B |  | L L | L | X | X | H | A | 1.0 |
| C |  | $x$ x | X |  | X | H | B | 1.0 |
| $D \quad 0 Q$ |  | $x \quad \mathrm{x}$ |  |  | L | H | C | 1.6 |
|  | All other combinations |  |  |  |  | L | D | 1.0 |
|  |  |  |  |  |  |  | E | 1.5 |

Equivalent Gates:
3.0

Bolt Syntax:..........................Q .ON71 A B C D E;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 9.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 1.03 \\ & 0.51 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.62 \end{aligned}$ |

[^54]ON81
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ON81 is an OR-NAND circuit consisting of two 2-input OR gates into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ON81 |  |  |  |  |  |  |  | Equivalent <br> Load |
| B |  | L L | X | X | X | H | A | 1.0 |
| c $\square \bigcirc$ |  | $x \quad \mathrm{X}$ | L | L | X | H | B | 1.0 |
| D |  | X X | X | X | L | H | C | 1.0 |
|  |  | All othe | comb | natio |  | L | D | 1.5 |
|  |  |  |  |  |  |  | E | 1.5 |

Equivalent Gates:
3.0

Bolt Syntax: $\qquad$
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\text {pd }}$ | 8.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.49 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.46 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.67 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ON91 is an OR-NAND circuit consisting of one 3-input OR gate and one 2-input OR gate into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | Q |  | Equivalent Load |
| A ON91 | L | L | L | X |  | X | H | A | 1.0 |
| $C$ | X | $x$ | x | L | L | X | H | B | 1.0 |
| $E>O^{Q}$ | X |  |  |  | X | L | H | C | 1.0 |
|  |  | All | ther C | mbina |  |  | L | D | 1.0 |
| F |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  | F | 1.0 |

Equivalent Gates:
3.0

Bolt Syntax: ..........................Q .ON91 A B C D E F;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\mathrm{pd}}$ | 9.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 0.65 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 0.79 \end{aligned}$ |

[^55]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ONA1 is an OR-NAND circuit consisting of two 3-input OR gates into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | Q |  | Equivalent <br> Load |
| A ONA1 | L | L | L | X | X | X | X | H | A | 1.0 |
| C | X | x | x | L | L | $\mathrm{L}$ | X | H | B | 1.0 |
| D | X | X | X | X | X | X | L | H | C | 1.0 |
| $F L$ |  |  | oth | comb | natio |  |  | L | D | 1.0 |
| G |  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  |  | F | 1.5 |
|  |  |  |  |  |  |  |  |  | G | 1.4 |

## Equivalent Gates:

 4.0Bolt Syntax: $\qquad$ Q .ONA1 A B C DEFG;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 12.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 0.69 \end{aligned}$ |

[^56]
## AMI6G 0.6 micron CMOS Gate Array

## Description:

ONB1 is an OR-NAND circuit consisting of three 2-input OR gates into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | Q |  | Equivalent Load |
| B | L | L | X | X | X | X | H | A | 1.0 |
| C - Q | X | X | L | L | X | X | H | B | 1.0 |
| D | X |  | X | X |  | L | H | C | 1.0 |
|  |  | All 0 | er co | mbin |  |  | L | D | 1.0 |
|  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  | F | 1.0 |

Equivalent Gates:
3.0

Bolt Syntax:
Q.ONB1 A B C DEF;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\text {pd }}$ | 8.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.32 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.42 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.54 \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.80 \end{aligned}$ |

[^57]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ONC1 is an OR-NAND circuit consisting of one 3-input OR gate and two 2 -input OR gates into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | Q |  | Equivalent <br> Load |
| A ONC1 |  |  |  |  |  |  |  |  |  |  |
| B ${ }^{\text {B }}$ | L | L | L | X | X | X | X | H | A | 1.0 |
| $\square \square$ | X | X | $x$ | L | L | x | $x$ | H | B | 1.0 |
| E | X | X | X | X | X | L | L | H | C | 1.5 |
|  |  |  | othe | com | nation |  |  | L | D | 1.0 |
| G |  |  |  |  |  |  |  |  | E | 1.0 |
|  |  |  |  |  |  |  |  |  | F | 1.0 |
|  |  |  |  |  |  |  |  |  | G | 1.5 |

Equivalent Gates:
4.0

Bolt Syntax:
Q.ONC1 A B CDEFG;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\text {pd }}$ | 12.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & \hline 0.43 \\ & 0.28 \end{aligned}$ | $\begin{aligned} & 0.64 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.87 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 1.32 \\ & 0.73 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

OND1 is an OR-NAND circuit consisting of two 3-input OR gates and one 2-input OR gate into a 3-input NAND gate.

| Logic Symbol | Truth Table |  |  |  |  |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | Equivalent Load |
| A OND1 | A | B | C | D | E | F | G | H | Q | A | 1.0 |
| C |  | L | L | X | X | X | X | X | H | B | 1.0 |
| D |  | X | X | L | L | L | X | X | H | C | 1.0 |
| F |  | X | X | X | X | X | L | L | H | D | 1.0 |
| $G$ |  |  | All ot | er co | mbin | tions |  |  | L | E | 1.0 |
|  |  |  |  |  |  |  |  |  |  | F | 1.0 |
|  |  |  |  |  |  |  |  |  |  | G | 1.0 |
|  |  |  |  |  |  |  |  |  |  | H | 1.0 |

Equivalent Gates:
4.0

Bolt Syntax: $\qquad$ Q.OND1 A B C DEFGH;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.2 | nA |
| EQL $_{\text {pd }}$ | 12.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Namber of Equivalent Loads |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q |  | 0.44 | 0.79 | 1.06 | 1.34 | 1.67 |
|  |  |  | 0.36 | 0.50 | 0.63 | 0.77 | 0.90 |

[^58]
## AMIGG 0.6 micron CMOS Gate Array

Description:
ONE1 is an OR-NAND circuit consisting of three 3-input OR gates into a 3-input NAND gate.


## Equivalent Gates:

 5.0Bolt Syntax: $\qquad$ Q.ONE1 A B C DEFGHI;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.9 | nA |
| EQL $_{\mathrm{pd}}$ | 15.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 3 | 4 | 6 | 8 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {plu }} \\ & t_{\text {ph }} \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.81 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 1.11 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 1.75 \\ & 1.00 \end{aligned}$ |

[^59]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

OR21 is a 2-input gate which performs the logical OR function.


Equivalent Gates:
2.0

Bolt Syntax:
Q .OR21 A B;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.8 | nA |
| EQL $_{\text {pd }}$ | 4.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.29 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.58 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 0.86 \end{aligned}$ |

[^60]Description:
OR22 is a 2-input gate which performs the logical OR function.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | Q |  | Equivalent |
|  | L | L | L |  | Load |
|  | L | H | H | A | 1.0 |
|  | H | L | H | B | 1.0 |
|  |  | H | H |  |  |

Equivalent Gates:
2.0

Bolt Syntax:
Q .OR22 A B;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 2.4 | nA |
| $\mathrm{EQL}_{\text {pd }}$ | 5.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.52 \end{aligned}$ | $\begin{aligned} & 0.67 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 0.93 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AMERICAN MICROSYSTEMS, INC.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

OR31 is a 3-input gate which performs the logical OR function.

| Logic Symbol | Truth Table |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | Q |  | Equivalent |
|  | L | L | L | L |  | Load |
|  | H | X | X | H | A | 1.0 |
|  | X | H | X | H | B | 1.0 |
|  | X | X | H | H | C | 1.0 |

Equivalent Gates: 2.0

Bolt Syntax: ...........................Q .OR31 A B C;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 2.4 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 6.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{0} \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.37 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.71 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 0.91 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 1.07 \end{aligned}$ |

[^61]OR32

## AMIGG 0.6 micron CMOS Gate Array

## Description:

OR32 is a 3-input gate which performs the logical OR function.


Equivalent Gates:
3.0

Bolt Syntax:...........................Q .OR32 A B C;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| ${\text { Static } \mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)}^{\text {EQL }_{\mathrm{pd}}}$ | 3.0 | nA |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Input | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.47 \end{aligned}$ | $\begin{aligned} & 0.46 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 0.86 \end{aligned}$ | $\begin{aligned} & 0.92 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 1.17 \\ & 1.15 \end{aligned}$ |

[^62]AMI

## AMIGG 0.6 micron CMOS Gate Array

## Description:

OR41 is a 4-input gate which performs the logical OR function.

| Logic Symbol | Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
|  | L | L | L | L | L |  | Load |
|  | H | X | X | X | H | A | 1.0 |
|  | X | H | X | X | H | B | 1.0 |
|  | X | X | H | X | H | C | 1.0 |
|  | X | X | X | H | H | D | 1.0 |

Equivalent Gates: 3.0

Bolt Syntax:
Q .OR41 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.0 | nA |
| EQL $_{\text {pd }}$ | 8.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Any Input | Q | $\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.53 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 1.16 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

OR42 is a 4-input gate which performs the logical OR function.

| Logic Symbol | Truth Tabl |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | Q |  | Equivalent |
| $B>-\mathrm{Q}$ | L | L | L | L | L |  | Load |
| OR42 | H | X | X | X | H | A | 1.0 |
| A $=-2^{2} \quad b-Q$ | X | H | X | x | H | B | 1.0 |
| $\mathrm{x}=-\mathrm{d}$ | X | X | H | X | H | C | 1.0 |
|  | X | X | X | H | H | D | 1.0 |

## Equivalent Gates: <br> 4.0

Bolt Syntax:
Q .OR42 A B C D;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.4 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 11.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| Any Input | Q | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 0.47 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.94 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 1.21 \end{aligned}$ |

[^63]AMI
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

SLFA1 is a static, master-slave, multiplexed scan latch, D flip-flop. When SCE is low it is a D flip-flop with the output unbuffered and changes state on the rising edge of the clock. When SCE is high it is a D latch that is transparent when C is low.


Equivalent Gates: $\qquad$ 12.0

Bolt Syntax: $\qquad$ Q .SLFA1 C D SCE SD SE;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| ${\text { Static } \mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)}^{8.8}$ | nA |  |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 37.9 | Eq-load |

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| C | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 1.17 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 1.74 \\ & 1.45 \end{aligned}$ | $\begin{aligned} & 2.05 \\ & 1.57 \end{aligned}$ |
| D | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.97 \\ & 1.24 \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 1.42 \end{aligned}$ | $\begin{aligned} & 1.44 \\ & 1.57 \end{aligned}$ | $\begin{aligned} & 1.69 \\ & 1.72 \end{aligned}$ | $\begin{aligned} & 1.93 \\ & 1.86 \end{aligned}$ |
| SCE | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 1.22 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1.37 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 1.51 \end{aligned}$ | $\begin{aligned} & 1.95 \\ & 1.65 \end{aligned}$ |

AMIGG 0.6 micron CMOS Gate Array

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 5 | 10 | 14 | 19 (max) |
| Min C Width | High | $t_{\text {w }}$ | 0.96 |  |  |  |  |
| Min C Width | Low | $t_{w}$ | 0.75 |  |  |  |  |
| Min D Setup |  | $\mathrm{t}_{\text {su }}$ | 0.75 |  |  |  |  |
| Min D Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SD Setup |  | $\mathrm{t}_{\text {su }}$ | 0.75 |  |  |  |  |
| Min SD Hold |  | $t_{h}$ | 0.00 |  |  |  |  |
| Min SE Setup |  | $\mathrm{t}_{\text {su }}$ | 0.86 |  |  |  |  |
| Min SE Hold |  | $t_{\text {h }}$ | 0.00 |  |  |  |  |
| Min SCE Setup |  | $\mathrm{t}_{\text {su }}$ | 1.03 |  |  |  |  |
| Min SCE Hold |  | $t_{h}$ | 0.84 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Logic Schematic




## AMIGG 0.6 micron CMOS Gate Array

## Description:

TD02 is a non-inverting time delay.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | Q |  | Equivalent Load |
| Delay |  | H | H | A | 3.0 |

Equivalent Gates:
6.0

Bolt Syntax:
Q.TD02 A;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 3.7 | $n A$ |
| EQL $_{\text {pd }}$ | 27.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.86 \\ & 2.16 \end{aligned}$ | $\begin{aligned} & 2.27 \\ & 2.29 \end{aligned}$ | $\begin{aligned} & 2.51 \\ & 2.45 \end{aligned}$ | $\begin{aligned} & 2.71 \\ & 2.62 \end{aligned}$ | $\begin{aligned} & 2.88 \\ & 2.80 \end{aligned}$ |

[^64]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

TD03 is a non-inverting time delay.


Equivalent Gates:
9.0

Bolt Syntax:
Q.TD03 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 5.1 | nA |
| EQL $_{\mathrm{pd}}$ | 41.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 9 | 18 | 26 | 35 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 3.00 \\ & 3.06 \end{aligned}$ | $\begin{aligned} & 3.20 \\ & 3.23 \end{aligned}$ | $\begin{aligned} & 3.48 \\ & 3.41 \end{aligned}$ | $\begin{aligned} & 3.70 \\ & 3.56 \end{aligned}$ | $\begin{aligned} & 3.89 \\ & 3.67 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

TD08 is a non-inverting time delay.


Equivalent Gates: 14.0

Bolt Syntax:
Q.TD08 A;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 11.0 | nA |
| EQL $_{\mathrm{pd}}$ | 61.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 7 | 14 | 20 | 27 (max) |
| A | Q | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 7.80 \\ & 8.71 \end{aligned}$ | $\begin{aligned} & \hline 7.83 \\ & 8.97 \end{aligned}$ | $\begin{aligned} & 7.95 \\ & 9.17 \end{aligned}$ | $\begin{aligned} & 8.18 \\ & 9.35 \end{aligned}$ | $\begin{aligned} & 8.53 \\ & 9.52 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

# SECTION 4 PAD LOGIC 

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IDCl3 is an inverting, CMOS-level input buffer piece.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :--- | :--- |

Bolt Syntax: .QC .IDCI3 PADM;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 4.7 | nA |
| ${ }^{*} E Q L_{\text {pd }}$ | 175.8 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 0.88 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 1.18 \end{aligned}$ | $\begin{aligned} & 1.36 \\ & 1.35 \end{aligned}$ | $\begin{aligned} & 1.52 \\ & 1.54 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IDCRO is a non-buffered, resistive analog interface input piece.


Bolt Syntax: QC .IDCRO PADM;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 0.1 | nA |
| ${ }^{*} E Q L_{\text {pd }}$ | 2.0 | Eq-load |

[^65]IDCS3

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IDCS3 is a non-inverting, CMOS-level Schmitt trigger input buffer piece with voltage hysteresis.


Bolt Syntax: $\qquad$ QC .IDCS3 PADM;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.8 | nA |
| ${ }^{*} \mathrm{EQL}_{\mathrm{pd}}$ | 182.2 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 2.61 \\ & 2.45 \end{aligned}$ | $\begin{aligned} & 2.87 \\ & 2.55 \end{aligned}$ | $\begin{aligned} & 3.07 \\ & 2.72 \end{aligned}$ | $\begin{aligned} & 3.26 \\ & 2.92 \end{aligned}$ | $\begin{aligned} & 3.45 \\ & 3.16 \end{aligned}$ |

[^66]AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IDCX3 is a non-inverting, CMOS-level input buffer piece

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{\text { PADM }}{L}$ | $\frac{\mathrm{QC}}{\mathrm{~L}}$ |  | Equivalent Load |
|  |  | H | H | *PADM | 217.2 |

Bolt Syntax: $\qquad$

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.8 | nA |
| ${ }^{*} \mathrm{EQL}_{\mathrm{pd}}$ | 172.7 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.87 \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 1.24 \end{aligned}$ | $\begin{aligned} & 1.48 \\ & 1.42 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 1.60 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

IDPX3

## AMIGG 0.6 micron CMOS Gate Array

## IDescription:

IDPX3 is a non-inverting, PCI-level input buffer piece.


Bolt Syntax:
QC .IDPX3 PADM;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 3.3 | $n A$ |
| ${ }^{*} E_{\text {EQL }}^{\text {pd }}$ | 171.8 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\overline{t_{P L H}}$ $t_{\text {PHL }}$ | $\begin{aligned} & 0.24 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & \hline 0.40 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & \hline 0.62 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 0.84 \\ & 1.42 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 1.58 \end{aligned}$ |

[^67]
## AMI6G 0.6 micron CMOS Gate Array

## Description:

IDQC0 is a crystal oscillator input receiver piece.


Bolt Syntax:
QO .IDQC0 PADM;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 0.1 | nA |
| ${ }^{*}$ EQL $_{\text {pd }}$ | 2.0 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Design Notes:

The IDQC0 cell is for backward compatibility with existing oscillator methodologies.

IDQC3

## AMI6G 0.6 micron CMOS Gate Array

## Description:

IDQC3 is a crystal oscillator input receiver pad piece with a non-inverting, CMOS-level clock input. QO is the output to either the ODQFE20M or the ODQTE60M. PADM is the bond pad from the Xtal-in.


| Truth Table |  |  |  |
| :---: | :---: | :---: | :---: |
|  | PADM | QC | QO |
|  | L | L | L |
|  | $H$ | H | H |

Pin Loading

|  | Equivalent <br> Load |
| :---: | :---: |
| *PADM | 217.2 |

Bolt Syntax: $\qquad$ QC QO .IDQC3 PADM;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.8 | nA |
| ${ }^{*}$ EQL $_{\text {pd }}$ | 174.0 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & \text { tplH } \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 0.79 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 1.02 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 1.20 \end{aligned}$ | $\begin{aligned} & 1.44 \\ & 1.37 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 1.54 \end{aligned}$ |
| PADM | QO | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$ |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Design Notes:

The IDQC3 is the input cell of a two cell oscillator circuit. Its function is to connect the QO pin with the QI pin of either the ODQFE20M or the ODQTE60M oscillator output driver pad pieces. The buffered QC pin is for driving the oscillator into the core. Two package pins are required to create a complete oscillator.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

IDQS3 is a crystal oscillator input receiver pad piece. QC is a non-inverting, CMOS-level schmitt trigger clock input buffer. QO is the output to the ODQFE99K. PADM is the bond pad from the Xtal-in.


| Truth Table | PADM | QC | QO |  | Pin Loading |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | L | L |  |  | Equivalent <br> Load |
|  | H | H | H |  |  |  |
|  |  |  |  |  |  |  |

Bolt Syntax:
QC QO .IDQS3 PADM;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.8 | nA |
| ${ }^{*} \mathrm{EQL}_{\mathrm{pd}}$ | 183.7 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 2.59 \\ & 2.31 \end{aligned}$ | $\begin{aligned} & 2.89 \\ & 2.61 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.07 \\ & 2.75 \end{aligned}$ | $\begin{aligned} & 3.26 \\ & 2.93 \end{aligned}$ | $\begin{aligned} & 3.47 \\ & 3.15 \end{aligned}$ |
| PADM | QO | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$ |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Design Notes:

The IDQS3 is the input cell of a two cell oscillator circuit. Its function is to connect the QO pin with the Ql pin of the ODQFE99K oscillator output driver pad piece. The buffered QC pin is for driving the oscillator into the core. Two package pins are required to create a complete oscillator.

IDTS3
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IDTS3 is a non-inverting, TTL-level Schmitt input buffer piece.


Bolt Syntax: $\qquad$
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.4 | nA |
| ${ }^{*}$ EQL $_{\text {pd }}$ | 181.8 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay ( ns ) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.24 \\ & 1.49 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 1.87 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 2.08 \end{aligned}$ | $\begin{aligned} & 1.78 \\ & 2.24 \end{aligned}$ | $\begin{aligned} & 1.95 \\ & 2.38 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

IDTX3 is a non-inverting, TTL-level, input buffer piece.


Bolt Syntax: $\qquad$ QC .IDTX3 PADM;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.3 | nA |
| ${ }^{*} \mathrm{EQL}_{\mathrm{pd}}$ | 172.7 | Eq-load |

*See page 2-14 for detailed information on the power equation for pad pieces.

## Input Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 13 | 26 | 38 | 51 (max) |
| PADM | QC | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.90 \end{aligned}$ | $\begin{aligned} & 0.31 \\ & 1.17 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 1.35 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 1.53 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 1.72 \end{aligned}$ |

[^68]
# AMIGG 0.6 micron CMOS Gate Array 

## Description:

PLD3 is an active pull-down buffer piece.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- |
|  | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
|  |  |  |

Bolt Syntax:
PADM .PLD3;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 1.4 | $n A$ |
| EQL $_{\text {pd }}$ | 207.6 | Eq-load |

See page 2-14 for power equation.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

PLP3 is a programmable pull-up/pull-down buffer piece.


## Bolt Syntax:

.PADM .PLP3 MA MB;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.4 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 205.0 | Eq-load |

See page 2-14 for power equation.

PLU3

AMIGG 0.6 micron CMOS Gate Array

## Description:

PLU3 is an active pull-up buffer piece.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- |
|  |  | $\mathrm{N} / \mathrm{A}$ |
| PLU3 |  | $\mathrm{N} / \mathrm{A}$ |

Bolt Syntax: PADM .PLU3 ;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 1.4 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 207.6 | Eq-load |

See page 2-14 for power equation.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSIP04 is a 4 mA , inverting, CMOS-level output buffer piece with a P-channel open-drain (pull-up) and controlled slew rate output.


Bolt Syntax:
PADM .ODCSIP04 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.9 | nA |
| EQL $_{\mathrm{pd}}$ | 302.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 100 | 200 | 300 (max) |
| A |  |  | 3.52 | 8.58 | 15.93 | 30.62 | 45.18 |
| PADM | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

ODCSIP08

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSIP08 is an 8 mA , inverting, CMOS-level, output buffer piece with a P-channel open-drain (pull-up) and controlled slew rate output.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent Load |
|  | L | H | A | 3.0 |
|  | H | Z | PADM | 218.6 |
|  | Z = Hig | Impedance |  |  |

Bolt Syntax: PADM .ODCSIP08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.9 | nA |
| EQL $_{\text {pd }}$ | 313.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |
| A |  |  | 50 | 100 | 200 | 300 (max) |  |  |
| PADM |  |  | 2.24 | 4.84 | 8.52 | 15.96 | 23.48 |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSIP12 is a 12 mA , inverting, CMOS-level, output buffer piece with a P-channel open-drain (pull-up) and controlled slew rate output.


Bolt Syntax:
PADM .ODCSIP12 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.9 | nA |
| EQL $_{\text {pd }}$ | 318.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) <br> From |  | Parameter |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | To |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |
| A |  |  | 1.77 | 3.51 | 5.97 | 10.89 | 15.82 |
| PADM | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |

[^69]ODCSXEO4
AMERICAN MICROSYSTEMS, INC.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODCSXE04 is a 4 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | A | PADM |  | Equivalent Load |
| $A \quad-2 L^{\text {a }}$ | L | L | L | A | 10.3 |
| $\ldots$ | L | H | H | EN | 7.3 |
| ${ }^{\text {Padm }}$ | H | X | Z | PADM | 217.7 |

Bolt Syntax:
PADM .ODCSXE04 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 37.6 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 322.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 3.33 \\ & 3.36 \end{aligned}$ | $\begin{aligned} & 8.49 \\ & 8.47 \end{aligned}$ | $\begin{aligned} & 15.80 \\ & 15.74 \end{aligned}$ | $\begin{aligned} & 30.41 \\ & 30.25 \end{aligned}$ | $\begin{aligned} & 45.10 \\ & 44.74 \end{aligned}$ |
| $\begin{aligned} & \text { EN } \\ & \text { PADM } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.34 \\ & 3.57 \\ & 3.34 \end{aligned}$ | $\begin{aligned} & 8.70 \\ & 8.41 \end{aligned}$ | $\begin{aligned} & 15.99 \\ & 15.71 \end{aligned}$ | $\begin{aligned} & 30.64 \\ & 30.25 \end{aligned}$ | $\begin{aligned} & 45.28 \\ & 44.69 \end{aligned}$ |

[^70]
## ODCSXEO8

AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXE08 is an 8 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | A | PADM |  | Equivalent Load |
| A SE | L | L | L | A | 10.3 |
| - | L | H | H | EN | 7.3 |
| ${ }^{\text {Padm }}$ | H | X | Z | PADM | 218.7 |

Bolt Syntax:
PADM .ODCSXE08 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 37.6 | $n A$ |
| EQL $_{\mathrm{pd}}$ | 338.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 2.02 \\ & 1.99 \end{aligned}$ | $\begin{aligned} & 4.65 \\ & 4.64 \end{aligned}$ | $\begin{aligned} & 8.41 \\ & 8.39 \end{aligned}$ | $\begin{aligned} & 15.89 \\ & 15.85 \end{aligned}$ | $\begin{aligned} & 23.34 \\ & 23.25 \end{aligned}$ |
| EN <br> PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.46 \\ & 2.25 \\ & 2.00 \end{aligned}$ | $\begin{aligned} & 4.94 \\ & 4.62 \end{aligned}$ | $\begin{aligned} & 8.65 \\ & 8.37 \end{aligned}$ | $\begin{aligned} & 16.06 \\ & 15.83 \end{aligned}$ | $\begin{aligned} & 23.60 \\ & 23.26 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

ODCSXE12

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXE12 is a 12 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent Load |
| A SL | L | L | L |  | A | 10.3 |
| - | L | H | H | EN | 7.3 |
| $\downarrow_{\text {PADM }}$ | H | X | Z | PADM | 219.1 |

Bolt Syntax:
PADM .ODCSXE12 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.6 | nA |
| EQL $_{\text {pd }}$ | 348.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.63 \\ & 1.63 \end{aligned}$ | $\begin{aligned} & 3.41 \\ & 3.43 \end{aligned}$ | $\begin{aligned} & 5.91 \\ & 6.02 \end{aligned}$ | $\begin{aligned} & \hline 10.86 \\ & 11.14 \end{aligned}$ | $\begin{aligned} & \hline 15.76 \\ & 16.17 \end{aligned}$ |
| $\begin{array}{\|l\|} \mathrm{EN} \\ \text { PADM } \end{array}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 0.59 \\ & 1.87 \\ & 1.61 \end{aligned}$ | $\begin{aligned} & 3.68 \\ & 3.45 \end{aligned}$ | $\begin{aligned} & 6.13 \\ & 6.01 \end{aligned}$ | $\begin{aligned} & 11.03 \\ & 11.10 \end{aligned}$ | $\begin{aligned} & 16.02 \\ & 16.20 \end{aligned}$ |

[^71]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXE16 is a 16 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| SL | L | L | L | A | 3.0 |
| - | L | H | H | EN | 6.6 |
| $\nabla_{\text {PADM }}$ | H | X | Z | PADM | 219.1 |

Bolt Syntax:
PADM .ODCSXE16 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 41.0 | nA |
| EQL $_{\mathrm{pd}}$ | 374.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) <br> From |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A | $\mathrm{t}_{\text {PLH }}$ |  | 2.47 | 3.42 | 5.34 | 7.28 |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 2.94 | 4.70 | 8.24 | 11.78 |  |
|  | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  |  |  |  |
| PADM | $\mathrm{t}_{\mathrm{ZH}}$ | 1.40 | 2.11 | 3.09 | 5.01 | 6.91 |  |
|  | $\mathrm{t}_{\mathrm{ZL}}$ | 1.50 | 2.74 | 4.53 | 8.07 | 11.59 |  |

[^72]ODCSXE24
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXE24 is a 24 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | A | PADM |  | Equivalent Load |
| A | L | L | L | A | 3.0 |
| - | L | H | H | EN | 4.8 |
| $\nabla_{\text {Padm }}$ | H | X | Z | PADM | 219.0 |

Bolt Syntax:
PADM .ODCSXE24 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| ${\text { Static } \mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)}^{39.2}$ | nA |  |
| EQL $_{\mathrm{pd}}$ | 368.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  |  | Capacitive Load (pF) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |  |
|  |  |  |  | 50 | 100 | 200 | 300 (max) |
| A | $\mathrm{t}_{\text {PLH }}$ |  |  | 2.94 | 4.45 | 6.02 |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  |  | 3.52 | 5.89 | 8.26 |  |
|  | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\mathrm{LZ}}$ | 1.84 |  |  |  |  |  |
| PADM | $\mathrm{t}_{\mathrm{ZH}}$ | 1.28 | 1.87 | 2.68 | 4.22 | 5.71 |  |
|  | $\mathrm{t}_{\mathrm{ZL}}$ | 1.36 | 2.21 | 3.42 | 5.80 | 8.16 |  |

[^73]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXX04 is a 4 mA , non-inverting, CMOS-level, output buffer piece with controlled slew rate output.


Bolt Syntax:
PADM . ODCSXX04 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 307.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 3.24 \\ & 3.21 \end{aligned}$ | $\begin{aligned} & 8.39 \\ & 8.28 \end{aligned}$ | $\begin{aligned} & 15.69 \\ & 15.62 \end{aligned}$ | $\begin{aligned} & 30.32 \\ & 30.20 \end{aligned}$ | $\begin{aligned} & 45.00 \\ & 44.58 \end{aligned}$ |

[^74]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXX08 is an 8 mA , non-inverting, CMOS-level, output buffer piece with controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{A} \\ & \hline \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{array}{\|c} \text { PADM } \\ \hline \text { L } \\ \text { H } \end{array}$ |  | Equivalent <br> Load <br> 9.9 |

Bolt Syntax:
PADM . ODCSXX08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 323.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.83 \\ & 1.91 \end{aligned}$ | $\begin{aligned} & 4.55 \\ & 4.53 \end{aligned}$ | $\begin{aligned} & 8.31 \\ & 8.28 \end{aligned}$ | $\begin{aligned} & 15.76 \\ & 15.73 \end{aligned}$ | $\begin{aligned} & 23.23 \\ & 23.14 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXX12 is a 12 mA , non-inverting, CMOS-level, output buffer piece with controlled slew rate output.


Bolt Syntax:
PADM . ODCSXX12 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| EQL $_{\text {pd }}$ | 334.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.51 \\ & 1.53 \end{aligned}$ | $\begin{aligned} & 3.23 \\ & 3.33 \end{aligned}$ | $\begin{aligned} & 5.74 \\ & 5.88 \end{aligned}$ | $\begin{aligned} & 10.72 \\ & 10.97 \end{aligned}$ | $\begin{aligned} & 15.59 \\ & 16.08 \end{aligned}$ |

[^75]ODCSXX16
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXX16 is a 16 mA , non-inverting, CMOS-level, output buffer piece with controlled slew rate output.


## Bolt Syntax:

PADM . ODCSXX16 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| EQL $_{\text {pd }}$ | 337.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $t_{\text {PLL }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 1.38 \\ & 1.27 \end{aligned}$ | $\begin{aligned} & 2.71 \\ & 2.57 \end{aligned}$ | $\begin{aligned} & 4.59 \\ & 4.44 \end{aligned}$ | $\begin{aligned} & 8.34 \\ & 8.15 \end{aligned}$ | $\begin{aligned} & 12.10 \\ & 11.80 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCSXX24 is a 24 mA , non-inverting, CMOS-level, output buffer piece with controlled slew rate output.


Bolt Syntax:
PADM . ODCSXX24 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 35.9 | nA |
| EQL $_{\mathrm{pd}}$ | 337.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 1.17 \end{aligned}$ | $\begin{aligned} & 2.42 \\ & 2.03 \end{aligned}$ | $\begin{aligned} & 3.92 \\ & 3.27 \end{aligned}$ | $\begin{aligned} & 6.91 \\ & 5.75 \end{aligned}$ | $\begin{aligned} & 9.88 \\ & 8.24 \end{aligned}$ |

[^76]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXIP01 is a 1 mA , inverting, CMOS-level, output buffer piece with P-channel, open-drain (pull-up).


Bolt Syntax: $\qquad$ PADM .ODCXIP01 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |
| EQL $_{\text {pd }}$ | 275.7 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | From |  | 15 | 25 | 35 | 50 | 75 (max) |
| A |  |  | 6.35 | 9.25 | 12.16 | 16.58 | 24.02 |
| PADM |  |  | 0.56 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## ODCXIPO2

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODCXIPO2 is a 2 mA , inverting, CMOS-level, output buffer piece with P-channel, open-drain (pull-up).


Bolt Syntax:
PADM .ODCXIP02 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |
| EQL $_{\mathrm{pd}}$ | 277.6 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  | 100 | $150(\mathrm{max})$ |
|  |  |  | 50 | 75 | 15.92 | 23.22 |  |  |  |  |
| A | $\mathrm{t}_{\mathrm{ZH}}$ |  | 8.62 | 12.27 |  |  |  |  |  |  |
| PADM |  |  | 0.72 |  |  |  |  |  |  |  |

[^77]AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXIP04 is a 4 mA , inverting, CMOS-level, output buffer piece with P-channel, open-drain (pull-up).

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | PADM |  | Equivalent Load |
|  | L | H | A | 3.0 |
|  | H | Z | PADM | 217.9 |
|  | Z = High | mpedance |  |  |

## Bolt Syntax:

PADM .ODCXIP04 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.2 | nA |
| EQL $_{\mathrm{pd}}$ | 285.2 | Eq-load |

See page 2-14 for power equation.
Output Delay Characteristics:
Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | From |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |
| Ao |  |  | 2.10 | 4.75 | 8.45 | 15.89 | 23.42 |
| PADM |  |  | 0.79 |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXIP08 is an 8 mA , inverting, CMOS-level, output buffer piece with P-channel, open-drain (pull-up).

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | PADM |  | Equivalent <br> Load |
|  | L | H | A | 3.0 |
|  | H | Z | PADM | 218.6 |
|  | Z = High | pedance |  |  |

Bolt Syntax:
PADM .ODCXIP08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.2 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 295.2 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |
| Prameter |  |  | 50 | 100 | 200 | 300 (max) |  |  |
| A | $\mathrm{t}_{\mathrm{ZH}}$ |  | 2.93 | 4.82 | 8.55 | 12.30 |  |  |
| PADM |  |  | 1.26 |  |  |  |  |  |

[^78]ODCXXEO1

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXE01 is a 1 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.


Bolt Syntax:
PADM .ODCXXE01 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.8 | nA |
| EQL $_{\text {pd }}$ | 285.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 25 | 35 | 50 | 75 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 6.26 \\ & 6.17 \end{aligned}$ | $\begin{aligned} & 9.21 \\ & 8.86 \end{aligned}$ | $\begin{aligned} & 12.17 \\ & 11.57 \end{aligned}$ | $\begin{aligned} & 16.61 \\ & 15.68 \end{aligned}$ | $\begin{aligned} & 23.92 \\ & 22.72 \end{aligned}$ |
| $\begin{array}{\|l\|} \hline \text { EN } \\ \text { PADM } \end{array}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 0.39 \\ & 6.35 \\ & 6.03 \end{aligned}$ | $\begin{aligned} & 9.30 \\ & 8.86 \end{aligned}$ | $\begin{aligned} & 12.28 \\ & 11.68 \end{aligned}$ | $\begin{aligned} & 16.74 \\ & 15.85 \end{aligned}$ | $\begin{aligned} & 24.01 \\ & 22.61 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXE02 is a 2 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent <br> Load |
| A | L | L | L |  | A | 4.7 |
| $\sim$ | L | H | H | EN | 4.5 |
| $\nabla_{\text {PADM }}$ | H | X | Z | PADM | 217.4 |

Bolt Syntax:
PADM .ODCXXE02 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.8 | nA |
| EQL $_{\text {pd }}$ | 288.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 50 | 75 | 100 | 150 (max) |  |
| A |  |  | 3.43 | 8.53 | 12.20 | 15.88 | 23.24 |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 8.55 | 12.18 | 15.81 | 23.07 |  |
|  | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\text {LZ }}$ | 0.49 |  |  |  |  |  |
| PADM | $\mathrm{t}_{\text {ZH }}$ | 3.61 | 8.78 | 12.41 | 16.03 | 23.29 |  |
|  | $\mathrm{t}_{\text {ZL }}$ | 3.52 | 8.63 | 12.25 | 15.87 | 23.11 |  |

[^79]ODCXXEO4

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXE 04 is a 4 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.


Bolt Syntax:
PADM .ODCXXE04 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.3 | nA |
| EQL $_{\mathrm{pd}}$ | 300.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PH }} \end{aligned}$ | $\begin{aligned} & 1.98 \\ & 1.97 \end{aligned}$ | $\begin{aligned} & 4.67 \\ & 4.61 \end{aligned}$ | $\begin{aligned} & 8.40 \\ & 8.34 \end{aligned}$ | $\begin{aligned} & 15.82 \\ & 15.76 \end{aligned}$ | $\begin{aligned} & 23.33 \\ & 23.21 \end{aligned}$ |
| $\begin{aligned} & \text { EN } \\ & \text { PADM } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 0.46 \\ & 2.09 \\ & 1.99 \end{aligned}$ | $\begin{aligned} & 4.73 \\ & 4.64 \end{aligned}$ | $\begin{aligned} & 8.52 \\ & 8.37 \end{aligned}$ | $\begin{aligned} & 16.02 \\ & 15.79 \end{aligned}$ | $\begin{aligned} & 23.40 \\ & 23.24 \end{aligned}$ |

[^80]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXE08 is an 8 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent <br> Load |
| A | L | L | L |  | A | 2.8 |
| - | L | H | H | EN | 4.8 |
| $\nabla_{\text {Padm }}$ | H | X | Z | PADM | 218.6 |

Bolt Syntax:
PADM .ODCXXE08 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.1 | nA |
| EQL $_{\text {pd }}$ | 330.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.91 \\ & 1.60 \end{aligned}$ | $\begin{aligned} & 3.25 \\ & 2.93 \end{aligned}$ | $\begin{aligned} & 5.15 \\ & 4.80 \end{aligned}$ | $\begin{aligned} & 8.91 \\ & 8.53 \end{aligned}$ | $\begin{aligned} & 12.63 \\ & 12.26 \end{aligned}$ |
| $\begin{aligned} & \text { EN } \\ & \text { PADM } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 1.03 \\ & 1.69 \\ & 1.52 \end{aligned}$ | $\begin{aligned} & 3.08 \\ & 2.83 \end{aligned}$ | $\begin{aligned} & 5.00 \\ & 4.70 \end{aligned}$ | $\begin{aligned} & 8.75 \\ & 8.44 \end{aligned}$ | $\begin{aligned} & 12.43 \\ & 12.18 \end{aligned}$ |

[^81]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXE12 is a 12 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| N | L | L | L | A | 2.8 |
| $\sim$ | L | H | H | EN | 4.8 |
| $\nabla^{\text {PADM }}$ | H | X | Z | PADM | 218.9 |

Bolt Syntax:
PADM .ODCXXE12 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 37.1 | $n A$ |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 339.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.95 \\ & 1.43 \end{aligned}$ | $\begin{aligned} & 2.96 \\ & 2.31 \end{aligned}$ | $\begin{aligned} & 4.41 \\ & 3.54 \end{aligned}$ | $\begin{aligned} & 7.39 \\ & 6.01 \end{aligned}$ | $\begin{gathered} 10.43 \\ 8.53 \end{gathered}$ |
| EN PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.20 \\ & 1.63 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 2.73 \\ & 2.15 \end{aligned}$ | $\begin{aligned} & 4.25 \\ & 3.42 \end{aligned}$ | $\begin{aligned} & 7.24 \\ & 5.95 \end{aligned}$ | $\begin{gathered} 10.21 \\ 8.40 \end{gathered}$ |

[^82]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXE16 is a 16 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent <br> Load |
| $A$ | L | L | L |  | A | 2.8 |
| $\square$ | L | H | H | EN | 4.8 |
| $\nabla_{\text {PADM }}$ | H |  | Z | PADM | 219.0 |

Bolt Syntax:
PADM .ODCXXE16 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.1 | nA |
| EQL $_{\text {pd }}$ | 344.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 1.84 \\ & 1.27 \end{aligned}$ | $\begin{aligned} & 2.91 \\ & 2.00 \end{aligned}$ | $\begin{aligned} & 4.43 \\ & 2.98 \end{aligned}$ | $\begin{aligned} & 7.43 \\ & 4.86 \end{aligned}$ | $\begin{gathered} 10.38 \\ 6.67 \end{gathered}$ |
| EN PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.39 \\ & 1.64 \\ & 1.24 \end{aligned}$ | $\begin{aligned} & 2.72 \\ & 1.93 \end{aligned}$ | $\begin{aligned} & 4.23 \\ & 2.89 \end{aligned}$ | $\begin{aligned} & 7.23 \\ & 4.76 \end{aligned}$ | $\begin{gathered} 10.21 \\ 6.62 \end{gathered}$ |

[^83]ODCXXE24
AMERICAN MICROSYSTEMS, INC.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODCXXE24 is a 24 mA , non-inverting, CMOS-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| A | L | L | L | A | 2.8 |
| - | L | H | H | EN | 4.8 |
| $\vee^{\text {PADM }}$ | H | X | Z | PADM | 219.0 |

Bolt Syntax:
PADM .ODCXXE24 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.1 | nA |
| EQL $_{\text {pd }}$ | 354.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.92 \\ & 1.31 \end{aligned}$ | $\begin{aligned} & 2.99 \\ & 1.80 \end{aligned}$ | $\begin{aligned} & 4.49 \\ & 2.48 \end{aligned}$ | $\begin{aligned} & 7.44 \\ & 3.76 \end{aligned}$ | $\begin{gathered} 10.34 \\ 4.98 \end{gathered}$ |
| $\begin{array}{\|l} \mathrm{EN} \\ \text { PADM } \end{array}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.75 \\ & 1.71 \\ & 1.21 \end{aligned}$ | $\begin{aligned} & 2.75 \\ & 1.72 \end{aligned}$ | $\begin{aligned} & 4.23 \\ & 2.40 \end{aligned}$ | $\begin{aligned} & 7.20 \\ & 3.68 \end{aligned}$ | $\begin{gathered} 10.19 \\ 4.89 \end{gathered}$ |

[^84]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXX01 is a 1 mA , non-inverting, CMOS-level output buffer piece.


Bolt Syntax: .
PADM . ODCXXX01 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.3 | nA |
| EQL $_{\text {pd }}$ | 274.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  | To |  | 15 | 25 | 35 | 50 | 75 (max) |
| A | $\mathrm{t}_{\text {PLH }}$ |  | 9.21 | 12.15 | 16.57 | 23.94 |  |
| PADM |  |  | 6.05 | 8.79 | 11.55 | 15.70 | 22.63 |

[^85]ODCXXX02
AMERICAN MICROSYSTEMS, INC

AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXX02 is a 2 mA , non-inverting, CMOS-level output buffer piece.


Bolt Syntax:
PADM . ODCXXX02 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.3 | nA |
| EQL $_{\mathrm{pd}}$ | 277.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 75 | 100 | $150(\mathrm{max})$ |
| A |  |  | 3.47 | 8.70 | 12.36 | 15.99 | 23.17 |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 8.61 | 12.27 | 15.91 | 23.07 |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXX04 is a 4 mA , non-inverting, CMOS-level output buffer piece.


Bolt Syntax:
PADM . ODCXXX04 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |
| EQL $_{\text {pd }}$ | 287.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 100 | 200 | 300 (max) |
| A | $\mathrm{t}_{\text {PLH }}$ |  | 4.69 | 8.42 | 15.89 | 23.37 |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 4.64 | 8.39 | 15.85 | 23.25 |  |

[^86]ODCXXX08

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXX08 is an 8 mA , non-inverting, CMOS-level output buffer piece.


Bolt Syntax:
PADM . ODCXXX08 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 32.6 | $n A$ |
| EQL $_{\text {pd }}$ | 302.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  | To |  | 15 | 50 | 100 | 200 |  |
| A | $\mathrm{t}_{\text {PLH }}$ |  | 2.70 | 4.60 | 8.43 | 12.28 |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 2.61 | 4.50 | 8.35 | 12.22 |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## OOCXXX12

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXX12 is a 12 mA , non-inverting, CMOS-level output buffer piece.


Bolt Syntax:
PADM . ODCXXX12 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.0 | nA |
| EQL $_{\text {pd }}$ | 313.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & 2.31 \\ & 1.92 \end{aligned}$ | $\begin{aligned} & 3.81 \\ & 3.20 \end{aligned}$ | $\begin{aligned} & 6.80 \\ & 5.70 \end{aligned}$ | $\begin{aligned} & 9.79 \\ & 8.15 \end{aligned}$ |

[^87]
## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODCXXX16 is a 16 mA , non-inverting, CMOS-level output buffer piece.


## Bolt Syntax:

PADM . ODCXXX16 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.4 | nA |
| EQL $_{\text {pd }}$ | 320.2 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 1.29 \\ & 0.93 \end{aligned}$ | $\begin{aligned} & 2.34 \\ & 1.63 \end{aligned}$ | $\begin{aligned} & 3.84 \\ & 2.60 \end{aligned}$ | $\begin{aligned} & 6.83 \\ & 4.48 \end{aligned}$ | $\begin{aligned} & 9.80 \\ & 6.32 \end{aligned}$ |

[^88]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODCXXX24 is a 24 mA , non-inverting, CMOS-level output buffer piece.


## Bolt Syntax:

$\qquad$ PADM . ODCXXX24 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 33.4 | nA |
| EQL $_{\text {pd }}$ | 330.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.46 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & 2.49 \\ & 1.42 \end{aligned}$ | $\begin{aligned} & 3.95 \\ & 2.08 \end{aligned}$ | $\begin{aligned} & 6.89 \\ & 3.35 \end{aligned}$ | $\begin{aligned} & 9.88 \\ & 4.59 \end{aligned}$ |

[^89]ODPSXE24
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODPSXE24 is a PCI, non-inverting, tri-state buffer piece with controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent Load |
| A | L | L | L |  | A | 5.0 |
| PCl | L | H | H | EN | 3.8 |
| $\downarrow_{\text {PADM }}$ | H | X | Z | PADM | 219.1 |

Bolt Syntax:
PADM .ODPSXE24 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{IDD}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 43.1 | nA |
| EQL $_{\text {pd }}$ | 389.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 3.16 \\ & 2.35 \end{aligned}$ | $\begin{aligned} & 4.48 \\ & 3.30 \end{aligned}$ | $\begin{aligned} & 6.11 \\ & 4.22 \end{aligned}$ | $\begin{aligned} & 9.13 \\ & 5.72 \end{aligned}$ | $\begin{gathered} 11.98 \\ 7.06 \end{gathered}$ |
| EN PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 1.00 \\ & 3.15 \\ & 2.27 \end{aligned}$ | $\begin{aligned} & 4.60 \\ & 3.30 \end{aligned}$ | $\begin{aligned} & 6.21 \\ & 4.24 \end{aligned}$ | $\begin{aligned} & 9.21 \\ & 5.73 \end{aligned}$ | $\begin{gathered} 12.15 \\ 7.11 \end{gathered}$ |

[^90]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXN04 is a 4mA, non-inverting, TTL-level, output buffer piece with N-channel open-drain (pull-down) and controlled slew rate output.


## Bolt Syntax:

PADM .ODTSXN04 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.4 | nA |
| EQL $_{\mathrm{pd}}$ | 281.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |
| A |  |  | 4.83 | 12.79 | 23.97 | 46.20 | 68.45 |
| PADM | $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  |  |  |  |

[^91]ODTSXNO8

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXN08 is an 8 mA , non-inverting, TTL-level, output buffer piece with N -channel open-drain (pull-down) and controlled slew rate output.


Bolt Syntax: PADM .ODTSXN08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 33.4 | nA |
| EQL $_{\text {pd }}$ | 287.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | From |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |  |
| A |  |  | 2.65 | 6.79 | 12.67 | 24.31 | 35.80 |  |
| PADM |  |  | 0.41 |  |  |  |  |  |

[^92]AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXN12 is a 12 mA , non-inverting, TTL-level, output buffer piece with N -channel open-drain (pull-down) and controlled slew rate output.

| Logic Symbol | Truth Table <br> $Z=$ High Impedance | Pin Loading |
| :---: | :---: | :---: |

Bolt Syntax:
PADM .ODTSXN12 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.4 | nA |
| EQL $_{\mathrm{pd}}$ | 292.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |
| A |  |  | 1.91 | 4.84 | 8.96 | 17.03 | 24.97 |
| PADM | $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  |  |  |  |

[^93]ODTSXN16

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXN16 is a 16 mA , non-inverting, TTL-level, output buffer piece with N -channel open-drain (pull-down) and controlled slew rate output.

| Logic Symbol | Truth Table |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent Load |
| A Sbour | L | L | A | 9.3 |
| $\sim \sim$ | H | Z | PADM | 217.3 |
| $\nabla_{\text {PADM }}$ | $\mathrm{Z}=$ High | mpedance |  |  |

## Bolt Syntax:

PADM .ODTSXN16 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 35.9 | nA |
| EQL $_{\mathrm{pd}}$ | 300.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Porameter |  |  |  |  |  |  |  |  |
|  |  |  | 50 | 100 | 200 | $300(\mathrm{max})$ |  |  |
| A |  |  | 1.55 | 3.56 | 6.43 | 12.19 |  |  |
| PADM | $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXN24 is a 24 mA , non-inverting, TTL-level, output buffer piece with N -channel open-drain (pull-down) and controlled slew rate output.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :---: |

Bolt Syntax:
.PADM .ODTSXN24 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 35.9 | nA |
| EQL $_{\text {pd }}$ | 310.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |  |
| A |  |  | 50 | 100 | 200 | $300(\mathrm{max})$ |  |  |  |
| A | $\mathrm{t}_{\mathrm{ZL}}$ |  | 2.58 | 4.54 | 8.42 | 12.32 |  |  |  |
| PADM |  |  | 0.64 |  |  |  |  |  |  |

[^94]ODTSXEO4

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXE04 is a 4 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | A | PADM |  | Equivalent Load |
| A SL | L | L | L | A | 10.3 |
| - | L | H | H | EN | 7.3 |
| $\nabla_{\text {PADM }}$ | H | X | Z | PADM | 217.7 |

Bolt Syntax:
PADM .ODTSXE04 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.6 | nA |
| EQL $_{\text {pd }}$ | 322.4 | Eql-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.96 \\ & 5.15 \end{aligned}$ | $\begin{gathered} \hline 4.71 \\ 13.21 \end{gathered}$ | $\begin{aligned} & \hline 8.65 \\ & 24.69 \end{aligned}$ | $\begin{aligned} & 16.56 \\ & 47.67 \end{aligned}$ | $\begin{aligned} & 24.49 \\ & 70.68 \end{aligned}$ |
| EN PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 0.88 \\ & 0.34 \\ & 2.14 \\ & 5.08 \end{aligned}$ | $\begin{gathered} 4.91 \\ 13.23 \end{gathered}$ | $\begin{gathered} 8.88 \\ 24.72 \end{gathered}$ | $\begin{aligned} & 16.78 \\ & 47.63 \end{aligned}$ | $\begin{aligned} & 24.67 \\ & 70.69 \end{aligned}$ |

[^95]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXE08 is an 8 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Equivalent <br> Load |
| A | L | L | L |  | A | 10.3 |
| - | L | H | H | EN | 7.3 |
| $\nabla_{\text {PADM }}$ | H | X | Z | PADM | 218.7 |

## Bolt Syntax:

.PADM .ODTSXE08 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.6 | nA |
| EQL $_{\mathrm{pd}}$ | 338.2 | Eql-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 2.99 \end{aligned}$ | $\begin{aligned} & 2.70 \\ & 7.11 \end{aligned}$ | $\begin{gathered} 4.75 \\ 13.04 \end{gathered}$ | $\begin{gathered} 8.79 \\ 24.95 \end{gathered}$ | $\begin{aligned} & 12.77 \\ & 36.91 \end{aligned}$ |
| $\begin{aligned} & \text { EN } \\ & \text { PADM } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 0.46 \\ & 1.51 \\ & 2.89 \end{aligned}$ | $\begin{aligned} & 2.95 \\ & 7.08 \end{aligned}$ | $\begin{gathered} 4.96 \\ 13.06 \end{gathered}$ | $\begin{gathered} 8.98 \\ 24.98 \end{gathered}$ | $\begin{aligned} & 13.02 \\ & 36.82 \end{aligned}$ |

[^96]ODTSXE12

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXE12 is a 12 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| A Sme | L | L | L | A | 10.3 |
| - | L | H | H | EN | 7.3 |
| ${ }^{\text {PADM }}$ | H | X | Z | PADM | 219.1 |

Bolt Syntax: $\qquad$ PADM .ODTSXE12 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.6 | nA |
| EQL $_{\text {pd }}$ | 348.8 | Eql-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay ( ns ) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 2.28 \end{aligned}$ | $\begin{aligned} & 2.11 \\ & 5.18 \end{aligned}$ | $\begin{aligned} & 3.46 \\ & 9.31 \end{aligned}$ | $\begin{gathered} 6.13 \\ 17.52 \end{gathered}$ | $\begin{gathered} 8.77 \\ 25.70 \end{gathered}$ |
| EN PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 0.59 \\ & 1.43 \\ & 2.25 \end{aligned}$ | $\begin{aligned} & 2.36 \\ & 5.14 \end{aligned}$ | $\begin{aligned} & 3.66 \\ & 9.28 \end{aligned}$ | $\begin{gathered} 6.32 \\ 17.51 \end{gathered}$ | $\begin{gathered} 9.02 \\ 25.69 \end{gathered}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## ODTSXE16

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODTSXE16 is a 16 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| SL | L | L | L | A | 3.0 |
| $\xrightarrow{ }$ | L | H | H | EN | 6.6 |
| ${ }^{\text {Padm }}$ | H | X | Z | PADM | 219.1 |

Bolt Syntax:
PADM .ODTSXE16 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 41.0 | nA |
| EQL $_{\text {pd }}$ | 374.2 | Eql-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.80 \\ & 2.21 \end{aligned}$ | $\begin{aligned} & \hline 2.53 \\ & 4.28 \end{aligned}$ | $\begin{aligned} & \hline 3.56 \\ & 7.17 \end{aligned}$ | $\begin{gathered} 5.59 \\ 12.75 \end{gathered}$ | $\begin{gathered} \hline 7.59 \\ 18.12 \end{gathered}$ |
| $\begin{aligned} & \text { EN } \\ & \text { PADM } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 1.48 \\ & 1.54 \\ & 1.96 \end{aligned}$ | $\begin{aligned} & 2.23 \\ & 4.05 \end{aligned}$ | $\begin{aligned} & 3.20 \\ & 6.99 \end{aligned}$ | $\begin{gathered} 5.22 \\ 12.58 \end{gathered}$ | $\begin{gathered} 7.28 \\ 17.90 \end{gathered}$ |

[^97]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXE24 is a 24 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable and controlled slew rate output.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
| $A \quad S 2$ | L | L | L | A | 3.0 |
| $\longrightarrow$ | L | H | H | EN | 4.8 |
| ${ }^{\text {PadM }}$ | H | X | Z | PADM | 219.0 |

Bolt Syntax: $\qquad$ PADM .ODTSXE24 A EN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 39.2 | nA |
| EQL $_{\text {pd }}$ | 368.7 | Eql-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & t_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.67 \\ & 1.83 \end{aligned}$ | $\begin{aligned} & 2.25 \\ & 3.25 \end{aligned}$ | $\begin{aligned} & 3.04 \\ & 5.22 \end{aligned}$ | $\begin{aligned} & 4.63 \\ & 9.03 \end{aligned}$ | $\begin{gathered} \hline 6.23 \\ 12.73 \end{gathered}$ |
| $\begin{aligned} & \text { EN } \\ & \text { PADM } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{tH}} \end{aligned}$ | $\begin{aligned} & 1.23 \\ & 1.86 \\ & 1.32 \\ & 1.71 \end{aligned}$ | $\begin{aligned} & 1.92 \\ & 3.15 \end{aligned}$ | $\begin{aligned} & 2.76 \\ & 5.12 \end{aligned}$ | $\begin{aligned} & 4.37 \\ & 8.93 \end{aligned}$ | $\begin{gathered} 5.95 \\ 12.64 \end{gathered}$ |

[^98]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXX04 is a 4 mA , non-inverting, TTL-level, output buffer piece with controlled slew rate output.


Bolt Syntax: $\qquad$ PADM .ODTSXX04 A;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| $E Q L_{p d}$ | 307.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.82 \\ & 4.95 \end{aligned}$ | $\begin{gathered} \hline 4.58 \\ 12.93 \end{gathered}$ | $\begin{aligned} & \hline 8.58 \\ & 24.11 \end{aligned}$ | $\begin{aligned} & 16.50 \\ & 46.35 \end{aligned}$ | $\begin{aligned} & \hline 24.34 \\ & 68.64 \end{aligned}$ |

[^99]ODTSXX08

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXX08 is an 8 mA , non-inverting, TTL-level, output buffer piece with controlled slew rate output.


## Bolt Syntax:

PADM .ODTSXX08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| EQL $_{\text {pd }}$ | 323.4 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 2.82 \end{aligned}$ | $\begin{aligned} & 2.59 \\ & 6.94 \end{aligned}$ | $\begin{gathered} \hline 4.72 \\ 12.83 \end{gathered}$ | $\begin{aligned} & \hline 9.40 \\ & 24.78 \end{aligned}$ | $\begin{aligned} & 14.44 \\ & 37.03 \end{aligned}$ |

[^100]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXX12 is a 12 mA , non-inverting, TTL-level, output buffer piece with controlled slew rate output.


Bolt Syntax:
PADM .ODTSXX12 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| EQL $_{\mathrm{pd}}$ | 334.0 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 2.15 \end{aligned}$ | $\begin{aligned} & 1.95 \\ & 5.03 \end{aligned}$ | $\begin{aligned} & 3.31 \\ & 9.10 \end{aligned}$ | $\begin{gathered} 5.99 \\ 17.16 \end{gathered}$ | $\begin{gathered} 8.61 \\ 25.17 \end{gathered}$ |

[^101]ODTSXX16

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXX16 is a 16 mA , non-inverting, TTL-level, output buffer piece with controlled slew rate output.


## Bolt Syntax:

PADM .ODTSXX16 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.7 | nA |
| EQL $_{\text {pd }}$ | 337.5 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 1.76 \end{aligned}$ | $\begin{aligned} & 1.74 \\ & 3.77 \end{aligned}$ | $\begin{aligned} & 2.74 \\ & 6.70 \end{aligned}$ | $\begin{gathered} \hline 4.75 \\ 12.54 \end{gathered}$ | $\begin{gathered} \hline 6.78 \\ 18.27 \end{gathered}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTSXX24 is a 24 mA , non-inverting, TTL-level, output buffer piece with controlled slew rate output.


Bolt Syntax:
PADM .ODTSXX24 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 35.9 | nA |
| EQL $_{\text {pd }}$ | 337.8 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 1.42 \end{aligned}$ | $\begin{aligned} & 1.61 \\ & 2.81 \end{aligned}$ | $\begin{aligned} & 2.46 \\ & 4.82 \end{aligned}$ | $\begin{aligned} & 4.07 \\ & 8.73 \end{aligned}$ | $\begin{gathered} \hline 5.62 \\ 12.54 \end{gathered}$ |

[^102]
## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODTXXN01 is a 1 mA , non-inverting, TTL-level, output buffer piece with N-channel, open-drain (pull-down).


Bolt Syntax:
PADM .ODTXXN01 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 31.3 | $n A$ |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 269.4 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 25 | 35 | 50 | 75 (max) |
| A | PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{ZL}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$ | $\begin{aligned} & 8.91 \\ & 0.27 \end{aligned}$ | 13.36 | 17.81 | 24.39 | 35.00 |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

Description:
ODTXXNO2 is a 2 mA , non-inverting, TTL-level, output buffer piece with N-channel, open-drain (pull-down).


## Bolt Syntax:

PADM .ODTXXN02 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.3 | nA |
| EQL $_{\text {pd }}$ | 270.8 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 75 | 100 | 150 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{ZL}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$ | $\begin{aligned} & 4.98 \\ & 0.37 \end{aligned}$ | 13.13 | 18.92 | 24.68 | 36.16 |

[^103]ODTXXNO4

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXN04 is a 4 mA , non-inverting, TTL-level, output buffer piece with N-channel, open-drain (pull-down).


Bolt Syntax: PADM .ODTXXN04 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |
| EQL $_{\text {pd }}$ | 275.1 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | From |  | To |  | 15 | 50 | 100 |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXN08 is an 8 mA , non-inverting, TTL-level, output buffer piece with N -channel, open-drain (pull-down).

| Logic Symbol | Truth Table <br> $\mathrm{Z}=$ High Impedance | Pin Loading |
| :---: | :---: | :---: |

Bolt Syntax:
PADM .ODTXXN08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static I |  |  |
| EQL $_{\text {pd }}\left(T_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |
| A |  |  | 50 | 100 | 200 | 300 (max) |  |  |
| PADM | $\mathrm{t}_{\mathrm{ZL}}$ |  | 3.69 | 6.81 | 12.73 | 18.72 |  |  |

[^104]ODTXXN12

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXN12 is a 12 mA , non-inverting, TTL-level, output buffer piece with N -channel, open-drain (pull-down).


Bolt Syntax:
PADM .ODTXXN12 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 32.6 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 284.5 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | From |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |  |
| A |  |  | 1.14 | 2.57 | 4.56 | 8.58 | 12.49 |  |
| PADM |  |  | 0.61 |  |  |  |  |  |

[^105]
## ODTXXN16

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODTXXN16 is a 16 mA , non-inverting, TTL-level, output buffer piece with N -channel, open-drain (pull-down).

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :--- | :--- |

## Bolt Syntax:

PADM .ODTXXN16 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.6 | nA |
| EQL $_{\text {pd }}$ | 289.9 | Eq-load |

See page 2-14 for power equation.
Output Delay Characteristics:
Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{zL}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 0.79 \end{aligned}$ | 2.10 | 3.60 | 6.61 | 9.57 |

[^106]ODTXXN24

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXN24 is a 24 mA , non-inverting, TTL-level, output buffer piece with N -channel, open-drain (pull-down).


Bolt Syntax:
PADM .ODTXXN24 A;
Power Characteristics:

| Parameter | Vlaue | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{J}=85^{\circ} \mathrm{C}\right)$ | 32.6 | nA |
| EQL $_{\mathrm{pd}}$ | 299.9 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Papacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |
|  |  |  | 0.94 | 1.71 | 2.74 | 4.75 | 6.73 |
| A | $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  |  |  |  |

[^107]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE01 is a 1mA, non-inverting, TTL-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | EN | A | PADM |  | Equivalent Load |
| A | L | L | L | A | 4.7 |
| $\sim$ | L | H | H | EN | 4.5 |
| $\nabla_{\text {PAdM }}$ | H | X | Z | PADM | 217.4 |

Bolt Syntax:
.PADM . ODTXXE01 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{IDD}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.8 | nA |
| EQL $_{\text {pd }}$ | 285.3 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) <br> From |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | To |  | 15 | 25 | 35 | 50 | 75 (max) |
| A | $\mathrm{t}_{\text {PLH }}$ |  | 5.15 | 6.71 | 9.09 | 13.13 |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 13.67 | 17.93 | 24.39 | 35.44 |  |
|  | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\text {LZ }}$ |  |  |  |  |  |  |
| PADM | $\mathrm{t}_{\text {ZH }}$ | 3.59 | 5.23 | 6.88 | 9.29 | 13.12 |  |
|  | $\mathrm{t}_{\mathrm{ZL}}$ | 9.46 | 13.76 | 17.98 | 24.39 | 35.53 |  |

[^108]ODTXXEO2

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE02 is a 2 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Equivalent Load |
|  | L | L | L | A | 4.7 |
| - | L | H | H | EN | 4.5 |
| $\downarrow_{\text {PADM }}$ | H | X | Z | PADM | 217.4 |
|  | Z = | Im | edance |  |  |

Bolt Syntax:
PADM . ODTXXE02 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.8 | nA |
| EQL $_{\text {pd }}$ | 288.7 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 75 | 100 | 150 (max) |
| A | $\mathrm{t}_{\mathrm{PLH}}$ |  | 4.80 | 6.79 | 8.78 | 12.76 |  |
| PADM | $\mathrm{t}_{\mathrm{PHL}}$ |  | 13.28 | 19.08 | 24.88 | 36.47 |  |
|  | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\mathrm{LZ}}$ | 0.49 |  |  |  |  |  |
| PADM | $\mathrm{t}_{\mathrm{ZH}}$ | 2.20 | 4.96 | 6.93 | 8.90 | 12.85 |  |
|  | $\mathrm{t}_{\mathrm{ZL}}$ | 5.20 | 13.29 | 19.10 | 24.92 | 36.54 |  |

[^109]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE04 is a 4 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable.


Bolt Syntax:
PADM .ODTXXE04 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 34.3 | nA |
| EQL $_{\text {pd }}$ | 300.1 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) <br> From |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A |  |  | 1.26 | 2.68 | 4.70 | 8.74 | 12.75 |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 7.16 | 13.08 | 24.95 | 36.99 |  |
|  | $\mathrm{t}_{\mathrm{HZ}}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\mathrm{LZ}}$ |  |  |  |  |  |  |
| PADM | $\mathrm{t}_{\mathrm{ZH}}$ |  | 2.83 | 4.87 | 8.89 | 12.86 |  |
|  |  | 2.95 | 7.18 | 13.10 | 24.98 | 37.01 |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

ODTXXEO8

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE08 is an 8 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable.


Bolt Syntax:
PADM .ODTXXE08 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.1 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 330.3 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 50 | 100 | 200 | 300 (max) |  |
| A |  |  | 1.53 | 2.27 | 3.30 | 5.32 | 7.33 |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 4.10 | 7.18 | 13.21 | 19.08 |  |
|  | $\mathrm{t}_{\text {HZ }}$ |  |  |  |  |  |  |
| EN | $\mathrm{t}_{\text {LZ }}$ | 1.03 |  |  |  |  |  |
| PADM | $\mathrm{t}_{\text {ZH }}$ | 1.30 | 2.09 | 3.15 | 5.17 | 7.10 |  |
|  | $\mathrm{t}_{\text {ZL }}$ | 1.96 | 4.05 | 7.08 | 13.10 | 19.02 |  |

[^110]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE12 is a 12 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |

Bolt Syntax: $\qquad$ PADM .ODTXXE12 A EN;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.1 | nA |
| $\mathrm{EQL}_{\text {pd }}$ | 339.5 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 1.73 \end{aligned}$ | $\begin{aligned} & 2.16 \\ & 3.13 \end{aligned}$ | $\begin{aligned} & 2.96 \\ & 5.12 \end{aligned}$ | $\begin{aligned} & 4.54 \\ & 9.09 \end{aligned}$ | $\begin{gathered} \hline 6.19 \\ 13.07 \end{gathered}$ |
| $\begin{array}{\|l\|} \hline \text { EN } \\ \text { PADM } \end{array}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.20 \\ & 1.32 \\ & 1.64 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 3.04 \end{aligned}$ | $\begin{aligned} & 2.77 \\ & 5.02 \end{aligned}$ | $\begin{aligned} & 4.39 \\ & 9.00 \end{aligned}$ | $\begin{gathered} 5.97 \\ 12.99 \end{gathered}$ |

[^111]ODTXXE16

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE16 is a 16 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable.


Bolt Syntax:
PADM .ODTXXE16 A EN;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 37.1 | nA |
| EQL $_{\mathrm{pd}}$ | 344.9 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.56 \\ & 1.57 \end{aligned}$ | $\begin{aligned} & 2.13 \\ & 2.65 \end{aligned}$ | $\begin{aligned} & 2.94 \\ & 4.17 \end{aligned}$ | $\begin{aligned} & 4.56 \\ & 7.15 \end{aligned}$ | $\begin{gathered} 6.18 \\ 10.10 \end{gathered}$ |
| $\begin{array}{\|l\|} \hline \text { EN } \\ \text { PADM } \end{array}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.39 \\ & 1.32 \\ & 1.53 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 2.56 \end{aligned}$ | $\begin{aligned} & 2.77 \\ & 4.05 \end{aligned}$ | $\begin{aligned} & 4.39 \\ & 7.05 \end{aligned}$ | $\begin{gathered} 5.97 \\ 10.05 \end{gathered}$ |

[^112]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXE24 is a 24 mA , non-inverting, TTL-level, tri-state output buffer piece with active low enable.

| Logic Symbol | Truth Table |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Bolt Syntax: .PADM .ODTXXE24 A EN;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{j}=85^{\circ} \mathrm{C}\right)$ | 37.1 | $n A$ |
| EQL $_{\text {pd }}$ | 354.9 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.71 \\ & 1.49 \end{aligned}$ | $\begin{aligned} & 2.22 \\ & 2.25 \end{aligned}$ | $\begin{aligned} & 2.96 \\ & 3.31 \end{aligned}$ | $\begin{aligned} & 4.82 \\ & 5.10 \end{aligned}$ | $\begin{aligned} & 7.12 \\ & 6.38 \end{aligned}$ |
| EN <br> PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \\ & \mathrm{t}_{\mathrm{ZH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.75 \\ & 1.36 \\ & 1.40 \end{aligned}$ | $\begin{aligned} & 1.96 \\ & 2.18 \end{aligned}$ | $\begin{aligned} & 2.77 \\ & 3.22 \end{aligned}$ | $\begin{aligned} & 4.35 \\ & 5.16 \end{aligned}$ | $\begin{aligned} & 5.90 \\ & 7.01 \end{aligned}$ |

[^113]ODTXXX01

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX01 is a 1 mA , non-inverting, TTL-level output buffer piece.


Bolt Syntax:
PADM .ODTXXX01 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.3 | nA |
| EQL $_{\text {pd }}$ | 274.6 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 25 | 35 | 50 | 75 (max) |
| A PADM |  | $\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 3.61 \\ & 9.29 \end{aligned}$ | $\begin{gathered} 5.18 \\ 13.69 \end{gathered}$ | $\begin{gathered} \hline 6.73 \\ 18.04 \end{gathered}$ | $\begin{gathered} 9.08 \\ 24.52 \end{gathered}$ | $\begin{aligned} & 13.13 \\ & 35.24 \end{aligned}$ |

[^114]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX02 is a 2 mA , non-inverting, TTL-level output buffer piece.


Bolt Syntax:
PADM .ODTXXX02 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.3 | nA |
| EQL $_{\mathrm{pd}}$ | 277.9 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| From | Parameter |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 75 | 100 | $150(\mathrm{max})$ |
| A |  |  | 4.89 | 6.89 | 8.87 | 12.75 |  |
| PADM |  |  |  | 5.31 | 13.39 | 19.16 | 24.94 |
| 36.51 |  |  |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

ODTXXXO4

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX04 is a 4 mA , non-inverting, TTL-level output buffer piece.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :--- | :--- |

Bolt Syntax:
PADM .ODTXXX04 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |
| EQL $_{\text {pd }}$ | 287.1 | Eq-load |

See page 2-14 for power equation.
Output Delay Characteristics:
Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 2.96 \end{aligned}$ | $\begin{aligned} & 2.76 \\ & 7.16 \end{aligned}$ | $\begin{gathered} \hline 4.77 \\ 13.16 \end{gathered}$ | $\begin{gathered} 8.80 \\ 25.10 \end{gathered}$ | $\begin{aligned} & 12.82 \\ & 36.98 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX08 is an 8 mA , non-inverting, TTL-level output buffer piece.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :--- | :--- |

Bolt Syntax:
PADM .ODTXXX08 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.6 | nA |
| EQL $_{\text {pd }}$ | 302.3 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |
|  |  |  | 15 | 50 | 100 | 200 | 300 (max) |  |
| A | t $_{\text {PLH }}$ |  | 1.70 | 2.74 | 4.76 | 6.74 |  |  |
| PADM |  |  | 1.76 | 3.90 | 6.90 | 12.88 | 18.85 |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

ODTXXX12

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX12 is a 12 mA , non-inverting, TTL-level output buffer piece.


Bolt Syntax:
PADM .ODTXXX12 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 33.0 | $n A$ |
| EQL $_{p d}$ | 313.3 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Capacitive Load (pF) |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  |  |  |  |  |  |  |
|  |  |  | 50 | 100 | 200 | $300(\mathrm{max})$ |  |  |
| A | $\mathrm{t}_{\text {PLH }}$ |  | 1.52 | 2.34 | 3.94 | 5.55 |  |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 2.77 | 4.77 | 8.77 | 12.69 |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX16 is a 16 mA , non-inverting, TTL-level output buffer piece.

| Logic Symbol | Truth Table | Pin Loading |
| :--- | :--- | :--- | :--- | :--- |

Bolt Syntax:
.PADM .ODTXXX16 A;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 33.4 | nA |
| EQL $_{\mathrm{pd}}$ | 320.2 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 2.29 \end{aligned}$ | $\begin{aligned} & 2.38 \\ & 3.77 \end{aligned}$ | $\begin{aligned} & 3.96 \\ & 6.75 \end{aligned}$ | $\begin{aligned} & 5.60 \\ & 9.75 \end{aligned}$ |

[^115]ODTXXX24
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODTXXX24 is a 24 mA , non-inverting, TTL-level output buffer piece.


Bolt Syntax:
PADM .ODTXXX24 A;
Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $I_{D D}\left(T_{J}=85^{\circ} \mathrm{C}\right)$ | 33.4 | $n A$ |
| EQL $_{\text {pd }}$ | 330.3 | Eq-load |

See page 2-14 for power equation.

## Output Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 15 | 50 | 100 | 200 | 300 (max) |
| A PADM |  | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 1.14 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 1.68 \\ & 1.84 \end{aligned}$ | $\begin{aligned} & 2.47 \\ & 2.89 \end{aligned}$ | $\begin{aligned} & 4.06 \\ & 4.92 \end{aligned}$ | $\begin{aligned} & 5.67 \\ & 6.87 \end{aligned}$ |

[^116]
## AMIGG 0.6 micron CMOS Gate Array

## Description:

IBF1X3 is a non-inverting, CMOS-level input clock-driver pad.

| Logic Symbol | Truth Table | Pin Loading |
| :---: | :---: | :---: |
|  | PADM QC <br> $L$ $L$ <br> $H$ $H$ |  Equivalent <br> Load <br> PADM 126.3 |

Bolt Syntax: $\qquad$ QC .IBF1X3 PADM;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 28.5 | nA |
| EQL $_{\text {pd }}$ | 131.6 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 97 | 194 | 291 | 388 (max) |
| PADM | QC | $t_{\text {PLL }}$ $t_{\text {PHL }}$ | $\begin{aligned} & 1.01 \\ & 1.19 \end{aligned}$ | $\begin{aligned} & 1.43 \\ & 1.61 \end{aligned}$ | $\begin{aligned} & 1.83 \\ & 1.92 \end{aligned}$ | $\begin{aligned} & 2.19 \\ & 2.25 \end{aligned}$ | $\begin{aligned} & 2.51 \\ & 2.59 \end{aligned}$ |

See page 2-16 for interconnect estimates.

IBF7X3
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IBF7X3 is a non-inverting, TTL-level input clock-driver pad.

| Logic Symbol | Truth Table |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Bolt Syntax:

 QC .IBF7X3 PADM;Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 26.9 | nA |
| EQL $_{\text {pd }}$ | 136.1 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter |  |  | Equiv |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 1 | 97 | 194 | 291 | 388 (max) |
| PADM | QC | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 1.31 \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 1.74 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & 2.06 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 2.40 \end{aligned}$ | $\begin{aligned} & 1.94 \\ & 2.76 \end{aligned}$ |

See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

IIF1X5 is a non-inverting, CMOS-level input clock-driver.

| Logic Symbol | Truth Table |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Bolt Syntax: $\qquad$ Q .IIF1X5 A;

Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 28.5 | nA |
| $\mathrm{EQL}_{\mathrm{pd}}$ | 222.9 | Eq-load |

See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Parameter | Number of Equivalent Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 20 | 116 | 212 | 308 | 404 (max) |
| A | Q | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 0.96 \end{aligned}$ | $\begin{aligned} & 0.91 \\ & 1.10 \end{aligned}$ | $\begin{aligned} & 1.06 \\ & 1.29 \end{aligned}$ | $\begin{aligned} & 1.22 \\ & 1.45 \end{aligned}$ | $\begin{aligned} & 1.37 \\ & 1.58 \end{aligned}$ |

See page 2-16 for interconnect estimates.

PP6GXBG
AMERICAN MICROSYSTEMS, INC.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

PP6GXBG is a $V_{S S}$ power supply pin for output buffers, input buffers, and core cells combined. The PP6GXBG is intended for circumstances where output and core busses are to be tied together. It should not be used in conjunction with PP6GXPG or PP6GXCG.
PP6GXBG
PIN QC
TO CORE

## PPGGXBP

AMERICAN MICROSYSTEMS, INC.
AMI6G 0.6 micron CMOS Gate Array

## Description:

PP6GXBP is a $V_{D D}$ power supply pin for output buffers, input buffers, and core cells combined. One PP6GXBP must be used for each power (VDD) pin for the core cells and input buffers.


PPGGXCG

## AMIGG 0.6 micron CMOS Gate Array

## Description:

PP6GXCG is a $\mathrm{V}_{\text {SS }}$ power supply pin for core cells and input buffers only. One PP6GXCG must be used for each ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$ pin for the core cells and input buffers.


## PPGGXCP

## AMIGG 0.6 micron CMOS Gate Array

## Description:

PP6GXCP is a $V_{\text {DD }}$ power supply pin for core cells and input buffers only. One PP6GXCP must be used for each power $\left(V_{D D}\right)$ pin for the core cells and input buffers.


## AMIGG 0.6 micron CMOS Gate Array

## Description:

PP6GXPG is a $\mathrm{V}_{S S}$ power supply pin for output buffers only. One PP6GXPG must be used for each ground ( $\mathrm{V}_{\mathrm{SS}}$ ) pin for the core cells and input buffers.


## PPGGXPP

## AMI6G 0.6 micron CMOS Gate Array

## Description:

PP6GXPP is a $V_{D D}$ power supply pin for output buffers only. One PP6GXPP must be used for each power ( $\mathrm{V}_{\mathrm{DD}}$ ) pin for the core cells and input buffers.

| PP6GXPP |
| :--- |
| PIN |
| PAD PADM |
| $\quad$ TO CORE |

PORA

## AMIGG 0.6 micron CMOS Gate Array

## Description:

PORA is a power-on-reset.
When power is applied, the POR output is asserted low for at least 2 microseconds after the logic circuits become operationai. The active high RESET input also drives the POR signal to its active low state.
For proper operation, user-designed external circuitry must limit the slew rate of $V_{D D}$ power to a maximum of one volt per microsecond. This ensures that the reset pulse will be properly output when $V_{D D}$ falls to zero and immediately returns to its valid range.


Bolt Syntax: $\qquad$ POR .PORA RESET;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 3.38 | nA |
| EQL $_{\mathrm{pd}}$ | 59.35 | Eq-load |

See page 2-16 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) |  | Number of Equivalent Loads |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | To |  | 51 (max) |  |  |  |  |  |
| RESET | POR |  | 7064.00 |  | 26 | 38 |  |  |
| RESET | POR |  | 9.71 |  |  |  |  |  |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODQFE20M is a fundamental mode, enabled crystal oscillator, output buffer pad piece that runs over a frequency range of $1 \mathrm{MHz}-20 \mathrm{MHz}$. QI is the input from IDQC3. $E$ is the oscillator high input enable. PADM is the bond pad to the Xtalout.


Bolt Syntax: $\qquad$ .PADM .ODQFE20M E QI ;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.0 | nA |
| ${ }^{*} E Q L_{\text {pd }}$ | 289.5 | Eq-load |

*See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| From | To | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 15 | 50 | 75 | 100 | 150 (max) |
| E PADM |  | $\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 3.75 \\ & 3.32 \end{aligned}$ | $\begin{aligned} & 8.89 \\ & 8.41 \end{aligned}$ | $\begin{aligned} & 12.55 \\ & 12.04 \end{aligned}$ | $\begin{aligned} & 16.20 \\ & 15.67 \end{aligned}$ | $\begin{aligned} & 23.51 \\ & 22.93 \end{aligned}$ |
| QI PADM |  | $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | $\begin{aligned} & 3.14 \\ & 3.26 \end{aligned}$ | $\begin{aligned} & 8.21 \\ & 8.35 \end{aligned}$ | $\begin{aligned} & 11.89 \\ & 11.98 \end{aligned}$ | $\begin{aligned} & 15.58 \\ & 15.60 \end{aligned}$ | $\begin{aligned} & 22.95 \\ & 22.85 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Design Notes:

The ODQFE2OM is the output cell of a two cell oscillator circuit. The QI pin is to be connected the QO pin of the IDQC3 oscillator input receiver piece. Two package pins are required to create a complete oscillator.

## AMIGG 0.6 micron CMOS Gate Array

## Description:

ODQFE99K is a fundamental mode, enabled crystal oscillator, output driver pad piece that runs over a frequency range of $32 \mathrm{kHz}-1 \mathrm{MHz}$. Ql is the input from IDQC3. E is the oscillator high input enable. PADM is the bond pad to Xtal-out.


| Truth Table | PADM |  |  | Pin Loading | Equivalent Load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | E | QI |  |  |  |
|  | L | H | H |  | *PADM | 217.4 |
|  | H | L | L |  | E | 4.1 |
|  |  |  |  |  | QI | 4.0 |

## Bolt Syntax:

PADM .ODQFE99K E QI ;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 31.7 | nA |
| ${ }^{*} \mathrm{EQL}_{\mathrm{pd}}$ | 279.3 | Eq-load |

*See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) | Parameter | Capacitive Load (pF) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From To |  | 15 | 25 | 35 | 50 | 75 (max) |
| E PADM | $\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$ | $\begin{aligned} & 6.57 \\ & 6.74 \end{aligned}$ | $\begin{aligned} & 9.48 \\ & 9.49 \end{aligned}$ | $\begin{aligned} & 12.35 \\ & 12.24 \end{aligned}$ | $\begin{aligned} & 16.70 \\ & 16.37 \end{aligned}$ | $\begin{aligned} & 24.20 \\ & 23.30 \end{aligned}$ |
| QI PADM | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | $\begin{aligned} & 6.70 \\ & 6.61 \end{aligned}$ | $\begin{aligned} & 9.59 \\ & 9.47 \end{aligned}$ | $\begin{aligned} & 12.52 \\ & 12.28 \end{aligned}$ | $\begin{aligned} & \hline 16.95 \\ & 16.41 \end{aligned}$ | $\begin{aligned} & 22.92 \\ & 21.82 \end{aligned}$ |

Delay will vary with input conditions. See page 2-16 for interconnect estimates.

## Design Notes:

The ODQFE99K is the output cell of a two cell oscillator circuit. The Ql pin is to be connected the QO pin of the IDQS3 oscillator input receiver piece. Two package pins are required to create a complete oscillator.

## AMI6G 0.6 micron CMOS Gate Array

## Description:

ODQTE60M is an enabled crystal oscillator, output driver pad piece that runs over a frequency range of $20-60 \mathrm{MHz}$. QI is the input from the IDQC3. E is the oscillator high input enable. PADM is the bond pad to Xtal-out.


| Truth Table |  |  |  |  | Pin Loading |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PADM | E | QI |  |  | Equivalent Load |
|  | L | L | H |  |  |  |
|  | H | H | L |  |  |  |
|  |  |  |  |  | E | 5.4 |
|  |  |  |  | QI | 8.7 |  |

Bolt Syntax:
PADM .ODQTE60M E QI;

## Power Characteristics:

| Parameter | Value | Units |
| :--- | :---: | :---: |
| Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$ | 32.0 | nA |
| ${ }^{*} \mathrm{EQL}_{\mathrm{pd}}$ | 297.5 | Eq-load |

*See page 2-14 for power equation.

## Delay Characteristics:

Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Typical Process

| Delay (ns) <br> From |  | Parameter | Capacitive Load (pF) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | To |  | 15 | 50 | 100 | 200 | $300(\mathrm{max})$ |  |
| E | $\mathrm{t}_{\text {PLH }}$ |  | 5.26 | 8.97 | 16.36 | 23.91 |  |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 4.61 | 8.33 | 15.77 | 23.22 |  |  |
| QI | $\mathrm{t}_{\text {PLH }}$ |  | 4.49 | 8.25 | 15.72 | 23.15 |  |  |
| PADM | $\mathrm{t}_{\text {PHL }}$ |  | 4.53 | 8.30 | 15.77 | 23.14 |  |  |

[^117]
## Design Notes:

The ODQTE60M is the output cell of a two cell oscillator circuit. The QI pin is to be connected the QO pin of the IDQC3 oscillator input receiver piece. Two package pins are required to create a complete oscillator.

## SECTION 5 megacells

# Digital Soft Megacells 

## Overview

American Microsystems, Inc. (AMI) provides a wide selection of Megacells for use in the development of ASICs; they ease the design of "systems on silicon". Chip designers today are faced with short time-to-market at the same time gate arrays and standard cells are allowing designs of up to several hundred thousand gates. Complex elements allow greater functionality without adversely affecting a design schedule. In fact they can accelerate time-to-market.
Megacells also provide industry standard functions that have been proven in silicon. Reducing design time, board space, system costs, and power requirements while increasing reliability and performance, AMI Megacells enable the ASIC designer to develop chips that take on the characteristics of systems.
The terms megacell, megamacro, megafunction, macrocell, core and other trademarked terms are prevalent in the industry today. These terms are often interchangeable, and some have specific meaning to various companies. They refer to complex blocks of logic that implement a digital function. Often the function is compatible to a standard product like an 8051. Other times the function is more generic; a configurable PCl controller, for example. Sometimes there is associated physical data, sometimes not. "Core" often refers to a complex function that has hand-packed physical data and an associated standard physical interface. It cannot be modified by the end user.
At AMI we refer to all complex functions as Megacells. These are broken down into Cores ( 8051 and 6502 code compatibles etc.), peripherals (UARTs, SCSI controllers, timers, RTCs etc.), datapath (multipliers, adders, shifters etc.), and FIFOs.
AMI offers a selection of soft Megacells that duplicate the function of industry standard parts (core processors and peripherals), and Megacells developed by using parameterized logic synthesizers (Datapath and FIFOs).
AMI's strategy is to make all megacells soft. This works well except for certain FIFOs that require the use of RAM (a hard cell). Some megacells are defined using VHDL while others are netlist based. There is no associated physical data with AMI's megacells. The physical mask layout will be different for each instance depending on other functions being used, the place-and-route tools, and process technology. Because our Megacells are soft, they are technology independent and many can be customized to meet your particular needs.

## Why Megacells

Using megacells in designing ASICs has several advantages. Megacells help decrease design time and cost by providing large building blocks that are the equivalent of standard products and functions. The power consumption of a soft megacell can be greatly reduced in comparison to the HMOS standard product that it replaces. Also, because several functions can be put on a single die, printed circuit board space and capacitance can be saved and the power requirements to get signals on and off ICs are minimized.
Reliability and system costs improve because of decreased part and pin counts. Also, because the megacell is typically implemented in a process technology smaller than the original standard product, performance can be several times that of the standard product.

## Core Processors and Peripherals

The Core Processor and Peripheral megacells are designed to duplicate the function of industry standard parts. The datasheets for these megacells are intended to give a short overview, to define cell pinout and to outline any functional differences between AMI's megacell and the industry standard part. Detailed functional information can be found in any standard device datasheet.

## Core Processors

| MEGACELL | FUNCTION |
| :--- | :--- |
| MG29C01 | 4-Bit microprocessor slice |
| MG29C10 | Microprogram controller/sequencer |
| M320C25 | DSP processor |
| M320C50 | DSP processor |
| MG65C02 | 8-Bit microprocessor |
| M8042 | 8-Bit slave microcontroller |
| M8048 | 8-Bit microcontroller |
| MG80C85 | 8-Bit microprocessor |
| MGMC32 | Core processor, 8032 compatible |
| MGMC32 | MGMC32 with ICE port |
| MGMC32FB | Core processor, 8032FB compatible |
| MGMC32SD | Reduced function MGMC32 |
| MGMC51 | Core processor, 8051 compatible |
| MGMC51I | MGMC51 with ICE port |

Megacell
Overview

## Digital Soft Megacells

| MEGACELL | FUNCTION |
| :---: | :---: |
| MGMC51FB | Core processor, 8051FB compatible |
| MGMC51SD | Reduced function MGMC51 |

## Peripherals

| MEGACELL | FUNCTION |
| :--- | :--- |
| MG1468C18 | Real-time clock |
| M16C450 | UART |
| M6402 | UART |
| M6845 | CRT controller |
| M765A | Floppy disk controller |
| M8251A | Communication interface USART |
| M8253 | Programmable interval timer |
| M82530 | Serial communications controller |
| MG82C37A | Programmable DMA controller |
| MG82C50A | Asynchronous comm. element |
| MG82C54 | Programmable interval timer |
| MG82C55A | Programmable peripheral interface |
| MG82C59A | Programmable interrupt controller |
| M8490 | SCSI controller |
| M85C30 | Serial communications controller |
| M8868A | UART |
| M91C36 | Digital data separator |
| M91C360 | Digital data separator |
| MFDC | Floppy disk controller |
| MGI2CSL | I $^{2} C$ Serial bus slave transceiver |
| MI2C | I $^{2}$ C Bus interface |

## Datapath, FIFOs

Most of these megacells are produced using parameterized synthesizers which allow the creation of various megacell sizes and speeds. They can be optimized for either minimum delay, minimum gate count or can be designed to meet a specified delay.
These synthesizers produce soft megacell schematics in the ASIC Standard Library and are available on various workstations. The datasheets contain a functional description, a pin description, and sample equivalent gate counts with sample delays.

## Datapath

| MEGACELL | FUNCTION |
| :--- | :--- |
| MGAxxyyDv | Adder |
| MGAxxyyEv | Adder-subtractor |
| MGBxxyyAv | Barrel/arithmetic shifter |
| MGBxxBv | Barrel shifter |
| MGBxxyyCv | Arithmetic shifter |
| MGCDxxAv | Decrement Counter |
| MGCUxxAv | Increment Counter |
| MGCxxAv | 2-function comparator |
| MGCxxBv | 6-function comparator |
| MGDxxAv | Decrementer |
| MGIxxAv | Incrementer |
| MGIxxBv | Incrementer/decrementer |
| MGMxxyyDv | Multiplier |
| MGMxxyyEv | Multiplier-accumulator |
| MGSxxyyAv | Subtractor |

## FIFOs

| MEGACELL | FUNCTION |
| :--- | :--- |
| MGFxxyyC1 | Latch-Based FIFO |
| MGFxxxxyyD | Synchronous FIFO |
| MGFxxxxyyE | Asynchronous FIFO |

## Soft Megacells

Soft Megacells provide extreme flexibility with regard to design changes, testability, fault grading, design checking, process selection, and whether the design is implemented as a Gate Array or Standard Cell. Also, to improve the robustness of the Megacell, AMI's Megacells are built with fully static logic and no internal tristates.
Since no physical entity is associated with the Megacell, its characteristics and functions can be changed or deleted. For example, to change the initial conditions of the MGMC51 output ports, it is only necessary to change the output port flip-flop in each port cell from a set type of flop to a reset type of flop.
By deleting unused functions, gate count can be minimized. For example, if a timer or UART is not being used, it can be deleted resulting in a lower gate count. Running the simulations, as one would do after any

AMERICAN MICROSYSTEMS, INC.

## Digital Soft Megacells

design change, validates correct implementation of the design change.
However, it is in design checking where the strengths of the soft Megacell approach become obvious. Electronic design has benefited from the recent introduction of software programs that check many aspects of the design, including set up and hold times for flip-flops, the possibility of asynchronous race conditions, and the fault coverage of the test vectors. The netlist implementation of the Megacell can be subjected to these checks along with the rest of the circuitry. Behavioral models, which are frequently used with hard Megacells, bypass these checks.
Since the soft megacell uses only components of the ASIC standard library, process dependencies in the design are minimized, if not completely removed. As a result, the design can be ported to new technologies as they become available. This means not only future cost savings, but extended voltage and temperature operation as well.

## Bidirectional Pins

Many of AMI's Megacells are functional equivalents of standard products which have bidirectional pins. A bidirectional pin can be either an input or an output. To make our megacells easier to use and to reduce the possibility of excess current, AMI has split these single bidirectional pins into three pins: input, output and control.
If it is necessary to recombine these pins into a single bidirectional pin, the logic in the following figure can be used. If the bidirectional pin is to become a pin on the ASIC, this logic can come from a pad cell. Often the control pin controls a bank of bidirectional pins.


## Testing

Testability of Megacells in ASIC designs is important. Usually, additional logic is necessary to simplify testing. Providing either direct or multiplexed input and output pins for controlling and observing the Megacell can greatly simplify testing and system debugging. This dictates that designs are contained in packages having at least as many pins as the Megacell with the highest pin count.
If some pins on the ASIC will be multiplexed between their normal function and a megacell function a test-mode will be needed to apply the simulation patterns to the
megacell. When enabled by this test mode, the megacell pins are connected to the pins of the ASIC. The supplied, or independent, simulation patterns can then be run to develop a test or to verify the functionality of the Megacell.
There are a number of ways to implement a test-mode. The simplest is to use an otherwise unused pin. Another approach is to use two or three ASIC pins and determine an unused condition in normal operation. This condition can then be used to enable the test-mode. Finally, in a bus oriented design, it may be possible to write to an unused register bit to signify test-mode.

## Timing

Because AMI's Megacells are technology independent the electrical and timing characteristics of the design will depend on the process, layout, and implementation. When the Megacell is included in a design, delays can be estimated using the customer-preferred logic simulator and delay calculator. Post-layout simulations using actual capacitance numbers will provide even more accurate timing characteristics.
Datapath Megacells are designed to have delays that meet the user's timing requirements. These delays may change slightly when the Megacells are incorporated into the ASIC.
Our Core Processor and Peripheral Megacells have simple pin-to-pin relationships with all input changes expected on the cycle boundary. Some Megacell clocks expect signals that are in the return-to-one or return-tozero format. Functional timing diagrams are available for Megacells that have more complex timing relationships.

## Electrical Characteristics

AMI's Megacells do not have any direct external connections to the pins of an ASIC. All necessary connections should be made with pad buffers external to the Megacell. The selection of the pad buffer--if one is used--is up to the system designer, and that selection will establish the DC electrical characteristics of the final design.
All inputs to the Megacells are one to four logical loads. All outputs are buffered so that loading on a given pin will not affect the internal operation.

## Ordering and Availability

To order a Megacell, complete the "ASIC Megacell Orderform", available from any AMI databook, and submit by fax (208-234-6659), email (megacells@poci.amis.com), or from AMI's internet homepage (http://www.amis.com). Current Megacell information can also be obtained at AMI's homepage.
Prices for Megacells are charged on a per-use basis. This charge is encountered each time the cell is used on a new design. A few Megacells also have an associated royalty. Contact Marketing for a price quote.

# Digital Soft Megacells 

## Features

- A high-performance, low-power CMOS megacell featuring functional compatibility with the industry standard 2901
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- 4-Bit cascadable bit-slice
- Eight function ALU including addition, two subtraction and five logic operations on two operands
- Microprogrammable with three groups of three bits each for ALU function, destination control and source operand
- Two address architecture provides independent access to two working registers
- Five source ports for data selection
- Four status flags including carry, zero, overflow and sign

LOGIC SYMBOL
MG29C01


## Description

The MG29C01 is a high-performance 4-bit cascadable microprocessor.
The MG29C01 offers the designer a simple and methodical approach to designing bit-slice microprocessors, high-speed ALUs and boolean machines.
The MG29C01 consists of a fast ALU, a 16 -word by 4 -bit two port RAM and the required decoding, multiplexing and shifting circuits. The'microinstruction word consists of nine bits divided into three groups. Bits 0-2 select the ALU source operads. Bits $3-5$ select the ALU function and bits $6-8$ select the destination register.
The ALU allows for several arithmetic functions which include: unsigned addition and subtraction, two's complement and one's complement addition and subtraction, and decrementing. The ALU also produces the status bits: overflow, carry-out, FO. Boolean functions offered include: AND, OR, XOR, XNOR, INVERT, PASS, ZERO, and MASK.

The MG29C01 also includes a 16-word by 4-bit register, a 4-bit Q register, and various sources for the ALU.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology and process independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| I(8:0) | Input | The nine instruction lines. |
| CIN | Input | Carry in to the ALU. |
| CLK | Input | The clock input. |
| D(3:0) | Input | Data inputs. These data may be selected as one of the ALU sources. D(0) is the LSB. |
| A(3:0) | Input | The address inputs to the register stack, used to select which register's contents are <br> available through the A port. A(0) is the LSB. |
| B(3:0) | Input | The address inputs to the register stack used to select which registers contents are <br> available through the B port. B(0) is the LSB. |
| Q0O, Q3O <br> QOI, Q3I | I/O | The input and output shift lines for the LSB and MSB of the Q register, allow for shift up <br> and shift down operations. Q3 is the MSB. Q0O is valid when OEON is low and Q3O is <br> valid when OE3N is low. |
| F0 | Output | Becomes active when all four ALU outputs are low. |
| F3 | Output | The most significant ALU output bit. |
| GN, PN | Output | The generate and propagate outputs of the ALU, can be used to for carry look-ahead. |
| COUT | Output | Carry out of the ALU. |
| OVR | Output | Overflow. Indicates the result of an arithmetic two's complement operation has overflowed <br> into the sign bit. |
| OE0N | Output | A low on this pin indicates Q0O and RAM0O are valid. |
| OE3N | Output | A low on this pin indicates Q3O and RAM3O are valid. |
| RAM0O, <br> RAM3O <br> RAM0I, <br> RAM3I | I/O | The input and output shift lines for the LSB and MSB of the register stack, allow for shift <br> up and shift down operations. RAM3 is the MSB. RAMOO is valid when OEON is low and <br> RAM3O is valid when OE3N is low. |
| Y(3:0) | Output | Data outputs. These outputs are connected to either ALU or A port of the register stack. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 810 | 1000 | 12-Bit Microprogram Controller

## Digital Soft Megacells

## Features

- A high-performance, low-power CMOS megacell featuring functional compatibility with the industry standard 2910
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
-12-Bit internal elements can address up to 4069 words of microcode
- 16 sequence control instructions, most are conditional on state of internal loop counter and/or external conditional input
- 12-Bit down counter is pre-settable for repeating instructions or counting loop iterations internally
- Four microprogram address sources including 9-level stack, microprogram counter, branch address bus, and internal holding register
- Internal decoder function controls output enables for three branch address devices



## Description

The MG29C10 is a high-performance 12-bit microprogram controller. It functions as an address sequencer for controlling the execution of microinstructions in microprogram memory.
It also controls conditional branching to any microinstruction within its 4096 word range. There are nine levels of subroutine nesting with return linkage and looping capability provided by a last-in, first-out stack.
The MG29C10 has four sources for providing the 12-bit address during each microinstruction. These four sources are as follows:

1. A direct external input.
2. A register/counter (R) which retains data loaded during an earlier microinstruction.
3. The last-in, first-out stack/file (F).
4. The address counter/register which usually increments the addresses.
The MG29C10 consists of six functional blocks: an instruction PLA, a multiplexer, a register/counter, a zero detector, a 9 -word by 12 -bit stack, a microprogram counter register, and an incrementer.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

12-Bit Microprogram Controller

Digital Soft Megacells
Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| CCN | Input | Used as test input criterion. Active low. |
| CCENN | Input | Enables CCN. Active low. |
| CI | Input | Carry input to the low order of the microprogram counter. |
| RLDN | Input | Forces loading of register/counter regardless of instruction or condition. Active low. |
| CLK | Input | Master input clock. |
| D(11:0) | Input | Direct data input to register/counter and multiplexer. D(0) is the LSB. |
| I(3:0) | Input | Instruction inputs. I(0) is the LSB. |
| FULLN | Output | Goes low when the internal stack is full. Active low. |
| PLN | Output | Used to select \#1 source (usually a pipeline register) as the direct input source. |
| MAPN | Output | Used to select \#2 source (usually a mapping ROM or PLA) as the direct input source. |
| VECTN | Output | Used to select \#3 source (usually an interrupt starting address) as the direct input source. |
| Y(11:0) | Output | Address to microprogram memory. Y(0) is the LSB. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 1,350 | 1,950 |

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Úses AMI's ASIC Standard Library for technoology independence
- 32-bit ALU/accumulator
- 16 X 16 parallel multiplier
- 16 -bit shifter
- Up to 64 k words of program memory
- Up to 64 k words of data memory
- 16-bit timer
- Serial port
- Equivalent gates: 17,000


## LOGIC SYMBOL

M320C25

| D10-15 |  |
| :---: | :---: |
| DIO-15 | A0-15 |
| READY | NDS |
| NHOLD | NPS |
| NINTO | NIS |
| NINT1 | RNW |
| NINT2 | NSTRB |
| NBIO | NHLZ |
| NRS | OD0-15 |
|  | NDEN |
| NX2 | NBR |
| NSYNC | NHLDA |
| MPNMC | NIACK |
| CLKR | NMSC |
| CLKX | XF |
| DR <br> FSR <br> FSXI <br> MD0-15 <br> BZD0-15 <br> BOD0-15 <br> BTD0-15 | CLLKOUT1 |
|  | CLKOUT2 |
|  | DX |
|  | NDXE |
|  | NFSXE |
|  | NRDBO |
|  | NWRB0 |
|  | NRDB1 |
|  | NWRB1 |
|  | NRDB2 |
|  | NWRB2 |
|  | RA0-7 |
|  | WA0-7 |
|  | BZWA0-7 |
|  | BZRA0-7 |
|  | MA0-11 |
|  | NMWE |
|  | NMOE |

## Description

The M320C25 is a digital signal processor with separate data and program memory, both of which may be up to 64 k words. It has a 16 -bit shifter, a 16 X 16 bit parallel multiplier and a 32 -bit ALÜ/accumuiator. Instructions are pipelined and it can perform single-cycle multiply/accumulate instructions. It contains a 16 -bit timer, eight auxiliary registers, an eight-level hardware stack, sixteen input and sixteen output channels, and a serial port. It is fully compatible, including instructions execution times, with industry standard devices.
The M32C25 contains no RAM or ROM but provides functional interconnect signals for connecting to memory blocks. If internal program memory is required, a single port RAM (or ROM) block of up to $4 \mathrm{k} \times 16$ may be connected to the M320C25 (also the 256 X 16 internal data RAM block 0 may be configured as program memory). If internal data memory is required 1,2 or 3 blocks of dual-port RAM may be connected to the M320C25. Block 0 and 1 can be up to 256 X 16 and block 2 up to $32 \times 16$.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
-32-bit ALU/accumulator
-16 X 16 parallel multiplier
- 16-bit shifter
- 16-bit parallel logic space
- Up to 64 k words each of program and data memory
-64K I/O space
- Interrupt controller
- Serial port and TDM serial port
- Equivalent gates: 40,000


## Description

The M320C50 is a digital signal processor with separate data and program memory. The program memory may be up to 64 k words. The data memory may be up to 64 k words, up to 32 words of which may be global access. It has 64 k 16 -bit I/O ports, sixteen of which are memory mapped. The central ALU has a 32-bit arithmetic logic unit, a 32 -bit accumulator and accumulator buffer, a 16-bit scaling shifter, and a $16 \times 16$ parallel multiplier. A separate parallel logic unit can perform bit manipulations on any data memory location or control/status register. It has eight auxiliary registers, an eight level hardware stack, and a four stage instruction pipeline. The M320C50 contains no ROM or RAM but provides functional interconnect signals for connecting to memory blocks
Peripherals are controlled through 28 memory-mapped registers and consists of: a timer, a serial port, a time-division-multiplexed serial port, a programmable wait-state generator, an interrupt controller, and the I/O ports.
The M320C50 is compatible, including instructions execution times, with industry standard devices.

AMERICAN MICROSYSTEMS, INC

## Digital Soft Megacells

## Features

- High-performance, schematic-based megacell
- Functional compatibility with the industry standard 6502
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- 8-Bit Microprocessor
- Fully Static Design
- 0-33 MHz Operation
- 64 kbytes Program Address Space
- Enhanced Instruction Set
- Supports Bit Manipulation
- 72 instructions and 212 opcodes
- 15 address modes
- Interrupt Capability



## Description

The MG65C02 is an 8-bit microprocessor which is compatible with the industry standard W65C02S. It has been designed to be compatible with both the original NMOS 6502 and the newer CMOS variations from various vendors.

The MG65C02 runs all 6502 opcodes as well as the new Enhanced Instruction set which include the new bit manipulation opcodes - RMB, SMB, BBR, BBS, and WAI and STP instructions. The latest functions are also incorporated in the MG65C02 such as Bus Enable, VectorPull, and Memory Lock. It accesses 65 kbytes of addressable Memory. It is fully static allowing the external clock to stop in either state. Operation frequency follows a range of 0 MHz , for low power or standby modes, to more than 25 MHz for high speed applications.

## Soft Megacells

The MG65C02 is designed as a soft megacell in the ASIC standard library, which allows it to be used with other logic and/or megacells. The soft megacell approach has advantages of design flexibility and portability, and a path for future cost reduction by process migration. It can be used in gate array or standard cell circuits. The core allows access to pins and functions not available in the industry standard 6502.

A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE |  |
| :---: | :---: | :--- |
| A0-A15 | O | Address to memory. |
| DBO0-DBO7 | O | Data bus output. Valid when DBEN is high. |
| DBIO-DBI7 | I | Data bus Input. Should be valid when DBEN is low. |
| DBEN | O | Data Bus Enable. |
| RDYI | I | Ready Input, active low. Stops the internal clock. |
| RDYO | O | Ready Output. The WAI instruction uses this pin to bring RDYI low. |
| RESN | I | Active low Reset. |
| IRQN | I | Active low Interrupt. |
| NMIN | I | Active low Non-maskable interrupt. |
| SON | I | Active low sets the overflow bit in the status word. |
| RWN | O | Read/Write. Active low for write. |
| SYNC | O | Synchronize. Active during opcode fetch cycle. |
| VPN | O | Vector Pull, active low. Low during interrupt vector access. |
| MLN | O | Memory Lock, active low. Low during Read-Modify-Write (RMW) portion of RMW instructions. |
| PHI2IN | I | Clock. |
| PHI1OUTN | O | Clock. Out of phase with C2IN. |
| PHI2OUT | O | Clock. In phase with PHI2IN. It also goes high with the STP instruction. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 2,950 | 3,850 |

AMERICAN MICROSYSTEMS, INC.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard 8042
- Uses AMI's ASIC Standard Library for technology independence
- Up to 256 bytes of data memory
- Up to 4 K bytes of program memory
- Memory down-load mode
- 8-bit timer/counter
- DMA, interrupt or polled operation supported
- Power saving modes
- Equivalent gates (does not include RAM or ROM): Standard Cell - 2,750; Gate Array - 3,500

LOGIC SYMBOL
M8042

| BI0-7 | BO0-7 |
| :---: | :---: |
| IB0-7 | NBEN |
| C10-7 | OBO-7 |
| A0 | NBO-7 |
| NX1 | OC0-7 |
| NCS | NCB0-7 <br> FA0-7 |
| NWR | FO0-7 |
| NRD | NFWE |
| NSS | M0-11 |
| T0 | DLM |
| T1 | NMOE |
| NRES | SYNC |
| EA | T0O |
| SSH | NTOE |
| NTST | PROG |
| FIO-7 | NMWE |
| MD0-7 | NFOE |
| HIM | XOFF |

## Description

The M8042 is an 8 -bit slave microcontroller. This microcode-free design is software compatible with industry standard discrete devices. It can address data RAM of up to 256 bytes and program RAM or ROM of up to 4 K bytes. If program memory is implemented with RAM a special down-load mode is available to program the RAM. An 8 -bit timer/counter and 18 I/O pins are available.
Data is transferred between the M8042 and a master CPU through separate input and output data bus buffers. Communication can be controlled by two DMA handshaking lines or by interrupts.

The M8042 has two power saving modes; soft power down mode and hard power down mode. In soft power down mode the clock to the ALU is stopped but the timer/counter and interrupts are still active. In hard power down mode the clock to the entire M8042 is stopped.
Signals are present that allow the end user to choose the appropriate memory block for each implementation. This allows memory size to be configured, and if necessary, the program memory block may be implemented as "downloadable" RAM.
As no I/O cells are included in the design, all bidirectional lines (the Data Bus, the Port1 and Port2 buses) are split into input and output sections, and have associated control lines for enabling and disabling 3 -state buffers where appropriate. There are individual enable lines for each of the Port1 and Port2 outputs. This allows implementation of the 'quasi-bidirectional' pins feature of the original device.

There is only one clock input (NX1), this is again due to the fact that there are no I/O cells in the design. The output of a suitable crystal oscillator I/O cell should be connected to this input. XOFF (which is high true) is used to disable the oscillator I/O cell in power saving mode.
This megacell requires the use of ROM and RAM which can be ordered from the AMI Memory group.

A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Up to 256 bytes of data memory
- Up to 4 K bytes of RAM or ROM program memory
- Memory down-load mode
- 8-bit timer/counter
- Power saving modes
- Equivalent gates:

Standard Cell - 2,770; Gate Array - 3,470
LOGIC SYMBOL


## Description

The M8048 is an 8-bit microcontroller. This microcode-free design is software compatible (including instruction execution times) with industry standard discrete devices. It can address data RAM of up to 256 bytes and program RAM or ROM of up to $4 k$ bytes. If program memory is implemented with RAM a special down-load mode is available to program the RAM. An 8-bit timer/counter and 27 I/O lines are available, and both internal and external interrupts are supported.
The M8048 has two power saving modes; soft power down mode and hard power down mode. In soft power down mode the clock to the ALU is stopped but the timer/counter and interrupts are still active. In hard power down mode the clock to the entire M8048 is stopped.
A per-use fee is associated with this megacell. Contact the factory for more information.

AMERICAN MICROSYSTEMS, INC.

## MG80C85 8-Bit Microprocessor

## Digital Soft Megacells

## Features

- A high-performance, low-power CMOS megacell featuring functional compatibility with the industry standard 8085 and 8085A
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- Full support of extended instruction set, and standard 8080 and 8085/8085A instruction sets
- Runs over 10,000 CP/M ${ }^{\circledR}$ programs
- Direct addressing to 64 kbytes
- Four Interrupt inputs (one non-maskable)


## LOGIC SYMBOL

MG80C85


## Description

The MG80C85 is an 8-bit microprocessor which features complete functional compatibility with industry standard 8085s and 8085As, and includes support for the special extended instruction set. Its design incorporates an onboard system controller, clock generator, serial I/O port and direct addressing capability to 64 K bytes of memory. The MG80C85 utilizes a multiplexed data bus, with 16 -bit addresses split between an 8 -bit address bus and an 8 -bit data bus.
The MG80C85 is a macrocell building block for ASIC Logic design. Thus it can be used in conjunction with existing standard cell and gate array libraries to incorporate into original customer IC designs for lower overall system costs.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## MG80C85

 8-Bit Microprocessor
## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE |  |
| :---: | :---: | :--- |
| A(15:8) | O | High Address Bus. The most significant 8 bits of the memory address. A(15) is the MSB. |
| AD(7:0) | I/O | Low Address and Data Bus. The low order memory address bus multiplexed with the data bus. |
| ALE | O | Address Latch Enable. This signal occurs during the first clock state of a machine cycle. |
| CLK | O | Clock. The period of CLK is twice the period of the CLKBY2 input. |
| HLDA | O | Hold Acknowledge. Indicates that the CPU has received the HOLD request. |
| HOLD | I | Hold Request. Indicates another master is requesting the use of the address and data buses. |
| INTAN | O | Interrupt Acknowledge. This active low signal indicates that the interrupt request input (INTR) has <br> been recognized and acknowledged. |
| INTR | I | Interrupt Request. When INTR goes HIGH, it will inhibit the Program Counter, generate an INTA) <br> signal, and sample the data bus for a RESTART or CALL instruction. |
| IO/M | O | Machine Cycle Status. See S0 and S1 status bits for further details. |
| RDN, <br> WRN | O | Read and Write Control. These active low signals indicate that selected memory or I/O device is to <br> be read or written to. They are high impedance during HOLD, HALT and RESET modes. |
| READY | I | Ready. This signal is set to HIGH during read or write cycles to indicate that the selected memory <br> or I/O device is ready to send or receive data. |
| RESETN | I | Reset In. This active low signal sets the Program Counter to zero, and resets the interrupt enable <br> (INTE) and HLDA flip-flop. |
| RO | O | Reset Out. Indicates that the CPU is being reset. |
| RST7.5 <br> RST6.5 <br> RST5.5 | I | Restart Interrupts. These inputs provide three maskable interrupts which invoke an automatic <br> internal restart. RST7.5 is the highest relative priority, followed by RST6.5 and RST5.5. All three <br> interrupts have a higher priority than INTR. |
| SO,S1, <br> IO/M | O | Status Outputs. These signals provide an indication of the machine status during any given cycle. <br> The status may be latched by the falling edge of the ALE signal. |
| SID | I | Serial Input Data. Data on this pin is loaded into accumulator bit 7 during a RIM instruction. <br> SOD O |
| TRAP | I | Serial Output Data. This signal is set or reset by the SIM instruction. <br> TLKBrupt. The highest priority non-maskable restart interrupt. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| TBD | TBD |

AMERICAN MICROSYSTEMS, INC.

## Digital Soft Megacells

## Features

- Functionally compatible with the industry standard 8051 family.
- Several configurations to choose from; including PCA, emulation-port and reduced-function options.
- Schematic-based, uses the ASIC Standard Library for technology independence.
- Fully Static Design, 0-40 MHz operation.
- Low Standby Current At Full Supply Voltage.
- 64 kilobytes of Data and Program Address Space.
- Boolean Processor and serial port.
- Access To Special Function Register Bus.


## LOGIC SYMBOL

MGMC51

| Control <br> PORARST <br> CLKIN <br> ALE <br> EA <br> PSEN <br> MRESET <br> RESET <br> B-CLOCK | Ports |
| :---: | :---: |
|  | P30-P37 |
|  | P20-P27 |
|  | P10-P17 |
|  | P00-P07 |
|  | ROM Interface |
|  | ROMA0-ROMA12 |
|  | ROMDO-ROMD7 |
| SFR Interface | RAM Interface |
| SFAO-SFA6 | RAMDOO-RAMDO7 |
| SFD0-SFD7 | RAMAO-RAMA7 |
| SFRD | RAMDIO-RAMDI7 |
| SFWR | RAWR |

## Description

AMI's MGMC51 ASIC microcontroller family is a set of 8bit microcontrollers that are functionally compatible with the industry standard 8052 and 8052FB. All members of the MGMC51 family are built around the same core processor and use the same instruction set. They differ only in the number and types of peripherals and whether the bidirection pins are left as bidirectional or split into input, output and control signals. The MGMC51 configurations have bidirectional pins and the MGMC32 configurations have had the bidirectional pins removed. None of these controllers contain ROM or RAM, the user should add any desired memory.

All controllers are supported by a multiple source, two level interrupt capability. The core processor supports up to 256 bytes of scratchpad RAM and up to 64 K of ROM. The size of the internal ROM may be adjusted to meet a specific application.

## MGMC51/MGMC32

The basic MGMC51 contains four 8-bit parallel ports, two external interrupt sources, three timer/counters, a serial port, and power management. It is compatible with the 8052.

## MGMC51SD/MGMC32SD

The MGMC51SD removes the serial port

## MGMC511/MGMC32I

The MGMC51I takes an MGMC51 and adds an emulator port. This port allows the end user to generate special bond-out parts that can be used to create a professional in-circuit emulator even though the ASIC pinout does not match the original 8051 footprint.

## MGMC51FB/MGMC32FB

These two configurations add a programmable-counter array, a watchdog timer, and an emulator port to the MGMC51. They are compatible with the industry standard 8052 FB.
These configurations duplicate existing microcontrollers and will meet the requirements of most applications. However, the MGMC51 is not limited to just these configurations. The internal SFR bus has been made available to the designer. This allows the designer to place their own application into the SFR address space where it may be directly operated on by the 8051 instruction set.
Since the MGMC51 microcontrollers are ASIC soft Megacells in the ASIC Standard Library, they obtain their AC and DC characteristics from the process that they are manufactured in. This allows the end user to select both the strengths of the output buffers and type of input buffer desired for each pin. And by choosing the appropriate process, it is possible to obtain low voltage operation at supplies of 3 volts or less. The process also provides for the maximum processor speed. A 40 MHz speed is obtainable. And since the design is fully static, the clock may be stopped at any time and in either state in order to minimize power.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE |  |
| :---: | :---: | :--- |
| P30-P37 | IO | Port 3 |
| P20-P27 | IO | Port 2 |
| P10-P17 | IO | Port 1 |
| P00-P07 | IO | Port 0 |
| RESET | I | Reset. Resets to location 0 only. |
| PORARST | I | Initializes the Power On Reset. |
| MRESET | I | Master Reset. |
| EA | IO | External Address. IO used with some In Circuit Emulators. |
| ALE | IO | Address Latch Enable.Is an input for special modes during reset. |
| PSEN | IO | Program Store Enable. Enables external ROM fetch. Is an input for special modes <br> during reset. |
| CLKIN | I | Clock input. |
| B-CLOCK | O | Buffered Clock. Runs at half the XTAL2l frequency. Can clock synchronous <br> memories. |
| ROMA0-ROMA12 | O | ROM Address Bus. |
| ROMD0-ROMD7 | I | ROM Data Bus. |
| SFA0-SFA6 | O | Special Function Register Address Bus. |
| SFD0-SFD7 | IO | Special Function Data Bus. |
| SFRD | O | Special Function Write Strobe. |
| SFWR | O | Special Function Read Strobe. |
| RAMA0-RAMA7 | O | Scratchpad RAM Address Bus. |
| RAMDO0-RAMDO7 | O | Scratchpad RAM Data Out Bus. |
| RAMDIO-RAMDI7 | I | Scratchpad RAM Data In Bus. |
| RAWR | O | Scratchpad RAM Write. |
| RARD | O | Scratchpad RAM Read. |

Equivalent Gates (does not include ROM or RAM)

|  | STANDARD CELL | GATE ARRAY |
| :---: | :---: | :---: |
| MGMC51SD | 7,370 | 9,200 |
| MGMC51 | 8,800 | 11,000 |
| MGMC51I | 9,200 | 11,700 |
| MGMC51FB | 11,720 | 14,750 |

AMERICAN MICROSYSTEMS, INC

## Digital Soft Megacells

## Features

- A high-performance, low-power CMOS megacell
- Functionally compatible with the industry standard 146818
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- 12- or 24-hour clock with a.m and p.m. mode
- Leap year and end-of-month recognition
- Programmable alarm


## LOGIC SYMBOL <br> MG1468C18



## Description

The MG1468C18 Real-Time Clock is a peripheral device which may be used with various processors/computers. It combines these features: a complete time-of-day clock with alarm and one hundred year calendar; and a programmable periodic interrupt and square wave generator.
The Real-Time Clock is designed for use as a battery powered element, including all the common backed-up functions such as RAM, time and calendar.
The megacell has been partitioned with battery backup application in mind. For purposes of electrical isolation the multiplexed address and data bus is split into input and output sides. The split avoids any possible conduction paths which result when the outputs of the tristate buffers in a portion of the chip, which could be without power, are connected to active or tristate outputs of powered circuits.
If not using battery backup, it is possible to configure the megacell to appear to the rest of the ASIC as if the data bus were bidirectional using ENTXL.
This megacell requires the use of an external 64-byte by 8bit RAM with outputs always enabled. This RAM, in the correct process, can be ordered from the AMI Memory group.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| ADI(7:0) | Input | Multiplexed bidirectional address and data bus. May be combined with the DO(7:0) bus <br> using the ENTXL signal. |
| AS | Input | Address strobe. The falling edge of AS latches the address from the ADI bus. |
| CEN | Input | Chip enable, active low. |
| CKFS | Input | Selects the output frequency of CLKOUT. When CKFS=1, the frequency of CLKOUT will <br> equal CLK. When CKFS=0. the frequency of CLKOUT will equal CLK/4. |
| CLK | Input | Time-base input for the time functions of the Real-TIme Clock. |
| CLKOUT | Output | Output at the time-base frequency divided by 1 or 4. |
| DO(7:0) | Output | Data output bus. May be combined with the ADI(7:0) bus using the ENTXL signal. |
| DS | Input | Data Strobe. The DS signal is used with the WRN signal to latch write data from the ADI <br> bus and output data to the DO bus. |
| ENTXL | Output | Input/Output bus control. Used to create a multiplexed address/data bus external to the <br> RTC. When ENTXL $=0$, this external bus should be put in output mode, indicating a read <br> cycle. If ENTXL $=1$, the bus should be in a high-impedance state, allowing external drive. |
| IRQN | Output | Interrupt request, active low. Signifies an interrupt condition is present. |
| MOT | Input | Allows selection between Motorola (MOT $=1$ ) and Intel (MOT=0) bus timing. |
| PS | Input | Power sense. Used to control the Valid RAM and Time bit in register D. |
| RAMCLK | Output | RAM clock. An output from the megacell used to clock timed RAMs. |
| RAMDI(7:0) | Input | RAM data into the megacell. |
| RAMDO(7:0) | Output | RAM data coming out of the megacell. |
| RAMWE | Output | RAM write enable. |
| RESETN | Input | Megacell reset active low. Does not affect the clock, calendar or RAM functions. |
| STBYN | Input | Stand by, active low. Prevents access to the RTC. |
| SQW | Output | Square wave output from one of the 15 taps provided by the 22 internal-divider stages. |
| WRN | Input | Write enable, active low. Used with the DS pin to read and write data. |

Equivalent Gates ${ }^{1}$

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 2,000 | 2,500 |

[^118]
## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Programmable word length, stop bits and parity
- Programmable baud rate generator
- Interrupt generator
- Loop-back mode
- Scratch register
- Equivalent gates:

Standard Cell-1,700; Gate Array - 2,250
LOGIC SYMBOL


## Description

The M16C450 is a universal asynchronous receiver/ transmitter (UART) which is fully programmable by an 8 -bit CPU interface. It supports word lengths from five to eight bits, an optional parity bit and one or two stop bits. If enabled the parity can be odd, even or forced to a defined state. A 16 -bit programmable baud rate generator and an 8 -bit scratch register are included. Eight modem control lines and a diagnostic loop-back mode are provided.
An interrupt can be generated from any one of 10 sources.
Transmission is initiated by writing the data to be sent to the Transmitter Holding Register. The data will then be transferred to the Transmit Shift Register together with a start bit and parity and stop bits as determined by the Line Control Register. The bits to be transmitted are then clocked out of the transmit shift register by the transmit clock (NBAUD) which comes from the baud rate generator.
If enabled, an interrupt will be generated when the Transmitter Holding Register becomes empty.
Data is clocked into the receiver by the receive clock (RCLK). The receive clock should be 16 times the baud rate of the received data. A filter is used to remove spurious inputs which last for less than two periods of RCLK. When the complete word has been clocked into the receiver the data bits are transferred to the Receiver Buffer Register to be read by the CPU. The receiver also checks for a stop bit and for correct parity as determined by the Line Control Register.
If enabled, an interrupt will be generated when the data has been transferred to the Receiver Buffer Register. Interrupts can also be generated for incorrect parity or a missing stop bit (frame error).
The output modem control lines; NRTS, NDTR, NOUT1 and NOUT2 can be set or cleared by writing to the Modem Control Register. The current status of the input modem control line; NDCD, NRI, NDSR and NCTS can be read from the Modem Status Register. Bit 2 of this register will be set if the NRI modem status line has changed from low to high since the register was last read.
If enabled, an interrupt will be generated when NDSR, NCTS, NRI or NCD are asserted.

A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Programmable word length, stop bits and parity
- Double-buffered receiver and transmitter
- Overrun, parity and framing error detection
- Equivalent gates:

Standard Cell - 580; Gate Array - 750
LOGIC SYMBOL
M6402

| TBR1-8 <br> NTBRL PI EPE <br> SBS <br> CLS1 <br> CLS2 <br> CRL <br> TRC <br> RRC <br> RRI <br> NDRR <br> MR <br> NTST | RBR1-8 |
| :---: | :---: |
|  |  |
|  | DR |
|  | PE |
|  | OE |
|  | FE |
|  | TRE |
|  | TRO |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Description

The M6402 is a full-duplex universal asynchronous receiver/transmitter (UART). It supports word lengths from five to eight bits, an optional parity bit and one or two stop bits. It can detect overrun, parity and framing errors in the received character.
The M6402 differs from the M8868A in that the master reset clears the TRE output to " 0 " and does not initialize the receive buffer.

A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Alphanumeric, semi-graphic and full-graphic capability
- Alphanumeric screen formats of up to 16K characters
- Programmable horizontal and vertical sync pulses
- Programmable cursor format and blink rate
- Light pen register
- Interlaced or non-interlaced scan modes
- Equivalent gates:

Standard Cell - 2,100; Gate Array - 2,700
LOGIC SYMBOL
M6845


## Description

The M6845 is a highly programmable controller designed to generate the timing and control signals necessary to meet a wide range of CRT (Cathode Ray Tube) based video controllers it is programmed by an 8 -bit CPU interface. It can address a character memory of up to 16 K , which can represent one or more pages of characters. It can provide hardware scrolling through pages in multiple page setups. The position and width of the horizontal and vertical sync pulses are fully programmable, as is the size location and blink rate of the cursor.
The horizontal counter is clocked by the CLK input and counts from 0 up to the value stored in the Horizontal Total register. The counter output is used by the horizontal sync block to generate the HSYNC pulse, as defined by the Horizontal Sync. Position and Sync. Width registers, and by the display address generator block to produce the character memory address.
The raster counter is incremented by the horizontal counter and is used to count scan lines. The output is available on the row address lines (RAO-4).
The vertical counter is incremented by the raster counter and is used to count character lines. The output is used by the vertical sync block to generate the VSYNC pulse, as defined by the Vertical Sync. Position and Sync. Width registers, and by the display address generator block to produce the display memory address.
The frame counter is incremented by the vertical counter and is used to count display frames. The output is used by the cursor control block to blink the cursor at a rate determined by register 10.
By using both the display memory address and the row address an address space of 512 K is available for use in graphic displays.
Addresses are provided during retrace to provide refresh for dynamic RAMs.
The light pen register will latch the display memory address when the LPSTB line goes high.
A per-use fee is associated with this megacell. Contact the factory for more information.

## M765A <br> Floppy Disk Controller

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- IBM System 3740 format
- IBM System 34 format Perpendicular recording format Data rates up to 1.25 Mbps
- Directly addresses 256 tracks
- 255 step recalibrate command
- Programmable write precompensation
- 16 byte FIFO
- Equivalent gates:

Standard Cell - 7,100; Gate Array - 9,300
LOGIC SYMBOL
M765A

| DBI0-7 | DBO0-7 |
| :---: | :---: |
| NCS | NDBD |
| NWR | DRQ |
| NRD | IRQ |
| A0 | SYNC |
| NDACK | DS3 |
| TC | DS2 |
| RDAT | DSO |
| WND | STP |
| INDEX | DIR |
| FLT | WE |
| TRK0 | PS1 |
| WRP | PS0 |
| TSD | WDAT |
| RDY | SIDE |
| DRV1 | HDLD |
| DRV0 | FLTR |
| MBDR | TG43 |
| WCLK | MFM |
| CLK | IDLE |
| RSET | APD |
| PRES | MDL |
| NSLM | FTR |
| NSM NTEST |  |

## Description

The M765A is a floppy disk controller which also supports tape drives. This microcode-free design is compatible with industry standard discrete devices. It supports IBM System 3740 (FM), IBM System 34 (MFM), Perpendicular 500 K BPS and Perpendicular 1M BPS formats. It supports 4 Mb floppy drives and is capable of data rates up to 1.25 Mbps. It provides drive select and motor signals, and supports drives with tunnel erase heads. It has programmable write precompensation and a 16 byte data FIFO. It can directly address 256 tracks and has the ability to access an unlimited number. The recalibrate command can step 255 tracks.
The M765A can be connected to a M91C360, or similar, data separator to form a complete floppy disk controller.

A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Description

The M8251A is a universal synchronous/asynchronous receiver/transmitter (USART) communications interface. It supports asynchronous communications with five to eight data bits, parity and one, one and a half, or two stop bits. It can provide automatic break detection. It supports synchronous communications with one or two SYNC characters, with internal or external SYNC detection. Both the transmit and receive data paths are double buffered. It has four modem control lines.

The M8251A is fully programmable by an 8-bit CPU interface.
The operating mode of the M8251A is programmed by writing to the mode control registers and SYNC registers, using the 8 -bit CPU interface. Transmission can then begin by writing to the transmit buffer. Data is clocked out of the transmitter by the transmit clock (TXC), which can be 1, 16 or 64 times the baud rate. The data stream is clocked into the receiver by the receive clock (RXC), which can be 1, 16 or 64 times the baud rate. In synchronous mode character reception will not begin until the SYNC character, or characters, are detected. When each character has been received it is transferred to the receive buffer to be read by the CPU interface.
The M8251A has output signals to indicate when the transmit buffer is empty (TXRDY), when the receive buffer is full (RXRDY) and when the SYNC characters have been detected (OSDET, DSDET). Two input (NDSR, NCTS) and two output (NRTS, NDTR) modem control signals are also provided. A further input (ISDET) is provided for use with an external SYNC detector.
A per-use fee is associated with this megacell. Contact the factory for more information.

## M8253

## Programmable Interval Timer

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Three independent 16-bit counters
- Binary or BCD counting
- Six counter modes
- Equivalent gates: Standard Cell - 2,500; Gate Array - 3,250



## Description

The M8253 contains three independent 16-bit timer/ counters that can be programmed over a common 8-bit CPU interface. It can be used for timing external events, producing fixed delays or producing repetitive waveforms. The current value of each of the counters can be latched and read back over the CPU interface.

A per-use fee is associated with this megacell. Contact the factory for more information. Serial Communications Controller

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Asynchronous and synchronous modes
- MONOSYNC, BISYNC and SDLC supported
- SDLC loop-mode supported
- NRZ, NRZI and FM encoding/decoding
- Two independent full-duplex channels
- Digital phase-locked loop for each channel
- Baud rate generator for each channel
- Local loop-back and automatic echo modes
- Equivalent gates:

Standard Cell - 9,400; Gate Array - 12,200
LOGIC SYMBOL
M82530

| DIO-7 <br> CLK <br> NCS <br> DNC <br> ANB <br> NWR <br> NRD <br> NINTA <br> IEI <br> NSYAI <br> TRCAI <br> RTCA <br> RDA <br> NCDA <br> NCTSA <br> NSYBI <br> TRCBI <br> RTCB <br> RDB <br> NCDB <br> NCTSB <br> NRST <br> NTST | DA0-7 |
| :---: | :---: |
|  | NDOE |
|  | NRDQA |
|  | NRDQB |
|  | NINT |
|  | NSYAO |
|  | NSYAO |
|  | TRCAO |
|  | NTCAE |
|  | TDA |
|  | NDTRA |
|  | NRTSA |
|  | NSYBO |
|  | NSYBE |
|  | TRCBO |
|  | NTCBE |
|  | TDB |
|  | NDTRB |
|  | NRTSB |
|  |  |
|  |  |
|  |  |
|  |  |

## Description

The M82530 serial communications controller has two independent full-duplex channels which support asynchronous, bit synchronous (SDLC, HDLC and SDLC ioop mode) and byte synchronous (MONOSYNC, BISYNC) communication modes. NRZ, NRZI and FM data encoding/decoding are supported. The M82530 includes a baud rate generator and a digital phase-locked loop for each channel. Two diagnostic modes: local loopback and automatic echo are available. The M82530 is fully programmable by an 8 -bit system interface, which includes a six source interrupt controller. The interrupt controller has external signals that allow it to be daisychained with other interrupt controllers.
Each of the two identical channels in the M82530 contain a transmitter, a receiver, a baud rate generator, a digital phase-locked loop and a clock selector. The clock selector provides the clocks for the transmitter and the receiver blocks. The clocks can be programmed to come from one of two external clocks, from the baud rate generator, or derived from the receiver data stream by the phase-locked loop. In addition to the two serial communication channels there is a common 8 -bit system interface and a six source interrupt controller.
The transmitter has a transmit shift register into which data to be transmitted is loaded. This data is loaded from the transmit buffer, sync characters and flags are loaded automatically from the sync registers. In SDLC mode a zero insertion block will insert zeros into long strings of ones. A CRC generator produces a CRC check word for appending to message blocks. The output data stream then passes to a data encoder block which can produce NRZ, NRZI or FM encoded formats. The final output selector allows the output to come from the receiver in diagnostic or loop modes.
The receiver input selector allows the received data stream to come from the transmitter in diagnostic modes or through a 1-bit delay, which is required in SDLC loop mode. The input stream then passes to a decoder to convert it into NRZ format. The data stream then goes into the receive data shift register. The receive data shift register can be extended to 16 -bits for detecting 16 -bit sync characters, and can automatically delete the extra zeros that were inserted into the data stream in SDLC mode. A CRC checker can be used in synchronous modes. The received data characters are transfered to the receive data FIFO and parity, frame or CRC errors are transfered to the receive error FIFO.

A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- A high-performance, low-power CMOS megacell featuring functional compatibility with the industry standard 8237/8237A
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- Compatible with 8080/85, 8086/88, 80286/386 and $68000 \mu \mathrm{P}$ families
- Four independent maskable DMA channels with autoinitialize capability
- Memory-to-memory transfer
- Fixed or rotating DMA request priority
- Independent polarity control for DREQ and DACK signals
- Address increment or decrement selection
- Cascadable to any number of channels

LOGIC SYMBOL
MG82C37A


## Description

The MG82C37A is a high-performance, programmable Direct Memory Access (DMA) controller offering functional compatibility with the industry standard 8237/8237A. It features four channels, each independently programmable, and is cascadable to any number of channels. Each channel can be programmed to autoinitialize following DMA termination.
In addition, the MG82C37A supports both memory-tomemory transfer capability and memory block initialization, as well as a programmable transfer mode.

The MG82C37A is designed to improve system performance by allowing external devices to transfer data directly with system memory. High speed and very lowpower consumption make it an ideal component for aerospace and defense applications. The low-power consumption also makes it an attractive addition in portable systems or systems with low-power standby modes
The MG82C37A DMA controller is a state-driven address and control signal generator designed to accelerate data transfer in systems by moving data from an I/O device to memory, or memory to an I/O device. Data transfers are direct, rather than being stored enroute in a temporary register.
The MG82C37A also mediates memory-to-memory block transfers and will move data from a single location to a memory block. Temporary storage of data is required, but the transfer rate is significantly faster than CPU processes. The device provides operating modes to carry out both single byte and block transfers of data.
The organization of the MG82C37A is composed of three logic blocks, a series of internal registers and a counter section. The logic blocks include the Timing Control, Command Control and Priority Encoder circuits.
The Timing Control block generates internal timing signals from the clock input and produces external control signals.
Command Control decodes incoming instructions from the CPU, and the Priority Encoder block regulates DMA channel priority.
The internal registers hold internal states and instructions from the CPU. Addresses and word counts are computed in the counter section.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :---: |
| Al(3:0) | 1 | Input address bus. During Idle Cycle, addresses which control register to be loaded or read. |
| AO(3:0) | 0 | Low output address bus. During active Cycle, lower 4 bits of the transfer address. |
| AEN | 0 | Control line used to determine when $\mathrm{AO}(3: 0)$ and $\mathrm{A}(7: 4)$ is valid. Active low. |
| A(7:4) | 0 | High Address Bus. During active Cycle, upper 4 bits of the transfer address. |
| ADSTB | 0 | Address Strobe. Controls latching of the upper address byte. |
| AE | 0 | Address Enable. Enables the higher order address byte onto the system address bus. |
| CLK | 1 | Clock Input. May be stopped for standby operation. |
| CSN | 1 | Chip Select, active low. |
| DACK(3:0) | 0 | DMA Acknowledge. Informs a peripheral that the requested DMA transfer has been granted. |
| DBI(7:0) | 1 | Data Bus input ports. |
| DBO(7:0) | 0 | Data Bus output ports. |
| DEN | 0 | Control line, active low. Used to determine when $\mathrm{DBO}(7: 0)$ is valid. |
| DREQ(3:0) | 1 | DMA Request. DMA service is requested by activation of the channel from a specific device. |
| EOPIN | 1 | End of Process, active low. Force termination of DMA. |
| EOPON | 0 | Indicates when DMA is finished. |
| EOPEN | 0 | Control line used to determine when EOPON is valid. Active low. |
| HLDA | 1 | Hold Acknowledge. Indicates the CPU has released control of the system buses. |
| HRQ | 0 | Hold Request. Requests control of the system buses. HRQ is issued following a request for DMA service (DREQ) from a peripheral, and is acknowledged by the HLDA signal. |
| $\begin{aligned} & \text { IORIN } \\ & \text { IORON } \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | I/O Read, active low. Idle Cycle: CPU input control signal for reading the Control Registers. Active Cycle: Output control signal to read data from a peripheral device during a DMA cycle. |
| IOWIN IOWON | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | I/O Write, active low. Idle Cycle: CPU input control signal for loading the control registers. Active Cycle: Output control signal to load data to a peripheral device during a DMA cycle. |
| IOEN | 0 | Control line active low. Indicates when IORON, IOWON, MEMRN and MEMWN are valid. |
| MEMRN | O | Memory Read, active low. MG82C37A reads data from a selected memory address during a DMA Read or Memory-to-Memory transfer. Valid when IOEN is low. |
| MEMWN | 0 | Memory Write, active low. MG82C37A writes data to a selected memory address during a DMA Write or Memory-to-Memory transfer. Valid when IOEN is low. |
| READY | 1 | Extends the Memory Read and Write pulse widths to accommodate slow I/O peripherals. |
| RESET | 1 | Reset. Asynchronous signal clears internal registers and puts the MG82C37A in Idle Cycle. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 3,000 | 3,800 |

## Digital Soft Megacells

## Features

- A high-performance, low-power CMOS megacell featuring functional compatibility with the industry standard 8250
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- Single megacell UART/BRG
- On chip baud rate generator 1 to 65535 Divisor generates the BAUDOUTN (16x) clock
- Prioritized interrupt mode
- Microprocessor bus oriented interface
- Modem interface
- Line break generation and detection
- Loopback mode
- Double buffered transmitter and receiver

LOGIC SYMBOL
MG82C50


## Description

The MG82C50A Asynchronous Communications Element (ACE) is a high-performance programmable Universal Asynchronous Receiver/Transmitter (UART) and Baud Rate Generator (BRG) on a single megacell. The device supports data rate from DC to 625 K baud $(0-10 \mathrm{MHz}$ clock). It is functionally compatible with the industry standard 8250.
The ACE receiver circuitry converts start, data, stop and parity bits into a parallel data word. The transmitter circuitry converts a parallel data word into serial form and appends the start, parity and stop bits. The word length is programmable to $5,6,7$ or 8 data bits. Stop bit selection provides a choice of $1,1.5$ or 2 stop bits.
The Baud Rate Generator divides the clock frequency by a divisor programmable from 1 to $2^{16}-1$ to provide standard RS-232C baud rates. The BAUDOUT programmable clock output provides a buffered oscillator or a $16 x$ ( 16 times the data rate) baud rate clock for general purpose system use.
To meet the system requirements of a CPU interfacing to an asynchronous channel, the modem control signals RTSN, CTSN, DSRN, RIN, DCDN are provided.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## MG82C50A Async. Communication Element

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE |  |
| :---: | :---: | :--- |
| RDN | I | Read, active low. Causes the register selected by A(2:0) to be output to D(7:0). |
| WRN | I | Write, active low. Causes data from the data bus D(7:0) to be input to the MG82C50A. |
| DI(7:0) <br> DO(7:0) | I | Data Bus inputs and outputs, DI(0) and DO(0) are the LSBs. |
| DEN | O | Control line used to determine when DO(7:0) is valid. Active low. |
| A(2:0) | I | Register Select. Selects the internal registers during CPU bus operations. A(0) is the LSB. |
| CLKIN | I | Clock in. Clock connection for the internal Baud Rate Generator. |
| SOUT | O | Serial Data Output. Serial data output from the MG82C50A transmitter circuitry. |
| CTSN | I | Clear to Send, active low. Indicates that data on SOUT can be transmitted. |
| DSRN | I | Data Set Ready, active low. Indicates the modem is ready to exchange data. |
| DTRN | O | Data Terminal Ready, active low. Indicates to that the MG82C50A is ready to receive data. |
| RTSN | O | Request to Send, active low. Indicates data is ready to transmit. In half duplex operations, RTS is <br> used to control the direction of the line. |
| BAUDOUTN | O | Baud out clock. Rate is the CLKIN frequency divided by the specified divisor in the BSR. |
| OUT1N,OUT2N | O | Outputs land 2, active low. Asserted by setting MCR(2,3) high. Inactive during loop mode. |
| RIN | I | Ring Indicator, active low. Indicates that a telephone ringing signal has been received by the modem <br> or data set. |
| DCDN | I | Data Carrier Detect, active low. Indicates that the data carrier has been detected by the modem or <br> data set. |
| MR | I | Master Reset. Forces the MG82C50A into an idle mode. |
| INTRPT | O | Interrupt Request. Goes active when an interrupt has occurred if enabled by the IER. |
| SIN | I | Serial Data Input. Serial data input from the communication line or modem to the MG82C50A <br> receiver circuits. Disabled when operating in the loop mode. |
| CSO,CS1,CS2N | I | Chip Selects. Enables WRN and RDN. Latched by the ADSN input. |
| CSOUT | O | Chip Select Out. Indicates the megacell has been selected by active CSO, CS1 and CS2N. |
| DDIS | O | Driver Disable. Used to disable an external transceiver when the CPU is reading data. |
| ADSN | I | Address Strobe, active low. Latches A(2:0) and CS0, CS1 and CS2N inputs. |
| RCLK | I | Baud Rate Clock. This input is the 16x Baud Rate Clock for the receiver section of the MG82C50A. <br> This input may be provided from the BAUDOUT output or an external clock. |

## Equivalent Gates

| STANDARD CELL | GATE ARRRAY |
| :---: | :---: |
| 2,000 | 2,500 |

## Digital Soft Megacells

## Features

- A high-performance, low-power megacell featuring functional compatibility with the industry standard 8254
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- Available in several AMI process technologies
- Three independent 16-Bit counters
- Six programmable counter modes
- Status read-back command
- Binary or BCD counting


## LOGIC SYMBOL



## Description

The MG82C54 is a counter/timer megacell that includes complete functional compatibility with the industry standard 8254. Designed for fast operation, it has three independently programmable 16 -bit counters and six programmable counter modes. Counting can be performed in both binary and BCD formats. Speed will depend on what AMI process technology is chosen.
The MG82C54 offers a very flexible, hardware solution to the generation of accurate time delays in microprocessor systems. A general purpose, multi-timing element, it can be used to implement event counters, elapsed time indicators, waveform generators plus a host of other functions.

Major functional blocks include read/write logic, control word register, and three programmable counters.
The read/write logic block generates internal control signals for the different functional blocks using address and control information obtained from the system. The active LOW signals, CSN, RDN and WRN are used to select the MG82C54 for operation, read a counter, and write to a counter (or the control word register) respectively. CSN must be LOW for RDN or WRN to be recognized.
The inputs AO and A1are used to select the control word register, or one of the three counters that is to be written to or read from. AO and A1 connect directly to the corresponding signals of the microprocessor address bus, while CS is derived from the address bus using either a linear select method, or an address decoder device.
The MG82C54 has a control word register which is a write only register. It is selected by the read/write logic block when A0 and $A 1=1$. When CSN and WRN are LOW, data are written into the MG82C54 control word register. Control word data are interpreted as a number of different commands which are used to program the various device functions. For example, status information is available with the Read-Back Command.
The MG82C54 contains three identical, independent counter blocks. Each counter provides the same functions, but can be programmed to operate in different modes relative to each other. A typical counter contains the following functional elements: control logic, counter, output latches, count registers and status register.
The low-power consumption of the MG82C54 makes it ideally suited to portable systems or those with low-power standby modes.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| A1,AO | 1 | Address. Used to select the Control Word Register (for read or write operations), or one of <br> the three Counters. Normaily connected to the system address bus. |
| CLK0 | I | Clock input of counter 0. |
| CLK1 | I | Clock input of counter 1. |
| CLK2 | I | Clock input of counter 2. |
| CSN | I | Chip select, active low. Enables the MG82C54 to respond to RDN and WRN signals. |
| DI(7:0) | I | Input data bus. |
| DO(7:0) | O | Output data bus. |
| OEN | O | Output enable, active low. Output is low when valid output data is on DO bus. |
| GATE0 | I | Gate input of counter 0. |
| GATE1 | I | Gate input of counter 1. |
| GATE2 | I | Gate input of counter 2. |
| OUT0 | O | Output of counter 0. |
| OUT1 | O | Output of counter 1. |
| OUT2 | O | Output of counter 2. |
| RDN | I | Read Control, active low. Used to enable the MG82C54 for read operations by the CPU. |
| WRN | I | Write Control, active low. Used to enable the MG82C54 to be written to by the CPU. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 2,150 | 2,800 |

## MG82C55A <br> Programmable Peripheral Interface

## Digital Soft Megacells

## Features

- A high-performance, low-power CMOS megacell featuring functional compatibility with the industry standard 8255A
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- Supports 8086/8088 and 80186/188 microprocessors
- 24 programmable I/O pins
- Direct bit set/reset capability
- Bidirectional bus operation
- Enhanced control word read capability

LOGIC SYMBOL
MG82C55A


## Description

The MG82C55A Programmable Peripheral Interface is a high speed, low power CMOS megacell offering functional compatibility with the industry standard 8255A. It is a general purpose I/O component which interfaces peripheral equipment to the microcomputer system bus usually without extra logic.
The MG82C55A has 24 I/O lines grouped as three 8-bit ports ( $A, B$ and $C$ ), in two control groups ( $A$ and $B$ ). Group A consists of port A and port C upper (7:4), while group B consists of port $B$ and port C lower (3:0). Group A has three operating modes, ( $0,1,2$ ) while group $B$ has two $(0,1)$. The operating modes are:
Mode 0: One 8-bit and one 4-bit uni-directional port, without handshaking.
Mode 1: One 8-bit uni-directional port with handshaking. Mode 2: One 8-bit bi-directional port with handshaking.
For any modes other than mode 0 , lines from port $C$ are used as handshaking lines for ports A and B. Port A has latched inputs and latched outputs while ports B and C have unlatched inputs and latched outputs.
The system CPU has full access to the MG82C55A's control register which completely controls the megacell's configuration. When the control word register is read bit D7 will always be a logic ONE to indicate control word mode information.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :---: |
| A1,A0 | $!$ | Address. These input signals, in conjunction with RDN and WRN, control the selection of one of the three ports or the control word registers. |
| CSN | 1 | Chip Select, active low. Enables the MG82C55A to respond to RDN and WRN signals. RDN and WRN are ignored otherwise. |
| $\begin{aligned} & \mathrm{DI}(7: 0) \\ & \mathrm{DO}(7: 0) \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Data Bus. |
| DEN | 0 | Control line, active low. Used to determine when $\mathrm{DBO}(7: 0)$ is valid. |
| $\begin{aligned} & \hline \operatorname{PAI}(7: 0) \\ & \operatorname{PAO}(7: 0) \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Port A. An 8-bit data output latch and an 8-bit data input buffer. |
| PAEN | 0 | Control line, active low. Used to determine when $\operatorname{PAO}(7: 0)$ is valid. |
| $\begin{aligned} & \mathrm{PBI}(7: 0) \\ & \mathrm{PBO}(7: 0) \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Port B. An 8-bit data output latch and an 8-bit data input buffer. |
| PBEN | 0 | Control line, active low. Used to determine when $\operatorname{PBO}(7: 0)$ is valid. |
| $\begin{aligned} & \mathrm{PCl}(3: 0) \\ & \mathrm{PCO}(3: 0) \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Port C, Pins (3:0). Lower nibble of an 8-bit data output latch and an 8-bit data input buffer (no latch for input). This port can be divided into two 4 -bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with ports A and B . |
| $\begin{aligned} & \mathrm{PCl}(7: 4) \\ & \mathrm{PCO}(7: 4) \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Port C, Pins(7:4). Upper nibble of Port C. |
| PCEN(7:1) | 0 | Control line, active low. Used to determine when $\operatorname{PCO}(7: 0)$ is valid. PCEN(1) controls $\mathrm{PCO}(1: 0)$. |
| RESET | 1 | Reset. A high on this input clears the control register and all ports are set to the input mode. |
| RDN | 1 | Read Control, active low. This input is low during CPU read operations. |
| WRN | 1 | Write Control, active low. This input is low during CPU write operations. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 700 | 900 |

## Digital Soft Megacells

## Features

- A high-performance, low-power megacell featuring functional compatibility with the industry standard 8259/ 8259A
- Soft megacell technology allows customizing of function
- Uses the ASIC Standard Library for technology independence
- Eight level priority controller
- Expandable to 64 levels
- Programmable interrupt modes, with each interrupt maskable
- Edge- or level-triggered interrupt request inputs
- Polling operation

LOGIC SYMBOL
MG82C59A


## Description

The MG82C59A is a high-performance, completely programmable interrupt controller. It can process eight interrupt request inputs, assigning a priority level to each one, and is cascadable up to 64 interrupt requests. Individual interrupting sources are maskable. Its two modes of operation (Call and Vector) allow it to be used with virtually all 8000 and 80000 type processors, as well as with 68000 family microprocessors.
Acting as an overall peripherals manager, its functions include:

- Accepting interrupt requests from assorted peripheral devices
- Determining which is the highest priority
- Establishing whether or not the new interrupt is of a higher priority than any interrupts which might be currently being serviced, and if so,
- Issuing an interrupt to the CPU
- Then providing the CPU with the interrupt service routine address of the interrupting peripheral
Each peripheral device usually has a specific interrupt service routine which is particular to its operational or functional requirements within the system. The MG82C59A can be programmed to hold a pointer to the service routine addresses associated with each of the peripheral devices under its control. Thus when a peripheral interrupt is passed through to the CPU, the MG82C59A can set the CPU Program Counter to the interrupt service routine required. These pointers (or vectors) are addresses in a vector table.
The MG82C59A is intended to run in one of two major operational modes, according to the type of CPU being used in the system. The CALL Mode is used for 8085 type microprocessor systems, while the VECTOR Mode is reserved for those systems using more sophisticated processors such as the 8088/86, 80286/386 or 68000 family.
In either mode, the MG82C59A can manage up to eight interrupt request levels individually, with a maximum capability of up to 64 interrupt request levels when cascaded with other MG82C59As. A selection of priority modes is also available such that interrupt requests can be processed in a number of different ways to meet the requirements of a variety of system configurations.
Priority modes can be changed or reconfigured dynamically at any time during system operation using the operation command words (OCWs), allowing the overall interrupt structure to be defined for a complete system. Note that the MG82C59A is programmed by the system software as an I/O peripheral.
The MG82C59A's high-performance and very low-power consumption makes it useful in portable systems and systems with low-power standby modes.


## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information. Programmable Interrupt Controller

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :---: |
| AŌ | i | AO Address Line. Acts in conjunction with the CSN, WRN and RDN signals. It is used to decipher various command words written by the CPU, and Status information read by the CPU. It is typically connected to the CPU - A0 address line. |
| CSN | 1 | Chip Select, active low. Used to enable RDN and WRN communication between the CPU and the MG82C59A. Note that INTAN functions are independent of CSN. |
| INTAN | 1 | Interrupt Acknowledge. Signal used to enable the MG82C59A interrupt vector data onto the data bus by a sequence of interrupt acknowledge pulses issued by the CPU. |
| WRN | 1 | Write, active low. Used to enable the MG82C59A to accept command words from the CPU, when CSN is LOW. |
| RDN | 1 | Read, active low. Used to enable the MG82C59A to output status information onto the data bus for the CPU, when CS is LOW. |
| IR(7:0) | 1 | Interrupt Requests. Asynchronous input signals, an interrupt request is executed by raising an IR input, and holding it HIGH until it is acknowledged (Edge Triggered Mode), or just by a HIGH level on an IR input (Level Triggered Mode). |
| $\begin{aligned} & \text { CASI(2:0) } \\ & \text { CASO(2:0) } \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Cascade Lines. The CAS lines are used as a private bus by a MG82C59A master to control multiple MG82C59A slaves. The master uses only CASO(2:0). The slaves use CASI(2:0). |
| CASEN | 0 | Control line used to determine when CASO(2:0) is valid. Active low. |
| SPENI <br> SPENO | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Slave Program/Enable Buffer. Dual function control signal. When in the Buffered Mode, SPENO is used to control buffer transceivers. When not in the Buffered Mode, SPENI is used to designate a master $(S P=1)$ or a slave ( $S P=0$ ). |
| SPENEN | 0 | Control line used to determine when SPENO is valid. Active low. |
| $\begin{aligned} & \hline \mathrm{DI}(7: 0) \\ & \mathrm{DO}(7: 0) \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Data Bus. 8-Bit data bus for the transfer of control, status and interrupt vector information. |
| DE | 0 | Control line used to determine when $\mathrm{DO}(7: 0)$ is valid. Active high. |
| INT | 0 | Interrupt. This signal goes HIGH when a valid interrupt request is asserted. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 1,450 | 2,000 |

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Compatible with ANSI SCSI-II
- Initiator or target mode
- Provides arbitration and bus clear/free/settle delays
- Enhanced arbitration mode
- Generates 9 separate interrupts
- Compatible with 5380 SCSI controller
- Equivalent gates:

Standard Cell-1,200; Gate Array - 1,500
LOGIC SYMBOL


## Description

The M8490 is a Small Computer Systems Interface (SCSI) controller. It can control 8-bit asynchronous communication over an ANSI SCSI-II bus. It has an 8-bit CPU interface through which the local processor can program it to act as initiator or target on the SCSI bus, and can control all phases of data transfers by writing to command registers within the M8490. It can generate up to 9 separate interrupts to signal to the local processor when commands have been completed or errors have occurred. Bus clear, free and settle delays, and optionally arbitration delays, can be generated automatically from an external clock. Signals are provided to allow data to be transferred to, and from, the M8490 by DMA.
The M8490 is 5380 compatible, applications currently using the 5380 controller should be able to use the M8490 with out software changes. The M8490 has additional features not found in the 5380 making it more attractive for new designs, these additional features are:- CPU parity, programmable CPU and SCSI parity, loop back mode, enhanced arbitration and interrupt support.
The CPU interface block provides an 8-bit interface to the twelve internal registers that control the M8490. The registers control the operation of the SCSI bus controller, the DMA controller and the interrupt controller. The data transferred over the SCSI bus is also written and read by the CPU interface.
The DMA controller block provides an alternative means of writing data to the Output Data register, or reading data from the Input Data Register. When DMA is enabled the M8490 requests a DMA cycle by asserting DRQ high. When the request is acknowledged by asserting NDACK low then reads or writes will be directed to the IDS or ODS register respectively. A DMA transfer is terminated by asserting NEOP low during the last DMA transfer.
The interrupt controller can generate interrupts to signal the completion of a DMA transfer, the completion of arbitration, the selection of the M8490 or an error condition. The source of the interrupt can be found by reading the RPI register.
The SCSI controller block provides access to the SCSI bus. Internal timers are used to provide bus free, bus clear and bus settle delays, and to time the arbitration period.
A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Asynchronous and synchronous modes
- MONOSYNC, BISYNC and SDLC supported
- SDLC loop-mode supported
- NRZ, NRZI and FM encoding/decoding
- Two independent full-duplex channels
- Digital phase-locked loop for each channel
- Baud rate generator for each channel
- Local loop-back and automatic echo modes
- SDLC Frame counter and status FIFO
- Equivalent gates:

Standard Cell - 12,700; Gate Array - 16,500

## LOGIC SYMBOL

| M85C30 |  |
| :---: | :---: |
| DIO-7 | DA0-7 |
| CLK | NDOE |
| NCS | NRDQA |
| DNC | NRDQB |
| ANB | NINT |
| NWR | NSYAO |
| NINTA | NSYAE |
| IEI | TRCAO |
| NSYAI | $\begin{aligned} & \text { CAE } \\ & \text { TDA } \end{aligned}$ |
| TRCAI | NDTRA |
| RTCA | NRTSA |
| RDA | NSYBO |
| NCDA | NSYBE |
| NCTSA | TRCBO |
| NSYBI | NTCBE |
| TRCBI | TDB |
| RTCB | NDTRB NRTSB |
| RDB |  |
| NCDB |  |
| NCTSB |  |
| NRST |  |
| NTST |  |

## Description

The M85C30 serial communications controller has two independent full-duplex channels which support asynchronous, bit synchronous (SDLC, HDLC and SDLC ioop möde) and byte synchronous (MONOSYNC, BISYNC) communication modes. NRZ, NRZI and FM data encoding/decoding are supported.
It includes a baud rate generator and a digital phaselocked loop for each channel. Two diagnostic modes: local loopback and automatic echo are available. A character counter and a $10 \times 19$-bit frame status FIFO are available in SDLC mode.
The M85C30 is fully programmable by an 8-bit system interface, which includes a six source interrupt controller. The interrupt controller has external signals that allow it to be daisy-chained with other interrupt controllers.
A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Programmable word length, stop bits and parity
- Double-buffered receiver and transmitter
- Overrun, parity and framing error detection
- Equivalent gates:

Standard Cell - 600; Gate Array - 760

## LOGIC SYMBOL

M8868A

| TBR1-8 | RBR1-8 |
| :--- | ---: |
| NTBRL | DR |
| NI | PE |
| EPE | OE |
| SBS | OE |
| CLS1 | FE |
| CLS2 | TRE |
| CRL | TBRE |
| TRC | TRO |
| RRC |  |
| RRI |  |
| RRI |  |
| NDRR |  |
| MR |  |
| NTST |  |

## Description

The M8868A is a full-duplex universal asynchronous receiver/transmitter (UART). It supports word lengths from five to eight bits, an optional parity bit and one or two stop bits. It can detect overrun, parity and framing errors in the received character.
The M8868A differs from the M6402 in that the master reset sets the TRE output to "1" and clears the receive buffer.

A per-use fee is associated with this megacell. Contact the factory for more information.

# Digital Soft Megacells 

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Data rates up to 1.25 Mbps
- 75\% Jitter tolerance
- $\pm 6.25 \%$ Frequency range
- Equivalent gates:

Standard Cell - 800; Gate Array - 1,100

## LOGIC SYMBOL

M91C36


## Description

The M91C36 is a digital data separator for use with a floppy disk controller. It takes the "raw" FM or MFM data pulses from a disk drive and outputs a clock at the bit rate and data puises synchronized to that clock. These signals can then go to a floppy disk controller, such as the MFDC, M765A or similar, for decoding. Three control lines, and the FM/MFM control line, together with a clock (typically 48 or 60 MHz ) determine the data rate. This data rate can be up to 1.25 Mbps.
The M91C36 contains a clock selector block and a second order digital phase-locked loop which locks to the frequency and phase of the input data pulses.
The clock selector block produces an internal reference clock 16 times the cycle rate of the phase-locked loop (32 times the data rate). This internal reference clock determines the resolution to which the inputs and outputs are sampled, however the phase and frequency errors are calculated to a much higher resolution ( 12 bits and 8 bits respectively). This allows very high performance without using a very high clock speed.
The WND output is toggled at the end of every cycle of the phase-locked loop (twice per bit period). If a data pulse occurred at the DIN input during a cycle an active high pulse, lasting two periods of the internal reference clock and synchronized to WND, appears at the RDAT output.

Unlike an analogue data separator the performance of a digital data separator, such as the M91C36, is independent of the data rate. Its performance at 1.25 Mbps (with an internal clock of 40 MHz ) is the same as its performance at 250 Kbps (with an internal clock of 8 MHz ).
A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Data rates up to 1.25 Mbps
- Floppy disk or tape
- Power saving mode
- Equivalent gates:

Standard Cell-950; Gate Array - 1,250


## Description

The M91C360 is a digital data separator for use with a floppy disk or tape controller. It takes the "raw" FM or MFM data pulses from a disk or tape drive and outputs a clock at the bit rate and data pulses synchronized to that clock. These signals can then go to a floppy disk controller, such as the MFDC, M765A or similar, for decoding.
Three control lines, and the FM/MFM control line, together with a clock (typically 48 or 60 MHz ) determine the data rate. This data rate can be up to 1.25 Mbps .
The M91C360 can be configured for use with tape drives. This will increase the frequency range of the data separator at the cost of a slight reduction in jitter performance.
The M91C360 can be placed in a power-down mode which will stop the internal clock to reduce power when not in use.
The M91C360 contains a clock selector block and a second order digital phase-locked loop which locks to the frequency and phase of the input data pulses.
The clock selector block produces an internal reference clock 16 times the cycle rate of the phase-locked loop (32 times the data rate). This internal reference clock determines the resolution to which the inputs and outputs are sampled, however the phase and frequency errors are calculated to a much higher resolution ( 12 bits and 8 bits respectively). This allows very high performance without using a very high clock speed.
The WND output is toggled at the end of every cycle of the phase-locked loop (twice per bit period). If a data pulse occurred at the DIN input during a cycle an active high pulse, lasting two periods of the internal reference clock and synchronized to WND, appears at the RDAT output.
Unlike an analogue data separator the performance of a digital data separator, such as the M91C360, is independent of the data rate. Its performance at 1.25 Mbps (with an internal clock of 40 MHz ) is the same as its performance at 250 Kbps (with an internal clock of 8 MHz ).
A per-use fee is associated with this megacell. Contact the factory for more information.

AMERICAN MICROSYSTEMS, INC.

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- IBM System 3740 format
- IBM System 34 format
- Perpendicular recording format
- Data rates up to 1.25 Mbps
- Directly addresses 256 tracks
- 255 step recalibrate command
- Programmable write precompensation
- 16 byte FIFO
- Enhanced power-saving features
- Equivalent gates:

Standard Cell-8,100; Gate Array - 10,500
LOGIC SYMBOL


## Description

The MFDC is a floppy disk controller which uses the M765A floppy disk controller core and includes the interface circuitry required in IBM PC compatible systems. it includes power saving features which are software compatible with the 82077SL. These include a clock disable signal, immediate auto-powerdown, low-latency awakening and a power-saving state for the write precompensator. The MFDC also contains multiplexers for swapping the default drive control outputs under software control.
The MFDC can be combined with the M91C360 digital data separator (or another data separator) to form a complete 82077SL compatible PC and PS/2 ${ }^{\text {TM }}$ floppy disk subsystem.
All references in this document to the 'core' or 'M765A' refer to the M765A Floppy Disk Controller that is incorporated in the MFDC net list.
$\mathrm{PS} / 2^{\mathrm{TM}}$ is a trademark of IBM Corporation.
The MFDC uses the M765A core and provides additional interfacing logic for a PC compatible system. The additional blocks added to the M765A core are:
I/O BUFFERING. This block provides a PC compatible CPU interface and access to additional registers outside the M765Acore. The polarity of control signals can also be inverted by this block.
CLOCK GENERATOR. This block produces three clocks for the M765A core from the $24 / 30 \mathrm{MHz}$ input clock to the MFDC. The frequency of the clocks to the M765A core are set by the data rate selected.
DRIVE MAPPING. This block controls the mapping of the logical drive numbers from the M765A core to the physical drive numbers coming from the MFDC.
WRITE PRECOMPENSATION. This block applies precompensation to the data stream coming from the M765A core. The amount of precompensation is determined by the delay period and data rate.
POWERDOWN CONTROLLER. This block can provide either direct or automatic powerdown which will stop internal clocks to save power.
A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- Phillips licensed $\mathrm{I}^{2} \mathrm{C}$ slave transceiver.
- Supports normal (100kbit/s) and fast (400kbit/s) modes when used with appropriate pads.
- Supports 7-bit addressing.
- Schematic-based, uses the ASIC Standard Library for technology independence.


## LOGIC SYMBOL

MGI2CSL


## Description

The MGI2CSL megacell implements an $I^{2} \mathrm{C}$ serial to 8 -bit parallel bidirectional I/O port. The MGI2CSL is designed to provide $I^{2} \mathrm{C}$ bus handshaking and protocol support for a slave port. The seven bit port address is externally programmable from the $\mathrm{A}(6: 0)$ bus. Port addresses are assigned by Phillips.
Received data is not latched. Received data is available on the BSR bus during the one clock cycle that FULL is HI. Data must be captured by the external logic during this time or it will be lost. FULL transitions on the falling edge of clock.
Because it is a minimal configuration it operates in slave mode only and does not support any of the following: clock stretching for slow peripherals, general call addressing, or ten-bit extended addressing. The MGI2CSL does support both normal ( $0-100 \mathrm{kbit} / \mathrm{s}$ ) and fast ( $0-400 \mathrm{kbit} / \mathrm{s}$ ) modes when used with appropriate pads. Contact the factory for pad selection and availability.
Phillips has represented to AMI that purchase of AMI's $I^{2} \mathrm{C}$ components conveys a license under the Phillips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system. Provided that the system conforms to the $1^{2} \mathrm{C}$ Standard Specification as defined by Phillips.

## Soft Megacells

This soft megacell is in the ASIC Standard Library which is technology- and process-independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for more information.

## Pin Description

| SIGNAL | TYPE |  |
| :---: | :---: | :--- |
| SCLD | I | Input from bus clock line. |
| SDAD | I | Input from bus data line. |
| RE | I | Reset, active high. |
| TST | I | Test mode, active high. |
| NACK | I | When high, suppresses transmission of acknowledge signal. |
| A(6:0) | I | Programs 7-bit address that the cell responds to. Address are assigned by Phillips. |
| DSR(7:0) | I | Parallel data input for serial out. |
| SOUTN | O | Serial data out to bus driver. |
| TVAL | O | Transmission valid. Goes high when port has received a valid address. |
| RWN | O | Status of read/write bit. Indicates whether master is reading or writing to this port. High <br> indicates a read, a low indicates a write. |
| FULL | O | High indicates shift register full. BSR bus must be read before the next falling edge of <br> CLK. |
| ST | O | High Indicates reception of start signal from bus or reset on RE. |
| CLK | O | Follows bus clock while transmission is valid. |
| READ | O | RWN delayed by one clock. |
| DATA | O | A high level indicates when in DATA mode. A low indicates ADDRESS mode. |
| BSR(7:0) | O | Parallel data out from serial in. |

## Equivalent Gates

| STANDARD CELL | GATE ARRAY |
| :---: | :---: |
| 210 | 250 |

## Digital Soft Megacells

## Features

- AMI's implementation of 3Soft's MegaMacro ${ }^{\circledR}$
- Functionally compatible with the industry standard
- Uses AMI's ASIC Standard Library for technology independence
- Master or slave operation
- Multi-master systems supported
- Performs arbitration and clock synchronization
- Own address and General Call address detection
- Interrupt on address detection
- Equivalent gates:

Standard Cell - 1,200; Gate Array - 1,450
LOGIC SYMBOL
MI2C

| CLK | DA0-7 |
| :---: | :---: |
| RST | INTR |
| NTST | OSCL |
| ID0-7 | OSDA |
| A0 |  |
| A1 |  |
| NWR |  |
| ISCL |  |
| ISDA |  |

## Description

The MI2C provides an interface between a microprocessor and an $I^{2} \mathrm{C}$ bus. It can operate in master or slave mode and performs arbitration in master mode to allow it to operate in multi-master systems. In slave mode it can interrupt the processor when it recognizes its own 7-bit address or the general call address. A clock divider is provided to allow operation from a wide range of input clock frequencies.
A per-use fee is associated with this megacell. Contact the factory for more information.

## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for inputs $A$ and $B$ are user definable
- Selects multiple architectures for size and speed efficiency
- Fully buffered inputs and outputs


## LOGIC SYMBOL <br> MGAxxyyDv



## Description

The MGAxxyyDv adder synthesizer builds xx-bit by yy-bit adders. Input operands are $A$ and $B$ with an input carry Cl to produce the output SUM with a carry-out CO.
Muitipie architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead.
Inputs A and B and output SUM can be interpreted to be either in the two's complement or unsigned number format. The SUM output is the same format as the inputs; its size is the same as the largest of inputs $A$ or $B$.
In the name, " $x x$ " represents the A input size and " $y y$ " represents the $B$ input size. The " $v$ " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit by 20 -bit adder optimized for minimum delay would be named MGA2420D2.

Functional Description

| A | B | CI | SUM | CO |
| :---: | :---: | :---: | :---: | :---: |
| A | B | 0 | A + B | carry-out |
| A | B | 1 | A $+\mathrm{B}+1$ | carry-out |

Contact the factory for information on specific speeds and sizes or to have an Adder built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## MGAxxyyDv <br> Adder

Digital Soft Megacells
Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :--- | :--- | :---: |
| CI | Input | Carry in, active high. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((\mathrm{yy}-1): 0)$ | Input | B Data inputs. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| CO | Output | Carry out, active high. | 1 |
| SUM $((\mathrm{ww-1):0)}$ | Output | SUM Data outputs. SUM $(0)$ is the LSB. | width $>0$ |

Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGA0808D1 | 62 | 78 | 74 | 90 |
| MGA0808D2 | 144 | 143 | 216 | 162 |
| MGA1212D1 | 92 | 117 | 110 | 134 |
| MGA1212D2 | 217 | 249 | 212 | 263 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGA0808D1 | 7.2 ns | 5.9 ns | 8.1 ns | 5.27 ns |
| MGA0808D2 | 2.5 ns | 2.15 ns | 2.9 ns | 2.17 ns |
| MGA1212D1 | 10.3 ns | 8.39 ns | 11.6 ns | 7.54 ns |
| MGA1212D2 | 2.9 ns | 2.43 ns | 3.5 ns | 2.37 ns |

[^119]
## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for inputs $A$ and $B$ are user definable
- Selects multiple architectures for size and speed efficiency
- Fully buffered inputs and outputs


## LOGIC SYMBOL

MGAxxyyEv


## Description

The MGAxxyyEv adder/subtractor synthesizer builds xxbit by yy-bit adder/subtractors. This megacell either adds ( $\mathrm{SUB}=0$ ) or subtracts $(\mathrm{SUB}=1)$ depending on the value of SUB. Input operands are A and B with an input carry Cl and a subtract control line SUB. The outputs are SUM and carry-out CO.
Multiple architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead.
Inputs $A$ and $B$ and output SUM can be interpreted to be either in the two's complement or unsigned number format. The SUM output is the same format as the inputs; its size is the same as the largest of inputs A or B.

In the name, "xx" represents the A input size and "yy" represents the B input size. The "v" represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit by 20 -bit adder/subtractor optimized for minimum delay would be named MGS2420A2.

## Functional Description

| SUB | A | B | CI | SUM | CO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O | A | B | 0 | A + B | carry-out |
| 0 | A | B | 1 | A + B + 1 | carry-out |
| 1 | A | B | 0 | A - B | carry-out |
| 1 | A | B | 1 | A - B - 1 | carry-out |

Contact the factory for information on specific speeds and sizes or to have an Adder/Subtractor built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology and process independent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

# MGAxxyyEv Adder/Subtractor 

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| SUB | Input | Subtract control. Megacell subtracts when this input is high. | 1 |
| CI | Input | Carry in, active high. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((\mathrm{yy}-1): 0)$ | Input | B Data inputs. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| CO | Output | Carry out, active high. | 1 |
| SUM $(($ ww-1):0) | Output | SUM Data outputs. SUM $(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGA0808E1 | 82 | 91 | 103 | 121 |
| MGA0808E2 | 168 | 186 | 216 | 253 |
| MGA1212E1 | 120 | 133 | 151 | 177 |
| MGA1212E2 | 288 | 320 | 355 | 415 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S( $\mathbf{0 . 8} \mathbf{~ m i c r o n ) ~}$ | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGA0808E1 | 8.5 ns | 7.0 ns | 8.8 ns | 6.2 ns |
| MGA0808E2 | 3.6 ns | 3.0 ns | 3.5 ns | 2.5 ns |
| MGA1212E1 | 11.6 ns | 9.5 ns | 12.4 ns | 8.7 ns |
| MGA1212E2 | 3.6 ns | 3.0 ns | 4.2 ns | 2.9 ns |

[^120]
## Digital Soft Megacells

The type of shift function is controlled by the F inputs and are as described in the following table.
Shift Functions

| $F(2)$ | $F(1)$ | $F(0)$ | FUNCTION |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | Logic shift with zeros fill |
| 0 | 0 | 1 | Logic shift with ones fill |
| 0 | 1 | $x$ | Arithmetic shift with sign extend |
| 1 | 0 | $x$ | Logical shift with D0 fill |
| 1 | 1 | $x$ | Left of Right circular shift |

Sample Truth Tables(MGB04Av):
Logical shift with zeros fill, $\mathbf{F ( 2 : 0 )}=\mathbf{0 0 0}$

| $\mathbf{S}(1: 0)$ | $\mathbf{Q}(\mathbf{3})$ | $\mathbf{Q}(2)$ | $\mathbf{Q}(1)$ | $\mathbf{Q}(\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | 0 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |
| 10 | 0 | 0 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | 0 | 0 | 0 | $\mathrm{D}(3)$ |

Logical shift with ones fill, $F(2: 0)=001$

| $\mathbf{S}(1: 0)$ | $\mathbf{Q}(3)$ | $\mathbf{Q}(2)$ | $\mathbf{Q}(1)$ | $\mathbf{Q}(0)$ |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | 1 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |
| 10 | 1 | 1 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | 1 | 1 | 1 | $\mathrm{D}(3)$ |

Logical shift with $D(0)$ fill, $F(2: 0)=10 x$

| $\mathbf{S}(\mathbf{1}: \mathbf{0})$ | $\mathbf{Q}(\mathbf{3})$ | $\mathbf{Q}(\mathbf{2})$ | $\mathbf{Q}(\mathbf{1})$ | $\mathbf{Q}(\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |
| 10 | $\mathrm{D}(0)$ | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | $\mathrm{D}(0)$ | $\mathrm{D}(0)$ | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ |

Arithmetic shift with sign extend, $F(2: 0)=01 x$ compromise between the two. Each implementation is given a different version number. For example, an 8 -bit shifter optimized for minimum gatecount would be named MGB08A1.
The S inputs select the number of bits to be shifted. For a right circular shift, the S inputs select the number of bits to be shifted. For a left circular shift, the two's compliment of the number of bits to be shifted is placed on the $S$ inputs. the number of bits to be shifted is placed on the S inputs. value of two (010) operating on the input 00001100 will generate the output 00000011, a right shift of two bits. If $S$ has the value of seven (111) the output would become 00011000 , which would represent a right shift of seven or a left shift of one.

## Description

The MGBxxAv barrel/arithmetic shifter synthesizer builds barrel/arithmetic shifters which provide various shift functions for a data word size of "xx" bits. The shifts are performed completely through combinational logic which allows for very fast operations. Commonly used logical and arithmetic shift functions are available.
The user has flexibility in specifying the word size. Within the name shown above, the "xx" represents the size of the data word. The size of the $S$ bus is equal to $\log 2(x x)$.
The " $v$ " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a

| $\mathbf{S}(\mathbf{1}: \mathbf{0})$ | $\mathbf{Q}(\mathbf{3})$ | $\mathbf{Q}(\mathbf{2})$ | $\mathbf{Q}(\mathbf{1})$ | $\mathbf{Q}(\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |
| 10 | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ |

Left or Right circular shift, $F(2: 0)=11 x$

| $\mathbf{S}(\mathbf{1}: \mathbf{0})$ | $\mathbf{Q}(3)$ | $\mathbf{Q}(2)$ | $\mathbf{Q}(1)$ | $\mathbf{Q}(\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |
| 10 | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ |

## Digital Soft Megacells

## Pin Descriptions

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| $F(2: 0)$ | Input | Function inputs. These inputs determine the type of shift to be <br> performed. | 3 |
| $\mathrm{~S}\left(\log _{2}(\mathrm{xx})-1: 0\right)$ | Input | Shift inputs. Specifies the number of position to be shifted. | width $=\log _{2}(x x)$ |
| $\mathrm{D}((x x-1): 0)$ | Input | Data inputs. $\mathrm{D}(0)$ is the LSB. | width $>0$ |
| $\mathrm{Q}((x x-1): 0)$ | Output | Data outputs. $\mathrm{Q}(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGB08A1 | 110 | 122 | 124 | 145 |
| MGB08A2 | 133 | 148 | 156 | 183 |
| MGB12A1 | 207 | 230 | 247 | 289 |
| MGB12A2 | 250 | 278 | 304 | 356 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGB08A1 | 4.2 ns | 3.4 ns | 4.8 ns | 3.4 ns |
| MGB08A2 | 3.6 ns | 3.0 ns | 4.0 ns | 2.8 ns |
| MGB12A1 | 4.2 ns | 3.4 ns | 4.9 ns | 3.4 ns |
| MGB12A2 | 3.5 ns | 2.9 ns | 3.9 ns | 2.7 ns |

1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.

## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength is definable
- High-speed flash barrel shift operations
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGBxxBv


## Description

The MGBxxBv barrel shifter synthesizer builds barrel shifters which provide various shift functions for a data word size of "xx" bits. The shifts are performed completely through combinational logic which allows for very fast operations. Shifted data wraps around from the MSB to the LSB.
The $S$ inputs select the number of bits to be shifted from the $D$ inputs to the $Q$ outputs. In the case of an 8 -bit shifter, for example, an input select value of two (010) operating on the input 00001100 will generate the output 00110000 , a left shift of two bits. If $S$ has the value of seven (111), the output would become 00000110.

The user has flexibility in specifying the word size. Within the name shown above, the "xx" represents the size of the data word. The size of the $S$ bus must be less than or equal to $\log 2(x x)$. For example, if $x x=8$, the size of the $S$ bus must be equal to or less than 3 . If not all shift combinations are needed, the size of the S bus can be reduced to save logic.
The " $v$ " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, an 8 -bit shifter optimized for minimum gate count would be named MGB08B1.
Contact the factory for information on specific speeds and sizes or to have a Shifter built.

Sample Truth Table

| $\mathbf{S}(\mathbf{1}: \mathbf{0})$ | $\mathbf{Q}(3)$ | $\mathbf{Q}(2)$ | $\mathbf{Q}(\mathbf{1})$ | $\mathbf{Q}(\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ |
| 10 | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | $\mathrm{D}(0)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

Digital Soft Megacells

## Pin Descriptions

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| $\mathrm{S}\left(\log _{2}(\mathrm{xx})-1: 0\right)$ | Input | Shift inputs. Specifies the number of position to be shifted. | width $\leq \log _{2}(\mathrm{xx})$ |
| $\mathrm{D}((\mathrm{xx-1):0)}$ | Input | Data inputs. $\mathrm{D}(0)$ is the LSB. | width $>0$ |
| $\mathrm{Q}((\mathrm{xx-1):0)}$ | Output | Data outputs. $\mathrm{Q}(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGB08B1 | 77 | 85 | 89 | 104 |
| MGB08B2 | 80 | 89 | 126 | 147 |
| MGB12B1 | 155 | 172 | 167 | 195 |
| MGB12B2 | 200 | 222 | 248 | 290 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGB08B1 | 2.3 ns | 1.9 ns | 2.5 ns | 1.8 ns |
| MGB08B2 | 2.3 ns | 1.9 ns | 2.4 ns | 1.7 ns |
| MGB12B1 | 2.7 ns | 2.2 ns | 2.6 ns | 1.8 ns |
| MGB12B2 | 2.8 ns | 2.3 ns | 3.0 ns | 2.1 ns |

1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.

## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength is definable
- High-speed flash arithmetic shift operations
- Two's complement or unsigned shift control and data
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGBxxyyCv


## Description

The MGBxxyyCv arithmetic shifter synthesizer builds arithmetic shifters which provide various shift functions for a data word size of "xx" bits. The shifts are performed completely through combinational logic which allows for very fast operations.
The input data $D$ is shifted left or right by the number of bits specified by the control input S . When the control signal STC is ' 0 ', S is interpreted as an unsigned positive number and the shifter performs only left shift operations.
When STC is ' 1 ', $S$ is a two's complement number. If $S$ is negative, a right shift is performed. If $S$ is positive, a left shift is performed.
The input data D is interpreted as an unsigned number when DTC is ' 0 ' or a two's complement number when DTC is ' 1 '. The type of $D$ is only significant for right shift operations where zero padding is done on the MSBs for unsigned data and sign extension is done for two's complement data.
The user has flexibility in specifying the word size. Within the name shown above, the "xx" represents the size of the data word and "yy" represents the size of the $S$ bus. The size of the $S$ bus is equal to $\log 2(x x)$.

The " v " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example an 8 -bit shifter optimized for minimum gate count would be named MGB0803C1.

Sample Truth Table (MGB0402Cv):

| $\mathbf{S}(1: 0)$ | $\mathbf{S T C}$ | $\mathbf{D T C}$ | $\mathbf{Q}(3)$ | $\mathbf{Q}(2)$ | $\mathbf{Q}(1)$ | $\mathbf{Q}(\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | x | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | 0 | x | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | 0 |
| 10 | 0 | x | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | 0 | 0 |
| 11 | 0 | x | $\mathrm{D}(0)$ | 0 | 0 | 0 |
| 00 | 1 | x | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ |
| 01 | 1 | x | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ | $\mathrm{D}(0)$ | 0 |
| 10 | 1 | 0 | 0 | 0 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | 1 | 0 | 0 | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |
| 10 | 1 | 1 | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ |
| 11 | 1 | 1 | $\mathrm{D}(3)$ | $\mathrm{D}(3)$ | $\mathrm{D}(2)$ | $\mathrm{D}(1)$ |

Contact the factory for information on specific speeds and sizes or to have a Shifter built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Digital Soft Megacells

## Pin Descriptions

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| STC | Input | Determines whether S is interpreted as unsigned or two's <br> complement. | 1 |
| DTC | Input | Determines whether D is interpreted as unsigned or two's <br> complement. | 1 |
| $\mathrm{~S}\left(\log _{2}(\mathrm{xx})-1: 0\right)$ | Input | Shift inputs. Specifies the number of position to be shifted. | width $<\log _{2}(\mathrm{xx})$ |
| $\mathrm{D}((x x-1): 0)$ | Input | Data inputs. $\mathrm{D}(0)$ is the LSB. | width $>0$ |
| $\mathrm{Q}((x x-1): 0)$ | Output | Data outputs. $\mathrm{Q}(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGB0803C1 | 130 | 144 | 146 | 171 |
| MGB0803C2 | 175 | 194 | 203 | 238 |
| MGB1204C1 | 223 | 248 | 245 | 287 |
| MGB1204C2 | 320 | 355 | 351 | 411 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGB0803C1 | 5.0 ns | 4.1 ns | 5.0 ns | 3.5 ns |
| MGB0803C2 | 3.4 ns | 2.8 ns | 3.6 ns | 2.5 ns |
| MGB1204C1 | 5.7 ns | 4.7 ns | 5.7 ns | 4.0 ns |
| MGB1204C2 | 3.2 ns | 2.6 ns | 3.4 ns | 2.4 ns |

[^121]
# Digital Soft Megacells 

## Features

- High-performance, HDL-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Counter size is definable
- Includes terminal count when count is zero
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGCDxxAv


## Description

The MGCDxxAv synchronous binary counter counts down on the rising edge of the clock. This counter is available in all of AMI's supported processes.
The "xx" in the name represents the number of bits in the counter. For example, an 8 -bit counter built for minimum delay would be named MGCD08A2.
The counter has three input controls LOAD, CE, and RSTN. Both LOAD and CE must be asserted for the parallel input to be latched in on the next rising clock edge. When LOAD is low and CE is high the counter decrements by one on each rising clock edge. When the count reaches zero the TERM signal is asserted high. The RSTN is asynchronous and asserted low. The counter output (CNT) is the same size as the counter input (D).
Multiple architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead. These Megacells are produced using parameterized synthesizers that allow the creation of various sizes and speeds. The synthesized Megacell can be optimized for either minimum delay, minimum gate count or can be designed to meet a specified delay. Each implementation is given a different version number. For example, an 8 -bit counter that must run on a 20 ns clock cycle would be named MGCD08A20.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| LOAD | Input | Load new count. Data is latched when LOAD and CE are high and the clock transitions <br> from low to high. |
| CE | Input | Count enable. Next count or input latched when CE is high and the clock transitions <br> from low to high. |
| RSTN | Input | Reset signal. Asynchronously resets counter to 0 when low. |
| D((xx-1):0) | Input | Data inputs. Data appearing on these inputs is latched into the count when LOAD and <br> CE are high and the clock transitions from low to high. |
| TERM | Output | Terminal count. Asserted high when the count is all zeros. |
| CNT((xx-1):0) | Output | Data outputs. The output is decremented by one when the clock transitions from low to <br> high and the CE is asserted. |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI6S(0.6 micron) | AMI8S(0.8 micron) | AMI6G(0.6 micron) | AMI8G(0.8 micron) |
| MGCU08A1 | 120 | 130 | 166 | 155 |
| MGCU08A2 | 188 | 183 | 205 | 222 |
| MGCU12A1 | 179 | 176 | 225 | 238 |
| MGCU12A2 | 288 | 277 | 329 | 327 |

## Sample Clock Cycle Time ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI6S(0.6 micron) | AMI8S(0.8 micron) | AMI6G(0.6 micron) | AMI8G(0.8 micron) |
| MGCU08A1 | 5.4 ns | 7.0 ns | 4.8 ns | 6.4 ns |
| MGCU08A2 | 2.9 ns | 3.3 ns | 3.3 ns | 3.6 ns |
| MGCU12A1 | 7.3 ns | 8.9 ns | 6.7 ns | 8.3 ns |
| MGCU12A2 | 3.2 ns | 3.6 ns | 3.4 ns | 4.0 ns |

[^122]Digital Soft Megacells

## Count Timing



Timing Characteristics

| SYMBOL | CHARACTERISTIC | REFERENCED TO |
| :---: | :--- | :--- |
| $T_{\text {RO }}$ | reset to output zero | RSTN falling |
| $T_{\text {CO }}$ | clock to count valid | CLK rising |
| $T_{\text {LSU }}$ | load set-up | CLK rising |
| $T_{\text {CLSU }}$ | count enable load set-up | CLK rising |
| $T_{\text {DSU }}$ | data set-up | CLK rising |
| $T_{T S C}$ | term set valid | CLK rising |
| $T_{T C C}$ | term clear valid | CLK rising |

## Digital Soft Megacells

## Features

- High-performance, HDL-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Counter size is definable
- Includes terminal count when count is all ones
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGCUxxAv


## Description

The MGCUxxAv synchronous binary counter counts on the rising edge of the clock. This counter is available in all of AMI's supported processes.
The "xx" in the name represents the number of bits in the counter. For example, an 8 -bit counter built for minimum delay would be named MGCU08A2.
The counter has three input controls LOAD, CE, and RSTN. Both LOAD and CE must be asserted for the parallel input to be latched in on the next rising clock edge. When LOAD is low and CE is high the counter increments by one on each rising clock edge. When the count reaches the maximum count the TERM signal is asserted high. The RSTN is asynchronous and asserted low. The counter output (CNT) is the same size as the counter input (D).
Multiple architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead. These Megacells are produced using parameterized synthesizers that allow the creation of various sizes and speeds. The synthesized Megacell can be optimized for either minimum delay, minimum gate count or can be designed to meet a specified delay. Each implementation is given a different version number. For example, an 8 -bit counter that must run on a 20 ns clock cycle would be named MGCU08A20.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| LOAD | Input | Load new count. Data is latched when LOAD and CE are high and the clock transitions <br> from low to high. |
| CE | Input | Count enable. Next count or input latched when CE is high and the clock transitions <br> from low to high. |
| RSTN | Input | Reset signal. Asynchronously resets counter to 0 when low. |
| D((xx-1):0) | Input | Data inputs. Data appearing on these inputs is latched into the count when LOAD and <br> CE are high and the clock transitions from low to high. |
| TERM | Output | Terminal count. Asserted high when the count is all ones. |
| CNT ((xx-1):0) | Output | Data outputs. The output is incremented by one when the clock transitions from low to <br> high and the CE is asserted. |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI6S(0.6 micron) | AMI8S(0.8 micron) | AMI6G(0.6 micron) | AMI8G(0.8 micron) |
| MGCU08A1 | 119 | 128 | 152 | 162 |
| MGCU08A2 | 155 | 155 | 214 | 207 |
| MGCU12A1 | 178 | 172 | 228 | 243 |
| MGCU12A2 | 261 | 261 | 355 | 299 |

## Sample Clock Cycle Time ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI6S(0.6 micron) | AMI8S(0.8 micron) | AMI6G(0.6 micron) | AMI8G(0.8 micron) |
| MGCU08A1 | 5.6 ns | 6.3 ns | 4.9 ns | 6.1 ns |
| MGCU08A2 | 3.0 ns | 3.5 ns | 3.1 ns | 4.0 ns |
| MGCU12A1 | 7.1 ns | 7.6 ns | 6.6 ns | 7.4 ns |
| MGCU12A2 | 3.3 ns | 4.0 ns | 3.3 ns | 3.7 ns |

[^123]
## Digital Soft Megacells

## Count Timing



## Timing Characteristics

| SYMBOL | CHARACTERISTIC | REFERENCED TO |
| :---: | :--- | :--- |
| $\mathrm{T}_{\text {RO }}$ | reset to output zero | RSTN falling |
| $\mathrm{T}_{\text {CO }}$ | clock to count valid | CLK rising |
| $\mathrm{T}_{\text {LSU }}$ | load set-up | CLK rising |
| $\mathrm{T}_{\text {CLSU }}$ | count enable load set-up | CLK rising |
| $\mathrm{T}_{\text {DSU }}$ | data set-up | CLK rising |
| $\mathrm{T}_{\text {TSC }}$ | term set valid | CLK rising |
| $\mathrm{T}_{\text {TCC }}$ | term clear valid | CLK rising |

## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for inputs $A$ and $B$ are user definable
- Unsigned and two's complement data comparison
- Two comparison functions available
- Fully buffered inputs and outputs


## LOGIC SYMBOL

MGCxxAv


## Description

The MGCxxAv comparator synthesizer builds xx-bit 2function comparators. The comparator compares signed or unsigned numbers ( A and B ) and produces two output conditions (LTLE and GEGT).
The input signal LEQ determines what these two output conditions are (see Functional Description). The input TC determines whether the two inputs are compared as unsigned ( $\mathrm{TC}=0$ ) or signed ( $\mathrm{TC}=1$ ).
In the name, "xx" represents the A and B input size and the " v " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit comparator optimized for minimum delay would be named MGC24A2.

## Functional Description

| LEQ | Condition | LTLE | GEGT |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{~A}<=\mathrm{B}$ | 1 | 0 |
| 1 | $\mathrm{~A}>\mathrm{B}$ | 0 | 1 |
| 0 | $\mathrm{~A}<\mathrm{B}$ | 1 | 0 |
| 0 | $\mathrm{~A}=\mathrm{B}$ | 0 | 1 |

Contact the factory for information on specific speeds and sizes or to have a Comparator built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

# MGCxxAv <br> 2-Function Comparator 

Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| TC | Input | When 1, signifies A and B inputs are two's complement. | 1 |
| LEQ | Input | Determines function of LTLE and GEGT pins. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((x \mathrm{x}-1): 0)$ | Input | B Data inputs. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| LTLE | Output | 'Less than' or 'less than or equal' depending on LEQ. | 1 |
| GEGT | Output | 'Greater than or equal' or 'greater than' depending on LEQ. | 1 |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGC08A1 | 39 | 43 | 45 | 53 |
| MGC08A2 | 92 | 102 | 94 | 110 |
| MGC12A1 | 53 | 59 | 61 | 71 |
| MGC12A2 | 100 | 111 | 118 | 138 |

Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGC08A1 | 3.6 ns | 3.0 ns | 4.1 ns | 2.9 ns |
| MGC08A2 | 2.1 ns | 1.7 ns | 2.4 ns | 1.7 ns |
| MGC12A1 | 5.1 ns | 4.2 ns | 5.7 ns | 4.0 ns |
| MGC12A2 | 2.4 ns | 2.0 ns | 2.8 ns | 2.0 ns |

[^124]
## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for inputs $A$ and $B$ are user definable
- Unsigned and two's complement data comparison
- Six comparison functions available
- Fully buffered inputs and outputs



## Description

The MGCxxBv comparator synthesizer builds xx-bit 6function comparators. The comparator compares signed or unsigned numbers ( A and B ) and produces six output conditions (GT, LT, EQ, LE, GE, NE).
The input TC determines whether the two inputs are compared as unsigned ( $\mathrm{TC}=0$ ) or signed ( $\mathrm{TC}=1$ ).
In the name, "xx" represents the A and B input size and the " v " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit comparator optimized for minimum delay would be named MGC24B2.

Functional Description

| Condition | GT | LT | EQ | LE | GE | NE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}>\mathrm{B}$ | 1 | 0 | 0 | 0 | 1 | 1 |
| $\mathrm{~A}<\mathrm{B}$ | 0 | 1 | 0 | 1 | 0 | 1 |
| $\mathrm{~A}=\mathrm{B}$ | 0 | 0 | 1 | 1 | 1 | 0 |

Contact the factory for information on specific speeds and sizes or to have an 6-function Comparator built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

# MGCxxBv 6-Function Comparator 

Digital Soft Megacells
Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| TC | Input | When 1, signifies A and B inputs are two's complement. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((\mathrm{xx}-1): 0)$ | Input | B Data inputs. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| GT | Output | Asserted when A is greater than B. | 1 |
| LT | Output | Asserted when A is less than B. | 1 |
| EQ | Output | Asserted when A equals B. | 1 |
| LE | Output | Asserted when A is less than or equal to B. | 1 |
| GE | Output | Asserted when A is greater than or equal to B. | 1 |
| NE | Output | Asserted when A does not equal B. | 1 |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGC08B1 | 70 | 78 | 77 | 90 |
| MGC08B2 | 120 | 133 | 174 | 204 |
| MGC12B1 | 98 | 109 | 108 | 126 |
| MGC12B2 | 182 | 202 | 252 | 295 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGC08B1 | 4.7 ns | 3.9 ns | 4.4 ns | 3.0 ns |
| MGC08B2 | 2.2 ns | 1.8 ns | 3.0 ns | 2.1 ns |
| MGC12B1 | 6.0 ns | 4.9 ns | 6.3 ns | 4.4 ns |
| MGC12B2 | 2.6 ns | 2.1 ns | 2.5 ns | 1.8 ns |

[^125]
## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for input A is user definable
- Selects multiple architectures for size and speed efficiency
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGDxxAv


## Description

The MGDxxAv decrementer synthesizer builds xx-bit decrementers. The decrementer subtracts 1 from input $A$ to produce the output SUM.
Multiple architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead.
The SUM output is the same size as the input $A$.
In the name, "xx" represents the A input size and the " $v$ " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit decrementer optimized for minimum delay would be named MGD24A2.

## Functional Description

| A | SUM |
| :---: | :---: |
| A | A -1 |

Contact the factory for information on specific speeds and sizes or to have a Decrementer built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| $A((x x-1): 0)$ | Input | A Data inputs. $A(0)$ is the LSB. | width $>0$ |
| SUM $((x x-1): 0)$ | Output | SUM Data outputs. SUM $(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGD08A1 | 31 | 30 | 35 | 45 |
| MGD08A2 | 53 | 66 | 71 | 91 |
| MGD12A1 | 48 | 47 | 55 | 69 |
| MGD12A2 | 88 | 112 | 118 | 154 |

Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGD08A1 | 4.6 ns | 3.4 ns | 4.7 ns | 3.24 ns |
| MGD08A2 | 1.5 ns | 1.5 ns | 1.7 ns | 1.39 ns |
| MGD12A1 | 7.2 ns | 5.0 ns | 7.3 ns | 4.88 ns |
| MGD12A2 | 1.6 ns | 1.6 ns | 1.9 ns | 1.67 ns |

[^126]
## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for input A is user definable
- Selects multiple architectures for size and speed efficiency
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGIxxAv


## Description

The MGIxxAv Incrementer synthesizer builds xx-bit Incrementers. The incrementer adds 1 to input A to produce the output SUM.
Muitipie architecturai impiementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead.
In the name, "xx" represents the A and SUM input sizes, and the " $v$ " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit incrementer optimized for minimum delay would be named MGI24A2.

## Functional Description

| A | SUM |
| :---: | :---: |
| A | A +1 |

Contact the factory for information on specific speeds and sizes or to have an Incrementer built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| $\mathrm{A}((\mathrm{xx-1):0)}$ | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| SUM $((\mathrm{xx-1}): 0)$ | Output | SUM Data outputs. SUM $(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron |
| MGI08A1 | 33 | 37 | 39 | 46 |
| MGI08A2 | 45 | 50 | 53 | 62 |
| MGI12A1 | 52 | 58 | 62 | 73 |
| MGI12A2 | 83 | 92 | 112 | 131 |

Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron |
| MGI08A1 | 2.7 ns | 2.2 ns | 3.0 ns | 2.1 ns |
| MGI08A2 | 1.4 ns | 1.2 ns | 1.6 ns | 1.1 ns |
| MGI12A1 | 3.0 ns | 2.5 ns | 4.7 ns | 3.3 ns |
| MGI12A2 | 1.6 ns | 1.3 ns | 1.8 ns | 1.3 ns |

1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.

## MGIxxBv Incrementer/Decrementer

## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for input $A$ is user definable
- Selects multiple architectures for size and speed efficiency
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGIxxBv


## Description

The MGlxxBv Incrementer/Decrementer synthesizer builds xx-bit Incrementer/Decrementers. When the DEC input is active (DEC=1) the Incrementer/Decrementer subtracts 1 from input $A$. When $D E C$ is not active ( $D E C=0$ ) the Incrementer/Decrementer adds 1 to input A.
Multiple architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead.

In the name, "xx" represents the A and SUM input sizes, and the " $v$ " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24-bit Incrementer/Decrementer optimized for minimum delay would be named MGI24B2.

Functional Description

| A | DEC | SUM |
| :---: | :---: | :---: |
| $A$ | 0 | $A+1$ |
| $A$ | 1 | $A-1$ |

Contact the factory for information on specific speeds and sizes or to have an Incrementer/Decrementer built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## MGIXxBv Incrementer/Decrementer

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| DEC | Input | Decrement. Megacell decrements when input is high. | 1 |
| A((xx-1):0) | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| SUM $((x x-1): 0)$ | Output | SUM Data outputs. SUM $(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGI08B1 | 60 | 67 | 78 | 91 |
| MGI08B2 | 86 | 95 | 117 | 137 |
| MGI12B1 | 95 | 105 | 128 | 150 |
| MGI12B2 | 162 | 180 | 204 | 239 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGI08B1 | 7.5 ns | 6.2 ns | 7.0 ns | 4.9 ns |
| MGI08B2 | 2.2 ns | 1.8 ns | 2.6 ns | 1.8 ns |
| MGI12B1 | 12.2 ns | 10.0 ns | 11.1 ns | 8.2 ns |
| MGI12B2 | 2.7 ns | 2.2 ns | 3.1 ns | 2.2 ns |

1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.

## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Inputs and output sizes are user definable
- Selects multiple architectures for size and speed efficiency
- Two's complement control allows either unsigned or two's complement format
- Fully buffered inputs and outputs

LOGIC SYMBOL MGMxxyyDv


## Description

The MGMxxyyDv Multiplier synthesizer builds multipliers of various sizes. The operands $A$ and $B$ are multiplied to produce the product $P$. The input and output data are interpreted as unsigned when TC=0 or two's complement when $\mathrm{TC}=1$.
The "xxyy" represents a four character sequence assigned to each multiplier configuration where " $x x^{\text {" }}$ represents the number of A input bits and "yy" represents the number of B input bits. The number of products bits are equal to "xx" + "yy".
The "v" represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 16 -bit by 12-bit multiplier optimized for minimum delay would be named MGM1612D2.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for information on specific speeds and sizes or to have a Multiplier built.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| TC | Input | Determines whether the input and output data are interpreted as <br> unsigned $(\mathrm{TC}=0)$ or two's complement (TC=1) numbers. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A input bits. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((\mathrm{yy}-1): 0)$ | Input | B input bits. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| $\mathrm{P}((\mathrm{xx}+\mathrm{yy}-1): 0)$ | Output | Product bits. $\mathrm{P}(0)$ is the LSB. | $\mathrm{xx}+\mathrm{yy}>$ width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGM0808D1 | 490 | 515 | 583 | 602 |
| MGM0808D2 | 696 | 668 | 925 | 852 |
| MGM1212D1 | 1,060 | 1,128 | 1,252 | 1,288 |
| MGM1212D2 | 1,357 | 1,457 | 1,756 | 1,700 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGM0808D1 | 17.0 ns | 12.5 ns | 17.1 ns | 11.4 ns |
| MGM0808D2 | 10.0 ns | 7.9 ns | 10.2 ns | 6.8 ns |
| MGM1212D1 | 25.5 ns | 18.4 ns | 24.9 ns | 15.8 ns |
| MGM1212D2 | 12.3 ns | 9.2 ns | 12.6 ns | 8.7 ns |

[^127]
# Digital Soft Megacells 

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Widths for inputs $A$ and $B$ are definable
- Selects multiple architectures for size and speed efficiency
- Two's complement control allows unsigned or two's complement multiplication-accumulation
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGMxxyyEv


## Description

The MGMxxyyEv multiplier-accumulator synthesizer builds multiplier-accumulators of various sizes. The operands A and B are multiplied and the product is added to $C$ producing the result MAC. The input and output data are interpreted as unsigned when $\mathrm{TC}=0$ or two's complement when TC=1.
The "xxyy" represents a four character sequence assigned to each multiplier-accumulator configuration where "xx" represents the number of A input bits and "yy" represents the number of $B$ input bits. The number of MAC bits are equal to "xx" + "yy".
The "v" represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 16 -bit by 12-bit multiplier-accumulator optimized for minimum delay would be named MGM1612E2.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.
Contact the factory for information on specific speeds and sizes or to have a Multiplier-Accumulator built.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTION | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| TC | Input | Determines whether the input and output data are interpreted as <br> unsigned $(T C=0)$ or two's complement $(T C=1)$ numbers. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A input bits. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((\mathrm{yy}-1): 0)$ | Input | B input bits. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| $\mathrm{C}((\mathrm{xx}+\mathrm{yy}-1): 0)$ | Input | C input bits. $\mathrm{C}(0)$ is the LSB. | width $=x \mathrm{x}+\mathrm{yy}$ |
| MAC $((\mathrm{xx}+\mathrm{yy}-1): 0)$ | Output | Result bits. MAC(0) is the LSB. | width $=x \mathrm{x}+\mathrm{yy}$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGM0808E1 | 702 | 779 | 872 | $\mathbf{1 , 0 2 0}$ |
| MGM0808E2 | 777 | 862 | 1,045 | 1,223 |
| MGM1212E1 | 1,415 | 1,570 | 1,758 | 2,057 |
| MGM1212E2 | 1,610 | 1,787 | 1,860 | 2,176 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGM0808E1 | 15.0 ns | 12.3 ns | 16.3 ns | 11.4 ns |
| MGM0808E2 | 11.8 ns | 9.7 ns | 12.0 ns | 8.4 ns |
| MGM1212E1 | 19.5 ns | 16.0 ns | 21.0 ns | 14.7 ns |
| MGM1212E2 | 12.7 ns | 10.4 ns | 13.1 ns | 9.2 ns |

[^128]
## Digital Soft Megacells

## Features

- High-performance, Schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Wordlength for inputs A and B are user definable
- Selects multiple architectures for size and speed efficiency
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGSxxyyAv


## Description

The MGSxxyyAv subtractor synthesizer builds xx-bit by yybit subtractors. Input operands are $A$ and $B$ with an input carry Cl to produce the output DIFF with a carry-out CO.
Multiple architectural implementations are synthesized depending on speed requirements. Possible architectures include ripple carry, carry look-ahead, and fast carry lookahead.
Inputs A and B and output DIFF can be interpreted to be either in the two's complement or unsigned number format. The DIFF output is the same format as the inputs, and its size is the same as the largest of inputs A or B .
In the name, "xx" represents the A input size and "yy" represents the B input size. The " v " represents version. The synthesizer can optimize the design for either minimum delay, minimum area or a compromise between the two. Each implementation is given a different version number. For example, a 24 -bit by 20 -bit subtractor optimized for minimum delay would be named MGS2420A2.

## Functional Description

| A | B | Cl | DIFF | C0 |
| :---: | :---: | :---: | :---: | :---: |
| A | B | 0 | A - B | carry-out |
| A | B | 1 | A - B - 1 | carry-out |

Contact the factory for information on specific speeds and sizes or to have an Subtractor built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTION | LEGAL RANGE |
| :---: | :---: | :--- | :---: |
| CO | Output | Carry out, active high. | 1 |
| $\mathrm{~A}((\mathrm{xx}-1): 0)$ | Input | A Data inputs. $\mathrm{A}(0)$ is the LSB. | width $>0$ |
| $\mathrm{~B}((\mathrm{yy}-1): 0)$ | Input | B Data inputs. $\mathrm{B}(0)$ is the LSB. | width $>0$ |
| CI | Input | Carry in, active high. | 1 |
| DIFF((ww-1):0) | Output | DIFF Data outputs. DIFF $(0)$ is the LSB. | width $>0$ |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGS0808A1 | 70 | 78 | 82 | 96 |
| MGS0808A2 | 163 | 181 | 232 | 271 |
| MGS1212A1 | 105 | 117 | 122 | 1,363 |
| MGS1212A2 | 217 | 241 | 285 | 333 |

## Sample Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI8S(0.8 micron) | AMI6S(0.6 micron) | AMI8G(0.8 micron) | AMI6G(0.6 micron) |
| MGS0808A1 | 7.4 ns | 6.1 ns | 8.2 ns | 5.7 ns |
| MGS0808A2 | 2.7 ns | 2.3 ns | 3.3 ns | 2.3 ns |
| MGS1212A1 | 10.5 ns | 8.8 ns | 11.8 ns | 8.3 ns |
| MGS1212A2 | 3.3 ns | 2.8 ns | 3.8 ns | 2.7 ns |

[^129]
## Digital Soft Megacells

## Features

- High-performance, schematic-based megacell synthesizer
- Uses the ASIC Standard Library for technology independence
- Uses latch-array, fall-through architecture
- Array sizes are definable
- Fully buffered inputs and outputs

LOGIC SYMBOL
MGFxxyyC1


## Description

The MGFxxyyC1 FIFO (First In, First Out) memory synthesizer builds latch based FIFOs of various sizes. FIFOs built with this synthesizer use the fall-through algorithm in which data is written to the top of the register stack and falls through to the bottom of the stack. If the FIFO is not empty the data stops falling through when valid data are encountered. Data fallen through to the bottom of the stack are available at the outputs.

These FIFOs have separate asynchronous read and write clocks. Flags include ORN (output ready not) which determines if the FIFO is empty and IRN (input ready not) which determines if the FIFO is full. Indeterminable results may occur during writes when IRN is active.
The "xxyy" in the name represents a four character sequence assigned to each FIFO configuration where "xx" represents the number of words and "yy" represents the number of bits per word. For example, a 32 -word by 8 -bit FIFO would be named MGF3208C1.
Contact the factory for information on specific speeds and sizes or to have a FIFO built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| WRN | Input | Write clock. Data is latched when WRN transitions from low to high. |
| RDN | Input | Read clock. On the low to high transition of RDN data on the bottom of the FIFO is <br> replaced with data from immediately above. |
| RSTN | Input | Reset signal. Sets FIFO to empty. |
| D((yy-1):0) | Input | Data inputs. Data appearing on these inputs are written into the FIFO on the low to <br> high transition of WRN. D(0) is the LSB. |
| IRN | Output | Input Ready Not. A low on this signal indicates the FIFO is either full or busy. Writing <br> when IRN is low will cause data to be lost. |
| ORN | Output | Output Ready Not. A low on this signal indicates that data appearing on the outputs are <br> valid. |
| O((yy-1):0) | Output | Data outputs. The data stored on the bottom of the stack are constantly available <br> through these signals and are updated on the rising edge of RDN. |

## Sample Equivalent Gates

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI6S(0.6 micron) | AMI8S(0.8 micron) | AMI6G(0.6 micron) | AMI8G(0.8 micron) |
| MGF0232C1 | 260 | 253 | 320 | 323 |
| MGF0809C1 | 290 | 274 | 368 | 369 |
| MGF1616C1 | 843 | 761 | 1,030 | 1,031 |
| MGF1632C1 | 1,542 | 1,366 | 1,846 | 1,863 |

Sample Fall-through Delays ${ }^{1}$

| CELL NAME | STANDARD CELL |  | GATE ARRAY |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMI6S(0.6 micron) | AMI8S(0.8 micron) | AMI6G(0.6 micron) | AMI8G(0.8 micron) |
| MGF0232C1 | 6.1 ns | 6.4 ns | 5.3 ns | 6.2 ns |
| MGF0809C1 | 21.9 ns | 23.1 ns | 18.7 ns | 21.4 ns |
| MGF1616C1 | 43.1 ns | 45.4 ns | 36.9 ns | 41.9 ns |
| MGF1632C1 | 44.5 ns | 45.5 ns | 39.1 ns | 43.2 ns |

[^130]Digital Soft Megacells

## Read / Write Timing



## Timing Characteristics

| SYMBOL | CHARACTERISTIC | REFERENCED TO |
| :---: | :--- | :--- |
| $\mathrm{T}_{\text {RIRN }}$ | reset to input ready set | RSTN falling |
| $\mathrm{T}_{\text {RORN }}$ | reset to output ready clear | RSTN falling |
| $\mathrm{T}_{\text {WIRN }}$ | write to input ready clear | WRN falling |
| $\mathrm{T}_{\text {WOR }}$ | write to output ready set | WRN rising |
| $\mathrm{T}_{\text {WIR }}$ | write to input ready set | WRN rising |
| $\mathrm{T}_{\text {RIR }}$ | read to input ready set | RDN rising |
| $\mathrm{T}_{\text {RORN }}$ | read to output ready clear | RDN falling |
| $\mathrm{T}_{\text {ROR }}$ | read to output ready set | RDN rising |
| $\mathrm{T}_{\text {DSU }}$ | data setup to write | WRN rising |
| $\mathrm{T}_{\text {OV }}$ | read to output valid | RDN rising |

## Digital Soft Megacells

## Features

- Dual-port RAM architecture for zero fall-through time
- Dynamically programmable almost-full and almost-empty flags.
- Synchronous design
- Word width and depth are user definable
- High-performance, Schematic-based megacell
- Uses the ASIC Standard Library for technology independence

LOGIC SYMBOL
MGFxxxxyyD


## Description

The MGFxxxxyyD FIFO (First In, First Out) builds synchronous FIFOs of various sizes. These FIFOs use a Dual-Port Synchronous Static RAM to allow large FIFO depth without any fall-through time. This FIFO is available in the SDX (1.0 u Standard Cell) and AMI8S ( 0.8 u Standard Cell) technologies.
The "xxxx" in the name represents the number of words in the FIFO, and must be a power of 2 between five and ten. (i.e. 32 minimum to 1024 maximum) The "yy" is the number of bits per word and can be from one to any size needed. For example, a 128 word by 16 bit FIFO would be named MGF012816D.
Clock inputs WCLK and RCLK are free-running. Data is written into the FIFO on the falling edge of WCLK when WE is high. WE should only transition when WCLK is low. Data is read on the rising edge of RCLK when RE is high. The output data must be captured by external logic before the next rising edge of RCLK.

Inputs AO and WR are used to write to the registers which control the AE (almost empty) and AF (almost full) flags. When AO is low, data on the DI bus is written into the AE register on the rising edge of WR. When AO is high data is written into the AF register. On reset the AE register defaults to $25 \%$ of " $x x x x$ " and AF to $75 \%$ of " $x x x x$ ".
The width of the data input (DI) bus is equal to the greater of, the number of bits per word or $\log 2$ (number of words in FIFO).
Flags include FE, (FIFO empty) FF, (FIFO full) and the dynamically programmable AE (almost empty) and AF (almost full) flags.
The MGFxxxxyyD features a split reset line to allow implementation of a re-transmit function. XRRST and XWRST are synchronous active low resets for the read counter and write counter respectively. Each reset must be held active for at least one rising edge of its respective clock to initialize the FIFO.
To implement a re-transmit function the total number of writes since the last general reset must be LESS THAN the number of words in the FIFO. As long as this condition is met the read counter may be reset and all the words written since the general reset may be reread. Notice that if the $A E$ register has been programed to a different value, the read reset will return it to the default.
Contact the factory for information on specific speeds and sizes or to have a FIFO built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip.

## Digital Soft Megacells

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :---: |
| XWRST | 1 | Synchronous write reset. Resets the write portion of the FIFO. Must be held low during a rising edge of WCLK. |
| WCLK | 1 | Free-running write clock. |
| WE | 1 | Write enable. Data appearing on DIn will be written into the FIFO on the falling edge of WCLK when WE is high. WE should transition only when WCLK is low. |
| XRRST | 1 | Synchronous read reset. Resets the read portion of the FIFO. Must be held low during a rising edge of RCLK. |
| RCLK | 1 | Free-running read clock. |
| RE | 1 | Read enable. Data is read from the FIFO on the rising edge of RCLK when RE is high. |
| A0 | 1 | Address for determining if the AE or AF flag register is to be written. When $\mathrm{A} 0=1$ the AF flag register is written. |
| WR | 1 | Write control for AE and AF registers. Data appearing on DIn is written into either the $A E$ or $A F$ register on the rising edge of WR. |
| $\mathrm{DI}(\mathrm{nn})-1: 0)$ | 1 | Data into the FIFO and the AE/AF registers. |
| DO((yy)-1:0) | 0 | Data out of the FIFO. |
| FF | 0 | FIFO full flag, active high. Synchronized to WCLK. |
| AF | 0 | FIFO almost full flag, active high. Synchronized to WCLK. |
| FE | 0 | FIFO empty flag, active high. Synchronized to RCLK. |
| AE | 0 | FIFO almost empty flag, active high. Synchronized to RCLK. |

## Sample Equivalent Gates ${ }^{1}$

| Cell Name | Standard Cell |
| :---: | :---: |
|  | AMI8S(0.8 micron) |
| MGF0032yyD | 470 |
| MGF0064yyD | 540 |
| MGF0128yyD | 640 |
| MGF0256yyD | 740 |
| MGF0512yyD | 840 |
| MGF1024yyD | 940 |

[^131]
## Digital Soft Megacells

## Read Timing



Write Timing


## Register Write Timing



## Timing Characteristics

| Symbol | Characteristic | Referenced to |
| :--- | :--- | :--- |
| $\mathrm{T}_{\text {RRSU }}$ | read reset set-up | RCLK rising |
| $\mathrm{T}_{\text {RRH }}$ | read reset hold | RCLK rising |
| $\mathrm{T}_{\text {RESU }}$ | read enable set-up | RCLK rising |
| $\mathrm{T}_{\text {REH }}$ | read enable hold | RCLK rising |
| $\mathrm{T}_{\text {PRCDO }}$ | read clock to data out valid | RCLK rising |
| $\mathrm{T}_{\text {PRCFO }}$ | read clock to flag out valid | RCLK rising |
| $\mathrm{T}_{\text {WRSUR }}$ | write reset set-up | WCLK rising |
| $\mathrm{T}_{\text {WRHR }}$ | write reset hold | WCLK rising |
| $\mathrm{T}_{\text {WRSUF }}$ | write reset set-up | WCLK falling |
| $\mathrm{T}_{\text {WRHF }}$ | write reset hold | WCLK falling |
| $\mathrm{T}_{\text {WESU }}$ | write enable set-up | WCLK rising |
| $\mathrm{T}_{\text {WEH }}$ | write enable hold | WCLK falling |
| $\mathrm{T}_{\text {DISU }}$ | data in set-up | WCLK falling |
| $\mathrm{T}_{\text {DIH }}$ | data in hold | WCLK falling |
| $\mathrm{T}_{\text {PWCFO }}$ | write clock to flag out valid | WCLK rising |
| $\mathrm{T}_{\text {XRSU }}$ | either reset set-up | WR rising |
| $\mathrm{T}_{\text {XRH }}$ | either reset hold | WR rising |
| $\mathrm{T}_{\text {AOSU }}$ | AO set-up | WR rising |
| $\mathrm{T}_{\text {AOH }}$ | AO hold | WR rising |
| $\mathrm{T}_{\text {XDSU }}$ | data in set-up | WR rising |
| $\mathrm{T}_{\text {XDH }}$ | data in hold | WR rising |

## Digital Soft Megacells

## Features

- Dual-port RAM architecture for zero fall-through time
- Asynchronous design
- Word width and depth are user definable
- High-performance, Schematic-based megacell
- Uses the ASIC Standard Library for technology independence

LOGIC SYMBOL
MGFxxxxyyE


## Description

The MGFxxxxyyE FIFO (First In, First Out) builds asynchronous FIFOs of various sizes. These FIFOs use a Dual-Port Synchronous Static RAM to allow large FIFO depth without any fall-through time. This FIFO is available in the SDX (1.0 u Standard Cell) and AMI8S (0.8 u Standard Cell) technologies.
The "xxxx" in the name represents the number of words in the FIFO, and must be a power of 2 between five and ten (i.e. 32 minimum to 1024 maximum). The "yy" is the number of bits per word and can be from one to any size needed. For example, a 128 word by 16 bit FIFO would be named MGF012816E.
Data is written into the FIFO on the rising edge of XW, and read on the falling edge of XR. Flags are updated on the rising edge of XW and XR. Flags include XFE, (FIFO empty not) and XFF (FIFO full not).
The MGFxxxxyyE has a general reset, XRS pin, and a retransmit function enabled by the XRT pin. Both pins are active low.

To use the re-transmit function the total number of writes since the last general reset MUST NOT EXCEED the number of words in the FIFO.
As long as this condition is met, pulling XRT low will reset the read counter and all the words written since the general reset may be read.
Contact the factory for information on specific speeds and sizes or to have a FIFO built.

## Soft Megacells

This logic synthesizer produces a soft megacell schematic in the ASIC Standard Library and a schematic symbol. The ASIC Standard Library is technology- and processindependent and is available in both Standard Cells and Gate Arrays.
A soft megacell is defined only at the schematic level. Each instance of the megacell has exactly the same functional definition; however, the physical mask layout is different for each instance depending on other functions being used, the place-and-route tools, and process technology. A soft megacell can be used with other megacells (including ROM and RAM) and logic from the ASIC Standard Library to build a complete system on a chip

## Pin Description

| SIGNAL | TYPE | SIGNAL DESCRIPTIONS |
| :---: | :---: | :--- |
| XRS | I | Asynchronous reset. Resets FIFO when pulsed low. |
| XRT | i | Activates re-transmit function when pulsed low. |
| XW | I | Active low write signal. Data appearing on DIn will be written into the FIFO on the <br> rising edge of XW. |
| XR | I | Active low read signal. Data is read from the FIFO on the falling edge of XR. |
| DI((yy) $-1: 0)$ | I | Data input into the FIFO. |
| DO((yy)-1:0) | O | Data output from the FIFO. |
| XFF | O | FIFO full flag, active low. |
| XFE | O | FIFO empty flag, active low. |

## Sample Equivalent Gates ${ }^{1}$

| Cell Name | Standard Cell |
| :---: | :---: |
|  | AMI8S(0.8 micron) |
| MGF0032yyE | 300 |
| MGF0064yyE | 360 |
| MGF0128yyE | 430 |
| MGF0256yyE | 495 |
| MGF0512yyE | 560 |
| MGF1024yyE | 630 |

NOTE: 1. Does not include RAM.

## Read Timing



XFE \& XFF $\qquad$

## Digital Soft Megacells

## Write Timing



## Timing Characteristics

| Symbol | Characteristic | Referenced to |
| :---: | :--- | :--- |
| $\mathrm{T}_{\text {RRSUR }}$ | read reset set-up | XR rising |
| $\mathrm{T}_{\text {RRH }}$ | read reset hold | XR rising |
| $\mathrm{T}_{\text {RRSUF }}$ | read reset set-up | XR falling |
| $\mathrm{T}_{\text {RRHF }}$ | read reset hold | XR falling |
| $\mathrm{T}_{\text {PRDO }}$ | read clock to data out valid | XR falling |
| $\mathrm{T}_{\text {PRFO }}$ | read clock to flag out valid | XR rising |
| $\mathrm{T}_{\text {WRSU }}$ | write reset set-up | XW rising |
| $\mathrm{T}_{\text {WRH }}$ | write reset hold | XW rising |
| $\mathrm{T}_{\text {DISU }}$ | data in set-up | XW rising |
| $\mathrm{T}_{\text {DIH }}$ | data in hold | XW rising |
| $\mathrm{T}_{\text {PWFO }}$ | write clock to flag out valid | XW rising |

SECTION 6 MEMORIES

## RASGA808-RASGN808 Self-Timed Synchronous Static RAM

## AMIGG 0.6 micron CMOS Gate Array

## Features

- Self-timed design allows flexibility in clock duty cycle while maintaining fast cycle time
- 6.7 nsec typical cycle time at 5 volts
- 3-State or always active outputs
- Low standby power when the clock is stopped
- Separate input and output ports with full parallel access
- Functionally equivalent to AMI's Standard Cell SelfTimed Synchronous Static RAM
- Precharged design for faster operation with lower power consumption

FIGURE 1: LOGIC SYMBOL
RASGdwyz


Note: A0 is the LSB.

## General Description

These $128 \times 8$ SRAM blocks are built into AMI's 0.6 micron base arrays. When your application requires static RAM memory, use these RAMs. RASGN808 supports tristated outputs and the RASGA808 active outputs.
The transistors that form RAM corecell array are embedded in the area normally used for the routing channels. If you don't use the RAM, this channel area is still used for routing; there is no loss of usable gates due to presence of the RAM blocks.
When RAM is implemented, the RAM support circuitry will consume 1692 usable gates from the array for each $128 \times 8$ block of RAM. To form larger memories, multiple RAM blocks can be implemented.
The selected base must be large enough to include:
a. The number of built-in RAM blocks you need.
b. The number of usable gates needed for RAM support, 1692 gates/block.
c. The number of usable gates required for your logic.

The advantage of this approach is smaller size. This RAM uses $53 \%$ fewer gates than the same size RAM compiled from the array gates alone.
This synchronous RAM requires a CLK input that triggers the RAM on a rising edge. All other inputs must meet setup and hold times with respect to the rising clock edge. The self-timed feature means an internally generated signal is used to switch the RAM to its precharge state upon completion of each read or write. This gives fast cycle times as well as flexible clock duty cycle.
The memory is fully characterized at 5 volts and 3.3 volts, with timing models available for AMI supported workstation platforms.

## AMIGG 0.6 micron CMOS Gate Array

FIGURE 2: RAM BLOCK DIAGRAM


Address and Word Size

| PARAMETER | VALUE |
| :--- | :---: |
| Address inputs | 7 |
| Address locations (words) | 128 |
| Word size (data outputs) | 8 |
| Total bits in a core (word size times address locations) | 1024 |

Pin Loading (Equivalent Loads)

| SIGNAL | TYPE | $\mathbf{1 2 8} \mathbf{X ~ 8}$ | SIGNAL DESCRIPTIONS |
| :---: | :---: | :---: | :--- |
| Ai | I | 2.02 | Address inputs |
| CLK | I | 2.64 | Clock input |
| DI | I | 0.90 | Data inputs |
| OEN | I | 0.85 | 3-State output control |
| WRT | I | 1.82 | Write control |
| Q (High-Z) | O | 2.90 | Data outputs |

## Area relative to a 2-Input Nand

$128 \times 8$ : 1692

## Bolt Syntax

Q (7) ... Q1 Q0 .RAS8dwyz A(6) ... A1 A0 CLK DI(7) ... DI1 DIO OEN WRT;
Note: A0 is the LSB.
Power Dissipation

| PARAMETER | $\mathbf{1 2 8 ~ X ~ 8 ~}$ |
| :--- | :---: |
| Typical EQL |  |
| Typical Static $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)(\mu \mathrm{A})$ | 49.44 pF |

See power notes in data book.

## Testing Notes

Testability of memory elements in IC designs must be considered when designing and simulating the circuits. Providing either direct or multiplexed input and output pins for controlling and observing the memory elements may greatly simplify the testing of the IC and any debugging to the system. The minimum pattern used to test a RAM should write and read both a zero and a one to every core bit. In addition, a variable pattern should be used to test for address decode faults and write disturb problems by writing the entire memory then reading it all back. One example of a variable pattern for these tests is to write the address value to each location. There are many methodologies for testing RAMs that have test time versus fault coverage trade-off. For more information on testing RAMs, refer to the AMI Application Note titled "Testing RAM Elements in IC Designs."

AMIGG 0.6 micron CMOS Gate Array
128 X 8 @ Typical; Vdd = 5V

| CHARACTERISTIC | SYMBOL | tdx (ns) | Ktdx (ns/EQL) | t(5EQL) (ns) |
| :--- | :---: | :---: | :---: | :---: |
| Min CLK high to CLK high cycle time | tcyc | 6.69 |  |  |
| Min CLK width low | twcl | 1.6 |  |  |
| Min CLK width high during read | twchr | 1.05 |  |  |
| Min CLK width high during write | twchw | 2.52 |  |  |
| Min address setup before CLK rises ${ }^{1}$ | tasu | 0.13 |  |  |
| Min address hold after CLK rises ${ }^{1}$ | tah | 1.76 |  |  |
| Min WRT setup before CLK rises | twsu | 0.00 |  |  |
| Min WRT hold after CLK rises | twh | 1.76 |  |  |
| Min data in setup before CLK rises | tdsu | 0.00 |  |  |
| Min data in hold after CLK rises | tdh | 1.76 |  |  |
| Min Q hold after CLK rises | tqh | 1.19 |  |  |
| Max CLK rise to Q valid | tpcq | 4.89 |  | 0.06 |
| Max OEN rise to Q high impedance | toenz | 0.92 |  |  |
| Max OEN fall to Q valid | toenq | 0.703 |  | 0.06 |

Note: 1. If the timing terms tah and tasu are not met, the potential exists that the data in the RAM will be corrupted. This potential exists not only during the write cycle, but also during a read cycle. If the tah and/or tasu timing is violated, the simulation model will show an invalid read or write, but it may not show corrupted data during a read cycle.

3-State Control Timing



## AMIGG 0.6 micron CMOS Gate Array



RASGdwyz Self-Timed Synchronous Static RAM

## AMIGG 0.6 micron CMOS Gate Array



## SECTION 7 <br> SALES INFORMATION

- 


# AMIGG 0.6 micron CMOS Gate Array 

## 1. ACCEPTANCE:

THE TERMS OF SALE CONTAINED HEREIN APPLY TO ALL QUOTATIONS MADE AND PURCHASE ORDERS ENTERED INTO BY THE SELLER. SOME OF THE TERMS SET OUT HERE MAY DIFFER FROM THOSE IN BUYER'S PURCHASE ORDER AND SOME MAY BE NEW. THIS ACCEPTANCE IS CÓNDITIONAL ON BUUYER'S ASSENT TO THE TERMŚ SET OUT HERE IN LIEU OF THOSE IN BUYER'S PURCHASE ORDER. SELLER'S FAILURE TO OBJECT TO PROVISIONS CONTAINED IN ANY COMMUNICATION FROM BUYER SHALL NOT BE DEEMED A WAIVER OF THE PROVISIONS OF THIS ACCEPTANCE. ANY CHANGES IN THE TERMS CONTAINED HEREIN MUST SPECIFICALLY BE AGREED TO IN WRITING BY AN OFFICER OF THE SELLER BEFORE BECOMING BINDING ON EITHER THE SELLER OR THE BUYER. All orders or contracts must be approved and accepted by the Seller at its home office. These terms shall be applicable whether or not they are attached to or enclosed with the products to be sold or sold hereunder. Prices for the items called for hereby are not subject to audit.

## 2. PAYMENT:

(a) Unless otherwise agreed, all invoices are due and payable thirty (30) days from date of invoice. No discounts are authorized. Shipments, deliveries, and performance of work shall at all times be subject to the approval of the Seller's credit department and the Seller may at any time decline to make any shipments or deliveries or perform any work except upon receipt of payment or upon terms and conditions or security satisfactory to such department.
(b) If, in the judgment of the Seller, the financial condition of the Buyer at any time does not justify continuation of production or shipment on the terms of payment originally specified, the Seller may require full or partial payment in advance and, in the event of the bankruptcy or insolvency of the Buyer or in the event any proceeding is brought by or against the Buyer under the bankruptcy or insolvency laws, the Seller shall be entitled to cancel any order then outstanding and shall receive reimbursement for its cancellation charges.
(c) Each shipment shall be considered a separate and independent transaction, and payment therefore shall be made accordingly. If shipments are delayed by the Buyer, payments shall become due on the date when the Seller is prepared to make shipment. If the work covered by the purchase order is delayed by the Buyer, payments shall be made based on the purchase price and the percentage of completion. Products held for the Buyer shall be at the risk and expense of the Buyer.

## 3. TAXES:

Unless otherwise provided herein, the amount of any present or future sales, revenue, excise or other taxes, fees, or other charges of any nature, imposed by any public authority (national, state, local or other) applicable to the products covered by this order, or the manufacture or sale thereof, shall be added to the purchase price and shall be paid by the Buyer, or in lieu thereof, the Buyer shall provide the Seller with a tax exemption certificate acceptable to the taxing authority.

## 4. F.O.B. POINT:

All sales are made F.O.B. point of shipment. Seller's title passes to Buyer, and Seller's liability as to delivery ceases upon making delivery of material purchased hereunder to carrier at shipping point, the carrier acting as Buyer's agent. All claims for damages must be filed with the carrier. Shipments will normally be made by Parcel Post, United Parcel Service (UPS), Air Express, or Air Freight. Unless specific instructions from Buyer specify which of the foregoing methods of shipment is to be used, the Seller will exercise his own discretion.

## 5. DELIVERY:

Shipping dates are approximate and are based upon prompt receipt from Buyer of all necessary information. In no event will Seller be liable for any re-procurement costs, nor for delay or non-delivery, due to causes beyond its reasonable control including, but not limited to, acts of God, acts of civil or military authority, priorities, fires, strikes, lockouts, slow-downs, shortages, factory or labor conditions, yield problems, and inability due to causes beyond the Seller's reasonable control to obtain necessary labor, materials, or manufacturing facilities. In the event of any such delay, the date of delivery shall, at the request of the Seller, be deferred for a period equal to the time lost by reason of the delay. In the event Seller's production is curtailed for any of the above reasons so that Seller cannot deliver the full
amount released hereunder, Seller may allocate production deliveries among its various customers then under contract for similar goods. The allocation will be made in a commercially fair and reasonable manner. When allocation has been made, Buyer will be notified of the estimated quota made available.

## 6. PATENTS:

The Buyer shall hold the Seller harmless against any expense or loss resulting from infringement of patents, trademarks, or unfair competition arising from compliance with Buyer's designs, specifications, or instructions. The sale of products by the Seller does not convey any license, by implication, estoppel, or otherwise, under patent claims covering combinations of said products with other devices or elements.
Except as otherwise provided in the preceding paragraph, the Seller shall defend any suit or proceeding brought against the Buyer, so far as based on a claim that any product, or any part thereof, furnished under this contract constitutes an infringement of any patent of the United States, if notified promptly in writing and given authority, information, and assistance (at the Seller's expense) for defense of same, and the Seller shall pay all damages and costs awarded therein against the Buyer. In case said product, or any part thereof, is, in such suit, held to constitute infringement of patent, and the use of said product is enjoined, the Seller shall, at its own expense, either procure for the Buyer the right to continue using said product or part, replace same with non-infringing product, modify it so it becomes non-infringing, or remove said product and refund the purchase price and the transportation and installation costs thereof. In no event shall Seller's total liability to the Buyer under or as a result of compliance with the provisions of this paragraph exceed the aggregate sum paid by the Buyer for the allegedly infringing product. The foregoing states the entire liability of the Seller for patent infringement by the said products or any part thereof. THIS PROVISION IS STATED IN LIEU OF ANY OTHER EXPRESSED, IMPLIED, OR STATUTORY WARRANTY AGAINST INFRINGEMENT AND SHALL BE THE SOLE AND EXCLUSIVE REMEDY FOR PATENT INFRINGEMENT OF ANY KIND.

## 7. INSPECTION:

Unless otherwise specified and agreed upon, the material to be furnished under this order shall be subject to the Seller's standard inspection at the place of manufacture. If it has been agreed upon and specified in this order that Buyer is to inspect or provide for inspection at the place of manufacture, such inspection shall be so conducted as to not interfere unreasonably with Seller's operations, and consequent approval or rejection shall be made before shipment of the material. Notwithstanding the foregoing, if, upon receipt of such material by Buyer, the same shall appear not to conform to the contract, the Buyer shall immediately notify the Seller of such conditions and afford the Seller a reasonable opportunity to inspect the material. No material shall be returned without Seller's consent. Seller's Return Material Authorization form must accompany such returned material.

## 8. LIMITED WARRANTY:

The Seller warrants that the products to be delivered under this purchase order will be free from defects in material and workmanship under normal use and service. Seller's obligations under this Warranty are limited to replacing or repairing or giving credit for, at its option, at its factory, any of said products which shall, within one (1) year after shipment, be returned to the Seller's factory of origin, transportation charges prepaid, and which are, after examination, disclosed to the Seller's satisfaction to be thus defective. THIS WARRANTY IS EXPRESSED IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, STATUTORY, OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND OF ALL OTHER OBLIGATIONS OR LIABILITIES ON THE SELLER'S PART, AND IT NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR THE SELLER ANY OTHER LIABILITIES IN CONNECTION WITH THE SALE OF THE SAID ARTICLES. This Warranty shall not apply to any of such products which shall have been repaired or altered, except by the Seller, or which shall have been subjected to misuse, negligence, accident, or improper storage. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by Seller.
It is understood that if this order calls for the delivery of semiconductor devices which are not finished and fully encapsulated, then no warranty, statutory, express or implied, including the implied warranty of merchantability and fitness for a particular purpose, shall apply. All such devices are sold as is where is.

## AMIGG 0.6 micron CMOS Gate Array

## 9. PRODUCTS NOT WARRANTED BY SELLER:

The second paragraph of Paragraph 6, Patents, and Paragraph 8, Limited Warranty, above apply only to integrated circuits of Seller's own manufacture. IN THE CASE OF PRODUCTS OTHER THAN INTEGRATED CIRCUITS OF SELLER'S OWN MANUFACTURE, SELLER MAKES NO WARRANTIES, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FREEDOM FROM PATENT INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. Such products may be warranted by the original manufacturer of such products. For further information regarding the possible warranty of such products, contact Seller.

## 10. PRICE ADJUSTMENTS:

Seller's unit prices are based on certain material costs. These materials include, among other things, gold, packages and silicon. Adjustments shall be as follows:
(a) Gold. The price at the time of shipment shall be adjusted for increases in the cost of gold in accordance with Seller's current Gold Price Adjustment List. This adjustment will be shown as a separate line item on each invoice.
(b) Other Materials. In the event of significant increases in the cost of other materials, Seller reserves the right to renegotiate the unit prices. If the parties cannot agree on such increase, then neither party shall have any further obligations with regard to the delivery or purchase of any units not then scheduled for production.

## 11. VARIATION IN QUANTITY:

If this order calls for a product not listed in Seller's current catalog, or for a product which is specially programmed for Buyer, it is agreed that Seller may ship a quantity which is five percent ( $5 \%$ ) more or less than the ordered quantity and that such quantity shipped will be accepted and paid for in full satisfaction of each party's obligation hereunder for the quantity order.

## 12. CONSEQUENTIAL DAMAGES:

In no event shall Seller be liable for special, incidental or consequential damages.

## 13. GENERAL:

(a) The validity, performance and construction of these terms and all sales hereunder shall be governed by the laws of the State of California.
(b) The Seller represents that with respect to the production of articles and/ or performance of the services covered by this order it will fully comply with all requirements of the Fair Labor Standards Act of 1938, as amended, WilliamsSteiger Occupational Safety and Health Act of 1970, Section 202 of Executive Order 11246, as amended and where applicable, and other affirmative action requirements made applicable to this order by federal statute, rule or regulation.
(c) The Buyer may not unilaterally make changes in the drawings, designs or specifications for the items to be furnished hereunder without Seller's prior consent.
(d) Except to the extent provided in Paragraph 14, below, this order is not subject to cancellation or termination for convenience.
(e) If Buyer is in breach of its obligations under this order, Buyer shall remain liable for all unpaid charges and sums due to Seller and will reimburse Seller for all damages suffered or incurred by Seller as a result of Buyer's breach. The remedies provided herein shall be in addition to all other legal means and remedies available to Seller.
(f) Buyer acknowledges that all or part of the products purchased hereunder may be manufactured and/or assembled at any of Seller's facilities domestic or foreign.
(g) Unless otherwise agreed in a writing signed by both Buyer and Seller, Seller shall retain title to and possession of all tooling of any kind (including but not limited to masks and pattern generator tapes) used in the production of products furnished hereunder.
(h) Buyer, by accepting these products, certifies that he will not export or reexport the products furnished hereunder unless he complies fully with all laws and regulations of the United States relating to such export or re-export, including but not limited to the Export Administration Act of 1979 and the Export Administration Regulations of the U.S. Department of Commerce.
(i) Seller shall own all copyrights in or relating to each product developed by Seller whether or not such product is developed under contract with a third party.
(j) The design, development or manufacture by Seller of product for a specific customer shall not be deemed to produce a work made for hire and shall not give to the customer any copyright interest in the product or any interest in all or any portion of the mask works relating to the product. In addition, all such rights shall remain the property of Seller. Seller shall retain all rights in mask work on any circuit designed using Seller's standard cell library and Seller shall retain all rights in mask work to the non-personalized portion of any gate array developed for Buyer.
(k) Engineering work performed by Seller of any kind, including but not limited to, development of test programs, shall only be on a best efforts basis.

## 14. GOVERNMENT CONTRACT PROVISIONS:

If Buyer's original purchase order indicates by contract number that it is placed under a government contract, only the following provisions of the current Federal Acquisition Regulations are applicable, in accordance with the terms thereof, with an appropriate substitution of parties, as the case may be - i.e., "Contracting Officer" shall mean "Buyer," "Contractor" shall mean "Seller," and the term "Contract" shall mean this order:
52.202-1 Definitions; 52.232-11 Extras; 52.212-9 Variation in Quantity; 52.232-23 Assignment of Claims; 52.228-2 Additional Bond Security; 52.224-11 Certain Communist Areas; 52.222-4 Contract Work Hours and Safety Standards Act-Overtime Compensation; 52.222-20 Walsh-Healey Public Contracts Act, if this Order exceeds $\$ 10,000$; 52.222-26 Equal Opportunity; 52.203-1 Officials Not to Benefit; 52.203-5 Covenant Against Contingent Fees; 52.249-1 Termination for Convenience of the Government if this Order does not exceed $\$ 500,000$ (only to the extent that Buyer's contract is terminated for the convenience of the government); 52.246-1 Contractor Inspection Requirements; 52.247-1 Commercial Bills of Lading; 52.222-35 Affirmative Action Viet Nam Veterans if this Order exceeds $\$ 10,000 ; 52.222-36$ Affirmative Action Handicapped Workers, if this Order exceeds $\$ 2,500$; $52.222-1$ Notice to the Government of Labor Disputes; 52.215-1 Examination of Records by Comptroller General; 52.220-3 Utilization of Labor Surplus Area Subcontracting Concerns.

AMERICAN MICROSYSTEMS, INC.

## Alabama

STG (Southeast Technical Group, Inc.)
101 Washington Street, Suite 6
Huntsville, AL 35801
(205) 534-2376
(205) 534-2384 (FAX)

## Arizona

Thom Luke Sales, Inc. 9700 North 91st Street,
Suite 1200
Scottsdale, AZ 85258
(602) 451-5400
(602) 451-0172 (FAX)

## California

Centaur Corporation 17802 Skypark Circle, Suite 100 \& 101
Irvine, CA 92614
(714) 261-2123
(714) 261-2905 (FAX)

26635 W. Agoura Rd.,
Suite 101
Calabasas, CA 91302
(818) 878-5800
(818) 878-5818 (FAX)

3914 Murphy Canyon Road,
Suite A125
San Diego, CA 92123
(619) 278-4950
(619) 278-0649 (FAX)

## $\mathbf{I}^{2}$ Associates

9198 Greenback Ln.,
Suite 214
Orangevale, CA 95662
(916) 989-0843
(916) 989-2841 (FAX)
$\mathrm{I}^{\mathbf{2}}$ Incorporated
3255-1 Scott Blvd.,
Suite 102
Santa Clara, CA 95054
(408) 988-3400
(408) 988-2079 (FAX)

## Colorado

Thom Luke Sales, Inc.
Colorado Division
9000 E. Nichols Ave.,
Suite 240
Englewood, CO 80112
(303) 649-9717
(303) 649-9719 (FAX)

## Connecticut

Datcom, Inc.
One Evergreen Avenue
Hamden, CT 06518
(203) 288-7005
(203) 281-4233 (FAX)

## Florida

Q XI
9455 Koger Blvd., Suite. 105
St. Petersburg, FL 33702
(813) 576-3445
(813) 576-2601 (FAX)

127 W. Church Ave.
Longwood, FL 32750
(407) 831-8131
(407) 831-8112 (FAX)

## Georgia

STG (Southeast Technical
Group, Inc.)
3500 Parkway Lane,
Suite 420
Norcross, GA 30092
(770) 416-6336
(770) 416-6433 (FAX)

## Idaho

First Source of Idaho, Inc.
10451 W. Garverdale Court, \#209
Boise, ID 83704
(208) 378-4680
(208) 323-9386 (FAX)

## Illinois

Micro-Tex, Inc.
1870 N. Roselle Rd., Suite 107
Schaumburg, IL 60195
(847) 885-8200
(847) 885-8210 (FAX)

## Indiana

Skyline Sales \& Associates, Inc.
1033 3rd Southwest Ave.,
Suite 203
Carmel, IN 46032
(317) 587-1320
(317) 587-1322 (FAX)

511 Airport N. Office Park Ft. Wayne, IN 46825
(219) 489-4992
(219) 489-6194 (FAX)

## lowa

C. H. Horn \& Associates 4403 First Ave., S.E.,
Suite 411
Cedar Rapids, IA 52402
(319) 393-8703
(319) 393-7224 (FAX)

## Kansas

Midtec Associates, Inc. 11900 West 87th St. Parkway, Suite 220
Lenexa, KS 66215
(913) 541-0505
(913) 541-1729 (FAX)

## Maryland

S. J. Chesapeake 9525 Hallhurst Rd. Baltimore, MD 21236
(410) 256-0090
(410) 256-0095 (FAX)

## Massachusetts

ATS (Advanced Tech Sales)
Park Place West,
Suite 102
352 Park Street
North Reading, MA 01864
(508) 664-0888
(508) 664-5503 (FAX)

## Michigan

Skyline Sales \&
Associates, Inc.
19137 Surrey Lane
Northville, MI 48167
(810) 449-1437
(810) 449-1438 (FAX)

## Minnesota

Vector Design Technology 3101 Old Highway 8, Suite 202
Roseville, MN 55113
(612) 631-1334
(612) 631-1329 (FAX)

## Missouri

Midtec Associates, Inc.
55 Westport Plaza, Suite 614
St. Louis, MO 63146
(314) 275-8666
(314) 275-8859 (FAX)

## New Jersey

S. J. Associates, Inc.

131-D Gaither Drive
Mount Laurel, NJ 08054
(609) 866-1234
(609) 866-8627 (FAX)

## New York

L-MAR Associates, Inc.
440 Perinton Hills
Office Park
Fairport, NY 14450
(716) 425-9100
(716) 425-9120 (FAX)
S.J. Associates, Inc.

265 Sunrise Highway
Rockville Centre, NY 11570
(516) 536-4242
(516) 536-9638 (FAX)

North Carolina
STG (Southeast Technical Group, Inc.)
108 Greywick Way
Cary, NC 27513
(919) 468-1524
(919) 468-1534 (FAX)

222 Roma Road
P.O. Box 249

Haw River, NC 27258
(910) 578-1070
(910) 578-1070 (FAX)

8430 University Executive
Park, Suite 695
Charlotte, NC 28262
(704) 896-3121
(704) 892-3931 (FAX)

## Ohio

Great Lakes Group, Inc. 7760 Olentangy River Road, Suite 119
Columbus, OH 43235-1374
(614) 885-6700
(614) 885-6701 (FAX)

33610 Solon Road,
Suite 5
Solon, OH 44139
(216) 349-2700
(216) 349-2701 (FAX)

2038 Heritage Point Drive
Kettering, OH 45409
(937) 298-7322
(937) 298-7323 (FAX)

## Oregon

Quad Rep, Inc.
17020 SW Upper
Boones Ferry Rd, \#202
Portland, OR 97224
(503) 620-8320
(503) 639-4023 (FAX)

## Texas

OM Associates, Inc. 9020-1Capital of Texas Hwy. N., Suite 335
Austin, TX 78759
(512) 794-9971
(512) 794-9987 (FAX)

20405 S.H. 249 , Suite 400
Houston, TX 77070
(713) 376-6400
(713) 376-6490 (FAX)

690 West Campbell Road, Suite 150
Richardson, TX 75080
(972) 690-6746
(972) 690-8721 (FAX)

## Utah

First Source of Utah 8341 South 700 East Sandy, UT 84070 (801) 561-1999
(801) 561-4525 (FAX)

## Virginia

S. J. Chesapeake 900 S. Washington St., Suite 307
Falls Church, VA 22046
(703) 533-2233
(703) 533-2236 (FAX)

4032 Providence Road
Hayes, VA 23072
(804) 642-1515
(804) 642-8851 (FAX)

12006 Yucca Drive
Richmond, VA 23236
(804) 378-9170
(804) 378-9171 (FAX)

## Washington

Quad Rep, Inc.
375 118th Ave. SE \#110
Bellevue, WA 98005
(206) 453-5100
(206) 646-8775 (FAX)

## Wisconsin

Micro-Tex, Inc.
S. 22 W. 22660 Broadway,

Suite 4A
Waukesha, WI 53186
(414) 542-5352
(414) 542-7934 (FAX)
(809) 781-2020 (FAX)

## NORTH AMERICA

## FRANCE

## Unirep

Z. I. de la Bonde

1 bis, rue Marcel Paul Bat. B 91300 Massy, France
33-1-6953-8470
33-1-6920-0061 (FAX)
EURODISTC-DIS S.A.
30 Avenue de L'Epl d'Or F-94807 Villejuif Cedex, France 33-1-4180-3580
33-1-4687-0448 (FAX)

## GERMANY

## ACT Rep GmbH

Matthias-Claudius- Str. 17
24558 Henstedt-Ulzburg, Germany
49-4193-89-2400
49-4193-89-2401 (FAX)
ADE Industrievertregungen
GmbH
Ortszentrum 11
75428 Illingen, Germany
49-7042-22134
49-7042-25579 (FAX)

## Andreas Bautz

Kirchhofsweg 55
25421 Pinneberg, Germany
49-4101-21010
49-4101-210133 (FAX)
ASIC GmbH
Muenchner Strasse 8
85667 Oberpframmern, Germany
49-8093-9083-0
49-8093-9083-25 (FAX)
Dacom West GmbH
Obenitterstrasse 21
Gewerbepark Solingen-Wald
42719 Solingen, Germany
49-212-230300
49-212-2303044 (FAX)
Easytronic
Dorf Str. 33F
82024 Taufkirchen, Germany
49-89-6127375
49-89-61453910 (FAX)

## Future Electronics

Deutschland GmbH
Muenchner Str. 18
85774 Unterfoehring, Germany
49-89-9572-7153
49-89-9572-7140 (FAX)

## ITALY

FG Microdesign S.R.L.
Via O. Simoni 5
40011 Anzola Emilia
Bologna, Italy
39-51-732095
39-51-732491 (FAX)
P. C. Naj

Via Suno 24
28010 Agrate Conturbia (NO), Italy
39-322-832307
39-322-832307 (FAX)

## NETHERLANDS

ACAL Nederland B.V.
Beatrix de Rijkweg 8
5657 Eindhoven, The Netherlands
31-4025-02602
31-4025-10255 (FAX)

## NORWAY

Berendsen Electronics
Konowsgt. 8
P.O. Box 9376 Gronland

0135 Oslo, Norway
47-2208-8500
47-2208-8590 (FAX)

## SWEDEN

Berendsen Electronics
Hammarby Kajvag 14
Box 92047
12006 Stockholm, Sweden 46-8615-7402 46-8641-1390 (FAX)

## SWITZERLAND

Eurodis Electronic AG
Bahnstrasse 58/60
8105 Regensdorf, Switzerland
41-1-843-3111
41-1-843-3475 (FAX)
UNITED KINGDOM
Sabre Advanced
Microelectronics Ltd.
Sussex House, Unit 11
The Pines Trading Estate
Broad Street
Guildford, Surrey
GU3 3BH, United Kingdom
44-1483-5-35444
44-1483-5-35888 (FAX)

## FAR EAST

## CHINA

Dynatek Electronics Limited
No. 15 Daniwan
Haidian District
Beijing, China
(86-1) 264-5294
(86-1) 264-4527 (FAX)
Room 104, Building 6,
Block B, No. 78,
Long Kou West Road
Tien He District
Guangzhou, China
(86-20) 754-9961
(86-20) 754-9661 (FAX)
Unit E, 8/F, Block B
Lu Shan Building
66 Chun Feng Road
Shenzhen, China
(86-755) 225-2640-703
(86-755) 225-2640-703 (FAX)

## HONG KONG

Dynatek Electronics Limited
Unit 701-704, 7/F.,
Hong Leong Industrial Complex
4 Wang Kwong Road,
Kowloon Bay, Hong Kong
(852) 2796-6689
(852) 2796-6109 (FAX)

## INDIA

Hynetic International
175 Calvert Drive
Suite 5202
Cupertino, CA 95014
(408) 973-0996
(408) 973-8574 (FAX)

## JAPAN

AMI-Japan
20-16, Hikawadai
3 -Chome, Nerima-Ku
Tokyo 179, Japan
81-3-5399-7831
81-3-5399-7834 (FAX)

## SINGAPORE

Serial System PTE Ltd.
11, Jalan Mesin
\#06-00 Standard Industrial Building
Singapore 1336
65-2800200
65-2861812 (FAX)

## TAIWAN

Serial Semiconductor
Company Ltd.
7F, No. 34, Sec. 3
Pateh Road
Taipei, Taiwan, R.O.C.
886-2-5795858
886-2-5703100 (FAX)

## MIDDLE EAST

ISRAEL
Vectronics Ltd.
6 Maskit St'
Herzlia Business Park, Bldg B'
P.O.B. 2024 Herzlia B'

Israel 46120
972-9-9556070
972-9-9556508 (FAX)
CORPORATE OFFICES

## IDAHO

WORLDWIDE
HEADQUARTERS
2300 Buckskin Rd.
Pocatello, ID 83201
(208) 233-4690
(208) 234-6796 (FAX)
UNITED STATES
HEADQUARTERS STANDARD PRODUCTS DIVISION
1651 Alvin Ricken Dr. Pocatello, ID 83201
(208) 233-4690
(208) 234-6760 (FAX)

## GERMANY-3

AMI GmbH CORPORATE
HEADQUARTERS
Bertolt-Brecht-Allee 22
D-01309 Dresden,
Germany
49-351-31-99-1500
49-351-31-99-1501 (FAX)

## JAPAN

JAPAN ENERGY
CORPORATION
10-1 Toranomon 2-Chome
Minato-ku
Tokyo 105 Japan
81-3-5573-6543
81-3-5573-6777 (FAX)

## INTERNATIONAL NORTH OFFICES <br> JAPAN - 1, 3 <br> AMERICAN OFFICES

AMI-JAPAN
20-16 Hikawadai
Nerima-Ku 3-Chome
Tokyo 179, Japan 81-3-5399-7831 81-3-5399-7834 (FAX)
GERMANY - 2
AMI GmbH
Europe Marketing \& Sales
Bertolt-Brecht-Allee 22 D-01309 Dresden, Germany
49-351-31-99-1506
49-351-31-99-1507 (FAX)

## Copyright@1997

American Microsystems, Inc.

## 1 Sales Personnel <br> 2 Sales \& Application Engineering Personnel <br> 3 Technical Services Center <br> 4 Application Engineering Personnel Only <br> 5 Business Unit Headquarter

California, North - 2, 3
2055 Gateway Place, Suite 410
San Jose, CA 95110
(408) 452-8550
(408) 452-7602 (FAX)

California, South - 2, 3
13891 Newport Avenue, Suite 150
Tustin, CA 92680
(714) 573-8199
(714) 573-8190 (FAX)

## Colorado - 4

2845 Wilderness Place, Suite 200
Boulder, CO 80301
(303) 413-5100
(303) 413-5139 (FAX)

## Georgia - 2

3500 Parkway Lane, Suite 420
Norcross, GA 30092
(770) 729-8860
(770) 729-8868 (FAX)

Massachusetts - 2
420 Bedford Street, Suite 120
Lexington Office Park
Lexington, MA 02173
(617) 861-6530
(617) 861-8871 (FAX)

## Minnesota-2

5275 Edina Industrial Boulevard,
Suite 218
Edina, MN 55439
(612) 893-1214
(612) 893-0888 (FAX)

## New Jersey - 2

210 Summit Avenue, Bldg. A Montvale, NJ 07645
(201) 930-1350
(201) 930-9820 (FAX)

## Oregon - 2, 3

7340 S.W. Hunziker,
Suite 210
Portland, OR 97223
(503) 639-1655
(503) 639-3397 (FAX)

## Pennsylvania - 5

Focus Semiconductor 768 N. Bethlehem Pike Gwynedd Office Park, Suite 301
Lower Gwynedd, PA
19002-2659
(215) 654-9700
(215) 654-9791 (FAX)

## Texas - 2

5068 W. Plano Parkway, Suite 199
Plano, TX 75093
(972) 248-7770
(972) 248-2681 (FAX)

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without
notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications.

American Microsystems, Inc.
2300 Buckskin Road
Pocatello, ID 83201
(208) 233-4690
(208) 234-6795 FAX

Printed on Recycled Paper


AMERICAN MICROSYSTEMS, INC.


[^0]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates

[^1]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^2]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^3]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^4]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^5]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^6]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^7]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^8]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^9]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^10]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^11]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^12]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^13]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^14]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^15]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^16]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^17]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^18]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^19]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^20]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^21]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^22]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^23]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^24]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^25]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^26]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^27]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^28]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^29]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^30]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^31]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^32]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^33]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^34]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^35]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^36]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^37]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^38]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^39]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^40]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^41]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^42]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^43]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^44]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^45]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^46]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^47]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^48]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^49]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^50]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^51]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^52]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^53]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^54]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^55]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^56]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^57]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^58]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^59]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^60]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^61]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^62]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^63]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^64]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^65]:    *See page 2-14 for detailed information on the power equation for pad pieces.

[^66]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^67]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^68]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^69]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^70]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^71]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^72]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^73]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates

[^74]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^75]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^76]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^77]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^78]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^79]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^80]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^81]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^82]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^83]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^84]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates

[^85]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^86]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^87]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^88]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^89]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^90]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^91]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^92]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^93]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^94]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^95]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^96]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^97]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^98]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^99]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^100]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^101]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^102]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^103]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^104]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^105]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates

[^106]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^107]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^108]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^109]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^110]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^111]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^112]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^113]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^114]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^115]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^116]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^117]:    Delay will vary with input conditions. See page 2-16 for interconnect estimates.

[^118]:    1. Does not include RAM.
[^119]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^120]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^121]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^122]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^123]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^124]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^125]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^126]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^127]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^128]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^129]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^130]:    1. These data are estimated and specified at $5.0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ and 0.1 pF output loading. Actual characteristics will vary based on the final gate count, layout, voltage and temperature.
[^131]:    Note: 1. Does not include RAM.

